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Risk model of hepatocellular
carcinoma based on
cuproptosis-related genes

Zhiqiang Liu1†, Yong Qi1†, Haibo Wang1, Qikun Zhang1,
Zhengsheng Wu2* and Wenyong Wu1*
1Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China,
2Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China

Background: Owing to the heterogeneity displayed by hepatocellular

carcinoma (HCC) and the complexity of tumor microenvironment (TME), it is

noted that the long-term effectiveness of the cancer therapy poses a severe

clinical challenge. Hence, it is essential to categorize and alter the treatment

intervention decisions for these tumors.

Materials andmethods: “ConsensusClusterPlus” tool was used for developing a

secure molecular classification system that was based on the cuproptosis-

linked gene expression. Furthermore, all clinical properties, pathway

characteristics, genomic changes, and immune characteristics of different

cell types involved in the immune pathways were also assessed. Univariate

Cox regression and the least absolute shrinkage and selection operator (Lasso)

analyses were used for designing the prognostic risk model associated with

cuproptosis.

Results: Three cuproptosis-linked subtypes (clust1, clust2, and clust3) were

detected. Out of these, Clust3 showed the worst prognosis, followed by clust2,

while Clust1 showed the best prognosis. Three subtypes had significantly

different enrichment in pathways related to Tricarboxylic Acid (TCA) cycle,

cell cycle, and cell senescence (p < 0.01). The clust3 subtype with poor

prognosis had a low “ImmuneScore” and low immune cell infiltration, and

the three subtypes had significant differences in the antigen processing and

presentation pathway of themacrophages. Clust1 had a low TIDE score andwas

sensitive to immunotherapy. Then, according to the prognosis-related genes of

cuproptosis, a prognosis risk model related to cuproptosis was constructed,

containing seven genes (KIF2C, PTTG1, CENPM, CDC20, CYP2C9, SFN, and

CFHR3). “High” group had a higher TIDE score compared to the TIDE score

value shown by the “Low” group, which benefited less from immunotherapy,

whereas the “High” group patients were more sensitive to the conventional

drugs. Finally, the prognosis risk model related to cuproptosis was combined

with clinical pathological characteristics to further improve the prognostic

model and survival prediction.

Conclusion: Three new molecular subgroups based on cuproptosis-linked

genes were revealed, and a cuproptosis-related prognostic risk model

comprising seven genes was established in this study, which could assist in
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predicting the prognosis and identifying the patients benefit from

immunotherapy.

KEYWORDS

liver cancer, cuproptosis, molecular subtype, risk score, prognosis, tumor immunity

Introduction

Liver cancer includes primary liver cancer and secondary

forms of liver cancer. Hepatocellular carcinoma (HCC) is a very

prevalent type of primary liver cancer, followed by intrahepatic

cholangiocarcinoma and other rare cancers (sarcoma,

hemangioendothelioma, etc.) (Li et al., 2022). Liver cancer

shows a poor prognosis. The frequency of liver cancer has

significantly increased in the past few years, while its 5-year

survival OS rate is <20% (Pham et al., 2022). Hepatitis B and C

viruses, non-alcoholic fatty liver disease (NAFLD), alcohol

consumption, and other factors (i.e., aflatoxin and

microcystin) are among the primary causes of liver cancer.

Out of these, HBV and HCV are seen to be the major risk

factors for liver cancer (Lin et al., 2020). Although numerous

high- or low-expression genes linked to the onset of liver cancer

and carcinogenesis have been identified, the probable molecular

mechanism of liver cancer is not entirely understood. Precision

medicine can introduce a fresh perspective for individualized

cancer diagnosis and focused therapy by considering the

heterogeneity of every patient. Therefore, clinicians should

propose more specific diagnosis and treatment methods for

the subtype of the disease for optimizing the efficacy of

treatment, thereby decreasing the resulting side effects (Liang

et al., 2018).

From bacteria and fungi to plants and animals, copper is the

basic element of life. In the human body, it combines with

enzymes to help blood clots, hormone maturation, and cell

energy processing and is also involved in many biological

behaviors. However, too much copper will kill cells and cause

pathological damage to multiple organs. Studies have shown that

copper ion is both a key cofactor of many enzymes, and excessive

copper ion will lead to cell death. The exact mechanism of

cuproptosis involves the induction of cell death after

combining the tricarboxylic acid cycle (TCA)-linked enzymes,

leading to a protein toxic stress response, which differs from the

cell death mechanisms discussed in the past (Tsvetkov et al.,

2022). Many studies have shown that copper metabolism is

involved in many pathophysiologies of chronic hepatitis. A

long-term exposure to a higher concentration of copper ions

or the long-term usage of unqualified copper water pipes and

tableware could lead to chronic copper poisoning, thereby

causing chronic liver disease (Guo et al., 2021; Nakaichi et al.,

2021). In addition, cuproptosis has aroused widespread concern

in a variety of liver diseases. Excessive copper exposure can lead

to oxidative stress, due to excessive reactive oxygen species (ROS)

production and reduced antioxidant function, and then promote

hepatocyte apoptosis through mitochondrial apoptosis. Earlier

reports also stated that the TNF-R1 signaling pathway played a

vital role in the Cu-induced apoptosis pathway (Liu et al., 2020).

Copper metabolism is closely related to human-related genetic

disease hepatolenticular degeneration (Xu et al., 2021), and such

patients have been associated with copper storage disorders for a

long time. Hence, it becomes important to determine novel

molecular markers and identify the cuproptosis-linked

downstream signaling pathways, for understanding the

regulatory role played by cuproptosis in the pathophysiology

of liver cancer.

In this report, the cuproptosis-linked genes were used to

identify stable molecular subtypes through consistent clustering.

Thereafter, the clinical characteristics, pathway characteristics,

and immune characteristics were compared between the different

subtypes. Finally, genes related to the cuproptosis phenotype

were detected using the expression difference analysis and least

absolute shrinkage and selection operator (Lasso). Furthermore,

the risk model and clinical prognostic model were constructed,

which can assist in the personalized treatment of liver cancer

patients.

Materials and methods

Data collection and processing

The Cancer Genome Atlas (TCGA) GDC API was used for

downloading TCGA-LIHC dataset containing RNA-seq data, copy

number variation (CNV) and mutation data used in this study.

Primary tumor samples were remained. Samples with no survival

information were removed. After the screening, 50 normal and

360 primary tumor samples were included in this study. The Gene

Expression Omnibus (GEO) database provided the gene expression

data for the GSE14520 dataset. Following identification, 242 liver

carcinoma samples were used in the study. Here, the TCGA-LIHC

was used as a training set, while theGSE14520 dataset was used as an

independent verification set. The cuproptosis-linked genes in this

study came from the study of Tsvetkov et al. (2022), a total of

13 cuproptosis-related genes, i.e. ATP7A, LIAS, LIPT1, DLD, DBT,

DLST, FDX1, PDHA1, DLAT, GCSH, PDHB, SLC31A1, and

ATP7B. The bioinformatics analysis of this study was supported

by the Sangerbox tool (http://vip.sangerbox.com/) (Shen et al.,

2022). The work flow of this study was shown in Supplementary

Figure S1.
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Data preprocessing

The RNA-seq data downloaded from the TCGA database

were preprocessed as mentioned below: 1) All samples without

any clinical follow-up data were discarded; 2) All samples

without information regarding their survival duration were

eliminated; 3) All samples without their OS were eliminated;

4) Ensembl was converted to the Gene symbol; and 5) Median

values of the expressions with multiple gene symbols were

considered. On the other hand, the GEO data were pre-

processed as follows: For the GEO data set, the annotation

information of the corresponding chip platform was

downloaded. According to the annotation information, the

probe was mapped to the gene, and the probe that matched

multiple genes was discarded. If a gene matched multiple probes,

the median value was regarded as its gene expression value.

Molecular subtypes of the cuproptosis-
linked genes

ConsensusClusterPlus was used for consistent clustering to

build a consistency matrix, and the samples were clustered and

typed (Wilkerson and Hayes, 2010). The molecular subtypes of

all the samples were derived using the expression data of the

cuproptosis-linked genes. “Pam” algorithm and “Euclidean”were

used as the distance measurement, and 500 bootstraps were

conducted, wherein every bootstrap process included 80% of

all patients in a training set. The cluster number was defined as

between 2 and 10, and the best classification was selected by

determining the consistency matrix and consistency cumulative

distribution function for determining the molecular subtype of

the sample.

Constructing a risk model

1) Through the molecular subtypes identified previously, the

cuproptosis-linked genes with differences between the

subtypes were identified. Here, the differences between the

clust1 vs. non-clust1 subtypes, clust2 vs. non-clust2, and

clust3 vs. non-clust3 subtypes, were identified through the

Limma package (Ritchie et al., 2015). The differentially

expressed genes (DEGs) were also identified based on their

FDR<0.05 and | log2FC |>1 values.

2) Univariate Cox analysis was conducted through the Cox

function in the survival package, and DEGs with

significant prognosis (| logFC |>1 & FDR<0.05) were selected.
3) Lasso regression (Tibshirani, 1997) was used to decrease the

number of genes. Stepwise regression was then utilized, using

the Akaike Information Criterion (AIC), which considered

the model’s statistical fit and the no. of parameters that could

be used for fitting. The most complex model was used to start

the stepAIC technique in the MASS package (Zhang, 2016),

and one variable was eliminated at a time to lower AIC. The

model performed better with a smaller value, indicating that it

had achieved an acceptable degree of fit with fewer

parameters.

The RS of each patient was estimated using the formula as

follows: RiskScore (RS) = Σβi × EXPi. EXPi refers to the gene

expression level of gene characteristics related to the prognosis of

cuproptosis-related phenotypes, while βi refers to a Cox

regression coefficient for the respective gene. To categorize

patients into high-risk and low-risk RS groups, survminer R

package (http://www.sthda.com/english/rpkgs/survminer/) was

used to calculate the optimal cut-off. KM curve was used for

drawing the survival curve for prognostic analysis, while the log-

rank test was employed for determining the significant difference

between the groups.

Gene set enrichment analysis technique

For investigating the pathways associated with various

biological processes in numerous molecular subtypes, the

“GSEA” technique was utilized for pathway analysis

(Subramanian et al., 2005). Here, GSEA was analyzed using

the c2. cp.kegg.v7.0. symbols.gmt as a background set through

GSEA software, and identified with NP < 0.05. In addition, the

TCA cycle-associated genes and pathways were downloaded

from the MSigDB database in GSEA (http://www.GSEa-

msigdb.org/GSEa/msigdb/search.jsp), and the ssGSEA was

used for calculating the score of the TCA related pathways.

Then, the pathways and genes related to cell growth and

death were downloaded from KEGG’s official website (https://

www.kegg.jp/kegg/pathway.html), and the score of the cell

growth and death-related pathways was calculated by ssGSEA.

In addition, the NK Cytotoxicity Score, Toll-Like Receptor Score,

and the Antigen Processing and Presentation Score for every

sample were determined using the ssGSEA process, with the help

of the relevant genes involved in these pathways, derived from

the GSEA-based MSigDB database.

Calculation of invasion abundance of
tumor microenvironment cells

The relative abundance of the 22 immune cells involved in

lung cancer was measured using the CIBERSORT algorithm

(https://cibersort.stanford.edu/) (Newman et al., 2015).

Simultaneously, the percentage of immune cells was

determined using the Estimation of Stromal and Immune

Cells in Malignant Tumors Using Expression Data

(ESTIMATE) software, and the Wilcoxon rank sum test

was employed for comparing the degree of immune cell
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infiltration between the high-risk and the low-risk groups

(Runa et al., 2017).

Prediction of responsiveness to
immunotherapy

The effect of the Immune Checkpoint Inhibitor Score (IMS) on

predicting the Immune Checkpoint inhibitors’ (ICI) clinical

reactivity was confirmed using the Tumor Immune Dysfunction

and Exclusion (TIDE) algorithm. Immune Checkpoint Blockade

(ICB) reactivity is predicted using the gene expression profile by the

TIDE algorithm (Jiang et al., 2018). The TIDE algorithm assessed

two distinct mechanisms of the tumor immune escape scores, such

as tumor-infiltrating Cytotoxic T Lymphocytes (CTLs) dysfunction

score (dysfunction) and the immunosuppressive factor rejection

score (exclusion), as well as 3 cell types that restricted T cell

infiltration into the tumors, such as M2 subtype of the cancer-

associated fibroblasts (CAF), myeloid-derived suppressor cells

(MDSCs), and the tumor-associated macrophages (TAMs). The

potential clinical consequences of immunotherapy in the new

molecular subgroups were assessed in this study using the TIDE

software (http://tide.dfci.harvard.edu). The likelihood of

immunological escape increases with increasing TIDE prediction

score, indicating that patients are less likely to benefit from

immunotherapy.

Results

Gene mutations and transcriptional
changes of cuproptosis-related genes

In this study, 13 cuproptosis-related genes were obtained. For

determining the genetic changes caused by “cuproptosis” in liver

cancer, the gene mutation rate of the somatic mutations in

13 cuproptosis genes was evaluated. Among 364 TCGA-LIHC

primary tumor samples, 12 (3.3%) had mutations in cuproptosis-

FIGURE 1
Mutation map and expression characteristics of cuproptosis-related genes in liver cancer. (A)Mutation map of cuproptosis-linked genes in the
primary tumor samples; (B) CNVs of cuproptosis-linked genes in the primary tumor samples. Vertical axis indicates the percentage of CNV types of
cuproptosis-related genes; (C) The differences of gene expression levels between different CNV types in primary tumor samples; (D) Differential
analysis of transcriptional expression levels of cuproptosis-linked genes in primary tumor and adjacent normal tissue samples. Log2 (expression)
was selected in C and D. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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linked genes (Figure 1A). Among them, only ATP7A, DLD, and

DBT had gene mutations. Then, we analyzed the somatic copy

number changes of these cuproptosis-related genes in primary liver

cancer and found that cuproptosis-related genes had a low CNV

amplification/deletion frequency (Figure 1B). To determine if the

genes related to cuproptosis are differentially expressed in primary

tumors and normal tissues, the mRNA changes of cuproptosis-

linked genes between the primary tumor samples and the adjoining

normal tissue samples were compared, showing that a majority of

the cuproptosis-linked genes were differentially expressed

(Figure 1C). Further, to explore the difference in CNV value in

mRNA expression in primary tumor tissues, patients with primary

liver cancer were categorized into 3 groups according to CNV value,

including increased CNV, CNV loss, and no significant change in

CNV. Then, the mRNA expressions of the cuproptosis-linked genes

between all groups were compared (Figure 1D). The results

indicated that most of these cuproptosis-linked genes showed

higher expression in patients with increased CNV and patients

with lost CNV, and there was no significant change compared

with CNV.

Molecular typing depending on the
cuproptosis-linked genes

For understanding the expression pattern of the cuproptosis-

linked genes, the liver cancer samples in the TCGA-LIHC dataset

containing clinical information were used to classify patients

through the consistent clustering of the expression profiles of

these 13 cuproptosis-related genes. Then, an optimal no. of

clusters was determined based on the cumulative distribution

function (CDF), and the CDF Delta area curve showed that if

the selected cluster was 3, it showed a very stable clustering outcome

(Figures 2A,B), Finally, the k-value of 3 was selected to determining

3molecular subtypes (Figure 2C). Analysis of the prognostic features

of the 3 molecular subtypes showed that they displayed significant

FIGURE 2
Consensus clustering analysis based on the prognosis of cuproptosis-linked genes in liver cancer. (A) CDF curve of TCGA-LIHC dataset
samples; (B) CDF-delta area curve for the TCGA-LIHC dataset, Delta area curve for consensus clustering, which indicates the relative difference in
the area under the CDF curve for every category number, k, in comparison to the k—1. The X-axis axis denotes the category number, k, whereas the
Y-axis indicates the relative change in the area under the CDF curve; (C) Sample clustering-related heat map when the consumption k = 3; (D)
KM curves denoting the correlation between the prognosis of 3 subtypes, identified using the TCGA-LIHC dataset; (E) KM curve of prognosis of three
subtypes in GSE14520 cohort.
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prognostic differences (Figure 2D). It was noted that clust3 showed

the worst prognosis, followed by clust2, and clust1 had the best

prognosis. This same technique was used for verifying the

GSE14520 dataset and the results showed that significant

differences existed in the prognosis of the 3 molecular subtypes

(Figure 2E), which was in agreement with the TCGA-LIHC dataset.

Clinical characteristics and mutation
characteristics between molecular
subtypes

The clinicopathological characteristics of the numerous

molecular subtypes in the TCGA-LIHC dataset were assessed.

Then, the distribution of various clinical characteristics in

3 molecular subtypes was compared, and all distribution

differences in the clinical characteristics of different subtypes

were determined. The results revealed significant differences

between the clust1 and clust2/clust3 in T-stage, Stage, and Grade

(Supplementary Figure S2A). T1/T2 accounted for a relatively high

proportion in clust1/clust2, and T3/T4 accounted for an increase in

clust3. In the stage distribution, T1/T2 accounted for a relatively

high proportion in clust1/clust2, and T3/T4 accounted for an

increase in clust3. In the grade distribution, the proportion of

clust1 in G1/G2 was relatively high, and the proportion of clust2/

clust3 in G3/G4 was increased.

Mutation characteristics between the
molecular subtypes

The different genomic changes noted in the 3 molecular

subtypes existing in the TCGA-LIHC dataset were analyzed.

Here, the molecular characteristics of TCGA-LIHC were

FIGURE 3
Genome changes of molecular subtypes in the TCGA-LIHC dataset. (A) The differences among the molecular subtypes of the TCGA-LIHC
dataset were compared in terms of Aneuploidy Score, Homologous Recombination Defects, Fraction Altered. (B) The top 10mutated genes in three
subtypes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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downloaded from an earlier Pan-cancer Study (Thorsson

et al., 2018). It can be seen that the clust1 subtype showed

a low Aneuploidy Score and Homologous Recombination

Defects (Figure 3A). In addition, a previous study divided

HCC into 5 molecular subtypes according to 160 immune

signatures, of which the immune molecular subtypes C1, C2,

and C4 had the worst prognosis and C3 showed the best

prognosis. In a comparison of the relationship between the

5 immune molecular subtypes and the proposed 3 molecular

subtypes, it was noted that the C1/C2/C4 subtype of immune

molecular subtype occupied more in clust3 and

clust2 subtypes with poor prognosis, while the C3 subtype

of immune molecular subtype occupied more in

clust1 subtype with good prognosis (Supplementary Figures

S2B,C). In addition, the differences in the gene mutations in

various molecular subtypes were compared. TP53 was the

FIGURE 4
GSEA analysis of the 3 molecular subtypes. (A) Clust1 vs. clust2 GSEA analysis results in TCGA-LIHC dataset; (B) Clust1 vs. clust3 GSEA analysis
results in TCGA-LIHC dataset; (C) Clust2 vs. clust3 GSEA analysis results in TCGA-LIHC dataset; (D) Comparison of TCA related pathway scores
amongst the 3 molecular subtypes identified using the TCGA-LIHC dataset; (E) A comparison of cell growth- and cell death-related pathway scores
amongst the 3 subtypes in the TCGA-LIHC dataset. (ANOVA, *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001).
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mostly mutated gene in all three subtypes, with a total

mutation rate of 29% (Figure 3B).

Pathway analysis of molecular subtypes

A comparative analysis of the pathways related to various

biological processes in differing molecular subtypes was carried

out. The results showed that when clust1 was compared to

clust2 of the TCGA-LIHC dataset, the metabolic pathways

like the ASCORBATE_AND_ALDARATE_METABOLISM

were activated in clust1, while pathways like the

SPLICEOSOME were activated in clust2. In clust1 vs. clust3,

pathways such as SPLICEOSOME were activated in clust3, while

in clust2 vs. clust3, pathways such as

FATTY_ACID_METABOLISM were activated in clust3

(Figures 4A–C). Through previous studies, it was found that

cuproptosis was related to TCA (Tsvetkov et al., 2022). ssGSEA

analysis of the TCA score showed that the three subtypes had

significant differences in TCA-linked pathways (Figure 4D).

Then, the score of cell growth and death-associated pathways

was calculated by the ssGSEA technique. The results showed no

significant differences between the 3 subtypes except necroptosis

and apoptosis, and there were significant differences among the

other four pathways related to cell growth and death (Figure 4E).

Immune properties displayed by the
various molecular subtypes

For determining the differences present in the immune

microenvironment of the patients belonging to various

molecular subtypes, the expression level of genes in the

immune cells was utilized for assessing the level of infiltration

of the immune cells in the TCGA-LIHC dataset. First, the relative

quantity of 22 immune cells was determined using the

CIBERSORT algorithm. Figure 5A revealed substantial

disparities across the different subtypes, associated with

8 immune cell types, including the memory B cells, naive

B cells, regulatory T cells, and macrophages (M0, M1, and

M2), etc. The immune cell infiltration was also assessed

simultaneously using ESTIMATE. The outcomes

demonstrated that the three “ImmuneScore” subtypes differed

significantly from one another. The “ImmuneScore” of the

clust3 subtype having a poor prognosis was lower than that of

other subtypes, with low immune cell infiltration (Figure 5B).

Further, the sensitivity differences of different molecular

subtypes in the TCGA-LIHC dataset to immunotherapy were

analyzed. Firstly, the variation in the expression of various

immune checkpoints in the different subtypes was compared.

The findings showed that these molecular subtypes differentially

expressed 34 immune checkpoint genes (Figure 5C). Figure 5A

showed that the molecular subtypes particularly showed a

differential expression of the macrophages, which are cells

that play a vital role in immune regulation, such as Toll-like

receptor signaling pathway, and macrophage antigen processing

and presentation. And there are FC receptors on the surface of

macrophages, which can kill tumor cells through specific

antibodies, like the Antibody-Dependent Cell-mediated

Cytotoxicity (ADCC) effect (NK-cell mediated cytotoxicity).

Therefore, the ssGSEA was used to calculate the immune

scores like NK Cytotoxicity Scores, Toll-like Receptor Score,

and Antigen Processing and Presentation Score, for every

sample. Simultaneously, the ANOVA test found that there

were significant differences in macrophages in antigen

processing and presentation (Figure 5D). Finally, the TIDE

software was employed for analyzing the differences between

the different subtypes with regard to immunotherapy. Figure 5E

showed that the TIDE score of clust2 and clust3 subtypes in the

TCGA queue was higher than the clust1, suggesting that the

clust1 subtype had a lower probability of immune escape and

showed a higher probability of benefitting from immunotherapy.

Establishment and validation of clinical
prognosis model

Then, the cuproptosis-linked genes, which differed between

various subtypes, were identified. Finally, a total of

499 differential genes were chosen for additional analysis, and

the results of the differential analysis were shown in the volcanic

map (Supplementary Figures S3A–C). Univariate Cox analysis

was carried out on 499 differential genes, and a total of 15 genes

showing a significant impact on prognosis were identified (p <
0.001), including 11 “Risk” and 4 “Protective” genes

(Supplementary Figure S3D). Supplementary Figure S3E

shows the forest map of univariate Cox analysis of

15 prognosis-related genes.

Then, 15 genes were further compressed using the

stepwise regression technique, and 7 genes were derived,

i.e., KIF2C, PTTG1, CENPM, CDC20, CYP2C9, SFN,

CFHR3. The RSs of each sample were calculated through

7 gene expression levels with TCGA-LIHC data as the

training data set. Then receiver operating characteristic

(ROC) analysis was used for determining the classification

efficiency of the prognosis prediction for 1–5 years. Area

under the curve (AUC) for 1-, 2-, 3-, 4- and 5-year OS

were seen to be 0.72, 0.66, 0.65, 0.67, and 0.75, respectively,

wherein the AUC values for 1- and 5-years were >0.7
(Figure 6A). Simultaneously, Z-score conversion was

performed on RS. Samples with RS > 0 were classified into

the “high-risk” group, while samples with RS < 0 were

categorized into the “Low-risk” group, and KM curves were

drawn. Results revealed significant differences between both

the groups (p < 0.0001), and “high” group showed a worse

prognosis compared to the “low” group (Figure 6B).
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To verify the robustness of the model, the

GSE14520 dataset was used to verify by the same method,

and ROC curves were used for analyzing the classification

efficiency of predicting the prognosis of 1–5 years of OS. The

results revealed that the risk model could be effectively

developed using the 7 genes. The AUC values for 1–5-year

OS were seen to be 0.68, 0.7, 0.69, 0.67, and 0.62, respectively,

wherein the AUC values for 2-years were >0.7 (Figure 6C).

The same method was used to draw the KM curve, and both

the groups showed significant differences (p < 0.05).

Furthermore, the prognosis of the “low” group was

significantly better compared to the “high” group (Figure 6D).

Performance of the RiskScore in different
clinicopathological features and different
molecular subtypes

For testing the correlation between the RS scores and the

clinical characteristics of liver cancer, the difference in RS scoring

FIGURE 5
Immune-related characteristics of each cuproptosis subtype. (A) The variations in the 22 immune cell scores displayed by the 3 molecular
subtypes identified using the TCGA-LIHC dataset; (B) The difference of ESTIMATE immune infiltration amongst the 3 molecular subtypes identified
using the TCGA-LIHC dataset; (C) Immune checkpoints that were expressed differentially by the different groups in the TCGA-LIHC dataset; (D)
Difference analysis of macrophage participation in related pathways between different groups in the TCGA-LIHC dataset; (ANOVA, *p < 0.05;
**p < 0.01; ***p < 0.001; and ****p < 0.0001) (E) The difference of TIDE analysis results between different groups in the TCGA-LIHC dataset (Wilcox
Test, *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001).
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between different TNM grades and Stage clinical grades in the

TCGA-LIHC dataset was evaluated. The results implied that

samples with higher clinical grades had higher RS (Figure 7A).

Simultaneously, the clinicopathological differences between the

RS groups in the TCGA-LIHC dataset were compared and

significant differences were noted in the distribution of

T-stage, Stage, Grade, Age, and Status between both the

groups. “High” showed a higher clinical grade, and a greater

number of patients died in the “high” group, which was in

agreement with poor prognosis (Figure 7B).

Differences in immune characteristics and
immunotherapy among RiskScore groups

The changes in the relative abundance of 22 different

immune cell types in the high-RS and low-RS groups were

examined in order to better understand the differences in the

immunological microenvironment of patients in the RS

group. The results showed that there were notable differences

between the RS-high and -low groups in 12 different immune cell

types, including plasma cells, macrophages (M0, M1, M2),

FIGURE 6
Construction and assessment of the RSmodel based on the seven cuproptosis-linked genes. (A) ROC curve of risk model constructed by seven
genes in the TCGA-LIHC dataset; (B) KM curve of risk model constructed by seven genes in the TCGA-LIHC dataset; (C) ROC curve of risk model
constructed by seven genes in the GSE14520 dataset; (D) KM curve of the risk model constructed by seven genes in the GSE14520 dataset.
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FIGURE 7
Correlation between RS and clinicopathological features. (A)Differences in RSs between different clinicopathological groups in the TCGA-LIHC
dataset (Wilcox Test, *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001); (B) Clinicopathological features between RS groups in the TCGA-LIHC
dataset.
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memory B cells, etc. (Figure 8A, Wilcox.test). Additionally, the

immune cell invasion was also evaluated using ESTIMATE

(Wilcox.test). The findings demonstrated a statistically

significant difference in the “ImmuneScore” values between

the 2 groups. With a higher immune cell infiltration, the

“ImmuneScore” in the “low” group was seen to be higher

compared to that in the “high” group (Figure 8B).

Then the sensitivity difference of immunotherapy between

the low and high-risk groups in the TCGA-LIHC dataset was

analyzed. Firstly, the differences in the expression of the immune

checkpoints between various checkpoints were compared. The

results indicated that 28 immune checkpoint genes were

expressed differentially between both the groups (Figure 8C,

Wilcox.test).

FIGURE 8
The role of the RS model in predicting the benefits of immunization/chemotherapy. (A) Variations in the 22 immune cell scores amongst the
different risk groups identified using the TCGA-LIHC dataset; (B) Differences in immune and matrix scores amongst the different risk groups in the
TCGA-LIHC dataset; (C) Immune checkpoints differentially expressed between various groups in the TCGA-LIHC dataset; (D) The results of TIDE
analysis among different groups in TCGA-LIHC dataset were different; (E) Box plots of the calculated IC50 for the drug in TCGA-LIHC dataset
(Wilcox test, *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001).
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Furthermore, the potential clinical effects of

immunotherapy in the high- and low-RS groups in the

TCGA-LIHC dataset, were analyzed, using the TIDE

software. The analysis revealed significant differences in the

MDSC, TIDE, Exclusion, and Dysfunction scores. It was

concluded that the High-RS group showed higher scores

than those shown by the Low-RS group (Figure 8,

Wilcox.Test). In addition, the response degree of the high-

risk and low-risk groups to traditional chemotherapy drugs

was analyzed. It was found that there were significant

differences among five traditional drugs, cisplatin,

rapamycin, cyclopamine, GNF-2, and pyrimethamine, and

the “high” group was more sensitive to these traditional

drugs (Figure 8E, Wilcox.test).

Abnormal performance of RiskScore in
tricarboxylic acid pathway

Further, the performance of RS in TCA-related pathways was

compared. As shown in Figure 9A, it was noted that the score of

the TCA-linked pathway in the “low” group was higher. Both the

groups showed significant differences with regards to different

pathways like the COBP_CITRATE_METABLIC_PROCESS,

COBP_2_OXOGLUTARATE_METABLIC_PROCESS, COBP_

OXOGLUTARATE_

METABLIC_PROCESS, COBP_SUCCINATE_METABLIC

_PROCESS, and COBP_TRICARBOXYLIC_ACID_CYCLE_

ENZYME_COMPLEX pathways. Then, the score of TCA-related

pathways for every patient included in the TCGA-LIHC dataset

FIGURE 9
Differences in pathway characteristics among different RS groups. (A) The box plot of TCA-related pathway scores in high-risk and low-risk
groups in the TCGA dataset (Wilcox.test, *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001); (B) The heat map of TCA related pathway scores in
the high-risk and low-risk groups in the TCGA-LIHC dataset; (C) The scatter diagram of correlation analysis between RS and TCA scores in TCGA-
LIHC dataset.
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was z-scored based on the samples in the heat map for

determining the difference in the scores of the related

pathways in the expression pathway of the high-risk and low-

risk groups, and the TCA score of “low” group was higher

(Figure 9B). The average value was calculated as the TCA

score through the score of TCA-related pathways. Through

analysis, it was found that the TCA score was significantly

and negatively related to RS (R = 0.49, p < 2.2e-16)

(Figure 9C, Spearman).

RiskScore combined with
clinicopathological features to further
improve the prognostic model and
survival prediction

Clinicopathological characteristics and RS were analyzed

using the Univariate and Multivariate Cox regression analysis,

and the results revealed that Stage and RS were the most

important predictive markers (Figures 10A,B). RS and Stage

were coupled to create a nomogram in order to evaluate the

risk assessment and the survival probability of the liver cancer

patients (Figure 10C). According to the model’s findings, RS had

the biggest influence on the survival rate prediction. Then, the

calibration curve was utilized to assess the model’s predictability,

as illustrated in Figure 10D. It can be seen that the three

calibration points for the prediction calibration curves for 1,

3, and 5 years were close to the reference curve, indicating that

the nomogram performed well in terms of prediction.

Additionally, decision curve analysis (DCA) was utilized to

investigate the model’s dependability. It is evident that the

advantages of RS and nomogram were much greater than

those of the extreme curve. The nomogram and RS

demonstrated the highest capacity to predict survival when

compared to other clinicopathological characteristics (Figures

10E,F).

Discussion

The long-term efficacy of HCC treatment is still a significant

problem in clinical practice because of the complexity of the TME

and heterogeneity of HCC. The selection of the best course of

treatment and action must be categorized and improved. In

HCC, many transcriptome-based classifications are extensively

used. Li et al. identified 2 novel molecular subgroups in liver

FIGURE 10
Nomogram of RS combined with clinical pathological characteristics. (A,B) Univariate and Multivariate Cox regression analysis of the RS and
clinicopathological features; (C) Nomograph model; (D) Calibration curve of nomograph in 1, 3, and 5 years; (E) Decision curve of nomograph; (F)
When compared to a few other clinicopathological characteristics, the nomogram displayed a good capacity for OS prediction.
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cancer based on genes associated with ferroptosis and created a

ferroptosis-associated prognostic RS model made up of six genes

that can be used to predict outcomes and identify the cancer

patients who would respond well to immunotherapy. Three

molecular subtypes of HCC were discovered by Wang et al.,

each with a unique prognosis and metabolic profile. Lin et al.

found 18 lncRNAs and 2 molecular subtypes in HCC with

specific immune dysfunction that present distinct prognostic

characteristics and immunological characteristics, which aids

in understanding the function of lncRNA and motivates the

discovery of immunotherapy targets. In this study, the HCC

molecular subtypes were detected, from the cuproptosis

perspective, since one cannot ignore the regulatory impact of

cuproptosis.

From the literature review, 13 genes associated with

cuproptosis were obtained. After analyzing the differences in

the mRNA expression of cuproptosis-related genes between the

primary tumor samples and adjoining normal tissue samples, it

was noted that a majority of these variations were statistically

significant. HCC patients were categorized into three categories

depending on the consistent clustering of 13 cuproptosis-related

gene expression profiles. The three subtypes had distinct

prognosis characteristics, according to the prognostic analysis.

The prognosis for Clust3 was the worst, followed by Clust2 and

Clust1, while Clust1 showed the best prognosis. Additional

examination of the clinicopathological traits of the various

subtypes revealed that the Clust3 subtype showed a late

clinical T stage and Stage, in addition to a higher Grade. All

these findings were in agreement with its poor prognosis.

Further, the genomic variations displayed by the 3 molecular

subtypes, identified using the TCGA-LIHC dataset were

analyzed. The results implied that the clust1 subtype showed a

lower Aneuploidy Score and Homologous Recombination

Defect. Additionally, after comparing the correlation between

the 5 existing immune molecular subtypes and the 3 molecular

subtypes defined in this study, it was noted that among clust3 and

clust2 subtypes with a poor prognosis had a low proportion of

C4 subtype (lymphocyte depleted subtype) and a high percentage

of C1 subtype (wound healing subtype), which was consistent

with the prognosis of immune molecular subtypes. Then, the

variations in the gene mutations existing between the different

molecular subtypes were also identified, and significant

differences were noted in the mutation frequencies of TP53,

TTN, MUC16, and other genes among the 3 molecular subtypes,

and clust1 had a higher mutation frequency of TP53.

Recent reports have stated that the concentration of the

copper ions in the tumor tissues and serum of cancer patients

was significantly higher than those of healthy patients (Blockhuys

et al., 2017). Previous studies have shown that cuproptosis takes

place by the direct combination of copper ions and the fatty

acylated components present in the TCA cycle. This leads to the

accumulation of the fatty acylated proteins and subsequent loss

of the iron-sulfur cluster proteins, which leads to protein toxic

stress and eventually cell death. Therefore, cuproptosis is closely

related to the TCA cycle (Tsvetkov et al., 2022). TCA is seen to

play a significant role in cellular energy metabolism and it is also

responsible for the onset of numerous diseases, like tumors. At

present, mutations and abnormal expression of TCA key genes

have been found in tumors, which are significantly related to

tumorigenesis and progression. The liver is an important

digestive organ in the human body. The metabolic process of

three major nutrients occurs actively in the liver. HCC is usually

accompanied by the TCA cycle reprogramming, which regulates

energy production through the TCA cycle, which ensures the

survival of the tumor cells even in difficult conditions like

hypoxia, nutrient deficiency, and finally, escaping the immune

system (Ferrarini et al., 2019; Du et al., 2022). The score of TCA

related pathway was calculated by the ssGSEA method.

Significant differences were noted in the 3 molecular subtypes,

with regard to the TCA cycle. Cell death is an essential and fine-

tuning process, which is crucial to eliminating damaged and

redundant cells. Many forms of programmed and non-

programmed cell death have been identified, including

apoptosis, ferroptosis, and necroptosis (Moujalled et al., 2021).

This study could not detect any significant differences between

the 3 molecular subtypes, except in necroptosis and apoptosis,

and there were significant differences in the other four pathways

related to cell growth and death.

The metabolic environment can change the immune

response in the liver and make tumor cells immune escape. In

addition, metabolic rearrangement of immune cells can cause

abnormal self-function (Li et al., 2021). TME is a crucial intrinsic

factor in the emergence, growth, invasion, and metastasis of liver

cancer. The findings of this study showed that different

molecular subtypes exhibited varying degrees of immune cell

infiltration in the immunological microenvironment of different

patients. Additionally, the “ImmuneScore” of the clust3 subtype,

which has a poor prognosis due to the relatively low immune cell

infiltration, was lower compared to that of other subtypes.

Additionally, the immunotherapy sensitivity variations of

several molecular subtypes in the TCGA-LIHC dataset were

examined. The majority of immunological checkpoint genes

were discovered to express differently in various subtypes. In

each of the three molecular categories, the macrophages showed a

significant difference. Macrophages are crucial for

immunological regulatory processes such as the processing

and presentation of antigens and the Toll-like receptor

signaling pathway. Additionally, macrophages have FC

receptors on their surface, which when activated by a specific

antibody can cause an ADCC effect (NK cell-mediated

cytotoxicity) that kills tumor cells (Xing et al., 2020). Through

our analysis, macrophages had significant differences in the

antigen processing and presentation pathway. Lu et al. (2022)

showed that PD-L1 positive host macrophages, representing the

main cell source of PD-L1 in HCC, showed HLA-DRhighCD86high

glycolysis phenotype, significantly produced anti-tumor IL-
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12p70, and polarized through internal glycolysis metabolism.

These results implied that the macrophages play a vital role in the

onset of liver tumors, and the distribution differences between

the three subtypes can provide a basis for tumor treatment.

Further, by analyzing the sensitivity differences among different

subtypes in immunotherapy, it was found that the clust2 and

clust3 subtypes in the TCGA-LIHC dataset showed higher TIDE

scores than those presented by clust1, suggesting that the

clust1 subtype had a lower probability of immune escape and

greater likelihood of benefiting from immunotherapy.

Then, a total of 15 genes among the three subtypes that had a

significant impact on prognosis were identified, and the prognostic

risk model was constructed by KIF2C, PTTG1, CENPM, CDC20,

CYP2C9, SFN, CFHR3, and seven genes was obtained by Lasso

regression and AIC algorithm. Kinesin Family member 2C (KIF2C)

belongs to the kinesin 13 family, and is an M-kinesin, which is

overexpressed in many human tumors. In their study, Wei et al.

(2021) observed that KIF2C was overexpressed in HCC and was

related to several aggressive malignancies that activate the Wnt/β-
catenin signaling pathway and was also involved in the HCC

progression as it interacted with TBC1D7 in mTORC1 signaling.

Cho-Rok et al. (2006) found that Pituitary Tumor Transforming

Gene 1 (PTTG1) was overexpressed in many types of human

cancers. Furthermore, results indicated that when the

PTTG1 gene was silenced, it inhibited the growth of the liver

cells in vivo and in vitro. Studies have shown that centromeric

protein M (CENPM) is closely related to the development of HCC.

The up-regulation of CENPM promotes hepatocarcinogenesis

through a variety of mechanisms and could be considered a new

probable biomarker and a clinical therapeutic target for HCC (Xiao

et al., 2019). Studies have found that CDC20 regulates the process of

the cell cycle mainly by targeting the destruction of key substrates. In

HCC, CDC20 binds to the Destruction box (D-box) motif in

oxygen-dependent Prolyl Hydroxylase 3 (PHD3) to promote its

polyubiquitination and degradation and is seen to play a vital role in

HCC development by controlling PHD3 (Shi et al., 2021).

Nizamuddin et al. found that cytochrome-P450-2C9 (CYP2C9)

has genetic diversity. This gene metabolizes many drugs and is

overexpressed in the human liver (Nizamuddin et al., 2021).

Sulforaphane (SFN) plays an epigenetic regulatory role by

inhibiting histone deacetylase (HDAC) and affects the activity of

carcinogenic transcription factors through the methylation of its

binding sitemotif, which provides insights into the chemopreventive

molecular effects of SFN in HepG2 cells. It is a valuable natural

cancer treatment method (Dos Santos et al., 2020). Complement

factorH-related 3 (CFHR3) is a protein-coding gene that plays a role

in various diseases. Liu et al. (2020) found through bioinformatics

analysis that CFHR3 is a novel prognostic biomarker and

therapeutic target for determining HCC.

Further, the relationship between RS scoring and clinical

characteristics of liver cancer was analyzed. It was found that the

samples with higher clinical grades had higher RSs. A comparison of

the different immunemicroenvironments in the patients belonging to

differing RS groups showed that the “low” group presented a high

infiltration of immune cells, and amajority of the Immune checkpoint

genes were expressed differentially in both groups. In addition, by

analyzing the sensitivity difference betweenRS group to treatment, it is

noted that the “high” group showed a higher TIDE score compared to

the “low” group, indicating that the likelihood of immune escape in

the high-risk group was higher compared to the low-risk group, and

the high-risk group patients were less likely to be benefitted from

immunotherapy. However, the “high” group was more sensitive to

these traditional drugs. This result can provide a reference for

personalized treatment of patients. Simultaneously, the

performance of RS in TCA-related pathways was compared. The

results in this study showed that the low-risk group showed higher

TCA-related pathways scores, and the TCA scores were seen to be

significantly negatively related to the RS, which was consistent with

the results of subtype typing, and TCA scores with poor prognosis

were higher. Finally, the clinical characteristics that showed significant

differences during the Univariate and Multivariate Cox regression

analysis, Stage, and RS were used for constructing a novel nomogram.

Analyzing the calibration and the decision curves indicated that the

model showed a higher prediction accuracy and survival prediction

capacity. Additionally, the cuproptosis-linked genes were chosen as

the target gene, which was essential for the onset, development,

diagnosis, and treatment of HCC. The nomogram model

constructed in this study could be used as the basis for deriving an

individualized treatment plan for HCC patients.

This study provides novel insights into the personalized clinical

treatment planning for HCC patients, however, it does have a few

limitations. First of all, our research only includes bioinformatics

analysis and lacks the verification of experimental clinical samples.

In addition, the study was carried out using a retrospective design

instead of using a prospective design. However, this analysis was

carried out using 2 independent datasets, so the results are still

acceptable and reliable. It can be concluded that prospective clinical

trials and an investigation into the mechanisms involved need to be

carried out for verifying the results noted in the study.

Conclusion

To conclude, this study presented 3 molecular subtypes that

were associated with cuproptosis in liver cancer. These 3 molecular

subtypes showed a heterogeneity in their pathological features,

prognosis, pathway, and immune characteristics. Thereafter, a

classifier known as the prognostic risk model associated with

cuproptosis was constructed and verified. The model has strong

stability, is independent of the clinical and pathological

characteristics, and plays a stable prediction efficiency in

independent data sets. The model has high prediction accuracy

and survival prediction ability, which could be used for predicting

prognosis and selecting the immunotherapy that was best suited

for the patients. These results could help in developing a precise

and individualized treatment strategy for clinical HCC patients.
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Objective: Cervical cancer poses a remarkable health burden to females

globally. Despite major advances in early detection and treatment

modalities, some patients still relapse. The present study proposed a novel

immune molecular classification that reflected distinct recurrent risk and

therapeutic responses in cervical cancer.

Methods:We retrospectively collected two cervical cancer cohorts: TCGA and

GSE44001. Consensus clustering approach was conducted based on

expression profiling of recurrence- and immune-related genes. The

abundance of immune cells was inferred via five algorithms. Immune

functions and signatures were quantified through ssGSEA. Genetic mutations

were analyzed bymaftools package. Immunotherapeutic response was inferred

via tumor mutation burden (TMB), Tumor Immune Dysfunction and Exclusion

(TIDE), and Submap methods. Finally, we developed a LASSO model for

recurrence prediction.

Results: Cervical cancer samples were categorized into two immune subtypes

(IC1, and IC2). IC2 exhibited better disease free survival (DFS), increased immune

cell infiltration within the immune microenvironment, higher expression of

immune checkpoints, higher activity of immune-relevant pathways (APC co-

inhibition and co-stimulation, inflammation-promoting, MHC class I, IFN
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response, leukocyte and stromal fractions, macrophage regulation, and TCR

Shannon), and higher frequencies of genetic mutations. This molecular

classification exhibited a remarkable difference with existing immune

subtypes, with diverse PANoptosis (pyroptosis, apoptosis and necroptosis)

features. Patients in IC2 were more likely to respond to immunotherapy and

targeted, and chemotherapeutic agents. The immune subtype-relevant

signature was quantified to predict patients’ recurrence risk.

Conclusion: Altogether, we developed an immune molecular classification,

which can be utilized in clinical practice to aid decision-making on recurrence

management.

KEYWORDS

cervical cancer, recurrence, immune subtypes, immune microenvironment,
therapeutic response, PANoptosis

Introduction

Cervical cancer poses a significant health burden to females

worldwide (Castle et al., 2021). Although this malignancy is

preventable and treatable, it remains the fourth most diagnosed

cancer as well as the fourth major cause of cancer-related deaths

in females (Sung et al., 2021). It is estimated that around

600,000 females are diagnosed with cervical cancer, and over

300,000 females die from this malignancy globally each year

(Sung et al., 2021). Most cervical cancer cases correlate to

infection with high-risk HPV. Primary treatment of cervical

cancer that typically includes surgery, chemoradiation, or their

combination has a cure rate of about 95% for early-stage disease

as well as 40%–60% for locally advanced disease (Miccò et al.,

2022). Recurrent cervical cancer is defined as local tumor

regrowth, lymph node or distant metastasis following the

primary tumor has regressed for at least 6 months (Miccò

et al., 2022). Management of recurrent cervical cancer

depends upon treatment history, location, and degree of

recurrence. Up to 26% of patients with early-stage cervical

cancer relapse following initial surgery (Cibula et al., 2022).

Furthermore, many patients with treatment history experience

recurrence without symptoms.

Accumulated evidence demonstrates that the complex

cellular compositions within the immune microenvironment

result in intratumoral heterogeneity (Qiu et al., 2020).

Immune-related genes (IRGs) correlate to the immune

microenvironment, clinical outcomes as well as treatment

response in cervical cancer (Xu et al., 2021). PANoptosis is an

inflammatory programmed cell death, which can be activated by

components that are simultaneously involved in pyroptosis,

apoptosis and/or necroptosis (Karki et al., 2020). If one or

more programmed cell death pathways are hindered in tumor

cells, PANoptosis is beneficial for tumor suppression via

inducing mechanisms by which the host activates alternative

cell death defense mechanisms (Lee et al., 2021). Currently, the

use of immunotherapy to treat cervical cancer is being actively

researched, though several immunotherapy drugs

(pembrolizumab, etc.), have gained the approval of the FDA

(Colombo et al., 2021). Because immunotherapies have

established a new standard of care in cervical cancer

treatment, novel biomarkers to recognize ideal patient

populations for these therapies are of importance. In the

present study, in accordance with the expression profiling of

recurrence-related IRGs, we proposed a novel immune molecular

classification, and classified cervical cancer patients into two

immune subtypes with distinct recurrence risk, immune

microenvironment as well as immuno-, targeted- and

chemotherapeutic responses, thus aiding clinical therapeutic

decision-making.

Materials and methods

Data collection and processing

RNA sequencing, somatic mutation data (MAF format) and

clinical follow-up information of cervical cancer patients were

downloaded from the Cancer Genome Atlas (TCGA; https://

portal.gdc.cancer.gov/). After thoroughly querying the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.

gov/gds/), an eligible cervical cancer dataset (GSE44001) with

disease recurrence information and genetic profiling was enrolled

(Lee et al., 2013). All data were downloaded on 15 April 2022. After

removal of samples without recurrence time and status (i.e. disease

free survival (DFS)), we included 174 samples in the TCGA dataset

and 300 samples in the GSE44001 dataset for subsequent analysis.

The demographics and follow-up data were listed in Supplementary

Table S1. A total of 782 IRGs were collected from previously

published literature, as listed in Supplementary Table S2

(Charoentong et al., 2017). In addition, we collected the gene sets

of PANoptosis (pyroptosis, apoptosis and necroptosis) were

acquired from previously published literature (Supplementary

Table S3) (Pan et al., 2022).
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Unsupervised consensus clustering
analysis

Univariate cox regression analysis of IRGs was implemented

based on recurrence time and status both in the TCGA and

GSE44001 datasets. In accordance with p < 0.05, recurrence-

related IRGs were obtained, with hazard ratio (HR)>1 as a risk

factor and HR < 1 as a protective factor. Then, protective and risk

factors of the two datasets were separately intersected for

subsequent consensus clustering analysis. Unsupervised

consensus clustering was implemented for constructing an

immune molecular classification using ConsensusClusterPlus

package (version 1.52.0) based on recurrence-related IRGs

(Wilkerson and Hayes, 2010). The clustering procedure, with

100 iterations, was carried out by subsampling 80% of the data in

each iteration. The optimal number of clusters was identified

based on consensus cumulative distribution function (CDF),

relative change in area under CDF curve, and consensus

heatmap.

Differential expression and functional
enrichment analyses

By limma package (Ritchie et al., 2015), differential expressed

genes (DEGs) between subtypes were selected according to |fold

change (FC)|>1.5 and false discovery rate (FDR)<0.05. Gene
Ontology (GO) functional annotation and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analyses of

up-regulated and down-regulated genes were carried out using

clusterProfiler package (Yu et al., 2012), respectively, with

FDR<0.05 as the threshold value. The GSEA function of

clusterProfiler package was also employed to conduct

functional enrichment analysis between subtypes. The

“c2.cp.kegg.v7.4.symbols.gmt” and “h.all.v7.4.symbols.gmt”

gene sets in the Molecular Signatures database (http://www.

gsea-msigdb.org/) (Liberzon et al., 2015) were utilized as

reference sets.

Immune cell infiltrations

EPIC (Racle et al., 2017), Estimation of Stromal and

Immune cells in Malignant Tumor tissues using Expression

data (ESTIMATE) (Yoshihara et al., 2013), MCP-counter

(Becht et al., 2016), single-sample gene set enrichment

analysis (ssGSEA) (Hänzelmann et al., 2013), and Tumor

Immune Estimation Resource (TIMER) (Li et al., 2017)

algorithms were implemented for inferring the relative

proportions of infiltrating immune cells. The activity of

known immune functions or signatures was estimated with

ssGSEA approach.

Mutational analysis

The mutation frequencies of genes were calculated and

visualized utilizing maftools package (version 2.4.05)

(Mayakonda et al., 2018). Tumor mutation burden (TMB), a

promising biomarker for immunotherapeutic response, was

computed as the total number of nonsynonymous mutations

in the coding region per megabase (Wang et al., 2021).

Prediction of immunotherapeutic
response

Tumor Immune Dysfunction and Exclusion (TIDE) was

computed in accordance with two main mechanisms of tumor

immune escape: inducing T cell dysfunction in tumor tissue with

increased cytotoxic T lymphocyte (CTL) infiltration as well as

preventing T cell infiltration within tumor tissue with reduced

CTL level (Jiang et al., 2018; Fu et al., 2020). The

immunotherapeutic response was predicted with TIDE

algorithm on the basis of gene expression profiling. Submap

approach was also utilized to infer the responses (complete

response (CR), partial response (PR), stable disease (SD), and

progressive disease (PD)) to immune checkpoint blockade of PD-

1 and CTLA4 from the IMvigor210 cohort (Yang et al., 2020).

The demographics and follow-up information of the

IMvigor210 cohort was shown in Supplementary Table S4.

FDR< 0.05 was regarded as the threshold for a significant

response or nonresponse to anti-PD1 or anti-CTLA4 treatment.

Evaluation of sensitivity to targeted and
chemotherapeutic agents

Half maximal inhibitory concentration (IC50) values of AKT

inhibitor VIII, Cisplatin, Erlotinib, Lapatinib, Paclitaxel, and

Temozolomide were estimated to reflect therapeutic response

with pRRophetic package (Geeleher et al., 2014) on the basis of

the Genomics of Drug Sensitivity in Cancer database (www.

cancerRxgene.org) (Yang et al., 2013), and the prediction

accuracy was assessed with 10-fold cross-validation.

Establishment of an immune subtype-
relevant signature

Cervical cancer patients in the GSE44001 dataset were

randomly classified into the training and testing sets at a ratio

of 1:1. Firstly, in the training set, univariate cox regression

analysis of DEGs was conducted by survival package (version

3.1-12), with p < 0.05 as recurrence-related DEGs. Afterwards,

the least absolute shrinkage and selection operator (LASSO)
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algorithm was implemented utilizing glmnet package

(Engebretsen and Bohlin, 2019). Genes with regression

coefficient equal to zero after the shrinkage process were

removed. The optimal tuning parameter lambda (λ) was

selected when the partial likelihood deviance reached the

lowest on the basis of 10-fold cross-validation. The final

identified genes were utilized to establish a multivariate cox

regression model. The formula of the recurrence model was as

follows:

RiskScore � ∑
n

i�1
coef(i)pgene(i),

where coef(i) represents the coefficient of the ith gene, and

gene(i) represents the expression level of the ith gene.

RiskScore of each cervical cancer patient was computed.

The optimal cutoff was determined via surv_cutpoint

function of survminer package, and patients were classified

into high- and low-risk subgroups. Kaplan-Meier approach

was utilized to assess DFS, whereas log-rank test was

implemented for assessing recurrence risk. The area under

the receiver-operating characteristic curve (AUROC) was

used to appraise the predictive capacity of the immune

subtype-relevant signature. Above analyses were validated

in the GSE44001-testing set, GSE44001-entire set, and

independent TCGA dataset. Associations of the signature

and clinicopathological parameters with prognosis were

estimated through uni- and multivariate cox regression

analyses in the TCGA dataset.

Establishment of a nomogram

A nomogram that integrated the immune subtype-relevant

signature and clinicopathological parameters for recurrence

prediction was constructed using rms package. The calibration

curve was plotted for evaluating the predictive accuracy of the

nomogram via rms package. Decision curve analysis (DCA) was

conducted for determining the clinical application value of the

nomogram via computing the net benefits at distinct risk

thresholds.

Statistical analysis

Statistical analysis was executed via R software (version

4.1.0; https://www.r-project.org/). To compare continuous

variables between groups, Student’s t-test was

implemented, whereas Wilcoxon test was applied to

compare non-normally distributed variables. Through chi-

squared test, categorical variables between groups were

compared. The two-sided p ≤ 0.05 was regarded as

statistical significance.

Results

Construction of immune subtypes for
cervical cancer with different recurrence
outcomes based on recurrence-related
immune-related genes

Both in the TCGA and GSE44001 datasets, we determined

7 protective factors and 2 risk factors for cervical cancer

recurrence among IRGs by implementing univariate cox

regression analysis (Figure 1A), which were included for

consensus clustering analysis. Consensus matrix heatmap,

CDF and relative change in area under CDF curve showed

that cervical cancer samples in the TCGA dataset were clearly

classified as two immune subtypes (namely IC1 and IC2)

(Figure 1B; Supplementary Figures S1A,B). This classification

was confirmed in the GSE44001 dataset (Supplementary Figure

S2A), indicating that the clustering of samples was stable and

reliable. There was a remarkably difference in DFS outcome

between immune subtypes both in the TCGA (Figure 1C) and

GSE44001 (Supplementary Figure S2B) datasets, with a more

favorable DFS outcome for IC2. Clinicopathological features

were also compared between immune subtypes. The

proportion of non-recurrent patients was remarkably higher

in IC2 than that of IC1 both in the TCGA (Figures 1D,E) and

GSE44001 (Supplementary Figures S2C–E) datasets.

Immune subtypes-relevant genes and
their biological significance

To unveil the molecular mechanisms underlying immune

subtypes, DEGs between IC1 and IC2 were selected with |FC|

>1.5 and FDR<0.05. In the TCGA dataset, 1223 DEGs with up-

regulation and 976 with down-regulation were determined in

IC1 compared with IC2 (Supplementary Table S5). Moreover,

138 DEGs with up-regulation and 539 with down-regulation

were investigated in IC1 compared with IC2 in the

GSE44001 dataset (Supplementary Table S6). DEGs with

down-regulation were remarkably linked with immune-

relevant pathways (cytokine, chemokine and their receptor

signaling, etc.; Figure 2A; Supplementary Figure S3A).

Moreover, DEGs with up-regulation were mainly correlated to

cervical cancer-relevant pathways (Hippo signaling pathway,

etc.; Figure 2B; Supplementary Figure S3B). GSEA was also

employed for pathways activated in IC1 and IC2. Both in the

TCGA and GSE44001 datasets, epithelial mesenchymal

transition, pancreas beta cells and O-glycan biosynthesis were

remarkably activated in IC1 (Figure 2C; Supplementary Figure

S3C). Moreover, B cell receptor, chemokine, and T cell receptor

signaling pathways and primary immunodeficiency displayed

remarkable activation in IC2.
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Immune subtypes with distinct immune
microenvironment and immune
checkpoints

Five approaches (MCP-counter, ESTIMATE, ssGSEA, EPIC,

and TIMER) were applied for inferring the abundance of immune

cells across cervical cancer from the TCGA and

GSE44001 datasets. The consistent results from distinct

approaches showed that IC2 exhibited the higher abundance of

immune cells in comparison to IC1 both in two datasets (Figures

3A,B). Moreover, we acquired known immune checkpoints from

previously published literature (Danilova et al., 2019; Li et al., 2019;

Zheng et al., 2020). Both in the TCGA and GSE44001 datasets,

BTLA, CD244, CD274, CD28, CD40, CTLA4, ICOS, PDCD1,

PDCD1LG2, and TIGIT displayed higher expression in IC2 in

comparison to IC1 (Figures 3C,D).

FIGURE 1
Construction of immune subtypes for cervical cancer with different recurrence outcomes based on recurrence-related IRGs in the TCGA
dataset. (A) Univariate cox regression analysis of protective factors and risk factors for cervical cancer recurrence among IRGs in the TCGA and
GSE44001 datasets. (B) Consensus matrix heatmap of cervical cancer samples based on the expression profiling of recurrence-related IRGs when
k = 2. (C) Kaplan-Meier curves of DFS between IC1 and IC2 in the TCGA dataset. (D) Landscape of clinicopathological parameters in two
immune subtypes (****p < 0.0001). (E) Comparison of DFS, T, N, M, histological stage, age, grade, and HPV between immune subtypes.
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Immune subtypes with distinct immune
functions

By applying ssGSEA approach, we inferred the activity of

immune-relevant pathways across cervical cancer. In comparison

to IC1, we observed that APC co-inhibition and co-stimulation,

inflammation-promoting, MHC class I, type I and II IFN

responses exhibited increased activity in IC2 both in the

TCGA and GSE44001 datasets (Figures 4A,B).

Associations of our molecular
classification with existing immune
subtypes

As depicted in Figure 5A, our molecular classification

exhibited a remarkable difference with existing immune

subtypes (Ceccarelli et al., 2016). Compared with IC1, higher

proportion of C2 and lower proportion of C1 were observed in

IC2 (Figure 5B). However, there was no remarkable difference in

DFS among existing immune subtypes (C1, C2, and C4)

(Figure 5C). Thus, immune subtypes we proposed was a novel

molecular classification of cervical cancer different from existing

immune subtypes. The activity of immune signatures was

compared between IC1 and IC2. Compared with IC1, IFN

gamma response, leukocyte fraction, macrophage regulation,

stromal fraction, and TCR Shannon exhibited higher activity

in IC2 (Figure 5D).

Immune subtypes with distinct genetic
mutations

Through maftools approach, we analyzed and visualized

genetic mutations of cervical cancer. The mutation frequencies

of the top 500 mutated genes were compared between IC1 and

FIGURE 2
Immune subtypes-relevant genes and their biological significance in the TCGA dataset. (A) Themain biological process (BP), molecular function
(MF), cellular component (CC) and KEGG enrichment results of genes with down-regulation in IC1. (B) The main BP, MF, CC and KEGG enrichment
results of genes with up-regulation in IC1. (C) GSEA for the main Hallmark and KEGG pathways activated in IC1 or IC2.
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IC2 immune subtypes. With p < 0.05, mutations in 18 genes

differed significantly between immune clustered (Figure 6A).

Compared with IC1, MUC17, SYNE1, MYH15, PRKDC,

RALGAPA1, ZNF91, CDK12, DGKK, MAPK1, ANAPC1,

EPG5, FRYL, MIA3, WDR44, COL15A1, KAT6A, and

LAMA3 displayed higher mutation frequencies in IC2.

However, lower mutation frequency of TP73 was observed in

IC2. We also computed TMB of each cervical cancer, and

analyzed the difference in TMB between immune subtypes. In

Figure 6B, compared with IC1, higher TMB score was observed

in IC2. Especially, we compared mutation frequencies of

SYNE1 and MAPK1 between immune subtypes. Higher

FIGURE 3
Immune subtypes with distinct immune microenvironment and immune checkpoints. (A,B) Heatmaps of the abundance of immune cells
inferred by several approaches in IC1 and IC2 immune subtypes in the TCGA and GSE44001 datasets. (C,D) Expression of known immune
checkpoints in two immune subtypes in the TCGA and GSE44001 datasets (ns: no significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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mutation frequencies of SYNE1 and MAPK1 were found in

IC2 compared with IC1 (Figures 6C,D). Altogether, our data

demonstrated that IC2 exhibited higher genetic mutations

than IC1.

Immune subtypes with distinct
immunotherapeutic responses

TIDE is a reliable biomarker to predict response to

immunotherapy (Jiang et al., 2018; Fu et al., 2020). The lower

TIDE score, the greater the likelihood of immunotherapeutic

response. Here, we computed TIDE in cervical cancer from the

TCGA and GSE44001 datasets. Higher dysfunction, and lower

exclusion score were observed in IC2 than IC1 (Figures 6E,F)

both in two datasets. There was no remarkable difference in

TIDE score between immune subtypes in the TCGA dataset.

Differently, IC2 exhibited lower TIDE score in comparison to

IC1. Altogether, our data demonstrated that patients in IC2 were

more likely to respond to immunotherapy. Furthermore, we

employed Submap approach to compare the expression

profiling of two immune subtypes with that of the

IMvigor210 anti-PD-L1 immunotherapy dataset. Both in the

TCGA and GSE44001 datasets, the expression profiling of

IC2 was similar to that of patients who responded to anti-PD-

L1 immunotherapy (Figures 7A,B). Thus, patients in IC2 were

more suitable for immunotherapy, which were similar to TIDE

prediction.

Immune subtypes with distinct targeted,
and chemotherapeutic responses

Then, we analyzed the difference in targeted, and

chemotherapeutic responses between IC1 and IC2 immune

subtypes. Both in the TCGA and GSE44001 datasets, lower

IC50 values of AKT inhibitor VIII, Cisplatin, Erlotinib,

Lapatinib, Paclitaxel, and Temozolomide were observed in

IC2 compared with IC1 (Figures 7C,D). This indicated that

patients in IC2 were more likely to respond to above targeted,

and chemotherapeutic agents.

Construction of an immune subtype-
relevant recurrence model for cervical
cancer

A total of 212 DEGs between immune subtypes were

shared by the TCGA and GSE44001 datasets (Figure 8A).

Among them, 26 DEGs were remarkably linked with

recurrence of cervical cancer, which were used for

subsequent recurrence model establishment (Supplementary

FIGURE 4
Immune subtypes with distinct immune-relevant pathways. (A,B) The activity of immune-relevant pathways in IC1 and IC2 immune subtypes in
the TCGA and GSE44001 datasets (ns, no significance; *p < 0.05; **p < 0.01; ****p < 0.0001).
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Table S7). The GSE44001 dataset was randomly classified into

the training and testing sets. In the training set, we applied

LASSO algorithm to remove DEGs with regression coefficient

equal to zero (Figure 8B). Moreover, based on 10-fold cross-

validation, the optimal tuning parameter λ was

0.0271963 when the partial \likelihood deviance reached

the lowest (Figure 8C). Finally, TMEM125, TFF1, DECR2,

LONRF3, DAPL1, and ANKRD35 were included for

establishing a multivariate cox regression model. By

combining regression coefficients and expression values of

above DEGs, we computed risk score of cervical cancer cases

(Table 1). With the optimal cutoff, patients were classified into

high- and low-risk subgroups. In Figure 8D, we observed that

high-risk cases exhibited worse DFS in comparison to low-risk

cases in the training set. AUROC values at 1-, 3- and 5-year

DFS were all >0.60, demonstrating the excellent performance

of this model in predicting recurrence (Figure 8E). The similar

results were observed in the testing set (Figures 8F,G), the

GSE44001 (Figures 8H,I) and TCGA (Figures 8J,K) datasets.

Thus, the immune subtype-relevant recurrence model

exhibited the favorable efficiency in predicting cervical

cancer recurrence.

FIGURE 5
Associations of our molecular classification with existing immune subtypes in the TCGA dataset. (A) The distribution of existing immune
subtypes (C1, C2 and C4) across our molecular classification. (B) Comparison of proportion of existing immune subtypes between IC1 and
IC2 immune subtypes. (C) Kaplan-Meier curves of DFS among existing immune subtypes (C1, C2 and C4). (D) The activity of immune signatures
between IC1 and IC2 immune subtypes (ns, no significance; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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FIGURE 6
Immune subtypes with distinct genetic mutations and immunotherapeutic responses. (A) Waterfall diagrams of the mutational frequencies of
genes with remarkable differences between IC1 and IC2 immune subtypes in the TCGA dataset. (B) Comparison of TMB between two immune
subtypes in the TCGA dataset. (C,D)Comparison of mutation frequencies of SYNE1 andMAPK1 between immune subtypes in the TCGA dataset. (E,F)
Comparison of dysfunction, exclusion, and TIDE score between immune subtypes in the TCGA andGSE44001 datasets (ns, no significance; *p <
0.05; **p < 0.01; ****p < 0.0001).
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The immune subtype-relevant recurrence
model independently predicts cervical
cancer recurrence

Then, we observed that concordance index (C-index) was

0.72, indicating the high prediction accuracy of the recurrence

model (Figure 9A). In the TCGA dataset, patients with ≤45 had

the relatively higher risk score than those with >45 (Figure 9B).

Both in the TCGA and GSE44001 datasets, IC1 exhibited the

higher risk score than IC2 (Figures 9B,C). Uni- and multivariate

cox regression analysis demonstrated that the model

independently predicted cervical cancer recurrence (Figures 9D,E).

Establishment of a nomogram for cervical
cancer recurrence

To facilitate clinical application of the immune subtype-

relevant recurrence model, we established a nomogram

comprising the risk score and other clinicopathological

parameters (Figure 9F). As demonstrated by calibration

curves, the nomogram-predicted DFS exhibited the relatively

high consistency to actual outcomes (Figure 9G). The net benefits

of the nomogram were better than other clinicopathological

parameters (Figure 9H), indicating the excellent clinical

usefulness.

FIGURE 7
Immune subtypes with distinct immuno-, targeted, and chemotherapeutic responses. (A,B) Submap for comparing the expression profiling of
two immune subtypes with that of IMvigor210 cohort (including four subsets with different responses to anti-PD-L1 immunotherapy in the TCGA and
GSE44001 datasets. (C,D) Comparison of the IC50 values of targeted, and chemotherapeutic agents (AKT inhibitor VIII, Cisplatin, Erlotinib, Lapatinib,
Paclitaxel, and Temozolomide) between two immune subtypes in the TCGA and GSE44001 datasets (**p < 0.01; ****p < 0.0001).
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PANoptosis features of immune subtypes
and immune subtype-relevant recurrence
model

Accumulated evidence demonstrates that pyroptosis,

apoptosis and necroptosis (PANoptosis) participate in cancer

immunity (Pan et al., 2022). Most of PANoptosis genes were

significantly linked to cervical cancer prognosis (Figures 10A,B).

In addition, there were notable interactions between PANoptosis

genes. Both in TCGA and GSE44001 datasets, most pyroptosis,

apoptosis and necroptosis genes displayed notable differential

FIGURE 8
Construction and verification of an immune subtype-relevant recurrencemodel for cervical cancer. (A) Venn diagram of shared DEGs between
IC1 and IC2 immune subtypes both in the TCGA and GSE44001 datasets. (B) Landscape of regression coefficients of 26 recurrence-related DEGs in
the training set. (C) Selection of the optimal tuning parameter λ via 10-fold cross-validation. Kaplan-Meier curves of DFS and ROC curves at 1-, 3-,
and 5-year DFS in the (D,E)GSE44001 training set, (F,G)GSE44001 testing set, (H,I)GSE44001 dataset and (J,K) TCGA dataset based on the risk
score.

TABLE 1 Multivariate cox regression results in the training set.

Gene coef HR HR
(lower, 0.95)

HR
(upper, 0.95)

P

TMEM125 0.26809 1.3075 0.7677 2.227 0.3237

TFF1 0.02287 1.0231 0.7495 1.397 0.8855

DECR2 0.14912 1.1608 0.6763 1.992 0.5885

LONRF3 0.11064 1.117 0.5829 2.141 0.7388

DAPL1 −0.26837 0.7646 0.5736 1.019 0.0673

ANKRD35 −0.23696 0.789 0.4803 1.296 0.3494

Abbreviations: coef, coefficient; HR, hazard ratio.
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expression between immune subtypes (Figures 10C,D). In

addition, the immune subtype-relevant recurrence model-

derived risk score was significantly correlated to PANoptosis

genes in two datasets (Figures 10E,F).

Discussion

Cervical cancer remains a major gynecological issue globally

(Mittal et al., 2022). Despite major advances in early detection

FIGURE 9
Evaluation of the clinical significance of the immune subtype-relevant recurrencemodel and establishment of a nomogram for cervical cancer. (A)
Forest diagram of multivariate cox regression analysis of each variable in the recurrence model in the TCGA dataset. (B) Distribution of the risk score
across distinct clinicopathological parameters in the TCGA dataset. (C)Distribution of the risk score across distinct clinicopathological parameters in the
GSE44001 dataset. (D,E)Uni- andmultivariate cox regression analysis for the associations of the risk score and clinicopathological parameters with
DFS in the TCGA dataset. (F) Establishment of a nomogram including independent variables in the TCGA dataset. (G)Calibration curves for assessing the
nomogram-predicted and actual survival outcome. (H) Decision curve analysis for evaluation of the net benefit.
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FIGURE 10
PANoptosis features of immune subtypes and immune subtype-relevant recurrence model. (A) The network of PANoptosis (pyroptosis,
apoptosis, and necroptosis) genes. (B) Prognostic significance of PANoptosis genes and their interactions. (C,D)Heatmaps of the expression patterns
of PANoptosis genes across two subtypes. (E,F) Correlations between immune subtype-relevant recurrence model-derived risk score and
PANoptosis genes (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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and treatment modalities, some patients still relapse. Clinical

management of recurrent cervical cancer depends upon

treatment history, location as well as degree of recurrence

(Zhang et al., 2022). Recurrent cervical cancer usually exhibits

challenges for clinicians due to undesirable survival outcomes

and limited therapeutic options (Grau et al., 2020). Here, cervical

cancer samples were categorized as two immune subtypes with

distinct recurrence risk. The novel immune molecular

classification was different from existing immune subtypes

(Ceccarelli et al., 2016).

Immunoregulators experience immune editing when tumor

cells enable to escape immunological surveillance, permit

unchecked growth as well as spread (O’Donnell et al., 2019).

Also, tumor cells usually apply naturally occurring

immunoregulators to escape immune surveillance as well as

construct an immunosuppressive microenvironment, whereas

lowering anti-tumor activity via effector T cells. The results

from five algorithms revealed that IC2 exhibited the higher

abundance levels of immune cells within the immune

microenvironment than IC1. Immune checkpoints can be

regulated via agonist or antagonist monoclonal antibodies for

enhancing T cell activation as well as eliminating suppression of

T cell activation, thereby reactivating T cells to attack tumor cells

(van der Leun et al., 2020). Recent clinical trials showed that

survival outcomes were remarkably longer with cemiplimab,

anti-PD-1 inhibitor, compared with single-agent

chemotherapy for patients with recurrent cervical cancer

following the first-line platinum treatment (Tewari et al.,

2022). Moreover, dual PD-1 and CTLA-4 blockage

combination displayed durable clinical activity and favorable

tolerability as the second-line therapeutic regimen for advanced

cervical cancer (O’Malley et al., 2022). However, how to

predetermine which patients will respond to immunotherapy

remains an issue. Here, we observed that IC2 exhibited higher

expression of immune checkpoints (BTLA, CD244, CD274,

CD28, CD40, CTLA4, ICOS, PDCD1, PDCD1LG2, and

TIGIT) and higher activity of immune-relevant pathways

(APC co-inhibition and co-stimulation, inflammation-

promoting, MHC class I, IFN response, leukocyte and stromal

fractions, macrophage regulation, and TCR Shannon). Evidence

indicates that PANoptosis may open an additional avenue for

developing promising novel strategies cancer GC

immunotherapy. Herein, two immune subtypes exhibited

distinct PANoptosis features, and immune subtype-relevant

recurrence model-derived risk score correlated to PANoptosis.

In accordance with higher TMB, lower TIDE and higher

similarity to the expression profiling of patients who well

responded to immunotherapy, patients in IC2 were more

suitable for immune checkpoint blockade.

Concurrent chemoradiotherapy remains the standard of care

for patients with FIGO stage IB 2 or higher (Mittal et al., 2022).

Among them, cisplatin is the best-studied and most active single

chemotherapeutic drug. Additionally, targeted therapy (anti-

angiogenic agent) as well as tyrosine kinase inhibitors have

been applied for treating recurrent or metastatic patients.

IC2 patients were more likely to respond to targeted, and

chemotherapeutic agents (comprising AKT inhibitor VIII,

Cisplatin, Erlotinib, Lapatinib, Paclitaxel, and

Temozolomide). Currently, CEA, CA125 and SCC remain

three major biomarkers of cervical cancer for early

screening, treatment monitoring as well as prognostic

evaluation (Cao et al., 2022). However, because they exhibit

low sensitivity and specificity as expected, novel biomarkers

with high reliability, sensitivity and specificity are needed. In

the present study, the immune subtype-relevant signature

(covering TMEM125, TFF1, DECR2, LONRF3, DAPL1, and

ANKRD35) was quantified, which predicted cervical cancer

recurrence accurately and independently. Nonetheless, no

studies have reported the roles of the genes derived from

the signature in cervical cancer. Also, to facilitate clinical

practice, we established a nomogram that comprising the

immune subtype-relevant signature and known

clinicopathological parameters. Despite this, this is a

retrospective analysis based on two large cohorts. We will

verify above findings in a prospective, and larger cohort in our

future research.

Conclusion

Collectively, our findings proposed a novel immune

molecular classification for cervical cancer, which classified

cervical cancer patients into two immune subtypes with

distinct recurrence risk, immune microenvironment,

PANoptosis features as well as immuno-, targeted- and

chemotherapeutic responses. Altogether, our findings might

aid clinicians to make clinical therapeutic regimens for

cervical cancer patients and facilitate personalized precision

medicine.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found in the article/

Supplementary Material.

Author contributions

CD and JW conceived and designed the study. SQ and JW

conducted most of the experiments and data analysis, and wrote

the manuscript. FF participated in collecting data and helped to

draft the manuscript. All authors reviewed and approved the

manuscript.

Frontiers in Genetics frontiersin.org15

Qiang et al. 10.3389/fgene.2022.1007108

37

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1007108


Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.1007108/full#supplementary-material

SUPPLEMENTARY FIGURE S1
Identification of the optimal number of clusters. (A) Consensus CDF. (B)
Relative change in area under CDF curve.

SUPPLEMENTARY FIGURE S2
Validation of immune subtypes for cervical cancer with different
recurrence outcomes in the GSE44001 dataset. (A) Consensus matrix
heatmap of cervical cancer samples in accordance with the

expression values of recurrence-related IRGs when k = 2. (B) Kaplan-
Meier curves of DFS between IC1 and IC2. (C) Landscape of
clinicopathological parameters in two immune subtypes (**p < 0.01).
(D,E) Comparison of DFS, and histological stage between immune
subtypes.

SUPPLEMENTARY FIGURE S3
Validation of immune subtypes-relevant genes and their biological
significance in the GSE44001 dataset. (A) The main biological process
(BP), molecular function (MF), cellular component (CC) and KEGG
enrichment results of genes with down-regulation in IC1. (B) The main
BP, MF, CC and KEGG enrichment results of genes with up-regulation in
IC1. (C) GSEA for the main Hallmark and KEGG pathways activated in
IC1 or IC2.

SUPPLEMENTARY TABLE S1
The demographics and follow-up data of cervical cancer samples in the
TCGA and GSE44001 datasets.

SUPPLEMENTARY TABLE S2
The list of 782 immune-related genes.

SUPPLEMENTARY TABLE S3
The gene sets of PANoptosis (pyroptosis, apoptosis and necroptosis).

SUPPLEMENTARY TABLE S4
The demographics and follow-up information of the IMvigor210 cohort.

SUPPLEMENTARY TABLE S5
The information of DEGs between IC1 and IC2 immune subtypes in the
TCGA dataset.

SUPPLEMENTARY TABLE S6
The information of DEGs between IC1 and IC2 immune subtypes in the
GSE44001 dataset.

SUPPLEMENTARY TABLE S7
DEGs that were significantly linked with recurrence of cervical cancer.

References

Becht, E., Giraldo, N. A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., et al.
(2016). Estimating the population abundance of tissue-infiltrating immune and
stromal cell populations using gene expression. Genome Biol. 17 (1), 218. doi:10.
1186/s13059-016-1070-5

Cao, X., Yao, J., Jia, M., Shen, X., Zhang, J., and Ju, S. (2022). Serum CCAT2 as a
biomarker for adjuvant diagnosis and prognostic prediction of cervical cancer.
J. Ovarian Res. 15 (1), 20. doi:10.1186/s13048-022-00950-0

Castle, P. E., Einstein, M. H., and Sahasrabuddhe, V. V. (2021). Cervical cancer
prevention and control in women living with human immunodeficiency virus. Ca.
Cancer J. Clin. 71 (6), 505–526. doi:10.3322/caac.21696

Ceccarelli, M., Barthel, F. P., Malta, T. M., Sabedot, T. S., Salama, S. R., Murray, B.
A., et al. (2016). Molecular profiling reveals biologically discrete subsets and
pathways of progression in diffuse glioma. Cell 164 (3), 550–563. doi:10.1016/j.
cell.2015.12.028

Charoentong, P., Finotello, F., Angelova, M., Mayer, C., Efremova, M., Rieder, D.,
et al. (2017). Pan-cancer immunogenomic analyses reveal genotype-
immunophenotype relationships and predictors of response to checkpoint
blockade. Cell Rep. 18 (1), 248–262. doi:10.1016/j.celrep.2016.12.019

Cibula, D., Dostálek, L., Jarkovsky, J., Mom, C. H., Lopez, A., Falconer, H., et al.
(2022). Post-recurrence survival in patients with cervical cancer. Gynecol. Oncol.
164 (2), 362–369. doi:10.1016/j.ygyno.2021.12.018

Colombo, N., Dubot, C., Lorusso, D., Caceres, M. V., Hasegawa, K., Shapira-
Frommer, R., et al. (2021). Pembrolizumab for persistent, recurrent, or metastatic
cervical cancer. N. Engl. J. Med. 385 (20), 1856–1867. doi:10.1056/NEJMoa2112435

Danilova, L., Ho, W. J., Zhu, Q., Vithayathil, T., De Jesus-Acosta, A., Azad, N. S.,
et al. (2019). Programmed cell death ligand-1 (PD-L1) and CD8 expression
profiling identify an immunologic subtype of pancreatic ductal adenocarcinomas
with favorable survival. Cancer Immunol. Res. 7 (6), 886–895. doi:10.1158/2326-
6066.Cir-18-0822

Engebretsen, S., and Bohlin, J. (2019). Statistical predictions with glmnet. Clin.
Epigenetics 11 (1), 123. doi:10.1186/s13148-019-0730-1

Fu, J., Li, K., Zhang, W., Wan, C., Zhang, J., Jiang, P., et al. (2020). Large-scale
public data reuse to model immunotherapy response and resistance. Genome Med.
12 (1), 21. doi:10.1186/s13073-020-0721-z

Geeleher, P., Cox, N., and Huang, R. S. (2014). pRRophetic: an R package
for prediction of clinical chemotherapeutic response from tumor gene
expression levels. PLoS One 9 (9), e107468. doi:10.1371/journal.pone.
0107468

Grau, J. F., Farinas-Madrid, L., and Oaknin, A. (2020). A randomized phase III
trial of platinum chemotherapy plus paclitaxel with bevacizumab and atezolizumab
versus platinum chemotherapy plus paclitaxel and bevacizumab in metastatic (stage
IVB), persistent, or recurrent carcinoma of the cervix: The BEATcc study (ENGOT-
Cx10/GEICO 68-C/JGOG1084/GOG-3030). Int. J. Gynecol. Cancer 30 (1),
139–143. doi:10.1136/ijgc-2019-000880

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). Gsva: Gene set variation
analysis for microarray and RNA-seq data. BMC Bioinforma. 14, 7. doi:10.1186/
1471-2105-14-7

Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24
(10), 1550–1558. doi:10.1038/s41591-018-0136-1

Karki, R., Sharma, B. R., Lee, E., Banoth, B., Malireddi, R. K. S., Samir, P.,
et al. (2020). Interferon regulatory factor 1 regulates PANoptosis to
prevent colorectal cancer. JCI Insight 5 (12), 136720. doi:10.1172/jci.
insight.136720

Lee, S., Karki, R., Wang, Y., Nguyen, L. N., Kalathur, R. C., and Kanneganti,
T. D. (2021). AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis
and host defence. Nature 597 (7876), 415–419. doi:10.1038/s41586-021-
03875-8

Frontiers in Genetics frontiersin.org16

Qiang et al. 10.3389/fgene.2022.1007108

38

https://www.frontiersin.org/articles/10.3389/fgene.2022.1007108/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.1007108/full#supplementary-material
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13048-022-00950-0
https://doi.org/10.3322/caac.21696
https://doi.org/10.1016/j.cell.2015.12.028
https://doi.org/10.1016/j.cell.2015.12.028
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1016/j.ygyno.2021.12.018
https://doi.org/10.1056/NEJMoa2112435
https://doi.org/10.1158/2326-6066.Cir-18-0822
https://doi.org/10.1158/2326-6066.Cir-18-0822
https://doi.org/10.1186/s13148-019-0730-1
https://doi.org/10.1186/s13073-020-0721-z
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1136/ijgc-2019-000880
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1172/jci.insight.136720
https://doi.org/10.1172/jci.insight.136720
https://doi.org/10.1038/s41586-021-03875-8
https://doi.org/10.1038/s41586-021-03875-8
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1007108


Lee, Y. Y., Kim, T. J., Kim, J. Y., Choi, C. H., Do, I. G., Song, S. Y., et al. (2013).
Genetic profiling to predict recurrence of early cervical cancer. Gynecol. Oncol. 131
(3), 650–654. doi:10.1016/j.ygyno.2013.10.003

Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J. S., et al. (2017). Timer: A web
server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res.
77 (21), e108–e110. doi:10.1158/0008-5472.can-17-0307

Li, W., Wang, H., Ma, Z., Zhang, J., Ou-Yang, W., Qi, Y., et al. (2019). Multi-
omics analysis of microenvironment characteristics and immune escape
mechanisms of hepatocellular carcinoma. Front. Oncol. 9, 1019. doi:10.3389/
fonc.2019.01019

Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., and
Tamayo, P. (2015). TheMolecular Signatures Database (MSigDB) hallmark gene set
collection. Cell Syst. 1 (6), 417–425. doi:10.1016/j.cels.2015.12.004

Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018).
Maftools: Efficient and comprehensive analysis of somatic variants in cancer.
Genome Res. 28 (11), 1747–1756. doi:10.1101/gr.239244.118

Miccò, M., Lupinelli, M., Mangialardi, M., Gui, B., and Manfredi, R. (2022).
Patterns of recurrent disease in cervical cancer. J. Pers. Med. 12 (5), 755. doi:10.
3390/jpm12050755

Mittal, P., Chopra, S., Charnalia, M., Dora, T., Engineer, R., Mulani, J., et al.
(2022). Patterns of relapse after adjuvant chemoradiation for cervical cancer in a
phase 3 clinical trial (PARCER): An evaluation of updated NRG oncology/RTOG
target delineation guidelines. Int. J. Radiat. Oncol. Biol. Phys. 113 (2), 369–378.
doi:10.1016/j.ijrobp.2022.02.007

O’Donnell, J. S., Teng, M. W. L., and Smyth, M. J. (2019). Cancer immunoediting
and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 16 (3),
151–167. doi:10.1038/s41571-018-0142-8

O’Malley, D. M., Neffa, M., Monk, B. J., Melkadze, T., Huang, M., Kryzhanivska,
A., et al. (2022). Dual PD-1 and CTLA-4 checkpoint blockade using balstilimab and
zalifrelimab combination as second-line treatment for advanced cervical cancer: An
open-label phase II study. J. Clin. Oncol. 40 (7), 762–771. doi:10.1200/jco.21.02067

Pan, H., Pan, J., Li, P., and Gao, J. (2022). Characterization of PANoptosis
patterns predicts survival and immunotherapy response in gastric cancer. Clin.
Immunol. 238, 109019. doi:10.1016/j.clim.2022.109019

Qiu, X. T., Song, Y. C., Liu, J., Wang, Z. M., Niu, X., and He, J. (2020).
Identification of an immune-related gene-based signature to predict prognosis
of patients with gastric cancer.World J. Gastrointest. Oncol. 12 (8), 857–876. doi:10.
4251/wjgo.v12.i8.857

Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D. E., and Gfeller, D. (2017).
Simultaneous enumeration of cancer and immune cell types from bulk tumor gene
expression data. Elife 6, e26476. doi:10.7554/eLife.26476

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015).
Limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic Acids Res. 43 (7), e47. doi:10.1093/nar/gkv007

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A.,
et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 71 (3),
209–249. doi:10.3322/caac.21660

Tewari, K. S., Monk, B. J., Vergote, I., Miller, A., de Melo, A. C., Kim, H. S., et al.
(2022). Survival with cemiplimab in recurrent cervical cancer. N. Engl. J. Med. 386
(6), 544–555. doi:10.1056/NEJMoa2112187

van der Leun, A. M., Thommen, D. S., and Schumacher, T. N. (2020). CD8(+)
T cell states in human cancer: Insights from single-cell analysis. Nat. Rev. Cancer 20
(4), 218–232. doi:10.1038/s41568-019-0235-4

Wang, Z., Wang, Y., Yang, T., Xing, H., Wang, Y., Gao, L., et al. (2021). Machine
learning revealed stemness features and a novel stemness-based classification with
appealing implications in discriminating the prognosis, immunotherapy and
temozolomide responses of 906 glioblastoma patients. Brief. Bioinform. 22 (5),
bbab032. doi:10.1093/bib/bbab032

Wilkerson, M. D., and Hayes, D. N. (2010). ConsensusClusterPlus: A class
discovery tool with confidence assessments and item tracking. Bioinformatics 26
(12), 1572–1573. doi:10.1093/bioinformatics/btq170

Xu, F., Shen, J., and Xu, S. (2021). Integrated bioinformatical analysis identifies
GIMAP4 as an immune-related prognostic biomarker associated with remodeling
in cervical cancer tumor microenvironment. Front. Cell Dev. Biol. 9, 637400. doi:10.
3389/fcell.2021.637400

Yang, C., Huang, X., Liu, Z., Qin, W., and Wang, C. (2020). Metabolism-
associated molecular classification of hepatocellular carcinoma. Mol. Oncol. 14
(4), 896–913. doi:10.1002/1878-0261.12639

Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes, S., et al.
(2013). Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic
biomarker discovery in cancer cells.Nucleic Acids Res. 41, D955–D961. doi:10.1093/
nar/gks1111

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-
Garcia, W., et al. (2013). Inferring tumour purity and stromal and immune cell
admixture from expression data. Nat. Commun. 4, 2612. doi:10.1038/ncomms3612

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package
for comparing biological themes among gene clusters. Omics 16 (5), 284–287.
doi:10.1089/omi.2011.0118

Zhang, Y. F., Fan, Y., Zhang, P., Ruan, J. Y., Mu, Y., and Li, J. K. (2022). Cervical
cancer recurrence and patient survival after radical hysterectomy followed by either
adjuvant chemotherapy or adjuvant radiotherapy with optional concurrent
chemotherapy: A systematic review and meta-analysis. Front. Oncol. 12, 823064.
doi:10.3389/fonc.2022.823064

Zheng, M., Hu, Y., Gou, R., Liu, O., Nie, X., Li, X., et al. (2020). Identification of
immune-enhanced molecular subtype associated with BRCA1 mutations, immune
checkpoints and clinical outcome in ovarian carcinoma. J. Cell. Mol. Med. 24 (5),
2819–2831. doi:10.1111/jcmm.14830

Frontiers in Genetics frontiersin.org17

Qiang et al. 10.3389/fgene.2022.1007108

39

https://doi.org/10.1016/j.ygyno.2013.10.003
https://doi.org/10.1158/0008-5472.can-17-0307
https://doi.org/10.3389/fonc.2019.01019
https://doi.org/10.3389/fonc.2019.01019
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.3390/jpm12050755
https://doi.org/10.3390/jpm12050755
https://doi.org/10.1016/j.ijrobp.2022.02.007
https://doi.org/10.1038/s41571-018-0142-8
https://doi.org/10.1200/jco.21.02067
https://doi.org/10.1016/j.clim.2022.109019
https://doi.org/10.4251/wjgo.v12.i8.857
https://doi.org/10.4251/wjgo.v12.i8.857
https://doi.org/10.7554/eLife.26476
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.3322/caac.21660
https://doi.org/10.1056/NEJMoa2112187
https://doi.org/10.1038/s41568-019-0235-4
https://doi.org/10.1093/bib/bbab032
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.3389/fcell.2021.637400
https://doi.org/10.3389/fcell.2021.637400
https://doi.org/10.1002/1878-0261.12639
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.3389/fonc.2022.823064
https://doi.org/10.1111/jcmm.14830
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1007108


Identification of
cuproptosis-related gene
signature to predict prognosis in
lung adenocarcinoma

Yanju Lv1†, Yajie Xiao2†, Xiaoli Cui2, Haitao Luo2* and Long Xu3*
1Department of Internal Medicine, Second Affiliated College of Harbin Medical University, Harbin,
China, 2Department of Medicine, YuceBio Technology Co., Ltd., Shenzhen, China, 3Department of
Oncology, General Hospital of Northern Theater Command, Shenyang, China

Background: Studies have reported that coppers are involved in the

tumorigenesis and development of tumor. In herein, we aimed to construct

a prognostic classification system for lung adenocarcinoma (LUAD) associated

with cuproptosis.

Methods: Samples information of LUAD were acquired from The Cancer

Genome Atlas (TCGA) and GSE31210 dataset. Cuproptosis-related genes

were screened from previous research. ConsensusClusterPlus was applied to

determine molecular subtypes, which evaluated by genome analysis, tumor

immune microenvironment analysis, immunotherapy, functional enrichment

analysis. Furthermore, univariate Cox analysis combined with Lasso analysis

were employed to construct a cuproptosis-related risk model for LUAD.

Results: 14 genes related to cuproptosis phenotype were identified, and

2 clusters (C1 and C2) were determined. Among which, C1 had better

survival outcome, less advanced stages, enhanced immune infiltration and

enriched in TCA related pathways. A 7 cuproptosis-associated genes risk

model was constructed, and the performance was verified in the

GSE31210 dataset. A higher RiskScore was significantly correlated with worse

overall survival, advanced stages. Cox survival analysis showed that RiskScore

was an independent predictor. High-risk group patients had weakened immune

infiltration, less likely to benefit from immunotherapy and was more sensitived

to immunotherapy.

Conclusion: The cuproptosis-related gene signature could serve as potential

prognostic predictors for LUAD patients and may provide clues for the

intervention of cuproptosis induced harm and targeted anti-tumor application.

KEYWORDS

lung adenocarcinoma, cuproptosis, molecular subtype, RiskScore, prognosis

OPEN ACCESS

EDITED BY

Xing Niu,
China Medical University, China

REVIEWED BY

Ziheng Wang,
University of Macau, China
Yaozeng Xu,
The First Affiliated Hospital of Soochow
University, China

*CORRESPONDENCE

Haitao Luo,
luohaitao@yucebio.com
Long Xu,
doctorxul@163.com

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to RNA,
a section of the journal
Frontiers in Genetics

RECEIVED 11 August 2022
ACCEPTED 28 September 2022
PUBLISHED 14 October 2022

CITATION

Lv Y, Xiao Y, Cui X, LuoH and Xu L (2022),
Identification of cuproptosis-related
gene signature to predict prognosis in
lung adenocarcinoma.
Front. Genet. 13:1016871.
doi: 10.3389/fgene.2022.1016871

COPYRIGHT

© 2022 Lv, Xiao, Cui, Luo and Xu. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 14 October 2022
DOI 10.3389/fgene.2022.1016871

40

https://www.frontiersin.org/articles/10.3389/fgene.2022.1016871/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1016871/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1016871/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1016871/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1016871&domain=pdf&date_stamp=2022-10-14
mailto:luohaitao@yucebio.com
mailto:doctorxul@163.com
https://doi.org/10.3389/fgene.2022.1016871
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1016871


Introduction

Lung adenocarcinoma (LUAD), the most common type of

non-small cell lung cancer, is characterized by dense

lymphocytic infiltration and early metastasis (Luo et al.,

2020). Although treatment strategies for LUAD have

improved greatly in recent years, the survival rate of

patients with LUAD is still very low (Kleczko et al., 2019).

Chemotherapy, surgical resection and radiotherapy are

routine treatments for LUAD, However, due to the lack of

specificity of these treatments, they can also cause damage to

adjacent normal cells (Wang et al., 2021). Targeted therapy

and immunotherapy are one of the main methods for the

treatment of LUAD. Although both have achieved good

clinical efficacy (Osmani et al., 2018; Xing et al., 2019), the

clinical benefit population is still limited (Park and Jang, 2016;

Testa et al., 2018). Therefore, it is of great significance to

further search for new diagnostic markers and therapeutic

targets for LUAD.

It is well known that copper, as a cofactor of essential

enzymes, plays an important role in human life (Kim et al.,

2008). The concentration of copper in normal cells is very low,

which mainly prevents the harmful accumulation of free

intracellular copper through the homeostasis mechanism

across the concentration gradient, thus maintaining cellular

copper homeostasis (Lutsenko, 2010; Ge et al., 2022).

However, a recent study shows that copper death is

dependent on mitochondrial respiration, which is different

from the previously known programmed cell death (such as

iron death and apoptosis). In this process, copper directly

binds to the lipid components of the tricarboxylic acid cycle,

resulting in the aggregation of lipoacylated proteins and the

loss of iron-sulfur cluster proteins, leading to proteotoxic

stress and cell death (Tsvetkov et al., 2022). The

importance of copper homeostasis in immune infiltration

has also been demonstrated in some recent correlation

studies (Choi et al., 2013; Tan et al., 2021). Tan et al.

(2021) found that copper chelation on macrophages can

eliminate lysyl oxidase-like 4-mediated programmed death

molecule ligand 1 presentation, thereby inhibiting cell

immune escape. Choi et al. (2013) showed that

chlorodoxyquine (a common copper chelator) can

effectively reduce the infiltration of encephalitis-causing

immune cells (CD4, CD8, etc.).

Based on this, this study is the first to investigate the

prognosis of LUAD by combining LUAD microarray data and

cuproptosis-related genes. Using the GSE31210 dataset of

TCGA database and GEO database, combined with the

13 copper-death genes provided by Tsvetkov et al. (2022),

we identified important cuproptosis related genes and

molecular subtypes, and constructed a risk model. Finally,

based on the subtypes and risk models obtained above,

functional enrichment analysis, immune infiltration

analysis, immunotherapy and chemotherapy drug

prediction were performed, so as to provide some

theoretical support for the mechanism research of

cuproptosis in LUAD.

Materials and methods

Data source

In order to obtain the microarray data related to lung

adenocarcinoma, TCGA and GEO databases were searched

with “LUAD” as the search term. The TCGA-LUAD dataset

contains 472 cancer patient samples and 59 healthy samples,

and the GSE31210 dataset contains 226 LUAD samples.

472 tumor samples were classified into the training cohort

randomly (n = 236), the testing cohort (n = 236). The two

groups were similar in age, gender, Stage, follow-up time, and

Event (Table 1).

The 13 cuproptosis related genes, SLC31A1, PDHB, PDHA1,

LIPT1, FDX1, DLD, DLST, DBT, LIAS, DLAT, GCSH, ATP7A,

and ATP7B, were derived from a recent report by team Tsvetkov

et al. (2022).

Differentially expressed genes analysis

Based on 13 cuprotosis related genes, scores of cuprotosis

related genes in each sample were calculated by single sample

gene set enrichment analysis (ssGSEA), and DEGs were screened

between cancer tissues and para-carcinoma tissue with

FDR<0.05 and |log2FC|>2.
Then, the correlation analysis between DEGs and scores were

analyzed by pearson methods with selection criteria |R|>0.2 and
p.value < 0.05 to obtained genes associated with cuproptosis

phenotype.

Univariate COX survival analysis

Next, Univariate COX survival analysis using coxph function of

R package was used to analysis genes associated with cuproptosis

phenotype with p < 0.05 to determine cuproptosis-related genes for

LUAD prognosis, for subsequent analysis

Cluster analysis

Base on cuproptosis-related genes, Then, molecular subtypes

were performed separately for TCGA-LUADdataset samples via the

Consensus Cluster Plus 1.52.0 (Wilkerson and Hayes, 2010). “pam”

arithmetic and “pearson” distance were utilized to complete

500 bootstraps with every bootstrap having specimens (≥80%) of
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TCGA-LUAD dataset. Cluster number k was between 2 and 10, and

the optimum k was identified as per cumulative distribution

function (CDF) and AUC. Survival curves (KM curves) between

molecular subtypes were then analyzed for difference. In addition,

differences in the distribution of clinical characteristics between

molecular subtypes were compared and a chi-square test was

completed, and p < 0.05 had significance on statistics.

Single-sample GSEA

The ssGSEAwas used to evaluate the various pathways scores

(Charoentong et al., 2017) using GSVA of R package.

NES>0 indicates pathway activation, and NES<0 indicates

pathway inhibition.

Estimation of STromal and immune cells in
MAlignant tumours using expression data

R software ESTIMATE arithmetic (Yang et al., 2021) was

utilized to compute overall stroma level (Stromal Score), the

immunocyte infiltration (Immune Score) and the combination

(ESTIMATE Score) of sufferers in the TCGA-LUAD cohort

using Wilcox.test analysis to determine difference.

Cell-type identification by estimating
relative subsets of RNA transcripts

CIBERSORT analyses were utilized to compare diversities in

different immunocytes in molecular subtypes. Wilcox.test

TABLE 1 Sample information of TCGA training dataset and validation dataset.

Characteristics Train (N =
236)

Test (N =
236)

Total (N =
472)

p value FDR

Gender 1 1

FEMALE 127 (26.91%) 128 (27.12%) 255 (54.03%)

MALE 109 (23.09%) 108 (22.88%) 217 (45.97%)

T.stage 0.79 1

T1 76 (16.10%) 84 (17.80%) 160 (33.90%)

T2 130 (27.54%) 123 (26.06%) 253 (53.60%)

T3 22 (4.66%) 21 (4.45%) 43 (9.11%)

T4 8 (1.69%) 7 (1.48%) 15 (3.18%)

Ukown 0 (0.0e+0%) 1 (0.21%) 1 (0.21%)

N.stage 0.2 1

N0 160 (33.90%) 153 (32.42%) 313 (66.31%)

N1 40 (8.47%) 46 (9.75%) 86 (18.22%)

N2 34 (7.20%) 28 (5.93%) 62 (13.14%)

N3 0 (0.0e+0%) 2 (0.42%) 2 (0.42%)

Ukown 2 (0.42%) 7 (1.48%) 9 (1.91%)

M.stage 0.88 1

M0 159 (33.69%) 161 (34.11%) 320 (67.80%)

M1 9 (1.91%) 7 (1.48%) 16 (3.39%)

Ukown 68 (14.41%) 68 (14.41%) 136 (28.81%)

Stage 0.83 1

I 135 (28.60%) 129 (27.33%) 264 (55.93%)

II 53 (11.23%) 61 (12.92%) 114 (24.15%)

III 36 (7.63%) 34 (7.20%) 70 (14.83%)

IV 9 (1.91%) 7 (1.48%) 16 (3.39%)

Ukown 3 (0.64%) 5 (1.06%) 8 (1.69%)

Event 0.57 1

Alive 141 (29.87%) 148 (31.36%) 289 (61.23%)

Dead 95 (20.13%) 88 (18.64%) 183 (38.77%)

Age 0.13 0.92

<=65 69 (14.62%) 77 (16.31%) 146 (30.93%)

>65 159 (33.69%) 157 (33.26%) 316 (66.95%)

Ukown 8 (1.69%) 2 (0.42%) 10 (2.12%)
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analyses were completed to identify the difference of 22 kinds of

infiltrating immunocyte score between molecular subtypes. The

“ggplot2” package (Ito andMurphy, 2013) was used to realize the

visualization of the distributional status of the diversities in

22 kinds of infiltration immunocytes.

Immunotherapy

The expression levels of 47 immune checkpoint genes, which

from HigsAtlas (Liu et al., 2017), were determined.

Construction and evaluation a prognostic
risk model for lung adenocarcinoma

Lasso-cox regression was performed using the Glnmet

package in R language to select the best prognostic genes

(Tibshirani, 1997). Glmnet is a software package for fitting

generalized linear and similarity models by penalized

maximum likelihood. The regularization path is the

calculation of the lasso or elastic net penalty on the value

(on a logarithmic scale) of the regularization parameter

lambda (Goeman, 2010). The optimal value of the penalty

FIGURE 1
Identification of genes closely related to cuproptosis related gene pathway score. (A) Differentially expressed gene between cancer tissue and
para-carcinoma tissue. (B) 14 genes closely related to cuproptosis related gene pathway score. (C) mutation analysis of genes in TCGA-LUAD
dataset. (D) The expression levels of 14 genes in cancer tissue and para-carcinoma tissue. ***p < 0.0001.
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coefficient λ and the genes to be included in the model were

selected by running the 10-fold cross-validation probability

1000 times. Subsequently, Cox multivariate regression

analysis coefficients of prognostic genes were extracted, and

the gene expression levels were used to calculate the risk score

by the following formula as the survival risk score of each

patient:

RiskScore � ∑n

k�0βi × Expi

Where, βi represents the Cox hazard ratio coefficient of

mRNA, and Expri represents the gene expression level.

TCGA-LUAD samples were divided into high risk

(RiskScore>0) and low risk groups (RiskScore<0) according
to the risk score, which was for zscore. At the same time,

GSE31210 were used to evaluate the effectiveness and

robustness of the prognostic risk model. Kaplan-Meier

(KM) curves combined with the Logrank test were used to

analyze survival differences among different risk groups. The

timeROC package was used to determine the area under the

receiver operating characteristic curve (AUC) to predict 1-

year, 2-year, 3-year, 4-year and 5-year survival rates,

respectively.

Independent prognostic power of
RiskScore

Univariate and multivariate COX regression were used to

examine the independent prognostic power of RiskScore.

Tumor immune dysfunction and exclusion

TIDE (Jiang et al., 2018; Fu et al., 2020) algorithm (http://

tide.dfci.harvard.edu) was used to evaluate three cell types that

FIGURE 2
Identification of molecular subtypes. (A) Cumulative distribution function. (B) Delta area. (C) Heatmap of sample clustering when k = 2. (D) KM
survival analysis of C1 and C2 in TCGA-LUAD dataset. (E) KM survival analysis of C1 and C2 in GSE31210 dataset.

Frontiers in Genetics frontiersin.org05

Lv et al. 10.3389/fgene.2022.1016871

44

http://tide.dfci.harvard.edu
http://tide.dfci.harvard.edu
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1016871


limit T-cell invasion into tumors, including IFNG, myeloid

suppressor cells (MDSC), and M2 subtypes of tumor-

associated macrophages (TAM.M2), as well as dysfunction of

tumor infiltration cytotoxic T lymphocytes (CTL) and exclusion

of CTL by immunosuppressive factors.

Chemotherapy drugs sensitivity analysis

pRRophetic (Geeleher et al., 2014) was used to predict the

sensitivity of Cisplatin, Salubrinal, Vinorelbine, QS11, AKT

inhibitor ⅤⅢ and Embelin to IC50.

Sangerbox provided assistance with this article (Shen et al.,

2022).

Results

Identification of genes closely related to
cuproptosis related gene pathway score

602 DEGs were screened between cancer tissue and para-

carcinoma tissue in TCGA-LUAD dataset (Figure 1A), from

which, 138 genes were closely with cuproptosis related gene

pathway score. Next, Univariate Cox regression analysis

identified 14 genes associated with prognosis in lung

adenocarcinoma (Figure 1B). 40 of 567 samples (7.05%) in

TCGA-LUAD had genes mutation (Figure 1C). The

expression levels of 14 genes had significance between

cancer tissue and para-carcinoma tissue (Figure 1D).

Those data showed that cuproptosis was associated

with LUDA.

Identification of molecular subtypes

Based on 14 genes, samples in TCGA-LUAD dataset were

clustered with CDF and delta area (Figures 2A,B). When k = 2,

2 clusters (C1 and C2) were found (Figure 2C). KM survival

analysis indicated that patients in C1 had better survival outcome

in TCGA-LUAD dataset (p = 0.00076, Figure 2D) and

GSE32210 dataset (p = 0.00045, Figure 2E). Distribution of

clinical features in clusters showed that samples in C2 had

more Male, T3/4 stage, N1/2 stage, StageⅢ/Ⅳ and Dead

patients (Figure 3). Those analysis indicated that the 2 clusters

had clinical significance.

FIGURE 3
The distribution of clinical features, included Gender, T Stage, N Stage, M Stage, Stage Ages, and Status in C1 and C2. *p < 0.05.

Frontiers in Genetics frontiersin.org06

Lv et al. 10.3389/fgene.2022.1016871

45

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1016871


FIGURE 4
Genome analysis. (A) the analysis of Aneuploidy Score, Homologous Recombination Defects, Fraction Altered, number of segments, and non-
silent mutation rate in C1 and C2. (B) Top 10 mutation genes in C1 and C2. ***p < 0.0001.
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High gene mutation was observed in
subtypes

Genome analysis between clusters showed that C1 patients

presented less Aneuploidy Score, Homologous Recombination

Defects, Fraction Altered, Number of Segments, Nonsilent

Mutation Rate (Figure 4A). In addition, top10 genes,

especially TP53, TTN, MUC16, had obviously mutation

differences between C1 and C2 (Figure 4B).

Moreover, GSEA analysis showed that such as

CITRATE_CYCLE_TCA_CYCLE and

AMINOACYL_TRNA_BIOSYNTHESIS were activated in C2,

while, TAURINE_AND_HYPOTAURINE_METABOLISM were

activated in C1 (Figure 5A). Tricarboxylic acid cycle related

pathways and genes were acquired to calculated TCA pathways

scores using ssGSEA, and the results showed that 7 pathways were

higher enriched in C2 (Figure 5B). Cell growth and death pathways,

and genes were obtained from Kyoto Encyclopedia of Genes and

Genomes (KEGG) (https://www.kegg.jp/kegg/pathway.html),

ssGSEA analysis indicated that cellular senescence, p53 signaling

pathway and cell cycle were higher in C2, while Necroptosis and

Apoptosis were activated in C1 (Figure 5C).

C1 had higher immune infiltration

16 of 22 immune cells had significantly difference using

CIBERSORT analysis between 2 clusters (Figure 6A). Then,

ESTIMATE analysis showed that C1 had higher score of

StromalScore, ImmuneScore and ESTIMATEScore

(Figure 6B). Our team afterwards evaluated the 47 immune

check genes expressions, and 41 immune checkpoint genes

had obviously high expressions in C1 that those in C2

(Figure 6C). Next, the scores of CYT, T cell receptor signaling

pathway and B cell receptor signaling pathway, were calculated

using ssGSEA, and they all were higher in C1 that those in C2

(Figures 6D–F).

Identification of hub genes and RiskScore

1687 DEGs, including 1462 upregulated genes and

422 downregulated genes, were identified in C1 vs. C2

(Figure 7A). TCGA-LUAD dataset was divided into TCGA-

training dataset and TCGA-test dataset. In TCGA- training

dataset, univariate Cox survival analysis determined 14 genes

associated with prognosis, included 12 risk genes and

2 protective genes (Figures 7B,C). LASSO Cox regression

module was conducted to build a prognostic signature

based on the expression matrix of the 14 genes.

Consequently, we identified a 7-genes signature module

according to the optimal λ value (Figures 7D,E). RiskScore

of LUAD patients base on 7 genes was calculated using

the following formula: RiskScore = 0.168*ARHGEF39-

0.079*EFCC1-0.124*SERPIND1+0.065*INSL4+0.11*

ANLN+0.04*RHOV+0.17*CCL20.

FIGURE 5
Functional enrichment analysis. (A)GSEA analysis demonstrated that pathways, such as, cell cycle were activated in C2. (B) 7 TCA pathways were
activated in C2. (C) 6 pathways associated with tumorigenesis had differences in C1 and C2. *p < 0.05, **p < 0.01, ***p < 0.0001, ns: no significance.
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FIGURE 6
Analysis of immune infiltration. (A) analysis of 22 immune cells using CIBERSORT. (B) Analysis of immune infiltration using ESTIMATE. (C) The
expression levels of 42 immune check genes between C1 and C2. (D–F) The differences of CTY score, T cell receptor signaling pathway score, B cell
receptor signaling pathway score between C1 and C2. *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001, ns: no significance.
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FIGURE 7
Identification hub cuproptosis related genes. (A) Volcano of differentially expressed genes identified from C1 and C2. (B) Volcano of
differentially expressed genes identified using univariate Cox analysis. (C) Forest map of differentially expressed genes identified using univariate Cox
analysis. (D) Lambda trajectory of differentially expressed genes. (E) Confidence interval under lambda.
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Prognostic model has well predictive
performance

RiskScore was for zscore, and the samples into high-risk

(RiskScore> 0) and low-risk (RiskScore <0) groups in

TCGA-test and GSE31210 dataset. ROC and survival

analyses were performed in TCGA-test dataset (Figures

8A,B) and GSE31210 dataset (Figures 8C,D). The

results revealed that the accuracy of the model was

better in predicting the 1-, 2-, 3-, 4-, and 5-year

survival rates in above datasets, as all values of the area

under the curve (AUC) were greater than 0.6. Results

of Kaplan-Meier survival analysis showed overall survival

was higher in low-risk group than high-risk group. High

group had more samples with higher clinical grade

(Figure 9A), the RiskScore was higher in MALE, a higher

T stage, N2 stage and clinical stage, and dead samples

(Figure 9B).

FIGURE 8
Validation of RiskScore. (A) ROC analysis of RiskScore in TCGA-test dataset. (B) KM survival analysis of RiskScore in TCGA-test dataset. (C) ROC
analysis of RiskScore in GSE31210 dataset. (D) KM survival analysis of RiskScore in GSE31210 dataset.
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RiskScore was an independent prognostic
factor

To identify the independence of 7-gene signature

model in clinical application, in TCGA-LUAD dataset,

univariate and multivariate COX regression were used

to analyze the HR, 95%CI of HR and Pvalue of Age,

Gender, T Stage, N Stage, M Stage, Stage and RiskType.

Univariate COX regression analysis showed that T Stage,

N Stage, Stage and RiskType were significantly associated

with survival (Figure 10A), while multivariate

COX regression analysis showed that only RiskType

(HR = 2.06, 95%CI = 1.43–2.99, p < 0.001) was still

significantly associated with survival (Figure 10B). Those

data imply that RiskType was an independent prognostic

factor.

FIGURE 9
Analysis of clinical features in RiskScore. (A) The distribution of clinical features groups, included Gender, T Stage, N Stage, M Stage, Stage, Age
and Status, in high group and low group. (B) The RiskScore differences analysis in clinical features groups, includedGender, T Stage, N Stage, M Stage,
Stage, Age and Status. *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001, ns: no significance.
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Low group had higher immune infiltration
and sensitived to immunotherapy

CIBERSORT analysis indicated that 14 of 22 immune cells,most

were significantly higher in low group that those in high group

(Figure 11A). While, ESTIMATE analysis showed that low group

had higher StromalScore, ImmuneScore and ESTIMATEScore

(Figure 11B). And 24 immune checkpoint genes had obviously

difference expressions between high group and low group

(Figure 11C). TIDE, MDSC and Exclusion were lower in low

group that in high group, while Dysfunction and TAM.M2 were

higher in low group (Figure 11D), suggesting that low group was

more likely to benefit from immunotherapy. IC50 of Cisplatin,

Salubrinal, Vinorelbine, QS11, AKT inhibitorⅤⅢ and Embelin were

higher in low group, which suggested the developed model could be

used to predict chemotherapeutic drug sensitivity (Figure 11E).

Discussion

Cuproptosis is a newly discovered form of cell death, which is

characterized by the accumulation of intracellular free copper and the

lipidation of proteins leading to cytotoxic stress, thereby inducing cell

death (Tsvetkov et al., 2022). However, the mechanism of copper

death in LUAD has not been studied. Based on this, the relevant

microarraywas downloaded fromTCGAandGEOdatabases, and the

correlation and difference of immune infiltrationwere analyzed. Then,

the results were integrated with cuproptosis related genes, and the risk

model was constructed. Finally, seven copper death genes related to

lung adenocarcinoma were screened out, including ARHGEF39,

EFCC1, SERPIND1, INSL4, ANLN, RHOV and CCL20.

The overexpression of ARHGEF39 has also been identified in

various human malignancies, including non-small cell lung cancer

(Zhou et al., 2018), gastric cancer (Wang et al., 2018), and

hepatocellular carcinoma (Wang et al., 2012). Decreased

expression of EFCC1 was significantly associated with progression

of LUAD (Xia et al., 2019; Yu and Zhang, 2020). SERPIND1 acts as a

potential oncogene in the development of tumor, including in lung

cancer (Bossé et al., 2012; Zhu et al., 2016). INSL4 as prognostic

marker for proliferation and invasiveness in Non-Small-Cell Lung

Cancer (Scopetti et al., 2021). ANLN participates in cell

developmental processes via regulating nuclear division pathway

in LUAD (Long et al., 2018). Overexpression of RHOV in LUAD

promotes the progression (Chen et al., 2021). Production of

FIGURE 10
Independence of RiskScore. (A) Univariate Cox regression analysis. (B) Multivariate Cox regression analysis.
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CCL20 from lung cancer cells induces the cell migration and

proliferation (Wang et al., 2016). To sum up, although the copper

death related gene in LUAD mechanism study is less, but according

to previous research and the research results can be speculated that

cuproptosis related genes may play an important role in LUAD

progress, steady state and how to adjust the copper to prevention and

treatment of LUAD, is the need for further research.

The analysis results of this study have certain reference value

for the subsequent basic research of cuproptosis on LUAD, and

could reduce unnecessary waste in experiments to a certain

extent. However, this study still has some limitations. First,

although the chip data used has met the sample size required

by the research, the results may still be biased due to the small

sample size. Second, although cuproptosis related genes

FIGURE 11
Analysis of immune infiltration. (A) analysis of 22 immune cells using CIBERSORT. (B) Analysis of immune infiltration using ESTIMATE. (C) The
expression levels of 42 immune check genes between low group and high group. (D) The differences of TIDE, IFNG, MDSC, Exclusion, Dysfunction
and TAM.M2 between low group and high group. (E) IC50 of traditional drugs in low group and high group. *p < 0.05, **p < 0.01, ***p < 0.001, ***p <
0.0001, ns: no significance.
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associated with LUAD have been screened out, their specific

mechanism of action has not been elucidated, which needs to be

further explored in subsequent studies.
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Objective: Heart failure remains a global public health problem linked to rising

morbidity and mortality. RNA-binding proteins (RBPs) are crucial regulators in

post-transcriptionally determining gene expression. Our study aimed to

comprehensively elucidate the diagnostic utility and biological roles of RBPs

in heart failure.

Methods: Genomic data of human failing and nonfailing left ventricular

myocardium specimens were retrieved from the GEO datasets. Heart

failure-specific RBPs were screened with differential expression analyses,

and RBP-based subtypes were clustered with consensus clustering

approach. GSEA was implemented for comparing KEGG pathways across

subtypes. RBP-based subtype-related genes were screened with WGCNA.

Afterwards, characteristic genes were selected through integrating LASSO

and SVM-RFE approaches. A nomogram based on characteristic genes was

established and verified through calibration curve, decision curve and clinical

impact curve analyses. The abundance of immune cell types was estimatedwith

CIBERSORT approach.

Results: Heart failure-specific RBPs were determined, which were remarkably

linked to RNA metabolism process. Three RBP-based subtypes (namely C1, C2,

C3) were established, characterized by distinct pathway activities and

PANoptosis gene levels. C2 subtype presented the highest abundance of
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immune cells, followed by C1 and C3. Afterwards, ten characteristic genes were

selected, which enabled to reliably diagnose heart failure risk. The characteristic

gene-based nomogram enabled to accurately predict risk of heart failure, with

the excellent clinical utility. Additionally, characteristic genes correlated to

immune cell infiltration and PANoptosis genes.

Conclusion:Our findings comprehensively described the roles of RBPs in heart

failure. Further research is required for verifying the effectiveness of RBP-based

subtypes and characteristic genes in heart failure.

KEYWORDS

heart failure, RNA binding protein, subtype, characteristic gene, nomogram, immune
cells, PANoptosis

Introduction

Heart failure is a frequent complex clinical syndrome of

symptoms and signs triggered by structural or functional

abnormality that leads to impaired cardiac output (Packer

et al., 2021b), which remains a growing public health issue

affecting about 26 million individuals globally (Heidenreich

et al., 2022a). Typically, in accordance with left ventricular

ejection fraction (LVEF), heart failure is categorized as

preserved (HFpEF) and reduced ejection fraction (HFrEF)

(Heidenreich et al., 2022b). HFpEF is a filling issue because

of muscle stiffness reducing left ventricular chamber size or

left atrial dilation, while HFrEF is usually described as a

mechanical left ventricular pump issue (Mascolo et al.,

2022). Therapeutic strategies of above two types differ.

Substantial evidence suggests that sequential drug treatment

improves clinical outcomes in patients with HFrEF (Berg et al.,

2021). Differently, no treatment options show prognostic

benefits and symptom controlling as the sole management

regimen of HFpEF patients (Packer et al., 2021a). Reduction of

associated hospital readmission rate and clinical and economic

burden remains a pivotal issue in modern cardiovascular

medicine (Piepoli et al., 2022). Biomarkers that reflect the

pathophysiological processes of heart failure progression can

aid clinicians in the early diagnosis and management of heart

failure patients.

RNA binding proteins (RBPs) control RNA fate from

synthesis to decay, the expression and roles of which are

highly determined by detailed networks of transcriptional,

post-transcriptional as well as post-translational machinery

(Liu et al., 2022). They are implicated in pathological

manifestations of heart failure. For instance, RBPs have

widespread translational control of human cardiac fibroblast

activation (Chothani et al., 2019). RNA binding protein

24 loss enables to disrupt global alternative splicing as well as

results in heart failure (Liu et al., 2019). RNA-binding protein

RBM20 weakens splicing to orchestrate cardiac pre-mRNA

processing, and contributes to the pathogenesis of heart

failure (Maatz et al., 2014). RBP HuR-mediated SCN5A

mRNA stability represses arrhythmic risk in heart failure

(Zhou et al., 2018). Knockdown of RNA binding motif-20-

based titin splicing system can upregulate compliant titins,

and thus ameliorates diastolic function and exercise tolerance

in heart failure (Methawasin et al., 2016). Despite this,

comprehensive analyses of RBPs in heart failure are lacking.

Accumulated evidence demonstrates that PANoptosis

(apoptosis, necroptosis, together with pyroptosis) mediates

heart failure progression and possesses promising therapeutic

implications (Zhang et al., 2016; Zeng et al., 2019; Gao et al.,

2020). Nonetheless, the mechanisms of RBPs underlying

PANoptosis remain indistinct in hear failure. Our study

comprehensively evaluated RBP-based molecular subtypes and

relevant characteristic genes for heart failure, unveiling the

crucial roles of RBPs in pathophysiological process of heart

failure as well as providing reliable targets for diagnosing

heart failure risk.

Materials and methods

Heart failure expression profiling

This study downloaded the expression profiling of human

heart failure from the Gene Expression Omnibus (GEO)

repository. The GSE5406 dataset comprised microarray

expression profiles of 194 human failing left ventricular

(LV) myocardium specimens and 16 human nonfailing

control LV myocardium specimens on the Affymetrix

platform (Hannenhalli et al., 2006). Additionally, we

acquired microarray expression profiles of 177 human

failing LV myocardium specimens and 136 human control

specimens from the GSE57338 dataset on the basis of the

Affymetrix platform (Liu et al., 2015). Above expression

profiles were merged, and removal of batch effects was

implemented utilizing sva package (Leek et al., 2012). Four

independent datasets were utilized as external verification sets

as follows: the GSE76701 dataset comprising expression

profiles of 4 non-failing and 4 failing LV hearts (Kim et al.,
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2016); the GSE55296 dataset containing RNA-seq data of

human hearts from 26 heart failure patients and 10 healthy

controls (Tarazón et al., 2014); the GSE86569 dataset

with expression profiling of LV hearts from 12 HFrEF and

20 HFpEF patients; the GSE3585 dataset including expression

profiles of 5 non-failing and 7 failing LV hearts.

Screening heart failure-specific RBPs

Totally, 1,542 RBPs were collected from previously

published literature (Supplementary Table S1) (Gerstberger

et al., 2014). Expression values of RBPs were compared

between human failing and nonfailing LV myocardium

specimens through limma package (Ritchie et al., 2015).

RBPs with adjusted p < 0.05 and |fold-change|>1.5 were

regarded as heart failure-specific RBPs. Targets of RBPs

were predicted through starBase database.

Functional enrichment analyses

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses of RBPs with adjusted

p < 0.05 were implemented utilizing clusterprofiler package (Yu

et al., 2012). Terms with adjusted p < 0.05 were regarded as

significant enrichment.

Consensus clustering analyses

Through ConsensusClusterPlus package (Wilkerson and

Hayes, 2010), on the basis of RBPs with adjusted p < 0.05,

consensus clustering analyses of heart failure specimens were

run in accordance with the following parameters: item

resampling, proportion of items to sample: 80%; gene

resampling, proportion of features to sample: 80%; a

maximum evaluated k, maximum clustering number to

evaluate: 9; resampling, number of subsamples: 1,000;

agglomerative hierarchical clustering algorithm): ‘hc’

(hclust); and distance: ‘pearson’ (1 - Pearson correlation).

The RBP-based subtype classification was verified through

principal component analyses (PCA).

Gene set enrichment analyses

GSEA methodology (Subramanian et al., 2005) was

utilized for the comparisons of KEGG pathways across

RBP-based subtypes. The “c2.cp.kegg.v7.4.symbols” gene set

from the Molecular Signatures Database (Liberzon et al., 2015)

was employed as a reference set, with the criteria of

p-value<0.05.

Weighted gene co-expression network
analyses

Expression profiling of the merged GSE5406 and

GSE57338 datasets was extracted for conducting WGCNA

utilizing WGCNA package (Langfelder and Horvath, 2008).

Sample clustering was implemented for testing whether there

were outlier specimens. Soft threshold power value was

determined for constructing a scale-free topology network.

Afterwards, the adjacency matrix was converted to the

topological overlap matrix (TOM). In accordance with the

TOM-based dissimilarity, distinct co-expression modules

were clustered. Associations of modules and RBP-based

subtypes were then evaluated. The module with the

strongest correlation to RBP-based subtypes was screened,

and the genes in this module were regarded as RBP-based

subtype-related genes.

Protein-protein interaction analyses

RBP-based subtype-related genes were imported into the

Search Tool for the Retrieval of Interacting Genes (STRING)

online platform (https://www.string-db.org) (Szklarczyk et al.,

2021). The interactions between their protein products were

retrieved according to the default criteria. Utilizing MCODE

plug-in of Cytoscape software (Doncheva et al., 2019), PPI

subnetwork and hub genes were obtained following the

selection criteria of degree cutoff = 2, node score cutoff = 0.2,

haircut = true, Fluff = false, K-core = 2 Max, and depth from

seed = 100.

Selection of characteristic genes with two
machine learning approaches

Characteristic RBP-based subtype-related genes were

selected utilizing two machine learning approaches: least

absolute shrinkage and selection operator regression (LASSO)

as well as support vector machine recursive feature elimination

(SVM-RFE). Through glmnet package (Engebretsen and Bohlin,

2019), LASSO was run and penalty parameter λ tuning was

implemented using ten-fold cross-validation. Additionally, the

best variables were selected with ten-fold cross-validation

utilizing SVM-RFE algorithm. Afterwards, characteristic genes

were determined through intersection of LASSO- and SVM-

RFE-derived results.

Establishment of a nomogram

A nomogram was established on the basis of characteristic

genes via rms package. The accuracy of the nomogram in
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FIGURE 1
Analyses of heart failure-specific RBPs. (A) Integration of two heart failure expression profiling datasets (GSE5406, and GSE57338). (B) Removal
of batch effects of the merged datasets. (C) Volcano plots of RBPs with differential expression between human failing and nonfailing control LV
myocardium specimens following adjusted p < 0.05 and |fold-change|>1.5. (D)Heatmap of expression values of heart failure-specific RBPs in human
failing (blue) and nonfailing control (red) LV myocardium specimens. (E) Potential downstream targets of RBPs with adjusted p < 0.05 that were
differentially expressed in heart failure LV myocardium specimens than nonfailing controls. (F–K) The first ten biological processes, cellular
components, and molecular functions of up- and down-regulated RBPs. (L,M) KEGG pathways enriched by up- and down-regulated RBPs.
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predicting risk probabilities was evaluated with calibration curve.

Decision curve analyses represent a novel approach for assessing

clinical usefulness, which were utilized to evaluate the clinical

utility of the nomogram. Clinical impact curves were drawn for

assessing the clinical usefulness and applicability net benefits of

the nomogram with the optimal diagnostic value.

Immune cell estimations

CIBERSORT (Newman et al., 2015) is an approach on the

basis of the gene expression matrix for reliably estimating the

relative abundance of 24 immune cell types in tissue

specimens. CIBERSORT analyses were utilized for

comparing differences in distinct immune cell types

between groups. Spearman correlation analyses were

implemented for exploring interactions between infiltrating

immune cell types and characteristic genes.

Connectivity map (CMap) analysis

Heart failure-specific RBPs were utilized to query the CMap

database (https://clue.io/). Compounds with p < 0.05 were

selected as potential therapeutic drugs for heart failure based

upon transcriptome data. The mode of action (MoA) of these

compounds was then analyzed.

Statistical analyses

R software (www.r-project.org; version 3.6.1) was employed

for all statistics analysis processes. Comparison analyses between

groups were implemented utilizing Wilcoxon or Kruskal-Wallis

test. The diagnostic efficacy of characteristic genes or nomogram

was evaluated with receiver operator characteristic (ROC) curves

along with area under the curve (AUC) calculation. Pearson or

Spearmon correlation test was implemented for interactions

between variables. p < 0.05 was considered statistically

significant for all analysis process.

Results

Analyses of heart failure-specific RBPs

Our study collected and merged two heart failure

expression profiling datasets (GSE5406, and GSE57338),

and batch effects were corrected for subsequent analyses

(Figures 1A,B). To determine heart failure-specific RBPs,

differential expression analyses were implemented. In

accordance with adjusted p < 0.05 and |fold-change|>1.5,
five RBPs (EIF1AY, RPS4Y1, DDX3Y, RNASE2, and

CSDC2) were found in heart failure LV myocardium

specimens in comparison to nonfailing controls (Figures

1C,D). Afterwards, we predicted potential downstream

targets of RBPs with adjusted p < 0.05 through starBase

database. As depicted in Figure 1E, 18 targets (SERPINA3,

FCN3, LUM, ASPN, IL1RL1, SFRP4, CD163, MYOT, OGN,

MXRA5, LYVE1, MYH6, PLA2G2A, CYP4B1, SERPINE1,

HBB, NPPA, and EIF1AY) had the potential binding sites

of RBPs, which were differentially expressed in heart failure

LV myocardium specimens in contrast to nonfailing controls.

Biological functions and pathways of RBPs with adjusted p <
0.05 were then probed. Biological processes such as RNA/

mRNA/peptide/ncRNA metabolic processes, RNA processing,

and translation were both remarkably linked to up- and down-

regulated RBPs (Figures 1F,G), indicating their essential roles

in modulating gene expression. Additionally, RBPs with

adjusted p < 0.05 closely correlated to multiple cellular

components (nuclear part and lumen, protein-containing

complex, nucleoplasm, etc.), as illustrated in Figures 1H,I.

Up- and down-regulated RBPs also possessed the molecular

functions of nucleic acid binding, RNA binding, catalytic

activity acting on RNA, etc. (Figures 1J,K). To probe

signaling pathways involved in RBPs with adjusted p <
0.05, KEGG enrichment analyses were implemented. In

Figures 1L,M, RNA transport/degradation/polymerase,

spliceosome, mRNA surveillance pathway, etc. were

remarkably enriched by up- and down-regulated RBPs.

Establishment of RBP-based subtypes for
heart failure

Consensus clustering analyses were employed for

identifying RBP-based subtypes across heart failure

specimens in accordance with RBPs with adjusted p < 0.05.

Figure 2A illustrated the consensus matrix heatmap at k = 3.

We found that heart failure specimens could be clearly

categorized as three RBP-based subtypes, namely C1,

C2 and C3. Consistent cumulative distribution (CDF) plot

showed that when k = 3, CDF reached an approximate

maximum (Figure 2B). As depicted in delta area plot, when

k = 4, the area under the CDF curve increased only slightly,

and thus 3 was an appropriate k value (Figure 2C). Tracking

plot was also established for visualizing the sample

classification. When k = 3, this classification had relatively

high stability (Figure 2D). By reason of the foregoing, three

RBP-based subtypes were finally identified across heart failure

samples. The accuracy of this classification was verified

through PCA plot. In Figure 2E, heart failure samples were

clearly classified as three subtypes. Additionally, RBPs with

adjusted p < 0.05 presented different expression values across

three RBP-based subtypes (Figure 2F). Differentially expressed

genes among three RBP-based subtypes were analyzed, and we
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FIGURE 2
Establishment of RBP-based subtypes for heart failure. (A) Consensus matrix heatmap at k = 3. The rows and columns are samples, with
consensus values on a white to blue color scale. (B) Consensus CDF curves at k = 2–9. (C) Delta area plot. (D) Tracking plot. The rows are samples,
and the columns are k values. (E) PCA plot of three RBP-based subtypes. (F)Heatmap of expression values of RBPswith adjusted p < 0.05 across three
subtypes. (G) The top 30 up-regulated marker genes in each subtype. (H) The top 30 down-regulated marker genes in each subtype. (I,J)
Number of RBPs of up- and down-regulated marker genes in three subtypes.
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identified the top 30 up- or down-regulated genes in each

subtype compared with others, which were considered as

specific marker genes of each subtype (Figures 2G,H).

Potential RBPs of up- and down-regulated marker genes

were predicted, respectively. As illustrated in Figures 2I,J,

no notable differences in number of RBPs of up- and

FIGURE 3
Different molecular mechanisms across RBP-based subtypes. (A,B) GSEA for comparing KEGG pathways between C1 and C2 subtypes. (C,D)
GSEA for comparing KEGG pathways between C1 and C3 subtypes. (E,F) GSEA for comparing KEGG pathways between C2 and C3 subtypes.
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down-regulated marker genes were found across three

subtypes.

Different molecular mechanisms across
RBP-based subtypes

Through GSEA, we dissected the differences in molecular

mechanisms between distinct RBP-based subtypes. Compared to

C2 subtype, RNA degradation, terpenoid backbone biosynthesis,

mismatch repair, oocyte meiosis, proteasome, and ubiquitin

mediated proteolysis were remarkably activated in C1 subtype

(Figure 3A). Meanwhile, activation of RIG I like receptor

signaling pathway, ribosome, JAK-STAT signaling pathway,

type II diabetes mellitus, MAPK signaling pathway and

aldosterone regulated sodium reabsorption was found in

C2 subtype (Figure 3B). Molecular mechanisms between

C1 and C3 subtypes were then compared. In Figure 3C,

C1 subtype presented the remarkable activation of cytokine-

cytokine receptor interaction, cell adhesion molecules CAMS,

JAK-STAT signaling pathway and Toll-like receptor signaling

pathway than C3 subtype. In comparison to C1 subtype,

ubiquitin mediated proteolysis, oxidative phosphorylation,

nucleotide excision repair, basal transcription factors, RIG I

like receptor signaling pathway, and spliceosome were

significantly activated in C3 subtype (Figure 3D). Additionally,

we found the significant activation of cytokine-cytokine receptor

interaction, JAK-STAT signaling pathway, ECM receptor

FIGURE 4
Distinct PANoptosis features across RBP-based subtypes. (A–C) Levels of apoptosis, necroptosis and pyroptosis genes in human failing and
nonfailing control LV myocardium specimens. (D–F) Levels of apoptosis, necroptosis and pyroptosis genes across three RBP-based subtypes (*p <
0.05; **p < 0.01; ***p < 0.001).
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FIGURE 5
Identification of RBP-based subtype-related genes. (A)Clustering dendrogram of heart failure specimens on the basis of Euclidean distance. (B)
Scale independence and mean connectivity at different power values. (C) Cluster dendrogram of distinct modules through dynamic tree cut
approach and merged dynamic approach. The gray module represents unclassified genes. (D) Correlations between modules and RBP-based
subtypes. The color indicates the strength of the correlation, and the number in parentheses indicates p-value. (E) Scatter plot of the
relationship between module membership of blue module and gene significance for RBP-based subtypes. (F–H) The first ten biological processes,
cellular components, and molecular functions of RBP-based subtype-related genes. (I) KEGG pathways significantly linked to RBP-based subtype-
related genes. (J) The PPI subnetwork of key RBP-based subtype-related genes. (K) Box plot of the expressions of key RBP-based subtype-related
genes in human failing and nonfailing control LV myocardium specimens. *p < 0.05; **p < 0.01; ***p < 0.001.
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interactions, leukocyte trans-endothelial migration, cell adhesion

molecules CAMS, and focal adhesion in C2 subtype in

comparison to C3 subtype (Figure 3E). Meanwhile, ubiquitin

mediated proteolysis, nucleotide excision repair, propanoate

metabolism, RNA degradation, basal transcription factors,

DNA replication, mismatch repair, and oxidative

phosphorylation were markedly activated in C3 subtype

(Figure 3F). Above data indicated the distinct molecular

mechanisms across RBP-based subtypes.

Distinct PANoptosis features across RBP-
based subtypes

Next, we focused on PANoptosis features in heart failure.

Deregulation of PANoptosis (apoptosis, necroptosis and

pyroptosis) genes was found in heart failure LV myocardium

specimens versus nonfailing controls (Figures 4A–C), indicating

that PANoptosis might be linked to heart failure. In addition,

PANoptosis features were assessed across three RBP-based

subtypes. The widespread heterogeneity in PANoptosis

(apoptosis, necroptosis and pyroptosis) genes was observed

across RBP-based subtypes (Figures 4D–F).

Identification of RBP-based subtype-
related genes

WGCNA approach was utilized for determining RBP-based

subtype-related genes. Hierarchical clustering analyses

demonstrated no outlier specimens (Figure 5A). Soft-

thresholding power is an import process of WGCNA. To

establish a scale-free co-expression network, soft-thresholding

power was set as 9 following scale independence and mean

connectivity (Figure 5B). Genes were clustered through

dynamic tree cut approach to obtain 16 modules (Figure 5C).

Associations between modules and RBP-based subtypes were

then evaluated. As a result, blue module presented the strongest

correlation to RBP-based subtypes (Figure 5D). Additionally, we

found the remarkable correlation between module membership

of blue module and gene significance for RBP-based subtypes

(Figure 5E). Thus, 1,460 genes in blue module were regarded as

RBP-based subtype-related genes. Their biological functions and

pathways were then probed. In Figure 5F, RBP-based subtype-

related genes were remarkably linked to biosynthetic process.

Also, they presented the associations with cellular components

such as nuclear part, protein-containing complex, cytosol

(Figure 5G). In Figure 5H, they possessed the molecular

functions of catalytic activity acting on a protein, sequence-

specific DNA binding, and double-stranded DNA binding, etc.

RNA transport, mRNA surveillance pathway, nucleotide excision

repair, proteasome and DNA replication were remarkably

enriched by RBP-based subtype-related genes (Figure 5I).

Above data proved their key roles in pathophysiologic

processes of heart failure. Through MCODE approach, 31 key

RBP-based subtype-related genes were selected, comprising

KRR1, DNTTIP2, NGDN, DDX52, RPF1, FTSJ3, RRS1,

GTPBP4, RIOK2, DDX5, MPHOSPH10, PAK1IP1, NOC3L,

BRIX1, FCF1, DHX15, RRP7A, EBNA1BP2, WDR3, LSG1,

DDX10, POLR1D, GNL2, DDX51, RSL24D1, MAK16,

GRWD1, RRP15, UTP3, BCCIP, RSL1D1 (Figure 5J). Most

key RBP-based subtype-related genes presented the down-

regulation in failing than nonfailing control LV myocardium

specimens (Figure 5K).

Identification of characteristic genes for
heart failure viamachine learning analyses

Two machine learning approaches LASSO and SVM-RPE

were employed for selecting characteristic genes among RBP-

based subtype-related genes. 17 and 10 characteristic genes were

separately selected by LASSO (Figures 6A,B) and SVM-RPE

(Figure 6C) methods. After intersection, ten characteristic

genes were finally determined, including DDX52, DHX15,

EBNA1BP2, FCF1, GNL2, GRWD1, LSG1, POLR1D, RRS1,

and RSL24D1 (Figure 6D). C3 subtype presented the highest

expressions of above characteristic genes, followed by C1 and C2

(Figure 6E). To assess the predictive efficacy of characteristic

genes, ROC curves were plotted. As illustrated in Figures 6F–O,

the AUC values (95%CI) of DDX52, DHX15, EBNA1BP2, FCF1,

GNL2, GRWD1, LSG1, POLR1D, RRS1, and RSL24D1 were 0.68

(0.73–0.63), 0.67 (0.72–0.62), 0.64 (0.69–0.58), 0.57 (0.63–0.52),

0.64 (0.70–0.59), 0.70 (0.75–0.66), 0.68 (0.73–0.63), 0.60

(0.66–0.55), 0.73 (0.78–0.67), 0.56 (0.62–0.51), proving the

excellent performance in diagnosing heart failure.

Establishment of a characteristic gene-
based nomogram for heart failure

To facilitate the clinical performance of characteristic genes,

a nomogram was established for heart failure (Figure 7A). As

illustrated in calibration curve, the nomogram-predicted risk

probabilities were close to the actual probabilities of heart

failure (Figure 7B). Decision curve analyses demonstrated that

the nomogram possessed the preferred prediction efficacy, with

the higher net benefit (Figure 7C). Clinical impact curves were

drawn for evaluating clinical applicability of the risk predictive

nomogram. As illustrated in Figure 7D, the nomogram showed

the superior overall net benefit within the wide and practical

ranges of threshold probabilities and influenced patients’

outcome, indicating that the nomogram possessed excellent

predictive performance. Above data proved that the

nomogram was clinically useful. Moreover, the AUC value

(95%CI) of the nomogram was 0.84 (0.88–0.80) (Figure 7E),
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FIGURE 6
Identification of characteristic genes for heart failure via machine learning analyses. (A) Relationships between log-transformed lambda and
regression coefficients. Each line indicates a variable. (B) LASSO regression profiling. The line represents 95% CI, and the dotted line represents the
optimal number of variables. (C) Selection of characteristic genes through SVM-RPE approach. (D) Venn plot of characteristic genes shared by LASSO
and SVM-RPE approaches. (E) Box plot of the expression of characteristic genes across three RBP-based subtypes (***p < 0.001). (F–O) ROC
curves for assessing the predictive efficacy of characteristic genes: (F)DDX52, (G)DHX15, (H) EBNA1BP2, (I) FCF1, (J)GNL2, (K)GRWD1, (L) LSG1, (M)
POLR1D, (N) RRS1, and (O) RSL24D1.
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FIGURE 7
Establishment of a characteristic gene-based nomogram for heart failure. (A)A nomogram comprising characteristic genes for predicting risk of
heart failure. (B) Calibration curve for actual and nomogram-predicted probability of heart failure. (C) Decision curve analyses for the net benefit
curves of the nomogram. X-axis shows the threshold probability for heart failure and Y-axis represents the net benefit. (D) Clinical impact curves of
the nomogram. Red curves indicate the number of patients classified as positive (high risk) by the nomogram at different threshold probabilities.
Blue curves show the number of true positives at different threshold probabilities. (E) ROC curve for estimating the predictive efficacy of the
nomogram.
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FIGURE 8
Landscape of immune cells and PANoptosis features in heart failure. (A,B) The abundance of 24 immune cell types in human failing (blue) and
nonfailing control (red) LVmyocardium specimens. (C) Associations between distinct immune cell types. (D) The abundance of 24 immune cell types
across three RBP-based subtypes. (E) Associations between 24 immune cell types and characteristic genes. (F–H) Associations of characteristic
genes with apoptosis, necroptosis and pyroptosis genes. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 9
External verification of characteristic genes in heart failure in the GSE76701 dataset. (A) Box plot of the expressions of characteristic genes in
human failing (red) and nonfailing control (blue) LVmyocardium specimens (*p < 0.05). (B–K) Evaluation of diagnostic performance of (B)DDX52, (C)
DHX15, (D) EBNA1BP2, (E) FCF1, (F) GNL2, (G) GRWD1, (H) LSG1, (I) POLR1D, (J) RRS1, and (K) RSL24D1 in heart failure through ROC curves.
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which was higher than any one of characteristic genes,

demonstrating that the predictive efficacy of the nomogram

was better compared with a single characteristic gene.

Landscape of immune cells and
PANoptosis features in heart failure

CIBERSORT was employed for estimating the abundance of

24 immune cell types. Firstly, the abundance of immune cell

types was compared between human failing and nonfailing

control LV myocardium specimens. As illustrated in Figures

8A,B, failing myocardium tissues presented the enhanced

abundance of B cell naïve, T cells CD8, T cells CD4 naïve,

T cells gamma delta, NK cells resting/activated, macrophages

M0, dendritic cells resting/activated, and fibroblasts. Meanwhile,

the reduced abundance of B cells memory, T cells CD4 memory

activated, macrophages M2, eosinophils, endothelial cells was

found in failing myocardium. Additionally, the positive

interactions across immune cell types were found, as

illustrated in Figure 8C. We also assessed the differences in

immune cell types across three RBP-based subtypes.

Generally, C2 had the highest abundance of most immune

cells, followed by C1 and C3 (Figure 8D). Figure 8E depicted

the associations between characteristic genes and immune cell

infiltration. Most characteristic genes were negatively linked to

the abundance of immune cells, but GRWD1 presented the

positive interactions with most immune cell types. In

addition, characteristic genes exhibited notable associations

with PANoptosis (apoptosis, necroptosis and pyroptosis)

genes (Figures 8F–H).

External verification of characteristic
genes in heart failure

Characteristic genes in heart failure were externally verified

in independent datasets. In Figure 9A, DDX52, RRS1, FCF1,

DHX15, POLR1D, GNL2, RSL24D1, and EBNA1BP2 presented

the low expressions in failing than nonfailing control heart.

Inversely, LSG1, and GRWD1 expressions were up-regulated

in failing compared with nonfailing control heart in the

GSE76701 dataset. The abnormal expression of characteristic

genes between human failing and nonfailing control LV

myocardium tissues was confirmed in the GSE55296 dataset

(Supplementary Figure S1). ROC curves were conducted for

evaluating the diagnostic efficacy of above characteristic genes

in heart failure in the GSE76701 dataset. The AUC values (95%

CI) of DDX52, DHX15, EBNA1BP2, FCF1, GNL2, GRWD1,

LSG1, POLR1D, RRS1, and RSL24D1 were 0.88 (1.00–0.59), 0.94

(1.00–0.76), 0.63 (1.00–0.14), 0.75 (1.00–0.35), 1.00 (1.00–1.00),

0.63 (1.00–0.14), 0.81 (1.00–0.43), 0.88 (1.00–0.59), 0.69

(1.00–0.25), and 0.75 (1.00–0.35), as illustrated in Figures

9B–K. However, no significant differences in characteristic

genes were observed between HFpEF and HFrEF heart tissues

in the GSE86569 dataset (Supplementary Figure S2). In addition,

the GSE3585 dataset was adopted to validate the diagnostic

efficacy of the characteristic genes. The excellent diagnostic

performance of each characteristic gene was proven, as shown

in Supplementary Figures S3A–H. Above evidence confirmed

that characteristic genes enabled to excellently diagnose heart

failure.

Prediction of potential therapeutic
compounds of heart failure

Based on heart failure-specific RBPs, CMap analysis was

adopted to screen potential compounds for the treatment of

heart failure with p < 0.05. In accordance with MoA analysis,

mebendazole, NPI-2358, vindesine, vincristine, flubendazole,

vinorelbine, nocodazole, and ABT-751 shared tubulin

inhibitor (Figure 10). GSK-3-inhibitor-IX, SB-415286, and SB-

216763 shared glycogen synthase kinase inhibitor. Roscovitine

and kenpaullone shared CDK inhibitor. GSK-3-inhibitor-II and

PKCbeta-inhibitor shared PKC inhibitor.

Discussion

RBPs have been described to be expressed andmodulated in a

variety of organs especially human heart (Gupta et al., 2018).

Despite this, little is known concerning the roles of RBPs in heart

failure. Thus, our study implemented comprehensive analyses of

RBPs in heart failure, and determined RBP-based subtypes, and

RBP-based subtype-related characteristic genes, unveiling the

crucial functions of RBPs in heart failure.

RBPs are crucial effectors of gene expression, and as such

their abnormal expressions underlie the origin of heart failure

(Gebauer et al., 2021). On the basis of the merged GSE5406, and

GSE57338 expression profiling datasets, we determined five

RBPs (EIF1AY, RPS4Y1, DDX3Y, RNASE2, and CSDC2) with

adjusted p < 0.05 and |fold-change|>1.5 in heart failure LV

myocardium specimens than nonfailing controls, which were

regarded as hear failure-specific RBPs. RBPs with adjusted p <
0.05 were closely linked to RNA metabolism processes (RNA/

mRNA/peptide/ncRNA metabolic processes, RNA splicing, and

translation) as well as pathways (RNA transport, mRNA

surveillance pathway, ribosome biogenesis in eukaryotes,

aminoacyl-tRNA biosynthesis, RNA degradation, etc.),

highlighting the crucial functions of RBPs in controlling gene

expression. Evidence has demonstrated that deregulation of RNA

metabolism leads to heart failure progression (Kim et al., 2018).

On the basis of RBPs with adjusted p < 0.05, three RBP-based

subtypes were established, characterized by distinct signaling

pathway activities. Additionally, RBP-based subtype-related
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genes were further determined, which might be modulated

by RBPs.

Previous studies have determined heart-specific RBPs

(RBM20, RBM24, HuR, etc.) that were not included in our

heart failure-specific RBPs. For instance, suppressing

RBM20 activity may improve diastolic dysfunction and

cardiac atrophy (Hinze et al., 2016). RBM24 loss destroys

global alternative splicing and contributes to dilated

cardiomyopathy (Liu et al., 2019). HuR-induced SCN5A

mRNA stability decreases arrhythmic risk in heart failure

(Zhou et al., 2018). Thus, our study offered novel heart-

specific RBPs. More experiments are awaited to validate the

biological functions of heart failure.

LASSO is a regression analysis approach that utilizes

regularization for improving the predictive accuracy (Xing

et al., 2022). SVM-RFE is a reliable feature selection approach

that determines the optimal variables through removing the

feature vectors produced by SVM (Zhao et al., 2020).

Through integrating two machine learning approaches, ten

characteristic genes were eventually determined, comprising

DDX52, DHX15, EBNA1BP2, FCF1, GNL2, GRWD1, LSG1,

POLR1D, RRS1, and RSL24D1. All of them accurately

predicted the risk of heart failure. Further, a characteristic

gene-based nomogram was established, which was capable of

accurately predicting heart failure risk, with the excellent clinical

usability. DDX52 is a type of DEAD/H box RNA helicase, and its

suppression exerts an anti-tumor effect (Yu et al., 2021). The

DEAH-box RNA helicase DHX15 has been identified as a

potential gene for pathological cardiac hypertrophy triggered

by excessive exercise (Zhou et al., 2020) and pulmonary arterial

hypertension (Wang et al., 2021). EBNA1BP2 functions as a

dynamic scaffold for ribosome biogenesis (Hirano et al., 2009).

FCF1 is a potential marker of circulating breast cancer cells for

detecting metastasis (Fina et al., 2022). The nucleolar GTP-

binding protein GNL2 is essential for retinal neurogenesis in

developing zebrafish (Paridaen et al., 2011). Cdt1-binding

protein GRWD1 acts as a histone-binding protein, which

triggers MCM loading via influencing chromatin architecture

(Sugimoto et al., 2015). LSG1 is a family member of essential

GTPases, in relation to the evolution of compartmentalization

FIGURE 10
MoA analysis for the shared mechanisms of potential therapeutic compounds of heart failure.
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(Reynaud et al., 2005). POLR1D is a component of RNA

polymerase I and RNA polymerase III complexes, mediating

the synthesis of ribosomal RNA precursor and small RNA

(Sanchez et al., 2020). RRS1 is a key factor of 5 S rRNA

binding activity (Kharde et al., 2015). RSL24D1 participates in

the biogenesis of the 60 S ribosomal subunit (Ni et al., 2022).

Heart failure is typically linked to cardiac remodeling, and

inflammatory response plays a crucial role. During cardiac

inflammation, immune cells invade the cardiac tissue as well

as modulate tissue-damaging response (Bacmeister et al., 2019).

In the present study, failing myocardium tissues exhibited the

enhanced abundance of B cell naïve, T cells CD8, T cells

CD4 naïve, T cells gamma delta, NK cells resting/activated,

macrophages M0, dendritic cells resting/activated, and

fibroblasts. Additionally, the decreased abundance of B cells

memory, T cells CD4 memory activated, macrophages M2,

eosinophils, endothelial cells was observed in failing

myocardium. For example, CD8+ effector T cells may prevent

cardioprotective macrophage differentiation in early heart failure

(Komai et al., 2021). Posttranscriptional control of mRNA

modulates inflammatory and immune responses. Several RBPs

have been extensively explored, and bind target mRNAs to

enhance or dampen above activities (Akira and Maeda, 2021).

RBP-based C2 subtype presented the highest abundance of most

immune cells, followed by C1 and C3. In addition, there was the

extensive heterogeneity in PANoptosis traits across three RBP-

based subtypes. Most characteristic genes presented negative

correlations to the abundance of immune cells in heart failure,

but GRWD1 was positively linked to most immune cell types,

indicating their functions in mediating cardiac inflammation.

Among them, evidence demonstrates that DHX15 may sense

double-stranded RNA in myeloid dendritic cells to activate the

immune response to RNA (Lu et al., 2014). Co-expression

network analyses have determined DHX15 RNA helicase as a

regulator of B cells (Detanico et al., 2019). DHX15 is a crucial

regulator of natural killer-cell homeostasis and function (Wang

et al., 2022). Additionally, characteristic genes exhibited

remarkable interactions to PANoptosis features across heart

failure. More experiments are required for verifying their

regulatory functions in inflammatory and immune responses

as well as PANoptosis in heart failure.

Conclusion

Collectively, our findings provided an overview of RBPs

involved in heart failure. Three RBP-based subtypes as well as

ten relevant characteristic genes were determined for heart

failure, elucidating the critical roles of RBPs in

pathophysiological process (especially immunity and

PANoptosis) of heart failure as well as offering reliable targets

for diagnosing heart failure risk. Despite this, in-depth research is

required for verifying the effectiveness of RBP-based subtypes

and characteristic genes in diagnostic utility of heart failure.
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Exploration the global single-cell
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adenomyosis-related cell
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sequencing
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Background: Adenomyosis (AM) is a common benign uterine disease that

threatens the normal life of patients. Cells associated with

microenvironmental immune ecology are crucial in AM, although they are

not as well understood at the cellular level.

Methods: Single-cell sequencing (scRNA-seq) data were used to construct an

AM global single-cell map, to further identify relevant cell clusters and infer

chromosomal copy number variation (CNV) in AM samples. The biological

functions of cell clusters were explored and cellular evolutionary processes

were inferred by enrichment analysis and pseudotime analysis. In addition, a

gene regulatory network (GRN) analysis was constructed to explore the

regulatory role of transcription factors in AM progression.

Results: We obtained the expression profiles of 42260 cells and identified 10 cell

clusters. By comparing the differences in cell components between AM patients

and controls, we found that significant abundance of endometrial cells (EC),

epithelial cells (Ep), endothelial cells (En), and smooth muscle cells (SMC) in AM

patients. Cell clusters with high CNV levels possessing tumour-like features existed

in the ectopic endometrium samples. Moreover, the Ep clusters were significantly

involved in leukocyte transendothelial cell migration and apoptosis, suggesting an

association with cell apoptosis and migration. En clusters were mainly involved in

pathways in cancer and apoptosis, indicating that En has certainmalignant features.

Conclusion: This study identified cell clusters with immune-related features,

investigated the changes in the immune ecology of the microenvironment of

these cells during AM, and provided a new strategy for the treatment of AM.

KEYWORDS

adenomyosis, single-cell RNA sequencing, malignant cells, immune
microenvironment, biological function
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Introduction

Adenomyosis (AM) is a common benign gynecological

syndrome, characterized by infiltration of endometrial glands

and stroma in the myometrium (Bird et al., 1972). The

prevalence of AM ranges from 5% to 70% (Graziano et al.,

2015), with an average of 20%–35% of women worldwide

suffering from AM (Abbott, 2017). The most common

manifestations of AM are dysmenorrhea, infertility, and

abnormal uterine bleeding (AUB), but some women with

AM are asymptomatic (Peric and Fraser, 2006). From the

epidemiologic data, AM can increase the risk of cancers,

including ovarian, endometrial, breast, colorectal, and other

cancers of women (Borgfeldt and Andolf, 2004; Kok et al.,

2015). Furthermore, Bergeron previously reported that the

definitive diagnosis of AM was based on the presence of

ectopic endometrial tissue in the myometrium (Bergeron

et al., 2006), but is now diagnosed by non-invasive

techniques such as pelvic imaging (Chapron et al., 2020).

Studies have also reported that the standard method of

managing the disease is hysterectomy, while most patients

desire to preserve their fertility (Stratopoulou et al., 2021).

Despite improvements in diagnostic tools, awareness of AM

remains poor (Leyendecker et al., 2015).

At the cellular level, the microenvironmental immune cells

of AM play an important role. The number of macrophages,

natural killer cells, and T cells in the endometrial stroma of

AM increased significantly compared with women with mild

focal AM or without the disease (Yang et al., 2004; Tremellen

and Russell, 2012). Several malignant features exist in the

epithelial cells (Ep) of AM, such as high migration capacity,

which contribute to disease progression (Liu et al., 2021).

Studies have confirmed that the endothelial cells (En) are

damaged, and the uterus occurs the symptoms of bleeding,

which is also important in adhesion and migration (Kruger-

Genge et al., 2019). Furthermore, smooth muscle cells (SMC)

have the ability to shrink and diastole, lack of contraction can

cause uterine bleeding, which may lead to the occurrence of

inflammation (Owens et al., 2004). It may thus be possible to

comprehend the emergence of AM by concentrating on the

mechanisms of change in cells related to the immunological

microenvironment.

Single-cell RNA sequencing (scRNA-seq), an

indispensable technique to dissect cellular heterogeneity

and analyze cell types, can assist us in thoroughly

comprehending the biological roles (Hedlund and Deng,

2018). Numerous effective methods to examine molecular

alterations at the cellular level are provided by the scRNA-

seq (Tang et al., 2009). Moreover, research has demonstrated

that rare clusters of AM were identified by scRNA-seq,

confirming that the occurrence originates from endometrial

migration (Liu et al., 2021). However, more studies are needed

for further validation. In this study, we explored the states and

transitions of the immune microenvironment cells of AM

from a single-cell perspective. A comprehensive map of the

AM single-cell ecosystem was depicted, relevant cell clusters

were identified, and chromosomal copy number variation

(CNV) was inferred for each AM sample. Furthermore, it

was further confirmed the associated cluster of markers was

involved in the signaling pathways and gene regulatory

networks (GRN), which contributes to our understanding

of the functions of the cluster markers in AM and at the

cellular level.

Materials and methods

Data sources

The AM scRNA-seq data including SRR12791871,

SRR12791872, and SRR12791873 (Liu et al., 2021) were

obtained from the Sequence Read Archive (SRA) of the

National Center for Biotechnology Information (NCBI). A 50-

year-old woman with uterine fibroids, excluding the AM, and the

endometrium tissue from this patient were used as a control

sample. Moreover, two endometrium tissue samples were

obtained from a 46-year-old AM patient and the samples

were taken from eutopic endometrium (AM_EM) and ectopic

endometrial (AM_EC) tissues.

Data preprocessing and construction of
the single-cell atlas

We used the IntegrateData function (Butler et al., 2018) in

the Seurat package (Stuart et al., 2019) to merge the scRNA-seq

data, and performed cell clustering analysis according to default

parameters. Uniform Manifold Approximation and Projection

(UMAP) algorithm (Becht et al., 2018) was adopted for

dimensionality reduction and visualization and mapped into

single cell profiling. Subsequently, the FindAllMarkers

function in Seurat package identified the specific marker genes

in each cell cluster. Furthermore, the cell types underwent an

immune response based on annotation and re-clustering of

known marker genes.

Differential gene expression analysis

Differential expression analysis was performed based on the

FindMarkers function in the Seurat package (Butler et al., 2018).

Differentially expressed genes (DEGs) of different clusters in the

Control, AM_EM, or AM_EC groups were identified. DEGs

between normal tissues and AM tissues were screened by an

adjusted p value <0.05 and |log fold change (log FC)|>0.5 being

considered significant.
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Evaluation of CNV in single cells

CNVs are primarily used to identify subclones of diseased

cells and to infer tumor evolution (Yates and Campbell, 2012).

The CNVs of each cell were assessed from the AM patients by the

inferCNV package (inferCNV of the Trinity CTAT Project;

https://github.com/broadinstitute/inferCNV) (Patel et al.,

2014). To calculate the CNVs of AM_EM and AM_EC cells,

the average or normal expression of genes from immune cells was

applied as a reference and then determine the expression.

Functional enrichment analysis

To explore the biological functions involved in each cell

cluster. We performed the Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) on the

clustered markers using the clusterProfiler package (Yu et al.,

2012). p < 0.05 was considered statistically significant.

Pseudotime analysis

Pseudotime analysis could determine the dynamics of gene

expression within cell types and trajectories over time (Cao et al.,

2019), and infer cell evolution during the AM. A “branch”

trajectory was constructed based on the Monocle three

package (Trapnell et al., 2014) to explore the dysregulated

changes in immune cells of AM patients and project the cells

into low-dimensional space by UMAP, the parameters of

Monocle three package are set to the default.

Construction of GRN

In this study, we constructed a GRN with transcription

factors as the core to infer co-expression modules, to further

explore the dysregulate regulatory mechanism of immune

cellogenesis. Single cell regulatory network inference and

clustering (SCENIC) (Aibar et al., 2017; Van de Sande et al.,

2020) was used to infer gene regulatory networks based on single-

cell expression profiles and identify cell states, providing

important biological insights into the mechanism driving cell

heterogeneity. Among them, the binding motifs of the

transcription factors in the co-expression module were

obtained from the JASPAR database (https://jaspar.genereg.net).

Statistical analysis

Statistical analyses were performed using R (https://www.r-

project.org/). Expression levels of genes were analyzed using

unpaired t-tests. If the p < 0.05 that considered statistical

significance. The analyses in this study were based on the

Bioinforcloud platform (http://www.bioinforcloud.org.cn).

Results

Global single-cell atlas of the
adenomyosis

To investigate the early cell population dynamics in AM

patients, we analyzed the scRNA-seq data from endometrial

tissue samples of AM patients and control donors. The

analysis flow of this study is shown in Figure 1A, where we

constructed a global single-cell landscape of AM. By cluster

analysis, we divided 42,260 cells into 31 cell clusters, which

were identified into 11 cell types based on known markers

(Figure 1B) (Supplementary Table S1), including endometrial

cells (EC), fibroblasts, epithelial cells (Ep), endothelial cells (En),

CD8+T, CD4+T, Naive T, macrophages (Mac), plasmacytoid

predendritic cells (pDC), smooth muscle cells (SMC), and

innate lymphoid cells (ILC). Among them, each cell marker

exhibited a specific expression for the cell cluster (Figure 1C).

Chromosomal CNV analysis based on expression patterns at

genomic intervals showed the presence of multicopy events in

AM in ectopic endometrial samples (Figure 1D). Further

comparing the differences in cell composition between control

and AM patients, we found that the highest abundance of En and

EC was found in the AM_EC and AM_EM groups. However, the

fibroblasts in the control group had the highest abundance

(Figure 1E). In summary, we delineated the single-cell profiles

of AM patients to reveal the differences in microenvironmental

cell components in AM patients.

Ecological landscape of adenomyosis-
associated endometrial cells clusters

AM occurs mainly in endometrial tissue, which has a higher

cell abundance in EC of AM patients, therefore, subsequent

studies will focus on this cellular cluster. We obtained 10 EC

clusters by cluster analysis (Figure 2A). As shown in Figure 2B,

almost all of these cell clusters were present in different groups of

AM patients. Further exploration of the abundance of the cellular

cluster in AM patients revealed a significant increase in the

proportion of EC_TIMP3 cell clusters and a significant

decrease in the proportion of EC_ZFAND2A clusters

(Figure 2C). Markers for the different clusters of the EC were

mapped to the single-cell atlas, including ZFAND2A, KPT17,

TIMP3, SPARCL1, PLAAT3, SPINT2, SCGB2A1, RGS5, CXCL2,

and COL1A2 (Figure 2D). Furthermore, EC clusters may be

associated with cell motility, which was closely associated with

focal adhesion and leukocyte transendothelial migration and

apoptosis (Figure 2E). Based on the pseudotime trajectory
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FIGURE 1
Single-cell landscape of adenomyosis (AM) in the immune microenvironment. (A). The workflow of this study analyzed single-cell RNA
sequencing (10X Genomics) data between control and two AM between eutopic endometrium (AM_EM) and ectopic endometrium (AM_EC)
samples, identifying 31 cell clusters of 42,260 cells. (B). The cell types of single cells mapping AM includes endometrial cells (EC), fibroblasts
(Fibroblasts), epithelial cells (Ep), endothelial cells (En), CD8 + T, CD4 + T, initial T cells (Naive T), macrophages (Mac), predendritic cells (pDC),
smooth muscle cells (SMC), and innate lymphoid cells (ILC). (C). Bubble plots show specificmarker genes in different cell types. (D).Heatmap shows
the levels of copy number variation in chromosomes 1 to 22 during AM. (E). Differences in cell abundance components between control and AM
patients. Different colors represent different cell types. AM_EM, eutopic endometrium; AM_EC, ectopic endometrium; CNV, copy number
variations; EC, endometrial cells; Ep, epithelial cells; En, endothelial cells; Naive T, initial T cells; Mac, macrophages, pDC, predendritic cells; SMC,
smooth muscle cells; ILC, innate lymphoid cells; UMAP, Uniform Manifold Approximation and Projection.
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FIGURE 2
Identification of the endometrial cells (EC) clusters in adenomyosis (AM). (A). Single-cell atlas shows the cellular clusters of EC. (B). Single-cell
atlas shows clusters of EC cells in eutopic endometrium and ectopic endometrial samples from AM patients. (C). Differences in the abundance of EC
clusters in the eutopic and ectopic endometrium groups of AM patients. (D). Marker genes for the specific EC clusters. (E). Biological pathways in
specific clusters of EC. (F). Single-cell atlas map the trajectory and pseudotime values of EC progression. Pie charts show the proportion of the
different groups in the clusters. (G). Heatmap-TF-binding sequence-cell clusters demonstrate the gene regulatory network of EC clusters. (H).
Transcription factors regulate the makers of EC clusters. AM_EM, eutopic endometrium; AM_EC, ectopic endometrium; EC, endometrial cells;
UMAP, Uniform Manifold Approximation and Projection.
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FIGURE 3
The adenomyosis (AM)-associated endothelial cell (En) clusters. (A). Single-cell atlas shows the cell clusters of endothelial cells (En). (B). Single-
cell mapped the En clusters in the eutopic endometrium (AM_EM), ectopic endometrial (AM_EC), and control groups of AM patients. (C).Differences
in the abundance of En clusters among the AM_EM, AM_EC, and control groups. (D).Marker genes for specific En clusters. (E). Biological pathways in
specific En clusters. (F). Single-cell atlas map the trajectory and pseudotime values of development in En from AM. Pie charts show the
proportion of the different groups in the clusters. (G). Transcription factors of En clusters in a co-expression pattern. Left: Heat map identifies co-
expression modules; middle: major transcription factors and binding sequences; right: cell clusters of transcription factors. (H). Transcription factors
regulated makers of EC clusters. AM_EM, eutopic endometrium; AM_EC, ectopic endometrium; UMAP, Uniform Manifold Approximation and
Projection.
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FIGURE 4
The adenomyosis (AM)-associated epithelial cell (Ep) clusters. (A). Single-cell mapped of cell clusters of Ep. (B). Single-cell atlas shows the
AM_EM, AM_EC, and control groups with clusters of Ep. (C). Differences in the cellular ecology of Ep clusters in different groups. (D).Marker genes
for specific Ep clusters. (E). Biological pathways in Ep clusters. (F). Single-cell atlas map the developmental trajectory of Ep in AM. Pie charts show the
proportion of the different groups in the cluster. (G). Transcription factors of Ep clusters in a co-expression pattern. Left: Heatmap identified co-
expression modules; Middle: major transcription factors and their binding sequences; Right: cell clusters of transcription factors. (H). Scatter plot of
transcription factors in Ep clusters. AM_EM, eutopic endometrium; AM_EC, ectopic endometrium; UMAP, Uniform Manifold Approximation and
Projection.
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analysis, it was inferred that the EC_ZFAND2A cluster served as

the developmental starting point, and then differentiated

into other cell clusters (Figure 2F). Furthermore, we

constructed the GRN and found that the GRN with TFs as

pivots was organized into five modules (Figure 2G), such as

RXRG, ZEB1, MSX2, DLX5, ELF5, ARNTL, to regulate the

specific gene expression (Figure 2H). Above all, we identified

EC clusters of AM patients, defined marker genes for their

specific expression, and elucidated the GRN of evolved EC

clusters.

Ecological landscape of adenomyosis-
associated en clusters

The abundance of En was significant in the AM_EC group,

from which we inferred that En may play a facilitating role in

the disease course. Therefore, the cluster analysis of En yielded

10 cell clusters (Figure 3A). Further mapping of these cell

clusters to the AM_EC, AM_EM, and control groups, and we

found that mainly originated from AM patients (Figure 3B).

En_HLA-DRB1 and En_ID1 were increased in AM_EM,

En_TPM1 was significant in the AM_EC group, and

En_IFIT1 was significantly decreased in AM patients

(Figure 3C). Gene expression of markers for En clusters

weas mapped to a single-cell atlas, including APOE,

CLDN3, MMP1, HLA-DRB1, TPM1, ID1, IFIT1, ESM1,

DES, and LUM (Figure 3D). En clusters were mainly

related to cell proliferation, such as pathways in cancer,

apoptosis and extracellular matrix receptor interactions

(Figure 3E). Pseudotime trajectory analysis showed that the

En_IFIT1 cluster evolved as a developmental starting point

towards AM patients (Figure 3F). The results of GRN for En

clusters indicated that marker genes were divided into seven

modules, and regulated by TFs, such as MYBL2, MAZ, and

NEUROD2 (Figure 3G). Figure 3H shows the transcription

factors of En specific cell cluster. En cluster markers are

regulated by transcription factors that promote the

development of AM.

Exploring the ecological landscape in ep
clusters of adenomyosis

Interestingly, Ep loses polarity and intercellular adhesion

to gain migration capacity (Acloque et al., 2009), and the cell

abundance of Ep clusters was significant in the AM_EC

group. Therefore, cluster analysis of Ep clusters was again

performed to obtain 10 cell clusters (Figure 4A), which were

mapped to AM_EC, AM_EM, and control groups according to

their sample source (Figure 4B). Compared with the control

group, the cell abundance of Ep_ACTG2 was significantly

increased in the AM_EM group, cell abundance of

Ep_PALM2_AKAP2 was significant in the AM_EC group

(Figure 4C). Subsequently, we mapped the expression of

cluster markers (PALM2_AKAP2, MEG3, ACTG2, LM07,

WFDC2, MKNK2, S100A2, PMEL, CFD, and ESM1) to the

single-cell atlas of Ep clusters (Figure 4D). To further explore

the biological signatures for the involvement of the Ep clusters

in the AM, we performed enrichment analysis of the marker

genes in the Ep clusters, showing that extracellular matrix

receptor interactions, MAPK signaling pathway and apoptosis

were significantly involved in Ep clusters (Figure 4E). The

developmental trajectory of Ep was explored by pseudotime

trajectory analysis, and the results indicated Ep_PMEL cluster

was in an early developmental stage and evolved into

AM_MKNK2, AM_ESM1, AM_LM07, and AM_S100A2

(Figure 4F). We further performed a GRN analysis of Ep

clusters, showing that the marker genes of the Ep clusters

were divided into five modules regulated by the transcription

factors, such as KLF4, FOXP4, NFIA, and ERG (Figure 4G).

Furthermore, we explored the expression of these TFs in

specific Ep clusters and found that KLF4 was the most

highly expressed in the cluster (Figure 4H), suggesting that

high expression of KLF4 may be associated with the

development of AM.

SMC-associated cell clusters of
adenomyosis

During AM, ecological components of SMC clusters were

significantly observed, so we will investigate their

microenvironmental immune properties. The SMC clusters

were re-clustered to obtain 10 cell clusters (Figure 5A) and

mapped to different samples (Figure 5B). The

SMC_TP53BP2 cluster had significant cellular abundance in

the AM_EC and AM_EM groups compared to the control

group, while SMC_IFI6 had significant cellular abundance in

the control group (Figure 5C). Next, we showed the expression

of marker genes was significantly changed in SMC clusters for

clusters (Figure 5D). The SMC clusters were significantly

involved in pathways, such as cytokine receptor interaction,

vascular smooth muscle contraction and apoptosis

(Figure 5E). We also further explored the developmental

trajectory of the SMC, clarifying the evolution trajectory

from the SMC_TP53BP2 cluster to the SMC_IFI6,

SMC_VCAN, and the SMC_CXCL8 cluster (Figure 5F). In

addition, the GRN analysis with TFs as the fulcrum yielded five

modules (Figure F5G) with gene expression of specific

SMC regulated by REL, MAZ, and ETV7 (Figure 5H).

Taken together, these results suggest that certain

specific clusters are closely associated with vascular

smooth muscle contraction, can lead to smooth muscle

ischemia in AM patients, and may promote the

development of AM.
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FIGURE 5
AM-related smoothmuscle cell (SMC) clusters (A). Single-cell atlas maps the cell clusters of SMC. (B). Single-cell atlas shows different groups of
SMC clusters. (C). Differences in the cellular ecology of SMC clusters in different groups. (D). Marker genes for specific SMC clusters. (E). Biological
pathways are significantly involved in the SMC clusters. (F). Single-cell atlas maps the evolutionary trajectories of SMC subgroups in AM. Pie charts
show the proportion of the different groups in the subgroup. (G). Transcription factors for clusters of SMC in a co-expression pattern. Left: Heat
map identifies co-expression modules; middle: major transcription factors and their binding sequences; right: cell clusters of transcription factors.
(H). Scatter plots showed transcription factors in clusters of SMC. AM_EM, eutopic endometrium; AM_EC, ectopic endometrium; SMC, smooth
muscle cell; UMAP, Uniform Manifold Approximation and Projection.
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Discussion

To date, most studies of orthoendometrium in women with

AM have focused on the expression of a single gene or a limited

number of genes (Benagiano and Brosens, 2012; Xiaoyu et al.,

2014). However, few studies have revealed the uniqueness of each

cell in the AM process at the individual cellular level. In this

study, we analyzed the scRNA-seq data from the endometrial

tissue of one patient with AM and one fibroid patient as controls,

and explored changes in the cellular state and immune

microenvironment of AM. Ectopic endometrium samples

present high CNV levels, and are considered a potential factor

in the development of the AM. The presence of certain specific

cell clusters was associated with the progression of AM. In

conclusion, it is possible to explore the global status of AM

patients at the cellular level, providing new insights into the in-

depth study of AM.

The ecological compositions of EC in the AM_EC and AM_EM

groups were significant compared to the controls, indicating that EC

plays an important role in the AM microenvironment. EC clusters

were significantly involved in cell motility-related pathways such as

focal adhesion and leukocyte transendothelial migration by

enrichment analysis. AM patients suffer from uterine bleeding,

pelvic pain, or infertility in women due to endometrial adhesion

and destruction of the endometrium (Lacheta, 2019; Bulun et al.,

2021). In the GRN, RXRG, ZEB1,MSX2, DLX5, and ELF5 regulated

the EC clusters. Knockdown of SKP2 was found to reduce

ZEB1 expression in endometrial stromal cells, thereby inhibiting

their invasion and proliferation (Guo et al., 2022). However, few

other TFs have been reported in AM. although many relevant

mechanisms have been studied based on endometrial tissue, few

studies have determined the effect of EC cells on AM at the cellular

level. In conclusion, these results suggested that EC cells mediate and

disrupt the endometrium, moreover, a cluster of markers regulated

by TFs may promote the development of AM.

En has a dual role in immunology and pathology. On the one

hand, the dysfunction will mediate the development of certain

diseases, and on the other hand, they will actively mediate the

immune response at the site of injury or infection (Pober and

Sessa, 2007). Liu found co-localization of Ep and En markers in

cluster one and promoted cell growth in AM (Liu et al., 2021),

identical to the tumor-like characteristics reported by AM (Liu

et al., 2018). Enrichment analysis showed that the En clusters

were significantly involved in cancer-related pathways and

extracellular matrix receptor interactions, indicating that the

En was associated with cell proliferation and had certain

malignant characteristics in the AM_EC group. Moreover,

KLF4, FOXP4, NFIA, and ERG can regulate the markers of

En clusters in the GRN. By inhibiting the biological functions of

autophagy and metaphase during AM onset, KLF4 is abnormally

reduced (Mei et al., 2022). However, other regulated TFs were

almost rarely reported in AM, and whether En migrate needs

further investigation.

Ep recognizes perturbations in their microenvironment,

sends reinforcement signals, and transmits the signals to the

immune system (Larsen et al., 2020). Studies have shown that

epithelial immune cells of endometria can enhance cell survival

and epithelial protective barrier function (Ho et al., 2006).

Notably, the highest percentage of EP was found in the

AM_EC and AM_EM groups; however, the number of EP

was lower in the control group, which may be due to the

significant postoperative endometrial thinning in the control

group. Moreover, the Ep clusters were also significantly

involved in the biological pathways such as leukocyte

transendothelial migration, the MAPK pathway, and focal

adhesions. Migration across the En after leukocyte adhesion,

indicated that Ep was associated with high motility and

migration. The MAPK pathway was required for the cell

migration process, and the cytokines can also mediate cell

migration (Liu et al., 2021). Furthermore, development of AM

was improved by inhibiting the activated MAPK/ERK signaling

pathway (Ying et al., 2021). In addition, study has shown that Ep

loses their polarity and intercellular adhesion during adhesive

epithelial interstitial transformation (EMT), to gain the ability to

migrate to a mesenchymal phenotype (Acloque et al., 2009) and

that EMT may play a key role in the pathogenesis of AM (Wang

et al., 2021). In particular, during the conversion of Ep into En, a

significant accumulation of angiogenic mimicry formation in

AM_EC was found (Liu et al., 2021). Our results suggested that

EP subsets significantly involved in pro-migratory pathways may

play an important role in AM progression.

Abnormal proliferation of SMC in the endometrium-

myometrial junction area is an important cause of AM (Huang

et al., 2021), and the emergence of AM causes hyperplasia and

hypertrophy of the surrounding SMC (Zhai et al., 2020). Compared

to the SMC in the normal uterus, the uterine SMC has hypertrophy

and ultrastructural changes, which may have contractility effects on

the myometrium (Mehasseb et al., 2010). In the AM global single-

cell ecosystem, the components of the SMC are more prominent in

the AM than in the controls due to AM-induced SMC

abnormalities. SMC clusters were significantly involved in

cytokine receptor interactions and vascular smooth muscle

contraction. SMCs are capable of significant phenotypic changes

in response to changes in local environmental cues, including cell-

cell and cell-matrix interactions, as well as various inflammatory

mediators (Owens et al., 2004). In addition, vascular smooth muscle

contraction occurs, leading to smooth muscle ischemia and

dysmenorrhea in AM patients (Zhai et al., 2020). In GRN, we

obtained five co-expression modules and three TFs, including REL,

MAZ, and ETV7. Studies have demonstrated that REL was

expressed and localized in the epithelial or stromal cells after

castrated prostate patients (Rosa-Ribeiro et al., 2014). MAZ, as a

transcriptional activator, may participate in the development of

atherosclerosis (Ponnusamy et al., 2015). ETV7 promotes the

resistance of breast cancer cells to chemotherapy and

radiotherapy (Pezze et al., 2021). However, these transcription
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factors have hardly been reported in AM. Generally speaking,

maintaining the microenvironment homeostasis of SMC is

critical for inhibition of development in AM.

In the present study, we found expression profiles of

42,260 cells and identified 10 cell clusters, including EC,

fibroblasts, Ep, En, CD8+T, CD4+T, Naive T, Mac, pDC, SMC,

and ILC. Among there, significant abundance of EC, Ep, En, and

SMC in AM patients comparing the controls. Furthermore, the

Ep clusters were mainly involved in leukocyte transendothelial

cell migration and apoptosis; En clusters were mainly involved in

pathways in cancer and apoptosis. Especially, some cell clusters

were involved in cell migration and apoptosis may be promote

the development of AM patients. Moreover, we obtained co-

expression modules and TFs associated with the significant cell

clusters by GRN comparing with the previous studies.

In conclusion, our study established a single-cell ecological

landscape of the endometrium between control and AM patients,

and explored the dynamic changes of immune cells during AM.

However, this study has several limitations. First, the samples

were too small and larger sample size is needed for a large-scale

study. Moreover, this study was mainly based on bioinformatics

analysis and therefore requires relevant molecular and cellular

experimental validation.
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Identification of molecular
subtypes and a six-gene risk
model related to cuproptosis for
triple negative breast cancer

Baoxi Zhu, Songping Wang, Rui Wang and Xiaoliang Wang*

Department of Thyroid and Breast Surgery, Anhui No.2 Provincial People’s Hospital,, Hefei, China

Background: Breast cancer is the mostly diagnosed cancer worldwide, and

triple negative breast cancer (TNBC) has the worst prognosis. Cuproptosis is a

newly identified form of cell death, whose mechanism has not been fully

explored in TNBC. This study thought to unveil the potential association

between cuproptosis and TNBC.

Materials and Methods: Gene expression files with clinical data of TNBC

downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression

Omnibus (GEO) databases were included in this study. Consensus clustering

was utilized to perform molecular subtyping based on cuproptosis-associated

genes. Limma packagewas applied to distinguish differentially expressed genes.

Univariate Cox regression was used to identify prognostic genes. Least absolute

shrinkage and selection operator and stepwise Akaike information criterion

optimized and established a risk model.

Results: We constructed three molecular subtypes based on cuproptosis-

associated genes, and the cuproptosis-based subtyping showed a

robustness in different datasets. Clust2 showed the worst prognosis and

immune-related pathways such as chemokine signaling pathway were

significantly activated in clust2. Clust2 also exhibited a high possibility of

immune escape to immune checkpoint blockade. In addition, a six-gene risk

model was establishedmanifesting a high AUC score over 0.85 in TCGA dataset.

High- and low-risk groups had distinct prognosis and immune infiltration.

Finally, a nomogram was constructed with strong performance in predicting

TNBC prognosis than the staging system.

Conclusion: The molecular subtyping system related to cuproptosis had a

potential in guiding immunotherapy for TNBC patients. Importantly, the six-

gene risk model was effective and reliable to predict TNBC prognosis.
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Introduction

Breast cancer is one of the leading cause of cancer death in

women, which is the top one diagnosed cancer type with

2,261,419 new cases (11.7% of total cases) in 2020 according

to the global cancer statistics (Sung et al., 2021). The overall

survival of breast cancer is markedly different in developed and

developing countries, with an estimated 5-year survival of 80%

and below 40%, respectively (Coleman et al., 2008). The

incidence of breast cancer elevates with age but seldomly

found before the age of 20 years and breast cancer most

commonly occurs in 40–50 aged women (Akram et al., 2017).

Although many versions of guidelines for the diagnosis and

treatment of breast cancer have been established, such as

European Breast Guidelines (Schünemann et al., 2020) and

the American Joint Committee on Cancer’s (AJCC) guideline

(Plichta et al., 2020), the treatment for triple negative breast

cancer (TNBC) still remains a challenge. TNBC is a clinically

aggressive type of breast cancer with poor survival, compared

with other breast cancer types, including HER2-positive,

oestrogen receptor (ER)-positive and progesterone receptor

(PR)-positive. Chemotherapy resistance and immune escape

common occur in TNBC, which makes an obstacle in TNBC

treatment (Wein and Loi, 2017). Therefore, accurate molecular

biomarkers or subtypes are strongly needed to guide personalized

therapy for TNBC.

Programmed cell death is recognized as a promising

therapeutic target in cancer therapy, where necroptosis,

pyroptosis, and apoptosis are the most studied types

(Bertheloot et al., 2021). Cuproptosis is considered as a new

form of programmed cell death involved in the proliferation of

lung cancer cells (Tang et al., 2022). Copper chelators such as

RPTDH/R848 nanoparticles are demonstrated to be able to

suppress cancer cell growth and metastasis in breast cancer

(Zhou et al., 2019), inspiring a possibility that cuproptosis is a

potential target for cancer treatment. Up to now, studies have

discovered a series of prognostic signatures related to cuproptosis

for different cancer types such as kidney renal clear cell

carcinoma (Ji et al., 2022), melanoma (Lv et al., 2022), and

hepatocellular carcinoma (Zhang et al., 2022). However, the

relation between cuproptosis and TNBC has not been revealed.

Therefore, in this study, we aimed to analyze the role of

cuproptosis in TNBC, and construct molecular subtypes based

on cuproptosis-associated genes by using gene expression data of

TNBC obtained from The Cancer Genome Atlas (TCGA) and

Gene Expression Omnibus (GEO) databases. By comparing the

molecular features of different subtypes, we unveiled the relation

between cuproptosis and immune infiltration. Moreover, a risk

model related to cuproptosis was established for predicting

TNBC prognosis. The risk model was effective to distinguish

TNBC patients into different risk types. Notably, the model

outperformed the AJCC staging system, which had a potential

to be used as a prognostic signature in TNBC.

Materials and methods

Data collection and preprocessing

The RNA-seq data of TNBC was downloaded from Genomic

Data Commons (GDC) Data Portal by TCGA GDC API (https://

portal.gdc.cancer.gov/projects/TCGA-BRCA, named as TCGA

dataset). GSE103091 dataset was downloaded from GEO

database (https://www.ncbi.nlm.nih.gov/geo/). TNBC samples

without progression-free survival (PFS) or survival status were

eliminated. TNBC samples with PFS shorter than 30 days or

more than 10 years were excluded. In GSE103091 dataset,

Ensembl ID was converted to gene symbol and we used the

averaged expression level when a gene hadmultiple Ensembl IDs.

Finally, 105 TNBC samples and 113 paracancerous samples were

remained in TCGA dataset, and 91 TNBC samples were

remained in GSE103091 dataset.

The source of cuproptosis genes

Cuproptosis genes were obtained from a previous study

(Tsvetkov et al., 2022), and a total of 13 cuproptosis genes

were used in the study including FDX1, LIPT1, LIAS, DLD,

DBT, GCSH, DLST, DLAT, PDHA1, PDHB, SLC31A1, ATP7A,

and ATP7B.

Identification of prognostic cuproptosis-
associated genes

Firstly, single sample gene set enrichment anlaysis (ssGSEA)

was used to calculate the enrichment score of 13 cuproptosis

genes for each sample in TCGA dataset. Limma R package

(Ritchie et al., 2015) was applied to screen differentially

expressed genes (DEGs) between paracancerous and tumor

samples (false discovery rate (FDR) < 0.05 and |log2FC| > 1).

Then Pearson correlation analysis was performed to evaluate the

correlation between the DEG expression and the ssGSEA score of

cuproptosis. DEGs with |correlation coefficient (R)| > 0.4 and p <
0.05 were selected. Next, univariate Cox regression analysis in the

survival R package was conducted on the DEGs and DEGs with

p < 0.05 as the input for unsupervised consensus clustering.

Constructing molecular subtypes based
on prognostic cuproptosis-associated
genes

ConsensusClusterPlus R package (Wilkerson and Hayes, 2010)

was used for conducting unsupervised consensus clustering to

identify molecular subtypes. The expression of prognostic

cuproptosis-associated genes were used as a basis for clustering
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samples. KM algorithm and Euclidean distance were set to carry out

500 bootstraps with each bootstrap consisting of 80% of samples in

TCGA dataset. Cluster number k was chosen from 2 to 10. The

optimal cluster number was determined according to cumulative

distribution function (CDF) and area under CDF curve.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) (Subramanian et al.,

2005) was utilized to calculate the enrichment score of functional

pathways for molecular subtypes. Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways were obtained from KEGG

database (https://www.genome.jp/kegg/).

Establishing a risk model

Firstly, DEGs between different molecular subtypes were

identified with limma R package (FDR <0.05 and |log2FC| >
1.5). Least absolute shrinkage and selection operator (LASSO)

regression analysis (Friedman et al., 2010) decreased the number

ofDEGs in glmnet R package. StepwiseAkaike information criterion

(stepAIC) was applied for further optimizing the riskmodel through

MASS R package (Zhang, 2016). We determined the risk model

according to the formula: risk score � Σβi × Expi, where β
indicates the coefficient of prognostic genes and Expi indicates

the expression level of prognostic genes. Each sample obtained a

risk score, which was subsequently transferred to z-score. Samples

were stratified into high-risk and low-risk groups according to the

z-score = 0. Kaplan-Meier survival analysis was conducted to

evaluate the prognosis of the two risk groups.

Assessment of immune infiltration

Estimation of STromal and Immune cells in MAlignant

Tumours using Expression data (ESTIMATE) tool was

implemented to evaluate stromal and immune infiltration

(Yoshihara et al., 2013). Microenvironment Cell Populations

(MCP)-counter methodology was applied to assess the

enrichment of 10 immune cells (Becht et al., 2016). SsGSEA

algorithm in GSVA R package was performed to predict

estimated proportion of 28 immune cells (Hänzelmann et al., 2013).

Statistical analysis

The bioinformatics analysis in this study was supported by

Sangerbox platform (http://vip.sangerbox.com/) (Shen et al.,

2022). R software (v4.1) was used as a platform to conduct all

statistical analysis. Log-rank test was performed in Kaplan-Meier

survival analysis, univariate and multivariate Cox regression

analysis. Student t test was performed to examine the

difference between two groups. ANOVA was conducted to

test the difference among three groups. p < 0.05 was

considered as statistically significant.

Results

Identification of prognostic genes
associated with cuproptosis

Firstly, we calculated the ssGSEA score of cuproptosis pathway

based on 13 cuproptosis genes for each TNBC sample in TCGA

dataset (Supplementary Table S1). Paracancerous samples had

obviously higher cuproptosis score than tumor samples

(Figure 1A). Then differential analysis was performed to identify

DEGs between TNBC and paracancerous samples. A total of

3125 DEGs were screened under FDR <0.05 and |log2FC| > 1

(Figure 1B). Next, we analyzed the relation between the expression

of DEGs and ssGSEA of cuproptosis by Pearson correlation analysis.

1,275 DEGs with |R| > 0.4 and p < 0.05 were selected for further

univariate Cox regression analysis (Supplementary Table S2).

39 prognostic DEGs were found to be significantly associated

with TNBC prognosis in TCGA dataset (p < 0.05,

Supplementary Table S3), whose expression levels were

significantly different between paracancerous and tumor samples

(p < 0.0001, Figure 1C).

Construction ofmolecular subtypes based
on cuproptosis-associated genes

Based on the expression profiles of the 39 cuproptosis-associated

genes, we then constructed molecular subtypes through consensus

clustering. According to the CDF curve, cluster number k = 3 was

determined as the optimal (Figures 2A–C). Three molecular

subtypes (clust1, clust2, and clust3) were distinguished based on

the 39 cuproptosis-associated genes, and they showed distinct PFS in

both TCGA and GSE103091 datasets (Figures 2D,E; Supplementary

Figure S1, log-rank p = 0.0038 and 0.036, respectively). Clust2 had

the shortest PFS and the most number of dead samples, while

clust1 had the favorable prognosis (Figure 2F), indicating that

cuproptosis-associated genes may be involved in the TNBC

progression.

Differential pathways and immune
infiltration of three molecular subtypes

Next we analyzed the enriched pathways of the three subtypes

by GSEA. By comparing clust2 to non-clust2 (clust1 and clust3), we

observed that immune-related pathways and tumor-related

pathways were obviously activated in clust2, such as cytokine-
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cytokine receptor interaction, chemokine signaling pathway, MAPK

signaling pathway, toll-like receptor signaling pathway, TGF-β
signaling pathway, and pathways in cancer (Figure 3A). In

clust1 vs non-clust1, the above pathways were significantly

suppressed (Supplementary Figure S2), suggesting that

cuproptosis-associated genes were involved in the immune

regulation. Pathways related to cell proliferation and cell death

were evaluated in the three subtypes. Among the six pathways,

P53 signaling pathway was the most enriched in clust2 and

clust1 had the lowest enrichment of cell death-related pathways

including necroptosis, ferroptosis, and apoptosis (Figure 3B,

ANOVA p < 0.05). This indicated an interaction of cuproptosis

with other cell death pathways.

Given that immune-related pathways were differentially

enriched in three subtypes, we then assessed the immune

infiltration. Not surprisingly, clust1 had the lowest stromal

score and immune score, compared with other two subtypes

(Figure 2C, ANOVA p < 0.0001). Estimation of 10 immune

cell types by MCP-counter also showed a lowest enrichment of

them in clust1 such as T cells, monocytic lineage, and myeloid

dendritic cells (p< 0.05, Figure 3D). Notably, clust2 had the highest

enrichment of fibroblasts (p < 0.01, Figure 3D). Similar results

were outputted through ssGSEA thatmajority of immune cells had

a low estimated proportion in clust1 (Supplementary Figure S2B).

Furthermore, we also determined the expression of immune

checkpoint genes in the three subtypes. The result showed that

22 of 47 immune checkpoints were differentially expressed in the

three subtypes (Supplementary Figure S2C). We suspected that

cuproptosis-associated genes had an influence in tumor

microenvironment and therefore affected the efficiency of

FIGURE 1
Identification of cuproptosis-associated genes related to TNBC prognosis in TCGA dataset. (A) The ssGSEA score of cuproptosis in
paracancerous (NT) and tumor samples (TP). (B) Volcano plot of DEGs between NT and TP samples. (C) The expression of seven prognostic
cuproptosis-associated genes in NT and TP samples. Student t test was performed. ****p < 0.0001.
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immunotherapy in TNBC. TIDE analysis revealed the predicted

sensitivity of three subtypes to immune checkpoint blockade

therapy (Figure 3E). Clust2 had the highest TIDE score,

suggesting a high possibility of immune escape to

immunotherapy, which may be resulted from a high

enrichment of myeloid-derived suppressor cells (MDSCs),

T cell exclusion and T cell dysfunction (Figure 3E). The

proportion of responders in clust2 was also the lowest

compared with other two subtypes (Figure 3F).

Construction of a cuproptosis-related risk
model for predicting TNBC prognosis

As three subtypes performed different molecular signatures, we

then identified the DEGs between clust1 vs non-clust1, clust2 vs

non-clust2, clust3 vs non-clust3. As a result, 2,723 DEGs were

screened (FDR <0.05 and |log2FC| > 1.5). Then univariate Cox

regressionwas used to further filter 1,213DEGs, and finally 89DEGs

(prognostic genes) with 77 risk genes and 12 protective genes

remained (Supplementary Figure S3A). Moreover, LASSO

regression was performed on 89 genes to generate an optimal

risk model. The model reached the optimal when lambda =

0.057, where 14 prognostic genes remained (Supplementary

Figure S3B, C). StepAIC was further performed to optimize the

prognostic model, and finally six prognostic genes were remained

including PTPRN2, SCARB1, SLC37A2, YES1, LY6D, andNOTCH3

(Supplementary Figure S3D). The risk model was determined

according to the following formula:

risk score � 0.384*PTPRN2 + (−0.754*SCARB1)
+ 0.703*SLC37A2 + (−0.586*YES1) + 0.264*LY6D

+ 0.622*NOTCH3

For each sample, a risk score was calculated according to

the formula. The risk model showed a favorable performance

FIGURE 2
Construction ofmolecular subtypes based on cuproptosis-associated genes. (A,B)Consensus CDF curve and delta area under CDF curve when
cluster number k = 2 to 10. (C) Consensus matrix when k = 3. (D,E) Kaplan-Meier survival curve of three molecular subtypes in TCGA (D) and
GSE103091 (E) datasets. Log-rank test was performed. (F) The distribution of alive and dead samples in three subtypes. ANOVA was conducted.
*p < 0.05.
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FIGURE 3
Functional analysis and immune analysis of three molecular subtypes in TCGA dataset. (A) GSEA result of clust2 vs non-clust2. (B) The ssGSEA
score of six pathways related to cell death. (C) Stromal score and immune score calculated by ESTIMATE. (D) The estimated enrichment score of
10 immune cells. (E) TIDE analysis for predicting the sensitivity to immunotherapy. (F) The proportion of responders and non-responders in three
subtypes. ANOVA was conducted. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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in predicting one- to 5-year PFS with AUC all over than

0.85 in TCGA dataset (Figure 4A). Determined by the optimal

cut-off value of risk score, the samples were classified to

different risk types (high-risk and low-risk). Kaplan-Meier

survival plot showed that high- and low-risk groups had

markedly different PFS (Figure 4B, p < 0.0001). In

GSE103091 dataset, a favorable AUC of the risk model and

differential prognosis between two risk groups was also

observed (Figures 4C,D).

The association of risk score with clinical
stages and immune infiltration

In the relation between risk score and clinical features, we

found that a difference of risk score was shown between stage

Ⅰ+Ⅱ and stage Ⅲ+Ⅳ (Figure 5A). In addition, alive samples

had a lower risk score than the deceased samples. Kaplan-

Meier survival analysis revealed that the risk model could

effectively divide samples into high- and low-risk groups

FIGURE 4
Verification of the risk model. (A) ROC analysis of the risk model in TCGA dataset. (B) Kaplan-Meier survival curve of two risk groups in TCGA
dataset. (C) ROC analysis of the risk model in GSE103091 dataset. (D) Kaplan-Meier survival curve of two risk groups in GSE103091 dataset. Log-rank
test was performed.
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grouping by different clinical features (Figure 5B;

Supplementary Figure S4A).

To understand whether a difference on tumor

microenvironment was shown between two risk groups, we

applied different tools, including ESTIMATE, MCP-counter,

and ssGSEA, to evaluate the immune infiltration. The three

tools showed consistent result that high immune infiltration

was displayed in samples with high risk (Figures 5C,D,

Supplementary Figure S4B). The above findings further

demonstrated that cuproptosis-associated genes were possibly

involved in the modulation of tumor microenvironment.

Establishing a nomogram for clinical
application based on risk score and clinical
characteristics

Univariate and multivariate Cox regression analysis

revealed that stage and risk score were independent risk

factors (Figures 6A,B). Consequently, we established a

nomogram based on stage and risk score, of which risk

score contributed the most to the nomogram (Figure 6C).

Calibration curve showed that the predicted PFS was similar

to the observed PFS (Figure 6D). Decision curve analysis

(DCA) demonstrated the reliability of the nomogram and

risk model (Figure 6E). Compared with other clinical

characteristics, the nomogram and risk model exhibited a

better performance in predicting PFS, especially long-term

PFS (Figure 6F).

Discussion

An increased level of copper can result in cell death and

the disruption of cupper homeostasis can lead to life-

threatening diseases such as Wilson’s disease and

neurodegenerative disorders (Gaggelli et al., 2006;

Bandmann et al., 2015). Tsvetkov et al. have revealed that

FIGURE 5
The relation of risk score to clinical features and immune infiltration in TCGA dataset. (A) The risk score in different stages and survival status.
Student t test was conducted. (B) Kaplan-Meier survival analysis of high- and low-risk groups with different stages. Log-rank test was conducted. (C)
ESTIMATE analysis for calculating stromal score and immune score of two groups. (D)MCP-counter analysis for calculating the enrichment score of
10 immune cells. Student t test was performed. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Frontiers in Genetics frontiersin.org08

Zhu et al. 10.3389/fgene.2022.1022236

94

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1022236


copper-induced cell death, which defined as cuproptosis, is

mediated by protein lipoylation involved in tricarboxylic acid

(TCA) cycle (Tsvetkov et al., 2022). Unlike other cell death

forms including apoptosis, ferroptosis, necroptosis, and

pyroptosis, cuproptosis functions in a new mechanism

through which mitochondrial ferredoxin 1-mediated

protein lipoylation leads to proteotoxic stress and

ultimately cell death (Tsvetkov et al., 2022). Cupper

ionophores and cupper chelators have been explored as

potential anti-cancer molecules (O’Day et al., 2013; Cui

et al., 2021), which inspires the research on the potential of

cuproptosis in cancer treatment.

We observed a significant difference of cuproptosis score

between normal and TNBC samples, suggesting the instability

of cuproptosis homeostasis in cancer cells. Normal samples

have a higher cuproptosis score than TNBC samples,

indicating a higher activity of cupper dwindling. Therefore,

we further explored the association of cuproptosis with TNBC

prognosis, functional pathways, and tumor immune

microenvironment through constructing molecular subtypes

based on cuproptosis-associated genes. The current study

have shown that the three molecular subtypes had distinct

prognosis and enrichment of activated pathways. Clust2 had

the worst prognosis and the highest proportion of dead

samples. Notably, immune related pathways were

significantly activated in clust2, such as cytokine-cytokine

signaling pathway, chemokine signaling pathway, and Toll-

like receptor signaling pathway, which drove a possibility that

cuproptosis may participate in the modulation of immune

microenvironment. Not surprisingly, three molecular

subtypes demonstrated different immune infiltration and

response to immune checkpoint blockade. Clust2 was

predicted to have a great possibility of immune escape in

immunotherapy, compared to other two subtypes, which may

FIGURE 6
Establishing a nomogram based on the risk score. (A,B) Univariate (A) and multivariate (B) Cox regression analysis on age, stage, and risk score.
(C) A nomogram for predicting death rate based on risk score and stage. (D)Calibration curve of 1-, 3-, and 5-year OS. (E)Decision curve of stage, risk
score, and nomogram. (F) AUC of age, stage, risk score, and nomogram.
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be resulted from T cell exclusion and T cell dysfunction.

Differential analysis on three molecular subtypes illustrated

that cuproptosis was involved in cancer progression and

immune microenvironment.

Furthermore, we established a risk model based on

cuproptosis-related genes, where six prognostic biomarkers

were included (PTPRN2, SCARB1, SLC37A2, YES1, LY6D,

and NOTCH3). Most of these biomarkers have been reported

to promote cancer progression. PTPRN2 is a protein tyrosine

phosphatase receptor, which was found to be upregulated in

metastatic breast cancer and could promote cancer metastasis

through PI(4,5)P2-dependent actin remodeling (Sengelaub

et al., 2016). Immature isoform of PTPRN2 (proPTPRN2)

expression was closely associated with lymph node-positive

breast cancer and poor clinical outcome (Sorokin et al., 2015).

Scavenger receptor class B member 1 (SCARB1) is a cell-

surface glycoprotein mediating low density lipoprotein-

cholesteryl ester (LDL-CE), which is involved in lipid

internalization (Swarnakar et al., 1999). David de Gonzalo-

Calvo et al. suggested that SCARB1 potentially promote CE

accumulation and aggressive feature in breast cancer (de

Gonzalo-Calvo et al., 2015). Proto-oncogene tyrosine-

protein kinase (YES1) has been widely reported to

stimulate cancer cell growth and migration in various

cancer types such as lung cancer (Garmendia et al., 2019),

gastric cancer (Mao et al., 2021), and breast cancer (Takeda

et al., 2017), which is therefore considered as a novel

therapeutic target for cancer therapy (Garmendia et al.,

2022). Targeting YES1 was effective to restore the

sensitivity to chemotherapeutic drugs (trastuzumab and

lapatinib) in drug-resistance breast cancer cell lines

(Takeda et al., 2017). Moreover, downregulation of

YES1 via miR-133 was demonstrated to inhibit cancer cell

proliferation triple-negative breast cancer cell lines (Zhang

et al., 2020). Lymphocyte antigen six superfamily member D

(LY6D) has been identified as a biomarker for bladder cancer

and a chemoresistance marker laryngeal squamous cell

carcinoma (Andersson et al., 2020; Wang et al., 2020).

NOTCH3 signaling is a well-known pathway contributing

to cancer development (Aburjania et al., 2018).

SLC37A2 has not been reported to be involved in

cancerigenesis or cancer progression.

The risk model manifested a favorable performance in

predicting TNBC prognosis in the two independent datasets.

Two risk groups also showed different immune infiltration,

which was consistent with the result on molecular subtypes.

To increase the accuracy of the risk model in predicting TNBC

prognosis, we further established a nomogram that exhibited a

better performance than the staging system.

Conclusion

In conclusion, this study revealed the important role of

cuproptosis in TNBC development and its crosstalk with

tumor immune microenvironment. We distinguished three

molecular subtypes related to cuproprotiss, which had a

potential to guide the personalized immunotherapy. In

addition, we established a six-gene risk model with robust

performance to predict TNBC prognosis.
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Lung adenocarcinoma (LUAD) is the most widely known histological subtype of

lung cancer. Its classification is significant for the characteristic evaluation of

patients. The aim of this research is to assess the categorization of LUAD and

its risk model based on necroptosis and to investigate its potential regulatory

mechanisms for diagnosing and treating LUAD. According to the expression profile

data alongwith the clinical information related to LUAD from The Cancer Genome

Atlas (TCGA) and Gene Expression Omnibus (GEO), we constructed a consistency

matrix through consistency clustering, and used the ConsensusClusterPlus as the

measurement distance tocluster and subtype the samples, andperformedgene set

enrichment analysis and immune infiltration analysis. Least absolute shrinkage and

selection operator (Lasso) regression was utilized for obtaining prognostic

significant necroptosis phenotype-related genes. Finally, we measured each

patient’s riskscore (RS) and build a risk model, and predicted the effect of

immunotherapy for different groups of risk factors in the model. Three

molecular subtypes of LUAD were obtained by cluster analysis of necroptosis-

related genes in LUAD samples. Compared with C1, C3 had a better prognosis and

higher immunecell infiltration. The prognosis of theC1 subtypewas poor andhad a

high clinical grade. The proportion of Stage II, Stage III, and Stage IV was much

more in comparison with that of the other two subtypes. TP53 gene had a high

mutation frequency in the C1 subtype. Gene Set Enrichment Analysis (GSEA)

indicated that the aberrant pathways in the C1 and C3 subtypes mainly included

some cell cycle-related pathways. In addition, seven genes were identified as

related genes of necroptosis phenotype affecting prognosis. High RS had a poor

prognosis, while lowRS had a good prognosis. The RSwas verified to have a strong

ability to predict survival. LUAD can be classified by the genes linked with cell

necrosis and apoptosis. The difference among various types is helpful to deepen

the understanding of LUAD. In addition, a risk model was constructed based. In

conclusion, this study provides potential detection targets and treatment methods

for LUAD from a new perspective.
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Introduction

Lung cancer has the highest death rate around the globe

(Bray et al., 2018). Its most widely known histological subtype is

the Lung adenocarcinoma (LUAD), making up about 50% of the

total lung cancer cases. It has a high risk of distant metastasis at

each stage (Shi et al., 2016) and is linked with increased

malignancy and a worse prognosis (Gong et al., 2019; Zhou

et al., 2019). LUAD treatment is based on grade and stage and is

mainly determined by the evaluation of tumor histology and

patient characteristics by pathologists (Wei et al., 2019). The

prognosis of lung cancer is unsatisfactory even though there has

been improvement in its present treatment approach

(chemotherapy, surgical resection, radiotherapy,

immunotherapy, and molecular targeted therapy). Even at

present, the 5-year survival rate of lung cancer patients is only

4%–17%, while the 5-year survival rate of metastatic tumor

patients is <5% (Hirsch et al., 2017; Arbour and Riely, 2019;

Anusewicz et al., 2020). Consequently, it is very important to

diagnose this disease on time along with a detailed and precise

risk assessment. Most of the risk assessment and monitoring

tools that are being used at present for lung cancer use the clinical

features and pathological parameters, among these the most

widely used approach, is TNM stratification. Though, the

current tumor-node-metastasis (TNM) models are usually

linked with limited confidence in lung cancer prognosis

prediction, which is composed of great heterogeneity among

individuals. Therefore, it is necessary to coordinate the

clinicopathological features of the genome when evaluating

the survival prognosis of individuals.

Necroptosis, a kind of programmed necrotic cell apoptosis, is

the gatekeeper of the host against pathogen invasion. It is a

recently found type of programmed cell death that unlike

apoptosis is unrelated to caspase (Robinson et al., 2019). The

morphological manifestations of necroptosis are cell rounding

and swelling, explosive rupture of the cell membrane, cell

membrane perforation, mitochondrial dysfunction, and loss of

mitochondrial membrane potential (Nikoletopoulou et al., 2013).

During the inhibition or low level of caspase-8, receptor-

interacting protein 1 (RIP1) can use receptor-interacting

protein 3 (RIP3) to develop the complex of RIP1-RIP3,

therefore, stimulating the mixed spectrum of pseudokinases.

Phosphorylation of mixed-lineage kinase domain-like protein

(MLKL) occurs to synthesize necrotic bodies, leading to

necroptosis (Vandenabeele et al., 2010). The necroptosis

imbalance is also a key factor in many inflammatory diseases.

Necroptosis is known to have both positive and negative effects,

and it has a complicated link with cancer. Even though research

shows that upon the blockage of apoptosis, necroptosis can

inhibit tumor growth as well as metastasis, however, its key

regulators will promote tumor growth and metastasis (Liu et al.,

2021). Increasing evidence shows that necroptosis has the ability

to inhibit the growth and metastasis of tumors, so it can be used

as a potential method to treat cancer (Li et al., 2020a; Park et al.,

2020; Tan et al., 2020). These reports have highlighted the

significant involvement of necroptosis in tumorigenesis and

metastasis, suggesting the potential of targeting necroptosis as

a new tumor classification and treatment.

In this study, we identified stable molecular subtypes by

consensus clustering using genes associated with cell necroptosis

and compared the clinicopathological features, mutation

features, immune features, and pathway features among

subtypes. Finally, the genes linked with the prognosis score

and necroptosis were found by expression difference analysis

and Lasso. Then, the risk model and clinical prognosis model

were constructed, which could assist in the personalized

treatment of LUAD patients.

Materials and methods

Collection and processing of data

The mutation, as well as RNA-Seq data of LUAD, were taken

from The Cancer Genome Atlas (TCGA, http://cancergenome.

nih.gov/abouttcga) using TCGAGDCAPI. In the RNA-Seq data,

we removed the samples with no information regarding clinical

follow-up, survival time, and status. After selecting, a total of

500 samples of primary LUADwere obtained. Then, the Ensembl

in the data was changed into a Gene symbol, and the expression

of numerous gene symbols was considered the mid-value. The

expression data of the GSE72094 and GSE31210 datasets were

taken from the Gene Expression Omnibus (GEO) (https://www.

ncbi.nlm.nih.gov/geo/). 398 and 226 LUAD samples were

included respectively after selection. For the above GEO data

set, the annotation information of the corresponding chip

platform was downloaded. According to the annotation

information, the probe was mapped to the gene, and the

single probe matching numerous genes was eliminated. When

a gene was matched with multiple probes, we considered the

median as the gene expression value. The current study utilized

the TCGA as the training set, and GSE72094 and GSE31210 data

sets were utilized as independent verification sets. In addition,

our necroptosis-related genes came from previous study (Xin

et al., 2022), with a total of 74 genes.

Molecular typing of necroptosis-related
genes

Univariate Cox analysis by Cox function in the R package

highlighted the genes substantially linked with LUAD prognosis

(p < 0.05). A consistency matrix was constructed by

ConsensusClusterPlus (Wilkerson and Hayes, 2010) to cluster

and divide the samples according to these genes. The molecular

subtypes of samples were provided by the expression data of
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genes linked with necroptosis. We carried out 500 bootstraps

with the “PAM” algorithm and “1-Pearson correlation” as the

distance measurement. Each bootstrap had 80% of the subjects in

the training set. The cluster number was set from 2 to 10. The best

division was done by measuring the consistency matrix and the

cumulative distribution function (CDF), and we got the

molecular subtypes of the samples.

Establishing of risk model

The differentially expressed necroptosis genes (false

discovery rate (FDR) < 0.05 and |log2fold change (FC)| >1)
were selected by limma package in molecular subtypes.

Afterward, we chose genes that were expressed differentially

and had a significant prognosis (p < 0.05). The proportion of

genes was further reduced by Least absolute shrinkage and

selection operator (Lasso) regression, and major prognostic

genes related to the phenotype of necroptosis were obtained.

By creating a penalty function, it can obtain a more precise model

by compressing some coefficients and setting others to zero. To

process data with complicated collinearity is a biased estimation

that yet preserves the benefit of subset contraction. It makes

variable selection during parameter estimation possible and

improves the way multicollinearity in regression analysis is

dealt with. The risk model was subsequently created. The

prognosis risk score (RS) for individual patients was

determined with: RS = Σ βi × Expi.

Expi is referred to as the level of expression of genes linked with

the prognosis of necroptosis phenotype, β is referred to as the Cox

regression coefficient of the corresponding gene. The patients were

sorted into RS-high and RS-low groups according to the threshold

“classification.” We drew the survival curve by the Kaplan-Meier

method for prognosis analysis, and the significance of the difference

was found with the help of the log-rank test.

Prediction of immunotherapy effect

The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm (Jiang et al., 2018) was employed for verification of

the impact that immune microenvironment score (IMS) has on

the prediction of clinical response of immune checkpoint

inhibitors (ICIs). TIDE algorithm is a calculation method for

predicting immune checkpoint blockade (ICB) reactivity by

using a gene expression profile. It evaluates three types of cells

that inhibit the infiltration of T cells in tumors, including

myeloid-derived suppressor cells (MDSCs), tumor-associated

fibroblasts (TAF), and the M2 subtypes of tumor-associated

macrophages (TAMs), as well as two distinct subtypes of

tumor immune escape mechanisms, including tumor-

infiltrating cytotoxic T lymphocytes (CTL) dysfunction score

and CTL immunosuppressive factor rejection score. The higher

TIDE prediction score indicated an increased likelihood of

immune escape, showing immunotherapy to be less beneficial

for patients.

Gene set enrichment analysis

For understanding the pathways of various biological

mechanisms in a variety of molecular subtypes, GSEA was

employed for pathway analysis. We utilized all candidate gene

sets present in the Hallmark (Liberzon et al., 2015) for GSEA.

FDR <0.05 was taken as a significant enrichment.

Immune infiltration analysis

Cell type Identification By Estimating Relative Subsets Of

RNA Transcripts (CIBERSORT) algorithm (Chen et al., 2018)

(https://cibersort.stanford.edu/) was used for the quantification

of 22 immune cells’ relative abundance in LUAD.

Simultaneously, the number of immune cells was measured

with the help of the Estimation of Stromal and Immune cells

in Malignant Tumor tissues utilizing Expression data

(ESTIMATE) software (Yoshihara et al., 2013).

Statistical analysis

All R packages and statistical analysis were conducted in R

software (4.1.1). Parameters with no specific indication were

default. Statistical methods were indicated in the figure legends.

p < 0.05 was considered as significant. ns, no significance. *p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Results

Molecular typing on the basis of genes
related to necroptosis

Firstly, the expression of necroptosis-related genes was taken

from the expressionmatrix of TCGA, and 20 necroptosis genes with

significant prognosis related to LUAD were selected (Figure 1A, p <
0.05). Patients were classified by consensus clustering in accordance

with the expression profiles of these 20 genes.We finally determined

that the optimal number of clusters was 3 as it gave us comparatively

stable clustering outcomes (Figures 1B,C), i.e., k = 3 to get three

separate molecular subtypes (Figure 1D). Further analysis revealed

that there were major prognostic variations in the prognostic

features of the three molecular subtypes (Figure 1E). In general,

C3 showed a good prognosis, and the C1 subtype had a poor

prognosis. In addition, for the GSE72094 data set, after molecular

typing with the same method, it was found that there were major
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variations in prognosis (Figure 1F), similar to the training set. At the

same time, the expression differences of these 20 necroptosis genes

that were substantially linked with the prognosis in separate

molecular subtypes of TCGA were compared (Figure 1G).

Clinicopathological characteristics among
molecular subtypes

We kept on exploring the differences in clinicopathological

characteristics in separate molecular subtypes present in the

TCGA cohort. In the TCGA data set, there were variations in

the distribution of diverse clinical features among the three

molecular subtypes. It could be observed that the C1 subtype

had a high clinical grade, and male patients accounted for a large

proportion of C1 and C2 subtypes (Figure 2A). Moreover, we also

compared the clinicopathological characteristics of various

molecular subtypes in the GSE72094 cohort and observed that

the proportion of Stage II in the C1 subtype was substantially

greater than that of the other two subtypes, and the proportion of

Stage II was considerably reduced in comparison with that of the

other two subtypes. KRAS, STK11, and TP53 gene mutations in

patients with the C3 subtype were considerably reduced in

comparison with those in patients with C1 and C2 subtypes,

FIGURE 1
Molecular typing results according to the necroptosis-related genes. (A) Forestmap of genes related to necroptosis with significant prognosis in
TCGA cohort; (B) cumulative distribution function (CDF) curve of the samples in TCGA cohort; (C) The CDF Delta area curve of TCGA cohort sample
highlights the relative change of the area under the CDF curve of each category number (k) in comparison with K-1. The horizontal axis is for k, and
the vertical axis is for the relative change of the area under the CDF curve; (D) Sample clustering Heatmapwhen consensus k = 3 in TCGA queue;
(E) Kaplan-Meier (KM) curve of overall survival (OS) prognosis of three subtypes in TCGA cohort; (F) Prognostic variations in the three molecular
subtypes in the GSE72094 cohort; (G) The heat map of the expression of necroptosis genes with significant prognosis in different subtypes of TCGA.
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and EGFR gene mutations were significantly more than those in

patients with C1 and C2 subtypes (Figure 2B).

Mutation characteristics amongmolecular
subtypes

This report also explained the variations of genomic

alterations in the three molecular subtypes in the TCGA

cohort. Firstly, the molecular characteristic information of

TCGA was obtained from the previous pan-cancer research

(Thorsson et al., 2018). Among them, the C1 subtype showed

a higher Homologous Recombination Defects, Aneuploidy Score,

Number of Segments, Fraction Altered, and Tumor mutation

burden (Figure 3A). In addition, according to 160 different

immune signatures, LUAD was divided into five immune

subtypes, of which the best prognosis was observed in the

immune subtypes C3 and C4 and C6 had the poorest

prognosis. It was discovered that, of the three types of

molecular subtypes defined in this study, the C3 subtype

FIGURE 2
Clinicopathological properties ofmolecular subtypes. (A) The clinicopathological characteristics ofmolecular subtypes in TCGA cohort; (B) The
clinicopathological characteristics of molecular subtypes of GSE72094 cohort; The lower and upper parts of the proportion are the statistical
significance of the distribution difference in two pairs -log10 (p-value).
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described in the previous study accounted for more of the

C3 subtypes described when the relationship between these

five immune subtypes and the three types of molecular

subtypes described by us was compared (Figure 3B). In

addition, based on the correlation analysis between gene

mutation and molecular subtype, we concluded that there was

a major link between molecular subtype and gene mutation.

TP53, CSMD3, and KRAS, and other genes had numerous

FIGURE 3
Genomic changes of molecular subtypes in TCGA cohort. (A) The differences in Homologous Recombination Defects, Aneuploidy Score,
Fraction Altered, Number of Segments, and Tumor mutation burden among the molecular subtypes of TCGA cohort were compared; (B)
Comparison of threemolecular subtypes and immunemolecular subtypes; (C) Somatic mutations in threemolecular subtypes (chi-square test). *p <
0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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somatic mutations in LUAD, and the TP53 gene had the highest

mutation frequency in the C1 subtype (Figure 3C).

Immune characteristics among molecular
subtypes

To clearly understand the difference in immune

microenvironment among subjects with various molecular

subtypes, the level of immune cell infiltration in patients in

the TCGA cohort was evaluated by the gene expression level in

immune cells. Firstly, based on the relative abundance of

22 immune cells (Figure 4A), it was observed that most

immune cell types had significant differences among

subtypes. For example, macrophages of the M1 type were

substantially more infiltrated in C1 and C3 subtypes than in

C2, while regulatory T cells (Tregs) were substantially more

infiltrated in C2 subtypes in comparison with the C1 and C3.

Simultaneously, the “immune score” of the C3 subtype was

increased in comparison with that of other subtypes, i.e., C1 and

C2 subtypes, with higher immune cell infiltration (Figure 4B).

In addition, by comparing the immune infiltration of the

GSE72094 cohort (Figures 4C,D), a similar phenomenon to

TCGA could be observed.

Pathway analysis between molecular
subtypes

GSEA analysis was done to identify the differentially

activated pathways in various molecular subtypes. The

outcomes revealed that in comparison with the C3 subtype,

FIGURE 4
Proportion of immune cell components in two LUAD cohorts. (A) The variation of 22 immune cell scores among differentmolecular subtypes in
the TCGA cohort; (B) The difference of ESTIMATE immune infiltration among different molecular subtypes in the TCGA cohort; (C) Differences in
scores of 22 immune cells in various molecular subtypes in GSE72094 cohort; (D) Differences of ESTIMATE immune infiltration in various molecular
subtypes in GSE72094 cohort. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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the C1 subtype was significantly enriched in 32 pathways in the

TCGA cohort and 18 pathways in the GSE72094 cohort (Figures

5A,B). Simultaneously, through the comparative analysis of

abnormal pathways in C1 and C3 subtypes in various LUAD

cohorts, it was found that the activated pathways mainly included

some cell cycle-related pathways, such as HALLMARK_

UNFOLDED_PROTEIN_RESPONSE, HALLMARK_MYC_

TARGETS_V2, HALLMARK_DNA_REPAIR, HALLMARK_

MITOTIC_SPINDLE, etc., while the inhibited pathways mainly

included some immune-related pathways, such as

HALLMARK_INFLAMMATORY_RESPONSE, HALLMARK_

INTERFERON_GAMMA_RESPONSE, HALLMARK_ALLOGRAFT_

REJECTION, HALLMARK_COMPLEMENT, HALLMARK_

INTERFERON_ALPHA_RESPONSE, etc. (Figure 5B).

Through the comparative analysis of the pathways in

C1 and C2, C1 and C3 subtypes, and the differences

FIGURE 5
Pathway analysis betweenmolecular subtypes. (A). GSEA analysis results of C1 vs. C3 in TCGA cohort; (B) Bubble chart of GSEA analysis results of
C1 vs. C3 subtypes in two LUAD cohorts; (C) Bubble chart of GSEA analysis results compared with different molecular subtypes in TCGA cohort; (D)
Radar chart of C1 vs. C2 and C2 vs. C3 uniformly activated channels in TCGA queue.
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between C2 and C3 subtypes in the TCGA cohort (Figures

5C,D), it was found that the cell cycle-related pathways in

C1 patients were activated on the whole, while the immune-

related pathways were inhibited. Therefore, we inferred that

the necroptosis genes used for molecular typing might play a

critical role in the cell cycle-related pathways and the tumor

microenvironment.

Analysis of differentially expressed genes
in molecular subtypes

In the analysis described above; three separate molecular

subtypes were identified by the necroptosis genes with significant

univariate prognosis. Next, the differentially expressed genes

(DEGs) among C1 vs. C2, C1 vs. C3, and C2 vs. C3 subtypes

FIGURE 6
Differential expression analysis between molecular subtypes. (A) Volcano diagram of DEGs among TCGAmolecular subtypes; (B) Bubble chart
of KEGG function enrichment analysis results of differentially up-regulated genes among TCGA molecular subtypes; (C) Bubble chart of KEGG
function enrichment analysis results of differentially downregulated genes among TCGA molecular subtypes.
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were calculated by using the limma package. Firstly, there were

119 DEGs between the subtypes C1 and C2, including 46 highly

expressed and 73 genes with low expression. Secondly, among the

DEGs of C1 and C3 subtypes, there were 88 up-regulated genes

and 183 down-regulated genes. Finally, among the DEGs

between C2 and C3 subtypes, there were 45 up-regulated

genes and 140 downregulated genes (Figure 6A). The Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis of differentially up-regulated genes among

C1 vs. C2, C1 vs. C3, and C2 vs. C3 subtypes was performed by

the R software package clusterprofiler. The results showed that

C1 vs. C2 and C1 vs. C3 subtypes were substantially enriched in

some pathways linked with cell cycle such as cellular senescence,

cell cycle, p53 signaling pathway, etc. While the C2 vs. C3 subtype

was significantly enriched in metabolic-related pathways

(Figure 6B). Similarly, based on the KEGG pathway

enrichment analysis of differentially downregulated genes

among C1 vs. C2, C1 vs. C3, and C2 vs. C3 subtypes, the

results showed that there were fewer differential pathways

among C1 vs. C2 subtypes, while there were more differential

pathways among C1 vs. C3 and C2 v sC3 subtypes, especially

among C2 vs. C3 subtypes, and the down-regulated genes among

these subtypes were substantially enriched in some immune and

inflammatory-related differential pathways (Figure 6C).

FIGURE 7
Lasso analysis of DEGs. (A) Analysis results of DEGs; (B) The locus of each independent variable changing with lambda; (C) Confidence interval
under lambda; (D) Lasso coefficient distribution of the characteristics of genes linked with necroptosis.
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Identification of key necroptosis genes

405 genes were obtained by identifying DEGs among

molecular subtypes. Next, these genes were assessed with

univariate Cox regression analysis, along with the

242 genes that impacted the prognosis more (p < 0.05)

were identified, including 84 “Risk” and 158 “Protective”

genes (Figure 7A). Then, for Lasso regression, the “glmnet”

R package was utilized to select the proportion of genes used to

build risk models among the 242 genes with significant

prognosis. Each independent variable’s change track was

first examined. The number of independent variable

coefficients that are progressively heading to 0 rose as the

lambda value increased (Figure 7B). 10-fold cross-validation

was utilized for creating the model, and the confidence

interval under each lambda was assessed. The value of

lambda = 0.0543 indicated the optimal output (Figure 7C).

Therefore, we selected FAM83A, HMMR, ANLN, RHOV,

CXCL17, MS4A1, and CCR2 as the related genes of

necroptosis phenotype that affected the prognosis when

lambda = 0.0543 (Figure 7D).

Establishment and verification of risk
model

The prognostic RS related to apoptosis was calculated and

normalized for each sample. At the same time, samples with

RS greater than 0 were put in the RS-high group and samples

having RS less than or equal to 0 were put in the RS-low

group. A major difference was observed in the RS-high and

-low groups (p < 0.001). Finally, 260 samples were put in the

RS-high group, and 240 samples into the RS-low group. The

RS distribution of patients in the TCGA cohort of the training

set suggested that RS-high samples had a poor prognosis

(Figure 8A). The ‘timeROC’ R package was utilized for

assessing the Receiver Operating Characteristic (ROC) of

RS prognosis classification, and the classification efficiency

of prognosis prediction for 1, 3, and 5 years were analyzed

respectively (Figure 8B). The outcomes revealed a high area

under curve (AUC) values of prognosis prediction of the

model for 1, 3, and 5 years, which were 0.73, 0.7, and 0.67,

respectively. Finally, patients with higher RS showed worse

overall survival in the training cohort (Figure 8C). For

confirming the robustness of the clinical prognosis model

prediction of necroptosis-related genes, it was verified in

GSE72094 and GSE31210 cohorts. The RS of patients was

calculated following the same method and samples were

divided into high group when RS > 0 and samples were put

in low group when RS < 0. The validation cohort had

outcomes similarly to those of the training set. The

prognosis of high RS was poor, while that of low RS was

good (Figures 8D–G).

Riskscore in different clinicopathological
characteristics

We discovered that the RS of patients with late T Stage, N

Stage, M Stage, and Stage was considerably greater in comparison

with that of patients with early stage by the comparison of RS

distribution among the groups of clinicopathological features in

the TCGA cohort. Additionally, we discovered that male patients

had a higher RS. Between molecular subtypes, RS was compared

and examined. When compared to the RS of C3 molecular

subtype with a favorable prognosis, the RS of the C1 subtype

with a much worse prognosis was significantly higher

(Figure 9A). In addition, based on the comparative analysis of

the prognosis differences between different clinicopathological

characteristics groups in the TCGA cohort in the RS-high and

-low groups defined by us, our risk groups also had good results

in different clinical groups, proving the reliability of our risk

groups (Figure 9B).

Characteristics of immune/pathways
between riskscore groups

To clarify the variation in the immune microenvironment of

patients in the RS group, the relative abundance of 22 immune

cells in RS-high and -low groups in the TCGA cohort was

compared. There were significant variations in 10 immune

cells present in the RS-high and -low groups (Figure 10A).

Such as, the abundance of resting CD4 memory T cells in the

RS-low group were much higher in comparison with that in the

RS-high group, while the abundance of activated CD4 memory

T cells in the RS-low group was considerably lower when

compared with the RS-high group. At the same time, the

ESTIMATE was used for evaluating the immune cell

infiltration. It was found that “the estimated immune sub-

group” had higher immune infiltration (Figure 10B). This

phenomenon was also observed in the GSE72094 cohort

(Figures 10C,D).

Then, we studied the link of RS with 22 immune cell

components in the TCGA queue and observed that RS and

resting CD4 memory T cells, activated CD4 memory T cells,

and resting dendritic cells along with nine others (Figure 10E).

To analyze the link of RS with the biological role of distinct

samples, we chose the gene expression profile relating to the

LUAD samples in the TCGA cohort and used the GSVA R

package for single sample Gene Set Enrichment Analysis

(ssGSEA). The score of individual samples on various

functions was measured to get the ssGSEA score of individual

functions related to each sample. After studying the link between

these functions and calculating the RS, functional pathways

greater than 0.45 were selected, from which we could see that

RS and KEGG_CELL_Cycle and other cell cycle-related

pathways showed a positive correlation (Figure 10F).
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Differences in immunotherapy/
chemotherapy between riskscore groups

In addition, whether there were differences in

immunotherapy between RS groups in the TCGA cohort were

analyzed. First, we did a comparison of the expression of immune

checkpoints among RS groups and found that most immune

checkpoint genes were differentially expressed in RS groups. On

the whole, the differential expression of immune checkpoint

genes, such as CTLA4, PDCD1, in the RS-low group was

considerably increased in comparison with that in the RS-high

group (Figure 11A). In addition, by evaluating the possible

clinical impact of immunotherapy in the RS-high and -low

groups, we observed that in the TCGA cohort, the RS-high

FIGURE 8
Establishment and verification of risk model. (A) RS, survival time, survival status, and expression of necroptosis-related genes in TCGA data set;
(B) ROC curve and AUC classified by RS in TCGA data set; (C) KM survival curve distribution of RS in TCGA data set; (D,E) ROC curve and KM survival
curve of RS in GSE72094 queue; (F,G) ROC curve and KM survival curve of RS in GSE31210 queue.
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FIGURE 9
RS in different clinicopathological characteristics. (A) The difference of RS between different clinicopathological groups of the TCGA cohort; (B)
KM curve between RS-high and -low groups among different clinicopathological groups of the TCGA cohort.
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group had an increased TIDE score, suggesting that the

possibility of immune escape for the RS-high group was more

and that of benefiting from immunotherapy was less

(Figure 11C). The scores of MDSC and T cell rejection were

increased in the RS-high group, which might be a factor leading

to the low benefit of immunotherapy in the RS-high

group. Furthermore, the response of the RS group in the

TCGA cohort to traditional chemotherapy drugs, such as

docetaxel, vinorelbine, paclitaxel, and cisplatin was also

analyzed. We discovered that the RS-high group showed more

sensitivity to the stated drugs than the RS-low group

(Figure 11E).

At the same time, the differences in immunotherapy and

chemotherapy among RS groups in the GSE72094 cohort were

analyzed, and the same phenomenon as that in the TCGA cohort

was observed (Figures 11B,D,F).

Riskscore combined with
clinicopathological characteristics for
improving the prognosis model and
survival prediction

Univariate and multivariate Cox regression analysis of RS

and clinicopathological features showed that RS was the most

significant prognostic factor (Figures 12A,B). For risk assessment

quantification and survival probability of patients with LUAD, a

nomogram was established (Figure 12C) in combination with RS,

FIGURE 10
Characteristics of immune/pathways among the RS groups. (A) Proportion of immune cells components in TCGA cohort; (B) Proportion of
immune cells components calculated by ESTIMATE software in TCGA cohort; (C) Proportion of immune cells components in TCGA cohort; (D)
Proportion of immune cells components calculated by ESTIMATE software in TCGA cohort; (E) Correlation analysis between 22 immune cell
components and RS in TCGA cohort; (F) The results of correlation analysis between KEGG pathway and RS whose correlation with RS is greater
than 0.45. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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N Stage, T Stage, and other clinicopathological characteristics.

The model results showed the greatest effect of RS on survival

rate prediction. We evaluated the model for its prediction

accuracy using a calibration curve, it could be observed that

the predicted calibration curve of the three calibration points in 1,

3, and 5 years was near the standard curve (Figure 12D), showing

the nomogram’s good prediction ability. Moreover, the decision

curve analysis (DCA) was also utilized for evaluating the model’s

reliability. It could be seen that the benefits of RS and nomogram

were considerably increased when compared with that of the

extreme curve. Compared with other clinicopathological

characteristics, the nomogram showed the strongest ability to

predict survival, followed by RS (Figure 12E).

Discussion

Necroptosis is a type of cell death related to the

morphological characteristics of necrotic cells and its intrinsic

signal transduction is like that of apoptotic cells. Nevertheless,

necroptosis and apoptosis are different mechanisms that help in

the inhibition of tumor development and metastasis (Fu et al.,

2013; Lawlor et al., 2015; Newton, 2015). Numerous research

conducted since the word “necroptosis” was first proposed have

revealed that necroptosis can prevent tumor growth and

metastasis, suggesting that it can be used for the treatment of

cancer (Li et al., 2020a; Park et al., 2020; Tan et al., 2020).

However, molecular typing of LUAD according to genes linked

with necroptosis has not been reported. Based on necroptosis,

cluster analysis was done using LUAD samples provided by the

TCGA and GEO data sets, and we obtained three molecular

subtypes C1, C2, and C3 of LUAD. C1 had a worse prognosis

than C3, whereas C3 had a better prognosis. The matrix and

immune cells enlisted and activated in the microenvironment

associated with the tumor determine the tumor cells in LUAD.

Immune cells and immune-related molecules also infiltrate the

tumor microenvironment, which is where tumor cells

proliferate, develop, and prepare for metastasis (Seong et al.,

2020; Sprooten et al., 2020; Ma et al., 2021). Therefore, the

variations in the immune microenvironment in subjects with

different molecular subtypes were also observed, which showed

that the immune score of the C3 subtype was increased in

comparison with that of other subtypes, indicating that the

C3 subtype had relatively high immune cell infiltration. This

was supported by our prior study showing that C3 had a good

prognosis and the overall survival rate of patients with a high

immune score was more in comparison with that of patients

having a low immune score. This finding indicates that from the

beginning of tumor formation, LUAD patients with higher

immune scores may have stronger adaptive immune responses

than those with lower immune scores (Ma et al., 2021).

Therefore, the higher immune cell content and an

immune score of C3 may be one of the guarantees of a good

prognosis.

Then, we calculated RS and constructed a risk model, in

which RS-high samples had a worse prognosis. In addition, the

FIGURE 11
(Continued).

Frontiers in Genetics frontiersin.org15

Wu et al. 10.3389/fgene.2022.1037011

112

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1037011


evaluation of potential clinical effects of immunotherapy in RS-

high and -low groups showed that the RS-high group had a

higher score and a higher possibility of immune escape. In other

words, in comparison with the RS-low group, the patients of the

RS-high group were observed to have a worse prognosis and up-

regulated expression of immune checkpoints. They were more

suitable for immunotherapy and were more likely to benefit

from it.

Based on the role of necroptosis in the regulation of tumor

immunity, we carried out the ssGSEA to find the immune status

of various RS groups. Immune cells (resting CD4memory T cells,

memory B cells, and resting dendritic cells) were mostly active in

FIGURE 11
Differences in immunotherapy/chemotherapy between RS groups. (A) Immune checkpoints differentially expressed among different groups in
the TCGA cohort; (B) Immune checkpoints differentially expressed among different groups in the GSE72094 cohort; (C) differences in TIDE analysis
results among separate groups in TCGA queue; (D) variations in TIDE analysis results among different groups in GSE72094 queue; (E) Box diagram of
estimated IC50 of docetaxel, vinorelbine, paclitaxel, and cisplatin in TCGA; (F) Box diagram of estimated IC50 of docetaxel, vinorelbine,
paclitaxel, and cisplatin in GSE72094.
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the RS-low group, among these, some were closely linked with

necroptosis. But, CD8 T cells had no significance between high-

and low-group. Necrotic cells could provide dendritic cells with

tumor-specific antigens and inflammatory cytokines for antigen

cross initiation (Sprooten et al., 2020). These outcomes indicate

the possible involvement of necroptosis in the progression of

LUAD by tumor immunity regulation.

In addition, the function of abnormal pathways in the C1 and

C3 subtypes was analyzed, and the results showed that the activated

pathways mainly included some cell cycle-related pathways, such as

HALLMARK_MYC_TARGETS_V2. The relationship between cell

cycles and necroptosis is inseparable. MYC pathway is one of the

most significant signal pathways in the process of necroptosis. In

addition, the MYC transcription factor has been shown in other

studies to inhibit the formation of anti-necrotic protein of the

RIPK1-RIPK3 complex (Seong et al., 2020), which fully

demonstrates the reliability of our typing results. Different

subtypes do have great differences in the process of necroptosis.

Studies have shown that FAM83A and FAM83A-AS1 are

upregulated in LUAD in comparison with the adjacent healthy

tissues. This high expression indicates poor survival and more

advanced clinical stages (Wang et al., 2021a). Moreover, several

studies have shown that FAM83A can be used as a prognostic

characteristic and potential oncogene of LUAD (Zhang et al., 2019;

Gan et al., 2020; Yu et al., 2020; Song et al., 2021). In this study, seven

genes were identified as prognostic genes related to the phenotype of

necroptosis, and FAM83A was one of them. In addition, these six

genes (HMMR (Li et al., 2020b; Li et al., 2021), ANLN (Zhang et al.,

2020; Deng et al., 2021), RHOV (Wang et al., 2021b; Zhang et al.,

2021), CXCL17 (Liu et al., 2020; Wang et al., 2022), MS4A1 (Ma

et al., 2020; Song et al., 2020), and CCR2 (Liu and Wu, 2021; Wan

et al., 2021)) have also been studied to support their use as potential

FIGURE 12
Improvement of prognosis model and survival prediction. (A,B) univariate and multivariate Cox analysis of RS and clinicopathological
characteristics; (C) Nomogram model; (D) Calibration curve of nomogram in 1, 3, and 5 years; (E) Decision curve of the nomogram.
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prognostic biomarkers and possible immunotherapeutic targets

related to LUAD, but our research supports their involvement in

the incidence and development of LUAD from the perspective of cell

necroptosis.

The classification based on the correlation between

necroptosis provides a novel insight for research on LUAD. In

addition, nomograms were established in the LUAD cohort

based on RS and clinicopathological characteristics. Compared

with other clinicopathological characteristics, RS in this

nomogram had significant advantages in accurately predicting

the survival rate of LUAD and greatly enhanced the clinical

application of gene risk typing linked with necroptosis.

Therefore, the typing proposed in this study is new and

meaningful, and it is found that necroptosis-related genes may

be involved in it.

Nevertheless, this study has certain deficiencies and

limitations. First, for external validation, the addition of more

clinical databases is preferable. Moreover, further experimental

evidence is still needed to confirm the conclusions of this paper.

For example, experiments are needed to verify the expression

differences of genes linked with necroptosis in three separate

molecular subtypes. Finally, experiments should verify that the

necroptosis-related genes in different subtypes have an impact on

tumor progression and prognosis, and the specific study of their

possible interaction and regulation mechanism needs to be further

studied. To overcome the shortcomings of this research, we will

recollect and expand clinical samples in the follow-up work,

perform more external experiments for verifying the efficacy of

this model, and conduct large-scale independent studies in the

future to confirm the efficacy of this risk classification.

In summary, the predictive attributes of genes linked with

necroptosis have the ability of independent prognostic prediction

of LUAD patients, assist in elucidating the mechanism and

process of necroptosis genes in LUAD, and provide LUAD

patients with immunotherapy guidance, but additional

experimental confirmation is still required in the future.

Conclusion

In a word, the stable molecular subtypes were identified by

using the related genes of necroptosis through consensus

clustering. Then, we chose a total of seven genes linked

with the prognosis of necroptosis by analyzing the DEGs

among the molecular subtypes and Lasso. Additionally, the

RS model was created based on the prognosis-related genes of

necroptosis. The model had strong robustness, which was

independent of clinical-pathological characteristics, and

played a stable predictive effect in independent data sets.

Finally, we combined RS with clinicopathological

characteristics to further improve the prognosis model and

survival prediction. The model had high prediction accuracy

and survival prediction ability.
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Alzheimer’s disease (AD) and vascular dementia (VD) are the twomost common

forms of dementia, share similar symptoms, and are sometimes difficult to

distinguish. To investigate the potential mechanisms by which they differ, we

identified differentially expressed genes in blood and brain samples from

patients with these diseases, and performed weighted gene co-expression

network analysis and other bioinformatics analyses. Weighted gene co-

expression network analysis resulted in mining of different modules based

on differences in gene expression between these two diseases. Enrichment

analysis and generation of a protein-protein interaction network were used to

identify core pathways for each disease. Modules were significantly involved in

cAMP and AMPK signaling pathway, which may be regulated cell death in AD

and VD. Genes of cAMP and neurotrophin signaling pathways, including

ATP1A3, PP2A, NCEH1, ITPR1, CAMKK2, and HDAC1, were identified as key

markers. Using the least absolute shrinkage and selection operator method, a

diagnostic model for AD and VD was generated and verified through analysis of

gene expression in blood of patients. Furthermore, single sample gene set

enrichment analysis was used to characterize immune cell infiltration into brain

tissue. That results showed that infiltration of DCs and pDCs cells was increased,

and infiltration of B cells and TFH cells was decreased in the brain tissues of

patients with AD and VD. In summary, classification based on target genes

showed good diagnostic efficiency, and filled the gap in the diagnostic field or

optimizes the existing diagnostic model, which could be used to distinguish

between AD and VD.

KEYWORDS

Alzheimer’s disease, vascular dementia, potential mechanism, WGCNA, immune cell
infiltration
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Introduction

Damage to neuronal structure may cause loss of nervous system

function, which can lead to neurodegenerative disease. Alzheimer’s

disease (AD) is one of themost common neurodegenerative diseases

worldwide (Lane et al., 2018). Alzheimer’s disease is characterized by

the presence of extracellular amyloid plaques caused by abnormal

APP processing, resulting in β-amyloid peptide aggregation

(Calsolaro and Edison, 2016). There is no cure for AD, disease

progression cannot be reversed, and symptoms gradually worsen

until patients lose their ability to care for themselves. Given the

prolonged course of disease progression, AD results in incredible

suffering for patients and their families, and places an enormous

burden on healthcare systems. Previous studies have confirmed that

the pathogenesis of AD can include genetic factors. Mutations in

APP, PSEN1, and PSEN2 have been shown to play key roles in

familial AD (Lanoiselee et al., 2017). Advances in human disease

research have shown that many complex diseases are caused by

multiple genes. These genes interact to form a network that

collectively influences the pathogenesis of diseases (Ding et al.,

2019). Therefore, gene set risk assessment is viewed as a more

accurate and effective method to study the genetic basis and

mechanisms of complex diseases.

Vascular dementia (VD) is also a common form of dementia.

The symptoms of VD are similar to those of AD, which can often

complicate differential diagnosis (Uwagbai and Kalish, 2022). In

some patients, VD and AD may coexist, resulting in a pathological

condition known as mixed dementia. The etiology of dementia is

complex, and treatment is difficult. To data, these biomarkers play a

vital role for diagnosis and prognosis of AD or VD. Studies have

demonstrated that identifying REPS1 as a candidate therapeutic

biomarker in AD and VD (Luo et al., 2022). RBM8A (Zou et al.,

2019) and YKL-40 (Mavroudis et al., 2021) were significantly

associated with AD pathophysiology. Furthermore, toll-like

receptor 2 (TLR2) is the hub gene that may participate in the

course of VD (Wang et al., 2022). Therefore, exploration of the

pathogenesis and biomarkers of VD/AD-induced dementia could

deepen understanding of dementia, which may aid in diagnosis and

improve choice of treatment strategies.

Studies have indicated that the multifactorial

pathophysiology of dementia is not restricted to neuronal

cells, and the immune system may play a key role (Heneka

et al., 2015). For example, during the AD onset, T lymphocytes

may infiltrate into brain tissue via the choroid plexus and

participate in adaptive immune response. CD8 T lymphocytes

were detected in the cerebrospinal fluid (CSF) of 11 patients with

AD (Lueg et al., 2015). Other types of immune cells, including

monocytes, macrophages, neutrophils, and T cells from the

peripheral blood, were found to be broadly involved in the

pathogenesis of AD (Polfliet et al., 2001; Ziegler-Heitbrock,

2007; Baik et al., 2014; Gate et al., 2020). Moreover,

differences in levels of lymphocyte subsets were found in the

brains of patients with different types of dementia, and a T
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significant increase in classical natural killer (NK) cells was

observed in VD (D’Angelo et al., 2020).

In this study, the expression profile of brain tissue samples

from the Gene Expression Omnibus (GEO) data set and the

blood expression profile of 3 patients with AD, 6 patients with

VD, and 3 healthy donors were analyzed. The Weighted Gene

Co-Expression Network Analysis (WGCNA) method and least

absolute shrinkage and selection operator (LASSO) model were

used to establish diagnostic gene signatures for AD and VD, and

to identify potential therapeutic targets. Furthermore, we

performed single-sample gene set enrichment analysis

(ssGSEA) to quantify immune cell infiltration to provide a

theoretical foundation for further research.

Methods and materials

Data collection and processing

High-throughput RNA Sequencing data were used to

construct the blood RNA expression profiles of 3 patients

with AD, 6 patients with VD, and 3 healthy donors. The AD

and VD samples related clinical information were shown in

Table 1. Public dataset GSE122063 was obtained from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE122063), which includes brain samples from

56 individuals with AD (44 female and 12 male),

36 individuals with VD (16 female and 20 male), and

44 healthy individuals (24 female and 20 male). The range of

age was 60–91 years for healthy controls, 62–96 years for VD

patients and 63–91 years for AD patients. Gene expression

profiling was performed on frontal and temporal cortex

tissue from patients with VD and AD, and healthy controls

obtained from the University of Michigan Brain Bank. Controls

and patients with AD had no infarcts in the autopsied

hemisphere. In order to unify the different data, the

normalizeBetweenArrays function in the limma package

(Ritchie et al., 2015) was used to normalize the gene

expression profiles. If a gene corresponds to multiple probes,

the average expression value of these probes was chosen as the

expression value of the gene. The workflow of the present study

was shown in Figure 1.

FIGURE 1
Flow chart of study design. AD, Alzheimer’s disease; LASSO, least absolute shrinkage and selection operator; NGS data, Next Generation
Sequencing data; ROC, receiver operating characteristic curve; ssGSEA, Single Sample Gene Set Enrichment Analysis; TF, transcription factor; VD,
vascular dementia.
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All analyses in this study were based on the Bioinforcloud

platform (http://www.bioinforcloud.org.cn), including

expression profiles of GSE122063 and NGS data analysis.

Bioinforcloud platform is a self-developed bioinformation

analysis platform, which is a collection of data download,

analysis and visualization of results, brought together various

data processing and bioinformatics analysis methods.

Furthermore, the DEGs were screened in two comparion-pairs

(AD or VD compared to normal tissues in GSE122063 dataset

and NGS data), which adjusted P values >0.05 were significant.

RNA purification and library preparation

Total RNA was extracted and a library was prepared

according to the reagent manufacturer’s instructions. RNA

purity was verified using a kaiaoK5500®Spectrophotometer

(Kaiao, Beijing, China), and the integrity of the RNA was

evaluated using an RNA Nano 6000 Assay Kit on an Agilent

2,100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA).

Two micrograms of total RNA from each sample was used as the

input for library construction using a NEBNext® Ultra™ RNA

Library Prep Kit for Illumina® (#E7530L, NEB, USA).

Library clustering and sequencing

Clustering was performed on the HiSeqPE Cluster reagent kit

v4-cBot-HS (Illumina) on the HiSeqPE cluster generation system

according to the manufacturer’s instructions. After clustering

generation, they were sequenced on the Illumina platform of the

library, and 150bp paired-end reads were generated.

Differential expression analysis

The expression profiles of 12 cases from the GSE122063 were

selected using the Intersect function (Chen and Boutros, 2011)

for analysis of co-expressed genes. Differentially expressed genes

(DEGs) between AD and VD were screened using the limma

package in R (Ritchie et al., 2015). Genes with adjusted p <
0.05 were considered to be significantly differentially expressed.

Identification of hub genes using WGCNA

To find co-expressed gene modules, we extracted DEGs

from GSE122063 to perform co-expression network using

WGCNA package in R (Langfelder and Horvath, 2008).

First, the “dist” function was used to calculate the distance

between the variables, and a hierarchical clustering analysis

was performed using the “hclust” function. We calculated the

power parameters using the “pickSoftThreshold” function,

which in turn assessed the average connectivity and

independence between the modules. The power is deemed

proper when the independence exceeds 0.9. Co-expressed

gene modules were identified by dynamic tree cutting

methods, and hierarchical clustering was established.

Subsequently, we calculated module-disease correlation

using Pearson correlation analysis to obtain relevant

modules with disease status (AD; VD). Furthermore,

associations between genes and modules were defined as

module memberships (MM), and gene significance (GS)

was determined by a combination of phenotypic feature

information and the co-expression. A gene was defined as a

hub gene in the module if it had GS > 0.2 and MM > 0.9.

Functional enrichment analysis

The module eigengene were analyzed using Gene

Ontology (GO) function and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analysis by the

clusterProfiler package (Yu et al., 2012) in R. Results with p <
0.05 were considered significant. We screened biological

processes (BP) and KEGG pathways related to AD or VD

using Gene Set Enrichment Analysis (GSEA) (Subramanian

et al., 2005) by the MSigDB c2.cp.kegg.v7.2.symbols.gmt

gene set collection (Liberzon et al., 2015), P

value <0.05 with the pathways were considered statistically

significant.

Gene set variation analysis

We performed gene set variation analysis (GSVA) of the

expression profile data sets GSE122063 and NGS data using the

GSVA package in R (Hanzelmann et al., 2013). Individual

samples were scored with the gene set using GSVA, and

GSVA scores were obtained for each sample. The GSVA

scores for gene sets were calculated for the GSE122063 and

NGS data.

Construction of the protein–protein
interaction network

Based on the interactions of human transcription factor

(TFs) with their target genes in the TRRUST v2 database (Li

et al., 2018), the hypergeometric test was used to predict

potential TFs regulating functional modules. In addition,

complex cellular functions were performed through the

interactions between proteins. The PPI network was

constructed using Cytoscape software (http://cytoscape.

org/) (Shannon et al., 2003) according to STRING

database (Szklarczyk et al., 2017).
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Construction of LASSO model and
receiver operating characteristic curve
analysis

We used LASSO as predictive tool to select the best features of

high-dimensional data (Ding et al., 2019).We extracted key genes to

construct LASSOmodels to distinguish between AD and VD. Then,

we calculated gene expression values for the regression coefficient, in

which the formula weighted the expression of gene expression:

signature index = ExpGene1*Coef1 + ExpGene2*Coef2 +

ExpGene3*Coef3+. . . ."Coef” is the regression coefficient of the

gene, “Exp” represents the expression value of the gene. In addition,

we randomly assigned samples in the GSE122063 dataset to the

training set (75%) and to the test set (25%). To verify that the LASSO

model could discriminate between AD and VD, ROC curve analysis

was performed on the training and test sets using pROC package

(Robin et al., 2011). To further validate the diagnostic efficiency of

LASSO model, we validated the results in sequencing data.

Prediction of miRNA-target gene
interactions

Interactions between the top 3 miRNAs with the largest |log

FC| values and target genes were predicted using the TargetScan

(Http://www.targetscan.org/vert_72) database (Lewis et al.,

2005). Cytoscape software (Shannon et al., 2003) was used to

visualize the network.

Single-sample gene set enrichment
analysis

Relative immune cell infiltration levels in single sample were

quantified using ssGSEA in R package GSVA (Hanzelmann et al.,

2013). The degree of infiltration of the immune cells in the AD and

VD samples were determined. Immunity network analysis was used

to explore the correlation between immune cells. We also determined

the correlation between feature genes and immune infiltration. The

CIBERSORT algorithm (https://cibersort.stanford.edu/) was used to

infer cell type proportions in the data from AD samples.

Results

Identification of differentially expressed
gene in AD and VD

A total of 18,019 overlapping genes were detected between the

profiles in the GSE122063 data set and our sequencing data

(Figure 2A). These overlapping genes were further used for

differentially expressed gene (DEG) analysis (Figure 2B). In the

GSE122063 data set, there were 5,340 DEGs observed between the

AD and VD groups, including 2,234 up-regulated genes and

3,106 down-regulated genes. In our NGS sequencing data set,

there were 587 DEGs between the AD and VD groups, including

291 up-regulated genes and 296 down-regulated genes. These DEGs

were able to discriminate between AD and VD (Figures 2C,D).

Gene modules associated with AD or VD

The WGCNA method was used to identify the core gene

modules that differentiated between AD and VD (Figure 3). The

results showed that when the minimum power was 3, the

independence was greater than 0.90 (Figure 3A). As shown in

Figure 3B, we identified four key gene modules that

discriminated between AD and VD. The turquoise module

was negatively correlated with AD and positively correlated

with VD (r = -0.51, P = 2e-10 for AD and r = -0.19, p =

0.02 for VD). The blue module positively correlated with AD,

but negatively correlated with VD (r = 0.36, P = 2e-05 for AD and

r = -0.49, P = 1e-09 for VD). The brown module negatively

correlated with VD (coefficient = -0.36, P = 2e-05) (Figure 3C). In

the turquoise module, using GS AD > 0.2 and MM > 0.9 as

thresholds, 292 genes were identified as up-regulated hub genes

in AD and 24 genes were identified as down-regulated hub genes

in VD. In the blue module, using GS AD > 0.2 and MM > 0.9 as

thresholds, 4 genes were identified as up-regulated hub genes in

AD and 5 genes were identified as down-regulated hub genes in

VD. In the brown module, using GS > 0.2 and MM > 0.9 as

thresholds, 8 hub genes were identified as poorly expressed in VD

(Supplementary Table S1). The hub genes in the turquoise and

blue modules were associated with both AD and VD, and hub

genes in the brown module was associated with VD (Figure 3D).

Module genes functional enrichment analysis showed that

turquoise module genes were significantly involved in biological

processes related to neurotransmitters and synaptic regulation

such as modulation of chemical synaptic transmission, regulation

of trans-synaptic signaling, synapse organization, and vesicle-

mediated transport in synapse. The blue module genes were

significantly involved in biological processes related to glial cells

and nerve sheath cells such as myelination, glial cell differentiation,

ensheathment of neurons, and glial cell differentiation. The two

modules were associated with KEGG pathways related to cAMP

signaling pathway, neurotrophin signaling pathway, GnRH signaling

pathway, and ECM- receptor interaction. (Figures 3E,F). Above all,

the pathways of module genes may be play a vital role and that

promote the development and progress in AD or VD.

Validation of critical pathways in AD
and VD

The overlapping genes among the hub genes and the genes

identified in KEGG pathway analysis were evaluated further
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(Supplementary Table S2). A total of 21 hub genes were selected

as target genes in the data set (Figure 4A). Then, we constructed a

TF-module genes-pathway global regulation network containing

9 TFs and 6 hub genes (Figure 4B). Finally, the mechanisms of

different modules in progression of AD or VD were explored

(Figures 4C,D).

LASSO model can predict AD and VD

Eight target genes were identified with non-zero regression

coefficients as optimal features from 21 target genes in the

training set using the LASSO method and 10-fold cross-

validation (Figure 5A). Principal component analysis (PCA)

showed that the target genes could distinguish AD from VD

(Figure 5B). The accuracy of the 8 feature genes based on

LASSO model was 0.986 in the training set and 0.960 in the test

set. This demonstrated that the model was robust (Figures 5C,D).

The results using our sequencing data agreed with the results from

the GSEA dataset (Figure 5E). Moreover, the expression of the

8 feature genes was significantly higher in patients with VD than in

patients with AD (Figure 5F). The accuracy of the 8 feature genes for

discrimination between AD and VD was 0.845 (Figure 5G). In

conclusion, we screened 8 feature genes for discrimination of AD

and VD by LASSO model, including WNT10B, PPP2CA, NCEH1,

MAP2K4, ITPR1, GRIA4, GABBR2 and ATP1A3.

Immune cells infiltration in AD and VD

The GSE122063 data and our NGS data were used to

investigate the immune cell types in the AD and VD samples.

Dendritic cells (DCs) and plasmacytoid dendritic cells (pDC)

were present at significantly greater levels in the AD and VD

FIGURE 2
Differential expression analysis. (A) The venn diagram showed the genes overlaped in the blood expression profile of GSE122063 data set and
sequencing data. (B)Manhattan map of differential gene expression. (C) The heat map of DEGs in GSE122063 data set. (D) The heat map of DEGs in
Next Generation Sequencing data (NGS). AD, Alzheimer’s disease; VD, vascular dementia.

Frontiers in Genetics frontiersin.org06

Wang et al. 10.3389/fgene.2022.1038585

122

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1038585


samples (Figure 6A). Correlation analysis between the

24 immune cell types showed that increased infiltration of

B cells was significantly correlated with AD, and infiltration of

aDCs was significantly correlated with VD (Figure 6B). We

performed correlation analysis on immune cells using

CIBERSORT (proportion). The results showed that pDCs

were positively associated with neutrophils (Figure 6C). In

addition, we also clustered immune cells based on abundance,

FIGURE 3
Weighted Gene Co-Expression Network Analysis. (A) Definition of power related to modules. (B) Recognition module. (C) The turquoise
module negatively correlated with AD and positively correlated with VD, blue module was positively correlated with AD, but the opposite of VD,
brown module was negatively correlated with VD. Red, positive correlstion; Blue, negative correlation. (D) Module membership and gene
significance strongly correlatedwith each other within eachmodule. (E) Biological processes involving genes of the differentmodules. (F) KEGG
pathways involving genes of the different modules. AD, Alzheimer’s disease; VD, vascular dementia; KEGG, Kyoto Encyclopedia of Genes and
Genomes.
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resulting in four clusters (Figure 6D). As shown in Figures 6B,E

cells and T follicular helper (TFH) cells were correlated with

seven featured genes. We found that plasma cells represented the

highest proportion of infiltrated immune cells (Figure 6F).

Discussion

Progress in modern biotechnology and big data analysis has

resulted in expansion of biomedical research of diseases beyond

clinical symptoms and manifestations. Research has increasingly

targeted the regulatory mechanisms of diseases at the molecular

level. Previous studies have shown that onset and progression of

AD were not caused by a single gene or a few mutations, but by

disruption of a comprehensive gene regulation network (Raikwar

et al., 2018; Ding et al., 2019).

In this study, using module mining analysis of data sets, we

built a module-related biological network. Module mining using

WGCNA resulted in identification of three modules associated

with AD and VD. Among these, turquoise module genes were

up-regulated in AD and down-regulated in VD. Blue module

genes were down-regulated in AD and up-regulated in VD.

Brown module genes were down-regulated in VD. The results

showed that the blue module was enriched in biological processes

associated with glial cells and nerve sheath cells, and the

turquoise module was associated with cell cycle, synapse, and

neurotransmission. Abnormal glial cell function has been shown

to play an important role in the pathophysiology of AD

(Herculano-Houzel, 2014). Under certain conditions,

microglia express proinflammatory factors that may accelerate

development of AD (Heppner et al., 2015). In AD, oxidative

damage results in changes in cell cycle regulation. Cell cycle

dysfunction may play an important role in neuronal dysfunction

in AD, and may represent a potential therapeutic target (Bonda

et al., 2010). These findings have been shown to be associated

with development of AD and VD (Ding et al., 2019). In general,

FIGURE 4
Integrated regulation of AD or VD by change in hub gene expression of modules. (A) The expression of target genes in the GSE122063 data set.
The thick black bar in the middle indicates the interquartile range, and the black line extending from it represents the 95% confidence interval. (B)
Integrated regulatory network of cAMP signaling pathways and Neurotrophin signaling pathways. (C,D) Maps of gene-pathway correlations in both
blue and turquoise module. AD, Alzheimer’s disease; VD, vascular dementia.
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the genes of modules were involved in pathways play a vital role

and which may promote the occurrence of disease course in AD

and VD.

We identified six hub genes that regulate key cellular

signaling pathways. According to previous studies, ATP1A3

(Shrivastava et al., 2020), PP2A (Wang et al., 2019), NCEH1

(Ding et al., 2019), ITPR1 (Uddin et al., 2018), and CAMKK2

(Sabbir, 2018) have been shown to be associated with onset of

AD. The target genes identified in GSE122063 data set were

highly expressed in VD, except for HDAC1. In addition, reduced

FIGURE 5
Assessment of models for identification of Alzheimer’s disease (AD) and vascular dementia (VD). (A) 10-fold cross-validation for tuning
parameter selection in the LASSOmodel. (B) PCA prior to and after LASSO variable reduction. LASSO, least absolute shrinkage and selection operator;
PCA, principal component analysis. (C,D) ROC curve for patients with AD and patients with VD in the training and test sets. (E) ROC curve for patients
with AD and patients with VD in the NGS dataset. (F) Gene expression levels in patients with AD and patients with VD in the NGS and
GSE122063 data sets. The thick black bar in the middle indicates the interquartile range, and the black line extending from it represents the 95%
confidence interval. (G) ROC curves for patients with AD and patients with VD in the NGS and GSE122063 data sets.
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FIGURE 6
Correlation between immune cells in AD and VD. (A) Expression of differentially abundant immune cells in the GSE122063 and NGS datasets. (B)
Correlation between immune cell types in AD and VD. Red and purple represent positive correlations, and green and yellow indicate negative
correlations. (C)Correlation between immune cells. The blue section indicates activation, and the orange section indicates inhibition. (D)Network of
immune cell types (abundance). Circles represents the prognostic effect of the cell type, and the thickness of the line indicates the strength of
correlations between the cell types. (E) Correlation between immune cell types and the eight featured genes. (F) Estimated proportions of immune
cell types in AD. AD, Alzheimer’s disease; VD, vascular dementia.

Frontiers in Genetics frontiersin.org10

Wang et al. 10.3389/fgene.2022.1038585

126

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1038585


cAMP signaling through PKA has been shown to be a key feature

of AD pathology, and local increases in cAMP signaling may

contribute to AD pathology (Kelly, 2018). Neurotrophin plays an

important role in central and peripheral neuron survival and

differentiation. Inhibition of axonal neurotrophin transport may

also contribute to development of AD (Wu et al., 2009). Our

results showed that 9 TFs regulated these pathways through six

interacting hub genes. A comprehensive regulatory landscape

network map was constructed. ATP1A3, PP2A, NCEH1, ITPR1,

CAMKK2, and

Eight feature genes were identified using LASSO

regression that may be involved in development of AD.

Studies have shown that the AMPA receptor (GRIA4) was

significantly up-regulated in the hippocampus of patients with

AD (Jacob et al., 2007). MAP2K4 was exhibited brain-specific

gene and to play essential roles in the regulation of cell

proliferation in AD (Wu et al., 2021), while MAP2K4 was

related with the condition and prognosis of endometrial

carcinoma (Zhang et al., 2022). ITPR1 (Seo et al., 2020)

and GABBR2 (Yin et al., 2021) may be associated with AD,

and prostate cancer (Choi et al., 2022). Furthermore, PPP2CA

as a candidate gene that it may affect the risk of AD (Vazquez-

Higuera et al., 2011). NCEH1 and WNT10B, and

ATP1A3 have been rarely reported to be associated with

AD, but WNT10B has an important role in progression of

colorectal cancer (Shi et al., 2019) and hepatocellular

carcinoma (Zhou et al., 2020). Therefore, suggesting that

WNT10B, ITPR1, GABBR2, ATP1A3, NCEH1, MAP2K4,

PPP2CA, and GRIA4 may play a vital role in AD and VD,

while also need more studies to further validate the expression

of hub genes. Furthermore, the LASSO model based on target

genes showed good diagnostic value, which was validated

using our sequencing data.

Studies have reported that age-related immunoadaptive

recombination causes lymphocyte immunity as a whole to

begin having a role in an intermediate metastable state, and

the dominant role of immune factors in the pathogenesis of

VD and AD (Nuvakhova and Rachin, 2020). In the present, to

quantify the extent to which the immune cells infiltrated into

brain tissue, we used ssGSEA. The results showed that

infiltration of B cells and TFH cells was significantly higher

in AD and VD. Nuclear factor of activated B cells has been

shown to be involved in physiological inflammatory processes,

and was a promising target for treatment of AD (Seo et al.,

2018). We also detected decreased levels of B and T

lymphocytes in AD and VD, though the decreases were not

statistically significant (Busse et al., 2017). Follicular helper

CD4 T cells are specialized helpers of B cells (Crotty, 2011).

Regulatory T cells were significantly reduced in VD patients,

and the T cells were significantly increased in AD patients,

possibly due to the inflammation triggered by Aβ (Ziegler-

Heitbrock, 2007). Recently, neuroinflammation and tissue-

resident immune cells are increasingly recognized as key

factors in the pathogenesis of AD (Guzman-Martinez et al.,

2019; Lutshumba et al., 2021). Therefore, we speculated that

immune cell interactions may promote development of AD

and VD.

In conclusion, we used WGCNA analysis to mine modules

related to AD and VD, and identified target genes that may

regulate AD and VD. Using LASSO modeling, we showed that

these target genes could distinguish between AD and VD.

Furthermore, modules of WGCNA were significantly involved

in cAMP signaling pathway, suggesting genes of pathways may

be promote the cell death in AD andVD. However, this study had

some limitations. First, the study was based primarily on

bioinformatics analysis, while the experiments were not

validated, so we only offer theoretical conclusions. Second,

our sequencing data can discriminate was validated between

AD and VD, while the samples size was relatively small, so

studies with large sample sizes are warranted to affirm our

findings. Therefore, this study provided a theoretical basis for

discrimination between AD and VD, and provided new insight

for future studies.
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Network pharmacology- and
molecular docking-based
approaches to unveil the
pharmacological mechanisms of
dihydroartemisinin against
esophageal carcinoma

Haixia Wang*

Pharmacy Department, West Hospital of the Second Hospital of Shanxi Medical University, Taiyuan,
China

Objective: Dihydroartemisinin (DHA) is an active metabolite of artemisinin and

its derivatives, which is a potent drug extensively applied in clinical treatment of

malaria. The antitumor properties of DHA have received increasing attention.

However, there is no systematic summary on the pharmacological mechanisms

of DHA against esophageal carcinoma (ESCA). The present study implemented

network pharmacology- and molecular docking-based approaches to unveil

the pharmacological mechanisms of DHA against ESCA.

Methods: DHA targets were accessed through integrating the

SwissTargetPrediction, HERB, as well as BATMAN-TCM platforms. In TCGA-

ESCA dataset, genes with differential expression were screened between

161 ESCA and 11 normal tissue specimens. DHA targets against ESCA were

obtained through intersection. Their biological significance was evaluated with

functional enrichment analysis. A prognostic signature was established via uni-

and multivariate cox regression analyses. DHA-target interactions were

predicted via molecular docking. Molecular dynamics simulation was

implemented to examine the stability of DHA binding to potential targets.

Results: The study predicted 160 DHA targets as well as 821 genes with

differential expression in ESCA. Afterwards, 16 DHA targets against ESCA

were obtained, which remarkably correlated to cell cycle progression. The

ADORA2B- and AURKA-based prognostic signature exhibited the reliability and

independency in survival prediction. The stable docking of DHA-ADORA2B and

DHA-AURKA was confirmed.
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Conclusion: Collectively, this study systematically revealed the basis and

mechanism of DHA against ESCA through targeting multi-target and multi-

pathway mechanisms, and thus offered theoretical and scientific basis for the

clinical application of DHA.

KEYWORDS

dihydroartemisinin, esophageal carcinoma, network pharmacology, molecular
docking, ADORA2B, AURKA

Introduction

Esophageal carcinoma (ESCA) remains one of the most

lethal cancers across the globe (Sung et al., 2021), with two

primary histological subtypes: squamous cell carcinoma (ESCC)

as well as adenocarcinoma (EAC) (Lu et al., 2022). The overall 5-

year survival rate is merely 15–25% (Hulshof et al., 2021). The

features and etiology of ESCA may vary on the basis of region or

ethnicity (Liu et al., 2017). ESCC occupies the predominant

subtype of ESCA, notably in the Asian and African regions,

which correlates to dietary habits as well as exposure to

carcinogens (Zhang et al., 2022). Oppositely, EAC mainly

develops from esophageal epithelial intestinal metaplasia

caused by chronic gastroesophageal reflux diseases, which is

the majority of ESCA in Western countries (Zhang et al.,

2022). Currently, endoscopic or surgical resection is

appropriate for early-stage patients, while radio- or/and

chemotherapies are mainly reserved for those with advanced

stage or metastases (Mukherjee et al., 2021; Yang et al., 2022).

Chemotherapeutic agents (cisplatin, 5-fluorouracil, doxorubicin,

etc.) may cause a range of dose-limiting toxicities (Zhang et al.,

2021). Molecular targeted therapy has achieved unprecedented

progress in cancer therapy (Lu et al., 2022). Nevertheless, only

trastuzumab against HER2, as well as ramucirumab targeting

VEGFR-2 have been recommended for the treatment of ESCA

(Xu et al., 2021; Safran et al., 2022). Immunotherapy comprising

immune checkpoint inhibitors, vaccines, monoclonal antibodies

as well as adoptive cellular immunotherapy represents a novel

therapeutic option of ESCA (Janjigian et al., 2021; Shitara et al.,

2021). Despite the remarkable potential of immunotherapy in

cancer therapy, individual patients’ response greatly varies, and

only a small percentage of cases respond to immunotherapy (Luo

et al., 2021; Sun et al., 2021). Hence, achievement of the goal of

effective therapeutic options remains challenging. Rather than

exploring a single ESCA-causing gene and therapeutic agents

that act only on a single target, the entire drug-disease network

should be considered, aiming to determine multi-target agents to

lower side effects.

Traditional Chinese medicine artemisinin is extracted from

Artemisia annua L, and dihydroartemisinin (DHA) with high

water solubility and antimalarial activity is the first-generation

derivative of this compound that is an effective and fast-acting

antimalarial agent with low toxicity (Zhu et al., 2020). DHA

displays the considerable potential for preventing or treating

ESCA because of its low toxicity and known safety, and

preclinical research has proposed the molecular mechanisms

and pharmacological effect underlying DHA against ESCA

(Zhu et al., 2020). Zhao et al. reported that DHA exhibits an

anti-proliferative effect against ESCC cells, which is capable of

down-regulating mTOR cascade pathway partly via binding to

AKT1 and p70S6K (Zhu et al., 2020). Pyroptosis is a novel form

of pro-inflammatory programmed cell death, and its inducers

enable to strengthen antitumor effects (Niu et al., 2022). Song

et al. proposed that DHA may trigger pyroptosis of ESCC cells

via impacting the activity of PKM2-caspase-8/3-GSDME

signaling (Jiang et al., 2021). Administration of

chemotherapeutic agents is usually accompanied by resistance.

DHA may sensitize ESCC to cisplatin through attenuating the

activity of Sonic Hedgehog pathway (Cui et al., 2020). There is an

interplay between autophagy and epithelial-mesenchymal

transition during tumor progression (Chen et al., 2021; Niu

et al., 2021). He at al. found that the migratory capacity and

the epithelial-mesenchymal transition process of ESCA cells is

mitigated by DHA via triggering autophagy (Chen et al., 2020).

PKM2 is a key regulator of glycolysis, and DHA lowers glycolysis

of ESCA through down-regulating PKM2 (Li et al., 2019).

Additionally, hTERT has been confirmed as a therapeutic

target of DHA against ESCC (Li et al., 2021). Altogether,

DHA exerts an anti-ESCA effect through targeting multi-

target and multi-pathway mechanisms.

In the current study, we developed a new integrated strategy

to probe out the key targets and mechanisms of DHA in the

treatment of ESCA on the basis of network pharmacology and

molecular docking, which offered the theoretical and scientific

basis for the clinical application of DHA against ESCA.

Materials and methods

Dihydroartemisinin target prediction

The chemical structure of DHA was acquired from the

PubChem chemical information resource (https://pubchem.

ncbi.nlm.nih.gov) (Kim et al., 2021). Potential targets of DHA

were searched from the SwissTargetPrediction (http://www.

swisstargetprediction.ch) (Daina et al., 2019), as well as HERB

(http://herb.ac.cn/) (Fang et al., 2021) web servers. Additionally,

DHA targets were screened through the BATMAN-TCM (http://
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bionet.ncpsb.org/batman-tcm) platform in accordance with the

screening conditions of score cutoff = 5 and adjusted p-value < 0.

05 (Liu et al., 2016). DHA targets were matched and corrected on

the basis of the universal Protein Resource (UniProt, (2021);

http://sparql.uniprot.org/). Afterwards, DHA targets obtained

from three platforms were merged, and deduplicated.

The cancer genome atlas (TCGA)-
esophageal carcinoma data acquisition

RNA transcriptome profiles as well as clinicopathological

and survival information of ESCA cases were downloaded from

TCGA-ESCA dataset (https://cancergenome.nih.gov/). In total,

161 ESCA and 11 normal tissue specimens were enrolled for

subsequent analysis.

Differential expression analysis

In TCGA-ESCA dataset, limma package was adopted for

screening differentially expressed genes (DEGs) between ESCA

and normal tissue specimens. Adjusted p-value < 0.01 together

with |log2 fold-change|>1 were set as the screening criteria.

Shared genes between DHA targets and DEGs were

intersected through the Venny 2.1 online tool, named DHA

targets against ESCA.

Protein-protein interaction (PPI) analysis

DHA targets against ESCA were uploaded to the Search Tool

for the Retrieval of Interacting Genes (STRING) database

(https://string-db.org/) (Szklarczyk et al., 2015). In accordance

with hide unconnected targets along with highest confidence of 0.

900, PPI network of DHA targets against ESCA was obtained.

Hub genes among DHA targets against ESCA were further

evaluated with cytoHubba plugin of Cytoscape tool 3.7.2

(Chin et al., 2014). Degree of each hub gene was also computed.

Establishment and verification of a
prognostic signature

In TCGA-ESCA dataset, univariate cox regression analysis

was implemented to screen which DHA targets against ESCA

significantly correlated to ESCA cases’ overall survival (OS).

Prognostic DHA targets against ESCA with

p-value <0.05 were enrolled in a multivariate cox regression

model. The prognostic signature was conducted on the basis of

the linear combination of regression coefficients derived from the

multivariate Cox regression model multiplied with expression

values. The risk score of each case was computed. TCGA-ESCA

cases were equally separated into discovery set as well as

validation set. In each set, ESCA cases were further assigned

to high- and low-risk subpopulations. Kaplan-Meier curves of OS

between two subpopulations were plotted, and OS difference was

estimated with log-rank test. Alive and dead status of cases in

each set was displayed. Receiver operating characteristic (ROC)

curve was drawn for evaluation of the prediction accuracy of the

prognostic signature. Area under the curve (AUC) was also

computed. TNMplot.com web tool was employed for

comparison of survival difference between high and low

expression subpopulations of DHA targets against ESCA in

TCGA-ESCA dataset (Bartha and Győrffy, 2021). Expression

values of DHA targets against ESCA across distinct pathological

stages were displayed with ggpubr package, and the difference

was evaluated using one-way analysis of variance.

Uni- and multivariate cox regression
analysis

Clinicopathological factors comprising gender, pathological

stage, TNM staging as well as prognostic signature were enrolled

for estimating their associations with TCGA-ESCA cases’ OS by

use of uni- and multivariate cox regression analysis.

Functional enrichment analysis

Biological features of DHA targets against ESCAwere probed

out utilizing clusterProfiler package (Yu et al., 2012). Gene

Ontology (GO) covering biological process, cellular

component and molecular function, and Kyoto Encyclopedia

of Genes and Genomes (KEGG) enrichment analyses were

separately implemented.

Gene set enrichment analysis (GSEA)

The potentially altered biological processes between high and

low expression subpopulations of DHA targets against ESCA

were determined with GSEA tool (Subramanian et al., 2005). The

“c5. go.v7.5.1. symbols” and “c2. cp.kegg.v7.5.1. symbols” gene

sets acquired from the Molecular Signatures Database Molecular

Signatures Database (Liberzon et al., 2015) were utilized as

reference sets.

Molecular docking

The 3D structures of DHA targets against ESCA were

accessed from the PDB database and saved in pdb format.

PyMOL software was used for protein pretreatment. In

addition, the 3D structure of DHA was created using
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Chem3D software and saved in mol*2 format. The pre-processed

targets and DHA were imported into AutoDockTools

1.5.6 software for molecular docking, and the results were

saved in pdbqt format. Vina scripts were run for computing

molecular binding energies as well as visualizing molecular

docking results. Additionally, Discovery Studio 2019 software

was implemented for searching for docking sites as well as

calculating LibDockScore for flexible binding. The molecular

docking results were imported into PyMOL software for

visualizing the molecular docking conformation.

Molecular dynamics simulation

Molecular dynamics simulation was implemented by use

of Discovery Studio 2019 software. The molecular structure of

FIGURE 1
Network pharmacology determines DHA targets against ESCA. (A) The 2D chemical structure of DHA from the PubChem chemical information
resource. (B) The target class distribution for the first 25 DHA targets predicted by the SwissTargetPrediction platform. (C) The distribution of DHA
targets predicted by the SwissTargetPrediction, HERB, as well as BATMAN-TCM platforms. (D) Volcano diagram of the DEGs between 161 ESCA and
11 normal tissue specimens in TCGA-ESCA dataset. Red, up-regulation; green, down-regulation. (E) Heatmap of the expression values of the
first 100 most significantly DEGs between 161 ESCA and 11 normal tissue specimens in TCGA-ESCA dataset. (F) Venn diagram of the shared genes
between DHA targets and DEGs. (G,H) The PPI network of DHA targets against ESCA through the (G) STRING online tool or (H) cytoHubba plugin of
Cytoscape tool.
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DHA was added to the CHARMM force field by “simulation”

module, and DHA targets against ESCA were solvated by

“solvation” module. The molecular dynamics simulation

parameters were set by “standard dynamics cascade module

for the targets added with the solvent system. The system

temperature was elevated from 50 K to 300 K under 100 ns of

analog sampling; the time step was set to 1 ns; and other

parameters were set to default values. The Root Mean Square

Deviation (RMSD) as well as Root Mean Square Float (RMSF)

values were analyzed.

Results

Network pharmacology determines
dihydroartemisinin targets against
esophageal carcinoma

From the PubChem chemical information resource, we

accessed the 2D chemical structure of DHA, as illustrated in

Figure 1A. Through integrating the SwissTargetPrediction,

HERB, as well as BATMAN-TCM platforms, potential

therapeutic targets of DHA were predicted. In accordance

with the SwissTargetPrediction platform, the target class

distribution for the first 25 DHA targets was visualized

(Figure 1B). Enzyme was the predominant target class,

occupying 28.0%. In total, 111, 3, and 51 DHA targets were

separately predicted by the SwissTargetPrediction, HERB, as well

as BATMAN-TCM platforms (Figure 1C). Under merging and

deduplication, 160 DHA targets were finally acquired

(Supplementary Table S1).

In TCGA-ESCA dataset, 821 DEGs (comprising 429 genes

with up-regulation as well as 392 genes with down-regulation)

between 161 ESCA and 11 normal tissue specimens were

screened in line with the screening condition of adjusted

p-value < 0.01 together with |log2 fold-change|>1 (Figure 1D).

The specific information of DEGs was listed in Supplementary

Table S2. The first 100 most significantly DEGs were depicted in

Figure 1E. Venn diagram illustrated 16 DHA targets against

ESCA shared by DHA targets and DEGs (Figure 1F), comprising

MMP9, CA2, FBP1, CCNA1, CCNA2, CDK2, AOC3, MMP1,

TOP2A, AURKA, CDK1, CCNB1, CCNB2, KCNQ1,

ADORA2B, and GABRE. Their closely interactions were

investigated in the PPI network (Figures 1G,H and Table 1).

Establishment and verification of a reliable
prognostic signature for esophageal
carcinoma

The prognostic implication of DHA targets against ESCA was

investigated in TCGA-ESCA dataset. Univariate cox regression

analysis demonstrated that AURKA, and ADORA2B significantly

correlated to ESCA cases’ OS. AURKA, and ADORA2B were

utilized for establishing a multivariate cox regression model. The

risk score was computed on the basis of the coefficients and

expression values of AURKA, and ADORA2B. TCGA-ESCA

cases were equally divided into discovery set and validation set.

In discovery set, we assigned cases into high- and low-risk

subpopulations. Survival difference between subpopulations was

assessed. High-risk subpopulation exhibited worse OS outcome in

comparison to low-risk subpopulation (Figure 2A). Survival status

TABLE 1 DHA targets against ESC ranked by degree.

Gene symbol Log2 fold-change Adjusted p-value Degree

MMP9 3.239293 2.35E-05 13

CA2 −2.37148 8.01E-08 3

FBP1 −1.21561 0.00363 1

CCNA1 4.166111 0.004252 8

CCNA2 1.499277 9.59E-08 9

CDK2 1.037182 6.92E-05 10

AOC3 −2.21232 7.01E-09 1

MMP1 2.947104 7.96E-05 6

TOP2A 2.52532 3.19E-08 9

AURKA 1.827825 2.06E-09 8

CDK1 1.828233 1.24E-10 9

CCNB1 1.837112 7.43E-10 9

CCNB2 1.771093 4.36E-10 8

KCNQ1 −3.12088 1.83E-15 3

ADORA2B 1.488384 0.001348 1

GABRE 2.197392 0.006224 1
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FIGURE 2
Establishment and verification of a reliable prognostic signature for ESCA cases in TCGA-ESCA dataset. (A) Kaplan-Meier OS curves and log-
rank test between high- and low-risk subpopulations in discovery set. (B)Distribution of alive and dead status in high- and low-risk subpopulations in
discovery set. (C) ROC curve on the basis of the prognostic signature in discovery set. (D) Kaplan-Meier OS curves and log-rank test between high-
and low-risk subpopulations in validation set. (E) Distribution of alive and dead status in high- and low-risk subpopulations in validation set. (F)

(Continued )
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was also compared between subpopulations. More dead cases were

investigated in high-risk subpopulation (Figure 2B). For evaluating

whether the prognostic signature enabled to estimate ESCA cases’

OS, ROC curve was plotted. In Figure 2C, the AUC value was

0.637, indicative of the excellent performance of the prognostic

signature in estimating ESCA cases’ OS. The prognostic signature

was further verified in validation set and entire set. As expected, it

exhibited the remarkable advantage in ESCA cases’ prognosis

prediction (Figures 2D–I), indicating the clinical generalizability

of this signature.

The prognostic signature independently
predicts esophageal carcinoma patients’
prognosis

Utilizing univariate cox regression analysis, we investigated the

associations of clinicopathological factors and the prognostic

signature with ESCA cases’ OS. As illustrated in Figure 2J, the

prognostic signature along with pathological stage, N stage and M

stage were linked to worse ESCA cases’ OS. Multivariate cox

regression analysis was conducted for estimating which factors

FIGURE 2 (Continued)
ROC curve of the prognostic signature in validation set. (G) Kaplan-Meier OS curves and log-rank test between high- and low-risk
subpopulations in entire set. (H) Distribution of alive and dead status in high- and low-risk subpopulations in entire set. (I) ROC curve based on the
prognostic signature in entire set. (J) Forest diagram of univariate cox regression analysis for the associations of clinicopathological factors and the
prognostic signature with ESCA cases’OS. (K) Forest diagram of multivariate cox regression analysis for the associations of clinicopathological
factors and the prognostic signature with ESCA cases’ OS.

FIGURE 3
Biological features of DHA targets against ESCA. (A) The first ten biological process terms enriched by DHA targets against ESCA. (B) Interactions
between the first ten biological process terms. (C) The first ten cellular component terms enriched by DHA targets against ESCA. (D) Interactions
between the first ten cellular component terms. (E) The first ten molecular function terms enriched by DHA targets against ESCA. (F) Interactions
between the first ten molecular function terms. (G) The first ten KEGG pathways enriched by DHA targets against ESCA. (H) Interactions
between the first ten KEGG pathways.
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FIGURE 4
DHA targets against ESCA (ADORA2B and AURKA) correlate to prognosis and pathological stage of ESCA as well as tumorigenic pathways. (A)
Kaplan-Meier OS curves between high and low ADORA2B expression subpopulations in TCGA-ESCA dataset. (B) Kaplan-Meier OS curves between
high and low AURKA expression subpopulations in TCGA-ESCA dataset. (C,D) ADORA2B and AURKA expression across distinct pathological stages.
(E,F) GO enrichment results of ADORA2B and AURKA. (G,H) KEGG pathway enrichment results of ADORA2B and AURKA.
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independently predicted ESCA cases’OS. As a result, the prognostic

signature acted as an independent risk factor (Figure 2K).

Dihydroartemisinin targets against
esophageal carcinoma correlate to cell
cycle progression

Biological features of DHA targets against ESCA were

probed out utilizing GO and KEGG enrichment approach.

For biological process, histone phosphorylation, mitotic DNA

integrity checkpoint, G2/M transition of mitotic cell cycle, cell

cycle G2/M phase transition, mitotic nuclear envelope

disassembly, DNA damage response, signal transduction by

p53 class mediator resulting in cell cycle arrest, cell cycle G1/S

phase transition, signal transduction involved in mitotic

G1 DNA damage checkpoint, intracellular signal

transduction involved in G1 DNA damage checkpoint and

signaling transduction involved in mitotic cell cycle

checkpoint were significantly linked to DHA targets against

ESCA (Figures 3A,B). Cellular components of cyclin-

dependent protein kinase holoenzyme complex, serine/

threonine protein kinase complex, protein kinase complex,

transferase complex, transferring phosphorus-containing

groups, condensed chromosome, pronucleus, chromosomal

region, condensed nuclear chromosome, centromeric region,

spindle microtubule, and microvillus were remarkably

enriched by DHA targets against ESCA (Figures 3C,D).

Also, they correlated to molecular functions of histone

kinase activity, cyclin-dependent serine/threonine kinase

regulator activity, protein kinase regulator activity,

kinase regulator activity, cyclin-dependent protein serine/

threonine kinase activity, cyclin-dependent protein

kinase activity, cyclin binding, protein heterodimerization

activity, metalloendopeptidase activity as well as protein

serine/threonine kinase activity (Figures 3E,F). As

illustrated in KEGG pathway enrichment results,

progesterone-mediated oocyte maturation, cell cycle,

cellular senescence, oocyte meiosis, p53 signaling pathway,

hepatitis B, viral carcinogenesis, human T-cell leukemia virus

one infection, AMPK signaling pathway as well as FoxO

signaling pathway (Figures 3G,H). Altogether, DHA targets

against ESCA might participate in mediating cell cycle

progression.

TABLE 2 Molecular docking between DHA and potential targets.

Domain Compound Vina
(kcal·mol−1)

RMSD DS(LibDockScore) Hydrogen bond
interaction

Hydrophobic
interaction

MMP9(1GKC) DHA −7.2 1.221 92.2116 TYR:420,TYR:
423,PRO:421

LEU:188,VAL:398,HIS:401,HIS:405,HIS:
411,LEU:187

CA2(3F6U) DHA −5.9 2.163 76.5684 TRP:215,GLU:192 HIS:57,CYS:220,CYS:191

FBP1(7CVH) DHA −6.4 1.678 99.8336 ALA:190,SER:46,SER:47 ARG:50,PRO:189,ALA:52,ILE:191,LYS:
43,LEU:187

CCNA1(2G9X) DHA −9.0 1.488 80.4867 HIS:296 LEU:297,HIS:71,LYS:300

CCNA2(1OI9) DHA −9.6 1.068 74.8124 HIS:71,LYS:300,SER:0 HIS:296,LEU:297,ILE:70

CDK2 (1GIH) DHA −9.6 0.978 79.1237 GLN:131 ILE:10,LEU:134,ALA:31,VAL:18,VAL:
64,ALA:144,PHE:80

AOC3(2Y74) DHA −8.7 1.791 94.64 ARG:488 LEU:608,PHE:610,PHE:704

MMP1(1SU3) DHA 72.6 1.825 86.2719 PRO:90,SER:239,TYR:
240,ASN:315

PHE:316,TYR:237,VAL:319

TOP2A (5NNE) DHA −4.0 1.153 66.8962 GLN:85 VAL:87,ILE:146,LEU:92

AURKA (5DOS) DHA −8.9 1.397 86.7565 ASN:261,ASP:
274,LYS:162

MG:401,ALA:273,LEU:194,LEU:210,LEU:
263,LEU:139,ALA:160,VAL:147

CDK1 (6GU6) DHA −8.8 1.877 50.3516 - VAL:174,PRO:62

CCNB1(4Y72) DHA −10.4 1.311 92.661 ASP:146,TYR:
15,GLY:13

ARG:158,LEU:149,VAL:164,VAL:165

CCNB2(5LQF) DHA −9.4 1.340 85.0795 GLU:221,LYS:324,ARG:
188,ARG:307

LEU:193,HIS:320,LEU:303,PRO:189

KCNQ1(6B8M) DHA 7.8 1.842 71.392 ALA:545 LYS:541,VAL:544,LYS:548,ALA:348

ADORA2B
(5UEN)

DHA −8.4 1.811 88.3329 ALA:84 ALA:66,VAL:62,LEU:65,PHE:171,VAL:
174,CYS:80,CYS:169,ILE:69

GABRE(6DW0) DHA 10.6 1.637 80.0045 ASP:56,GLN:185 HIS:55,LYS:278,PRO:277,LEU:183,PRO:
184,MET:49

RMSD, root mean square deviation; DHA, dihydroartemisinin.
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Dihydroartemisinin targets against
esophageal carcinoma (AURKA and
ADORA2B) correlates to prognosis and
pathological stage of esophageal
carcinoma

Among DHA targets against ESCA, DORA2B, and AURKA

significantly correlated to ESCA prognosis. Up-regulated

ADORA2B was linked to better OS, while up-regulated

AURKA was correlated to worse OS in TCGA-ESCA dataset

(Figures 4A,B). Further analysis for the associations of

ADORA2B and AURKA with pathological stage of ESCA was

carried out. In Figure 4C, stage II cases exhibited higher

ADORA2B expression. Additionally, AURKA expression

displayed positive associations to pathological stage

(Figure 4D), indicating that AURKA was linked to ESCA

progression.

Mechanisms underlying ADORA2B and
AURKA

Mechanisms underlying ADORA2B and AURKA were

further probed out utilizing GSEA. For GO enrichment

results, negative regulation of metallopeptidase activity,

sensory perception of smell, intermediate filament,

intermediate filament cytoskeleton and olfactory receptor

activity exhibited positive interactions to ADORA2B

(Figure 4E). Meanwhile, alternative mRNA splicing via

spliceosome, negative regulation of wound healing, sensory

perception of smell, odorant binding and olfactory receptor

activity displayed positive correlations to AURKA

(Figure 4F). For KEGG pathway enrichment results, folate

biosynthesis, maturity onset diabetes of the young, olfactory

transduction, sulfur metabolism as well as taurine and

hypotaurine metabolism were positively linked to

FIGURE 5
The 3D molecular docking models between DHA and potential targets. (A) MMP9; (B) CA2; (C) FBP1; (D) CCNA1; (E) CCNA2; (F) CDK2; (G)
AOC3; (H) MMP1; (I) TOP2A; (J) AURKA; (K) CDK1; (L) CCNB1; (M) CCNB2; (N) KCNQ1; (O) ADORA2B; and (P) GABRE.
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FIGURE 6
The 2D molecular docking models between DHA and potential targets. (A) MMP9; (B) CA2; (C) FBP1; (D) CCNA1; (E) CCNA2; (F) CDK2; (G)
AOC3; (H) MMP1; (I) TOP2A; (J) AURKA; (K) CDK1; (L) CCNB1; (M) CCNB2; (N) KCNQ1; (O) ADORA2B; and (P) GABRE.
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ADORA2B (Figure 4G). Also, cytosolic DNA sensing

pathway, graft versus host disease, maturity onset diabetes

of the young, olfactory transduction, and regulation of

autophagy exhibited positive correlations to AURKA

(Figure 4H).

Molecular docking between
dihydroartemisinin and potential targets

Utilizing Chem3D, we obtained the 3D structure of DHA

with mol*2 format, and downloaded the 3D structure of

FIGURE 7
Molecular dynamics simulation of ADORA2B-DHA and AURKA-DHA complexes. (A) Alterations in RMSD values during the process ofmolecular
dynamics simulation of ADORA2B-DHA (red) and AURKA-DHA (green) complexes. (B,C) Alterations in RMSF values during the process of molecular
dynamics simulation of (B) ADORA2B-DHA and (C) AURKA-DHA complexes. (D,E) Heatmaps of hydrogen bonding interactions of (D) ADORA2B-
DHA and (E) AURKA-DHA complexes.
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potential targets from the PDB database with pdb format.

Through AutoDockTools 1.5.6 software, the 3D structure of

DHA and potential targets were converted to pdbqt format,

and thus searched for the active pocket. Afterwards, we run

the Vina script to compute the binding energies of DHA and

potential targets. As listed in Table 2, the binding energies of

the docking bodies formed by DHA targets against ESCA

(MMP9, CA2, FBP1, CCNA1, CCNA2, CDK2, AOC3,

MMP1, TOP2A, AURKA, CDK1, CCNB1, CCNB2,

KCNQ1, ADORA2B, and GABRE) and DHA were

all <−5.0 kcal mol−1, indicative of the stable docking.

Additionally, we computed LibDockScore to dock DHA

and its potential targets by use of Discovery Studio

2019 software. As a result, in each potential target,

docking site of DHA can be found, and the LibDockScore

of the docking model formed by DHA and each target

was >50. The 3D and 2D molecular docking models

between DHA and potential targets (MMP9, CA2, FBP1,

CCNA1, CCNA2, CDK2, AOC3, MMP1, TOP2A, AURKA,

CDK1, CCNB1, CCNB2, KCNQ1, ADORA2B, and GABRE)

were separately displayed as Figures 5A–P and

Figures 6A–P.

Molecular dynamics simulation

The conformations of ADORA2B-DHA and

AURKADHA molecular docking were used for subsequent

molecular dynamics simulation analysis. The ADORA2B-

DHA complex was added by 16,738 water molecules,

44 sodium as well as 53 chloride, while the AURKA-DHA

complex was added by 5,688 water molecules, 15 sodium as

well as 20 chloride. We further investigated the structural

stability of ADORA2B-DHA and AURKADHA complexes

during molecular dynamics simulation. Meanwhile, the

RMSD values of the two complexes were computed during

100 ns molecular dynamics simulation. The ADORA2B-DHA

and AURKADHA complexes were stable following 100 ns

molecular dynamics simulation, as illustrated in Figure 7A.

The RMSD value of ADORA2B-DHA complex mainly

fluctuated from 1.65612 to 2.15719, and the mean RMSD

value was 1.89383; while the RMSD value of AURKA-DHA

complex mainly fluctuated from 1.05842 to 1.44505, and its

mean RMSD value was 1.26881 (Figure 7A). The RMSD

fluctuation values of the two complexes were all within a

reasonable range, demonstrating that the ADORA2B-DHA

FIGURE 8
Molecular dynamics simulation of ADORA2B-DHA and AURKA-DHA complexes. (A) ADORA2B-DHA complex; (B) AURKA-DHA complex.
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and AURKA-DHA complexes were in a stable state during

the process of molecular dynamics simulation. For analyzing

the volatility of distinct amino acids in the two complexes

during the process of molecular dynamics simulation, we also

computed the RMSF values of all amino acids during the

simulation. ADORA2B-DHA complex fluctuated greatly

around amino acids Ser6, Ala7, Phe8, Leu315, and Phe316

(Figure 7B); AURKA-DHA complex fluctuated greatly

around amino acids Gln127, Trp128, Ala129, Phe329,

Glu330, Ala331, and Asn332 (Figure 7C). The heatmaps of

hydrogen bonds during the ADORA2B-DHA and

AURKADHA molecular docking were separately exhibited

in Figures 7D,E. Hydrogen bonding interactions were present

in most conformations of ADORA2B-DHA and

AURKADHA molecular docking, demonstrating that these

hydrogen bonds were persistent and stable. The molecular

dynamics simulation results of ADORA2B-DHA and

AURKA-DHA complexes were separately displayed in

Figures 8A,B.

Discussion

At present, the paradigms of development of single-

targeted therapeutic agents are challenging, primarily

because of lack of effectiveness as well as resistance.

Therefore, natural compounds selectively acting on two or

more targets exhibit higher efficacy in comparison to single-

target drugs. The current study employed network

pharmacology as well as molecular docking approaches to

predict multi-targets and multi-pathways of DHA

against ESCA.

Previous studies have proposed that DHA exhibits the

anti-ESCA property through targeting distinct molecules as

well as pathways (Li et al., 2019; Ma et al., 2020). Thus, we

presented a systematic analysis for unveiling DHA targets

against ESCA. Through integrating the

SwissTargetPrediction, HERB and BATMAN-TCM

platforms, 160 DHA targets were finally acquired.

Meanwhile, 821 DEGs between 161 ESCA and 11 normal

tissue specimens in TCGA-ESCA dataset were screened,

which might participate in ESCA initiation as well as

progression. Following the intersection of DHA targets and

DEGs, we eventually determined 16 DHA targets against

ESCA, comprising MMP9, CA2, FBP1, CCNA1, CCNA2,

CDK2, AOC3, MMP1, TOP2A, AURKA, CDK1, CCNB1,

CCNB2, KCNQ1, ADORA2B, and GABRE. These DHA

targets against ESCA remarkably correlated to cell cycle

progression. Evidence demonstrates that DHA triggers cell

cycle arrest during tumor progression (Lin et al., 2016; Saidi

et al., 2021).

Among them, ADORA2B as well as AURKA correlated

to ESCA cases’ OS. AURKA is a membrane of serine/

threonine kinase family, and its activation is essential for

cell division process by modulating mitosis (Du et al., 2021).

AURKA accelerates ESCC progression via improving the

activity of distinct pathways such as EGFR-PI3K-Akt (Du

et al., 2020; Shi et al., 2021). Nevertheless, whether

ADORA2B participates in ESCA remains uncharted. On

the basis of ADORA2B as well as AURKA, a prognostic

signature was developed for survival prediction. Despite the

reliability and independency of the prognostic signature in

ESCA cases’ OS, large prospective ESCA cohorts are

required for verifying it.

Molecular docking uses mapping software to place small

molecule compounds on the binding region of

macromolecular targets, and then calculates parameters to

predict the binding ability and binding mode of the two (Tao

et al., 2020). Through the strength of the binding ability, the

possible mechanisms of action of the small molecule

compound can be preliminarily inferred, and the

interaction mode between the small molecule compound

and the potential target can be quickly and accurately

described, which provides a scientific basis for the

preparation of derivatives, and thus shortens the drug

development cycle and reduces research and development

costs. In this study, through use of molecular docking, the

stable binding of DHA to 16 potential targets were verified,

and thus speculated the main anti-ESCA targets and

interactions. Molecular dynamics simulation can simulate

the combination of the two in the natural state, and can

restore some reaction processes that cannot be detected by

current technical means. We employed molecular dynamics

simulations for confirming the stability of the binding of

DHA to protein targets (ADORA2B and AURKA). Despite

this, experiments are essential for confirming ADORA2B-

DHA and AURKA-DHA interactions in ESCA.

Conclusion

Collectively, the current research unveiled that DHA

exerted an anti-ESCA effect through targeting multiple

targets (especially ADORA2B and AURKA) as well as

multiple pathways (especially cell cycle progression) on the

basis of network pharmacology and molecular docking

approaches, and thus provided the theoretical basis for the

pharmacological research of DHA against ESCA.
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Identification of necroptosis
subtypes and development of
necroptosis-related risk score
model for in ovarian cancer

Chen Ji, Yue He and Yan Wang*

Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal
and Child Health Care Hospital, Capital Medical University, Beijing, China

Background: ith the ongoing development of targeted therapy, non-apoptotic cell

death, including necroptosis, has become a popular topic in the field of prevention

and treatment. The purpose of this study was to explore the effect of necroptosis-

related genes (NRGs) on the classification of ovarian cancer (OV) subtypes and to

develop a necroptosis-related risk score (NRRS) classification system.

Methods: 74 NRGs were obtained from the published studies, and univariate COX

regression analysis was carried out between them and OV survival. Consensus

clustering analysis was performed on OV samples according to the expression of

NRGs related to prognosis. Furthermore, the NRRS model was developed by

combining Weighted Gene Co-Expression Network Analysis (WGCNA) with least

absolute shrinkage and selection operator (Lasso)-penalized Cox regression and

multivariate Cox regression analysis. And the decision treemodel was constructed

based on the principle of random forest screening factors principle.

Results: According to the post-related NRGs, OVwas divided into two necroptosis

subtypes. Compared with Cluster 1 (C1), the overall survival (OS) of Cluster 2 (C2)

was significantly shorter, stromal score and immune score, the infiltration level of

tumor associated immune cells and the expression of 20 immune checkpoints

were significantly higher. WGCNA identified the blue module most related to

necroptosis subtype, and 12 genes in the module were used to construct NRRS.

NRRSwas an independent prognostic variable ofOV. TheOSof sampleswith lower

NRRS was significantly longer, and tumor mutation burden and homologous

recombination defect were more obvious.

Conclusion:This studyshowedthatnecroptosisplaysan important role in theclassification,

prognosis, immune infiltration andbiological characteristics ofOV subtypes. The evaluation

of tumor necroptosis may provide a new perspective for OV treatment.

KEYWORDS

necroptosis, ovarian cancer, classification of subtypes, risk model, prognosis, immune
infiltration
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Introduction

Ovarian cancer (OV) is the deadliest cancer in the female

reproductive tract (Whelan et al., 2022).Worldwide, 313,959 new

diagnosed ovarian cancer and 207,252 succumb to this disease in

2020 (Sung et al., 2021). OV is usually confined to the peritoneal

cavity throughout its course, with occasional distant metastases.

Due to vague and non-specific signs and symptoms, and limited

screening methods, the initial diagnosis is usually delayed until

extensive intraperitoneal diffusion occurs through the adjacent

peritoneal surface, ascites and rich lymphatic vessels (Achimas-

Cadariu et al., 2022). According to statistics, about 3/4 of OV

patients are diagnosed with advanced stage, and the prognosis is

disappointing (Zhang et al., 2022). OV also faces a large number

of unsolved problems such as difficult choice of treatment

strategies and high recurrence rate (Rakina et al., 2022).

Surgical treatment is currently recognized as the best method

for the treatment of ovarian cancer, and platinum-paclitaxel

chemotherapy as adjuvant therapy can significantly improve

the effectiveness of ovarian cancer treatment. (van Stein et al.,

2021; Wood and Ledermann, 2022). However, OV a highly

heterogeneous at the molecular level, therefore, molecular

targeted therapy is considered as a less toxic but more

effective treatment in OV (Guan and Lu, 2018). For example,

the combined application of PARP inhibitors, anti-VEGF

monoclonal antibody and ICI has become a research hotspot

(Revythis et al., 2022). Better understanding the biological

characteristics and molecular heterogeneity of OV in order to

formulate or improve treatment strategies and improve quality of

life is an urgent demand (Zhang et al., 2022).

Apoptotic cell death plays an important role in OV (Hou

et al., 2019). Ongoing development of targeted therapy allows

non-apoptotic cell death to become popular in the field of

prevention and treatment, including ferroptosis, alkaliptosis,

autophagy, necroptosis, pyroptosis, immunogenic cell death as

well as other cell death modes (Chen et al., 2022a). Necroptosis is

a form of programmed necrosis, which differs from apoptosis as

caspases activation is not involved in its progression. Instead, it is

mediated by external signals, which trigger the activation of

Mixed-Lineage Kinase Domain-Like (MLKL) signaling

cascade, Receptor Interacting Protein 1 (RIP1), RIP3 (Liu

et al., 2022). It is characterized by mitochondrial changes and

plasma membrane permeability, resulting in the release of

cytoplasmic contents into extracellular space and

inflammation (Beretta and Zaffaroni, 2022). Preclinical and

clinical evidence show that it is the outstanding pro-

inflammatory characteristics of necroptosis that contribute to

the correlation between necroptosis and cancer pathophysiology

(Pasparakis and Vandenabeele, 2015). Necroptosis is regulated

by molecular mechanism. Targeting necroptosis has shown

substantial potential in tumor treatment with small molecules

may have the advantage of bypassing the mechanism of apoptosis

resistance (Wu et al., 2022). There is growing evidence that

necrosis plays a key role in the development and progression of a

wide range of diseases, including neurodegenerative diseases,

ischemic cardiovascular disease and cancer metastases (Gong

et al., 2019; Chen et al., 2022b). In addition, necrosis has a dual

role in promoting and inhibiting tumor growth in a variety of

tumor types (Seifert et al., 2016; Strilic et al., 2016; Qin et al.,

2019). Therefore, from this point of view, the key molecular

insights on necroptosis provide a prospect for targeted therapy.

The key molecules of necroptosis have been poorly studied

in OV.

In the current study, based on the cluster analysis of

transcriptional profiles of necroptosis-related genes, we

identified the necroptosis subtypes of OV, and described the

clinical and molecular characteristics, immune characteristic and

association with immunotherapy response. A necroptosis-related

risk score (NRRS) model was developed by Weighted Gene Co-

Expression Network Analysis (WGCNA) and least absolute

shrinkage and selection operator (LASSO) Cox regression

analysis, and a clinical decision tree model and nomogram

were established to improve the risk stratification of survival

in OV patients.

Materials and methods

Extraction and preprocessing of OV
cohort data

The RNA sequencing (RNA-seq), somatic mutation, copy

number alterations (CNAs) data and clinical follow-up

information of OV were found and downloaded in The

Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/)

database. In International Cancer Genome Consortium

(ICGC, https://dcc.icgc.org/), the samples with detailed RNA-

seq and clinical survival data were also included in the analysis.

Another OV cohorts (GSE26193, GSE30161, GSE63885,

GSE9891) were collected from the Gene Expression Omnibus

(GEO, https://www.ncbi.nlm.nih.gov/geo/) database. The clinical

features were showed in Table 1.

Consensus clustering analysis was
performed on OV samples by obtaining
necroptosis related genes

A study by Xin et al. (2022) gave 74 necroptosis-related genes

(NRG). Univariate COX regression analysis was carried out to

screen NRGs related to prognosis. R package

“ConsensusClusterPlus” root conducted the unsupervised

hierarchical clustering of OV according to expression of

prognosis-related NRGs. Euclidean distance and “pam” were

utilized to compute the similarity distance between samples,

with 500 iterations and 80% resampling rate, ranging from
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2 to 10. The final optimal clustering number, was defined by the

cumulative distribution function (CDF) curve and delta area,

showed high consistency within the cluster, low variation

coefficient without significant change in the area under the

CDF curve.

Detection of tumor mutation

The “maftools” package (Mayakonda et al., 2018) was

employed to analyze and visualize the single nucleotide

variation (SNV) data processed by mutect2 in TCGA. Firstly,

the genes with mutation frequency >3 in the sample were

screened, and the statistical differences of high frequency

mutation genes between subgroups were analyzed by fisher

test, and the mutations of 20 genes with the highest mutation

rate in different subgroups were shown by waterfall map. For

number of segments and tumor mutation burden (TMB),

fraction altered, homologous recombination defects, between

subgroups, Wilcoxon test was used to compare.

Assessment of tumor immune
microenvironment

The proportion of immune cells in tumor microenvironment

(TME) was estimated by marker genes expressions-based

microenvironment cell population (MCP) counter (Becht

et al., 2016) and single sample gene set enrichment analysis

(ssGSEA), and the results were expressed as enrichment scores.

ESTIMATE (Estimation of STromal and Immune cells in

MAlignant Tumours using Expression data) (Yoshihara et al.,

2013) was used to calculate the stromal score and immune score

and ESTIMATE score of the sample to quantify the overall level

of TME matrix and infiltrating immune components.

Prediction of immunotherapy response

Immune checkpoint expression from HisgAtals and TIDE

score from tumor immune dysfunction and exclusion (TIDE,

http://tide.dfci.harvard.edu) (Jiang et al., 2018) were used to

evaluate the immune checkpoint inhibitors treatment response

between different OV subgroups. Different TIDE scores

represent different sensitivities to immunotherapy, and low

TIDE score is considered to be responsive to immunotherapy.

Weighted gene co-expression network
analysis

To identify the key modules that are highly related to the OV

subtypes defined by necroptosis, R packageWGCNA (Langfelder

and Horvath, 2008) was used to convert gene expression data

TABLE 1 The clinical features of datasets

TCGA ICGC GSE26193 GSE30161 GSE63885 GSE9891

(N=373) (N=93) (N=107) (N=58) (N=70) (N=276)

OS

0 143 (38.3%) 19 (20.4%) 31 (29.0%) 22 (37.9%) 4 (5.7%) 163 (59.1%)

1 230 (61.7%) 74 (79.6%) 76 (71.0%) 36 (62.1%) 66 (94.3%) 113 (40.9%)

Age

Mean (SD) 59.6 (11.4) 62.6 (10.6) 59.6 (10.5)

Median [Min, Max] 59.0 [30.0, 87.0] 62.0 [38.0, 85.0] 59.0 [22.0, 80.0]

Stage

I 1 (0.3%) 21 (19.6%) 24 (8.7%)

II 21 (5.6%) 10 (9.3%) 1 (1.4%) 17 (6.2%)

III 291 (78.0%) 79 (84.9%) 59 (55.1%) 53 (91.4%) 59 (84.3%) 212 (76.8%)

IV 57 (15.3%) 14 (15.1%) 17 (15.9%) 5 (8.6%) 10 (14.3%) 22 (8.0%)

Missing 3 (0.8%) 1 (0.4%)

Grade

G1 1 (0.3%)

G2 42 (11.3%) 25 (43.1%) 8 (11.4%)

G3 319 (85.5%) 33 (56.9%) 44 (62.9%)

G4 1 (0.3%) 18 (25.7%)

Missing 10 (2.7%)
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into gene co-expression networks. The samples were clustered

based on the Pearson correlation value between each gene pair

and average linkage, and the best β was selected by using the

“pickSoftThreshold” function to satisfy the scale-free

distribution, and the correlation coefficient was more than

0.85. Adjacency matrix was created for correlation strength

description among the nodes, and was further transformed

into topological overlap matrix (TOM). Next, hierarchical

clustering tree was constructed by dynamic hybrid cutting

technology to identify modules (parameters: height = 0.25,

deepSplit = 2, minModuleSize = 80). After merging similar

modules, the modules with strong correlation with OV

subtypes defined by necroptosis were identified.

Construction of necroptosis-related risk
signature

The genes identified in the module were analyzed by

univariate Cox regression, and the genes related to prognosis

were included in the R packet “glmnet” for (LASSO Cox

regression analysis. Then, the genes further screened by

multivariate Cox regression analysis were used to construct

risk models: NRRS = the sum of the multivariate LASSO

regression coefficient of each gene × the normalized

expression value of each gene transformed by log2 and

z-score. To analyze the prediction effect of NRRS model on

overall survival (OS), Kaplan-Meier survival curve and time-

dependent receiver operating characteristic (tdROC) analyses

were used.

Enrichment analysis

The candidate gene set was obtained from the hallmark

database, and the log2FC value of each gene was input into

GSEA software for gene set enrichment analysis (GSEA) to

explore the biological pathway of sample enrichment. P <
0.05 was considered to be significantly enriched after adjusting

for Enrichment Score (ES). False discovery rate (FDR) < 0.05was

defined as the cutoff value. The upregulation pathway was

defined based on normalized enrichment scores (NES) > 0,

and the downregulation pathway was defined based on NES <0.

Construction of decision tree and
nomogram

We used rpart package to build a decision tree based on age,

stage, and grade and NRRS. Through the R package “rms,” a

nomogram was generated. To evaluate the consistency between

actual survival and the predicted results, calibration curves were

plotted. The net benefit and clinical usefulness of the nomogram

and NRRS model were determined by decision curve analysis

(DCA) and tdROC.

Statistical analysis

Statistical analysis was carried out by R 4.0.2 (https://www.r-

project.org) to analyze the data and generate the results. R

package “survminer” were performed to generate Kaplan-

Meier curve, and “timeROC” were conducted to generate

tdROC curve. The Wilcoxon rank-sum test were applied to

compare continuous variables in two groups. Take p < 0.

05 was the standard of statistical significance.

Results

Identification of necroptosis subtypes
for OV

First of all, the sample expression data of four OV cohorts

obtained from GEO were merged, and the deviation caused by

batch effect was eliminated through the remove Batch Effect

function of Limma package. Univariate Cox regression analysis

of NRGs was carried out in the merged data, and 15 NRGs related

to OV survival were identified. The merged OV samples were

unsupervised consensus clustering. After comprehensive

consideration of CDF curve and the delta area, KF2 was taken

as the final number of clusters (Figures 1A,B). Consensus

clustering was conducted in TCGA dataset (Supplementary

Figure S1). Therefore, the two necroptosis subtypes that

produce OV were cluster 1 (C1) and cluster 2 (C2). C1 was

related to the better OV survival outcome of the GEO merger

cohort (Figure 1C). And in the GSE with four cohorts, patients

with survival accounted for more than 50% of C1, and patients

with death accounted for a large proportion of C2 (Figure 1D).

For OV samples in TCGA datasets, C1 was also associated with

longer OS (Figure 1E). No statistical difference between the two

subtypes in the proportion of patients with different survival

states was found (Figure 1F). Although there was no significant

difference in the proportion of age, stage, grade distribution

between the two subtypes, it was obvious that there was a higher

proportion of patients with age ≤60, stage Ⅳ and G3 in C2

(Figures 1G–I).

Characterization of the genetic variation
for two necroptosis subtypes

The mutation data downloaded from TCGA were analyzed

in two necroptosis subtypes. 2,614 genes with mutation

frequency >3 were first screened out. A total of 54 genes

with significantly different mutation rates were identified by

Frontiers in Genetics frontiersin.org04

Ji et al. 10.3389/fgene.2022.1043870

149

https://www.r-project.org
https://www.r-project.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1043870


FIGURE 1
Identification of necroptosis subtypes for OV. (A) Consensus clustering heatmap for two subgroups. (B) CDF curve and the delta area of the
clustering result. (C) Kaplan-Meier curve for LUAD patients in GSE dataset that merged four OV cohorts. (D) The distribution proportion of samples
with different survival states in the two necroptosis subtypes of the GSE dataset that merged four OV cohorts. (E) Survival curve for LUAD patients in
TCGA dataset. (F) Analysis of different survival states of two necroptosis subtypes in TCGA dataset. (G–I): The characteristics of age, stage and
grade of two necroptosis subtypes in TCGA dataset.
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Fisher test between the two necroptosis subtypes. The first

20 genes with the most significant difference in mutation rate

between the two necroptosis subtypes were shown in

Supplementary Figure S2A. The overall SNV rate in C2 was

higher than that in C1, and the mutation rate of CSMD3 in

C2 was the highest, followed by MST1R, PRKDC, PLEKHG1,

and SMG1. However, the mutation rate of SPTAN1, SRCAP,

FAT1, ROBO1, UBR5 in C1 was significantly higher than that

in C2. Tumor mutation burden, homologous recombination

defect, fraction altered and number of segments did not show

significant differences between the two subgroups

(Supplementary Figure S2B).

FIGURE 2
Immune microenvironment analysis and immunotherapy response prediction of necroptosis subtypes of OV. (A) The stromal score and
immune score and tumor purity of two necroptosis subtypes in TCGA. (B) The infiltration scores of 10 immune cells calculated by MCP-Counter in
the two necroptosis subtypes of OV. (C) The enrichment scores of 28 tumor-associated immune cells evaluated by ssGSEA in the two necroptosis
subtypes of OV. (D) The box chart shows the association between the two necroptosis subtypes of OV and the expression of immune
checkpoints. (E) TIDE score of two necroptosis subtypes of OV in TCGA. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Necroptosis subtypes of OV showed
different immune microenvironment and
immunotherapeutic responses

The difference of immune microenvironment between the

two necroptosis subtypes was first evaluated by ESTIMATE.

C2 showed significantly higher stromal score, immune score

and the ESTIMATE score represented the overall

microenvironment score relative to C1 (Figure 2A). Then,

MCP-counter and ssGSEA were used to analyze the

infiltration level of immune cells in the immune

microenvironment between the two necroptosis subtypes.

The infiltration score of 10 immune cells calculated by

MCP-Counter in C2 was significantly higher than that in

C1 (Figure 2B). 28 tumor-associated immune cells assessed

by ssGSEA showed active enrichment in C2, which was

significantly higher compared with C1 (Figure 2C). The

results of Figures 2A–C reflected the abundant infiltration

of immune cells in C2, and its anti-tumor immune

microenvironment might be more active. However,

C2 patients had the worst prognosis, which was not

consistent with the immune characteristics of this subtype.

One possible reason is that the anti-tumor response of C2 was

blocked by simultaneously highly expressed immune

checkpoints. To verify this conjecture, the expression of

21 immune checkpoint molecules from HisgAtlas database

(Liu et al., 2017) was examined. It was found that except for

CD276, the expression of 20 immune checkpoints in C2 was

significantly up-regulated, such as CD274, CTLA4, GEM,

IDO1, LAG3G, PDCD1 and so on (Figure 2D). Considering

that the two necroptosis subtypes had different levels of

immune checkpoint expression, the response of different

necroptosis subtypes to immune checkpoint inhibitor (ICI)

was predicted by TIDE algorithm. The TIDE score of C2 was

significantly lower in both necroptosis subtypes, suggesting

that C2 was more likely to respond to ICB treatment than C1

(Figure 2E).

Identification of necroptosis subtype
related gene modules

To construct a co-expression network, WGCNA was used to

cluster 373 OV samples from TCGA datasets (Figure 3A). When

the lowest soft threshold power was 9, scale-free R2 >0.9,
guaranteed a scale-free network (Figure 3B). A clustering tree

diagram reflecting the relationship between different modules

and clinical features was constructed by using adjacency matrix,

and 12 modules were determined (Figures 3C, D). By looking for

the correlation between feature genes and external features, we

found that the blue module had the strongest correlation with the

two necroptosis subtypes, significantly negative correlation with

C1 and significant positive correlation with C2 (Figure 3E). The

link between each gene and C2 in the blue module was also very

high (Figure 3F).

Construction of necroptosis-related risk
score model based on hub gene in blue
module

To screen the hub genes in the blue module, the genes in the

module were analyzed by univariate Cox regression analysis, and

55 genes related to OV survival were obtained. Among them, the

higher expression level of 42 was associated with the higher death

risk, and the higher expression of 13 was associated with the

lower death risk (Figure 4A). LASSO Cox regression penalized

the unimportant features in the regularization process, 24 genes

were obtained, which need to be further analyzed (Figure 4B).

Multivariate Cox regression analysis selected 12 of these genes

to calculate the NRRS of the sample (Figure 4C). Among

the 12 genes, NACA2, DOCK11, EPB41L3, SCN1B, KRT18,

THEMIS2, PLEKHF1 were associated with poor OS of OV,

while HMGN3, WAR3, HLA_DOB, FBXO16, PLA2G2D were

associated with better OS (Figure 4D). Risk groups were divided

based on the median of the sample NRRS in each cohort. The

survival analysis was carried out between the high-risk and low-

risk packets in each cohort, and the performance of the NRRS

model in each queue was evaluated by tdROC curve. Among the

373 samples of TCGA, the survival rate of the high-risk group

was significantly lower than that of the low-risk group in the long

term and short term. TdROC curve showed that the NRRSmodel

had better long-term predictive ability in the TCGA-OV cohort

because its AUC for predicting 5-year OS was 0.75, it was higher

than the AUCs for predicting 1-year (0.69) and 3-year (0.73) OS

(Figure 4E). The high-risk group of OV samples obtained from

ICGC was also associated with a worse prognosis outcome, with

AUC of 0.67, 0.71, and 0.7 for 1 -, 3 -, and 5-year OS, respectively

(Figure 4F). In the GSE cohort that merged four GEO datasets,

the prognosis of the low-risk group was significantly better than

that of the high-risk group. The model predicted 1 year AUC =

0.63, 3 years AUC = 0.66, and 5 years AUC = 0.63 of OS

(Figure 4G).

Single nucleotide variation and biological
characteristics of necroptosis-related risk
score model

We further explored the SNV and potential biological

pathways related to NRRS. SNV existed in both high-risk and

low-risk groups, and genetic mutations were more pronounced in

the low-risk group than in the high-risk group, including but not

limited to FLNB, UBR4, TRPS1, PCNT, SACS (Figure 5A). The

TMB and homologous recombination defect characteristics of the

low-risk group were significantly higher than those of the high-risk
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group (Figure 5B). The correlation between NRRS and tumor

biological pathway was analyzed, and the results were shown in

Figure 5C. Specifically, epithelial-mesenchymal transition,

angiogenesis, coagulation, TGF beta signaling, myogenesis,

KRAS signal up, hypoxia and apical junction and apoptosis

were all up-regulated in the high NRRS group of the three

datasets (Figure 5D).

Construction of a decision tree model and
a nomogram to improve the risk
stratification of OS for OV patients

To make NRRS more suitable for predicting the prognosis of

OV, a decision tree model was constructed using the clinical

factors (age, stage, grade) of OV in TCGA and NRRS, and three

FIGURE 3
Identification of gene modules related to necroptosis subtypes. (A) The clustering tree of 373 OV samples in the TCGA dataset. (B) Analysis of
scale-free exponent and average connectivity of various soft threshold powers. (C) Cluster dendrogram of the co-expression network modules. (D)
The number of genes in each module. (E) The heatmap of the relationship between module eigengenes and necroptosis subtypes. (F) The
association strength between gene significance (GS) and module membership (MM) for the C2 in the blue module.
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different clusters:M1, M2 and M3 were established (Figure 6A).

There were significant differences in OS among the three clusters

(Figure 6B). All samples in M1 belonged to low NRRS group,

while M2 andM3 belonged to high NRRS group (Figure 6C). The

proportion of surviving patients inM1was the highest among the

three clusters, followed by M2, and finally M3 (Figure 6D). To

construct a nomogram, univariate Cox regression analysis was

carried out first, and the age and NRRS fits very well (Figure 6E).

Multivariate Cox regression showed that NRRS was an

independent prognostic variable for OV (Figure 6F). A

nomogram was constructed according to age and NRRS

(Figure 6G). The calibration curve showed that the prediction

FIGURE 4
Construction of NRRS model based on hub gene in blue module. (A) The Cox coefficients of 55 genes related to OV survival. (B) LASSO Cox
regression penalized the unimportant features in the regularization process. (C) The forest map shows the results of multivariate Cox regression
analysis for 12 genes. (D) LASSO Cox coefficients of 12 genes. (E) Kaplan-Meier and tdROC curves of OS predicted by NRRS model in TCGA-OV
cohort. (F) Kaplan-Meier and tdROC curves of OS predicted by NRRS model in ICGC dataset. (G) Kaplan-Meier and tdROC curves of OS
predicted by NRRS model in GSE cohort.
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FIGURE 5
SNV and biological characteristics of NRRS model. (A) SNV in high-risk and low-risk groups. (B) TMB, homologous recombination defect,
fraction altered, number of segments of high-risk group and low-risk group. (C) The correlation between NRRS and tumor biological pathway. (D)
The high-risk group compared with the low-risk group in different pathways of NESs. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 6
Construction of a decision treemodel and a nomogram to improve the risk stratification of OS in OV patients. (A)Decision treemodel based on
NRRS and clinical factors (age, stage, grade). (B) Survival analysis of three risk subgroups of the decision tree. (C) The distribution of NRRS in three risk
subgroups of the decision tree. (D) The survival status of patients in the three risk subgroups of the decision tree. (E) Univariate Cox regression
analysis of NRRS and clinical factors of OV. (F)Multivariate Cox regression analysis of NRRS and age. (G) The nomogram constructed according
to age and NRRS. (H) The calibration curve evaluates the proximity between the prediction line of the nomogram and the ideal 45-degree calibration
line. (I) The decision curve shows the net income of NRRS and nomogram. (J) The tdROCcurve displays the AUCs of NRRS and nomogram. *p < 0.05,
***p < 0.001.
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line of nomogram was close to the ideal 45° calibration line,

indicating that nomogram had a certain degree of accuracy

(Figure 6H). The decision curve showed that NRRS and

nomogram have the highest net income (Figure 6I). And

tdROC curve displayed that the AUC of NRRS and

nomogram was very similar, both above 0.7 (Figure 6J).

Discussion

OV is a complex disease with multiple subtypes, each of

which has different histopathology and different responses to

treatment. Accurate classification and typing of OV can reliably

predict disease progression and provide insight into the

potentially targeted molecular mechanisms unique to each

subtype (Cook and Vanderhyden, 2019). The study of

Seehawer et al. provides a revolutionary insight that

necroptotic microenvironment direct the lineage commitment

of liver cancer and thus determine cancer subtypes (Seehawer

et al., 2018). It is unclear whether necroptosis can affect the

subtypes of other cancers. In recent years, several studies have

focused on the effects of necroptosis-related genes on cancer

typing, prognosis and biological effects (He et al., 2022; Nie et al.,

2022; Xin et al., 2022). In this study, we systematically studied the

effects of necroptosis on OV typing, prognosis, TMB, tumor

microenvironment, immunotherapy response and biological

pathway by bioinformatics analysis, which might be provide

new molecular insights for necroptosis in OV.

First of all, we classified OV into two necroptosis subtypes

according to 15 OV prognosis-related NRGs out of 74 NRGs.

Compared with C1, C2 with a worse prognosis. The possible

reason was that C2 showed a high immunosuppressive

microenvironment. In OV, a large number of

immunosuppressive cells, including tumor-associated

macrophages, regulatory T cells (Tregs), myeloid-derived

suppressor cells (MDSCs) and Tumor associated dendritic cells,

act as accomplices to coordinate highly complex

immunosuppressive networks, inhibit anti-tumor immunity and

help tumor cells escape immune attacks (Cai and Jin, 2017).

Besides, in the early stage of tumor, the adaptive immune

resistance mechanism may occur in patients with high

CD8T cell density and predict a poor prognosis of the tumor

(Peske et al., 2015). In the immunosuppressive environment, it is

rich in immunosuppressive molecules such as IDO, PD-1, PD-L1,

VISTA, LAG3, etc (Dempke et al., 2017; Drakes and Stiff, 2018). In

C2, the levels of above immune cells and immunosuppressive

molecules were higher than those in C1, which explained why the

prognosis of C2 iwas worse than that of C1.

Then, the blue module most related to necroptosis subtype

was identified by constructing a co-expression network, and the

hub gene of the module was identified by LASSO Cox regression

analysis. A NRRS model containing 12 genes (NACA2,

DOCK11, EPB41L3, SCN1B, KRT18, THEMIS2, PLEKHF1,

HMGN3, WAR3, HLA_DOB, FBXO16, PLA2G2D) was

constructed. Among all 12 prognostic related genes, 8 genes

(EPB41L3, SCN1B, KRT18, THEMIS2, PLEKHF1, HLA_DOB,

FBXO16, PLA2G2D) (Dafou et al., 2010; Trisdale et al., 2016; Li

et al., 2020; Brummelhuis et al., 2021; Ji et al., 2021; Zheng et al.,

2021; Huang et al., 2022; Zhao et al., 2022) have been reported to

be involved in tumorigenesis of OC or to be important predictors

of overall survival. This implies that our bioinformatics analyses

using cohorts have prognostic value. The remaining 4 genes have

not previously been found to be associated with the prognosis of

ovarian cancer andmay serve as new potential biomarkers for the

disease.

NRRS had many far-reaching clinical significances. First, it

was related to the genomic stability of tumors. The NRRS low-

risk group showed higher levels of SNV, TMB and homologous

recombination defect. Second, it was related to the biological

process of tumor. Specifically, compared with the NRRS low-risk

group, epithelial-mesenchymal transition, angiogenesis,

coagulation, TGF beta signaling, myogenesis, KRAS signal up,

hypoxia and apical junction and apoptosis pathways were

significantly up-regulated in the high-risk group. Third, NRRS

was an independent prognostic variable of OV, and it was more

accurate than other clinical parameters in predicting the

prognosis of OV. And the decision tree and nomogram

combined with NRRS and other clinical factors improved the

risk stratification of OS in patients with OV.

However, some limitations of this study must be recognized.

This study was purely from the bioinformatics analysis of the

public database, the sample size of each cohort was relatively

small, clinical information was prone to deviation, large-scale,

multicenter, prospective studies are needed to further confirm

our results. And the impact of the model needs biological

experiments and clinical data to support it. In addition, the

specific molecular mechanism of the model in OV remains to be

further explored.

To sum up, OV was divided into two necroptosis subtypes

in this study. There were significant differences in OS, immune

cell infiltration, immune checkpoint expression and

applicability to immunotherapy between patients with

different subtypes. Moreover, a NRRS model was

constructed to identify high-risk patients with OV, and

combined with clinical factors to build a decision tree and

nomogram to optimize the risk stratification of OS. Our

research may provide molecular insights into the effects of

necroptosis in cancer.
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Background: Natural killer (NK) cells are involved in monitoring and eliminating
cancers. The purpose of this study was to develop a NK cell-related genes (NKGs)
in pancreatic cancer (PC) and establish a novel prognostic signature for PC
patients.

Methods: Omic data were downloaded from The Cancer Genome Atlas Program
(TCGA), Gene Expression Omnibus (GEO), International Cancer Genome
Consortium (ICGC), and used to generate NKG-based molecular subtypes and
construct a prognostic signature of PC. NKGs were downloaded from the
ImmPort database. The differences in prognosis, immunotherapy response,
and drug sensitivity among subtypes were compared. 12 programmed cell
death (PCD) patterns were acquired from previous study. A decision tree and
nomogram model were constructed for the prognostic prediction of PC.

Results: Thirty-two prognostic NKGswere identified in PC patients, andwere used
to generate three clusters with distinct characteristics. PCD patterns were more
likely to occur at C1 or C3. Four prognostic DEGs, including MET, EMP1, MYEOV,
and NGFR, were found among the clusters and applied to construct a risk
signature in TCGA dataset, which was successfully validated in PACA-CA and
GSE57495 cohorts. The four gene expressions were negatively correlated with
methylation level. PC patients were divided into high and low risk groups, which
exerts significantly different prognosis, clinicopathological features, immune
infiltration, immunotherapy response and drug sensitivity. Age, N stage, and the
risk signature were identified as independent factors of PC prognosis. Low group
wasmore easily to happened on PCD. A decision tree and nomogrammodel were
successfully built for the prognosis prediction of PC patients. ROC curves andDCA
curves demonstrated the favorable and robust predictive capability of the
nomogram model.
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Conclusion: We characterized NKGs-derived molecular subtypes of PC patients,
and established favorable prognostic models for the prediction of PC prognosis,
which may serve as a potential tool for prognosis prediction and making
personalized treatment in PC.

KEYWORDS

natural killer cells, pancreatic cancer, consensus clustering, nomogram, methylation,
programmed cell death, prognosis

1 Introduction

Pancreatic cancer (PC) as a lethal malignancy shows a high
mortality worldwide, causing over 331000 deaths per year globally
(Rawla et al., 2019). Although advances in the treatment of PC,
patients who received surgical resection have a five-year survival rate
ranging from 10% to 25% (Siegel et al., 2020). PC was usually
diagnosed at a late stage due to the impalpable symptoms at the early
stage, and approximately 80%–85% of PC was unresectable or
metastatic at the time of diagnosis (Okasha et al., 2017).
Currently, chemotherapy is the main treatment for PC but
remains an unsatisfactory prognosis, and more effective and
precise therapies are required (Mizrahi et al., 2020).

Immunotherapy has been recently developed to help improve the
prognosis of various cancer types, such as renal cell carcinoma (Cho
et al., 2017), non-small cell lung cancer (Hellmann et al., 2018),
hematologic malignancies (Nelson and Paulos, 2015), and melanoma
(Ribas and Wolchok, 2018). The principle of tumor immunotherapy is
to fight against tumors through the activation of immune system,
during which restarting and maintaining tumor-immune cycle plays a
crucial role. Therapeutic targeting of immune checkpoints with
immune checkpoint inhibitors has revolutionized cancer treatment
(Komatsubara and Carvajal, 2017; Pulluri et al., 2017; Considine and
Hurwitz, 2019). It was reported that checkpoint blockade in
combination with GVAX has the potential for clinical benefit for
patients with PC (Le et al., 2013). T-cell immunity is associated with
the exceptional outcome of the few long-term survivors. A study
identified unique neoantigens as T-cell targets in PC patients, which
might be used to guide the application of immunotherapies
(Balachandran et al., 2017). Pembrolizumab is a PD-1 inhibitor and
has been approved for tumor patients with deficient mismatch repair or
high microsatellite instability, including PC (Boyiadzis et al., 2018).
However, the efficacy was restricted to a rare population due to the
complex, highly immunosuppressive tumor microenvironment of PC
(O’Reilly et al., 2019).

The tumor immune microenvironment (TME) contains tumor
cells, immune cells, cytokines, etc., and its heterogeneity can
potentially impact the patient’s response to immunotherapy.
Natural killer (NK) cells are a subset of innate immune cells and
play a crucial role as effector cells against tumors. NK cell can
directly kill malignant even at a relatively low ratio in the early
presence of tumors (Huntington et al., 2007) or promotes adaptive
T-cell immunological responses to limit cancer cell aggressiveness
(López-Soto et al., 2017). The activation of NK cells is controlled by
the integration of signals from cytokine receptors and a range of
germline-encoded inhibitory and activating receptors (Moretta
et al., 2006; Lanier, 2008). Studies found that NK cell activity was
significantly negatively correlated with the risk of malignancy (Imai

et al., 2000), and patients with a higher NK cell infiltration into
cancers had better outcomes (Coca et al., 1997; Ishigami et al., 2000;
Cursons et al., 2019). Cutting-edge immunotherapy targeting NK
cells exerts great potential in the treatment of cancer and become an
attractive alternative to T cell immunotherapies (Guillerey et al.,
2016; Souza-Fonseca-Guimaraes et al., 2019). Accumulating
evidence described the molecular characteristics of NK cells in
various cancers (Sun et al., 2021a; Sun et al., 2021b), but a
comprehensive molecular characterization of NK cells in PC
remains poorly understood.

In the present study, the PC patients were clustered on the basis of
natural killer cell-related genes (NKGs), and further comparison of the
clinicopathological, mutational, immunological and pathway
characteristics among subtypes was conducted. In addition, we
identified prognostic differentially expressed genes (DEGs) among
subgroups and constructed a risk signature for prognosis prediction.
The decision tree and nomogram model were built using
clinicopathological features and the risk signature to assist in
prognostic prediction and personalized treatment of patients with PC.

2 Materials and methods

2.1 Data collection and preprocessing

Transcriptome files and clinicopathological data of patients with PC
were obtained from the Cancer Genome Atlas Program (TCGA)
(https://tcga-data.nci.nih.gov/tcga/), Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/), and the International
Cancer Genome Consortium (ICGC) (https://www.icgc.org)
databases. After removal of patients without complete clinical
information and outcome status, as well as follow-up of fewer than
30 days, 176 PC patients from the TCGA pancreatic adenocarcinoma
(TCGA-PAAD) cohort were retained as a training set. Ensembl was
converted into gene symbol, and median value was kept when a genes
hadmultiple gene symbols. The validation set contains 63 samples from
the GSE57495 cohort and 215 patients of the PACA-CA cohort from
the ICGC database. When multiple gene symbols appear or multiple
probes appear for a gene, the median is taken as the gene expression
value. A total of 134 humanNKGswere downloaded from the ImmPort
(https://www.immport.org/resource) database.

2.2 Consensus clustering

The prognostic NKGs were identified via univariate Cox
regression analysis and were used to perform consensus
clustering of PC patients. Consensus clustering analysis was
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conducted using the “ConsensusClusterPlus” R package to
determine subgroups of PC patients based on the prognostic
NKGs (Wilkerson and Hayes, 2010). The best classification was
determined using the partition around medoids (PAM) algorithm
and 1-Pearson correlation distance, with 500 bootstraps.

2.3 Risk score

The DEGs among NKGs-derived clusters were screened out
using “limma” package according to the false discovery rate (FDR) <
0.05 and |log2 [fold change (FC)]| > log2 (2) (Ritchie et al., 2015).
The univariate and the least absolute shrinkage and selection
operator (LASSO) Cox regression analysis were adopted to
identify and filter prognosis-related NKGs, respectively. Finally,
by choosing the optimal penalty parameter lambda correlated
with the minimum 10-fold cross-validation, multivariate Cox
regression analysis was then implemented to establish the
prognostic signature. The formula for the risk signature was as
follows: risk score = ∑ βi × Expi. Where the βi represents the
coefficient and Expi represents the normalized expression level of a
gene. Two risk groups (high and low) were generated by a threshold
of zero, and K–M analysis was conducted to compare overall
survival (OS) differences between the high- and low-risk groups.
The receiver operating characteristic (ROC) analysis was performed
to estimate the predictive accuracy of the risk score.

2.4 Gene set enrichment analysis

GSEA was performed to analyze the differences in specific gene
sets using the “GSVA” R package (Hänzelmann et al., 2013). The
hallmark gene sets from the Molecular Signatures Database
(MSigDB), the inflammation-related gene sets (Liu et al., 2020),
and the angiogenesis-related gene set (Masiero et al., 2013) were
used to be analyzed. These pathways with the FDR <0.05 was
considered to be significant. Functional enrichment analysis
included Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Gene Ontology (GO) (biological process (BP), cellular
component (CC), and molecular function (MF)) analysis was
performed on DEGs in clusters using WebGestaltR package (Yu
et al., 2012).

2.5 Immune infiltration, chemotherapeutic
sensitivity, and immunotherapy response
predictions

The relative proportion of immune cells was calculated using the
CIBERSORT algorithm (https://cibersort.stanford.edu/), which
performs cell type enrichment analysis from gene expression data
for 22 immune cells. The “ESTIMATE” R package was applied to
estimate and extrapolate the fraction of stromal and immune cells in
tumor samples (Yoshihara et al., 2013). The expression levels of the
immune checkpoints were compared in different groups. To predict
the chemosensitivity of osteosarcoma patients to several common
anti-cancer drugs (methotrexate, paclitaxel, cisplatin, and
doxorubicin), we adopted the “pRRophetic” R package to infer

the half-maximal inhibitory concentration (IC50) values by
constructing the ridge regression model based on Genomics of
Drug Sensitivity in Cancer (GDSC) (www.cancerrxgene.org/) cell
line expression spectrum and gene expression profiles (Geeleher
et al., 2014).

2.6 Establishment of a predictive nomogram

The decision tree model was applied to classify subgroups based
on clinicopathogicial features and risk scores by using the “rpart” R
package (https://cran.r-project.org/web/packages/rpart/index.
html). The independent prognostic factors of OS for PC were
identified by univariate and multivariate Cox regression analysis.
A nomogram integrating the risk signature and independent
prognostic clinicopathological factors was constructed in the
TCGA cohort by the “rms” R package (https://cran.r-project.org/
web/packages/rms/index.html). The calibration curves were utilized
to evaluate the prediction accuracy between the predicted 1-, 2- and
3-year OS probabilities and the actual observations. The
discriminate ability of the nomogram was assessed by time-
dependent ROC curves. The decision curve analysis (DCA) was
conducted to test the clinical utility of the nomogram using the
“rmda” R package (https://cran.r-project.org/web/packages/rmda/
index.html).

2.7 Mutation analysis

Tumor mutation burden (TMB) is was determined as the
number of somatic indels and base substitutions per million
bases in the coding region of the genome detected. Gene
mutation data of PC patients were downloaded from the TCGA
database and TMB was calculated using the “maftools” package
(Mayakonda et al., 2018) as previously described (Chalmers et al.,
2017).

2.8 Programmed cell death (PCD) analysis

12 PCD patterns were acquired from previous (Zou et al.,
2022). Altogether, 580 apoptosis genes, 52 pyroptosis genes,
87 ferroptosis genes, 367 autophagy genes, 14 cuproptosis
genes, 9 parthanatos genes, 15 entotic cell death genes,
101 necroptosis genes, 8 netotic cell death genes, 7 alkaliptosis
genes, 220 lysosome-dependent cell death genes, and 5 oxeiptosis
genes were collected. Based on the expression data of above gene
sets, ssGSEA analysis was conducted on tumor samples using the
R package GSVA.

2.9 Statistical analysis

The R software (v3.6.3) was used for statistical analyses.
Wilcoxon test compared differences between two groups.
Survival differences were compared using K–M curves with a
Log-rank test. The Cox proportional hazard model was
performed to estimate the β regression coefficient, hazard
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FIGURE 1
Consensus clustering of PC patients based on NKG signature. (A) Forest plot of prognosis-related NKGs in the TCGA-PAAD cohort; (B) The
correlations among 32 prognosis-related NKGs in the TCGA-PAAD cohort; (C)Consensus cumulative distribution function (CDF) diagramwhen different
k values, (D) Delta area plot for the relative change in the area under CDF curve for k compared to k-1, (E) Consensus matrix when the number of groups
(k) = 3. In the consensus matrix, white meant that samples were impossibly clustered together, and dark blue meant that samples were always
clustered together. Both rows and columns of the matrix represented samples, (F) and (G) represented the survival analysis of the clusters in the TCGA-
PAAD cohort and PACA-CA cohort, respectively. (H) The heatmap of expression of 32 prognosis-related NKGs in the TCGA-PAAD cohort.
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ratios, p-value, and their corresponding 95% confidence interval
for each of the selected risk predictors. a nomogram was
constructed with the “rms” package in R. The C-index and

calibration curve with the bootstrap method were used to
evaluate the prediction performance of the nomogram. A
p-value <0.05 was deemed to be a statistical significance.

FIGURE 2
The comparison between our defined cluster with other existing subtypes. (A) The comparison of our defined clusters with the subtypes derived
from the pan-cancer study. (B) The comparison of our defined clusters with immune signature-derived subtypes. (C) The comparison of somatic
mutations in NKGs-derived subtypes in the TCGA cohort. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
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3 Results

3.1 Molecular subtypes derived from natural
killer cell-related genes

The flowchart is shown in Supplementary Figure S1. To obtain
molecular subtypes of PC based on NKG, we first identified
32 NKGs that were significantly associated with the prognosis of
PC (p < 0.05, Figure 1A). Notably, positive correlations among the
expression of the 32 NKGs were observed in Figure 1B.
Subsequently, consensus clustering of the 32 NKGs generated
three stable clusters (C1, C2, and C3) in the TCGA-PAAD
cohort (Figures 1C–E). Survival analysis demonstrated that the
C3 cluster had a favorable prognosis whereas the C1 cluster had
a poorer prognosis (Figure 1F). The individuals in the PACA-CA
cohort were also divided into three clusters, which exerted similar
prognosis characteristics as the clusters in the TCGA-PAAD cohort
(Figure 1G). Among the 32 NKGs, the risk genes were generally
overexpressed in the C1 cluster, and the protective genes were
mainly elevated in the C3 clusters (Figure 1H).

3.2 Genomic landscapes among molecular
subtypes

We compared defined three clusters with the molecular subtypes
derived from a pan-cancer study and immune signatures (Thorsson
et al., 2018). As shown in Figure 2A, the C1 cluster presented with a
higher TMB, aneuploidy, homologous recombination defects, and
loss of heterozygosity. Meanwhile, a significantly higher proportion
of immune signature-derived C3 subtype in our defined C3 subtype
was observed (Figure 2B). The immune signature-derived
C3 subtype was characterized by the overexpression of TH17 and
Th1 genes, a low to moderate proliferation rate of tumor cells, and
lower levels of aneuploidy and overall somatic copy number
alterations. Meanwhile, the immune signature-derived C3 subtype
showed a better prognosis than other subtypes, which is consistent
with our defined C3 cluster showing the best prognosis, as shown in
Figure 1F. The gene mutations in each cluster were compared and
the top 20 genes with a lower p-value were illustrated in Figure 2C.
Most mutations were present in KRAS, TP53, and SMAD4,
accounting for 75.3%, 28.2%, and 19.7%, respectively. It was
noticed that the C1 cluster with a poor prognosis had more gene
mutations.

3.3 Pathway characteristics among
molecular subtypes

GSEA was performed to elucidate the pathway features in each
cluster by using the Hallmark candidate gene sets. As shown in
Figure 3A, the C1 cluster was significantly enriched in 38 pathways
in the TCGA cohort. Generally, the activated pathways mainly
included cell cycle-related pathways, such as E2F_TARGETS,
G2M_CHECKPOINT, MYC_TARGETS_V1, whereas the
inhibited pathways primarily contained INFLAMMATORY_
RESPONSE, COMPLEMENT, and INTERFERON_GAMMA_
RESPONSE. Similar results were also observed in the PACA-CA

cohort. In addition, we compared the pathway characteristics
between clusters (Figures 3B–D). It revealed that PC patients
with the 3 subtype had activated immune pathways, such as cell
cycle-related pathways, indicating that the 32 NKGs might play vital
roles in the regulation of cell cycle and TME.

3.4 Immune signatures between molecular
subtypes and differences in
immunotherapy/chemotherapy/PCD

Furthermore, we assessed the relative abundance of 22 immune
cells in the TCGA-PAAD and PACA-CA cohorts using the
CIBERSORT algorithm. As shown in Figures 4A, C, significant
differences among three clusters were observed for several immune
cell types, such as CD8+T cells and activated CD4+ memory T cells.
Meanwhile, we observed a significantly higher immune score in the
C3 cluster than in other clusters (Figures 4B, D), indicating that the
C3 cluster had a higher immune infiltration. In addition, we
investigated the 7 inflammation-related metagenes clusters in the
three molecular subtypes. As a result, 6 of the 7 metagenes clusters
were significantly differently expressed among subtypes, except for
interferon (Figure 4E). Overall, the C1 cluster presented with a
higher inflammation activity than other clusters. Meanwhile, we also
observed a higher enrichment score of LCK and MHC-II, and
STAT1 in the C1 cluster than the other two clusters in the
PACA-CA cohort (Figure 4F). The ssGSEA analysis of 12 PCD
patterns indicated that 10 PCD patterns had obviously differences
among 3 subtypes, and in general, C1 or C3 subtype had higher
ssGSEA scores (Figure 4G).

3.5 Immunotherapy response and drug
sensitivity among clusters

Immunotherapy achieved favorable therapeutic effects in
various cancers and immune checkpoint genes (ICG) play vital
roles in these processes. Therefore, we evaluated the expression of
ICGs among clusters and found an elevated expression of PD-1, PD-
L1, and CTLA4 in the C3 cluster, as shown in Figure 5A. Meanwhile,
we assessed the capability of clusters in predicting immunotherapy
response using the T cell inflamed GEP score and observed a higher
score in the C3 cluster than in other clusters (Figure 5B). INF-γ is a
cytokine that plays a key role in immune regulation and anticancer
immunity (Zhang et al., 2017), therefore, we calculated the ssGSEA
score of the GOBP_RESPONSE_TO_INTERFERON_GAMMA
gene set and found a significantly higher score of INF-γ response
in the C3 cluster (Figure 5C). In addition, we also observed a higher
CYT score in the C3 cluster than in other clusters (Figure 5D), which
was used to reflect cytotoxic effects. Moreover, our data showed that
the C1 cluster was more sensitive to cisplatin, gemcitabine, and
erlotinib.

3.6 Establishment of a risk signature

A total of 294 DEGs among clusters were identified, as shown
in Figures 6A–C. Enrichment analysis on the DEGs was
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performed and the results showed that the C3 cluster contained
DEGs that were significantly associated with immune-related
pathways (Figure 6D). Univariate COX analysis showed that

122 of the 293 DEGs were significantly associated with the
prognosis of PC (p < 0.01), including 84 risk genes and
38 protective genes (Figure 7A). Subsequently, lasso COX

FIGURE 3
The comparison of pathways between molecular subtypes. (A) Bubble chart of GSEA analysis results of the TCGA cohort and the ICGC cohort. (B)
Bubble chart of the GSEA analysis results of C1 vs. C3, C1 vs. C2, and C2 vs. C3 in the TCGA cohorts; (C) The radar chart of the C1vsC2, C2vsC3 coherent
activation pathway in the TCGA cohort; (D) The radar plot of the C1vsC2, C2vsC3 coherent activation pathway in the ICGC cohort.
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FIGURE 4
Comparison of immune infiltration and inflammation activity among threemolecular subtypes. (A) and (C) represented the differences in the relative
abundance of 22 immune cells among different molecular subtypes in the TCGA-PAAD and PACA-CA cohorts, respectively. (B) and (D) represented the
comparison of the ESTIMETE results among clusters in the TCGA-PAAD and PACA-CA cohorts, respectively. (E) and (F) represented the differences in the
inflammation activity among clusters in the TCGA-PAAD and PACA-CA cohorts, respectively. (G) The ssGSEA score differences of 12 programmed
cell death patterns among 3 molecular subtypes.
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regression was adopted to compress the gene number and found
9 candidate genes when lambda = 0.0666 (Figures 7B, C). Finally,
four genes were identified after stepwise multivariate regression
analysis on the 9 candidate genes and were used to construct a
prognosis model (Figure 7D), RiskScore =
+0.306*MET+0.299*EMP1-0.225*NGFR+0.182*MYEOV. The
four gene expressions were negatively correlated with
methylation level (Supplementary Figure S2). The risk score
was calculated for each patient in the TCGA cohort and was
used to divided the patient into the high and low group
(Figure 8A). ROC analysis demonstrated a favorable predictive
capability in forecasting the 1-, 3-, and 5-year survival rates
(Figure 8B). Survival analysis showed a significantly difference

in prognosis between the high and low groups (Figure 8C). In
addition, we evaluated the robustness of the prognosis model in
the PACA-CA and GSE57495 cohorts, which had similar results
as the TCGA cohort (Figures 8D–G).

3.7 Differences in clinicopathological
features and clusters between the high and
low groups

The correlations between risk score and clinicopathological
characteristics were analyzed in the TCGA and PACA-CA
cohorts, and the results found significant associations between

FIGURE 5
Differences in the immunotherapy response and drug sensitivity among clusters in the TCGA cohort. (A) Comparison of the ICGs among clusters.
(B–D) Showing comparisons of the T cell inflamed GEP score, response to IFN-γ, and Cytolytic activity among clusters, respectively. (E) The box plots of
the estimated IC50 for cisplatin, 5-Fluorouracil, gemcitabine and erlotinib in the three clusters.
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risk score and grade, but not stage, age, and gender (Figures 9A, C).
Meanwhile, the risk score was significantly different among the three
clusters, which manifested by a higher risk score in the C1 cluster
and a lower risk score in the C3 cluster (Figures 9B, D). In addition,
K-M curves showed that the risk score exhibited a favorable
capability in the prognostic prediction of PC in sub-populations
with specific clinicopathological features (Figures 9E, F).

3.8 Immune infiltration and pathway
characteristics in different risk groups

As shown in Figure 10A, we observed a significantly
difference in the relative abundance of four immune cells,
including naive B cells, CD8 T cells, monocytes, and
M0 macrophages, between the high and low groups in the

FIGURE 6
The identification of DEGs in each cluster. (A–C) Volcano plot of DEGs in the TCGA-PAAD cohort; (D) Functional enrichment analysis of DEGs of
each cluster.
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TCGA cohort. The correlations between risk score and immune
cells were illustrated in Figure 10B. In addition, a higher immune
score was observed in the low group than the high group,
indicating a higher immune infiltration in the low group
(Figure 10C). The ssGSEA scores on each pathway were
calculated for individuals and were compared between two risk
groups. The results demonstrated that the High group was
significantly associated with cell cycle-related pathways
(Figures 10D, E).

3.9 Immunotherapy response,
chemotherapy sensitivity and PCD between
two risk groups

As shown in Figure 11A, we observed a significantly higher T cell
inflamed GEP score in the Low group as compared with those in the
High group. Our data also revealed a significantly higher response to
IFN-γ and cytolytic activity in the Low group, when compared with the
high group (Figures 11B, C). In addition, we found elevated expression

FIGURE 7
The identification of hub genes for the construction of the prognosis model, (A) A total of 122 promising candidates were identified from the DEGs;
(B) The trajectory of each independent variable with lambda; (C) Confidence interval under lambda; (D) Distribution of LASSO coefficients of the Natural
Killer Cell-related prognostic gene signature.
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of PD-1 and CTLA4, but not PD-L1, in the low group (Figure 11D),
suggesting potential differences in immunotherapy response between
the two risk groups. Chemotherapy sensitivity in different risk groups
was analyzed and found that the patients in the high group were more
likely to be sensitive to gemcitabine, cisplatin, and erlotinib, as shown in
Figure 11E. In addition, four of 12 PCD patterns had increased ssGSEA
score in low group, while 3 PCDhad higher ssGSEA score in high group
(Figure 11F, left). Furthermore, we analyzed the correlation between
RiskScore, four model genes and 12 PCD patterns, and there were
different degrees of correlation with each other (Figure 11F, right).

3.10 Improvement of the prognostic model

As shown in Figure 12A, a decision tree was constructed based
on the risk score and clinicopathological features and generated four
groups (Lowest, Low, Mediate, High) using three parameters (risk
score, N stage, age). Survival analysis demonstrated significant
differences in prognosis among the four groups (Figure 12B, p <
0.001). The correlations between the decision tree-derived groups
and risk groups were illustrated in Figures 12C, D. Univariate
regression analysis showed that T stage, N stage, age, and risk

FIGURE 8
Construction and validation of the prognosis model for PC. (A) The risk scores of patients in the TCGA cohort. (B) The ROC results of the prognostic
model in the TCGA cohort. (C) The survival analysis results of the prognostic model in the TCGA cohort. (D, E) ROC curve and KM survival curve of risk
score in PACA-CA cohort; (F, G) ROC curve and KM survival curve of risk score in GSE57495 cohort.
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score was associated with the prognosis of PC, and three of them (N
stage, age, and risk score) were identified as independent risk factors
via multivariate regression analysis (Figures 12E, F). Therefore, a
nomogram was built using the three factors (Figure 12G). It was
observed that the predicted values were close to the observed values
in terms of the 1-, 2, and 3-year OS (Figure 12H), indicating that the
nomogram had good prediction performance. In addition, a
decision curve was used to evaluate the reliability of the model,
and it was observed that the risk signature and nomogram model

had a higher standardized net benefit as compared with other
clinicopathological features (Figure 12I).

4 Discussion

Tumor immunotherapy has brought hope for cancer
treatment, and more and more studies have shown that innate
immune cells, including NK cells, have unique advantages in anti-

FIGURE 9
The distribution and predictive capability of the risk score in sub-population with distinct clinicopathological features. (A) and (C) Differences in risk
score among different clinicopathological groups in the TCGA-PAAD and PACA-CA cohorts, respectively; (B) and (D) Difference in risk score among
different molecular subtypes in the TCGA-PAAD and PACA-CA cohorts, respectively; (E) and (F) K-M curve of risk score-derived groups in different
clinicopathological groups the TCGA-PAAD and PACA-CA cohorts, respectively.
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tumor immunotherapy. However, most of the current research
focuses on adaptive immune cells, and the role of innate
immune cells has not been paid enough attention. Studies have

shown that the abundance of tumor infiltrating NK cells is
closely related to the prognosis of patients with various solid
tumors (Villegas et al., 2002; Cursons et al., 2019; Meng et al.,

FIGURE 10
Comparison of immune infiltration and pathways between two risk groups. (A) Comparison of the proportion of immune cells in the TCGA cohort;
(B)Correlation analysis between 22 immune cells and risk score in the TCGA cohort; (C)Comparison of the results of ESTIMATE between two risk groups;
(D) The top 10 pathway with the most significant difference between the two risk groups. (E) Correlation analysis between pathways and risk score.
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FIGURE 11
Comparison of the immunotherapy response and chemotherapy sensitivity between two risk groups in TCGA-PAAD cohort. (A–C) Represented the
comparison of the T cell inflamed GEP score, response to IFN-γscore and cytolytic activity between the two risk groups, respectively. (D) Differences of
expression ICGs between different groups; (E) The box plots of the estimated IC50 for cisplatin, 5-Fluorouracil, gemcitabine and erlotinib between the risk
groups. (F) Left, the ssGSEA score differences of 12 programmed cell death patterns between high- and low-group. Right, the correlation analysis
between 12 programmed cell death patterns and RiskScore.
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2019). The prognostic model based on NKG has the potential
ability to predict prognosis and immunotherapy response
(Cursons et al., 2019). Meanwhile, a novel human NK cell-
based immunotherapy was developed and showed efficacy in
human metastatic PC models (Teng et al., 2022). Inspired by
these findings, we attempted to investigate the molecular subtypes
of PC based on prognosis-related NKGs using transcriptomic
data in this study. Distinct differences in prognosis,
immunotherapy response, and drug sensitivity among subtypes
were observed, indicating the crucial role of NK cells in the

progression and treatment of PC. Functional enrichment
analysis showed that NKGs involved in activated immune
pathways, such as cell cycle-related pathways, indicating that
the those NKGs might play vital roles in the regulation of cell
cycle and TME. Furthermore, we developed a novel prognostic
prediction signature based on DEGs that were found among
NKGs-derived molecular subtypes of PC, which exerts a
favorable capability of prognostic prediction.

Herein, we identified 32 prognosis-related NKGs in PC, including
12 protective genes and 20 risk genes, and the expression of most of

FIGURE 12
Construction of prognostic models of PC using the risk score and clinicopathological features. (A) A decision tree model generated four risk groups
based on age, N stage and the risk score. (B) Survival analysis of the decision tree-derived risk groups showing distinct prognoses among the groups. (C, D)
showed the correlations between risk score-derived groups and decision tree-derived groups. (E) and (F) Univariate and multivariate Cox analysis of risk
score and clinicopathological characteristics. (G) The nomogrammodel consists of age, N stage, and the risk score; (H) 1-, 2-, and 3-year calibration
curves of the established nomogram; (I) The decision curves showing the capacity for survival prediction.
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these genes was significantly correlated. A number of studies had
proposed potential roles of these NKGs in PC. For instance, the tumor
necrosis factor ligand superfamilymember 10 (TNFSF10), also known
as TRAIL, encodes a cytokine that belongs to the tumor necrosis factor
(TNF) ligand family, it preferentially induces apoptosis in
transformed and tumor cells and was proposed as a prognostic
indicator of PC (Wang et al., 2021; Wang et al., 2022). As a well-
known driver gene, KRAS frequently mutated in PC patients (Waters
and Der, 2018), our data revealed that KRAS was the most mutated
gene in the TCGA-PAAD cohort. KRAS gene mutations has been
reported to be involved in the invasion and metastasis of tumor cells,
as well as chemoresistance (Mueller et al., 2018; Buscail et al., 2020). It
was found that TMB was associated with the sensitivity of
immunotherapy response and was more effective than ICG
expression in screening patients suitable for immunotherapy
(Choucair et al., 2020). This finding may result from the
enrichment of immune cells due to the elevated production of
“non-self” neoantigen under high TMB (Schumacher and
Schreiber, 2015). In addition, it was observed that the
phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit
beta isoform (PIK3CB) was involved in metastasis of PC cells (Qu
et al., 2021). Therefore, further investigation on these prognostic
NKGs and their mutationsmight provide clues for the development of
novel treatment of PC.

Three stable clusters with distinct differences in prognosis were
generated based on the prognostic NKGs, and GSEA results found
significant differences in cell cycle pathways and immunity-related
pathways among clusters. Therefore, the inferior prognosis of patients
in the C1 cluster may be partly attributed to the disturbance of cell
cycle regulation, which is closely related to tumor proliferation and
progression (Tang et al., 2020). Meanwhile, these data indicated that
the prognostic NKGs used for molecular typing play important roles
in the cell cycle process and tumor immune microenvironment. For
example, Rac1 plays an important role in regulating cell function, and
its activation affects cell morphology (Etienne-Manneville and Hall,
2002), cell cycle and gene expression (Yoshida et al., 2010), survival
and apoptosis (Liang et al., 2021). Tyrosine kinase FYN was reported
to be associated with mediating mitogenic signals and involved in
regulating cell cycle and proliferation (Zheng et al., 2017). Besides, we
observed significant differences in immune cells infiltration among
NKG-derived clusters. The C1 cluster was characterized as so-called
“cold tumor” since it presented with a lower immune cell infiltration.
The tumor-infiltrating immune cells participated in tumor
development and influence prognosis (Barnes and Amir, 2017),
and anti-tumor activity of “cold tumor” is decreased because low
immune cell infiltration could increase tumor cell escape from
immune surveillance and contribute to tumor progression
(Bonaventura et al., 2019). These finding may partly contribute to
the significant reduction in survival of the C1 and C2 clusters.
Meanwhile, a lower stromal score was observed in the C1 and
C2 clusters, which was suggested to be associated with a poor OS
of osteosarcoma (Alves et al., 2019).

Since GSEA revealed significant inhibition of inflammatory
response among clusters, we further evaluated the relationships
between NKG-derived clusters and inflammatory activities by
analyzing inflammatory-related metagenes. Notably, significant
differences in hematopoietic cell kinase (HCK), IgG, MHC-II,
src-family kinases p56 (LCK), MHC-I, and were observed among

clusters. HCK plays a pivotal role in innate immunity and was
overexpressed in various cancers. It could regulate the phagocytosis
of neutrophils and macrophages (Roseweir et al., 2019), as well as
immune cell infiltration in the TME (Cheng et al., 2022). LCK is
critical for proximal T-cell antigen receptor (TCR) signal
transduction and is involved in the earliest steps of TCR-
mediated T-cell activation (Salmond et al., 2009). MHC-I and
MHC-II are two pivotal molecules presenting with the function
of antigenpresentation, and their loss of expression would make
tumor cells escape T-cell killing (Garrido and Aptsiauri, 2019).
Therefore, a lower level of these inflammatory-related metagenes
may partly account for the immunosuppressive microenvironment
in the C1 and C2 clusters.

Discrepancy between inflammatory activities and immune cell
infiltration among clusters prompted us to explore the
immunotherapy response. It was suggested that ICG expression
partly contribute to the success of immune checkpoint blockade
therapy. Herein, we revealed significant differences in ICG
expression among clusters, indicating potential differences in the
response to immunotherapy among clusters. In addition, a T cell-
inflamed gene expression profile (GEP) was found to be effective in
predicting response to anti-PD-1-directed therapy (Ayers et al., 2017).
Our data showed that the C3 cluster had a significantly higher T cell-
inflamed GEP score, indicating that PC patients in the C3 cluster
might be more sensitive to anti-PD-1 therapy. Cytokine IFN-γ plays a
key role in anticancer immunity and immune regulation, and the
C3 cluster presented with a higher elevated expression of the gene set
that responds to IFN-γ. Moreover, the cytolytic activity score (CYT)
has been considered as a useful tool to evaluate anti-tumor immunity.
It has been revealed that high CYT was associated with better
prognosis of colorectal cancer, which could be explained by
increased immunity and cytolytic activity of T cells and
M1 macrophages (Narayanan et al., 2018). In this study, elevated
cytolytic activity was observed in the C3 cluster. Moreover, our data
also revealed the differences in chemotherapeutic drug sensitivity
among clusters. The clusters derived from NKG have significant
differences in immunotherapy and chemotherapy responses, which
has potential value to guide individualized treatment strategies.

On the basis of NKG-derived clusters, we established a novel
prognostic signature using the DEGs found among clusters. This
prognostic signature has satisfactory prognostic performance and
has shown good predictive power in immunotherapy response and
chemotherapeutic drug sensitivity. Despite the promising findings
obtained, several limitations in this study should be acknowledged.
First, due to the high heterogeneity of the tumor immune
microenvironment, the prognosis-predicting ability of NKG-
derived molecular subtypes and subsequent prognostic models
was limited. Second, analysis of NK cell characteristics based on
single cell sequencing will help to further understand its role in PC.
Finally, further study is required to investigate the underlying
mechanism of the genes in the risk signature and PC patients’
outcomes.

5 Conclusion

In conclusion, we established three molecular clusters of PC using
32 prognosis-related NKGs and revealed differences in
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clinicopathological and genomic features, pathways, immunotherapy
response, and drug sensitivity among clusters. Furthermore, a
prognostic signature with robust prognosis-predicting ability was
built and validated. The NKG-derived molecular clusters and
prognostic signature might serve as a useful tool for assisting in
the decision of individualized treatment and the selection of suitable
individuals for chemotherapy.
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Transcriptional landscape of
myasthenia gravis revealed by
weighted gene coexpression
network analysis

Demin Zhang*†, Liqin Luo, Feng Lu, Bo Li and Xiaoyun Lai

Department of Neurology, The 923rd Hospital of the Joint Logistics Support Force of the People’s
Liberation Army, Nanning, China

Background: As one of the most common autoimmune diseases, myasthenia
gravis (MG) severely affects the quality of life of patients. Therefore, exploring the
role of dysregulated genes between MG and healthy controls in the diagnosis of
MG is beneficial to reveal new and promising diagnostic biomarkers and clinical
therapeutic targets.

Methods: The GSE85452 dataset was downloaded from the Gene Expression
Omnibus (GEO) database and differential gene expression analysis was performed
on MG and healthy control samples to identify differentially expressed genes
(DEGs). The functions and pathways involved in DEGs were also explored by
functional enrichment analysis. Significantly associated modular genes were
identified by weighted gene co-expression network analysis (WGCNA), and MG
dysregulated gene co-expression modular-based diagnostic models were
constructed by gene set variance analysis (GSVA) and least absolute shrinkage
and selection operator (LASSO). In addition, the effect of model genes on tumor
immune infiltrating cells was assessed by CIBERSORT. Finally, the upstream
regulators of MG dysregulated gene co-expression module were obtained by
Pivot analysis.

Results: The green module with high diagnostic performance was identified by
GSVA andWGCNA. The LASSOmodel obtained NAPB, C5orf25 and ERICH1 genes
had excellent diagnostic performance for MG. Immune cell infiltration results
showed a significant negative correlation between green module scores and
infiltration abundance of Macrophages M2 cells.

Conclusion: In this study, a diagnostic model based on the co-expressionmodule
of MG dysregulated genes was constructed, which has good diagnostic
performance and contributes to the diagnosis of MG.
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Introduction

As an autoimmune disease, myasthenia gravis (MG)
manifests primarily as fluctuating muscle weakness caused by
autoantibodies and cell-mediated disruption of acetylcholine
receptors (Nations et al., 1999). It is characterized by
dysfunctional transmission of the neuromuscular junction,
resulting in muscle weakness (Meriggioli and Sanders, 2009).
MG reduces the quality of life of patients and can be life-
threatening in severe cases (Phillips, 2004; Andersen et al.,
2014; Bettini et al., 2017). The prevalence of MG is estimated
to be 0.3–2.8/100,000, with a global prevalence of 700,000, and
the current mortality rate of MG is 5%–9% (Alshekhlee et al.,
2009; Carr et al., 2010; Deenen et al., 2015). In recent years, many
advances have been made in the treatment of MG, and more
evidence-based medical evidence has been accumulated, which
has significantly improved the prognosis of the vast majority of
patients and enabled the effective control of a small number of
refractory MG cases (Batocchi et al., 2000; Vincent and
Drachman, 2002; Rowin et al., 2004; Grob et al., 2008; Muscle
Study, 2008). However, the clinical manifestations of MG are
highly heterogeneous (Rodolico et al., 2002; Grob et al., 2008).
Identifying potential biomarkers of MG will help in the diagnosis
and treatment of MG.

Currently, serological tests for autoantibodies are commonly
used for the diagnosis and disease classification of MG patients
(Gilhus and Verschuuren, 2015). About 85% of MG patients
have antibodies against the muscle acetylcholine receptor
(AChR) (Higuchi et al., 2011). In addition, antibodies against
muscle-specific kinase (MuSK) were found in about 6% of
patients (Berrih-Aknin et al., 2014), and antibodies against
LRP4 were found in about 2% of MG patients (Berrih-Aknin
et al., 2014). The pathogenicity of all these autoantibodies has
been demonstrated by animal studies (Mori et al., 2012; Shen
et al., 2013). However, the pathogenicity of these disease
biomarkers is usually uncertain. There is still a need to
identify new biomarkers to complement existing diagnostic
tools.

Therefore, in this study, we identified dysregulated genes in MG
patients and performed a weighted gene co-expression network
analysis (WGCNA) on these genes. In addition, we further
developed a clinical diagnostic model based on dysregulated
genes and revealed the relationship between this clinical
diagnostic model and the multi-omics landscape of
immunological features and global regulatory networks.

Materials and methods

Data resources

In this study, the MG dataset GSE85452 (Mamrut et al., 2017)
was downloaded from the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/). The
GSE85452 dataset is based on the GPL10558 platform and
contains the mRNA expression profiles of 13 MG and 12 healthy
control PBMCs.

Differential gene expression analysis

To identify differentially expressed genes (DEGs) between
control and MG samples, differential gene expression analysis
was performed using the Bioinforcloud application DEbylimma,
which was developed based on the limma package (Ritchie et al.,
2015). Among the differences, those associated with p < 0.01 and |
logFC|> 0 were considered significant. Subsequently, heat maps
were drawn using the Bioinforcloud application PlotHeatmap to
further demonstrate the expression of DEGs between samples.

Weighted gene co-expression network
analysis

The weighted gene co-expression network analysis (WGCNA)
application in Bioinforcloud was based on the WGCNA package in
the R language (Langfelder and Horvath, 2008) being used to
perform WGCNA on DEGs. Candidate powers (Nations et al.,
1999; Batocchi et al., 2000; Rodolico et al., 2002; Vincent and
Drachman, 2002; Phillips, 2004; Rowin et al., 2004; Grob et al.,
2008; Muscle Study, 2008; Alshekhlee et al., 2009; Meriggioli and
Sanders, 2009; Carr et al., 2010; Higuchi et al., 2011; Mori et al., 2012;
Shen et al., 2013; Andersen et al., 2014; Berrih-Aknin et al., 2014;
Deenen et al., 2015; Gilhus and Verschuuren, 2015; Bettini et al.,
2017; Mamrut et al., 2017) were used to test the average connectivity
of the different modules and their independence. Powers were
selected if the degree of independence was >0.85. The samples
were clustered by using the hclust function of the WGCNA
package and checked for outliers. Subsequently, a heat map of
module-phenotype correlations was constructed to find module-
phenotype correlations and their significance. A high correlation
means that the genes of the corresponding module also tend to be
highly correlated with the disease state.

Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis of MG dysregulated gene co-
expression module genes using the Bioinforcloud application
RunMutiGroupclusterProfiler. The application was developed
based on the clusterProfiler package in the R language (Yu et al.,
2012), and the enriched functions or pathways were considered
significant when p< was 0.05.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed using the
Bioinforcloud application RunGSEA to further explore the potential
biological properties of MG dysregulated gene co-expression
modules. The application uses the Molecular Signature Database
(MsigDB) (Liberzon et al., 2015) of c2. cp.kegg.v7.0. symbols.gmt as
the reference gene set, and was developed based on the
clusterProfiler package in the R language (Yu et al., 2012), the
enrichment results at p < 0.05 were considered significant.
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Gene set variation analysis

Gene set variation analysis (GSVA) of modular genes using
RunGSVA. The application is based on the GSVA package
(Hanzelmann et al., 2013) for calculating GSVA scores of MG
dysregulated gene co-expression module genes in different
samples. Subsequently, heat maps were drawn using the
Bioinforcloud application PlotHeatmap to further demonstrate
the expression of GSVA scores across samples.

Assessment of diagnostic efficacy

Evaluation of diagnostic efficacy of potential markers using the
Bioinforcloud application PlotROC. The application is based on the
pROC package in R (Robin et al., 2011) and the results were plotted
as receptor operating characteristic (ROC) curves. In this study, the
potential of GSVA scores of MG dysregulated gene co-expression
module genes as a diagnostic marker for MG was evaluated using
this application. In the case of area under the curve (AUC) > 0.5, the
closer the AUC is to 1, the better the diagnosis.

Construction of minimum absolute
shrinkage and selection operator models

The least absolute shrinkage and selection operator (LASSO) has
a strong predictive value and low correlation and is suitable for
selecting the best features for high-dimensional data. LASSO
regression analysis was performed using the Bioinforcloud
application RunLASSO, which was developed based on the
glmnet software package (Friedman et al., 2010) and extracted
the expression profiles of MG dysregulated genes and co-
expression module functional genes with diagnostic efficacy to
construct the LASSO model. The expression values of the
selected genes were weighted using the regression coefficients of
the LASSO analysis to create a model index for each sample with the
following equation: Index = ExpGene1*Coef1 + ExpGene2*Coef2 +
ExpGene3*Coef3 +.

“Coef” is the regression coefficient of the gene, derived from
LASSO Cox regression, and “Exp” indicates the expression value of
the gene, thus constructing the MG dysregulated gene co-expression
module-based Lasso model.

Immune cell infiltration analysis

In this study, immune cell infiltration analysis was performed
using the Bioinforcloud application RunCIBERSORT to assess
the abundance of immune cell infiltration in MG as well as
between control samples. The application is based on the
CIBERSORT tool (Chen et al., 2018). It was developed to
enable the estimation of immune infiltration for large volumes
of transcripts and thus assess the relationship between gene
expression or other phenotypes and immune cell infiltration.
In addition, correlation analysis was performed using the
Bioinforcloud application PlotCor to explore the correlation
between MG dysregulated gene co-expression module-based

models, model genes and the abundance of immune cell
infiltration, immune checkpoint genes and tertiary lymphoid
structural marker genes.

Identification of upstream regulators

In this study, the differentially expressed RNA binding proteins
(RBPs) were screened in combination with the results of differential
gene expression analysis, and subsequently, the upstream regulators
regulating the gene sets of the MG dysregulated gene co-expression
module-based model were identified using the Bioinforcloud
application Pivot. The application is based on a hypergeometric
approach to implement Pivot analysis to identify RBPs in the
regulatory gene set.

Data analysis and statistics

All statistical analyses were performed in the Bioinforcloud
platform (http://www.bioinforcloud.org.cn), which was applied by
calling the appropriate R package. Comparisons between the two
groups were made using Student’s t-test and correlation coefficients
were calculated using Spearman analysis. p < 0.05 was considered
significant.

Results

Dysregulated gene co-expression modules
characterize the global regulatory pattern of
myasthenia gravis

As shown in Figure 1A, gene expression data from PBMC
samples of 13 MG patients and 12 healthy controls were analyzed
in this study. The bias of sequencing data due to gene length,
sequencing volume and other factors was removed by
normalization. Principal component analysis (PCA) scatter plots
showed good discrimination between different samples (Figure 2A).
DEGs between MG and control were identified by differential gene
expression analysis, including 861 upregulated DEGs and
643 downregulated DEGs (Figure 2B, Supplementary Table S1).
The heat map showed that these dysregulated genes could
significantly distinguish between MG and control samples
(Figure 2C).

Subsequently, to further explore the relationship between
these dysregulated genes and MG, this study screened these
genes for WGCNA. to construct a scale-free network, we set
the soft threshold power β to 16, and DEGs with similar
expression patterns were co-classified into six co-expression
modules. The module ring tree diagram demonstrates the
neighbor-joining relationships among the dysregulated gene
co-expression modules (Figure 2D). In addition, the module
heat map further demonstrates the co-expression of MG
dysregulated genes in different modules (Figure 2E). The
expression correlations of some significantly dysregulated
genes were demonstrated in the module correlation plots
(Figure 2F), which may be closely related to MG development.
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Biological functions and signaling pathways
significantly involved in myasthenia gravis
dysregulated gene co-expression modules

To further investigate the biological functions and signaling
pathways significantly involved in MG dysregulated gene co-
expression modules, enrichment analysis of these genes was
performed. The results showed that these genes are significantly
involved in the biological processes of positive regulation of innate
immune response, regulation of interferon-beta production and positive
regulation of cytokine production and KEGG pathways such as
neurodegeneration-multiple diseases pathway, Th1 and Th2 cell
differentiation, TGF -beta signaling pathway and mTOR signaling
pathway. (Figures 3A, B). In addition, GSEA further confirmed the
activation or inhibition of KEGG signaling pathways in different co-
expression modules (Figure 3C), suggesting that these pathways may
play an important role in the development ofMG. In addition to this, we
compared the scores of ferroptosis and necroptosis in MG and control
samples and found that the scores of necroptosis were higher in the MG
group, while the scores of ferroptosis were not significant (Figure 3D).

Myasthenia gravis dysregulated gene co-
expression module-based clinical model has
significant diagnostic efficacy

The GSVA scores of MG dysregulated gene co-expression modules
were calculated based on the GSVA method (Figure 4A), and the

diagnostic efficacy of GSVA scores of different modules for MG was
identified using ROC analysis. The results showed that the Green
module had the best diagnostic efficacy for MG (AUC = 0.584,
Supplementary Figure S1). Subsequently, the MG dysregulated gene
co-expression module-based clinical model was further constructed
using the LASSO method, and three characteristic genes with non-zero
regression coefficients were obtained (lambda.min = 0.110, Figures
4B,C). ROC curve analysis showed that the MG dysregulated gene co-
expression module-based model showed excellent diagnostic efficacy
for MG (AUC = 0.981, Figure 4D), and some of these genes, such as
NAPB, showed significantly high expression inMG, while C5orf25 and
ERICH1 showed significantly low expression in MG (Figure 4E). In
addition, the correlation between NAPB, C5orf25 and ERICH1 genes
and ferroptosis and necroptosis was analyzed and the results were
shown in Supplementary Table S2, ERICH1 was negatively associated
with necroptosis.

Co-expression module reprograms the
immune microenvironment of myasthenia
gravis

By immune infiltration analysis, this study explored the level of
immune cell infiltration in Control and MG samples. Correlation
analysis showed a significant negative correlation between the Green
module score and the infiltration abundance of Macrophages
M2 cells, suggesting that the expression of these module genes
may inhibit the infiltration of the corresponding immune cells

FIGURE 1
Flowchart of this work.
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FIGURE 2
Dysregulated gene co-expression modules characterize the global regulatory pattern of myasthenia gravis. (A). Principal component analysis (PCA)
plots showing significant differences between disease and control. (B) Manhattan plots showing differential expression of Case-Control. (C) Heat map
showing expression of dysregulated genes in Case-Control groupings. (D). Module ring tree plots showing neighboring relationships between
dysregulated gene co-expressionmodules. (E)Module heat map showing genemembers of dysregulated gene co-expressionmodules. (F)Module
correlation plot showing the expression correlation of gene co-expression modules with Top10 significantly dysregulated genes.
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FIGURE 3
Biological functions and signaling pathways significantly involved in myasthenia gravis dysregulated gene co-expression modules. (A) Clustered
bubble plots showing the biological functions significantly regulated by MG dysregulated gene co-expression modules (listed as different modules). (B)
Clustered bubble plots showing the signaling pathways significantly regulated by MG dysregulated gene co-expression modules (listed as different
modules). (C) Comprehensive GSEA diagram showing signaling pathways significantly activated/repressed by MG dysregulated gene co-expression
modules, (a) blackmodule, (b) bluemodule, (c) greenmodule, (d) graymodule, (e) pinkmodule, (f) redmodule. (D) Scoring of ferroptosis and necroptosis
in MG and control samples.
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(Figure 5A). Notably, MG dysregulated gene co-expression module
scores as well as scored genes showed significant correlation with the
abundance of some immune cells, immune checkpoint genes and
tertiary lymphoid structural marker genes (Figures 5B, C), suggesting
that these module genes may be indirectly involved in reprogramming
the MG immune microenvironment by promoting the infiltration
of immune cells, or regulating the expression of immune-related
genes.

Upstream regulators of dysregulated gene
co-expression modules

To construct a global regulatory network for the MG
dysregulated gene co-expression module-based model, we further
explored the upstream regulators of these genes. The upstream
regulators regulating this model gene set, including RBPs such as
YTHDF1, U2AF2, TARDBP, STAU1, were identified by Pivot

FIGURE 4
The myasthenia gravis dysregulated gene co-expression module-based clinical model has significant diagnostic efficacy. (A) Heat map
demonstrating significant enrichment of MG dysregulated gene co-expression module gene (GSVA) scores in Case-Control. (B) Lambda plot
demonstrating model performance of the set of MG dysregulated gene co-expression module functional genes with diagnostic efficacy at different
Lambda (single factor significant genes were selected for Lasso modeling). (C) Lasso model Plot showing the model confidence of the set of
functional genes with diagnostic efficacy of MG dysregulated gene co-expression module at different log (Lambda). (D) ROC curve showing the ROC
curve of MG dysregulated gene co-expression module-based model. (E) Box plot showing the expression level of model genes.
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analysis (Figure 6A), where EIF3D, RBM15, STAU1, TARDBP and
YTHDF1 showed significant high expression in MG samples
(Figure 6B).

Discussion

The clear pathogenesis of MG is still unknown, and due to its
heterogeneous and complex pathogenesis, there are no effective
treatment options for MG patients (Sanders et al., 2016). The
present study is based on the mRNA expression profile of MG
from the GEO database. In this study, we identified MG-related
DEGs for WGCNA based on the mRNA expression profile of
MG in the GEO database, and searched for the most relevant
modules to construct a scoring clinical model, which can
adequately ensure the interaction between genes. Then, the
diagnostic efficacy of the scoring clinical model for MG was
determined. In addition, few established immune-related gene
profiles were combined with conventional prognostic models to
optimize routine clinical practice. They are not very effective as a
direct guide to clinical workup. To remedy these shortcomings,
we further explored the immune microenvironment of MG
based on clinical models of MG scoring. These findings
strongly suggest a great potential role for the MG
dysregulated gene co-expression module-based model in MG
obtained in this study.

WGCNA makes strongly correlated genes strongly correlated
after power function treatment, therefore, the construction of
WGCNA network helps to identify and screen important
modules and key genes associated with specific clinical
phenotypes (Langfelder and Horvath, 2008). In this study,
WGCNA analysis was performed on RNA-seq datasets
downloaded from the GEO database, and DEGs were calculated
separately between MG patients and healthy controls, yielding a
total of 1504 DEGs as the dataset for subsequent co-expression
network analysis to prevent high correlations for genes that were not
significantly different. Notably, the co-expression network analysis
identified and clustered into six co-expression modules, and the
correlation analysis of genes with significantly dysregulated genes
was performed for each module, and the Top10 pivotal genes
contained in each module were screened for strong interaction
with MG, respectively.

Among the different modules, genes were found to be mainly
enriched in Pathways of neurodegeneration - multiple diseases,
Alzheimer disease, Th1 and Th2 cell differentiation, Regulation
of actin cytoskeleton, Oxidative phosphorylation, Necroptosis,
TGF-beta signaling pathway, Wnt signaling pathway and other
KEGG signaling pathways. Notably, each module was
significantly enriched in Pathways of neurodegeneration -
multiple diseases. In addition, functional enrichment analysis
revealed that module genes were mainly enriched in positive
regulation of innate immune response, regulation of interferon-

FIGURE 5
Co-expression modules reprogram the immune microenvironment of myasthenia gravis. (A) Series of correlation scatter plots showing expression
correlation of immune cell infiltration abundance with diagnostic potency of MG dysregulated gene co-expression module scores. (B) Bubble plots
showing correlation of MG dysregulated gene co-expression module-based Lasso model genes with immune cell infiltration abundance. (C) Bubble
plots showing correlation of MG dysregulated gene co-expression module-based Lasso model genes correlated with immune checkpoint-
associated genes and tertiary lymphoid structural marker genes.

Frontiers in Genetics frontiersin.org08

Zhang et al. 10.3389/fgene.2023.1106359

186

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1106359


beta production, positive regulation of cytokine production,
activation of innate immune response This suggests that the
main cause of MG development is abnormalities in interferon
and immune pathways. In the course of MG, abnormal antigen
processing and presentation may contribute to the onset and
progression of the disease (Xu et al., 2021). In addition, it has
been found that imbalance of various helper T cells (including
Th1, Th2, Th17, Th22 and follicular helper T (TFH) cells in MG
is associated with immune disorders, suggesting that the balance
of Th cells and their cytokines in MG patients is related to the
clinical status or severity of MG disease (Wang et al., 2019). It has
also been shown that oxidative stress and low antioxidant status
play a major role in the pathogenesis of inflammatory and
autoimmune diseases, and that MG patients with low
antioxidant status have active oxidative processes (Yang et al.,
2016; Adamczyk-Sowa et al., 2017). In addition to this, studies
have confirmed that AChR-MG may be an acquired interferon
disease (Payet et al., 2022). The results of GO and KEGG analysis
in this study also suggest that MG dysregulated genes are mainly
enriched in interferon and immune-related processes.

To date, there are no studies on the NAPB, C5orf25, and
ERICH1 genes in PBMCs in MG. The N-ethylmaleimide-
sensitive accessory protein beta (NAPB) gene is associated with
brain development as well as brain development in neurological
disorders, such as various severe early onset epilepsy (Conroy et al.,
2016; Zhao et al., 2021). In addition, NAPB has been shown to act as
a pivotal gene in Alzheimer’s disease and to be involved in the
pathogenesis of Alzheimer’s disease (Zhang et al., 2020). CAPN3 has
been reported to have multiple muscle cell functions and mutations

in this protease cause limb-girdle muscular dystrophy type 2A (Ono
et al., 2013). C5orf25 is a novel CAPN3-binding protein that
regulates the protease activity of CAPN3 and has the potential to
act as a scaffolding protein (Ono et al., 2013). While ERICH1 has
been reported to be associated with the risk of multiple sclerosis
(MS) (Maltby et al., 2017), MS and MG are two uncommon
neurological problems, both of which can affect the nervous system.

Immune cell infiltration analysis showed a significant negative
correlation between the infiltration abundance of green module
Macrophages M2 cells. Macrophages the cause of the pathogenesis
of some human neuroimmune diseases, mainly MS, optic
neuromyelitis optica (NMO), MG and Guillain-Barré syndrome
(GBS) (Fan et al., 2016).

However, the present study still has limitations, as the sample
size of the public database is too small, which may lead to the
omission of pivotal genes. In addition, the results of this analysis
were obtained exclusively by bioinformatics and failed to
experimentally validate the expression of the obtained biomarkers
at protein and RNA levels, and further experimental validation is
proposed in the future.

Conclusion

The results of this study showed that a gene-based clinical model
consisting of NAPB, C5orf25 and ERICH1 showed high diagnostic
ability for MG (AUC = 0.981), and this model developed can be used
as a diagnostic indicator for MG, which is crucial for subsequent
clinical treatment and improvement of disease prognosis.

FIGURE 6
Upstream regulators of the dysregulated gene co-expression module. (A) Circular network plot demonstrating the regulatory effect of RBP on MG
dysregulated gene co-expression module-based Lasso model genes. (B) Box plot demonstrating the expression level of RBPs.
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biomarker in patients with primary
and metastatic small intestinal
neuroendocrine tumors
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Background: Small intestinal neuroendocrine tumors (SI-NETs) are the most
common malignant tumors of the small intestine, with many patients
presenting with metastases and their incidence increasing. We aimed to find
effective diagnostic biomarkers for patients with primary and metastatic SI-NETs
that could be applied for clinical diagnosis.

Methods: We downloaded GSE65286 (training set) and GSE98894 (test set) from
the GEO database and performed differential gene expression analysis to obtain
differentially expressed genes (DEGs) and differentially expressed long non-
coding RNAs (DElncRNAs). The functions and pathways involved in these
genes were further explored by Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analyses. In addition, a global
regulatory network involving dysregulated genes in SI-NETs was constructed
based on RNAInter and TRRUST v2 databases, and the diagnostic power of
hub genes was identified by receiver operating characteristic curve (ROC).

Results: A total of 2,969 DEGs and DElncRNAs were obtained in the training set.
Enrichment analysis revealed that biological processes (BPs) and KEGG pathways
were mainly associated with cancer. Based on gene set enrichment analysis
(GSEA), we obtained five BPs (cytokinesis, iron ion homeostasis,
mucopolysaccharide metabolic process, platelet degranulation and triglyceride
metabolic process) and one KEGG pathway (ppar signaling pathway). In addition,
the core set of dysregulated genes obtained included MYL9, ITGV8, FGF2, FZD7,
and FLNC. The hub genes were upregulated in patients with primary SI-NETs
compared to patients with metastatic SI-NETs, which is consistent with the
training set. Significantly, the results of ROC analysis showed that the
diagnostic power of the hub genes was strong in both the training and test sets.

Conclusion: In summary, we constructed a global regulatory network in SI-NETs.
In addition, we obtained the hub genes including MYL9, ITGV8, FGF2, FZD7, and
FLNC, which may be useful for the diagnosis of patients with primary and
metastatic SI-NETs.

KEYWORDS

hub genes, intestinal neuroendocrine tumor, primary small intestinal neuroendocrine
tumor, metastatic small intestinal neuroendocrine rumors, lncRNA

OPEN ACCESS

EDITED BY

Xiang Xue,
University of New Mexico, United States

REVIEWED BY

Xueqiong Han,
The Fifth Affiliated Hospital of Guangxi
Medical University, China
Jin Zhou,
Qingdao University, China

*CORRESPONDENCE

Jianxian Chen,
chjianxian@126.com

†These authors have contributed equally
to this work and share first authorship

SPECIALTY SECTION

This article was submitted to RNA,
a section of the journal
Frontiers in Genetics

RECEIVED 28 November 2022
ACCEPTED 28 March 2023
PUBLISHED 07 April 2023

CITATION

Chen J, Meng Y, Huang X, Liao X, Tang X,
Xu Y and Li J (2023), Potential effective
diagnostic biomarker in patients with
primary and metastatic small intestinal
neuroendocrine tumors.
Front. Genet. 14:1110396.
doi: 10.3389/fgene.2023.1110396

COPYRIGHT

© 2023 Chen, Meng, Huang, Liao, Tang,
Xu and Li. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 07 April 2023
DOI 10.3389/fgene.2023.1110396

190

https://www.frontiersin.org/articles/10.3389/fgene.2023.1110396/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1110396/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1110396/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1110396/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1110396&domain=pdf&date_stamp=2023-04-07
mailto:chjianxian@126.com
mailto:chjianxian@126.com
https://doi.org/10.3389/fgene.2023.1110396
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1110396


Introduction

Neuroendocrine tumors (NETs) arise from specialized cells,
which are widely dispersed throughout the gastroenteropancreatic
tract and lungs (Colao et al., 2020). The incidence and prevalence of
NETs have been rising that may be due to the emergence of early-
stage disease and stage migration. Furthermore, there have been
studies showing that epigenetics may help refine the diagnosis, as
well as identify targeted therapies that interfere with epigenetically
sensitive pathways (Dasari et al., 2017). SI-NETs are usually small,
but frequently leading to lymph node metastases associated with a
desmoplastic reaction of the mesentery. Moreover, although SI-
NETs are slow growing tumors they frequently show liver
metastases at the time of initial diagnosis (Bosch et al., 2018).
Therefore, even small tumors with a favorable grading
(commonly G1 or G2), can result in a deteriorated prognosis due
to distant metastases. Furthermore, there remains significant
variability in survival, even among those with metastatic disease.
In patients with stage IV NETs of the small bowel, 25% of patients
survive less than 2 years while 30% live more than 10 years (Ahmed
et al., 2009).

It is usually difficult to make the diagnosis of SI-NETs at the
early stage, due to the primary tumors tending to be little and
generally without symptoms before the occurrence of bleeding,
abdominal pain, obstruction, as well as carcinoid and metastatic
syndrome (Norlen et al., 2012; Howe et al., 2017). Current clinical
practice uses a documented proliferative index to describe the
disease as a whole, including predicting progression of the liver
metastases. Pathological examination of tumor specimens has been
used to help determine prognosis (Jung et al., 2019). However, the
reliability of a single tumor specimen is always subject to sampling
error. A recent study demonstrated heterogeneity within an
individual tumor (intertumoral) in well-differentiated NETs
metastatic to the liver, as Ki67 indices varied widely in different
areas within a single lesion (Dhall et al., 2012). Based on those
findings, it was predicted that nine core biopsies would be required
to obtain the true high Ki67 in a single lesion (Moris et al., 2017).
Therefore, it is meaningful to find clinically usable diagnostic
markers. Ferroptosis is an iron-dependent form of non-apoptotic
cell death characterized by lipid peroxidation, which is widely
involved in various diseases and cancers (Dixon et al., 2012). In
addition, pharmacological modulation of ferroptosis shows great
potential in the treatment of drug-resistant cancers (Jiang et al.,
2021). It has been demonstrated that ferroptosis enhances the
cytotoxic effects of gemcitabine in pancreatic cancer (Ye et al.,
2021). However, the role of ferroptosis in SI-NETs has not been
investigated. In order to move towards precision medicine, the
genomic landscape of SI-NET has been increasingly studied over
the past years with the aim of revealing the molecular events behind
NET tumorigenesis, facilitating the identification of new therapeutic
targets, rational (targeted) therapeutic management strategies and
improving prognosis (Samsom et al., 2019). Recently, several
biomarkers have been revealed to be associated with pathogenesis
or tumor progression. For example, the possible role of EZH2 as a
candidate oncogene for SI-NETs and suggests that CPI-1205 and
metformin should be further evaluated as therapeutic options for
patients with SI-NETs (Barazeghi et al., 2021). However the
pathogenesis of SI-NETs remains largely unknown. Recent

advances in the molecular mechanisms of SI-NETs development
may improve the management of these tumors.

In the current study, we aimed to find the diagnostic marker
used to diagnosis metastatic SI-NETs. We used a bioinformatics
approach to identify key genes associated with metastatic SI-NETs,
using the Gene Expression Omnibus Database (GEO) database. A
global regulatory network was constructed to identify potential
therapeutic targets. Furthermore, the diagnostic ability of core
genes in the training and test sets was verified by receiver
operating characteristic curve (ROC) analysis.

Material and methods

Data collection and processing

We downloaded gene expression data from the microarray
study of Andersson et al. (2016) (Agilent-014850) (accession
number: GSE65286) and Alvarez et al. (2018) (Illumina HiSeq
2500) (accession number: GSE98894). The data set of
GSE65286 based on GPL4133 platform includes 21 patients
with liver metastatic SI-NETs and 10 patients with primary
SI-NETs. The GSE98894 data set based on GPL16791 platform
includes 37 patients with liver metastatic SI-NETs and
44 patients with primary SI-NETs. In the original study, the
GSE65286 dataset was used as a training dataset, while the
GSE98894 was used as a test dataset. The justRMA method in
the affy package (Gautier et al., 2004) was applied to normalize
the raw data of the two data sets. If one gene corresponded to
multiple probes, the average expression value of these probes was
considered to be the expression value of the gene. The lncRNA
expression data were obtained by reannotating the probes
strategy according to previous study (Niu et al., 2019). The
probe sets were mapped to Ensembl gene IDs based on the
latest version of the NetAffx Annotation File (HuGene-1_0-st-
v1 Probeset Annotations, CSV Format, Release 36).

Principal components analysis, differential
gene expression analysis and bidirectional
hierarchical clustering

PCA was performed prior to differential gene expression
analysis using the expression profiles of all genes in R (version
3.4.2) (https://cran.r-project.org). The limma package (Yu et al.,
2019a) was used to analyze differentially expressed genes and long
non-coding RNA (DEGs and DElncRNA), between patients with
primary and metastatic SI-NETs. The DEGs and DElncRNAs of the
datasets with adjusted p-value <0.05 were considered for subsequent
analysis. PCA was subsequently performed using the expression
profiles of the DEGs and DElncRNAs. Samples were plotted in two-
dimensional plots across the first two principal components.
Bidirectional hierarchical clustering based on the expression
profile in the GSE65286 dataset was performed by calculating the
centered Person correlation coefficient. A heatmap was then
constructed using the R package pheatmap (version 1.0.12) (Yu
et al., 2019a). The DEGs and DElncRNAs with |log2 fold change
(FC)| >1.5 and p < 0.01 were shown in heatmap.
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Immune cell infiltration

The infiltration levels of immune cells were evaluated using
ssGSEA in GSVA R software package in GSE65286 datasets.
Differences in infiltration of immune cells between primary and
metastatic SI-NETs were calculated with the limma R package. We
also evaluated potential correlations between the feature genes and
immune cells using Pearson correlation analysis. The CIBERSORT
(https://cibersort.stanford.edu/) also used to evaluate proportion of
immune cells in SI-NETs. Immune cells expressed as 0 were
excluded from the analysis.

Enrichment analysis

The Clusterprofiler R package (Tan et al., 2020) was used to
functionally analyze key DEGs in gene ontology (GO) terms and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The
threshold for significant differences was p < 0.05. The gene set
variation analysis (GSVA) (Guo et al., 2019) was used to further
explore significant differences between patients with primary and
metastases SI-NETs, according to the enrichment score of gene sets
defined by signaling pathways. The threshold was p < 0.05. Gene set
enrichment analysis (GSEA) was performed using GSEA software
(Subramanian et al., 2005). Gene sets used here were downloaded
from the Molecular Signature Database [MSigDB (Liberzon et al.,
2015)]. GSEA result satisfying a nominal p-value cut-off
of <0.05 with a FDR >0.25 were considered statistically
significant. Furthermore, GO and KEGG networks were drawn
using Cytoscape (Pinto et al., 2019) and ClueGO plug-in (Bindea
et al., 2009).

Constructing comprehensive regulatory
network

Interactions between lncRNA and their target genes were
downloaded from RNAInter database [(Agnello et al., 2018),
http://www.rna-society.org/raid/]. The interactions between
transcription factors (TFs) and stemness-highly relatecond
mRNAs were downloaded from TRRUST v2 database (Han et al.
, 2018). The correlation analysis was performed to explore the
correlation between the lncRNA/TF and its targets. Subsequently,
combining with enrichment analysis result, a lncRNA/TF-target-
KEGG pathway (transcriptional regulatory network) involved in
dysregulated genes in SI-NETs was constructed.

Identifying hub genes

The GSVA function in GSVA package (Hanzelmann et al., 2013)
was used as an unsupervised and non-parametric method for
estimating the variation of gene set in patients with primary and
metastatic SI-NETs. GSVA scores were calculated non-
parametrically using a Kolmogorov Smirnoff-like random walk
statistic and a negative value for a particular gene set, meaning
that the gene set has a lower expression than the same gene set with a
positive value. The receiver operator characteristic (ROC) curve

anaysis was performed to obtain the diagnostic power of the hub
genes, and the area under the ROC curve (AUC) of each cutoff was
measured in accordance with previous sports (Guo et al., 2019).

Molecule docking

Docking was the process of bringing one molecule in vicinity
with another molecule. The present research work was conducted
the molecule to be docked with another molecule. We
downloaded the 3D structure of the target protein from
Protein Databank (www.rcsb.org). Docking was conducted
using free software’s Hex v6.0. And the results were visualized
with Pymol software. Docking energy less than 0 means the two
have binding potential, and the smaller the energy, the higher the
binding potential.

Statistical analysis

Statistical analyses were performed using R (https://www.
rproject.org/). The expression levels of genes were analyzed by an
unpaired t-test, was considered statistically significant when p < 0.
05. The Bioinforcloud platform is the main platform used for data
analysis in this study (http://www.bioinforcloud.org.cn).

Results

Dysregulated genes in SI-NETs

The workflow of this study was showed in Figure 1. A total of
2,959 DEGs (1,642 down-expressed and 1,317 up-expressed DEGs,
Supplementary Table S1) and 312 DElncRNA (157 down-expressed
and 155 up-expressed DElncRNA, Supplementary Table S2) were
obtained via difference analysis (Figure 2A).

FIGURE 1
The workflow of this study.
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Supplementary Figure S1 presented the results of PCA using
all genes and Supplementary Figure S2 presents the results of
PCA using the DEGs and DElncRNAs. As demonstrated in
Supplementary Figure S2, samples with primary and
metastatic SI-NETs samples are more easily distinguished
using DEGs and DElncRNAs. We further explored the
different expression for the most significant DEGs and
DElncRNA in primary and metastatic SI-NET patients, they
were shown in Figures 2B, C, respectively. In addition, we
evaluated the infiltration of immune cells between primary
and metastatic SI-NETs (Figure 2D).

The biological functions of dysregulated
genes in SI-NETs

To evaluate the affected functions for DEGs in this study, we
performed enrichment analysis. We found that biological
processes were closely related to SI-NETs, such as positive
regulation of cell adhesion, multicellular organismal
homeostasis and regulation of neurotransmitter levels
(Figure 3A). In addition, the KEGG pathways obtained were
shown in Figure 3B. Among them, we found that wnt signaling
pathway (Scarpa, 2019), focal adhesion (Francois et al., 2015),

FIGURE 2
Expression disorders of SI-NETs. (A) Manhattan plot for DEGs and DElncRNA. The three most significantly DEGs and DElncRNA are marker and
labeled with their names. (B) Hierarchical clustering dendrograms of the expression patterns of DEGs that distinguish between patients with primary and
metastatic SI-NETs. (C) Hierarchical clustering dendrograms of the expression patterns of DElnRNA that distinguish between patients with primary and
metastatic SI-NETs. DEGs: differentially expressed genes, DElncRNA: differentially expressed lncRNA, SI-NETs: small intestine neuroendocrine
tumors. (D) Infiltration of immune cells between primary and metastatic SI-NETs.
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FIGURE 3
Biological processes and pathways of DEGs for patients with SI-NETs. (A) The top 20 biological processes for patients with SI-NETs. (B) The top
20 KEGG pathways for patients with SI-NETs. (C) GSEA results revealed the significantly enriched GO-BPs between patients with primary and metastatic
SI-NETs. (D) GSEA results revealed the significantly enriched KEGG pathways between patients with primary and metastatic SI-NETs. (E) The ClueGo
network for GO-BPs in patients with SI-NETs. (F) The ClueGO network for KEGG pathways in patients with SI-NETs. SI-NETs, small intestine
neuroendocrine tumors; GSEA, gene set enrichment analysis; GO, gene ontology; BPs, biological processes; KEGG, Kyoto Encyclopedia of Genes and
Genomes.
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FIGURE 4
The global regulatory landscape in SI-NETs. (A) Sankey plot: Graphical summary of lncRNA regulating KEGG pathways through mRNA. (B) Sankey
plot: Graphical summary of TFs regulating KEGG pathways through mRNA. (C) Molecular docking model: The prediction of targeted binding FGF2 and
WWTR1/PGR/MITF, FLNC and MITF/PGR, as well as FZD7 and MITF. (D) The global regulatory landscape SI-NETs: lncRNA/TFs-mRNA-KEGG pathways
network. (E) 3 KEGG pathways for further study. Node maps degree value. Light purple represents a smaller degree value, while dark purple
representing a larger degree value. Degree value represents the number of genes interacting with other genes. SI-NETs, small intestine neuroendocrine
tumors; KEGG, Kyoto Encyclopedia of Genes and Genomes; TFs, transcription factors.
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Hippo signaling pathway (Zhao et al., 2018) and regulation of
actin cytoskeleton (Kim et al., 2016) were closely associated with
SI-NETs. Furthermore, the GSEA results showed that
cytokinesis, iron ion homeostasis, mucopolysaccharide
metabolic process, platelet degranulation and triglyceride
metabolic process were upregulated in metastatic SI-NET
patients, compared to primary SI-NET patients (Figure 3C).

Moreover, the ppar signaling pathway was upregulated in
metastatic SI-NET patients, compared to primary SI-NET
patients (Figure 3D). The ClueGo networks of GO and KEGG
were shown in Figures 3E, F, respectively. Where each node
represents a term, the connection between the nodes reflects the
correlation between the terms, and the color of the node reflects
the enrichment classification of that node.

FIGURE 5
The identification of diagnostic power of the hub genes in SI-NETs. (A) The heatmap for the hub genes in GSE65286. (B) Circo plot: The expression
level of the hub genes in GSE65286 and GSE98894. (C) The ROC analysis for the hub genes in GSE65286 and GSE98894. (D) The hub genes are
significantly involved in biological processes. (E) The hub genes are significantly involved in the KEGG signaling pathway. SI-NETs, small intestine
neuroendocrine tumors; ROC, receiver operator characteristic.
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The comprehensive regulatory landscape in
SI-NETs

The correlation analysis result showed that lncRNA (Figure 4A)
and TF (Figure 4B) can regulate the phenotype of organism via
DEGs. To further explore if there was possibility of targeted binding
of genes having correlation in Figures 4A, B, the molecule docking
was performed. Among them, we found that the docking energy of
FGF2 and WWTR1/PGR/MITF, FLNC, and MITF/PGR, as well as
FZD7 and MITF was less than 0, which indicating there was
possibility of targeted binding (Figure 4C). Combining the
correlation analysis of TF-mRNA-KEGG pathway and lncRNA-
mRNA-KEGG pathway, the TF/lncRNA-mRNA-KEGG pathway
translational regulatory network was constructed (Figure 4D). As
shown in Figure 4D, 2 lncRNA and 3 TFs can regulate 10 KEGG
pathways via 10 mRNA. Combining the previous study (Kim et al.,
2016; Zhao et al., 2018; Scarpa, 2019), We chose Wnt signaling
pathway, hippo signaling pathway, focal adhesion and regulation of
actin cytoskeleton as interested pathways for further study. We
found FGF2 and ITGV8 may reduce actomyosin assembly
contraction via acting on downstream genes in regulation of
actin cytoskeleton. Meaningfully, ITGV8, FLNC, and MYL9 can
promote the proliferation, motility and survival of cells in focal
adhesion, which occurred with the help of acting on downstream
genes and interactions among them. In Hippo signaling pathway,
FZD7 can act on anti-apoptotic/pro-proliferation genes for
promoting the proliferation of cells. While in Wnt signaling
pathway, FZD7 can adjust interactions and activities of cells
through scffold and DNA (Figure 4E).

Identification of the hub genes in SI-NETs

Combined with the interested pathways and DEGs, five genes
(MYL9, FGF2, FZD7, FLNC, and ITGA8) were defined the hub
genes in patients with SI-NET. In addition, we found that they were
upregulated in patients with primary SI-NETs, compared to patients
with metastatic SI-NETs (Figure 5A). In test dataset, we found the
hub genes were also down-expressed for metastatic SI-NET patients
in GSE98894, which was consistent with that of GSE65286
(Figure 5B). In addition, the ROC results showed that the
diagnostic ability of the hub genes were all strong in the training
set (GSE65286) (Supplementary Figure S3). This result was also
validated in the test set (GSE98894) (Figure 5C). Furthermore,
enrichment analysis of hub genes revealed that these genes were
significantly involved in biological processes such as regulation of
cell fate specification, substrate adhesion-dependent cell spreading
(Figure 5D), and signaling pathways such as Focal adhesion, and
Regulation of actin cytoskeleton (Figure 5E).

Discussion

SI-NETs are the most common form of neoplasm in the small
bowel (Dasari et al., 2017; Norlen et al., 2018; Deguelte et al., 2020).
The common diagnosis methods are pathological examination and
Ki67 indices (Yao et al., 2008; Yang et al., 2011). There are some
limitations, such as sampling error and differences in variable

lesions. In the current study, we screened the DEGs and
DElncRNA between patients with primary and metastatic SI-
NETs. In addition, we explored the biological functions of DEGs
in SI-NETs. We further constructed the comprehensive regulatory
network and obtained the hub genes. At last, we evaluated the
expression and diagnostic power of the hub genes in both training
set and test set.

In the current study, 2 common biological processes (platelet
degranulation and triglyceride metabolic process) and 1 common
KEGG pathway (ppar signaling pathway) were obtained between
enrichment analysis and GSEA. Notably, activation of ppar signaling
pathway may reduce cell survival. Subsequently, the comprehensive
regulatory network was constructed. We found that TFs (WWTR1,
MITF and PGR) and lncRNA (FENDRR and AC019191.2) were the
important regulators that can participate in mRNA transcriptional and
post-transcriptional regulation. Ferroptosis is a form of iron-dependent
non-apoptotic cell death that occurs through an increase in cellular
phospholipid peroxidation in the presence of an impaired phospholipid
peroxide repair system (Venkatesh et al., 2020). PPAR family can
regulate iron death sensitivity (Venkatesh et al., 2020). Among them,
WWTR1 is a downstream effector of the Hippo signaling and a
transcriptional factor TEAD (Hong and Guan, 2012). In addition,
WWTR1 can participate in many cancer cell signaling pathways, such
WNT, mTOR and EMT signaling pathway (Wei et al., 2019). At the
same time, MITF can regulate a range of biological processes, including
cell metabolism, senescence, invasion, proliferation and differentiation
(Goding and Arnheiter, 2019). PGR is a kind of nuclear progestin
receptors that can control various physiological processes in mammals
(Zhu et al., 2015). FENDDR plays the roles of acting both as oncogenic
and tumor-suppressive factors as a kind of lncRNA (Yu et al., 2019b).
Moreover, we found that AC019191.2 also plays an important role in
transcriptional and post-transcriptional regulation for patients with
primary and metastatic SI-NETs. In summary, TF and lncRNA can
drive the transcription and post-transcriptional regulation, thereby
affecting the phenotype of patients with SI-NETs.

In order to further explore the dysregulated mechanism in
patients with SI-NETs, we chose 4 KEGG pathways (wnt signaling
pathway, focal adhesion, Hippo signaling pathway and regulation of
actin cytoskeleton) for the next study, combining with the previous
studies. And the hub genes were obtained, including MYL9, FGF2,
FZD7, FLNC, and ITGA8. MYL9 is necessary for experimental
metastasis and cytoskeletal dynamics (Wang et al., 2017). And its
overexpression is closely related to invasion-promoting functions of
cancer-associated fibroblasts (Wang et al., 2017). FGF2 can function
as a potential oncogenic protein in multiple malignancy tumors
(Wang et al., 2015). FZD7 is a trans-membrane receptor. Some
studies showed that FZD7 appears to promote tumorigenesis and
cancer progression (Qiu et al., 2016). In addition, in ovarian cancer,
FZD7 marks a cell population that is highly susceptible to ferroptosis
(Wang et al., 2021). Several studies reports that FLNC is related to
cancer, but the results are not inconsistent (Qiao et al., 2015).
Moreover, we found that the different expression of
ITGV8 mediated the dysregulation of biological functions in SI-
NETs. In addition, we found that the hub genes were over-
expressed in patients with primary SI-NETs compared to patients
with metastatic SI-NETs. And the diagnostic power of the hub genes
were high both in training set and test set, which indicated it may be
used as a diagnostic biomarker for patients with SI-NETs.
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There are some limitations. Firstly, the study is based on a
retrospective data, which needs to be verified in a larger prospective
cohort. Secondly, this study is mainly based bioinformatics analysis,
which needs the further biological experiments.

Conclusion

We construct a global regulatory network in patients with
primary and metastatic SI-NETs. In addition, we obtained the
hub genes that consists of MYL9, FGF2, FZD7, FLNC, and
ITGA8, which may be meaningful for diagnosis of patients with
primary and metastatic SI-NETs.
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Introduction: This research explored the immune characteristics of natural killer
(NK) cells in lung adenocarcinoma (LUAD) and their predictive role on patient
survival and immunotherapy response.

Material and methods: Molecular subtyping of LUAD samples was performed by
evaluating NK cell-associated pathways and genes in The Cancer Genome Atlas
(TCGA) dataset using consistent clustering. 12 programmed cell death (PCD)
patterns were acquired from previous study. Riskscore prognostic models were
constructed using Least absolute shrinkage and selection operator (Lasso) and
Cox regression. The model stability was validated in Gene Expression Omnibus
database (GEO).

Results:We classified LUAD into three differentmolecular subgroups based on NK
cell-related genes, with the worst prognosis in C1 patients and the optimal in C3.
Homologous Recombination Defects, purity and ploidy, TMB, LOH, Aneuploidy
Score, were the most high-expressed in C1 and the least expressed in C3.
ImmuneScore was the highest in C3 type, suggesting greater immune
infiltration in C3 subtype. C1 subtypes had higher TIDE scores, indicating that
C1 subtypes may benefit less from immunotherapy. Generally, C3 subtype
presented highest PCD patterns scores. With four genes, ANLN, FAM83A,
RHOV and PARP15, we constructed a LUAD risk prediction model with
significant differences in immune cell composition, cell cycle related pathways
between the two risk groups. Samples in C1 and high groupweremore sensitive to
chemotherapy drug. The score of PCD were differences in high- and low-groups.
Finally, we combined Riskscore and clinical features to improve the performance
of the prediction model, and the calibration curve and decision curve verified that
the great robustness of the model.

Conclusion: We identified three stable molecular subtypes of LUAD and
constructed a prognostic model based on NK cell-related genes, maybe have
a greater potential for application in predicting immunotherapy response and
patient prognosis.

KEYWORDS

lung adenocarcinoma, NK cells, programmed cell death, immunity, survival, prediction
model, chemotherapy drug
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1 Background

Lung cancer is a leading cause of cancer mortality in the world
(Hirsch et al., 2017). Statistics reported that in 2022 in the
United States will die from cancer, and approximately 350 of them
die from lung cancer every day (Siegel et al., 2022). Adenocarcinoma
(lung adenocarcinoma, LUAD) is currently the predominant
histologic type, which accounts for approximately 50% of all lung
cancer cases, and is notable for its high incidence, high mortality, and
poor prognosis (Succony et al., 2021). Currently, surgery is
recommended for early-stage lung cancer and is considered the
most effective treatment option, while those with advanced disease
are often further supplemented with radiotherapy, chemotherapy,
targeted therapy, and immunotherapy (Hoy et al., 2019). Regardless of
the interventions used, the overall 5-year survival of LUAD patients
remains below 20% (Duma et al., 2019). Therefore, it is necessary to
develop current understanding on the pathogenesis of LUAD to
provide a theoretical basis for reducing the occurrence of LUAD,
improving the treatment of LUAD and its prognosis.

The development of LUAD involves external environment, gene
mutation, tumor immunity, and family genetics, and is a multistep,
cascade process (Suster and Mino-Kenudson, 2020). As a component
of the tumor microenvironment, tumor immune cells are present in
all stages of LUAD and play an important role in shaping tumor
development (Saab et al., 2020). For example, tumor-associated
macrophages can accelerate tumor progression by promoting
tumor angiogenesis, metastasis and immune escape. Regulatory
T cells inhibit anti-tumor immune responses, thereby promoting
the development of immunosuppressive tumor microenvironments
and promoting cancer progression (Hsieh et al., 2012). Cytotoxic
CD8+ memory T cells kill tumor cells by recognizing specific antigens
on them and stimulating an immune response (Arneth, 2019).
Dendritic cells are antigen-presenting cells, which are an important
bridge between innate and adaptive immunity. Dendritic cells can not
only induce cellular immunity and humoral immunity, but also
activate natural killer (NK) cells and NK T cells (Sadeghzadeh
et al., 2020). NK cells are anti-tumor immune cells that kill cancer
cells in the body, but in the tumor microenvironment NK cells are
generally reduced in number and impaired in function (Russell et al.,
2022). Basic experiments and clinical studies together have shown that
NK cells are in the first line of defense against tumors and do not
require pre-stimulation to cause NK cells to migrate to the lesion and
play an immunomodulatory role (Guillerey, 2020). Phenotypically,
NK cell subpopulations display potent antitumor immune
cytotoxicity via MEK/ERK and PI3K/Akt/mTOR pathways upon
stimulation through cytokines such as interleukin (IL) (Valipour
et al., 2019). Although patient’s immune system can recognize
neoantigens produced by tumors with high mutational load
(immunogenic “hot” tumors), in terms of its mutational load, lung
cancer is immunogenic, only moderately, to some extent. Therefore,
the highly complex interaction between LUADandNK cells is amajor
challenge to improve immunotherapy.

Studies on the pathogenesis of NK cells in LUAD have delved into
the genetic-molecular field, and it is mostly believed that the
development of LUAD is the result of a multigene, multistage
involvement (Crinier et al., 2020). However, the genetic landscape
and immune profile of NK cells in LUAD are unclear, also the
prognosis and immune efficacy prediction of LUAD based on NK

cells have not been reported. This study first identified stable molecular
subtypes of LUAD by consistent clustering of NK cell-associated genes,
and further compared clinicopathological, mutational, immunological,
and pathway characteristics among the subtypes. Then, we constructed
a risk model and a clinical prognostic model, which can be used to
evaluate personalized treatment for LUAD patients.

2 Materials and methods

2.1 Source of clinical information and gene
expression profile data of NK cells

The clinical information andmRNA transcriptome data of LUAD
patients were downloaded from the TCGAGDCAPI (Colaprico et al.,
2016). To verify the accuracy of the results, we also downloaded the
clinical and mRNA gene expression data of LUAD patients from the
Gene Expression Omnibus database (GEO) database (Toro-
Domínguez et al., 2019), including GSE72094, GSE31210 datasets.
The TCGA dataset contained 500 LUAD samples as the training set,
while the GSE72094 and GSE31210 datasets contained 398 and
226 LUAD samples, respectively, as the validation set.

To ensure the quality and reliability of the downloaded data,
quality control was performed, and the inclusion and exclusion
criteria were (Hirsch et al., 2017) to remove samples with incomplete
clinical information; (Siegel et al., 2022); to remove samples with
unknown survival time and survival status; (Succony et al., 2021); to
remove probes with one probe matching to multiple genes, and the
mean value was taken as the expression value of that gene when
multiple probes matched to one gene.

NK cell-associated genes were obtained from three parts,
including the ImmPort official website (https://www.immport.
org/resource), the MSigDB database (Molecular Signatures
Database, https://ngdc.cncb.ac.cn/databasecommons/database/id/
1077) and the LM22 database (Newman et al., 2015), containing
134 cell-associated genes, 18 NK cell-associated pathways, and
79 NK cell-associated genes, respectively.

2.2 Subtyping of LUAD patients based on NK
cell-associated genes

A total of 213 NK cell-associated genes and 18 NK cell-
associated pathways were obtained from the three databases, and
we used the single sample gene set enrichment analysis (ssGSEA)
method to evaluate these 213 NK cell-associated genes and 18 NK
cell-associated pathways in the TCGA and GEO datasets,
respectively. The samples were then clustered by
ConsensusClusterPlus using these pathway scores in the TCGA
and GEO cohorts, and the “K-M” algorithm and “1-Pearson
correlation” as the metric distance (Azman et al., 2006). We
conducted 500 bootstraps, with each one including 80% patients
of in the training set and 20% those of the validation set. Finally,
based on the cumulative distribution function (CDF), the optimal
number clusters were decided, and the optimal classification and the
sample molecular subtyping was obtained by calculating the
consistency matrix and the consistency cumulative distribution
function (Zhang et al., 2021a).
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2.3 Immunological features and pathway
analysis among differentmolecular subtypes

We obtained the molecular characteristics of LUAD genomic
alterations from published literature, including LOH, Aneuploidy
Score, tumor mutation burden (TMB), purity, and ploidy,
Homologous Recombination Defects, Intratumor heterogeneity.
The relative abundance of 22 immune cells were calculated using
CIBERSORT R package. At the same time, we used the ESTIMATE
algorithm R package to calculate the proportion of immune cells and
finally compared the inflammatory and immune activity scores
(Chakraborty and Hossain, 2018; Chen et al., 2018).

We performed gene set enrichment analysis (GSEA) on all NK
cell-associated genes in the Hallmark database, and then used the
ssGSEA method to calculate the pathway scores for both TCGA and
GEO datasets in the GSVA package (Barbie et al., 2009). A false
discovery rate (FDR) of <0.05 in this study was considered
statistically significant.

2.4 Drug sensitivity analysis between
molecular subtypes

Immune checkpoint inhibitor (ICI)-based therapy has become
one of the standard treatments for advanced lung cancer (Zhang
et al., 2021b). We first assessed the expression of genes associated
with immunotherapy, such as CTLA4, PD-L1, and PD-1, among
various molecular subtypes to determine whether there were
differences in immunotherapy responsiveness among them. Next,
we used the TIDE software (http://tide.dfci.harvard.edu/) to assess
the potential clinical effects of immunotherapy in our defined
molecular subtypes. Greater likelihood of immune escape was
correlated with a higher TIDE prediction score, suggesting that
patients may benefit less from immunotherapy (Jiang et al., 2018).
Finally, we performed drug sensitivity prediction for LUAD in the
“pRRophetic” package (Geeleher et al., 2014).

2.5 Identification of key NK cell-related
genes among molecular subtypes

The differentially expressed genes among differentmolecular typing
were calculated by the “limma” package, using FDR <0.05 and |
log2FC| > 1 as the statistical difference criteria, and visualized the
differentially expressed genes by “pheatmap” and “ggplot2” R packages
in a heatmap and volcano map. Then, all genes with statistically
significant differences were enriched using the “clusterProfiler” package.

Next, we performed univariate Cox regression analysis for
differentially expressed genes between molecular subtypes, and then
reduced the prognosis-related genes by Lasso regression (Sun et al.,
2021), which can better solve the problem of multicollinearity in
regression analysis by compressing some coefficients and setting
some coefficients to zero at the same time. With the gradual
increase of lambda, we selected the number of factors when the
coefficients of independent variables tended to zero. Then, we used
the AIC deficit pool information criterion through stepwise regression,
which has the advantage of considering the statistical fit of the model
and the number of parameters used to fit it, and at the same time

indicates a sufficient fit of the model obtains with fewer parameters
(Zhang, 2016).

2.6 Construction and validation of the
prognostic model

We calculated the NK cell-related prognostic RiskScore for each
sample according to the formula defined by the sample RiskScore
(below), and normalized it (Nie et al., 2021).

RiskScore � coef f icient1*gene1 expression + . . .

+ coef f icientN*geneN expression.

After that, LUAD patients were divided into high- and low-risk
groups based on the relationship between RiskScore and 0, where
those with RiskScore >0 were considered as having a high risk and
those with RiskScore <0 were considered as having a low risk.
Finally, the survival differences between the two groups were
compared by log-rank test. In order to verify the robustness of
the model, we performed immune signature analysis, survival curve,
and drug treatment difference analysis for the patients in the two
groups.

2.7 Improvement of prognostic models and
survival prediction in LUAD patients

To more accurately quantify the risk assessment and survival
probability of LUAD patients, we combined the RiskScore with
other clinicopathological characteristics of LUAD patients and
constructed a nomogram using the “nomogramEx” R package.
To validate the accuracy of the model, a calibration curve was
plotted by the “PredictABEL” function to visualize the goodness-
of-fit. This was followed by decision curve analysis (DCA) to
describe the change in net benefit as the threshold probability
changed under the intervention of the predicted value by the
model (Van Calster et al., 2016; Van Calster et al., 2018).

2.8 Programmed cell death (PCD) analysis

12 PCD patterns (apoptosis, necroptosis, pyroptosis,
ferroptosis, cuproptosis, entotic cell death, netotic cell death,
parthanatos, lysosome-dependent cell death, autophagy-
dependent cell death, alkaliptosis, and oxeiptosis) have been
taken from the previous research (Zou et al., 2022). ssGSEA
analysis based on the expression data of PCD related genes using
the R package GSVA. Spearman analysis was conducted to know
the relationship among PCD patterns, clinical features, RiskScore
in LUAD samples.

2.9 Statistical analysis

Unless otherwise specified, all statistical tests were bilateral and
conducted using R software (version 4.1.3, https://www.r-project.
org/), and p < 0.05 was considered statistically significant.
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3 Results

3.1 Molecular subtyping of LUAD based on
NK cell-associated genes

We first calculated the NK cell-related genes showing close
relationship with LUAD survival chance by univariate Cox
regression analysis, and screened 63 prognostically significant

genes (p < 0.05, Figure 1A), including the prognostic (Protective)
genes SHC1, TICAM1, PVR, RAET1E, RAC1 (HR > 1), and
KLRB1, CD160, KIR3DL2, CLEC12B, and KIR2DL1 (HR < 1).
Then, we used these 63 differential genes for consistent
clustering, and determined the best cluster number according
to CDF. And we could see from Figures 1B, C that Cluster = 3 had
more stable clustering results, hence, k = 3 was selected to obtain
three molecular subtypes (C1, C2, and C3) (Figure 1D). Then, we

FIGURE 1
Molecular subtyping based on natural killer cell-associated genes. (A) Forest plot of prognostically significant natural killer cell-associated genes in
the TCGA-LUAD cohort. (B) CDF curves of the TCGA-LUAD cohort. (C) CDF Delta area curves of the TCGA-LUAD cohort. (D) heat map of sample
clustering at consensus k = 3 in the TCGA-LUAD cohort. (E) KM curves of the relationship between overall survival (OS) prognosis of the three subtypes in
the TCGA-LUAD cohort. (F) Prognostic differences between the three molecular subtypes in the GSE72094 cohort. (G) Heatmap of prognosis
significant natural killer cell genes expression in different subtypes of TCGA-LUAD.

Frontiers in Genetics frontiersin.org04

Zhang and Zhao 10.3389/fgene.2023.1156230

203

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1156230


FIGURE 2
Genomic alterations in the molecular subtypes of the TCGA cohort. (A) Comparison of differences in Homologous Recombination Defects,
Aneuploidy Score, Fraction Altered, Number of Segments, and Tumor mutation burden in the TCGA cohort molecular subtypes. (B) Comparison of the
three molecular subtypes with immune molecular subtypes. (C) Somatic mutations in the three molecular subtypes (chi-square test). *p < 0.05; **p <
0.01; ***p < 0.001; ****p < 0.0001.
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performed survival analysis of patients with these
three molecular subtypes using the K-M survival method,
and the results identified a significant difference in prognosis
among the three molecular subtypes, with C1 patients
having the worst prognosis and C3 patients having the
optimal prognosis (Figure 1E). The results were also validated
in the GSE72094 dataset (Figure 1F). Meanwhile, we found that
the “Risk” genes were high-expressed in the C1 subtype and the
“Protective” genes were high-expressed in the C3 subtype in
the heat map (Figure 1G). These results suggested that
the molecular subtyping based on NK cell-related genes was
reasonable, and there were significant differences in
gene expression and prognosis among patients with different
subtypes.

3.2 Genetic landscape between molecular
subtypes of LUAD

To explore the differences in specific gene expression
profiles among different molecular subtypes, we compared the
molecular profiles among C1, C2, and C3 subtypes of LUAD
samples, respectively, and it is obvious from Figure 2A that
purity, and ploidy, TMB, Aneuploidy Score, LOH,
Homologous Recombination Defects expression were the
highest in C1 but the lowest in C3, which was consistent with
previous studies (Thorsson et al., 2018). In addition, we
compared the differences between the molecular subtyping of
published studies and that in this study. Here it was
found that the C3 subclass occupied the most of the
C3 subtypes we defined, suggesting that the C3 subtype was
the major subtype of LUAD (Figure 2B). In addition, a significant
correlation between molecular subtypes and gene mutations was
detected after analyzing the correlation between gene mutations
and molecular subtypes, and observed. TTN, MUC16, CSMD3,
and RYR2 were the most widely mutated genes in LUAD
(Figure 2C), and this finding indicated that the development
of LUAD was closely related to the above-mentioned gene
mutations.

3.3 Pathways enrichment analysis among
the molecular subtyping of LUAD

To investigate pathway differences in LUAD among
different molecular subtypes, we performed GSEA enrichment
analysis among molecular subtypes. As shown in
Figure 3A, we enriched a total of 33 significant pathways in
the TCGA-LUAD dataset, including MYC_TARGETS_V2, E2F_
TARGETS, NFLAMMATORY_ RESPONSE, MYOGENESIS,
INTERFERON_GAMMA_RESPONSE, MYC_TARGETS_V1,
GLYCOLYSIS, G2M_CHECKPOINT, EPITHELIAL_
MESENCHYMAL_TRANSITION, ALLOGRAFT_REJECTION,
suggesting that these NK cell genes were mainly associated with
cell cycle and immunity in C1 and C3. Additionally, pathways
different between C1 and C3 subtypes, between C2 and
C3 subtypes, between C1 and C2, were analyzed (Figure 3B).
Overall, the cell cycle pathway was activated in C1 patients, while

the immune-related pathway was suppressed, therefore we
hypothesized that these NK cell genes might play an
important role in the cell cycle pathway as well as in the
tumor microenvironment. To validate these results, we
presented the pathway differences between C1 and C2,
and C2 and C3 as radar plots, and the results
showed that they both had significant consistency in cell cycle
(MYC_TARGETS_V2, MTORC1_SIGNALING, MYC_
TARGETS_V1) and immune-related pathways (G2M_
CHECKPOINT, E2F_TARGETS, UNFOLDED_PROTEIN_
RESPONSE) (Figure 3C).

3.4 Immune characteristics among different
molecular typologies of LUAD

The immune system plays a dual role in the development of
LUAD, as it can recognize and destroy tumor cells, while tumor
cells can also evade host immune attack by forming a complex
immunosuppressive network under the pressure of immune
selection using the immune system’s own negative regulatory
mechanisms, thus the TME is in a constant state of change
(Anichini et al., 2020; Spella and Stathopoulos, 2021). To
explore the immune landscape among different molecular
subtypes of LUAD, we first assessed the differences in the
components of immune cells in the TCGA-LUAD cohort
using the CIBERSORT algorithm and observed that most
immune cells (B cells, T cells, NK cells, etc.) were significantly
different (p < 0.05) (Figure 4A). We then used the ESTIMATE
algorithm to assess immune cell infiltration, and the results
showed that StromalScore, ImmuneScore and EstimateScore
were significantly different between C1, C2, and C3 (p <
0.05)), with ImmuneScore accounting for the largest
proportion of C3 types, suggesting a higher degree of immune
infiltration in C3 subtypes (Figure 4B). Similarly, we obtained
results in the GSE72094-LUAD cohort that were consistent with
the TCGA-LUAD cohort (Figures 4C, D). In addition, we
assessed the inflammatory activity of C3, C2, C1, except for
IgG, the remaining six out of 7 metagenes clusters (HCK,
Interferon, LCK, MCH I, MCH II, and STAT1) showed
significantly different enrichment scores, with the
C4 subtype having higher inflammatory activity (Figure 4E).
The findings were consistent in the GSE72094-LUAD cohort
(Figure 4F).

3.5 Differences in immunotherapy between
molecular subtypes

In recent years, immunotherapy has led to new opportunities
in the treatment of small cell lung cancer. Clinical trials of some
immune checkpoint inhibitors have demonstrated their efficacy
and safety in LUAD (Hua et al., 2021). Based on this, we first
evaluated the expression of the representative molecules of
immunotherapy (PD-1, PD-L1, CTLA4) among the three
molecular subtypes, and observed that PD-1, PD-L1, and
CTLA4 were significantly more expressed in C3 subtype (p <
0.05) (Figure 5A). We also applied the “T-cell-inflamed GEP
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score” to assess the predictive potential of different molecular
subtypes to cancer immunotherapy, and the results also showed
that the score was highest in C3 (Figure 5B). Considering that

IFN-γ is a cytokine that plays a key role in immunomodulation
and immunotherapy, we downloaded the GOBP_RESPONSE_
TO_INTERFERON_GAMMA gene set from the GO database for

FIGURE 3
Pathway analysis between molecular subtypes. (A) Bubble plots of GSEA results for C1 vs. C3 subtypes in two lung adenocarcinoma cohorts. (B)
Bubble plots of GSEA results for different molecular subtypes compared to each other in the TCGA-LUAD cohort. (C) Radar plots of C1 vs. C2 and C2 vs.
C3 activation pathways in the TCGA-LUAD cohort.
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ssGSEA analysis, and found that the IFN-γ response was
significantly enhanced in the C1 subtype (Figure 5C). We also
compared the differences in INFG gene expression in the
three subtypes and found that INFG was noticeably high-
expressed in the C3 subtype (Figure 5D). Moreover, CYT
score, which reflects the cytotoxic effect, was significantly
higher in the C3 subtype than in the other subtypes
(Figure 5E). In addition, the TIDE prediction data indicated

that the C1 subtype had a higher TIDE score, suggesting that the
C1 subtype was less likely to benefit from immunotherapy
(Figure 5F). The estimated IC50 of docetaxel, vincristine,
paclitaxel and cisplatin among 3 subtypes showed that C1 was
more sensitive to the four chemotherapy drugs (Figure 5G). The
above results indicated that predicting immunotherapy
for LUAD based on NK cell-related genes was a practical
approach.

FIGURE 4
Proportions of immune cell components in the two lung adenocarcinoma cohorts. (A) Differences in 22 immune cell scores between different
molecular subtypes in the TCGA-LUAD cohort. (B)Differences in ESTIMATE immune infiltration between differentmolecular subtypes in the TCGA-LUAD
cohort. (C) Differences in the GSE72094 cohort 22 immune cell scores between different molecular subtypes. (D) Differences in ESTIMATE immune
infiltration between different molecular subtypes in the GSE72094 cohort. (E) Differences in seven inflammation-related gene cluster scores across
molecular subtypes in TCGA-LUAD cohort. (F) Differences in gene cluster scores between different molecular subtypes in seven inflammatory-related
genes in GSE72094 cohort.
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3.6 The analysis of PCD patterns among
molecular subtypes

The ssGSEA analysis calculated the score of 12 PCD
patterns in each sample in TCGA dataset and
GSE72094 dataset. We found that 9 PCD scores had
differences among 3 subtypes in both two datasets (Figures
6A, B). In TCGA dataset, Stage, Gender, especially, Age had
closely associated to PCD patterns (Figure 6C), but in
GSE72094 dataset, clinical features had litter associated to
PCD patterns (Figure 6D). Autophagy score were
increased in early Stage, the scores of Pyroptosis,
Autophagy, Necroptosis and Oxeiptosis were enhanced in
Male samples, and samples with age > 60 had
higher Pyroptosis, Entotic. cell.death scores in TCGA
dataset (Figure 6E). In GSE72094 dataset, Oxeiptosis score
was highest in StageⅢ, and Ferroptosis and Necroptosis scores
were greater in patients with age>60 (Figure 6F).

3.7 Establishment of LUAD risk model

We first calculated the NK cell-related genes significantly
differentially expressed among the three molecular subtypes by the
limma package, significant expression differences of NK cell-related
genes among C1, C2, and C3 were detected, including 11 upregulated
genes and 180 downregulated genes (Supplementary Figures S1A, B).
Differentially expressed downregulated genes were related to
immune-related pathways, as shown by the results of enrichment
analysis (Supplementary Figure S1C). Genes with upregulated level
were related to inflammatory and immune pathways (Supplementary
Figure S1D). 173 genes with high prognostic impact (p < 0.05),
including 159“Protective” and 14“Risk” genes, were identified from
those genes by conducting one-way Cox regression analysis
(Supplementary Figure S2A). Further, we observed the trajectory
of each gene with lambda using Lasso analysis, and the model was
optimal when lambda = 0.0382, which corresponded to 9 differential
genes (Supplementary Figures S2B, C). After that, we reduced the

FIGURE 5
Differences in immunotherapy/chemotherapy treatment between molecular subtypes. (A) Differences in expression of immune checkpoint genes
between molecular subtypes. (B) difference in “T cell inflamed GEP score” between molecular subtypes. (C) Differences in “response to IFN-gamma”
between different molecular subtypes. (D) Differences in INFG gene expression in different isoforms. (E) Differences in “Cytolytic activity” between
different molecular subtypes. (F) Differences in TIDE scores between subtypes. (G) Box plots of estimated IC50 of docetaxel, vincristine, paclitaxel
and cisplatin in TCGA-LUAD.
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genes to four, namely, ANLN, FAM83A, RHOV, and PARP15, by the
stepAIC method in the MASS package (Supplementary Figure S2D).

Then, we calculated the Riskscore score for each TCGA-LUAD
patient using these four genes and the above formula (Figure 7A).
We classified those RiskScore with 0 ≤ as low-risk group and with
RiskScore >0 as high-risk group. Then, we performed a prognostic
classification ROC analysis in the “timeROC” package for analyzing
1-year, 2-year, 3-year, and 5-year prognostic prediction
classification efficiency, and we found that the model had a high
AUC (0.71, 0.69, 0.7, and 0.67) (Figure 7B). The results of survival
analysis showed that patients in the low-risk group developed a
significantly better prognosis (p < 0.001) (Figure 7C). To confirm the
robustness of this clinical prognostic model, we validated it in the
GSE72094 and GSE31210 cohorts and used the same approach to
calculate the RiskScore of patients (Figures 7D–G).

3.8 Pathological characteristics of high- and
low-risk groups

To investigate the reliability of this risk model classification
method, we first compared the clinical characteristics of patients in
both high- and low-risk groups. The results showed that the

RiskScore scores of patients with Stage III-IV, M Stage, N Stage,
T Stage were significantly higher than Stage I-II ones. In addition, we
also found that male patients had a higher RiskScore (Figure 8A).
Also, we compared the differences in RiskScore by molecular
subtype and found that the RiskScore for the C1 subtype with
poorer prognosis was significantly higher than C3 with a better
prognostic outcome (Figure 8B), and that the majority of the
samples with high RiskScore were “C1” patients (Figure 8C). In
addition, we also compared whether there was a prognostic
difference in the—high- and low-risk groups between the
different clinicopathological characteristics subgroups in the
TCGA-LUAD cohort. Across different clinical subgroups, the risk
grouping performed equally well, pointing to the reliability of the
grouping (Figure 8D). This finding also applied to the GSE72094-
LUAD cohort (Supplementary Figure S3).

3.9 Immune infiltration and pathway
characteristics of low-risk and high-risk
patients

We compared the relative abundance of 22 immune cell types in
the two subgroups of the TCGA-LUAD cohort in high- and low-risk

FIGURE 6
The PCD characteristic among 3 molecular subtypes. (A) the ssGSEA analysis of 12 PCD patterns among 3 molecular subtypes in TCGA-LUAD
dataset. (B) the ssGSEA analysis of 12 PCD patterns among three molecular subtypes in GSE72094 dataset. (C) The spearman analysis between clinical
feature and PCD in TCGA-LUAD dataset. (D) The spearman analysis between clinical feature and PCD in GSE72094 dataset. (E) The ssGSEA analysis of
PCD in TCGA-LUAD samples with Stage, Gender and Age. (F) The ssGSEA analysis of PCD in GSE72094 samples with Stage, and Age.
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groups. We discovered that the majority of immune cells (B cells,
macrophages, T cells, and mast cells) were significantly different in
high- and low-risk groups (p 0.05, Figure 9A). It is worth noting that
activated NK cells had no significance between high- and low-group.
We also examined the connection between the RiskScore and
22 immune cell components (Figure 9B). Also, we assessed the
immune cell infiltration using the ESTIMATE method. The three
scores were significantly different between two risk groups (p <
0.05), and the low-Riskscore group had higher immune infiltration
(Figure 9C). The relationship between biological function in

different samples with RiskScore was analyzed by “ssGSEA”
analysis and found that the high risk group was significantly
enriched to some cell cycle-related pathways, such as
HALLMARK_SPERMATOGENESIS, and HALLMARK_REPAIR,
SPERMATOGENESIS, HALLMARK_DNA_REPAIR, ALLMARK_
MYC_TARGETS_V2, HALLMARK_UNFOLDED_PROTEIN_
RESPONSE, etc. (Figure 9D). Further, we selected functional
pathways with correlations greater than 0.4, from which we could
see that RiskScore showed positive correlation with cell cycle-related
pathways, such as HALLMARK_MYC_TARGETS_V1,

FIGURE 7
Risk modeling and validation. (A) RiskScore, survival time vs. survival status and expression of necroptosis-related genes in TCGA-LUAD dataset. (B)
ROC curves with AUC for RiskScore classification in the TCGA-LUAD dataset. (C) Distribution of KM survival curves for RiskScore in the TCGA-LUAD
dataset. (D,E): ROC curves and KM survival curves for RiskScore in the GSE72094 cohort. (F,G): ROC curves and KM survival curves of RiskScore in the
GSE31210 cohort.
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FIGURE 8
Performance of RiskScore in TCGA-LUAD cohort with different clinicopathological characteristics. (A) Differences between RiskScore between
different clinicopathological subgroups in the TCGA-LUAD cohort. (B)Differences in RiskScore between differentmolecular subtypes in the TCGA-LUAD
cohort. (C) Differences between molecular subtypes and RiskScore subgroups in the TCGA-LUAD cohort. (D) KM curves between high- and low-risk
groups in the TCGA-LUAD cohort between different clinicopathological subgroups.
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FIGURE 9
Immune infiltration/pathway characteristics between RiskScore subgroups. (A) Proportion of immune cell components in the TCGA cohort. (B)
Correlation analysis of 22 immune cell components in the TCGA cohort with the RiskScore. (C) Proportion of immune cell components in the TCGA
cohort calculated by ESTIMATE software. (D) The top 10 pathways with the most significant differences between high- and low-groups. (E) Results of
correlation analysis between the RiskScore and KEGG pathways with correlation greater than 0.4.
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HALLMARK_MTORC1_SIGNALING, HALLMARK_E2F_
TARGETS (Figure 9E).

3.10 Differences in immunotherapy/
chemotherapy for patients in high- and low-
risk groups

First, we used the “T-cell-inflamed GEP score” to assess
the predictive potential of the different RiskScore subgroups in
cancer immunotherapy. The results showed that the “T-cell-
inflamed GEP score” was elevated in the low-risk group, but the
difference was not statistically significant (Figure 10A), however, in
the low-risk group the IFN-γ response was noticeably elevated
(Figure 10B). The CYT score, which reflects cytotoxic effects, was
elevated in the low-risk group, showed no statistically significant

differences (Figure 10C). The expression of representative molecules
of immunotherapy (CTLA4, PD-L1, and PD-1) was calculated in the
risk groups and showed that CTLA4 was significantly more
expressed in the low-risk group (p < 0.05), while the difference
in PD-1 and PD-L1 expression was not significant (Figure 10D). We
looked at the connection between RiskScore and medication
response in cancer cell lines to better understand the impact of
RiskScore on drug response. We found 49 substantially linked
relationships between RiskScore and drug sensitivity in the
Genomics of Drug Sensitivity in Cancer (GDSC, http://cancer.
sanger.ac.uk/cell_lines#) database using Spearman correlation
analysis. Of these 49 pairs, 15 pairs were significantly associated
with Riskscore correlations, such as Vinorelbine, Sabutoclax,
Vinblastine, Entinostat, Vincristine, and Sorafenib (Figure 10E).
We found that these drugs mainly target the EGFR signaling and
TNKS2 pathways through the study on the signaling pathways of the

FIGURE 10
Differences in immunotherapy/chemotherapy between RiskScore subgroups. (A) Difference in “T cell inflamed GEP score” between molecular
subtypes. (B) Difference in “response to IFN-γ" between molecular subtypes. (C) Differences in “Cytolytic activity” between molecular subtypes. (D)
Differences in expression of immune checkpoint genes between molecular subtypes. (E) 15 pairs drugs were significantly associated to RiskScore. (F) 15
pairs drugs mainly target EGFR signaling and TNKS2 pathways. (G) IC50 box plots of docetaxel, vincristine, paclitaxel and cisplatin in TCGA-LUAD
dataset.
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genes targeted by these drugs (Figure 10F). In addition, we also
explored the response of different molecular subtypes in the TCGA-
LUAD cohort to the traditional chemotherapeutic agents Docetaxel,
Vinorelbine, Paclitaxel and Cisplatin, and found that overall patients
in the high-risk group were more sensitive to all the four
chemotherapeutic agents (Figure 10G), suggesting that patients in
the high-risk group may benefit from these four drugs.

3.11 PCD characteristics in high- and low-
risk groups

We also determine the PCD characteristics in high- and low-risk
groups using ssGSEA analysis. 6 of 12 PCD styles had differences
between high- and low-risk groups in TCGA dataset (Figure 11A).
In GSE72094 dataset, 10 PCD patterns scores presented

FIGURE 11
The ssGSEA analysis of 12 PCD patterns in high- and low-groups. (A) ssGSEA analysis of 12 PCD in high- and low-group in TCGA-LUAD dataset. (B)
ssGSEA analysis of 12 PCD in high- and low-group in GSE72094 dataset. (C) ssGSEA analysis of 12 PCD in high- and low-group in GSE31210 dataset. (D)
the association among RiskScore, model genes and 12 PCD patterns.
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differentiation in high- and low-risk groups (Figure 11B). Moreover,
the differences of 9 PCD scores between high- and low-groups was
observed in GSE31210 dataset (Figure 11C). RiskScore as well as
four model genes were obviously related to PCD patterns
(Figure 11D).

3.12 RiskScore combined with
clinicopathological features to further
improve prognostic models and survival
prediction

Univariate and multifactorial Cox regression analyses
revealed RiskScore as the most significant prognostic factor
(Figures 12A, B). We created a nomogram (Figure 12C)
combining RiskScore and other clinicopathological traits for
the risk assessment and prediction of survival probability for
LUAD patients. The model results revealed that RiskScore had
the biggest influence on survival prediction. The prediction
calibration curves at the three calibration points of 1, 3, and
5 year(s) nearly overlapped with the standard curve, which
indicated that the nomogram plot had excellent prediction
performance. We further assessed the prediction accuracy of
the model using the calibration curve (Figure 12D). We also

used DCA (Decision curve) to test the model’s dependability, and
it was shown that RiskScore and Nomogram performed much
better than the extreme curve and had the strongest ability to
predict survival among other clinicopathological factors
(Figure 12E).

4 Discussion

Lung cancer is currently the most aggressive malignancy in the
world, of which LUAD is the most common histological subtype of
primary lung cancer, accounting for 64% of peripheral lung cancers,
and has been reclassified from invasive precancerous lesions to
invasive adenocarcinoma (Denisenko et al., 2018; Hutchinson
et al., 2019). Despite the current advances in the treatment of
LUAD, the median survival is only 8.6 months and immune
escape is considered one of the main factors leading to treatment
failure in LUAD (Yotsukura et al., 2021). In contrast to the
remarkable efficacy of immune checkpoint inhibitor (ICI) in
metastatic melanoma, Hodgkin’s lymphoma, and bladder cancer,
not all patients with LUAD are sensitive to ICI (Zhang et al., 2020).
Mechanisms of immune escape that lack adaptive immune response
include hypoxia-driven immunosuppressive factors, anti-apoptotic
pathways, chronic inflammation, metabolic damage, and immune

FIGURE 12
Establishment of nomogram. (A,B): Univariate andMultivariate Cox analysis of RiskScore and clinicopathological characteristics; (C): The nomogram
model; (D): Calibration curves for 1, 3, and 5 years for the nomogram; (E): Decision curves for the nomogram.

Frontiers in Genetics frontiersin.org16

Zhang and Zhao 10.3389/fgene.2023.1156230

215

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1156230


cells such as regulatory T (Treg) cells, tumor-associated
M2 macrophages (TAM), myeloid-derived suppressor cells
(MDSC) (Yu et al., 2021). Recent studies have shown that T and
NK cell dysfunction and depletion or deficiency of antitumor-
specific effector cells are involved in LUAD immune escape
(Hong et al., 2019), and although the exact mechanism is
unclear, it points to new ideas for the study of immune escape in
LUAD and provides new targets for immunotherapy in LUAD.

LUAD is usually resistant to chemotherapy and/or
radiotherapy and leads to the development of distant
metastases (Jiang et al., 2021). NK cell dysfunction and failure
in patients with LUAD could be caused by immune escape
mechanisms mediated by lung cancer cells or tumor
microenvironment, leading to failure of immunotherapy. The
reason for this is related to tumor upregulation of inhibitory
ligands (e.g., HLA-C molecules) and recognition by
autoinhibitory KIR receptors carrying ITIM motifs (Daëron
et al., 2008). Cellular experiments showed that other
inhibitory receptors, for instance, KLRG-1, LAG-3, CD94/
NKG2A, TIM3, TIGIT, and their ligands were also frequently
upregulated on NK cells from LUAD patients (Lee et al., 1998;
Nayyar et al., 2019), which was consistent with our study, where
we found significantly different NK cell-related gene expression
in different subtypes. CTLA-4 (ipilimumab) improved clinical
prognosis of patients with LUAD (Paulsen et al., 2017) in
addition to the common PDL-1 inhibitors (avelumab,
atezolizumab, durvalumab) and PD-1 (camrelizumab,
spartalizumab, nivolumab, pembrolizumab). Our study
identified the expression patterns of PD-1/PD-L1 and CTLA-4
in different subtypes, confirming a possible immune escape
mechanism of NK cells in LUAD and providing a new
perspective for blocking immune dysregulation.

The tumor microenvironment (TME) consists of associated
fibroblasts (CAF), tumor cells, other immune cells, and
endothelial cell constituents (ECs) (Vitale et al., 2019).
Ghiringhelli F et al. showed that suppressive immune cells such
as Treg cells, CTLA-4+ regulatory, and that N2 neutrophils and
M2 macrophages can disrupt the anti-lung cancer activity of NK
cells (Domagala-Kulawik et al., 2014). Similarly, our data showed
significant differences in the proportion of NK cells, B cells, and
T cell content between different molecular subtypes, suggesting that
other immune cells may impair the cytotoxic and migratory activity
of NK cells with numerical and functional advantages, and thus
causing NK cell depletion (Bi and Tian, 2017). But we found that
activated NK cells had no differences between high- and low-group,
maybe caused by insufficient samples.

Changes in NK cell counts, including peripheral blood,
circulation and TME in healthy individuals, can be used as
prognostic markers in patients with head and neck and lung
tumors (Lin et al., 2017; Lin et al., 2020; Zhong et al., 2021). We
constructed the prognosis model by NK cell-related genes
(ANLN, FAM83A, RHOV, and PARP15), which is a powerful
tool to assist clinical decision-making with effective prediction
of patient survival and drug sensitivity. ANLN is an actin-
binding protein, and previous studies have demonstrated that
ANLN is associated with actin cytoskeleton dynamics (Xu et al.,
2019). Xu J et al. showed that ANLN overexpression promotes
distant metastasis of lung cancer cells and is associated with

epithelial mesenchymal transformation (EMT) of LUAD cells
transformation (EMT) in LUAD cells. Similar to previous
bioinformatic analyses, our study found that upregulated
FAM83A in LUAD tissues, which was relate to LUAD
prognosis (Suzuki et al., 2005; Deng et al., 2021). Knockdown
of FAM83A inhibited proliferation, migration and invasion of
LUAD cells. In addition, the lncRNA FAM83A-AS1 regulates
FAM83A expression by acting as a competing endogenous RNA
for miR-495-3p (Wang et al., 2021). These results suggested that
FAM83A plays an oncogenic role in LUAD and that FAM831-
AS1 can regulate FAM83 expression by taking up miR-495-
3p. Similar to FAM83A, invasion, migration and proliferation of
LUAD cells could be stimulated by RHOV overexpression, while
knockdown of RHOV inhibits the functionalistic behavior of the
cells. In addition, RHOV knockdown inhibits metastasis and
LUAD tumor growth of nude mice, which may be related to
RHOV activation of the JNK/c-Jun signaling pathway (Zhang
et al., 2021c). There are fewer basic studies on PARP15 in LUAD,
and genomic data with large sample sizes suggested that RHOV
is a useful marker for immunotherapy and survival in LUAD
(Han et al., 2020). The above studies revealed a novel regulatory
mechanism of NK cells in LUAD tumor development, which
may be a new biomarker and therapeutic target for LUAD.

Docetaxel, Vinorelbine, Paclitaxel and Cisplatin are currently
widely used chemotherapy drugs for lung cancer, which cause cell
cycle arrest (Clegg et al., 2001; Dasari and Tchounwou, 2014). However,
resistance can develop, leading to further tumor development and side
effects such as myelosuppression, drug nephritis, nausea, vomiting,
hearing loss and polyneuropathy, which will significantly reduce the
patient’s quality of life (Dasari and Tchounwou, 2014). Acquired
chemotherapy resistance is a major problem faced by clinicians and
a major cause of treatment failure. Regardless of the type of resistance,
loss of tumor sensitivity to the drug leaves very little time for therapy to
correct, with the goal of improving patient survival. Patients’ clinical
outcomes can be significantly improved by personalizing treatment
regimens and predicting the effects of drug therapy. The results of this
study showed that patients in C1 subtype and high-risk group were
more sensitive to and benefited from four chemotherapy drugs. We
speculated that may be the number of NK cells affects drug sensitivity.

Although this study reveals the immune signature of NK cell-
related genes in LUAD and confirms the role in prognosis and
immunotherapy of LUAD, the following limitations remain: (Hirsch
et al., 2017): The wide variety, rapid development of bioinformatics
tools can help predict potential key molecules and pathways, narrow
the scope and improve the efficiency of the study, but the final
findings should be validated based on real genetic data in basic and
clinical settings; (Siegel et al., 2022); The database used to conduct
functional and signaling pathway enrichment analysis has
comprehensive and complete data, but its slow updates may have
some unpredictable effects on the results; (Succony et al., 2021); The
results were based on extrapolation of the raw signal algorithm and
should be supported by further laboratory and clinical evidence.

5 Conclusion

Based on NK cell-related genes, we identified three stable
molecular subtypes of LUAD, which differed significantly in
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terms of immunity, pathways, prognosis and drug sensitivity among
different molecular subtypes. Based on NK cell-related genes, this
study developed a prognostic model, which was highly robust and
had a greater potential for application in predicting
immunotherapeutic response and patient prognosis.
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Implications of inflammatory cell
death-related IFNG and
co-expressed RNAs
(AC006369.1 and CCR7) in breast
carcinoma prognosis, and
anti-tumor immunity

Yongran Deng, Zhenlong Li, Mingmei Pan, Huayun Wu,
Bingqiang Ni and Xueqiong Han*

Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi,
China

Objective: Interferon-γ (IFN-γ) encoded by IFNG gene is a pleiotropic molecule
linked with inflammatory cell death mechanisms. This work aimed to determine
and characterize IFNG and co-expressed genes, and to define their implications in
breast carcinoma (BRCA).

Methods: Transcriptome profiles of BRCA were retrospectively acquired from
public datasets. Combination of differential expression analysis with WGCNA was
conducted for selecting IFNG-co-expressed genes. A prognostic signature was
generated through Cox regression approaches. The tumor microenvironment
populations were inferred utilizing CIBERSORT. Epigenetic and epitranscriptomic
mechanisms were also probed.

Results: IFNG was overexpressed in BRCA, and connected with prolonged overall
survival and recurrence-free survival. Two IFNG-co-expressed RNAs
(AC006369.1, and CCR7) constituted a prognostic model that acted as an
independent risk factor. The nomogram composed of the model, TNM, stage,
and new event owned the satisfying efficacy in BRCA prognostication. IFNG,
AC006369.1, and CCR7 were closely linked with the tumor microenvironment
components (e.g., macrophages, CD4/CD8 T cells, NK cells), and immune
checkpoints (notably PD1/PD-L1). Somatic mutation frequencies were 6%, and
3% for CCR7, and IFNG, and high amplification potentially resulted in their
overexpression in BRCA. Hypomethylated cg05224770 and cg07388018 were
connected with IFNG and CCR7 upregulation, respectively. Additionally,
transcription factors, RNA-binding proteins, and non-coding RNAs possibly
regulated IFNG and co-expressed genes at the transcriptional and post-
transcriptional levels.
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Conclusion: Collectively, our work identifies IFNG and co-expressed genes as
prognostic markers for BRCA, and as possible therapeutic targets for improving the
efficacy of immunotherapy.

KEYWORDS

breast carcinoma, IFNg, inflammatory cell death, AC006369.1, CCR7, prognosis, tumor
microenvironment, immune checkpoint

Introduction

Breast carcinoma (BRCA) has a high incidence globally, with over
two million cases per year (Sung et al., 2021). This malignancy
represents a remarkable threat to female health and affects one in
seven women over the course of a lifetime (Corti et al., 2022). Based
upon the expression status of estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth factor receptor 2 (HER2),
four molecular subtypes have been widely accepted: luminal A, luminal
B, HER2-enriched and basal-like tumors (Bidard et al., 2022; Curigliano
et al., 2022; Shepherd et al., 2022). Despite the progress in early
diagnosis and treatment, most patients still succumb to various
complex malignant phenotypes (Martin et al., 2022; Mayer et al.,
2022; Shepherd et al., 2022). Within 10 years following breast
conservation surgical resection with post-operative radiotherapy, the
recurrence rate is still as high as 3%–15% (Gadaleta et al., 2022).
Emerging immunotherapy has exhibited promising results in BRCA,
but with low response rates (Loibl et al., 2019; Schmid et al., 2020;
Huober et al., 2022). Such alarming situation has prompted to
determine innovative and effective therapeutic targets for BRCA.

Interferon-γ (IFN-γ) encoded by IFNG gene is the only member
of the type II interferon family, which is an essential cytokine
generated from activated T cells, natural killer (NK), and NK
T cells in the tumor microenvironment (TME) (Dörrie et al.,
1999; Wu H. et al., 2022; Wei et al., 2022). Cell death can
provide host defense and maintain homeostasis (Niu et al., 2021;
Wang Z. et al., 2022). IFN-γ can prime diverse inflammatory cell
death mechanisms. For instance, IFN-γ secreted from CD8+ T cells
rewires lipid metabolism of malignant cells through ACSL4, thus
activating polyunsaturated fatty acids and sensitizing malignant cells
to ferroptotic cell death (Liao et al., 2022). IFN-γ can also initiate
macrophages for pathogen ligand-induced killing through caspase-8
and mitochondrial cell death signaling (Simpson et al., 2022).
Moreover, the diverse implications of IFN-γ in BRCA (e.g.,
prognostication, therapeutic efficacy) have been demonstrated in
prior studies (Witek Janusek et al., 2019). Non-etheless, IFN-γ-co-
expressed genes and underlying molecular mechanisms remain
indistinct in BRCA. For solving these problems, this work was
implemented for determining and characterizing IFNG and co-
expressed genes, and clarifying their implications in BRCA and
probing possible epigenetic and epitranscriptomic mechanisms.

Materials and methods

Collection of BRCA datasets

BRCA transcriptome RNA-sequencing data (Htseq-FPKM) and
matched clinical parameters were gathered from The Cancer

Genome Atlas (TCGA) database. Somatic mutation, copy-
number alteration, DNA methylation, and microRNA (miRNA)
data were also extracted. External microarray datasets from the Gene
Expression Omnibus database were online analyzed on the Kaplan-
Meier Plotter platform.

Selection of IFNG-co-expressed genes

Utilizing limmamethod (Ritchie et al., 2015), aberrant expressed
genes in BRCA versus control specimens were selected with adjusted
p < 0.05. Based upon the same threshold, genes with different
expression between lowly and highly expressed IFNG BRCA were
acquired. Above genes were intersected and named as BRCA- and
IFNG-relevant genes. Next, weighted correlation network analysis
(WGCNA) was implemented through WGCNA package
(Langfelder and Horvath, 2008). Firstly, a clustering dendrogram
was plotted, with removal of outliers via hierarchical clustering
analysis. By Pearson’s test, interactions between genes were
analyzed, and interaction pairs with p < 0.05 were used for
constructing a similarity matrix. Afterwards, soft thresholding
value was adopted for transforming the similarity matrix to the
adjacency matrix. A scale-free network and topological overlap
matrix were built, respectively. Next, a hierarchical clustering
dendrogram was produced for detecting modules. At last,
modules were merged with dynamic tree cutting approach. The
module with the strongest connection to IFNG was chosen or
subsequent analysis.

Functional enrichment analysis

Enrichment on Gene Ontology (GO) or Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways was analyzed based upon
module genes by use of clusterProfiler approach (Yu et al., 2012).

Cox regression analysis and nomogram
establishment

Univariate-cox regression analysis on genes in the black
module with prognosis was conducted. Genes with p <
0.05 were selected for the construction of a multivariate cox
regression model. Based upon 1:1, TCGA-BRCA cases were
randomized into the discovery and verification sets. Survival
difference was then estimated. The predictive independency was
analyzed utilizing cox regression analysis. A nomogram was
defined with rms package, and predictive efficiency was
demonstrated by calibration curves.
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FIGURE 1
Expression and prognostic implication of IFNG and selection of IFNG-relevant genes in BRCA. (A) Genes with aberrant expression in BRCA versus
control specimens. (B) IFNG transcript level in BRCA and controls. (C)OS probability of groups with low or high IFNG expression. (D, E) Verification of OS
and RFS of two groups in multiple microarray datasets. (F)Genes with different expression in BRCA samples with low versus high IFNG expression. (G, H)
The shared expression patterns in BRCA versus controls and high versus low IFNG expression. (I) The transcript level of IFNG-relevant genes in
controls, BRCA with low or high IFNG expression.
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Quantification of the TME components

CIBERSORT is an algorithm for characterization of the cellular
compositions within bulk tissues based upon transcriptome
profiling (Newman et al., 2015). The components within the
TME were quantified by use of this algorithm.

Genetic alteration assessment

Somatic variants were estimated by use of maftools package
(Mayakonda et al., 2018). The mutated frequency of IFNG and co-
expressed genes was extracted. GISTIC2.0 was adopted for copy-
number alterations of above genes (Mermel et al., 2011).

FIGURE 2
Establishment of IFNG-based co-expression modules. (A) Sample dendrogram and heatmap of clinical characteristics. (B) Scale independence
along with mean connectivity under diverse soft-thresholding values. (C) Clustering dendrogram and merged modules. (D) Eigengene dendrogram and
heatmap of eigengene adjacency. (E) Relationships of co-expressionmodules with clinical characteristics. (F, G)GOand KEGGpathways of genes in each
module.
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DNA methylation analysis

DNAmethylation levels (beta-values) were normalized by use of
preprocessCore package. Interactions of IFNG and co-expressed
genes with methylation sites were then assessed.

Non-coding RNA analysis

MiRNAs with different expression were screened between
BRCA versus controls and lowly versus highly expressed IFNG
BRCA following adjusted p < 0.05. Above miRNAs were
intersected, and determined as BRCA- and IFNG-relevant
miRNAs. Correlation analysis on long non-coding RNAs

(lncRNAs) with IFNG and co-expressed genes was then
carried out.

Statistical analysis

For continuous variables, Student’s t-test, or one-way ANOVA
test was utilized for comprising between groups. Chi-square or
Fisher’s exact test was employed for analysis of categorical data.
Kaplan-Meier curves of overall survival (OS) and recurrence-free
survival (RFS) were plotted, with log-rank test for estimating
survival difference. Correlation analysis was conducted with
Pearson’s test. All analyses were achieved based upon the R
platform (version 4.0.3). p < 0.05 indicated statistically significant.

FIGURE 3
Generation of an IFNG-co-expressed prognostic signature. (A) Relationships of module membership in black module with gene significance for
IFNG. (B) Correlation analysis on IFNG expression with black module. (C) Univariate-cox regression results of AC006369.1, and CCR7 with BRCA survival.
(D, E) The transcript level of AC006369.1, and CCR7 in BRCA and controls. (F, G) OS analysis of AC006369.1, and CCR7 across BRCA patients. (H, I) OS
difference between low- and high-score groups in the discovery and verification sets. (J)Heatmap of the expression patterns of IFNG-co-expressed
genes in low- and high-score groups.
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TABLE 1 Univariate-cox regression results of IFNG-relevant genes with BRCA prognosis.

IFNG-relevant genes Beta z p Hazard ratio Lower Upper

AC006369.1 −0.027 −2.67695 0.00743 0.973336 0.954265 0.992788

CCR7 0 2.671615 0.007549 1.000088 1.000023 1.000153

RPL4P1 −0.03 −2.44974 0.014296 0.970893 0.948216 0.994112

TRBV5.5 −0.045 −2.43696 0.014811 0.955617 0.921356 0.991154

TRDV1 −0.014 −2.42653 0.015244 0.985938 0.974724 0.997281

PSMB8 0 −2.36695 0.017935 0.999942 0.999894 0.99999

DEF6 0 −2.35957 0.018296 0.999729 0.999504 0.999954

SHISAL2A −0.005 −2.23588 0.025359 0.9949 0.99045 0.999369

TRBC2 0 −2.19914 0.027868 0.999841 0.999699 0.999983

HCST −0.001 −2.19251 0.028343 0.998989 0.998085 0.999893

GZMM −0.002 −2.16979 0.030023 0.998335 0.996834 0.999839

RAC2 0 −2.08823 0.036778 0.999904 0.999814 0.999994

ARMH1 −0.002 −2.07626 0.037869 0.997758 0.995646 0.999874

IL12B −0.006 −1.96702 0.049181 0.993893 0.987845 0.999978

TRBV4.2 −0.006 −1.92912 0.053717 0.993905 0.987751 1.000098

SPIB 0 −1.92572 0.054139 0.999817 0.99963 1.000003

RELB 0 −1.82117 0.068581 0.999859 0.999708 1.000011

CD2 0 −1.79848 0.072101 0.999872 0.999732 1.000012

TRBV18 −0.007 −1.79285 0.072996 0.992864 0.985121 1.000668

PIM2 0 −1.79045 0.073381 0.999913 0.999819 1.000008

KLHDC7B 0 −1.75477 0.079299 0.999942 0.999877 1.000007

AL606834.2 −0.007 −1.69148 0.090745 0.993121 0.985209 1.001096

TESPA1 −0.001 −1.68354 0.092271 0.999415 0.998734 1.000096

IFNG −0.003 −1.65036 0.09887 0.996621 0.992622 1.000635

HLA.DQB2 0 −1.6428 0.100424 0.999883 0.999743 1.000023

CCL22 0 −1.62196 0.104813 0.999762 0.999475 1.00005

CD37 0 −1.598 0.110044 0.999891 0.999757 1.000025

IGHG4 0 −1.58194 0.113664 0.999988 0.999974 1.000003

TRBV12.4 −0.007 −1.51643 0.12941 0.993283 0.984668 1.001973

FASLG −0.001 −1.50584 0.132109 0.998747 0.997118 1.000378

GZMA 0 −1.47864 0.139236 0.999745 0.999406 1.000083

AC004585.1 −0.002 −1.47704 0.139664 0.998327 0.99611 1.000548

TRAV8.4 −0.006 −1.47261 0.140856 0.993756 0.985506 1.002075

ITGAL 0 −1.40573 0.159805 0.999934 0.999842 1.000026

TRAV12.2 −0.004 −1.37904 0.167883 0.99609 0.990559 1.001652

CAMK4 0 −1.32771 0.184273 0.999609 0.999032 1.000186

NAPSB 0 −1.31747 0.187682 0.999835 0.999589 1.000081

CD1A 0 −1.29969 0.193708 0.999669 0.999169 1.000168

(Continued on following page)
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Results

Expression and prognostic implication of
IFNG and selection of IFNG-relevant genes
in BRCA

The investigation on the transcriptional alterations in BRCAwas
conducted. With adjusted p < 0.05, 28,953 genes presented the
differential expression in BRCA relative to controls (Figure 1A;
Supplementary Table S1). Among them, we focused on IFNG that
was prominently upregulated in BRCA (Figure 1B). Its prognostic
significance was then evaluated. With the cutoff value, the
classification of BRCA patients as low or high IFNG expression
group was performed. As illustrated in Figure 1C, patients with high
IFNG expression owned the notable survival superiority. The
prognostic significance was further verified in multiple
microarray datasets via the Kaplan-Meier Plotter. Consistently,
IFNG upregulation was connected with better OS and RFS
(Figures 1D, E). Above data unveiled the involvement of IFNG
in BRCA pathogenesis. Afterwards, the relevant molecules of IFNG
were probed. Consequently, 19,935 genes presenting different
expression between low and high IFNG expression groups were
selected (Figure 1F; Supplementary Table S2). After intersecting,
7020 IFNG-relevant genes were obtained (Figures 1G–I).

Establishment of IFNG-based co-expression
modules

BRCA specimens with matched clinical and IFNG characteristics
were included for WGCNA (Figure 2A). The appropriate soft-
thresholding value was set as 6 through considering scale
independence and mean connectivity (Figure 2B). Utilizing
dynamic tree cutting method, highly connected genes were merged
into ten modules (Figures 2C, D). Black module exhibited the
strongest connection with IFNG (Figure 2E), which was regarded

as IFNG-relevant module. It was noted that genes in the blackmodule
were prominently linked with immunity (e.g., T cell activation,
leukocyte cell-cell adhesion, and cytokine-cytokine receptor
interaction) (Figures 2F, G).

Generation of an IFNG-co-expressed
prognostic signature

Module membership in blackmodule exhibited a notably positive
connection with gene significance for IFNG (Figure 3A). It was also
demonstrated that black module was positively linked with IFNG
(Figure 3B). Such evidence proved that genes in black module were
IFNG-co-expressed genes. Most of them owned the significant
survival significance of BRCA (Table 1). Notably, AC006369.1, and
CCR7 presented the aberrant expression in BRCA versus controls, and
their upregulation was in relation to OS outcomes (Figures 3C–G).
They were incorporated into the multivariate-cox regression model,
and worse OS was investigated in high-score patients both in the
discovery and verification sets (Figures 3H, I). Most IFNG-co-
expressed genes had the higher expression in high-than low-score
groups (Figure 3J), indicating their subtype specific expression.

The IFNG-co-expressed prognostic
signature as an independent risk factor of
BRCA and definition of a nomogram

Next, it was observed that there was a positive connection of the
IFNG-co-expressed prognostic signature with event (Figures 4A, B).
In addition, IFNG was negatively linked with N stage (Figure 4C).
Through considering uni- and multivariate-cox regression results,
the prognostic model acted as an independent risk factor of BRCA
(Figures 4D, E). The nomogram composed of the prognostic model
and clinical traits was defined, and the excellent predictive efficacy
was proven by calibration curves (Figures 4F, G).

TABLE 1 (Continued) Univariate-cox regression results of IFNG-relevant genes with BRCA prognosis.

IFNG-relevant genes Beta z p Hazard ratio Lower Upper

AC007569.1 −0.012 −1.29509 0.195289 0.987607 0.969143 1.006423

IGHGP 0 −1.1592 0.246375 0.99997 0.99992 1.000021

RGS1 0 −1.14014 0.254229 0.999972 0.999925 1.00002

SELL 0 −1.08242 0.279068 0.999948 0.999855 1.000042

LINC00494 0.001 1.061845 0.288306 1.000693 0.999414 1.001974

FCRLA 0 −1.01453 0.310331 0.999625 0.9989 1.00035

TRAV1.2 −0.003 −0.66639 0.50516 0.99687 0.98772 1.006104

GPR18 0 −0.57179 0.567466 0.999553 0.99802 1.001087

NME8 0.001 0.569963 0.568703 1.000928 0.99774 1.004127

TRBV13 −0.002 −0.47433 0.635265 0.997881 0.989171 1.006667

IGHG2 0 −0.39298 0.694333 0.999999 0.999994 1.000004

RAB37 0 −0.23861 0.811409 0.999931 0.999364 1.000498
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FIGURE 4
Associations of clinical traits with the IFNG-co-expressed prognostic signature and construction of a nomogram. (A) Correlation analysis on IFNG
and the IFNG-co-expressed prognostic model with clinical parameters. (B) Relationship of the prognostic model versus event. (C) Relationship of IFNG
versus N stage. (D, E) Uni- or multivariate-cox regression results on the prognostic signature and clinical variables with BRCA survival. (F) The nomogram
for survival prediction. (G) Calibration curves depicting the model-predictive and observed OS.
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FIGURE 5
Associations of IFNG, and co-expressed AC006369.1, and CCR7with the TME components. (A–C)Correlation analysis on (A) IFNG, (B) AC006369.1,
and (C) CCR7 with the abundance of immune cells within the TME.
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FIGURE 6
Interactions of IFNG, and co-expressed genes with immune checkpoints. (A) Correlation analysis on IFNG, co-expressed genes, and the prognostic
signature with immune checkpoints. (B–D) Visualization of the relationships of IFNG with CD274, LAG3, and PDCD1.
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TABLE 2 Correlation analyses of IFNG, AC006369.1, and CCR7 with immune checkpoints in BRCA.

Immune checkpoint IFNG AC006369.1 CCR7

r p r p r p

CCL18 0.325517 1.29E-28 0.251434 2.38E-17 0.142041 2.20E-06

CCL19 0.248134 6.33E-17 0.776397 8.92E-223 0.472312 2.59E-62

CCL2 0.286609 2.79E-22 0.234465 3.15E-15 0.132134 1.08E-05

CCL20 0.095234 0.001551 0.004758 0.874644 0.00426 0.887675

CCL21 0.051963 0.084676 0.341864 1.44E-31 0.277394 6.43E-21

CCL3 0.362793 1.29E-35 0.268843 1.06E-19 0.112889 0.000173

CCL4 0.734428 2.24E-187 0.50303 9.82E-72 0.216751 3.49E-13

CCL5 0.678464 1.69E-149 0.652101 1.93E-134 0.316081 5.44E-27

CCL8 0.505601 1.44E-72 0.148589 7.25E-07 0.07855 0.00909

CCR5 0.721719 5.85E-178 0.623922 6.29E-120 0.311697 2.96E-26

CD163 0.450361 3.81E-56 0.227338 2.20E-14 0.102062 0.000691

CD200 0.222103 8.79E-14 0.35874 8.27E-35 0.189568 2.25E-10

CD274 0.776278 1.15E-222 0.345991 2.42E-32 0.168349 1.88E-08

CD38 0.732854 3.52E-186 0.5259 2.12E-79 0.288228 1.59E-22

CD3D 0.577263 6.38E-99 0.873946 0 0.468492 3.30E-61

CD3E 0.543867 7.60E-86 0.887998 0 0.493715 8.93E-69

CD3G 0.67702 1.24E-148 0.773085 1.04E-219 0.42113 1.33E-48

CD4 0.53137 2.54E-81 0.591527 5.57E-105 0.299854 2.49E-24

CD40 0.573782 1.73E-97 0.509643 6.85E-74 0.254698 8.89E-18

CD5 0.507463 3.56E-73 0.843876 1.03E-299 0.480718 8.50E-65

CD68 0.192994 1.05E-10 0.194672 7.15E-11 0.060922 0.043178

CD8A 0.732739 4.30E-186 0.735715 2.33E-188 0.354788 4.94E-34

CR2 0.150807 4.92E-07 0.482392 2.67E-65 0.294252 1.89E-23

CSF2 0.208605 2.67E-12 0.121952 4.93E-05 0.070092 0.019964

CTLA4 0.608277 1.71E-112 0.730355 2.68E-184 0.408044 1.85E-45

CXCL10 0.487788 6.12E-67 0.196638 4.56E-11 0.09579 0.001455

CXCL11 0.527657 5.17E-80 0.295427 1.24E-23 0.147004 9.53E-07

CXCL13 0.072472 0.016117 0.083451 0.005572 0.039526 0.189804

CXCL9 0.739629 2.18E-191 0.62981 7.77E-123 0.327891 4.94E-29

CXCR3 0.614729 1.65E-115 0.808784 7.48E-256 0.424934 1.52E-49

FBLN7 −0.07183 0.017081 0.031189 0.300927 0.018202 0.546117

FCER2 0.114882 0.000132 0.562931 3.97E-93 0.37077 3.06E-37

GFI1 0.627363 1.28E-121 0.719688 1.67E-176 0.365492 3.67E-36

HAVCR2 0.465557 2.29E-60 0.371185 2.51E-37 0.148284 7.64E-07

ICOS 0.631108 1.74E-123 0.67846 1.70E-149 0.406015 5.52E-45

IGSF6 0.554317 8.87E-90 0.46468 4.06E-60 0.197137 4.06E-11

IL10 0.459602 1.09E-58 0.350066 4.05E-33 0.175888 4.15E-09

(Continued on following page)
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Associations of IFNG, and co-expressed
AC006369.1, and CCR7 with the TME
components

IFNG was negatively connected with macrophages M0 and
M2, mast cells resting, but was positively linked with
macrophages M1, T cells CD4 memory resting and activated,
T cells CD8, T cells follicular helper, T cells regulatory (Tregs),
and NK cells resting (Figure 5A). This was indicative of the role of
IFNG in regulating anti-tumor immunity. In Figure 5B,
AC006369.1 presented the negative interactions with
neutrophils, macrophages M0 and M2, NK cells activated,
dendritic cells activated, and mast cells resting, with positive
interactions with B cells naïve and memory, macrophages M1,
T cells CD4 memory resting and activated, T cells CD8, Tregs,
and NK cells resting. In addition, CCR7 exhibited the positive
relationships with B cells naïve and memory, macrophages M1,
T cells CD4 memory resting and activated, T cells CD8, and NK
cells resting, with negative relationships with macrophages
M0 and M2, NK cells activated, and mast cells resting
(Figure 5C).

Interactions of IFNG, and co-expressed
genes with immune checkpoints

As illustrated in Figure 6A; Table 2, IFNG, co-expressed genes
(notably AC006369.1, and CCR7), and the prognostic model
exhibited the positive connections with most immune

checkpoint molecules. It was also noted the positive
interactions of IFNG with CD274 (PD-1), LAG3, and PDCD1
(Figures 6B–D).

Genetic alterations and DNA methylation of
IFNG, and co-expressed genes

Most IFNG, and co-expressed genes occurred frequent
mutation across BRCA samples, such as CCR7 (6%), and
IFNG (3%) (Figures 7A, B). In addition, frequent
amplifications were found, which might contribute to their
overexpression (Figure 7C). DNA methylation sites were also
analyzed (Figure 7D). IFNG expression was positively connected
with the beta value of cg01281450, with negative connections
with the beta values of cg05224770, and cg26227465 (Figures
7E–G). Among the three CpGs, cg01281450 exhibited the lower
beta value in BRCA versus controls, with lower value in high
versus low IFNG expression tumors (Figure 7H). This indicated
the contribution of cg05224770 hypomethylation to IFNG
upregulation. Moreover, CCR7 expression exhibited the
negative interactions with the beta values of cg07388018,
cg13504059, cg17067993, cg07248223, cg16047279,
cg23663547, cg26960939, and cg07479709, with positive
interactions with the beta value of cg11729107 (Figures 7I–Q).
Among the CpGs, cg07388018 owned the lower beta value in
tumors with IFNG upregulation versus controls or tumors with
IFNG downregulation (Figure 7R). Thus, hypomethylated
cg07388018 possibly resulted in CCR7 overexpression.

TABLE 2 (Continued) Correlation analyses of IFNG, AC006369.1, and CCR7 with immune checkpoints in BRCA.

Immune checkpoint IFNG AC006369.1 CCR7

r p r p r p

IL1R1 0.049448 0.100874 0.097552 0.001185 0.039495 0.190162

IL1R2 0.056551 0.060567 0.023964 0.426762 0.010433 0.729378

IL2RA 0.421939 8.40E-49 0.330214 1.91E-29 0.182877 9.62E-10

IRF4 0.420006 2.50E-48 0.498811 2.21E-70 0.283082 9.40E-22

LAG3 0.769047 4.90E-216 0.377368 1.28E-38 0.188985 2.56E-10

MS4A1 0.219143 1.89E-13 0.667616 4.08E-143 0.423381 3.70E-49

PDCD1 0.72552 1.02E-180 0.667504 4.74E-143 0.343997 5.74E-32

SDC1 −0.04353 0.148748 −0.07891 0.008775 −0.05836 0.052782

SGPP2 0.160109 9.12E-08 0.035293 0.241745 0.016745 0.578712

SH2D1A 0.613515 6.18E-115 0.810235 1.76E-257 0.445128 9.67E-55

STAT5A 0.208098 3.02E-12 0.274147 1.89E-20 0.203145 9.96E-12

TIGIT 0.608306 1.66E-112 0.826834 3.57E-277 0.464217 5.50E-60

TNFRSF17 0.366472 2.32E-36 0.493874 7.97E-69 0.24518 1.50E-16

TNFRSF18 −0.02112 0.483628 −0.01387 0.64559 −0.01949 0.518006

TRAF6 0.081821 0.006575 0.076896 0.010663 0.025213 0.403071
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FIGURE 7
Genetic alterations and DNA methylation of IFNG, and co-expressed genes. (A) The summary of somatic mutations in BRCA. (B) The mutated
frequency of IFNG, and co-expressed genes across BRCA. (C) Copy-number frequency of above genes. (D) Methylation sites of above genes. (E–G)
Relationships of IFNGwith (E) cg01281450, (F) cg05224770, and (G) cg26227465. (H) The beta level of cg05224770 in controls, BRCAwith lowly or highly
expressed IFNG. (I–Q) Associations of CCR7 with (I) cg07388018, (J) cg13504059, (K) cg17067993, (L) cg07248223, (M) cg16047279, (N)
cg23663547, (O) cg26960939, (P) cg07479709, and (Q) cg11729107. (R) The beta level of cg07388018 across normal specimens, BRCA with down- or
upregulated IFNG.
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FIGURE 8
Transcription factors and RNA binding proteins that potentially modulate IFNG and co-expressed genes. (A) Interactions of IFNG and co-expressed
genes with transcription factors. (B–I) The transcript level of (B) ATF2, (C) CD40, (D) IRF1, (E) JUN, (F) KLF2, (G) NFKB1, (H) RELA, and (I) RFX5 across
controls, BRCA with down- or upregulated IFNG. (J) The interaction network of IFNG-co-expressed genes with RNA binding proteins. (K–T) The
transcript level of (K) AARS, (L) ADAR, (M) DICER1, (N) DKC1, (O) EIF3B, (P) ELAVL1, (Q) IGF2BP1, (R) RBPMS, (S) TBRG4, and (T) UCHL5 in normal
tissues, BRCA with down- or upregulated IFNG.
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FIGURE 9
MiRNAs and lncRNAs that possibly regulate IFNG and co-expressed genes. (A)MiRNAs with aberrant expression in BRCA versus normal specimens.
(B)MiRNAs with different expression between down- and upregulated IFNG BRCA. (C) Venn diagram illustrating the BRCA- and IFNG-relevant miRNAs.
(D) The expression of above miRNAs across normal tissues, BRCA with down- or upregulated IFNG. (E) Correlations of IFNG-co-expressed genes with
lncRNAs.
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Transcription factors and RNA binding
proteins that potentially modulate IFNG and
co-expressed genes

Figure 8A illustrates eight transcription factors potentially
modulating the transcription of IFNG and co-expressed genes, as
follows: ATF2 (IFNG, FASLG), CD40 (SPIB, RELB), IRF1 (IL12B,
FASLG, IFNG), JUN (FASLG, IL12B, IFNG, RELB), KLF2 (SELL,
CCR7), NFKB1 (CCR7, IFNG, IL12B, CCL22, FASLG), RELA
(FASLG, IL12B, CCL22, CCR7, IFNG), RFX5 (HLA-DQB2,
IFNG). Additionally, these transcription factors exhibited the
aberrant expression in BRCA versus controls (Figures 8B–I). The
heterogeneity in their expression was also found between down- or
upregulated IFNG tumors. Ten RNA-binding proteins post-
transcriptionally modulated IFNG-co-expressed genes, following
AARS (DEF6, RAC2, PIM2, FASLG, HLA-DQB2), DICER1
(ARMH1, RAC2, DEF6, NME8, RAB37), DKC1 (TESPA1,
RAB37, CD37, GZMM, IL12B, CCR7, CD1A), EIF3B (CCR7,
RELB), ELAVL1 (CD2, RAC2, SELL, ARMH1, CAMK4, DEF6,
SPIB, FASLG, CD37, CCR7, TESPA1, RELB, ITGAL, GZMM,
RAB37, PIM2, SHISAL2A), IGF2BP1 (PIM2, RELB, CAMK4,
RAC2), RBPMS (PIM2, CAMK4), TBRG4 (DEF6, PIM2,
ARMH1, CAMK4, RAB37, RAC2), and UCHL5 (DEF6, CD37)
(Figure 8J). Except for DICER1, other RNA-binding proteins were
upregulated in BRCA (Figures 8K–T).

MiRNAs and lncRNAs that possibly regulate
IFNG and co-expressed genes

Non-coding RNA-mediated post-transcriptional mechanisms of
IFNG and co-expressed genes were also probed. In Figure 9A,
695 miRNAs with aberrant expression were determined in BRCA
relative to controls. Additionally, 268 miRNAs exhibited the
different expression between lowly and highly expressed IFNG
tumors (Figure 9B). Following the intersection, 141 BRCA- and
IFNG-relevant miRNAs were selected, which were possibly
associated with IFNG expression (Figures 9C, D; Supplementary
Table S3). Several lncRNAs were then observed to be potentially
interacted with IFNG-co-expressed genes (Figure 9E).

Discussion

IFNG presented the upregulation in BRCA, as priorly reported
(Yaghoobi et al., 2018). Also, the upregulation was associated with
favorable OS and RFS outcomes. Thus, IFNG might own the
potential as a prognostic marker of BRCA. Two IFNG-co-
expressed RNAs (AC006369.1, and CCR7) constituted a Cox
regression model for BRCA prognostication. AC006369.1, and
CCR7 were aberrantly expressed in BRCA, and in relation to
survival outcomes. Similarly, Gu et al. identified AC006369.1 as
an IFNG-relevant lncRNA that was connected with prognostic
outcomes and the TME in uterine corpus endometrial carcinoma
(Gu et al., 2022). Many studies have proven the essential function of
CCR7 in BRCA. For instance, CXCL12 facilitates CCR7 ligand-
driven BRCA cell invasion and migration towards lymphatic vessels
(Hayasaka et al., 2022). Deng et al. reported that site-specific

polyplex on downregulated CCR7 increases T cells for hindering
lymphatic metastasis of BRCA (Deng et al., 2022). In addition,
CCR7 chemokine receptor stimulation can induce rapid but
transient dendritic cell migration towards draining lymph nodes,
which is crucial for initiating protective immunity and maintaining
immune homeostasis (Liu et al., 2019).

IFNG presented the negative connections with macrophages
M0 and M2, mast cells resting, with the positive correlations to
macrophages M1, T cells CD4 memory resting and activated, T cells
CD8, T cells follicular helper, Tregs, and NK cells resting. The
interactions of IFNG with such immune cells have been unveiled.
For instance, tumor-associated macrophages accelerate metastases as
well as hinder T cells. Non-etheless, macrophage polarization is capable
of killing malignant cells. IFN-γ can reprogram CD206+ tumor-
associated macrophages to inducible iNOS + macrophages in BRCA
(Sun et al., 2021). Tregs maintain BRCA progression through
manipulating IFN-γ-driven functional reprogramming of myeloid
cells (Clark et al., 2020). IFN-γ impairs the cytotoxicity of NK cells
via upregulation of PD-L1 on malignant cells as well as PD-1 on NK
cells in trastuzumab-resistant HER2-positive BRCA (Zheng et al.,
2021). IFN-γ-triggered intermediate monocytes hinder cancer
metastasis through activating NK cells (Wang R. et al., 2022). The
interactions of IFNG-co-expressed genes (especially AC006369.1 and
CCR7) with the TME components were also investigated across BRCA.

Immunotherapy exhibits effective therapeutic potential for long-
term cancer regression, but exerts a low response rate owing to
insufficient immunogenicity of malignant cells (Tian et al., 2023).
IFN-γ is an essential driver of PD1/PD-L1 expression in tumor and
host cells. In addition, IFN-γ is capable of upregulating expression of
other critical immune suppressive molecules within the TME. Mark
Ayers et al. proposed an IFNG-relevant mRNA signature that can
predict clinical response to anti-PD-1 therapy (Ayers et al., 2017).
Nevertheless, the pleiotropic effects of IFN-γ on immunotherapy have
been found, such as immunotherapeutic resistance. IFN-γ-driven
adaptive resistance remains one barrier to the improvement in
immunotherapy. In the Cucolo et al.‘s study, IFN-γ-driven
RIPK1 enhances malignant cell intrinsic as well as extrinsic
resistance to immunotherapy (Cucolo et al., 2022). UBR5 facilitates
tumor immune escape via elevating IFN-γ-driven PDL1 transcription
in BRCA (Wu B. et al., 2022). This work also exhibited the close
connections of IFNGwith immune checkpoints in BRCA, proving the
potential in improving immunotherapy.

The regulatory mechanisms of IFNG and co-expressed genes were
further probed. It was found that somatic mutation frequencies of
CCR7, and IFNG were separately 6%, and 3%. Frequent amplification
also potentially led to their upregulation. Hypomethylated
cg05224770 and cg07388018 might associate with IFNG and
CCR7 upregulation. IFNG expression can be transcriptionally
modulated by ATF2, IRF1, JUN, NFKB1, RELA, and RFX5. Among
them, IRF1 has been proven as an IFNG-inducible gene (Qian et al.,
2018). IFN-γ-induced IRF-1 attenuates BRCA cell specific growth
(Armstrong et al., 2015). RNA-binding proteins (AARS, ADAR,
DICER1, DKC1, EIF3B, ELAVL1, IGF2BP1, RBPMS, TBRG4, and
UCHL5) and non-coding RNAs also post-transcriptionally affected
IFNG and co-expressed genes. The interactions of IFN-γ with ADAR
and DICER1 have been partly proven. ADAR (an interferon-inducible
RNA-editing enzyme) mitigates IFN signaling in gastric carcinoma
through down-regulating STAT1 and IRF9 by miR-302a (Jiang et al.,
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2020). DICER1 hinders the interferon response in murine embryonic
stem cells (Gurung et al., 2021). Invasive micropapillary carcinoma is a
rare histological subtype of BRCA with an aggressive phenotype and an
undesirable prognosis (Verras et al., 2022a). Invasive micropapillary
carcinoma has a high rate of lymphovascular invasion and lymph node
metastasis, and has been reported in multiple organs (Verras et al.,
2022b; Shi et al., 2022). However, so far, no studies have reported the
role of inflammatory cell death-related IFNG and co-expressed RNAs
(AC006369.1, and CCR7) in this subtype.

The limitations of our work require to be acknowledged. Despite
the close connections of IFNG and co-expressed genes with the TME
and immune checkpoint molecules, their roles in anti-tumor
immunity need experimental verification. Moreover, further
analyses are required for proving the regulatory mechanisms of
IFNG and co-expressed genes in BRCA.

Conclusion

Altogether, this work characterized IFNG and its co-expressed
RNAs (notably AC006369.1, and CCR7) as prognostic markers for
BRCA individuals, and unveiled their potential as therapeutic targets for
the improvement of immunotherapy. Despite this, in-depth experiments
will be implemented for proving our conclusions in future research.
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Objective: Epithelial-mesenchymal transition (EMT) is linked to an unfavorable
prognosis in oral squamous cell carcinoma (OSCC). Here, we aimed to develop an
EMT gene signature for OSCC prognosis.

Methods: In TCGA dataset, prognosis-related EMT genes with p < 0.05 were screened in
OSCC. An EMT gene signature was then conducted with LASSOmethod. The efficacy of this
signature in predicting prognosis was externally verified in theGSE41613 dataset. Correlations
between this signature and stromal/immune scores and immune cell infiltration were
assessed by ESTIMATE and CIBERSORT algorithms. GSEA was applied for exploring
significant signaling pathways activated in high- and low-risk phenotypes. Expression of
each gene was validated in 40 paired OSCC and normal tissues via RT-qPCR.

Results: A prognostic 9-EMT gene signature was constructed in OSCC. High risk score
predicted poorer clinical outcomes than low risk score. ROCs confirmed the well
performance on predicting 1-, 3- and 5-year survival. Multivariate cox analysis revealed
that this signature was independently predictive of OSCC prognosis. The well predictive
efficacy was validated in the GSE41613 dataset. Furthermore, this signature was distinctly
related to stromal/immune scores and immune cell infiltration in OSCC. Distinct pathways
were activated in two subgroups. After validation, AREG, COL5A3, DKK1, GAS1, GPX7 and
PLOD2 were distinctly upregulated and SFRP1 was downregulated in OSCC than normal

tissues.

Conclusion: Our data identified and verified a robust EMT gene signature in OSCC,
which provided a novel clinical tool for predicting prognosis and several targets against
OSCC therapy.
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Introduction

Oral squamous cell carcinoma (OSCC) represents the predominant
type of head and neck squamous cell carcinoma (Park et al., 2019).
Surgery, radiotherapy, as well as chemotherapy are themain therapeutic
strategies of OSCC (Zhao et al., 2020). The 5-year survival rate is only
50% because of regional invasion as well as lymph node/distant
metastases (Liu et al., 2020). Conventional prognostic factors, e.g.,
stage, are far from optimal (Omori et al., 2020). Although many
researches have proposed prognostic markers for OSCC, most of
them only focused on several well-studied markers (Almangush
et al., 2017). Furthermore, these researches have been carried out in
small cohorts, which is difficult to utilize these molecular markers for
predicting OSCC prognosis in daily clinical practice (Ju et al., 2020).

Epithelial-mesenchymal transition (EMT) is a dynamic process in
which epithelial cells acquire mesenchymal features (Ling et al., 2021),
leading to the upregulation of migratory and invasive capacities of tumor
cells (Qiao et al., 2020). OSCC primarily contains epithelial dysplasia, loss
of epithelial differentiation as well as acquisition of mesenchymal
phenotype (Bai et al., 2020). It has been confirmed that EMT process
is in relation to OSCC invasiveness and metastasis (Peng et al., 2020).
However, it remains vacant concerning the EMT gene signatures and
their prognostic value in OSCC. Because of the easy accessibility of gene
expression profiles from public databases, exploration of the prognostic
gene signatures has been given wide attention (Wu et al., 2019). Based
upon the critical role of EMT process in OSCC progression, it is of
significance to establish an EMT gene signature for OSCC prognosis.
Thus, our research set out to further understand the underlying clinical
utility of EMTgenes as prognosticmarkers and to build up individualized
clinical outcome evaluation for OSCC.

Materials and methods

Data collection

Normalized transcriptome data and clinical information of OSCC
were retrieved from the Cancer Genome Atlas (TCGA) database via the
UCSC Xena (https://tcga.xenahubs.net) on 11 March 2020. Moreover,
the GSE41613 dataset was downloaded from the Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) database
(Lohavanichbutr et al., 2013). The specific clinical information was
listed in Supplementary Table S1. Before surgery, all patients did not
receive radiotherapy or chemotherapy. Primary tumor site of all patients
was the same. The “HALLMARK_EPITHELIAL_MESENCHYMAL_
TRANSITION” gene set containing 200 genes (Supplementary Table S2)
was obtained from theMolecular SignaturesDatabase (https://www.gsea-
msigdb.org/gsea/msigdb/index.jsp).

Data preprocessing

In the TCGA dataset, 328 OSCC patients with complete clinical
information were regarded as the discovery set. In the

GSE41613 dataset, raw microarray data of 97 patients that possessed
complete survival information were pre-corrected, transformed by
log2 and normalized, followed by gene annotation. This dataset was
utilized as the validation set.

Establishment of an EMT gene model

Prognosis-related EMT genes were firstly screened in OSCC.
Univariate cox analyses were employed to screen EMT genes with
p < 0.05 in the TCGA dataset. By applying glmnet package, an
optimal prognostic model was built with least absolute shrinkage
and selection operator (LASSO) Cox regression analysis based on
the prognosis-related EMT genes (Friedman et al., 2010). The
optimal value of penalty parameter λ was determined via ten-fold
cross-validation. The risk score of OSCC samples was computed
according to regression coefficient as well as expression value of each
gene in this model. The formula of the risk score was as follows: risk
score = ∑n

i�1(LASSO coefficient of gene i*expression ofgene i).
OSCC patients in discovery and validation datasets were
separated into high- and low-risk subgroups according to the
median value of risk score, respectively. High-risk subgroup was
defined as patients who had risk scores greater than the median
while low-risk subgroup was defined as patients who had risks scores
less than the median. To compare the difference in overall survival
(OS) time between two subgroups, Kaplan–Meier curves were
depicted by survival package and difference was determined with
log-rank tests. Time-dependent receiver operating characteristic
(ROC) curves of 1-year, 3-year and 5-year OS time were
conducted for calculating the area under the curve (AUC) values
to assess the predictive efficiency of the gene signature and other
clinical features (age, gender, grade and stage) by applying
survivalROC package (Heagerty and Zheng, 2005). Furthermore,
univariate cox analyses were presented for evaluating the
relationships of OSCC prognosis with the gene signature and
clinical features. To validate whether the gene signature could be
independently predictive of patients’ prognosis, multivariate cox
analyses were performed based on prognosis-related factors with p <
0.05. Hazard ratio (HR) as well as 95% confidence interval (CI) was
computed. Factors with HR > 1 were risk factors and those with
HR < 1 were protective factors.

Independence of the EMT gene signature
from other clinical features

For determining whether the gene signature was independent
of other clinical features, age, gender, grade, and stage were
separated into high- and low-risk subgroups in the discovery
dataset. OSCC subjects were stratified into
age >65 and <65 subgroups, female and male subgroups,
grade I-II/III-IV subgroups, stage I-II/III-IV subgroups.
Kaplan-Meier OS analysis was carried out in each subgroup
and difference was evaluated by log-rank test.
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Assessment of stromal score, immune score,
and tumor purity

Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data (ESTIMATE) package (https://sourceforge.
net/projects/estimateproject) (Yoshihara et al., 2013) was employed for
inferring stromal score, immune score, and tumor purity in each OSCC
sample from the TCGA dataset based on gene expression profiles.

Characterization of immune cell
compositions in OSCC tissues

By applying CIBERSORT package (https://cibersort.stanford.
edu/) (Newman et al., 2015), the infiltration levels of different
immune cells were inferred in OSCC tissue specimens from the
TCGA dataset according to gene expression profiling. Only
specimens with p < 0.05 could be retained for further analyses.
LM22 leukocyte gene signature matrix was used as the reference,
which contained 547 genes that distinguished 22 human
hematopoietic cells as follows: 7 kinds of T cell types, naïve and
memory B cells, plasma cells, NK cells as well as myeloid subsets.

Pathway enrichment analysis

Gene Set Enrichment Analysis (GSEA) software was utilized for
exploring the activated signaling pathways through comparing high-
and low-risk subgroups from the TCGA dataset (Subramanian et al.,
2005). The KEGG gene set (c2. cp.kegg.v7.1. symbols) was used as
reference. 1,000 gene-set permutations were carried out. The terms
with normalized enrichment score |NES| > 1.5 and FDR <0.05 were
chosen as distinct pathways activated in high- or low-risk
phenotypes, which were used for multiple GSEA gene sets.

Somatic mutation analysis

Mutation Annotation Format (MAF) of OSCC samples was
downloaded from TCGA database. These specimens were equally
separated into high- and low-risk subgroups. The waterfall plots of
two subgroups were depicted for illustrating the different mutation
events using the Maftools package (Mayakonda et al., 2018).

Prognostic values of genes in the prognostic
gene signature

Univariate cox analyses were applied to evaluate the prognostic value
of each gene in the prognosis-related gene signature for OSCC patients
from the TCGA dataset. Moreover, their expression was visualized in
OSCC and normal tissue specimens. Spearman correlation between
genes in this signature was evaluated in OSCC samples. The protein
expression of genes from the prognostic gene signature in OSCC tissues
was assessed through the Human Protein Atlas (https://www.
proteinatlas.org/) (Colwill and Gräslund, 2011).

OSCC tissue specimens

Totally, 40 paired OSCC and adjacent normal frozen tissues
were collected from patients who experienced operation in the Taihe
Hospital, Hubei University of Medicine between January 2020 and
January 2021. All subjects did not receive chemoradiotherapy before
operation. Diagnosis and staging were performed by experienced
pathologists according to the American Joint Committee on Cancer
Staging System. The study protocol gained the approval of the Ethics
Committee of Taihe Hospital, Hubei University of Medicine (KY
2020-024), with written informed consent acquired from each
subject. In addition, the research followed the Declaration of
Helsinki.

Real-time quantitative polymerase chain
reaction (RT-qPCR)

Each gene in this prognostic model was verified in OSCC by RT-
qPCR. Total RNA was isolated from OSCC tissues utilizing TRIzol
reagent (Beyotime, China), which was reverse transcribed into cDNA
utilizing primers and SuperScriptIII reverse transcriptase. RT-qPCR
was carried out through Prime Script RT Reagent Kit and 7500 Real-
Time PCR System (Applied Biosystems, United States). GAPDH served
as the reference control. These amplification procedures included:
denaturation at 95 °C lasting 5 min, 40 cycles of denaturation at
95 °C lasting 15 s, annealing at 55 °C lasting 30 s, and extension at
60 °C lasting 1 min. Table 1 listed the primer sequences of target genes.
The relative expression was determined with 2−ΔΔCT method.

TABLE 1 Primer sequences for RT-qPCR.

Target genes Primer sequences

AREG 5′-GTGGTGCTGTCGCTCTTGATA-3′ (F)

5′-CCCCAGAAAATGGTTCACGCT-3′ (R)

COL5A3 5′-TGACCGGGCATTCAGAATTGG-3′ (F)

5′-CGGGCACCCCTTTCATCAT-3′ (R)

DKK1 5′-CCTTGAACTCGGTTCTCAATTCC-3′ (F)

5′-CAATGGTCTGGTACTTATTCCCG-3′ (R)

GAS1 5′-ATGCCGCACCGTCATTGAG-3′ (F)

5′-TCATCGTAGTAGTCGTCCAGG-3′ (R)

GPX7 5′-CCCACCACTTTAACGTGCTC-3′ (F)

5′-GGCAAAGCTCTCAATCTCCTT-3′ (R)

PLOD2 5′-CATGGACACAGGATAATGGCTG-3′ (F)

5′-AGGGGTTGGTTGCTCAATAAAAA-3′ (R)

SFRP1 5′-ACGTGGGCTACAAGAAGATGG-3′ (F)

5′-CAGCGACACGGGTAGATGG-3′ (R)

GAPDH 5′-CTGGGCTACACTGAGCACC-3′ (F)

5′-AAGTGGTCGTTGAGGGCAATG-3′ (R)

Frontiers in Genetics frontiersin.org03

Ai et al. 10.3389/fgene.2023.1113137

239

https://sourceforge.net/projects/estimateproject
https://sourceforge.net/projects/estimateproject
https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1113137


Immunohistochemistry

From The Human Protein Atlas (https://www.proteinatlas.org/),
immunohistochemistry staining of genes in the EMT gene signature
in OSCC and normal oral tissues from 10 OSCC patients. Staining,
intensity, quantity and location were also obtained. The used antibodies
are as follows: AREG (HPA008720), COL5A3 (HPA048256), GAS1
(HPA066902), PLOD2 (CAB025898) and SFRP1 (CAB008116).

Statistical analysis

Statistical analysis was carried out by R packages (version 3.5.2)
and GraphPad Prism software (version 8.0.1). Comparisons between
two subgroups were presented via Student’s t-test orWilcoxon rank-
sum test. Kaplan-Meier survival curves were conducted, and survival
difference was analyzed through log-rank test. The predictive
efficacy was estimated with ROC curves. Spearman’s test was
executed for correlation analysis. p < 0.05 was considered significant.

Results

Establishment of an EMT gene signature for
predicting OSCC prognosis

To screen prognosis-related EMT genes in OSCC, univariate cox
regression analysis was employed in the TCGA dataset. As a result,
11 genes including ANPEP, AREG, COL5A3, DKK1, FMOD, GAS1,
GPX7, PLOD2, SFRP1, TNFRSF11B, VEGFA were significantly
associated with OSCC patients’ prognosis (Table 2). These prognostic
genes were further assessed by LASSO analysis. Totally, 9 genes were
screened for establishing the LASSO model (Figure 1A). The regression
coefficient of each gene was calculated, as shown in Figure 1B. The risk
score of each patient was then determined, as follows: AREG expression *
0.0471791751815675 + COL5A3 expression * (−0.0543433112313582) +
DKK1 expression * 0.0619741505236927 + GAS1 expression *
(−0.118881742831249) + GPX7 expression * (−0.142215922759831) +

PLOD2 expression * 0.259497264609766 + SFRP1 expression *
(−0.0579599175758466) + TNFRSF11B expression *
(−0.197512366515929) + VEGFA expression * (0.053308700735239).
We separated all patients in the discovery dataset into two subgroups
according to the median value of risk score (Figure 1C). Survival status
was further compared in the two subgroups. There were more patients
with dead status for high-risk in comparison to low-risk subgroups
(Figure 1D). Heat map depicted the different expressions of the genes
(SFRP1, TNFRSF11B, PLOD2, GPX7, COL5A3, GAS1, VEGFA, AREG
and DKK1) in this prognostic model between high- and low-risk
subgroups (Figure 1E). Our further analysis demonstrated that high-
risk patients exhibited worse survival time in comparison to low-risk
subjects (p=6.615e-05; Figure 1F). These data indicated that the risk score
could be employed for predicting OSCC patients’ clinical outcomes. We
further assessed the predictive efficacy of the risk score for OSCC
prognosis by ROCs. The AUCs under 1-year, 3-year and 5-year OS
were separately 0.669, 0.715 and 0.622, confirming the well predictive
performance for clinical outcomes (Figure 1G). Also, we compared the
predictive value of the risk score with other clinical features. Our data
demonstrated that the risk score displayed the highest AUC value (0.715)
for OS time among age (AUC = 0.575), gender (AUC = 0.487), grade
(AUC = 0.557) and stage (AUC = 0.625; Figure 1H), indicating that this
signature wasmore advantageous in comparison to other clinical features
regarding prediction of survival time.

External verification of prognostic potential
of this EMT gene signature in OSCC

The GSE41613 cohort was employed to externally validate the
predictive efficacy of this EMT gene signature in OSCC patients’
prognosis. With the same formula, we calculated the risk scores of
OSCC patients. Consistently, we separated OSCC subjects into two
subgroups according to the median value of risk score (Figure 2A). Low-
risk patients exhibited more optimistic survival status than high-risk
individuals (Figure 2B). The expression of the genes in this model was
visualized in each OSCC sample (Figure 2C). The survival difference
between subgroups was further validated in the GSE41613 dataset. As

TABLE 2 Prognosis-related EMT genes in OSCC by univariate cox regression analysis.

Genes HR HR.95L HR.95H P

ANPEP 0.822134 0.681012 0.992499 0.041518

AREG 1.154353 1.03309 1.289849 0.011249

COL5A3 0.835201 0.710865 0.981286 0.028548

DKK1 1.161784 1.048932 1.286777 0.004024

FMOD 0.826339 0.715891 0.953827 0.009168

GAS1 0.782505 0.659839 0.927975 0.004814

GPX7 0.818143 0.693531 0.965146 0.017277

PLOD2 1.193821 1.007232 1.414976 0.041046

SFRP1 0.883559 0.799458 0.976508 0.015276

TNFRSF11B 0.638404 0.462455 0.881295 0.00637

VEGFA 1.221469 1.006439 1.482442 0.042874

Abbreviations: HR, hazard ratio; HR.95L, 95% lower confidence interval; HR.95H, 95% upper confidence interval.
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expected, high-risk patients displayed shorter OS time than low-risk
patients (p= 7.869e-04; Figure 2D). ROCswere conducted for evaluation
of the predictive efficacy of the risk score. In Figure 2E, AUCs under 1-,
3- and 5-year OS were separately 0.800, 0.778 and 0.729, confirming that
this risk score could predict OS time of OSCC patients. Univariate
analysis revealed that age, stage, risk score displayed distinct associations
to OSCC patients’ prognosis in the TCGA dataset (Figure 2F). As
confirmed by multivariate analysis, age, stage as well as risk score were
independently related to prognosis (Figure 2G).

Subgroup analysis identifies the sensitivity of
the EMT gene signature to predict OSCC
prognosis

The predictive potency of this EMT prognostic model was
further evaluated among different subgroups from the discovery
cohort. Kaplan-Meier OS analysis showed that high-risk patients
were predicted to have worse clinical outcomes compared with low-
risk patients in age >65 (p = 0.012; Figure 3A), age <65 (p = 0.001;

FIGURE 1
Establishment of an EMT gene signature for predicting OSCC patients’ clinical outcomes in the TCGA-discovery dataset. (A) Distribution of partial
likelihood deviances corresponding to lambda values. (B) Determination of regression coefficients of genes in the LASSO model. (C) Distribution of risk
scores and determination of high-/low-risk subgroups. Vertical dotted line indicates the median value of risk score. (D) Distribution of survival status of
high- and low-risk patients. Red dot indicates dead while blue dot is indicative of alive. (E) Heat map for expression pattern of these genes in this
model in high- (red) and low-risk (blue) subgroups. Red indicates upregulation and blue indicates downregulation. (F) OS analysis for high-/low-risk
patients. The difference between subgroups was compared with log-rank test. (G) ROCs under 1-year, 3-year and 5-year OS for the risk score. (H)
Comparison of the AUCs among the risk score and other clinical features.
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Figure 3B), female (p = 0.064; Figure 3C), male (p < 0.001;
Figure 3D), grade I-II (p = 0.001; Figure 3E), grade III-IV (p =
0.010; Figure 3F), stage I-II (p = 0.112; Figure 3G) as well as stage III-
IV (p = 0.002; Figure 3H) subgroups.

Association between the EMT gene
signature and immune microenvironment in
OSCC

ESTIMATE algorithm was employed to assess stromal score,
immune score, and tumor purity of OSCC samples from the
TCGA dataset. Our data showed that higher stromal (p < 0.001)
and immune scores (p < 0.001) were found in high-risk samples
than low-risk samples (Figure 4A). Also, there was lower tumor
purity in high-risk samples compared with low-risk samples (p <
0.001). The infiltration levels of 22 kinds of immune cells of
OSCC specimens were determined by applying CIBERSORT

algorithm. There were lowered infiltration levels of naïve B cells
(p < 0.001), T follicular helper cells (p < 0.01), Tregs (p < 0.001),
T gamma delta cells (p < 0.05) and resting mast cells (p < 0.001)
in high-risk specimens compared with low-risk specimens
(Figure 4B). Meanwhile, higher infiltration levels of
CD4 memory activated T cells (p < 0.05), resting NK cells
(p < 0.05), activated dendritic cells (p < 0.05), activated mast
cells (p < 0.001) and eosinophils (p < 0.01) were examined in
high-risk compared with low-risk subgroups.

Assessment of the EMT gene signature-
related signaling pathways and somatic
mutation in OSCC

GSEA was applied to explore signaling pathways associated with
the EMT gene signature. As a result, basal transcription factors (NES =
2.04, NOM p = 0.002 and FDR = 0.008), base excision repair (NES =

FIGURE 2
External verification of prognostic value of the EMT gene model in OSCC. (A) Distribution of risk scores and identification of high-/low-risk
subgroups in the GSE41613 dataset. Vertical dotted line represents the median value of risk score. (B) Distribution of survival status in high-/low-risk
patients. Red dot represents dead while blue dot represents alive. (C) Heat map for expression pattern of genes in this model in high- (red) and low-risk
(blue) subgroups. Red indicates upregulation and blue indicates downregulation. (D)OS analysis for high-/low-risk patients. p-value was calculated
with log-rank test. (E) ROCs under 1-year, 3-year and 5-year OS based on the risk score. (F,G) Univariate and multivariate analyses of the relationships of
OSCC prognosis with risk score and other clinical features.
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1.82, NOM p = 0.006 and FDR = 0.047), cell cycle (NES = 1.96, NOM
p = 0.006 and FDR = 0.017), nucleotide excision repair (NES = 2.08,
NOM p = 0.002 and FDR = 0.006) and spliceosome (NES = 2.13, NOM
p < 0.001 and FDR = 0.004) were distinctly upregulated in high-risk
OSCC samples (Figure 5A). Moreover, calcium signaling pathway
(NES = −2.21, NOM p < 0.001 and FDR <0.001), cytokine-cytokine
receptor interaction (NES = −1.99, NOM p = 0.002 and FDR = 0.008),
ECM receptor interaction (NES = −1.98, NOM p = 0.006 and FDR =
0.009), MAPK signaling pathway (NES = −1.94, NOM p < 0.001 and
FDR = 0.011) and VEGF signaling pathway (NES = −2.18, NOM p <
0.001 and FDR <0.001) were activated in low-risk samples (Figure 5B).
The somatic mutation was further assessed in high- and low-risk OSCC
samples. Our data showed the first 20 mutated genes across OSCC
samples. We found that higher frequent genetic mutations occurred in

high-risk subgroup (Figure 5C) than low-risk subgroup (Figure 5D),
especially TP53, FAT1, and CDKN2A.

Genes in the EMT gene signature are
associated with OSCC prognosis

Prognostic value of each gene in this EMT gene model was
evaluated for OSCC samples from the TCGA dataset. Our
univariate cox regression analysis demonstrated that high
expression of AREG (p < 0.001, HR = 1.85, 95%CI: 1.31-2.61;
Figure 6A), DKK1 (p < 0.001, HR = 2.05, 95%CI: 1.47-2.87;
Figure 6B), PLOD2 (p = 0.01, HR = 1.58, 95%CI: 1.13-2.22;
Figure 6C) and VEGFA (p = 0.019, HR = 1.51, 95%CI: 1.03-2.21;

FIGURE 3
Assessment of the sensitivity of the EMTgene signature to predict OSCCprognosis by subgroup analysis. Kaplan-MeierOS analysis of high- and low-
risk patients in (A) age >65, (B) age <65, (C) female, (D)male, (E) grade I-II, (F) grade III-IV, (G) stage I-II as well as (H) stage III-IV subgroups. p values were
determined by log-rank test.
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Figure 6D) was indicative of poorer prognosis of OSCC patients than
their low expression. Furthermore, high expression of COL5A3 (p =
0.036, HR = 0.66, 95%CI: 0.46-0.94; Figure 6E), GAS1 (p = 0.006,
HR = 0.61, 95%CI: 0.44-0.86; Figure 6F), GPX7 (p = 0.004, HR = 0.58,
95%CI: 0.41-0.82; Figure 6G), SFRP1 (p = 0.002, HR = 0.58, 95%CI:
0.42-0.82; Figure 6H) and TNFRSF11B (p < 0.001, HR = 0.55, 95%CI:
0.39-0.77; Figure 6I) displayed significant associations with prolonged
survival time compared with their low expression. The prognostic
implications of above genes were also confirmed in the
GSE41613 cohort (Figures 7A–I).

Abnormal expression of genes in the EMT
gene signature for OSCC

The expression of genes in the EMT gene signature was
compared between OSCC and normal tissues. Our data
showed that AREG (Figure 8A), COL5A3 (Figure 8B), DKK1
(Figure 8C), GAS1 (Figure 8D), GPX7 (Figure 8E) and PLOD2
(Figure 8F) were significantly upregulated in OSCC than normal
tissues (all p < 0.05). Furthermore, lower SFRP1 expression was
found in OSCC compared to normal specimens (p < 0.05;

FIGURE 4
Association between the EMT gene signature and immunemicroenvironment in OSCC. (A)Distributions of stromal score, immune score, and tumor
purity in high- and low-risk subgroups. (B) Assessment of the infiltration levels of immune cells in high- and low-risk subgroups. p values were assessed by
Wilcoxon rank-sum test. Ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 8G). Our correlation analyses demonstrated that
COL5A3 exhibited significant correlations to GAS1, GPX7,
PLOD2, SFRP1 and TNFRSF11B in OSCC samples
(Figure 8H). GAS1 exhibited significant correlations to GPX7,
PLOD2, SFRP1 and TNFRSF11B. GPX7 was distinctly associated
with PLOD2 and TNFRSF11B. These data indicated that there
were distinct correlations between the genes in the EMT gene
signature.

Validation of gene expression in this EMT
gene model

This study further confirmed gene expression in the EMT
gene signature between 40 paired OSCC and normal specimens
by RT-qPCR. Consistently, our data confirmed that AREG
(Figure 9A), COL5A3 (Figure 9B), DKK1 (Figure 9C), GAS1
(Figure 9D), GPX7 (Figure 9E) and PLOD2 (Figure 9F) were
distinctly highly expressed in OSCC compared with normal
tissues (all p < 0.0001). Also, SFRP1 exhibited lower expression
in OSCC than normal specimens (p < 0.0001; Figure 9G).
Abnormal expression of AREG, COL5A3, GAS1, PLOD2 and

SFRP1 was also confirmed in OSCC tissues by
immunohistochemistry (Figure 9H). We also evaluated the
difference in genes from the EMT gene signature across
distinct pathological stages, as shown in Figures 10A–G.
Among them, COL5A3, PLOD2 and SFRP1 were
differentially expressed among pathological stages,
indicative of their potential relationships with disease
progression.

Discussion

OSCC represents a progressive malignancy with high
heterogeneity (Panarese et al., 2019). Hence, it is of urgency to
acquire robust prognostic markers for improving prognosis
evaluation and individualized therapy (Zhu et al., 2020). As
previous studies, several prognostic signatures have been
established for OSCC. For instance, Cao et al. established a 3-
mRNA signature (CLEC3B, C6 and CLCN1) in OSCC prognosis
(Cao et al., 2019). Hou and colleagues developed an autophagy gene
model for speculation of clinical outcomes of OSCC (Hou et al.,
2020). Wu and colleagues established an independent

FIGURE 5
Assessment of the EMT gene signature-related signaling pathways and somatic mutation in OSCC. (A) Signaling pathways activated in high-risk
subgroup by GSEA. (B) Signaling pathways activated in low-risk subgroup. (C) The waterfall plots for the first 20 mutated gene signatures in high-risk
subgroup. (D) The waterfall plots for the first 20 mutated gene signatures in low-risk subgroup.
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transcriptional model according to 5 metabolism pathways
concerning OSCC prognosis (Wu et al., 2020). Huang et al.
constructed a 7-metabolic gene signature for OSCC (Huang
et al., 2021). However, the above gene signatures have not been
validated in multiple datasets. Furthermore, so far, no gene signature
has been applied in clinical practice. Although many molecular
markers and gene signatures have been conducted in OSCC,
systematic analyses of expression profiles of EMT genes have not
been still performed. In this study, we conducted an EMT gene

signature for OSCC prognosis by LASSO method. After external
verification, our model robustly and stably predicted patient
survival.

The tumor microenvironment contains tumor-associated
fibroblasts, immune cells as well as extracellular matrix (Chen
et al., 2021). The relationships between tumor
microenvironment and tumor cells play key roles in
modulating malignant biological behaviors like metastasis
and recurrence as well as clinical outcomes of OSCC

FIGURE 6
Univariate cox regression analysis for the association between each gene in the EMT gene signature and OSCC prognosis in the TCGA cohort. The
survival difference was evaluated between high and low expression of (A) AREG; (B) DKK1 (C) PLOD2; (D) VEGFA (E) COL5A3; (F) GAS1 (G) GPX7; (H)
SFRP1 (I) TNFRSF11B subgroups.
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(Zhou et al., 2020). It has been found that OSCC is highly
related to immune infiltration and immune infiltrates are
reliable prognostic factors for OSCC (Zhou et al., 2020). For
instance, high infiltration of CD103+ T and dendritic cells is
indicative of prolonged survival outcomes of OSCC (Xiao
et al., 2019). Activation of myeloid derived suppressor cells
accelerates the malignant progression of OSCC (Pang et al.,
2020). Activation of T helper cells in sentinel node indicates
unfavorable clinical outcomes in OSCC (Kågedal et al., 2020).
Therefore, the variations of immune cell subpopulations in the

tumor microenvironments may affect the prognosis of OSCC.
Here, our data showed that higher immune or stromal scores
were detected in high-than low-risk subgroups. Furthermore,
there were lowered infiltration levels of naïve B cells, T
follicular helper cells, Tregs, T gamma delta cells and
resting mast cells in high-risk than low-risk subgroups.
Also, higher infiltration levels of CD4 memory activated
T cells, resting NK cells, activated dendritic cells,
activated mast cells and eosinophils were examined in high-
compared with low-risk subgroups. Thus, this EMT gene

FIGURE 7
Univariate cox regression analysis for the association between each gene in the EMT gene signature and OSCC prognosis in the GSE41613 cohort.
The survival difference was evaluated between high and low expression of (A) AREG; (B) DKK1 (C) PLOD2; (D) VEGFA (E) COL5A3; (F) GAS1 (G) GPX7; (H)
SFRP1 (I) TNFRSF11B subgroups.
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signature might be distinctly linked to tumor
microenvironment of OSCC.

Our further analysis found that basal transcription factors,
base excision repair, cell cycle, nucleotide excision repair as well
as spliceosome were activated in high-risk OSCC samples.
Consistently, we found that more frequent somatic mutation
occurred in high-risk OSCC samples. Calcium signaling pathway,
cytokine-cytokine receptor interaction, ECM receptor
interaction, MAPK signaling pathway and VEGF signaling
pathway were activated in low-risk samples. Previously,
calcium-dependent and cell cycle pathways may mediate
OSCC progression (Jia et al., 2020). MAPK (Jin et al., 2020)
and VEGF pathways (Lien et al., 2020) enhance OSCC
progression. These data indicated that the genes in this

signature might participate in OSCC pathogenesis by above
pathways.

Among the genes in this prognostic signature, AREG,
COL5A3, DKK1, GAS1, GPX7 and PLOD2 were distinctly
upregulated and SFRP1 was downregulated in OSCC than
normal tissues. High expression of AREG, DKK1, PLOD2 and
VEGFA was indicative of poorer prognosis of OSCC patients
while high expression of COL5A3, GAS1, GPX7, SFRP1 and
TNFRSF11B were significantly associated with prolonged
survival time. Previously, AREG upregulation has been found
in OSCC and it can increase drug resistance against vincristine
(Hsieh et al., 2019). Also, AREG expression can independently
predict OSCC prognosis (Gao et al., 2016). DKK1 is highly
expressed in OSCC and induces proliferation and migration of

FIGURE 8
Abnormal expression of genes in the EMT gene signature for OSCC. Box plots for expression of (A) AREG, (B) COL5A3, (C) DKK1, (D)GAS1, (E)GPX7,
(F) PLOD2 as well as (G) SFRP1 in OSCC and normal tissues. (H) Correlation analysis between the genes in the EMT gene signature. Red demonstrates
positive correlation as well as blue demonstrates negative correlation. *p < 0.05. The bigger the circle, the stronger the correlation.
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OSCC cells (Wang et al., 2018). RT-qPCR confirmed the
abnormal expression of the genes in OSCC. Combining
previous research, the genes in this signature might be

potential therapy targets against OSCC. More experiments will
be presented for validating their biological functions and clinical
implications in OSCC.

FIGURE 9
Validation of expression of genes in the EMT gene signature. RT-qPCR for detecting expressions of (A) AREG, (B) COL5A3, (C) DKK1, (D) GAS1, (E)
GPX7, (F) PLOD2 and (G) SFRP1 in 40 paired OSCC and normal tissue specimens. (H) Immunohistochemistry for expression of AREG, COL5A3, GAS1,
PLOD2 and SFRP1 in OSCC tissues.
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Conclusion

Collectively, based on gene expression profiling, we screened
prognosis-related EMT genes and established a 9-EMT gene
signature. These data showed that this signature could be utilized
to predict clinical outcomes of OSCC subjects, thereby contributing
to individual therapy and shedding a novel insight into EMT
targeted therapy. Nevertheless, the clinical utility of this signature
requires to be verified in a large and prospective OSCC cohort.
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