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Development of a prognostic
model for children with
neuroblastoma based on
necroptosis-related genes

Jing Chu*

Department of Pathology, Anhui Provincial Children’s Hospital, Hefei, China

Background: Neuroblastoma (NBL) is a rare malignant tumor of the peripheral

sympathetic nervous system in children with a low overall survival rate. Recent

studies have revealed the important role of necroptosis in the occurrence and

development of many kinds of tumors. In this study, a prognostic model based

on necroptosis-related genes was constructed for NBL.

Methods: Expression profiles and clinical information for patients with NBL

were downloaded from TARGET. Data for necroptosis-related genes were

extracted for Cox regression and lasso regression analyses to evaluate

factors associated with prognosis and to construct a prognostic model. Data

from the GEO datasets GSE62564 and GSE85047 were used for external

verification. Associations between risk scores were calculated, and immune

infiltration, drug sensitivity, and mutation analyses were conducted. Functional

enrichment analyses of genes in the prognostic model were performed.

Results: Six necroptosis-related genes (i.e., CYLD, JAK1, APC, ERH, CNBP, and

BAX) were selected to construct a prognostic risk model. The risk score was

highly correlated with levels of infiltration of multiple immune cells and

sensitivity to common antineoplastic drugs. In addition, the risk score was

identified as an independent prognostic factor for patients with NBL.

Conclusion: We constructed and validated a prognostic model based on

necroptosis-related genes, providing insights into the development and

progression of NBL and a basis for improved management. In addition to

providing a tool for clinical decision-making, these findings support the

importance of necroptosis in NBL and may guide the development of

therapeutic strategies targeting this process.
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Introduction

Neuroblastoma (NBL) is a malignant tumor of the peripheral

nervous system originating from primitive neural crest cells,

accounting for 8%–10% of all malignant tumors and

approximately 15% of tumor-related deaths in children. The

morbidity is slightly higher in boys than in girls (ratio 1.2:1). The

incidence peaks at 0–4 years of age, with a median age of

23 months (Park et al., 2010). NBL shows clinical and

biological heterogeneity, and the disease spectrum ranges from

spontaneous regression under no medical intervention or

differentiation to an aggressive state with treatment resistance

and tumor metastasis, despite intensive treatment. Therapy

based on risk stratification by clinicopathological (diagnostic

age, clinical staging, and histopathology) and genetic factors

(MYCN amplification) significantly improves prognosis in

low- and medium-risk patients, with 5-years survival rates

ranging from 70% to 98%. However, about 50% of patients

have high-risk characteristics with a 5-years survival rate after

diagnosis of less than 40% (Fusco et al., 2018). Therefore, a

comprehensive understanding of the pathogenesis of NBL,

biomarker identification, and the development of an effective

prognostic model are of great significance for improving

outcomes in NBL.

Programmed cell death is a natural barrier to the occurrence

and development of cancer and can be classified as apoptotic and

non-apoptotic, including ferroptosis, pyroptosis, autophagy, and

necroptosis (Dai et al., 2020). Evasion and resistance to

programmed cell death are acquired by cancer cells (Hanahan

and Weinberg, 2011). Resistance to apoptosis is an important

cause of chemotherapeutic drug resistance in patients with

cancer (Johnstone et al., 2002). Therefore, it is imperative to

develop methods to induce non-apoptotic forms of programmed

cell death as alternative therapeutic approaches. Necroptosis is a

recently caspase-independent mechanism of cell death. It is

mainly mediated by receptor-interacting protein kinase-1

(RIPK1) and -3 (RIPK3) and their target, mixed lineage

kinase domain-like (MLKL). It is related to a variety of

human diseases, including ischemia-reperfusion injury,

inflammation, allograft rejection, neurodegenerative diseases,

autoimmune diseases, and cancer (Negroni et al., 2020).

Necroptosis plays dual roles in cancer development. On the

one hand, adaptation to necroptosis in the tumor

microenvironment promotes metastasis, suggesting that the

inhibition of necroptosis is an anti-metastasis strategy. On the

other hand, the expression levels of key mediators of necroptosis

in some cancers are downregulated, suggesting that necroptosis

has anticancer effects (Najafov et al., 2017).

However, the prognostic value of necroptosis-related genes

in children with NB has not been evaluated. In this study, the

association between necroptosis-related genes and prognosis in

NB was evaluated and a prognostic model was constructed. These

findings provide insight into the prognostic value of genes related

to necroptosis and preliminarily uncover the complex biological

functions and immunoregulatory effects of these genes and their

regulatory networks.

Materials and methods

Data acquisition

The TARGET database (https://portal.gdc.cancer.gov/), as

the largest cancer gene information database, stores data for gene

expression, miRNA expression, copy number variation, DNA

methylation, single nucleotide polymorphisms, and so on.

Processed raw mRNA expression data for NBL were

downloaded, including data for 158 NBL samples. The Series

Matrix File for GSE62564 was downloaded from NCBI GEO and

the annotation platform was GPL11154. Data for 495 patients

with NBL with complete expression profiles and survival

information were extracted. The Series Matrix File for

GSE85047 whose annotation platform was GPL5175 was

obtained. Data for 275 patients with NBL with complete

expression profiles and survival information were retrieved. A

total of 604 gene sets including necroptosis-related genes were

obtained from the GeneCards database (https://www.genecards.

org/).

Gene ontology and encyclopedia of genes
and genomes functional annotation

Prognostic genes were annotated using clusterProfiler (R3.6)

to thoroughly explore their functions. Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses were performed; terms and pathways with P- and

Q-values of less than 0.05 were considered significant.

Metascape

Metascape (http://metascape.org/) is a powerful analytical

tool for functional annotation of genes and proteins that allows

users to apply current popular bioinformatics methods to batch

gene and protein analyses to achieve an understanding of gene or

protein function. GO/KEGG functional annotation of genes was

performed using the Metascape database. Minimum

overlap ≥3 and p ≤ 0.05 were considered to be significant.

Model construction and prognosis

Necroptosis-related genes were selected, and a univariate Cox

proportional hazards regression model was applied. Necroptosis

genes with p < 0.05 were considered statistically significant and
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included in the subsequent analysis. Lasso penalized Cox

regression analysis was performed using 10-fold cross-

validation based on the “glmnet” package in R to further

reduce the number of necroptosis genes with the best

predictive performance in the selected panels. After including

the expression values for each specific gene, a risk score formula

for each patient was constructed and weighted by its estimated

regression coefficients in the lasso regression analysis. According

to the risk score formula, the patients were divided into a low-risk

group and a high-risk group with the median risk score value as

the cut-off point. Differences in survival between the two groups

were assessed by Kaplan-Meier analysis and compared using the

log-rank statistical method. Lasso regression and stratified

analyses were performed to examine the role of risk scores in

the prediction of patient outcomes. The “survivalROC” package

was used to derive receiver operator curves (ROCs) to investigate

the accuracy of the model predictions. Univariate and

multivariate Cox analyses including age, sex, tumor stage, and

necroptosis score were performed to identify independent

prognostic factors.

Drug sensitivity analysis

Based on the largest pharmacogenomics database (GDSCCancer

Drug sensitivity Genomics Database, https://www.cancerrxgene.org/),

the R package “pRRophetic” was used to predict the chemosensitivity

of each tumor sample. The estimated IC50 values for each specific

chemotherapeutic drug were obtained by regression, and the

prediction accuracy was measured by 10-fold cross-validation with

the GDSC training set. Default values were selected for all parameters,

using “combat” to remove the batch effect and the average value of

repeated gene expression estimates.

Analysis of immune cell infiltration

The RNA-seq data for patients with NBL in different

subgroups were analyzed by the CIBERSORT algorithm to

infer the relative proportions of 22 kinds of immune-

infiltrating cells. A Spearman correlation analysis was used to

analyze the risk score and levels of infiltrating immune cells.

Results were considered statistically significant at p < 0.05.

Gene set variation analysis

A gene set variation analysis (GSVA) is a non-parametric and

unsupervised method to evaluate gene enrichment. By

comprehensively scoring the set of genes of interest, GSVA

converts gene level changes into pathway level changes to gain

insight into biological functions. In this study, gene sets were

downloaded from Molecular Signatures Database (v7.0), and

each gene set was scored by the GSVA algorithm to evaluate

differences in biological functions between samples.

Gene set enrichment analysis

A gene set enrichment analysis (GSEA) was performed with

predefined gene sets to rank genes according to the degree of

differential expression between two groups of samples and to

determine whether a predefined gene set was enriched. GO terms

and KEGG signaling pathways were obtained for differentially

expressed genes between the high-risk group and low-risk group

by GSEA; the number of replacements was set to 1,000 and the

type of replacement was set to phenotype.

Regulatory network analysis of prognostic
genes

Cistrome DB is a comprehensive database for ChIP-seq and

DNase-seq analyses, containing data for transcription factors,

histone modifications, and chromatin accessibility of

30,451 human and 26,013 mouse samples. The regulatory

relationships between transcription factors and genes in the

prognostic model were evaluated using Cistrome DB, in which

the genome file was set to hg38 and the transcription initiation

site was set to 10 kb. The results were visualized using Cytoscape.

Immunohistochemical staining analysis

To verify the protein expression of the necroptosis-related genes,

ganglioneuroma samples were chosen as a control group, and IHC

staining was used to evaluate the expression of these genes in

paraffin-embedded tissues in the NBL group and control

group. The paraffin-embedded serial tissue sections were cut at a

thickness of 4 μm, and IHC was used to detect CYLD, JAK1, APC,

ERH, CNBP, and BAX. The SP method was used to conduct IHC,

and the primary antibodies against CYLD, JAK1, APC, ERH, CNBP,

and BAX were all purchased from Abcam (Cambridge,

United Kingdom). All experiments were carried out at least three

times independently. Pannoramic SCAN (3DHISTECH, Budapest,

Hungary) was used for observations and to obtain images. Image

Pro Plus 6.0 was used to analyze the IHC results.

Statistical analysis

Survival curves were generated by the Kaplan-Meier method

and compared by the log-rank test. A Cox proportional risk model

was used for multivariate analyses. All statistical analyses were

performed using R (version 3.6). All statistical tests were two-

sided, and results were considered statistically significant at p < 0.05.
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Results

Expression of necroptosis-related genes
in NBL

The processed raw mRNA expression data for NBL in the

TARGET database (FPKM) were downloaded, and necroptosis-

related gene sets were obtained using the GeneCards database.

We used clinical information for patients with NBL for a Cox

univariate regression analysis to screen for necroptosis-related

genes associated with prognosis in NBL. The following

14 prognosis-related genes were filtered (p < 0.001) by Cox

univariate regression (in decreasing order based on

significance): BAX, ERH, CYLD, CPSF3, JAK1, EMD,

EIF4EBP1, ATAD3A, HNRNPF, ADRM1, FUS APC, CCT5,

and CNBP (Table 1).

Functional enrichment of prognosis-
related genes and construction of protein
interaction networks

GO and KEGG pathway enrichment analyses revealed that

the prognostic genes were significantly enriched in a large

number of pathways. Enriched GO terms included

cytoplasmic microtubule and translation regulator activity

(Figure 1A). Enriched KEGG pathways included Human

papillomavirus infection and Basal cell carcinoma (Figure 1B).

A functional analysis using Metascape revealed that these

prognostic genes were also highly enriched in several related

pathways (Figure 1C).

Prognostic model construction and
internal validation of necroptosis-related
genes

We randomly divided patients from the TARGET

database into training and validation sets at a ratio of 4:1.

We obtained the risk score value for each sample based on the

model obtained by lasso regression (Risk Score = CYLD ×

(−0.105492134) + JAK1 × (−0.059871886) + APC ×

(−0.0109496) + ERH × 0.014856456 + CNBP × 0.059824071

+ BAX × 0.39721508) (Figures 2A–C). Patients were divided

into high-risk and low-risk groups using the median risk score

as a threshold for analyses by Kaplan-Meier curves. Overall

survival (OS) was significantly lower in the high-risk group

than in the low-risk group in both the training set and the test

set (Figures 2D,E). In addition, an ROC curve analysis showed

that the AUC values in the training set and the test set for

periods of 1, 3, and 5 years were all greater than 0.70 (Figures

2F,G), suggesting that the model was effective.

We integrated the clinical information as well as risk

scores for patients in the high- and low-risk groups for

regression analyses. A logistic regression analysis showed

that in all of our samples, the distribution of values for

multiple clinical indicators and risk scores for pediatric

NBL contributed to multiple scoring processes. Age,

gender, stage, and risk scores were evaluated with respect

to 3-years and 5-years OS (Figure 2H). We also corrected the

predicted OS in NBL for two periods of 3 and 5 years

(Figure 2I). The risk score was identified as an independent

prognostic factor for NBL by univariate and multivariate

analyses (Figures 2J,K).

TABLE 1 Expression of necroptosis-related genes in NBL.

Gene HR z p-value Lower Upper

BAX 1.98371619284125 5.48987193560628 4.02225271441093e-08 1.55337039660584 2.53328500552022

ERH 1.85233482253478 4.92782242546772 8.31511352013574e-07 1.44956691399528 2.36701338975658

CYLD 0.517434644838194 −4.34424835249258 1.3975334136114e-05 0.384377274471897 0.696551615978544

CPSF3 1.61988040244062 4.14992974066646 3.32577342461729e-05 1.28987185896012 2.03432030862867

JAK1 0.578925385579156 −3.77867763652999 0.00015766336556394 0.436010753947224 0.76868425614232

EMD 1.60016941917157 3.72777940585821 0.000193174345858099 1.24974414578669 2.04885310220044

EIF4EBP1 1.44851990579632 3.64660523798732 0.000265727677537716 1.24974414578669 2.04885310220044

ATAD3A 1.54022966941195 3.57903960381036 0.000344859209857309 1.21579227879252 1.95124403725686

HNRNPF 1.52677719453705 3.48401010645772 0.000493960835195072 1.20334696141417 1.93713756423083

ADRM1 1.49234932554181 3.48123248071431 0.00049911208043814 1.19118688309065 1.86965331893737

FUS 1.53804846136142 3.47146778172561 0.000517621441105841 1.20616906533564 1.96124501737073

APC 0.591730613045381 −3.47129043850349 0.000517963442372491 0.440007876948232 0.795770114034248

CCT5 1.56674940484423 3.45305994008363 1.21427595692257 1.21427595692257 2.0215369361351

CNBP 1.58200627442629 3.42348400836818 1.21663520141189 1.21663520141189 2.05710294213068
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Multi-omics analysis of the clinical
predictive value of the model

The tumor microenvironment is mainly composed of tumor-

associated fibroblasts, immune cells, extracellular matrix, various

growth factors, inflammatory factors, specific physical and

chemical characteristics, and cancer cells. The tumor

microenvironment significantly affects tumor diagnosis, survival

outcomes, and sensitivity to therapies. By analyzing the

relationship between the risk score and tumor immune cell

infiltration, we further explored the molecular mechanisms by

which the risk score affects NBL progression. The distribution of

levels of infiltration of different immune cell types in the samples

differed between groups (Figure 3A). Correlations were detected

FIGURE 1
Functional enrichment of prognosis-related genes and construction of protein interaction networks. (A) GO analysis; (B) KEGG pathway
analysis; (C) Metascape functional analysis.
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between the risk score and multiple cell types in the tumor

microenvironment (Figure 3B). Additionally, levels of plasma cells

were significantly lower in the low-risk group than in the high-risk

group (Figure 3C). The risk score was significantly correlated with

plasma cells and CD4 memory resting T cells (Figure 3D). Drug

sensitivity data were obtained from the GDSC database, and the R

package “pRRophetic” was used to predict the sensitivity of each

tumor sample to chemotherapy. The risk score was significantly

associated with sensitivity to various drugs, including AS601245,

AZD.0530, AZD6244, AZD6482, CHIR.99021, and CCT007093

(Figure 3E). We further explored the mutation profiles of patients

in the high- and low-risk groups. The mutation frequency in genes,

such as ALK, was significantly higher in the high-risk group than in

the low-risk group (Figure 3F).

Exploration of specific signaling
mechanisms associated with prognostic
models

We next investigated the specific signaling pathways related

to a high and low risk to explore the molecular mechanisms by

which risk scores influence tumor progression. The results of

GSVA showed that the enriched differential pathways between

the two groups were mainly TGF BETA SIGNALING, UV

RESPONSE DN, MTORC1 SIGNALING, ALLOGRAFT

REJECTION, and OXIDATIVE PHOSPHORYLATION

(Figure 4), suggesting that perturbations in these signaling

pathways in patients in the high- and low-risk groups affected

prognosis in NB.

Validation of the robustness of the
prognostic model using an external
dataset

Expression data and survival information for patients with

NBL were downloaded from the GEO database (GSE62564 and

GSE85047) to predict the clinical stage based on the model and

for a Kaplan-Meier analysis of the survival difference between

groups. In the two GEO external validation sets, OS was

significantly lower in the high-risk group than in the low-risk

group (Figures 5A,B). As determined by ROC curve analyses, the

model had strong predictive power for prognosis (AUC values

for 1 year, 3 years, and 5 years with the GEO verification data set

were all greater than 0.70) (Figures 5C,D).

Signaling mechanisms associated with the
prognostic model

We next investigated the specific signaling pathways

differentiating samples in the high- and low-risk groups based

on the genes in the prognostic models to evaluate the factors

contributing to tumor progression. By a GSEA, we found

significant enrichment for many related pathways, including the

FIGURE 2
(continued)
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GO terms AXON EXTENSION, DENDRITEMORPHOGENESIS,

and REGULATION OF VIRAL TRANSCRIPTION and the

KEGG pathways BASE EXCISION REPAIR, LONG TERM

POTENTIATION, and AXON GUIDANCE (Figures 6A,B),

suggesting that the disturbance of these signaling pathways in

high and low risk groups affected prognosis in NBL.

Relationships between expression levels
of genes in the prognostic model and
immune cell infiltration

Several genes in the prognostic model were highly correlated

with levels of infiltrating immune cells. For example, BAX was

positively correlated with regulatory T cells (Tregs) and plasma

cells and negatively correlated with CD4 memory resting T-cells

and resting mast cells. ERH was positively correlated with

plasma cells and neutrophils and negatively correlated with

CD4 memory activated T cells and monocytes. CYLD was

positively correlated with CD4 memory activated T cells and

activated dendritic cells and negatively correlated with plasma

cells and M0 macrophages. JAK1 was positively correlated with

CD4 memory resting T cells and activated dendritic cells and

negatively correlated with follicular helper T cells and plasma

cells. APC was positively correlated with memory B cells and

CD4 memory resting T cells and negatively correlated with

M0 macrophages and activated mast cells. CNBP was positively

correlated with plasma cells and activated mast cells and

negatively correlated with CD4 memory activated T cells

and Tregs (Figure 7A). We further evaluated the correlations

between genes in the prognostic model and immune factors,

including immunomodulators, chemokines, and cellular

receptors, using TISIDB (Figure 7B). These analyses

confirmed that the prognostic genes are closely related to

FIGURE 2
Lasso analysis andmodel construction. (A) LASSO coefficient profiles of the 13 IRGs in TARGET-NBL; (B) A coefficient profile plot was generated
against the log (lambda) sequence. Selection of the optimal parameter (lambda) in the LASSO model for TARGET; (C) Lasso Coefficient HR; (D)
Kaplan-Meier survival curve analysis in the high-risk and low-risk NBL patients in the training subset; (E) Kaplan-Meier survival curve analysis in the
high-risk and low-risk NBL patients in the testing subset; (F) time-dependent ROC curve for 1-year, 3-years, and 5-years prediction (training
subset); (G) time-dependent ROC curve for 1-year, 3-years, and 5-years prediction (testing subset); (H) the nomogram for predicting the 3- and 5-
years OS of NBL patients; (I) the calibration curve of the nomogram for predicting 3- and 5-years OS of NBL patients; (J) Univariate Cox regression
analyses in the TARGET cohort NBL patients; (K) multivariate Cox regression analyses in the TARGET cohort NBL patients.
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levels of immune cell infiltration and play important roles in

the immune microenvironment.

Regulatory network analysis

We evaluated the transcriptional regulatory network of the

six genes in the prognostic model. Using Cistrome DB,

91 transcription factors were related to BAX, 98 were related

to ERH, 78 were related to CYLD, 85 were related to JAK1,

10 were related to APC, and 68 were related to CNBP. The results

were visualized using Cytoscape to obtain a comprehensive

transcriptional regulatory network involving genes in the

prognostic model (Figure 8).

ceRNA network analysis

The six genes in the prognostic model were analyzed using

the miRWalk and ENCORI databases to predict interacting

miRNAs and lncRNAs, respectively. Interacting

mRNA–miRNA pairs associated with these six key mRNAs

were first extracted using the miRWalk database, and only

605 mRNA–miRNA pairs with a TargetScan score of one or

miRDB score of one were retained, involving 5 mRNAs and

131 miRNAs. Then, the interacting lncRNAs were predicted

based on these miRNAs. A total of 18,244 pairs of interactions

were predicted (involving 42 miRNAs and 3,868 lncRNAs).

Finally, we constructed the ceRNA network using Cytoscape

(v3.7) (Figure 9).

FIGURE 3
(continued)
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Immunohistochemical staining analysis

IHC assays were performed to verify the expression levels of

proteins encoded by these necroptosis-related genes in the NBL

and ganglioneuroma (control) groups. As shown in Figure 10, the

expression levels of BAX (p = 0.0017), ERH (p = 0.0067), APC

(p = 0.0416), and CNBP (p = 0.0244) were significantly higher in

tumor tissues of the NBL group than in the control group. Other

indexes did not differ significantly between groups.

Disscussion

Necroptosis has conflicting roles in malignant tumors, with

both tumor-promoting and inhibitory effects in different types of

adult cancers. In particular, necroptosis can inhibit tumor

progression but can also trigger inflammatory responses and

vascular endothelial cell necrosis, in turn promoting tumor cell

extravasation and cancer metastasis (Gong et al., 2019). The

delayed activation or disruption of normal apoptotic pathways

may be an important cause of chemotherapeutic drug resistance

in patients with NBL; therefore, the induction of necroptosis in

NBL may be an alternative therapeutic approach to eliminate

anti-apoptotic tumor cells and improve the anti-tumor immune

microenvironment.

In this study, we constructed the first prognostic model for

NBL based on necroptosis-related genes. We first obtained

information on necroptosis-related genes from the GeneCards

database and used univariate Cox regression and LASSO

regression analyses to screen for necroptosis-related genes

associated with prognosis, revealing six genes, i.e., CYLD,

JAK1, APC, ERH, CNBP, and BAX, which were used to

construct a prognostic risk model. The conserved

cylindromatosis (CYLD) is a deubiquitinating (DUB) enzyme

with an important regulatory role in a variety of cellular

processes, including the immune response, inflammation, and

necrosis. Small ubiquitin-related modifier (SUMO) can post-

translationally modify CYLD to impair its DUB function. After

8 days of treatment with all-trans-retinoic acid (ATRA) on the

NB SK-N-BE 2) C cell line, the SUMOization of CYLD decreased,

while its expression increased, which blocked the NF-κB signal

transduction pathway and promoted cell death (Kobayashi et al.,

FIGURE 3
Multi-omics analysis of the clinical predictive value of themodel. (A) Stacked bar chart of the distribution of 22 immune cells in eachNBL sample
of the TARGET cohort; (B) Pearson correlation between immune cells, red for positive correlation, purple for negative correlation; (C)Differences in
immune cell counts between the high-risk and low-risk groups; (D)The correlation between the risk score and the immune cells, the circle size
indicates the strength of the correlation, and the color indicates the p-value; (E) The difference on the therapeutic sensitivities of six
chemotherapy drugs; (F) Mutation profiles of patients in the high and low risk groups, yellow for high risk group and blue for low risk group.
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2015). In prostate cancer cell lines, the knockout of CYLD

increased the proliferation, migration, colony formation, and

invasion of cancer cells in vitro (Haq et al., 2022). JAK1 (Janus

kinase 1) is a member of a class of protein-tyrosine kinases

involved in autoimmune diseases and malignancies. The targeted

inhibition of JAK1 expression by miR-20a-5p can decrease

proliferation and invasion and improve the adhesion ability of

endometrial cancer cells (He et al., 2021). Wen et al. (Wen et al.,

2014) have also reported that JAK1/STAT3 plays a crucial role in

ovarian cancer as a pro-oncogenic signaling pathway. The

targeted inhibition of the JAK1/STAT3 pathway can

effectively prevent the progression and metastasis of ovarian

cancer. APC is a tumor suppressor gene. The frequency of APC

germline mutations in patients with familial adenomatous

polyposis (FAP)-related diseases, such as gastric fundus

adenomatous polyposis, duodenal adenoma, desmoid tumors,

and thyroid cancer is greater than 60% (Takao et al., 2021).

Enhancer of rudimentary homolog (ERH) is a small, highly

conserved protein. It binds to various factors involved in

many cellular processes, such as pyrimidine metabolism,

mitosis, and transcriptional regulation (Fujimura et al., 2012).

The overexpression of ERH weakens the invasion and migration

ability of gastric cancer cells, suggesting that it is a prognostic

marker (Park et al., 2020). However, a study of ovarian cancer

suggested that ERH may be a associated with a poor prognosis,

and inhibiting ERH expression can promote cancer cell apoptosis

and inhibit the metastasis and invasion of ovarian cancer cells by

regulating the epithelial-mesenchymal transition (EMT) (Zhang

et al., 2020). Cellular nucleic acid-binding protein (CNBP) is

associated with cell proliferation and is highly expressed in

various human tumors. The lncRNA SUMO1P3 enhances

proliferation, invasiveness, and drug resistance in gastric

cancer cell lines by directly binding to CNBP, resulting in

high levels of c-myc and cyclinD1 (CCND1) (Guo et al.,

2020). The Bcl-2 family is an important family of apoptosis

regulatory proteins, with key roles in the apoptosis signal

transduction pathway. Bax is a pro-apoptotic factor in the

Bcl-2 family of proteins (Meng et al., 2019). In human

retinoblastoma, the expression of anti-apoptotic Bcl-2 is

significantly related to poor differentiation and strong

invasiveness, and the lack of Bax expression is related to

choroidal infiltration and lymph node metastasis (Singh et al.,

FIGURE 4
GSVA plot of riskgroup.
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FIGURE 5
External validation of the hypoxia risk score. (A,B)Validation of the hypoxia risk score inGSE62564; (C,D)Validation of the hypoxia risk score inGSE85047.

FIGURE 6
GSEA analysis of risk scores. (A) GO pathways; (B) KEGG pathways.
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FIGURE 7
Relationship between model gene and immune infiltration. (A) Pearson correlation between model genes and 22 kinds of immune cells;
(B) Pearson correlation analysis betweenmodel genes and various immune-related genes. *means p < 0.05; **means p < 0.01; ***means p < 0.001.
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2015). These previous results indicate that the necroptosis-

related genes identified in this study play important roles in

various human tumors, further supporting their potential roles in

the occurrence and development of NBL. However, further

research is needed to explore the molecular mechanisms of

action of these genes.

We analyzed the predictive value of the six gene-based model

for OS. A Kaplan-Meier analysis showed that OS was

significantly lower in the middle-and high-risk groups than in

the low-risk group. An ROC curve analysis showed that the

prognostic model has good stability and can effectively screen for

patients with NBL with poor prognosis. The risk score was

identified as an independent prognostic factor for NBL by

univariate and multivariate analyses after stratification

according to clinical parameters.

Clinical data have shown that immunotherapy with the

disialoganglioside GD2 combined with granulocyte-

macrophage colony-stimulating factor (GM-CSF) or

interleukin-2 significantly improves prognosis in high-risk

patients with NBL (Yu et al., 2010). Subsequently, the

molecular events associated with NBL-related immune cell

infiltration and immune responses in NBL have been a focus

of research. In a study of the relationship between immune

cell infiltration and prognosis in NBL, Schaafsma et al. (2021)

discovered that a high abundance of naïve B cells, memory

B cells, CD8+ T cells, and NK cells was significantly associated

FIGURE 8
Transcriptional regulatory networks ofmodel genes. The transcriptional regulatory network of core geneswas based on cistrome database, and
the species was set as HG38, and the transcription start site was set as 10 KB. Green represents model genes and orange represents associated
transcription factors.
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with a longer OS; conversely, high levels of CD4+ T cell

infiltration were negatively associated with OS. Our results

revealed that B cells play an important role in the NBL tumor

microenvironment, suggesting that B cells can be used as an

independent variable to predict recurrence-free and overall

survival. Batchu (Sai, 2020) have shown that low levels of

CD4+ naïve T cells and monocytes are associated with a

reduced event-free survival. Tumor-associated

macrophages (TAMs) closely resemble M2-polarized

macrophages and are critical modulators of the tumor

microenvironment. TAM aggregation in a variety of

human tumors is associated with poor clinical outcomes,

and TAMs can provide a favorable microenvironment for

tumor progression (Liu and Joshi, 2020). TAMs can

upregulate the expression of MYC via the signal

transducer and activator of transcription 3 (STAT3)

pathway, and this may explain the association between

TAMs and a poor prognosis in patients with non-MYCN-

amplified NBL (Liu and Joshi, 2020). In our prognostic

model, the relative abundance of plasma cells in the low-

risk group was significantly lower than that in the high-risk

group, and the risk score was significantly correlated with

plasma cells and CD4 memory resting T cells. The six genes in

the prognostic model were closely associated with levels of

immune cell infiltration and played an important role in the

immune microenvironment. These results suggest that

necroptosis influences tumorigenesis and tumor

development by regulating immune cell infiltration.

We analyzed the specific signaling pathways

differentiating the high- and low-risk groups based on the

prognostic model. GSVA results showed that the differential

pathways between the two groups were mainly signaling

pathways such as TGF-beta signaling, mTORC1 signaling,

and oxidative phosphorylation. By a GSEA, enriched GO

terms were axon extension and dendrite morphogenesis;

enriched KEGG pathways were base excision repair, long-

term Potentiation, and axon guidance. Transforming growth

factor-β (TGF-β) pathway plays an important role in cellular

homeostasis by regulating cell growth inhibition, cellular

senescence, differentiation, and apoptosis (Lin et al., 2005).

The EMT is a transdifferentiation process in which epithelial

cells lose polarity and contact inhibition and obtain

mesenchymal characteristics, such as the fibroblast

migration phenotype. The EMT plays an important role in

human embryonic development and is also considered a

pathological mechanism. Cancer cells can acquire migration

and invasion abilities through the EMT, leading to tumor

metastasis. In human NB cell lines, EMT is significantly up-

FIGURE 9
Model gene-related ceRNA network, purple represents mRNA, green represents miRNA, yellow represents lncRNA. Based on miRWalk,
TargetScan and miRDB databases, using Cytoscape software visualization.
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regulated via the TGF-β pathway, resulting in a more

aggressive phenotype (Naiditch et al., 2015). MYCN plays

an important role in NB. The MYC genes (MYCN, c-myc, and

L-myc) drive tumorigenesis in part by the activation of the

mammalian target of rapamycin (mTOR) pathway, a master

regulator of translation and protein synthesis. Therefore, the

effective inhibition of mTOR function represents a potential

therapeutic strategy targeting MYCN in NB (Moreno-Smith

et al., 2017). Oxidative phosphorylation (OXPHOS) is an

important pathway for the survival and proliferation of

tumor cells. Some compounds inhibit the growth of NB in

vivo by inhibiting the activities of OXPHOS and

mitochondrial respiratory complex I (Nagasaki-Maeoka

et al., 2020). Base excision repair (BER) fixes the majority

of endogenous DNA damage, including deamination,

depurination, alkylation, and oxidative damage.

Abnormalities in this pathway are strongly associated with

tumorigenesis (Wallace et al., 2012). These findings show that

the enriched pathways associated with the genes in the

prognostic model are closely related to the development

of NB.

We also studied the relationship between the risk score

obtained by the newly developed model and clinical drug

sensitivity. The risk score was significantly correlated with the

sensitivity to AS601245, AZD0530, AZD6244, AZD6482,

CHIR99021, CCT007093, and other drugs. These

chemotherapeutic drugs have been studied extensively in

human glioblastoma (GBM). AZD0530, a potent small-

molecule inhibitor of Src family kinases, can enhance the

radiosensitivity of GBM tumor cells (Yun et al., 2021).

AZD6244, an inhibitor of MEK in the RAF/MEK/ERK

pathway, inhibits proliferation in the GBM cell line (See et al.,

2012). As an inhibitor of PI3Kβ in the PI3K/Akt pathway,

AZD6482 can exert an anti-tumor effect by inhibiting

proliferation and inducing apoptosis in human GBN tumor

cells (Xu et al., 2019). CCT007093 can attenuate cell

proliferation, migration, and invasion induced by UVC

radiation in human GBM (Yang et al., 2014). The role of

these drugs in children with NBL needs to be confirmed by

further studies.

The results of this study provide new insights into the

occurrence and development of NBL from the perspective of

necroptosis. The prognostic model based on six necroptosis-

related genes can effectively predict the prognosis of patients with

NBL. In addition, the risk score obtained from the necroptosis

model is associated with essential biological functions and has

clinical value.

Conclusion

By a variety of bioinformatics analyses of high-throughput

sequencing datasets, we systematically evaluated the molecular

characteristics and prognostic value of necroptosis in NBL.

Our results provide preliminary evidence for the complex

biological functions and immunoregulatory effects of

necroptosis-related genes. These necroptosis-related genes may

be involved in the occurrence, development, invasion, and

metastasis of NBL. We constructed a risk score model

that can independently predict prognosis in NBL. Our

results will aid in revealing the pathogenesis of NBL and

in the identification of new biomarkers and provide a

FIGURE 10
Validation of the expression of the prognostic Necroptosis in
NBL and Ganglioneuroma (GN) by immunohistochemical staining
analysis. The expressions of CYLD、JAK1、APC、ERH、CNBP,
and BAX in NBL tissues and GN were detected by
immunohistochemical staining (magnification ×100).
Quantification of immunohistochemical staining for CYLD、
JAK1、APC、ERH、CNBP, and BAX by Image Pro Plus software.
*p < 0.05 vs. control group, **p < 0.01 vs. control group.
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basis for the development of therapeutic strategies targeting

necroptosis.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.

Ethics statement

Written informed consent was obtained from the individual(s),

and minor(s)’ legal guardian/next of kin, for the publication of any

potentially identifiable images or data included in this article.

Author contributions

JC: wrote and edited the manuscript.

Acknowledgments

We thank all individuals participated in this study.

Conflict of interest

The author declares that the research was conducted

in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Dai, X., Hakizimana, O., Zhang, X., Kaushik, A. C., and Zhang, J. (2020).
Orchestrated efforts on host network hijacking: Processes governing virus
replication. Virulence 11 (1), 183–198. doi:10.1080/21505594.2020.1726594

Fujimura, A., Kishimoto, H., Yanagisawa, J., and Kimura, K. (2012). Enhancer of
rudimentary homolog (ERH) plays an essential role in the progression of mitosis by
promoting mitotic chromosome alignment. Biochem. Biophys. Res. Commun. 423
(3), 588–592. doi:10.1016/j.bbrc.2012.06.018

Fusco, P., Esposito, M. R., and Tonini, G. P. (2018). Chromosome instability in
neuroblastoma. Oncol. Lett. 16 (6), 6887–6894. doi:10.3892/ol.2018.9545

Gong, Y., Fan, Z., Luo, G., Yang, C., Huang, Q., Fan, K., et al. (2019). The role of
necroptosis in cancer biology and therapy. Mol. Cancer 18 (1), 100. doi:10.1186/
s12943-019-1029-8

Guo, Y., Wang, Y., Ma, Y., Chen, G., Yue, P., and Li, Y. (2020). Upregulation of
lncRNA SUMO1P3 promotes proliferation, invasion and drug resistance in gastric
cancer through interacting with the CNBP protein. RSC Adv. 10 (10), 6006–6016.
doi:10.1039/c9ra09497k

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: The next
generation. Cell. 144 (5), 646–674. doi:10.1016/j.cell.2011.02.013

Haq, S., Sarodaya, N., Karapurkar, J. K., Suresh, B., Jo, J. K., Singh, V., et al. (2022).
CYLD destabilizes NoxO1 protein by promoting ubiquitination and regulates prostate
cancer progression. Cancer Lett. 525, 146–157. doi:10.1016/j.canlet.2021.10.032

He, Y., Ma, H., Wang, J., Kang, Y., and Xue, Q. (2021). miR-20a-5p inhibits
endometrial cancer progression by targeting janus kinase 1. Oncol. Lett. 21 (5), 427.
doi:10.3892/ol.2021.12688

Johnstone, R.W., Ruefli, A. A., and Lowe, S.W. (2002). Apoptosis: A link between
cancer genetics and chemotherapy. Cell. 108 (2), 153–164. doi:10.1016/s0092-
8674(02)00625-6

Kobayashi, T., Masoumi, K. C., and Massoumi, R. (2015). Deubiquitinating
activity of CYLD is impaired by SUMOylation in neuroblastoma cells. Oncogene 34
(17), 2251–2260. doi:10.1038/onc.2014.159

Lin, H. K., Bergmann, S., and Pandolfi, P. P. (2005). Deregulated TGF-beta signaling in
leukemogenesis. Oncogene 24 (37), 5693–5700. doi:10.1038/sj.onc.1208923

Liu, K. X., and Joshi, S. (2020). "Re-educating" tumor associated macrophages as a
novel immunotherapy strategy for neuroblastoma. Front. Immunol. 11, 1947.
doi:10.3389/fimmu.2020.01947

Meng, K., Yuan, G., Bao, H., Wang, L., Ma, R., Yu, B., et al. (2019). Interaction of
HCCR-1 and Bax in breast cancer. J. BUON 24 (3), 1027–1037.

Moreno-Smith, M., Lakoma, A., Chen, Z., Tao, L., Scorsone, K. A., Schild, L., et al.
(2017). p53 nongenotoxic activation and mTORC1 inhibition lead to effective
combination for neuroblastoma therapy. Clin. Cancer Res. 23 (21), 6629–6639.
doi:10.1158/1078-0432.CCR-17-0668

Nagasaki-Maeoka, E., Ikeda, K., Takayama, K. I., Hirano, T., Ishizuka, Y.,
Koshinaga, T., et al. (2020). Polyethylene glycol derivative 9bw suppresses
growth of neuroblastoma cells by inhibiting oxidative phosphorylation. Cancer
Sci. 111 (8), 2943–2953. doi:10.1111/cas.14512

Naiditch, J. A., Jie, C., Lautz, T. B., Yu, S., Clark, S., Voronov, D., et al. (2015).
Mesenchymal change and drug resistance in neuroblastoma. J. Surg. Res. 193 (1),
279–288. doi:10.1016/j.jss.2014.07.018

Najafov, A., Chen, H., and Yuan, J. (2017). Necroptosis and cancer. Trends Cancer
3 (4), 294–301. doi:10.1016/j.trecan.2017.03.002

Negroni, A., Colantoni, E., Cucchiara, S., and Stronati, L. (2020). Necroptosis in
intestinal inflammation and cancer: New concepts and therapeutic perspectives.
Biomolecules 10 (10), 1431. doi:10.3390/biom10101431

Park, J. H., Park, M., Park, S. Y., Lee, Y. J., Hong, S. C., Jung, E. J., et al. (2020). ERH
overexpression is associated with decreased cell migration and invasion and a good
prognosis in gastric cancer. Transl. Cancer Res. 9 (9), 5281–5291. doi:10.21037/tcr-20-
1498

Park, J. R., Eggert, A., Caron, H., et al. (2010). Neuroblastoma: Biology, prognosis,
and treatment. Hematol. Oncol. Clin. North Am. 24 (1), 65–86. doi:10.1016/j.hoc.
2009.11.011

Sai, B (2020). Immunological landscape of Neuroblastoma and its clinical
significance[J]. Cancer Treat. Res. Commun. 26, 100274. doi:10.1016/j.ctarc.2020.
100274

Schaafsma, E., Jiang, C., and Cheng, C. (2021). B cell infiltration is highly
associated with prognosis and an immune-infiltrated tumor microenvironment
in neuroblastoma. J. Cancer Metastasis Treat. 7 (34). doi:10.20517/2394-4722.
2021.72

See, W. L., Tan, I. L., Mukherjee, J., Nicolaides, T., and Pieper, R. O. (2012).
Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by
neurofibromin 1 deficiency. Cancer Res. 72 (13), 3350–3359. doi:10.1158/0008-
5472.CAN-12-0334

Singh, L., Pushker, N., Saini, N., Sen, S., Sharma, A., Bakhshi, S., et al. (2015).
Expression of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins in human
retinoblastoma. Clin. Exp. Ophthalmol. 43 (3), 259–267. doi:10.1111/ceo.12397

Frontiers in Genetics frontiersin.org16

Jing Chu 10.3389/fgene.2022.947000

20

https://doi.org/10.1080/21505594.2020.1726594
https://doi.org/10.1016/j.bbrc.2012.06.018
https://doi.org/10.3892/ol.2018.9545
https://doi.org/10.1186/s12943-019-1029-8
https://doi.org/10.1186/s12943-019-1029-8
https://doi.org/10.1039/c9ra09497k
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.canlet.2021.10.032
https://doi.org/10.3892/ol.2021.12688
https://doi.org/10.1016/s0092-8674(02)00625-6
https://doi.org/10.1016/s0092-8674(02)00625-6
https://doi.org/10.1038/onc.2014.159
https://doi.org/10.1038/sj.onc.1208923
https://doi.org/10.3389/fimmu.2020.01947
https://doi.org/10.1158/1078-0432.CCR-17-0668
https://doi.org/10.1111/cas.14512
https://doi.org/10.1016/j.jss.2014.07.018
https://doi.org/10.1016/j.trecan.2017.03.002
https://doi.org/10.3390/biom10101431
https://doi.org/10.21037/tcr-20-1498
https://doi.org/10.21037/tcr-20-1498
https://doi.org/10.1016/j.hoc.2009.11.011
https://doi.org/10.1016/j.hoc.2009.11.011
https://doi.org/10.1016/j.ctarc.2020.100274
https://doi.org/10.1016/j.ctarc.2020.100274
https://doi.org/10.20517/2394-4722.2021.72
https://doi.org/10.20517/2394-4722.2021.72
https://doi.org/10.1158/0008-5472.CAN-12-0334
https://doi.org/10.1158/0008-5472.CAN-12-0334
https://doi.org/10.1111/ceo.12397
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.947000


Takao, M., Yamaguchi, T., Eguchi, H., Yamada, T., Okazaki, Y., Tomita, N., et al.
(2021). APC germline variant analysis in the adenomatous polyposis phenotype in
Japanese patients. Int. J. Clin. Oncol. 26 (9), 1661–1670. doi:10.1007/s10147-021-01946-4

Wallace, S. S., Murphy, D. L., and Sweasy, J. B. (2012). Base excision repair and
cancer. Cancer Lett. 327 (1-2), 73–89. doi:10.1016/j.canlet.2011.12.038

Wen, W., Liang, W., Wu, J., Kowolik, C. M., Buettner, R., Scuto, A., et al. (2014).
Targeting JAK1/STAT3 signaling suppresses tumor progression and metastasis in a
peritoneal model of human ovarian cancer. Mol. Cancer Ther. 13 (12), 3037–3048.
doi:10.1158/1535-7163.MCT-14-0077

Xu, P. F., Yang, J. A., Liu, J. H., Yang, X., Liao, J. M., Yuan, F. E., et al. (2019).
PI3Kβ inhibitor AZD6482 exerts antiproliferative activity and induces
apoptosis in human glioblastoma cells. Oncol. Rep. 41 (1), 125–132. doi:10.
3892/or.2018.6845

Yang, L., Zhou, Z., Yao, D., Xu, W., and Zhao, H. (2014). ET-69 * specific
wip1 inhibitor, cct007093 abrogate cell proliferation, migration and invasion

induced by the uvc radiation in human glioblastoma cells. Neuro. Oncol. 16 (5),
v94. doi:10.1093/neuonc/nou255.66

Yu, A. L., Gilman, A. L., Ozkaynak, M. F., London, W. B., Kreissman, S. G., Chen,
H. X., et al. (2010). Anti-GD2 antibody with GM-CSF, interleukin-2, and
isotretinoin for neuroblastoma. N. Engl. J. Med. 363 (14), 1324–1334. doi:10.
1056/NEJMoa0911123

Yun, H. S., Lee, J., Kil, W. J., Kramp, T. R., Tofilon, P. J., and Camphausen, K. (2021).
The radiosensitizing effect of AZD0530 in glioblastoma and glioblastoma stem-like cells.
Mol. Cancer Ther. 20 (9), 1672–1679. doi:10.1158/1535-7163.MCT-20-0883

Zhang, D., Chu, Y. J., Song, K. J., Chen, Y. L., Liu, W., Lv, T., et al. (2020).
Knockdown of enhancer of rudimentary homolog inhibits proliferation and
metastasis in ovarian cancer by regulating epithelial-mesenchymal
transition. Biomed. Pharmacother. 125, 109974. doi:10.1016/j.biopha.2020.
109974

Frontiers in Genetics frontiersin.org17

Jing Chu 10.3389/fgene.2022.947000

21

https://doi.org/10.1007/s10147-021-01946-4
https://doi.org/10.1016/j.canlet.2011.12.038
https://doi.org/10.1158/1535-7163.MCT-14-0077
https://doi.org/10.3892/or.2018.6845
https://doi.org/10.3892/or.2018.6845
https://doi.org/10.1093/neuonc/nou255.66
https://doi.org/10.1056/NEJMoa0911123
https://doi.org/10.1056/NEJMoa0911123
https://doi.org/10.1158/1535-7163.MCT-20-0883
https://doi.org/10.1016/j.biopha.2020.109974
https://doi.org/10.1016/j.biopha.2020.109974
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.947000


The prognostic significance of
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Background: β-Catenin has been recently identified as a promising novel

therapeutic target and prognostic marker in different types of cancer. Here,

we conduct a meta-analysis to better clarify the correlation between β-Catenin

expression and survival outcomes in nasopharyngeal carcinoma (NPC) patients.

Patients/methods: Following the Preferred Reporting Items or Systematic

Reviews Meta Analyses (PRISMA) 2020 guidelines, the PubMed, Embase,

Web of Science, Cochrane Library, Chinese National Knowledge

Infrastructure (CNKI) and Wanfang databases were systematically searched

for relevant studies to explore the prognostic significance of β-Catenin in

NPC. Pooled hazards ratios (HRs) and 95% confidence intervals (CIs) were

used to estimate the association of β-Catenin expression with survival

outcomes in NPC patients. Odd ratios (ORs) and 95% CIs for

clinicopathological characteristics were also statistically analyzed.

Results: Eight studies involving 1,179 patients with NPC were ultimately

included in the meta-analysis. Pooled analysis indicated that elevated β-

Catenin expression was significantly associated with poor OS (HR = 2.45,

95% CIs: 1.45–4.16, p = 0.001) and poor DFS/PFS (HR 1.79, 95% CIs:

1.29–2.49, p = 0.000). Furthermore, β-cadherin was signifcantly associated

with higher TMN stages (OR = 5.10, 95% CIs 2.93–8.86, p = 0.000), clinical

stages (OR = 5.10, 95% CIs 2.93–8.86, p = 0.000) and lymph node metastasis

(LNM) (OR = 5.01, 95% CIs 2.40–10.44, p = 0.000).

Conclusions: This study demonstrated that for NPC, patients with elevated β-

Catenin expression are more likely to have poor survival.
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Introduction

Nasopharyngeal carcinoma (NPC) is one of the most

common types of head and neck tumors and shows

remarkable differences in geographic and racial distribution

(Stransky et al., 2011). NPC is prevalent in Southeast Asia,

especially in Southern China, the Arctic region and North

Africa (Chang and Adami, 2006). Risk factors for NPC

include male sex, EBV infection, Cantonese ethnicity, salt-

preserved fish consumption, low fresh fruit and vegetable

intake, and smoking, among others. Irrespective of the

progress in radiation therapy and potent chemotherapy,

approximately 5%–15% local recurrence and 15%–30% distant

metastasis rates remain the main causes of failure after NPC

treatment (Lee et al., 2015). Clinical staging is essential for the

prognosis of NPC; however, patients at the same clinical stage

may have different prognoses. In general, the current staging

system is inadequate to predict survival due to variations in

treatment outcomes. Hence, it is necessary to identify more

reliable prognostic factors to improve the prognosis of NPC.

β-Catenin was first characterized as a family of cell-cell

adhesion molecules dependent on Ca2+ that are present in

most cell types, and it was also shown to have more detailed

specificity with regard to cell-cell aggregation patterns and

segregation during development (Takeichi, 1990). β-Catenin is

one of the hallmarks of the epithelial-mesenchymal transition,

which is important for early tumor metastasis and invasion

(Thiery and Sleeman, 2006). It also plays a crucial role in the

Wnt/β-Catenin signaling pathway, which is one of the most

important signaling pathways involved in many human

malignancies, and might participate in the development of

various cancers and tumors (Anastas and Moon, 2013).

Indeed, aberrant activation of Wnt/β-Catenin signaling is

found in various types of human cancer, including

osteosarcoma, lung cancer, colorectal cancer, renal cell

carcinoma, breast cancer, and hepatocellular cancer, among

others (Kim et al., 2002; Hoang et al., 2004; Arai et al., 2014;

Jang et al., 2015; Fu et al., 2016).

Numerous studies have focused on the identification of new

prognostic markers that can be used for cancer monitoring and

detection. An association between β-Catenin expression and

survival has been shown in NPC (Wang et al., 2009; Luo

et al., 2012; Xu et al., 2013; Pang et al., 2019). Although many

studies have reported an association between β-Catenin

expression and NPC patient survival, the results are still

controversial and ambiguous. For example, Jin et al. (2019),

Sun et al. (2017), Wang et al. (2017) found that β-Catenin is

highly expressed in NPC and is a potential risk factor that leads to

an unfavorable survival prognosis in these patients. However,

contradictory results were reported by Hao et al. (2014), Galera-

Ruiz et al. (2011), who found no association between β-Catenin

and survival in NPC patients compared with normal controls. In

this study, we conducted a meta-analysis based on PubMed,

Embase, Web of Science, Cochrane Library, Chinese National

Knowledge Infrastructure (CNKI) and Wanfang databases to

statistically assess the association between β-Catenin and the

prognosis of NPC patients.

Methods

Search strategy

Following the Preferred Reporting Items or Systematic Reviews

Meta Analyses (PRISMA) 2020 guidelines, electronic searches for

relevant studies were performed in the PubMed, Web of Science,

EMBASE, Cochrane Library, Chinese National Knowledge

Infrastructure (CNKI) and Wanfang database until 1 March 2022

(Page et al., 2021). The search terms of PubMed were

“((((((((((((((((((((Nasopharyngeal Neoplasm) OR (Neoplasm,

Nasopharyngeal)) OR (Neoplasms, Nasopharyngeal)) OR

(Nasopharynx Neoplasms)) OR (Nasopharynx Neoplasm)) OR

(Neoplasm, Nasopharynx)) OR (Neoplasms, Nasopharynx)) OR

(Cancer of Nasopharynx)) OR (Nasopharynx Cancers)) OR

(Nasopharyngeal Cancer)) OR (Cancer, Nasopharyngeal)) OR

(Cancers, Nasopharyngeal)) OR (Nasopharyngeal Cancers)) OR

(Nasopharynx Cancer)) OR (Cancer, Nasopharynx)) OR (Cancers,

Nasopharynx)))) OR (Cancer of the Nasopharynx)) AND

((((((prognosis) OR (outcome)) OR (recurrence)) OR (survival))

OR (mortality)) OR (progression))) AND ((Catenin, beta) OR

(beta-Catenin)) ” The EMTREE terms were as follows

“(‘nasopharynx cancer’/exp OR rhinopharyngioma OR ‘cancer,

nasopharynx’ OR ‘epipharynx cancer’ OR ‘nasopharyngeal cancer’

OR ‘rhinopharynx cancer’) AND (prognosis OR outcome OR

recurrence OR survival OR mortality OR progression) AND (‘beta

catenin’/exp OR “catenin beta”).” Furthermore, the reference lists of

retrieved articles were manually searched for additional articles. If

several publications reported the same patient populations, the most

complete study was enrolled to avoid duplication.

Selection criteria

This meta-analysis was limited to publications about the

association between NPC and β-Catenin. The inclusion criteria

of the meta-analysis were as follows: 1) all patients diagnosed

with NPC; 2) β-Catenin was evaluated in both samples of NPC

and normal controls; 3) the study revealed the association

between β-Catenin and survival of NPC; 4) sufficient

statistical analysis, including hazard ratios (HRs), odds ratios

(ORs) and their 95% confidence intervals (95% CIs) were

reported. The exclusion criteria were as follows: 1) studies

without sufficient data for meta-analysis; 2) abstracts, reviews,

letters, expert opinions; 3) studies about cell lines, in vivo/vitro

studies, and human xenografts. If several studies reported the

same cohort, we used the most recent one in our meta-analysis.
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Data extraction

First, we inspected duplicates and removed repeated papers.

Then, we carefully perused the titles and abstracts of the papers.

Finally, full articles were selected to include appropriate studies.

Two researchers independently evaluated the literature using the

inclusion and exclusion criteria (LQ Zhou and Y Hu). Any

discrepancy in assessment was resolved by consulting with a

third researcher (HJ Xiao). The authors of the studies were

contacted by e-mail to request data or additional information

for meta-analysis calculations. Eligible studies were reviewed by

two reviewers (LQ Zhou and Y Hu) independently. The

Newcastle–Ottawa Scale (NOS) (Peterson et al., 2011) was

included to assess the quality of the included publications, and

a star system (maximum is nine stars) was adopted to evaluate a

study in three domains: comparability of study groups, selection of

participants and ascertainment of outcomes of interest. Scores of

NOS ≥6 indicated high-quality studies. Reporting

recommendations for tumor marker prognostic studies

(REMARK) were also applied to evaluate study quality in

cancer-related meta-analyses (Sauerbrei et al., 2018).

The following informationwas extracted from each publication: 1)

first author’s name, year, cancer type, country of the population, patient

age, sample size, publication journal; 2) survival data including overall

survival (OS), disease-free survival (DFS) and progression-free survival

(PFS) (OS was detected from the date of medical treatment to the date

of the last follow-upor death of patient; PFSwas detected from the date

of treatment to the date of death or recurrence tumor from any cause;

DFS was detected from the date of diagnosis to the date of relapse,

progression, death, or last follow-up visit and similarly censored at last

follow-up visit); 3) The number of patients in each group was divided

according to the TMN stages, clinical stages, the presence or absence of

lymph node metastasis (LNM), gender and the number of patients

with high or low β-catenin expression in each group. 4) Methods and

cut-off value (Table 1).

Statistical analysis

Pooled HRs, ORs and their 95%CIs were directly obtained or

estimated by p values and other published data following

Parmer’s methods from the primary studies (Ambrosio et al.,

2014). Statistical heterogeneity among the included studies was

FIGURE 1
Flow diagram of the selection of relevant studies for the
meta-analysis.

TABLE 1 Characteristics of the studies examined in the meta-analysis. NR, not reported; IHC, Immunohistochemistry; RT-qPCR, Reverse
transcription-quantitative polymerase chain reaction.

Author Year Country Sample
size

Age Follow-up
(month)

Survival
analysis

Methods Cut-off
value

NOS/REMARK
score

Hao 2014 Canada 279 51.7 (18-85) 48 (3-120) OS, DFS IHC NR 6/15

Jin 2019 China 164 45.3 (24-70) 49.2 (9-60) OS, DFS, DMFS,
LRFS

IHC, RT-
qPCR

50% 7/13

Pang 2019 China 175 NR (22-69) NR (36-48) OS IHC 75% 7/14

Sun 2017 China 128 NR NR OS, PFS IHC, RT-
qPCR

50% 7/12

Wang 2009 China 111 47 (18-71) 65 (8-88) PFS IHC 50% 7/11

Wang 2017 China 163 NR NR OS IHC 70% 8/11

Xu 2013 China 148 NR 78 (10-125) OS IHC NR 7/12

Luo 2012 China 122 47.2 (15-73) 51.9 (8-92) OS IHC 50% 7/12
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assessed by the χ2-based Q test and I2 test (Higgins et al., 2003).

The fixed-effect model was used for analysis in the absence of

significant heterogeneity between studies (p > 0.10, I2 = 0%); we

adopted the random-effects model if significant heterogeneity

was present. We also performed sensitivity analysis to investigate

the influence of each individual study on the overall pooled

results. Begg’s test and Egger’s test were applied to detect

publication bias (p > 0.05 indicated no publication bias). All

statistical analyses were performed using STATA statistical

software version 12.0 (STATA, College Station, TX).

Results

Study selection and characteristics

As shown in Figure 1, a total of 312 potential publications

were initially identified by searching the PubMed, Web of

Science, EMBASE, Cochrane Library, Chinese National

Knowledge Infrastructure (CNKI) and Wanfang databases.

Following exclusion of duplicates (n = 194), abstracts, letters

and reviews (n = 9), and studies not related to the topics (n =

FIGURE 2
Forest plot indicating the association between β-Catenin expression and OS in NPC.

FIGURE 3
Forest plot examining the association between β-Catenin expression and DFS/PFS in NPC.
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190), the remaining potentially relevant studies (n = 48) were

further identified by reading their full texts. 40 studies did not

provide specific data regarding NPC or β-Catenin and therefore

were excluded. Finally, eight studies between 2009 and 2020 with

a total of 1179 NPC patients were included in our meta-analysis.

The study characteristics are summarized in Table 1. All of the

eight publications involved >100 patients. Seven studies including

1,068 patients reported OS, 2 studies including 443 patients

reported DFS, and 2 studies including 239 patients reported

PFS. All HRs, ORs and 95%CIs values were directly reported in

the original study. NOS scores for all publications were above 6,

and REMARK scores were between 11-15.

Association between β-Catenin and
survival in nasopharyngeal carcinoma
patients

All eight studies in our analysis reported the association

between β-Catenin and the OS, DFS and PFS of patients with

NPC. Heterogeneity among the publications was significant

based on the Q test (p < 0.1). Hence, the random-effect

model was adopted and showed that β-Catenin was

significantly associated with shorter OS in NPC (HR = 2.45,

95% CIs: 1.45–4.16, p = 0.001). Medium heterogeneity was noted

between β-Catenin expression and OS (I2 = 66.8%, Pheterogeneity =

0.006) (Figure 2). Furthermore, two studies including

433 patients reported DFS, and two studies including

239 patients reported PFS. A significant correlation between

β-Catenin and shorter DFS/PFS (HR = 1.79, 95% CIs:

1.29–2.49, p = 0.000) was observed, with low heterogeneity

(I2 = 49.6%, Pheterogeneity = 0.114) (Figure 3).

Association between β-cadherin and
nasopharyngeal carcinoma patients
outcomes

We further calculated the pooled ORs and the 95% CIs to

evaluate the association between β-catenin and NPC outcomes:

gender (female vs male), TMN stage (T3–4 vs T1–2), clinical stage

(T3–4 vs T1–2) and lymph node (LN) status (LNM vs No LNM).

The pooled analysis showed that β-cadherin was signifcantly

associated with higher TMN stages (OR = 5.10, 95% CIs

2.93–8.86, p = 0.000) and LNM (OR = 5.01, 95% CIs 2.40–10.44,

FIGURE 4
Forest plot examining the association between β-cadherin
and NPC patients outcomes.

FIGURE 5
Sensitivity analyses were conducted to evaluate the impact of
each single study on the overall effect.
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p = 0.000). However, β-cadherin was not signifcantly correlated with

gender (OR = 0.80, 95% CIs 0.59–1.07, p = 0.135) (Figure 4).

Sensitivity analysis

Sensitivity analysis was conducted to evaluate the impact of

each single study on the overall effect. As depicted in Figure 5, the

analysis did not detect a single study that significantly altered the

combined results. Overall, the pooled effect size of our meta-

analytic results was stable and reliable.

Publication bias

Publication bias was assessed by using Begg’s funnel plots

and Egger’s test. The results were quite symmetric, with those

based on Begg’s funnel plot (p = 0.077) and Egger’s test (p =

0.077) revealing no publication bias among the studies (Figure 6).

Meta-regression analysis

Medium heterogeneity was noted between β-Catenin

expression and OS (I2 = 66.8%, Pheterogeneity = 0.006).

Hence, the meta regression analyses were used to explain

statistical heterogeneity. The HR was not modified by the year

of publication, female ratio (%), area, sample size, or quality

score, this result does not fully explain the medium level of

heterogeneity observed.

Discussion

The present study is the first meta-analysis including eight

published studies with 1,179 patients to provide useful

information for clinical decision-making in NPC. β-Catenin

was significantly associated with shorter OS in NPC patients,

with HR values of 2.45. Significant correlation between β-Catenin

and shorter DFS/PFS (HR 1.79) was also observed. Furthermore,

our results also demostrated that β-cadherin was signifcantly

associated with higher TMN stages, clinical stages and LNM.

These results confirm the clinical value of β-Catenin in NPC.

NPC tumor cells invade adjacent tissues or metastasize to

regional lymph nodes at an early stage of NPC development

(Wei and Mok, 2007), though the exact mechanism underlying

the process remains unknown. It has been reported that cell–cell

adhesion molecules, cytokines and the matrix metalloproteinase

family may be involved in adjacent invasion and distant

metastasis. β-Catenin is a key mediator in the cadherin-

Catenin complex, which is essential for connecting the actin

filaments of cells to the cell-cell interface at adherent junctions

(Anastas and Moon, 2013); it is also a key mediator of canonical

signaling in the Wnt/β-Catenin pathway. β-Catenin can

accumulate in both the cytoplasm and nucleus (Khramtsov

et al., 2010), and it helps to promote the progression of

tumors by suppressing T-cell responses (Hong et al., 2015).

Gene mutations or aberrant activation of Wnt receptors

activate Wnt/β-Catenin signaling and trigger tumorigenesis in

the skin, colon, liver, bone marrow, breast, and possibly other

tissues (Fodde and Brabletz, 2007; Monga, 2015). In addition, β-

Catenin plays roles in maintaining the stemness of normal

intestinal cells, and high-level nuclear localization and

cytoplasmic expression promote cancer cell proliferation and

survival (Valkenburg et al., 2011). β-Catenin is high expressed

when Wnt/β-catenin signal is aberrantly activated, it activates

numerous Wnt pathway downstream proliferation signals,

including c-Myc and cyclin D1 and finally accelerates cell

cycle, facilitates cell proliferation and migration, which

induced to poor diagnosis of NPC (Alamoud and

Kukuruzinska, 2018).

Targeted therapies have produced striking benefits for cancer

patients. The Wnt/β-Catenin pathway has been proven to play a

key role in various kinds of carcinomas (Sanchez-Vega et al.,

2018). Therefore, this signaling pathway is a preferable target for

FIGURE 6
Publication bias in the enrolled studies. Publication bias was
assessed using Begg’s funnel plots and Egger’s test.

Frontiers in Genetics frontiersin.org06

Zhou et al. 10.3389/fgene.2022.953739

27

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.953739


fighting cancer. Although there are no drugs specifically inhibiting

this signaling pathway approved for the clinic, intensive efforts

have been made in signaling pathway development. Wnt/β-
Catenin pathway inhibitors can be classified into five categories

according to their properties: peptides, smallmolecules, antibodies,

natural compounds and RNA interference (Cui et al., 2018). There

are already some ongoing phase 1/2 trials with Wnt/β-Catenin
pathway inhibitors in metastatic colorecta, head and neck cancers,

breast cancers and some other cancers (Krishnamurthy and

Kurzrock, 2018). These trials provide proof that in certain

patients, cancer can be treated with Wnt/β-Catenin inhibitors.

According to our results,Wnt/β-Catenin inhibitors may constitute

therapeutics against NPC.

Nevertheless, the present meta-analysis contains several

limitations. First, significant heterogeneity was noted in the

association between β-Catenin and the OS of patients with

NPC. The heterogeneity of the population was most likely due

to differences in the baseline characteristics of the included

patients (age, race, and tumor stage), the duration of follow-

up, the method of mutation detection, and other parameters. A

random-effects model was employed to minimize the effects of

these differences. Second, the number of articles used for

assessing the association between β-Catenin and the prognosis

of NPC patients was limited in the present meta-analysis.

Therefore, additional studies are required to produce accurate

conclusions. Finally, our results may overestimate the prognostic

significance of β-Catenin to some extent because the majority of

the included studies reported positive results.

In summary, we searched electronic databases, and a total of

1,179 patients in eight studies were enrolled for meta-analysis,

demonstrating that patients with elevated β-Catenin expression

are more likely to have poorer prognosis. Taken together, our

meta-analysis results suggest that β-Catenin has prognostic value

for NPC. However, studies with larger sample sizes are needed to

obtain more representative and precise results.
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Identification of potential models
for predicting progestin
insensitivity in patients with
endometrial atypical hyperplasia
and endometrioid endometrial
cancer based on ATAC-Seq and
RNA-Seq integrated analysis
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Objective: The aim of this studywas to establish predictivemodels based on the

molecular profiles of endometrial lesions, which might help identify progestin-

insensitive endometrial atypical hyperplasia (EAH) or endometrioid endometrial

cancer (EEC) patients before progestin-based fertility-preserving treatment

initiation.

Methods: Endometrial lesions from progestin-sensitive (PS, n = 7) and

progestin-insensitive (PIS, n = 7) patients were prospectively collected

before progestin treatment and then analyzed by ATAC-Seq and RNA-Seq.

Potential chromatin accessibility and expression profiles were compared

between the PS and PIS groups. Candidate genes were identified by

bioinformatics analyses and literature review. Then expanded samples (n =

35) were used for validating bioinformatics data and conducting model

establishment.

Results: ATAC-Seq and RNA-Seq data were separately analyzed and then

integrated for the subsequent research. A total of 230 overlapping

differentially expressed genes were acquired from ATAC-Seq and RNA-Seq

integrated analysis. Further, based on GO analysis, REACTOME pathways,

transcription factor prediction, motif enrichment, Cytoscape analysis and

literature review, 25 candidate genes potentially associated with progestin

insensitivity were identified. Finally, expanded samples were used for data

verification, and based on these data, three predictive models comprising

9 genes (FOXO1, IRS2, PDGFC, DIO2, SOX9, BCL11A, APOE, FYN, and KLF4)

were established with an overall predictive accuracy above 90%.

Conclusion: This study provided potential predictive models that might help

identify progestin-insensitive EAH and EEC patients before fertility-preserving

treatment.
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Introduction

Endometrioid endometrial cancer (EEC) is one of the most

common gynecological malignancies, with an increasing trend in

new cancer cases and deaths each year (Siegel et al., 2022).

Notably, EEC and its precancerous lesions, endometrial

atypical hyperplasia (EAH), present a younger trend, and

approximately half of young EEC and EAH patients are

nulliparous when diagnosed (Trojano et al., 2019). Therefore,

fertility-sparing treatment for these patients has attracted

increasing attention in clinical research. Currently, high-dose

progestin therapy is the main conservative strategy and achieves

an approximately 70–80% complete response (CR) rate, and the

median duration from treatment to CR is as long as six to

7 months (Gallos et al., 2012; Gunderson et al., 2012; Yang

et al., 2019; Westin et al., 2021). However, there are still

approximately 20–30% of cases are not sensitive to progestin

and having to switch to second-line treatment or even receive

definitive surgery. Identifying progestin-insensitive (PIS) cases

accurately before progestin treatment initiation might aid

clinicians in providing more efficient treatment for these

patients and thus improve the overall outcome of fertility-

preserving treatment.

There is still a lack of objective indicators predicting

progestin sensitivity in EAH or EEC patients. Studies have

shown that positive progesterone receptor (PR) expression in

EAH and EEC tissues was associated with shorter CR time of

fertility-sparing therapy (Yamazawa et al., 2007; Raffone et al.,

2019; Wang et al., 2021). While the abnormal expression of

other molecular markers, such as elevated dual-specificity

phosphatase 6 or downregulated nuclear factor NF-E2-

related factor or survivin, might be associated with

progestin insensitivity (Zhang et al., 2015; Fan et al., 2017).

However, there is less high-quality evidence of molecular

markers that can be used to predict progestin response in

EAH and EEC cases. Therefore, further studies are still needed

to explore promising models for predicting progestin response

in EAH and EEC cases.

To explore potential predictive models for predicting

progestin insensitivity in EAH or EEC patients before

receiving progestin-based fertility-preserving treatment, this

study was designed based on assay for transposase-accessible

chromatin sequencing (ATAC-Seq) and RNA sequencing (RNA-

Seq) of EAH and EEC tissues. Based on ATAC-Seq and RNA-Seq

integrated bioinformatics analyses and literature review,

candidate genes were identified and further verified in another

35 cases for predictive model construction. Our study provided

potential models for predicting progestin insensitivity in patients

with EAH and EEC.

Materials and methods

Ethics statement

This is a retrospective study using samples prospectively

collected from December 2017 to November 2020, in the

Obstetrics and Gynecology Hospital of Fudan University,

Shanghai, China (hereafter referred to as ‘Ob&Gyn Hospital’).

This study was approved by the Ethics Committees of Ob&Gyn

Hospital (Approval NO. 2021-130). Patients were fully informed

of the use of their medical data and pathological samples for

scientific research, and signed informed consent forms.

Patient selection and tissue collection

Young patients diagnosed with EAH or well-differentiated

EEC receiving progestin-based fertility-sparing treatment were

prospectively registered. All patients were pathologically

diagnosed with EAH or EEC for the first time by endometrial

biopsy with or without hysteroscopy. Inclusion and exclusion

criteria as well as treatment regimen and evaluation procedure

were as previously reported (Yang et al., 2020). Briefly, patients

received progestin-based treatment, hysteroscopic evaluation

and endometrial biopsy every 3 months on average.

Pathological diagnosis was confirmed by at least two

experienced gynecological pathologists independently

according to the World Health Organization (WHO)

pathological classification (2020). If their opinions differed, a

seminar was held in the pathological department for the final

diagnosis.

‘PIS’ was defined as disease progression at any time during

treatment, stable disease after 7 months of treatment, or did not

achieve CR after 10 months of treatment (Zhou and Xu, 2021).

Other patients who achieved CR within 10 months of treatment

were regarded as ‘PS’.

Endometrial lesions before progestin treatment initiation

were prospectively collected through biopsy under

hysteroscopy and stored at -80°C equipped with or without

RNA preservation solution. Samples from 7 PIS patients and

7 PS patients were firstly collected for ATAC-Seq and RNA-Seq

analyses from December 2017 to November 2019 (regarded as

the ‘Analysis Group’). Because the number of EAH or EEC

patients receiving fertility preserving treatment is relatively

low, we tried to collect as many patients as possible for

validation to minimize possible bias caused by low case

number. As a result, a total of 35 cases met the inclusion and

exclusion criteria of this study were recruited from November

2019 to November 2020. These patients were regarded as
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‘Construction Group’ for validation and model construction.

They were further classified as PS-C (achieved CR within

5 months of treatment, n = 13), sub-PS-C (achieved CR

within 5–9 months of treatment, n = 15) and PIS-C (n = 7).

The basic characteristics of the enrolled patients were shown in

Table 1.

Library construction and ATAC-Seq
analysis

ATAC-Seq was performed to analyze transposase accessible

chromatin as previously described (Buenrostro et al., 2015). An

improved ATAC-Seq protocol that reduces background and

enables interrogation of frozen tissues was used for nuclei

collection (Corces et al., 2017). Libraries were pooled at

equimolar ratios with barcodes and sequenced on the

BGISEQ-500 platform (BGI, Shenzhen, China).

Raw sequence reads were initially processed for quality

control by FastQC. Before statistical analysis, ATAC-Seq read

counts of different samples were normalized according to the

methods described previously (Zhang and Parmigiani, 2020).

In ATAC-Seq analysis, opening or closing peaks were chosen

with |log2 fold change|>0.5849 and non-adjusted p < 0.05 (PIS vs.

PS). The proportion of all reads in each sample was matched to

the elements in the human genome according to functional and

TABLE 1 General characteristics of the study population.

Variables Analysis group Construction group

Total PS PIS pp
value

Total PS-C sub-PS-C PIS-C +p
value

Patients (n) 14 7 7 — 35 13 15 7 —

Diagnosis 1.000

EAH 7 (50) 4 (57.1) 4 (57.1) 1.000 25 (69.44) 10 (76.92) 10 (66.67) 5 (62.5) —

EEC 7 (50) 3 (42.9) 3 (42.9) 11 (30.56) 3 (23.08) 5 (33.33) 3 (37.5) —

Age at diagnosis
(year)

31 (26–36) 34 (28–36) 30 (26–34) 0.097 32.5 (21–42) 34 (21–39) 30 (23–36) 34 (24–42) 0.2895

BMI (kg/m2) 28.26
(20.70–37.65)

28.13
(23.44–36.13)

28.40
(20.70–37.65)

0.710 28.09
(18.87–45.17)

26.15
(18.87–37.74)

28.04
(19.57–45.17)

29.94
(20.28–35.26)

0.880

HOMA-IR 4.15
(1.40–6.37)

4.41
(1.47–6.37)

3.53
(1.40–5.58)

0.535 3.16
(0.84–22.80)

4.12
(1.18–10.13)

3.23
(0.84.22.80)

2.35 (1.56–7.64) 0.647

MS§ 8 (57.1) 4 (57.1) 4 (57.1) 1.000 15 (41.7) 5 (38.5) 6 (40.0) 4 (50.0) 0.830

Hypertension 3 (21.4) 2 (28.6) 1 (14.3) 1.000 3 (8.3) 1 (7.7) 2 (13.3) 0 (0.0) 0.782

Diabetes
mellitus

0 (0.0) 0 (0.0) 0 (0.0) — 4 (11.1) 1 (7.7) 2 (13.3) 1 (12.5) 1.000

Nulliparous 11 (78.6) 5 (71.4) 6 (85.7) 1.000 29 (80.6) 9 (69.2) 13 (86.7) 7 (87.5) 0.553

Progestin therapy

MA 6 2 (28.6) 4 (57.1) 12 (33.3) 2 (15.4) 8 (53.3) 2 (25.0)

MA +
Metformin

4 2 (28.6) 2 (28.6) 12 (33.3) 4 (30.8) 6 (40.0) 2 (25.0)

LNG-IUD 1 1 (14.3) 0 (0) 4 (11.1) 3 (23.1) 0 (0.0) 1 (12.5)

MA +
LNG-IUD

3 2 (28.6) 1 (14.3) 4 (11.11) 2 (15.4) 0 (0.0) 2 (25.0)

MA +
Rosuvastatin

- - - 4 (11.1) 2 (15.4) 1 (6.7) 1 (12.5)

CR time
(months)††

7.8 (3.7–29.5) 7.0 (3.7–7.9) 12.0 (6.0–29.5) 0.011 6.33
(3.07–13.23)

3.9 (3.07–4.90) 6.87 (5.87–8.1) 11.17
(10.53–13.23)‡‡

<0.0001

††Total treatment duration from initiation of conservative treatment to CR.
‡‡Note: CR time of one patient in PIS-C group was not included, because this patient did not achieve CR and underwent hysterectomy eventually.
§Diagnosis of MS meets at least three of the following criteria: 1) BP ≥ 130/85 mmHg or hypertension; 2) Waist circumference ≥80 cm; 3) Total cholesterol ≥1.7 mmol/L; 4) High density

lipoprotein <1.04 mmol/L; 5) Fasting plasma glucose ≥5.6 mmol/L or type II diabetes mellitus.

pp value: comparison between PS group and PIS group in Analysis Group.
+p value: comparison between PS-C group, sub-PS-C group and PIS-C group in Construction Group.

Values are presented as median (range) or number (%).

PS, progestin-sensitive; PIS, progestin-insensitive; PS-C, progestin-sensitive in Construction Group; sub-PS-C, progestin-sub-sensitive in Construction Group; PIS-C, progestin-insensitive

in Construction Group; EAH, endometrial atypical hyperplasia; EEC, endometrioid endometrial cancer; BMI, body mass index; HOMA-IR, homeostasis model assessment-insulin

resistance; MS, metabolic syndrome; MA, megestrol acetate; LNG-IUD, levonorgestrel intrauterine device; CR, complete response.
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positional information, including 3′ UTR, 5′UTR, distal

intergenic, downstream, exon, intron, and promoter. Scatter

plot showed the accessibility at each peak. Hierarchical cluster

analysis was performed to assess chromatin accessibility with

differential gene peaks.

Library construction and RNA-Seq analysis

RNA-Seq was performed to assess the expression of genes in

tissue samples as described previously (Wang et al., 2018a).

Libraries were generated on the BGIseq500 platform (BGI-

Shenzhen, China). Fragments per kilobase per million reads

(FPKM) was used to quantitatively estimate gene expression

values (Trapnell et al., 2010). DESeq2 was used to analyze the raw

count (Wang et al., 2010). Before statistical analysis, RNA-Seq

read counts of different samples were normalized according to a

previously reported method (Zhang and Parmigiani, 2020).

Differential expression analysis was performed using

the R DESeq2 package (v1.4.5) (Love et al., 2014). Genes with

|log2 fold change|>0.5849 and non-adjusted p < 0.05 (PIS vs. PS)

were defined as differentially expressed genes (DEGs) between

the PIS and PS patients. A heatmap was drawn to cluster the

DEGs. The DEGs were further analyzed by Gene Ontology (GO)

and REACTOME pathways to determine the potential functions

and pathways enriched by these DEGs using R packages. GO

analysis included biological process (BP), molecular function

(MF), and cellular components (CC).

Integration analysis of ATAC-Seq and
RNA-Seq

ATAC-Seq and RNA-Seq profiles were analyzed after

integration to accurately determine the potential center genes

that can distinguish PIS from PS patients. The overlapping DEGs

were defined as 1) the upregulated DEGs in RNA-Seq with an

enhanced chromatin open region signal in ATAC-Seq and 2) the

downregulated DEGs in RNA-Seq with an attenuated chromatin

open region signal in ATAC-Seq (PIS vs. PS). A Venn diagram

was generated to present the overlapping upregulated and

downregulated DEGs. Scatter plots were used to evaluate the

relationship between the transposase accessible chromatin and

gene expression derived from ATAC-Seq and RNA-Seq data,

respectively.

The candidate genes for predictive model construction were

screened out based on ATAC-Seq and RNA-Seq integrated

bioinformatics analyses and literature review, but not only

based on the level of change between the two conditions. The

bioinformatics analyses in this part included REACTOME

pathways, Transcription factor (TF) prediction, Motif

enrichment, and Functional protein-associated networks. 1)

Based on overlapping DEGs by ATAC-Seq and RNA-Seq

integrated analysis, top ten REACTOME pathways were

enriched, and DEGs in the pathways potentially regulating

progestin insensitivity were first screened out. 2) Potential TFs

that regulate the expression of the overlapping DEGs were

enriched by HOMER Software, and DEGs-encoding TFs with

p value less than 0.05 were screened out. 3) Motif enrichment was

performed to identify important TFs by using homer peak

analysis software. The generated homer known TFs with p

value less than 0.05 and more than 20% of target sequences

with motifs enriched in chromatin regions were listed in Table 2,

and their encoding genes among the overlapping DEGs were

identified. 4) The interactions between proteins encoded by

overlapping DEGs were analyzed using STRING (https://

string-db.org/) and Cytoscape software (version 3.6.1). Central

proteins were determined with both >4 connected lines and >0.
4 combined score, and their encoding DEGs were identified.

Furthermore, all the candidate genes screened out based on

aforementioned bioinformatics analyses above, were

comprehensively evaluated by literature review according to

whether these candidate genes were involved in tumor

initiation, progression and treatment resistance.

Validation of candidate genes in the
expanded samples

Endometrial samples from the Construction Group were

analyzed by real-time quantitative PCR (RT-qPCR) for the

expression of the twenty-five candidate genes. Each gene was

analyzed in triplicate and normalized to the housekeeping gene

GAPDH. Detailed primer sequences were listed in

Supplementary Table S1. The value of the Δ cycle threshold

(ΔCT) was used as the relative expression level of mRNA of the

candidate genes compared to GAPDH. Then ΔCT values were

normalized by SPSS Version 22.0 for subsequent analysis.

Statistics

Statistical analysis was calculated using GraphPad Prism

Version 8.0 and SPSS Version 22.0. RT-qPCR data were

presented as the mean ± standard error of the mean (SEM)

and were calculated by unpaired t test, unless otherwise noted. A

two-tailed p value less than 0.05 was considered statistically

significant.

To determine which candidate genes could be used for

predicting progestin insensitivity, predictive models were

established using multinomial logistic regression (SPSS

Version 22.0). The PS-C, sub-PS-C, and PIS-C groups were

identified as the dependent variables. Normalized ΔCT values

of candidate genes were stratified into low, medium, and high

expression stratifications according to cutoff values (X-tile

Version 3.6). Then, the expression stratification of candidate
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TABLE 2 TFs binding homer known motifs enriched in chromatin region in response to progestin in PIS group compared to PS group from Analysis
Group.

TFs Binding motif % Of target
sequences with motif

p Value

NANOG

Nanog (Homeobox)/mES-Nanog-ChIP-Seq (GSE11724)/Homer 44.87% 1.00E−02

TGIF2

Tgif2 (Homeobox)/mES-Tgif2-ChIP-Seq (GSE55404)/Homer 39.74% 1.00E−02

NF1

NF1-halfsite (CTF)/LNCaP-NF1-ChIP-Seq (Unpublished)/Homer 29.49% 1.00E−05

HOXA9

Hoxa9 (Homeobox)/ChickenMSG-Hoxa9.Flag-ChIP-Seq (GSE86088)/Homer 29.17% 1.00E−02

FOXO1

Foxo1 (Forkhead)/RAW-Foxo1-ChIP-Seq (Fan_et_al.)/Homer 28.53% 1.00E−06

SP2

Sp2 (Zf)/HEK293-Sp2.eGFP-ChIP-Seq (Encode)/Homer 28.53% 1.00E−03

SOX10

Sox10 (HMG)/SciaticNerve-Sox3-ChIP-Seq (GSE35132)/Homer 26.60% 1.00E−08

SOX3

Sox3 (HMG)/NPC-Sox3-ChIP-Seq (GSE33059)/Homer 25.64% 1.00E−06

TWIST2

Twist2 (bHLH)/Myoblast-Twist2.Ty1-ChIP-Seq (GSE127998)/Homer 25.64% 1.00E−03

SOX6

Sox6 (HMG)/Myotubes-Sox6-ChIP-Seq (GSE32627)/Homer 25.00% 1.00E−07

SOX21

Sox21 (HMG)/ESC-SOX21-ChIP-Seq (GSE110505)/Homer 24.68% 1.00E−04

KLF5

(Continued on following page)
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genes was identified as an independent variable. The PS-C group

was regarded as the control group in the multinomial logistic

regression method. The predictive accuracy of the established

models to predict PS, sub-PS and PIS was analyzed. Model fitting

was used to illustrate the reliability of the models.

Availability of supporting data

The raw data and processed data used in this study have been

uploaded to the Gene Expression Omnibus repository under

GEO accession number GSE201928 at https://www.ncbi.nlm.nih.

gov/geo/.

Results

Comparison of chromatin accessibility
between PIS and PS cases by ATAC-Seq

Flowchart of study design was shown in Figure 1A. Firstly,

genomic chromatin accessibility was analyzed by ATAC-Seq

TABLE 2 (Continued) TFs binding homer knownmotifs enriched in chromatin region in response to progestin in PIS group compared to PS group from
Analysis Group.

TFs Binding motif % Of target
sequences with motif

p Value

KLF5 (Zf)/LoVo-KLF5-ChIP-Seq (GSE49402)/Homer 23.72% 1.00E−02

MAZ

Maz (Zf)/HepG2-Maz-ChIP-Seq (GSE31477)/Homer 23.08% 1.00E−02

TCF4

TCF4 (bHLH)/SHSY5Y-TCF4-ChIP-Seq (GSE96915)/Homer 22.76% 1.00E−03

AP-1

AP-1 (bZIP)/ThioMac-PU.1-ChIP-Seq (GSE21512)/Homer 22.44% 1.00E−21

BHLHA15R

BHLHA15 (bHLH)/NIH3T3-BHLHB8.HA-ChIP-Seq (GSE119782)/Homer 22.44% 1.00E−04

NEUROG2

NeuroG2 (bHLH)/Fibroblast-NeuroG2-ChIP-Seq (GSE75910)/Homer 22.12% 1.00E−02

ATF3

Atf3 (bZIP)/GBM-ATF3-ChIP-Seq (GSE33912)/Homer 21.15% 1.00E−22

SOX15

Sox15 (HMG)/CPA-Sox15-ChIP-Seq (GSE62909)/Homer 20.83% 1.00E−09

BATF

BATF (bZIP)/Th17-BATF-ChIP-Seq (GSE39756)/Homer 20.51% 1.00E−21

TFs, transcription factors; PIS, progestin-insensitive; PS, progestin-sensitive.
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using samples from the Analysis Group (PIS, n = 7 and PS, n =

7). Five patients from each group had both ATAC-Seq and

RNA-Seq data. The remaining two patients in each group had

only ATAC-Seq data or RNA-Seq data, respectively. In the

ATAC-Seq results, the proportion of all reads in each sample

was matched to the elements in the human genome according

to functional and positional information. The accessibility of

transcriptional sites was more abundant in the promoter

region in the PIS group but more abundant in intron and

distal intergenic sites in the PS group (Figure 1B). The

accessibility of the other four sites, including the 3′ UTR, 5’

UTR, downstream and exon, constituted a very small

percentage of accessible transcriptional sites. After ATAC-

Seq analysis, approximately 3721 differential opening or

closing peaks were enriched, and most peaks were between

10̂2 and 10̂3 in size (Figure 1C). Additionally, distribution of

3721 differential peaks [log2 fold change (PIS vs. PS)] were

provided, and the results showed that PIS group had more

opening differential peaks than the PS group (Figure 1D). In

detail, 2773 opening peaks and 948 closing peaks were shown

FIGURE 1
Landscape of genomic chromatin accessibility by ATAC-Seq. (A) Flowchart of study design. Endometrial lesions in the Analysis Group were
collected for ATAC-Seq and RNA-Seq and further data analysis. (B) Genomic distribution of differential peaks. Bars with different colors and lengths
represent different elements in the human genome and proportions, respectively. (C) Scatter plot of the chromatin accessibility at each peak in the
PIS group compared to the PS group. The X-axis represents the peak size (log10), and the Y-axis represents the log2 fold change (PIS vs. PS) in
ATAC-Seq analysis. The orange-red dots represent the opening peaks and the light blue dots represent the closing peaks in the PIS group compared
to the PS group. (D) The histogram presents the distribution of log2 fold change of the differential peaks (PIS vs. PS). The abscissa represents log2 fold
change of the differential peaks (PIS vs. PS) and the vertical axis represents the number of the differential peaks. Red arrow indicates log2 fold
change = 0.5849 while blue arrow indicates log2 fold change = −0.5849. (E) Hierarchical cluster analysis of all the regulated opening and closing
peaks in genes. Red plates represent opening peaks, while green plates indicate closing peaks in the PIS and PS groups. Abbreviations: PIS, progestin
insensitive; PS, progestin sensitive; ATAC-Seq, assay for transposase-accessible chromatin sequencing; RNA-Seq, RNA sequencing; UTR,
untranslated region.
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FIGURE 2
Expression profiles by RNA-Seq in PIS and PS patients with EAH and EEC. (A)Hierarchical cluster analysis of all DEGs annotated by FPKMby using
DESeq2 normalization. The rows represent the 4349 upregulated and 2102 downregulated genes. Red grids represent upregulated genes while blue
grids represent downregulated genes. (B) Statistical pie chart of upregulated and downregulated DEGs in the PIS group compared to the PS
group. (C)Bubble diagramof theGOanalysis of the upregulated and downregulated DEGs in the PIS group compared to the PS group, including
BP (C1), CC (C2), and MF (C3). The top ten clusters with adjusted p < 0.05 were shown. (D) REACTOME pathway annotation of upregulated and
downregulated DEGs in the PIS group compared to the PS group. The top ten enriched pathways with adjusted p < 0.05 were shown. Abbreviations:
PIS, progestin insensitive; PS, progestin sensitive; DEGs, differentially expressed genes; GO, Gene Ontology; BP, biological process; CC, cellular
components; MF, molecular function.
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in the PIS group compared to the PS group by hierarchical

cluster analysis (Figure 1E). The heatmap showed that a

higher proportion of genes were transcriptionally active in

PIS cases than in PS cases. Gene peaks in six samples of each

group were hierarchically clustered into one group,

illustrating the reliability and accuracy of ATAC-Seq data.

FIGURE 3
Enrichment analysis of DEGs integrated by ATAC-Seq and RNA-Seq. (A) Venn diagramof DEGs in RNA-Seqwith differential opening and closing
peaks in ATAC-Seq. (B) Chromatin accessibility correlates significantly with the 230 overlapping DEGs (Pearson analysis, p = 0.005). Dashed lines
delineate the set of DEGs in RNA-Seq (X-axis) and differential opening or closing peaks in ATAC-Seq (Y-axis) between the PIS and PS groups. Shaded
points in the upper right quadrant and lower left quadrant define the genes showing congruent chromatin accessibility and gene expression. (C)
GO annotation of the upregulated and downregulated DEGs in the PIS group compared to the PS group was performed based on ATAC-Seq and
RNA-Seq integration, including BP (C1), CC (C2), and MF (C3). The top ten clusters with adjusted p < 0.05 were shown. (D) REACTOME pathway
annotation of the overlapping upregulated and downregulated DEGs in the PIS group by ATAC-Seq and RNA-Seq integration. The top ten enriched
pathways with adjusted p < 0.05 were shown. Abbreviations: ATAC-Seq, assay for transposase-accessible chromatin sequencing; RNA-Seq, RNA
sequencing; PIS, progestin insensitive; PS, progestin sensitive; DEGs, differentially expressed genes; GO, Gene Ontology; BP, biological process; CC,
cellular components; MF, molecular function.
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Comparison of expression profiles
between PIS and PS cases by RNA-Seq

To compare the expression profiles between PIS and PS

lesions in the Analysis Group, RNA-Seq was conducted and

analyzed. DEGs were shown by hierarchical cluster analysis

(Figure 2A). There were 4349 upregulated and

2102 downregulated DEGs in the PIS group compared to the

PS group (Figure 2B). To identify whether these upregulated and

downregulated DEGs in the PIS group were enriched in

particular functions, GO annotation, including BP, CC, and

MF categories, was performed (Figures 2C1,C2,C3). In the BP

categories, downregulated DEGs in the PIS group were mainly

enriched in neutrophil-associated activity, Golgi vesicle

transport, endomembrane system organization,

macroautophagy, and cellular response to chemical stress,

while upregulated DEGs in the PIS group were mainly

enriched in membrane potential and synaptic signaling-related

FIGURE 4
Bioinformatics analyses for screening the potential candidate genes. (A) Bubble diagram showing the transcription factor-binding sites
clustered based on 230 overlapping DEGs. (B) Protein interaction networks were analyzed through STRING and Cytoscape analysis. Red nodes
represent the upregulated overlapping DEGs, and green nodes represent the downregulated overlapping DEGs in the PIS group compared to the PS
group. The larger the node is, the higher the connectivity is. Edges between two nodes indicate potential interactions between two proteins
encoded by corresponding DEGs. The higher the value around the edges between connected nodes is, the higher the credibility is. (C) Log2
normalized counts of 15 upregulated candidate genes in the PIS group relative to the PS group. (D) Log2 normalized counts of 10 downregulated
candidate genes in the PIS group relative to the PS group. Abbreviations: DEGs, differentially expressed genes; PIS, progestin insensitive; PS, progestin
sensitive.
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functions (Figure 2C1). In accordance with the results for the BP

categories, the CC categories showed that downregulated DEGs

in the PIS group were mainly enriched in granule lumen, vesicle

lumen, cell-substrate junction, and focal adhesion, while

upregulated DEGs in the PIS group were enriched in synaptic

membrane and related transporter complex (Figure 2C2). In the

MF categories, downregulated DEGs in the PIS group were

enriched in various kinds of binding, including cadherin,

nucleoside, GTP, and ubiquitin protein ligase binding, etc.,

while upregulated DEGs in the PIS group were enriched in

channel, transmembrane transporter, and neurotransmitter

receptor activity (Figure 2C3). Furthermore, REACTOME

pathway annotation of the DEGs showed that downregulated

DEGs in the PIS group were significantly enriched in pathways

including asparagine N-linked glycosylation, neutrophil

degranulation, autophagy, and transport between Golgi and

endoplasmic reticulum (ER), while the upregulated DEGs in

the PIS group were enriched in chemical and synaptic signal

transmission, fibroblast growth factor receptor (FGFR), and G

protein-coupled receptor (GPCR) (Figure 2D). RNA-Seq data

demonstrated that expression profiles varied widely between PIS

and PS cases.

Gene ontology and REACTOME analysis
by ATAC-Seq and RNA-Seq integration

To further determine the specific functions and pathways

related to progestin insensitivity, ATAC-Seq and RNA-Seq

results were integrated for further analysis. By overlapping the

results of ATAC-Seq and RNA-Seq, the PIS group had

138 upregulated DEGs with opening peaks and

92 downregulated DEGs with closing peaks in chromatin

accessibility compared to the PS group (Figure 3A).

Correlation analysis showed a significant positive correlation

between expression profiles and chromatin accessibility of the

above mentioned 230 overlapping DEGs (Figure 3B). To gain

further insight into whether these 230 overlapping DEGs were

engaged in specific functions and pathways, GO annotation

and REACTOME pathways were performed. In BP categories,

the overlapping downregulated DEGs in the PIS group mainly

influenced cell import-transportation, negative regulation of

cysteine-type endopeptidase activity, response to reactive

oxygen species and fat cell differentiation (Figure 3C1). In

CC categories, overlapping downregulated DEGs in the PIS

group were enriched in glutamatergic synapse, extrinsic

component of membrane, collagen-containing extracellular

matrix, and endocytic vesicle lumen, while those

overlapping upregulated DEGs in the PIS group were

located in glycoprotein complex, sodium channel complex,

β-catenin-TCF complex, and sarcolemma (Figure 3C2).

Similarly, in MF categories, overlapping downregulated

DEGs in the PIS group were enriched in extracellular

matrix binding, cadherin binding, transcriptional cofactor

binding and phosphatidylserine binding, while upregulated

DEGs in the PIS group were associated with bHLH

transcription factor binding, β-catenin binding, and sodium

channel activity (Figure 3C3). Furthermore, REACTOME

pathway analysis showed that these overlapping

downregulated DEGs in the PIS group mainly influenced

pathways including MAPK family signaling cascades,

intracellular signaling by second messengers, negative

regulation of the PI3K/AKT network, cyclin D-associated

events in G1, and FOXO−mediated transcription of cell

cycle genes, while upregulated DEGs in the PIS group were

enriched in pathways including transport of bile salts and

organic acids, metal ions and amine compounds,

carboxyterminal post-translational modifications of tubulin,

factors involved in megakaryocyte development and platelet

production, and kinesins (Figure 3D). Taken together, these

data suggested that the overlapping downregulated DEGs in

the PIS group are responsible for signal transfer, the activity of

transcription cofactors, DNA damage, cell apoptosis and cell

cycle, while the overlapping upregulated DEGs in the PIS

group are mainly responsible for substance transport and

the regulation of cytoskeletal proteins.

Screening of candidate genes for
predicting progestin insensitivity

To further screen candidate genes predicting progestin

insensitivity, potential TFs that regulate the expression of the

230 overlapping DEGs were enriched by HOMER Software.

The TFs identified included CUX1, TBP, SOX5, FOXJ1,

PRRX2, SOX9, FOXQ1, POU1F1, MECOM, and NKX2-1

based on the 69 downregulated DEGs in the PIS group,

while only ZBTB18 and CDC5Lwereidentified based on

76 upregulated DEGs in the PIS group (Figure 4A).

Additionally, motif enrichment was performed by homer

peak analysis based on the results of ATAC-Seq and RNA-

Seq integration. The generated homer known TFs with more

than 20% of target sequences with motifs enriched in

chromatin regions (PIS vs. PS) included NANOG, TGIF2,

NF1, HOXA9, FOXO1, SP2, SOX10, SOX3, TWIST2, SOX6,

SOX21, KLF5, MAZ, TCF4, AP-1, BHLHA15R, NEUROG2,

ATF3, SOX15, and BATF (Table 2). Additionally, the

interactions between proteins encoded by DEGs were

analyzed using STRING and Cytoscape software

(Figure 4B). Potential candidate genes or central genes were

screened out based on the principle that more connected lines

had higher combined scores. The left part showed the proteins

encoded by the upregulated DEGs in the PIS group, and the

top four social proteins with more than 4 connected lines were

encoded by SOX9, CDH2, IRF4, and TCF4, respectively. There

were eight proteins in the right part that had more than
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4 connected lines in the downregulated DEGs in the PIS

group, which were encoded by CD44, ACTB, KLF4, APOE,

SNAI2, FYN, PAX2, and FOXO1, respectively. Finally, twenty-

five candidate genes (SYTL2, SOX5, DMD, TCF4, PDGFC,

SOX9, BNC2, CDH2, BCL11A, ANKS1B, PPP2R2B, DIO2,

IRF4, FGF19, FOXO1, GATA6, IRS2, CD44, APOE, KLF4,

TABLE 3 Characteristics of different predictive models based on candidate genes.

No. Candidate genes included
in models

Model
fitting (p
value)

Pseudo R
square

Predictive
accuracy of
PIS-C (%)

Predictive
accuracy of
sub-PS-C (%)

Predictive
accuracy of sub-
PS-C (%)

Overall
accuracy of
prediction
(%)

1 BCL11A + SOX9+ApoE +
FOXO1+FYN + KLF4+DIO2

<0.001 ≥0.846 100 93.3 84.6 91.4

2 BCL11A + SOX9+ApoE +
FOXO1+FYN + KLF4+IRS2+DIO2

<0.001 ≥0.857 100 86.7 100.0 94.3

3 BCL11A + PDGFC + SOX9+ApoE +
FYN + KLF4+IRS2+DIO2

<0.001 ≥0.846 100 86.7 92.3 91.4

4 BCL11A + PDGFC + ApoE +
FOXO1+FYN + KLF4+DIO2

<0.01 ≥0.793 100 80.0 92.3 88.6

5 BCL11A + PDGFC + ApoE +
FOXO1+FYN + KLF4+IRS2+DIO2

<0.01 ≥0.828 100 80.0 92.3 88.6

6 BCL11A + ApoE + FOXO1+FYN +
KLF4+DIO2

<0.001 ≥0.743 100 80.0 84.6 85.7

7 BCL11A + SOX9+ApoE + FYN +
KLF4+DIO2

<0.001 ≥0.798 100 80.0 84.6 85.7

8 BCL11A + PDGFC + ApoE +
FOXO1+FYN + IRS2+DIO2

<0.001 ≥0.811 100 80.0 84.6 85.7

9 BCL11A + ApoE + FOXO1+FYN +
KLF4+IRS2+DIO2

<0.01 ≥0.748 100 80.0 76.9 82.9

10 BCL11A + PDGFC + SOX9+ApoE +
FOXO1+KLF4+DIO2

<0.01 ≥0.812 100 80.0 76.9 82.9

11 BCL11A + ApoE + FYN +
KLF4+IRS2+DIO2

<0.01 ≥0.698 100 80.0 69.2 80.0

12 BCL11A + PDGFC + ApoE + FYN +
KLF4+IRS2+DIO2

<0.01 ≥0.787 100 73.3 92.3 85.7

13 BCL11A + PDGFC + ApoE +
FOXO1+FYN + DIO2

<0.01 ≥0.761 100 73.3 92.3 85.7

14 BCL11A + PDGFC + ApoE +
FOXO1+KLF4+DIO2

<0.01 ≥0.602 100 73.3 84.6 82.9

15 BCL11A + ApoE + FYN +
KLF4+DIO2

<0.01 ≥0.682 100 73.3 76.9 80.0

16 BCL11A + SOX9+ApoE + FYN +
KLF4+IRS2+DIO2

<0.01 ≥0.812 100 73.3 100 88.6

17 BCL11A + PDGFC +
FOXO1+KLF4+IRS2+DIO2

<0.01 ≥0.61 100 66.7 84.6 80.0

18 BCL11A + ApoE + FOXO1+FYN +
IRS2+DIO2

<0.01 ≥0.675 100 66.7 76.9 77.1

19 BCL11A + PDGFC + FYN +
KLF4+IRS2+DIO2

<0.001 ≥0.726 100 60.0 92.3 80.0

20 BCL11A + ApoE + FYN +
IRS2+DIO2

<0.01 ≥0.634 100 60.0 86.4 77.1

21 PDGFC + ApoE + FOXO1+FYN +
KLF4+DIO2

<0.05 ≥0.528 100 53.3 69.2 68.6

22 ApoE + FOXO1+FYN +
KLF4+IRS2+DIO2

<0.05 ≥0.526 100 53.3 69.2 68.6

23 ApoE + FYN + KLF4+IRS2+DIO2 <0.05 ≥0.479 100 46.7 61.5 62.9

24 PDGFC + FYN + KLF4+IRS2+DIO2 <0.05 ≥0.457 100 40.0 76.9 65.7

25 PDGFC + ApoE + FYN +
KLF4+DIO2

<0.05 ≥0.480 100 40.0 69.2 62.9

No., number; PIS-C, progestin-insensitive in Construction Group; sub-PS-C, progestin-sub-sensitive in Construction Group; PS-C, progestin-sensitive in Construction Group.
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ACTB, FYN, CNTLN, HOXA9, and RXRA.) were screened out

based on bioinformatics analyses and literature review. The

expression levels of these genes were presented according to

the RNA-Seq results (Figures 4C,D).

Establishment of potential models for
predicting progestin insensitivity

Samples from the Construction Group (n = 35) were used for

model construction. To constructmodels that can precisely predict

the status of progestin sensitivity, 35 cases were further classified as

PS-C (n = 13), sub-PS-C (n = 15) and PIS-C (n = 7), as shown in

Table 1. Firstly, RT-qPCR was used to determine the expression of

the 25 candidate genes in these 35 cases. As the CT values of

SYTL2, ANKS1B, PPP2R2B, and FGF19 exceeded 35, which

suggested low gene expression and inaccurate analyses, these

four genes were not included in the following analyses.

Predictive models were established by using multinomial

logistic regression based on normalized ΔCT values of the

remaining 21 genes according to different progestin sensitive

conditions. The results in Table 3 showed that a total of

25 predictive models were generated with predictive accuracy of

100% for PIS-C patients, among which 11 models had predictive

accuracy of more than 80% for sub-PS-C prediction (p < 0.01).

Three models’ overall predictive accuracy were higher than 90%,

involving 9 candidate genes (FOXO1, IRS2, PDGFC, DIO2, SOX9,

BCL11A, APOE, FYN, and KLF4) (Supplementary Figure S1).

Discussion

It is necessary to establish highly accurate predictive models

for identifying PIS patients and helping provide individualized

fertility-preserving treatment for EAH and EEC patients. In this

study, through ATAC-Seq and RNA-Seq analyses of 14 cases and

verification of candidate genes in 35 expanded samples,

predictive models comprising nine genes (FOXO1, IRS2,

PDGFC, DIO2, SOX9, BCL11A, APOE, FYN, and KLF4) were

established. Our models provided new molecular markers that

could be used in combination with the well-known PR status to

help identify PIS patients prior to treatment initiation.

In this study, we found that the expression of PDGFC, DIO2,

SOX9, and BCL11Awas upregulated and FOXO1, IRS2, APOE,

FYN and KLF4 was downregulated in PIS endometrial lesions

compared with PS endometrial lesions. These nine genes were all

reported to play important roles in tumor progression or drug

response. PDGFC-encoded platelet-derived growth factor C was

reported to promote angiogenesis, cancer cell proliferation,

invasion, and metastasis (Kim et al., 2021). SOX9- and

BCL11A-encoded proteins were both involved in inducing

tumor initiation, proliferation, migration, and chemoresistance

(Yin et al., 2019; Jana et al., 2020). DIO2-encoded protein can

catalyze the conversion of tetraiodothyronine to bioactive

triiodothyronine. Triiodothyronine was reported to be

associated with lipid accumulation and metabolism in adipose

tissue, which contributes to obesity-related insulin resistance

(Bradley et al., 2018). Previous studies showed that high

expression levels of PDGFC, SOX9, BCL11A, and DIO2 were

associated with poor response to chemotherapy in cancer cells

and short survival time of various patients, which could be

regarded as negative prognostic factors (Bradley et al., 2018;

Yin et al., 2019; Jana et al., 2020; Kim et al., 2021). Carriers of the

DIO2 polymorphism were also reported to be predisposed to the

development of endometrial cancer (Janowska et al., 2022).

Furthermore, the inhibition of SOX9 or DIO2 has been

reported to be a potential therapeutic strategy for cancer

(Carrasco-Garcia et al., 2019; Kojima et al., 2019).

FOXO1, an important member of the FOXO subfamily in the

FOX family, encodes a transcription factor and has been reported

to be involved in various physiological processes, including

inducing cancer cell cycle arrest and suppressing the migration

and invasion of cancer cells (Xing et al., 2018). FOXO1 was also

identified as a progesterone target gene containing PR elements

within the promoter regions (Yang et al., 2011). Downregulated

FOXO1expression was found in progestin-resistant EC cells and

was associated with progestin insensitivity in EC patients (Yang

et al., 2011; Reyes et al., 2016;Wang et al., 2018b). IRS2, encoding a

kind of insulin receptor substrate that is commonly

phosphorylated by the receptor tyrosine kinase, was reported to

promote cell proliferation, invasion and sphere formation of

cancer cells (Shaw, 2011). However, IRS2 amplification and

high expression of IRS2 were potentially related to good

response to chemotherapy (Lee et al., 2020). APOE, one of

apolipoproteins, plays anti-immunosuppressive and anti-

metastatic roles in tumorigenesis (Tavazoie et al., 2018). High

expression of APOE was reported to be associated with good

prognosis of thyroid cancer patients (Nan et al., 2021). KLF4

encodes a transcription factor that acted as a tumor suppressor

which inhibited cell cycle, promoted apoptosis and differentiation,

and suppressed metastasis (Yan et al., 2016). Downregulated

expression of KLF4 by promoter methylation modification

was reported in EC tissues, which was associated with

accelerated tumorigenesis, drug resistance and poor prognosis

(Jia et al., 2012; Danková et al., 2018). FYN encodes a

membrane-associated tyrosine kinase that promoted cell

proliferation, migration and invasion and inhibited apoptosis of

cancer cells (Saito et al., 2010). Overexpression of FYN was

reported to be correlated with chemotherapy resistance and

poor survival (Elias et al., 2014). However, the roles of

9 candidate genes in regulating progestin response needs

further investigation.

The strength of our study is the use of ATAC-Seq together

with RNA-Seq technology to help identify the upregulated or

downregulated genes with simultaneous opening or closing

chromatin accessibility which effectively improves the
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accuracy of candidate gene screening. The improved ATAC-Seq

protocol used in this work could further reduce background

disturbances from different individuals to improve the accuracy

of the analysis (Corces et al., 2017). Thirty-five patients with

various progestin sensitive conditions were used for further data

verification and construction of potential predictive models with

an overall predictive accuracy above 90%. There are some

limitations in the study. First, the sample size was not large

enough to address tissue heterogeneity. Second, integration of

ATAC-Seq and RNA-Seq can be used to analyze the epigenetic

and transcriptional changes in genes, but post-transcriptional

and post-translational regulatory levels cannot be analyzed.

In conclusion, the predictive models we provided may be

useful in identifying progestin insensitive EAH and EEC patients

before initiating fertility-sparing therapy. The accuracy of our

predictive models requires more samples validation and

molecular mechanism exploration.
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Objective: Adrenocortical carcinoma (ACC) is a rare malignant tumor.

Chromatin regulators (CRs) can drive epigenetic changes, which have been

considered as one of the most vital hallmarks of tumors. This study aimed to

explore the CR signature for ACC in order to clarify themolecular basis of ACC’s

pathogenic mechanism and provide novel methods to diagnose and treat ACC

clinically.

Methods: This study obtained transcriptome sequencing datasets of ACC

patients and sequencing data on normal adrenal tissues in TCGA and GTEx

databases, respectively. Meanwhile, prognostic genes were selected through

Lasso and Cox regression analyses. Using the transcriptome sequencing

datasets of ACC patients downloaded from the GEO database to finish

validation, we performed Kaplan–Meier (KM) analysis for evaluating the

differential survival between low- and high-risk groups. Then, this work

constructed the risk model for predicting ACC prognosis. TIMER 2.0 was

employed to assess the differences in immune infiltration between the two

groups. Furthermore, this work adopted the R package “pRRophetic” for

exploring and estimating the sensitivity of patients to different

chemotherapeutic agents.

Results: A 5-CR model was established to predict ACC survival, and the CR

signature was confirmed as a factor in order to independently predict ACC

patient prognosis. In addition, a nomogram composed of the risk score and

clinical T stage performed well in the prediction of patients’ prognosis.

Differentially expressed CRs (DECRs) were mostly associated with the cell

cycle, base excision repair, colon cancer, gene duplication, homologous

recombination, and other signaling pathways for the high-risk group. As for

the low-risk group, DECRs were mainly enriched in allograft rejection, drug

metabolism of cytochrome P450, metabolism of xenogeneic organisms by

cytochrome P450, retinolmetabolism, and other signaling pathways. According

to TIMER analysis, the immune infiltration degrees of endothelial cells,

M2 macrophages, myeloid dendritic cells, CD4+ Th1 cells, NKT cells, and

M0 macrophages showed significant statistical differences between the

high- and low-risk groups, and high infiltration levels of M0 and
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M2macrophages were more pronounced in higher T stage (T3 and T4), N stage

(N1), and clinical stages (III and IV). In addition, high-risk cases exhibited higher

sensitivity to etoposide and doxorubicin. Additionally, low-risk patients had

significantly decreased expression of RRM1 compared with high-risk cases,

suggesting the better effect of mitotane treatment.

Conclusion: This study identified the DECRs, which might be related to ACC

genesis and progression. The pathways enriched by these DECRs were

screened, and these DECRs were verified with excellent significance for

estimating ACC survival. Drug sensitivity analysis also supported the current

clinical treatment plan. Moreover, this study will provide reliable ideas and

evidence for diagnosing and treating ACC in the clinic.

KEYWORDS

chromatin regulator, adrenocortical carcinoma, prognosis, diagnosis, treatment

Introduction

ACC represents an uncommon malignant cancer, which has an

annual morbidity of around 1-2/1,000,000 people (Else et al., 2014).

It is also a frequently seen primary adrenal gland cancer

(Chandrasekar et al., 2019), accounting for 6.8% of primary

adrenal tumors (Lam, 1992), and it ranks second place among

endocrine organ cancers, only second to thyroid cancer (TC) (Abe

and Lam, 2021). ACC displays a high malignancy grade, and the 5-

year survival rate is only 10%–20% in accordance with the statistics

(Libé, 2015). ACC can occur at any age, with two peaks in childhood

and the age of 50–70 years, and is more common in women

(Fassnacht et al., 2009). ACC has rapid development, strong

invasiveness, and dismal survival. Many patients have developed

local invasion or distant metastasis (DM) when they are diagnosed.

Based on the reports, the 5-year survival rates of stage I-IV ACC are

82%, 58%, 55%, and 13%, respectively (Allolio and Fassnacht, 2006).

Recent epidemiological studies have indicated that the incidence of

ACC increases year by year over the past 40 years, without any

improvement in patient survival (Aufforth and Nilubol, 2014).

Epigenetic alterations are considered a vital hallmark of

cancer. They are driven via CRs, the integral regulatory

elements in epigenetics (Lu et al., 2018). According to their

roles in epigenetics, CRs are mainly divided into three

categories, namely, DNA methylating agents, histone

modifiers, and chromatin remodeling agents (Plass et al.,

2013). CRs are closely associated with each other. Further

research shows that abnormal CR levels are related to various

biological processes, such as inflammation (Marazzi et al., 2018),

apoptosis (Li et al., 2020a), autophagy (Chu et al., 2020), and

proliferation (Chen et al., 2020). This indicates that CR

dysregulation may possibly generate disease occurrence, such

as cancer. In recent years, an increasing number of studies have

been conducted to screen key prognostic genes for ACC by

bioinformatics analysis. However, CRs, as a key point of

epigenetics, have not received corresponding attention.

Therefore, this study aimed to explore the CR signature in

ACC and further examine their functions in ACC prognosis

with the purpose of clarifying ACC molecular basis and offering

novel methods to diagnose and treat ACC in the clinic.

Methods and materials

Data acquisition

The transcriptome sequencing dataset for 79 ACC cases was

downloaded from TCGA database (https://portal.gdc.cancer.gov).

As normal samples were not included in TCGA-ACC, UCSC Xena

was applied to obtain sequencing data on 128 normal adrenal tissue

samples from the GTEx database. Thereafter, the top 100 CR-

encoding genes with the greatest impact on ACC patients were

obtained from the Facer database (http://bio-bigdata.hrbmu.edu.cn/

FACER/). As a validation cohort, we downloaded the

GSE10927 dataset with transcriptome sequencing data on

33 ACC cases, 22 adrenocortical adenoma (ACA) cases, and

10 normal adrenal tissue samples from the GEO database

(https://ncbi.nlm.nih.gov) in order to confirm the differential

expression of CR-encoding genes. In addition, we also

downloaded the transcriptome sequencing and prognosis data on

23 ACC patients from the GSE33371 dataset to verify the reliability

of the prognosis prediction model.

Differential analysis

All data were corrected to the log2 (FPKM+0.001) format for

further comparison. Meanwhile, “Limma” in the R package was

adopted for correcting the offset of datasets and performing

differential analysis. The absolute value of logFC greater than

1 and p < 0.05 were applied as the thresholds to select

differentially expressed genes (DEGs). Afterward, up-and

downregulated genes were, respectively, explored, and the DECRs

in ACC were obtained after intersecting with CR-encoding genes.
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Construction of the prognosis prediction
model

Univariate Cox regression was conducted to analyze DECRs’

effect on prognosis, and the significant prognostic genes (p < 0.05)

screened were later incorporated into Lasso regression analysis,

followed by the construction of the prognosis prediction model.

Thereafter, based on the median risk score, patients were classified

into a low- or high-risk group. Subsequently, receiver operating

characteristic (ROC) curves were plotted to assess whether the

prognostic model was of high prognostic power. Afterward,

univariate and multivariate COX regression analyses were

conducted for assessing the effect of risk scores on ACC survival.

In addition, we also utilized the R package “rms” for drawing the

nomogram of risk scores for ACC patients and the 1-, 3-, and 5-year

calibration curves. The model C-index was also calculated, and the

effect of DECRs on overall survival (OS) was assessed by adopting

Kaplan–Meier (KM) survival analysis.

Functional enrichment analysis

The enrichment of DECRs in GeneOntology_biological process

(GO_BP), cellular component (GO_CC), and molecular function

(GO_MF) pathways was assessed using the R package “enrichplot,”

respectively. Furthermore, GSEA software was employed to explore

the significantly different GO_BP, GO_CC, GO_MF, and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways (FDR <
0.25) between low- and high-risk patients.

Immune functional analysis

The infiltration levels of immune cells within TCGA-ACC

cancer tissues under seven algorithms were obtained from

TIMER 2.0. The differences between low- and high-risk

patients were evaluated.

Drug sensitivity analysis

Mitotane is currently the most common and effective agent

used for adjuvant therapy after ACC surgery and metastatic

ACC. The expression of RRM1 in the tumor is a good predictor

of the efficacy of mitotane therapy, and its low expression usually

indicates the response to mitotane therapy. Therefore, the

expression levels of RRM1 in ACC patients were extracted in

order to compare the mitotane response in high- and low-risk

patients. In addition, etoposide, doxorubicin, and cisplatin are

also the commonly used chemotherapeutic agents for metastatic

ACC. As a result, “pRRophetic” of the R package was utilized for

predicting chemotherapeutic sensitivity based on the whole-

transcriptome information of patients.

Results

Establishment of a chromatin regulator
signature

After intersecting TCGA-ACC dataset with the ACC CR

dataset, a total of 20 DECRs were screened, among which

12 showed downregulation whereas 8 exhibited upregulation

(Figure 1A). According to the abovementioned dysregulated

CRs, univariate Cox regression was adopted for exploring

their prognostic significance. As a result, only 8 out of

these 20 DECRs showed a prognostic value (Figures 1B–J).

Later, this work utilized Lasso Cox regression for constructing

the prognosis prediction characteristics for ACC patients. The

risk model based on five genes (TAF5, EMHT1, AURKB,

SETD5, and HDAC2) was successfully constructed

(Figure 2A). For verification, we employed the expression

data extracted from the GSE10927 dataset of the GEO

database to intersect with the ACC CR dataset with the aim

of performing expression differences. The result proved that

these CRs have significant expression differences between

ACC and other tissues including ACA and normal adrenal

tissues (Supplementary Figure S1). Then, we determined the

risk score by correlation coefficients of the 5 DECRs: Risk

score = (0.0637 × TAF5 level) + (0.2699 × EMHT1 level) +

(0.2068 × AURKB level) + (0.0418 × SETD5 level) + (0.0482 ×

HDAC2 level) (Table 1). Finally, ACC cases were classified

into two (low- or high-risk) groups, in accordance with the

median risk score. As a result, high-risk patients showed an

obviously increased death proportion compared with low-risk

counterparts (p < 0.001), suggesting the negative correlation

of the risk score with patient survival (Figures 2B,C). Based on

ROC analysis, the CR signature achieved a 0.889 prognostic

accuracy in TCGA dataset (Figure 2D). The results of the

validation cohort also proved the significant difference

between high- and low-risk groups (p < 0.05), and the

ROC analysis indicated a 0.857 prognostic accuracy of the

CR signature (Figures 2E,F).

Independent prognostic indicators of
chromatin regulator signature

Univariate and multivariate Cox regression analyses were

conducted to demonstrate the feasibility of the CR signature in

order to independently predict prognosis. According to the

results of univariate regression, the clinical stage, clinical T

stage, and risk score showed significant relation to ACC

survival (p < 0.001). Upon multivariate regression, the clinical

T stage and risk score remained significantly associated with

ACC survival (p < 0.05) (Table 2). In the validation cohort,

univariate Cox regression also showed that the risk score was

notably associated with ACC survival (p < 0.05) (Table 3). All the
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aforementioned results indicated that the CR signature was the

independent prognostic indicator for ACC patients.

Relationship of chromatin regulator
signature with clinical features

This study utilized a chi-squared test to explore the

involvement of CR prognostic features in ACC occurrence

and progression. As a result, the clinical T stage (p < 0.001)

and clinical stage (p < 0.001) were significantly different between

high- and low-risk groups, while no difference was detected in

gender or clinical N stage (p > 0.05) (Figures 3A,B). In addition,

further subgroup analyses were performed to investigate whether

the CR signature was significant for prognosis prediction.

According to the obtained results, the CR signature exhibited

excellent performance in predicting I−III (p = 0.02), I−IV (p <
0.001), II−III (p = 0.017), II−IV (p < 0.001), T1−T3 (p = 0.046),

T1−T4 (p < 0.001), and T2−T4 (p < 0.001) stages, while the CR

signature performed poorly concerning its prognosis

prediction performance at T1−T2 and I−II stages (p > 0.05)

(Figures 3C,D).

FIGURE 1
20 DECRs selected from the intersection of DEGs and CRs (A). Univariate Cox regression of eight DECRs that showed a prognostic value (B). KM
survival analysis of eight DECRs that showed a prognostic value (C–J).
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FIGURE 2
Lasso Cox regression of DECRs (A). Expression of five selected DECRs in different clinical features groups (B). KM survival analysis of low- and
high-risk patients in test cohort (C). ROC analysis of clinical stage, clinical T stage, clinical N stage and riskscore in test cohort (D). KM survival analysis
of low- and high-risk patients in validation cohort (E). ROC analysis of stage and riskscore in validation cohort (F).
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Construction and verification of the
nomogram

Different prognostic indicators were incorporated into the

nomogram to graphically assess survival probabilities for

different patients in the preoperative stage. The nomogram

incorporating the clinical T stage and risk score was

constructed to better predict 1-, 3-, and 5-year patient

prognosis (Figure 4A). Based on the calibration curve, there

was good consistency between the measured patient survival and

the estimated survival (Figures 4B–D). In addition, the

nomogram achieved a C-index of 0.929, proving its good

predictive power. During validation, due to missing the

clinical T stage date of patients, we constructed a nomogram

based only on the risk score and used it to predict 1-, 3-, and 5-

year patient prognosis in the validation cohort. The calibration

curve also showed good consistency between the measured

patient survival and the estimated survival. At the same time,

the C-index of the nomogram in the validation cohort was 0.726

(Figures 5A–D).

Functional annotation and gene set
enrichment analyses

This study performed GO and KEGG analyses to explore

possible functions of DECRs. According to BP analysis results,

these 20 DECRs were significantly related to histone

modification, peptidyl-lysine modification, and covalent

chromatin modification. Based on the analysis of CC, these

20 DECRs were mainly associated with PcG protein

complexes, nuclear chromatin, and RNA polymerase II. MF

analysis demonstrated that the 20 DECRs were mainly

enriched in the histone methyltransferase activity,

histone–lysine N-methyltransferase activity, and protein–lysine

N-methyltransferase activity (Figure 6). Furthermore, KEGG

analysis showed that the signaling pathways including base

excision repair, cell cycle, colon cancer, gene duplication, and

homologous recombination were enriched in the high-risk

group. Meanwhile, the low-risk group was associated with

signaling pathways such as allograft rejection, drug

metabolism of cytochrome P450, metabolism of xenogeneic

organisms by cytochrome P450, and retinol metabolism

(Figures 7A,B). At the same time, to better clarify the

molecular basis of CR signature, gene set enrichment analysis

TABLE 1 Correlation coeffcients of five selected DECRs.

Gene Coef

TAF5 0.063716491

EHMT1 0.269857731

AURKB 0.206839715

SETD5 0.041749529

HDAC2 0.048168878

TABLE 2 Univariate and multivariate regression of CR signature and other clinical features in test cohort.

Characteristic Univariate analysis Multivariate analysis

Hazard
ratio (95% CI)

p-value Hazard
ratio (95% CI)

p-value

Gender 1.056 (0.490–2.276) 0.890 — —

Stage 2.903 (1.844–4.569) <0.001 1.198 (0.481–2.983) 0.699

T 3.364 (2.098–5.393) <0.001 3.222 (1.302–7.971) 0.011

N 2.058 (0.774–5.472) 0.148 — —

Risk score 1.006 (1.004–1.008) <0.001 1.005 (1.003–1.008) <0.001

TABLE 3 Univariate and multivariate regression of CR signature and other clinical features in validation cohort.

Characteristic Univariate analysis Multivariate analysis

Hazard
ratio (95% CI)

p-value Hazard
ratio (95% CI)

p-value

Gender 1.358 (0.467–3.954) 0.574 — —

Stage 1.700 (1.036–2.790) 0.036 2.589 (1.353–4.954) 0.004

Risk score 12,191.428 (18.539–8,017,342.094) 0.004 1676261.622 (370.856–7576636516.957) <0.001
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(GSEA) was conducted. As a result, high-risk patients were

associated with chromosome segregation, chromosome region,

transcriptional binding, and other pathways, whereas low-risk

patients were mostly associated with antigen processing and

internalization, originated antigen presentation, luminal side

of the endoplasmic reticulum, fatty acid binding, and other

pathways (Figures 7C–H).

Immune infiltration analysis of chromatin
regulator signature

According to the TIMER analysis, relations of the CR

signature with immune infiltration were shown by a heat map

(Figure 8). As a result, the immune infiltration degrees of

endothelial cells, M2 macrophages, myeloid dendritic cells,

CD4+ Th1 cells, NKT cells, and M0 macrophages exhibited

significant statistical differences between the high- and low-

risk groups, and high infiltration levels of M0 and

M2 macrophages were more pronounced in a higher T

stage (T3 and T4), N stage (N1), and clinical stages (III

and IV).

Drug sensitivity test

To improve the therapeutic efficacy in ACC cases, this study

explored the difference in common chemotherapeutic agent

sensitivity in ACC. Based on the results of the GDSC database

analysis, for high-risk patients, their IC50 values of etoposide and

doxorubicin increased compared with low-risk patients,

suggesting the higher sensitivity of high-risk patients to these

drugs (Figure 9). Meanwhile, RRM1 levels were significantly

elevated among high-risk patients compared with low-risk

patients (p < 0.001), which indicated the better curative effect

of mitotane on low-risk cases.

FIGURE 3
Riskscore in different gender, clinical stage, clinical T stage and clinical N stage.
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Discussion

Previous studies have shown that most ACC is sporadic of

unknown origin, while a minority can be attributed to some

hereditary neoplastic syndromes, including Li-Fraumeni

syndrome, Lynch syndrome, MEN-1, and familial

adenomatous polyposis (Vaidia et al., 2019). According to

whether the tumor has an endocrine function, ACC is

categorized into functional and non-functional types.

Functional ACC can be diagnosed easier, and it clinically

manifests as hypercortisolism, Cushing’s syndrome, and

primary hyperaldosteronism, while non-functional ACC

often manifests as nonspecific tumor-induced symptoms

due to its insidious onset. Because ACC does not show any

obvious early onset characteristics, 70% of such cases are

already in stages III-IV when they are diagnosed (Bharwani

et al., 2011; Fay et al., 2014). Currently, the treatment methods

for ACC include surgery, chemotherapy, and radiotherapy, but

none of them can achieve ideal therapeutic effects (Allolio and

Fassnacht, 2006). The discovery of novel predictive factors for

the diagnosis and prognosis of ACC will help clinicians assess

the risk for patients and formulate the targeted treatment

strategies. With the development of information technology,

study on the diagnostic and prognostic markers for ACC has

gradually emerged in recent years. For instance, He ZJ

screened 15 key genes (CXCR6, SELL, P2RY13, GNG8,

OMD, ABI3BP, OGN, FBLN1, LOXL1, ELN, CTSK, HGF,

SH3GL3, F13A1, and GTPBP2) based on the mRNA-seq

sequencing data and the stem cell index established

according to TCGA-ACC mRNA profiles. In addition, they

FIGURE 4
A nomogram constructed by clinical T stage and riskscore in test cohort (A). Calibration curve predicting 1-, 3-, and 5-year patient
prognosis (B–D).
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also pointed out that GTPBP2 was the only key gene with

prognostic significance (He, 2021). After that, Hu DF et al.

employed the GEO database to screen the differential core

genes that were upregulated (RACGAP1, CCNB1, TYMS,

MAD2L1, NCAPG, and CDK1) and downregulated (IGF1,

CXCL12, TLR4, TGFBR2, and HGF). However, the authors

did not investigate the value of these genes. Qi et al. (2021) and

Zhou et al. (2022) analyzed more updated GEO database

samples on the aforementioned basis. As a result, CCNB1,

CCNA2, CDK1, BUB1B, MAD2L1, RRM2, TPX2, AURKA,

TOP2A, ZWINT, and NCAPG were found to be closely

related to prognosis. Nevertheless, further exploration of

their value was lacking. In other words, the data-supported

reliable clinical diagnostic and prognostic indicators are still

needed for ACC. Recently, CRs have been increasingly

suggested to make different effects on carcinogenesis, while

little existing research has systemically examined CRs and

explored their clinical value for ACC.

Based on the aforementioned starting point, this study

selected a total of eight DECRs with upregulation and 12

DECRs with downregulation. According to univariate Cox

regression, eight of them showed a prognostic value, and five

genes were successfully constructed by adopting the Lasso Cox

model. Subsequently, we verified the expression differences of the

aforementioned genes by using the GEO database. The result

demonstrated that TAF5, EMHT1, AURKB, and SETD5 all

showed significant expression differences in line with the

results except HDAC2. After discussion, we believed that the

difference in HDAC2 may be caused by the small sample size.

Then, correlation coefficients of five DECRs were determined to

calculate the risk score as follows (0.0637 × TAF5 expression) +

(0.2699 × EMHT1 expression) + (0.2068 × AURKB expression) +

(0.0418 × SETD5 expression) + (0.0482 × HDAC2 expression).

According to the median risk score, ACC cases were classified

into a low- or high-risk group. As a result, high-risk patients

showed significantly increased deaths compared with low-risk

FIGURE 5
A nomogram constructed by riskscore in validation cohort (A). Calibration curve predicting 1-, 3-, and 5-year patient prognosis (B–D).
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counterparts (p < 0.001), suggesting a negative correlation

between the risk score and prognosis. Based on ROC analysis,

the CR signature achieved a prognostic accuracy of 0.889. The

results of the validation cohort were consistent with this finding,

and the ROC analysis showed the prognostic accuracy of the CR

signature was 0.857 in the validation cohort, which reflected the

superior prognostic value of the CR signature. Afterward,

univariate and multivariate Cox regression analyses were

conducted. As a result, the CR signature independently

predicted ACC prognosis. According to the chi-squared test,

the clinical T stage (p < 0.001) and clinical stage (p < 0.001) were

significantly different between the two groups, while age and

clinical N stage did not exhibit any difference (p > 0.05).

Furthermore, our study proved that the CR signature

exhibited excellent performance in predicting I−III (p = 0.02),

I−IV (p < 0.001), II−III (p = 0.017), II−IV (p < 0.017) T1−T3 (p =

0.046), T1−T4 (p < 0.001), and T2−T4 (p < 0.001) stages. Finally,

the nomogram incorporating the clinical T stage and risk score

was constructed. According to the calibration curve, the

measured patient survival showed high consistency with the

estimated one. Our nomogram achieved a C-index of 0.929,

confirming its good prediction performance. Because one of the

main purposes of our research was to explore the prognostic

ability of the CR signature, although the clinical T stage data on

patients in the validation cohort were missing, we still

constructed a nomogram based on the risk score for

validation. The results also showed good consistency between

themeasured patient survival and estimated survival. At the same

time, the C-index of the nomogram in the validation cohort was

0.726. It is of note that previous studies have revealed that

surgical methods, surgical margins, pathological features, and

Ki-67 proliferation index are also associated with poor prognosis

in ACC. Nevertheless, databases including TCGA and GEO

cannot provide detailed data on the corresponding aspects of

patients. This study concentrated on building a preoperative, less

traumatic predictive risk model. Therefore, only the clinical T

FIGURE 6
GO_BP, CC and MF analysis of 20 DECRs.
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FIGURE 7
KEGG analysis of low- and high-risk groups (A,B). GSEA analysis of BP, CC and MF in low- and high-risk groups (C–H).
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stage and risk score were included to build the nomogram. In

addition, the results also confirmed the excellent predictive

ability of the model.

As the 100-kDa subunit of the universal transcription factor

TFIID, human TAF5 makes a vital effect on assembling the 1.2-

MDa TFIID complex. In a study on human papillomavirus

(HPV), in the context of oral squamous cell carcinoma

(OSCC), TAF5 and other genes showed high enrichment into

HPV-positive somatic mutations, which mostly influence the

HPV oncoprotein-targeted host pathways including pRB and

p53 pathways. They also play important roles in disrupting the

host’s defense against viral infection and are potentially involved

in nuclear factor-kappa B (NF-kB) and interferon (IFN) signaling

(Gillison et al., 2019). Lee J and colleagues explored the effect of

EHMT1 on lung cancer. According to the obtained results,

EHMT1 was significantly related to apoptosis and the cell

cycle process and had an important impact on regulating the

apoptosis and cell cycle of tumor cells by regulating the

expression of CDKN1A (Lee et al., 2021). Watson et al. (2019)

also confirmed in their study on high-grade serous ovarian

cancer (HGCOC) that disruption of EHMT1/2 sensitized

HGSOC cells to PARP inhibitors (PARPi). In addition, the

authors also proposed a potential mechanism through DNA

damage and cell cycle dysregulation (Watson et al., 2019). As

a pan-cancer marker, AURKB is related to different tumor

occurrences and development, including hepatocellular

carcinoma (HCC) (Yang et al., 2022), bladder cancer (BLCA)

(Tang and Wang, 2019), breast cancer (BRCA) (Zhang et al.,

2021), lung adenocarcinoma (LUAD) (Ding et al., 2019), and

osteosarcoma (Shan, 2021), exhibiting certain prognostic

significance. Wang et al. (2020) identified SETD5 as a major

driver of resistance to MEK1/2 (MEKi) in pancreatic ductal

adenocarcinoma (PDAC), revealing that SETD5 was a key

mediator of acquired resistance to MEKi therapy in PDAC. In

addition, Chen et al. (2021) also confirmed that SETD5 promoted

the cancer stem cell properties of non-small cell lung cancer

(NSCLC) by attenuating the PI3K/Akt/mTOR pathway

activation. Currently, the abnormal expression of HDAC2 in

FIGURE 8
Heat map of CR signature with immune infiltration by TIMER analysis.
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different cancers has been widely confirmed, which is associated

with cancer proliferation, invasion, migration, and drug

resistance. HDAC2 also participates in tumor metabolism and

influences the clinical diagnosis, treatment, and prognosis of

cancers. In tumor cells, HDAC2 acts as both a tumor-promoting

gene and a tumor suppressor gene. In addition, its specific role is

related to its target genes and pathways involved in various

malignant tumors.

This study combined these five key CR genes at the ACC level

for the first time and verified their unique prognostic and

diagnostic significance. Based on GO and KEGG analyses, the

BP analysis revealed the significant involvement of 20 DECRs in

covalent chromatin modification, peptidyl-lysine modification,

and histone modification. Analysis of CC revealed the significant

enrichment of 20 DECRs in nuclear chromatin, PcG protein

complexes, and RNA polymerase II. MF analysis showed that the

20 DECRs were mainly located in the histone methyltransferase

activity, histone-lysine N-methyltransferase activity, and

protein–lysine N-methyltransferase activity. Moreover, KEGG

analysis showed that the signaling pathways including the base

excision repair, cell cycle, colon cancer, gene duplication, and

homologous recombination were enriched in the high-risk

group. Apart from that, signaling pathways such as allograft

rejection, drug metabolism of cytochrome P450, metabolism of

xenogeneic organisms by cytochrome P450, retinol metabolism,

and other signaling pathways were mostly related to low-risk

patients. Based on GSEA results, the high-risk group was mainly

associated with chromosome segregation, chromosome region,

transcriptional binding, and other pathways, whereas low-risk

groups were mostly related to antigen processing and

presentation of endogenous antigens, luminal side of the

endoplasmic reticulum, and fatty acid binding. Considering

that ACC is a type of malignant endocrine tumor, this study

also attempted to explore the relationship between these five

FIGURE 9
RRM1 expression in low- and high-risk groups (A). Etoposide, cisplatin and doxorubicin senstivity in low- and high-risk groups (B–D).
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DECRs and endocrine function. It is interesting to find that these

five CRs are rarely discovered to be involved in some key

endocrine metabolic pathways in previous studies. Among the

enriched pathways, only cytochrome P450-related pathways

have been shown to regulate aldosterone biosynthesis and

participate in the pathogenesis of primary hyperaldosteronism

(Bassett et al., 2004; Zennaro et al., 2012). According to other

pathway enrichment results, it could be speculated that CRsmore

probably promote the occurrence and development of ACC by

influencing cell division, cell cycle, and other links, rather than

changing the level of hormone metabolism.

Through TIMER analysis, this study proved that the immune

infiltration degrees of endothelial cells, M2 macrophages, myeloid

dendritic cells, CD4+ Th1 cells, NKT cells, and M0 macrophages

exhibited significant statistical differences between the high- and

low-risk groups, and high infiltration levels of M0 and

M2 macrophages were more pronounced in the higher T stage

(T3, T4), N stage (N1), and clinical stages (III, IV). Macrophages,

also known as tumor-associatedmacrophages (TAMs), block tumor

immunity by producing immunosuppressive molecules and

inducing immune tolerance, thereby generating a tumor

microenvironment (TME) favorable for immune heterogeneity.

Studies have proved that TAMs are involved in various biological

events, including epithelial-mesenchymal transition, immune

escape, tumor angiogenesis, and cancer metastasis (Li et al.,

2020b), which are also likely to be the main mechanisms that

these CRs affect the poor prognosis of ACC in terms of immune

infiltration. According to our sensitivity difference analysis of

common chemotherapeutic agents in ACC, for high-risk patients,

their IC50 values of etoposide and doxorubicin increased compared

with those of low-risk patients, suggesting the higher drug sensitivity

of high-risk patients. Mitotane is currently themost commonly used

and effective oral drug for the treatment of ACC (Author

Anonymous, 2021). The low expression of the RRM1 gene has

been confirmed to be related to mitotane efficacy (Tang et al., 2020).

Therefore, this study investigated RRM1 expression based on the

aforementioned analyses. As a result, high-risk patients had

markedly increased RRM1 expression relative to low-risk

counterparts (p < 0.001), indicating that mitotane had a better

therapeutic efficacy in low-risk cases. Certainly, certain limitations

should be noted in this work. For example, themechanism by which

these CRs regulate ACC cell biology should be further verified

through further experiments. In addition, more multi-center clinical

trials are also needed for verifying that our prognosis prediction

model is practicable. There are still some challenges to be

encountered, given the clinical rarity of ACC.

Conclusion

To conclude, this study identified the DECRs that were

possibly related to ACC genesis and progression, screened

pathways enriched by these DECRs, and verified the excellent

value of these DECRs in prognosis prediction for ACC cases.

Moreover, the drug sensitivity of DECRs was also analyzed.

Although more investigations are warranted for verifying our

conclusions, this study provides reliable ideas and evidence for

the clinical diagnosis and treatment of ACC.
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Glossary

ACC adrenocortical carcinoma

ACA adrenocortical adenoma

CRs chromatin regulators

KM Kaplan–Meier analysis

MPCs myeloid progenitor cells

NK natural killer cells

TC thyroid cancer

DM distant metastasis

DEGs differentially expressed genes

DECRs differentially expressed CRs

ROC receiver operating characteristic curves

OS overall survival

GO_BP Gene Ontology_biological process

GO_CC Gene Ontology_cellular component

GO_MF Gene Ontology_molecular function

KEGG Kyoto Encyclopedia of Genes and Genomes pathways

HPV human papillomavirus

OSCC oral squamous cell carcinoma

NF-kB Nuclear factor-kappa B

IFN interferon signaling

HGCOC high-grade serous ovarian cancer

PARPi PARP inhibitors

HCC hepatocellular carcinoma

BLCA bladder cancer

BRCA breast cancer

LUAD lung adenocarcinoma

PDAC pancreatic ductal adenocarcinoma

NSCLC non-small cell lung cancer

TAM tumor-associated macrophage

TME tumor microenvironment
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Background: A high mortality rate makes hepatocellular carcinoma (HCC) one

of the most common types of cancer globally. 5-methylcytosine (m5C) is an

epigenetic modification that contributes to the prognosis of several cancers,

but its relevance to HCC remains unknown. We sought to determine if the

m5C-related regulators had any diagnostic or prognostic value in HCC.

Methods: M5C regulatory genes were screened and compared between HCC

and normal tissue from The Cancer Genome Atlas (TCGA)and Gene Expression

Omnibus (GEO) databases. Least absolute shrinkage and selection operator

method (LASSO) and univariate Cox regression analysis of differentially

expressed genes were then performed to identify diagnostic markers. A

LASSO prognostic model was constructed using M5C regulatory genes with

prognostic values screened by TCGA expression data. HCC patients were

stratified based on risk score, then clinical characteristics analysis and

immune correlation analysis were performed for each subgroup, and the

molecular functions of different subgroups were analyzed using both Gene

Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA). The

prognostic model was evaluated using univariate and multivariate Cox analyses

as well as a nomogram. Molecular typing was performed according to m5C

regulatory genes and immune checkpoint genes expression respectively, and

clinical characterization and immune correlation analysis were performed for

each subgroup.

Results: M5C regulatory genes are expressed differently in HCC patients with

different clinical and pathological characteristics, and mutations in these genes

are frequent. Based on five m5C regulators (NOP2, NSUN2, TET1, YBX1, and

DNMT3B), we constructed a prognostic model with high predictive ability. The

risk score was found to be an independent prognostic indicator. Additionally,

risk scores can also be applied in subgroupswith different clinical characteristics

as prognostic indicators.

Conclusion: The study combined data from TCGA and GEO for the first time to

reveal the genetic and prognostic significance of m5C-related regulators in
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HCC, which provides new directions for identifying predictive biomarkers and

developing molecularly targeted therapies for HCC.

KEYWORDS

hepatocellular carcinoma, HCC, 5-methylcytosine, m5C, biomarkers, prognosis

Introduction

Hepatocellular carcinoma (HCC) ranks sixth in the

cancer incidence worldwide and ranks third in cancer-

related deaths (de Martel et al., 2020), and it is a major

public health issue. Despite significant advancements in

therapy, the 5-year survival rate for advanced HCC is still

dismal due to the cancer’s late detection, susceptibility to

metastasis, and high recurrence rate. Although some

biomarkers, including alpha-fetoprotein (AFP) and heat

shock protein 90 (Hsp90), have proven to be useful, the

search for early diagnosis biomarkers and effective therapies

for HCC patients is urgent.

There is growing evidence that post-transcriptional

modifications of RNA are important in different cancers

(Cheng et al., 2018; Barbieri and Kouzarides, 2020; Begik

et al., 2020; Chu et al., 2022), which provides ideas for

developing new treatment modalities. There have been

170 types of modifications identified thus far (Boccaletto

et al., 2018), such as N6-methyladenosine (m6A), 5-

methylcytosine (m5C) (Wang et al., 2013), 7-

methylguanosine, and pseudouridylation (Roundtree

et al., 2017; Shi et al., 2020). However, their functions

remain widely unknown due to technical limitations in

accurate localization throughout the genome (Cohn, 1960;

Bauer et al., 2016). There are many post-transcriptional

modifications, but the most common is a reversible

modification called m5C, which serves different functions

in different RNA types (Chow et al., 2007; Squires et al.,

2012; Huang et al., 2019; Trixl and Lusser, 2019; He et al.,

2020a; Cui et al., 2020). M5C modification involves

adenosine methyltransferases (“writers”), demethylases

(“erasers”), and “readers” for protein recognition and

binding. The “writers” include NSUN1-NSUN7, DNMT1,

DNMT2, DNMT3a, and DNMT3b, “erasers” include TET1,

TET2, TET3, and ALKBH1, and among the “readers” are

ALYREF and YBX1. Abnormal modification of m5C has

been connected to many abnormal states, for example

mitochondrial dysfunction, abnormal embryogenesis and

neurodevelopment, tumorigenesis, and tumor cell

proliferation and migration (Navarro et al., 2021;

Walworth et al., 2021). It has also been suggested that

m5C modification can even alter the fate of cancer cells

(Yang et al., 2020), and can be utilized as a biomarker for the

prognosis of many kinds of cancers (Gama-Sosa et al., 1983;

Chellamuthu and Gray, 2020). One study comprehensively

explored and systematically profiled the expression features

of m5C-related regulators in HCC and proved the m5C

modification patterns play a crucial role in the tumor

immune microenvironment and prognosis of HCC (Liu

et al., 2022b). In spite of the fact that anomalous RNA

m5C modification has been detailed to play numerous

capacities in HCC (He et al., 2020b; Sun et al., 2020), the

relationship between m5C regulatory genes and HCC is still

poorly understood, and the diagnostic and prognostic value

of m5C regulatory genes for HCC is unknown.

This study screened and compared the expression

characteristics of the m5C regulators in HCC samples with

those in normal samples using the expression matrix from

TCGA and GEO databases. Univariate Cox as well as LASSO

regression analyses were employed to discover diagnostic

markers. Then five m5C regulatory genes with prognostic

value were screened by using the data from TCGA to

construct a prognostic model. To find out if m5C regulatory

genes are valuable for diagnosis and prognosis in HCC,

researchers performed molecular typing based on m5C

regulatory gene and immune checkpoint gene expression, and

immune correlate analyses and clinical characteristic analyses

were also performed for each subgroup.

Materials and methods

Acquired data and identified differentially
expressed genes

We obtained Gene expression data from TCGA database

(Hutter and Zenklusen, 2018) (https://portal.gdc.cancer.gov/)

and the GSE76427 dataset (Grinchuk et al., 2018) (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76427) in

the GEO database (Barrett et al., 2007) (https://www.ncbi.nlm.

nih.gov/geo/). The TCGA database contains expression data

(Table 1), copy number variants (CNVs), single nucleotide

polymorphisms (SNPs), and relevant clinicopathological

features for 374 HCC samples and 50 paraneoplastic samples.

TABLE 1 Baseline data.

Data Normal Tumor

TCGA 50 (11.8%) 374 (88.2%)

GSE76427 52 (31.1%) 115 (68.9)
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The microarray platform for GSE76427 (sample size: disease

group 115/control group 52) (Table 1) dataset is Illumina

HumanHT-12 V4.0 expression beadchip, and gene set related

to m5C regulators was obtained by Cui et al.’s study (Cui et al.,

2021; Wang et al., 2021; Liu et al., 2022a). We first used “sva”

package (Leek et al., 2012) to preprocess the downloaded TCGA

and GEO dataset expression matrices, including: data

background adjustment and normalization, and output the

expression of intersecting genes in the two datasets separately.

The Perl language was then applied to extract the expression of

m5C regulator genes in both datasets. To determine the validity

of the grouping, we did a principal component analysis (PCA)

and visualized with the help of “ggplot2” package. Subsequently,

by using “limma” package, we determined DEGs between HCC

and normal liver tissue at p < 0.05.

Copy number variant and single
nucleotide polymorphism analyses

GISTIC 2.0 was used to find genes with significant

amplifications or deletions (Mermel et al., 2011) with

thresholds of p > 0.1 and p < 0.05. Mutsig2 was used to

search genes with significant mutations using a threshold of

p < 0.05.

Predictive model construction and
validation

We used m5C regulator genes to construct a prediction

model. The “survival” R package helped us separate HCC

patients into high- and low-risk groups, then we identified

significant RNA regulator genes through univariate Cox

analysis, and visualized through R package “forestplot.” The R

package “glmnet” was used to perform the LASSO regression

analysis (Friedman et al., 2010) on the training cohort, and

overfitting was prevented by tenfold cross-validation. Lastly,

according to the LASSO regression coefficients, the scoring

system was constructed, which prognostic grouping was

performed accordingly. With the help of the “survival”

package in R, we compared the overall survival of both

groups. To evaluate the stability of the model, we performed

ROC curves and calculated AUC for different survival times and

different clinical traits using the “survival” package. Key genes

were obtained by intersecting differentially expressed m5C-

related regulators from the TCGA and GEO data set, and

prognosis-related genes from our prognostic model.

Afterwards, we validated the expression of key genes in

different subgroups. Supplementary Figure S1 shows the

technology roadmap of the study.

On the basis of risk scores and clinical characteristics, we

constructed a nomogram for predicting HCC patients’ survival

probabilities. Afterwards, the discriminative power of the

nomogram was measured by calibration curve and C-index

value obtained from bootstrap analysis (1,000 replicates). The

interactive nomogram was drawn using the R package “regplot”.

GenSet enrichment analysis and gene set
variation analysis enrichment analysis

Gene Set Enrichment Analysis (GSEA) allows us to examine

the distribution of genes within predefined gene sets in a gene list

which arranged according to their phenotype correlation, and

thus determine how they contribute to the phenotype

(Subramanian et al., 2005). The MSigDB database (http://

www.gsea-msigdb.org/gsea/index.jsp) provided “c2.kegg.v7.4.

symbols” and “c5.go.v7.4.symbols” gene sets (Liberzon et al.,

2015). The R package “clusterprofiler” (Yu et al., 2012) can be

used to perform GSEA analysis for those two gene sets in high

and low-risk groups, where a p value less than 0.05 qualifies as

statistically significant.

Gene Set Variation Analysis (GSVA) is a non-parametric,

unsupervised method for evaluating gene set enrichment in

transcriptomes. Through the conversion expression matrices

of genes into expression matrices of gene sets, it is possible to

assess the enriched metabolic pathways in different samples.

GSVA analyses on the two gene sets mentioned above in different

groups was conduct with “GSVA” package (Hänzelmann et al.,

2013) and visualized using the “pheatmap” package.

Immune infiltration in hepatocellular
carcinoma

By using gene expression profiles, ESTIMATE R package

predicted stromal and immune cell scores, and calculated their

numbers for the analysis of HCC tumor purity in this study. We

further compared the ESTIMATE scores among cancer and para-

cancer groups, and among high and low-risk groups.

Molecular isoform construction

Based on “ConsensusClusterPlus”package (Wilkerson andHayes,

2010) we clustered cancer and para-cancer samples from TCGA and

GEO databases into different groups by m5C regulator genes

expression in each sample. The parameters were set to 50 replicates

and a resampling rate of 80% (pItem = 0.8). To determine the validity

of the groupings, a PCA was carried out, and the results were plotted

using the “ggplot2” package. We also analyzed the correlation between

prognosticmodels,molecular subtypes, and clinicopathological features

based on TCGA data. Additionally, we examined the correlation

between different subgroups and risk scores, and the expression of

key genes in different subgroups.
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Immune infiltration analysis

CIBERSORT is a deconvolution algorithm that utilizes linear

support vector regression to evaluate the expression matrices of

immunocellular subtypes, and now is increasingly being used for

immune infiltration characterization analysis in non-tumor

tissues (Ge et al., 2021). Infiltration analysis of immune cells

in HCC patients using RNA-Seq data can be an important guide

in disease research and treatment prognosis prediction, etc.

(Newman et al., 2019). With the CIBERSORT algorithm, this

study compared immune cell infiltration levels between different

prognostic model subgroups and different molecular subtype

groupings, to examine how immune cells infiltration relates to

different models.

FIGURE 1
m5C regulator genes analysis. (A,B): PCA analysis of GEO and TCGA expression matrices after data correction, blue represents tumor samples
(GEO: n = 115, TCGA: n = 374) and red represents control samples (GEO: n = 52, TCGA: n = 50); (C,D): differential expression analysis of m5C
regulator genes in GEO and TCGA expression matrices after data correction, blue represents tumor samples (GEO: n = 115, TCGA: n = 374) and red
represents control samples (GEO: n = 52, TCGA: n = 50); (E): mutation profile of m5C regulator genes in hepatocellular carcinoma; (F): m5C-
related regulators SNV mutation category and frequency; (G): m5C regulator genes CNV amplification and deletion.
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Molecular isotype construction of
immune checkpoint genes

Immune checkpoint genes were obtained from a review [34].

We clustered cancer and para-cancer samples of the TCGA by

the expression level of immune checkpoint genes using the R

package “ConsensusClusterPlus” with 50 repetitions and a

pItem = 0.8. To determine the validity of the grouping. PCA

was used to analyze the genes expression levels, and “ggplot2”

package visualize the results. The expression of key m5C

regulator genes was also assessed in different subgroups.

Using correlation analysis, we examined whether key m5C

regulator genes play a role in HCC through immune cell

infiltration.

FIGURE 2
Expression characteristics and prognostic model construction ofm5C regulator genes in hepatocellular carcinoma. (A,B): m5C regulator genes
co-expression analysis in the corrected GEO (A) and TCGA (B) expression matrices; (C): identify m5C regulator genes associated with prognosis by
univariate COX regression analysis, forest plots show the screened genes; (D,E): show the regression coefficients in the LASSO regression algorithm
and the cross-validation in the proportional risk model to adjust the parameter, finalize the best parameter(λ) to screen themost relevant genes
for hepatocellular carcinoma; (F): survival analysis of different LASSO subgroups; (G,H): multivariate and univariate analysis of risk scores combined
with clinical factors such as patient age, gender, and TNM stage; (I,J): AUC analysis of prognosticmodel and clinical characteristics; (K): Venn diagram
mapping of differential genes in GEO and TCGA liver cancer samples and the intersection of genes screened out by LASSO; (L,M): expression of key
genes TET1 and YBX1 in each LASSO subgroups.
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Statistical analysis

R version 4.0.2 was used for calculations and statistical

analysis (https://www.r-project.org). Student’s t-tests (normally

distributed variables) and Mann-Whitney U-tests (nonnormally

distributed variables) were used for the comparison of

continuous variables between two groups. All statistical p

values all had a two-sided significance with p < 0.05.

Results

Expression characteristics of m5C
regulator genes in hepatocellular
carcinoma

We performed PCA analysis on the corrected datasets fromGEO

and TCGA, the results suggested a good correction effect (Figures

1A,B). Referring toCui et al.’s study (Cui et al., 2021;Wang et al., 2021;

Liu et al., 2022a), we selected the seven most commonm5C regulator

genes (NOP2, NSUN2, TET3, NSUN6, TET1, YBX1, and DNMT3B)

as the subjects. In the GEO dataset, four of the seven m5C regulator

genes (TET3, NSUN6, TET1, and YBX1) were differentially expressed

(Figure 1C), while all seven m5C regulator genes had significant

differential expression in the TCGA dataset (Figure 1D). Figure 1E

lists the overall m5C regulator genes SNP

mutations in HCC samples situation, and Figure 1F shows the

mutation types of differentm5C regulator genesmost closely associated

with the development of HCC. We used CNV data from TCGA to

identify significantly missing or amplified m5C regulator genes.

Among the m5C regulator genes, YBX1 had the highest deletion

frequency and the lowest amplification frequency (Figure 1G).

Construction of prognostic model of m5C
regulator genes and screening of key m5C
regulator genes

Using co-expression analysis (Figures 2A,B) and

univariate COX regression analysis (Figure 2C; Table 2), we

assessed the effects of m5C regulator genes on HCC tissues. In

co-expression analysis, TET1 and DNMT3B showed a

significant positive correlation, and regression analysis

screened six genes, including NOP2, NSUN2, TET3, TET1,

YBX1, and DNMT3B, were associated with HCC. We

constructed a LASSO prognostic model containing five

genes, including NOP2, NSUN2, TET1, YBX1, and

DNMT3B (Figures 2D,E), and a median risk score was used

to separate HCC patients into two groups. It was

demonstrated that low-risk patients lived significantly

longer (Figure 2F). We evaluated COX regressions based on

risk scores and clinical traits (age, gender, and TNM stage)

using univariate and multivariate models (Figures 2G,H).

Using AUC, we validated the LASSO prognostic model,

and demonstrated that risk scores were highly predictive

for 1-year, 3-years, and 5-years survival (Figures 2I,J). To

further screen the key m5C regulator genes, we performed an

intersection between DEGs from GEO and TCGA dataset and

the key genes identified by LASSO modal, and finally obtained

two of them, TET1, and YBX1 (Figure 2K), and it suggested

that both two genes were higher expressed in high-risk group

(Figures 2L–M). In combination with risk scores and clinical

information, a nomogram (Figure 3A) and its calibration

curve were constructed (Figure 3B), and we observed that

sample’s risk scores tended to increase with the progression of

T-stage and grade (Figures 3C,D), which is consistent with our

previous predictions.

Evaluation of prognostic model for m5C
regulator genes

We performed a GSVA analysis of the molecular functions

for the different groups classified by the LASSO model. Low-

risk group focused on functions relating to platelet dense

granule lumen, regulation of fibrinolysis, blood coagulation

intrinsic pathway, and protein activation cascade according

to GO analysis (Figure 3E; Supplementary Table S1). KEGG

analysis revealed it focused on olfactory transduction, nitrogen

metabolism, histidine metabolism, serine and threonine

metabolism (Figure 3E; Supplementary Table S1). We also

performed GSEA analysis (Supplementary Figures S1A–D,

Supplementary Table S2). As shown by GO analysis, the

high-risk group was related to functions such as actin

filament organization, actin polymerization or

depolymerization, adaptive immune response, αβT cell

activation, and anatomical structure homeostasis

(Supplementary Figure S1A), while the low-risk group was

linked to functions such as bile acid secretion, drug

transmembrane transport, fatty acid β oxidation using acyl-

CoA dehydrogenase, negative regulation of triglyceride

metabolic process, and neurotransmitter catabolic process

(Supplementary Figure S1B). According to KEGG analysis,

TABLE 2 Univariate Cox regression analysis.

Id HR HR.95L HR.95H p-value

NOP2 1.70 1.21 2.40 2.54E-03

NSUN2 1.65 1.14 2.39 7.47E-03

TET3 1.54 1.05 2.27 2.90E-02

NSUN6 0.92 0.71 1.20 5.60E-01

TET1 2.57 1.49 4.44 7.12E-04

YBX1 2.34 1.76 3.10 4.52E-09

DNMT3B 1.72 1.18 2.50 4.63E-03
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pathways of high-risk group appeared to be enriched in

Chemokine signaling pathway, cell adhesion molecules cams,

Cell cycle, spliceosome, and Fc gamma r mediated phagocytosis

(Supplementary Figure S1C). For low-risk group, pathways

were enriched in beta alanine metabolism, histidine

metabolism, linoleic acid metabolism, primary bile acid

biosynthesis, and renin angiotensin system (Supplementary

Figure S1D). We scored each subgroup using the ESTIMATE

algorithm, and found a higher immune score in the high-risk

group (Supplementary Figure S1E), but a lower stromal score,

immune score, and ESTIMATE total score in the tumor group

(Supplementary Figure S1F).

FIGURE 3
Clinical analysis and GSVA analysis of the prognostic model. (A) risk score combined with clinical indicators to draw nomogram; (B) comparison
of predicted survival time and actual survival time using nomogram; (C,D): correlation analysis for G-stage and T-stage, respectively; (E,F): GSVA-GO
analysis (E) and GSVA-KEGG analysis (F) for high and low-risk group.
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Molecular typing of m5C regulator genes
and correlation analysis

In an effort to a better understood for the biological

characteristics of m5C regulator genes in HCC patients,

TCGA samples were clustered according to their expression

level. Two subtypes of samples were identified (1: n = 232; 2: n =

192, Figures 4A–C), which PCA result showed high separation

quality (Figure 4D), and in combination with the survival

information of HCC patients and the grouping information

of LASSO model, we constructed a Sankey diagram (Figure 4E).

Cluster1 shows a significantly higher risk score compared to

cluster2 (Figure 4F), confirming again the previous results. The

differential analysis indicated the two key genes, TET1 and

YBX1 were significantly higher expressed in cluster1 (p < 0.05,

Figures 4G,H).

We validated the previous results using the GEO expression

matrix and samples were also classified into two isoforms (I: n = 95;

2: II = 72, Figures 5A–C). PCA result showed a higher quality of

isolation (Figure 5D), and above two key genes were also present in

cluster I with significantly higher expression (p < 0.05, Figures 5E,F).

Correlation analysis between m5C
regulator genes and immune infiltration

Through CIBERSORT, we calculated the infiltration degree of

22 immune cell types in two groups classified by the LASSOmodel

FIGURE 4
Correlation analysis of m5C regulator genes with molecular subtypes of TCGA liver cancer. All samples of TCGA were clustered according to
their expression level of m5C regulator genes; (A): sample size after grouping; (B): change in area under the CDF curve (k= 2–9); (C): change of delta
area plot when k = 2 to k = 9; D: PCA analysis of cluster1 and cluster2, where cluster 1 is in red and cluster 2 is in blue; (E): Sankey diagram combining
survival status and LASSO model grouping; (F): difference in risk scores of different groupings, cluster 1 in blue and cluster 2 in orange; (G,H):
differential expression of key m5C regulator genes TET1 (G) and YBX1 (H) in different groupings, cluster 1 in blue and cluster 2 in red.
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to compare their variability of immune infiltration. A significant

difference was observed in the infiltration degree of six kinds of

immune cells when using the wilcox.test algorithm (Figure 6),

namely activated CD4 T cells、resting CD4 T cells, resting NK

cells, M0 Macrophages, resting dendritic cells, and resting mast

cells. Among them, four immune cells types were p < 0.001, one

kind was p < 0.01, and another kind was p < 0.05. Additionally,

nine kinds of immune cells showed a difference in their infiltration

degree between two subtypes of molecular typing (Supplementary

Figure S2), namely activated CD4 T cells, T gamma delta cells,

naive B cells, M0 Macrophages, resting CD4 T cells, Monocytes,

M2 Macrophages, T follicular helper cells, and Tregs cells, and six

of them were p < 0.001, one was p < 0.01 and two were p < 0.05.

Molecular isotype construction of
immune checkpoint genes

We used significantly differentially express immune

checkpoint genes to conduct hierarchical clustering of all

HCC samples again to find out the correlation between these

genes and m5C. Among all samples, two subtypes were identified

(A: n = 332; B: n = 92, Figures 7A–C). The PCA result showed a

high quality of separation (Figure 7D), and differential analysis

showed that TET1 and YBX1 were significantly differentially

expressed in different subgroups (p < 0.01, Figures 7E,F.

Correlation analysis between key m5C
regulator genes and immune cells

Using correlation analysis between key m5C regulator genes

and the immune microenvironment, we examined the potential

correlation between m5C regulators and immunotherapy

efficacy. Combining CIBERSORT results with key m5C

regulator genes, we found a positive correlation between

TET1 and the infiltration level of various kinds of innate or

acquired immune cells, such as M0 macrophages, resting

dendritic cells, and T follicular helper cells, while a significant

negative correlation with M1 macrophages, M2 macrophages,

and resting mast. There was a positive correlation between

YBX1 and resting dendritic cells and M0 macrophages, but a

negative correlation with Tregs and CD4 T cells (Supplementary

Figure S3).

FIGURE 5
Correlation analysis of m5C regulatory genes with molecular subtypes of GEO liver cancer. (A-C): All samples of GEO were classified by the
expression level of m5C regulator genes; (D): PCA analysis under different groupings; (E,F): differential expression of key m5C regulator genes
TET1 (E) and YBX1 (F) in different groupings, where cluster I is in blue and cluster II is in red.
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Discussion

Ongoing studies have showed that RNA modification

contributes to tumorigenesis and tumor progression, and

there is growing evidence that m5C regulator genes may

serve as potential biomarkers for cancer prediction (Huang

et al., 2021a; Huang et al., 2021b; Cui et al., 2021; Xue et al.,

2021). It has been suggested that 5 mC methylation influences

the development of HCC including clinical stage, progression,

and prognosis (Villanueva et al., 2015; Hlady et al., 2019), but

the relationship between m5C-related RNA modification and

HCC is still poorly understood. In order to test whether these

genes can provide prognostic clues for HCC and assist in its

initiation and progression, we need to focus on their aberrant

expression in HCC. This study confirmed that m5C regulator

genes was differentially expressed between HCC and normal

samples.

The difference of m5C regulator genes expression levels

between tumor and paraneoplastic tissues suggested that these

genes may be associated with the carcinogenesis and progression

of HCC. MeRIP-seq was used in one study to analyze the m5C

modification in tumor and paraneoplastic tissues, and it was

found that m5C modification peaks were more abundant and

higher in mRNA of HCC tissues, which reconfirmed the

relevance of m5C in this disease (Zhang et al., 2020).

Aberrant gene methylation is strongly associated with HCC,

both in frequency and amount (Nishida et al., 2008).

We constructed a LASSO regression model, which showed

satisfactory predictive performance. Similarly, He et al.

(2020b) utilized TCGA data developed a two-gene

signature of m5C regulators (NSUN4 and ALYREF) with

HCC prognostic value based on the LASSO and

multivariate Cox regression models. Also demonstrate that

the role of m5C related regulators in HCC are dysregulated

and associated with patient survival. The methodology we

used is largely similar, the major difference being is that we

analyzed GEO data combined with the TCGA analysis. In fact,

our study proves that utilizing multiple datasets and analytic

approaches may identify important gene signatures that

would otherwise not be identified using a single dataset/

approach. Ultimately this may improve the validity of the

findings and be a stronger indication to evaluate these genes in

experimental and clinical settings.

For a comprehensive analysis, we performed GSVA and

GSEA analyses. “Adaptive immune response” and “cell cycle”

et al. are found related to hepatocarcinogenesis and progression.

M5C-related RNA modifications impact mRNA translation,

transport, and stability, and m5C regulator genes appeared to

be associated with “spliceosomes” in this study, suggesting their

importance in RNA processing.

FIGURE 6
Correlation analysis of prognostic models and immune cells. (A) Differential analysis of the degree of immune cell infiltration in prognostic
model subgroups, blue for high-risk and red for low-risk; (B–G): Differential analysis of the degree of infiltration of six types of immune cells,
including resting dendritic cells, M0 Macrophages, resting mast cells, resting NK cells, activated CD4 T cells, and resting CD4 T cells.
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Tumor cells are the drivers of tumor development, but they can’t

function alone during tumor progression without the tumor

microenvironment (TME). Blood vessels, fibroblasts, immune cells,

extracellularmatrix, and signalingmolecules are all components of the

TME which contribute to tumorigenesis and tumor progression.

Evidence suggests m5C-related regulators are associated with the

tumor immune microenvironment (Geng et al., 2021). Numerous

tumors have been studied to correlate tumor immune cell infiltration

with clinical outcome (Ishigami et al., 2000; Villegas et al., 2002;

Hamanishi et al., 2007; Sharma et al., 2007; Zhu et al., 2009;Mahmoud

et al., 2011), however, we do not yet know how m5C modification

affects the immune system in HCC. Here, we describe the infiltration

characteristics of TME cells in differentmodel groupings and perform

immune scoring, which shed light on the molecular mechanism of

HCC and new clues for prognosis prediction.

As a result of its aggressiveness, metastasis, and refractoriness,

HCC has a high mortality rate and poor prognosis (Ioannou,

2021). While medical technology continues to advance and

therapeutic approaches vary, there are still no ideal therapeutic

targets or targeted interventions for HCC because its molecular

mechanisms of carcinogenesis and development are still unclear

(Jiří et al., 2020). It has been shown that azacytidine can reduce

cancer cells proliferation by inhibiting m5C modification (Esteller

and Pandolfi, 2017), suggesting that reducing m5C modification

may contribute to cancer treatment. Ultimately, different RNA

epigenetic modifications mediated by regulatory factors provide

new idea for finding potential therapeutic targets.

From the perspective of combined multi-omics analysis, we

explored the expression profiling of m5C-related genes in HCC,

correlation prognostic model construction and evaluation,

molecular typing and correlation analysis, immune cell

infiltration correlation analysis, immune checkpoint gene

molecular subtype construction, and immune cell correlation

analysis. Other functions, limited by the length of this study, we

really did not study, but we intend to verify other biological

functions of m5C through the experimental perspective by doing

experiments such as WB, PCR and IHC.

Conclusion

The study combined data from TCGA and GEO for the first

time to reveal the genetic and prognostic significance of m5C-

related regulators in HCC, which provides new directions for

identifying predictive biomarkers and developing molecularly

targeted therapies for HCC.

FIGURE 7
Molecular typing based on immune checkpoint genes. (A–C): Cluster grouping based on immune checkpoint genes, (A): sample size after
grouping; (B): change in area under the CDF curve (k = 2–9); (C): change of delta area plot when k = 2 to k = 9; (D): PCA analysis of cluster A and B;
E-F: differential expression level of TET1 (E) and YBX1 (F) in different groupings, cluster (A) in blue and cluster (B) in red.
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Breast cancer ranks first in terms ofmortality and incidence rates worldwide among

women. The HER2+ molecular subtype is one of the most aggressive subtypes; its

treatment includes neoadjuvant chemotherapy and the use of a HER2 antibody.

Some patients develop resistance despite positive results obtained using this

therapeutic strategy. Objective. To identify prognostic markers for treatment and

survival in HER2+ patients. Methods. Patients treated with neoadjuvant

chemotherapy were assigned to sensitive and resistant groups based on their

treatment response. Differentially expressed genes (DEGs) were identified using

RNA-seq analysis. KEGG pathway, gene ontology, and interactome analyses were

performed for all DEGs. An enrichment analysis Gene set enrichment analysis was

performed. All DEGs were analyzed for overall (OS) and disease-free survival (DFS).

Results. A total of 94 DEGs were related to treatment resistance. Survival analysis

showed that 12 genes (ATF6B, DHRS13, DIRAS1, ERAL1, GRIN2B, L1CAM, IRX3,

PRTFDC1, PBX2, S100B, SLC9A3R2, and TNXB) were good predictors of disease-

free survival, and eight genes (GNG4, IL22RA2, MICA, S100B, SERPINF2, HLA-A,

DIRAS1, and TNXB) were good predictors of overall survival (OS). Conclusion: We

highlighted a molecular expression signature that can differentiate the treatment

response, overall survival, and DFS of patients with HER2+ breast cancer.
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breast cancer, neoadjuvant chemotherapy, RNA-seq, biomarkers, bioinformatics,
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Introduction

Breast cancer is a heterogeneous disease characterized by

abnormal and uncontrolled growth of malignant breast cells.

Among all types of cancer, this disease ranks first in mortality and

incidence rates in women over 25 years of age worldwide (Sung

et al., 2021). In 2000, Perou et al. reported different molecular

expression patterns in patients with breast cancer, and these

patterns were subsequently used to classify breast cancer into

distinct molecular subtypes (Perou et al., 2000; Sorlie et al., 2003).

According to this classification, cancer cells that express human

epidermal growth factor 2 (ERBB, formerly HER2) and not

estrogen receptors (ER) are identified as the HER2+ molecular

subtype, which represents 15%–30% of breast cancer patients, is

an aggressive phenotype, and a predictor of poor outcome (Ban

et al., 2020).

The treatment of HER2+ breast cancer includes the

administration of chemotherapy and trastuzumab, a

monoclonal antibody against the HER2 receptor (Abal et al.,

2003; Harbeck and Gnant, 2017; Waks and Winer, 2019).

Conventional neoadjuvant chemotherapy involves

anthracyclines followed by taxane application. Anthracyclines

work by joining DNA and suppressing the binding of DNA

polymerase, thereby preventing DNA replication (McGowan

et al., 2017). Taxanes affect mitotic spindle formation by

binding to tubulin dimers, thereby preventing the division of

tumor cells (Yardley, 2013; Harbeck and Gnant, 2017).

Furthermore, adding trastuzumab in conventional

chemotherapy helps block HER2 receptor-induced cell growth

signaling (Maximiano et al., 2016). Despite the positive results

obtained with this therapeutic strategy, some patients develop

resistance. The molecular mechanisms underlying resistance are

not fully understood; therefore, there is a lack of predictive

biomarkers that are helpful in the prognosis and prediction of

chemotherapy response (Iwamoto et al., 2020).

This study aimed to evaluate the transcriptome of HER2+

breast cancer patients and, according to their response to

chemotherapy (sensitivity or resistance), to identify

differentially expressed genes (DEGs) that could be useful in

predicting patient outcomes after neoadjuvant chemotherapy

treatment.

Materials and methods

Sample selection, chemotherapy
treatment, and study design

Patients aged 18 years and older with a diagnosis of breast

cancer, HER2+/PR-/ER-, tumor size >2 cm, and positive nodes,

candidates to receive neoadjuvant chemotherapy, and without

previous therapy against cancer were recruited for this study.

Patients with metastatic cancer, those with insufficient breast

cancer biopsy tissue for pathological analysis, or those with RNA

extraction were excluded. All participants provided written

informed consent prior to enrolment. The data were deposited

in the Gene Expression Omnibus (GEO) repository under the

number GSE162187. Samples were separated by pathologic

response into two groups: pathological complete response

(pCR) was considered the sensitive group, and those in the

non-pCR group were considered the resistant group.

Additionally, we used and analyzed data from the

GSE163882 study, and HER2+/PR-/ER-samples were selected.

The results obtained from both databases were compared.

Finally, from the TCGA breast ductal carcinoma database,

HER+/PR-/ER-breast cancer samples were selected for analysis

of overall survival.

Ethics and informed consent statements

The study was conducted in accordance with the guidelines

of the Declaration of Helsinki and the ethical standards of the

institutional and/or national research committee. This study was

approved by the Ethical and Research Committee of the Instituto

Mexicano del Seguro Social (IMSS) (number R-2013-785-061).

Informed consent was obtained from all subjects involved in the

study.

Quality control, alignment, and differential
expression

The FASTQ files were analyzed with the Flexbar software tool

version 3.5.0 (https://github.com/seqan/flexbar/releases/tag/v3.5.

0) (Dodt et al., 2012; Roehr et al., 2017) to remove Illumina

adapters and to filter reads by a Phred score >30. To quantify the
RNA-seq data, a pseudo-alignment was performed using Kallisto

software version 0.46.1 (https://pachterlab.github.io/kallisto/

download.html) (Bray et al., 2016) with the default parameters

and the GRCh38 human genome reference (GRCh38. p12). The

DESeq2 package version 1.28.1 (https://bioconductor.riken.jp/

packages/3.0/bioc/html/DESeq2.html) (Love et al., 2014) was

used for the analysis of abundance tables and the

identification of differentially expressed genes (DEGs) for

comparing resistant and sensitive samples (set as the reference

group). The Ensembl database was used for the annotation of

genes. To decrease the false discovery rate, the

Benjamini–Hochberg correction test was applied to obtain

adjusted p-values.

Enrichment and interaction analysis

We selected all DEGs (p < 0.05) obtained from

GSE162187 for analysis with the KEGG Mapper (https://www.
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genome.jp/kegg/tool/map_pathway1.html) (Kanehisa and Sato,

2020) and the DAVID v6.8 web tools (https://david.ncifcrf.gov/

home.jsp) to identify pathways implicated in treatment response.

The Panther database v.16.0 (Mi et al., 2021) web tool was

used for Gene Ontology enrichment analysis using Fisher’s exact

test and false discovery rate (FDR), with a threshold of p < 0.05,

which was considered to be significant for each of the three

categories, that is, molecular function, cellular component, and

biological process.

Gene set enrichment analysis (GSEA) was performed using

the pre-ranked DEGs list. GSEA software v4.2.2 was used for

analysis (Subramanian et al., 2005). A molecular signature

database (MsigDB v7.4) was used, taking the nine collections

(C1:C9, and H) for enrichment analysis (Subramanian et al.,

2005; Liberzon et al., 2011; Liberzon et al., 2015).

To perform an interactome analysis, the DEGs were filtered

by adjusted p-value <0.05 and analyzed using STRING-DB

v11.0 software (https://string-db.org/) (Szklarczyk et al., 2019),

the confidence score was set up at 0.7 to represent

protein–protein associations.

Principal component analysis and
heatmap representation

The geometric mean of the counts for each gene was used as a

normalization factor. Once normalized, the principal component

analysis (PCA) and heatmap representation were performed with

the prcomp package and heatmap functions, respectively, with

the default parameters in R v.4.0.2 (“Taking off Again”) using as

variables the normalized counts of the DEGs with an adjusted

p-value of <0.05.

Survival analysis

Furthermore, a database of 109 patients obtained from the

TCGA breast ductal carcinoma study with HER+/ER-/PR-was

analyzed (TCGA Research Network: https://www.cancer.gov/

tcga) at 60 and 120 months to analyze overall survival (OS)

and disease-free survival (DFS). Gene expression levels were

determined according to normalized Log2-read counts for

each gene. Median and quartiles were used for determining

high- and low-expression groups. DEGs with an adjusted

p-value < 0.05 were analyzed. Statistical significance was set at

p < 0.05.

Results

A previous study was conducted to determine biomarkers of

response to neoadjuvant chemotherapy in patients with breast

cancer (GSE162187) (Barron-Gallardo et al., 2022). In this study,

HER2+ samples were taken and included in the RNA-seq

analysis; five samples were from patients categorized as

resistant to treatment, and three samples were from patients

sensitive to treatment. This small subset was used as training

data. The results were validated using the GSE163882 dataset,

which included information from 222 patients with breast

cancer. Patients were over 33 years old; the mean ages for the

resistant and sensitive groups were 52.2 (±12.15) and 62 (±6.24)

years, respectively, with no statistical differences. The diagnostic

status of all the patients was invasive ductal carcinoma breast

cancer. The histological grades for tumor biopsies based on SBR

(Scarff–Bloom–Richardson) parameters were five SBRII, two

SBRIII, and one with non-available information

(Supplementary Table S1).

The transcriptomic pattern was studied to determine the

variables that specifically discriminated HER2+ patients

according to their neoadjuvant treatment response. Despite

having two groups defined by their pathological response,

principal component analysis (PCA) with all genes detected

by RNA-seq showed that the samples did not form specific

clusters. Moreover, the distribution of the samples followed a

heterogeneous pattern, indicating that HER2+ breast cancer

patients may have high variability in gene expression

(Supplementary Figure S1A).

Determination of DEGs related to
treatment resistance in the training data

HER2+ patients were grouped into sensitive and resistant to

neoadjuvant chemotherapy groups to obtain DEGs related to

treatment response. The transcriptomes of both groups were

compared, and a total of 1383 genes were observed to be

differentially expressed (p < 0.05), of which 719 were sub-

expressed and 664 were overexpressed in the resistant group

as compared with the sensitive group (Figure 1A). To diminish

the inclusion of false-positive DEGs, the Benjamini–Hochberg

post hoc test was applied; among the 1383 DEGs, only

94 maintained statistical significance with an adjusted p-value

(p-adj) <0.05 (45 subexpressed and 49 overexpressed genes)

(Figure 1B).

Thereafter, we investigated whether this set of 94 DEGs could

adequately classify the samples as sensitive and resistant to

treatment. Therefore, principal component analysis (PCA)

with only 94 genes was performed again. The results showed

two clusters defined by principal component 1 (PC1) with

55.35% and principal component 2 (PC2) with 15.79% of the

data variance (Supplementary Figure S1B). Therefore, the

selection of the 94 DEGs included genes capable of clustering

HER2+ patients into resistant and sensitive groups. As shown in

Supplementary Table S2, from the 94 DEGs, the top

10 overexpressed genes were HLA-DQA1, TRIM26, IGHJ6,

AGPAT1, IGHV1-69-2, PBX2, HLA-DRB1, PRRC2A,
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LRRC37A3, and TNXB, and the top 10 underexpressed genes

were HLA-A, CDRT15L2, GSTM1, CCDC187, GRIN2B,

SCGB2A1, GNG4, SBSN, CRISP3, and ZG16B.

To visualize the expression pattern (color density) and

distribution (clustering) of the 94 DEGs, heatmap analysis was

performed (Figure 2). The column dendrogram results showed

two clusters belonging to the sensitive and resistant groups. The

row dendrogram shows four clusters of genes with similar

expression patterns.

Pathways and enrichment analysis of
DEGs related to chemotherapy resistance

The 94 DEGs were analyzed using the KEGGMapper search

pathway tool and DAVID v6.8. Among the 318 KEGG pathways,

seven were statistically modulated (FDR <0.05) (Figure 3A),

including graft-versus-host disease, allograft rejection, type I

diabetes mellitus, autoimmune thyroid disease, viral

myocarditis, antigen processing and presentation, and cell

adhesion molecules. In addition, GO analysis results showed

that the biological processes enriched by DEGs were related to

the interferon-gamma-mediated signaling pathway. The cellular

components in which the DEGs were included were associated

with the MHC class II protein complex, luminal side of the

endoplasmic reticulummembrane, endoplasmic reticulum (ER)-

to-Golgi transport vesicle membrane, and extracellular space.

Finally, the modulated molecular functions were MHC class II

receptor activity and peptide-antigen binding (Figure 3B).

Enrichment analysis showed a total of 40 gene sets enriched

with a p-value < 0.05 (35 positively and five negatively), which

belongs to C1 (1 enriched set), C2 (6 enriched sets), C3

(2 enriched sets), C5 (19 enriched sets), C7 (7 enriched sets),

and C8 collections (5 enriched sets). The C4, C6, and H

collections did not contain enriched sets. From the enriched

sets, we found two related to therapy resistance (Massarweh

tamoxifen resistance and Creighton endocrine therapy resistance

gene sets) and three related to the immune system, such as GOBP

immune response, Goldrath antigen response, and CHR6P21,

which is a location for genes related to the immune system (HLA-

DQA1, HLA-DRB1, HLA-B, and MICA) (Supplementary

Table S2).

Determination of interactions clusters
between DEGs

An analysis of 94 DEGs was performed to determine the

molecular interactions between them. The STRING-DB tool was

used to set an interaction score with high confidence (0.7). The

results showed 18 edges (genes) distributed among seven clusters:

one with five genes, one with three genes, and five with two genes.

Among the seven clusters, the cluster with five edges was related

to the interferon-gamma-mediated signaling pathway, MHC

class I/II-like antigen recognition protein, and cell adhesion

molecules, including the HLA-A, HLA-DQA1, TRIM26, HLA-

B, and HLA-DRB1 genes (Figure 3C).

Evaluation of DEGs for survival prediction

To evaluate whether the expression of the 94 DEGs was

related to survival prediction, measured as DFS or OS, we

analyzed the 94 DEGs individually using a database with

FIGURE 1
Differentially expressed genes (DEGs) related to neoadjuvant chemotherapy outcomes in HER2+ patients with breast cancer. Each point
represents every DEG in the resistant group compared with the sensitive. Overexpressed genes are colored red, subexpressed genes are represented
by blue points. The x-axis shows the value of the log2 (fold change), and the y-axis represents (A) the p-value and (B) the adjusted p-value.
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FIGURE 2
Expression patterns of DEGs in resistance and sensitivity. The row Z-score of the normalized read counts of DEGs with p-adj < 0.05 are plotted
in the heatmap. The red color indicates a row Z-score >0, and the blue indicates a row Z-score <0. Columns represent each patient, and each row
represents a gene. The dendrogram at the top of the heatmap clusters the patients according to their gene expression pattern, while the dendrogram
at the left side of the heatmap groups the genes with similar expression patterns. Columns 1 to 3 represent sensitive patients, and columns 4 to
8 represent resistant patients.
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expression information of 109 patients with HER+/ER-/PR-, and

data were obtained from TCGA breast ductal carcinoma study. A

total of 12 DEGs predicted the DFS. The high expression of

ATF6B, DHRS13, DIRAS1, ERAL1, GRING2B, IRX3,

PRTFDC1, and PBX2 was found to be an excellent prognostic

of DFS at 5 years; on the other hand, a high expression of L1CAM

was associated with lower DFS at 5 years (Figure 4). We found

that low expression of TNXB and SLC9A3R2 and high

expression of S100B were associated with better DFS in the

long term (10 years) (Figure 5).

According to the OS analysis, groups with high expression of

GNG4, IL22RA2, S100B, and SERPINF2 were associated with

better OS at 5 years; the same was true for HLA-A and DIRAS1 at

10 years. In contrast, high expression of MICA and TNXB was

related to lower OS times at 5 and 10 years, respectively

(Figure 6).

FIGURE 3
KEGG, GO, DEGs interaction related to chemotherapy resistance. The 94 DEGs with a p-adj < 0.05 were analyzed to know their contribution to
KEGG pathways, gene ontology, and the interaction clusters (A) KEGG enrichment analysis (B) GO enrichment analysis. Each bar represents the fold
enrichment value for KEGG and GO. The x-axis plots the fold enrichment values, and the y-axis shows the pathway’s name or GO terms. In GO
enrichment analysis, the plot is divided into three categories: biological process (red bars), cellular component (green bars), and molecular
function (blue bars). (C) Interactome analysis. Only DEGs that interact with each other were plotted in the graph. Network nodes represent proteins
encoded by DEGs; colors represent the category to which encoded proteins belong; edges represent protein-protein interactions. Line colors
indicate the type of interaction reported.
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FIGURE 4
DEGs related to the prediction of DFS at 5 years. The 94 DEGs (p-adj<0.05) were analyzed in the TCGA ductal breast cancer database (https://
www.cancer.gov/tcga). The red line indicates the high expression group, and the blue line represents the low expression group. Y-axis shows theDFS
percentage; X-axis shows the time in years. (A) ATF6B, (B) DHRS13, (C) DIRAS1, (D) ERAL1, (E) GRIN2B, (F) L1CAM, (G) IRX3, (H) PRTFDC1, (I) PBX2.

FIGURE 5
DEGs related to the prediction of DFS at 10 years. DEGs that meet the criteria of p-adj<0.05 were analyzed using the TCGA ductal breast cancer
database (https://www.cancer.gov/tcga) to determine their association with DFS at 10 years. The red line indicates the high expression group, the
blue line represents the low expression group. Y-axis shows the disease-free survival percentage; X-axis shows the time in years. (A) S100B, (B)
SLC9A3R2, (C) TNXB.
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Odds ratio analysis was performed to determine if there is

any difference at the end point of five of 10 years in OS or

DFS. The results of the odds ratio analysis showed a similar

prognostic pattern for each gene compared with the results

obtained from the log-rank analysis, except for

GRIN2B, PRTFDC1, SLC9A3R2 in DFS and HLA-A,

IL22RA2 in OS whose p values were greater than 0.05

(Supplementary Table S3).

Furthermore, univariate and multivariate Cox analyses

were performed. The results show some genes in which the

expression can be considered a predictor variable associated

with survival time. In univariate cox analysis for DFS, the

coefficients were negative for DHRS13, GRIN2B and positive

for L1CAM with p < 0.05. When applying the univariate cox

analysis for OS, DIRAS had a negative coefficient, and MICA

had a positive coefficient p < 0.05 (Table 1). We performed

multivariate cox analysis using age, pathologic stage,

radiation therapy, and the expression level as variables.

The results show that as higher the pathologic stage, the

hazard to disease recurrence increases for ATF6B, DHRS13,

DIRAS1, ERAL1, GRIN2B, L1CAM, PBX2, PRTFDC1,

SLC9A3R2, and TNXB, furthermore, increase the risk of

death when analyzed DIRAS1, IL22RA, MICA, and S100B.

Alongside, neoadjuvant radiation therapy was

correlated with decrease recurrence risk in ATF6B,

DHRS13, DIRAS1, LICAM, and SLC9A3R2, and decreases

dead risk when analyzed S100B, MICA, and DIRAS1

(Table 2).

FIGURE 6
DEGs related to overall survival. DEGs with p-adj<0.05 were contrasted with overall survival data at 5 and 10 years in the TCGA ductal breast
cancer database (https://www.cancer.gov/tcga). The red line indicates the high expression group, and the blue line represents the low expression
group. Y-axis shows the overall survival percentage; X-axis shows the time in years. Panels for (A) GNG4, (B) IL22RA2, (C) MICA, (D) S100B, and (E)
SERPINF2 represent OS at 5 years, while panels for (F) HLA-A, (G) DIRAS1, and (H) TNXB showed OS data for 10 years.
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Analysis of the 94 DEGs in other studies
highlight similar DEGs as possible
biomarkers

Finally, to evaluate whether the data from GSE162187

(94 DEGs between resistant and sensitive patients) has a

consistent expression with other studies, we analyzed the data

of the study GSE163882, which aimed to predict pCR to

neoadjuvant therapy in breast cancer patients. Data from

GSE162187 were used as training data, and data from the

GSE163882 dataset were used as corroboration data. This

analysis discard 84 DEGs and identified 10 DEGs in common

(ATF6B, ERAL1, CRYM, MUC16, SOX10, MICA, PDE2A,

TMEM97, SDF2, and BICDL2) that could discriminate patient

TABLE 1 Univariate cox regression analysis for expression variable.

Gene Variable Coef exp (coef) se (coef) z Pr (>|z|) Survival

DHRS13 Expression -2.1257 0.1193 1.0494 -2.026 0.0428 DFS

GRIN2B Expression -1.3827 0.2509 0.6886 -2.008 0.0446 DFS

L1CAM Expression 1.6424 5.1677 0.7829 2.098 0.0359 DFS

DIRAS1 Expression -1.5443 0.2135 0.7695 -2.007 0.0448 OS

MICA Expression 1.6142 5.0238 0.7847 2.057 0.0397 OS

Coef = coefficient; exp = Exponential; se = standard error.

TABLE 2 Multivariate Cox Regression Analysis including clinical variables

Survival type Gene Variable Coef exp (coef) se (coef) p-value

DFS ATF6B Pathologic_stage 0.56021 1.75105 0.19235 0.0036

Radiation_therapy -1.52251 0.21816 0.76688 0.0471

DHRS13 Pathologic_stage 0.76044 2.13923 0.22323 0.0007

Radiation_therapy -1.56215 0.20968 0.71944 0.0299

DIRAS1 Pathologic_stage 0.73385 2.08308 0.21171 0.0005

Radiation_therapy -1.64476 0.19306 0.72105 0.0225

ERAL1 Pathologic_stage 0.67782 1.96958 0.19343 0.0005

GRIN2B Pathologic_stage 0.71306 2.04023 0.21839 0.0011

L1CAM Pathologic_stage 0.56388 1.75748 0.17428 0.0012

Radiation_therapy -1.95488 0.14158 0.74922 0.0091

PBX2 Pathologic_stage 0.57663 1.78003 0.19418 0.003

PRTFDC1 Expression -2.26336 0.104 1.10961 0.0414

Pathologic_stage 0.64406 1.90419 0.1972 0.0011

S100B Expr_quant 3.647 38.37 1.088 0.0008

SLC9A3R2 Expression 3.08808 21.9349 1.21697 0.0112

Pathologic_stage 0.51109 1.66711 0.18757 0.0064

Radiation_therapy -2.09806 0.12269 0.80884 0.0095

Expr_quant -1.21336 0.2972 0.58311 0.0375

TNXB Pathologic_stage 0.56011 1.75086 0.2683 0.0368

OS DIRAS1 Pathologic_stage 1.12604 3.08344 0.29716 0.0002

Radiation_therapy -3.9416 0.01942 1.08224 0.0003

IL22RA2 Pathologic_stage 0.9143 2.49502 0.42703 0.0323

MICA Expression 4.936,011 139.214 1.840,017 0.0073

Pathologic_stage 1.125,939 3.08311 0.275,097 4E-05

Radiation_therapy -3.643,406 0.02616 1.172,328 0.0019

Expr_quant -1.656,961 0.19072 0.803,941 0.0393

S100B Pathologic_stage 0.873,639 2.39561 0.23499 0.0002

Radiation_therapy -3.068291 0.0465 0.944,318 0.0012
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outcomes. Therefore, these 10 DEGs were considered possible

biomarkers of pCR and neoadjuvant chemotherapy response.

Moreover, three DEGs (ATF6B, ERAL1, and MICA) have a

strong correlation with DFS and OS.

Discussion

One fundamental aspect of treating breast cancer patients is

the knowledge of their molecular subtypes. This information has

per se a prognostic value for predicting patient treatment

response (von Minckwitz et al., 2012), which can be evaluated

according to the criteria for the diagnosis of pCR. Achieving pCR

has been associated with better overall survival (Broglio et al.,

2016; Spring et al., 2020); however, the intrinsic factors involved

in pCR have not been clarified. There is still controversy on

whether standard adjuvant therapy increases pCR (Mauri et al.,

2005). The percentage of patients who achieve pCR ranges

between 27%–47% (Muller et al., 2021; Xin et al., 2021). In

this study, 37.5% of patients achieved pCR. Therefore, HER2+

breast cancer patients were categorized as sensitive (pCR

achieved) or resistant (pCR did not achieve) to neoadjuvant

chemotherapy and were used as an RNA-seq strategy to identify

predictors of pCR. It should be considered that the diagnosis of

HER2+ breast cancer was because more than 10% of the tumor

cells present detectable HER2 expression; therefore, there is a

large percentage of cells that do not express HER2. This

highlights the heterogeneity of this breast cancer subtype (Ng

et al., 2015; Chen et al., 2020). When the transcriptional profiles

of all patients were compared to determine clusters, this

heterogeneity was emphasized (Supplementary Figure S1A).

The implications of molecular differences in HER2+ breast

cancer patients are not fully understood and may be relevant

to prognosis and treatment response.

The DEGs found in HER2+ breast cancer patients sensitive

and resistant to neoadjuvant chemotherapy were mainly related

to plasma membranes, vesicles, and extracellular space and were

involved in different biological processes, such as cellular

response to chemical stimulus, cell adhesion, and signal

regulation. Variations in the protein components of the

extracellular matrix have been reported in breast tumors of

different origins (Borghesi et al., 2021). In addition,

extracellular components such as the extracellular matrix,

vesicles, and plasma membranes can be modified by cancer-

associated fibroblasts, leading to a tumor microenvironment

involved in cancer development and drug resistance

(Mashouri et al., 2019; Helal-Neto et al., 2020; Lugo-Cintron

et al., 2020).

One of the most enriched pathways is related to cell adhesion

molecules involved in tight junctions of epithelial and endothelial

cells, such as claudins, which participate in epithelial-

mesenchymal transition (EMT) and chemoresistance (Hewitt

et al., 2006; Agarwal et al., 2009; Gowrikumar et al., 2019).

According to KEGG enrichment analysis, the AMPK signaling

pathway is involved in the resistance process; this pathway is

considered a double-edged sword that protects and promotes

cancer progression (Jeon and Hay, 2015). Sensitization of breast

cancer cells to chemotherapy by activating AMPK signaling by

CTAB has been observed (Pan et al., 2019). Similarly, histological

evaluations have reported altered AMPK signaling in breast

cancer samples (Hadad et al., 2009), and this pathway is

considered a therapeutic target for breast cancer treatment

(Hadad et al., 2008). However, it has been hypothesized that

once cancer has developed, AMPK promotes the survival of

cancer cells by protecting them against DNA damage, nutritional

stress, and hypoxia (Russell and Hardie, 2020). Further studies

are needed to delineate the role of the AMPK pathway in breast

cancer and the development of chemotherapy resistance.

Another enriched pathway was cyclic guanosine 3,5-

monophosphate (cGMP) and protein kinase G (PKG). The

cGMP-PKG pathway has been associated with the modulation

of apoptosis and growth inhibition in MCF-7 and MDA-MB-

468 breast cancer cell lines (Fallahian et al., 2011). An essential

component of this pathway is the protein kinase cGMP-

dependent 2 (PRKG2), which was found to be downregulated

in the resistant group in this study. Our results correlate with

those of Karami-Tehrani et al. (Karami-Tehrani et al., 2012), who

observed lower expression of PRKG2 protein in breast tumor

samples. In addition, it has been reported that PRKG2 inhibits

EGF-induced MAPK/c-Jun N-terminal kinase (JNK) signal

transduction in human breast cancer cells (Lan et al., 2012)

and also inhibits the activation of EGFR and HER2 in gastric

cancer cells (Zhu et al., 2016; Lan et al., 2019). PRKG2 inhibits the

migration, invasion, and proliferation of cancer cells and

activates CREB, which modulates anti-apoptotic genes, such

as BCL2 (Shankar et al., 2010), which are overexpressed in the

resistant group, thereby contributing to the survival of cancer

cells in the resistant group.

In this study, many DEGs related to resistance were

identified. With the dimensional reduction, samples clustered

better, highlighting the possibility of using these genes to predict

the response to treatment. An interesting finding in our results

was a group of DEGs that interacted with each other, including

HLA-A, HLA-DQA1, HLA-DRB1, HLA-B, and TRIM26, which

are components of the MHC protein complex, except TRIM26.

These DEGs were found to be overexpressed in the resistant

group. The upregulation of classical and non-classical HLA-I

molecules has been reported to acquire a “protective” phenotype

in melanoma cells (Balsamo et al., 2012). HLA molecules play a

role in self-recognition by immune cells, which is essential for

hematopoietic and healthy cells to avoid their destruction, and

the loss, alteration, or absence of HLA molecules can cause

susceptibility to NK cell attack (Ljunggren and Karre, 1990;

Moretta et al., 2004). HLA molecules interact with inhibitory

receptors such as killer cell immunoglobulin-like receptors

(KIRs), leukocyte immunoglobulin-like receptors (LIRs), and
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natural killer group 2A (NKG2A) on the NK surface, avoiding its

activation (Khan et al., 2020). Overexpression of HLA by cancer

cells has been reported as a mechanism for evading the immune

response of NK cells and is termed immune checkpoint

inhibition (Bi and Tian, 2019). From this group of genes, a

variant of HLA-A (ENSEMBL ID ENSG00000235657) was

observed subexpressed in the resistance group. In addition,

low expression of this gene was associated with a worse

prognosis for OS. This gene has already been reported to

predict treatment response and OS (Sinn et al., 2021; Barron-

Gallardo et al., 2022).

ATF6B has two ensemble IDs (ENSG00000228628 and

ENSG00000213676). ENSG00000228628 ID was

overexpressed. Nevertheless, ENSG00000213676, which

corresponds to the primary assembly of this gene, was found

to be sub-expressed, and low expression was related to lower OS

and worse DFS. Variants of this gene have been associated with

an increased risk of breast cancer development (Dierssen-Sotos

et al., 2018).

DIRAS1 was found to be sub-expressed in the resistance

group. Subexpression of this gene was correlated with lower OS.

This gene has tumor-suppressive activity by binding to SmgGDS,

which blocks the interactions of small GTPases, such as Rho and

K-Ras4B. The expression of DIRAS1 is downregulated in most

types of breast cancer (Bergom et al., 2016).

Other sub-expressed genes in resistant treatment and lower

DFS were GRIN2B, GNG4, and IRX3. GRIN2B is involved in

breast cancer progression and acts as a promoter of CpG islands

(Park et al., 2011; Park et al., 2012). GNG4 is hypermethylated in

breast cancer; however, when comparing all molecular subtypes,

the HER2 subtype shows the highest expression levels for this

gene (Fernandez-Nogueira et al., 2016; Mao et al., 2021).

IRX3 plays an important role in obesity and type 2 diabetes;

however, it plays an important role in the adaptability of tumor

cells to metabolic challenges, a process that has a parallelism with

the development of chemotherapeutic resistance (Singh et al.,

2016).

A set of genes that showed high expression in the resistant

group, which were related to lower OS and worse DFS, were

L1CAM, MICA, and TNXB. The expression of L1CAM is

increased in luminal B breast cancer, and its expression is

related to disease recurrence and higher levels of Ki-67

expression (Moisini et al., 2021). A soluble form of L1CAM

has been found in HER2-enriched primary breast cancer patients

(Wu et al., 2018). There are reports that inhibition of L1CAM

reverses cisplatin resistance in triple-negative breast cancer cells

(Zhang et al., 2022). MICA is overexpressed in breast cancer

when compared to normal tissue and is considered an indicator

of poor prognosis (Madjd et al., 2007). It is an activation ligand of

NK cells, which induces the lysis of cells that express it. However,

there is a soluble form of MICA (sMICA) that decreases the

expression and presentation of NKG2D, a natural cytotoxic

receptor in natural killer cells, thus sMICA helps cancer cells

to evade immune cell attack (Pan et al., 2017) and contributing to

a worse prognosis in cancer (Roshani et al., 2016). In this study,

high expression of MICA was observed in the resistant and lower

OS groups; however, further studies are needed to determine the

role of MICA or sMICA in chemotherapy resistance. In the case

of TNXB, the expression of this gene has been analyzed in breast

cancer, and a correlation between high TNXB expression and

good survival prognosis has been found (Liot et al., 2020). Its

expression decreases at late stages, major tumor grade, and node

status of the disease (Liot et al., 2020), however, its expression in

the HER2 molecular subtype and in relation to chemotherapy

resistance has not been evaluated.

In contrast, genes with high expression but related to

better OS and DFS were IL22RA2, PRTFDC1, PBX2, S100B,

SERPINF2, DHRS13, ERAL1, and SLC9A3R2.

IL22RA2 expression decreases in luminal A, B, and triple-

negative breast cancers (Fu et al., 2015); however, but HER2+

breast cancer has not been reported. PRTFDC1 has been

associated with the triple-negative basal-like immune-

suppressed breast cancer subtype (TNBC-BLIS), which is

considered one of the worst prognoses (Yin et al., 2020).

The most highly expressed gene is PBX2. This gene was found

to be upregulated in breast lesions and has been proposed

along with other genes as a candidate biomarker for

distinguishing breast cancer lesions (Hou et al., 2020). It

has been showed that the overexpression of PBX2 increases

the tumorigenic properties of SkBr3 breast cancer cell line

when transfected with HoxB7 (Fernandez et al., 2008). S100B

expression has been negatively correlated with lymph node

metastasis (Wang et al., 2021), inhibition of cell migration,

better overall survival in luminal B breast cancer patients, and

being a good distant metastases-free survival biomarker (Yen

et al., 2018). SERPINF2 is differentially expressed in breast

cancer tissues compared with normal tissues (Malvia et al.,

2019). The protein product of SERPINF2 has been found in

the serum of breast cancer patients when evaluating

treatment response; however, this protein appeared in both

resistant and sensitive groups (Chantada-Vazquez et al.,

2022).

Finally, DHRS13, ERAL1, and SLC9A3R2 could predict

treatment response and survival; however, there are no reports

related to breast cancer and its possible function in this disease.

Conclusion

This study underlines a molecular expression pattern

related to the response of patients with HER2-positive

breast cancer to neoadjuvant chemotherapy. Differentially

expressed genes highlight the involvement of pathways, such

as extracellular components, adhesion molecules, and

immune responses, in the process of resistance to

chemotherapy. Some differentially expressed genes can be
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used as biomarkers of overall survival and disease-free

survival in breast cancers.
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Cancer immune function and tumor microenvironment are governed by long

noncoding RNAs (lncRNAs). Nevertheless, it has yet to be established whether

lncRNAs play a role in tumor-associated neutrophils (TANs). Here, a computing

framework based on machine learning was used to identify neutrophil-specific

lncRNA with prognostic significance in squamous cell carcinoma and lung

adenocarcinoma using univariate Cox regression to comprehensively analyze

immune, lncRNA, and clinical characteristics. The risk score was determined

using LASSO Cox regression analysis. Meanwhile, we named this risk score as

“TANlncSig.” TANlncSig was able to distinguish between better and worse

survival outcomes in various patient datasets independently of other clinical

variables. Functional assessment of TANlncSig showed it is a marker of myeloid

cell infiltration into tumor infiltration and myeloid cells directly or indirectly

inhibit the anti-tumor immune response by secreting cytokines, expressing

immunosuppressive receptors, and altering metabolic processes. Our findings

highlighted the value of TANlncSig in TME as amarker of immune cell infiltration

and showed the values of lncRNAs as indicators of immunotherapy.

KEYWORDS

non-small cell lung cancer, tumor-associated neutrophils, long noncoding RNA,
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Introduction

Lung cancer is related with high mortality rates in China with

non-small cell lung cancer (NSCLC) accounting for >80% of lung

cancers (Zhu et al., 2017). The administration of immune checkpoint

inhibitors (ICIs) in cancer therapy has had remarkable results (Yue et

al., 2018; Dolladille et al., 2020; Galluzzi et al., 2020). For advanced

non-small cell lung cancer (NSCLC), several clinical trials have

confirmed that as first- or second-line treatment, ICIs are superior

to platinum-based chemotherapy (Ko et al., 2018; Vansteenkiste et al.,

2019; Chen et al., 2020). However, only 20%–40% of advanced

NSCLC patients achieve sustained clinical benefits from PD-(L)1

inhibitor therapy, with most patients having primary or acquired

resistance to immunotherapy (Socinski, 2014). Moreover, those who

do not respond to immunotherapy may suffer immune-related

adverse events (IRAE) and the high costs of anti-PD-(L)1

monoclonal antibody therapy (Khoja et al., 2017; Das and

Johnson, 2019; Schoenfeld et al., 2019). Thus, effective biomarkers

that distinguish potential responders from non-responders, and

indicate patient clinical response in real-time are urgently needed

to improve treatment outcomes.

The TME is comprised of a complex cell population that

includes tissue-resident lymphocytes, fibroblasts, endothelial cells,

and neurons that are present before tumorigenesis, as well as blood-

derived cells recruited to tumor sites (Butturini et al., 2019). Immune

cells are themain cellular components in tumors. Tumor-infiltrating

myeloid cells, including tumor-associated macrophages (TAM),

regulatory dendritic cells, tumor-associated neutrophils (TAN),

myeloid-derived suppressor cells (MDSC), as well as tolerogenic

dendritic cells (TOL-DC), facilitate the formation of

immunosuppressive microenvironments (Schupp et al., 2019).

These cells directly or indirectly inhibit the antitumor immune

response by secreting cytokines, expressing immunosuppressive

receptors, and altering metabolic processes, leading to tumor

immune escape. Tumor-associated neutrophils (TANs) are a key

part of tumor-infiltrating myeloid cells and are regularly detected in

the TME. Clinically, TANs can be used to predict treatment

outcomes and immunotherapy response (Nielsen et al., 2021).

Transcriptomic studies have identified gene expression

biomarkers as well as signatures for quantitative assessment of

TANs, as well as for stratification based on prognoses and

immunotherapeutic response (Lecot et al., 2019; Wu and Zhang,

2020).

Long non-coding RNA (lncRNAs) influence almost all

biological processes and pathways, and their dysregulation is

associated with various diseases. Additionally, lncRNAs have

wide functional diversity due to their influence on gene

expression levels at transcriptional, post-transcriptional and

epigenetic levels (Rinn and Chang, 2012; Fatica and Bozzoni,

2014; Marchese et al., 2017; Bao et al., 2020). The correlation

between lncRNAs and immune function has been reported.

Recent studies have shown that lncRNAs are abundant with

cell type specificity in various immune cell subsets (Rinn and

Chang, 2012; Atianand et al., 2017; Chen et al., 2017; Zhou et al.,

2017; Zhou et al., 2018). LncRNAs expression pattern has been

correlated with infiltrations of immune cells into the TME (Hu et

al., 2013; Ranzani et al., 2015; Sage et al., 2018; Wang et al., 2018;

Zhao et al., 2021). Nevertheless, neutrophil-specific lncRNAs as

well as their significance in assessing TANs and prediction of

clinical outcomes and immunotherapeutic responses require

further study.

Here, a computational framework is proposed for

determining neutrophil-specific lncRNA expression levels and

lncRNA signatures for TANs (TANLncSig) via integrative

immune, lncRNA, and clinical profiling analyses. The

TANLncSig’s ability to predict clinical outcome and response

to immunotherapy by NSCLC patients was also investigated.

Materials and methods

Neutrophil-specific long noncoding RNAs
screening

The data set can be obtained from the GEO database with

series accession number GSE28490 (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE28490), These included chip data

on the expression of nine human immune cells (neutrophils,

monocytes, B cells, eosinophils, CD4 T cells, NK cells, mDCs,

CD8 T cells, and pDCs). The GEO2R tool fromGEOwas used for

differential expression analysis. Using adjusted p = <0.05 and

logFC >1 as cutoff thresholds identified 17 lncRNAs with high

neutrophil-specific expression.

Construction of risk scoring model

Clinical data and TCGA RNA-seq datasets for LUSC and

LUAD were downloaded by the UCSC Xena browser (https://

xenabrowser.net/). Lusc-LINC01272-neutrophils malignant/

Luad-LINC01272-neutrophils malignant results from single

cell sequencing datasets. First, a monovariate Cox regression

analysis was used to find neutrophil-specific lncRNAs with

prognostic value in LUSC and LUAD, and LASSO Cox

regression was used to determine their risk scores. The

multivariate Cox regression analysis (age, risk score, tumor

stage, gender), Kaplan-Meier (KM) survival analysis and 3, 5,

and 10 years survival AUCs were used to evaluate risk score.

Correlation analysis between risk score
and tumor clinical phenotype

Multivariate ANOVA was used to analyze differences

between neutrophil-specific, highly expressed lncRNA and risk

score in LUSC and LUAD samples at various TNM stages.
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Analysis of risk score related pathways

In LUSC and LUAD samples, genes with mean expression

levels >1 were identified and their correlation with risk score

analyzed. 1,000 genes with the highest absolute correlation

coefficient value were selected from those with positive

correlation coefficients (>0, p = <0.05) and those with

negative correlation coefficients (<0, p = <0.05).
ClusterProfiler for R was used to analyze GO terms of

biological process (BP), Molecular function (MF), cellular

component (CC), and KEGG pathway enrichment analyses.

After gene enrichment, the adjusted p-value < 0.05 and the

smallest TOP10 was selected for mapping.

Development of tumor-associated
neutrophils-derived long noncoding RNAs
signature to judge the prognosis of
immunotherapy for non-small cell lung
cancer using machine learning

Pearson correlation analysis was used to determine

correlations between risk score, neutropen-specific lncRNAs,

and the expression of common immune checkpoint inhibitors

and correlation heat maps drawn, with * denoting p ≤ 0.01 while

+ denotes p ≤ 0.05.

Results

Prognostic significance of neutrophil-
specific long noncoding RNAs

To recognize neutrophil-specific lncRNAs, dataset

GSE28490 was downloaded from GEO (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE28490). This dataset includes

chip data on expressions of nine human immune cells (CD4+

T cells, neutrophils, monocytes, B cells, eosinophils, CD8+ T cells,

NK cells, mDCs, and pDCs). Using GEO2R, 17 lncRNA

specifically highly-expressed in neutrophils (p =<0.05, log2>1)
were identified. These neutrophil-specific lncRNAs are referred

to as TAN-associated lncRNAs (TANlncRNA) (Figure 1).

Construction of a risk score based on
neutrophil-specific long noncoding RNAs
for prognosis prediction

To develop a neutrophil-specific lncRNA risk score for

predicting prognosis, the TCGA NA-SEQ dataset, TCGA lung

squamous cell carcinoma (LUSC) as well as adenocarcinoma

(LUAD) gene expression data, clinical features, and prognosis

data were downloaded from UCSC Xena. First, univariate Cox

regression analyses were used to establish neutrophil-specific

lncRNAs with prognostic value in LUSC and LUAD. The final

signature named TANlncSig (Table 1). This analysis identified

three lncRNAs with prognostic value in LUSC (LINC01272,

LINC00261, LINC00668, p = <0.05). Using these three

lncRNAs, the expression value of lncRNA was weighted using

multivariate Cox regression coefficient to obtain risk scores via

the formula: risk score = 0.09 * LNC00668 + 0.17 * LNC00261.

Then, TANlncSig scores for every patient in the discovery dataset

were determined, after which the 542 patients were grouped into

the high (n = 271) or low (n = 271) risk groups. Low risk group

patients were found to have longer overall survival (OS) relative

to the high-risk group patients (p = 0.039, ≤0.05, Figure 2A).

Multivariate Cox regression analyses revealed that risk score (p <
0.001), stage (p < 0.001), age (p = 0.037, ≤0.05), and gender (p =

0.007, ≤0.01) significantly affected the prognostic outcomes of

LUSC patients. The p-value and hazard ratio of TANlncSig were

better than those of stage and age (Figure 2B). That said,

TANlncSig has the potential to be a good predictor of

FIGURE 1
Using machine learning, 17 neutrophil-specific, highly expressed lncRNAs were identified. Differential expressions of lncRNAs between
neutrophils and various immune cell types.

Frontiers in Genetics frontiersin.org03

Tang et al. 10.3389/fgene.2022.1002699

90

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28490
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28490
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1002699


efficacy. The predictive capacity of TANlncSig was authenticated

using the TCGA internal testing dataset and revealed the 3-, 5-,

and 10-year OS rates for low-risk group patients to be 60.42,

54.47, and 54.23%, respectively (Figure 2C). Indicating that risk

score significantly correlates with OS in LUSC.

Similar analysis was done for LUAD. First, three

lncRNAs with prognostic values (LINC00528, LINC00967,

and LINC00261) were identified using univariate Cox

analysis. Using the above three lncRNAs, lncRNAs

expression value was weighted by multivariate Cox

TABLE 1 Detailed information of six lncRNAs in the TANlncSig.

Ensembl ID Gene symbol Location (GRCh37/hg19) HR Lower 0.95 Upper 0.95 p-value

LUAD ENSG00000259974 LINC00261 chr20:22,541,191–22,559,280 0.8726407 0.7771 0.98 0.021359

ENSG00000269220 LINC00528 chr22:18,260,056–18,262,247 0.5049413 0.2662 0.9577 0.036422

ENSG00000253138 LINC00967 chr8:67,104,349–67,109,554 0.0026941 9.72E-06 0.7471 0.039252

LUSC ENSG00000259974 LINC00261 chr20:22,541,191–22,559,280 1.2676382 1.1 1.461 0.001087

ENSG00000265933 LINC00668 chr18:6,925,473–6,929,868 0.8529687 0.7512 0.9685 0.01412

ENSG00000224397 LINC01272 chr20:48,884,015–48,896,333 1.14005 1.022 1.272 0.018818

FIGURE 2
Validation of TANlncSig in TCGA lung squamous cell carcinoma discovery and testing datasets. (A) Kaplan-Meier survival analyses of lung
squamous cell carcinoma patients. (B)Multivariate Cox regression analyses of patients with LUSC based on TCGA dataset. (C) ROC curve analyses of
patients with LUSC using the TCGA dataset.
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regression coefficient to determine risk score using the

formula: risk score = −5.32 * LINC00967-0.16 *

LINC00261-0.74 * LINC00528. Patients with LUAD in the

low-risk group had longer OS relative to high-risk group

LUAD patients (p = 0.0029, ≤0.01, Figure 3A). Cox

multivariate regression analyses revealed that risk score

(p < 0.001) and stage (p < 0.001) significantly correlated

with LUAD prognosis. In lung adenocarcinoma, the p-value

and hazard ratio of TANlncSig were equally better than those

of stage and age (Figure 3B). The 3-, 5-, and 10-year OS rates

in low-risk group patients were 61.01, 61.20, and 65.30%,

respectively (Figure 3C). These results indicate that risk

scores in the LUAD dataset significantly correlate with

patients’ OS.

Correlation analysis between risk score
and tumor clinical phenotype

Clinical phenotypic correlation analysis of single prognostic

lncRNA and risk score (tumor stage, T, N, and M staging) was

performed in lung adenocarcinoma as well as squamous cell

carcinoma. According to statistical analysis, the risk score in

different tumor stages of lung squamous cell carcinoma showed

significant statistical differences, and the statistical results

showed that p = 0.0013, <0.01 (Figure 4A). The risk score in

different tumor stages of lung adenocarcinoma also showed

significant statistical differences (p = 0.0081, <0.01) (Figure 4B).
The TNM staging system is the most widely used tumor staging

system, worldwide. T denotes tumor sizes and local invasion range,

FIGURE 3
Development and subsequent validation of TANlncSig in the lung adenocarcinoma TCGA testing as well as discovery datasets. (A) Kaplan-Meier
survival analyses for LUAD patients. (B) An analysis of the TCGA dataset of LUAD patients usingmultivariate Cox regression. (C) ROC curve analyses of
patients with LUAD in the TCGA dataset.
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N denotes lymph node involvement, and M denotes distant

metastasis. TNM staging has great clinical value in prognosis

prediction (Ficarra et al., 2007; Moch et al., 2009). The risk score

lack of significance in different T stages and N stages of lung

squamous cell carcinoma (Figures 5A,B). The risk score has

significant statistical difference in different M stages of lung

squamous cell carcinoma (p = 0.011, <0.05) (Figure 5C). The

risk score has significant statistical difference in different T stages

(T1, T2, T3, and T4 stages) of lung adenocarcinoma (p =

0.0023, <0.01) (Figure 5D). Similarly, the risk score has

significant statistical difference in different N stages (N0, N1, N2,

and N3 stages) of lung adenocarcinoma (p = 0.013, <0.05)
(Figure 5E). The risk score lack of significance in different M

stages of lung adenocarcinoma (Figure 5F).

FIGURE 4
Analysis of risk score differences across NSCLC tumor stages. (A) The risk score of lung squamous cell carcinoma patients at various disease
stages. (B) Risk scores of different lung adenocarcinoma stages.

FIGURE 5
Correlation between riskscore and different TNM stages of non-small cell lung cancer. (A) A comparative analysis of risk scores in LUSC T
staging. (B) A comparative analysis of risk scores in LUSC N staging. (C) A comparative analysis of risk scores in LUSC M staging. (D) A comparative
analysis of risk scores in LUAD T staging (E) A comparative analysis of risk scores in LUADN staging. (F) A comparative analysis of risk scores in LUADM
staging.
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Riskscore correlation pathway analysis

In LUSC and LUAD samples, genes with average expression

levels >1 were identified and their risk scores analyzed.

1,000 genes with the largest absolute correlation coefficient

values were selected from positive (correlation coefficient >0,
p ≤ 0.05) and negative (correlation coefficient <0, p ≤ 0.05) and

correlation genes and pathway enrichment analysis done using

cluster profiler on R. In LUSC, positive correlation genes are

mainly associated with biological processes (BP) associated with

T-cell activation, leukocyte proliferation, and leukocyte cell-cell

adhesion. For cellular component (CC) they were enriched in

endocytic vesicle, tertiary granule, and secretory granule

membrane. For molecular function (MF), they were enriched

in immune receptor activity and cytokine binding. KEGG

pathway analysis revealed enrichment mainly for cell adhesion

molecules cams (Figure 6A). Negative correlation genes in lung

squamous cell carcinoma are mainly enriched for biological

processes (BP) associated with skin development, epidermis

development, and cornification. For cellular component (CC),

they were enriched for cornified envelope, desmosome, and cell-

cell junction. For molecular function (MF), they were enriched

for microtubule binding and tubulin binding. For KEGG

pathways, they were enriched for basal cell carcinoma

(Figure 6B). Positive correlation genes in lung

adenocarcinoma were mainly enriched in biological processes

(BP) associated with translational termination and

adenocarcinoma. For cellular component (CC), they were

enriched for ribosomal subunits, ribosome and large

ribosomal subunit. For molecular function (MF) they were

enriched for structural constituent of ribosome and cadherin

binding. For KEGG pathways, they were enriched for ribosome

and cell cycle (Figure 6C). Genes associated with negative

correlations in LUAD are involved in biological processes

(BPs) associated with lymphocyte differentiation, leukocyte

proliferation, and antigen receptor-mediated signaling. For

cellular component (CC), they were enriched for external side

of plasma membrane and immunological synapse. For molecular

functions (MFs), they were enriched for guanyl-nucleotide

exchange factor activity. For KEGG pathways, they were

FIGURE 6
Pathway enrichment analysis using R’s cluster profiler. (A) Enrichment of positive correlation gene pathways in lung squamous cell carcinoma.
(B) Enrichment of negative correlation gene pathways in lung squamous cell carcinoma. (C) Enrichment of positively correlation gene pathways in
lung adenocarcinoma. (D) Enrichment of negative correlation gene pathways in lung adenocarcinoma.

Frontiers in Genetics frontiersin.org07

Tang et al. 10.3389/fgene.2022.1002699

94

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1002699


enriched for primary immunodeficiency and B-cell receptor

signaling pathway (Figure 6D).

The TANlncSig associates with tumor-
associated neutrophils

In accordance with previously reported expression levels of

the immune cell specific marker genes, cibersort (https://

cibersort.stanford.edu/) was further used to evaluate the levels

of immune infiltration of 22 immune subpopulations in high-risk

and low-risk patient groups. t-test was performed to determine

the difference in lymphocyte infiltration levels between the two

groups. As shown in Figures 7A,B, in both LUSC and LUAD,

high-risk patients were significantly enriched in 12 immune

subpopulations, while low-risk patients were enriched in

10 immune subpopulations. Additionally, mononuclear

immune cells, including neutrophils, were found to infiltrate

significantly more in the high-risk patient group than in several

other groups. Single-cell sequencing data of LUSC and LUAD

downloaded from GSE127465, cell type notes downloaded from

TISCH (http://tisch.comp-genomics.org/). The homologous

expression levels of LINC01272 of the TANlncSig in

neutrophil cell lines differed significantly from those of

malignant cell lines according to a subsequent analysis of

neutrophil cell lines (Figures 7C,D). This indicates that these

FIGURE 7
(A,B) An analysis of tumors with high and low TANlncSig based on the NES score from the GSEA in LUSC and LUAD provided the volcano plots
for the enrichment of immune cell subpopulations. (C,D) The boxplots show lncRNA expression in both LUSC and LUAD neutrophil cell lines.
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lncRNAs are expressed differently in neutrophils compared with

malignant cells. In the above study, we found that the TANlncSig

was not only associated with patient prognosis but also as a TAN

indicator.

TANlncSig was validated over several
independent datasets using a microarray
platform for prognostic value

TANlncSig was further validated in independent datasets by the

microarray platform in order to verify versatility and robustness of

TANlncSig. The Affymetrix HG-U133 Plus 2.0 platformwas used to

analyze 83 LUAD patients from the GSE30219 dataset. As

demonstrated again, TANlncSig can distinguish between patients

who have high and low survival risk. A total of 83 patients were

stratified into 41 high-risk patients and 42 low-risk patients in the

GSE30219 dataset. Furthermore, patients in the high-risk group had

a marginally poorer outcome than those in the low-risk group (p =

0.0024, ≤0.01; log-rank test) (Figure 8A). The AUC of ROC curve at

3, 5, and 10 years were 64.13, 66.87, and 60.58% respectively

(Figure 8B). The results show that TANlncsig can accurately

predict the 5-year overall survival of patients, indicating that

TANlncsig has good efficacy and certain stability. In order to

investigate whether TANlncSig is an independent prognostic

factor, a multivariate Cox regression analysis was conducted in

FIGURE 8
The TANlncSig was independently validated in the GSE30219 dataset (A). Kaplan–Meier survival curves of OS were plotted between high- and
low-risk groups stratified by the TANlncSig. (B)Time ROC curve of luad patients the GSE30219 dataset. (C) Visualization of theHRs from amultivariate
Cox analysis of the TANlncSig and clinicopathological factors in GSE30219.
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patient cohorts. In the independent GSE30219 dataset, the

TANlncSig still maintained a significant correlation with OS in

the multivariate analysis (HR = 6.74, 95% CI 1.283-35.5, p = 0.024,

≤0.01). Thus, these results demonstrate that the TANlncSig helps

predict OS independently of other conventional clinical factors

(Figure 8C).

Significance of TANlncSig as a marker of
immunotherapy

Next, prognostic lncRNAs and risk score were correlated

with immune checkpoint molecules expression in LUSC and

LUAD patients. In LUSC, risk score, LINC01272, and

LINC00261 positively correlated with the expression of most

ICBs, while LINC00668 had negative correlations with the

expression of most ICBs (Figure 9A). In LUAD, risk score

had negative correlations with expression levels of most ICBs,

while LINC00528 positively correlated with expression levels of

most ICBs (Figure 9B). The expressions of risk score were divided

into high and low groups and combined according to the median.

The combination was used to analyze the prognosis of

immunotherapy for non-small cell lung cancer. In lung

squamous cell carcinoma, the combination of CEACAM1,

TNFSF4, gem, CD47, vtcn1 and risk score can well stratify

the prognosis of patients. In lung adenocarcinoma, all ICB

molecules combined with risk score can well predict the

prognosis of patients. These results suggest that risk score can

be used as an index to predict the response of patients to

immunotherapy.

Discussion

In the peripheral blood, neutrophils are the most abundant

white blood cells (Dinh et al., 2020). They have a central role in

human non-specific immunity. Previous studies suggest that

neutrophils inhibit tumors by secreting cytokines and

producing reactive oxygen species (Vaughan and Walsh, 2005;

Mishalian et al., 2013; Coffelt et al., 2015; Ponzetta et al., 2019).

However, other studies indicate that neutrophils in the tumor

microenvironment (TME) promote tumorigenesis. Cytokines

and chemokines production by invasive neutrophils might

affect the recruitment and activation of inflammatory cells in

the TME, create an immunosuppressive microenvironment that

is conducive for tumorigenesis, regulate tumor growth,

FIGURE 9
Correlation analysis of lncRNA and riskScore with expression levels of immune checkpoint blockade (ICB). (A) In lung squamous cell carcinoma,
risk score, LINC01272, and LINC00261 positively correlated with the expression of most ICBs, while LINC00668 had negative correlations with the
expression of most ICBs. (B) In lung adenocarcinoma, risk score had a negative correlation with the expression of most ICBs, while
LINC00528 positively correlated with the expression of most ICBs.
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metastasis and angiogenesis, and influence patient prognosis.

Traditional methods for quantifying tumor immune cells

infiltration based on histology or immunohistochemistry may

have bias and variabilities (Yoshihara et al., 2013; Gibney et al.,

2016; Spranger and Gajewski, 2018; Zhang et al., 2020; Sanchez-

Pino et al., 2021). More recently, RNA-seq analyses have shown

that lncRNAs exhibit a better degree of cell type specificity,

relative to protein-coding genes in immune cells, highlighting

their potential as subpopulation-specific immune cells molecular

markers (Huang et al., 2018; Chen et al., 2019; Zhou et al., 2021).

Here, we used a machine learning-based computational

framework to identify lncRNA features for evaluating TANs

and explored their clinical significance using a combination of

lncRNA, immune, and clinical spectrum analyses. The

computational framework was used on the TCGA discovery

dataset of NSCLC to identify a lncRNA signature (TANlncSig)

comprised of 17 lncRNAs obtained from a list of neutrophil-

specific lncRNAs using machine learning. Functional

enrichment analysis of TANlncSig-related mRNAs showed

that TANlncSig is highly correlated with cancer markers of

immune response and sustained proliferative signals. Recent

experimental evidence on some TANlncSig components is

consistent with functional annotations using bioinformatics.

It appears that Mir-1303, which is upregulated in tumor

tissues, acts as a sponge for LINC01272 and negatively

correlates with its expression. A reduction in

LINC01272 expression in tissues and cells of NSCLC

patients may serve as an independent prognostic marker.

LINC01272 overexpression may inhibit NSCLC cells

proliferation, migration, and invasion by inhibiting MI-

1303 (Zhang and Zhou, 2021). LINC00261 downregulation

in gastric cancer is associated with poor prognosis. Ectopic

LINC00261 expression disrupts cell migration and invasion,

inhibiting metastasis in vitro as well as in vivo.

LINC00261 downregulation promotes cell migration and

invasion in vitro. LINC00261 overexpression influences

epithelial-mesenchymal transition (EMT) through the

regulation of E-cadherin, Vimentin and N-cadherin (Liu

et al., 2020; Zhai et al., 2021). LINC00668 expression is

significantly upregulated via STAT3 signaling in NSCLC

tissues as well as cell lines. Clinical studies show that

upregulated LINC00668 correlates with histological grade,

advanced TNM stage, and lymph node metastasis.

Additionally, multivariate analyses established that

LINC00668 as an independent marker of overall survival

(OS) in patients with NSCLC. LINC00668 downregulation

inhibits proliferation, migration, and invasion of NSCLC cells

and promotes apoptosis. Mechanistically, LINC00668 is a direct

target of miR-193a, leading to down-regulation in the expression

of its target gene KLF7. STAT3-initiated LINC00668 promotes

NSCLC progression by upregulating KLF7 via sponging Mir-

193a. Therefore, it may serve as a prognostic marker and

therapeutic target for NSCLC (An et al., 2019). From the

perspective of lncRNA, TANlncSig seems to be a

transcriptional marker as a potentially measurable indicator

of neutrophil activity and prognosis.

To further assess TANlncSig’s role in clinical risk

stratification, we evaluated its relationship with survival in

patients with NSCLC. When applied to the TCGA RNAseq

patient dataset, TANlncSig significantly correlated with

patient survival. In TANlncSig, three lung squamous cell

carcinoma, neutrophil-specific lncRNAs (LINC01272,

LINC00261, and LINC00668) were markedly associated

with prognostic outcomes. In lung adenocarcinoma, three

neutrophil-specific lncRNAs (LINC00528, LINC00967, and

LINC00261) significantly correlated with prognosis. In

squamous cell carcinoma and lung adenocarcinoma,

correlation analysis of individual lncRNAs and risk score

with clinical features (TNM staging) revealed that risk

score varied significantly with tumor stage. After adjusting

for traditional clinical factors, TANlncSig was verified to be an

independent prognostic marker for differentiating between

poor and good survival outcomes across patient datasets.

Immune checkpoint inhibitors (ICIs) have emerged as

effective lung cancer immunotherapies (Suresh et al., 2018;

Iams et al., 2020). Some of the drugs acting on the immune

checkpoints, CTLA4 and PD-1/PD-L1, have excellent

performance against various tumors. Although significant

breakthroughs have been made on CTLA4 and PD-1/PD-

L1 antibodies, single-drug effective rates are only about 20%,

and they benefit a limited proportion of patients (Magiera-

Mularz et al., 2017; Lingel and Brunner-Weinzierl, 2019;

Rotte, 2019; Yang and Hu, 2019; Liu and Zheng, 2020).

The limited efficacy is attributable to the immune system’s

complexity. Indeed, immune cells, cytokines, and immune

adjuvants in the TME interact with each other, limiting the

effects of drugs on individual targets. Thus, drugs that target

different links and aspects of tumor immunity are needed to

enhance immunotherapy outcomes. Up to

29 immunoglobulin superfamily members and 26 members

of the tumor necrosis factor receptor superfamily are

expressed on T-cell surfaces alone, and there have been

preclinical or clinical studies on related immune targets

and drugs. Specific immune checkpoints include

lymphocyte activating gene 3 (LAG-3), T-cell

immunoglobulin mucin 3 (TIM-3), and V region Ig

inhibitor (VISTA). Non-specific immune checkpoints

include human killer cell immunoglobulin like receptor

(KIR), indoleamine 2, 3-dioxidase (IDO), and CD47, these

novel immune checkpoint molecules are expected to provide

hints for clinical and basic research (Manser et al., 2015;

Munn and Mellor, 2016; Burugu et al., 2018; Huang et al.,

2020; Logtenberg et al., 2020). VISTA, (B7-H5, PD-1H) is an

immunomodulatory receptor that inhibits T-cell response.

VISTA is overexpressed on CD11b myeloid cells (e.g.,

macrophages, monocytes, neutrophils, and dendritic cells)
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and it is found that in humans and mice at a lower level in

primitive CD4+ and CD8+ T-cells as well as Tregs. With two

potential protein kinase C binding sites and proline residues

acting as docking sites in its cytoplasmic tail domain, VISTA

can serve as both a receptor and a ligand (Huang et al., 2020;

Mutsaers et al., 2021). OX40 (TNFRSF4) has been found to be

expressed in activated NK cells, T-cells, NKT cells, as well as

neutrophils, and acts as an auxiliary costimulatory immune

checkpoint (Curti et al., 2013; Aspeslagh et al., 2016; Buchan

et al., 2018). Combining immune checkpoint genes and

TANlncSig showed combined prognostic effects on patient

survival, in line with previous findings that immunomotor

interactions between neutrophilic infiltration and expression

levels of checkpoint genes affect the outcome of cancer

patients and immunotherapy may also be associated with

this condition. In combination with earlier findings, it

appears that TANlncSig is correlated with

immunosuppressive phenotypes and could predict ICI

response. Together, these results indicate that TANlncSig

can complement and/or add information to existing immune

checkpoint genetic markers.

Due to few genemutations, lung squamous cell carcinoma is less

selective than adenocarcinoma with regards to treatment options,

and its survival time (about 1 year) is shorter than that of

adenocarcinoma (Travis et al., 2021). Thus, novel, effective

advanced lung squamous cell carcinoma treatments are needed

to improve patient outcomes. The emergence of immune checkpoint

inhibitors in recent years has markedly improved treatment options

for advanced lung squamous cell carcinoma patients. Immune

checkpoint inhibitors have substantially changed advanced lung

squamous cell carcinoma treatment, leading to a shift from retro line

immunotherapy to front-line treatment options. Originally

approved as second-line treatment after platinum-based dual

therapy, palivizumab is now recommended as a single-agent

first-line treatment or in combination with chemotherapy.

Although treatments targeting the immune checkpoints PD-1

and CTLA4 are successful in many cancers, not all patients

benefit from them. Our findings indicate that the combination of

CEACAM1, TNFSF4, GEM, CD47, VTCN1, and TANlncSig in

squamous cell carcinoma can effectively stratify patients by

prognosis, highlighting these immune checkpoint receptors as

potential therapeutic targets against advanced lung cancer.

Conclusion

In conclusion, we used a machine learning-based computational

framework to identify lncRNA features of TANs (TANlncSig) via

comprehensive analyses of lncRNA, immune, as well as clinical

features. TANlncSig revealed a substantial and repeatable

correlation with outcomes, even after adjustments of clinical

covariates. Analysis of correlation between prognostic lncRNAs

and risk score with the expression of immune checkpoint

molecules demonstrated that TANlncSig can predict

immunotherapy. The study is the first to define lncRNA

characteristics of tumor-associated neutrophils, highlighting the

importance of lncRNAs in immune responses and the potential

for more precise and personalized treatment cancer immunotherapy.
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Background: Dysregulation of long non-coding (lncRNA) has been reported in

various solid tumors. HOXA cluster antisense RNA 2 (HOXA-AS2) is a newly

identified lncRNA with abnormal expression in several human malignancies.

However, its prognostic value remains controversial. This meta-analysis

synthesized available data to clarify the association between HOXA-AS2

expression levels and clinical prognosis in multiple cancers.

Methods: Four public databases (Embase, PubMed, Web of Science, The

Cochrane Library) were used to identify eligible studies. Hazard ratios (HRs)

and odds ratios (ORs) with their 95% confidence intervals (CIs) were combined

to assess the correlation of HOXA-AS2 expression with survival outcomes and

clinicopathological features of cancer patients. Publication bias was measured

using Begg’s funnel plot and Egger’s regression test, and the stability of the

combined results was measured using sensitivity analysis. Additionally, multiple

public databases were screened and extracted to validate the results of this

meta-analysis.

Results: The study included 20 studies, containing 1331 patients. The meta-

analysis showed that the overexpression of HOXA-AS2 was associated with

poor overall survival (HR = 2.06, 95% CI 1.58–2.69, p < 0.001). In addition, the

high expression of HOXA-AS2 could forecast advanced tumor stage (OR = 3.89,

95% CI 2.90–5.21, p < 0.001), earlier lymph node metastasis (OR = 3.48, 95% CI

2.29–5.29, p < 0.001), larger tumor size (OR= 2.36, 95%CI 1.52–3.66, p < 0.001)

and earlier distant metastasis (OR = 3.54, 95% CI 2.00–6.28, p < 0.001).

However, other clinicopathological features, including age (OR = 1.09, 95%

CI 0.86–1.38, p = 0.467), gender (OR = 0.92, 95% CI 0.72–1.18, p = 0.496),

depth of invasion (OR = 2.13, 95% CI 0.77–5.90, p = 0.146) and differentiation

(OR = 1.02, 95% CI 0.65–1.59, p = 0.945) were not significantly different from

HOXA-AS2 expression.

Conclusion: Our study showed that the overexpression of HOXA-AS2 was

related to poor overall survival and clinicopathological features. HOXA-AS2may

serve as a potential prognostic indicator and therapeutic target for tumor

treatment.
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Introduction

Cancer is the second greatest cause of death in most parts

of the world, and it has become the most common public

pathological condition on the planet (Chu et al., 2020).

Traditional cancer treatments, such as surgery, adjuvant

medical treatment, and actinotherapy have improved

dramatically over the last century (Zhang et al., 2019).

Despite this, 5-year cancer survival rates remain poor,

particularly for patients with advanced tumor stage or

FIGURE 1
Flow diagram of this meta-analysis.
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metastasis (Li et al., 2019). One of the most significant causes

is the lack of a good biomarker for detecting cancer early and

predicting the clinical outcome of cancer patients (Ye et al.,

2019). The significance of biomarkers in cancer has garnered

increased attention in recent years across various fields, and

they are thought to play critical roles in effectively screening

or diagnosing cancer (Tang et al., 2020).

Long noncoding RNAs (lncRNAs) are RNA molecules

that are longer than 200 nucleotides and cannot code for

proteins (Zhou et al., 2019). A huge number of lncRNAs are

produced during the active transcription of the human

genome (Morlando and Fatica, 2018). One of the

functions of lncRNAs in vivo is as tumor suppressors or

oncogenes (Xu et al., 2021). Increasing evidence suggest that

lncRNAs play a synergistic role in tumorigenesis or tumor

suppression and that aberrant lncRNA expression is linked

to cell proliferation, growth, and metastasis (Wang Y. et al.,

2020). The development of RNA-targeted therapies has

presented possibility of lncRNA-guided cancer therapy

(Bhan et al., 2017). The inhibition of lncRNA function by

RNA depletion and the removal of lncRNA exons encoding

essential functional domains using splice-switching

oligonucleotides may be the mechanism for targeting

lncRNAs for cancer therapy (Kole et al., 2012; Schmitt

and Chang, 2016). Therefore, functional lncRNA can be

used as a biomarker for cancer diagnosis and for

predicting treatment outcome and patient prognosis

(Wang J. et al., 2020).

LncRNA HOXA cluster antisense RNA 2 (HOXA-AS2)

is located on chromosome 7p15.2, a 1048-bp lncRNA,

between the HOXA3 and HOXA4 genes of the HOXA

cluster (Liu et al., 2019). Previous studies found that

HOXA-AS2 was up-regulated in certain cancers. The

increased expression of HOXA-AS2 typically predicts

poor prognosis for patients with several cancers including

cervical cancer (CC) (Chen and He, 2021), oral squamous

cell carcinoma (OSCC) (Chen et al., 2021), lung cancer (LC)

(Li and Jiang, 2017; Cui et al., 2019; Liu et al., 2019),

colorectal cancer (CRC) (Li et al., 2016; Ding et al.,

2017), breast cancer (BC) (Fang et al., 2017), thyroid

cancer (TC) (Xia et al., 2018; Jiang et al., 2019),

hepatocellular carcinoma (HCC) (Wang et al., 2016;

Zhang et al., 2018; Lu et al., 2020), acute myeloid

leukemia (AML) (Qu et al., 2020), bladder cancer (Wang

TABLE 1 Characteristics of studies in this meta-analysis.

Study Year Country Cancer
type

Sample
type

Total
Size(n)

Detection
Method

Cutoff Outcome Multivariate
Analysis

HR
statistic

NOS
score

Chen
RH

2021 China CC Tissue 27 RT-qPCR mean OS NR Rep 6

Chen
RW

2021 China OSCC Tissue 46 RT-qPCR NR NR NR NR 5

Cui 2019 China LC Tissue 80 RT-qPCR mean OS NR SC 7

Ding 2017 China CRC Tissue 69 RT-qPCR NR NR NR NR 5

Fang 2017 China BC Tissue 38 RT-qPCR NR OS NR SC 6

Jiang 2019 China TC Tissue 68 NR mean OS NR SC 7

Li 2016 China CRC Tissue 30 RT-qPCR NR OS NR SC 6

Li 2017 China LC Tissue 103 RT-qPCR median OS Yes SC 8

Liu 2019 China LC Tissue 52 RT-qPCR median OS NR SC 7

Lu 2020 China HCC Tissue 106 RT-qPCR median OS Yes Rep 8

Qu 2020 China AML Blood 108 RT-qPCR median OS Yes Rep 8

Wang F 2016 China HCC Tissue 112 RT-qPCR NR OS NR SC 6

Wang Y 2018 China OS Tissue 66 RT-qPCR NR NR NR NR 5

Wang L 2019 China OSA Tissue 27 RT-qPCR mean OS NR SC 6

Wang F 2019 China Bladder
cancer

tissue 80 RT-qPCR NR NR NR NR 5

Wu 2019 China LGG tissue 50 RT-qPCR NR NR NR NR 5

Xia 2018 China TC tissue 128 RT-qPCR mean NR NR NR 6

Xiao 2020 China PCa tissue 68 RT-qPCR mean OS NR SC 7

Xie 2015 China GC tissue 55 RT-qPCR median OS NR SC 7

Zhang 2018 China HCC tissue 58 RT-qPCR NR NR NR NR 5

HR, hazard ratio; GC, gastric cancer; CRC, colorectal cancer; HCC, hepatocellular carcinoma; PCa, Prostate cancer; CC, cervical cancer; OSA, osteosarcoma; LGG, lower-grade glioma; TC,

thyroid Cancer; AML, acute myeloid leukemia; OSCC, oral squamous cell carcinoma; LC, lung cancer; BC, breast cancer; NR, no report; OS, overall survival; PFS, progression-free survival;

Rep, report; SC, survival curve; RT-qPCR, real-time quantitative polymerase chain reaction.
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F. et al., 2019), osteosarcoma (OSA) (Wang et al., 2018;

Wang L. et al., 2019), lower-grade glioma (LGG) (Wu et al.,

2019), prostate cancer (PCa) (Xiao and Song, 2020), gastric

cancer (GC) (Xie et al., 2015). A high level of HOXA-AS2

expression is associated with poor overall survival (OS) and

clinicopathological characteristics such as differentiation,

tumor node metastasis (TNM) stage, lymph node metastasis

(LNM). However, it is not clear the prognostic value of

HOXA-AS2, as most of the published studies were based on

a small group of patients. We explored the prognostic value

of HOXA-AS2 in pan-cancer for the first time using meta-

analysis. Furthermore, we further validated and explored

the prognostic value of HOXA-AS2 in multiple databases

through bioinformatics analysis, and explored HOXA-AS2-

related genes and potential pathways. Also, the role of

HOXA-AS2 in tumor immunity was investigated to

FIGURE 2
Relationship between HOXA-AS2 expression and overall survival. (A) Forest plots for association of HOXA-AS2 expression with overall survival.
(B) Subgroup analysis stratified by cancer type. (C) Subgroup analysis stratified by sample size. (D) Subgroup analysis stratified by follow-up time. (E)
Subgroup analysis stratified by NOS score.
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identify the potential of HOXA-AS2 as a novel tumor

marker and therapeutic target.

Materials and methods

Registration

The study was registered in the International Platform of

Registered Systematic Review and Meta-Analysis Protocols

(the registration number is: CRD42021292257). Because the

present study was a systematic review and meta-analysis,

Institutional Review Board (IRB) approval was not required.

Search strategy

Quality meta-analysis guidelines were followed to search for

and find related papers in the Embase, PubMed, Web of Science,

and The Cochrane Library. Key terms include the following:

“HOXA-AS2” “long noncoding RNA HOXA-AS2” “lncRNA

HOXA-AS2” “HOXA cluster antisense RNA 2” “HOXA3as”

“neoplasm” “cancer” “malignancy” “neoplasia” “melanoma”

“tumor” “sarcoma” “carcinoma” or “adenoma”. These terms

were used to maximize the likelihood of finding a relevant

article. The literature search included articles revealed as of

15 November 2021. A manual search of the reference lists of

the retrieved literature was performed to confirm the eligible

TABLE 2 Subgroup meta-analysis of pooled HRs for OS.

Stratified analysis Studies (n) Number of
patients

Pooled HR
(95% CI)

P-value Heterogeneity

I2, % P-value Model

Cancer type

Digestive system 4 303 2.33(1.55–3.50) <0.001 0.0 0.810 Fixed

Respiratory system 3 195 2.73(1.50–4.99) 0.001 44.8 0.163 Fixed

Other systems 6 336 1.55(1.01–2.39) 0.046 0.0 0.716 Fixed

Sample size

≥60 6 565 2.15(1.55–2.97) <0.001 28.6 0.221 Fixed

<60 7 269 1.89(1.19–3.00) 0.007 0.0 0.790 Fixed

Follow-up time (month)

≥60 10 643 1.94(1.46–2.59) <0.001 0.0 0.449 Fixed

<60 3 191 2.83(1.44–5.57) <0.001 0.0 0.789 Fixed

NOS score

≥7 8 600 2.15(1.50–3.10) <0.001 17.9 0.289 Fixed

<7 5 234 1.96(1.33–2.89) 0.001 20.6 0.790 Fixed

CI, Confidence interval; HR, Hazard ratio.

TABLE 3 Association of HOXA-AS2 expression with clinicopathological features.

Clinicopathological
parameters

Patients (n) Or (95%CI) P Value Heterogeneity (I2, P) Model

Age (elderly vs. nonelderly) 1181 1.09(0.86–1.38) 0.467 0.0%, 0.677 Fixed

Gender (male vs. female) 1185 0.92(0.72–1.18) 0.496 10.1%, 0.338 Fixed

Tumor stage (III + IV vs. I + II) 551 3.89(2.90–5.21) <0.001 0.0%, 0.507 Fixed

Lymph node metastasis (positive vs. negative) 433 3.48(2.29–5.29) <0.001 0.0%, 0.526 Fixed

Tumor size (big vs. small) 829 2.36(1.52–3.66) <0.001 54.4%, 0.015 Random

Differentiation (poor vs. well) 341 1.02(0.65–1.59) 0.945 0.0%, 0.460 Fixed

Depth of invasion (III + IV vs. I + II) 148 2.13(0.77–5.90) 0.146 57.0%, 0.127 Random

Distant metastasis (Yes vs. No) 277 3.54(2.00–6.28) <0.001 0.0%, 0.870 Fixed
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FIGURE 3
Forest plots for association of HOXA-AS2 expression with clinicopathological features. (A) Age. (B) Gender. (C) Tumor stage. (D) Lymph node
metastasis. (E) Tumor size. (F) Differentiation. (G) Depth of invasion. (H) Distant metastasis.
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studies included. Any conflicts between the inclusion and

exclusion clauses were resolved through group discussion.

Participants, interventions, and
comparators

Studies that complied with the following criteria were eventually

included: The inclusion criteria were: (a) the use of real-time

quantitative polymerase chain reaction (RT-qPCR) analysis to

determine the expression of HOXA-AS2 in neoplastic tissues; (b)

patients diagnosed with cancer, and the study described a link

between HOXA-AS2 and survival data or clinicopathology; (c) the

patients were divided into two groups according to the expression

level of HOXA-AS2, and (d) the quantitative hazard ratios (HRs) of

OS could be extracted from the text or survival curve. The exclusion

criteria were: (a) studies not related to tumors or HOXA-AS2; (b)

duplicate publications; (c) reviews, conference abstracts, or case

reports, and (d) studies that lacked relevant data.

Data extraction

Two researchers extracted information from each study, and

any disagreement was resolved by discussing it with a third author.

We obtained the following data and information from every study:

(a) first author, (b) publication year, (c) country of origin, (d)

cancer type, (e) number of samples, (f) HOXA-AS2 expression

detection technique, (g) cut-off value, (h) sample size with high

and low HOXA-AS2 expression, (i) HRs and 95% confidence

intervals (CIs) for OS, (j) clinicopathologic parameters, and (k)

follow-up times. OS data was directly obtained or extracted from

the Kaplan-Meier (KM) curves using Engauge Digitizer version

4.1 software and the HRs and 95% CIs were computed.

Quality assessment
Two reviewers extracted information individually based on

the inclusion and exclusion criteria. Some disagreements were

resolved in consultation with a third reviewer. The quality of the

studies was assessed using the Newcastle–Ottawa scale (NOS).

The scale uses nine elements to judge a study, and a score of one

is satisfied for an exact item. Total scores range from 0 to 9. A

NOS score of ≥ 7 represents high-quality analysis results.

Statistical analysis

All statistical analyses were conducted using Stata software

(version 12.0). The correlation of HOXA-AS2 expression with

survival and clinicopathological features of tumor patients was

assessed using HRs and odds ratios (ORs) with their 95% CIs,

respectively. The chi-squared test and I2 statistic were preferred to

determine the heterogeneity between studies. If there is strong

heterogeneity (PQ < 0.1, I2 > 50%), we considered the random-

effect model was applied, and the fixed-effect model was applied

otherwise. All results are shown as Forest plots. Egger’s test and Begg’s

funnel plot were used to evaluate publication bias, and sensitivity

analysis was conducted to evaluate the robustness of the results.

Public data and tools

HOXA-AS2 expression levels in tumors and normal tissues of

different solid tumors were analyzed by the Gene Expression

Profiling Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn)

online database (based on TCGA and GTEx databases) (cutoff, p <
0.01). The survival outcomes were then verified by plotting the

correlation between HOXA-AS2 expression and OS as a KM curve.

Moreover, we further explored the prognostic value of HOXA-AS2

in various cancers using the Biomarker Exploration of Solid Tumors

(BEST, https://rookieutopia.com) online tool. Additionally, we

further explored the correlation between HOXA-AS2 and drug

response through the CellMiner database (Reinhold et al., 2012)

using the R-package “readxl”, “impute” and “limma” options.

Correlation of HOXA-AS2 expression with
tumor immunity

Initially, we analyzed the relationship between HOXA-AS2

expression and the level of immune cell infiltration (ICI) in

various cancers based on the R packages “ggExtra”, “ggpubr”

and “ggplot2” via the CIBERSORT tool. Next, stromal and

immune scores were calculated for each tumor sample using

the ESTIMATE algorithm. The correlation between HOXA-

AS2 expression and tumor microenvironment (TME) was

assessed by the R package “ESTIMATE” and “limma”. In

addition, the relation of HOXA-AS2 expression and tumor

mutational load (TMB), tumor microsatellite instability (MSI)

and immune checkpoint genes were further evaluated. TMB

scores were calculated by Perl scripts, and MSI scores were

determined from TCGA database mutation data. The results

were visualized using the R package “RColorBrewer” and

“reshape2”.

Analysis of HOXA-AS2-related genes and
construction of signaling pathway
network

To further investigate the value of HOXA-AS2, we obtained

related genes from the MEM-Multi Experiment Matrix database.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses were carried out. The top findings

with a p-value of less than 0.05 were deemed significant. Finally,

we used Cytoscape software to create a signal pathway network.
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Results

Identification of articles

A total of 157 records were found in four electronic

databases (Embase = 57, PubMed = 47, Web of Science =

53, The Cochrane Library = 0). Ninety-five duplicate articles

were deleted using Endnote X9 software. After screening the

titles and abstracts, 34 articles were excluded because they were

not associated with the review topic or as a result of reviews,

meta-analysis, letters, or expert opinions. Hence, a full-text

examination was conducted for 28 articles. One article was

excluded because we were unable to extract data. Two papers

were eliminated because they were reviews, and five articles

were eliminated because they were cell-based studies. In the

end, 20 articles were included in the final meta-analysis

(Figure 1).

Characteristics of the included articles

All selected articles were published between 2015 and

2021 and included 1331 patients, all of whom were from

China. The smallest sample size was 27, and the largest

sample size was 128. Among the twenty studies, one focused

on LGG (Wu et al., 2019), one on CC (Chen and He, 2021),

FIGURE 4
(A) Begg’s funnel plot of HOXA-AS2 for overall survival. (B) A sensitivity analysis of pooled HR for overall survival.
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one on OSCC (Chen et al., 2021), three on LC (Li and Jiang,

2017; Cui et al., 2019; Liu et al., 2019), two on CRC (Li et al.,

2016; Ding et al., 2017), one on BC (Fang et al., 2017), two on

TC (Xia et al., 2018; Jiang et al., 2019), three on HCC (Wang

et al., 2016; Zhang et al., 2018; Lu et al., 2020), two on OSA

(Wang et al., 2018; Wang L. et al., 2019), one on PCa (Xiao

and Song, 2020), one on GC (Xie et al., 2015), one on bladder

cancer (Wang F. et al., 2019), and one on AML (Qu et al.,

2020). The expression of the indicated genes in cancer

tissues was measured by RT-qPCR. All eligible studies

were dichotomized into low and high HOXA-AS2

expression groups based on a cut-off value. The follow-up

time ranged from 25 to 120 months. All included studies

were cohort studies, 65% (13/20) of which reported OS rates.

The main characteristics of the eligible studies are shown in

Table 1.

FIGURE 5
The correlation between HOXA-AS2 expression and survival in different tumor types was analyzed in BEST. Cox regression analysis of (A)GBM,
(B) STAD, (C) LGG, (D) ACC, (E) SKCM, (F) BRCA, (G) LUAD, (H) BLCA, (I) SARC, (J) CRC. *p < 0.05, **p < 0.01, and ***p < 0.001.
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Association of HOXA-AS2 with OS

A total of 834 patients in 13 studies reported a link

between HOXA-AS2 expression and OS. Since there was

no significant heterogeneity between the studies, a fixed-

effects model was used to calculate the HR and 95% CI. The

pooled HR was 2.06, which indicated that HOXA-AS2

overexpression predicted poor OS in these patients with

neoplasms (Figure 2A). Furthermore, KM survival analysis

was applied to determine OS in different subgroups of

patients according to tumor type (digestive system,

respiratory system, others) (Figure 2B), sample size (n ≥
60 or n < 60) (Figure 2C), follow-up time (≥60 months or <
60 months) (Figure 2D), and NOS score (NOS scores ≥ 7 or <
7) (Figure 2E). As depicted in Table 2, higher HOXA-AS2

expression levels were significantly associated with worse OS.

Association between HOXA-AS2 and
clinicopathologic parameters

Correlations between HOXA-AS2 expression and the

clinicopathological features of the patients are shown in

Table 3. The meta-analysis results showed that higher

HOXA-AS2 expression levels tended to be significantly

associated with advanced tumor stage (OR = 3.89, 95% CI

2.90–5.21, p < 0.001) (Figure 3C), earlier LNM (OR = 3.48,

95% CI 2.29–5.29, p < 0.001) (Figure 3D), larger tumor size

(OR = 2.36, 95% CI 1.52–3.66, p < 0.001) (Figure 3E) and

earlier distant metastasis (OR = 3.54, 95% CI 2.00–6.28, p <
0.001) (Figure 3H). However, age (OR = 1.09, 95% CI

0.86–1.38, p = 0.467) (Figure 3A), gender (OR = 0.92, 95%

CI 0.72–1.18, p = 0.496) (Figure 3B), depth of invasion (OR =

2.13, 95% CI 0.77–5.90, p = 0.146) (Figure 3G), and

differentiation (OR = 1.02, 95% CI 0.65–1.59, p = 0.945)

(Figure 3F), had no significant link with increased HOXA-

AS2 expression levels.

Publication bias and sensitivity analysis

We employ Begg’s funnel plot and Egger’s regression test

to identify publication bias of OS. The shape of Begg’s funnel

was essentially symmetrical, with no visible asymmetry

(Figure 4A), and Egger’s regression analysis did not reveal

the presence of publication bias (Pr > |t| = 0.971). We ran a

sensitivity analysis by eliminating one qualified study to

analyze the influence of a single study on the result.

According to the analysis, the results were not

significantly influenced (Figure 4B). This verifies the

reliability of the meta-analysis conclusions.

Validation of HOXA-AS2 expression in
public databases

We used the TCGA dataset to analyze the degree of HOXA

AS2 expression in various tumors to further corroborate our results.

HOXA-AS2 was aberrantly expressed in glioblastoma multiforme

(GMB), acute myeloid leukemia (LAML), pancreatic

adenocarcinoma (PAAD), and thymoma (THYM), compared to

normal controls (Supplementary Figure S1A). A violin plot revealed

that the degree of HOXA-AS2 expression in human cancer was

highly related to the clinical stage (Supplementary Figure S1B). We

used GEPIA to create survival graphs by combining HOXA-AS2

expression data with theOS data of patients withmalignancies in the

entire TCGA dataset, which included 9491patients separated into

high (4741) and low (4750) groups of HOXA-AS2 expression based

on median levels. The results showed that increased HOXA-AS2

expression predicted poor OS, confirming the meta-analysis results

(Supplementary Figure S1C). Additionally, we explored the link of

HOXA-AS2 expression and tumor prognosis using Cox regression

model through the BEST online tool. The findings revealed that

there was a significant correlation between HOXA-AS2 expression

and the prognosis of GBM, stomach adenocarcinoma (STAD),

LGG, adrenocortical carcinoma (ACC), skin cutaneous

melanoma (SKCM), breast invasive carcinoma (BRCA), lung

adenocarcinoma (LUAD), bladder urothelial carcinoma (BLCA),

sarcoma (SARC), and CRC in at least two datasets (Figure 5).

HOXA-AS2 and drug response

To further explore the significance of HOXA-AS2 in guiding

cancer treatment, we analyzed the relationship betweenHOXA-AS2

and drug response. The results revealed that patients with high

HOXA-AS2 expression had a better drug response to XL−147,

Cpd−401, cordycepin, fenretinide, estramustine, and arsenic

trioxide. In contrast, AS−703569, ENMD−2076, SB−1317,

benzaldehyde (BEN), staurosporine, aminoflavone, amonafide,

midostaurin, sapitinib, and KW−2449 had a better drug response

in patients with low HOXA-AS2 expression (Figure 6).

Correlation analysis of HOXA-AS2
expression with tumor immunity

Correlation analysis between HOXA-AS2 expression and ICI

levels identified remarkable correlations between HOXA-AS2

expression and ICI levels in BRCA (n = 7), kidney renal papillary

cell carcinoma (KIRP) (n = 6), kidney renal clear cell carcinoma

(KIRC) (n = 5), head and Neck squamous cell carcinoma

(HNSC) (n = 4), STAD (n = 4), thyroid carcinoma (THCA)

(n = 3), testicular germ cell tumors (TGCT) (n = 3), BLCA (n =
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3), LGG (n = 3), THYM (n = 2), ovarian serous

cystadenocarcinoma (OV) (n = 2), esophageal carcinoma

(ESCA) (n = 2), prostate adenocarcinoma (PRAD) (n = 1),

mesothelioma (MESO) (n = 1), lung squamous cell carcinoma

(LUSC) (n = 1), LAML (n = 1), and cervical squamous cell

carcinoma and endocervical adenocarcinoma (CESC) (n=1).

Detailed information on the subpopulations of infiltrating

immune cells in various cancer types is illustrated in Figure 7.

HOXA-AS2 expression was negatively correlated with the levels

of infiltrating M0 macrophages in ESCA, NHSC, CESC, THCA,

BRCA, LUSC, and BLCA (Figure 7A). Similarly, HOXA-AS2

expression was negatively associated with the levels of infiltrating

neutrophils in STAD, HNSC, KIRC, and BRCA (Figure 7B). In

regard to monocytes, their infiltration levels were negatively

correlated with the HOXA-AS2 expression in LGG

(Figure 7C). HOXA-AS2 expression was also negatively

related to the levels of infiltrating M1 macrophages in BLCA,

and KIRP (Figure 7D). Moreover, HOXA-AS2 expression was

negatively correlated with the levels of infiltrating

M2 macrophages in BRCA, but positively associated with

TGCT (Figure 7E). HOXA-AS2 expression was positively

associated with the levels of infiltrating naive B cells in STAD,

OV, and BRCA, but positively associated with KIRP and TGCT

(Figure 7F). HOXA-AS2 expression was negatively correlated

with the infiltrating levels of activated CD4 memory T cells in

BLCA, KIRC, KIRP, STAD, TGCT, and THYM (Figure 7G).

Furthermore, HOXA-AS2 expression presented a positive

relationship with the levels of infiltrating plasma cells in

BRCA (Figure 7H). The levels of infiltrating CD8 T cells were

positively associated with HOXA-AS2 expression in PRAD,

HNSC, and BRCA, but negatively related in KIRP (Figure 7I).

A positive association with infiltrating follicular helper T cells

FIGURE 6
An illustration of the association between HOXA-AS2 expression and expected medication response.
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was identified in KIRC (Figure 7J). The levels of infiltrating

resting CD4 memory T cells were positively associated with

HOXA-AS2 expression in KIRP, and LGG (Figure 7K).

HOXA-AS2 expression was negatively associated with the

levels of infiltrating activated dendritic cells in MESO, HNSC,

KIRC, ESCA, and THCA (Figure 7L). Moreover, HOXA-AS2

expression was positively associated with the levels of infiltrating

resting DCs in BRCA (Figure 7M). The levels of infiltrating

FIGURE 7
Correlation between HOXA-AS2 gene expression and the level of immune cell infiltration in pan-cancerous tissues. HOXA-AS2 expression
significantly correlated with infiltrating levels of M0 macrophages in BLCA, BRCA, CESC, ESCA, NHSC, LUSC, and THCA (A), neutrophils in BRCA,
HNSC, KIRC, and STAD (B), monocytes in LGG (C), M1 macrophages in BLCA and KIRP (D), M2 macrophages in BRCA and TGCT (E), naive B cells in
BRCA, KIRP, OV, STAD, and TGCT (F), CD4 memory T cells in BLCA, KIRC, KIRP, STAD, TGCT, and THYM (G), plasma cells in BRCA (H), CD8 T
cells in BRCA, HNSC, KIRP, and PRAD (I), follicular helper T cells in KIRC (J), resting CD4memory T cells in KIRP and LGG (K), activated dendritic cells
in ESCA, HNSC, KIRC, MESO, and THCA (L), resting DCs in BRCA (M), activatedmast cells in LGG (N), restingmast cells in KIRC, KIRP, LAML, STAD, and
THYM (O), memory B cells in OV and THCA (P).
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activated mast cells were negatively associated with HOXA-AS2

expression in LGG (Figure 7N). In contrast, the levels of

infiltrating resting mast cells were positively correlated with

HOXA-AS2 expression in THYM, STAD, and KIRP, but

negatively related in KIRC and LAML (Figure 7O). The levels

of infiltrating memory B cells were positively associated with

HOXA-AS2 expression in THCA, but negatively associated in

OV (Figure 7P).

Furthermore, to explore its relationship with the TME, we

analyzed the association of HOXA-AS2 expression with stromal

and immune scores. Our findings showed that HOXA-AS2

expression correlated with the stromal scores of 13 cancers, the

top 6 tumors were BRCA, pheochromocytoma and paraganglioma

(PCPG), THCA, LGG, TGCT, and LUAD (Figure 8A); and with the

immune scores of 11 cancers, the top 6 tumors were PRAD, LGG,

BRCA, THCA, PCPG, and LUAD (Figure 8B).

Moreover, the correlation of HOXA-AS2 expression with

immune checkpoint genes showed that CD44, CD40, VSIR,

LGALS9, TNFRSF14 and TNFRSF25 were significantly

associated with HOXA-AS2 expression in several cancers,

especially in LGG, PRAD, LUAD, THCA, and HNSC

(Figure 8C). We evaluated the relation between HOXA-AS2

expression and TMB/MSI as well, and found that there was a

significant positive correlation between its expression and TMB

in LGG, THYM, KIRC, and HNSC, while there was a significant

negative correlation in STAD, BRCA, colon adenocarcinoma

(COAD), PRAD, SKCM, BLCA, uterine carcinosarcoma (UCS),

and PCPG (Figure 8D). Also, there was a significant positive

correlation between HOXA-AS2 expression and MSI in kidney

chromophobe (KICH) and BRCA, while there was a significant

negative correlation in COAD and STAD (Figure 8E).

Analysis of HOXA-AS2-related genes

The top 150 genes were screened co-expressed by HOXA-

AS2 using the MEM-Multi Experiment Matrix database.

HOXA2, HOXA5, and HOXA3 were the top three co-

expressed genes ranked by p-value and interrelated with

HOXA-AS2 expression (Supplementary Figure S2). In

FIGURE 8
Correlations between HOXA-AS2 expression and immunity, including stromal score, immune score, immune checkpoint genes, TMB and MSI
in cancers. (A)Correlation of HOXA-AS2 expression with the stromal score in pan-cancer. (B)Correlation of HOXA-AS2 expression with the immune
score in pan-cancer. (C) Correlation of HOXA-AS2 expression and immune checkpoint genes. (D) The radar chart displays the correlation of TMB
with HOXA-AS2 expression. The red curve indicates the correlation coefficient, and the blue value indicates the range. (E) The radar chart
displays the correlation of MSI with HOXA-AS2 expression. The blue curve indicates the correlation coefficient, and the green value indicates the
range. *p < 0.05, **p < 0.01, and ***p < 0.001.
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addition, GO and KEGG pathway analyses were performed to

explore the underlying molecular mechanisms (Figure 9,

Table 4), and a signaling pathway network was constructed

using Cytoscape software (Figure 10).

Discussion

According to global cancer statistics 2020, there were

approximately 19.3 million new cancer cases and

10.0 million cancer deaths worldwide (Sung et al., 2021).

Despite the variety of treatments available today, cancer

has a high rate of recurrence and death, resulting in

increased costs and poor patient prognosis (Huang et al.,

2020). For most types of cancer, early detection and

treatment improve prognoses. LncRNA was recently found

to have huge clinical value in the early diagnosis and novel

treatment of patients with cancer (Dunn et al., 2010).

Numerous studies showed that lncRNAs were involved in a

variety of physiological and pathological processes and had

FIGURE 9
GO terms and the KEGGpathway. (A)GOenrichment of target genes in biological process ontolagy (p < 0.05).(B)GOenichment of target genes
in cellular component ontology (p < 0.05). (C) GO enrichment of target genes in molecular function ontology (p < 0.05).(D) The top 8 pathways
related to the differentially expressed genes by the KEGG database analysis. BP, biological process; CC, cellular component GO, gene ontology
analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; MF, molecular function.

TABLE 4 Gene ontology analysis of HOXA-AS2-related genes.

GO
number

Description Genes P
Value

GO:0009952 anterior/posterior pattern specification RARG, NR2F2, HOXA10, HOXA9, HOXA3, HOXB4, HOXB3, HOXA2, HOXB2,
HOXA7, HOXA6, HOXB7, HOXA5, HOXB6, HOXB5

2.25E-18

GO:0048704 embryonic skeletal system morphogenesis HOXA3, HOXB4, HOXB3, HOXB2, HOXA7, HOXB7, HOXA6, HOXB6, HOXA5,
HOXB5

2.37E-13

GO:0043565 sequence-specific DNA binding RARG, NR2F2, MEIS2, HOXA10, HOXA9, HOXA3, HOXB4, HOXB3, RARB, HOXB2,
HOXA1, HOXA7, HOXA6, HOXB7, HOXA5, HOXB6, HOXA4

3.81E-09

GO:0001525 Angiogenesis LAMA5, TGFB2, MEIS1, NRP2, ID1, HOXA3, HOXB3, EPHB2, HOXA7 1.56E-05

GO:0005604 basement membrane LAMA5, CCDC80, COL4A1, NTN4, P3H2, FBLN1 3.18E-05

GO:0060216 definitive hemopoiesis MEIS1, HOXA9, HOXB4, HOXB3 6.45E-05

GO:0003700 transcription factor activity, sequence-specific DNA
binding

RARG, NR2F2, MEIS2, MECOM, ID1, HOXA3, HOXB4, HOXB3, HOXB2, HOXA6,
HOXB7, HOXA5, TEAD2, HOXB6, HOXA4

0.000228

GO:0045944 positive regulation of transcription from RNA
polymerase II promoter

WWTR1, RARG, MEIS2, CYR61, EGFR, HOXA10, MEIS1, HOXB4, RARB, HOXA2,
HOXA7, MET, HOXA5, TEAD2, HOXB5

0.000338

GO:0007435 salivary gland morphogenesis TGFB2, TWSG1, EGFR 0.000511

GO:0005576 extracellular region LAMA5, TGFB2, NRP2, C1R, CFI, NTN4, FBLN1, LTBP3, TFPI, CYR61, CYB5D2,
BMP1, COL4A1, PDGFC, SERPING1, IGFBP6, EPHB2, MET

0.000943
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important effects on tumorigenesis and tumor growth

(Renganathan and Felley-Bosco, 2017). For instance,

prostate cancer-associated transcript 6 (PCAT6) was

significantly increased in various cancers. The

overexpression of PCAT6 was closely correlated with OS,

TNM stage, distant metastasis, LNM, tumor size, and the

degree of differentiation in cancer patients (Shi et al., 2021),

which may be a new cancer-related biomarker. In recent years,

numerous studies found that the HOXA-AS2 was

overexpressed in a variety of tumor types, such as CC

(Chen and He, 2021), OSCC (Chen et al., 2021), PCa (Xiao

and Song, 2020) and so on. The function of HOXA-AS2 in

many malignancies has yet to be realized. Thus, we conducted

the current meta-analysis to assess the predictive and clinical

importance of HOXA-AS2 aberrant expression in cancer

patients.

Our meta-analysis found that HOXA-AS2 overexpression

was related to a lower chance of survival. We also examined the

connection between HOXA-AS2 overexpression and several

clinicopathological features. HOXA-AS2 overexpression was

associated with tumor stage, LNM, tumor size and distant

metastasis. However, there were no significant associations

FIGURE 10
Differentially expressed gene interaction network analysis. Green nodes represent target genes and sky blue nodes represent the related
pathway. As indicated in red, HOXA-AS2 localized at the center of the network.
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with age, gender, differentiation, or depth of invasion.

Furthermore, we performed further analysis of the prognostic

role of HOXA-AS2 in various cancers using several public

databases. Among them, Cox regression analysis indicated

that HOXA-AS2 had a better prognostic value in GBM,

STAD, LGG, ACC, SKCM, BRCA, LUAD, BLCA, SARC, and

CRC. These results suggest that HOXA-AS2 is a predictor of poor

prognosis in cancer patients.

Our findings demonstrated a strong correlation between

HOXA-AS2 expression and immunity in multiple tumors.

Tumor-infiltrating immune cells play an irreplaceable role in

tumor development. Previous research has shown that HOXA-

AS2 could influence glioma progression by regulating Treg cell

proliferation and immune tolerance (Zhong et al., 2022). We found

that HOXA-AS2 was associated with multiple infiltrating immune

cells in a variety of tumors. However, the regulatory mechanism of

HOXA-AS2 on ICI still remains to be further confirmed by

abundant experiments. The interaction between TME and tumor

cells is decisive for tumor survival and progression. Immune cells

and stromal cells are key components of the TME (Xiao and Yu,

2021). We found that HOXA-AS2 expression correlated with

immune cell scores in 11 tumors and with stromal cell scores in

13 tumors. It indicates that HOXA-AS2 has an essential role in the

TME. TMB and MSI are well-directed for tumor immunotherapy.

Our findings indicated that HOXA-AS2 expression correlated with

TMB in 12 cancers and withMSI in 4 cancers. In summary, HOXA-

AS2 may further influence the prognosis of cancer patients via

modulation of tumor immunity.

AlthoughHOXA-AS2was demonstrated to be amajor predictive

factor for patients with various malignancies in several studies, the

basic principle of how HOXA-AS2 caused cancer remains unknown.

According to the results of this study, the overexpression of HOXA-

AS2 can significantly aid cancer growth and metastasis. In contrast,

inhibited HOXA-AS2 expression, significantly reduced cell

proliferation, migration, and invasion, as well as the carcinogenesis

process. In PCa, HOXA-AS2 exhibited a negative connection with

miR-509–3p. The inhibition of HOXA-AS2 prevented PCa cells from

proliferating andmigrating (Xiao and Song, 2020). This suggested that

HOXA-AS2 could be used as a therapeutic target to treat PCa. In

addition, by decreasing miR-520c-3p expression, HOXA-AS2

enhanced the growth and spread of HCC (Wang et al., 2016).

HOXA-AS2 was elevated in OSCC tissues and increased OSCC

cell proliferation by sponging miR-567/CDK8 (Chen et al., 2021).

Table 5 highlights the association between HOXA-AS2 and

malignancies to investigate functionally associated genes.

We used the MEM-Multi Experiment Matrix database to predict

target genes and perform the signaling pathway analysis of HOXA-

AS2 to further investigate its value. HOXA2, HOXA5, and HOXA3,

TABLE 5 Summary of HOXA-AS2 functional roles and related genes.

Cancer Expression Functional role Related genes References

Oral squamous cell
Carcinoma

Upregulate Cell proliferation and migration miR-567/CDK8 Chen et al. (2021)

Colorectal cancer Upregulate Cell proliferation and apoptosis p21 and KLF2 Li et al. (2016)

Ding et al. (2017)

Breast cancer Upregulate Cell proliferation miR-520c-3p Fang et al. (2017)

Non-small cell lung cancer Upregulate Cell migration, invasion, proliferation, metastasis miR-520a-3p Li and Jiang, (2017)

Cui et al. (2019)

Liu et al. (2019)

Acute myeloid leukemia Upregulate Cell proliferation, invasion SOX4/PI3K/AKT Qu et al. (2020)

Hepatocellular Carcinoma Upregulate Cell migration, invasion p-AKT, MMP-2 and MMP-9/miR-520c-3p/
GPC3

Wang et al. (2016)

Zhang et al. (2018)

Lu et al. (2020)

Bladder cancer Upregulate Cell proliferation, invasion miR-125b/Smad2 Wang et al. (2019a)

Osteosarcoma Upregulate Cell migration and invasion miR-124–3p/E2F3 Wang et al. (2018)

Wang et al. (2019b)

Glioma Upregulate Cell proliferation and invasion and promoted
apoptosis

RND3 Xie et al. (2015)

Thyroid Upregulate Cell migration and invasion miR-520c-3p/S100A4 Xia et al. (2018)

Jiang et al. (2019)

Prostate cancer Upregulate Cell proliferation, migration, invasion and EMT miR-509–3p/PBX3 Xiao and Song,
(2020)

Gastric cancer Upregulate Cell proliferation and apoptosis P21/PLK3/DDIT3 Xie et al. (2015)

Cervical cancer Upregulate Cell proliferation migration, invasion miR-509–3p/BTN3A1 Chen and He, (2021)
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all of which play important roles in cancer, were strongly associated

with HOXA-AS2 expression in our study. Following that, we

conducted GO analysis, which indicated that the sequence-specific

DNA binding, extracellular exosomes, and angiogenesis of HOXA-

AS2were all significantly related.HOXAAS2was highly connected to

cancer-associated pathways in KEGG analysis.

Nevertheless, this meta-analysis had several limitations. First,

some HRs and the corresponding 95% CIs were extracted from

KM curves. Second, the qualifying studies were all performed in

China, so it is unclear whether the results can be generalized to

patients in other countries. To address this limitation, we

validated the correlation between HOXA-AS2 expression and

prognosis of cancer patients in public databases. Third, the

included studies were inconsistent in dividing expression

according to cut-off values. Additionally, only a few trials

were included, and some cancer types had very low sample

sizes. Thus, more clinical investigations should be conducted

to assess the potential prognostic role of HOXA-AS2 expression

in cancer types that were not included.

Conclusion

In summary, this meta-analysis found that HOXA-AS2

overexpression was linked to the poor prognosis of cancer

patients and could be used as a new prognostic biomarker

and therapeutic target for various malignancies. The predictive

usefulness of HOXA-AS2 in tumors has to be confirmed in more

studies, including other cancer types.
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Today, numerous international researchers have demonstrated that N7-

methylguanosine (m7G) related long non-coding RNAs (m7G-related

lncRNAs) are closely linked to the happenings and developments of various

human beings’ cancers. However, the connection between m7G-related

lncRNAs and glioma prognosis has not been investigated. We did this study

to look for new potential biomarkers and construct an m7G-related lncRNA

prognostic signature for glioma. We identified those lncRNAs associated with

DEGs from glioma tissue sequences as m7G-related lncRNAs. First, we used

Pearson’s correlation analysis to identify 28 DEGs by glioma and normal brain

tissue gene sequences and predicated 657 m7G-related lncRNAs. Then, eight

lncRNAs associated with prognosis were obtained and used to construct the

m7G risk score model by lasso and Cox regression analysis methods.

Furthermore, we used Kaplan-Meier analysis, time-dependent ROC, principal

component analysis, clinical variables, independent prognostic analysis,

nomograms, calibration curves, and expression levels of lncRNAs to

determine the model’s accuracy. Importantly, we validated the model with

external and internal validation methods and found it has strong predictive

power. Finally, we performed functional enrichment analysis (GSEA, aaGSEA

enrichment analyses) and analyzed immune checkpoints, associated pathways,

and drug sensitivity based on predictors. In conclusion, we successfully

constructed the formula of m7G-related lncRNAs with powerful predictive

functions. Our study provides instructional value for analyzing glioma

pathogenesis and offers potential research targets for glioma treatment and

scientific research.
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Introduction

Glioma is one of the most common aggressive and fatal

primary tumors in the central nervous system, accounting for

approximately 30% of cases (Mousavi et al., 2022). They are

graded by theWorld Health Organization (WHO) as I to IV with

increasing malignancy based on the histopathological

characteristics of the tumor (Ostrom et al., 2019). Although

genetic and molecular testing has brought advances in disease

diagnosis, surgery, radiotherapy, and other comprehensive

treatments have brought hope to patients; their prognosis is

still poor. It is getting more severe economic pressure and

burdening patients, their families, and society (Frances et al.,

2022; Haddad et al., 2022). Thus, there is an urgent need to detect

glioma-related biomarkers in our clinical care for early

identification and diagnosis and to investigate new therapeutic

approaches.

Although long non-coding RNA (lncRNA) is non-coding

RNA that cannot be translated into protein RNA molecules,

several reports have demonstrated that lncRNA regulates

tumorigenesis and development (Yang et al., 2016; Chen

et al., 2021). For example, LINC01503 promotes the cancer

stem cell properties of glial cells by reducing the degradation

of GLI2 (Wei et al., 2022). The lncRNA HOXA-AS2 can enhance

the expression of KDM2A/JAG1, which can contribute to Treg

cell proliferation and immune tolerance in gliomas and promote

tumor development (Zhong et al., 2022). The downregulation of

lncRNA TTTY15, which targets miR-4500, could regulate the

proliferation and apoptosis of A172 glioma cells (Wang et al.,

2022). LncRNA IRAIN overexpression inhibits glioma

progression and temozolomide resistance by suppressing the

PI3 K-related signaling pathway (Guo et al., 2022). LncRNA

KB-1460A1.5 suppresses glioma development through the miR-

130a-3p feedback loop (Xu et al., 2022). Despite some progress in

previous studies, few biomarkers have been studied for lncRNA

prognosis to differentiate patients. Therefore, we investigated the

prognostic role of m7G-related lncRNAs in glioma by identifying

m7G-related DEGs in glioma in order to be able to find more

useful biomarkers for glioma.

N7-methylguanosine (m7G) refers to the methylation of

guanosine at the N7 position. m7G RNA modification is one

of the most common posttranscriptional modifications; it is

widely distributed in the 5′hat region of tRNA, rRNA, and

eukaryotic mRNA and plays an essential role in gene

expression, protein synthesis and transcriptional stability (Pei

and Shuman, 2002; Jaffrey, 2014; Song et al., 2020). M7G can

regulate the secondary structure of RNA or protein-RNA

interaction through electrostatic and spatial effects (Furuichi,

2015). Current studies have demonstrated that almost every stage

of the life cycle can be adjusted by m7G modifications, such as

transcription (Pei and Shuman, 2002), mRNA splicing (Jiang

et al., 2018), nuclear output (Lewis and Izaurralde, 1997), and

translation (Marchand et al., 2018). The mutation of m7G

methyltransferase is related to many diseases. Mutations,

knockouts, and overexpression of m7G-related genes, such as

WD repeat domain 4 (WDR4), lead to microcephalic primordial

dwarfism (Sauna and Kimchi-Sarfaty, 2011), Nervous system

damage (Lin et al., 2018), and impairment of learning and

memory abilities (Pereira et al., 2009). Furthermore, METTL1

is an author of m7G, essential for suppressing lung cancer cell

migration through m7G editing on RAS and MYC driver genes

(Balzeau et al., 2017; Pandolfini et al., 2019). Also, overexpression

of mettl1 and bad prognosis of patients with liver cancer is

associated with the downregulation of tumor suppressors in

hepatocellular carcinoma (Barbieri et al., 2017; Tian et al.,

2019). The tRNA N7-methylguanosine modification mediated

byMETTL1/WDR4 promotes the development of squamous cell

carcinoma (Chen et al., 2022). Furthermore, METTL1-m7G-

EGFR/EFEMP1 axis is a precise mechanism for bladder cancer

development (Ying et al., 2021). Therefore, if we want a further

biological understanding of the interaction between lncRNA and

cancer, we must study m7G modifications and explore new

prognostic and therapeutic markers. In this study, we

constructed a formula based on m7G prognosis-related

lncRNAs; and verified their outstanding performance in

prognosis prediction. The lncRNAs associated with glioma

prognosis were also identified, which may provide potential

research directions for analyzing glioma’s pathogenesis and

clinical treatment.

Materials and methods

Patients and datasets

We downloaded glioma data (GBM and LGG) and normal

brain tissue RNA transcriptome data from the Cancer Genome

Atlas (TCGA) and the Genotype-Tissue Expression (GTEx)

website (698 glioma samples and 1152 normal human brain

samples, respectively). Validation data were available from the

China Glioma Genome Atlas (CGGA,1018 glioma samples).

Meanwhile, clinical information of glioma patients was

downloaded from the TCGA and CGGA databases, and

patients without follow-up data or an overall

survival <30 days were excluded. Since the data in this study

were obtained from public databases, ethics committee approval

was not required according to the relevant regulations of the

databases.

Identify the expression of m7G-related
genes

First, we obtained 3 genes from the published article about

m7G (Tomikawa, 2018; Pandolfini et al., 2019; Teng et al., 2021).

Then we searched for three biological pathways related to m7G in
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GSEA and extracted genes involved in each pathway. After

removing duplicate genes and summarizing the above genes,

we obtained 29 genes. Then, we used Wilcoxon’s method (FDR <
0.05, Log2FC >1) to screen the genes with significant differences

in the expression level between glioma and normal tissues based

on these 29 genes. After deleting the genes with no significant

differences, the remaining ones are m7G-related differentially

expressed genes (m7G-related DEGs), and named them

m7G-related genes (Supplementary Material S1). Expression of

m7G-related DEGs samples were visualized using vioplot. Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analysis implemented in R.

Establishment of the risk signature

First, we performed co-expression analysis of 28 m7G-related

genes and lncRNAs in the TCGA and GTEx glioma and normal

brain tissue datasets, identifying 657 m7G-related lncRNAs

(Pearson correlation coefficients >0.4, p < 0.001,

Supplementary Material S2). Secondly, the prognostic

relationship of m7G-related lncRNAs was assessed by

univariate Cox regression (Supplementary Material S3). In the

univariate analysis, the m7G-related lncRNAs with p < 0.01

(539 lncRNAs) were included in the least absolute shrinkage

and selection operator (Lasso) regression. The results derived

from Lasso regression were then incorporated into a multivariate

Cox model to derive eight prognostic m7G-related lncRNAs and

create the risk scores (RS)formula:

risk score � ∑
n

i�1
coef m7GLncSigi × EXPm7GLncSigi

The “coef m7GLncsigi” in this “risk scores” formula

represents the coefficient value, which is the regression

coefficient of the 8 prognostic lncRNAs derived from the

multifactorial regression analysis. The “EXP m7GLncSigi” in

the formula represents the expression levels of the 8 m7G-

related lncRNAs. By using the RS formula, we can get the risk

value of each patient. And after getting the risk value of all

patients, we can find out the median risk value of the patients.

According to the median value, we can determine the level of risk

of the patients.

Validation of the risk scoring model
Kaplan-Meier (K-M) analysis, time-dependent ROC,

principal component analysis (PCA), independent prognostic

analysis, nomogram (1-, 3-, and 5-year), calibration curve and

the expression level of lncRNAs are used to determine the

accuracy of the model. In the CGGA validation sample, we

applied the same intermediate values to assess the validity and

reliability of our RS formula using the same way as above. We

also use the same approach to randomly divide the TCGA data

into two groups for internal validation.

Functional annotation of prognostic
m7G-related LncRNAs

We divided the patients into high-risk and low-risk groups

based on the median risk score. GSEA (version 4.1.0, (p <
0.05 and FDR <0.25))was used for functional enrichment

analysis (Subramanian et al., 2005). The infiltrating fraction of

16 immune cells and the activity of 13 immune-related pathways

were measured by ssGSEA (Rooney et al., 2015). We also

explored the relationship between risk scores and immune

checkpoints in both risk groups (Yao et al., 2021).

Drug sensitivity correlation analysis
To find more drugs for the treatment of glioma, we focused

on evaluating and predicting immune-related drugs. According

to the online tool Cancer Drug Sensitivity Genomics, the IC50 of

different drugs on glioma samples was predicted using the R

package ‘pRRophetic’. The main use of ‘pRRophetic’ is to predict

phenotypes from gene expression data (to predict clinical

outcomes using Cancer Genome Project CGP cell line data),

to predict drug sensitivity in external cell lines (CCLE) and also

for clinical data prediction.

Statistical analysis
This study used R software (version 4.1.2) and GSEA

software for statistical analysis. Wilcoxon test was used to

identify the expression levels of m7G-related DEGs in

cancer and normal tissues. Survival curves were generated

using the Kaplan-Meier method and compared using the

log-rank test. Cox regression and Lasso regression were used

to evaluate the prognostic influences of m7G-related

lncRNA features.

Results

Differential expression and enrichment
analysis of m7G-related genes

After analysis, we found that 28 m7G-related genes were

significantly differentially expressed between glioma and normal

tissues (Figure 1A). Specifically, NUDT11, IFIT5, GEMIN5,

METTL1, CYFIP1, NCBP1, WDR4, NUDT10, EIF3D, LARP1,

DCP2, DCPS, AGO2, NCBP2, EIF4G3 and LSM1 were highly

expressed in tumor samples (p < 0.001). NSUN2, NUDT4,

EIF4E2, SNUPN, NCBP3, NUDT3, EIF4E3, EIF4E, NCBP2L,

EIF4E1B, EIF4A1 and NUDT4B were lowly expressed in tumor

samples (p < 0.001). The expression levels of NUDT16 were not

significantly different (p = 0.517) (Figure 1B). In addition, to further

understand the intrinsic association between the 28 m7G-related

genes, we also performed a correlation analysis. The results showed

that the positive correlation between GEMIN5 and NCBP1 was the

most significant, and the negative correlation between GEMIN5 and

EIF4A1 was the most significant (Figure 1C). The above results
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suggest some interaction between m7G-related genes in glioma.

Then, KEGGpathway analysis showed that m7G-related DEGs were

mainly enriched in RNA degradation, Nucleocytoplasmic transport,

EGFR tyrosine kinase inhibitor resistance, Longevity regulating

pathway, mRNA surveillance pathway, HIF-1 signalling pathway,

Insulin signalling pathway, Spliceosome, mTOR signalling pathway,

HIF-1 signalling pathway and PI3K-Akt signalling pathway

(Figure 1D). GO analysis showed that DEGs were mainly

enriched in the regulation of translation, nucleobase-containing

compound catabolic process, heterocycle catabolic process, Etc.

(Figure 1E).

Screening prognostic m7G-related
LncRNAs

We identified 658 lncRNAs associated with m7G-related

genes. Univariate Cox regression analysis showed that

540 lncRNAs were linked to patient prognosis. One hundred

thirty-two were considered risk lncRNAs with HR > 1, while

408 were protective lncRNAs with HR < 1. After Lasso

regression, 28 m7G-associated lncRNAs were identified.

Finally, multivariate Cox regression identified 8 lncRNAs with

the best prognostic correlation (AC048382.5, AC127070.2,

FIGURE 1
Expression of m7G-related mRNAs and prognostic m7G-Related lncRNAs. (A) Heat Map shows the expression levels of eight m7G-related
mRNAs. (B) The vioplot shows the differentially m7G-related mRNAs. Blue represents normal sample, and red represents the glioma sample. (C)
Spearman correlation analysis of m7G-relatedmRNAs. (D) KEGG circle diagram ofm7G-related DEGs. (E)GO circle diagram ofm7G-related DEGs. (F)
The expression levels of eight prognostic m7G-Related lncRNAs. (G) The co-expression network of prognostic m7G-related lncRNAs. (H)
Sankey diagram of prognostic m7G-Related lncRNAs. lncRNAs, long non-coding RNAs; N, normal; T, tumor.
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AL159169.2, AL731571.1, SNAI3-AS1, AC092718.4, AC145098.1,

LINC00092) (Supplementary Material S4). The expression levels

of the eight prognostic m7G-related lncRNAs are shown

(Figure 1F). We used the Cytoscape and ‘galluvial’ R packages

to visualize the lncRNAs. The co-expression network contained

14 lncRNA-mRNA pairs (Figure 1G, R2>0.4, p < 0.001). SNAI3-

AS1 was co-expressed with four related genes (EIF4A1, EIF4E3,

EIF4E1B, and CYFIP1), AC092718.4 was co-expressed with three

FIGURE 2
Construction and validation of the 8 prognostic m7G-related lncRNAs signature for survival prediction. (A) Distribution of RS in TCGA. (B)
Survival time and status of patients in TCGA. (C) Heatmap of prognostic m7G-related lncRNAs of RS in TCGA. (D) ROC curve for TCGA. (E) KM curve
for TCGA. (F)Distribution of RS in CGGA. (G)Survival time and status of patients in CGGA. (H)Heatmap of m7G-related lncRNAs of RS in CGGA. (I)ROC
curve for CGGA. (J) KM curve for CGGA.
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related genes (IFIT5, DCPS, and WDR4), and AC145098.1 was

co-expressed with two related genes (CYFIP1 and NUDT10),

AC127070.2 co-expressed with NUDT10, AC048382.5 and

AL731571.1 both co-expressed with IFIT5, LINC00092 co-

expressed with EIF3D and AL159169.2 co-expressed with

EIF4E. AC048382.5, AC127070.2, AL159169.2, AL731571.1,

and SNAI3-AS1 were protective factors, while AC092718.4,

AC145098.1, and LINC00092 were risk factors (Figure 1H).

Development and validation of prognostic
models

Based on the above eight lncRNAs, we constructed a prognostic

model and calculated the risk score for each patient using the risk score

model. The risk score formula worked as follows: risk

score =(0.620302782 × AC092718.4 expression) + (0.492232265 ×

LINC00092 expression) + (0.724211508 × AC145098.1 expression)

+ (-0.922536934 × SNAI3-AS1 expression) + (-0.922536934 ×

AC048382.5 expression) + (-0.846208391 × AC127070.2 expression)

+ (-0.924348861 × AL731571.1 expression) + (-0.807182397 ×

AL159169.2 expression). After obtaining a risk score for each

patient, the patients were divided into two groups based on the

median risk score: a high-risk group and a low-risk group

(Figure 2A). We found that more and more patients died as the

risk score increased (Figure 2B). Figure 2C showed eight prognostic

m7G-related lncRNAs involved in two groups by heat map. The ROC

curve area showed the excellent predictive capability of themodel based

on eight survival-related lncRNAs. In the TCGA data, the AUC values

were 0.905, 0.928, and 0.89 at 1, 3, and 5 years, respectively (Figure 2D).

According to KM analysis, patients with high RS had worse survival

rates than those with low RS (Figure 2E).

Using the same cut-off from the TCGA data for the CGGA

validation data, it was possible to distinguish the high-risk group

from the low-risk group. However, the number of patients in the

low-risk group was significantly lower (Figure 2F). CGGA

patients showed that high-risk patients are positively

associated with poor prognosis (Figure 2G). The expression of

prognostic m7G-related lncRNAs in CGGA resembled that in

TCGA samples (Figure 2H). In the CGGA sample, the AUC

values were0.705, 0.78, and 0.80 at 1, 3, and 5 years, respectively

(Figure 2I). KM analysis performed on CGGA data showed the

same results as TCGA data (p < 0.001, Figure 2J). The validation

results in the two validation datasets of TCGA also demonstrate

the excellent predictive power of the model (Supplementary

Material S5).

Validation of PCA analysis and the
expression of prognostic LncRNAs

The distribution of patients based on whole genes,

m7G-related genes, m7G-related lncRNAs, and prognostic

m7G-related lncRNAs was visualized using PCA plots. The

results showed that m7G survival-associated lncRNA showed

the best results (Figures 3A–D). High- and low-risk patients can

be distributed in different quadrants according to the RS of

prognostic m7G-related lncRNAs.

We evaluated the expression levels of m7G-related lncRNAs

in the TCGA dataset. We found that all genes differed

significantly in different grades (Figure 3E), and all but one of

the genes had similar trends across stages (Figure 3F). In TCGA

and CGGA datasets, the same trend of gene expression was

shown with increasing tumor grade.

Validation of the correlations between
clinical variables and risk score

Using TCGA data, we analyzed the correlations between

these clinical variables and the eight lncRNAs risk scores. The

risk scores were correlated with age, survival status, and tumor

stage; AC048382.5 was associated with age, survival status, and

stage; AC127070.2 was correlated with survival status, sex, and

stage; AC145098.1 was correlated with survival status and stage;

AL159169.2 was correlated with age, survival status, and stage;

AL731571.1 was correlated with age, survival status, gender, and

staging; and LINC00092 was associated with age and survival

status. (Figure 4). The above results showed that our screened

m7G-related lncRNAs had the excellent predictive ability.

Development and validation of nomogram

In TCGA and CGGA data, we analyzed the independent

prognostic factors of glioma patients by Cox regression.

Univariate and multivariate Cox regression analyses showed that

risk score was an independent predictor (HR = 1.253, 95% CI:

1.192–1.317, p < 0.001; HR = 1.127, 95% CI:1.096–1.160, p < 0.001)

of OS in glioma patients (Figure 5A, B,D,E). We constructed a

column line plot containing clinicopathological variables and risk

scores to facilitate clinical work (Figure 5C,F). The calibration curves

showed good agreement between actual OS and predicted survival

rates (Figures 5J–L).

Functional annotation of m7G-related
lncRNAs

We used GSEA to investigate further the differences between

the two subgroups for eight m7G-related lncRNAs. In KEGG

analysis, the main added functions were systemic lupus-

erythematosus, n-glycan-synthesis, and glutathione-

metabolism. Decreased functions were wnt-signalling-pathway,

taste-transduction, and terpenoid-backbone-biosynthesis

(Figure 6A). Most of these pathways are mainly responsible
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for immune-related diseases and metabolic pathways. So, this

suggests that poor prognosis in high-risk patients is likely to be

closely related to tumor immune-related pathways.

Investigation of immune-related pathways

We quantified the enrichment scores of ssGSEA by measuring

the immune cell subpopulations and related pathways to investigate

further the correlation between risk scores and immune cells and

functions. In the high-risk group, we found a significant rise in most

cells (B cells, CD8+ T cells, DCs, Tregs, etc.) (Figure 6B). T-cell-co-

inhibition, APC-co-stimulation, CCR, T-cell-co-stimulation, and

type I IFN response were higher in the high-risk group than in

the low-risk group (Figure 6C). The above results suggest that the

high-risk group’s immune function was more active. We also

compared the analysis of differences in immune checkpoint

expression between the two groups because of the importance of

checkpoint-based immunotherapy (Figure 6D).

Correlation of predictive features between
drug sensitivities

We also analyzed the correlation between predictive

characteristics and tumor immune-related drugs. The results

found lower IC50 of Cisplatin, Etoposide, and Rapamycin in

the high-risk group and higher IC50 of Lenalidomide and PAC-1

in the high-risk group. (Figures 6E–I), which helps to explore

individualized treatment regimens suitable for high-risk patients.

Discussion

Glioma is a common brain tumor, accounting for 78% of

primary malignant brain tumors in the brain, and its overall

prognosis has been poor. Therefore, exploring the early diagnosis

of glioma and accurately predicting the prognostic markers is of

crucial clinical significance (Linzey et al., 2019). Many studies have

shown the critical role of m7G in cancer development, mainly

focusing on the regulation of tumor cell genesis and progression,

but few investigations on cancer prognosis (Orellana et al., 2021;

Rong et al., 2021; Xia et al., 2021). Several studies have recently

emerged by constructing mRNA and lncRNA predictive signatures

associated with glioma autophagy, pyrogenesis, m6A, and

ferrogenesis can be used to predict the prognosis of glioma

patients (Maimaiti et al., 2022) (Zhou et al., 2021a) (Guan et al.,

2021) (Shi et al., 2022). However, the study of prognostic m7G-

related lncRNAs in glioma has not been reported. Therefore, we

purpose to investigate the prognostic role of m7G-related lncRNA in

glioma and provide a new approach for the future clinical treatment

of glioma.

FIGURE 3
PCA maps of the TCGA glioma dataset show the distribution of patients based on the (A) whole genome; (B) m7G-related gene sets; (C)
m7G-related lncRNAs; and (D) prognostic m7G-related lncRNAs. Red: high-risk; Green dots: low-risk. Expression profile of 8 prognostic m7G-related
lncRNAs with different glioma grades. (E)m7G-related lncRNAs expression with different glioma grades in TCGA datasets. (F) prognostic m7G-related
lncRNAs expression with different glioma grades in CGGA datasets. (G2: WHO II, G3: WHO III, G4: WHO IV). *p < 0.05, **p < 0.01 and ***p <
0.001.
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FIGURE 4
Associations between risk scores/related lncRNAs and clinical features. (A–C) Association between risk score and gender, state, and age. (D–E)
Association between LINC00092 expression level and state, age. (F–I) Association between AL731571.1 expression level and grade, gender, state and
age. (J–L) Association between AL159169.2 expression level and grade, state and age. (M–N) Association between AC145098.1 expression level and
grade and state. (O–Q) Association between AL127070.2 expression level and grade, gender and state. (R–T) Association between AC048382.5
expression level and grade, state and age.
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This study first obtained 28 DEGs associated with N7-

methylguanosine. Then, KEGG analysis showed that DEGs were

mainly enriched in RNA degradation, nucleocytoplasmic transport,

mRNA surveillance pathway, HIF-1, mTOR, and HIF1-PI3K-Akt

signaling pathway. GO analysis showed that DEGs were primarily

enriched in the translational initiation activity, regulation of

translation, RNA 7−methylguanosine, etc. Existing studies have

modified mRNA by adding an m7G 5′ cap to protect mRNA

from premature degradation (Kasprzyk and Jemielity, 2021).

EGFR plays a crucial role in the METTL1-m7G axis in bladder

cancer (Ying et al., 2021). Upregulated WDR4 expression increases

m7G methylation levels in hepatocellular carcinoma (Xia et al.,

2021). Hickey et al. reported that m7G-MP, the cap analog, is a

potent and specific inhibitor of eukaryotic translation (Hickey et al.,

FIGURE 5
Independent prognosis analysis of risk score. (A and D) Univariate COX Forest plot of the risk score in TCGA and CGGA. (B and E) Multivariate
COX Forest plot of the risk score in TCGA and CGGA. (C and F)Nomogram based on prognostic features in TCGA and CGGA. (G–I)Calibration plots
of the nomogram for predicting the probability of OS at 1, 3, and 5 years in the TCGA. (J–L) Calibration plots of the nomogram for predicting the
probability of OS at 1, 3, and 5 years in the CGGA.
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1976). The above results suggest that m7G-related genes maybe

participate in cancer development through various pathways such as

transcription and translation. However, further studies are needed to

explore the function of m7G-related genes in glioma.

In addition, there are pieces of evidence that lncRNAs play an

essential part in cancer (Ho et al., 2022; Liang et al., 2022; Zhang et al.,

2022). SNAI3-AS1, an m7G prognosis-associated lncRNA, is an

important tumor modifier in hepatocellular carcinoma tumor

progression (Li et al., 2020). Recently, it has been reported that

autophagy-related lncRNA features can accurately predict the

prognosis of glioma patients (Maimaiti et al., 2022). Ferroptosis-

associated lncRNAs can also predict the prognosis of glioma patients

(Shi et al., 2022). Therefore, it is important to identify the predictive

value of m7G-related lncRNAs in glioma patients and could provide

potential directions for future experimental studies of m7G and

clinical studies of glioma. In this study, we identified 8 prognostic

m7G-related lncRNAs (AC048382.5, AC127070.2, AL159169.2,

AL731571.1, SNAI3-AS1, AC092718.4, AC145098.1, LINC00092)

for establishing prognostic model. We also found mRNAs

(EIF4A1, EIF4E3, EIF4E1B, CYFIP1, DCPS, WDR4, NUDT10,

IFIT5, EIF3D, EIF4E) were significantly co-expressed with these

lncRNAs. Among them, eIF4E binds the 7-methyl-GTP portion

of the 5′ cap structure of cytoplasmic mRNA and plays a part in

translation initiation and regulation (Merrick and Pavitt, 2018).

Additional studies have found that DCPS acts on m7G through

mRNA decay (Ng et al., 2015). WDR4 undergoes a malignant

transformation of cells through overexpression of m7G (Orellana

et al., 2021). EIF4 acts as a cap-binding protein to enhance m7G cap

stabilization of transcripts and plays an important role inmalignancy

through upregulation (Culjkovic-Kraljacic et al., 2020). In conclusion,

the above reports provide evidence for our related studies on N7-

methylguanosine. In analyzing two databases with the same median,

we found that the number of deaths increased as the risk score

increased. The 5-year AUC values (AUC= 0.89, AUC= 0.80) in both

TCGA and CGGA data demonstrated the success of the model

construction in predicting the prognosis of glioma patients.

Furthermore, eight lncRNAs expression in different grades of

glioma, the correlation between risk scores and clinical

characteristics also increases their predictive power.

Then, GSEA shows that the high-risk group mainly enriched

systemic lupus-erythematosus, n-glycan-biosynthesis, glutathione-

synthesis, and leukocyte-transendothelial migration. N7-

methyladenosine, a common methylation modification of RNA,

plays an essential role in autoimmune diseases like RA and SLE

(Agris et al., 1992; Zhou et al., 2021b). N-glycan plays a significant part

in breast and oral cancers (Hirano and Furukawa, 2022; Wu et al.,

FIGURE 6
Functional enrichment analysis of 8 prognostic m7G-related lncRNAs. (A) KEGG analysis of 8 prognostic m7G-related lncRNAs. (B) The
infiltration levels of 16 immune cells. (C) The correlation between the predictive signature and 13 immune-related functions. (D) Expression of
immune checkpoints. aDCs, activated dendritic cells; iDCs, immature dendritic cells; NK, natural killer; pDCs, plasmacytoid dendritic cells; Tfh, T
follicular helper; Th1, T helper type 1; Th2, T helper type 2; TIL, tumor-infiltrating lymphocyte; Treg, T regulatory cell; APC, antigen-presenting
cell; CCR, chemokine receptor; HLA, human leukocyte antigen; MHC,major histocompatibility complex; IFN, interferon. *p < 0.05; **p < 0.01; ***p <
0.001; ns, non-significant. Comparison of treatment drugs sensitivity between high- and low-risk groups. (E–I) IC50 of Cisplatin, Etoposide,
Rapamycin, Lenalidomide, PAC.1 in high and low-risk groups. IC50, half-maximal inhibitory concentration.
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2022). Glutathione affects tumor progression by altering oxidative

stress sensitivity in astrocytic tumors (Moreira Franco et al., 2021).

Increased expression of lymphocyte-specific protein 1 (LSP1) will

cause leukocyte migration and inhibition of the immune

microenvironment in GBM (Cao et al., 2020). The above results

suggest that the occurrence and development of gliomas are alsomost

likely to be closely related to immune-related pathways. The ssGSEA

results showed a significant rise in most cells (macrophages, CD8+

T cells, mast cells, Tregs, etc.) in the high-risk group. Some of the

above findings have been confirmed by studies. For example,

CD8+T-cell infiltration is associated with poor prognosis in

patients with BC (Hou et al., 2020; Liu et al., 2020). High

infiltration of tumour-associated macrophages was associated with

low-grade glioma and thyroid cancer (Ryder et al., 2008; Li et al.,

2022). The number of mast cells was positively linked to poor

prognosis in patients with prostate cancer (Zhang et al., 2020).

The degree of MC infiltration in mice and human gliomas is

proportional to the malignancy of the tumor (Polajeva et al., 2011;

Polajeva et al., 2014). The ratio of high neutrophils to lymphocytes

predicts a poorer OS in BC patients (Tan, 2017). Pathological

grading of gliomas is positively correlated with infiltrating

neutrophils (Khan et al., 2020). Increased infiltration of Tregs

indicates a poor prognosis in patients with hepatocellular

carcinoma (Tu et al., 2016). lncRNA HOXA-AS2 promotes

Treg proliferation and immune tolerance through the miR-

302A/KDM2A axis to promote glioma progression and poor

prognosis (Zhong et al., 2022). Increased Treg and MDSC in

mouse gliomas can lead to a decrease in overall survival (Zhai et al.,

2021).We found higher HLA and type I IFN response scores in the

high-risk group, except for increased tumor immune cell

infiltration. Thus, decreased antitumor immunity in high-risk

groups may be responsible for poor prognosis. We found

significant differences in immune checkpoint expression

between the high-risk and low-risk groups. We also studied the

sensitivity of immune-related drugs among patients and found

that high-risk patients may be sensitive to Cisplatin, Etoposide,

and Rapamycin and resistant to Lenalidomide, PAC-1. This

implies that high-risk groups may benefit from treatment with

multiple immune-related drugs. We hope the above study

provides a basis for precise, individualized treatment of

glioma patients.

However, our study has some limitations. In the first place,

we only used CGGA and CGGA database data for verification

and still required external data to test the applicability of

predicted signatures. Next, the mechanism of action of

m7G-related lncRNAs in glioma needs to be further validated

experimentally.

Conclusion

We successfully built a formula for m7G-related lncRNAs

with powerful predictive functions and screened lncRNAs with

prognostic values. These studies add some instructional value to

glioma etiopathogenesis and clinical treatment analysis. And

these m7G-related lncRNAs may become new biomarkers and

are expected to provide new ideas for glioma therapeutic

approaches.
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Identification of platinum
resistance-related gene signature
for prognosis and immune analysis
in bladder cancer

Sheng Li1,2†, Ming Jiang1,2†, Lin Yang1,2†, Fucun Zheng1,2, Jiahao Liu1,2,
Xiong Situ1,2, Xiaoqiang Liu1,2*, Liu Weipeng1,2 and Bin Fu1,2*
1Department of Urology, Nanchang, China, 2The First Affiliated Hospital of Nanchang University, Nanchang,
China

Purpose: Currently, there is limited knowledge about platinum resistance-related
long non-coding RNAs (lncRNAs) in bladder cancer. We aim to identify platinum
resistance-related lncRNAs and construct a risk model for accurate prognostic
prediction of bladder cancer.

Methods: Transcriptomic and clinical data were extracted from The Cancer Genome
Atlas (TCGA) database, and platinum resistance-related genes were obtained from
HGSOC-Platinum. The platinum resistance-related lncRNAs were obtained by the
Spearman correlation analysis. Then, we constructed a risk scoremodel through Cox
regression analysis and the LASSO algorithm. Themodel was verified by analyzing the
median risk score, Kaplan-Meier curve, receiver operating characteristic (ROC)
curve, and heatmap. We also developed a nomogram and examined the
relationship between the risk score model, immune landscape, and drug
sensitivity. Lastly, we assessed the differential expression of PRR-lncRNAs in the
cisplatin-resistant bladder cancer cell line and the normal bladder cancer cell line
using qRT-PCR.

Results: We developed and validated an eight-platinum resistance-related lncRNA
risk model for bladder cancer. The risk model showed independent prognostic
significance in univariate and multivariate Cox analyses. Based on multivariate
analysis, we developed a nomogram. The modified model is both good predictive
and clinically relevant after evaluation. Furthermore, immune-related and drug-
sensitivity analyses also showed significant differential expression between high
and low-risk groups. The qRT-PCR demonstrated that most of the lncRNAs were
upregulated in cisplatin-resistance cancerous tissues than in control tissues.

Conclusion: We have developed a predictive model based on eight platinum
resistance-related lncRNAs, which could add meaningful information to clinical
decision-making.

KEYWORDS

bladder cancer, platinum resistance, long non-coding RNA, os, prognosis model

Introduction

Bladder cancer (BLCA) is the world’s 10th most commonly diagnosed cancer (Babjuk
et al., 2022). Although nearly 75% of bladder cancers are non-muscle-invasive (NMIBC),
45%–50% of patients with NMIBC will experience recurrence, and 6%–40% will progress
(Slovacek et al., 2021). Patients with NMIBC are prone to develop muscle-invasive bladder
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cancer (MIBC) after repetition and have a high risk of metastasis
and poor prognosis, with a few surviving for more than 5 years
(Chou et al., 2016; Malmstrom et al., 2017). Approximately 50% of
MIBC patients eventually develop the disease at distant sites
because of disseminated micrometastases, even after undergoing
radical cystectomy and pelvic lymph node dissection (Patel et al.,
2020). Hence, identifying specific tumor factors and providing new
biomarkers are necessary to accurately diagnose, treat, and predict
bladder cancer’s outcome.

Platinum-based chemotherapy drugs are one of the most
commonly used drugs for treating various tumors, especially for
the systemic management of muscle-invasive and advanced bladder
cancer (Ghosh, 2019). Initially, sensitive tumors, frequently observed
in cancers, eventually develop chemoresistance. Unfortunately, the
development of platinum resistance results in significant tumor
recurrence and decreased overall patient survival (Hu et al., 2018).
Non-coding RNAs that are longer than 200 nucleotides are long non-
coding RNAs (LncRNAs). Since the development of high-throughput
sequencing in recent years, many non-coding genes have been
discovered to regulate the occurrence, development, metastasis, and
chemotherapy resistance in cancers (Gao et al., 2020; Liu et al., 2020;
Wu et al., 2020; Li et al., 2021a; Lu et al., 2021). It also significantly
impacts bladder cancer, such as lncRNA KCNQ1OT1 facilitates the
progression by targeting MiR-218–5p/HS3ST3B1 (Li et al., 2021b),
and lncRNA CASC11 promotes cancer cell proliferation in bladder
cancer through miRNA-150 (Luo et al., 2019).

Nevertheless, the role and prognostic value of platinum
resistance-related (PRR) lncRNAs in BLCA have yet to be
expounded. Consequently, we investigated the correlation
between bladder cancer and PRR lncRNAs. As well as functional
enrichment analysis of PRR lncRNAs, we analyzed immune cell
infiltration, immune checkpoints, tumor mutational burden
(TMB), immunotherapy, and drug sensitivity between high- and
low-risk patients. Besides, we used a nomogram to visualize
the overall survival of BLCA patients. It is hoped that new
biomarkers can be provided for the personalized treatment of
BLCA patients.

Methods

Data download and processing

The Cancer Genome Atlas (TCGA) database was accessed to
obtain RNA sequencing data, tumor mutational burden (TMB)
data, and related clinical information on bladder cancer patients.
Transcriptome FPKM data was extracted using Strawberry Perl for
further analysis. Genes expressing less than one in more than half of
the samples were deleted. Moreover, clinically incomplete samples
were excluded from the follow-up clinical correlation analysis. The
results of comprehensive immunogenomic analyses of bladder
cancer were obtained from The Cancer Immunome Database
(TCIA, https://www.tcia.at/home). Platinum resistance-related
genes were downloaded from HGSOC-Platinum (http://ptrc-ddr.
cptac-data-view.org). Using the limma package in R software, a
differential expression matrix for platinum resistance-related genes
(PRR) was created. The criteria for differential expression analysis
were | log 2 (fold change) | >1 and a false discovery rate
(FDR) < 0.01.

Identification of platinum resistance-related
(PRR) LncRNAs

Spearman correlation coefficients were calculated based on
differential expression PRR genes and lncRNA expression profiles to
recognize platinum resistance-related lncRNAs (|R2 | >0.45 and p < 0.05).

Construction of platinum resistance-related
prognostic signature and GSEA

Firstly, univariate Cox regression analysis was utilized to evaluate the
prognostic value of PRR lncRNAs.When the p-value was lower than 0.01, it
was incorporated into the LASSO regression analysis. Then, based on the
above results, we developed the platinum resistance-related prognostic
model. Platinum resistance-related prognostic scores for each patient
were calculated as follows: Risk score = (Coef (lncRNA1) * expression
lncRNA1) + (Coef (lncRNA2) * expression lncRNA2) +. . .. . .+ (Coef
(lncRNA n) * expression lncRNA n). Eventually, due to the median risk
score, patients were divided into low- and high-risk groups. The
Kaplan–Meier curve was generated with the log-rank test to compare the
two groups’ overall survival (OS). To evaluate the predictive performance of
the signature, we used the ‘timeROC’ R package to generate a receiver
operating characteristic curve (ROC). A heat map was used to show the
difference in platinum resistance-related lncRNA expression profiles
between the high/low-risk groups. We randomly split the entire cohort
into a 1:1 train and a test set for internal validation to assess the risk model
feasibility. Validation cohorts were calculated using the same formula as the
total cohort, and the same validationmethodwas applied.We used theGene
Set Enrichment Analysis (GSEA) to examine the molecular mechanisms
underlying low- andhigh-risk groups. p values less than0.05were considered
statistically significant.

Building and validating a nomogram

Univariate Cox and multivariate Cox regression analyses were used to
identifying potential prognostic factors for the risk model and clinical
features. Then, we constructed a nomogram by incorporating the
meaningful variables (p< 0.05). Clinicians can easily use the nomogram
to assess 1-, 3-, and 5 year overall survival in bladder cancer patients. The
receiver operating characteristic (ROC) and calibrationplotswere calculated
to estimate the discriminative accuracy of the nomogram.All of thesewill be
validated on training and test sets.

Comprehensive analysis of the relationship
between the risk model and tumor
microenvironment and immunity

The ESTIMATE algorithm was used to assess immune infiltration
in bladder cancer patients (Supplementary Table S1). The difference in
immune cell infiltration between the high-risk and low-risk groups of
patients was evaluated using TIMER, CIBERSORT, CIBERSORT-
ABS, QUANTISEQ, MCP-counter, XCELL, and EPIC algorithms.
In addition, the potential immune checkpoint was acquired from
previous literature. We detected the expression levels of immune
checkpoint-related genes between the two groups. Furthermore, we
used TCIA data to predict the relationship between platinum
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resistance-related prognostic scores and immunotherapy sensitivity.
TMB between the two groups was also analyzed. Box plots were
generated to visualize the differences.

Drug sensitivity analysis

We use the “pRRophetic” package in R software to predict the
drug’s half-maximal inhibitory concentration (IC50) value between
the high-risk and low-risk groups. Moreover, we considered p values
less than 0.05 to be statistically significant. Box plots were generated to
visualize the differences.

Cell culture and qRT-PCR

HumanBC cells of T24were purchased from theCell Bank of Culture
Collection of the Chinese Academy of Sciences, Shanghai Institute of Cell
Biology (Shanghai, China). The exponential growth phase T24 cells were
selected, and 200 μg/mL was chosen as the initial drug concentration
according to the pre-experiment. The same concentration was repeated
three times, each 2 days. Continue using the previous concentration of
cisplatin for 2 days after passage, and then gradually increase the
concentration. If the cell condition is not good, replace the medium
without cisplatin. When the cell condition is normal, continue to add
medicine. A cisplatin-resistant bladder cancer cell line, T24-CDDP, was

established after cisplatin continued for 10 months. The T24-CDDP cell
lines were validated by Cell Counting Kit-8 (CCK-8) assay, andGraphPad
Prism9 was used to plot the cell IC50. All cells are cultured in Dulbecco’s
modified Eagle’s medium (DMEM; Gibco) and at 37°C in 5% CO2.
Invitrogen TRIzol reagent was used for total RNA extraction and the
Takara PrimeScript RT reagent Kit for cDNA synthesis. Real-time
quantitative PCR was performed using SYBR Green (Roche,
Switzerland). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
was used as an endogenous reference. At least three replicates of each
reaction were performed. Supplementary Table S2 shows the primer
sequences.

Result

Basic information

Figure 1 shows the flowchart of our study. We obtained gene
expression profiles of 431 bladder tumor patient samples, including
412 tumors and 19 adjacent normals, from the TCGA database.
Samples with incomplete clinical information were removed.
Supplementary Table S3 contains the clinical data for the
remaining 372 tumor samples. Then we randomly split the entire
cohort into a 1:1 train and a test set for internal validation. Data on
412 bladder cancers containing information on immunotherapy were
downloaded from the TCIA database (Supplementary Table S4).

FIGURE 1
Flow-process diagram of the study.
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Differentially expressed (DE) platinum
resistance genes and LncRNA

Supplementary Table S5 records that 936 platinum resistance genes
were extracted from HGSOC-Platinum. A comparison of bladder cancer
tissues with normal tissues identified 165 DE genes (78 were upregulated
and 87 were downregulated). Supplementary Figure S1 shows the
heatmap evaluation of DE genes. In Supplementary Figure S2, a
volcano map represents the distribution of all DE genes according to
log10FDR and log2FC. Throughout the gene expression profiles,
16882 lncRNAs were identified. Five hundred eleven lncRNAs
remained after deleting genes with an expression of less than one in
more than half of the samples (Supplementary Table S6). Then, we
identified 122 platinum resistance-related lncRNAs by correlation
Spearson analysis, as shown in Supplementary Table S7.

Construction and validation of a platinum
resistance-related lncRNA risk model

Using univariate Cox regression, 39 platinum resistance-
associated lncRNAs were identified. Other than AC105942.1, which

was a high-risk prognostic LncRNA, all others were low-risk (p < 0.01,
Figure 2A). In the LASSO regression analysis, eight platinum
resistance-related lncRNAs were associated with prognostic factors
in bladder cancer (BCa) patients (Supplementary Table S8). It was
verified through cross-validation that the LASSO regression analysis
optimal value was the right one (Figures 2B, C). The formula of the
risk score was as follows: Risk score = (−0.431424975893598*PSMB8-
AS1) + (−0.1130343821 6125*AL731567.1) + (−0.0984074363105057*
AC104825.1) + (−0.173932427517578*AC009065.8) + (−0.1434206
81656449* MAP3K14-AS1) + (−0.0447654488946425*PTOV1-AS2)
+ (−0.231285006432146*AC008760.1) + (−0.10488485275485*AL35
5353.1). This risk model divided patients into high-risk and low-risk
groups based on the median risk score. The Kaplan-Meier survival
analysis showed that low-risk BCa patients had a significantly better
overall survival than patients at high risk (Figure 3A). Moreover, based
on the risk model, the scatterplot demonstrated a correlation between
survival time and risk score for BCa patients. There was a correlation
between patients’ risk scores and their mortality from bladder cancer.
The higher the score, the greater the risk (Figure 3D). As shown in the
heat map (Figure 3G), these eight-platinum resistance-related
lncRNAs were highly expressed as protective factors in the low-risk
group. Lastly, overall survival AUCs of 1-, 3-, and 5 years were 0.709,

FIGURE 2
(A) Identification of prognostic PRR by univariate Cox regression analysis in the whole group (B, C) Lasso regression analysis in the entire group.

Frontiers in Genetics frontiersin.org04

Li et al. 10.3389/fgene.2023.1062060

136

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1062060


0.715, and 0.712, respectively (Figure 3J). In the training and
testing groups, we validated the risk model. These two groups
used the same methods to identify high-risk and low-risk
patients. Figure 3B and Figure 3C illustrate the relationship
between risk scores and survival. The prognostics between the
different risk patients in the training and testing groups were
shown in Figure 3E and Figure 3F. There was a significant
decrease in the overall survival of the high-risk group
compared with the low-risk group. The heat maps were
consistent across the entire group (Figures 3H, I). Figures 3K,
L showed that both training and testing groups achieved ideal
AUC values.

Construction and assessment, a new type of
nomogram

A multivariate and univariate Cox analysis of clinical
variables, including age, grade, stage, T stage, and risk scores,
revealed that the risk model was the most significant prognostic
factor (Figures 4A, B). Then, according to the critical variables in
the multiple regression analysis (p< 0.05), a prognostic
nomogram of bladder cancer patients was established
(Figure 4C), which could be used to predict the 1-, 3-, and
5 year OS rates of patients. In the entire cohort, the AUC of
values for 1-, 3-, and 5 year OS were 0.783, 0.765, and 0.760,

FIGURE 3
Prognostic analysis of the PRR lncRNAs signature in the total, training cohort, and testing group. (A–C) Kaplan–Meier curve of the patient in the whole,
training cohort, and testing groups. (D–F) The rank of calculated risk scores in the total, training cohort, and testing groups. (G–I) Heatmap showed the
differences of 8 PRR lncRNAs in the whole, training cohort, and testing groups. (J–L) Time-independent receiver operating characteristic (ROC) analysis in the
total, training cohort, and testing groups.
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respectively (Figure 4E). Calibration plots for 1-, 3-, and 5 years
were generated to verify our model across the entire cohort. All
calibration plots fall near the 45-degree diagonal line (Figure 4D).

The AUC values and calibration plots of the training set and test
set show that the nomogram has good discriminative power
(Figures 4F–I).

FIGURE 4
Clinical relevance Analysis and Validation (A) Univariate prognostic analysis. (B) Multivariate prognostic analysis. (C) Constructed a nomogram in whole
groups. (D, E) Calibration curves and ROC for 1-, 3-, and 5 year in the entire group. (F–I) Calibration curves and ROC for 1-, 3-, and 5-year in training and
testing groups, respectively.
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GSEA analysis of platinum resistance-related
(PRR) LncRNAs

GSEA analysis was performed to elucidate the biological function
of PRR-based signatures further. GSEA revealed that PRR lncRNA

prognostic models mainly regulated cancer- and platinum-related
pathways, such as Bladder cancer, Cytosolic DNA−sensing
pathway, VEGF signaling pathway, FoxO signaling pathway,
Chemical carcinogenesis−reactive oxygen species, and Platinum
drug resistance (Figure 5).

FIGURE 5
GSEA analysis.
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Immune-related analysis of BLCA patients
using the risk model

The heatmap displayed the relationship between the risk
model and immune infiltration (Figure 6). In the low-risk group,
CD4+ T-cell, CD8+ T-cell, and regulatory cells infiltrated more than
in the high-risk group. At the same time, macrophages and
monocytes were more prevalent in high-risk populations.
Furthermore, based on immune checkpoint analysis,
representative immune checkpoint-related genes, such as
PDCD1LG2, CD44, CD47, CD276, PVR, and TNFSF9, were
remarkably upregulated when compared with low-risk group
samples (Figure 7). Comparison of somatic mutations in

patients with high and low-risk scores and visualization of the
top 20 genes with the highest mutation frequency (Figures 8A, B).
There was no significant difference in TMB between the high-
risk and low-risk groups. By analysis, we found that patients
with low-risk scores were more sensitive to immunotherapy,
whether they were CTLA4+ or PD-1+ or both positive
(Figures 8C–F).

Drug sensitive and qRT-PCR

A further investigation was conducted to assess the
sensitivity difference of drugs in two groups of patients with

FIGURE 6
Heat map of immune cell infiltration in high and low-risk groups.
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bladder cancer to improve the therapeutic outcome. The analysis
results indicated that IC50 values of drugs, including BIBW2992,
Erlotinib, Gefitinib, and Lapatinib, were higher in high-risk
patients than those of low risk. While IC50 values of
drugs containing Cisplatin, Gemcitabine, Mitomycin C,
Methotrexate, Vinblastine, Vinorelbine,
Doxorubicin, Docetaxel, Thapsigargin, and Pazopanib were
much higher in the low-risk patients than those of the high-
risk (Figure 9). In Figures 10A, B, we can see that
the cisplatin IC50 for T24-CDDP was significantly higher
than that of T24, implying the thriving culture of our drug-
resistant cells. As shown in Figure 10C, AC008760.1, PTOV1-
AS2, AL355353.1, AC104825.1, and MAP3K14-AS1 were more
highly expressed in cisplatin-resistance T24 cells than normal
T24 cells.

Discussion

In recent years, many studies have focused on the role lncRNAs
play in bladder cancer (BLCA). Lia et al. developed and validated an
eight-pyroptosis-related lncRNA prognostic model for BLCA (Lia
et al., 2022). Luo et al. found that lncRNA RP11-89 facilitates
tumorigenesis and ferroptosis resistance in BLCA (Luo et al.,
2021). Tong et al. constructed a prognostic epithelial-mesenchymal
transition-related lncRNA risk model in BLCA (Tong et al., 2021). Hu
et al. discussed the roles and mechanisms of lncRNAs in cisplatin
chemoresistance, including changes in cellular uptake or efflux of a
drug, apoptosis, autophagy, related signaling pathways, and so on 7).
However, studies on the prognosis of platinum resistance-associated
(PRR) lncRNAs in BLCA are still limited. Accordingly, we explored
the relationship between PRR lncRNAs and the prognosis of BLCA.

FIGURE 7
Differences in immune checkpoints between high and low-risk groups.
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Based on eight PRR lncRNAs, we established a BLCA risk
prognosis model, and median risk scores categorized patients into
high and low-risk groups. Kaplan-Meier survival, heatmap, and ROC
analyses have shown the good predictive ability of our risk model.

Moreover, the immune-related and drug-sensitivity analysis also
showed significant differences between high- and low-risk groups.
These identified PRR lncRNAs were protection factors: PSMB8-AS1,
AL731567.1, AC104825.1, AC009065.8, MAP3K14-AS1, AL355353.1,

FIGURE 8
Differences in TMB and immunotherapy sensitivity between the two groups.
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AC008760.1, and PTOV1-AS2. When protective factors are expressed
at a higher level, the prognosis for BLCA patients is better.

Recent studies have found LncRNA PSMB8-AS1 to be a
prognostic marker and a protective factor in BLCA (Tong et al.,
2021; Mo et al., 2022). Zhang et al. proposed that PSMB8-AS1
promotes pancreatic cancer progression by regulating the miR-
382–3p/STAT1/PD-L1 axis. Thus, it is worthwhile to explore
PSMB8-AS1’s mechanism of action in bladder cancer (Zhang et al.,
2020). MAP3K14-AS1 was recognized as a highly prevalent and
specific methylated locus in colorectal cancer, which can be used to
monitor tumor burden dynamics in liquid biopsy under different
therapeutic regimens (Barault et al., 2018). Kuang et al. revealed that
the necroptosis-related lncRNAs MAP3K14-AS1 and
AL731567.1 were considered protective effectors in BLCA (XiaYu
et al., 2022). AL355353.1 was found to be associated with

glycometabolism in BLCA and affected prognosis (Tang et al.,
2022). Liu et al. revealed that PTOV1-AS2 might affect the
prognosis of pancreatic cancer through TP53-associated signature
(Liu et al., 2021). LncRNA AC008760.1 was identified as expressed
lower in bladder urothelial carcinoma cells than in normal urothelial
cells (Li et al., 2022), which was consistent with our findings.
Moreover, the knockdown of AC008760.1 can significantly
promote the proliferation and migration of bladder cancer cells.
Furthermore, AC009065.8 and AC104825.1 in BLCA are rarely
reported in research, and thus, the specific mechanism is also
worthy of further investigation (Chen et al., 2020).

We further compared several clinical variables to assess our risk
model’s predictive ability. Three independent prognostic factors were
identified: age, stage, and risk score. As previously reported, age and
stage are prominent risk factors for multiple tumors, including bladder

FIGURE 9
Differences in drug sensitivity between the two groups.
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cancer (Hu et al., 2022; Lu et al., 2022). Further comparison showed
that the model’s prediction performance is superior to age and stage,
demonstrating its high predictive power. To increase the clinical
applicability of the model, we used a nomogram to visualize the
survival probability of bladder cancer patients. In the training and
testing sets, both ROC and calibration curves showed the good
predictive ability of the nomogram.

Immunotherapy has shown promising results in the
management of BLCA. In our study, high-risk and low-risk
groups were compared regarding the immune checkpoint.
Figure 7 displays that TNFSF9, PDCL1LG2, PVR, CD44, CD86,
CD80, CD47, and CD276 in the immune checkpoint were
expressed in the high-risk group, while BTN2A1, CD40,
CD40LG, HLA−DMA, HLA−B, CD96, ICOSLG, and
TNFRSF14 were mainly expressed in the low-risk group. For the
former, except for TNFSF9, almost all other genes in the immune
checkpoint were reported in bladder cancer and were associated
with poor outcomes (Kiss et al., 2019; Kucan Brlic et al., 2019; Hu
et al., 2020; Yang et al., 2020; Yan et al., 2021; Harland et al., 2022).
It is thought that tumors with more mutated genes tend to produce
more mutant RNAs and proteins that are more easily recognized by
the immune system and respond well to immunotherapy. Thus, we
also analyzed the difference in TMB in the two risk groups.
Although there was no significant difference in TMB between
the high-risk and low-risk groups, we found that the low-risk
group gained more immunophenoscores, which can be used to
predict response to immune checkpoint inhibitors. The results
showed that patients with low-risk scores were more sensitive to
immunotherapy, whether they were CTLA4+ or PD-1-. Therefore,
combined with our risk model, we found that immunotherapy
could be a good option for bladder cancer patients with platinum
resistance.

Many studies show that immune infiltration correlates with
prognosis (Hatogai and Sweis, 2020; Zheng et al., 2020).
Consequently, the rate of immune cell infiltration between
different risk groups was calculated. Comparing the low-risk
group with the high-risk group, we found that CD8+ T-cell and
regulatory cells were significantly increased. Induced tumor cell

death is the primary function of CD8+ cells (Henning et al., 2018).
Moreover, the numbers of macrophages and monocytes have
risen notably in the high-risk group, which are generally
involved in defending against external attacks (Xia et al.,
2020). Due to this, we considered that platinum resistance-
related lncRNA is closely related to immune infiltration in
bladder cancer.

Drug sensitivity analysis showed that high-risk groups were
more sensitive to cisplatin because of their relatively low expression
of platinum-resistance-associated LncRNAs, which further adds to
the reliability of our findings. Moreover, drug analysis results also
showed that IC50 of BIBW2992, erlotinib, gefitinib, and lapatinib
were lower in low-risk patients, implying that drug-resistant
patients were more sensitive to those drugs. T24 bladder cancer
cells are inhibited in proliferation and invasion by BIBW2992/
Afatinib (Tang et al., 2015). A primary mechanism of gefitinib is
that it interferes with the metabolic functions of tumor cells and
inhibits EGFR signaling in a meaningful manner (Peng et al., 2016).
One recent study suggests lapatinib as a first-line option for
treating muscle-invasive urothelial carcinoma in dogs (Maeda
et al., 2022). These four drugs all belong to EGFR family
inhibitors, which are expected to play a significant role in future
bladder cancer treatments. Although we did not find suitable
primer sequences for the rest three lncRNAs, it may be because
their base sequences are long or technical problems. For the most,
we evaluated the expression level of most lncRNAs in our signature.
The expression trend followed the bioinformatic prediction.

However, some areas still need to be addressed in this study.
Firstly, this is a retrospective study using TCGA datasets.
Retrospective studies may have selection and information bias. For
example, in light of the small sample size, stage I was grouped with
stage II. Secondly, external validation needed to be improved as other
databases lacked lncRNA expression profiles or overall survival data.
Finally, although we experimentally validated the differential
expression of PPR lncRNAs in platinum-resistant bladder cancer
cells, the underlying mechanisms of how the detected platinum-
resistance-related lncRNAs impact the prognosis of bladder cancer
require further study by basic experiments.

FIGURE 10
(A, B) Cisplatin IC50 for T24-CDDP and T24. (C) The expression of AC008760.1, PTOV1-AS2, AL355353.1, AC104825.1, and MAP3K14-AS1 in T24 and
T24-CDDP cell lines.
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Conclusion

Based on eight PRR lncRNAs, we constructed a prognosis model
for BLCA patients. As well as providing prognostic information and
immune analysis, our risk model can give a new direction for
chemotherapy or targeted therapy for BLCA patients.
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Introduction: GIST (gastrointestinal stromal tumor) is the most prominent
mesenchymal neoplasms of the gastrointestinal tract, and liver is the most
common metastasis site for GIST. The molecular mechanism leading to liver
metastasis of GIST is currently unclear.

Methods: With the goal of revealing the underlying mechanism, we performed
whole-genome gene expression profiling on 18 pairs of RNA samples comprised
of GIST tissues (with liver metastasis) and corresponding non-tumor tissues. After
identifying differentially expressed gene, functional annotation and signal pathway
analyses were conducted. GSE13861, datasets that compare GIST (without liver
metastasis) with adjacent tissues, served as a comparison.

Results: A total of 492 up-regulated genes and 629 down-regulated genes were
identified as differentially expressed genes between liver metastasis tissues and
non-tumor tissues. We characterized expression patterns of DEGs identified from
our cohort and GSE13861 that show signatures of enrichment for functionality. In
subsequent gene set enrichment analysis, differentially expressed genes were
mainly enriched in Epithelial Mesenchymal Transition in both datasets. 493 genes
were overlapped among our whole-genome gene expression profiling results and
GSE13861, consisting 188 up-regulated genes and 305 down-regulated genes. By
using CytoHubba plugin of Cytoscape, CDH1, CD34, KIT, PROM1, SOX9, FGF2,
CD24, ALDH1A1, JAG1 and NES were identified as top ten hub genes in
tumorigenesis and liver metastasis of GIST. higher expression levels of FGF2,
JAG1, CD34, ALDH1A1 and the lower expression level of CDH1 were respectively
associated with unfavorable overall survival. Meanwhile higher expression levels of
CD34, FGF2, KIT, JAG1, ALDH1A were correlated with worse disease-free survival.

Discussion: The present study may help to provide candidate pathways and
targets for treatment of GIST and prevention methods to liver metastasis.
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gastrointestinal stromal tumor, epithelial mesenchymal transition, liver metastasis,
tumorigenesis, differentially expressed genes (DEG)
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1 Introduction

GIST (gastrointestinal stromal tumor) is the most prominent
mesenchymal neoplasms of the gastrointestinal tract, and their
prevalence is on the rise (Corless et al., 2011). Activating
mutations in the receptor tyrosine kinase encoding genes KIT
(KIT proto-oncogene, receptor tyrosine kinase) or PDGFRA
(platelet -derived growth factor receptor alpha) are extensively
seen in GISTs (Serrano and George, 2020). These mutations
cause constitutive activation of KIT or PDGFRA-mediated ligand
independent activation and signaling (Joensuu et al., 2013). GISTs
can appear everywhere in the gastrointestinal tract, although they’re
most prevalent in the stomach (50%–60%) and small intestine
(30%–35%), with the colon and rectum (5%) and oesophagus
(1%) (Joensuu et al., 2012). Liver metastasis (LM) from GIST is
very common, and a primary tumor is diagnosed simultaneously in
15%–50% of cases. Furthermore, after excision of a high-risk GIST,
up to 40%–80% of individuals may emerge with liver metastasis over
a period of about 2 years (Ng et al., 1992; DeMatteo et al., 2000;
DeMatteo et al., 2009). However, the mechanisms of GIST invasion
and acquisition of the potential to metastasize are still unknown.
Acquiring a better knowledge of the molecular process behind liver
metastasis of GIST is crucial, as it might result in new anticancer
treatment targets and greatly contribute to advances in diagnostic
approaches.

Gene chip, also known as gene profile, is a gene detection
method that has been used for over a decade. Gene chips can
instantly identify all of the genes’ expression information within
the same sample time-point, making them ideal for detecting
differentially expressed genes (DEGs) (Wang, 2000). Therefore,
we collected GIST tissues of patients with liver metastasis and
corresponding non-tumor tissues (stomach and intestinal tissue)
yielding sufficient RNA for gene expression profiling. Meanwhile
we also downloaded mRNA microarray data from the Gene
Expression Omnibus (GEO) and jointly analyzed our gene
expression profiling data with online data for identifying
differentially expressed genes which may play an important
role in tumorigenesis and liver metastasis of GIST. Gene
Ontology (GO) annotation and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses were
applied to further provide an overview of the function of the
screened DEGs. Then a protein-protein interaction (PPI)
network was constructed to determine the hub genes and
survival analyses of the screened hub genes were carried out
using Gene Expression Profiling Interactive Analysis (GEPIA).

In this study, we first performed gene chip detection on GIST
tumor sample and peri cancerous tissues of 18 GIST patients with
liver metastases, obtained microarray dataset, and obtained
organized microarray dataset of GIST with no liver metastasis
and paracancer tissues from the GEO database. Differentially
expressed genes were analyzed separately, and the enrichment of
DEGs in the two datasets were analyzed. The STRING website and
Cytoscape software were used to find out the key genes that promote
the tumorigenesis and liver metastasis of GIST. Finally, we explored
the potential of these key genes as prognostic markers of
gastrointestinal tumors using Kaplan–Meier Survival analyses.
This study helps us better understand the molecular mechanism
of GSIT tumorigenesis and liver metastasis.

2 Materials and methods

2.1 Clinical samples

GIST tissues of patients with liver metastasis and corresponding
non-tumor tissue (stomach and intestinal tissue) samples were
obtained from Sun Yat-sen University Cancer Center under
protocols approved by the institutional review board at Sun Yat-
sen University Cancer Center. Written informed consent was
obtained from all patients enrolled in the study. All experiments
using clinical samples were carried out in accordance with the
approved guidelines.

2.2 Microarray analysis

All samples were frozen in liquid nitrogen at −80°C. The total
RNA of samples was extracted by TRIZOL method, and the total
RNA was examined by NanoDrop 2000 and Agilent Bioanalyzer
2100. The qualified sample goes into the chip experiment. The
standards of quality control are: Thermo NanoDrop 2000:1.7 <
A260/A280 < 2.2; Agilent 2100 Bioanalyzer: RIN ≥ 7.0 and 28S/
18S > 0.7. Affymetrix GeneChip Human Primeview array
(Affymetrix, Santa Clara, CA, United States) was used to analyze
global expression pattern of 28,869 well-annotated genes. RNA
samples were amplified and labeled using the 3′IVT Expression
Kit and GeneChip WT Terminal Labeling and Control Kit from
Affymetrix. Affymetrix’s GeneChip Fluidics Station 450 was used to
carry out the normal washing treatment after the samples were
hybridized at 45°C for 16 h. The arrays were then scanned using the
GeneChip Scanner 7G procedure. Quantile normalization of gene
expression was performed using the normalizeBetweenArrays
function in limma.

We also downloaded the following gene expression profiles from
the GEO: GSE13861 (including six GIST and 19 surrounding
normal fresh frozen tissues) (Cho et al., 2011) for further analysis.

2.3 DEG identification

R language limma package was used to identify DEGs in our
cohort and GSE13861 separately. The log-fold change (FC) in
expression and adjusted p-values (adj. P) were determined. The
adj. P using the Benjamini–Hochberg method with default values
were applied to correct the potential false-positive results. DEGs
were defined as genes that satisfied the specified cutoff criterion of
adj. p > 0.05 and | logFC | > 2.0. The Venn diagram online tool was
used to look at the intersecting genes. In order to illustrate the
volcano plot of DEGs, visual hierarchical cluster analysis was also
carried out.

2.4 GO annotation and KEGG pathway
enrichment analyses of DEGs

To reveal the functions of DEGs, GO annotation and KEGG
pathway enrichment analyses were conducted. Biological process
(BP), cellular component (CC), and molecular function (MF) were
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the three categories that made up the GO terms. Statistical
significance was determined to be adj. p < 0.05. Resulting
p-values are adjusted for multiple testing using the
“Benjamini–Hochberg” method.

2.5 Gene set enrichment analysis (GSEA)

To find out the different mechanisms between GIST with liver
metastasis and GIST without metastasis, GSEA (Version: 3.0;
http://software.broadinstitute.org/gsea/index.jsp) was performed
(Subramanian et al., 2005). The threshold was set at p < 0.05.

2.6 Construction of PPI network and
screening of hub genes

A database called Search Tool for the Retrieval of Interacting
Genes (STRING) is used to study the functional protein association
networks (Szklarczyk et al., 2017). The filtered DEGs had already
been added to the STRING database. All PPI pairs with a cumulative
score greater than 0.4 were retrieved. High-degree nodes seem to be
essential for maintaining the network’s overall stability. The degree
of all nodes was calculated by Cytoscape (v3.6.1) plugin cytoHubba
using the MCC algorithm (Chin et al., 2014), in this experiment, the
genes with the top 10 highest MCC score values were considered as
hub genes.

2.7 Kaplan–meier survival analyses of the
hub genes

Survival analysis of hub genes was based on Kaplan–Meier
Survival analyses, using GEPIA (http://gepia.cancer-pku.cn/)
tool. According to the expression of each hub gene, the cancer
patients were divided into low or high expression group based on
the median mRNA expression of hub genes, at statistical
significance of p < 0.05.

3 Result

3.1 Characteristics of GIST patients with liver
metastasis in our cohort

Our cohort consisting of 18 paired GIST tissues of patients with
liver metastasis (LM) and corresponding non-tumor tissue (NT)
samples. Details of mutations, clinical features for the 18 GIST
patients with liver metastasis are presented in Table 1. Eight of the
18 patients were male and 10 were female. The youngest patient was
23 and the oldest was 71. Four of the 18 GISTs are small-intestine
GISTs, and the remaining 14 are stomach GISTs. All patients
presented with liver metastases. And all of the patients harbored
a single non-synonymous mutation in KIT (Kit exon 11). The tumor
size, mitotic index and location of primary tumors are demonstrated
in Table 1.

TABLE 1 Details of mutations, clinical features for the 18 GIST patients with liver metastasis.

No. Age Sex Site Size (cm) Mitotic index Grade Metastasis Mutation

1 48 M small intestine 4 200 high liver K11

2 71 F stomach 7.8 50 high liver K11

3 58 M small intestine 6 90 high liver K11

4 63 F stomach 10.3 10 high liver K11

5 59 M small intestine 8 55 high liver K11

6 57 M stomach 7 >5 high liver K11

7 23 M stomach 4.3 15 high liver K11

8 54 F small intestine 4.7 4 low liver K11

9 57 F stomach 3.9 >30 high liver K11

10 50 F stomach 2.5 6 medium liver K11

11 60 M stomach 3.7 6 medium liver K11

12 48 F stomach 4.5 15 high liver K11

13 33 F stomach 6 4 medium liver K11

14 57 F stomach 2.3 <3 low liver K11

15 59 F stomach 4.9 14 high liver K11

16 59 M stomach 5 9 medium liver K11

17 68 F stomach 2.6 20 high liver K11

18 52 M stomach 7.5 >10 high liver K11
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3.2 Identification of differentially expressed
genes (DEGs)

We developed a flow diagram to show our process (Figure 1).
To characterize the tumor biology of GIST with liver metastasis,
we performed whole-genome gene expression profiling in
18 pairs of RNA samples comprised of GIST with LM and NT
tissues. 1121 genes were found to differentially express between
LM and adjacent tissues, including 492 upregulated genes and
629 downregulated genes (Supplementary Data Sheet S1).
Volcano map of DEGs was shown in Figure 2A. Subsequently,
heatmap of DEGs was created, in which the mRNA expression
profiles of LM and NT resulted in obviously separate clusters
(Figure 2B). Principle Component Analysis (PCA) and
hierarchical cluster analysis results were demonstrated in
Figures 2C, D. GSE13861 (including 6 GIST and
19 surrounding normal fresh frozen tissues) is a dataset that
compare GIST without liver metastasis with adjacent tissues,
which serves as a comparison. DEGs in GSE13861 were
calculated according to the criteria of p < 0.05 and |logFC|
>2.0. 924 genes were found to differentially express between
GIST and adjacent tissues, including 313 upregulated genes and
611 downregulated genes (Supplementary Data Sheet S2).
Volcano map of DEGs is shown in Supplementary Figure S1A.
Hierarchical clustering heatmap of DEGs was shown in
Supplementary Figures S1B, C Shows PCA results of
GSE13861. Hierarchical cluster analysis was visualized and
important details were demonstrated in Supplementary
Figure S1D.

3.3 GO and KEGG analysis of DEGs reveal the
different enrich patterns of GISTwith LM and
GIST without LM

To characterize the biological mechanism of GIST liver
metastasis, gene enrichment analysis including Gene ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were conducted. DEGs acquired
from the two datasets were subjected to enrichment separately.
For GO biological process (BP), DEGs in our cohort were mainly
enriched in cell junction assembly, cell-substrate adhesion and
urogenital development, while DEGs in GSE13861 were mainly
enriched in extracellular matrix organization, extracellular
structure organization and external encapsulating structure
organization. In terms of cellular component (CC), DEGs in
our cohort were mainly enriched in collagen-containing
extracellular matrix, cell-cell junction and apical part of cell.
The CC enrichment results of GSE13861 were very similar to our
cohort. For GO molecular function (MF), results were also
similar between these two cohorts (Figures 3A, B). We
further explored the function significance of these DEGs
using KEGG pathway analysis. DEGs in our cohort were
mainly enriched in PI3K-Akt signaling pathway and Tight
junction, while DEGs in GSE13861 were mainly enriched in
Fluid shear stress and atherosclerosis and Metabolism of
xenobiotics by cytochrome P450 (Figures 3C, D). Changes in
gene expression in PI3K-Akt signaling pathway and Tight
junction signaling pathways in our cohort are depicted in
detail in Figures 4A, B.

FIGURE 1
Flow diagram of the data collection and method implementation in this work.
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3.4 Gene set enrichment analysis reveal the
differences between GIST with LM and GIST
without LM

GSEA was performed to identify the gene sets that were
statistically different between the normal controls and GIST
group (Taking p < 0.05 as the boundary value). The results
illustrated that Epithelial mesenchymal transition (EMT) was
the most significantly upregulated pathway in both cohorts
(Figures 5A–C, E). DEGs in our cohort were also positively
correlated and significantly enriched in IL2 Stat5 Signaling
(Figures 5A, D, NES = 1.767 & P.adj <0.001). While in
GSE13861, IL2 Stat5 Signaling was not in the top10-enriched
pathways (Figure 5B).

3.5 PPI network construction and hub genes
selection and analysis

To identify those genes which play significant roles in both
tumorigenesis and liver metastasis of GIST, GSE13861 dataset
containing GIST primary tumor tissues (PT) and corresponding
non-tumor tissues (NT) was co-analyzed. The Venn diagram

(Figure 7A) illustrated a total of 493 genes overlapped among
our microarray results and GSE13861, consisting 188 upregulated
genes and 305 downregulated genes (Supplementary Data Sheet S3).
Using the STRING and Cytoscape databases, a PPI network of
potential interactions between overlapping genes was constructed
(Figure 6). The hub genes were selected from the PPI network using
the MCC algorithm of CytoHubba plugin. According to the MCC
scores, the top ten highest-scored genes included CDH1, CD34, KIT,
PROM1, SOX9, FGF2, CD24, ALDH1A1, JAG1, and NES
(Figure 7B and Supplementary Data Sheet S4). The abbreviations,
names, and functions of these genes are displayed in Table 2. The
function of these hub genes was analyzed by Metascape, in which as
expected, these genes were mainly enriched in pathways in cell-cell
adhesion (Figure 7C).

3.6 Validation and prognostic value of hub
genes

Among above mentioned 10 hub genes, the expressions of
CD34, KIT, PROM1, NES, and FGF2 respectively were higher in
GIST (with LM) tissues (Figures 8A–E) compared to NT tissues
(p-values all <0.001). Meanwhile reverse trend was found for the

FIGURE 2
Identification of differentially expressed genes. (A)Volcanomap of differentially expressed genes (Upregulated genes in red, downregulated genes in
blue). (B)Hierarchical clustering heatmap of DEGs screened on the basis of FC > 2.0 and a corrected p-value < 0.05. (C) Shows PCA results of our cohort.
(D) Visual hierarchical cluster analysis.
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expressions of the rest hub genes CDH1, SOX9, CD24, ALDH1A1,
and JAG1 (Figures 8E–J, p-values all <0.001). These results are
nearly identical to the findings from the GES13861 dataset (Figures
8K–T). Prognostic significance of hub genes was investigated in
several types of gastrointestinal tumors including stomach
adenocarcinoma, colon adenocarcinoma, esophageal carcinoma
and rectal adenocarcinoma by the GEPIA database. The Kaplan-
Meier analyses suggested that higher expression levels of FGF2,
JAG1, CD34, and ALDH1A1 and the lower expression level of
CDH1 were respectively associated with worse overall survival (OS)
(Figure 9). Meanwhile higher expression levels of CD34, FGF2, KIT,
JAG1, and ALDH1A were correlated with worse disease-free
survival (DFS) (Figure 10).

4 Discussion

During the past decade, GIST has become the prominent focus of
molecularly targeted therapy for solid tumors (Poveda et al., 2017;
Hemming et al., 2018). GIST are more prevalent than previously
thought, according to population-based studies (Corless and
Heinrich, 2008). The incidence of GIST was found to be 14.5 per

million population, with the highest frequency being observed in older
individuals and there was no gender difference (Gold and DeMatteo,
2006). The hallmarks of cancer consist of six biological traits: sustaining
proliferative signaling, evading growth suppressors, evasion of
apoptosis, limitless replicative potential, inducing angiogenesis, and
ability to invade and metastasize (Hanahan and Weinberg, 2011). It is
worth noting that the last characteristic, invasion and metastasis is vital
for progressive nature of cancer. Many malignancies favor certain
organs as metastatic sites, including the lungs, bone marrow, and
liver. Liver metastases are a major cause of death in patients with
colorectal cancer. The liver environment, which includes ECM and
stromal cells, may encourage metastatic colonization. Metastatic
colorectal cancer cell lines responded more favorably to ECM
derived from primary rat hepatocytes than to ECM from fetal rat
fibroblast cultures (Zvibel et al., 1998). The D6.1A tetraspanin, a cell-
surface organizer, interacted with the 64 integrin and enhanced liver
colonization by pancreatic cancer cells injected intraperitoneally
(Herlevsen et al., 2003).

Patients with GIST have a high risk of recurrence (about
55–72 percent) and a dismal survival rate due to malignant cells
preferentially metastasizing to liver tissue (DeMatteo et al., 2000;
Bayraktar et al., 2010). Cho et al. discovered that Compared to KIT

FIGURE 3
GO and KEGG analysis of DEGs. GO analysis (A), and KEGG analysis (C) of DEGs in our cohort. GO analysis (B), and KEGG analysis (D) of DEGs in
GSE13861 dataset.
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FIGURE 4
Pathview map of (A) PI3K-AKT Signaling Pathway (map 04,151) and (B) Tight Junction (map04530) using data of our cohort. Upregulated genes in
red, downregulated genes in green.

FIGURE 5
GSEA analysis of DEGs in the data sets. (A) The top 10 enriched KEGG items for the DEGs in our cohort, and (B)DEGs in GSE13861 dataset. Taking p <
0.05 as the boundary value. Significant enrichment of the Epithelial Mesenchymal Transition (C) and IL-2 STAT5 Signaling (D) with DEGs in our cohort.
Significant enrichment of the Epithelial Mesenchymal Transition (E) and IL-2 STAT5 Signaling (F) with DEGs in GSE13861.
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mutation-negative GISTs, KIT mutation-positive GISTs had more
frequent liver metastases and worse mortality (Cho et al., 2006).
Wang et al. reported that the KIT exon 11,557-558 deletion
upregulates CXCR4 by increasing ETV1 binding to the
CXCR4 promoter in GIST cells, which in turn encourages liver
metastasis (Wang et al., 2016). As such, to better understand GIST
biological behavior and inform the development of treatment strategies,
it is critical to identify the significant genes that regulate the liver
metastasis of GIST. Advances in bioinformatics have been conducive
to identify molecular targets that indicate the progression of GIST
(Amirnasr et al., 2019; Ohshima et al., 2019).

In this study, a total of 492 upregulated genes and 629 downregulated
genes were identified in GIST with LM compared to corresponding NT.
Function annotation based on GO and KEGG analyses demonstrated
that DEGs were mainly enriched in cell junction assembly, tight junction,
actin binding and PI3K-Akt signaling pathway. GSEA results indicated
that IL-2 STAT5 Signalingmay be a vital pathway which promotes liver
metastasis of GIST. Meanwhile, EMT signal pathway is the most
significant and positive enriched pathway in both our cohort and
GSE13861, which indicated that EMT may play a significant role in
tumorigenesis and liver metastasis of GIST. Furthermore, to identify
geneswhich play essential roles in both tumorigenesis and livermetastasis
of GIST, our data and GSE13861 dataset were co-analyzed. A totally of
493 genes overlapped among our microarray results and GSE13861,
including 188 upregulated genes and 305 downregulated genes. Then a
PPI network of putative interactions between overlapping genes was

FIGURE 6
Protein–protein interaction network of 188 upregulated genes and
305 downregulated genes were analyzed using Cytoscape software.
The edges between 2 nodes represent the gene-gene interactions.
Upregulated hub genes in red, downregulated hub genes in teal.

FIGURE 7
Hub genes selection and analysis. (A) Venn diagram shows the 493 overlapping DEGs. (B) The top 10 hub genes in the PPI network were screened by
Cytoscape plugin cytoHubba. The 10 identified hub genes such as CDH1, CD34, KIT, PROM1, SOX9, FGF2, CD24, ALDH1A1, JAG1, NES are displayed from
red (high degree value) to yellow (low degree value). (C) GO and KEGG pathway enrichment analysis of the 10 hub genes.
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created using the STRING and Cytoscape databases and hub genes were
selected from the PPI network using the MCC algorithm of CytoHubba
plugin. According to the MCC scores, the top ten highest-scored genes
were CDH1, CD34, KIT, PROM1, SOX9, FGF2, CD24, ALDH1A1,
JAG1, and NES.

The phosphatidylinositol PI3K/AKT/mTOR pathway is a critical
survival pathway for cell proliferation, apoptosis, autophagy and
translation in neoplasms (Patel, 2013). Constitutive
autophosphorylation of RTKs has an impact on the activation of the
PI3K/AKT/mTOR pathway (Vara et al., 2004; Fruman and Rommel,
2014). In several preclinical and early-stage clinical trials PI3K/AKT/
mTOR signaling inhibition has been considered as a promising targeted
therapy strategy for GISTs (Duan et al., 2020). Our results suggest that,
unlike GIST, liver-metastatic GIST has more genes enriched in the
PI3K-Akt signaling pathway. We hypothesized that PI3K-Akt signaling
pathway is an important pathway to promote liver metastasis of GIST.
It can be used as a target to prevent and treat liver metastasis of GIST.

Tight junction is the most talked-about structure in epithelial and
endothelial cells because they control permeability (Jiang et al., 1999;
Tsukita et al., 1999). It is an area where neighboring cells’ plasma
membranes make a sequence of connections that appear to totally
obstruct the extracellular space, forming an intercellular barrier and
intramembrane diffusion fence (Wong and Gumbiner, 1997). The
majority of malignancies are characterized by abnormal growth
control, tissue architecture loss, and loss of differentiation. The
feature that cancer cells’ mutual adhesiveness is much less than that
of normal cells is a key characteristic of cancer cells (Martin and Jiang,
2009). Reduced cell-cell interaction leads cancer cells to rebel against the
social order, resulting in the breakdown of overall tissue architecture, a
morphological hallmark of malignancy. The loss cell-cell junction and
tight junction are changes associated with cancer progression to an
invasive, metastatic state (Thomson et al., 2011).

The cytokine interleukin-2 (IL-2) was first discovered in 1976 as a
T cell growth factor (Morgan et al., 1976).While IL-2 has been shown to
activate several STAT family members, including STAT1, STAT3, and
STAT5, STAT5 is the predominant IL-2 signaling molecule (Hou et al.,
1995; Lin et al., 1995). Indeed, IL-2 has also been shown to signal via the
Mitogen Activated Protein Kinase (MAPK) pathway, via extracellular
signal-regulated kinase (ERK), as well as the PI3K pathway (González-
García et al., 1997; Liao et al., 2013; Ross and Cantrell, 2018). In this
study, we identified IL-2 STAT5 Signaling is the second and positively
enriched pathway using GSEA in DEGs in our cohort, while in
GSE13861, IL-2 Stat5 Signaling was not in the top10-enriched
pathways. This result indicates that IL-2 STAT5 Signaling may be a
vital pathway which promotes liver metastasis of GIST.

The extracellular matrix (ECM) performs many functions in
addition to its structural role; as a major component of the
cellular microenvironment it influences cell behaviors such as
proliferation, adhesion and migration, and regulates cell
differentiation and death (Hynes, 2009). Abnormal ECM
dynamics can result in uncontrolled cell proliferation and
invasion, failure of cell death, and loss of cell differentiation,
which can lead in congenital abnormalities and pathological
processes such as tissue fibrosis and cancer. As the ECM’s
significance in tumor progression becomes more evident, cancer
treatment strategies have started to focus on specific ECM
components in an effort to reduce metastasis (Walker et al.,
2018; Paolillo and Schinelli, 2019; Girigoswami et al., 2021).

Epithelial mesenchymal transition (EMT) is a crucial
developmental process that triggers the transdifferentiation of
polarized epithelial cells into mesenchymal cells during tumor
invasion and metastasis (Kalluri and Weinberg, 2009; Polyak and
Weinberg, 2009). Cancer cells acquire invasive and metastatic
characteristics with activation of EMT, which facilitates effective

TABLE 2 Details of hub genes.

Gene
symbol

Degree Full name Gene function

CDH1 63 Epithelial cadherin Loss of CDH1 is thought to contribute to progression in cancer by increasing proliferation, invasion,
and/or metastasis

CD34 40 CD34 CD34 is a cell surface glycoprotein and function as a cell-cell adhesion factor.

KIT 39 KIT proto-oncogene receptor tyrosine
kinase

Mutations in this gene are associated with gastrointestinal stromal tumors, mast cell disease, acute
myelogenous leukemia, and piebaldism.

PROM1 37 prominin-1 PROM1 is often expressed on adult stem cells, where it is thought to function in maintaining stem
cell properties by suppressing differentiation.

SOX9 37 SRY-box transcription factor 9 SOX-9 plays a pivotal role in male sexual development; by working with Sf1, SOX-9 can produce
AMH in Sertoli cells to inhibit the creation of a female reproductive system.

FGF2 36 fibroblast growth factor 2 FGF2 is involved in a variety of biological processes, including cell growth, morphogenesis, tissue
repair, tumor growth and invasion.

CD24 34 CD24 CD24 is overexpressed in many cancers and some cancer stem cells and is associated with the
development, invasion, and metastasis of cancer cells.

ALDH1A1 32 aldehyde dehydrogenase 1 family
member A1

High ALDH1A1 activity is closely related to stemness phenotype of several tumors, possibly
contributing to cancer progression and diffusion in the body.

JAG1 31 jagged canonical Notch ligand 1 JAG1/Notch signaling cascades activate a number of oncogenic factors that regulate cellular
functions such as proliferation, metastasis, drug-resistance, and angiogenesis.

NES 30 Nestin Nestin may be a marker for newly synthesized tumor vessels and a therapeutic target for tumor
angiogenesis.
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colonization of distal target organs (Tsai and Yang, 2013). In line
with previous study, we found that EMT signal pathway enriched
in GIST tissues of patients with liver metastasis compared to
corresponding pericancerous tissues, which indicated that EMT
may play a significant role in liver metastasis of GIST.

E-cadherin (also known as cadherin-1 or CDH1), a protein
belonging to the cadherin family, is possibly one of the most potent
and extensively researched regulators of adhesion. Together with
associated Catenins, E-cadherin is essential for regulating cell
adhesion, signaling and transcription in cancers and controlling
metastatic progression (Jiang and Mansel, 2000). Alteration in cell
adhesion molecules (CAMs), such as E-cadherin affect the processes of
cell-cell adhesion and cell-matrix adhesion and subsequently their
metastatic potential. It also regulates the cell cycle regulators
p27kip1 and p57kip2, which are essential for cell-cell contact
inhibition in healthy tissue but are lost or disrupted in cancer cells,
primarily due to the loss of E-cadherin in cancer cells (Croix et al., 1998;
Cavallaro and Christofori, 2004a; Migita et al., 2008). Therefore,
decreased cell-cell adhesion not only increases the potential for
metastatic dissemination of cancer cells, but also encourages
unchecked cell proliferation through the absence of contact

inhibition (Cavallaro and Christofori, 2004b). Indeed, studies has
shown a correlation between reduced E-cadherin and α-catenin
expression with increased tumor cell invasiveness (Zschiesche et al.,
1997). Sheng Liu et al. demonstrated that reduced E-cadherin
expression was correlated with distant metastasis of GIST and
E-cadherin was thus considered as risk factor for GIST metastasis.
In our study, E-cadherin had been identified as the top hub gene and to
be involved in the process of tumorigenesis and livermetastasis of GIST.
The results of our study demonstrated decreased expression levels of
E-cadherin were associated with unfavorable OS in gastrointestinal
tumors. Therefore, we believe that it mediates the liver metastasis of
GIST and can be used as a target for the treatment of metastatic GIST.

ETV1, a transcription factor from the ETS family, is a master
regulator of the normal lineage specification and development of the
ICCs which are the precursors to GIST (Chi et al., 2010). Hao-Chen
Wang et al. reported that upregulating ETV1 expression induced
CXCR4 expression, which promoted liver metastasis of GIST (Wang
et al., 2016). We compared ETV1 expression in our cohort and found
that ETV1 are upregulated in GIST tissues of patients with liver
metastasis compared with corresponding non-tumor tissue
(Supplementary Figures S2A, C). Our result supports ETV1’s

FIGURE 8
Expression of hub genes. (A–J). Expression of KIT, CD34, FGF2, PROM1, NES, CDH1, CD24, ALDH1A1, JAG1 and SOX9 in Our cohort and (K–T)
GSE13861. *p < 0.05, **p < 0.01, ***p < 0.001.
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stimulative role in liver metastasis of GIST. Besides, it has been
demonstrated that ETV4 expression impacted Wnt/catenin signaling
and was correlated to an aggressive phenotype in GIST (Zeng et al.,
2017). However, our results showed no significant difference in
ETV1 expression levels in GIST compared to the adjacent tissues in
both our cohort and GSE13861 (Supplementary Figures S2B, D).
Further research in this area is needed.

The major limitation of the present study is that Tumor
transcriptome programs are rather diverse, both within tumor cells
due to somatic genetic changes and within tumor microenvironments
due to extensive infiltration of the stroma and other cell types in the
tumor. An average gene expression profile frommicroarray can mask
the real signals causing the liver metastasis of GIST from a rare cell
population or cell type. Besides, it has been indicated that long non-
coding RNAs (LncRNAs) participate in certain pro-metastatic stages,

such as the epithelial mesenchymal transition, invasion and
migration, and organotrophic colonization, and they also have an
impact on the metastatic tumor microenvironment (Amirnasr et al.,
2020; Liu et al., 2021). The gene chips we used in current study only
contain probes for protein-coding mRNAs but not LncRNAs. Thus,
further researches should be conducted to elucidate the potential
function of LncRNAs in liver metastasis of GIST. Moreover, a direct
comparison of liver metastases and primary sites of GIST maybe a
better study protocol. But, on one hand, liver metastases from GIST
patients are difficult to obtain because they are usually treated by
ablation. On the other hand, we think that the transcription level of
GIST with liver metastasis has already changed before metastasis, the
potential role of these genes in promoting liver metastasis cannot be
ignored. This information is lost if direct compare liver metastases
samples and primary lesions. It would be better if we collected GIST

FIGURE 9
Kaplan-Meier curves of hub genes expression and overall survival in gastrointestinal tumors. Data are presented as the hazard ratio with a 95%
confidence interval. Log-rank p < 0.05 was regarded as statistically significant.
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specimens without liver metastasis and adjacent tissues at the same
time. This reduces batch effects compared to using data from GEO
databases for comparison. Furthermore, there is currently no public
database contains both prognostic and gene sequencing data of GIST.
And, our cohort contained too few cases (only 18 patients) to survival
analysis. So, we can only retreat to the next best, using TCGA database
for survival analysis. Whether these hub genes in GIST have
prognostic value remains to be further confirmed.

In summary, through analyzing data of self-made whole-genome
gene expression profiling and GEO dataset, we identified those signal
pathways and hub genes that played significant roles in the tumorigenesis
and liver metastasis of GIST. Further studies with larger sample sizes

should be carried out to validate the present findings. Additionally,
experimental evidence is warranted to investigate the functional roles of
the identified hub genes in the livermetastasis ofGIST.We sincerely hope
that this present study will contribute to the discovery of therapeutic
target for liver metastatic GIST.
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FIGURE 10
Kaplan-Meier curves of hub genes expression and disease-free survival in gastrointestinal tumors. Data are presented as the hazard ratio with a 95%
confidence interval. Log-rank p < 0.05 was regarded as statistically significant.
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SUPPLEMENTARY FIGURE S1
Identification of differentially expressed genes of GSE13861 dataset.
(A) Volcanomap of differentially expressed genes (Upregulated genes in red,
downregulated genes in blue). (B)Hierarchical clustering heatmap of DEGs
screened on the basis of FC >2.0 and a corrected P value <0.05. (C) Shows
PCA results of our cohort. (D) Visual hierarchical cluster analysis.

SUPPLEMENTARY FIGURE S2
Expression of ETV1 and ETV4. (A, B) Expression of ETV1 and ETV4 in GIST
(with liver metastasis) tissues and correspond non-tumor tissues in our
cohort. (C, D). Expression of ETV1 and ETV4 in primary GIST tissues and
correspond non-tumor tissues in GSE13861 dataset.
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