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Infections produced by Helicobacter pylori (H. pylori), a spiral Gram-negative

bacterium, can cause chronic gastritis, peptic ulcer, and gastric cancer.

Antibiotic therapy is the most effective treatment for H. pylori infection at

present. However, owing to the increasing antibiotic resistance of H. pylori

strains, it has become a serious threat to human health. Therefore, the

accurate diagnosis of H. pylori infections and its antibiotic resistance markers

is of great significance. Conventional microbiological diagnosis of H. pylori is

based on culture; however, successful isolation of H. pylori from gastric biopsy

specimens is a challenging task affected by several factors and has limitations

in terms of the time of response. To improve conventional methods, some

molecular techniques, such as PCR, have been recently used in both invasive

and non-invasive H. pylori diagnosis, enabling simultaneous detection of

H. pylori and point mutations responsible for frequent antibiotic resistance.

The advantages and disadvantages of molecular methods, mainly PCR, versus

conventional culture for the H. pylori identification and the detection of

antibiotic resistance are discussed. As expected, the combination of both

diagnostic methods will lead to the most efficient identification of the H. pylori

strains and the resistance patterns.

KEYWORDS

Helicobacter pylori, antibiotics, resistance, culture, PCR, GenoType R© HelicoDR test

Introduction

Helicobacter pylori (H. pylori) is one of the most prevalent pathogens worldwide
which affects about 50% of the world population (Peleteiro et al., 2014). It colonizes the
human stomach, and, although the majority of people (>80%) can remain asymptomatic
throughout their life, it is largely related to gastrointestinal diseases. In the absence of
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treatment, its manifestations can range from pathologies, such
as chronic gastritis, peptic ulcers, atrophic gastritis to intestinal
metaplasia, gastric cancer, and mucosa-associated lymphoid
tissue (Sirous et al., 2011).

The bases of H. pylori treatment are antibiotics. The
most commonly used are macrolides (clarithromycin or
azithromycin), imidazole (metronidazole or tinidazole),
amoxicillin, tetracycline, and levofloxacin. Multiple regimens
such as triple therapy, sequential therapy, quadruple therapy,
and levofloxacin-based triple therapy (Malfertheiner et al.,
2017) have been evaluated. Nevertheless, the successful
eradication treatment regimen has not yet been achieved due
to the increasing rates of resistance to antibiotics included in
current regimens. Subsequently, a substantial fall in H. pylori
treatment efficacy has been observed globally making the
eradication of H. pylori, a major public health problem
(Thung et al., 2016).

Enhanced efforts are required for improving diagnostic tools
for H. pylori, as well as for a clearer understanding of the
development and spread of drug-resistant bacteria. Likewise,
the study of antibiotic susceptibility is key to implement the
most appropriate treatments and to define treatment guidelines
since the choice of antibiotics must be tailored according to local
resistance (Malfertheiner et al., 2017).

Clinical tests for H. pylori identification that are also
useful for the detection of antibiotic susceptibility include
culture, as conventional method, and molecular techniques,
usually involving gastric biopsy. Although bacteriological
culture is considered the reference method for diagnosing
infection, H. pylori is regarded as a demanding bacterium as it
requires supplemented means for its growth, microaerophilic
atmosphere, and prolonged incubation which leads to time-
consuming limitations when performing sensitivity studies (e.g.,
Wang et al., 2015). Due to the technical difficulties of H. pylori
culture, it is shown that easier and faster techniques are required
to detect H. pylori and to determine its resistance. In this regard,
molecular methods have shown remarkable results (Alba et al.,
2017).

This article summarizes our current viewpoint of molecular
methods, focusing on polymerase chain reaction (PCR) and its
applications, both in the diagnosis of H. pylori infection and the
prediction of its resistance to antibiotics.

Polymerase chain reaction for
Helicobacter pylori detection

In recent years, many molecular methods have been
developed as alternatives for the identification of H. pylori. Most
of them are based on PCR or real-time PCR (RT-PCR) directly
from gastric biopsies. Other molecular methods that have been
tested include nested-PCR, droplet digital PCR, fluorescent
in situ hybridization, and next-generation sequencing, such

TABLE 1 Genotypic determination of clarithromycin and levofloxacin
resistance mutations by PCR.

Antibiotic n (%)

Clarithromycin No mutation 123 (40.2)

Detected mutation A2146G 12 (3.9)

A2146C 2 (0.7)

A2147G 165 (53.9)

Double mutation 4 (1.3)

Total 306 (100)

Levofloxacin No mutation 261 (91.6)

Detected mutation N87K 9 (3.1)

D91N 5 (1.7)

D91G 6 (2.1)

D91Y 4 (1.4)

Total 285* (100)

*In 21 samples the PCR result for levofloxacin resistance was indeterminate.

as 16S rRNA amplicon sequencing, transcriptomics, and
metagenomics (Gong and El-Omar, 2021).

There are several molecular assays commercially available
for the identification of H. pylori. The extraction of genetic
material (DNA) directly from the sample allows for the
detection of H. pylori through the amplification of specific
genes, mainly conserved regions of the H. pylori genome. The
most used genes are the ureA, ureC, glmM, and Hsp60 or the
16SrRNA or 23S rRNA regions (e.g., Clayton et al., 1991; Wang
et al., 2015; Sulo and Šipková, 2021).

The advantage of molecular biology techniques over other
methods remains in the increase of sensitivity and the fact
that they may allow quantification of the bacteria (Shukla
et al., 2011; Belda et al., 2012). However, false-negatives
and false-positives arise from the primers employed, due to
polymorphism or the use of non-specific primers, respectively
(Sulo and Šipková, 2021).

It has been suggested that nested-PCR can achieve sufficient
specificity and is much more sensitive than regular PCR as it
involves two rounds of amplification, enabling it to amplify the
target sequence in a lower concentration (Šeligová et al., 2020;
Sulo and Šipková, 2021).

In addition, the combination of several target genes for
detection, such as ureA, ureC, glmM, Hsp60, 16S rRNA,
23S rRNA, and vacA, may help to improve the diagnostic
performance by reducing the number of false positive results
(e.g., Wang et al., 2015; Wongphutorn et al., 2018).

On the other hand, as an alternative to the use of gastric
biopsies specimens, different studies that perform PCR on
gastric juice (Hsieh et al., 2019) or on non-invasive samples, such
as saliva (Sayed et al., 2011) and stool (Beckman et al., 2017;
Leonardi et al., 2020), have been published obtaining promising
results. So far, there are different sensitivities and specificities
depending on the DNA extraction method and the PCR assay
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TABLE 2 Presence or absence of PCR mutations for clarithromycin and levofloxacin versus sensitivity or resistance results by E-test (gold standard).

Susceptible by E-test Resistant by E-test Total Sensitivity Specificity

Clarithromycin PCR Mutation 21 (15.4%) 115 (84.5%) 136 99.1% 80.0%

No mutation 84 (98.8%) 1 (1.1%) 85

Levofloxacin PCR Mutation 0 (0%) 16 (100%) 16 100% 100%

No mutation 198 (100%) 0 (0%) 198

used. Other limitations found are requirements of facilities
and experts, smaller abundance of the bacteria, presence of an
inhibitory substance, and interference from the dead bacteria or
DNA degradation.

Polymerase chain reaction for
detection of resistance

Molecular techniques also allow the detection of
antibiotic resistance. H. pylori strains have developed different
mechanisms of antibiotic resistance, such as point mutations
or other genetic changes. Molecular mechanisms underlying
this resistance have been intensively studied, especially in the
cases of clarithromycin and levofloxacin, the most commonly
used antibiotics for H. pylori eradication, given that the vast
majority of resistance to these two antibiotics is due to known
localized mutations.

Hence, by targeting the genes responsible for antibiotic
resistance, it is feasible to obtain genotypic susceptibility
information for the common antibiotics used, without
performing an antibiogram. Furthermore, the detection of genes
and mutations involved in antibiotic resistance using molecular
techniques has been already acknowledged as a useful tool to be
performed directly on the gastric biopsy specimen by Maastricht
V/Florence Consensus Report (Malfertheiner et al., 2017).

Polymerase chain reaction is the most widely used molecular
determination approach (Hortelano et al., 2021). Several
commercial kits (Cambau et al., 2009; Nishizawa and Suzuki,
2014; Redondo et al., 2018) are available to detect different
mutations that confer resistance to clarithromycin combined
or not with levofloxacin. PCR has also been applied to detect
resistance to tetracycline and rifampicin by in-house protocols
which are largely described in the literature (Chisholm and
Owen, 2009; Contreras et al., 2019).

When referring to clarithromycin, most methods identify
the main mutations which are found in the 23S rRNA gene,
targeting point mutations at nucleotide positions A2146 and
A2147 (Redondo et al., 2018). These two mutations were
previously named 2,142 and 2,143 (Wang and Taylor, 1998).
For its part, resistance to fluoroquinolones is due, in a very
significant percentage, to mutations in genes gyrA and gyrB
DNA gyrase, positions 86, 87, 88, and 91 (Rimbara et al., 2012).
Also, PCR techniques have been applied to detect tetracycline

resistance (Contreras et al., 2019) due to mutations in the 16S
rRNA gene (positions 926–928) and rifampicin in the rpoB
gene (positions 525–545 and 547) (Chisholm and Owen, 2009).
In the case of metronidazole, its resistance mechanisms are
quite complex (Nishizawa and Suzuki, 2014) and not as well
defined, so for the moment, there are no commercial kits
for its detection.

Polymerase chain reaction vs.
culture

Keeping the above observation in mind, we have compared
H. pylori identification performance efficacy among culture and
molecular H. pylori identification GenoType R© HelicoDR kit
(HAIN Life Science, Hardwiesenstraße, Germany). In terms of
antibiotic resistance, phenotypic susceptibility was studied in
all culture-positive and was compared to GenoType R© HelicoDR
kit which allows simultaneous detection of H. pylori and its
resistances to clarithromycin and levofloxacin and is applicable
to gastric biopsy specimens. The Genotype R© HelicoDR test
allows the detection of point mutations responsible for the
resistance to clarithromycin and levofloxacin: three-point
mutations in the V domain of the 23S rRNA gene (positions
2,146 and 2,147) for clarithromycin and 4 mutations in the
A subunit of DNA gyrase (1 at codon 87 and 3 at codon
91) for quinolones.

Patients and methods

The specimens used for this study were gastric biopsy
samples taken from 616 patients aged between 2 and 82 years
old who had undergone endoscopy due to gastroduodenal
diseases. One sample per patient was analyzed. Data including
age and sex were collected. The study was performed from
January 2016 to October 2017 and samples were collected from
a variety of Spanish hospitals. Gastric biopsy specimens of the
patients were referred to the Clinical Microbiology laboratory
of Hospital Universitario La Princesa in Madrid. Freshly taken
biopsy specimens were either placed into Portagerm Pylori
(BioMérieux) solution and sent within 24 h under room
temperature or into sterile glass tubes and kept at 4◦C. Once
at the laboratory, if the process could not be continued within
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3 h, the samples were stored at −80◦C deep freezer until
further processing.

Biopsy specimens’ culture was performed in a biological
safety cabin and then preserved at −80◦C deep freezer for
further molecular processing. The specimens were discharged
with the aid of a sterile swab into two commercial culture media:
blood agar (Columbia agar + 5% sheep blood, BioMérieux)
and Helicobacter selective agar media (Pylori agar, BioMérieux).
The samples were incubated for 15 days at 37◦C in a micro-
aerobic atmosphere (5% O2, 10% CO2, and 85% N2). H. pylori
colonies are small, translucent to yellowish colonies, which can
be identified based on a Gram-negative helical-shaped in Gram-
staining procedure followed by positive oxidase, catalase, and
urease tests, along with the confirmation by MALDI-TOF mass
spectrometry (Bruker).

The antibiotic sensitivity study was performed using the
gradient strip diffusion method in blood agar plates. H. pylori
isolates collected were examined for their susceptibility to
antimicrobial agents by gradient diffusion strip method (E-test,
BioMérieux) on blood agar incubated at 37◦C in a micro-aerobic
atmosphere (5% O2, 10% CO2, and 85% N2). Six antimicrobial
agents were tested: clarithromycin, metronidazole, amoxicillin,
levofloxacin, tetracycline, and rifampicin, on which MIC values
were read after 3 and 5 days and interpreted according to the
clinical breakpoints of EUCAST guidelines.

For the molecular method, DNA extraction included a
previous stage meant for the digestion of proteins. Solid biopsies
were mixed with Proteinase K, lysis buffer, and distilled water
followed by incubation in agitation for at least 3 h at 37◦C. The
DNA isolation was carried out by automated DNA extraction
using the NucliSens R© easyMAGTM (BioMérieux), following the
manufacturer’s description for the tissues. All the eluted DNA
were stored at−80◦C.

The biopsy material itself, as well as the culture material
extracted from it, can be used as the starting material.
Briefly, multiplex amplification of DNA regions of interest was
performed. Typical PCR reaction mixtures contained 5 µl of
reaction buffer, 2.5 µl of MgCl2, 35 µl of 5′-biotinylated primers
and nucleotide mixture, 0.4 µl of Taq polymerase, 2.5 µl of PCR
grade water, and 5 µl of extracted DNA. The PCR run comprised
30 cycles. The denaturation cycle was 1 cycle at 94◦C for 5 min.
Then, 30 cycles which were composed of a first step at 94◦C for
30 s, a second step at 55◦C for 30 s, and a third step at 72◦C for
30 s. The PCR ended with 7 min at 72◦C. The test was developed
and interpreted according to the manufacturers’ instructions.

The PCR was followed by hybridization with DNA
strips, coated with different specific oligonucleotides (probes).
Hybridization was performed using the TwinCubator (Hain Life
Science) system at a temperature of 45◦C. The denaturation
solution was mixed with 20 µl of the amplified sample and
was hybridized using a standard hybridization protocol. Each
strip contains a total of 18 hybridization probes. The first band
contains the conjugate control designed to indicate effective

binding to the substrate. The second band includes a universal
control, and it is used to check that the amplification has
taken place correctly. The third band contains a sequence from
a region of the 23S rRNA that is common to all H. pylori
strains. The next ten and five bands are for quinolone and
clarithromycin sensitivity studies, respectively. The probes were
designed to hybridize with both the sequences of the wild-type
(WT) and the mutated alleles (MUT).

Interpretation was performed after strips were attached
to the evaluation sheet after hybridization, with the template
aligned side by side with the conjugate control band of the
respective strip. Control bands that should appear positive to
validate the test. A positive band was determined by comparing
each band stain with the amplification control band. A stronger
stain than the amplification band was interpreted as positive
for the presence of the allele. WT specimens were determined
by the presence of WT bands only. H. pylori strain mutations
included clarithromycin resistant, fluoroquinolone resistant,
and resistant to both antibiotics. Mutants were determined by
the presence of the MUT band.

Results

Therefore, a total of 616 specimens were examined for
H. pylori presence using the two methods. Results indicate that
234 (37.9%) were found positive for the presence of the H. pylori
bacterium by both methods and 308 (50%) were negative. In
terms of discrepancies observed, 2 (0.32%) specimens were only
detected by culture. On the contrary, 72 (11.6%) specimens were
found positive only by means of PCR. If we consider culture as
gold standard, the comparison revealed a sensitivity of 99.1%
and a specificity of 81% in favor of the molecular kit. It should
be borne in mind that the positives by PCR and negative by the
culture were not false positives, as the PCR was able to detect
more positives than the culture.

Regarding the E-test susceptibility testing, it was not possible
to determine antibiotic sensitivity in the 236 isolates for all
antibiotics; only 223 isolates could be studied for clarithromycin
and levofloxacin. For clarithromycin, 107 (47.9%) isolates had
a sensitive phenotype; while for levofloxacin, 206 (92.3%)
isolates had a sensitive phenotype. Despite the isolation of
H. pylori in culture from 236 strains, the antibiogram was
not viable in all of them. Only the sensitivity of 223 strains
could be studied phenotypically while in 13 strains, the
antibiogram was not viable.

Resistance to clarithromycin was 52% for fenotypic while
59% for genotypic method and to levofloxacin was 76% for
fenotypic while 84% for genotypic method (No statistically
significant differences).

On the other hand, the results of the genotypic study
of antibiotic sensitivity to clarithromycin and levofloxacin
performed with GenoType R© HelicoDR are shown in Table 1.
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When comparing the results obtained in all samples in
which both phenotypic antibiotic sensitivity and genotypic PCR
were available, a difference between the two antibiotics was
observed (Table 2).

Based on these results, a sensitivity of 99.1% and a specificity
of 80% were calculated for the detection of clarithromycin
resistance by the genotypic PCR method. For levofloxacin,
no discrepancy was observed between the two methods, so
the sensitivity and specificity for the detection of levofloxacin
resistance by PCR were 100%.

Discussion

Efficient diagnosis is required for successful clinical
management to relieve symptoms and to eradicate bacteria. As
with any diagnostic method, culture and molecular techniques
have advantages, but also disadvantages.

Molecular techniques for the diagnosis of H. pylori have
a very high sensitivity (over 95%), detecting more positive
specimens than culture, and specificity (close to 100%). PCR
techniques do not depend on the lability of the bacteria, as
culture does. In addition, some molecular methods can be
applied directly on the sample, gastric biopsy or non-invasive
samples. Moreover, in relation to working time, amplification of
genome specific regions in H. pylori using appropriate primers
allows faster identification than culture, as H. pylori takes 10–
14 days for cultures to be negative.

The advantages of genotypic methods over phenotypic
methods include providing insight into underlying resistance
mechanisms in a fairly short time (<4 h).

Meanwhile, among the disadvantages, are the higher price
in comparison to conventional methods and the need for
appropriate equipment and experience personnel. That is the
main reason why approaches involving DNA amplification have
not been widely accepted in general practice.

It is worth mentioning, as an alternative to the use of
gastric biopsies, the appearance of PCRs for the diagnosis of
H. pylori directly from non-invasive samples. This could be a
great advance as it avoids the need for endoscopy and biopsy,
thus preventing all the discomfort and risks that they entail for
the patient, as well as the associated healthcare costs.

Besides, molecular techniques have limitations when it
comes to detecting antibiotic resistance. The main disadvantage
of PCR in detecting resistance as opposed to H. pylori culture
is that the most commercial systems only detect specific
resistance mutations to clarithromycin and quinolones, whereas
culture allows the study of sensitivity to all antibiotics and the
detection of resistant isolates by other mutations or resistance
mechanisms. They only detect specific mutations, so there is a
possibility of not detecting resistant isolates due to mutations
other than those amplified by PCR or resistant isolates due to
other resistance mechanisms unrelated to these.

In conclusion, both methods are still necessary for the
study of sensitivity, and neither should be displaced. These
procedures could represent an essential component of the
efforts needed to prevent the further development of infections
caused by H. pylori and the spread of the increasing
resistance to antibiotics.
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new challenge for clinicians
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Patients who have failed two or more attempts to eradicate Helicobacter

pylori are commonly referred to as refractory. Although the incidence of

refractory Helicobacter pylori infection is only 10–20%, with the increasing

rate of antibiotic resistance in various regions, the treatment of refractory

Helicobacter pylori infection has gradually become a difficult problem faced

by clinicians. When choosing a rescue therapy, the physician must consider

numerous factors. A longer treatment duration, higher doses of proton

pump inhibitors (PPIs), or the use of potassium-competitive acid blocker (P-

CAB) may increase the efficacy of triple therapy or bismuth quadruple therapy.

Rescue treatment based on bismuth quadruple therapy usually achieves better

results. At the same time, treatment based on drug susceptibility tests or

genotypic resistance is recommended where available. Of course, appropriate

empiric treatment can also be selected according to local drug resistance, a

patient’s previous medication history and compliance. It is the best choice if it

can improve the success rate of the first treatment and reduce the occurrence

of refractory Helicobacter pylori infection. This review aims to summarize the

articles related to refractory Helicobacter pylori in recent years and to explore

a better remedial treatment plan for clinicians.

KEYWORDS

refractory Helicobacter pylori infection, rescue therapy, antibiotic resistance,
antibiotic susceptibility testing, empirical treatments

Introduction

Eradication with Helicobacter pylori can reduce the recurrence rate of peptic ulcers,
reduce the incidence of Helicobacter pylori-associated gastritis, cure patients with
mucosa-associated lymphoid tissue lymphoma (MALT), and reduce the risk of gastric
cancer (Lee et al., 2016; Malfertheiner et al., 2017; Liou et al., 2019). Currently, the
eradication rate of clarithromycin triple therapy, a commonly used first-line treatment
regimen, is less than 80% (Malfertheiner et al., 2017; Liou et al., 2020), and quadruple
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therapy with levofloxacin and bismuth agents is often selected
as the second-line treatment (Liou et al., 2010; Fallone et al.,
2016). However, approximately 10–20% of patients still fail
treatment (Liou et al., 2011, 2016). Patients who fail two or
more treatments are often referred to as patients with refractory
Helicobacter pylori infection, and treating these patients is still a
difficult problem in the clinic (Losurdo et al., 2022a). Therefore,
we reviewed the evidence from previous studies to identify more
appropriate treatment options.

Status of refractory Helicobacter pylori
infection

Helicobacter pylori is a major carcinogen that can cause
gastric cancer, with 1–3% of Helicobacter pylori patients
eventually developing stomach cancer (Blaser, 2016). Therefore,
the eradication of Helicobacter pylori plays a very important role
in the prevention and control of gastric cancer. Current first-
line treatment regimens have good eradication rates. However,
antibiotic resistance rates have risen around the world. The
success rate of initial eradication is challenged by multiple
resistant bacteria (Savoldi et al., 2018; Lin et al., 2021).
Accordingly, the occurrence of refractory Helicobacter pylori
infection is increasing, becoming a concern that cannot be
ignored (Liou et al., 2011, 2016). Therefore, it is necessary
to perform in-depth research on refractory Helicobacter
pylori infection to explore its causes and potential treatment
modalities.

The causes of treatment failure

Antibiotic resistance
Antibiotic resistance is currently the main cause of

refractory Helicobacter pylori infection, and antibiotic resistance
is mainly a concern for clarithromycin, metronidazole and
levofloxacin (Sugano et al., 2015; Malfertheiner et al., 2017).
A report published in 2018 looked at antibiotic resistance
in 65 countries and territories around the world. The
primary and secondary drug resistance rates of clarithromycin,
metronidazole and levofloxacin in other regions of the world
were ≥ 15%, except for the Americas, Southeast Asia and some
parts of Europe. However, due to the large heterogeneity of
studies in different regions, the results need to be discussed
and analyzed separately by region (Kuo et al., 2017; Savoldi
et al., 2018; Hulten et al., 2021; Megraud et al., 2021). In
the Asia-Pacific region, the drug resistance of clarithromycin,
metronidazole and levofloxacin is also serious, and the drug
resistance rate of metronidazole is as high as 44% (Table 1).
In China, studies have shown that secondary resistance to
clarithromycin, metronidazole and levofloxacin is greater than
50% and even greater than 90% in some areas. Not only has

the prevalence of single-resistant strains increased, but that
of double- and multiple-resistant strains has also increased.
This has become an important reason for the annual increase
in Helicobacter pylori eradication failure. In these highly
resistant areas, eradication therapies containing clarithromycin,
metronidazole and levofloxacin are clearly no longer suitable
(Baylina et al., 2019; Li et al., 2020, 2021; Kuo et al., 2021; Resina
and Gisbert, 2021). How to choose antibiotics to eradicate
Helicobacter pylori is a new challenge for clinicians (Savoldi
et al., 2018).

Helicobacter pylori-related factors
Helicobacter pylori can increase its resistance to antibiotics

through mutation of drug resistance genes. Studies have
shown that Helicobacter pylori can increase its resistance
to metronidazole by upregulating the expression of hefA,
a key gene of the drug efflux pump, and mutation of rdxA
(Lee et al., 2018a). Mutations in the A2142G and A2143G
loci may lead to increased clarithromycin resistance (Hamza
et al., 2018). Other studies have also shown that gyrA, 23S
rRNA and 16S rRNA mutations in Helicobacter pylori are
also responsible for other increased resistance (Nezami
et al., 2019). In addition, Helicobacter pylori can also escape
the effects of antibiotics through internalization. Research
by Apolinaria Garcia-Cancino revealed that Helicobacter
pylori can hide in Candida albicans under clarithromycin
and amoxicillin and avoid their effects (Sánchez-Alonzo
et al., 2021). At the same time, another study revealed that
Helicobacter pylori entered the gastric mucosal tissues of
patients in whom Helicobacter pylori eradication had failed,
mainly in the gastric body (95.2%). Standard clarithromycin-
containing triple therapy failed even though the internalized
Helicobacter pylori was mostly clarithromycin-sensitive,
suggesting that cellular internalization of Helicobacter pylori
may have contributed to the failure (Beer et al., 2021). In
addition, Helicobacter pylori will activate the chromosomal
type I toxin antitoxin system (AapA1 IsoA1) under the
oxidative stress, and further express AapA1 toxin to induce the
formation of coccoids, so as to avoid the influence of antibiotics.
This process did not destroy the integrity of Helicobacter
pylori biofilm and did not produce changes in membrane
potential, which may be related to the interference of cell
elongation/division interference. But the specific mechanism
still needs more research and discussion (El Mortaji et al.,
2020).

Host factors
Host factors are also important causes of refractory

Helicobacter pylori infection. Most proton pump inhibitors
(PPIs) need to be metabolized through the CYP2C19 pathway,
and the metabolic type of CYP2C19 can affect the eradication
effect of Helicobacter pylori by affecting the metabolism of
PPIs. Patients with the fast metabolic type need to increase the
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TABLE 1 Antibiotics resistance of Helicobacter pylori.

References Region Antibiotic resistance

Clarithromycin Metronidazole Levofloxacin

Megraud et al. (2021) European 21.4% 38.9% 15.8%

Hulten et al. (2021) The United States 17.4% 43.9% 57.8%

Kuo et al. (2017) Asia 17% 44% 18%

Camargo et al. (2014) Latin America 12% 53% 15%

Savoldi et al. (2018) Africa 15% 91% 14%

dose of PPIs to maintain a high eradication rate (Fontes et al.,
2019). Studies have shown that vitamin D can affect Helicobacter
pylori colonization and eradication by affecting the autophagy
pathway, and the eradication rate of Helicobacter pylori is low in
patients with vitamin D deficiency (Hu et al., 2019; Shatla et al.,
2021). The family environment is also one of the possible causes
of eradication failure. Helicobacter pylori is easily transmitted
among family members. Studies have shown that there is a
significant correlation between a history of eradication failure in
parents and eradication failure in offspring (Deguchi et al., 2019;
Ding et al., 2022). Therefore, emphasis should be placed on the
eradication of Helicobacter pylori in the home. Older age, prior
eradication treatment, and a history of PPI use also increased the
risk of eradication failure (Yan et al., 2020). Otherwise, studies
have suggested that smoking, non-alcoholic fatty liver disease,
and human immunodeficiency virus (HIV) infection may have
contributed to the failure of eradication, but more research is
needed to confirm these results (Itskoviz et al., 2017; Hanafy and
Seleem, 2019; Takara et al., 2019; Nkuize et al., 2021).

Options for rescue treatment:
Antibiotic-susceptibility testing or
empirical treatment

Antibiotic-susceptibility testing

How should rescue treatment be chosen? We generally have
two options: experiential treatment and drug sensitivity-guided
regimens, both of which have their own advantages. With the
increase in antibiotic resistance rates in various regions of the
world, drug sensitivity-guided regimens are increasingly being
chosen by more clinicians. The advantage of drug sensitivity
guidance is to be able to know the individual’s sensitivity to
antibiotics and to use sensitive antibiotics specifically to increase
the success rate of eradication. Not only is this approach
recommended in the guidelines, but many regional studies
provide strong evidence to support this view (Lee et al., 2016;
Malfertheiner et al., 2017; Liou et al., 2019). The study revealed
that in patients with more than two eradication failures, the
eradication rate of both the triple and quadruple regimens

guided by drug sensitivity reached more than 90%, especially in
patients with penicillin allergy. The treatment guided by drug
sensitivity achieved almost perfect results, with an eradication
rate as high as 99% (Huang et al., 2018; Yu et al., 2019; Luo et al.,
2020; Gingold-Belfer et al., 2021; Lee et al., 2021). However,
not all hospitals meet the criteria necessary to carry out drug
sensitivity testing because it requires great laboratories and
professional testing personnel. This is the reason why drug-
sensitive guided treatment is not widely available (Gisbert,
2020).

Empirical treatment

Empirical treatment is more acceptable because it does
not require additional testing to evaluate drug sensitivities.
However, clinicians need to predict the effectiveness of
treatment options based on local epidemiology, population
resistance, and whether patients have been previously exposed
to antibiotics for any reason (Gisbert, 2020). Although empirical
therapy cannot provide individualized precision treatment
compared with drug sensitivity therapy, it is an alternative in
areas lack of medical facilities for laboratory testing. Moreover,
there are also more studies showing that empirical treatment of
refractory Helicobacter pylori infection has a good effect, with
an eradication rate of 75–90% (Gisbert, 2020; Ji et al., 2020;
Nyssen et al., 2021). Since the main resistant antibiotics are
clarithromycin, levofloxacin and metronidazole, more studies
are needed to investigate the efficacy of other antibiotics as an
empirical treatment option.

Dosage and selection of proton pump
inhibitors

Due to polymorphism in the CYP2C19 gene among patients,
the dose of PPIs will affect the efficacy of eradication therapy.
In clinical trials, 20 mg (low dose) and 40 mg (high dose)
are usually used for comparison (Graham et al., 2019). High
doses of PPI significantly improved the outcome of standard
triple therapy (Katelaris and Katelaris, 2017;Ierardi et al., 2019;
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TABLE 2 Eradication rate of tetracycline-containing rescue therapy.

References Dosing frequency Duration of therapy Eradication rate %

Nyssen et al. (2020) Tetracycline 500 mg qid; metronidazole 500 mg tid; bismuth
240 bid; PPI 20 mg bid

10/14 Over all: 77%;
PP:NA
ITT:NA

Kim et al. (2022) Tetracycline 1 g bid; metronidazole 500 mg tid; bismuth 600 mg
bid; PPI 20 mg bid

14 Over all: 92.5%
PP:NA
ITT:NA

Hsu et al. (2021) Tetracycline 500 mg qid; levofloxacin 500 mg qd; bismuth
300 mg qid; PPI 40 mg bid

10 Over all:NA
ITT:89.3%
PP:89.1%

Shin et al. (2021) Tetracycline 500 mg qid; metronidazole 500 mg tid; bismuth
120 mg qid; PPI 20 mg bid

7/10/14 Over all:NA
ITT:80.7%
PP:93.3%

Losurdo et al. (2022b) Pylera (Tetracycline/
metronidazole/bismuth) bid; PPI 20 mg bid

10 Over all:NA
ITT:84.9%
PP:86.1%

De Francesco et al. (2021) Pylera (Tetracycline/
metronidazole/bismuth) bid; PPI 20 mg bid

– Over all:NA
ITT:90.6%
PP:94%

Fiorini et al. (2017) Pylera (Tetracycline/
metronidazole/bismuth) bid; PPI 20 mg bid

10 Over all:NA
ITT:81%
PP:87%

Losurdo et al., 2022b). Therefore, a double dose of PPIs is
recommended for rescue therapy. In addition, the selection
of new-generation PPIs to replace existing drugs is also
an option to improve treatment effectiveness. Such as
Rabeprazole, Esomperazole, they are less affected by CYP2C19
polymorphisms. A Japanese study showed that a 7-day triple
therapy based on vonoprazan proved superior to lansoprazole-
based triple therapy for 7 days. This is especially true in patients
infected with clarithromycin-resistant strains (Murakami
et al., 2016). Another Japanese study showed that the annual
eradication rates of second-line therapy between 2013 and 2018
were 90, 82.6, 88.8, 87.5, 91.8, and 90.1%, respectively. The
use of vanorazan was an independent factor in the success of
second-line treatment (Mori et al., 2019).

New antibiotics

It is very important to optimize the treatment plan and
choose more efficient antibiotics for rescue treatment. We
need to find some antibiotics that are more effective as rescue
treatment and in how they are administered. In past reports
of rescue treatment, tetracycline and rifabutin were assessed
in many studies, and both achieved good results. In recent
years, many studies have reported the role of tetracycline in
remedial therapy. Two studies from Taiwan, China, compared
the efficacy of tetracycline regimens in rescue therapy. The
first study compared the 10-day TL regimen (tetracycline
plus levofloxacin bismuth quadruple regimen) with the AL
triple regimen (amoxicillin plus levofloxacin triple regimen) in

remedial therapy. The eradication rate in the TL group was 98%
higher than that in the AL group (69.2%) (Hsu et al., 2017).
Another study compared the 10-day TL regimen with the AL
regimen as a remedial treatment for Helicobacter pylori. The
eradication rate of 89.3% in the TL group was only 69.6% in
the AL group, and the eradication rate of levofloxacin-resistant
strains in the TL group was also higher than that in the AL group
(Hsu et al., 2021). The 10–14-day regimen was associated with a
higher eradication rate than the 7-day regimen with tetracycline
(Shin et al., 2021). Studies have shown that the minimum
inhibitory concentration (MIC) of tetracycline can achieve a
better effect as long as it reaches 0.094 mg/L (Hsieh et al., 2020).
At the same time, the Korean study compared the eradication
rate of the tetracycline regimen with different dosing methods,
and the dosage of 2,000 mg tetracycline per day, whether
500 mg qid or 1,000 mg bid, had a good eradication effect (Kim
et al., 2022). Otherwise, many studies have reported that the
Pylera three-in-one capsule combined with PPI achieved a good
curative effect in remedial treatment.

In addition to tetracycline, many studies have reported
the role of other antibiotics in rescue treatment (Table 2).
A meta-analysis showed that quinolones are the best second-
line treatment option in Western countries (Yeo et al.,
2019). Antofloxacin is a new quinolone drug. A Chinese
study compared antofloxacin with a 14-day triple therapy
with levofloxacin. The eradication rate of the levofloxacin
group was higher than that of the antofloxacin group (87.6
vs. 68.5%) when the levofloxacin resistance rate was over
40%. Antofloxacin has both good efficacy and safety (Mori
et al., 2020; He et al., 2022). Second, previous reports have
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TABLE 3 Eradication rate of rifabutin-containing rescue therapy.

References Dosing frequency Duration of therapy Eradication rate %

Kuo et al. (2020) Rifabutin 150 mg bid; amoxicillin
1 g bid; PPI 40 mg bid

10 Over all:79.5%
ITT:NA
PP:NA

Fiorini et al. (2018) Rifabutin 150 mg bid; amoxicillin
1 g bid; PPI 40 mg bid

12 Over all:NA
ITT:82.9%
PP:88.7%

Hirata et al. (2020) Rifabutin 150 mg bid; amoxicillin
750 mg bid; PPI 20 mg bid

10 Over all:NA
ITT:100%
PP:100%

Saracino et al. (2020) Rifabutin 150 mg bid; amoxicillin
1 g bid; PPI 40 mg bid

12 Over all:NA
ITT:51.9%
PP:61.9%

Ribaldone et al. (2019) Rifabutin 150 mg bid; amoxicillin
1 g bid; PPI 20 mg bid

14 Over all:NA
ITT:71.5%
PP:72.7%

demonstrated that furazolidone has a good eradication effect
in first-line treatment. It also had a significant effect on rescue
therapy in patients who had failed previous clarithromycin
or levofloxacin quadruple therapy. The 14-day quadruple
furazolidone regimen achieved 90% eradication in patients
with clarithromycin and levofloxacin resistance rates of more
than 40% (Kong et al., 2020; Resina and Gisbert, 2021).
However, some countries do not allow the use of furazolidone
for safety reasons, so more studies are needed to explore
the safety of furazolidone use. Otherwise, a large number
of studies have reported the efficacy of rifabutin in rescue
therapy (Ierardi et al., 2014; Nyssen et al., 2022; Table 3).
Studies have shown that rifabutin triple therapy has an obvious
antibacterial effect on multiple drug-resistant Helicobacter
pylori, and the eradication rate can reach more than 80%
(Fiorini et al., 2018; Siavoshi et al., 2018; Ribaldone et al.,
2019; Kuo et al., 2020). At present, the main rescue therapy
contains rifabutin, amoxicillin and PPIs. More studies are
needed to compare the efficacy of other antibiotics combined
with rifabutin in rescue therapy. In conclusion, in the absence
of drug sensitivity guidance, clinicians should consider the use
of the above antibiotics to address refractory Helicobacter pylori
infection.

Duration of therapy

Insufficient time is also an important factor in eradication
failure. A treatment duration extended by 14 days with triple
therapy was superior to the same regimen of 7 or 10 days
with first-line therapy (Yuan et al., 2013). Therefore, various
guidelines recommend a duration of 14 days for first-line
treatment, unless shorter durations are locally proven to be non-
inferior and yield reliably high success rates (Fallone et al., 2016;
Liou et al., 2018). Among second- or third-line treatments, the

cure rates of levofloxacin triple therapy at 7, 10, and 14 days were
58.3, 68.2, and 93.3%, respectively (Noh et al., 2016). However,
the benefit of extending treatment to 14 days was minimal
in susceptible strains (Liou et al., 2018). In strains resistant
to clarithromycin, the eradication rate can be increased due
to the effect of PPI-amoxicillin dual therapy. In summary, we
recommend 14 days of treatment for refractory Helicobacter
pylori.

Other treatments

Does the addition of adjunctive agents on a triple or
quadruple basis increase the efficacy of remedial therapy? In
recent years, many studies have combined probiotics, biological
extracts, traditional Chinese medicine and other adjuvant drugs
with traditional therapy to increase the eradication effect of
rescue treatment. A study from China treated patients with
refractory Helicobacter pylori with Lactobacillus for 2 weeks
followed by 10-day quadruplex therapy with tetracycline and
furazolidone as rescue treatment. The overall eradication rate
was 92% in the intention-to-treat (ITT) analysis and 91.8% in
the Per-Protocol (PP) analysis, with fewer adverse reactions
and a good safety profile (Liu et al., 2020). The Iranian study
also found that in patients in whom eradication had failed,
quadruple therapy containing Lactobacillus was more effective
as a rescue therapy than non-probiotic treatment (Karbalaei
and Keikha, 2021). In addition, there are also studies on the
role of traditional Chinese medicine as an adjuvant therapy
in remedial therapy. A Chinese meta-analysis revealed that
integrated traditional Chinese and Western medicine treatment
had a higher eradication rate and fewer adverse reactions than
Western medicine alone (OR 2.21, 95% CI: 1.74, 2.81) (Zhong
et al., 2022). Other studies demonstrated that the combination of
berberine or WUZHUYUTANG combined with the antibiotic
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bismuth can improve the eradication effect of rescue treatment
(Nagata et al., 2018; Zhang et al., 2020). However, these studies
were only conducted in China, and more Western studies
are needed to confirm whether this treatment is suitable for
patients in other parts of the world. It was also found that the
extracts of lime could inhibit the growth and urease activity
of clarithromycin, metronidazole and levofloxacin triple-drug-
resistant strains; therefore, these extracts could have therapeutic
potential (Lee et al., 2018b).

Conclusion

In conclusion, in the remedial treatment of refractory
Helicobacter pylori infection, it is recommended to use a
higher dose of PPI quadruple therapy for 14 days, and
vonoprazan is a better choice when necessary. When conditions
permit, it is recommended to use drug sensitivity tests or
genotype resistance guidance therapy. Of course, taking into
account the economy, compliance and feasibility of patients,
appropriate empiric treatment can be an acceptable alternative
to drug sensitivity treatment based on previous drug use
and prevailing drug resistance in the region. Tetracycline,
furazolidone, rifambutin, or a new generation of quinolone-
based therapy or bismuth quadruple therapy may be a
good option. Further large randomized studies are needed
to determine the best treatment for refractory Helicobacter
pylori infection.
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Aspartate α-decarboxylase a new 
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infection
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Effective eradication therapy for Helicobacter pylori is a worldwide demand. 

Aspartate α-decarboxylase (ADC) was reported as a drug target in H. pylori, 

in an in silico study, with malonic acid (MA) as its inhibitor. We  evaluated 

eradicating H. pylori infection through ADC inhibition and the possibility of 

resistance development. MA binding to ADC was modeled via molecular 

docking. The minimum inhibitory concentration (MIC) and minimum 

bactericidal concentration (MBC) of MA were determined against H. pylori 

ATCC 43504, and a clinical H. pylori isolate. To confirm selective ADC 

inhibition, we  redetermined the MIC in the presence of products of the 

inhibited enzymatic pathway: β-alanine and pantothenate. HPLC was used to 

assay the enzymatic activity of H. pylori 6x-his tagged ADC in the presence of 

different MA concentrations. H. pylori strains were serially exposed to MA for 

14 passages, and the MICs were determined. Cytotoxicity in different cell lines 

was tested. The efficiency of ADC inhibition in treating H. pylori infections was 

evaluated using a Sprague–Dawley (SD) rat infection model. MA spectrum of 

activity was determined in different pathogens. MA binds to H. pylori ADC 

active site with a good docking score. The MIC of MA against H. pylori ranged 

from 0.5 to 0.75 mg/mL with MBC of 1.5 mg/mL. Increasing β-alanine and 

pantothenate concentrations proportionally increased MA MIC. The 6x-his 

tagged ADC activity decreased by increasing MA concentration. No resistance 

to ADC inhibition was recorded after 14 passages; MA lacked cytotoxicity in 

all tested cell lines. ADC inhibition effectively eradicated H. pylori infection in 

SD rats. MA had MIC between 0.625 to 1.25 mg/mL against the tested bacterial 

pathogens. In conclusion, ADC is a promising target for effectively eradicating 

H. pylori infection that is not affected by resistance development, besides 

being of broad-spectrum presence in different pathogens. MA provides a lead 

molecule for the development of an anti-helicobacter ADC inhibitor. This 

provides hope for saving the lives of those at high risk of infection with the 

carcinogenic H. pylori.
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Introduction

Helicobacter pylori is the primary cause of peptic ulcer, 
besides being classified as a class I  carcinogen by the World 
Health Organization. Infection with H. pylori is associated with 
both intra-gastric and extra-gastric disorders. Despite the 
extensive research during the last three decades, no effective 
vaccine against H. pylori is available (Robinson and Atherton, 
2021). Antibiotics are used for the clinical management of 
H. pylori infections (Xu et al., 2021). However, poor patients’ 
compliance to the long and complex treatment regimens and the 
fast-paced antibiotic resistance development magnified by the 
stalled development of new anti-helicobacter agents have posed 
a global threat (Ventola, 2015; Abadi, 2016). This requires an 
urgent intervention to propose new treatments for H. pylori 
infections (Xu et al., 2021).

The availability of the genomic sequences of pathogenic 
bacteria has provided huge data that can be used for identifying 
potential drug and vaccine targets through subtractive genomic, 
proteomic or transcriptomic approaches (Nandode et al., 2012; 
Yan and Gao, 2020). Using a subtractive proteomic approach, 
we previously identified 17 essential targets in H. pylori with 42 
possible Drugbank ligands, of which several small organic acids 
were potential ligands for many of the retrieved essential targets 
(Ibrahim et  al., 2020). These molecules have a well-known 
antibacterial activity, such as (S)-3-phenyllactic acid (Mu et al., 
2012), citric acid (Adamczak et al., 2020), malonic acid (Feng 
et al., 2010), dipicolinic acid (Jadamus et al., 2005), and D-tartaric 
acid (Hu et al., 2019; Coban, 2020).

Aspartate α-decarboxylase (ADC) enzyme was proposed as 
an essential drug target, conserved in H. pylori and more than 200 
common pathogens (Ibrahim et al., 2020), suggesting it as broad-
spectrum target. ADC catalyzes the bacterial alpha 
decarboxylation of L-aspartate into β-alanine, required for 
pantothenate production (the ionized form of pantothenic acid or 
vitamin B5). Pantothenate is the precursor of CoA (Song et al., 
2015; Zhang et al., 2015), which is an essential cofactor for many 
enzymes in almost all living organisms. Nearly 9% of the 3,500 
enzymatic activities identified in the Braunschweig enzyme 
database use CoA as a cofactor in the metabolism of fats, 
carbohydrates, and proteins, as well as energy production (Spry 
et al., 2008). Disruption of the genes/enzymes in CoA biosynthesis 
can lead to lethal phenotypes (Walia et  al., 2009). ADC was 
identified as a Mycobacterium tuberculosis drug target inhibited by 
pyrazinamide (Gopal et al., 2020). Malonic acid was proposed as 
a potential inhibitor of the H. pylori ADC enzyme (Ibrahim 
et al., 2020).

In this study, we confirmed ADC as a promising drug target 
for eradicating H. pylori infections. Besides being conserved in 
many pathogenic species, no resistance development to ADC 
inhibition was detected in H. pylori following 14 serial passages. 
The possible utilization of malonic acid as an ADC inhibitor is 
also proposed, where malonic acid can be used as a lead molecule 
for developing ADC inhibitors.

Materials and methods

Bacterial strains and culture conditions

Helicobacter pylori ATCC 43504 and a clinical H. pylori isolate 
(HPM001) from the culture collection of the Department of 
Clinical Pathology, Faculty of Medicine (Kasr El-Aini), Cairo 
University, Cairo, Egypt, were used in the study. H. pylori strains 
were stored in brain heart infusion broth (MAST, 
United  Kingdom) containing 10% fetal bovine serum (FBS) 
(Sigma-Aldrich, Germany) and 20% glycerol at −70°C. When 
needed, and unless otherwise stated, H. pylori was subcultured on 
Columbia agar base (LabM, United  Kingdom) containing 5% 
sheep blood and DENT supplement (Oxoid, United Kingdom), 
and incubated at 37°C for 72 h under microaerophilic conditions 
(5% O2, 10% CO2, and 85% N2 at 95% humidity) using CampyGen 
paper sachets (Oxoid, United Kingdom; Piccolomini et al., 1997) 
or a candle jar (Sudhakar et al., 2008).

Escherichia coli DH5α and E. coli BL21 were used in cloning 
and expression experiments. Acinetobacter baumannii ATCC 
19606, Burkholderia cenocepacia ATCC BAA-245, E. coli ATCC 
25922, Enterococcus faecium ATCC 27270, Enterococcus faecalis 
ATCC 19433, Klebsiella pneumoniae ATCC 10031, Pseudomonas 
aeruginosa ATCC 27856, and Staphylococcus aureus ATCC 25923 
were used in testing the spectrum of activity. They were stored in 
Muller-Hinton broth (Oxoid, United Kingdom) containing 20% 
glycerol at −70°C. When needed, they were subcultured on Lauria 
Bertani (LB) agar (LabM, United  Kingdom) and incubated at 
37°C for 18 h. The culture media were supplemented with 50 μg/
mL ampicillin if required.

Molecular docking of malonic acid to the 
active site of ADC enzyme

Before performing the modeling study, the amino acid 
sequences of the ADC enzyme (about 50 sequences) from 
H. pylori 26695 (PDB ID: 1UHE; used in docking study), H. pylori 
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ATCC 43504 (the standard strain used in this study) and from 
randomly selected H. pylori strains were downloaded from the 
National Center for Biotechnology Information (NCBI) and 
analyzed by multiple sequence alignment, using Clustal Omega 
(Madeira et al., 2022). The molecular docking study of malonic 
acid to the binding site of ADC was done at the Micro-analytical 
Unit, Molecular Modelling Laboratory, Faculty of Pharmacy, 
Cairo University, Cairo, Egypt. The modeling studies were 
performed using Molecular Operating Environment (MOE, 
2015.10). All minimizations were performed with MOE until a 
root mean squared distance gradient of 0.05 kcal.mol−1 Å−1 was 
reached using MMFF94x force field, and the partial charges were 
automatically calculated. The X-ray crystallographic structure of 
the H. pylori ADC enzyme (PDB ID: 1UHE) was downloaded 
from the Protein Data Bank. Ligands not involved in binding and 
water molecules were removed from each co-crystallized enzyme. 
The protein was prepared for the docking study using Protonate 
3D protocol in MOE with default options. The co-crystalized 
ligand (N-2-(2-amino-1-methyl-2-oxoethylidene) asparaginate) 
was used to define the binding site for docking. Triangle Matcher 
placement method and London ΔG scoring function were used 
for docking.

Docking setup was first validated by self-docking the 
co-crystallized ligand in the vicinity of the enzyme’s binding 
site. The docking of the enzyme’s natural ligand (aspartate) 
was performed to expose its intermolecular interactions with 
the active binding site. The validated setup was then used to 
predict the malonate-receptor interactions at the ADC 
binding site.

Determination of malonic acid minimum 
inhibitory concentration

The MIC of malonic acid was determined by agar dilution and 
broth microdilution methods, against H. pylori ATCC 43504 and 
H. pylori HPM001 strains. Malonic acid (Loba, India) was 
dissolved in distilled water to the desired concentration, sterilized 
by a 0.22 μM syringe filter, and used within 72 h of preparation. 
Inocula for MIC testing were prepared by suspending colonies in 
saline to reach an optical density equivalent to 2.0 McFarland 
turbidity standard (approximately 1×107 to 1×108 CFU/mL) 
(CLSI, 2015). The culture media used in MIC determination were 
freshly prepared, according to the manufacturer’s instruction, and 
supplemented with 1% yeast extract (LabM, United Kingdom) to 
enhance bacterial growth (Walsh and Moran, 1997).

Agar dilution method
Determination of MIC by the agar dilution method was 

performed according to the clinical and laboratory standards 
institute (CLSI) guidelines (CLSI, 2015). Briefly, 2 μL of the 
inoculum (containing 1×104 CFU) was spotted on the surface of 
Muller-Hinton agar (Oxoid, United  Kingdom) plates 
supplemented with 5% sheep blood and containing the specified 

concentration of malonic acid (6 to 0.19 mg/mL) followed by 
incubation at 37°C for 72 h, under microaerophilic conditions. 
The MIC was the lowest concentration of malonic acid that 
completely inhibited visible bacterial growth (CLSI, 2015). The 
experiment was done in triplicates.

Broth microdilution method
MIC determination by broth microdilution method was 

carried out in 96-well round-bottom micro-titre plates. Each well 
contained 100 μL of brucella broth (Conda, Spain) containing 10% 
FBS. Malonic acid solution (12 mg/mL) was two-fold serially 
diluted in the broth-FBS mixture to get concentrations ranging 
from 6 to 0.19 mg/mL. The bacterial inoculum was diluted 1:10, 
and 10 μL of the diluted inoculum was transferred to each well to 
contain 5 × 105 CFU/mL followed by incubation at 37°C for 72 h 
under microaerophilic conditions. The MIC was the lowest 
concentration of malonic acid completely inhibiting the visible 
growth of the tested organism. The experiment was carried out 
in triplicates.

Determination of the minimum 
bactericidal concentration of malonic 
acid

The MBC of malonic acid against both H. pylori ATCC 43504 
and H. pylori HPM001 was determined, according to Moraes and 
colleagues (Moraes et  al., 2021). Briefly, following MIC 
determination by broth microdilution method, 10 μL were 
transferred from wells showing no visible growth onto the surface 
of Muller-Hinton agar plate supplemented with 5% sheep blood 
and incubated at 37°C for 72 h, under microaerophilic conditions. 
The MBC was the lowest concentration that failed to show 
bacterial growth on the agar plate.

Evaluation of ADC inhibition by malonic 
acid

Determination of the MIC of malonic acid in 
presence of β-alanine and pantothenate

β-alanine and pantothenate, the downstream products of 
the enzymatic pathway (EC: 4.1.1.11) potentially inhibited by 
malonic acid, were used to confirm the selective inhibition of 
H. pylori ADC enzyme by malonic acid. The MIC of β-alanine 
(Sigma-Aldrich, Germany) and pantothenate (Loba Chemie, 
India) against H. pylori ATCC 43504 and H. pylori HPM001 
were determined by agar dilution and broth microdilution 
methods, as described earlier. The MIC of malonic acid 
against H. pylori ATCC 43504 and H. pylori HPM001 was 
determined in the absence and presence of increasing 
sub-inhibitory concentrations of β-alanine (0.6–560 mM) or 
pantothenate (0.25–228 mM). Experiments were done 
in triplicates.
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Assessment of recombinant Helicobacter pylori 
6xHis-tagged ADC activity in presence of 
malonic acid

Cloning and expression of Helicobacter pylori ADC 

enzyme

The genomic DNA of H. pylori ATCC 43504 was extracted 
using GeneJet Genomic DNA Purification Kit (Thermo Fisher 
Scientific, Lithuania). Primers used in the study were supplied by 
Macrogen, Korea, and are listed in Supplementary Table S1. The 
panD gene was amplified using KI001 and KI002 primers; The 
polymerase chain reaction (PCR) products were digested by 
EcoRI/XhoI enzymes (Puregene, Genetix, India) and ligated using 
T4 DNA ligase (Takara, Japan) with the similarly digested 
pET-22b(+) plasmid (Merck, Germany). The recombinant 
plasmid (RecPl) was transformed into chemically competent 
E. coli DH5α cells (Sambrook and Russel, 2001). Clones were 
selected on LB agar plates containing 50 μg/mL ampicillin; the LB 
agar plates were incubated at 37°C for 24 h, and the obtained 
colonies were screened by PCR using combinations of the 
following primers; KI001, KI002, KI003 (Yang et al., 2020), and 
KI004 (Yang et al., 2020).

RecPl from successful clones was extracted using QIAprep 
Spin Miniprep kit (Qiagen, Germany) and transformed into 
chemically competent E. coli BL21. Overnight culture of E. coli 
BL21/RecPl was subcultured in LB broth containing 50 μg/mL 
ampicillin and incubated at 37°C with shaking (250 rpm) to reach 
an optical density of approximately 0.6 at 600 nm. Protein 
expression was induced by using 0.75 mM isopropyl β-D-1-
thiogalactopyranoside (IPTG) (Scharlau, Spain), and incubation 
at 37°C for 4 h with shaking at 200 rpm. Cells were harvested by 
centrifugation at 6000 rpm for 10 min at 4°C and resuspended in 
binding buffer (50 mM sodium phosphate buffer, 500 mM NaCl 
and 100 mM imidazole, pH = 7.4). The crude extract, of IPTG-
induced E. coli BL21/RecPl in binding buffer, was prepared by 
sonication for 30 min on ice, followed by centrifugation at 
6000 rpm for 20 min at 4°C and filtered using 0.45 μM syringe 
filter (Mo et al., 2018). 6xHis-tagged ADC protein purification was 
performed using Ni-NTA spin columns (Qiagen, Germany), 
according to the manufacturer’s instructions. The purified protein 
was analyzed using sodium dodecyl sulphate-polyacrylamide gel 
electrophoresis (SDS-PAGE) and its concentration was 
determined by BCA protein assay kit (Novagen, Germany), 
according to the manufacturer’s instructions.

Assay of Helicobacter pylori 6xHis-tagged ADC 

enzymatic activity

Aspartate α-decarboxylase activity was determined in the 
crude extract of IPTG-induced E. coli BL21/RecPl and the purified 
recombinant H. pylori 6xHis-tagged ADC protein, according to 
Pei et al. (Pei et al., 2017). The reaction mixture contained either 
500 μL of the crude extract and 536 μL of a 60 g/l L-aspartate 
solution (adjusted to pH 7.0 with NaOH) or 25 μg/mL of the 
purified 6xHis-tagged ADC and 1 mL of a 6.66 mg/mL L-aspartate 

solution (adjusted to pH 7.0 with NaOH). The assay was repeated 
in presence of increasing concentrations of malonic acid (0.1875, 
0.375, 0.75, 1.5, 3, and 6 mg/mL equivalent to 1.8, 3.75, 7.5, 15, 30 
and 60 mM). After incubating the reaction mixture at 37°C for 
20 min, the reaction was stopped by adding 0.1 mL of 1 M 
NaOH. The production of β-alanine was measured by high 
performance liquid chromatography (HPLC) using Waters 2,690 
Alliance HPLC system equipped with a Waters 996 photodiode 
array detector, Column C18 Inertsil ODS 4.6 mm × 250 mm, 5 μM 
Mobile phase: Acetate buffer pH 7.5: Methanol (80,20%); Mode of 
elution: Isocratic; Flow rate: 1 mL/min; Temperature: Ambient and 
Wavelength: 210 nm.

Assessment of resistance development 
to ADC inhibition

Helicobacter pylori ATCC 43504 and H. pylori HPM001 
strains were subjected to 14 consecutive serial passages in 
increasing malonic acid concentrations. Similarly, serial passage 
in increasing clarithromycin (Abbott, United  States) 
concentrations as a comparator (Abadi, 2016) was performed 
according to Haas and colleagues with modifications (Haas et al., 
1990). Briefly, broth microdilution testing was performed for 
malonic acid and clarithromycin against the tested H. pylori 
strains. Following incubation, a subculture from the well-
containing ½ of the MIC of each drug onto Columbia agar plates 
supplemented with 5% sheep blood, and DENT supplement was 
done. The plates were incubated for 72 h at 37°C under 
microaerophilic conditions. At the end of incubation period, 
colonies (considered as P0) were suspended in saline to reach an 
optical density equivalent to 2.0 McFarland turbidity standard, 
and the process of MIC determination was repeated using P0 
colonies as inoculum. The process was repeated for 14 consecutive 
serial passages.

In vitro cytotoxicity of malonic acid

The cytotoxicity of malonic acid was assessed using 
sulforhodamine B (SRB) colorimetric assay against normal oral 
epithelial and human skin fibroblast cell lines. Cell lines were 
maintained in Dulbecco’s Modified Eagle Medium (DMEM); the 
medium for culturing cell lines was supplemented with 100 mg/
mL streptomycin, 100 units/mL penicillin, and 10% FBS. Briefly, 
100 μL aliquots of cell suspension (5 × 103 cells) were treated in 
triplicates with 100 μL culture medium containing malonic acid at 
concentrations: 6 and 60 mg/mL and incubated for 2 h at 37°C in 
a humidified incubator with 5% CO2. Cells were fixed with 10% 
trichloroacetic acid and incubated at 4°C for 1 h. The 
trichloroacetic acid solution was removed, and the cells were 
washed with sterile distilled water. SRB solution (70 μL of 0.4% 
w/v solution) was added and incubated in a dark place at room 
temperature for 10 min. Plates were washed with 1% acetic acid 
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and allowed to air-dry overnight. Tris (150 μL of 10 mM) was 
added to dissolve the protein-bound SRB stain, and the absorbance 
was measured at 540 nm using a microplate reader (Allam et al., 
2018; Hosny et  al., 2020). The half maximal inhibitory 
concentration (IC50) was calculated as the concentration of the test 
compound that inhibited the viability of the tested cells by 50% 
(Mahavorasirikul et al., 2010).

In vivo efficiency of ADC inhibition in 
treatment of Helicobacter pylori 
infections

We developed a rat infection model to test the efficiency of 
ADC inhibition by malonic acid in treating H. pylori infections. 
Male Sprague–Dawley (SD) rats (10 weeks) weighing 160–200 
grams, purchased from the New veterinary center (Cairo, Egypt), 
were used in the study (Li et  al., 2018). The sample size was 
calculated according to the equation: 2(Zα

/2 + Zβ)2 × P (1–P)/(p1 – 
p2)2, where Zα

/2 = Z0.05/2 = 1.96 (from Z table) at type 1 error of 5%; 
Zβ = Z0.20 = 0.842 (from Z table) at 80% power; pooled 
prevalence = (0.8 + 1)/2, and the value was adjusted for 5% attrition 
(Charan and Kantharia, 2013).

Rats were randomly assigned to Makrolon cages (3-4/cage). 
Environmental conditions were maintained at a temperature of 
22–25°C and a 12-h light/dark cycle with food and water ad 
libitum unless fasting was required. The rats were allowed to 
acclimatize for 1 week prior to the experiment. All procedures 
involving the use of animals were performed following the 
recommendations of the National Institutes of Health Guide for 
Care and Use of Laboratory Animals (National Research Council, 
2010), and were approved by the Ethics Committee of the Faculty 
of Pharmacy, Cairo University, Cairo, Egypt [Approval no. MI 
(1894)].

Infecting rats by Helicobacter pylori
Before the infection, all rats received vancomycin once daily 

(25 mg/kg/day), by oral gavage, for 1 week to reduce the gastric 
microbial load and facilitate H. pylori colonization (Stahl et al., 
2014). Forty-eight rats were randomly distributed into two 
infection groups, each composed of 24 rats. H. pylori ATCC 43504 
and H. pylori HPM001 were each used to infect the corresponding 
group of rats, starting from day 8 of the experiment in five 
infection cycles. For each infection cycle, rats were forced to fast 
for 18–24 h before receiving the infection dose. Three hours prior 
to infection, omeprazole (25 mg/kg/day), dissolved in sterile 
distilled water, was administered orally to reduce gastric acidity 
and augment the colonization process (Li et al., 1998). Infection 
was carried out by administering 5 × 108 CFU/mL of H. pylori 
strain in 1 mL sterile water within 30 min of preparation, using an 
oro-gastric tube attached to a 3-cc or 5-cc syringe, without 
anaesthesia. Infection was done on days 8, 10, 12, 14, and 16 of the 
experiment (Werawatganon, 2014). Feeding was resumed 2 h 
following each infection dose (Supplementary Figure S1).  

An uninfected negative control group (n = 4) received sterile water 
instead of the bacterial inoculum throughout the infection process.

Confirmation of successful Helicobacter pylori 
infection

Successful infection of rats was confirmed using the H. pylori 
stool antigen (HpSA) test (ACON, United States; Asgari et al., 
2020). The test was carried out according to the manufacturer’s 
instructions at room temperature immediately after collecting the 
fecal samples. The result was read within 10–20 min, where any 
shade of color in the test line region was considered positive. The 
test was performed on days 16, 23, and 30 of the experiment.

On day 30 of the experiment, we further confirmed successful 
infection by sacrificing three rats from each infection group and 
four from the negative control group. According to Li and 
colleagues (Li et  al., 1998), with modifications, the rats were 
euthanized by decapitation under anesthesia using thiopental 
(EIPICO, Egypt). The stomach was dissected, and immediately 
homogenized in 20 mL brucella broth using Witeg® HG-15D 
homogenizer at 1500 rpm for 20 s, or until it yielded a homogenous 
suspension. The CLO rapid urease test (Kimberly-Clark, 
United States) was performed to confirm urease activity (Cai et al., 
2014), following the manufacturer’s instructions, where the test 
result was read at room temperature within 72 h. Any change in 
color, from deep orange to magenta red color, was 
considered positive.

In addition, a sterile swab was soaked in the homogenized 
stomach suspension and spread in triplicates onto the surface of 
Columbia agar plates, supplemented with 5% sheep blood and 
DENT supplement. The plates were incubated for 72 h at 37°C 
under microaerophilic conditions. Colonies of H. pylori were 
identified by the characteristic morphological appearance (small 
translucent to pale colonies), microscopical characters (Gram 
negative spiral, curved or coccoid bacilli) (Andersen and 
Wadström, 2001), and positive oxidase (HIMEDIA, India), 
catalase, and urease tests (Kadkhodaei et al., 2020).

Malonic acid treatment
On day 38 of the experiment, each infected group (n = 21 rats; 

infected with either H. pylori ATCC 43504 or H. pylori HPM001) 
was subdivided into three subgroups (Supplementary Figure S2); 
an untreated group (n = 7) receiving only sterile water, group A 
receiving ¼ LD50 (327.5 mg/kg) of malonic acid once daily (n = 7), 
and group B receiving ¼ LD50 (327.5 mg/kg) of malonic acid twice 
daily (n = 7), by oral gavage for 3 weeks. The used LD50 was 
specified in the malonic acid manufacturer’s safety data sheet and 
was equivalent to 1,310 mg/kg.

Follow-up of the treatment efficiency was performed on 
days 7, 14, and 21 from the beginning of treatment (days 45, 
52, and 59 of the experiment) using HpSA. At the end of 
treatment, all rats were euthanized as described earlier. The 
stomach was dissected, weighed, and homogenized in brucella 
broth. As mentioned earlier, the presence of H. pylori was 
determined by the CLO rapid urease test, culturing, 
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microscopical and biochemical characteristics of the recovered 
isolates from stomach homogenates. The count in stomach 
was determined by the plate count method; the stomach’s 
homogenate of each rat was serially diluted (1,10, 1:100, and 
1:1000), and 50 μL of each dilution was spread onto Columbia 
blood agar plates supplemented with 5% sheep blood, and 
DENT supplement and incubated for 72 h at 37°C, under 
microaerophilic conditions (Li et  al., 1998). Following 
incubation, the number of H. pylori colonies was counted, and 
the total H. pylori count per mg stomach was calculated  
(Li et al., 1998).

Assessment of the spectrum of activity of 
malonic acid

The spectrum of activity of malonic acid was assessed by 
determining malonic acid MIC against eight other pathogenic 
bacterial species (A. baumannii ATCC 19606, B. cenocepacia 
ATCC BAA-245, E. coli ATCC 25922, E. faecium ATCC 27270, 
E. faecalis ATCC 19433, K. pneumoniae ATCC 10031, 
P. aeruginosa ATCC 27856, and S. aureus ATCC 25923) using 
broth microdilution method, according to the CLSI guidelines 
(CLSI, 2018). Malonic acid solution was serially diluted in 
Muller-Hinton broth (100 μL) to get concentrations ranging 
from 6 to 0.19 mg/mL. The inoculum was prepared to 
be  equivalent to 0.5 McFarland standard (containing 
approximately 1–2 × 108 CFU/mL with most species) and was 
further diluted 1:10 (to get a concentration of 107 CFU/mL). 
10 μL of the diluted inoculum was transferred to each well to 
contain 5 × 105 CFU/mL. Plates were incubated at 37°C for 20 h. 
The MIC was the lowest concentration that completely inhibited 
the visible growth of the tested organism. The experiment was 
carried out in triplicates.

Statistical analysis

All statistical analyses were performed using GraphPad 
Prism 8.0.1. Two-way ANOVA and the unpaired t-test were 
used to evaluate the results of determining the MIC of 
malonic acid. Two-way ANOVA and multiple t tests, using 
the Holm-Sidak method, were used to analyse the results of 
in vitro confirmation of ADC inhibition by malonic acid, 
treatment follow-up using HpSA test, and the results of the 
H. pylori total plate count. The difference was significant at 
p < 0.05 in all tests. Post hoc test using Dunnett’s method was 
used to evaluate the significance of the results of H. pylori 
total plate count in treated and untreated groups. Pearson 
correlation coefficient was used to evaluate the correlation 
between different concentrations of β-alanine and 
pantothenate and the MIC of malonic acid as well as the 
correlation between different malonic acid concentrations 
and ADC enzymatic activity.

Results

Successful docking of malonic acid to 
ADC binding site

Multiple sequence alignment of the sequences of ADC 
enzyme from H. pylori 26695 (PDB ID: 1UHE), H. Pylori ATCC 
43504, and from other randomly selected H. Pylori strains showed 
high level of conservation (Supplementary Figure S3). Malonic 
acid interaction with the ADC binding site was modeled via 
molecular docking. The docking setup was first validated by self-
docking the co-crystallized potential ligand [N-2-(2-amino-1-
methyl-2-oxoethylidene) asparaginate] in the vicinity of the 
binding site of the ADC. It bound the amino acids: Isoleucine (Ile) 
26, Threonine (Thr) 57, Asparagine (Asp) 71, and Alanine (Ala) 
74 through ionic, hydrogen bond, and hydrophobic interactions, 
with a docking score of −4.4312 kcal/mol (Figure 1A). Docking of 
aspartate (ADC substrate) with ADC was used to identify its 
intermolecular interactions with the active binding site. Aspartate 
interacted with the amino acids Thr57 and Ala74 through 
hydrogen bonding and hydrophobic interactions, with a docking 
score of −3.9130 kcal/mol (Figures 1B,C). The validated setup was 
then used to predict the ligand-receptor interactions for malonate 
with the ADC binding site. Malonate interacted with the key 
amino acids in the binding site (Thr57 and Ala74) through 
hydrogen bonding and hydrophobic interactions, with a docking 
score of −3.5542 kcal/mol (Figures 1D,E).

In vitro anti-helicobacter activity of 
malonic acid

The MIC of malonic acid was determined by agar dilution and 
broth microdilution methods against H. pylori ATCC 43504 and 
H. pylori HPM001. The MIC against both strains was 0.75 mg/mL 
when using the agar dilution method. Upon using the broth 
microdilution method, the MIC was 0.5 ± 0.17 and 0.75 mg/mL 
against H. pylori ATCC 43504 and H. pylori HPM001. The MBC 
of malonic acid was 1.5 mg/mL for both strains. No significant 
difference was recorded between the MIC of malonic acid against 
H. pylori ATCC 43504 and H. pylori HPM001 using either the agar 
(p = 0.8529) or the broth microdilution methods (p = 0.8784). 
There was also no significant difference between the mean MIC of 
malonic acid recorded against the tested strains by both methods 
(p = 0.54).

ADC inhibition by malonic acid

Confirmation of ADC inhibition by malonic acid was carried 
out by determining the MIC of malonic acid in the presence of 
increasing sub-inhibitory concentrations of β-alanine and 
pantothenate (the products of the inhibited enzymatic reaction). 
The MIC of β-alanine and pantothenate were 1.12 M (100 mg/mL) 
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and 456 mM (100 mg/mL), respectively. Supplementing the 
growth media with increasing concentrations of β-alanine or 
pantothenate resulted in a significant increase in the mean 
malonic acid MIC (Figures  2A,B) determined using the agar 
dilution and broth microdilution methods. A strong uphill linear 
relationship between β-alanine (r  = 0.6857) or pantothenate 

(r  = 0.7670) concentrations and the MIC of malonic acid was 
observed (Figures 2C,D).

Further confirmation of ADC inhibition by malonic acid was 
carried out by assaying β-alanine, the product of the enzymatic 
action of recombinant H. pylori 6x-His-tagged ADC on aspartate, 
in the presence of an increasing concentration of malonic acid 

A

B C

D E

FIGURE 1

Interaction of the binding site of aspartate α-decarboxylase with different ligands. (A) The co-crystalized ligand ((N-2-(2-amino-1-methyl-2-
oxoethylidene)asparaginate)). (B,C) Aspartate (Two-D structures and three-D structures). (D,E) Malonate (Two-D structures and three-D structures). 
Images were generated by Molecular Operating Environment (MOE, 2015.10) software.
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using HPLC. The panD gene, encoding ADC, was amplified from 
H. pylori ATCC 43504 genome, resulting in a DNA fragment of 
375 bp; the DNA fragment was inserted in the pET22b + plasmid. 

The constructed recombinant RecP1 plasmid (pET22b + with 
panD insert) was transformed into E. coli DH5α. Clones were 
confirmed by PCR using different combinations of primers 

A

B

C D

FIGURE 2

Minimum inhibitory concentration (MIC) of malonic acid in presence of the products of aspartate α-decarboxylase catalyzed enzymatic reaction. 
MIC of malonic acid in the presence of increasing concentrations of (A) β-alanine and (B) pantothenate, using both agar dilution and broth 
microdilution methods, against both Helicobacter pylori ATCC 43504 and the clinical H. pylori isolate (HPM001). The correlation between the MIC 
of malonic acid and the concentrations of (C) β-alanine, and (D) pantothenate.
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(Figures 3A,B). The cloned DNA fragment encoded 123 amino 
acids polypeptide, 117 amino acids for ADC, and six amino acids 
for the His-tag. The whole fragment was predicted to have a size 
of 13.8 kDa using (Bioinformatics.Org/sms/prot_mw.html). The 
recombinant plasmid RecP1 was transformed into E. coli BL21, 
and the recombinant protein was purified using Ni-NTA columns. 
A single intense band (37% of the elute) with the expected size of 
13.8 KDa was visualized on SDS-PAGE (Figures  3C,D). A 
standard curve for β-alanine was constructed using HPLC 
(Supplementary Figure S4). The ADC activity of the crude extract 
of IPTG-induced E. coli BL21/RecPl and the purified 6x-his tagged 
ADC was measured. There was a decrease in the concentration of 
the produced β-alanine by increasing malonic acid concentration. 
A strong downhill linear relationship between β-alanine and 
malonic acid concentrations was recorded in crude and purified 
enzyme preparations (r  = −0.8605 and − 0.6575, respectively; 
Figure 4).

Lack of resistance development in 
Helicobacter pylori by repeated ADC 
inhibition using malonic acid

Helicobacter pylori ATCC 43504 and H. pylori HPM001 were 
subjected to serial passage in the presence of increasing 
concentrations of either malonic acid or clarithromycin 
(comparator). No increase in the MIC of malonic acid against 
both strains was recorded after 14 serial passages. However, there 
was an increase in the MIC of clarithromycin against both strains. 
The MIC of clarithromycin against H. pylori ATCC 43504 and 
H. pylori HPM001 was 6 and 48 μg/mL and increased by 16-fold, 
following 14 serial passages (Figure 5).

Malonic acid is not cytotoxic

The in vitro cytotoxicity of malonic acid was evaluated in oral 
epithelial and human skin fibroblast cell lines using two 
concentrations, 6 mg/mL (equivalent to 10X the average MIC) and 
60 mg/mL (approximately the in vivo used dose per rat). The IC50 
was higher than 60 mg/mL, with recorded cell viability of 
82.13% ± 2.13 and 61.36% ± 2.25  in oral epithelial cells and 
85.91 ± 1.1% and 79.03 ± 0.94% in human skin fibroblast for 6 and 
60 mg/mL, respectively.

Successful treatment of Helicobacter 
pylori infection by ADC inhibition

Helicobacter pylori ATCC 43504 and H. pylori HPM001were 
used to infect SD male rats (n = 48). An uninfected group that 
received only sterile water served as a negative control (n = 4). The 
HpSA test was used to monitor infection; on day 16 (the day of the 
last infection cycle), all rats (n = 52) tested negative. The following 

week (day 23), 87.5% (n = 21) and 83.3% (n = 20) of H. pylori 
ATCC 43504 and H. pylori HPM001 infected rats tested positive, 
and by day 30, all infected rats tested positive. Rats in the 
uninfected control group remained negative throughout 
the experiment.

Successful infection was further confirmed by sacrificing 
three rats from each infected group, besides the four 
uninfected rats, to validate the HpSA test results. The rapid 
urease CLO test was performed on the homogenized stomachs 
of the sacrificed rats. Homogenized stomachs of all infected 
rats tested positive for urease, while those of uninfected rats 
tested negative. Colonies resulting from culturing the 
homogenized stomachs of infected rats were positive for 
urease, oxidase, and catalase. Microscopically examining the 
Gram-stained colonies under 1,000× magnification revealed 
the characteristic spiral-shaped Gram-negative single rods 
indicative of H. pylori. No growth was observed when 
culturing the stomachs of uninfected rats.

Infected rats with H. pylori ATCC 43505 and H. pylori 
HPM001 (n = 21 each) were treated with malonic acid (¼ LD50 
once (n = 7) and twice (n = 7) daily); in addition to two control 
untreated groups (n = 7 each) that received sterile water once 
and twice daily (Supplementary Figure S5). All rats survived the 
entire treatment period. The untreated rats (n  = 14) tested 
positive for H. pylori by the HpSA test throughout the 3-weeks 
treatment period. All treated rats (n = 42) tested positive for 
H. pylori after the first week of treatment. The number of rats 
that tested negative in the HpSA test increased by the end of the 
second week of treatment to reach 15% (n = 4). This includes 
three rats treated with ¼ LD50 twice daily and one treated with 
¼ LD50 once daily. By the end of the 3 weeks treatment period, 
93% of the infected rats in the treatment groups (n = 26) tested 
negative in the HpSA test. Only two rats failed to clear the 
infection; they were treated with ¼ LD50 (n  = 2) once daily 
(Supplementary Figure S5). Follow-up of the number of rats 
clearing the infection following each week of treatment is shown 
in Figure 6A.

By the end of the treatment period, all rats (n = 42) were 
sacrificed, and the stomachs were dissected, weighed, and 
homogenized. Performing the rapid urease CLO test on 
homogenized stomachs confirmed the HpSA test results. Upon 
culturing the homogenized stomachs, no visible growth was 
observed in rats testing negative with the HpSA test; the total 
H. pylori plate count of the untreated group (n = 14) ranged from 
2,850 to 3,400 CFU/mg stomach. However, the homogenized 
stomachs of the two rats that failed to clear the infection (treated 
with ¼ LD50 once daily and tested positive with the HpSA test at 
the end of the treatment period) had a mean total H. pylori plate 
count of 1,030 CFU/mg stomach. There is a significant difference 
between the mean of the total H. pylori counts in the stomachs of 
rats that failed to clear the infection (treated with ¼ LD50 of 
malonic acid once daily) and the mean of the total H. pylori 
counts in the stomachs of the untreated group (p  < 0.0001; 
Figure 6B).

26

https://doi.org/10.3389/fmicb.2022.1019666
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ibrahim et al. 10.3389/fmicb.2022.1019666

Frontiers in Microbiology 10 frontiersin.org

The broad-spectrum of MA as an ADC 
inhibitor

Malonic acid MIC was determined against other pathogenic 
species (A. baumannii ATCC 19606, B. cenocepacia ATCC 

BAA-245, E. coli ATCC 25922, E. faecium ATCC 27270, E. faecalis 
ATCC 19433, K. pneumoniae ATCC 10031, P. aeruginosa ATCC 
27856, and S. aureus ATCC 25923) by the broth microdilution 
method. The MIC of malonic acid ranged from 0.625 to 1.25 mg/
mL in the tested species (Supplementary Table S2).

A

B

C D

FIGURE 3

Cloning and expression of Helicobacter pylori ATCC 43504 aspartate α-decarboxylase. (A) Schematic diagram generated by BioEdit (7.2.5., 2015) 
of pET22b + vector containing the panD insert with the positions of different primers highlighted. (B) Polymerase chain reaction (PCR) amplicons 
produced by different primer combinations performed on H. pylori ATCC 43504 DNA (panD), empty pET22b(+) plasmid vector and the 
recombinant plasmid vector pET22b(+) containing the insert panD, (C) Crude protein extract from: lane 1: Escherichia coli BL21, lane 2: E.coli 
BL21/RecPl induced by 0.5 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG), lane 3: E. coli BL21/RecPl induced by 0.75 mM IPTG (D) The wash, 
bind and elute of Ni-NTA columns purification of the recombinant protein from E. coli BL21/RecPl.
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Discussion

Aspartate α-decarboxylase was previously reported, using in 
silico proteomic approaches, as a promising conserved drug target 
in H. pylori with malonic acid as the proposed inhibitor (Ibrahim 
et al., 2020). Here, the conservation of ADC in 50 non-redundant 
H. pylori strains, including the strain for which the crystallographic 
structure of ADC enzyme was available in the protein databank 

(H. pylori 26695) and the standard H. pylori ATCC 43504 strain, 
was confirmed. We modeled the interaction of malonic acid to 
H. pylori ADC via molecular docking, which resulted in a docking 
score (−3.5542) similar to that of its natural substrate, aspartate 
(−3.9130). Both interacted with the key amino acids in the ADC 
binding site using similar bonds (hydrogen bonding and 
hydrophobic interactions); these key amino acids (Thr57 and 
Ala74) are totally conserved in the aligned ADC sequences. 
Aspartic acid (2-amino-butanedioic acid, C4H7NO4) and malonic 

A B

FIGURE 4

Selective inhibition of Helicobacter pylori aspartate α-decarboxylase (ADC) by malonic acid. β-alanine (Black line) produced from the action of 
(A) crude enzyme extract and (B) purified 6x-His tagged ADC, of Isopropyl β-D-1-thiogalactopyranoside induced Escherichia coli BL21/RecPl, in 
the presence of increasing concentrations of malonic acid. The red lines depict the correlation between the two variables.

FIGURE 5

Lack of resistance development in Helicobacter pylori by repeated exposure to aspartate α-decarboxylase inhibition using malonic acid. Fold 
increase in minimum inhibitory concentration (MIC) of malonic acid and clarithromycin against H. pylori ATCC 43504 and the clinical H. pylori 
HPM001 isolate, following 14 serial passages.
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acid (propanedioic acid, C3H4O4) are structurally similar, with the 
latter being one carbon less. A low docking score with good 
interaction results reveals the stability of the ligands and receptors 
interactions (Syahri et al., 2017). Interaction of the inhibitor with 
weak bonds to the enzyme’s binding site suggests reversible 
competitive inhibition (Kwon et  al., 2022). ADC enzyme was 
reported as a drug target in M. tuberculosis and could be inhibited 
by pyrazinamide (Gopal et al., 2020).

The MIC of malonic acid against H. pylori ranged from 0.5 to 
0.75 mg/mL. This is the first report about the anti-helicobacter 

activity of malonic acid. Few studies have reported the antibacterial 
activity of malonic acid as a component of the pine needles extract 
(Feng et al., 2010), and in ternary complexes (El-Sherif, 2010). 
Several studies reported using short-chain acids as antimicrobial 
agents (Dittoe et al., 2018; El Baaboua et al., 2018; Gómez-García 
et al., 2019; Kovanda et al., 2019), besides the prolonged use of 
organic acids as food preservatives (Ricke, 2003). Malonic acid and 
its salts are known inhibitors of succinate dehydrogenase enzyme, 
involved in the cellular respiration as a part of Kreb’s cycle, of 
different bacterial species including H. pylori (Chen et al., 1999; 

A

B

FIGURE 6

Inhibition of aspartate-α-decarboxylase successfully treated Helicobacter pylori infected rats. (A) Weekly follow up of the number of rats that 
cleared infection with either H. pylori ATCC 43504 or the clinical H. pylori HPM001 strains as indicated by H. pylori Stool Antigen (HpSA) test 
during the 3 weeks treatment period. (B) The total H. pylori count in the stomachs of malonic acid treated and untreated (control) groups of rats at 
the end of the 3 weeks treatment period. OD, once daily; BID, twice daily; LD50, lethal dose 50; Control, rat groups that received sterile water 
instead of malonic acid.
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Minato et al., 2013; Meylan et al., 2017; Matsumoto et al., 2020). 
Inhibition of succinate dehydrogenase was reported to 
be  responsible for the antimicrobial activity of many natural 
compounds (Keohane et al., 2018; Guo et al., 2021). However, in 
our previous in silico study on druggable targets in H. pylori, 
succinate dehydrogenase was not retrieved among the list of 
essential or choke points proteins of H. pylori (Ibrahim et al., 2020).

The results of the agar dilution and broth microdilution 
methods, used for MIC determination, were comparable, with no 
significant difference. This agrees with other studies comparing 
both methods against H. pylori (Piccolomini et  al., 1997), and 
H. cinaedi (Tomida et al., 2013). The agar dilution method, the 
CLSI approved method for antimicrobial susceptibility testing 
(CLSI, 2015), is time-consuming and tedious compared to the 
broth microdilution method. Therefore, the broth microdilution 
method can be  an alternative to the agar dilution method for 
determining MIC in H. pylori. Moreover, the difference in the MIC 
value between H. pylori ATCC 43504 and the clinical H. pylori 
HPM001 strain, determined by both methods, was non-significant.

The MBC of malonic acid was almost only two-fold its MIC, 
confirming the bactericidal nature of ADC inhibition in H. pylori 
by malonic acid. Antimicrobial agents are bactericidal if the MBC 
is not more than four-fold the MIC (French, 2006).

The selective ADC inhibition by malonic acid was further 
confirmed by the significant dose-dependent increase in malonic 
acid MIC (p  < 0.05) in presence of increasing sub-inhibitory 
concentrations of β-alanine and pantothenate (the end products 
of the enzymatic reaction catalyzed by ADC enzyme), with a 
strong uphill positive relationship between either β-alanine 
(r  = 0.6857) or pantothenate (r  = 0.767) concentrations and 
malonic acid MIC. Similarly, pyrazinamide, the first-line anti-
tuberculosis agent, interferes with CoA biosynthesis in 
M. tuberculosis by inhibiting the ADC enzyme (Shi et al., 2014; 
Gopal et al., 2020). β-alanine and pantothenate also antagonize the 
activity of pyrazinamide in M. tuberculosis (Shi et  al., 2014). 
Pantothenate auxotrophic strains of M. tuberculosis are insensitive 
to pyrazinamide, while prototrophic strains are sensitive (Dillon 
et  al., 2014). Similarly, Zymomonas mobilis pantothenate 
auxotrophs grow well in media supplemented with β-alanine 
(Gliessman et al., 2017). Several natural and synthetic pantothenic 
acid analogues possess anti-bacterial activity (Spry et al., 2008). 
Humans depend on the exogenous uptake of pantothenic acid, 
while some bacteria, plants, and fungi are capable of de novo 
synthesis of pantothenic acid from β-alanine (Webb et al., 2004). 
The absence of ADC enzyme in humans makes it a specific 
promising drug target (Sharma et al., 2012).

The activity of the recombinant 6x-His-tagged ADC enzyme 
was assayed in presence of increasing concentrations of malonic 
acid to further confirm ADC inhibition by malonic acid. Direct 
measurement of the β-alanine concentration, by HPLC, in the 
enzymatic reaction catalyzed by either the crude extract of IPTG-
induced E. coli BL21/RecPl or the purified recombinant 6x-His-
tagged ADC showed a significant reduction in enzymatic activity 
with increasing malonic acid concentration (p < 0.000001).

Repeated exposure to ADC inhibition by malonic acid did 
not develop resistance in any of the tested H. pylori strains. In 
contrast, clarithromycin-resistant and susceptible H. pylori 
strains readily developed resistance following 14 serial passages, 
with the MIC increasing by 16-fold at the end of the passages. 
Similar studies reported an increased MIC of clarithromycin 
against H. pylori isolates following repeated exposure (Kobayashi 
et al., 2002). This confirms the superiority of ADC inhibition as 
a drug target in H. pylori, where the relapse of H. pylori infection 
usually occurs due to incomplete eradication or the emergence of 
resistant strains (Abadi, 2016).

Malonic acid had no cytotoxic effect on the tested oral 
epithelial or human skin fibroblast cells, even at the highest tested 
concentration (60 mg/mL). According to the US national cancer 
institute guidelines, any compound is considered to lack cytotoxic 
activity if it has an IC50  > 4 μg/mL (Kroll, 2001; Ramasamy 
et al., 2012).

The effectiveness of ADC inhibition in treating H. pylori 
infection was tested in a SD rat infection model. Developing a 
successful H. pylori infection model is challenging as the infection 
models take a long time with high failure rates (Taylor and Fox, 
2012; Werawatganon, 2014). Infection with H. pylori Sydney strain 
remains the most successful animal model for H. pylori infection 
(Taylor and Fox, 2012). However, infection with other strains like 
H. pylori B128 and H. pylori ATCC 43504 was also successful 
(Israel et  al., 2001; Hahm et  al., 2002; Fox et  al., 2003). 
Non-toxigenic H. pylori strains often fail to induce successful 
animal infection compared to the cagA-positive and vacA-positive 
strains (Werawatganon, 2014). We used H. pylori ATCC 43504 
and a clinical cagA-positive and vacA-positive H. pylori isolate 
(H. pylori HPM001) to infect SD male rats.

Our model was successful, as H. pylori colonized ~85.4% of 
rats by the end of first week post-infection and 100% by the end 
of the second week. The HpSA test was used to monitor infection 
throughout the study; it has been used previously to detect 
H. pylori infection in C57BL/6 mice and the results were validated 
by PCR and rapid urease test (Sjunnesson et al., 2003; Moon et al., 
2013). We validated the HpSA test results using the rapid urease 
test and culture techniques. The results of oxidase, catalase, and 
urease tests performed on colonies from cultured stomachs of 
infected and non-infected rats matched the HpSA test.

Aspartate α-decarboxylase Inhibition by malonic acid was 
effective in the complete eradication of H. pylori infection when ¼ 
LD50 (327.5 mg/kg) of malonic acid was administered twice daily 
for 3 weeks. This dosing regimen was optimum in terms of safety 
and effectiveness against H. pylori. Administering malonic acid at 
¼ LD50 (327.5 mg/ kg) once daily for 3 weeks resulted in a 100% 
survival rate and 85.7% curing following the 3 weeks treatment 
period. However, the average H. pylori plate count of the 
homogenized stomachs from the non-cured rats showed a 
significant difference (p < 0.0001) from the average H. pylori plate 
count of untreated infected rats. Prolonging the treatment period 
with the once-daily dose regimen could cause complete curing. 
This is evidenced by the significant difference (p < 0.0001) in the 
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percentage of the HpSA positive results recorded in the first and 
second week of treatment and that recorded in the second and 
third week of treatment. The percentage of positive HpSA test 
results following each week of treatment declined slowly in the 
group receiving ¼ LD50 (327.5 mg/ kg) once daily (mean positive 
results following each week of treatment were 100, 92.8, and 14.2%, 
respectively). However, this decline was moderate and steady in the 
group treated with ¼ LD50 (327.5 mg/ kg) twice daily (mean 
positive test results following each week of treatment were 100, 
78.6, and 0%, respectively). This agrees with previous studies about 
the significant impact of prolonging treatment, either from seven 
to 10 days or from 10 to 14 days, on eradicating H. pylori infection 
in man (Lee et al., 2010; Fallone et al., 2013; Yuan et al., 2017).

The inhibition of succinate dehydrogenase by malonate in 
different models (mice and rats) is known to modulate tissue 
inflammation (Yang et al., 2019; Jespersen et al., 2020); however, 
whether the use of malonate derivatives in treatment of H. pylori 
infection will also result in modulating gastric tissue 
inflammation needs to be tested.

Aspartate α-decarboxylase was confirmed as a broad-
spectrum target, with comparable malonic acid MIC, in eight 
bacterial species other than H. pylori. P. aeruginosa and E. faecalis 
had the lowest MIC (0.625 mg/mL), similar to the mean MIC 
recorded against H. pylori (0.6875 mg/mL). This agrees with our 
previous in silico results regarding the possible broad-spectrum of 
ADC as a drug target (Ibrahim et al., 2020).

The high MIC values recorded with malonic acid will hinder 
its applicability in treatment of patients with H. pylori infections. 
Nevertheless, we  present malonic acid as a non-toxic lead 
molecule that can be structurally modified to produce an effective 
anti-helicobacter agent. Future studies will then be required to 
determine the kinetics of enzyme inhibition of the newly-
developed inhibitors and whether these inhibitors will have an 
inhibitory effect on succinate dehydrogenase.

The successful use of in silico approach in prediction of novel 
therapeutic targets in microbial species was described previously 
(Kaplan et  al., 2012; Serral et  al., 2021). This study is another 
example of using in silico approach in predicting druggable targets 
in pathogenic species and their possible ligands that can be utilized 
as lead molecule for the development of novel antimicrobial agents.

Conclusion

Aspartate α-decarboxylase is a promising drug target in 
H. pylori, with low tendency for resistance development by repeated 
exposure. Malonic acid can be  a lead molecule for developing 
effective anti-helicobacter compounds functioning through ADC 
inhibition. This offers new hope for saving the lives of those at high 
risk of infection with the carcinogenic H. pylori pathogen.

The determination of H. pylori MIC by broth microdilution 
method is comparable to the gold standard agar dilution method. 
The broth dilution method is much easier to perform and more 
efficient in terms of cost and time. Additionally, we successfully 

developed H. pylori infection model by strains other than the 
Sydney strain in SD rats that can be used for further in vivo testing.
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Background: Vitamin D3 [VitD3, 1,25 (OH)2D3] is known to have

immunomodulatory and anti-microbial properties; however, its activity

against Helicobacter pylori is unclear. In this study, we established H. pylori

infection models in wild-type and VitD3 receptor (VDR) knockdown mice and

analyzed the effects of VitD3 and their underlying mechanisms.

Methods: VDR+/+ and VDR+/− mice were intragastrically infected with the

H. pylori SS1 strain. After confirmation of H. pylori infection, mice were treated

with different doses of VitD3. The infection levels in stomach tissues were

quantified using the colony-forming assay, and the expression levels of the

VDR and cathelicidin antimicrobial peptide (CAMP) in the gastric mucosa were

analyzed by immunohistochemistry and western blotting.

Results: The gastric mucosa of VDR+/−mice was more susceptible to H. pylori

colonization and had lower levels of VDR and CAMP expression than that of

VDR+/+ mice. H. pylori infection upregulated VDR and CAMP expression in

the stomach of both wild-type and mutant mice, and VitD3 treatment resulted

in further increase of VDR and CAMP levels, while significantly and dose-

dependently decreasing the H. pylori colonization rate in both mouse groups,

without affecting blood calcium or phosphorus levels.

Conclusion: Our data indicate that oral administration of VitD3 reduces the

H. pylori colonization rate and upregulates VDR and CAMP expression in

the gastric mucosa, suggesting a role for VitD3/VDR/CAMP signaling in the

eradication of H. pylori in the stomach. These findings provide important

insights into the mechanism underlying the anti-H. pylori activity of VitD3 and

should be useful in the development of measures to eradicate H. pylori.

KEYWORDS

1α, 25-dihydroxyvitamin D3, H. pylori, vitamin D receptor, cathelicidin antimicrobial
peptide, inflammation
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Introduction

Helicobacter pylori colonizes the gastric epithelium of
approximately half of the world’s population and is classified
as a class I carcinogen by the World Health Organization
(Malfertheiner et al., 2017). Both sanitary conditions and
socio-economic status are important factors in the prevalence
of H. pylori infection, which is higher in developing than
in developed countries. The pathogenic activity of H. pylori
can result in such diseases as chronic gastritis and peptic
ulcer, and individuals carrying the bacteria for many years
have an increased risk of gastric cancer and gastric mucosa-
associated lymphoid tissue lymphoma. Furthermore, in users
of non-steroidal anti-inflammatory drugs, H. pylori infection
may increase the risk of gastric bleeding (Mitchell and
Katelaris, 2016). H. pylori may also play a role in many
extragastric diseases, including idiopathic thrombocytopenic
purpura, unexplained iron deficiency anemia, and vitamin B12
deficiency (Huang et al., 2010). The eradication of H. pylori
can effectively prevent the occurrence of these pathological
conditions; however, it is difficult for the host to clear the
infection through the innate immune system. Proton pump
inhibitor (PPI)-based triple therapy was once the first-line
approach to H. pylori eradication (Malfertheiner et al., 2007),
but the widespread use of antibiotics has led to the emergence
of single- and multiple-drug-resistant H. pylori strains, making
its eradication more difficult (Malfertheiner et al., 2012; Savoldi
et al., 2018). At present, quadruple therapy is considered to be an
effective alternative regimen, especially in developing countries
where the population has high resistance to clarithromycin
or metronidazole (Kim et al., 2014). Our previous research
indicates that bismuth in a compound preparation, Wei Bi
Mei, has higher efficacy and safety in eradicating H. pylori
compared to commonly used bismuth medicines: it can
significantly reduce H. pylori colonization, while showing the
fastest clearance and the lowest accumulation rates in organs
(Li et al., 2018). However, new drug-resistant strains continue
to emerge, while safe and effective vaccines are still under
development (Stubljar et al., 2018; Walduck and Raghavan,
2019). Therefore, there is an urgent need for new antibacterial
agents with fewer adverse effects to improve on the current
status of H. pylori eradication.

Vitamin D (VitD) is a steroid hormone necessary for
bone mineralization. Obtained from food or through
solar exposure, VitD is inactive and is transported to the
liver, where 25-hydroxyvitamin D (calcidiol) is produced
through the activity of microsomal VitD-25-hydroxylase
and is then either stored in the liver or released into
the bloodstream. In the kidney, calcidiol is catalyzed
by mitochondrial 1a-hydroxylase (CYP27B1), produced
by the renal proximal tubule epithelial cells, into 1α,25-
dihydroxyvitamin D3 (VitD3), the activated hormonal form
of VitD (Reeve et al., 1983) which regulates calcium and

phosphorus absorption in the intestine, mobilizes bone calcium,
and maintains the balance of calcium and phosphorus in serum
(Christakos et al., 2012).

Now, it is increasingly recognized that VitD3 is not only
related to the diseases of the skeletal system but is also
associated with many other physiological processes in the
human body. VitD3 exerts its functional effects through binding
to the VitD receptor (VDR), a transcription factor that belongs
to the nuclear receptor superfamily and is found in almost
all cell types of the human organism (Carlberg, 2014). The
VDR not only controls the expression of genes related to
mineral metabolism but also interacts with other intracellular
signaling pathways such as those regulating immune reactions,
cell cycle progression, and apoptosis. The effects of VitD3

on immune responses to bacterial infections, especially to
Mycobacterium tuberculosis, have been documented in many
studies. VitD3 has been shown to promote autophagy in
M. tuberculosis-infected macrophages and induce the activation
of Toll-like receptors (TLRs), thus inducing VDR, CYP27B1,
and CYP27B1 expression and the synthesis of biologically active
VitD3; the latter in turn binds to the VDR and upregulates
the expression of cathelicidin antimicrobial peptide (CAMP),
ultimately enhancing immune response and promoting the
eradication of intracellular M. tuberculosis (Hmama et al., 2004;
Schauber et al., 2007; Hewison, 2011). VitD can also reduce the
incidence of respiratory tract infections. A previous study found
that serum VitD levels were negatively correlated with the rate of
recent upper respiratory infections among 19,000 participants,
who had been followed for an average of more than 12 years
(Ginde et al., 2009). In a cohort study including 800 participants,
it was found that the number of days of absence from duty due to
respiratory infection was significantly higher for the participants
with serum VitD levels <40 nmol/L than for the control group
(Laaksi et al., 2007). As VitD3 is a direct inducer of CAMP,
which is known to mount immune response against a variety of
pathogenic microorganisms, including gram-positive and gram-
negative bacteria, viruses, and fungi (Liu et al., 2006; Wang
et al., 2019), we hypothesize that the VitD3–CAMP axis may be
involved in the immune defense against H. pylori.

Accumulating evidence indicates that VitD is associated
with the risk of H. pylori infection and failure of its eradication.
Specifically, serum VitD levels are higher in patients successfully
treated for H. pylori infection than in those with treatment
failure (Yildirim et al., 2017). Serum VitD levels also have
a significant positive correlation with H. pylori infection in
uremic patients (Nasri and Baradaran, 2007). VitD deficiency
can promote the development of H. pylori-related chronic
gastritis and increase the severity of gastric mucosal damage,
whereas VitD supplementation can improve disease status
(Zhang et al., 2016). It has been documented that H. pylori
infection in children is significantly associated with VitD
deficiency (Gao et al., 2020) and that its prevalence in elderly
patients is decreased by VitD supplementation. Cumulatively,
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these findings indicate that VitD administration may improve
the efficiency of H. pylori eradication and reduce drug-related
adverse effects.

It has been shown that in human GES-1 cells, the
expression of the VDR and CAMP is increased after H. pylori
infection, whereas in mice, the inhibition of VDR expression
leads to significant downregulation of CAMP mRNA and
protein expression but upregulation of inflammatory factors
(Guo et al., 2014). A previous study indicates that compared
with wild-type mice, CAMP knockout mice have increased
susceptibility to H. pylori colonization of the gastric mucosa and
aggravated mucosal inflammation, whereas supplementation
with exogenous CAMP can reduce H. pylori colonization and
inflammation in the mucosa and decrease the production of
inflammatory cytokines (Zhang et al., 2013). These results
suggest that CAMP plays an important role in the prevention
of gastric mucosa colonization by H. pylori.

In this study, we tested a hypothesis that the VDR/CAMP
pathway may be involved in the inhibitory effect of VitD3

on H. pylori infection. For this test, we established H. pylori
infection models in C57BL/6J wild-type and VDR knockdown
mice and investigated the effect of VitD3 gavage. Our findings
indicate that VitD3 can, in a concentration-dependent manner,
eradicate H. pylori and induce the expression of VDR and
CAMP in vivo, suggesting the mechanism underlying the anti-
H. pylori activity of VitD3.

Materials and methods

Bacterial culture and strain adaptation

The H. pylori Sydney strain 1 (SS1) (kindly provided by
Professor Chun-Jie Liu, Academy of Military Medical Sciences
of the Chinese People’s Liberation Army (PLA), Beijing, China)
was stored at −80◦C. After thawing at room temperature, the
bacterial suspension was dropped onto Campylobacter Base
Agar plates containing three antibiotics (0.38 mg/L polymyxin
B, 10 mg/L vancomycin, and 2 mg/L amphotericin B) and
cultured for 36–72 h at 37◦C under microaerobic conditions
(5% O2, 10% CO2, and 85% N2). A small amount of cultured
H. pylori was picked, evenly spread on slides dripped with
Double Distilled Water, dried, and stained with flagellar staining
solution (alkalescent carbolfuchsin; DM0031, Beijing Leagene
Biotechnology Co., Ltd., Beijing, China) to assess bacterial
growth status. Bacterial suspensions were prepared by adding
sterile saline to H. pylori-containing plates and collecting
for subsequent use.

Specific-pathogen-free (SPF) C57BL/6J mice (10-week-
old males weighting 19–22 g) were purchased from Beijing
Vital River Laboratory (Beijing Vital River Laboratory Animal
Technology Co., Ltd., Beijing, China) and housed in the
Animal Experiment Center of the Chinese Center for Disease
Control and Prevention under a 12:12 h light-dark cycle in

a standard environment of 23 ± 2◦C and 50–60% relative
humidity; distilled water and standard sterile mouse feed
(Beijing Keao Xieli Feed Co., Ltd., Beijing, China) were provided
ad libitum. The adapted H. pylori strains capable of mouse
colonization were obtained by serial passage in vivo and used
to establish infection models. Mice were administered bacterial
suspension [108 colony forming units (CFU)/L] orally and
euthanized 4 weeks later. Stomachs were removed, washed,
and cut longitudinally into halves along the greater curvature;
one half of the gastric mucosa was suspended, transferred to
plates, and cultured for 36–72 h to reveal the presence or
absence of H. pylori, whereas the other half was used for direct
smear microscopy. After confirmation of successful infection,
the H. pylori isolate with the highest number of colonies
was selected as the first-generation adapted strain. The next-
generation strain was obtained after infecting new mice with
the first-generation strain as described above. The procedure
was repeated until stable infection in mice was achieved. All
animal experiments were approved by the Laboratory Animal
Ethics Committee of Beijing Friendship Hospital, Affiliated to
Capital Medical University, and were performed in accordance
with institutional guidelines.

Mouse models of Helicobacter pylori
infection

Before infection, mice were fasted for 12 h and deprived
of water for 4 h; then, they received 300 µL of 3% NaHCO3

by gavage to increase the pH in the stomach. Mice were
then divided into control and H. pylori infection groups and
intragastrically inoculated with 300 µL of sterile saline or
the suspension of the adapted H. pylori strain (108 CFU/L),
respectively. Inoculation was performed twice in each subject,
once 30 min after NaHCO3 treatment and once after 4 h. Mice
were allowed free access to food and water 2 h after the last
dose and were fed normally until the end of the experiment.
Three months later, fecal genetic testing was performed to
confirm H. pylori infection in the gastrointestinal tract. Mice
were euthanized by spinal cord dislocation, and their gastric
tissues were removed and stained with hematoxylin–eosin to
analyze the inflammatory response. Warthin-Starry staining
(SBJ-0548, Nanjing SenBeiJia Co., Ltd., Nanjing, China) and
a H. pylori rapid detection kit (HPUT-H104, Fujian Sanqiang
Biochemical Co., Ltd., Fujian, China) were used to observe
H. pylori colonization.

VitD3 intervention

Male 3–12 week-old C57BL/6J mice of the wild type
(VDR+/+) and VDR knockout homozygous type (VDR−/−;
B6.129S4-VdrTM1Mbd/J, SPF) were purchased from Jackson
Laboratory (Bar Harbor, ME, USA). VDR knockdown

Frontiers in Microbiology 03 frontiersin.org

36

https://doi.org/10.3389/fmicb.2022.1033201
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1033201 December 3, 2022 Time: 14:42 # 4

Zhang et al. 10.3389/fmicb.2022.1033201

(VDR+/−) mice were obtained by in vitro fertilization in Beijing
Biocytogen Co., Ltd.

VDR+/+ and VDR+/− mice were randomly divided into
five groups (n = 6 mice per group): control and H. pylori
infection (HP) groups, and three HP + VitD3 groups. Mice
in the control group were intragastrically inoculated with
sterile saline and those in HP/HP + VitD3 groups with
H. pylori suspension as described above. After 3 months,
the control and HP groups were orally administered equal
volumes (300 µL) of corn oil, whereas the three HP + VitD3

groups were orally administered 0.1, 0.4, and 1.6 µg/kg of
1α,25-Dihydroxyvitamin D3 (D1530, Sigma Aldrich, St Louis,
MO, USA) and designated as HP+VitD3

∗1, HP+VitD3
∗4, and

HP+VitD3
∗16, respectively. All treatments were performed once

a day for 14 consecutive days. Then, blood was collected from
the eye, and mice were euthanized by spinal cord dislocation.
Gastric tissue was removed under sterile conditions, washed,
and cut longitudinally into halves along the greater curvature.
One half was fixed in 10% formalin, embedded in paraffin, cut
into 4 µm-thick sections, baked for 1 h at 60◦C, deparaffinized
in xylene, and rehydrated in graded ethanol for subsequent
staining. The other half was used for the colony-forming assay
and other tests.

Warthin-starry staining

Deparaffinized tissue sections were washed three times
for 1 min with distilled water, incubated in acidic silver
nitrate solution for 1 h in the dark at 56◦C, and immersed
in Warthin-Starry solution for 3–8 min. After soaking in
distilled water at 56◦C and rinsing once with distilled water,
sections were dehydrated in 100% ethanol, cleared with xylene
for transparency, sealed with neutral gel, and analyzed by
light microscopy. H. pylori appeared tan or black on a light
yellow background.

FIGURE 1

Mouse strains. VDR+/− C57BL/6J mice (upper left and lower
right) and VDR+/+ C57BL/6J mice (lower left and upper right).

Rapid urease reaction

Fresh gastric mucosal tissue was placed into the liquid
medium of the enzyme-labeled strip (enzymatic reaction
solution) from the H. pylori detection kit, according to the
manufacturer’s instructions, and incubated at 10–30◦C for
5 min. The results were visually observed and interpreted
according to color change of the liquid at the edge of gastric
mucosal tissue: yellow (no chromogenic reaction) was treated
as negative and light or rose red as positive for H. pylori.

Determination of serum calcium and
phosphorus levels

Blood samples were centrifuged at 3,000 rpm for 10 min,
and about 100–300 µL of supernatant was collected to measure
serum calcium and phosphorus contents using an automatic
biochemical analyzer.

Colony-forming assay

The level of H. pylori infection in mouse gastric tissue
was quantified by the colony-forming assay. Approximately
half of the stomach tissue was weighed, homogenized in 1 mL
Brucella broth, serially 10-fold diluted, and spread on agar
plates containing Campylobacter Base Agar, 10% fetal calf
serum, 0.38 mg/L polymyxin B, 10 mg/L vancomycin, 2 mg/L
amphotericin B, 5 mg/L trimethoprim, and 50 mg/L bacitracin
(Merck KGaA, Darmstadt, Germany). After 72 h of incubation,
the number of colonies per plate and CFUs per gram of stomach
tissue were calculated.

Immunohistochemistry

Paraffin sections were rehydrated through graded alcohol
solutions and washed with distilled water. Antigen retrieval
was performed by heating sections in 0.01 M sodium citrate
buffer (pH 6.0) in a pressure cooker at 130◦C for 3 min, and
endogenous peroxidase activity was quenched by incubation in
3% hydrogen peroxide for 15 min. Then, tissue sections were
incubated with anti-VDR C-20 or anti-CAMP antibodies (Santa
Cruz Biotechnology, Santa Cruz, CA, USA) at 4◦C overnight.
After washing in PBS three times, sections were incubated
with horseradish peroxidase-conjugated secondary anti-rabbit
Ig (ZSGB-BIO, Beijing, China) for 1 h at room temperature,
washed, and immersed in diaminobenzidine (ZSGB-BIO) for
1–2 min to develop color reaction. Finally, sections were
counterstained with hematoxylin, dehydrated, and mounted in
resin mounting medium.
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FIGURE 2

Cultivation of the Helicobacter pylori Sydney strain 1 (SS1) strain in vitro. (A) Typical white needle tip colonies could be seen on the plates after
72 h of incubation. (B) Bacterial flagella were observed after alkalescent carbolfuchsin staining. Scale bar = 10 µm.

Western blotting

Total protein was extracted from gastric mucosal tissue
using RIPA lysis buffer, and protein concentration was
quantified using the Pierce BCA Protein Quantification kit
(Thermo Fisher Scientific, Waltham, MA, USA). Proteins
were separated by SDS/PAGE in 10% gels and transferred to
polyvinylidene fluoride (PVDF) membranes, which were then
blocked with 5% non-fat milk for 3 h at room temperature
and incubated with antibodies against VDR (Santa Cruz
Biotechnology, Santa Cruz, CA, USA), CAMP (Santa Cruz
Biotechnology, Santa Cruz, CA, USA), or β-actin (Sigma,
USA) at 4◦C overnight. After three 10 min washes with Tris-
buffered saline containing 0.1% Tween 20, the membranes were
incubated with horseradish peroxidase-conjugated secondary
antibodies at room temperature for 1 h, and signals were
developed using the enhanced chemiluminescence kit (Bio-Rad,
California, USA).

Statistical analysis

The data are presented as the mean ± standard deviation
(SD). Differences between groups were assessed by analysis of
variance and standalone t-test. P < 0.05 was considered to
indicate statistical significance.

Results

The mouse tail genotype test showed that VDR+/−

C57BL/6J mice were successfully created and met the
requirements of the experiment. Compared with wild-type

VDR+/+ C57BL/6J mice, VDR+/− C57BL/6J mice had less hair
in the back, clearly showing the skin (Figure 1).

Characteristics of the Helicobacter
pylori Sydney strain 1 strain cultured
in vitro

After 72 h of culture, the resuscitated H. pylori SS1 strain
formed typical spiculate translucent colonies (Figure 2A). In
most smears, morphologically intact H. pylori, typically with
flagella, were revealed after carbolfuchsin staining (Figure 2B),
indicating good activity, and strong colonization ability of the
adapted strain.

Helicobacter pylori successfully
colonized mouse stomachs

It is known that H. pylori has urease genes and can produce
large amounts of urease, which is necessary for its colonization
of the human gastric mucosa and is used for routine diagnosis
of H. pylori infection. Three months after H. pylori intragastric
administration, the urease reaction test was positive in infected
mice and negative in control mice (Figure 3A), indicating
H. pylori colonization of gastric tissues. Several black rod-
shaped structures were observed after Warthin-Starry silver
staining (Figure 3B), confirming that H. pylori was present
in the gastric mucosa. Compared with the gastric tissue of
uninfected mice (Figure 3C), that of infected mice showed
massive lymphocyte infiltration and increased presence of
inflammatory cells (Figure 3D). These results indicated that the
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FIGURE 3

Helicobacter pylori successfully colonized mouse stomach
tissue. (A) Rapid urease reaction showed positive results in
infected mice and negative results in control mice. (B) Several
black rod-shaped structures were observed after Warthin-Starry
silver staining. Scale bar = 10 µm. (C,D) Hematoxylin-eosin
staining of the gastric mucosa of uninfected (C) and infected (D)
mice. Chronic gastric mucosal inflammation could be observed
in the infected group. Scale bar = 20 µm.

one-time oral gavage of the H. pylori SS1 strain resulted in the
successful establishment of a mouse model of H. pylori infection,
which produced chronic gastric inflammation after 3 months.

Helicobacter pylori eradication efficacy
of VitD3 in infected mice

The results of the colony-forming assay performed 3 months
after intragastric administration of H. pylori indicated that
VDR+/− mice were more susceptible to H. pylori colonization
than VDR+/+ mice (P < 0.05, Figure 4). In both wild-type
and mutant mice, VitD3 administration significantly reduced
H. pylori colonization compared with corn oil-treated control
groups, and the number of H. pylori showed a gradual dose-
dependent decrease (Figure 4A). There were no significant
changes in food intake or body weight throughout the
experiment, and all mice showed no abnormalities. After VitD3

intervention, serum calcium and phosphorus concentrations
were still in the normal range in all mice (Figure 4B, P > 0.05).

VitD3 upregulated VitD3 receptor
expression in the mouse gastric
mucosa

To further investigate the mechanism of H. pylori clearance
by VitD3, we analyzed VDR expression in control and infected
mice, treated or not with VitD3. VDR protein expression was
significantly upregulated in the gastric mucosa of VitD3-treated

FIGURE 4

Helicobacter pylori eradication efficacy of VitD3 at different
doses in infected mice. (A) Colony-forming assay results
showing increased susceptibility of VDR+/− mice to H. pylori
colonization compared to VDR+/+ mice (P < 0.05). In both
mouse strains, H. pylori colonization was significantly reduced
after VitD3 administration and H. pylori numbers decreased in a
dose-dependent manner (n = 6; #P < 0.05 vs. HP group and
aP < 0.05 vs. VDR+/+ group). (B) Serum calcium and
phosphorus levels were comparable in VDR+/+ and VDR+/−

mice and remained in the normal range after VitD3

administration (n = 6; P > 0.05). HP, H. pylori infection.

mice compared with that of corn oil-treated mice, and the effect
was dose-dependent (P < 0.05; Figures 5A,B). Furthermore,
after VitD3 treatment VDR protein expression in VDR+/− mice
was consistently weaker than that in VDR+/+ mice (P < 0.05).
Immunohistochemistry analysis showed that the intensity of
VDR staining increased with the VitD3 dose (Figure 5C),
confirming the upregulation of VDR expression by VitD3.
Collectively, these results indicate that VitD3 can induce VDR
expression in vivo.

VitD3 stimulated cathelicidin
antimicrobial peptide expression in the
mouse gastric mucosa

Cathelicidin antimicrobial peptide has a broad spectrum of
antibacterial activities and can induce immune responses to a
variety of pathogenic microorganisms. As VitD3 has been shown
to upregulate CAMP expression, we hypothesized that CAMP
could be involved in the clearance of H. pylori through the
VitD3–VDR interaction. In agreement with the VDR expression
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FIGURE 5

VitD3 increased VitD3 receptor (VDR) protein expression in mouse gastric tissues. (A) Western blotting analysis revealed a significant,
dose-dependent increase of VDR expression by VitD3 in mouse gastric tissues. VDR protein expression was consistently lower in VDR+/− mice
than in VDR+/+ mice after VitD3 treatment (n = 6; P < 0.05). (B) Histogram showing quantitative analysis of the results presented in panel (A).
(C) Immunohistochemistry analysis of VDR expression in gastric tissues of infected mice treated or not with different doses of VitD3. *P < 0.05
vs. HP group and aP < 0.05 vs. VDR+/+ group. HP, Helicobacter pylori infection. Upper row, scale bar = 20 µm. Bottom row, scale bar = 50 µm.

results described above, the intragastric administration of VitD3

resulted in significant dose-dependent upregulation of CAMP
expression in the gastric mucosa of H. pylori-infected mice,
compared with that in the control HP group (P < 0.05;
Figures 6A,B). CAMP expression was consistently lower in
VDR+/− mice than in VDR+/+ mice (P < 0.05). These
results were consistent with the immunohistochemistry analysis
(Figure 6C). Thus, CAMP may be involved in the anti-H. pylori
activity of VitD3.

Discussion

In this study, we bred VDR knockdown (VDR+/−) mice
and compared their reaction to H. pylori infection and
VitD3 administration with that of wild-type (VDR+/+) mice.

Treatment with VitD3 decreased, in a dose-dependent manner,
H. pylori colonization of the gastric mucosa, especially in wild-
type mice, without causing abnormalities in body weight, food
intake, or serum calcium or phosphorus levels, indicating that
VitD3 could efficiently eradicate H. pylori infection in vivo. The
expression of both VDR and CAMP was higher in the gastric
tissues of wild-type mice than in those of VDR knockdown
mice and was further increased after VitD3 administration. Our
findings suggest that VitD3 could eradicate H. pylori through
activation of the VDR/CAMP pathway.

As a spiral microaerophilic gram-negative bacterium,
H. pylori was first isolated from gastric mucosal specimens of
a patient with chronic active gastritis, in 1983 (Warren and
Marshall, 1983). At present, H. pylori has a global infection rate
over 50% and is implicated not only in various gastrointestinal
diseases but also in other systemic disorders. Regardless of the
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FIGURE 6

VitD3 upregulated cathelicidin antimicrobial peptide (CAMP) expression in the mouse gastric mucosa. (A) CAMP expression in the gastric
mucosa was analyzed by western blotting. VitD3 gavage increased CAMP protein expression in a dose-dependent manner. The CAMP
expression level was consistently lower in VDR+/− than in VDR+/+ mice (n = 6; P < 0.05). (B) Histogram showing quantitative analysis of the
results presented in panel (A). (C) Immunohistochemistry analysis showing VitD3 dose-dependent increase of CAMP staining intensity in the
mouse mucosa. *P < 0.05 vs. HP group and aP < 0.05 vs. VDR+/+ group. HP, Helicobacter pylori infection. Scale bar = 50 µm.

presence of alarm symptoms, H. pylori eradication is considered
a necessary measure. The increased resistance to classical
antibiotics limits the application of globally recognized triple
and bismuth-containing quadruple therapies in developing
countries (Malfertheiner et al., 2017). In addition, H. pylori has
evolved autophagy evasion strategies to support its survival in
host cells. Thus, H. pylori vacuolating cytotoxin A (VacA) can
induce autophagy in several gastric cell lines (Allen et al., 2000)
and, together with other virulence factors, has a suppressive
role in the autolysosome maturation process. VacA has been
found to interfere with lysosome acidification and induce
autophagosome formation, leading to massive replication of
H. pylori in cells (Raju et al., 2012). Therefore, there is an urgent
need to develop anti-H. pylori agents whose activity would
not be compromised by antibiotic resistance or damaging to
host cells.

Accumulating evidence indicates that VitD3 has anti-
inflammatory and anti-microbial effects on H. pylori infection
and can be used for its eradication. VitD3 mainly regulates
calcium and phosphate metabolism and the associated
physiological processes by activating VDR-dependent signaling.
VitD3 at high doses has been shown to significantly reduce
the risk of autoimmune diseases such as inflammatory
bowel disease, type 1 diabetes, and rheumatic disorders
(Holick, 2004). Recently, VitD3 has been found to protect
the gastric mucosal epithelium from H. pylori infection, and,
by signaling through the VDR, to promote c-Raf/MEK/ERK
phosphorylation and prevent apoptosis in H. pylori-infected
GES-1 cells (Zhao et al., 2022). Interestingly, VitD3 has
been reported to exert an antibacterial effect through the
protein disulfide isomerase A3 (PDIA3) receptor and the
downstream STAT3–MCOLN3–Ca2+ signaling pathway,
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thus promoting the recovery of damaged lysosomes and their
degradation function, which leads to H. pylori clearance (Hu
et al., 2019). Therefore, the VitD3-PDIA3 pathway emerges as
a novel pathway to reactivate autolysosomal degradation, which
is critical for VitD3 antibacterial activity. Furthermore, VitD3

decomposition product 1 and its derivatives can specifically
inhibit H. pylori (Hosoda et al., 2015; Wanibuchi et al., 2018,
2020). These findings indicate that VitD exerts its anti-H. pylori
activity via various molecular mechanisms.

VitD3 biological functions are mediated by VDR, a member
of the nuclear hormone receptor superfamily and a ligand-
activated transcription factor (Schauber et al., 2007) which is
expressed in various tissues, including the intestinal tract, liver,
kidneys, muscle, and prostate (Provvedini et al., 1983). VDR
is also present in many immune cells, including monocytes,
macrophages, natural killer cells, and activated B and T
cells. VDR–VitD3 signaling is involved in the regulation
of cell growth, gene transcription, calcium and phosphorus
metabolism, and the activity of the immune system (Amrein
et al., 2014). It has been found that VitD3 inhibits H. pylori
through the VDR/CAMP pathway (Zhou et al., 2020). However,
the effect of VitD3 on H. pylori infection in vivo has rarely
been investigated. Our findings indicate that VitD3 reduces
H. pylori colonization of the gastrointestinal tract through
activation of the VDR/CAMP pathway, thus paving the way for
the development of novel approaches to H. pylori eradication,
which could address the problem of antibiotic resistance in this
pathogen.
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Background: Helicobacter pylori infection is the strongest known risk factor for 

gastric cancer. The Hippo signaling pathway controls organ size and maintains 

tissue homeostasis by coordinately regulating cell growth and proliferation. 

Here, we demonstrate the interactive role of TAZ, the transcriptional coactivator 

of the Hippo pathway, and beta-catenin in promoting the pathogenesis of H. 

pylori infection.

Methods: TAZ expression was evaluated in human gastric tissues and H. pylori-

infected insulin–gastrin (INS-GAS) mice. Western blot, immunofluorescence, 

immunohistochemistry, and RT–PCR assays were performed. 

Coimmunoprecipitation was performed to examine the interaction between 

TAZ and β-catenin. TAZ and β-catenin were silenced using small interfering 

RNAs. HA-β-catenin and Flag-TAZ were constructed.

Results: Increased TAZ was noted in human gastric cancer tissues compared 

to chronic gastritis tissues and in H. pylori-positive gastritis tissues compared 

to H. pylori-negative gastritis tissues. In addition, H. pylori infection induced 

TAZ expression and nuclear accumulation in the gastric tissue of INS-GAS mice 

and cultured gastric epithelial cells, which was dependent on the virulence 

factor CagA. Moreover, TAZ or β-catenin knockdown significantly suppressed 

H. pylori infection-induced cell growth, survival, and invasion. Furthermore, 

the interactive regulation of TAZ and β-catenin activation was revealed. Finally, 

β-catenin was required for H. pylori-induced TAZ activation.

Conclusion: These findings suggest the existence of a positive feedback loop 

of activation between TAZ and β-catenin that could play an important role 

in CagA+ H. pylori infection-induced gastric carcinogenesis. TAZ inhibition 

represents a potential target for the prevention of H. pylori infection-associated 

gastric cancer.
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Background

Helicobacter pylori infection is the strongest known risk factor 
for the development of gastric cancer and the fourth leading cause 
of cancer death worldwide, particularly in East Asian populations 
Approximately half of the world’s population is infected with 
H. pylori (Sung et al., 2021). H. pylori infection can cause chronic 
active gastritis that can progress through Correa’s cascade to 
intestinal metaplasia, dysplasia, and finally gastric adenocarcinoma 
(Correa and Piazuelo, 2011). CagA is the most well-characterized 
virulence factor that links H. pylori infection to gastric 
carcinogenesis (Ansari and Yamaoka, 2019). Patients infected with 
CagA-positive H. pylori strains are suggested to have an increased 
risk of gastric carcinoma compared to CagA-negative subjects 
(Park et al., 2018). Accumulating data suggest that the interaction 
between bacterial virulence factors and host gastric epithelial cells 
induces aberrant activation of multiple oncogenic signaling 
pathways (PI3K/AKT, Wnt/β-catenin, etc) and subsequently 
results in gastric carcinogenesis (Xie et al., 2018; Cao et al., 2022). 
Another bacterial virulence factor, VacA, is also linked to clinical 
phenotypes, such as cellular vacuolation of H. pylori infection. 
Numerous studies have shown that eradication of H. pylori based 
on regiments including systematic PPI and antibiotics could 
significantly reduce gastric cancer risk before the development of 
atrophic gastritis and intestinal metaplasia (Liou et al., 2020; Yan 
et  al., 2022). However, it remains unclear whether H. pylori 
eradication therapy reduces the incidence of gastric cancer once 
premalignant gastric lesions develop. Therefore, the identification 
of novel and reliable biomarkers is essential for the prediction and 
prevention of gastric cancer associated with H. pylori infection.

The Hippo signaling pathway maintains organ size and tissue 
homeostasis via the regulation of cell proliferation, survival, and 
differentiation (Russell and Camargo, 2022). YAP and its paralogue 
TAZ (also known as WWTR1) act as transcriptional coactivators 
and effectors of the Hippo signaling cascade. Activation of the 
upstream kinases LATS1/2 and MST1/2 leads to the 
phosphorylation and inactivation of YAP and TAZ due to 
cytoplasmic retention and degradation (Totaro et  al., 2018; 
Mohajan et  al., 2021). Inhibition of the Hippo kinase cascade 
increases the nuclear localization of YAP and TAZ, which are 

responsible for the activation of downstream genes, such as CTGF, 
CYR61, and c-MYC (Pobbati and Hong, 2020). It is increasingly 
evident that the dysregulation of the Hippo signaling pathway plays 
a vital role in H. pylori infection-induced gastric tumorigenesis 
(Molina-Castro et al., 2020). We previously reported that H. pylori 
infection promotes total YAP levels and nuclear localization, which 
is also dependent on virulence CagA. As a result, neoplastic 
transformation is initiated in gastric epithelial cells through the 
epithelial-mesenchymal transition (EMT), a process by which 
epithelial cells lose their cell polarity and cell–cell adhesion and 
subsequently acquire migratory and invasive characteristics (Yang 
et al., 2020). We also found higher TAZ expression levels in gastric 
carcinoma tissues compared with adjacent normal tissues (Li et al., 
2018). However, the role of YAP paralogue TAZ in the pathogenesis 
of H. pylori infection has not been explored.

Independent of the Hippo cascade, β-catenin is the core 
effector of the canonical Wnt signaling pathway (Liu et al., 2022). 
The nuclear accumulation of β-catenin upon the activation of the 
Wnt pathway accounts for the upregulation of target genes such as 
c-MYC and cyclin D1 (Zhang and Wang, 2020). Accumulating 
data suggest that the Hippo and Wnt signaling pathways regulate 
overlapping biological processes, including tissue growth, 
development, and homeostasis (Sylvester and Colnot, 2014; Li 
et al., 2019). TAZ is defined as the downstream element of the 
Wnt/β-catenin signaling cascade. β-catenin phosphorylation leads 
to TAZ degradation by bridging TAZ to the E3 ubiquitin ligase 
β-TrCP. In Wnt-ON cells, β-catenin dissociation from the 
destruction complex impairs TAZ degradation, allowing the 
nuclear accumulation of TAZ and β-catenin (Azzolin et al., 2012). 
It has been reported that infection with carcinogenic H. pylori 
strains induces nuclear translocation of β-catenin in a rodent 
model and gastric cells (Franco et al., 2005). It remains unclear 
whether the intersection of TAZ and the β-catenin pathway is 
implicated in H. pylori-mediated carcinogenesis.

In the present study, we elucidated a mechanism by which 
the activation of TAZ promotes the β-catenin pathway to trigger 
gastric epithelial malignant transformation in response to 
H. pylori infection. Here, we  showed that H. pylori strains 
expressing high levels of CagA significantly upregulated TAZ 
expression and nuclear accumulation in gastric epithelial cells 
and transgenic INS-GAS mice. TAZ knockdown reduced 
H. pylori infection-induced expression, nuclear translocation 
and transcriptional activity of β-catenin. Interestingly, TAZ and 
β-catenin were mainly located in the cellular cytoplasm and 
plasma membrane in human specimens with chronic gastritis, 
whereas partial nuclear colocalization of TAZ with β-catenin 
was observed in human gastric cancer tissues. In vitro studies 
revealed that H. pylori infection augmented the direct 

Abbreviations: H. pylori, Helicobacter pylori; CagA, Cytotoxin-associated 

gene A; PPI, proton pump inhibitor; YAP, Yes-associated protein; TAZ, 

PDZ-binding motif; EMT, epithelial-mesenchymal transition; INS-GAS, Insulin–

gastrin; FBS, fetal bovine serum; BSA, bovine serum albumin; CCK-8, Cell 

counting kit-8; SD, standard deviation; ADPKD, autosomal-dominant 

polycystic kidney disease; DVL, Disheveled.
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interaction of TAZ with β-catenin via the CagA-dependent 
mechanism. Furthermore, β-catenin knockdown significantly 
suppressed the activation of TAZ and its downstream genes 
following H. pylori infection. Moreover, TAZ knockdown by 
siRNA reduced H. pylori infection-triggered neoplastic 
transformation including cell viability, proliferation, and 
invasion. These findings suggest that aberrant activation of TAZ 
is a marker of gastric carcinoma risk and that the feedback loop 
of the TAZ/β-catenin axis plays a crucial role in H. pylori 
infection-induced carcinogenesis.

Materials and methods

Cell culture and reagents

Human gastric epithelial cell lines, HFE-145 (immortalized, 
non-cancerous) and AGS (human diffuse type of gastric cancer) 
were cultured in DMEM and DMEM/F12, containing 10% FBS 
(Gibco), 100 U/ml penicillin, and 100 μg/ml streptomycin at 37°C 
in an atmosphere of 5% CO2.

Helicobacter pylori strains

CagA + VacA+ H. pylori strain PMSS1 (pre-mouse Sydney 
strain 1) and its isogenic cagA mutant were established in our 
previous research. CagA + VacA + H. pylori strains 7.13 and an 
isogenic cagA were also included in this study, which were kindly 
provided by Dr. Richard Peek Jr. from the Vanderbilt Digestive 
Disease Research Center. All H. pylori strains were cultured on 
Campylobacter agar plates containing 10% sheep serum at 37°C 
under microaerophilic conditions. The measure methods of 
H. pylori bacterial density were as same as the previous study (Hu 
et al., 2019). Gastric epithelial cells were cocultured with H. pylori 
strains at MOI of 100.

Human gastric specimens

A total of 40 human chronic non-atrophic gastritis (n = 20) 
and gastric carcinoma (n = 20) tissues were acquired from The 
First Affiliated Hospital of Nanchang University. Each group were 
divided into two subgroups: H. pylori-positive (n = 10) and 
H. pylori-negative (n = 10) individuals. The study protocol and 
exemption of informed consent were approved by the Ethics 
Committee of The First Affiliated Hospital of Nanchang 
University. Status of H. pylori infection for these clinical specimens 
was determined with a rapid urease test or Giemsa staining. 
Immunohistochemical staining was performed to examine 
expression profiles of TAZ on these samples, which were evaluated 
and scored for intensity (scaled 0–3) and frequency (scaled 0–4) 
by two pathologists blinded to sample identity. For statistical 
analysis, expression levels of TAZ proteins were illustrated by an 

expression score in range of 0 to 12 using the formula intensity × 
frequency (Li et al., 2018).

Infection of mice with Helicobacter 
pylori

Animal care and experimental protocols were in accordance 
with guidelines established by the Institutional Animal Care and 
Use Committee of Nanchang University. The INS-GAS transgenic 
mice overexpressed pancreatic gastrin were purchased from 
Jackson Laboratory (Bar Harbor, ME). INS-GAS mice were 
orogastrically challenged with Brucella Broth (n = 6) or with 
2 × 109 CFU/ml H. pylori strain PMSS1 (n = 8) once every other 
day for a total of 5 times (Arnold et al., 2011; Li et al., 2020). Mice 
were euthanized at 4 months post infection, and gastric tissues 
were collected.

Expression vectors, siRNAs, and 
transfection

The recombinant plasmids such as TAZ, β-catenin cDNAs 
were designed and synthesized by hitrobio (Beijing, China). The 
recombinant CagA plasmid was a generous gift from Prof. Shiming 
Yang, Third Military Medical University of China. Small interfering 
(si) RNA duplexes were obtained from GenePharma (Shanghai, 
China). Cells were transfected with appropriate plasmid or siRNA 
using Lipofectamine 3,000 (Thermo Scientific, Waltham, MA, 
United States) according to manufacturer’s instructions.

Immunohistochemistry

Immunohistochemistry analysis was performed for gastric 
tissues from human and INS-GAS mice as previously described 
(22). These specimens were incubated with rabbit polyclonal 
anti-TAZ (Proteintech, Wuhan, China) at dilution of 1:400, 
followed by incubation with secondary antibody (PV6000, 
Zhongshan Golden-bridge, Beijing, China). Immunostained 
tissue slides were imaged on an upright confocal microscope 
(Nikon ECLIPSE Ni). Tissue sections were imaged at 200× and 
400× magnification.

Western blotting

Western blotting analysis was conducted as described 
previously (Xie et al., 2020). Primary anti-TAZ (#83669), anti-β-
catenin (#37447), anti-β-tubulin (#2128), anti-Histone 3 (#4499), 
anti-GAPDH (#2118), anti-HA-Tag (#3724), anti-Myc (#9402), 
anti-Cyclin D1(#2978), anti-CYR61(#14479), anti-CTGF 
(#86641) antibodies were purchased from Cell Signal Technology 
(Beverly, MA, United States); anti-CagA (sc-28,368) were from 
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Santa Cruz (Dallas, TX, United States), anti-β-actin (#20536-1-
AP) from proteintech (Wuhan, China); anti-Flag (F1804) was 
purchased from Sigma-Aldrich. All primary antibodies were used 
at a dilution of 1:1000, except for the internal control antibodies 
including GAPDH and β-actin which were diluted at 1:2000. 
Briefly, the proteins were extracted after adding lysis buffer 
supplemented with protease inhibitors (Invitrogen, GA, 
United  States). Equal amounts of the sample proteins were 
separated on SDS-PAGE gels and transferred to nitrocellulose 
membranes. After blocking with 5% milk, the membranes were 
incubated with the primary antibodies overnight at 4°C, and then 
incubated with HRP-conjugated secondary antibodies 
(Invitrogen, GA, United States) for 1 h at room temperature. The 
protein bands were visualized using Super Signal West Pico stable 
peroxide solution (Thermo Scientific) and collected using iBright 
imaging system (Thermo Scientific). β-actin and GAPDH were 
used as internal control to normalize protein expression in cells 
sample and animal tissues sample, respectively.

Quantitative real-time PCR analysis

The qRT-PCR analysis was performed as described in our 
previous studies (Xie et al., 2020). Briefly, total RNA was extracted 
using TRIzol reagent (Invitrogen, GA, United States). The primer 
sequences are presented in Supplementary Table S1. The qPCR 
assays were performed with a QuantStudio 5 Real-time PCR 
system (Life Technologies) according to the manufacturer’s 
protocol. The GAPDH gene was used as an internal control.

Luciferase assay

The TCF/LEF reported plasmid for β-catenin activity (M50 
Super 8 × TOPFlash; plasmid#12456; Addgene, Cambridge, MA, 
United  States) was a gift from Randall Moon (Veeman et  al., 
2003). For dual luciferase assay, cells were seeded into 12-well 
plates. The cells were transfected with 8 × TOPFlash plasmid and 
indicated siRNA. After transfection for 48 h, cells were co-cultured 
with H. pylori strain. The cell lysates were collected and subjected 
to a dual luciferase assay system (Yeasen Biotech, Shanghai, 
China) according to the manufacturer’s protocol.

Immunofluorescence

For immunofluorescence staining, cells were washed with 
ice-cold PBS and fixed with 4% formaldehyde in PBS for 15 min. 
Then, the cells were permeabilized with 0.5% Triton X-100 for 
10 min at room temperature. After blocking with 3% BSA for 
30 min, the cells were incubated with primary antibodies against 
TAZ (dilution 1:100) or β-catenin (dilution 1:200) overnight at 
4°C, and then incubated with Secondary Antibody (Alexa Fluor 
Plus 488 and Alexa Fluor Plus 555; Thermo Scientific). Cell nuclei 

were counters with DAPI. All images were acquired using a 
confocal fluorescence microscope (Leica Stellaris).

Immunoprecipitation

For immunoprecipitation assay, cells were transfected with the 
indicated plasmids, and then collected with lysis buffer. In brief, the 
cell lysates were incubated overnight with the mixture of 1 ug of 
antibodies and beads at 4°C. Then the beads were washed three 
times with 1 ml of lysis buffer and then boiled in loading buffer. The 
samples were subjected to western blot analysis as described above.

CCK8 and EDU assays

Cells were transfected with indicated plasmid vector or siRNA, 
and then seeded into 96-well plates at a density of 2 × 103 cells/100 μl 
per well. The cells were infected with H. pylori strain at an MOI of 
50 for the indicated time. The CCK-8 assay (TransGen Biotech, 
Beijing, China) was performed according to the manufacturer’s 
instructions. The optical density values were measured at a 
wavelength of 450 nm using a Molecular Devices SpectraMax M2e. 
For EDU assay, the relative viability of cells was determined by Cell-
Light EDU Apollo 488 in Vitro imaging kit (RiboBio) following the 
kit protocol. All images were acquired and quantified using the high-
content screening platform In-Cell Analyzer 2,200 (GE Healthcare).

Boyden chamber assay

Boyden chamber assay is useful tool to study cell migration 
and invasion. For cell invasion detection, about 2 × 105 cells were 
plated into the upper Boyden chamber (8 μm pore size, Corning, 
NY, United States) with Matrigel-precoated inserts (BD Science, 
United  States). For cell migration detection, Matrigel was not 
required. DMEM/F12 medium supplemented with 20% FBS was 
added in the lower chamber. After transfection and H. pylori 
infection, Cells adhering to the lower surface were fixed with 
methanol for 30 min, stained with 1% crystal violet for 15 min. The 
cells on the upper surface of the filters were gently wiped and 
counted under the inverted microscope (Nikon, ECLIPSE Ti).

Statistical analyses

All the statistical analysis was performed using SPSS 21.0 
software. Data are presented as mean ± SD of three independent 
experiments. Studies for continuous variables were statistically 
analyzed using Student’s t-test or One-way ANOVA. The 
immunohistochemical data from human clinical specimens was 
statistically analyzed using Mann–Whitney test. The results were 
considered statistically significant at p < 0.05 (***, p < 0.001; **, 
p < 0.01; *, p < 0.05).

47

https://doi.org/10.3389/fmicb.2022.1065462
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Xu et al. 10.3389/fmicb.2022.1065462

Frontiers in Microbiology 05 frontiersin.org

Results

Expression of gastric TAZ was elevated in 
Helicobacter pylori + human gastritis 
tissues and Helicobacter pylori-infected 
INS-GAS mice

We previously reported augmented YAP expression in 
preneoplastic lesions of human gastric tissues (Li et al., 2018). 
In this study, we first examined the expression patterns of the 

YAP homologue TAZ in clinical specimens. As shown in 
Figures  1A,B, the expression of gastric TAZ was strongly 
increased in human gastric cancer tissues compared to that 
observed in chronic nonatrophic gastritis tissues. H. pylori 
infection is linked to the initiation of chronic active gastritis 
and significantly increases the risk of gastric adenocarcinoma 
(Crowe, 2019). Therefore, the TAZ expression levels were 
further compared between H. pylori-positive and H. pylori-
negative subjects. Interestingly, H. pylori-positive gastritis 
tissues tended to have higher levels of TAZ than H. 
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FIGURE 1

TAZ expression levels in human gastric tissues and INS-GAS mice infected with H. pylori PMSS1. (A) Immunohistochemistry for TAZ expression in 
human chronic gastritis and gastric cancer tissues. Representative images of TAZ (magnification 200× and 400×, scale bars =50 μm). 
(B) Quantitative analysis of TAZ expression in all cell types in gastritis and gastric cancer tissues from both H. pylori-negative and H. pylori-positive 
subjects. (C) Quantitative immunohistochemistry analysis of TAZ levels in H. pylori-positive or H. pylori-negative gastric tissues. (D) Western blot of 
TAZ protein expression in gastric tissues of INS-GAS mice infected with H. pylori PMSS1 strain or Brucella broth treatment. (E) Statistical analysis of 
the intensity of western blot bands. (F) Immunohistochemistry staining for TAZ expression in the H. pylori-infected INS-GAS mice. Representative 
images of TAZ (magnification 200× and 400×, scale bars =50 μm). (G) Quantitative analysis of TAZ levels. **p < 0.01, ***p < 0.001, NS, not significant. 
Scare bars in (A,E), 10 μm.

48

https://doi.org/10.3389/fmicb.2022.1065462
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Xu et al. 10.3389/fmicb.2022.1065462

Frontiers in Microbiology 06 frontiersin.org

pylori-negative gastritis tissues. However, no significant 
difference in TAZ expression was noted between H. pylori-
infected and -uninfected gastric cancer individuals 
(Figures  1A,C). Next, we  utilized INS-GAS mice, which 
overexpress human pancreatic gastrin and have been widely 
used for studying the pathogenesis of H. pylori infection (14), 
to characterize the effects of H. pylori on TAZ. Western blot 
analysis showed that gastric TAZ expression was significantly 
increased in H. pylori-infected mice compared with sham 
controls (Figures 1D,E). In addition, a significant increase in 
gastric TAZ expression was noted in H. pylori-infected mice 
compared to uninfected animals based on 
immunohistochemistry analysis (Figure 1F) and quantitative 
image analysis (Figure  1G). These results indicated that 
H. pylori infection triggers TAZ activation, which may 
be implicated in the initiation of gastric neoplastic lesions.

Helicobacter pylori infection led to TAZ 
upregulation and nuclear accumulation 
in a CagA-dependent manner

To recapitulate the effects of H. pylori infection on gastric 
TAZ expression in human gastric tissues and INS-GAS mice, 
human gastric epithelial AGS cells were cocultured with the 
CagA+ H. pylori strain NCTC11637 or 7.13. H. pylori infection 
significantly increased TAZ protein expression in both an 
MOI-dependent (50, 100, 200 and 400 MOI) (Figure 2A) and 
a time-dependent manner (2 h, 4 h, 6 h, and 8 h) (Figure 2B). 
Similarly, an increase was noted in total TAZ expression in 
normal human gastric epithelial HFE145 cells infected with 
H. pylori (Figure 2C). In addition, the intracellular localization 
of TAZ was increased after treatment with H. pylori strains, as 
shown by immunofluorescence staining. Importantly, the 
increase of H. pylori MOIs was correlated with the promotion 
of TAZ translocation from the cytoplasm to the nucleus 
(Figure 2D). These in vitro data clearly indicated that H. pylori 
infection leads to TAZ upregulation and activation.

CagA, which is delivered into gastric epithelial cells via the 
type IV secretion system (T4SS), has been considered an 
oncoprotein that induces gastric carcinogenesis (30). To 
determine the role of CagA in H. pylori-induced activation of 
TAZ, AGS cells were cultured alone or cocultured with 
H. pylori PMSS1 wild-type or its CagA-deficient isogenic 
mutant strain. We  found that CagA knockout significantly 
inhibited the induction of TAZ in response to H. pylori 
infection (Figure 2E). Furthermore, transient overexpression 
of CagA via plasmid transfection into AGS cells strongly 
increased TAZ expression (Figure  2F). Furthermore, the 
recombinant CagA overexpression caused an marked 
increase in the nuclear localization of TAZ. These findings 
suggest that bacterial CagA is integral for H. pylori-induced 
TAZ activation.

TAZ knockdown significantly inhibited 
Helicobacter pylori infection-induced 
gastric epithelial cell malignant 
transformation

Given that TAZ activation promotes cell survival, 
proliferation, and metastasis by stimulating its downstream 
transcription factors (Pocaterra et al., 2020), we next dissected the 
role of TAZ in the H. pylori infection-induced malignant 
transformation of gastric epithelial cells. Knockdown of 
endogenous TAZ by siRNA inhibited cell proliferation 
(Figures 3A,B, EDU assay) and cell viability (Figure 3C, CCK8 
assay) induced by CagA+ H. pylori strain NCTC11637 or 7.13. 
compared with H. pylori infection alone in AGS cells. Similarly, 
the number of AGS cell clones was diminished after treatment 
with TAZ siRNA in combination with the H. pylori strain 
compared to H. pylori infection alone (Figure 3D). To explore how 
TAZ mediates cell invasion and migration induced by H. pylori 
infection, AGS cells were transfected with TAZ siRNA for 48 h and 
then cocultured with the H. pylori strain for a transwell assay. The 
siRNA-mediated knockdown of YAP in combination with CagA+ 
H. pylori NCTC11637 infection significantly decreased invasion 
and migration capacities (Figures 3E–G). These findings suggest 
that impaired TAZ activation abolishes H. pylori infection-
induced malignant transformation including cell survival, 
proliferation, invasion and migration.

Helicobacter pylori promoted the 
Wnt/β-catenin pathway through 
regulation of TAZ expression

YAP/TAZ are closely linked to the Wnt/β-catenin pathway 
because they share some target genes and biological processes 
(Li et al., 2019). Given that our data indicated that H. pylori 
infection led TAZ overexpression and nuclear accumulation, 
we  next investigated whether TAZ induction promotes 
β-catenin pathway activation in response to H. pylori infection. 
TAZ knockdown significantly downregulated the β-catenin 
protein levels induced by H. pylori (Figure 4A). In addition, 
qRT-PCR data showed that H. pylori infection upregulated the 
transcription of β-catenin-targeted genes including Lgr5 and 
Myc which were then downregulated after treatment with TAZ 
siRNA (Figure 4B). Given that β-catenin activation is correlated 
with increased nuclear β-catenin abundance, we examined the 
effect of TAZ knockdown on the subcellular expression of 
β-catenin following H. pylori infection in AGS cells by 
separating the nuclear and cytoplasmic proteins. As shown in 
Figure  4C, H. pylori infection promoted nuclear TAZ and 
β-catenin compartmentalization, which was significantly 
suppressed by TAZ knockdown. Consistent with these findings, 
immunofluorescence assay showed that H. pylori infection-
induced nuclear translocation was significantly suppressed by 
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inhibition of TAZ activation (Figure  4D). Moreover, 
we  performed a TOP/FOP flash luciferase reporter assay to 
detect β-catenin transcriptional activity. As shown in Figure 4E, 
H. pylori infection increased TCF/β-catenin reporter activity, 
and this effect was significantly inhibited by siRNA-mediated 
TAZ knockdown. To further confirm the effect of TAZ on the 
β-catenin pathway, AGS cells were transiently transfected with 
a TAZ overexpression plasmid. Exogenous TAZ overexpression 
increased the protein levels of Myc and Cyclin D1, the 
downstream targets of the Wnt/β-catenin pathway (Figure 4F). 
Consistent with these results, TAZ overexpression led to 
significant transcriptional induction of the downstream genes 
of Wnt signaling, such as Lgr5, Cyclin D1, and Myc, which was 
remarkably blocked following β-catenin knockdown by siRNA 
(Figure 4G). Collectively, these findings suggest that H. pylori 

infection leads to β-catenin activation and target gene 
expression through TAZ upregulation.

TAZ activation in response to 
Helicobacter pylori infection was 
abrogated by β-catenin knockdown

We next explored the molecular mechanism of TAZ activation 
in response to H. pylori infection. Given the close relationship 
between the Hippo and Wnt signaling pathways, we hypothesized 
that H. pylori infection activates the TAZ pathway through the 
regulation of β-catenin. To test this hypothesis, gastric epithelial 
AGS cells were transfected with β-catenin siRNA and then 
cocultured with the H. pylori NCTC11637 strain. Knockdown of 

A

D E

F

B C

FIGURE 2

Helicobacter pylori infection promoted TAZ expression and nuclear localization. (A) Western blot for TAZ protein levels in human gastric epithelial 
cells infected with H. pylori NCTC11637 or 7.13 at different MOI for 6 h. (B) Western blot for TAZ levels in AGS cells treated with H. pylori strains at 
different time points at MOI of 100. (C) Western blot for TAZ levels in different gastric epithelial cells (AGS and HFE145) following infection with 
different H. pylori strains at MOI of 100 for 6 h. (D) Immunofluorescence staining for TAZ and β-catenin cellular localization after H. pylori 
NCTC11637 infection at different MOI for 6 h. (Magnification 400×, scale bars =30 μm) (E) Western blot for TAZ expression in gastric epithelial cells 
infected with PMSS1 or its isogenic CagA- mutant. (F) Western blot for TAZ expression in gastric cells after transfection with the CagA expression 
vector.
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β-catenin significantly suppressed TAZ expression induced by 
H. pylori (Figure 5A). Moreover, cytoplasmic and nuclear proteins 
were effectively separated for the detection of the intracellular 
TAZ expression. Notably, H. pylori infection promoted the nuclear 
accumulation of TAZ and β-catenin, whereas β-catenin 
knockdown by siRNA remarkably inhibited this induction 
(Figure 5B). Immunofluorescence staining for TAZ and β-catenin 
confirmed that H. pylori-induced nuclear translocation of TAZ 
was inhibited by knockdown of β-catenin (Figure  5C). 
Furthermore, transient overexpression of β-catenin upregulated 
the protein levels of CTGF and CYR61 downstream of the Hippo 

signaling pathway (Figure 5D). Taken together, these findings 
suggest that a positive feedback loop exists between TAZ and the 
Wnt/β-catenin pathway in H. pylori-induced gastric tumorigenesis.

CagA+ Helicobacter pylori infection 
enhanced the interaction of TAZ with 
β-catenin

It has been reported that TAZ is associated with the 
destruction complex in the Wnt/β-catenin pathway, including 
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FIGURE 3

TAZ knockdown significantly inhibited H. pylori infection-induced cell proliferation, invasion and migration. (A) EdU assay for cell proliferation in 
AGS cells following infection with H. pylori (MOI = 100) and transfection with TAZ siRNA. Representative confocal images of EdU staining. 
(B) Quantification of the percentage of EdU-positive cells. (C) CCK8 viability assay for cell proliferation in AGS cells treated with H. pylori alone or 
in combination with TAZ siRNA. (D) Colony formation assay for the assessment of cell survival in the groups treated as described above. (E–G) 
Transwell migration and invasion assays were performed in the groups treated as described above. *p < 0.05, **p < 0.01, ***p < 0.001.
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Axin1, β-TrCP, β-catenin and GSK3β (Azzolin et al., 2014; Lee 
et al., 2020). Therefore, we delineated the possible interaction 
between TAZ and β-catenin in H. pylori-associated gastric 
carcinogenesis. The immunofluorescence assay was first 
performed to determine the expression and cellular localization 

of TAZ and β-Catenin in human gastric tissues. β-catenin was 
normally expressed in the membrane of epithelial cells of 
gastric mucosa with chronic gastritis, and TAZ was present in 
the plasma membrane and cytoplasm. In contrast, increased 
overall expression of gastric TAZ was observed, and TAZ 
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FIGURE 4

Helicobacter pylori infection promoted the β-catenin pathway via TAZ. (A) Western blot for total β-catenin and TAZ expression in gastric AGS cells 
transfected with TAZ siRNA and subsequently infected with H. pylori. (B) RT-PCR assay for mRNA levels of downstream genes of Wnt/β-catenin 
pathway in the groups treated as described above. (C) After transfection with TAZ siRNA and infection with H. pylori, cytoplasmic and nuclear 
protein fractions were isolated. Western blotting was performed to determine the protein levels of TAZ and beta-catenin. β-Tubulin and histone H3 
served as loading controls for cytoplasmic and nuclear proteins, respectively. (D) Immunofluorescence staining for TAZ and β-catenin cellular 
localization in the groups treated as described above. (E) TOP-Flash luciferase reporter assay for β-catenin transcriptional activity in AGS cells 
transfected with TAZ siRNA and infected with the H. pylori strain. (F) Western blot analysis of the protein levels Myc and Cyclin D1, which are 
downstream effectors of β-catenin, in AGS cells transiently transfected with Flag-TAZ or empty vector. (G) RT–PCR analysis of the mRNA levels of 
downstream effectors of β-catenin, such as Lgr5, Cyclin D1 and Myc, in AGS cells transfected with Flag-TAZ alone or in combination with 
β-catenin siRNA. H. pylori strains in all experiments were used at an MOI of 100. *p < 0.05, **p < 0.01.

52

https://doi.org/10.3389/fmicb.2022.1065462
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Xu et al. 10.3389/fmicb.2022.1065462

Frontiers in Microbiology 10 frontiersin.org

colocalization with β-catenin was noted in human gastric 
cancer tissues but not gastritis tissues (Figure  6A). The 
interaction of endogenous TAZ with β-catenin was further 
demonstrated using the co-immunoprecipitation assay 
(Figure 6B). These data suggest that TAZ may be translocated 
from the plasma membrane and cytoplasm to the cellular 
nucleus, and directly interact with β-catenin in gastric 
tumorigenesis. Moreover, HA-tagged β-catenin was transiently 
coexpressed with Flag-tagged TAZ in gastric AGS cells, and the 
cell lysates were subjected to immunoprecipitation with an 
anti-HA antibody, demonstrating the strong exogenous 
interaction between HA-β-catenin and Flag-TAZ (Figure 6C). 
This interaction was significantly enhanced by coinfection with 
CagA+ H. pylori strain NCTC11637 or 7.13 (Figure 6D). Our 
data and recent studies have indicated that CagA is required for 
H. pylori-induced TAZ and β-catenin (Yong et  al., 2016); w 
therefore, we  investigated whether CagA is involved in the 
interaction between TAZ and β-catenin in response to H. pylori 

infection. Coimmunoprecipitation of TAZ with β-catenin in 
wild-type H. pylori-infected cells was stronger than that in 
CagA-deficient mutant strain-infected cells (Figure 6E). These 
data collectively indicated that H. pylori CagA plays an 
important role in the H. pylori-enhanced interaction between 
TAZ and β-catenin.

Knockdown of β-catenin significantly 
suppressed TAZ-induced gastric cancer 
cell proliferation, migration, and invasion

As our data indicated that H. pylori infection promotes the 
Wnt/β-catenin signaling pathway via the activation of TAZ, 
we next investigated whether β-catenin plays a role in regulating 
TAZ-mediated phenotypic alterations of gastric cancer cells. TAZ 
overexpression induced gastric cell proliferation, which was 
blocked by β-catenin siRNA (Figure 7A). Furthermore, β-catenin 
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FIGURE 5

β-Catenin also acted as the upstream factor for TAZ activation and exhibited enhanced interaction with TAZ in response to H. pylori infection. 
(A) After knocking downβ-catenin by siRNA, AGS cells were cocultured with the H. pylori strain. Western blot analysis of TAZ total expression. 
(B) Western blot analysis of TAZ and β-catenin expression in the cytoplasmic and nuclear fractions after treatment with β-catenin siRNA and the H. 
pylori strain. β-Tubulin and histone H3 served as loading controls for cytoplasmic and nuclear proteins, respectively. (C) Immunofluorescence 
staining for TAZ and β-catenin subcellular localization in the groups treated as described above. (D) Western blot analysis of the protein levels of 
CTGF and CYR61 in AGS cells expressing HA-β-catenin plasmid or empty vector. H. pylori strains in all experiments were used at an MOI of 100.
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knockdown alleviated TAZ-induced gastric cancer cell migration 
and invasion (Figures  7B,C). Taken together, knockdown of 
β-catenin suppressed TAZ-mediated cell proliferation, migration 
and invasion.

Discussion

H. pylori is generally acquired during childhood and remains 
in the stomach for a lifetime if untreated (Suerbaum and Michetti, 
2002; Crowe, 2019). It has been documented that gastrointestinal 
diseases, particularly gastric adenocarcinoma, are closely 
associated with H. pylori infection (Crowe, 2019). The prevalence 
of H. pylori infection varies greatly among geographic regions. 
Notably, East Asian countries have a high incidence of gastric 
carcinoma, which is mainly attributed to the high prevalence of 
H. pylori infection (Inoue, 2017; Wong et al., 2021). At present, the 

molecular mechanisms underlying H. pylori infection-induced 
gastric carcinogenesis are not completely understood. 
We  previously reported that H. pylori infection induces the 
epithelial-mesenchymal transition and contributes to gastric 
malignant transformation via activation of the YAP pathway (Li 
et al., 2018). We reported increased TAZ expression in human 
gastric cancer tissues compared with chronic gastritis tissues as 
well as H. pylori-positive gastritis patients compared with 
H. pylori-negative patients. In addition, H. pylori infection 
significantly elevated TAZ expression and its nuclear translocation 
in a CagA-dependent manner both in the INS-GAS mouse model 
and cultured human gastric cells. In addition, our results indicated 
that TAZ is required for H. pylori-induced activation of the Wnt/β-
catenin pathway, and the reverse is true for β-catenin. These effects 
likely occur via their direct interaction. Furthermore, H. pylori 
CagA plays an important role in enhancing the interaction 
between TAZ and β-catenin. Finally, we  showed that the 
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FIGURE 6

CagA+ H. pylori infection enhances the interaction of TAZ with β-catenin. (A) Immunofluorescence staining for TAZ and β-catenin colocalization 
in human gastritis and gastric cancer tissues (Magnification 200×, scale bars =116.1 μm; and digital zoom, scale bars = 38.7 μm). (B) Interaction 
between endogenous TAZ and β-catenin. Immunoprecipitation was performed with an anti-TAZ antibody followed by immunoblotting with the 
indicated antibodies. (C) Interaction between HA-β-catenin and Flag-TAZ. Immunoprecipitation was performed with an anti-HA antibody, followed 
by immunoblotting with the indicated antibodies. (D) AGS cells were cocultured with H. pylori NCTC11637 or 7.13 strain at an MOI of 100 for 6 h. 
Cell lysates were collected and then immunoprecipitated with anti-TAZ antibody. Western blotting was performed to assess TAZ and β-catenin 
expression. (E) After infection with the H. pylori wild-type strain or CagA- mutant for 6 h, cell lysates were collected. Infection with the H. pylori 
CagA- mutant resulted in a weak interaction of TAZ with β-catenin, compared with that treatment with wild-type H. pylori strain.
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interactive regulation of activation between TAZ and β-catenin is 
integral in H. pylori infection-associated gastric epithelial cell 
malignant transformation as demonstrated by increased cell 
proliferation, invasion and migration. Taken together, our data 
reveal a positive feedback loop mechanism between the YAP 
orthologue TAZ and the β-catenin pathway in H. pylori infection-
induced gastric tumorigenesis (Figure 7D), providing new insights 
into the mechanism of H. pylori pathogenicity.

As core effectors of the Hippo pathway, TAZ and its related 
protein YAP have been widely characterized in the regulation 

of cell growth, tissue regeneration and organ size (Mohajan 
et  al., 2021). Although TAZ and YAP share similarities in 
amino acid sequences, TAZ can be clearly distinguished based 
on its structure, function and regulatory network (Jeong et al., 
2021; Reggiani et  al., 2021). Our previous studies have 
identified the role of YAP in the pathogenesis of H. pylori 
infection. Supporting this role, Molina-Catro et  al. also 
demonstrated the relationship between H. pylori and YAP 
(Molina-Castro et al., 2020). Subsequently, this research team 
found that H. pylori increased TAZ expression and nuclear 
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FIGURE 7

Knockdown of β-catenin significantly suppressed TAZ-induced cell proliferation, invasion, and migration. (A) CCK8 assay for cell proliferation in 
AGS cells treated as described for A. (B,C) Transwell assays for migration (B) and invasive (C) ability of AGS cells treated as described above. 
(Magnification 100×, scale bars =10 μm). (D) Schematic representation of the regulation of the TAZ/β-catenin axis by H. pylori infection in gastric 
carcinogenesis.
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accumulation. Additionally, TAZ was overexpressed in human 
gastric cancer tissues (Tiffon et al., 2020). We further indicated 
that the increase in TAZ expression seems to be dependent of 
H. pylori infection in gastritis tissues rather than gastric 
cancer tissues. A significant induction of TAZ expression was 
also observed in H. pylori-infected mice, which developed 
gastric inflammation after infection. This result further 
supports the role of H. pylori as the initiation factor in 
precancerous lesions. A lower abundance of H. pylori was 
previously observed in human gastric cancer (Ozbey et al., 
2020). This study showed for the first time that H. pylori 
infection-induced TAZ activation was dependent on the 
virulence factor CagA. Furthermore, TAZ activation is 
required for H. pylori infection-induced gastric cell 
proliferation, invasion, and migration, as demonstrated by 
CCK8, EdU, colony formation, and transwell assays. Notably, 
our data showed that H. pylori-positive gastritis tissues had 
higher TAZ levels than H. pylori-negative tissues. Therefore, 
we hypothesized that TAZ upregulation may occur in the early 
stages of H. pylori infection.

Given the overlapping roles in several biological functions, 
recent studies have explored the molecular interplay between 
the YAP/TAZ and β-catenin pathways. Tripath et al. indicated 
that TAZ directly inhibited β-catenin transcriptional activity in 
muscle cells and further affected skeletal muscle differentiation 
(Tripathi et  al., 2022). TAZ exhibited entirely different 
regulatory effects on β-catenin in other diseases. Lee et  al. 
clarified the regulatory mechanism of TAZ on the Wnt/β-
catenin signaling pathway in ADPKD caused by genetic 
mutation of PKD1 or PKD2. TAZ strongly interacts with 
AXIN1, the core component of destruction complex, thereby 
increasing β-catenin activity and downstream c-MYC 
expression (Lee et al., 2020). This study innovatively revealed 
the crosstalk between TAZ and Wnt/β-catenin in H. pylori-
associated gastric carcinogenesis. Our experiments first 
indicated that TAZ knockdown significantly inhibited the 
expression, nuclear translocation and transcriptional activity of 
β-catenin in response to H. pylori infection. Additionally, 
β-catenin knockdown suppressed H. pylori-induced TAZ 
expression. These data suggest a positive feedback loop between 
TAZ and β-catenin in the pathogenesis of H. pylori infection. 
Consistent with these findings, some evidence supports the 
synergistic effect of YAP/TAZ and the Wnt/β-catenin signaling 
pathway. TAZ acts in concert with β-catenin to promote 
hepatoblastoma development (Zhang et  al., 2020). YAP and 
TAZ are transcriptionally activated upon β-catenin activation, 
thereby promoting liver tumorigenesis (Bisso et  al., 2020). 
Silencing of the Hippo upstream kinases Mst1 and Mst2 could 
activate the activity of YAP/TAZ and Wnt/β-catenin signaling, 
resulting in rapid hepatocellular carcinoma formation. 
Additionally, the positive feedback loop between Notch 
signaling and YAP/TAZ could be  inhibited by the Wnt/β-
catenin pathway (Kim et al., 2017).

Some evidence in support of the relationship between the 
other components of Hippo signaling and the Wnt/β-catenin 
pathway has been reported. Wnt3a and Wnt5a were identified 
as potent activators of YAP/TAZ (Park et al., 2015). The Wnt 
scaffolding protein DVL interacts with YAP in a 
phosphorylation-dependent manner (Lee et  al., 2018). A 
recent study reported that YAP/TAZ physically interacts with 
β-catenin. In the “Wnt-off ” state, YAP/TAZ could 
be  sequestered in the β-catenin destruction complex and 
associated with Axin1, β-catenin, GSK3, and β-TrCP (Azzolin 
et al., 2014). Likewise, our observation suggested that both 
endogenous and exogenous TAZ interacted with β-catenin. 
Furthermore, infection with two H. pylori strains, NCTC11637 
and 7.13, enhanced the interaction between TAZ and 
β-catenin. Intriguingly, we found that CagA plays an important 
role in their interaction by employing the PMSS1 strain and 
its CagA- isogenic mutant. VacA, another important virulence 
factor, is responsible for H. pylori-induced cellular vacuolation 
and gastric injury (Chauhan et al., 2019). Further studies will 
investigate the role of VacA in the interaction between TAZ 
and β-catenin by constructing an H. pylori VacA- isogenic 
mutant. In summary, these findings also indicated that 
β-catenin was responsible for ectopic TAZ-induced gastric cell 
proliferation, migration and invasion. Based on our findings, 
we  established a regulatory feedback loop underlying the 
relationship between TAZ and β-catenin, which promotes 
H. pylori infection-induced gastric tumorigenesis.

Conclusion

In summary, our data demonstrated that H. pylori infection 
triggers gastric epithelial cell malignant transformation via the 
promotion of TAZ activation. Mechanistically, H. pylori 
infection leads toβ-catenin pathway activation via TAZ, which 
contributes to gastric carcinogenesis. In turn, β-catenin 
functions as an upstream regulator and is involved in TAZ 
activation following H. pylori infection. Moreover, we implicated 
the important role of CagA in TAZ regulation by H. pylori. 
Studies further confirmed the clinical evidence that H. pylori 
positive gastritis tissues contain higher TAZ expression levels 
than H. pylori-negative tissues. This study effectively linked 
H. pylori infection and the bacterial protein CagA to TAZ and 
the β-catenin pathway, thereby elucidating a new pathogenic 
mechanism of H. pylori and suggesting novel targets for the 
prevention and early detection of gastric cancer.
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Background: Different types of Helicobacter pylori (H. pylori) were analyzed to 

determine their infection characteristics using serology, pathology, and non-

magnification white light endoscopy combined with the Kimura–Takemoto 

classification, and the regular arrangement of collecting venules (RAC) as well.

Materials and methods: A retrospective analysis of 685 inpatients who have 

completed the 14C-urea breath test, the H. pylori antibody typing classification, 

the serum gastric function tests (PGI/PGII/G-17), the endoscope detection, 

and the pathological examinations.

Results: The levels of PGI, PGII, and G-17 were in descending order from the 

type I H. pylori infection group to the type II H. pylori infection group than 

the control group (F = 14.31; 26.23; 9.12, P < 0.01). Using the Kimura–Takemoto 

classification, there were significant differences among the three groups of 

different degrees of atrophy (
2χ =29.81; 482.78; 292.5, P< 0.01). Based on the 

characteristics of RAC, the H. pylori infection rates were in descending order 

from the type I H. pylori infection group to the type II H. pylori infection group 

than the control group (
2χ = 200.39; 174.72; 143.51, P < 0.01). The type I  H. 

pylori infection group had higher grades than those of the type II H. pylori 

infection group in the OLGA and OLGIM staging systems, while the differences 

are statistically significant only in the OLGA staging system (
2χ =10.63, P < 0.05).

Conclusion: With the aid of non-amplified white light endoscopy, we found 

new evidence of type I  H. pylori infection accelerating the progression of 

gastric mucosal atrophy through the degree of atrophy and the range of 

infection, whereas type II H. pylori infection has a low ability of migration and 

atrophy progression. Individual virulence factor-based eradication therapy 

may be a better choice in future.
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1. Introduction

The major sites of Helicobacter pylori (H. pylori) infection are 
the stomach and duodenal bulbs, which are significantly 
associated with chronic gastritis, gastric mucosa atrophy and 
erosion, peptic ulcer, MALT lymphoma, and gastric cancer (Smith 
et al., 2017). In 1994, H. pylori were classified as a class I biological 
carcinogen by the World Health Organization (Ferreira et  al., 
2014). In 2015, the Kyoto Global Consensus Report on Helicobacter 
pylori identified H. pylori as an infectious disease (Sugano et al., 
2015). In 2022, the United  States Department of Health and 
Human Services listed H. pylori as a definite carcinogen. 
Helicobacter pylori are a highly heterogeneous bacterium, from 
which many virulence factors have been isolated and identified. 
Cytotoxin-associated gene A (CagA) and Vacuolating cytotoxin 
gene A (VacA) have been extensively studied as the virulence 
markers of H. pylori, since carrying these two genes has made 
H. pylori closely associated with the occurrence and development 
of many gastric diseases (Chey et al., 2017; Lee et al., 2021). Recent 
studies have shown that the CagA of H. pylori can cause genomic 
instability induced by BRCNESS. Moreover, H. pylori’s CagA can 
cause gastric cancer through a “hit and run” mechanism in the 
absence of p53 (Imai et al., 2021).

Clinically, based on the antibody expression of CagA and 
VacA, H. pylori can be classified into type I H. pylori infection 
(CagA+/VacA+) and type II H. pylori infection (CagA−/VagA−). 
Previous studies have found that type I H. pylori infection may 
contribute to the progression of gastric mucosal atrophy through 
its higher virulence factors and migration ability; however, there 
is no direct evidence to support this in the real gastric condition 
(Liu et al., 2021; Zhang et al., 2022). In this study, different types 
of H. pylori were analyzed to determine their infection 
characteristics using serology, pathology, and non-magnification 
white light endoscopy combined with Kimura–Takemoto 
classification, and the regular arrangement of collecting venules 
(RAC) as well. We have explored characteristics of different types 
of H. pylori causing gastric mucosa atrophy through virulence 
factors and migration ability in a specific population (50–60 years 
old), which may provide a new theoretical basis for clinical 
individual eradication therapy.

2. Materials and methods

2.1. Subject investigated

A retrospective analysis of 745 inpatients in the Department 
of Gastroenterology of Xinjiang Urumqi People’s Hospital from 
March 2019 to January 2022, and 685 cases were eventually 
included given the exclusion criteria. All inpatients were Han 
Chinese, aged 50–60 years, and have completed the 14C-urea 
breath test, the H. pylori antibody typing classification, the serum 
gastric function tests (PGI/PGII/G-17), and the endoscope 
detection and the pathological examinations. The exclusion 

criteria included the following: previous history of gastric cancer 
and gastric cancer surgery; active bleeding and other serious 
systemic diseases; previous eradication of H. pylori; discordant 
results from the 14C-urea breath test and the H. pylori antibody 
typing classification; and incomplete endoscopic data. G*Power 
was used to calculate the sample size: select tests—Goodness-of-fit 
tests: Contingency tables, effect size = 0.3, α = 0.05, 1−β = 0.95. The 
results of pre-investigation were taken as parameters, and the 
minimum sample size required for calculation was 342 cases. The 
sample size of the study was 685 cases, which could ensure reliable 
results. The study was approved by the ethics committee of the 
People’s Hospital of Xinjiang Uygur Autonomous Region 
(KY2019051528).

2.2. 14C-urea breath test

The inpatients were required to take a 14C urea capsule on an 
empty stomach or 2 h after meals and sit for 25 min, and then blow 
into the gas collector for about 3 min until the liquid indicator 
color became colorless. Then, 4.5 ml scintillation solution to the 
gas collector was added and mixed upside down three times 
before being sent to the H. pylori detector (HUBT01) for 1 min. 
The sample was determined as positive for H. pylori infection if 
the detection value ≥100 dpm, and negative for the detection value 
<100 dpm.

2.3. Helicobacter pylori antibody typing 
classification

To type and classify H. pylori antibodies, 2–3 ml venous blood 
was collected from hospitalized patients, and then the serum was 
obtained by centrifugation at 3,500 rpm/10 min. The H. pylori 
antibody typing classification kit (immunoblotting method) was 
provided by Shenzhen Blot Biological Products, Shenzhen, China, 
Co., Ltd. The imprinting membrane strip was qualitatively compared 
with the standard strip after binding to serum antibodies, enzyme-
linked reaction, color reaction, and termination of the reaction. 
Positive for type I H. pylori infection: either or both of the CagA and 
VacA zones appeared simultaneously. Positive for type II H. pylori 
infection: either or both of urease A (UreA) and UreB zones but no 
CagA or VacA zone were found. Negative results: no positive zone 
was found in the color zone.

2.4. Serum gastric function tests

For the serum gastric function test, serum was obtained by 
centrifugation of 3 ml venous blood at a rate of 3,500 rpm/10 min. The 
serum gastric function assay kit (Biohit, Hefei, China) was used to 
follow its instructions: 80 μl serum was added into the sample hole of 
the test card and kept for 15 min, then it was detected by fluorescence 
immunoassay (HIT-9A). The normal reference range of PGI was 
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70–165 μg/L, the normal reference range of PGII was 3–11 μg/L, the 
normal reference range of PGI/PGII was >7, and the normal reference 
range of G-17 was 1–7 pmol/L.

2.5. Endoscope detection

To assess the status and extent of H. pylori infection, an 
endoscopy was performed. All patients underwent endoscopy 
performed by an endoscopist with 5 years of standardized training, 
using either GIF-H260 or GIF-HQ290 from Olympus, Japan, and 
biopsies were performed according to the new Sydney standard. 
The range and degree of endoscopic atrophy were classified 
according to the Kimura–Takemoto classification, and the 
mucosal lesions were divided into 0, C1, C2, C3, O1, O2, and O3, 
and two senior endoscopists were responsible for determining the 
degree of atrophy (see Appendant.1). The status and range of 
H. pylori infection were evaluated in conjunction with the 
characteristics of endoscopic RAC (see Appendant.2).

2.6. Pathological examinations

Endoscopic biopsies were formalin overnight, paraffin-
embedded the next day, sectioned with a sectioning machine, 
HE stained by an automated immunohistochemical machine, and 
biopsied by a pathologist based on the most common chronic 
gastritis; five histological changes (H. pylori, chronic inflammatory 
lesions, motility, atrophy, and intestinal metaplasia) were assessed 
and the degree of each histological change was assessed as nil, 
mild, moderate, and severe. The grading method was based on the 
consensus of pathological diagnosis for biopsy of chronic gastritis 
and epithelial tumor of the gastric mucosa (2017), combined with 
the updated Sydney System’s visual analog scales. The pathological 
diagnosis report included histological changes in biopsy 
specimens from each site. The OLGA and OLGIM staging systems 
were used to assess chronic gastritis with gastric atrophy. The 
OLGA staging system ranks the degree of pathological atrophy as 
stage 0, stage1, stage 2, stage 3, and stage 4 (see Appendant.3A); 
and the OLGIM staging system ranks the degree of pathological 
intestinal metaplasia as stage 0, stage1, stage 2, stage 3, and stage 
4 (see Appendant.3B).

2.7. Statistical analysis

All data were analyzed by SPSS 19.0. The metering data were 
presented as x ± S, variance analysis or non-parametric tests 
were used for the mean value among groups, and the Mann–
Whitney U-test was used for the comparison between the two 
groups. The counting data were represented by the number of 
cases and percentage. Pearson Chi-Square and Fisher’s exact test 
were used for comparison between groups. The difference was 
considered statistically significant at P < 0.05.

3. Results

3.1. Analyses of general data

The study included 745 Han Chinese inpatients aged 
50–60 years, and 685 patients were finally enrolled given the 
exclusion criteria. There were 355 male and 330 female patients 
with an average age of 55.4 ± 3.3 years. According to the H. pylori 
antibody typing classification, these inpatients were divided into 
three groups. Among the 291 patients with type I  H. pylori 
infection, 148 were male and 143 were female patients, and the 
average age was 55.3 ± 3.2 years. Among the 110 patients with type 
II H. pylori infection, there were 54 male and 56 female patients 
with an average age of 55.4 ± 3.3 years. The control group was 
made of 153 male and 131 female patients, 284 in total with an 
average age of 55.5 ± 3.3 years. There was no significant difference 
in sex and age between groups ( x2 = 0.91, p = 0.63; x2 = 0.45, 
P = 0.80, P all > 0.05).

3.2. Expression of serum gastric function 
tests levels in different types of 
Helicobacter pylori

Serum gastric function tests revealed that expression levels of 
PGI were higher in the type I  H. pylori infection group 
(181.0 ± 79.9 μg/L) than those in the type II H. pylori infection 
group (148.8 ± 62.9 μg/L) and the control group (153 ± 63.8 μg/L), 
and the differences were statistically significant (F = 14.1, P < 0.01), 
as shown in Figure 1A. The expression levels of PGII were higher 
in the type I H. pylori infection group (11.3 ± 8.3 μg/L) than those 
in the type II H. pylori infection group (7.4 ± 8.4 μg/L) and the 
control group (6.7 ± 7.4 μg/L), and the differences were statistically 
significant (F = 26.2, P < 0.01), as shown in Figure  1B. The 
expression levels of PGR were lower in the type I  H. pylori 
infection group (22 ± 14.5) than those in the type II H. pylori 
infection group (29.5 ± 15.2) and the control group (32.3 ± 16.6), 
and the differences were statistically significant (F = 33.2, P < 0.01), 
as shown in Figure 1C. The expression levels of G-17 were higher 
in the type I H. pylori infection group (8 ± 11.4 pmol/L) than those 
in the type II H. pylori infection group (5.9 ± 10.4 pmol/L) and the 
control group (4.2 ± 9.8 pmol/L), and the differences were 
statistically significant only between the type I H. pylori infection 
group and the control group (F = 9.1, P < 0.01), as shown in 
Figure 1D.

3.3. Characteristic analysis of atrophy of 
different types of Helicobacter pylori 
infection under endoscopy

The composition ratio of different degrees of atrophy in the 
Kimura–Takemoto classification was statistically different among 
the type I H. pylori infection group, the type II H. pylori infection 
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group, and the control group ( x2 =29.81; 482.78; 292.5, P < 0.01). 
Intergroup comparison has shown that only the composition ratio 
of C1 had no significant difference between the type I H. pylori 
infection group and the type II H. pylori infection group ( x2

=0.34, P > 0.05), as shown in Figure 2.

3.4. Distribution of different types of 
Helicobacter pylori infection under 
endoscopy

Regular arrangement of collecting venules is mainly 
distributed in the gastric angle and gastricum, and the site and 
range of H. pylori infection can be located and evaluated by the 
absence of RAC; therefore, the status of H. pylori infection is 
mainly estimated by the characteristics of RAC under endoscopy. 

The results showed that the type I H. pylori infection group and 
the type II H. pylori infection group expressed higher 
characteristics of infection in gastric antrum ( x2  = 2, P > 0.05). 
According to the characteristics of RAC, the H. pylori infection 
rates in the angular lesser curvature of the stomach and the greater 
curvature of the stomach were in descending order from the type 
I H. pylori infection group to the type II H. pylori infection group 
than the control group, and the differences were statistically 
significant (x2  = 200.39; 174.72; 143.51, P < 0.01), as shown in 
Figure 3.

3.5. Different types of Helicobacter pylori 
infection in OLGA and OLGIM staging 
system

In the OLGA and OLGIM staging systems, the composition 
ratio of the type I H. pylori infection group, the type II H. pylori 
infection group, and the control group is shown in Figure  4. 
Specifically, the type I H. pylori infection group graded higher in 
the OLGA and OLGIM staging systems than those in the control 
group, and the differences were statistically significant ( x2  = 95.45; 
70.23, P < 0.01). The type II H. pylori infection group graded 
higher in the OLGA and OLGIM staging systems than those in 
the control group, and the differences were statistically significant 
( x2  = 26.62; 30.05, P < 0.01). The type I H. pylori infection group 
graded higher in the OLGA and OLGIM staging systems than 
those in the type II H. pylori infection group, and the differences 
were statistically significant only in the OLGA staging system 
( x2 = 10.63, P < 0.05).

4. Discussion

Helicobacter pylori have a high intraspecific genetic 
diversity, and most studies have focused on the identification 

A B C D

FIGURE 1

Serum gastric function of different types of Helicobacter pylori infection.

FIGURE 2

Distribution of different types of Helicobacter pylori infection in 
Kimura–Takemoto classification.
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of strain specificity related to gastric cancer (Tissera et  al., 
2022). The pathogenic mechanism of H. pylori may be related 
to many pathogenic factors of the bacteria, such as genes 
encoding outer membrane proteins (babA, oipA, sabA, and 
hopQ), exercise genes (flaA and flaB), and iceA, of which the 
CagA, VacA, activating protein A of peptic ulcer, and adhesins 
are particularly important (Da Costa et al., 2015). The CagA 
may interact with several host proteins after being transmitted 
to the cytoplasm, by either EPIYA phosphorylation-dependent 
or non-dependent, to regulate key cellular functions such as 
proliferation, apoptosis, inflammation, and genome integrity 
(Knorr et al., 2019; Kontizas et al., 2020). At present, clinical 
studies of type I H. pylori infection are closely related to the 
severity of many diseases, such as atrophic gastritis, ulcers, 

gastritis cancer, arteriosclerosis, and myasthenia gravis (El 
Khadir et  al., 2021; Li et  al., 2021; Wu and Chen, 2021). 
Atrophic gastritis is led by H. pylori infection and has a high 
risk of gastric cancer (Kato et al., 2019). Although eradication 
of H. pylori may reduce the risk of gastric cancer in the general 
population, nevertheless, it does exist and is associated with the 
degree of atrophy and intestinal metaplasia (Shibagaki et al., 
2021). Specific H. pylori antibodies and CagA may act together 
on the progression of intestinal metaplasia in non-atrophic 
gastritis (Song et al., 2022). A large cohort of the study found 
an increased risk of cascade in patients positive for H. pylori, 
and they progressed from chronic gastritis to atrophic gastritis, 
eventually leading to intestinal metaplasia (Ohata et al., 2004). 
It takes about 10 years for atrophic gastritis to progress to 

FIGURE 3

Distribution of different types of Helicobacter pylori infection in different parts of the stomach.

FIGURE 4

Different types of Helicobacter pylori infection in OLGA and OLGIM staging system.
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atrophy or intestinal metaplasia, but 11.6 years to atrophic 
gastritis and 11.4 years to intestinal metaplasia for 95% of those 
people in precancerous conditions (Kodama et al., 2012). At 
the age of 60 years, the gastric mucosa will undergo atrophy 
and intestinal metaplasia, and the eradication of H. pylori at the 
right time can slow down the atrophic gastritis process (Chey 
et al., 2017).

Pepsin is an inactive precursor of pepsin in gastric juice, 
which can be  divided into PGI and PGII subpopulations 
according to their biochemical properties, immunogenicity, cell 
origin, and tissue distribution. The serum gastric function tests 
can be used as an index for gastric diseases (Chen et al., 2018; 
Yuan et al., 2020). The PGI is secreted by the principal cells of the 
gastricum and gastric fundus and the PGII is secreted by the 
pyloric gland, fundus gland, Brunner gland, and cardiac gland. 
The G-17 is secreted by the G cells of the antrum. Serum PGI, 
PGII, and G-17 levels are related to one’s living habits, 
environment, H. pylori infection, sex, age, smoking, as well as 
alcohol consumption (Sjomina et al., 2018). The PGI, PGII, and 
G-17 levels are positively correlated with the activity and degree 
of inflammation of chronic gastritis in the antrum and gastricum, 
while PGR was negatively correlated with inflammation (Li et al., 
2022). Serum PGI, PGII, PGR, and G-17 may indirectly reflect 
the secretory site of gastric mucosal lesions. To eliminate the 
influence of confounding factors on serum PGI, PGII, and G-17, 
we  defined the nationality (Han Chinese) and age range 
(50–60 years). From the serological level, the PGI and PGII levels 
were significantly higher in the type I H. pylori infection group 
than those in the type II H. pylori infection group, which 
suggested that type I  H. pylori infection may involve more 
extensive PGI and PGII cells (gastricum) in the stomach. The 
PGR level of the type I H. pylori infection group was significantly 
lower than those in the type II H. pylori infection group, which 
suggested that the type I H. pylori infection may have a high level 
of inflammatory activity. There was no significant difference in 
serum G-17 levels between the type I H. pylori infection group 
and the type II H. pylori infection group, which suggested that 
different types of H. pylori infection may have the same range of 
infection in the antrum. Serological studies suggested that the 
type I  H. pylori infection may have a higher ability to cause 
atrophy and a larger infection range.

In 2005, the international atrophy research group proposed 
the OLGA staging system for chronic gastritis; and in 2010, the 
OLGIM staging system was proposed for intestinal metaplasia 
to replace atrophy. This is a semi-quantitative scoring method 
based on the updated Sydney system for chronic gastritis for 
inflammation and atrophy, which represents the range and 
degree of gastric mucosal atrophy (Capelle et al., 2010). In this 
study, to further explore if type I H. pylori infection has a higher 
ability to cause atrophy and a larger infection range or not, 
different types of H. pylori infection were analyzed to determine 
their ability to cause atrophy and infection range using 
pathology, non-magnification white light endoscopy combined 
with Kimura–Takemoto classification, and the absence of RAC 

(Ebigbo et  al., 2021; Xiao et  al., 2021). The type I  H. pylori 
infection was graded higher than the type II H. pylori infection 
in the Kimura–Takemoto classification, which suggested that 
the type I  H. pylori infection may be  apt to cause atrophic 
lesions in the gastricum. Based on the lack of RAC, the type 
I H. pylori infection involved a wider loss of the gastricum than 
that in the type II H. pylori infection, suggesting that the type 
I  H. pylori infection had a higher expression level in the 
gastricum. In the OLGA/OLGIM staging systems, the type 
I H. pylori infection graded higher than the type II H. pylori 
infection in the OLGA staging system, but no significant 
difference in the OLGIM staging system. The endoscopic and 
histopathologic data presented earlier provide us with more 
intuitive evidence. The type I H. pylori infection has a higher 
ability to cause atrophy and a larger infection range than that of 
the type II H. pylori infection, while the type II H. pylori 
infection is limited to the antrum with weaker atrophy 
progression (as shown in Figures 5, 6).

There are limitations to this study. First, this research did not 
conduct a prospective study, nor did include different ethnic 
groups, genders, and ages for follow-up study. Second, the 
identification of different types of H. pylori was determined only 
by 14C-urea Breath Test and H. pylori antibody typing 
classification, lacking gene characteristic information. Third, 
although the characteristics of H. pylori with different virulence 
from clinical samples are supported by serum gastric function 
tests, pathological examinations, and endoscope detection, basic 
experimental verification is still lacking. Based on this, type II 
H. pylori is less toxic, and it causes a slow progression of gastric 
mucosa atrophy. The support of long-term clinical follow-up data 
is needed to determine whether asymptomatic patients with type 
II H. pylori infection need eradication therapy or not.

The virulence factors of H. pylori not only participate in the 
induction of inflammatory responses but also control and 
regulate these responses, maintain chronic inflammation, and 
most importantly facilitate the interaction among the host, gastric 
microenvironment, and bacterial virulence factors (Baj et  al., 
2020). At present, the cancer-promoting mechanism of the CagA 
protein has been revealed, and only with the earlier eradication 
of H. pylori can we  prevent the occurrence of gastric cancer 
(Takahashi-Kanemitsu et  al., 2020). While about 4.4  billion 
people worldwide have been infected with H. pylori, less than 
20% of them have developed serious gastric problems and 1% of 
them have developed gastric cancer (Sharndama and Mba, 2022). 
Nowadays, numerous H. pylori-related guidelines recommend 
the national eradication of H. pylori; yet, there are still many 
countries that are under great pressure on public health, and 
eradicating H. pylori nationally may pose a potential risk of 
antibiotic abuse (Kato et  al., 2019; Jung et  al., 2021; National 
Clinical Research Center for Digestive Diseases (Shanghai) et al., 
2021). Eradicating H. pylori infection is still controversial in 
inflammatory bowel disease, gastroesophageal reflux disease, 
asthma, and other diseases (He et  al., 2022). Moreover, the 
benefits and risks of eradicating H. pylori vary among individuals 
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(Helicobader pylori Study Group, Chinese Society of 
Gastroenterology, Chinese Medical Association, 2022). In 
addition, the virulence factor of H. pylori plays a key role in its 
pathogenicity, so individual virulence factor-based eradication 
therapy may be a better choice in future.
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FIGURE 5

Schematic diagram of type I H. pylori infection. (A) Normal stomach structure. (B) The initial stage of type I Helicobacter pylori infection is limited 
to the gastric antrum. (C) Type I H. pylori infection progresses to the lesser curvature of the stomach. (D) Lesser curvature atrophy; Type I H. pylori 
infection extends from lesser curvature to greater curvature; Inflammation affects the whole stomach. (E) With the lesser curvature as the center, 
the atrophy extends to the periphery, accompanied by intestinal metaplasia and persistent active inflammation in the greater curvature.

A B C

FIGURE 6

Schematic diagram of type II H. pylori infection. (A) Normal stomach structure. (B) The initial stage of type II H. pylori infection is limited to the 
gastric antrum. (C) Type II H. pylori infection in gastric antrum progresses to atrophy and it is difficult to advance to the stomach body.
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Amoxicillin-docosahexaenoic acid 
encapsulated chitosan-alginate 
nanoparticles as a delivery system 
with enhanced biocidal activities 
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Encapsulation of amoxicillin (AMX) for drug delivery against Helicobacter pylori 
infection and aspirin-induced ulcers in rat’s stomachs was performed using 
docosahexaenoic acid (DHA)-loaded chitosan/alginate (CA) nanoparticles (NPs) 
developed by ionotropic gelation method. The physicochemical analyses of the 
composite NPs were performed by scanning electron microscopy, Fourier transform 
infrared spectroscopy, zeta potential, X-ray diffraction, and atomic force microscopy. 
The encapsulation efficiency of AMX was increased to 76% by incorporating DHA, 
which resulted in a reduction in the particle size. The formed CA-DHA-AMX NPs 
effectively adhered to the bacteria and rat gastric mucosa. Their antibacterial 
properties were more potent than those of the single AMX and CA-DHA NPs as 
demonstrated by the in vivo assay. The composite NPs attained higher mucoadhesive 
potential during food intake than during fasting (p = 0.029). At 10 and 20 mg/kg AMX, 
the CA-AMX-DHA showed more potent activities against H. pylori than the CA-AMX, 
CA-DHA, and single AMX. The in vivo study showed that the effective dose of AMX 
was lower when DHA was included, indicating better drug delivery and stability of 
the encapsulated AMX. Both mucosal thickening and ulcer index were significantly 
higher in the groups receiving CA-DHA-AMX than in the groups receiving CA-AMX 
and single AMX. The presence of DHA declines the pro-inflammatory cytokines 
including IL-1β, IL-6, and IL-17A. The synergistic effects of AMX and the CA-DHA 
formulation increased the biocidal activities against H. pylori infection and improved 
ulcer healing properties.
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Introduction

Stomach infection with Helicobacter pylori, a Gram-negative 
bacterium with carcinogenic potential, is a major cause of gastric 
malignancies such as MALT lymphoma and gastric adenocarcinoma 
(Kim and Wang, 2021). Successful H. pylori eradication could reduce the 
risk of metachronous gastric cancer by 50% (Choi et al., 2020). In the 
majority of cases (89.4%), the first line of treatment against H. pylori 
infection is clarithromycin (CLA) and amoxicillin (AMX) or 
metronidazole (MET) in combination with a proton pump inhibitor 
(PPI) (Suzuki and Matsuzaki, 2018). However, antibiotic resistance 
emerged in recent years and gastric acid was found to inactivate some 
antibacterial agents (Qin et al., 2021). As the clinical isolates of H. pylori 
have become increasingly resistant to antibiotics worldwide, there is an 
urgent need to improve therapeutic strategies with more effective 
antibiotic regimens to reduce treatment failures (Krzyżek et al., 2020).

H. pylori showed resistance to MET and CLA and a less degree to 
AMX (Graham et al., 2021). Therefore, AMX is considered the most 
reliable antibiotic therapy in almost all regimens (Kuo et al., 2021). 
Stomach acid however can decompose and destroy AMX, reducing its 
overall and local effectiveness. There are two approaches to overcome 
this limitation including intravenous administration for at least 7 days 
or the oral administration of high doses of AMX (Shah et al., 2021). The 
use of nanopolymers such as chitosan to encapsulate acid-sensitive 
drugs could protect AMX from degradation by gastric acid, prolong 
their retention/residence time, and improve its controlled release 
(Spósito et al., 2021). Chitosan is a cationic mucoadhesive biopolymer, 
and based on molecular weight (MW), can be  divided into high, 
medium, and low MW, each having different biological properties. High 
MW chitosan containing high degrees of deacetylation is superior to low 
MW chitosan for the treatment of H. pylori. Moreover, chitosan 
exhibited more potent antibacterial activity against Gram-negative 
bacteria than Gram-positive bacteria and this effect was attributed to the 
stronger negative charge on the cell walls of the Gram-negative bacteria 
(Takahashi et al., 2008; Li et al., 2016; Chang et al., 2020).

Fatty acids (FAs) that exhibit antibacterial activity against multidrug-
resistant (MDR) bacteria could provide the next generation of 
antibacterial agents for the treatment and prevention of bacterial 
infections (Coraça-Huber et  al., 2021). A combination of FAs and 
antibiotics was tested suggesting their potential application in the 
treatment of bacterial resistance. The combination of FAs with beta-
lactam antibiotics, fluoroquinolones, and aminoglycosides showed a 
synergistic effect against Gram-positive and Gram-negative bacteria 
(Casillas-Vargas et al., 2021). Docosahexaenoic acid (DHA) is one of the 
omega-3 polyunsaturated fatty acids (PUFAs) with anti-inflammatory 
and anti-H. pylori properties. In the presence of DHA, H. pylori expand 
its periplasmic space, resulting in the loss of membrane integrity, 
cytoplasmic leakage, and cell death (Correia et al., 2012). To date, there 
is only one report addressing the anti-H. pylori activity of the 
encapsulated DHA when administered through nanostructured lipid 
carriers (Seabra et  al., 2017). Chitosan-based nanoparticles (NPs) 
possess mucoadhesive properties rendering them interesting candidates 
to be  tested as enhancers of the antibacterial effect of AMX and 
DHA. The present study aimed to develop a chitosan-based oral drug 
delivery system containing DHA and AMX against H. pylori, both in 
vitro and in vivo. Chitosan/alginate (CA) composite NPs were used to 
entrap AMX and DHA. The physicochemical characterizations of the 
NPs were assessed. The antibacterial activity was determined using an 
in vitro growth inhibition assay, followed by the evaluation of the 

mucoadhesive potential of the FITC-labeled NPs. In the in vivo 
experiments, an aspirin-induced gastric ulcer was induced in rats and 
the rats were infected with H. pylori. To determine the biocidal effects 
against H. pylori and the curing effect of the composite NPs on the 
induced ulcer, the H. pylori colonization, ulcer area, and 
histopathological changes were monitored.

Materials and methods

In the Supplementary material, more details are provided regarding 
the materials and methods used in this study. The materials are described 
in the Supplementary section 1.

Fabrication of composite NPs and 
formulation

A CA-based NP was prepared based on a previous study by 
Friedman et al. (2013). Composite NPs were prepared by emulsifying a 
chitosan solution in an oil phase (DHA) and an ionic gelation method. 
Chitosan and alginate solutions were prepared as polycationic and 
polyanionic solutions (Supplementary section 2).

CA-DHA NPs were prepared in several formulations including 
chitosan (0.1, 0.5, and 1.0% v/v), DHA (0.0, 0.5, 1.5, and 2.0% v/v), and 
AMX (40, 60, and 100 mg/ml). The in vivo study was conducted to test 
CA-DHA, CA-AMX, and CA-DHA-AMX NPs with the following 
concentrations of the components: CA (1.0% v/v), DHA (2.0% v/v), and 
AMX at two concentrations (10 and 20 mg/kg).

Physicochemical characteristics

The physicochemical properties of the composite NPs were 
evaluated using a scanning electron microscope (SEM), Fourier 
transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), 
atomic force microscopy (AFM), zeta potential, and swelling index (SI) 
analysis, and the methods are described in detail in 
Supplementary section 3.

Drug content

The content of DHA and AMX in the recovered solution was 
measured using a UV/Vis spectrophotometer (JENWAY/6105) at 205 
and 272 nm, respectively. To compare the loading of AMX with the 
hydrophobic and hydrophilic compounds, it was tested in the emulsion 
and aqueous environments. A detailed explanation of the method used 
to determine the drug content can be found at Supplementary section 3.

Antibacterial activity

The growth inhibitory assay was used to determine the antibacterial 
activity against clinically isolated H. pylori (H.12.5) in vitro. Briefly, 10 μl 
of the bacterial suspension (109 CFU/ml) was added to Columbia broth 
medium (190 μl) and the mixture was incubated under microaerophilic 
conditions for 6, 12, and 24 h. The growth inhibition assay was 
performed in vitro. Growth inhibition was estimated from the 
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absorbance of the medium at a wavelength of 600 nm. 
Supplementary section 4 describes the patient’s details, the method of 
bacterial isolation, the in vitro antibacterial assay, and the formula for 
growth inhibition. To evaluate antibacterial activity in vivo, plate colony 
counts (CFU/gr stomach) and the number of bacteria in the biopsy 
samples were used (Supplementary section 4).

Bacterial binding and mucoadhesive activity

Bacterial adhesion was measured using FITC-labeled composite 
NPs (Supplementary section 5). The adhesion was determined by flow 
cytometry and was subsequently analyzed using the FlowJo program 
(Tree Star). The bacterial binding and mucoadhesive activity were 
conducted on the four composite NPs including unloaded NPs, 
CA-DHA with three different DHA concentrations, CA-AMX, and 
CA-DHA-AMX. The adhesion rate of NPs to the bacterial cell surface 
was determined at 2 and 4 h intervals.

The mucoadhesive activity was evaluated using the count method 
according to the previous method of Arora et al. on rat stomachs (Arora 
et  al., 2011). The mucoadhesive potential of NPs was calculated by 
fluorescence microscopy using the following formula:

 
Mucoadhesive

Cs Cd

Cd
% =

−( )
×100

The input and output counts of NPs are represented by “Cs” and 
“Cd,” respectively.

The in vivo study was performed with NPs on the mucosa in two 
different nutritional states including the fasting and fed states. ImageJ 
v1.52 software (NIH, United  States) was used to calculate the 
fluorescence intensity of the adherent FITC-labeled NPs.

Animals

One hundred forty-seven male Sprague Dawley rats were involved 
in this study. Six rats were lost during infection and ulcer induction. 
Eighteen stomachs from rats were used to evaluate the in vitro 
mucoadhesive study. In vivo mucoadhesive activity was performed for 
two main feeding conditions: fasting and fed. Each of the two groups 
consisted of four different sub-groups (CA, CA-DHA, CA-AMX, and 
CA-DHA-AMX). A total of 24 rats were used to determine the 
mucoadhesive potential in vivo.

In the infected groups, rats were fasted overnight before being 
treated with 250 mg/kg body weight (BW) acetylsalicylic acid (ASA) on 
day 0 to induce gastric ulcers. Bacterial infection was induced by oral 
administration of H. pylori (5 × 108–10 CFU/ml, 1 ml/rat) at 24, 48, and 
72 h after ASA ulceration. Infection was confirmed after 2 weeks, and 
treatment was initiated. Three rats were used to confirm H. pylori 
colonization and three rats were used for the gastric ulcer confirmation. 
The in vivo antibacterial activity of different formulations was assessed 
in thirty rats divided into ten groups at day 7 post-infection 
(Supplementary Tables S1, S2).

The in vivo studies were performed to investigate the ulcer healing 
activity by macroscopic and microscopic analysis of gastric ulcers by 
ulcer thickness, ulcer area, ulcer index, and H. pylori eradication was 
also determined by the direct bacterial counting method. Collagen 

accumulation and concentrations of inflammatory cytokines, including 
IL-1β, IL-6, and IL-17A, were determined in the treated and untreated 
groups on day 14 post-infection. Forty-two rats were randomly divided 
into seven groups (six rats/group); group 1 (NS, normal saline), groups 
2 and 3: AMX (powder 10 and 20 mg/kg WB), groups 4 and 5: CA-AMX 
(10 and 20 mg/kg WB), and groups 6 and 7: CA-DHA-AMX (10 and 
20 mg/kg WB) to evaluate ulcer healing and H. pylori eradication on day 
14. Eighteen rats were divided into six treated groups to evaluate the 
relapse of infection on day 21 post-infection (three rats/group). One 
uninfected group was defined as control (n = 3).

We performed a histopathological examination on gastric biopsies. 
The ulcer evaluation was done on the whole stomach on day 14 to assess 
the healing effect. Ulcer indexing was performed according to the 
previous study by Bhattacharya et al. (2006). To measure the ulcer area, 
the length and thickness of the ulcer in mm2 were measured at a 
magnification of 40× and the information was processed using IimageJ 
software. The area of the gastric ulcer in each section (5 sections/sample) 
was determined. Gastric histology was evaluated by 1 pathologist who 
was blinded to the other assays and results.

All animal experiments were performed according to accordance 
with the U.K. Animals (Scientific Procedures) Act, and protocol 
approved by the Ethics Committee of Ilam Medical University (approval 
number: R.MEDILAM. REC.1400.133).

Enzyme-linked immunosorbent assay

A whole blood sample was taken from the rats. The presence of 
IL-1β, IL-6, and IL-17A in serum was measured using ELISA kits 
according to the manufacturer’s instructions. The intensity was 
determined at 450 nm using a microplate reader. To ensure consistency 
of the assay, all plates contained positive control (FBS) and negative 
control (PBS) samples.

Masson’s trichrome staining and 
immunohistochemistry

Masson’s trichrome staining, which stains collagen fibers blue and 
faint green, was used to assess collagen accumulation. Naturally, collagen 
fibers are usually accumulated in the gastric mucosa and submucosa. 
Immunohistochemistry was performed using antibodies against type 
I collagen. Sections were incubated with 0.3% hydrogen peroxide in PBS 
for 30 min and then with 10% normal donkey or goat serum in 0.05 M 
PBS for 30 min. They were then incubated with polyclonal antibodies 
labeling collagen I. Each sample was imaged using a Nikon TE 2000 
fluorescence microscope (Nikon, Japan). The area of collagen in each 
section was measured using ImageJ software.

Statistical analysis

The obtained results were statistically analyzed using Mann–
Whitney’s t-test with a confidence level of 95% (p < 0.05). Statistical 
analysis was performed using the Wilcoxon Sum Rank test for the ulcer 
index. Differences between means were tested for more than two groups 
with a one-way analysis of variance (ANOVA) followed by a Bonferroni’s 
post-hoc test. Differences between groups and time points were analyzed 
with a two-way analysis of variance (ANOVA) and subsequent multiple 
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comparisons using the Bonferroni correction. *p < 0.05; **p < 0.001; 
***p = 0.0002; and ****p < 0.0001 indicated statistically significant results.

Results and discussion

Composite nanoparticle production

This study showed that the NPs were formed by the interactions 
between the positively charged amino groups of the polycationic agent 
(chitosan) and the negatively charged polyanionic agent (alginate). 
Based on the strong mucoadhesive properties of CA NPs (Chang et al., 
2021), we developed a CA-based NP containing DHA and AMX to test 
their ulcer healing and H. pylori eradication properties. Based on the in 
vitro results, we tested the physicochemical properties of CA-DHA-AMX 
at the defined concentrations of 1% v/v, 2% v/v, and 60 mg/ml, 
respectively.

As demonstrated by SEM and FAM, the composite nanoparticles 
with DHA produced smaller NPs (350 ± 110 nm) with a smoother 
surface than the DHA-free NPs (600 ± 92 nm) in a concentration-
dependent manner. Their spherical shape is due to a hydrophobic group 
(DHA) in their structure. NPs with smaller sizes were obtained during 
the oil-in-water micelle structure, resulting in a homogeneous dispersion 
of DHA (Figure 1A).

FTIR spectra of the composite NP CA-DHA-AMX and their 
components are shown in Figure  1B. The CA-DHA showed a 
significantly intensified peak at 1679 cm−1, while the peaks of the amino 
group at 1596 cm−1 and carboxyl groups at 1619 cm−1 disappeared. An 
ionic interaction was confirmed between the carboxyl group of the 
alginates and the amino group of chitosan. The new major peak at 
1750 cm−1 showed a significant increase in absorption confirming the 
presence of DHA in CA-based scaffolds. AMX major peaks were 
observed at 3,440 cm−1 (amide NH and phenol OH stretch), 3,020 cm−1 

(benzene ring C-H stretch), 1,770 cm−1 (beta-lactam C-O stretch), 
1,680 cm−1 (amide I C-O stretch), 1,500 cm−1 (benzene ring C-C stretch), 
and 1,480 cm−1 (N-H bend C-N stretch combination band). 
Characteristic peaks of AMX were also present in the FTIR spectrum of 
the composite beads with some broadening and reduction in intensity, 
indicating the absence of the chemical interactions between the drug, 
polymer, and counter ions after the formation of beads.

As shown in Figure 1C, the pattern of chitosan showed two wide 
typical diffraction peaks at 2θ = 13.5° and 25.5°, confirming the 
semicrystalline nature of this molecule, which are the hydrated and 
anhydrous polymorphs of chitosan, respectively. The XRD spectrum of 
alginate showed a typical wide crystalline peak at 2θ = 21.5°. No 
crystalline peak was observed for DHA. The peaks of chitosan and 
alginate disappeared, and two new peaks appeared at 2θ = 23.4° and 
27.5° in the XRD spectrum of the CA-DHA scaffold, confirming the 
presence of DHA in the structure of the new scaffold. Strong interactions 
between the chitosan amino groups and the alginate cation groups were 
related to the changes in the membrane crystallinity. The ionic 
interaction between chitosan and alginate significantly decreased the 
crystallinity of the scaffold, indicating its amorphous state (Cui 
et al., 2008).

AFM analysis revealed that the synthesized NPs were almost 
monodisperse, without agglomeration (Figures  1D,E). Evidence 
suggested that particle aggregation decreased in the presence of 
hydrophobic agents (Dixon et al., 2012; Chang et al., 2021). In this study, 
the presence of DHA in CA-DHA formulations resulted in the reduction 
of particle aggregation. The particle size distribution was more 
homogeneous in the presence of 100 μM DHA than for the unloaded 
NPs. The variation of the zeta potential of the composite NPs was mainly 
due to the negative charge of the NP-loaded polymers. Compared with 
CA-DHA, the unloaded NPs exhibited a more positive charge, 
supporting the presence of the charged DHA in the NPs. The surface 
charges of the composite NPs were directly affected by the pH changes 

A

D E F G

B C

FIGURE 1

Physicochemical properties of CA-based NPs. (A) SEM micrograph of CA NPs and CA-DHA-AMX NPs (CA = 1%, DHA = 100 μM, 2% v/v, and AMX = 60 mg/ml). 
(B) FTIR spectra of chitosan, alginate, DHA (100 μM), AMX, and CA-DHA-AMX NP. (C) XRD patterns of chitosan (a), alginate (b), DHA (c), and CA-DHA (d). 
(D,E) AFM analysis of the surface topography of the unloaded and DHA-loaded NPs. (F,G) Zeta potentials of unloaded and DHA-loaded NPs (2% v/v) at 
various pH levels.
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in the dispersion medium, and the highest value was observed at pH 5.4 
(Figures 1F,G).

In a composite polymer, swelling occurs due to water absorption, 
causing the NPs to expand during water penetration, which leads to an 
increased crosslinking of the composite polymers (Pacheco et al., 2019). 
DHA concentration, the acidity of the medium, and time exhibit a direct 
effect on the rate of water uptake by NPs. The protonation of the 
carboxylic groups of the alginate increased at an acidic pH (pH < 4), 
resulting in shrinkage of the polymer due to the reduction of electrostatic 
repulsion between these hydrophobic groups (Rahaiee et al., 2017). This 
study showed a satisfactory correlation between the swelling indexes, is 
decreased by the addition of an extra hydrophobic group such as DHA 
(Supplementary Figure S1). A favorable agreement was observed in 
comparison with a previous study by Chang et al. who reported that the 
hydrophobicity of cobia liver oil (CBLO) decreased the swelling and 
aggregation of chitosan resulting in smaller particle size (Chang et al., 
2021). At all pH, composite NPs were soluble after a 6 h adjustment (data 
not shown).

An influential factor that affects the effectiveness of drug 
encapsulation is the effectiveness of drug entrapment. The drug 
entrapment efficacy of DHA and AMX was also evaluated in the same 
way as shown in Table 1. The highest drug content was obtained at pH 
5.4 in the chitosan solution, 65 ± 4% and 71 ± 1.9% for DHA and AMX, 
respectively. Also, when DHA was included in the CA-DHA-AMX 
formulation, the drug content increased.

Antibacterial activity

Previous reports indicated that DHA exhibited a potent antibacterial 
effect on H. pylori and inhibited its colonization in animal models 
(Correia et al., 2012; Ji et al., 2016; Henriques et al., 2020). In this study, 
the unloaded NPs with a chitosan concentration of 1.0% exhibited 
higher antibacterial activity than the NPs at other concentrations 
(p < 0001; Geisser–Greenhouse’s epsilon = 0.510; Figure 2A). This result 
supported the findings of Luo et al. who reported that a high degree of 
deacetylation (95%) of chitosan exhibited stronger antibacterial activity 
than deacetylation of 88% (Luo et  al., 2009). In our study, the 
antibacterial activity of DHA was the highest at 100 μM (Figure 2B). 
We formulated CA-DHA at a concentration of 1.0% v/v CA and three 
different concentrations of DHA, including 1, 1.5, and 2% v/v. The 
bacterial growth was strongly suppressed at 2% v/v DHA (Figure 2C).

Previous results showed that the encapsulation of DHA increased 
its antibacterial activity. To improve the antibacterial efficacy against 
H. pylori, previous research examined the nanoencapsulation of DHA 
alone (Seabra et  al., 2017). In this study, DHA and AMX were 
incorporated into CA-based NPs to maximize drug delivery and reduce 

antibiotic concentration. The results showed that CA-DHA with 2% v/v 
DHA significantly increased the growth inhibition rates compared with 
the unloaded NPs (p =  0.013) (Figure  3A). According to previous 
studies, DHA-loaded NPs showed bactericidal activity against H. pylori 
but not against human gastric adenocarcinoma cells at bactericidal 
concentrations (Chang et al., 2020; Henriques et al., 2020). We also 
observed a significant difference between the two concentrations of 
DHA (1.5 and 2% v/v; p  < 0.0001). Therefore, we  examined the 
composite NPs with 2% v/v DHA. CA-DHA-AMX proved to be more 
effective against bacteria when the dose of AMX was increased 
(Figure 3A). Thus, we conducted further studies with the following 
formulation: CA (1% v/v)- DHA (2% v/v)-AMX (60 mg/ml). After 6 h 
of incubation, it was found that the composite NP exhibited a synergistic 
antibacterial effect when DHA and AMX were used together (Figure 3B). 
Despite the significantly higher antibacterial activity of CA-AMX NPs 
than CA-DHA NPs (p =  0.0042), the presence of DHA in the 
CA-DHA-AMX formulation significantly increased antibacterial activity 
(p = 0.0009) (Figure 3B).

After a diet, the pH of the stomach changes within 4–6 h. The acidity 
of the stomach is 2.5 during starvation, while it increases to 3.0–4.5 
during feeding (Chen et  al., 2008). Potent antibacterial activity was 
observed in CA-DHA-AMX at pH 4 (Figure 3C). Hu et al. reported that 
the antibacterial activity of chitosan decreased at pH > 5.8 (Hu et al., 
2007). Among the tested groups, CA-DHA-AMX showed minimal 
growth activity, probably due to AMX and DHA. The low antibacterial 
activity in an acidic medium arises from the degradation of AMX, while 
at pH 7.0, only a small amount of the active ingredient is released from 
the NPs. Our study was conducted to determine how much of the active 
ingredient is released after 6 h at different pH values. The release of AMX 
and DHA at pH 4.0 was comparable to the release at pH 2.5, but the 
release at pH 7.0 was significantly less than the release at pH 4.0 (pH 4.0 
vs. 7.0; p =  0.029 and > 0.001 for the release of AMX and DHA, 
respectively) (Figure 3D).

Compared with DHA, both CA-DHA and pure chitosan showed 
higher antibacterial activity in vivo. This suggested that the antibacterial 
properties of NPs may be derived from their chitosan coating (p = 0.04) 
(Figure 3E). The lower antibacterial activity of DHA can be attributed to 
its anionic charge and lipophobic content, while the bactericidal activity 
can be attributed to the electrostatic interactions between the cationic 
charges (NH2; pH < 6) of chitosan and the polyanionic acid of the 
bacterial cell wall, leading to membrane disintegration, osmotic pressure 
disturbance, and eventually cell death (Chandrasekaran et al., 2020).

Significantly increased antibacterial activity was observed in the 
groups with AMX (Figure  3F). We  investigated the effects of 
encapsulation of AMX and incorporating DHA on drug delivery and 
eradication of H. pylori by comparing the antibacterial activities of 
AMX, CA-AMX, and CA-DHA-AMX. In contrast to the free AMX, 
the encapsulated AMX showed a significant enhancement of 
antibacterial activity. Based on the results of this study, there was an 
additive effect of DHA in CA-DHA-AMX on the antibacterial activity 
of 10 mg/kg AMX (Figure  3G). Compared with CA-AMX, 
CA-DHA-AMX showed more potent antibacterial activity. Even when 
the AMX concentration decreased, the antibacterial activity increased 
more in the CA-DHA-AMX group than in the CA-AMX group (20 to 
10 mg/kg) (Figure 3G). This increase might be related to the better 
localization and accessibility of the drug (Arora et al., 2011). Another 
possible explanation is that the treatment of DHA alters the 
composition of the membrane proteins and bacterial cell walls 
(Correia et al., 2013).

TABLE 1 The efficacy of NPs at entrapping DHA and AMX in different pH 
levels of the dispersion medium.

The pH of 
dispersion 
medium

Composite NPs

CA-DHA CA-AMX CA-DHA-AMX

DHA % AMX % DHA % AMX %

5.4 65 ± 4 71 ± 1.9 63 ± 2.6 76 ± 5.7

6.8 62 ± 3.2 58 ± 1.9 64 ± 2.1 62 ± 3

7.4 51 ± 1.8 49 ± 5.3 47 ± 3.6 50 ± 6.2
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The results showed that the most potent antibacterial activity in 
CA-DHA-AMX was at 20 mg/kg AMX (Figure 3G). Statistical analysis 
also showed that the nanoencapsulation and incorporation of DHA 
resulted in a decrease in the effective dose of the antibiotic. The 

CA-AMX-DHA group showed significantly higher antimicrobial 
activity at 10 mg/kg than CA-AMX formulations or free AMX in the 
same concentrations (p =  0.007 and 0.0002, respectively). The 
antibacterial activity of CA-DHA-AMX was almost the same at the 

A B C

FIGURE 2

The antibacterial activity of DHA and chitosan alone and in combination. (A) The growth inhibition rate of CA NPs with different concentrations of chitosan 
(0.1, 0.5, and 1.0%). (B) The antibacterial activity of DHA with different concentrations (25, 50 and 100 μM). (C) The antibacterial activity of DHA -loaded NPs 
at different loaded concentrations of DHA (CA 0.1%, DHA 1, 1.5 and 2%).
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FIGURE 3

The growth inhibition activity of composite NPs. (A) The antibacterial activity of CA-NPs containing different concentrations of DHA and AMX. (B) The 
growth inhibition rate of CA-DHA (100 μM)-AMX (60 mg/ml) composite NPs at different time intervals 6, 12, and 24 h. (C,D) CA-DHA (100 μM)-AMX (60 mg/
ml) at different pH values after 6 h incubation was investigated for their growth inhibition activity and release of drugs. (E) The in vivo antibacterial activity of 
chitosan, DHA and CA-DHA. (F) In vivo antibacterial activity of various formulations of composite NPs, including CA-DHA, CA-AMX, and CA-DHA-AMX 
compared with the untreated group. (G) Antibacterial activity was tested at a dose of 10 and 20 mg/kg AMX in different formulations. Data are presented as 
mean ± SEM.
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concentrations tested. These results are interesting, and it could 
be hypothesized that the incorporation of DHA in CA NPs could reduce 
the effective dose of AMX.

Bacterial binding and mucoadhesive 
properties of composite NPs

The CA-composite Bacterial binding was studied at different 
concentrations of DHA. Figure  4A shows that the unloaded NPs 
exhibited higher adhesion and DHA concentration is negatively 
correlated with bacterial adhesion. Due to the presence of anionic 
substances such as lipopolysaccharide groups on the surface of bacteria, 
this result was expected, as these substances tend to interact with the 
cationic parts of the chitosan molecules (Gafri et al., 2019). This results 
in strong interactions with the cationic NH2 groups of the protonated 
chitosan under acidic conditions, which are reduced by DHA 
(Figures 1E,G). To further investigate this issue, we compared the values 
of each formulation. In contrast to DHA, AMX showed no effect on 
bacterial adhesion (Figure 4B). A previous study demonstrated that 
chitosan-based NPs possessed high mucoadhesive properties and the 
chitosan amino groups interacted with sialic acids in the mucosa in a 
pH-dependent manner (Mukhopadhyay et al., 2015).

Our results showed that DHA reduced mucoadhesive activity in 
a dose-dependent manner at all concentrations. We found that the 
mucoadhesive activity increased when DHA was removed from the 
formulation, especially at pH 4.5 (p =  0.014) (Figure  5A). The 
mucoadhesive activity was highest in acidic condition (2.5 and 4.5) 
than pH = 7.5 for different formulation (Figure  5A). The positive 
charge of chitosan under acidic conditions interacted strongly 
electrostatically with the negative charge of sialic acid on mucin. As 
a cationic polysaccharide, chitosan contains primary amino and 
hydroxyl groups in its repeating units. Primary amino groups carry a 
positive charge when protonated, which may facilitate electrostatic 
interactions with negatively charged epithelial cells. The electrostatic 
interactions are lost when these amino groups are deprotonated at a 
pH of >6.5. On the other hand, the net charge of mucin becomes more 
negative with increasing pH. At a pH of 2.5, H+ is abundant in the 
gastric niche, masking the negative charge of mucin, which creates a 
competitive effect against chitosan (Sogias et al., 2008; Ways et al., 
2018). At pH = 7.5, mucin appears to have a greater net negative 
charge than at pH = 2.5, while chitosan appears to be  more 
deprotonated and has fewer positive charges than at acidic 
pH. However, it was observed that the composite NPs interacted 
electrostatically with mucin molecules at optimal pH values 
(pH > 4.5).

A

B

FIGURE 4

The bacterial binding capacity of composite NPs. (A) Bacterial adhesion of CA-DHA NPs and unloaded NPs at different concentrations of DHA. (B) The 
effect of different formulations of NPs on bacterial adhesion at two different time intervals; 2 h and 4 h.
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The mucoadhesive potential was significantly higher in fed than in 
fasting condition. The acidity of the stomach in the fasting condition (2 h 
before feeding) and the fed condition (2 h after feeding) is different: 2.5 
and 3.0–4.5, respectively. The results showed that the mucoadhesive 
potential was significantly higher in the fed condition than in the fasting 
condition (Figure 5C). The mucoadhesive potential of the composite 
NPs was different at pH = 2.5 and pH = 4.5, although this difference was 
not significant, but the mucoadhesive potential was higher at pH 4.5 
than the others. It was also found that the composite NPs containing 
DHA exhibited lower mucoadhesive capacity, especially under feeding 
conditions (p =  0.029) (Figures  5B,C). In contrast, a previous study 
showed that curcumin-loaded NPs with lipid components such as 

polyvinyl alcohol and polyethylene glycol were more mucoadhesive 
(Chanburee and Tiyaboonchai, 2017). Chitosan likely quenched DHA 
in our study.

Helicobacter pylori eradication and ulcer 
healing

In histopathological studies, NPs incorporated with AMX and DHA 
were more effective in eradicating H. pylori. On day 21, H. pylori were 
found to be completely eradicated with CA-DHA-AMX (10 and 20 mg/
kg). We found that DHA significantly increased the efficacy of AMX in 

A

B

C

FIGURE 5

The mucoadhesion potential of composite NPs. (A) The in vitro assessment of mucoadhesive potential. Results of the unloaded NPs were similar to CA-
AMX (data not shown). (B) In vivo mucoadhesive activity was evaluated by fluorescence microscopy under two distinct diet conditions; fasted (2 h before 
feeding) and fed (2 h after feeding, scale bar 500 μM). (C) The in vivo mucoadhesive activity was performed under two feeding conditions, fasting and 
feeding. Data are presented as mean ± SEM (n = 3).
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the encapsulated formulations. AMX (10 mg/kg) in the encapsulated 
form significantly increased eradication rates compared with AMX 
powder 20 mg/kg (p =  0.0184) (Figure  6A). On the other hand, an 
equally high eradication rate was observed with CA-AMX (20 mg/kg) 
and CA-DHA-AMX (10 and 20 mg/kg). It is suggested that the 
membrane proteins changed and the permeability and accessibility of 
the antibiotic led to a significant decrease in the effective dose 
(Henostroza et al., 2022).

Figure 6B shows the phenotypic healing of ASA-induced ulcers. The 
ulcers were completely healed by day 14. The inflammation decreased 
during the administration of CA-DHA compared with AMX (20 mg/kg). 
CA-DHA-AMX at 10 mg/kg exhibited the same healing effect as 20 mg/kg 
and showed a higher healing effect than AMX powder (20 mg/kg) 

(Figure  6B). As shown in Figure  6C, CA-DHA-AMX demonstrated 
significantly higher ulcer healing activity than CA-AMX (p = 0.009). In this 
study, DHA was found to accelerate the healing of ulcers induced by ASA.

Histological examination of the gastric epithelium confirmed H. pylori 
infection (Figure  6D). Microscopically, we  measured the length and 
thickness of the ulcer (40×, 5 sections/sample). Our results showed that in 
the CA-DHA-AMX groups with 10 mg/kg and 20 mg/kg AMX, the ulcer 
areas were significantly decreased compared with the other groups 
(Figure 6E). The presence of DHA in combination with 10 mg/kg AMX 
significantly reduced ulcer area compared with AMX powder (20 mg/kg) 
and the CA-AMX group at 10 mg/kg (p = 0.003 and < 0.0001, respectively) 
(Figure 6E). The encapsulation of AMX also significantly improved the 
ulcer healing effect, and the mucus thickness was similar between AMX 

A
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FIGURE 6

A histopathological evaluation of ASA-induced ulcers in rats infected with H. pylori. (A) The bacterial count of biopsies in treatment groups at day 14. (B) The 
phenotypic assessment of the rat stomach in different examined groups at day 14. (C–F) The analysis of ulcer index, histopathological features, ulcer area, 
and mucosa thickness of treated groups compared with control (untreated group). Data are presented as mean ± SEM (n = 3).
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powder (20 mg/kg) and CA-AMX (10 mg/kg) (Figure 6F). Accordingly, the 
incorporation of AMX with DHA-loaded NPs seemed to be beneficial. 
This result is consistent with the findings of Anandan et al. study suggesting 
that chitin and chitosan may be antiulcerogenic (Anandan et al., 2004). 
The pathological evaluation showed that CA-DHA-AMX reduced 
inflammatory and hemorrhagic conditions (Figure 6D). CA-DHA-AMX 
(20 mg/kg) significantly increased mucosal thickness compared with 
CA-AMX and AMX powder (p =  0.0054 and = 0.0011, respectively) 
(Figures 6D,F). The summary of physicochemical and biological activity 
of the different formulations is shown in ST. 2.

The macroscopic and microscopic evaluation of each group showed 
that inflammation decreased in the presence of DHA in different 
formulations (Figures  6B,D). The infiltration of immune cells was 
reduced after treatment with a formulation containing DHA (Figures 6D, 
7A,B). Comparison of macrophages (MQ), neutrophils, and fibroblast 
cells at days 3 and 14 revealed that DHA in the formulation was 
associated with a significant decrease in innate immune response cells. 
The presence of DHA (CA-DHA-AMX groups) significantly decreased 
the number of MQ and neutrophils at day 14 compared with the absence 
of DHA (CA-AMX groups) (Figures 7A,B). As recently reported by 
Pineda-Pea et al., DHA has been shown to have anti-inflammatory and 
antioxidant properties that can alleviate indomethacin-induced gastric 
ulcers. Compared to the control group, they found that DHA 
significantly reduced neutrophil infiltration (Pineda-Peña et al., 2018).

Pro-inflammatory cytokines such as IL -6, IL -1β, and IL -17A were 
significantly lower in the formulations containing DHA than in those 
without. ELISA results showed that the presence of DHA decreased IL -1β 
in different formulations. In the CA-DHA-AMX (10 mg/kg) group, the 
concentration of IL -1β was significantly higher than in the formulations 
that did not contain it. The CA-DHA-AMX groups were compared with 
the AMX powder and CA-AMX groups, and the results indicated that 

DHA was responsible for the anti-inflammatory effect of the composite 
NPs (Figure  8A). The histopathological examination of the examined 
groups revealed that the collagen accumulation was different (Figure 8B). 
As demonstrated by immunohistochemical staining for collagen I, 
CA-AMX (20 mg/kg) accumulated more collagen I than CA-DHA-AMX 
(20 mg/kg) (Figures 8B,C). In a study by Motawee et al., it was found that 
chronic administration of DHA significantly reduced the expression of 
H+/K + -ATPase gene and the enzyme activity of COX −2 while improving 
the gastric ulcer index, percent ulcer protection, and significantly reducing 
the expression of gastric GSH, CCK, and e- NOS genes and significantly 
reducing the expression of gastric GSH, CCK, and e- NOS genes (Motawee 
et al., 2022). As reported in another study by Serini et al., resveratrol-based 
solid lipid nanoparticles containing DHA showed anti-inflammatory 
properties on keratinocytes with a decrease in the expression of IL -1β, IL 
-6, and MCP-1 (Serini et al., 2019). The results of our study show that 
chitosan nanoparticles are a reliable means of delivering drugs to the niches 
of the stomach. Although the addition of DHA reduces the mucoadhesive 
properties of CA-DHA-AMX NPs, it increases drug entrapment and shows 
high antibacterial activity and anti-inflammatory effects.

Conclusion

The development of drugs containing acid-sensitive antibiotics 
such as AMX is difficult with conventional gastric retention formulation 
techniques. The development of a therapeutically effective 
gastroprotective formulation of AMX, which has both excellent 
buoyancy and a suitable release pattern, could allow the targeting of 
drugs to specific sites in the stomach. Our developed system had none 
of the disadvantages of a single-dose formulation but offered the 
advantage of the ease of preparation and sustained release of the drug 

A

B

FIGURE 7

The distribution of macrophage (MQ), neutrophil and fibroblast cells. (A) The microscopic distribution of macrophage, neutrophil and fibroblast cells in four 
different group untreated group, CA-AMX (20 mg/kg), CA-DHA-AMX (10 mg/kg), and CA-DHA, AMX (20 mg/kg) at 14. Hematoxylin and Eosin staining. (B) The 
comparison of macrophage, neutrophil and fibroblast cells at day 14 among all treated groups. Data are presented as mean ± SEM (n = 3).
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over an extended period. A simple method of encapsulating AMX in 
DHA-loaded CA NPs can be used for biocidal effects against H. pylori, 
with a reduced effective dose of the antibiotic. As a mucoadhesive 
carrier, chitosan-based nanoparticles are an effective way to deliver 
acid-sensitive antibiotics such as AMX. The encapsulation of AMX 
significantly increased its antibacterial activity compared to single 
AMX, and incorporation of DHA decreased the effective dose. The 
DHA also decreased the effective dose of AMX in the encapsulated 
form by increasing its entrapment, which may be  due to the 
modification of bacterial cell walls and its antibacterial activity. The 
incorporation of DHA into CA-AMX composite NPs enhanced the 
antibacterial activity in vivo and accelerated the healing of gastric 
ulcers, which could be attributed to the DHA -mediated dissolution of 
bacterial cell membrane, macrophage-dependent clearance, and anti-
inflammatory effects of DHA. The in vivo anti-H. pylori effects of DHA 
may also be due to its immunomodulatory activities that elicit biocidal 
effects on H. pylori.
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FIGURE 8

The histopathological evaluation and the pro-inflammatory cytokine production of gastric biopsies. (A) The levels of pro-inflammatory cytokines including 
IL-1β, IL-6, and IL-17A was conducted using ELISA method. (B) The collagen accumulation among different treated groups. (C) Masson’s trichrome staining 
was used to evaluate the accumulation of collagen (yellow arrow), the blue and red are responsible for collagen and muscle fibers. Immunohistochemical 
staining for Collagen I (yellow arrow), high accumulation of collagen I in glands and endothelia observed in untreated group, while the accumulation was 
reduced in treated groups, the lowest accumulation was observed in CA-DHA-AMX (20 mg/kg). Data are presented as mean ± SEM (n = 3).
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Application of biomaterials in the 
eradication of Helicobacter pylori: 
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overview
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1 Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang 
University, Nanchang, Jiangxi, China, 2 The Second Clinical Medical College of Nanchang University, 
Nanchang, Jiangxi, China

Helicobacter pylori is a prominent cause of gastritis, peptic ulcer, and gastric 
cancer. It is naturally colonized on the surface of the mucus layer and mucosal 
epithelial cells of the gastric sinus, surrounded not only by mucus layer with high 
viscosity that prevents the contact of drug molecules with bacteria but also by 
multitudinous gastric acid and pepsin, inactivating the antibacterial drug. With 
high-performance biocompatibility and biological specificity, biomaterials 
emerge as promising prospects closely associated with H. pylori eradication 
recently. Aiming to thoroughly summarize the progressing research in this 
field, we  have screened 101 publications from the web of science database 
and then a bibliometric investigation was performed on the research trends 
of the application of biomaterials in eradicating H. pylori over the last decade 
utilizing VOSviewer and CiteSpace to establish the relationship between the 
publications, countries, institutions, authors, and most relevant topics. Keyword 
analysis illustrates biomaterials including nanoparticles (NPs), metallic materials, 
liposomes, and polymers are employed most frequently. Depending on their 
constituent materials and characterized structures, biomaterials exhibit diverse 
prospects in eradicating H. pylori regarding extending drug delivery time, avoiding 
drug inactivation, target response, and addressing drug resistance. Furthermore, 
we  overviewed the challenges and forthcoming research perspective of high-
performance biomaterials in H. pylori eradication based on recent studies.

KEYWORDS

Helicobacter pylori, biomaterials, eradication, nanoparticles, drug delivery, drug 
resistance

1. Introduction

Helicobacter pylori is a pathogenic Gram-negative spiral-shaped bacteria that infects 
approximately 4.4 billion people worldwide, which is therefore considered to be one of the most 
prevalent infections worldwide (Rajinikanth et  al., 2007; Hooi et  al., 2017; Reshetnyak and 
Reshetnyak, 2017). Among those with the disease, H. pylori primarily generally cause chronic 
gastritis and lead to gastric ulcers and gastric atrophy, furthermore, induces intestinal metaplasia 
and, in severe cases, gastric cancer (Capurro et al., 2019). Such strong infectivity and pathogenicity 
make H. pylori recognized as Class 1 carcinogen and a major risk factor for the development of 
gastric cancer, which is highly thought of as the third leading cause of death worldwide (Mera et al., 
2018). The pioneering H. pylori eradication regimen was the standard triple therapy consisting of 
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proton pump inhibitors (PPI), amoxicillin, and clarithromycin or 
metronidazole proposed by the European Maastricht V/Florence 
consensus report (Malfertheiner et al., 2007). However, the emergence 
of resistant strains of metronidazole and clarithromycin has led to a 
steady decline in the eradication rate of standard triple therapy. For this 
purpose, recently a new strategy has been implemented in various 
regions of the world, namely quadruple therapy containing bismuth 
agent (bismuth agent +PPI+ two antibiotics) is highly recommended 
when high resistance of clarithromycin and metronidazole occurs 
(Fallone et al., 2016; Malfertheiner et al., 2017). Nevertheless, eradication 
of established H. pylori infection in vivo is challenging due to several 
factors concerning the duration of drug administration, primary 
antibiotic resistance, and stability of gastric acid secretion therapy 
(Praditya et al., 2019). Conventional medicine necessitates frequent 
administration because of its short half-life in the gastric mucus, thus 
causing non-negligible side effects regarding the mucosal microbiome 
(Coker et  al., 2018). Given these factors, a reasonable approach to 
promote therapeutic outcomes is to develop the ability to deliver anti-
suitable drugs in the gastric niche, while considering the stability and 
compatibility of therapeutic agents in an acidic environment. 
Apparently, owing to their unique potential regarding beneficial 
biocompatibility and bioactivity, advanced biomaterials are rapidly 
becoming a promising research trend in the field (de Souza et al., 2021).

Biomaterials are currently defined as substances that have been 
designed to take a form that, alone or as part of a complex system, is 
designed to guide the process of any therapeutic or diagnostic process by 
controlling the interaction with the components of the living system 
(Zhang et al., 2020; Butkovich et al., 2021). Biomaterials are generally 
classified into three categories: organic, inorganic, and bio-based 
materials. Among them, bio-based materials are mainly derived from 
cells, bacteria, and viruses, such as protein-based nano systems and outer 
membrane vesicles. In addition, according to their sources, biomaterials 
can be divided into natural and synthetic materials (Han et al., 2022). 
Natural biomaterials have been utilized for a long time due to their 
superior biocompatibility, biodegradability, low toxicity, and 
hypoallergenic, and the degradation products yielded are less cytotoxic, 
thus metabolized more easily by host tissues (Zhu et al., 2021; Han et al., 
2022). Nowadays, biomaterials have achieved encouraging prospects in 
various fields, as well as increasingly becoming a new hotspot in the 
treatment of H. pylori (de Souza et al., 2021). Combining drugs with 
advanced biomaterials systems not only enables specific response delivery 
to the H. pylori parasite site but also prolongs the release rate of drugs at 
the target site (Darroudi et al., 2021). The application of biomaterials for 
the eradication of high drug resistance of H. pylori has become a new 
research trend. Here, bibliometrics and visual analysis are primarily 
adopted in the “quantitative analysis” section to generally explore the 
characteristics of studies on eradicating H. pylori with biomaterials over 
the past decade. Additionally, the main research topics and emerging 
trends are reviewed in the “main text” section based on the bibliometric 
analysis, and the potential challenges and forthcoming prospects of 
H. pylori eradication by biomaterials are discussed insightfully.

2. Quantitative analysis

Focused on the research trends in biomaterials for H. pylori 
eradication, this study employs bibliometric analysis to achieve 
visualization of the related topic. The bibliometric analysis allows not 
only quantitative and qualitative evaluation of publications but also 
the prediction of trends in a research field. It makes it possible to 
present the most influential research results and provide a theoretical 
basis for further research quickly and accurately (Ouyang et al., 2021). 
Through a decade of relevant bibliometric analysis, we overviewed the 
research progress of treating H. pylori with biomaterials intensively. 
Based on the identified publication trends, biomaterials have been 
playing an irreplaceable role in not only drug delivery systems but also 
pharmaceutical ingredients for H. pylori therapy. Therefore, this 
section will summarize the current state of development and potential 
opportunities and challenges in this field, as well as evaluate the main 
research topics and emerging trends with a critical perspective.

2.1. Search methodology

The data used to perform bibliometric analysis in this paper were 
extracted from the Web of Science Collection Core of Nanchang 
University Library,1 which is an important database platform for 
domestic and international scholars to retrieve and obtain information 
about relevant academic literature. We chose to obtain data from the 
core collection because it owns a stringent evaluation of publications, 
thus ensuring the high quality of the literature (Zhang et al., 2022). 
Additionally, the WoSCC database is constantly and dynamically 
updated and provides the most impactful, relevant, and reliable 
information (Palechor-Trochez et al., 2021). The search strategy was 
set as “(TS = (Helicobacter pylori)) AND TS = (biomaterials).” Listed as 
follows are the selection criteria: (Reshetnyak and Reshetnyak, 2017) 
timespan: ranging from 2012-01-01 to 2022-01-01; (Rajinikanth et al., 
2007) type: article or review, language: English. Initially, a total of 219 
articles were retrieved. Taking into account the deviations from daily 
updates to the database, all the data was collected at the same time on 
April 24, 2022. Two collaborators independently screened the title and 
abstract of each result excluding irrelevant literature. Ultimately, a 
total of 101 pieces of literature on the topic of biomaterial therapy for 
H. pylori were collected and downloaded as pure text with full citation 
and recorded in meta data named biomaterials eradicate H. pylori. 
Subsequently, VOSviewer (version 1.6.18.0), CiteSpace (version 
6.1.R1), and R (version 4.2.1) were implemented for further data 
processing and visual analysis (Chen et al., 2020; Figure 1).

2.2. Annual publications and countries 
distribution

The annual distribution of the number of articles published in the 
past decade is presented in Figure 2A, indicating that the number of 
articles varies in an S-shape with the year. Although there was a 
transient declining volume in the intervening years, the trend remains 

1 http://lib.ncu. http://edu.cn/

Abbreviations: H. pylori, Helicobacter pylori; PPI, proton pump inhibitors; NPs, 

Nanoparticles; FRS, Floating raft system; Urel, urea transport channel protein; 3SL, 

3′-sialoyl lactose; p3SLP, multiple 3′-sialoyl lactose (3SL)-coupled poly (l-lysine)-

based photosensitizers; SabA, acid-binding adhesin; LPs, Liposomes; LLA, linolenic 

acid; NLC, nanostructured lipid carriers; PEI, polyethyleneimine.
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steady increment over the last 5 years. Noteworthily, the volume of 
publications in the last 3 years is confronted with the most rapid 
growth, dramatically accounting for more than half of the total. There 
are adequate reasons to believe that the heat of this field will keep 

rising sequentially for years to come. As illustrated in Figure  2B, 
among all countries, China (24 articles) possesses the largest number 
of published articles compared with other countries. Moreover, India 
(14 articles) and Portugal (13 articles) present an exceptional 
contribution in this field as well, respectively ranking second and 
third. Among all high-producing countries, China and Egypt, 
respectively, are more strongly engaged with other countries 
(Figures 2B,C). These discrepancies may be closely related to the local 
infection situation and the level of research. This division of 
relationships is beneficial to contribute to scientists exploring where 
they should establish some important data for those partnerships.

2.3. Journal distribution and co-citation 
analysis

Listed below are the journals that published the most papers in the 
last decade (Table 1). The “International journal of pharmaceutics” (8 
articles) owns the highest outputs, followed by “Acta biomaterialia” (6 
articles) and “International Journal of biological macromolecules” (6 
articles). At the same time, the “International journal of 
pharmaceutics” is cited most among all the journals, totally reaching 

FIGURE 1

Flow charts of search strategies and filtering methods.

A B

C

FIGURE 2

Annual publication status (A), major productive countries distribution (B), and Country Collaboration Map (C). Each node represents a country, and the 
line between the two nodes indicates that they have a co-occurrence relationship. The larger the node means the greater the volume of national 
publications. The closer the distance, the stronger the relationship. Moreover, the more yellow the color tends to be, the more cutting-edge the 
research is (A,B). The red path signifies the partnership between the countries, and the wider the red means the closer the cooperation (C).
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225 times. However, the “Journal of controlled release” possesses the 
maximum average citations, which demonstrates it is relatively more 
widely recognized and authoritative. Overall, the top 10 journals with 
up to two-fifths of the total number of publications have an average 
impact factor (IF) of 8.0775, among which “Biomaterials” ranks 
highest (IF = 15.304). Additionally, the double overlay of journals 
reveals the distribution of relationships between journals. In Figure 3, 
the left side represents the distribution of the citing literature by 
journal, reflecting the dominant disciplines to which Science Mapping 
belongs; the right side is the distribution of the corresponding cited 
literature by journal, indicating which disciplines Science Mapping 
primarily cites. The orange and purple paths in the graph illustrate that 
articles published in the MOLECULAR/BIOLOGY/GENETICS and 
CHEMISTRY/MATERIALS/PHYSICS directions are frequently cited 
by articles in the MOLECULAR /BIOLOGY/ IMMUNOLOGY and. 
PHYSICS/ MATERIALS/ CHEMISTRY directions. Moreover, 
magazines in the same direction are clustered in the same color block 
to show the reference relationship between different fields.

2.4. The most productive institutions and 
authors

Figure 4 illustrates the cluster network of institutions and authors 
cited. A total of 168 institutions and 540 authors were analyzed, and 
we  selected the top representative results for visualization. 
Subsequently, we analyzed the total number of publications, citations, 
and citations per article for the 10 most productive institutions and 
authors. As exhibited in Figure 4A, the University of Porto (13 articles) 
has the largest number of publications, more than twice as numerous 
as the second university. And it is most frequently cited by other 
institutions, reflecting the high credibility of this institution in the field 
of biomaterials treating H. pylori. Nevertheless, the output of the 
Ocean University of China has been cited more extensively in recent 
years, probably owing to its more cutting-edge research direction. 
Despite the lower volume of publications, the University of California 
San Diego holds the most citations and average citations, with an 
average of higher than 100 citations per article, which reveals the 
relatively advanced quality of this institution’s publications (Table 2). 
In addition, the network map of each author’s publications and 
citations over the last decade is depicted in Figure 4B. Among the 
top  10 authors, each contributing no less than 3 papers, Martins, 

M. Crastinal is the most prolific contributor to the field. Furthermore, 
he possesses a total of 253 citations, with the highest citation link 
strengths (Table  3). A three-Field Plot of authors, keywords, and 
institutions is exhibited in Figure  4C, which reveals the research 
orientation of each high-yield author and institution. Figure  4C 
highlights that the majority of scholars and research institutions have 
investigated biomaterials for the treatment of H. pylori focusing on the 
areas of chitosan, nanomaterials, drug delivery, and bacterial adhesion. 
The University of Porto has the broadest research area of any 
institution, while with a focus on chitosan materials.

2.5. The analysis of keywords and frontiers

As the core of scientific papers, keyword analysis is utilized to track 
the evolution of knowledge, hot spots, and future research directions. 
According to Figure  5A, both high occurrences and meaningful 
keywords of drug or biomaterials are revealed including nanoparticles 
(Wang et  al., 2019), chitosan (Chen et  al., 2020), drug-delivery 
(Darroudi et al., 2021), microspheres (Han et al., 2022), amoxicillin 
(Butkovich et  al., 2021), Clarithromycin (Butkovich et  al., 2021), 
eradication (Butkovich et al., 2021) and release (de Souza et al., 2021). 
Keywords with a frequency of at least five occurrences were extracted 
using VOSviewer to obtain a visual network for co-occurrence analysis, 
and the co-occurrence relationships between various types of keywords 
were analyzed, resulting in a total of four categories of hotspots for 
current research. As shown in Figure 5A, all keywords were clustered 
into four clusters displayed in different colors, and nodes with common 
attributes were partitioned into a color-coded cluster. Green clusters 
are mainly associated with H. pylori infection, including Helicobacter 
pylori, infection, in-vitro, chitosan, treatment, eradication, etc. Blue 
clusters are mostly relevant to nanoparticles, including nanoparticles, 
drug delivery, cytotoxicity, apoptosis, etc. Red clusters are largely 
involved with microparticles and carried drugs regarding amoxicillin, 
clarithromycin, microspheres and mucoadhesive, etc. Yellow clusters 
are chiefly concerned with the adhesion and resistance of biomaterials, 
including adhesion, biomaterials, resistance, etc. The keywords with 
the strongest bursts in this domain are highlighted in Figure 5B. The 
red line indicates the time of keyword bursts. Anchored in the burst 
keywords for discovery, the primary phase features mostly disease and 
drug keywords concerning gastric cancer, microsomes, and chitosan, 
suggesting that biomaterials may be applied largely in drug delivery to 

TABLE 1 Top 10 leading journals related to H. pylori and Biomaterials research from 2012 to 2021.

Journal title Records Citations Average citation IF (2022)

International journal of pharmaceutics 8 225 28.13 6.510

Acta biomaterialia 6 87 14.50 10.633

International journal of biological macromolecules 6 78 13.00 8.025

Scientific reports 4 66 16.50 4.996

European journal of pharmaceutics and biopharmaceutics 4 42 10.50 5.589

Molecular pharmaceutics 4 100 25.00 5.364

Expert review of anti-infective therapy 3 39 13.00 5.854

Journal of controlled release 3 142 47.33 11.467

Biomaterials 3 134 44.67 15.304

International journal of nanomedicine 3 54 18.00 7.033
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exert specific functions. In the middle of the period, the keywords 
“adhesion” and “adsorption” outbreak lasted for 2 years, which 
illustrates that biomaterials with adsorption and adhesion functions 
were comparatively promising at that time. Nonetheless, in recent 
years, with the emergence of drug resistance coming, the development 
of biomaterials applications has concentrated on antibacterial activity 
and antibiotic resistance solutions, which will remain a hot topic of 
research in the future.

2.6. Analysis of keyword evolution and 
continuity

The landscape generated using CiteSpace keyword clustering in 
Figure 6A shows 9 clusters, each labeled with the tag #. The 9 clusters 
are identified as follows: #0 H. pylori, #1 pectin, #2 inflammatory 
bowel disease, #3 bacterial infection, #4 glyceryl mono stearate, #5 
bacterial adhesion, #6 nanoemulsion, #7gastric retention, and #8 
antibacterial activity. The evolution of the various materials and 
methods over time is exhibited in each type of cluster. The close 
temporal connection between the main keywords is better visualized 
in Figure 6B, where one vertical bar represents one year. As is reflected 
that in the first 5 years, miscellaneous biomaterials are predominantly 
implemented in drug delivery, while the latter 5 years are focused on 
drug resistance applications. Additionally, emergent keywords are 
considered indicators of emerging trends. In the following section of 
“main text,” this study will primarily overview the application of 
biomaterials in the eradication of H. pylori, and then further 
investigate the facing challenges and potential opportunities.

3. Main text

The difficulty of eradicating H. pylori is manifested in multiple 
aspects. As depicted in Figure 7, H. pylori are sheltered from gastric 

acid by the enzyme urease on the surface of its outer membrane, 
which breaks down the urea in the surroundings, thus creating a near-
neutral microenvironment (Watanabe et al., 2009). Relying on the 
continuous movement of its flagellum, H. pylori penetrated and 
anchored on the epithelial cell surface of the gastric mucosa, not only 
effectively avoiding gastric acid erosion, but also significantly 
minimizing the effect of gastric emptying (Saha et  al., 2010). 
Conversely, most antibacterial drugs are less active or even inactivated 
in the extremely acidic environment of the stomach (Khan et  al., 
2022). Even if not catabolized, regular gastric emptying diminishes the 
concentration of drug accumulation at the site of infection. Since 
H. pylori colonize deep in the mucus layer, the effective contact of 
antimicrobial drugs with the organism is blocked, making it 
impractical for the drugs to be efficacious (Vázquez and Villaverde, 
2013). Additionally, H. pylori successfully evade the host immune 
response by modifying its outer membrane proteins to escape 
recognition by the organism, promoting apoptosis of macrophages, 
inhibiting the migration and uptake of immune cells, suppressing the 
T-cell immune response, etc. (Kao et al., 2010). Therefore, exploiting 
biomaterials that reinforce the body’s immune response to H. pylori is 
essential for the eradication of H. pylori (Tshibangu-Kabamba and 
Yamaoka, 2021). Owing to the frequent interchange of DNA, H. pylori 
is susceptible to the development of highly variable strains in 
continuous infections (Suerbaum et al., 1998). Generally, H. pylori 
infections are persistent, and long-term infections tend to form 
biofilms, resulting in further resistance (Hathroubi et al., 2018).

The physicochemical properties of biomaterials and their intended 
routes of delivery have the potential to be systematically tailored to 
maximize therapeutic efficacy (Khan et al., 2022).

According to our bibliometric analysis, nanoparticles ranked 
second in the number of occurrences among the occurrence of 
keywords, trailing only H. pylori, indicating nanoparticles play a 
significant role in the eradication of H. pylori. Subsequently, the 
materials or drugs with a relatively high number of occurrences are 
“chitosan,” “amoxicillin,” “microspheres” and “clarithromycin” 

FIGURE 3

The dual-map overlay of journals on biomaterials eradicating Helicobacter pylori. The double map overlay of journals shows the relationship between 
the two and the distribution among journals, with the citing journals on the left and the cited journals on the right.

85

https://doi.org/10.3389/fmicb.2023.1081271
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Shu et al. 10.3389/fmicb.2023.1081271

Frontiers in Microbiology 06 frontiersin.org

successively. Primarily this is because chitosan particles increase the 
stability of the nanoparticle structure and ameliorate the drug release 
rate to some extent. Amoxicillin and clarithromycin are frequently 
utilized to eradicate H. pylori as the primary optional antibacterial 
antibiotics in triple and quadruple therapies. Noteworthily, keywords 
including “drug delivery” and “release” are also listed as high-
frequency terms, foreshadowing that biomaterials treat H. pylori 
majorly exert effects by improving the release of drug delivery systems. 
Biomaterials have improved the delivery and efficacy of a range of 
drug compounds (Langer, 1990). Most of these materials are designed 
to extend drug retention time and enable further targeted drug 
delivery, resulting in efficient eradication with reduced dosage and 
reduced toxicity to the patient.

Given the characteristics and therapeutic limitations of H. pylori 
eradication, the construction of appropriate drug delivery systems for 
the efficient delivery of existing antimicrobial drugs at the site of 
infection is a potential platform technology with relatively low risk 
and high return compared to novel antibacterial drugs (Hussain et al., 
2018). On the basis of bibliometric analysis and literature review, 
we summarize four dominant directions of biomaterials in the field of 
H. pylori eradication from the historical perspective of biomaterials 

drug delivery research: (Reshetnyak and Reshetnyak, 2017) Release 
control biomaterials, (Rajinikanth et al., 2007) Targeted biomaterials, 
(Hooi et al., 2017) Bionic Biomaterials, and (Capurro et al., 2019) 
Overcoming H. pylori drug resistance. We highlight current challenges 
in the field of drug delivery, breakthroughs in biomaterials research to 
overcome these barriers, and future considerations and opportunities 
for biomaterials in clinical applications.

3.1. Release control biomaterials

Historically, innumerable clinical practices have demonstrated 
extremely challenging to eradicate H. pylori with single drug therapy 
(Graham, 2014; Boyanova et  al., 2019; Tshibangu-Kabamba and 
Yamaoka, 2021). The contact time of the antibacterial agent with the 
organism needs to be sufficiently long. Early reports suggested that by 
increasing the in vivo contact time of the drug with H. pylori, the 
eradication efficiency would be  significantly enhanced. Clinical 
experience has established that the necessity to evaluate the 
pharmacodynamics and pharmacokinetics of the agents to guarantee 
optimal bioavailability and concentration in the gastric mucosal fluid 

A B

C

FIGURE 4

Cited institution (A), author cooperation analysis (B), and Three-Field Plot of author, keyword, and institution (C). Each node represents an institution or 
an author, and the line between the two nodes indicates that they have a co-occurrence relationship. Moreover, the closer the distance, the stronger 
the relationship (A,B). In (C), the leftmost square represents the author, the middle is the keyword, and the rightmost is the institution and longer 
squares mean more research.
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after administration is also an essential factor in the difficulty of 
H. pylori eradication (Graham and Dore, 2016). Variable forms of 
drug delivery systems by using materials with bioadhesive properties 
are able to maximize the drug residence time in the stomach (Sachin 
and Karn, 2021). Researchers have developed a variety of gastric 
retention and release control systems, ranging from bioadhesive 
systems, mucosal penetration systems, and floating raft systems to 
micro-motor systems et al., among which biomaterials have played an 
irreplaceable role in slowing the release rate and increasing drug 
concentration as novel delivery systems.

3.1.1. Biological adhesion materials
Biological adhesion materials are usually hydrophilic gel polymers 

containing a multitude of hydrogen bonding groups including carboxy 
and hydroxyl groups (Wang et  al., 2019). The most prevalent 
polymeric materials utilized for biological adhesion of gastric mucus 
are chitosan and its derivatives, wheat soluble protein, 
Polyalkylcyanoacrylate, etc. (Qu et  al., 2018). Among mucosal 
adhesion polymers, deacetylated chitosan is intriguing due to its 
biodegradability, biological adhesion, and ability to enhance the 
uptake of active macromolecules (Hejazi and Amiji, 2003). The -NH2 
group of chitosan and its derivatives is protonated at the acidic pH of 
gastric juice and establishes electrostatic interactions with negatively 
charged gastric mucin and bacterial membranes, thereby exhibiting 
adhesion properties, and consequently has been developed recurrently 
for gastric applications (Chaves de Souza et  al., 2020; Lang et  al., 

2020). The lipophilic amino acid residues of maltolysin are capable of 
interacting with biological tissues, while maltolysin nanoparticles are 
susceptible to aggregation by pH, temperature, and salt, thus achieving 
their adhesion properties (Arangoa et al., 2000).

In the recent decade, chitosan nanoparticles or biologically 
modified materials have been gradually found to be combined with 
loaded drugs to prolong drug delivery through bioadhesion 
(Gonçalves et  al., 2014). The reacetylated chitosan microspheres 
developed and optimized by Portero et al. (2002) exhibited controlled 
water solubility and gelation at acidic pH, leading to prolonged release 
of encapsulated anti-H. pylori drugs. It was revealed that the time of 
reacetylation is a major factor affecting the drug release and the 
encapsulation efficiency and antimicrobial activity of the encapsulated 
compounds. These similar experiments provide a certain foundation 
for future design optimization of chitosan biomaterials. The in vivo 
and in vitro experiments of chitosan nanoparticles against H. pylori 
designed by Luo’s team demonstrated that the anti-H. pylori effect of 
chitosan (CS) nanoparticles solution was negatively correlated with 
pH when pH was 4–6. Moreover, this work revealed that the 
anti-H. pylori effect of 88.5% deacetylated (DD88.5) CS NPs and 95% 
deacetylated (DD95) CS NPs was 55 and 75%, respectively. A more 
in-depth study was conducted by Chang et al. (2020) They observed 
that at pH 2.0, 4,000 g/ml DD95 suppressed the urease activity of 
H. pylori by 37.86 to 46.53%. In the presence of 50 g/mL of the 
antibiotics amoxicillin, tetracycline, or metronidazole at pH 6.0 and 
pH 2.0, H. pylori counts decreased by 1.51–3.19 and 1.47–2.82 Log 

TABLE 2 Analysis of the output and citations of the top 10 institutions.

Institute Records Citations Average citations Link strength

University of Porto 13 279 21.46 57

Ocean University of China 6 39 6.50 26

Al-Azhar University 5 13 2.60 24

University of California San Diego 4 431 107.75 21

University of Münster 4 129 32.25 10

China Medical University 3 151 50.33 14

King Faisal University 3 51 17.00 2

São Paulo State University 3 33 11.00 14

Chongqing University 2 43 21.50 0

China Pharmaceutical University 2 10 5.00 5

TABLE 3 Analysis of the output and co-authorship of the top 10 authors.

Author Documents Citations Average citations Link strength

Martins, m. Cristina l. 11 253 23.00 46

Goncalves, Ines c. 9 190 21.11 38

Reis, Celso a. 5 82 16.40 28

Arif, Muhammad 5 27 5.40 22

Henriques, Patricia c. 4 49 12.25 20

Sharaf, Mohamed 4 8 2.00 19

Chi, Zhe 4 26 6.50 18

Nunes, Claudia 4 112 28.00 17

Reis, Salette 4 112 28.00 17

Magalhaes, Ana 3 43 14.33 16
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CFU/mL, respectively, while the addition of the same dose and 
concentration of DD95 under the same conditions strongly depressed 
the total H. pylori counts by 3.67–7.61 and 6.61–6.70 Log CFU/
mL. With the loading of antibiotics such as tetracycline and 
metronidazole, the delivery system suppressed the adhesion of 
H. pylori to cells, thereby promoting the eradication rate of H. pylori. 
Therefore, biological adhesion materials are promising carriers for the 
controlled delivery of antimicrobial agents to the gastric cavity and 
therefore for the eradication of H. pylori, a pathogen closely associated 
with gastric ulcers and possibly gastric cancer.

3.1.2. Mucus-penetrating system
Given that H. pylori are colonized under the mucus layer, mucus-

penetrating agents facilitate drug delivery to the site of infection and 
thus enhance eradication rates (Chmiela and Kupcinskas, 2019). 
Depending on the properties of mucin, a major component of mucus, 
it is assumed that nanoparticles with hydrophilic, negatively charged 
surfaces and small particle sizes are capable of effectively penetrating 
the mucus layer (Nogueira et  al., 2013). Previous research has 
established that positively charged chitosan nanoparticles facilitate 
mucosal penetration. However, Zhang et  al. (2018) designed a 
biomaterial in which nanoparticles were electrostatically self-
assembled with antigen and cell-penetrating peptide (CPP) and then 
coated with a “mucus-inert” PEG derivative that gradually dissociated 
from the nanoparticles in the mucus, exposing the CPP-rich core and 
thus enabling penetration. The experiment results demonstrated that 
the nanoparticles overcome the mucus barrier for active drug delivery 
after oral administration. Compared with the positively charged 
chitosan nanoparticles, the PEG-modified nanoparticles weakened 
the interaction with mucin and could effectively penetrate the mucus 
layer to reach the infection site, which further strengthened the 

elimination rate of H. pylori. Consequently, the whole material reduces 
the contact with gastric mucin and also achieves the effect of drug 
delivery by osmosis.

In addition to the construction of nanoparticles with a hydrophilic 
surface, negative charge, and small particle size, the applied magnetic 
field is capable of facilitating the effective penetration of the drug 
delivery system into the gastric mucus layer and reaching the site of 
H. pylori infection (Silva et  al., 2009). For instance, Chitosan/
polyacrylic acid particles co-loaded with superparamagnetic iron 
oxide nanoparticles and amoxicillin prepared by Yang et al. (2020) 
were employed as drug nanocarriers for H. pylori eradication therapy. 
The nanocarriers noticeably enhanced the penetration into the gastric 
mucus layer and improved the eradication of H. pylori when exposed 
to an applied magnetic field. The results showed that all the 
nanoparticles accumulated at the bottom of the mucus layer after 
10 min of the applied magnetic field, indicating that the mucus 
penetration efficiency of the prepared magnetic nanoparticles could 
be controlled by the applied magnetic field. Similarly, Walker et al. 
(2015) prepared a magnetic microhelix system with immobilized 
urease on the surface by simulating the movement of H. pylori through 
the gastric mucus layer. The results exhibited that the applied magnetic 
field allowed the system to advance efficiently in the gastric mucus 
layer, while the surface-immobilized urease significantly promoted the 
mobility of the microparticles. Therefore, these nanocarriers prolong 
the residence time of the drug in the stomach, reducing the drug dose 
and treatment time required for H. pylori eradication therapy.

3.1.3. Floating raft system (FRS)
Among the dwelling drug delivery systems, the floating raft 

system achieves drug gastric retention by floating on the gastric 
contents for prolonged drug delivery as a result of its low density and 

A B

FIGURE 5

Co-occurrence network of keywords with a minimum of 5 occurrences (A). The top 15 keywords with the strongest citation bursts (B). All the 
keywords are divided into four clusters, each represented by a different color. Every node symbolizes a keyword, and the line between two keywords 
indicates that they have a co-occurrence relationship. Additionally, the closer the distance, the stronger the relationship (A). Top 15 bursting keywords 
in articles related to eradication of H. pylori by biomaterials. The blue line represents the time line, and the interval at which bursts were found is 
indicated by the red portion of the blue timeline, representing the start year, end year, and outbreak duration (B).
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has been evaluated for maintaining drug delivery and targeting 
(Thombre and Gide, 2016). Conway’s group (Adebisi et al., 2015) 
developed calcium alginate microspheres by ionic gelation and 
modified them with chitosan and oil to optimize float ability, adhesion, 
and drug release. The experimental results revealed that the floating 
beads remained for at least 24 h. More than 75% of the beads were 
adherent to the gastric mucosa for more than 8 h and guaranteed drug 
release, indicating the fresh dosage form ensures better retention time 
in the stomach than the convention. Additionally, Rajinikanth et al. 
(2007) demonstrated the feasibility of prolonging the gastric residence 
time and release rate of metronidazole utilizing an FRS prepared from 
ion-sensitive in situ gels. FRS consists of sodium alginate and gellan 
gum, sodium citrate and calcium carbonate, and lipids. Release kinetic 
studies of the selected formulation revealed that FRS had a short-term 
gelation lag time (3 s) and a duration of up to 24 h, with a reliable slow 

release of the drug. The refined properties of the selected FRS make it 
an excellent candidate for gastric-targeted eradication of H. pylori.

3.1.4. Nanomotor system
The protracted administration of PPI is prone to side effects 

involving osteoporosis, vitamin C deficiency, etc. (Pouwels et al., 2011; 
Heidelbaugh, 2013). Nevertheless, bio-inspired design principles and 
advances in nanomaterials have generated significant advances in the 
field of intra-gastrointestinal drug delivery, especially in nano/micro 
motors, which are essentially chemically neutralized to modulate the 
harsh acidic environment to neutral and avoid reducing the efficacy 
of the drug. Micromotors commonly refer to chemically driven 
nanomotors, which are small devices facilitated by catalytic reactions 
in liquids (Sánchez et al., 2015). Artificial micromotors enable self-
propulsion in the stomach, enhanced retention of intestinal fluid in 

FIGURE 6

Timeline (A) and timezone (B) of keywords. 11 clusters are shown in A, and each is labeled with the tag #. The smaller the number, the more keywords 
are included in the cluster. Each node represents a keyword, and the time when the node appears indicates the time when the keyword emerged. The 
line between nodes indicates the relationship between keywords and the continuity in time.
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the gastric mucosal layer, and targeted delivery in the gastrointestinal 
tract. Walker et al. (2015) demonstrated the ability of magnetic micro 
propellers to move through gastric mucus gel by simulating the mucus 
permeation strategy of H. pylori.

In regard to eradicating H. pylori, Wu et al. (2021) report a 
nanomotor that allows small molecules of clarithromycin, calcium 
peroxide nanoparticles (CaO2) and platinum nanoparticles to 
be  loaded into the motor via ultrasound. The nanomotor can 
rapidly consume gastric acid and temporarily neutralize gastric 
acid by the chemical reaction of CaO2. The reaction of CaO2 with 
gastric juice has been demonstrated by in vivo experiments to 
result in rapid consumption of protons, thereby temporarily 
neutralizing acid without affecting normal gastric function. In 
particular, the acid-driven nanomotors can be effectively loaded 
with antimicrobial drugs and exhibit prominent bactericidal 
activity. Similarly, Wang et al. (de Ávila et al. 2017) experimented 
with the efficient propulsion of magnesium-based micromotors in 

an acidic gastric environment. Upon temporary depletion of 
gastric acid, they were actively and persistently retained in the 
gastric mucosa. The experimental results illustrate that acid-driven 
magnesium-based micromotors efficiently load clinical doses of 
drugs and exert significant H. pylori eradication capabilities. These 
conclusions implicate the nanomotor as a promising alternative to 
PPI in H. pylori eradication.

3.1.5. Magnetic release control biomaterials
Magnetic drug delivery particle carriers are a tremendously 

effective modality for delivering drugs to localized disease sites in the 
gastrointestinal tract. The speed of passage through the GI tract can 
be slowed down at specific locations by external magnets, thus altering 
the time and extent of drug absorption in the stomach or intestines 
(Häfeli, 2004). Furthermore, Thamphiwatana et al. (2013) attached 
chitosan-modified gold nanoparticles to the outer surface of 
doxycycline-loaded anionic liposomes. Under a gastric acidic 

FIGURE 7

Helicobacter pylori infection and common methods of biomaterials in Anti-H. pylori. H. pylori colonizes and survives for a long time in the body 
through resistance to acidic environment, biofilm formation, and immune escape. Biomaterials are designed for H. pylori eradication by killing H. pylori, 
destroying biofilms, releasing controlled drugs, targeting drug delivery, inhibiting adhesion, and enhancing immunity based on superior 
biocompatibility.
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environment, the gold nanoparticles spontaneously bound to the 
surface of the anionic liposomes by the mutual attraction of 
heterogeneous charges, which effectively delayed the drug release. 
Once the neutral pH environment was reached, the surface charge of 
gold nanoparticles was reduced to detach from the liposomes, 
exposing the drug-loaded liposomes, which released the drug by 
fusing with H. pylori cell membranes. Compared with free doxycycline, 
the gold nanoparticle-encapsulated liposomes displayed a stronger 
antibacterial effect against H. pylori.

With multidisciplinary cross-fertilization, Yang et  al. (2014) 
Chitosan/polyacrylic acid particles physically co-loaded with 
superparamagnetic iron oxide nanoparticles and amoxicillin (SPIO/
AMO@PAA/CHI) were used as drug nanocarriers for H. pylori 
eradication therapy. In vitro and in vivo results showed that the 
designed SPIO/AMO@PAA/CHI nanoparticles were biocompatible 
and could retain the biofilm inhibitory and bactericidal effects of 
amoxicillin against H. pylori. In addition, the mucosal adhesion 
properties of chitosan allow SPIO/AMO/PAA/CHI nanoparticles to 
adhere to the gastric mucus layer and to rapidly cross the mucus layer 
after exposure to a magnetic field. Consequently, the application of 
this nanocarrier allows for prolonged drug residence time in the 
stomach, reduced drug doses, and treatment cycles for H. pylori 
eradication therapy (Yun et al., 2015).

3.2. Targeted biomaterials

To date, polymers that respond to numerous different triggers 
have been developed and explored for biomaterial applications (Chen 
et al., 2019). The aims of each of these systems are to promote drug 
accuracy, as well as to augment the quality of life of patients. Recently, 
stimulus-responsive “smart” biomaterials have been designed to 
initiate drug release in response to a range of environmental stimuli 
(e.g., pH, urel, photo response). In this section, we  highlight 
specifically targeted drug delivery biomaterials for the treatment of 
H. pylori from multiple perspectives.

3.2.1. PH-response biomaterials
pH-sensitive specific materials hold promising prospects for a 

widespread application in anti-H. pylori drug delivery systems. Su 
et  al. (2016) synthesized a poly (glutamic acid-arginine) complex 
peptide, which exhibited different morphologies in different pH 
environments to control drug release. At pH 2.5, the nanoparticles 
formed by peptide self-assembly were dense and intact spheres with 
little release of amoxicillin. The peptide nanoparticles exhibited a 
diffuse state when pH 7.0, therefore contributing to the steady release 
of amoxicillin. Furthermore, Jing et  al. (2016) designed and 
synthesized a pH-response drug delivery system against H. pylori 
using UCCs/TPP nanoparticles encapsulated with amoxicillin. The 
results showed that the amoxicillin- UCCs /TPP nanoparticles had 
superior PH-sensitivity and could delay the release of amoxicillin in 
gastric acid, enabling the effective delivery and targeting of the drug 
to the survival region of H. pylori. The protective effect of these 
bio-nanoparticles on amoxicillin and the controlled release resulted 
in the inhibition of H. pylori growth about 5.1 times higher than that 
of single amoxicillin.

In a further breakthrough, low molecular weight rockrose gums/
CS-N-Arg NPs have been developed (Lin et al., 2017). The NPs were 

further cross-linked with genipin to obtain pH-responsive nanogels. 
Ultimately, they were found to exert inhibitory effects on H. pylori 
adherence and preventive effects on pathogen-induced gastric 
epithelial cytotoxicity. Recently, Yan et  al. (2021) report a 
pH-responsive persistent luminescence enzyme for in vivo imaging 
and inactivation of H. pylori. The persistent luminescence enzyme, 
composed of mesoporous silica-coated sustained luminescence 
nanoparticles, Au nanoparticles, and chitosan-benzoic acid, exhibits 
good resistance to gastric acid corrosion and exhibiting pH-activated 
dual-nano activity, thereby catalyzing the performance of bactericidal 
reactive oxygen species.

3.2.2. Urel targeted materials
The urea transport channel protein (Urel) is one of the most 

essential factors for the survival of H. pylori in the stomach, as it 
modulates the opening and closing state according to the pH value of 
the stomach (Cui et al., 2019). UreI is utilized as a target for delivering 
drugs to block the transport of urea and disrupt the survival 
environment of H. pylori so as to make it fail to colonize the gastric 
mucosa, thereby achieving the eradication of H. pylori. Building on 
the UreI-mediated targeted drug delivery system, scientists have 
invented biological nanomaterials for the specific eradication of 
H. pylori. Luo et al. (2018) reported that ureido-conjugated chitosan 
showed the ability to target UreI specifically expressed by H. pylori. 
The ability of the drug delivery system constructed on the basis to 
eliminate H. pylori was significantly enhanced. Analogously, Cong 
et al. (2019) coupled carboxymethyl chitosan modified with stearic 
acid to urea and presented exceptional H. pylori targeting and 
anti-H. pylori efficacy as well.

3.2.3. Photo responsive biomaterials
Photo-responsive therapy, a therapeutic technique in which a 

photosensitizer oxidizes biomolecules and causes irreversible 
damage by generating reactive oxygen species under laser 
irradiation, has attracted increasing attention as a promising 
strategy for eliminating bacteria (Huang et al., 2012; Jeong et al., 
2014). To develop a photo-responsive H. pylori-based therapeutic 
regimen, Na et al. (Im et al., 2021) proposed a photo-responsive 
system targeting H. pylori consisting of multiple 3′-sialoyl lactose 
(3SL)-coupled poly (l-lysine)-based photosensitizers (p3SLP). 
P3SLP achieves specific delivery of H. pylori-based drugs through 
the specificity between 3SL and sialic acid-binding adhesin (SabA) 
on the membrane of H. pylori interaction to achieve specific 
H. pylori-based drug delivery (Garcez et  al., 2010). This is 
principally attributed to the fact that one of the outer membrane 
proteins of H. pylori is sialic acid-binding adhesin (SabA), while 
the 3SL receptor is not expressed in mammalian cells thus avoiding 
undesirable phototoxicity to normal cells (Ling et al., 2012). The 
authors’ gastrointestinal assays in H. pylori-infected mice exhibited 
that the photo-responsive system had a pronounced H. pylori-
specific antibacterial effect with no side effects on normal tissues. 
Additionally, an anti-inflammatory response was observed at the 
site of infection following p3SLP treatment. Although the clinical 
application of photo-responsive treatment of H. pylori is still an 
underdeveloped field, this approach does not contribute to adverse 
drug resistance compared to conventional antibiotic-based 
treatment (Demidova and Hamblin, 2004; Dai et  al., 2009). 
However, the specific wavelength of laser light required for a 
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particular type of photosensitizer varies from one to another. 
Therefore, we can continuously explore more photosensitizers to 
improve the potential of photosensitization therapy for H. pylori 
eradication (Park et al., 2016).

3.3. Bionic biomaterials

Cell membranes have attracted extensive attention in the field of 
biomedicine in recent years due to their properties concerning 
prolonged circulation time in vivo and homologous targeting. For 
example, natural cell membranes are encapsulated with nanoparticles 
in their cores as a shell, allowing the nanoparticles to possess the 
biological properties of natural cells.

3.3.1. Liposomes
Liposomes (LPs) LPs are defined as lipid vesicles composed of one 

or more phospholipid bilayers, with spherical shapes and sizes 
between 25 and 1,000 nm. They can encapsulate lipophilic and 
hydrophilic drugs in lipid membranes and aqueous cores, respectively. 
LPs show many advantages, such as the flexibility to change their 
chemical composition and, moreover, allow for surface 
functionalization or targeted delivery. Considering the cell membrane-
like structure of LPs, they exhibit good biocompatibility, low toxicity, 
etc. Thamphiwatana et  al. (2013) evaluated the activity of LPs 
containing integrated linolenic acid (LLA), naming the system 
LipoLLA, against H. pylori. Several free fatty acids, including LLA, 
have been investigated as new drugs because of their antibacterial 
activity against various bacteria. In this study, fusion with bacteria was 
confirmed by a lipophilic fluorophore label, illustrating that LipoLLA 
was able to cause some damage to the bacterial membrane.

Recently, Martins’ team employed precrol®ATO5 and 
Miglyol®812 as lipids and Tween®60 as a surfactant to prepare 
nanostructured lipid carriers (NLC). Seabra et al. (2018) demonstrated 
that NLC, even without any drug loading, is capable of destroying 
H. pylori at low concentrations. NLC is designed to rapidly bind and 
destroy the H. pylori bacterial film without affecting other bacteria, 
resulting in bacterial death. This study reveals that NLC is a bright 
avenue to explore in the quest for innovative antibiotic-free treatments 
against H. pylori infection.

3.3.2. Membrane biomaterials
The application of natural cell membranes in the field of 

biomimetic nanomedicine has attracted much attention in recent 
years on account of their prolonged circulation time in vivo and 
outstanding biocompatibility. For instance, natural cell membranes are 
encapsulated with nanoparticles in their cores as a shell, thus giving 
the nanoparticles the biological properties of natural cells. Angsantikul 
et  al. (2018) coated gastric epithelial cell membranes with 
clarithromycin-loaded polymers, and the nanoparticles preferentially 
adhered to the surface of H. pylori and presented better therapeutic 
effects in an in vitro test. In addition to host cell membrane mimicry, 
pathogenic cell membrane mimicry nanoparticles could interfere with 
the interaction between pathogenic bacteria and the host. The NPs 
compete with H. pylori for the binding sites on the host cells and 
detach the adherent H. pylori, exerting a noteworthy anti-adhesive 
effect (Zhang et  al., 2019). These explorations are proved to be  a 
pioneering choice as a coating material to boost the biocompatibility 

of drugs, exhibiting properties concerning immune escape, high 
circulation time, moderating elimination of the reticuloendothelial 
system, mimics cellular glycocalyx to prevent serum protein 
adsorption and counteract complement response.

3.3.3. Phage biomaterials
Specially modified phages are available to bind to specific 

pathogenic bacteria. Aiming to strengthen the antibacterial ability of 
phages, genetic engineering and chemotherapeutic drug coupling 
technologies have been established for the modification of phages and 
drug delivery. Cao et al. (2000) constructed a modified phage M13 to 
express a shell protein that fused with H. pylori cell membrane surface-
specific antigen. The results indicated that the recombinant phage 
M13 exhibited bactericidal effects and specifically inhibited the 
growth of six H. pylori strains. Moreover, oral pretreatment with M13 
significantly attenuated the colonization of H. pylori in the stomach of 
mice. Sequentially, Ardekani et al. (2013) successfully exploited an 
M13 phage-based nanovirus. Through sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and Western blotting analysis, the 
nanovirus was confirmed to inhibit urease activity, further disrupting 
the survival environment of H. pylori. There are few studies on phages 
against H. pylori, and no studies have been conducted on their 
application as drug carriers in the field of anti-H. pylori. As the 
mechanism of phage bactericidal activity is completely different from 
that of antibacterial drugs, phage therapy is expected to be  an 
attractive approach to addressing the multidrug resistance of H. pylori. 
However several human gut microbiota research studies have 
demonstrated that phages perform a function in intestinal homeostasis 
(Ferreira et al., 2022). Currently, phages are thought to precisely affect 
the intestinal microbiota and exert beneficial effects on numerous 
gastrointestinal disorders (Muñoz et al., 2020). However, whether the 
M13 phages discussed above have a specific impact on the intestinal 
microbiota still deserves a lot of investigation.

3.4. Overcoming Helicobacter pylori drug 
resistance

Some researchers have recognized H. pylori gene mutations, for 
instance, infB and rpl22 (Binh et al., 2014), as the root cause of drug 
resistance (Gong and Yuan, 2018). Currently, the majority of clinical 
H. pylori therapies are antibiotic therapies. Each antibiotic is associated 
with a specific target, and when the corresponding target is structurally 
altered, the antibiotic is prevented from exerting its original efficacy 
(Gong and Yuan, 2018). The integration of a multi-target antibacterial 
mechanism into the drug delivery system is expected to reduce the 
drug resistance of H. pylori. As portrayed in Figure 8, multiple target 
eradication modalities for H. pylori have been developed in recent 
years. Metallic materials in disrupting H. pylori biofilm and urease 
activity (de Reuse et al., 2013), and probiotic materials in relieving 
inflammation, mitigating H. pylori adhesion, and enhancing immune 
response (Zhang et  al., 2022) have all been demonstrated to 
be  promising alternative therapeutic modalities to overcome 
antibiotic resistance.

3.4.1. Metallic biomaterials
Metal nanoparticles exert antibacterial effects through metal ion 

release, oxidative stress, and non-oxidative stress (Zaidi et al., 2017). 
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As a result of various antibacterial mechanisms, metal nanoparticles 
are efficient at low concentrations and not easily induced to develop 
drug resistance. It was demonstrated that the antibacterial activity of 
silver nanoparticles not only inhibited the respiratory system and 
biofilm formation of H. pylori but also directly interfered with the 
nickel in the urease of H. pylori to inactivate the urease, exerting the 
antibacterial efficacy (Amin et al., 2012). Sreelakshmi et al. (2011) 
synthesized silver nanoparticles using Glycyrrhiza glabra root extract, 
which has known therapeutic activity in the treatment of gastric 
ulcers. In the agar diffusion test, the nanoparticles showed activity 
against H. pylori and can be considered a new method to eradicate this 
bacterium in the treatment of gastric ulcers.

Besides silver, other metals have also been used in the biosynthesis 
of nanoparticles as an alternative treatment for H. pylori infection. It 
is worth mentioning that ZnO NPs have been approved and generally 
recognized as safe for normal cells. Chakraborti et al. (2013) employed 
polyethyleneimine (PEI) functionalized ZnONPs (ZnO-PEI NPs), 
which greatly reduced the surface energy of ZnO NPs. The ZnO-PEI 
NPs were effective against H. pylori metronidazole-resistant strains, 
and their mechanism of action included promoting the production of 
intracellular reactive oxygen species and causing cell membrane and 
RNA damage. Wu et  al. (2019) designed bifunctional magnetic 
nanoparticles placed in a moderate AC magnetic field to locally 

deposit heat and effectively inhibit the growth and virulence of 
H. pylori in vitro. The survival rate of H. pylori was reduced to 1/7 and 
1/5 after treatment with amoxicillin-loaded metal nanoparticles 
compared with that of amoxicillin alone or blank metal nanoparticles, 
respectively. The mechanism may be the damage of the cell membrane 
and increased penetration of amoxicillin into H. pylori, and thus 
elevated the deracinating efficiency of drug-resistant strains. In clinical 
applications and against intestinal microbial infections, pH-sensitive 
cis-aconitate anhydride-modified anti-H. pylori conjugated gold 
nanostars synthesized by Zhi et al. (2019). The near-infrared laser 
photothermal treatment enhanced the bactericidal effect, reduced the 
emergence of H. pylori drug resistance, and even eradicated drug-
resistant strains of H. pylori isolated from clinical patients. 
Additionally, most patients were eliminated from the body within 
7 days after the completion of treatment. Therefore biomaterials do 
hold a promising clinical translation in the eradication of H. pylori. 
However, the side effects of metal nanomaterials and their dosages on 
normal tissues are not well investigated. Kim et al. (2010) evaluated 
the toxic effects of 30 mg/kg, 125 mg/kg, and 500 mg/kg of silver 
nanoparticles injected into rats. As a result, rats injected with more 
than 125 mg/kg of silver nanoparticles exhibited toxic reactions and 
weight loss in the liver. The team revealed that the minimum dose at 
which harmful effects were observed and the minimum dose at which 

FIGURE 8

Drug delivery strategies of biomaterials in H. pylori eradication. Common strategies utilized for drug release control include bioadhesion, mucosal 
penetration, floating raft, nanomotor, and magnetic materials. Methods applied for targeted drug delivery are pH response, Urel targeting, and photo 
response. Biomimetic biological membrane materials are liposomes, cell membranes, and phages. Strategies to overcome drug resistance include 
metal materials, probiotic materials, and the elimination of biofilm.
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adverse effects were observed were determined to be 125 mg/kg and 
30 mg/kg, respectively. Accordingly, the tendency of most metal 
nanoparticles to accumulate in organs such as the kidney (Garcia 
et  al., 2016), liver, lung, and spleen, as well as the under-studied 
toxicity of metal nanoparticles to gastric cell lines, have limited the use 
of metal nanoparticles in the treatment of H. pylori.

3.4.2. Elimination of biofilm
Bacterial biofilm formation is an overwhelming mechanism of 

bacterial drug resistance (Chen et al., 2018). Since the discovery of 
H. pylori biofilm in clinical patients, the problem of drug resistance 
caused by H. pylori biofilm has become a hot topic of interest. It has 
been exhibited that natural products containing N-acetylcysteine, 
polysaccharide sulfate, and curcumin hold the ability to inhibit the 
formation of H. pylori biofilm, while alginate lyase can eliminate 
H. pylori biofilm by disrupting the biofilm structure (Bugli et  al., 
2016). On this foundation, Gurunathan et al. (2015) confirmed that 
the silver nanoparticles stabilized with N-acylhomoserine lactase 
significantly inhibited the formation of H. pylori biofilm, which may 
be  related to the inhibition of biofilm population sensing 
(Gopalakrishnan et al., 2020).

3.4.3. Hydrogen therapy
Interestingly, hydrogen therapy has previously been applied to 

eradicate H. pylori. Wang’s group has presented a pH-responsive 
metal–organic backbone hydrogen nanoparticle (Pd(H) @ZIF-8). The 
nanoparticle was wrapped in ascorbyl palmitate hydrogel to target and 
adhere to the site of inflammation by electrostatic interactions, and 
thereafter hydrolyzed at the site of inflammation by an enriched 
matrix metalloproteinase. The released Pd(H) @ZIF-8 nanoparticles 
are further broken down by gastric acid to produce zinc ions (Zn2+) 
and hydrogen gas, thus effectively disintegrating H. pylori and 
alleviating inflammation while repairing the damaged gastric mucosa. 
Unexpectedly, animal experiments have demonstrated that this 
biomaterial also can avoid intestinal flora dysbiosis, thus providing a 
more precise, effective, and healthy strategy for the treatment of 
H. pylori infection (Zhang et al., 2022).

3.4.4. Probiotic biomaterials
Probiotics are defined as live microorganisms that, when given in 

sufficient amounts, provide benefits to the host (Chen et al., 2019). 
Recent investigations have indicated that probiotics are capable of 
increasing antibiotic activity and may block some resistance 
mechanisms. For instance, in a meta-analysis, the addition of 
probiotics to triple therapy was observed to enhance the eradication 
rate of H. pylori by >12% (Lau et al., 2016). Furthermore, probiotics 
dramatically minimize the adverse effects of treatment regimens 
ranging from maintaining intestinal flora homeostasis, moderating 
inflammation, and diminishing H. pylori adhesion, to elevating the 
immune response (Lionetti et  al., 2010). The antimicrobial, 
immunomodulatory, and antioxidant properties of lactoferrin 
increased when it was attached to the surface of bionic nanocrystals 
(Nocerino et al., 2014). Fulgione et al. (2016) designed a combination 
material consisting of bionic hydroxyapatite nanoparticles and 
Lactobacillus paracasei probiotic supernatant based on this efficacy as 
an alternative therapy for H. pylori infection. The experimental results 
demonstrated that the supernatant group of lactoferrin (200–600 μg/
mL) plus Lactobacillus paracasei had higher antibacterial activity than 

the conventional antibiotic combination (amoxicillin 200–600 μg/mL, 
clarithromycin 200–600 μg/mL), even lower levels of pro-inflammatory 
cytokines such as IFN-γ and higher concentrations of IgG antibodies 
in the body. This further reveals that probiotics may ameliorate 
H. pylori-induced gastrointestinal inflammation and improve 
immunity, thus increasing eradication rates (Lin et  al., 2020). 
Consequently, the combination of probiotics and biomaterials is 
anticipated to be an attractive approach to drug resistance or adjuvant 
therapy for H. pylori infection (Chen et al., 2018).

4. Conclusion

In a nutshell, this paper primarily investigates the application of 
biomaterials in the eradication of H. pylori in the last decade using 
bibliometric analysis from multiple perspectives, ranging from the 
number of annual publications to hot keywords of research. 
Subsequently, we explored the research hotspots in each period and 
conducted a comprehensive literature review with reference to the 
evolution of the keywords. Moreover, this study analyzed the 
characteristics of H. pylori infection and the underlying reasons for its 
difficult eradication and focused on drug delivery strategies and novel 
therapeutic approaches to maximize H. pylori eradication rates while 
mitigating drug resistance.

With the evolution of biomaterials for drug delivery in the last 
decades, there has been a dramatic expansion in the development of 
biomaterials for controlled release, using adhesion, floating raft, 
nanomotor, and magnetic-based mechanisms to control the release 
rate of the incorporated drug. In these biomaterials, chitosan exerts 
a constructive role. However, the anti-H. pylori activity of chitosan 
and its derivatives are influenced by various parameters, with 
significant discrepancies in the degree of deacetylation, modification 
groups, and molecular weight required for different flora. Therefore, 
their safety and stability in clinical applications require further 
refinement and validation. In recent years, targeted “smart” 
biomaterials have been designed to initiate target responses to 
H. pylori based on a range of environmental stimuli regarding pH, 
urel, and photo response. Besides, novel biomaterials in other fields 
have been developed that can be  remotely triggered by stimuli 
including ultrasound, electric current, and magnetic fields for 
on-demand drug delivery. Hence there is considerable potential for 
targeted drug delivery against H. pylori. In terms of cell membranes, 
liposomes and biofilm materials have been engineered as novel bionic 
drug delivery systems owing to their extended in vivo circulation 
time and homologous targeting properties. Furthermore, Phage 
therapies are emerging in the field of anti-H. pylori and their 
specificity, low resistance, and extensive sources make them a 
promising alternative for the prevention and control of H. pylori 
infection. Of necessity, phage therapy presents problems in terms of 
dose and duration of treatment as well as potential toxicity and needs 
to be researched extensively as a novel drug delivery system. Materials 
such as metallic biomaterials that perform the function of disrupting 
the biofilm formed by H. pylori have an irreplaceable role in 
alleviating drug resistance. Generally, probiotic composites are 
employed to assist in the eradication of H. pylori as well, while the key 
to boosting its clinical value lays clarifying the timing, dosage, and 
duration of probiotic addition. In conclusion, despite the 
achievements of anti-H. pylori drug delivery strategies, there are still 
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numerous challenges for anti-H. pylori drug delivery strategies given 
the high complexity of H. pylori infection. In the context of the global 
bacterial drug resistance problem, biomaterials will certainly create 
more possibilities for the development and practical application of 
innovative antimicrobial drug delivery systems in the next few years 
as they are continuously tried and optimized in clinical trials.
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Gastric cancer (GC) is a common cancer worldwide with a high mortality 
rate. Many microbial factors influence GC, of which the most widely accepted 
one is Helicobacter pylori (H. pylori) infection. H. pylori causes inflammation, 
immune reactions and activation of multiple signaling pathways, leading to acid 
deficiency, epithelial atrophy, dysplasia and ultimately GC. It has been proved that 
complex microbial populations exist in the human stomach. H. pylori can affect 
the abundance and diversity of other bacteria. The interactions among gastric 
microbiota are collectively implicated in the onset of GC. Certain intervention 
strategies may regulate gastric homeostasis and mitigate gastric disorders. 
Probiotics, dietary fiber, and microbiota transplantation can potentially restore 
healthy microbiota. In this review, we elucidate the specific role of the gastric 
microbiota in GC and hope these data can facilitate the development of effective 
prevention and therapeutic approaches for GC.

KEYWORDS

gastric cancer, H. pylori, gastric microbiota, non-H. pylori, microbiome diversity

Introduction

Gastric cancer (GC) ranks fifth most common and third most deadly cancer globally (Rawla 
and Barsouk, 2019). Factors that induce gastric carcinogenesis include gastric microbiota, 
alcohol, smoking, and unhealthy dietary (Dong and Thrift, 2017; Zhao et al., 2017). Among 
many risk factors for GC, gastric microbiota act as an emerging one. Human gastric microbiota 
are subject-specific species and include a variety of bacteria. H. pylori is classified as a Class I risk 
factor for GC by the World Health Organization (WHO), and H. pylori infection is widely 
regarded as the strongest threat to GC (Wroblewski et al., 2010). H. pylori has a high infection 
rate and frequently colonized more than half of the world’s population. The infection of H. pylori 
usually occurs during childhood and will last for a lifetime (Malaty et al., 2002). H. pylori can 
disturb the human immune system and promote inflammation responses, leading to acid 
deficiency, epithelial atrophy, and dysplasia (Doorakkers et al., 2016). Diverse species more 
common than H. pylori have been found in gastric samples, such as Streptococcus, Prevotella, 
Veronella, Clostridium, Haemophilus, and Neisseria (Rajilic-Stojanovic et  al., 2020). These 
gastrointestinal microbiota exhibit different biological functions, for instance, preventing the 
invasion of pathogens, digesting complex carbohydrates, regulating immune response, or 
regulating the central nervous system (Alarcón et al., 2017).

The process for analyzing the diversity of the gastric microbiota has undergone a change 
from culture-based methods to molecular assays. Early studies relied on culture-based analysis 
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(Wang et  al., 2020a). And the emergence of next-generation 
sequencing (NGS) enabled researchers to analyze the composition and 
function of microbiota in a diverse environment with higher 
throughput and resolution, mainly including targeted amplicon 
sequencing by 16S ribosomal RNA (rRNA) genes and shotgun 
metagenomics (Boers et al., 2019), providing fascinating insights into 
the human gastric microbiota. In this review, we mainly analyzed the 
basic composition of microbiota in the human stomach, illustrated the 
changes and interactions of gastric microbiota in GC, and discussed 
promising strategies to regulate gastric microbiota.

Composition of the gastric microbiota

In earlier times, Monstein et al. used temperature gradient gel 
electrophoresis of 16S rRNA amplicons to classify the gastric 
microbiota into three main phyla (Proteobacteria, Firmicutes, and 
Actinobacteria; Monstein et al., 2000). As high-throughput sequencing 
developed, more bacteria were found in the human stomach. G2 
PhyloChip (16S rRNA chip) data revealed 44 bacterial phyla in the 
human stomach, of which 4 phyla dominate: Actinobacteria, 
Firmicutes, Bacteroidetes, and Proteobacteria (Maldonado-Contreras 
et al., 2011). Based on barcoded 16S pyrosequencing data indicated 
that the human stomach contains of five phyla: Actinobacteria, 
Firmicutes, Bacteroidetes, Proteobacteria, and Fusobacteria (Andersson 
et al., 2008; Figure 1). In addition,researchers found that it contained 
the most common genera for each phylum, such as Streptococcus 
(phylum Firmicutes), Neisseria and Haemophilus (Proteobacteria), as 
well as Prevotella and Porphyromonas (Bacteroidetes; Li et al., 2009).

H. pylori, a spiral-shaped flagellated bacterium belonging to the 
Proteobacteria phylum, is considered a constituent of the normal 

human gastric microbiome (Falush et  al., 2003; Linz et  al., 2007; 
Bruno et al., 2018). The remarkable survival capacity of H. pylori in 
the harsh gastric environment can be attributed to its motility and 
chemotaxis, which facilitate penetration of the mucus layer and 
colonization of epithelial cells (Amieva and Peek, 2016). H. pylori can 
hydrolyze urea and produce urease to increase the pH of its 
surrounding environment (Schulz et al., 2018).

Apart from H. pylori, many members other than H. pylori have 
been found in the stomach, including Streptococcus spp., Lactobacillus 
spp., Neisseria spp., Klebsiella spp., Escherichia coli, Rothia sp., 
Burkholderia pseudomallei., Bacillus sp., Morganella morganii, 
Acinetobacter sp., Haemophilus sp., Veillonella sp., Clostridium sp., 
Corynebacterium sp., Bacteroides sp., and Peptococcus sp. (Zilberstein 
et al., 2007; Khosravi et al., 2014; Schulz et al., 2018). Interestingly, 
some uncultured bacteria correlated with the extremophile 
Deinococcus and members of the enigmatic uncultured bacteria-TM7 
group were detected in the stomachs of normal individuals (He et al., 
2015; Ye et al., 2016), and another uncultured bacteria-SR1 phylum 
was also found in the normal stomach (Li et al., 2009).

Factors affecting gastric microbiota

Various factors are affecting the survival and function of gastric 
microbiota. The harsh environment in the stomach, which contains 
antibacterial enzymes, defensins, immunoglobulin, and high gastric 
acid, was a challenge for gastric microbiota (Zhang et al., 2017). These 
substances could effectively protect the host’s gastric mucosa from the 
attack of the microbiota. Low pH in the stomach cavity hinders the 
growth of the gastric microbiota. The hydrochloric acid secreted by 
parietal cells can convert pepsinogen into pepsin, an effective enzyme 
that denatures proteins and inhibits the survival of microbiota (Zhang 
et al., 2017). Immunoglobulin A (IgA) could prevent bacteria from 
penetrating the epithelial barrier and potentially maintain the diversity 
of normal gastrointestinal microbiota (Suzuki et al., 2004). Stomach 
commercial bacteria, especially S24-7, which belonged to Bacteroides, 
effectively induce the secretion of ILC2-dependent IgA. The secreted 
IgA is coated with other pathogenic bacteria (such as H. pylori) to 
prevent it from invading the epithelial mucosa, so as to maintain the 
gastric bacterial homeostasis (Satoh-Takayama et al., 2020). Children’s 
ILC2 is immature, unable to activate plasma cells to release enough 
IgA, resulting in H. pylori susceptibility (Ohno and Satoh-Takayama, 
2020; Satoh-Takayama et al., 2020).Other antimicrobial compounds 
in gastric epithelial cells produced by the host, such as cathelicidins 
and C-type lectins, also had selective killing effects on microbiota 
(Walter and Ley, 2011).

Some external factors also influence the human gastric microbiota, 
including diet (Cires et al., 2016), antibiotics, proton pump inhibitor 
(PPI; Nardone and Compare, 2015; Tsuda et al., 2015), geography 
(Yang et al., 2016), and surgical intervention (Tseng et al., 2016). For 
instance, in the stomach of healthy cases, the most enriching family 
was Prevotellaceae, followed by Streptococcaceae, Paraprevotellaceae, 
and Fusobacteriaceae. While among patients who received PPI 
treatment, Streptococcaceae were the prevalent family, followed by 
Prevotellaceae, Campylobacteraceae, and Leptotrichiaceae (Parsons 
et al., 2017). Long-term application of PPI increases the intra-gastric 
pH, which allows the bacteria to reach the growth phase, resulting in 
increased bacterial load and increased bacterial translocation 

FIGURE 1

The composition of the human stomach microbiota and the effect 
of H. pylori on the microbiota. The microbiota of H. pylori (−) cases 
has higher diversity, with a higher relative abundance of Firmicutes 
and Actinobacteria. H. pylori (+) cases have a lower prevalence of 
Actinobacteria, Bacteroidetes, and Firmicutes, while increase 
Proteobacteria (adopted from Andersson et al., 2008 and 
Maldonado-Contreras et al., 2011).
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(Scarpignato et al., 2016), leading to a new bacterial balance, in which 
oral bacteria are significantly increased, such as Pepto-streptococcus 
stomatis, Parvimonas micra, Slackia exigua, Streptococcus anginosus, 
and Dialist pneumonitis (Bruno et al., 2019). Besides, the diversity of 
gastric microbiota increased significantly after subtotal gastrectomy. 
Helicobacter and Ralstonia were the two most abundant genera in 
stomachs before surgery, while Prevotella and Streptococcus were the 
two most prevalent bacteria after surgery (Tseng et al., 2016). The 
parietal cells that secrete gastric acid are mainly located in the stomach 
body and gastric antrum, so the gastric acid secretion is significantly 
reduced after distal gastrectomy, as well as highly selective vagotomy 
and bile reflux after surgery, all of which increase the pH value in the 
stomach and change the composition of bacteria.

Changes of gastric microbiota in 
gastric cancer

The dysbiosis of gastric microbiota may be responsible for gastric 
malignancies. The microbiota changes aggravated gastric 
environmental disorders and promoted the development of GC 
(Lofgren et al., 2011; Lertpiriyapong et al., 2014; Guo et al., 2022). The 
detailed changes in the bacterial community in GC patients were listed 
as follows (Table 1).

GC patients were more likely to suffer from acid deficiency, which 
may affect the colonization of microorganisms. In the early stages of 
GC, the relative abundance of H. pylori, Propionibacterium acnes, and 
Prevotella copri in the stomach was higher than that of non-cancer-
bearing people (Gunathilake et al., 2019). However, Wang LL et al. 
found that unlike advanced gastric cancer, no significant biodiversity 
alteration was found in the early stage of gastric cancer (Wang L. et al., 
2020). As cancer develops, the prevalence of H. pylori in the stomach 
may gradually decrease, and the overall microbial population in the 
stomach may also change. Dicksved et  al. found a decreased 
abundance of H. pylori in the stomach of GC patients and a 
predominance of different species of the gastric microbial population, 
which include the genera Lactobacillus, Streptococcus, Prevotella, and 
Veillonella (Dicksved et al., 2009). Coker et al. found five taxa (Dialister 
pneumosintes, Parvimonas micra, Peptostreptococcus stomatis, Slackia 
exigua, and Streptococcus anginosus) as the core of the GC microbiota 
network (Coker et al., 2018). These studies revealed the difference in 
gastric microbiota profiles between GC patients and non-cancer-
bearing people.

The gastric microbiota also showed different changes in patients 
with different histological stages from gastritis to GC. Ferreira et al. 
confirmed that the dysbiosis of gastric microbiota with potential 
genotoxicity existed in the GC patients, which differed from that of 
patients with chronic gastritis (CG; Ferreira et  al., 2018). From 
non-atrophic gastritis and intestinal metaplasia (IM) to GC, the 
abundance of Neisseria, Porphyromonas, Streptococcus sinensis, and 
TM7 group showed a decreasing trend. In contrast the abundance of 
Lachnospiraceae and Lactobacillus coleohominis displayed an 
increasing trend (Aviles-Jimenez et  al., 2014). In another study, 
compared with CG and IM groups, the abundance of Streptococcaceae 
and Bacilli increased at the class level, and the abundance of 
Helicobacter decreased at the family level in the stomach of the GC 
patients (Eun et al., 2014). In H. pylori-negative patients from atrophic 
gastritis (AG) to dysplasia (Dys) precancerous stage, the abundance 

of Burkholderiaceae continued to increase, while the abundance of 
Streptococcaceae and Prevotellaceae continued to decrease (Sun et al., 
2022). Interestingly, some oral bacteria, genera Aggregatibacter, 
Alloprevotella, and Neisseria were abundant in GC patients compared 
with the superficial gastritis (SG) group. The relative abundance of 
these bacteria was completely separated between the two groups. This 
discovery suggested we can distinguish GC from SG patients based on 
any of the three genera detected in GC (Hu et al., 2018).

Previous studies have primarily focused on the abundance and 
diversity of the gastric microbiota in diverse patient cohorts. However, 
uncertain host factors may exert significant influence on research 
outcomes, thereby confounding interpretation of the results. To 
minimize the impact of these confounding factors, some investigators 
have adopted a paired design approach, wherein the profiles of the 
gastric microbiota in paired tumor tissues and non-malignant tissues 
from the same GC patient are comparatively analyzed in greater detail. 
Seo et  al. detected 350 bacterial species from paired cancer and 
non-cancer biopsies among 16 GC patients by 16S rRNA gene 
sequencing. Compared with non-cancer tissue, the populations of 
Prevotella spp. and Clostridium spp. were increased, while H. pylori, 
Propionibacterium spp., Staphylococcus spp., and Corynebacterium 
spp. were decreased in cancer biopsies (Seo et al., 2014; Dai et al., 
2021). In a study of carcinoma and adjacent tissues from 276 GC 
patients, genera Halomonas, Shewanella, and Helicobacter were 
enriched in the tumor-adjacent tissues, while Corynebacterium, 
Fusobacterium, Selenomonas, Propionibacterium, and Streptococcus 
were enriched in the carcinoma tissues. Similar to the previous 
reports, the community of H. pylori was also significantly reduced in 
the tumoral sites (Liu X. et al., 2019). The significant reduction of 
H. pylori may be due to the changes in the gastric environment of 
GC patients.

There are significant differences in the composition of gastric 
microbiota in GC patients based on race and region. A Portuguese 
cohort study showed an increased abundance of Achromobacter in GC 
patients compared to gastritis patients, while Achromobacter was 
completely absent in the validation cohort of Chinese GC subjects 
(Ferreira et  al., 2018). Yu et  al. analyzed bacterial abundance and 
diversity in GC tissues from 80 Chinese and 80 Mexican patients. 
Similar to the gastric microbiota profiles in non-cancer tissues, 
microbiota in cancer tissues of Mexican and Chinese patients were 
also composed mainly of Proteobacteria, followed by Firmicutes in 
Mexican cancer tissues or Bacteroides in Chinese cancer tissues. 
Mexican samples showed an increased relative abundance of 
Clostridium in cancer tissues but no difference in the alpha diversity, 
while cancer samples from Chinese patients presented substantial 
differences in alpha diversity and the abundance of several genera has 
increased, such as Treponema, Helicobacter, Selenomonas, 
Fusobacterium, Streptococcus, Pseudomonas (Yu et al., 2017a). These 
studies indicated that geographical and ethnic factors could influence 
the composition of stomach microbes.

Notably, a robust correlation existed between stomach microbes 
and the epidemiology of GC. Compared with cases without a family 
history of upper gastrointestinal cancer, cases with a family history of 
upper gastrointestinal cancer have lower alpha diversity and a higher 
abundance of H. pylori (Yu et al., 2017b). Among populations with 
similar H. pylori prevalence, the gastric microbiota composition 
significantly differed in populations from two towns with different GC 
risks in Colombia. Leptotrichia wadei and Veillonella sp. were 
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TABLE 1 Changes of gastric microbiota in GC.

Reference Study 
participants

Samples Methods Significant outcomes

Aviles-Jimenez et al. 

(2014)

NAG (5), IM (5), 

GC (5)

Gastric biopsy 

samples from 

antrum and corpus

G3 PhyloChip 

(16S rRNA 

microarray)

From NAG to IM to GC, decreased bacterial diversity, increased 

Lachnospiraceae and Lactobacillus coleohominis, decreased Porphyromonas, 

Neisseria and TM7.

Castaño-Rodríguez 

et al. (2017)

GC (12), FD (20) Gastric biopsy 

samples from 

antrum, whole 

blood samples

16S rRNA 

sequencing V4

Increased richness and phylogenetic diversity but not Shannon’s diversity in GC, 

enriched Veilonella, Lactococcus, and Fusobacteriaceae (Leptotrichia and 

Fusobacterium); enriched short chain fatty acid production pathways in GC.

Chen et al. (2019) GC (62) Pairs of matched 

GC tissues and 

adjacent non-

cancerous tissues

16S rRNA 

sequencing V4-

V5

Increased oral bacteria (Fusobacterium, Streptococcus and Peptostreptococcus) in 

tumor tissues, increased lactic acid-producing bacteria (Lactobacillus brevis and 

Lactococcus lactis) in adjacent non-tumor tissues.

Png et al. (2022) EC (4), IM (22), SG 

(17)

Gastric biopsy 

samples from 

antrum

16S rRNA 

sequencing V3-

V4

Increased the abundances of Proteobacteria (in particular Proteus genus) in EC.

Decreased the abundances of Bacteroidetes (in particular S24-7 family)

Coker et al. (2018) GC (20), IM (17), 

AG (23), SG (21)

Validate: C (19), AG 

(51), SG (56)

Gastric biopsy 

samples from 

antrum, body and 

fundus

16S rRNA 

sequencing V4

Enriched Dialister pneumosintes, Parvimonas micra, Peptostreptococcus stomatis, 

Slackia exigua and Streptococcus anginosus in GC.

Dai et al. (2021) GC (37) Pairs of matched 

GC tissues and 

adjacent non-

cancerous tissues

16S rRNA 

sequencing V3-

V4

Increased the abundances of Lactobacillus, Prevotella, Streptococcus, 

Acinetobacter, Sphingomonas, Bacteroides, Comamonas, Fusobacterium, 

Empedobacter, and Faecalibacterium in the tumor tissues.

Dicksved et al. 

(2009)

GC (10), FD (5) Gastric biopsy 

samples from 

antrum and corpus

T-RFLP,16S 

rRNA sequencing 

V3

Increased Streptococcus, Lactobacillus, Veillonella and Prevotella, decreased H. 

pylori in GC.

Eun et al. (2014) GC (11), IM (10), 

CG (10)

Gastric biopsy 

samples

16S rRNA 

sequencing V5

Increased the diversity of gastric microbiota, increased Streptococcaceae and 

Bacilli at the class level, decreased Helicobacter at the familiy level in GC.

Ferreira et al. 

(2018)

CG (81), GC (54) Gastric biopsy 

samples

16S rRNA 

sequencing V5-

V6

Decreased microbial diversity, decreased Helicobacter abundance and increased 

other bacterial genera (include intestinal commensals) in GC.

Hsieh et al. (2018) CG (9), IM (7), GC 

(11)

Gastric biopsy 

samples

16S rRNA 

sequencing V3-

V4

Similar abundance of Burkholderia, Enterobacter, and Leclercia in cancer and 

non-cancer groups. Increased the abundance of Fusobacterium, Lactobacillus 

and Clostridium; decreased the abundance of H. pylori in GC.

Hu et al. (2018) SG (5), GC (6) Gastric wash 

samples

shotgun 

metagenomic 

sequencing

Decreased species richness in GC group, especially Sphingobium yanoikuyae, 

increased 13 bacterial taxa and decreased 31 taxa in GC; genera Aggregatibacter, 

Alloprevotella and Neisseria in GC were different from SG. Enriched L-arginine 

and lipopolysaccharide production pathways in GC.

Jo et al. (2016) H. pylori (−) control 

(13), H. pylori (+) 

control (16), H. 

pylori (−) GC (19), 

H. pylori (+) GC 

(15)

Gastric biopsy 

samples from 

antrum and corpus, 

blood samples

16S rRNA 

sequencing V1-

V3

Increased the proportion of Actinobacteria in GC groups. Stenotrophomonas 

genus (Stenotrophomonas maltophilia) was the most abundant in H. pylori (−) 

GC group, while Helicobacter genus was the most abundant in H. pylori (+) GC 

group.

Li et al. (2017) CG (9), IM (9), GC 

(7), H. pylori (−) 

control (8)

Gastric biopsy 

samples from 

antrum and corpus

16S rRNA 

sequencing V3-

V4

Decreased microbial diversity, enriched the abundance of 13 high OTUs 

(e.g.Flavobacterium, Klebsiella, Serratia marcescens, Stenotrophomnonas, 

Achromobacter and Pseudomonas) in GC group.

Ling et al. (2019) GC (64) Normal, 

peritumoral and 

tumoral tissues

16S rRNA 

sequencing V3-

V4

Composition, diversity and function of gastric microbiota changed more 

obvious in tumoral tissues than in normal and peritumoral tissues.

(Continued)
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TABLE 1 (Continued)

Reference Study 
participants

Samples Methods Significant outcomes

Liu X. et al. (2019) GC (276) Normal, 

peritumoral and 

tumoral tissues

16S rRNA 

sequencing V3-

V4

Decreased bacterial richness in tumoral and peritumoral tissues, decreased the 

abundance of H. pylori, Bacteroides uniformis and Prevotella copri, increased the 

abundance of Propionibacterium acnes, Streptococcus anginosus and Prevotella 

melaninogenica in tumoral tissues.

Gunathilake et al. 

(2019)

GC (268), non-

cancer-bearing 

controls (288)

Gastric biopsy 

samples

16S rRNA 

sequencing V3-

V4

Increased the abundances of H. pylori and Prevotella copri, Propionibacterium 

acnes, decreased the abundances of Lactococcus lactis in GC.

Park et al. (2019) GC (55), IM (19), 

CG (62)

Gastric biopsy 

samples from 

antrum

16S rRNA 

sequencing V3-

V4

Increased the abundances of Moraxellaceae, Pseudomonadaceae, Streptococcaceae 

and Xanthomonadaceae in H. pylori (−) GC compared to H. pylori (−) CG and 

H. pylori (−) IM groups. Decreased the abundances of Cyanobacteria and 

Rhizobiales in H. pylori (−) GC.

Seo et al. (2014) GC (16) Tumor and non-

tumor biopsy 

samples

16S rRNA 

sequencing

Increased Prevotella spp. and Clostridium spp. in tumor tissue, decreased 

Corynebacterium spp., Propionibacterium spp. and Staphylococcus spp. at the 

genus level, and decreased H. pylori at the species level in tumor tissue.

Shao et al. (2019) GC (36) Gastric tumor 

tissues, non-

malignant tissues

16S rRNA 

sequencing V4

Increased the abundances of Haemophilus, Neisseria, Prevotella, Streptococcus 

and Veillonella, decreased the abundance of Helicobacter genus in tumor tissues. 

Increased the abundance of Helicobacter in non-tumor tissues.

Sohn et al. (2017) H. pylori (−) control 

(2), H. pylori (+) 

control (3), H. pylori 

(−) GC (2), H. 

pylori (+) GC (5)

Gastric biopsy 

samples from 

antrum and body

16S rRNA 

sequencing V1-

V3

Increased the number of non- H. pylori urease-producing bacteria and non- H. 

pylori nitrosating or nitroreducing bacteria (e.g., S. pseudopneumoniae, S. 

parasanguinis, and S. oralis) in H. pylori (−) GC groups.

Sun et al. (2022) H. pylori (−) SG 

(56), H. pylori (−) 

AG (9), H. pylori 

(−) IM (27), H. 

pylori (−) Dys (29), 

H. pylori (−) GC 

(13).

Gastric mucosal 

biopsy samples, and 

Gastric juice

16S rRNA 

sequencing V3-

V4

Increased the abundances of Burkholderiaceae, decreased the abundance of 

Streptococcaceae and Prevotellaceae

Tseng et al. (2016) GC (6) Gastric cancerous 

tissues, adjacent 

normal tissues

16S rRNA 

sequencing V1-

V3

Increased Ralstonia and Helicobacter in cancerous tissues before surgery; 

increased Streptococcus and Prevotella in cancerous tissues after surgery, 

increased the diversity of gastric microbiota after surgery.

Wang et al. (2016) GC (103), CG (212) Gastric biopsy 

samples

16S rRNA 

sequencing V1-

V3

Increased the quantity and diversity of bacteria, enriched bacteria with potential 

cancer-promoting activities in GC.

Wang L. et al. 

(2020)

EC (30),AC (30),CG 

(60)

Gastric mucosal 

biopsy, adjacent 

normal tissues

16S rRNA 

sequencing V3-

V4

Increased the levels of Ochrobactrum,Lactobacillus,Propionibac,serratiaterium 

et al.in EC.

Wang et al. (2020b) CG (21), IM (27), 

IN (25), GC (29), 

non-cancer-bearing 

controls (30)

Gastric mucosal 

biopsy

16S rRNA 

sequencing V4

Decreased the diversity and abundances of phyla Nitrospirae, Chloroflexi, 

Armatimonadetes, Elusimicrobia, Verrucomicrobia, Planctomycetes and WS3 

from CG, IM, IN to GC. Enriched Bacteriodes, Actinobacteria, Fusobacteria, 

Firmicutes, TM7, and SR1 in the IN and GC group.

Wu et al. (2020) GC (18), SG (32) Paired tumor and 

paracancerous 

mucosa samples

16S rRNA 

sequencing

Increased the levels of Lactobacillus spp. Dialister spp., Rhodococcus spp., 

Helicobacter spp., Sediminibacterium spp. and Rudaea spp. in GC, decreased 

species Fusobacterium spp., Actinomyces spp., Brevundimonas spp., Leptotrichia 

spp., Haemophilus spp., Alloprevotella spp., Campylobacter spp., Arthrobacter spp., 

Neisseria spp., Bradyrhizobium spp., Phyllobacterium spp., Prevotella spp., 

Porphyromonas spp., Veillonella spp. and Rothia spp., etc. in GC.

Yu et al. (2017b) GC (77) Gastric tumor 

tissues, paired non-

malignant tissues

16S rRNA 

sequencing

Decreased H. pylori and increased Bacteroidetes abundance in lower tumor 

grade. Increased H. pylori abundance and decreased alpha diversity in advanced 

tumor grade. Class Epsilonproteobacteria, order Campylobacterales, family 

Helicobacteraceae, and genus Helicobacter, were also related to tumor grade.

(Continued)
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considerably abundant in populations from Túquerres, a town with 
high GC risk, while Staphylococcus sp. were strikingly abundant in 
populations from Tumaco, a town with low GC risk (Yang et al., 2016). 
These findings demonstrated that the characteristics of the gastric 
microbiota in GC patients were associated with both familial history 
of gastrointestinal tumors and diverse environmental conditions.

Helicobacter pylori and gastric cancer

The first animal experiment on the pathogenicity of H. pylori was 
performed by the Mongolian gerbil model. It revealed that H. pylori 
induced a continuous development from superficial gastritis to 
pre-malignant lesions (Hirayama et  al., 1996). Compared with 
age-matched uninfected mice, mice infected with H. pylori had more 
severe inflammation, acid atrophy, hyperplasia, epithelial defects, and 
dysplasia (Lee et  al., 2008). Likewise, compared with the control 
gerbils, low differentiated adenocarcinoma and carcinoid were 
discovered in the gerbils inoculated with H. pylori (Hirayama 
et al., 1999).

H. pylori infection is one of the main causes of gastric cancer 
and can increase the risk of gastric cancer by 2.2–21 times (Uemura 
et al., 2001; Suerbaum and Michetti, 2002). H. pylori infection could 
induce chronic inflammation in the stomach, which was 
accompanied by genetic alterations and DNA damage in gastric 
epithelial cells. H. pylori infection has been found to trigger 
ubiquitination and proteasomal degradation of p53, a critical 
regulator of genome stability, thereby impairing the repair of 
genome damage. H. pylori infection reduces the expression of the 
transcription factor USF1, which can stabilize the function of P53, 
and thereby increasing viability of gastric epithelial cells with 
persistent DNA damage and promoting gastric carcinogenesis 
(Costa et al., 2020). H. pylori could also downregulate the expression 
of genes associated with tumor suppression by inducing abnormal 
DNA methylation (Servetas et al., 2016; Choi et al., 2020). Abnormal 
DNA methylation in the gene promoter region leads to the 
inactivation of tumor suppressor and other cancer-related genes in 
cancer cells, which is the most clear epigenetic marker in gastric 
cancer (Qu et al., 2013). Chan AO et al. observed that H. pylori 
infection caused E-cadherin methylation to be more frequent in the 
gastric mucosa compared to cases without H. pylori infection (Chan 
et  al., 2003). Maekita et  al. found that H. pylori infection can 
effectively induce CpG islands methylation to varying degrees 
(Maekita et  al., 2006). H. pylori infection also delays gastric 
epithelial cell apoptosis (Sáenz and Mills, 2020; Imai et al., 2021). 
H. pylori infection induced an increase in cellular spermine oxidase 
(SMOX), and phosphorylated EGFR (pEGFR), resulting in the 

generation of a subpopulation of gastric epithelial cells with high 
levels of DNA damage and resistance to apoptosis (Chaturvedi 
et al., 2011, 2014).

Among possible explanations of GC caused by H. pylori, the two 
most widely accepted virulence factors were Cytotoxin-associated 
gene A (CagA) and Vacuolating cytotoxin A (VacA; Amieva and 
Peek, 2016), which have been linked to the carcinogenic potential of 
this bacterium. The CagA gene is the most important pathogenic 
factor of H. pylori. Compared with the strains without CagA, strains 
containing CagA increase the risk of gastric cancer by 1.64-fold 
overall (Censini et al., 1996; Huang et al., 2003). Cag (+) H. pylori 
induced TP53 gene mutation and aberrant expression of activation-
induced cytidine deaminase, which may be  responsible for the 
accumulation of mutation in gastric carcinogenesis (Matsumoto 
et al., 2007; Yong et al., 2015). CagA (+) H. pylori infection caused 
the activation of multiple oncogenic pathways, including ERK/
MAPK, PI3K/AKT, NF-kB, Wnt/β-catenin, Ras, Hippo, and STAT3 
(Udhayakumar et al., 2007; Salama et al., 2013; Yong et al., 2015; 
Imai et  al., 2021). CagA also disturbed the host’sepithelial cells, 
precursor cells and stem cells (Bessède et al., 2014; Wroblewski et al., 
2015). Another virulence factor, VacA, was involved in regulating 
immune responses and autophagy. VacA regulated host cell 
metabolism by inhibiting mTORC1 and promoted gastric epithelial 
cell apoptosis by interfering with the function of mitochondria (Kim 
et  al., 2018). In addition, VacA promotes Treg differentiation by 
inducing dendritic cell expression and releasing some anti-
inflammatory cytokines, such as IL-18 and IL-10, thus suppressing 
anti-tumor immunity (Kao et al., 2010; Oertli et al., 2012). Prolonged 
exposure to VacA can interrupt autophagy, which is manifested by 
the accumulation of P62. Autophagy is an important protective 
mechanism of the stomach against H. pylori infection. The 
interruption of this mechanism will cause cell death, inflammation 
and genetic instability, forming a microenvironment prone to cancer 
(Raju et al., 2012).

Other pathogenic mechanisms of H. pylori have also been widely 
reported. Some adhesins, such as sialic acid-binding adhesin (SabA), 
blood-antigen binding protein A (BabA) and neutrophil-activating 
protein (NAP), attached to host cell receptors and increased risk of 
peptic ulcer and GC (Kao et al., 2016). Targosz et al. proved that 
H. pylori up-regulated the expression of cyclooxygenase-2 (COX-2) 
mRNA in gastric epithelial cells, which was known to be  a 
carcinogenesis-related rate-limiting enzyme (Targosz et al., 2012; Shao 
et al., 2014). The accumulation of activated β-catenin in the nucleus 
of gastric epithelial cells induced by H. pylori was closely connected 
with tumor invasion (Cheng et  al., 2004), indicating the aberrant 
activation of β-catenin may be  a key member in regulating 
pre-malignant epithelial responses to H. pylori. In addition, H. pylori 

TABLE 1 (Continued)

Reference Study 
participants

Samples Methods Significant outcomes

Yu et al. (2017a) GC (160) Gastric tumor 

tissues, paired non-

malignant tissues

16S rRNA 

sequencing V3-

V4

Dominated Proteobacteria, followed by Bacteroidetes in Chinese tumor samples 

or Firmicutes in Mexican tumor samples. Dominated H. pylori in both Chinese 

and Mexican tumor tissues, but H. pylori abundance is lower than that of 

matched non-malignant tissues.

GC, gastric cancer; AC, advanced gastric cancer; EC, early gastric cancer; IM, intestinal metaplasia; AG, atrophic gastritis; SG, superfcial gastritis; NAG, non-atrophic gastritis; CG, chronic 
gastritis; FD, functional dyspepsia; AH, atypical hyperplasia; IN, intraepithelial neoplasia; Dys, dysplasia.
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infection induced the expression of hepatoma-derived growth factor 
(HDGF), which stimulated the differentiation of human mesenchymal 
stem cells into myofibroblast-like cells and further promoted the 
survival and invasion of human GC cells (Liu et al., 2018).

Other gastric microbiota and gastric 
cancer

Under conditions of absent acidity (such as AG and IM), some 
non-H. pylori bacteria produce active oxygen or nitrogen to regulate 
inflammatory reactions, and the gastric micro-ecosystem became 
more complex (Sheh and Fox, 2013). The abundance of some genera 
showed a consistent increase in GC patients, including Staphylococcus 
(Jo et al., 2016; Castaño-Rodríguez et al., 2017; Shen et al., 2022), 
Lactobacillus (Castaño-Rodríguez et  al., 2017; Coker et  al., 2018; 
Ferreira et al., 2018), Clostridium (Castaño-Rodríguez et al., 2017; 
Ferreira et al., 2018), Fusobacterium (Castaño-Rodríguez et al., 2017; 
Coker et  al., 2018), Streptococcus (Dicksved et  al., 2009; Castaño-
Rodríguez et  al., 2017; Coker et  al., 2018), Bifidobacterium, and 
Lactococcus (Castaño-Rodríguez et  al., 2017). These bacteria had 
different effects on stomach pathogenesis. A prospective study 
concluded that the characteristics of gastric microbiota in non-tumor 
patients could accurately classify patients who may develop EC. They 
identified a constellation of six bacterial taxonomic markers, including 
the Moryella genus, Vibro genus, Comamonadaceae, Paludibacter, 
Agrobacterium, and Clostridiales (Png et al., 2022).

Some non-H. pylori bacteria promote the inflammatory 
response to accelerate the progression of GC, such as Lactobacillus 
murinus, Clostridium, and Streptococcus salivarius (Lertpiriyapong 
et  al., 2014). It has been proved that the overgrowth of 
Propionibacterium acnes may contribute to lymphocytic gastritis 
through in vitro cell experiments. Lymphocytic gastritis caused by 
Propionibacterium acnes produces pro-inflammatory cytokine 
IL-15, which is a potential trigger for GC (Montalban-Arques 
et al., 2016). Prevotella had the classification ability to distinguish 
GC patients from non-cancer-bearing people with an area under 
the curve of 0.76 (Wu et al., 2018). The pathogenicity of Prevotella 
copri has been proven to produce redox proteins in the human 
body (Hofer, 2014; Wu et al., 2018). Besides, the Insulin-Gastrin 
(INS-GAS) transgenic mice colonized Lactobacillus murinus, 
Clostridium and Bacteroides developed gastrointestinal 
intraepithelial neoplasia, which strongly related to the upregulation 
of pro-inflammatory and oncogenic genes (Lertpiriyapong et al., 
2014). The microflora of non-H. pylori in the stomach also 
influenced the severity of H. pylori-induced gastric cancer. Shen  
et al. found that Streptococcus salivarius coinfection with H. pylori 
induced significantly higher gastric pathology than in H. pylori-
monoinfected mice. In contrast, Staphylococcus epidermidis 
coinfection caused significantly lower H. pylori-induced 
pro-inflammatory cytokine responses than in H. pylori-
monoinfected mice (Shen et al., 2022).

Some non-H. pylori bacteria could disturb the function of 
immune cells in the tumor microenvironment to promote 
GC. Previous studies found a positive correlation between 
Stenotrophomonas in GC tissues and plasmacytoid dendritic cells that 
have the function of suppressing immune effector cells (Huang et al., 
2014; Ling et al., 2019). Similarly, in GC microhabitats, Selenomonas 

was positively associated with regulatory T cells with 
immunosuppressive effects (Ahmetlić et al., 2019; Ling et al., 2019). 
These studies suggest Selenomonas and Stenotrophomonas may 
promote cancer cells to evade surveillance by the immune system. 
Besides, it was reported that Fusobacterium nucleatum disturbed the 
phenotypes and functions of immune cells such as neutrophils, T cells, 
NK cells, dendritic cells and macrophages, forming an 
immunosuppressive microenvironment conducive to cancer growth 
(Wu et al., 2019). The increase of Fusobacterium in H. pylori (−) GC 
patients may be related to this mechanism (Hsieh et al., 2018). Li Q 
et  al. found that excess Propionibacterium acnes promotes gastric 
cancer progression by promoting M2 polarization of macrophages 
through TLR4/PI3K/Akt signaling (Li et al., 2021).

Non-H. pylori bacteria produced metabolites that may promote 
the occurrence of GC. Higher levels of non-H. pylori nitrosated or 
nitrate-reducing bacteria (NB) and non-H. pylori urease-producing 
bacteria (UB) were found in H. pylori (−) GC patients (Jo et al., 
2016; Sohn et al., 2017). It is well known that N-nitroso compounds 
(NOCs) are potent carcinogens (Hernández-Ramírez et al., 2009; Jo 
et al., 2016). NOCs formed from nitrite and secondary amines and 
were observed in some nitrate-reducing gastric bacteria, including 
Clostridium, Veillonella, Haemophilus, Staphylococcus, Streptococcus, 
and Neisseria (Ayanaba and Alexander, 1973; Hu et al., 2012; Jo et al., 
2016). Similarly, urease is the main trigger of innate immune 
response produced by various non-H. pylori such as Lactococcus, 
Clostridium, Haemophilus, and Actinomyces (Sohn et  al., 2017). 
These nitrate-reducing and urease-producing bacteria may 
be involved in the pathological mechanism of stomach disorders. 
However, the detailed pathogenic mechanism remains to 
be further confirmed.

Not all microbes in the stomach are harmful, and some studies 
have found the presence of bacteria in the stomach that can inhibit the 
progression of gastric cancer. For example, Kim SY et al. found that 
Lactococcus lactis ssp. lactis can affect the expression of p53 and p21 to 
induce cell cycle arrest and apoptosis to inhibit the proliferation of 
gastric cancer cells (Kim et al., 2004, 2009). In addition, Hwang CH 
et al. studied that Heat-Killed Lactobacillus can induce the expression 
of pro-apoptotic genes and inhibit the proliferation of gastric cancer 
cell line AGS in vitro. However it still needs to be verified by in vivo 
experiments (Hwang et al., 2022).

Interaction between Helicobacter 
pylori and other gastric microbiota

H. pylori infection altered the composition of the human 
stomach microbiome (Figure  1). Compared with the gastric 
microbiota of healthy cases, H. pylori-infection individuals have a 
lower diversity, with a lower abundance of Actinobacteria, 
Firmicutes and Bacteroidetes, while increased Proteobacteria 
(Andersson et  al., 2008; Maldonado-Contreras et  al., 2011).In 
H. pylori (+) GC patients, the proportion of the Streptococcus mitis 
group (such as S. oralis, S. infantis, S. mitis, S. tigurinus, and 
S. pseudopneumoniae) was significantly lower than that of the 
H. pylori (−) GC group (Sohn et al., 2017). These reduced bacteria 
may be related to the unfavorable conditions caused by H. pylori 
infection. The tendency of co-occurrence/co-competition among 
gastric microbiota has been further investigated. Das et al. found 
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that in H. pylori (+) patients, H. pylori showed a negative association 
(inhibit other bacteria) with some gastric members, such as 
Acidovorax, Aeromonas, Bacillus, Bradyrhizobium, Halomonas, 
Cloacibacterium, Meiothermus, Methylobacterium, and Ralstonia, 
while the interactions of these non-H. pylori members were 
positively correlated (das et al., 2017).

The possible influence of H. pylori on the structure and function 
of the gastric microbes has been demonstrated by animal experiments. 
The addition of restricted microbiota (Clostridium ASF356, 
Bacteroides ASF519, Lactobacillus ASF361) in the stomach of 
INS-GAS mice was sufficient to promote gastric mucosal lesions such 
as moderate inflammation, gland atrophy, epithelial defects, dysplasia, 
but no gastrointestinal intraepithelial neoplasia. However, mice 
co-infected with these restricted bacteria and H. pylori developed 
higher-grade glandular abnormalities, and 69% of mice with dysplasia 
were identified as gastrointestinal intraepithelial neoplasia compared 
with mice infected only with restricted bacteria (Lertpiriyapong et al., 
2014). It indicated that H. pylori synergistically accelerated the onset 
and progression of gastrointestinal intraepithelial neoplasia in mice 
infected with restricted bacteria. One year after inoculation with 
H. pylori, the numbers of Atopobium cluster increased and 
Bifidobacterium spp., C. coccoides group, and C. leptum subgroup 
decreased in H. pylori (−) gerbils compared to the uninfected gerbils. 
Besides, Prevotella spp. and Eubacterium cylindroides group were 
absent in H. pylori (+) gerbils (Osaki et  al., 2012). These results 
suggested that infection with H. pylori for a long time may disturb the 
composition of the gastric microbiota in mice (Osaki et al., 2012). 
Similarly, the localization and levels of Bifidobacterium spp., 
Bacteroides spp., Enterococcus spp., Staphylococcus aureus and aerobes 
were modified and caused more severe gastritis in Mongolian gerbils 
after H. pylori infection. Prolonged colonization of H. pylori made the 
stomach environment unsuitable for the reproduction of lactobacilli, 
while Bacteroides, Bifidobacteria, S. aureus and Enterococci could 
better adapt to the stomach environment (Yin et al., 2011).

H. pylori eradication studies have also demonstrated the 
relationship between the growth of non-H. pylori and H. pylori. An 
inverse correlation was observed between the bacterial diversity 
and relative abundance of H. pylori in GC patients. Compared with 
non-GC patients with similar levels of H. pylori, GC patients 
showed lower bacterial diversity. After the eradication of H. pylori, 
the diversity of the gastric microbes was increased, and the 
microbiota abundance was restored to be similar to that of cases 
without H. pylori infection (Li et al., 2017). Likewise, H. pylori in 
the stomach inhibited the colonization of Enterobacteria, 
Clostridium leptum and Lactobacillus. After eradicaing of H. pylori, 
the bacteria in the patient’s stomach increased significantly (Li 
et al., 2016). In another study, in the H. pylori (+) patients, the total 
number of non- H. pylori- NB decreased in the eradicated gastric 
biopsies and increased in the non-eradicated or failed to eradicate 
samples (Jo et al., 2016). These studies indirectly confirmed the 
role of H. pylori infection in disturbing gastric 
microbiota composition.

To sum up, the mechanism of gastric microbiota causing GC is a 
multi-factor and multi-step process. H. pylori is the main trigger of 
histopathological changes in GC, and its interactions with non- 
H. pylori are jointly involved in the development of GC. H. pylori may 
be  more important in the early stages of GC. But the state of 

achlorhydric induced by H. pylori can disturb gastric microbiota, 
which may play a key role in the later stages of GC (Dias-Jácome 
et al., 2016).

Regulation of gastric microbiota

Medication

Among the drug interventions to reduce the risk of GC, one of 
the most studied approaches is H. pylori eradication therapy. All 
patients who test positive for H. pylori should be offered eradication 
therapy. The internationally recommended treatment is the 
combination of PPI, 2–3 antibiotics, and bismuth, and it should 
be  taken in strictly accordance with the course of treatment. 
Antibiotic abuse and irregular medication during the treatment of 
H. pylori have made H. pylori resistant to clarithromycin, levofloxacin, 
metronidazole and other drugs. The combination of drugs and the 
course of treatment vary according to different populations. The main 
recommended first-line treatment options were Bismuth quadruple 
therapy, Concomitant therapy, Sequential therapy, Levofloxacin triple 
therapy and so on (Chey et al., 2017). After 8 weeks of eradication 
treatment for CG or IM patients, H. pylori was significantly reduced, 
and the diversity of the microbiota increased (increased 31 
operational taxonomic units; Li et  al., 2017). It indicated that 
eradication treatment restored the diversity of gastric microbiota. 
Some studies have shown that eradicating H. pylori effectively 
alleviated stomach pathology (Bae et al., 2018; Sakitani et al., 2018). 
Eradication treatment also reduced the incidence of GC in healthy 
cases and patients with gastric neoplasia, reducing GC-related 
mortality (Choi et al., 2018; Doorakkers et al., 2020; Ford et al., 2020). 
However, there is evidence that H. pylori-eradicated patients were 
associated with an increased risk of GC (Cheung et  al., 2019). 
Therefore, the effect of H. pylori eradication on the incidence of GC 
still needs to be clarified.

Probiotics and dietary

Probiotics and dietary fiber regulate the gastrointestinal 
microbiota and immune response; supplementing them was 
considered a preventive intervention (Zhang et al., 2013; Hill et al., 
2014). It was reported that probiotics increased the eradication rate of 
H. pylori and reduced the incidence of side effects of antibacterial 
treatment (especially diarrhea; de Bortoli et al., 2007; Ojetti et al., 
2012; Wang et  al., 2013; Keikha and Karbalaei, 2021). It is worth 
noting that probiotics are not effective per se and can only be used as 
adjunctive therapy for clinical improvement (Wang et  al., 2013). 
Probiotics also improve anticancer properties by producing lactic acid 
and other organic acids to inhibit the growth of microorganisms that 
produce mutagens and carcinogens (Dugas et al., 1999). Lactobacillus 
spp. is one of the best-known probiotics and their anti-H. pylori 
properties have been proven (Bahmanyar and Ye, 2006).Apart from 
probiotics, prebiotics and dietary fiber also synergistically affected 
H. pylori eradication therapy and were strongly associated with a 
lower risk of GC (Zhang et al., 2013; Shafaghi et al., 2016). Wheat bran 
acted as a nitrite scavenger, potentially offsetting the carcinogenic 
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effects of NOCs produced by nitrate-reducing bacteria (Møller et al., 
1988). The inhibitory effect of garlic on the growth of H. pylori was 
observed (Jonkers et al., 1999). The antibacterial properties of garlic 
may be attributed to allicin. Allicin has been confirmed to have a 
direct antibacterial effect on the growth of H. pylori in vitro (Cañizares 
et al., 2004).

Studies have reported synergistic relationships between multiple 
dietary components, such as vegetables, fruits, pickles, and soy 
products, in the development of GC (Bahmanyar and Ye, 2006).Fresh 
vegetables contain a various of antioxidants that acted as protectants, 
potentially ameliorating the effects of microbial dysbiosis (Epplein 
et  al., 2008). Broccoli sprouts were rich in sulforaphane, the 
sulforaphane which had a strong bactericidal effect on H. pylori 
(Yanaka et al., 2009). Dietary patterns of high vegetables and seafood 
were associated with lower gastric dysbiosis index and lower the risk 
of GC in males. Sheu et  al. pointed out that yogurt containing 
lactobacilli and bifidobacteria can improve the cure rate of H. pylori 
infection (Sheu et al., 2002).And the high-dairy dietary pattern was 
associated with a lower gastric dysbiosis index to reduce GC risk in 
females (Gunathilake et  al., 2021). The intake of red meat and 
processed meat is related to the increased risk of gastric cancer, 
especially in H. pylori (+) subjects (González et al., 2006; Huang 
et al., 2021). Salt induces gastritis by directly damaging the gastric 
mucosa and increasing the rate of mitosis, and excess salt intake 
enhances H. pylori colonization. Therefore, long-term excessive salt 
intake will increase the risk of gastric cancer (Yamaguchi and 
Kakizoe, 2001; Peleteiro et al., 2011; D’Elia et al., 2012; Smyth et al., 
2020). Therefore, the change of dietary structure, including reducing 
the intake of salt and red meat, and increasing the intake of vegetables 
and fruits, is a possible strategy to prevent gastric cancer.

Transplantation of rumen microbes

In recent years, fecal bacteria transplantation has been a focus to 
restore the healthy microbiota of the recipient. This effective strategy 
has been demonstrated in the treatment of various diseases, such as 
recurrent Clostridium difficile infection (Garza-González et al., 2019), 
inflammatory bowel disease (Colman and Rubin, 2014) and cancers 
(McQuade et al., 2020; Baruch et al., 2021). Liu et al. investigated the 
beneficial effects of rumen fluid transplantation on rumen morphology 
and function in a sheep model of rumen acidosis. Rumen fluid 
transplantation accelerated the rapid reconstruction of bacterial 
homeostasis in the rumen from an obvious acidosis state to a healthy 
level (similar to that of the donor). Furthermore, it reduced the 
damage of rumen epithelial cells caused by acute rumen acidosis (Liu 
J. et  al., 2019). The results indicated that rumen microbiota 
transplantation is a promising strategy for reconstructing bacterial 
homeostasis. However, rumen transplantation is only an early attempt 
at the animal level, and it needs to be further verified in cancer models 
and clinical trials.

Conclusion

A healthy stomach environment is a basis for disease prevention, 
while the imbalance of gastric microbiota is a potential trigger of 
stomach carcinogenesis. Although H. pylori is considered the main 
cause of GC, studies have shown that other gastric microbiota are also 
involved in the development of cancer. Therefore, we analyzed the 
specific interactions between H. pylori and non-H. pylori in the 
progression of GC and discussed effective measures to reestablish a 
balance stomach environment. Probiotics and dietary fiber are 
considered to be a preventive intervention and adjuvant treatment, 
while gastric microbiota transplantation may fundamentally rebuild 
a normal microbiota in the stomach.

In summary, the gastric microbiota is an extremely complex 
group. The specific mechanism that causes the occurrence and 
development of GC is still unclear. Gastric tumorigenesis studies 
should take into account the virulence diversity of H. pylori strains, 
host genetic features, entire microbiota community and diverse 
environmental conditions.
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Baise, China, 2 Clinical Laboratory of 980 Hospital of PLA Joint Logistics Support Force (Bethune 
International Peace Hospital), Shijiazhuang, Hebei, China

Modifying and transforming natural antibacterial products is a novel idea for 
developing new efficacious compounds. Phillygenin has an inhibitory effect on 
H. pylori. The aim of the present study was to prepare a phillygenin derivative 
(PHI-Der) through demethylation and hydroxylation. The minimum inhibitory 
concentration of 18 strains of H. pylori from different sources was 8–32 μg/
mL in vitro, and the activity increased 2–8 times than that of phillygenin. PHI-
Der could significantly inhibit the colonization of H. pylori in  vivo, reduce the 
inflammatory response, and promote the repair of inflammatory damage. Further, 
we used SwissTargetPrediction to predict that its main targets are ALOX5, MCL1, 
and SLC6A4, and find that it can inhibit bacterial biofilm formation and reduce 
bacterial infection of cells. It can enhance the intracellular oxidative capacity of 
H. pylori to inhibit H. pylori growth. Further, it could prevent the oxidation of 
H. pylori-infected cells and reduce the inflammatory response, which plays a 
role in protection. In conclusion, compared to phillygenin, PHI-Der had better 
antibacterial activity and was more effective in treating H. pylori infection. It has 
characteristics of high safety, specificity, resistance to drug resistance and better 
antibacterial activity than phillygenin, it’s a good antioxidant for host cells.

KEYWORDS

Helicobacter pylori, phillygenin, demethyl hydroxylation, derivatives, therapeutic effect

1. Introduction

Helicobacter pylori is a spiral-shaped, micro-anaerobic, Gram-negative bacteria that 
requires harsh growth conditions (Martin Nuñez Gracia et al., 2021). Currently, antibiotics 
are mainly used for treatment. However, with the widespread use and abuse of antibiotics, 
the resistance rate of H. pylori has gradually increased (Morilla et al., 2019). Therefore, the 
World Health Organization in 2017 listed H. pylori, which is resistant to clarithromycin, 
as one of the 12 pathogens that urgently require the development of new antibiotics 
(Branswell, 2017). An effective way to prepare new antibacterial drugs is to find active 
ingredients from natural products (natural plants, microbial secondary metabolites, 
marine organisms) and then modify and transform them to form derivatives (Adjissi et al., 
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2022). Phillygenin belongs to the class of diepoxylignans, in which 
two molecular phenylpropanoid side chains are connected to each 
other to form two epoxy structures. Phillygenin has various 
functions, including anti-inflammatory, anti-tumor, and 
antibacterial (Siqi et al., 2021; Yufeng and Peng, 2021; Wang J.  
et al., 2022). Preliminary research in our laboratory showed that 
phillygenin had a good inhibitory effect on H. pylori, although not 
comparable to the level of antibiotics. Therefore, the aim of this 
study was to modify and transform phillygenin to improve its 
antibacterial activity and explore its mechanism of action to 
provide an experimental basis for better utilization of phillygenin 
and its derivatives.

2. Materials and methods

2.1. Recovery and culture of strains

We extracted H. pylori strains containing the preservation 
solution at −80°C. Standard strains 26,695, NSH57, MSD132, and 
G27 were donated by Bi Hongkai from the Nanjing Medical 

University, and clinical strains HPBS001–HPBS016 were isolated at 
our laboratory. H. pylori strains were cultured on the Columbia 
blood agar plate (OXOID, UK) or in the brain-heart infusion (BHI, 
OXOID, UK) broth medium containing 10% serum (Pingrui, China) 
and placed under microaerophilic (85% nitrogen, 5% oxygen, 10% 
carbon dioxide; model CB160; Binder, Germany) conditions at 37°C 
for 3 days. Bacterial species other than H. pylori were cultured on 
nutrient agar or Luria–Bertani plates at 37°C for 1–2 days. 
Supplementary Table S1 shows the information of Staphylococcus 
aureus and other information.

2.2. Synthesis, identification and prediction 
of physicochemical properties of PHI-Der

First, we dissolved phillygenin (7 mg) in dry dichloromethane 
(5 mL). Second, we  slowly added boron tribromide in 
dichloromethane dropwise into phillygenin at −50°C (5.0 eq, 
125 mg in 5 mL dichloromethane) and placed it under ice bath for 
1 h. Third, we  quenched the reaction with 1 mL methanol and 
concentrated the reaction solution. Fourth, we performed high-
performance liquid chromatography for purification (acetonitrile 
in water, 5–95%; flow rate, 2 mL/min, trifluoroacetic acid, 0.1%; 
room temperature 25°C ± 5°C) to obtain PHI-Der at a yield of 45%. 
After Fourier-transform infrared analysis, mass spectrometry and 

Abbreviations: LEV, levofloxacin; CLA, clarithromycin; MET, metronidazole; AMO, 

amoxicillin.

GRAPHICAL ABSTRACT

The figure shows the hypothesis of the mechanism of phillygenin derivatives (PHI-Der). A is PHI-Der in the treatment of gastritis mice; B is the 
inhibitory effect of PHI-Der on H. pylori biofilm; C is PHI-Der that enhance the oxidation of H. pylori; D is PHI-Der reduce the oxidative effect and the 
expression of inflammatory factors in H. pylori-infected cells.
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hydrogen and carbon nuclear magnetic resonance (NMR), the 
structure of PHI-Der was determined. The 3D structure of 
PHI-Der was visualized using ChemDraw3D. The SMILES 
structure was uploaded to PaddleHelix1 to predict the physical and 
chemical properties (Fang et al., 2022).

2.3. Microdilution to detect the minimum 
inhibitory concentration (MIC)

In the first well of the 96-well plate, we add 173.6 μL of the culture 
medium and 6.4 μL of PHI-Der (4 mg/mL) and diluted them 
sequentially. Negative (sterile, only medium and drug) and positive 
(no drug, only medium and bacteria) wells were used as controls. 
Bacteria growing in the logarithmic phase on the solid plate were used 
to create a bacterial suspension with the corresponding medium. 
Optical density at 600 nm (OD600) of H. pylori was adjusted to 1.0 × 107 
colony forming unit (CFU)/mL. OD600 of the remaining bacteria and 
the fungus were adjusted to 1 × 106 and 5 × 103 CFU/mL, respectively, 
and 10 μL was added to each well. Cultivation was performed for 
24–72 h before further analyses (Wang Y. et al., 2022).

2.4. Detection of the minimum bactericidal 
concentration (MBC) using microdilution 
and the spread plate method

We added 173.6 μL of the culture medium and 6.4 μL of PHI-Der 
(4 mg/mL) to the first well of the 96-well plate. The wells were 
sequentially folded and diluted. The wells of phosphate-buffered saline 
(PBS; Sangon Biotech, China) were used as positive controls. H. pylori 
G27 grown in the logarithmic phase on the solid plate was used to 
create a bacterial suspension in the BHI medium, and OD600 of the 
bacterial solution was adjusted to 1 × 107 CFU/mL. We added 10 μL of 
the bacterial solution to each well and performed culture in a three-gas 
incubator. After PHI-Der had been used for a certain time period 
(such as 2 h), we  diluted (100 times, 1,000 times, and so on) the 
bacterial liquid, spread it on Columbia agar plates, and performed 
culture in a three-gas incubator for 4–5 days. We  calculated the 
number of bacteria growing on the agar plate. The drug concentration 
at which the number of bacteria was inhibited by 99.9% was 
considered to be MBC.

2.5. Detection of drug resistance of 
PHI-Der

Long-term contact of bacteria with low doses of drugs causes 
changes in the medicinal chemical processes of the cells themselves, 
so that bacteria gradually tolerate drugs. The drug resistance of 
PHI-Der was detected with the H. pylori G27 strain. MICs of 
metronidazole and PHI-Der were 2 and 16 μg/mL, respectively. 
We used one-fourth of MIC to induce the strain, which was detected 
every 3 days over 24 days of induction. The induction concentration 

1 https://paddlehelix.baidu.com/

was adjusted with changes in MIC. For example, when MIC of 
metronidazole changed to 16 μg/mL, the induction concentration was 
adjusted to 4 μg/mL.

2.6. Cytotoxicity detection of PHI-Der

GES-1 and BGC823 (KeyGen Biotech, Nanjing, China) cell 
suspensions were adjusted to 1 × 105. We inoculated 100 μL/well into 
96-well plates and replicated three same samples. Incubation was 
performed at 37°C for 24 h. The final concentrations of PHI-Der were 
200, 150, 100, 50, and 0 μg/mL. Subsequently, incubation was 
performed at 37°C for 24 h. We added 10 μL of Cell Counting Kit-8 
(CCK-8; Beyotime, China) to each well, tapped to mix, and incubated 
for 4 h. Finally, we measured the absorbance at 450 nm.

2.7. Animal toxicity of PHI-Der

We purchased 6–8-week-old specific-pathogen-free (SPF) 
C57BL/6 mice from Changsha Tianqin Biotechnology Co., Ltd. 
(license number: SYXK Gui2017-0004; animal experiment ethics 
committee approval number: NO.2019112501). Twenty animals were 
randomly divided into administration and negative control groups, 
with ten animals in each group (Not infected with Hp), and raised in 
SPF environment. The administration group was administered with 
10 times the therapeutic dose daily for 3 consecutive days, while the 
negative control group was administered with PBS solution. The mice 
were weighed consecutively for 7 days, starting 1 day before 
administration. Three days after drug withdrawal, the mice in each 
group were weighed, and the average body weight was calculated. 
Blood was collected from the eyeball, and the mice were sacrificed 
through dislocation and neck dislocation. Stomach, kidney, liver, and 
spleen tissues were obtained for pathological sectioning and 
hematoxylin and eosin (H&E) staining.

2.8. Construction of an animal model of 
acute gastritis to detect the inhibitory 
effect of PHI-Der on Helicobacter pylori

PHI-Der, omeprazole (Sigma-Aldrich, Germany), amoxicillin 
(Sigma–Aldrich, Germany), and clarithromycin (Sigma-Aldrich, 
Germany) were dissolved and diluted to 10 mg/mL. We successfully 
modeled (HPBS001) 6–8-week-old SPF C57BL/6 mice and divided 
them into four groups: the omeprazole + amoxicillin + clarithromycin 
group (omeprazole, 138.2 mg/kg; amoxicillin, 28.5 mg/kg; 
clarithromycin, 14.3 mg/kg), the omeprazole + PHI-Der (28 mg/kg) 
group, the omeprazole + PHI-Der (7 mg/kg) group, and the PBS/
negative control group. Each group comprised of ten mice. The 
negative control group comprised of ten mice not infected with 
H. pylori. Drugs were administered daily for 3 consecutive days. Two 
days after drug withdrawal, blood was collected from the eyes of the 
mice in the infected group, and the mice were sacrificed through 
cervical dislocation. Gastric tissues were collected and crushed. A 
portion of gastric tissues was paraffin-sectioned and stained with 
H&E. Terminal deoxynucleotidyl transferase biotin-dUTP nick  
end labeling immunohistochemistry and immunofluorescence 
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histochemistry were performed, and ImageJ was used to quantify the 
fluorescent signal of the immunohistochemical staining done on the 
tissue samples.

2.9. Target prediction

PHI-Der targets were obtained from the SwissTargetPrediction 
database.2 The targets duplicated with “Helicobacter pylori infection” 
were screened from the GeneCards database as potential targets of 
PHI-Der against H. pylori infection. The target interaction relationship 
was obtained from the STRING database.3 Potential targets were 
imported. The species selected for the study was “Homo sapiens.”

2.10. Molecular docking

The three-dimensional structure of PHI-Der was imported into 
Discovery Studio. We  used the module for preparing ligands in 
molecules to process small molecules. The module mainly minimizes 
the energy of small molecules and yields CHARMM force fields. The 
crystal structure of the target protein corresponding to the core target 
was downloaded from the Protein Data Bank website.4 The protein 
was preprocessed using Discovery Studio to remove water molecules, 
hydrogenation, and charges, and the crystal structure was extracted. 
PyMOL was used to visualize the processed protein. AutoDock Vina 
performed molecular docking. PyMOL was used to combine the 
docking results to form a complex, and Discovery Studio was finally 
used for the interaction analysis and visualization of docking.

2.11. Inhibition experiment of PHI-Der in 
biofilms

The OD of the H. pylori G27 bacterial suspension was adjusted to 
0.1, and the biofilm formed under microaerophilic conditions for 
3 days. PHI-Der was added at concentrations of 128, 64, 32, and 16 μg/
mL for 24 h. Its anti-biofilm activity was evaluated using crystal violet 
(Macklin, China) and Alamar blue (Solarbio, China) staining. The 
biofilm protein content was determined using the bicinchoninic 
protein concentration assay kit (Beyotime, China).

2.12. Oxidation effect of PHI-Der on 
Helicobacter pylori

Helicobacter pylori G27 was cultured to the logarithmic phase. The 
bacterial suspension was adjusted to 1 × 107 CFU/mL. We  added 
10 μM of 2′,7′-dichlorofluorescein diacetate (DCFH-DA, Biyuntian, 
S0033S) to the bacterial suspension, and cultivate in a three-gas 
incubator for 1 h. The cocultured bacterial solution was washed twice 
with PBS buffer, in order to remove excess DCFH-DA. Phillygenin 
and PHI-Der were added at concentrations of 32 μg/mL each. PBS and 

2 http://www.Swisstargetprediction.ch/

3 https://STRING-db.org/

4 http://www.rcsb.org/

Rosup were used as negative and positive controls, respectively. After 
2 h of action, 15 μL of the solution was added dropwise onto the slides 
and observed under a fluorescence microscope.

2.13. Detection of the antioxidative activity 
of PHI-Der in GES-1 cell lines

Bacterial adhesion cell experiment GES-1(Rhodamine staining) 
cells were cultured in RPMI1640 medium containing 10% FBS 
without antibiotics, the H. pylori suspension was collected and labeled 
with SYTO9 for 15 min, and then treated with different drug 
concentrations and co-cultured with the cells for 2 h. The plate is 
placed under a fluorescence microscope for observation.

GES-1 cells were seeded (5 × 104 cells/well) and grown in 96-well 
plates until 70% confluence. PHI-Der was incubated with cells for 2 h at 
37°C. The cells were washed with PBS, incubated with 20 μM of 
DCFH-DA for 30 min at 37°C, and washed twice with PBS to remove the 
unabsorbed probe. Suspensions in the serum and antibiotic free medium 
were infected with H. pylori (1 × 108 CFU/mL). Reactive oxygen species 
(ROS) levels were measured for 180 min using a fluorescence microplate 
Synergy HT reader with λex of 485 nm and λem of 530 nm.

2.14. Reverse transcription quantitative 
polymerase chain reaction (RT-qPCR)

Helicobacter pylori G27 was cultured to the logarithmic phase, 
and the bacterial suspension was adjusted to 1 × 108 CFU/mL, then 
add PHI-Der. The cells were plated to a 70% fit and divided into the 
cell group, drug action group, H. pylori infection group, and drug 
action following H. pylori infection group. Pellets were collected 
using centrifugation. RNA was extracted using the TRIzol reagent 
(Takara, China) and reverse-transcribed into complementary DNA 
using a reverse transcription kit (MONPURE, China). RT-qPCR was 
performed using LightCycler according to the kit (MONPURE, 
China), with pre-denaturation at 95°C for 30 s, denaturation at 95°C 
for 10 s, and annealing and extension at 60°C for 30 s for 40 cycles. 
Supplementary Table S2 shows the primers (Sangon Biotech, 
Shanghai). Changes in transcript levels were determined by applying 
a relative quantification (2–∆∆CT method) approach, with 16S 
ribosomal RNA amplicons used as an internal control for 
data normalization.

2.15. Statistical analysis

Data are expressed as mean ± standard deviation. Statistical analyses 
were performed using SPSS 25.0. One-way analysis of variance was 
performed, and p < 0.05 was considered statistically significant.

3. Results

3.1. Preparation of PHI-Der

Through the preparation route (Figure  1A), PHI-Der was 
successfully prepared with a yield of 45%. The molecular formula of 
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PHI-Der is C18H18O6, and the structural formula of PHI-Der SMILES 
is OC1 = CC=C(C=C1O)[C@H]1OCC2C1CO[C@H]2C1 = CC=C(O)
C(O) = C1. Figure 1B shows the 3D structure of PHI-Der. Figure 2A 
shows the identification of PHI-Der using mass spectrometry. 
C18H18O6 ideal characteristic peak was [M]+ = 330.33. However, the 
evident characteristic peak was [M −17]+ = 313.32. One hydroxyl 
group had been removed because of the unstable connection. 
Figure  2B shows the NMR identification (hydrogen spectrum) of 
PHI-Der: 1H NMR (400 MHz, CDCl3–MeOD) δ 6.64 (s, 2H), 6.54 (d, 
J = 6.6 Hz, 2H), 6.36 (d, J = 6.6 Hz, 2H), 4.03.97 (m, 4H), 3.77 (d, 
J = 12.4 Hz, 2H), and 2.65–2.50 (m, 2H) and deuterium with 
chloroform–deuterium with the methanol solvent. Table 1 shows the 
physicochemical properties of PHI-Der, in which the lipid–water 
partition coefficient (logarithm) is 2.58 log(mol/mol), which is less 
than 3 log(mol/mol), indicating that PHI-Der has good water 
solubility. Supplementary Figure S1 shows the Fourier transform 
infrared analysis image of PHI-Der. Supplementary Figure S2 shows 
the NMR identification (carbon spectrum) of PHI-Der.

3.2. In vitro antibacterial activity of PHI-Der 
against Helicobacter pylori

PHI-Der MIC was 8–32 μg/mL in 18 H. pylori strains (Table 2). 
PHI-Der exerted better inhibitory effects on sensitive and resistant 
strains compared to phillygenin. The MBC of PHI-Der against 
H. pylori was 16 times the PHI-Der MIC, reaching 99.9 and 99.999% 
after 6 and 8 h, respectively. The antibacterial rate was 8 times the 
PHI-Der MIC, reaching 90, 99, and 99.9% after 4, 6, and 8 h, 

respectively. The bactericidal effect was related to the concentration 
and time (Figure 3).

3.3. Antibacterial activity of PHI-Der against 
Helicobacter pylori in vivo

The efficacy of PHI-Der against H. pylori in vivo was assessed 
using the C57BL/6 mouse model infected with H. pylori (HPBS001; 
Supplementary Figure S3). Based on the counted number of colonies, 
the bacteriostatic effect of PHI-Der was better than that of the triple 
therapy. Further, the bacteriostatic effect at high PHI-Der 
concentrations was better than that at low PHI-Der concentrations 
(Figure 4A). According to the H&E staining and immunohistochemical 
images of the PHI-Der group, apoptotic cells and inflammatory 
factors in the gastric mucosa reduced significantly (Figure 4B). As for 
the expression of inflammatory factors in tissue samples, expression 
levels of interleukin-6, tumor necrosis factor-α, and interleukin-1β 
were the lowest in the PHI-Der group (Figures 4B,C), use ImageJ for 
quantification. PHI-Der exerted good bacteriostatic effects in vivo.

3.4. Biosafety of PHI-Der

The toxicity test of PHI-Der showed that PHI-Der at 100 μg/mL 
exerted no cytotoxic effect on GES-1 gastric epithelial or BGC823 
gastric cancer cells, and the survival rates were above 90% 
(Figures 5A,B). After the intragastric administration of 10 times the 
therapeutic dose of PHI-Der, the body weight showed no significant 

FIGURE 1

Synthesis and structure diagram of PHI-Der. (A) Preparation circuit of PHI-Der. (B) Three-dimensional structure of PHI-Der.
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change within 7 days (Figure 5C). The stomach, liver, spleen, or kidney 
showed no pathological damage (Figure 5D). Pathology scores were 
in Supplementary Table S3. PHI-Der had low toxicity in vitro and in 
vivo and high safety and could be used as first-line drugs to treat 
H. pylori.

3.5. Antimicrobial spectrum and drug 
resistance of PHI-Der

A total of 20 non-H. pylori strains were detected, and MICs were 
above 128 μg/mL. PHI-Der could act on H. pylori alone (Table 3) as a 
narrow-spectrum antibacterial, with specific effects on other bacteria.

In the 24-day drug resistance induction detection of PHI-Der 
against H. pylori G27 strains, the MIC of PHI-Der had changed only 

two folds on day 6 and occurred on day 12. However, the MIC of 
metronidazole increased by 64 times (Figure  6). Resistance to 
PHI-Der was difficult.

3.6. Prediction of targets of PHI-Der

A total of 12 genes were screened using SwissTargetPrediction to 
predict the targets of PHI-Der (Supplementary Table S4). The target 
interaction relationship was obtained from the STRING database. 
Supplementary Figure S4 shows that the interaction relationship 
between the targets was not close, and targets and pathways were 
multiple. Targets related to “H. pylori infection” were screened using 
the GeneCards database, and disease targets were collected, including 
four targets that were repeated with PHI-Der (Table 4).

FIGURE 2

Identification of PHI-Der. (A) Identification of PHI-Der using mass spectrometry. (B) Identification of PHI-Der using NMR (hydrogen spectrum).
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3.7. Inhibitory effect of PHI-Der on 
Helicobacter pylori biofilm

Staining with Alma blue staining solution, pink represents the 
number of living cells and blue represents the number of dead cells, 

result showed that PHI-Der at 50–100 μg/mL could effectively inhibit 
biofilm formation, with a better inhibitory effect than that of 
PHI(100–150 μg/mL) (Figure 7A). Crystal violet staining showed that 
16 times the PHI-Der MIC could inhibit 50% of biofilm formation, 
which was better than the effect of clarithromycin (Figure 7B). The 
main component of the extracellular matrix in H. pylori biofilms is 
protein (Pinho et al., 2022), a protein content of biofilm 8–16 times 
the PHI-Der MIC could inhibit 50% of the biofilm formation, 
consistent with the results of crystal violet and Alma blue staining 
(Figure 7C).

The expression of biofilm-related genes (Cai et al., 2020; Spiegel 
et al., 2021; Pinho et al., 2022) was detected (Figure 7D). SpoT is a 
bifunctional enzyme with the properties of guanosine tetraphosphate 
(p-ppGpp) synthase and hydrolase (Hathroubi et al., 2017), Hp1174 is 
a gene of the major facilitator superfamily (MFS) efflux pump family 
(Xiaoran et al., 2018), PHI-Der could downregulate SpoT and Hp1174, 
indicating that it could inhibit H. pylori biofilms through these genes. 
The serotonin transporter (SLC6A4) indirectly regulated the formation 
of extracellular polymeric substances (EPSs) that induce functional 
gastrointestinal diseases (Arisawa et al., 2012). The SLC6A4 expression 
was upregulated after PHI-Der acted on infected cells (Figure 7E). 
PHI-Der was docked with SLC6A4 molecules (Figure  7F). The 
binding energy of docking was −6.6 kcal/mol, which is less than 
−5 kcal/mol, indicating that PHI-Der can stably bind to the cavity of 
the SLC6A4 protein. It can separate from amino acids, such as 
TYR175, LEU179, and ARG176, in the protein. The formation of 
hydrogen bonds, van der Waals forces, and Pi-Alkyl/Alkyl bond 
interactions enable PHI-Der to bind to the main active site of the 
SLC6A4 protein.

3.8. Effects of PHI-Der on Helicobacter 
pylori oxidation (ROS production)

After the drug penetrates into H. pylori, it may undergo redox 
reactions with proteins, nucleic acids, lipids, etc., and produce some 
peroxides, such as hydrogen peroxide, which can decompose 
DCFH-DA into dichlorofluorescein yellow and generate fluorescence. 

TABLE 1 Physicochemical properties of PHI-Der.

Name Numerical value

Molecular weight 330.34 g/mol

Heavy atoms 24

Aromatic heavy atoms 12

Fraction Csp3 0.33

Rotatable bonds 2

H-bond acceptors 6

H-bond donors 4

Ring count 4

Aromatic ring count 2

Molar refractivity 83.91 m3/mol

Topological polar surface area 

(TPSA)

99.38 Å2

Lipid-water partition coefficient (log) 2.58 log(mol/mol)

Acid dissociation constant (pKa) 8.32 log(mol/mol)

Water solubility (log) −3.75 log(mol/L)

TABLE 2 MICs of PHI-Der against H. pylori (μg/mL).

Strain Drug resistance PHI-Der Phillygenin

26695 Sensitive 16 32

HPBS001 Sensitive 16 16

G27 Sensitive 16 16

HPBS002 Sensitive 16 32

HPBS003 Resistant to LEV, CLA, and 

MET

16 16

HPBS004 Resistant to MET 16 16

HPBS005 Resistant to CLA 16 16

HPBS006 Resistant to LEV 16 32

HPBS007 Resistant to LEV and LEV 8 64

HPBS010 Resistant to CLA and MET 16 16

HPBS011 Resistant to CLA 16 32

HPBS012 Resistant to MET, CLA, and 

LEV

8 16

HPBS013 Resistant to MET and CLA 16 16

HPBS014 Sensitive 32 64

HPBS015 Resistant to MET, CLA, and 

LEV

16 16

HPBS016 Resistant to MET, CLA, AMO, 

and LEV

16 16

MSD132 Sensitive 8 16

NSH57 Sensitive 16 16

FIGURE 3

MBC of PHI-Der on H. pylori. 4×, 8×, 16×, 32× means the 
concentration tested in terms of MIC.
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At a concentration of 32 μg/mL, the oxidation reaction effect of 
PHI-Der was better than that of phillygenin (Figures 8A,B).

3.9. Antioxidative effect of PHI-Der on 
infected GES-1

Helicobacter pylori adherence to the cell surface is the first step 
in infection, which is also a critical step in biofilm formation, with 
the addition of PHI-Der, the number of H. pylori in infecting cells 
decrease, PHI-Der prevented bacteria from infecting cells 
(Figure 9A). The activation of inflammatory cells could increase 
ROS production at the site of inflammation. Without antioxidants, 
cell function is hindered, and tissue damage occurs, eventually 
leading to oxidative DNA damage and activation of signaling 
pathways related to the pathogenesis of gastric cancer (Komatsu 
et  al., 2015). After PHI-Der acted on infected GES-1, the 
antioxidant effect was not obvious at 2 times the MIC but 
significantly increased at 4 times the MIC, showing a dose-
dependent effect (Figure 9B). PHI-Der could exert an antioxidant 
effect on GES-1 infected with H. pylori. Arachidonic acid 
lipoxygenase 5 (ALOX5), a key enzyme that mediates lipid 
peroxidation by producing lipid peroxides, plays a central 
regulatory role in inflammation (Tang et al., 2021). The ALOX5 
expression was downregulated after PHI-Der acted on infected 

cells (Figure 9C). PHI-Der was docked with ALOX5 molecules 
(Figure 9D). The binding energy of docking was −9.9 kcal/mol, 
indicating that PHI-Der could stably bind to the compound in the 
cavity of the ALOX5 protein and interact with it. Amino acids, 
such as THR497, VAL501, and TYR95, formed hydrogen bonds, 
van der Waals forces, and Pi-Alkyl/Alkyl bond interactions, which 
enabled PHI-Der to bind to the main active site of the 
ALOX5 protein.

4. Discussion

The drug resistance of H. pylori has been increasing yearly. An 
effective way to prepare novel antibacterial drugs is to find active 
ingredients from natural products (natural plants, microbial 
secondary metabolites, marine organisms) and modify and transform 
them into derivatives (Shen et  al., 2020). In traditional Chinese 
medicine, the active ingredient phillygenin was screened from 
Forsythia, which belongs to the category of diepoxy lignans. As a type 
of natural aromatic polymer, lignans contain phenolic hydroxyl, 
alcohol hydroxyl, and carbonyl groups (Westwood et  al., 2016). 
Demethylation modification enhances its molecular reactivity (Huan 
et al., 2021). PHI-Der had been prepared by removing the methyl 
group of the ortho-methoxy group from the phenolic hydroxyl group, 
but this method only removed one methyl group (Liu et al., 2022). In 

FIGURE 4

Antibacterial effect of PHI-Der in mice. (A) HPBS001 colonization amount in mice with acute gastritis. (B) Gastric mucosal tissue repair and 
inflammatory response in mice with acute gastritis (100 times). (C) Quantification of inflammatory factors. *p < 0.05, **p < 0.01, ***p < 0.001.
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a previous study, the ideal molecular weight of PHI-Der was 330.33; 
however, mass spectrometry showed a characteristic peak at 313.32, 
which may be because of the unstable connection of the hydroxyl 
group (Hannah et  al., 2022). Therefore, one hydroxyl group was 
removed, and the molecular weight of the hydroxyl group was 
optimally 17, consistent with our speculation.

Due to the complexity of strains of infectious diseases, multiple 
subtypes of pathogenic bacteria might cause the same disease (Xunlei 
et al., 2019). To evaluate the antibacterial activity of PHI-Der against 

FIGURE 5

PHI-Der toxicity assay. (A) PHI-Der on GES-1 cytotoxicity. (B) PHI-Der on BGC823 cytotoxicity. (C) PHI-Der effect on the body weight of mice. 
(D) Damage detection of PHI-Der in the stomach, liver, spleen, and kidney of mice (100 times).

TABLE 3 MICs (μg/mL) of PHI-Der against non-H. pylori.

Strain Drug resistance PHI-Der

Proteus mirabilis Sensitive >128

Cryptococcus neoformans Resistance >128

Candida tropicalis Sensitive >128

Campylobacter Sensitive >128

Bacillus subtilis Sensitive >128

Morganella morganii Sensitive >128

Staphylococcus haemolyticus Sensitive >128

Stenotrophomonas maltophilia Sensitive >128

Acetobacter pasteurianus Sensitive >128

Escherichia coli Sensitive >128

Lactobacillus curvatus Sensitive >128

Saccharomyces cerevisiae Hansen Sensitive >128

B. fragilis Sensitive >128

Bifidobacterium longum Sensitive >128

Enterobacter hormaechei Sensitive >128

Staphylococcus aureus Methicillin-resistant >128

Candida Albicans Sensitive >128

Klebsiella pneumoniae Sensitive >128

Pseudomonas aeruginosa Sensitive >128

Acinetobacter baumannii Sensitive >128
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FIGURE 6

Resistance detection of PHI-Der.
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different H. pylori strains, we randomly selected 18 H. pylori strains 
with different sources and sensitivities. After testing, the MIC of 
PHI-Der was 8–32 μg/mL. It had the same effect on sensitive and 
resistant H. pylori strains, with an antibacterial effect 2–8 times better 
than that of phillygenin. Antibacterial rates were 90, 99, and 99.9% 
under the action of 8 times the MIC for 4, 6, and 8 h, respectively. 
Thus, sterilization was related to concentration and time. The efficacy 
was evaluated in vitro, and the MIC of PHI-Der against 20 
non-H. pylori strains was detected. It had the characteristics of 
specific inhibition of H. pylori. The CCK-8 cytotoxicity test showed 

that the survival rates of GES-1 and BGC823 cells were above 90% 
when the PHI-Der concentration was 100 μg/mL. In addition, the 
mice were administered with 10 times the therapeutic dose via 
gavage, and no organ damage was found. Thus, both in vivo and in 
vitro experiments proved that PHI-Der was relatively safe. In the in 
vivo evaluation of drug efficacy, the effect of PHI-Der was better than 
that of the triple therapy. After treatment with PHI-Der, apoptotic 
cells were reduced, and inflammation was alleviated. PHI-Der was 
effective against drug-resistant strains in vivo, with a better 
therapeutic effect. A certain PHI-Der concentration had a good 

TABLE 4 PHI-Der act on H. pylori infection targets.

Target Common name Uniprot ID ChEMBL ID Target class

Arachidonate 5-lipoxygenase ALOX5 P09917 CHEMBL215 Oxidoreductase

Induced myeloid leukemia cell 

differentiation protein Mcl-1

MCL1 Q07820 CHEMBL4361 Other cytosolic protein

PI3-kinase p110-alpha subunit PIK3CA P42336 CHEMBL4005 Enzyme

Serotonin transporter SLC6A4 P31645 CHEMBL228 Electrochemical transporte

FIGURE 7

Inhibitory effect of PHI-Der on biofilms. (A) Alpha blue showing biofilm inhibition. (B) Crystal violet showing biofilm expression. (C) Biofilm protein 
expression. (D) Changes in the relative messenger RNA (mRNA) expression of biofilm-related genes after the administration of PHI-Der. (E) Changes in 
the relative expression of SLC6A4 mRNA after the administration of PHI-Der (a: cell group; b: cells + PHI-Der group; c: infected cell group; d: infected 
cell + PHI-Der group). (F) PHI-Der and SLC6A4 molecule docking. *p < 0.05, **p < 0.01, ***p < 0.001.
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therapeutic effect on refractory gastritis caused by clinical drug-
resistant H. pylori infection. PHI-Der could become a leading drug 
or candidate drug against H. pylori.

Bacterial biofilms are bacterial communities located in self-
assembled matrices called EPS, which are mainly composed of 
proteins (Hou et  al., 2022). After formation, biofilms serve as a 
sanctuary for bacteria to resist antibiotic treatment and immune 
defense, thereby causing drug resistance (Krzyżek et  al., 2022). 
Hp1174, a gene of the major facilitator superfamily efflux pump family, 
is involved in biofilm formation. In this study, PHI-Der could 
effectively inhibit biofilm formation, with a better effectiveness than 
that of phillygenin. Its mechanism is related to downregulation of 
Hp1174 expression. The serotonin transporter (SLC6A4) is associated 
with functional dyspepsia in H. pylori infection (Hwang et al., 2014). 
miR-325 regulates and induces the formation of functional 
gastrointestinal disease EPS and is present in SLC6A4. At a strong 
binding site, miR-325 expression is attenuated upon binding (Arisawa 
et al., 2012). In this study, SLC6A4 was significantly upregulated after 

the effect of PHI-Der, which indicated that EPS formation was 
weakened and that biofilm formation was inhibited. In target 
prediction, PHI-Der could regulate SLC6A4, consistent with the 
phenotype of inhibiting biofilm formation. The inhibitory effect of 
demethylated hydroxylated PHI-Der on biofilm is better than that of 
phillygenin (Li et al., 2022), which may be because of the fact that the 
hydroxyl group attached to anthraquinone can target and regulate 
SLC6A4 and Hp1174, attenuating miR-325 expression, thereby 
inhibiting EPS formation more effectively (Song et al., 2021).

Helicobacter pylori promotes persistent inflammation, thereby 
maintaining a microenvironment rich in cytokines/chemokines, 
reactive nitrogen species, and ROS, which destabilize normal cellular 
homeostasis (Maciej et al., 2021). PHI-Der can prevent bacteria from 
infecting cells and cells from oxidizing and exert a protective effect on 
H. pylori-induced GES-1 cells. ALOX5 can regulate cell death in two 
ways: inflammation and lipid peroxidation. Excessive lipid peroxidation 
easily occurs in phospholipids, the main component of plasma 
membrane, leading to membrane rupture and cell death (Sun et al., 

FIGURE 8

(A) Effect of PHI-Der on the oxidation (ROS production) of H. pylori. (B) Quantitative diagram of the oxidative (ROS production) effect. *p < 0.05,  
**p < 0.01, ***p < 0.001.
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2019). ALOX5 expression is upregulated after H. pylori infection and 
downregulated after the action of PHI-Der. PHI-Der can regulate 
inflammation and lipid peroxidation by mediating ALOX5, thereby 
reducing the inflammatory response of infected cells. Thus, cells receive 
a certain protective effect.

The oxidation of PHI-Der because of H. pylori was significantly 
enhanced, but the mechanism of its action remains unknown. Further, 
the reason behind enhanced oxidation of H. pylori and weakened 
oxidation of infected cells is unknown. Owing to the increase in 
hydroxyl groups, oxidative properties of drugs increase (Gao et al., 
2020); however, substances that are oxidized differ significantly 
between prokaryotic and eukaryotic cells. In H. pylori, ALOX5 was not 
found. In contrast, no H. pylori-associated oxidized proteins may 
be present in eukaryotic cells. This issue needs to be further explored.

In addition, PHI-Der could also regulate ATP leakage of H. pylori 
(Arya et al., 2019) and downregulate virulence factors (Xia et al., 2022) 
(see Supplementary materials for details). Some pathogens that have 
evolved virulence factors highly resistant to oxidative stress can adhere 
and form biofilms on cell surfaces. Therefore, PHI-Der can reduce the 
oxidative damage of infected cells by inhibiting biofilm formation and 
the expression of virulence factors, enhancing the oxidation reaction 
in H. pylori, thereby achieving better killing and protection of H. pylori 
and protecting the gastric mucosa.

5. Conclusion and outlook

This study showed that demethylated hydroxylated PHI-Der was 
more effective than phillygenin in treating H. pylori infection, with 
advantages of low toxicity, less likelihood of drug resistance, and 
specific action on H. pylori with better medicinal properties, it’s a good 
antioxidant for host cells. Chemical modification of demethyl 
hydroxylation enhanced oxidation and inhibited biofilm formation, 
which could help modify compounds for improved activity, it provide 
a new approach for improving the activity of the compound.
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