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Editorial on the Research Topic

Artificial intelligence in forensic microbiology

Identifying drowning and estimating the postmortem interval (PMI) have long been

challenging problems in forensic medicine. Traditional examination methods involve

observing physical signs, such as white foam in the nose or mouth, lung contraction or

overinflation, pulmonary edema, and the presence of water in the stomach, to determine

whether death was caused by drowning. Experimental examination generally involves

measuring the content of diatoms in postmortem organ tissues. Determination of the time

since death still relies mainly on various corpse signs and insect development identification

methods. The specificity of various signs is not strong, and diatom testing may produce false

positive and false negative results. In addition, these methods are limited by the observer’s

experience and environmental factors, and cannot meet the requirements of accurate

forensic medicine. Accurately identifying drowning as the cause of death and determining

the postmortem submersion interval (PMSI) is crucial in forensic science. However, there

is a pressing need to develop exact methods and indicators to accomplish these objectives

with greater accuracy and specificity. In recent years, microbial research has attracted much

interest among forensic professionals. Integrating next-generation sequencing (NGS) with

artificial intelligence algorithms has proven to be an effective method for analyzing changes

in postmortem microbial communities (Wang Z. et al.). Therefore, our aim is to explore

the potential of microbiology in forensic science by focusing on the application of artificial

intelligence in forensic microbiology.

In the study conducted by the research team led by Zhao (Wang L. et al.; Zhang et al.,

2022), mice were divided into two groups: drowning and post-mortem submersion. Tissue

samples were collected at different intervals after death, including cecal contents, liver, brain,

and water, which were then amplified and sequenced using the 16s rDNA method. The

research results indicated that samples taken from the brain and liver between 5 to 14 days

after death are optimal for analysis. Additionally, significant differences in the microbial

communities were observed in the brain and liver samples. As the PMSI increased, the

dissimilarity in microbial communities between the liver and brain samples of the drowning

group and the post-mortem submersion group decreased. Therefore, this method cannot

be deemed reliable for determining drowning. Accurate PMSI estimation models were

developed for each organ based on their microbiota. The liver had a mean absolute error

(MAE) of 1.282 ± 0.189 days, the brain had a MAE of 0.989 ± 0.237d, and the cecum had a

MAE of 0.818± 0.165d.
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Similarly, in Dmitrijs’ study, it was demonstrated that microbial

communities can be utilized to determine the PMSI in juvenile

swine (Dmitrijs et al.). In Yu’s study, it was shown that artificial

intelligence is better at automatically identifying diatoms in

drowning cases (Yu et al.). Pan’s experiment proved that there are

differences in bacterial communities among different water levels

in the Yellow River Basin (Pan et al.).

With the continuous advancement of detection techniques

and analytical methods, we can now investigate microbial

communities within samples at previously unattainable depths.

Microbial communities have the potential to serve as a powerful

tool for estimating the time and identifying causes of death

in animal models. However, microbial communities can vary

significantly depending on different environments and conditions.

To promote the widespread use of microbiomes in forensic

science, more research professionals must collaborate and establish

a comprehensive and systematic microbial database that can be

integrated with data from other omics fields.
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Bacteria acts as the main decomposer during the process of biodegradation by

microbial communities in the ecosystem. Numerous studies have revealed the bacterial

succession patterns during carcass decomposition in the terrestrial setting. The machine

learning algorithm-generated models based on such temporal succession patterns have

been developed for the postmortem interval (PMI) estimation. However, the bacterial

succession that occurs on decomposing carcasses in the aquatic environment is poorly

understood. In the forensic practice, the postmortem submersion interval (PMSI), which

approximately equals to the PMI in most of the common drowning cases, has long

been problematic to determine. In the present study, bacterial successions in the

epinecrotic biofilm samples collected from the decomposing swine cadavers submerged

in water were analyzed by sequencing the variable region 4 (V4) of 16S rDNA. The

succession patterns between the repeated experimental settings were repeatable. Using

the machine learning algorithm for establishing random forest (RF) models, the microbial

community succession patterns in the epinecrotic biofilm samples taken during the 56-

day winter trial and 21-day summer trial were determined to be used as the PMSI

predictors with the mean absolute error (MAE) of 17.87± 2.48 ADD (≈1.3 day) and 20.59

± 4.89 ADD (≈0.7 day), respectively. Significant differences were observed between the

seasons and between the substrates. The data presented in this research suggested

that the influences of the environmental factors and the aquatic bacterioplankton on

succession patterns of the biofilm bacteria were of great significance. The related

mechanisms of such influence need to be further studied and clarified in depth to

consider epinecrotic biofilm as a reliable predictor in the forensic investigations.

Keywords: postmortem interval, postmortem submersion interval, microbial biofilm, bacterial succession,

machine learning algorithm

INTRODUCTION

During the forensic investigations, corpses can be found in a variety of natural or artificial
aquatic environments, such as ponds, rivers, lakes, seas, and water storage containers.
These cases may be suicides, homicides, or accidents, with the most common death
cause being asphyxiation by drowning in the water. Due to the lower temperature
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and the oxygen-deficit, the postmortem decomposition in the
aquatic environments is usually slower than that on the land,
which makes the forensic identification of corpses in the water
particular. Postmortem submersion interval (PMSI), which is
defined as the period between the entry into the water and
recovery of the dead body, is approximately equal to the
postmortem interval (PMI) in most of the common cases of
drowning (Humphreys et al., 2013). It can be used for inferring
the location of body falling into the water, delimiting the scope
of the search for the suspect, and providing direction for the
investigation. For corpses found on land, the PMI estimation
relies on the temporal changes of the postmortem decomposition.
However, determining PMSI has long been problematic because
the postmortem decomposition in water is affected by a variety
of biotic and abiotic factors, such as microbial metabolism, algal
growth, and adipocere formation (Haefner et al., 2004; Pakosh
and Rogers, 2009; Widya et al., 2012; Ueland et al., 2014). For
example, corpses submerged in freshwater (rivers) may show
more obvious decomposition changes than those submerged in
saltwater (seas), as lower temperatures and higher salinity slow
down bacterial activity (Byard, 2018). It is evident that microbial
metabolism is the leading factor affacting the rate of postmortem
decomposition happening in the terrestrial environment (Lauber
et al., 2014; Metcalf et al., 2016). Based on this, several studies
have monitored the bacterial community successions on the
corpses found on land, and suggested that the postmortem
changes in microbial communities were dramatic, measurable,
and repeatable, allowing PMI to be estimated accurately even
within a long time frame (Metcalf et al., 2013, 2016; Burcham
et al., 2019). However, such estimation is more complicatied for
carcasses found in water, especially for the cases of drowning.
When drowning occurs, aquatic microorganisms will enter
the respiratory and digestive tracts along with the liquid,
changing the structure of endogenous microbial communities,
consequently affecting their succession patterns. Moreover, if any
unpredictable rupture occurs on the decomposing carcass, fluid
from the environment could also enter the body and interrupt
previous succession processes. All these complex scenarios are
hard to evaluate in the forensic practices. As a result, to this
date, limitied research has been done on the succession of the
microbial communities on carcasses found in water.

When free-swimming aquatic microbes encounter solid
surfaces, they can gradually switch from a planktonic lifestyle to
forming biofilms that are wrapped by the extracellular polymeric
substance (EPS) (Battin et al., 2007). EPS contributes to plankton
attachment and provides independent niches specific to the
particular aquatic environments. The human corpse appearing
in the water provides attachment surface and organic nutrients
for the aquatic microbes to form specific epinecrotic biofilm.
A growing body of excellent studies has been done on biofilms
in multiple disciplines, such as food hygiology (Liu et al.,
2015), ecology (Ram et al., 2005), and medicine (Huang et al.,
2011; Johnson et al., 2015), but there is limited data available
associated with the human corpse decomposition in the water.
The bacterial succession patterns of the epinecrotic biofilms
have been studied by several forensic research groups using
surrogate models of the vertebrate corpses. Dickson et al. were

the first to evaluate the potential use of the bacterial succession
for the PMSI estimation (Dickson et al., 2011). They have
investigated the microbes involved in decomposition of porcine
cadavers in the sea and confirmed that marine bacteria rapidly
colonized the skin of the submerged cadavers in a succession
manner. Using high-throughput sequencing (HTS), Benbow
et al. have provided the first metagenomic data which has
described aquatic bacteria succession patterns in the epinecrotic
biofilms on the porcine remains submerged in a freshwater
habitat (Benbow et al., 2015). The biofilm communities on the
submerged remains changed significantly through the PMSI.
Although the microbial community differences between the
summer and winter trials have been observed, the succession
patterns of dominant phyla and genera were similar. In recent
years, machine learning (Li et al., 2019), and even deep learning
algorithms (Rahaman et al., 2020), have been applied in the
medical field on a large scale, as a result providing new tools for
forensic research to explore microbial succession patterns. Using
replicate swine carcasses, Kaszubinski et al. (2020) performed
an experiment to describe the variation of epinecrotic biofilm
microbiome in a non-flowing aquatic habitat. Through the
sufficient sequencing data obtained, Kaszubinski et al. modeled
key taxa for estimating PMSIs using the machine learning
algorithm (random forest (RF) regression), correctly estimating
the PMSI ± 3 days with R2 = 97.50%. These studies have
provided compelling evidence that the bacterial succession
in the epinecrotic biofilm has a prominent potential to be
used for the PMSI estimation in forensic investigations of
submerged corpses.

To further the understanding of the biofilm succession in our
geographical region and its potential to be used as an indicator
in the PMSI estimation during forensic investigations, present
study used juvenile swine as proxies for human corpses to
establish decomposition models for the use in a non-flowing
aquatic environment. Sterile tiles were used as the inorganic
solids placed in both close and distant proximity from the
decomposing carcasses for the epilithic biofilm attachment. We
employed HTS to fully describe the bacterial successions in the
epinecrotic biofilms on the decomposing carcasses and epilithic
biofilms on the submerged tiles. The objectives of the research
were to (1) characterize the succession patterns of the bacterial
communities in the epinecrotic and epilithic biofilms; (2) assess
the repeatability of the succession patterns in the replicable
settings; (3) compare the differences in succession patterns
between the summer and winter trials; and (4) seek to provide
important data for developing a machine learning algorithm to
estimate PMSI.

MATERIALS AND METHODS

Study Design
This study was approved by the Medical Ethics Committee of
Xiangya Hospital, Central South University (approval number:
201503465) and followed all applicable institutional and national
guidelines for the care and use of animals. A total of two
drowning experiments were, respectively, conducted from 31
October to 26 December 2017 (winter trial) and 21 July to
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11 August 2018 (summer trial) in three adjacent freshwater
ponds (28◦34′74.6′′ N, 112◦81′95.5′′ E) within the Xiangjiang
River watershed in Changsha, China (Figure 1). Each of the
ponds was about 1,000–1,500 m2 and 5m deep, subjected to
direct sunlight (no canopy), and surrounded by some shrubs.
The water in the ponds was previously pumped from a vast
lake nearby.

Swine carcasses have been frequently used as proxies for
human corpses in the forensic research (Schoenly et al., 2007).
In our experiments, six female swines (Sus scrofa demesticus,
n = 3 per trial), each weighing 7.05–11.5 kg, were purchased
from a local farm and killed by drowning after anesthesia.
Carcasses were individually placed on a fine mesh nylon pad
(60 mesh/inch) inside the plastic cages (0.75 × 0.55 × 0.25
m3) to facilitate weighing as the carcass disarticulated and to
prevent removal of the carcasses by scavengers (e.g., fishes,
shrimps, and crabs) (Figure 1). Moreover, bricks were attached
to the bottom of the cages to prevent the carcasses emerging
from the water during the bloated stage, consequently inhibiting
colonization by terrestrial insects. Through these measures, the
microbial biofilms could form naturally on the carcass surfaces
without the random interference from aquatic and terrestrial
scavengers. Each cage was placed in a single pond and about
1m below the water surface. In order to explore the influence
of carcass decomposition on the formation of epilithic biofilm,
synchronous sampling of 2 tiles which were placed in the pond
0.5m away from oppsite sides of each carcass was conducted.
About 100m from the location of sunken carcasses, another two
sterile tiles were placed 1m below the water surface in the nearby
lake during the summer trial as a negative control. In the process
of decomposition, the postmortem changes were recorded and
photographed daily. To visually describe the decomposition
processes of the carcasses, the duration of each decay stage was
assessed using the framework of Zimmerman andWallace (2008)
and Wallace et al. (2008). The visual body score was evaluated
using the total aquatic decomposition scoring (TADS) system as
described by van Daalen et al. (2017).

Environmental Parameters and Sample
Collection
Air temperature and relative humidity were recorded hourly
by a data logger (MEACON Automation Technology Co.,
Ltd., Hangzhou, China). Water quality parameters, including
water temperature (◦C), dissolved oxygen (DO, mg/L), pH,
conductivity (mS/cm), and salinity (ppt), were measured 4 times
every day at 1m beside each carcass and at the location for the
negative control using the AZ 86031 Water Quality Checker (AZ
Instrument Co., Taiwan, China), with its probe been placed 1m
below the water surface. Water temperature data recorded every
6 h during each of the experiment days was used to calculate
the average daily water temperature, and accumulated degree
days (ADDs) were calculated by summing the average daily
water temperature above the lower development threshold (LDT)
(Mateus and Vieira, 2014). Because ADD was used to explore
how microorganism communities (not insects) changed during

the study, an LDT of 0◦C was employed for this calculation,
according to Pechal et al. (2014).

A total of three types of microbial specimens were collected:
epinecrotic, epilithic, and aquatic samples. Swine skin has been
widely used as a proxy for human skin (Sekkat et al., 2002).
Epinecrotic samples were collected from the skins of swine
carcasses at multiple time points: 10min before being sacrificed,
immediately after being sacrificed, daily in the first week, and
then weekly in the following days during the summer trial.
Due to the carcass decomposition progressing slowly at low
temperatures, the sampling time points after the swine sacrifice
for the winter trial were different: every 3 days in the first
week, and then every 2 week in the following days. At each
sampling time point, a 10 × 10 cm2 skin area on one side of
the torso of each carcass was gently swabbed for 60 s using sterile
cotton applicators with care taken to not duplicate any previously
sampled area. Then, the tip of each applicator was cut off with
a pair of sterile scissors and placed in a 1.5-ml microcentrifuge
tube. Epilithic and aquatic samples were collected from the
tiles and ponds weekly during the summer trial and biweekly
during the winter trial. The epilithic communities on the surfaces
of each tile were sampled in the same way as the epinecrotic
samples. For sampling the aquatic communities, one liter of pond
water was collected at 1m distance from each carcass using the
sterile syringes, consequently filtered by suction filtration using
a Buchner funnel and the nylon filter membranes (pore diameter
0.2µm). The negative control of the epilithic and aquatic samples
were taken further away from the carcasses from the nearby
lake during the summer trial. All samples were immediately
frozen at −80◦C until further processing. Carcasses and tiles
were immediately submerged back into the water to their original
location upon sample collection completion, while also making
sure that the disposable sterile gloves used in the procedure were
replaced after each sampling. The detailed information of each
sample is shown in Supplementary Table S1.

DNA Extraction and PCR Amplification
The cotton tip of each swab or the fragment cut from each filter
membrane was put in a bead tube for genome DNA extraction.
The succeeding steps were performed as dictated by the
manufacturer’s specifications of MoBio PowerSoil DNA Isolation
Kit (Mo Bio Laboratories, Carlsbad, CA, USA). Swabs and filter
membranes that had not been used for sampling were used as the
blank controls. DNA concentration and purity were determined
viaNanodrop ultraviolet spectrophotometric detection and 0.8%
agarose gel electrophoresis (Supplementary Table S1). All the
qualified DNA samples were diluted to a 20 ng/µl working
stock using sterile ultrapure water. When insufficient, the stock
solution was used directly.

The V4 region of the 16S rDNA gene has
been amplified using dual-indexed primers
(515F/806R: 5′-GTGYCAGCMGCCGCGGTAA-3′; 5′-
GGACTACNVGGGTWTCTAAT-3′) as described previously
(Claesson et al., 2010). Each of the forward primers contained
a 6 bp barcode unique to each sample. All polymerase chain
reactions (PCRs) were conducted in 25 µl reaction volumes
containing 5 µl of 5× reaction buffer, 5 µl 5× GC buffer, 2 µl
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FIGURE 1 | The geographic position and experimental scenes. Experiments were conducted in the 3 adjacent freshwater ponds and a nearby vast lake in Changsha,

China. The white letters labeled on the satellite photo represent the experimental sites for the winter trail (F, G, & H), summer (K, L, & M) trial and the negative control

(N). Carcasses were individually placed inside the plastic cages and then sunk into the water. The bottom pictures are, respectively, taken from the time immediately

after death, submerged fresh, early floating, floating decay, advanced floating decay, and sunken remains stages of the carcasses in the winter (above) and summer

(below) trials. The time points were labeled on each picture.
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dNTP (2.5mM), 1 µl forward and reverse primers (10µm), 2 µl
DNA template, 8.75µl ddH2O, and 0.25µl Q5 DNA polymerase.
Thermal cycling conditions were following: initial denaturation
at 98◦C for 2min, followed by 30 cycles of denaturation at 98◦C
for 15 s, annealing at 55◦C for 30 s, and extension at 72◦C for
30 s, with a final extension at 72◦C for 5min. The resulting
amplicons were mixed with the same volume of 1× loading
buffer (containing SYB green) and detected using electrophoresis
on 2% agarose gels. Except for the blank controls which failed
amplification, all amplicons were in the size range of 200–300 bp
and excised from the agarose gel for further experiments.

Amplicon Sequencing and Data Analysis
All amplicons in the size range of 200–300 bp were purified
using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences,
Santa Clara, CA, USA) and pooled into equal concentrations.
Sequencing libraries were generated using the TruSeq R© Nano
DNA LT Library Prep Kit (Illumina, San Diego, CA, USA)
following the manufacturer’s recommendations, and index codes
were added. The library quality was assessed on the Agilent
Bioanalyzer 2100 system using Agilent High Sensitivity DNA Kit
(Agilent, Santa Clara, CA, USA) and the Promega QuantiFluor
Fluorometer using Quant-iT PicoGreen dsDNA Assay Kit
(Thermo Fisher Scientific, Carlsbad, CA, USA). Finally, the
library was sequenced on an Illumina MiSeq platform, which
generated 300 bp paired-end reads.

After sequencing, the paired-end reads were assigned to the
samples based on their unique barcode, truncated by cutting off
the barcode and primer sequence, and merged using FLASH
(version 1.2.7) (Magoč and Salzberg, 2011). The merged reads
containing ambiguous bases (N) or low-quality bases were
filtered out using QIIME filter (version 1.8.0) (Bokulich et al.,
2013), and chimeras were removed using USEARCH (version
5.2.236) (Edgar et al., 2011). After the removal of singleton
sequences, operational taxonomic units (OTUs) were classified
with the threshold of 97% similarity using the UCLUST inQIIME
(Edgar, 2010). A representative sequence was picked by selecting
the longest sequence that had the largest hit number to other
sequences in each OTU. Representative sequences of 16S OTUs
were, respectively, aligned and annotated using the Greengenes
database (Release 13.8, http://greengenes.secondgenome.com/)
(DeSantis et al., 2006). Total raw sequencing data was published
in the Sequence Read Archive (SRA) under the accession
number PRJNA841063.

Statistical Analysis
To avoid biases of biodiversity data generated by the number
of sequences, the data were rarefied to 90% of the minimum
library size. Statistical analysis was conducted using a web-
based tool, MicrobiomeAnalyst (Dhariwal et al., 2017). For
the hierarchical cluster analysis (HCA), each OTU began as
a separate cluster, then the clustering algorithm proceeded to
combine them until all OTUs belonged to a single cluster.
Distances between OTUs were measured with Minkowski and
clustering algorithms using the average linkage (the distance
between two clusters is the average of the distances between all
the points in those clusters). The results were visualized as a heat

map to show the temporal changes in the taxonomic clusters. The
alpha diversity indices of Chao1 and Shannon were calculated
to evaluate the species richness and evenness of a sample. The
statistical significance of differences in alpha diversity indices
between experimental groups/decay stages was estimated using
the analysis of variance (ANOVA). Principal coordinate analysis
(PCoA) using weighted UniFrac dissimilarities was performed to
visualize the changes in the community beta diversity according
to the decomposition progress/experimental grouping. The
statistical significance of the clustering pattern in the ordination
plot was evaluated by permutational multivariate analysis of
variance (PERMANOVA). The taxonomic composition of each
sample was visualized in a stacked bar plot by the chronological
order. Linear discriminant analysis effect size (LEfSe) was used
to identify taxa with significantly differential abundance across
experimental groups. Random forest (RF) analysis, which is a
powerful machine learning algorithm for the identification of
the predictive biomarkers and establishment of the prediction
the regression of model, has been employed for the regressing
of the OTU relative abundances against the ADDs using the
“randomForest” R package. The relative abundance of an OTU is
its percentage in the total amount of sequences in a sample. The
OTUs were ranked in the order of their feature importance and
selected to generate predictive biomarker sets. The RF regression
models were futher established for predicting the PMSI based
on generated biomarker sets were further established. The mean
absolute error (MAE) and goodness of fit (R2) were used to
evaluate the performance of the models (Metcalf et al., 2013).

RESULTS

Progression of Carcasses Decomposition
During the summer trial, the average air temperature and
relative humidity were 34.40 ± 1.98◦C and 34.19 ± 3.78%,
respectively. The carcasses decomposed much faster than those
during the winter trail and progressed to the stage of sunken
remains in one week time (Figure 1). Sample collection was thus
conducted on the bone remains once a week for the following
2 weeks. By visually describing the decomposition phenomenon
progression of each carcass, decay stages were determined as
follows: submerged fresh stage began at 0.0 ± 0.0 day, early
floating stage at 1.0 ± 0.0 days, floating decay stage at 2.8 ±

0.8 days, advanced floating decay stage at 4.0 ± 0.0 days, and
sunken remains stage at 6.0 ± 0.0 days. During the 8-week
winter trial, the average air temperature and relative humidity
were 15.00 ± 4.84◦C and 81.50 ± 14.82%, respectively. The
carcasses decomposed slowly and entered sunken remains stage
in a gradual manner. The submerged fresh stage began at 0.0 ±

0.0 day, early floating stage at 4.0 ± 1.0 days, floating decay stage
at 10.0 ± 0.0 days, advanced floating decay stage at 17.3 ± 2.3
days, and sunken remains stage at 47.3± 7.5 days.

Water quality parameters were measured at the locations of
sunken carcasses and the negative control tiles. The changes
of calculated average water temperature, DO, pH, conductivity,
and salinity are shown in Supplementary Figure S1. The water
temperature was mainly affected by the climate and remained
relatively constant in the summer but dropped gradually in the
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winter. ADDs increased linearly during both seasons. DO was
mainly affected by the weather and dropped markedly on the
rainy and cloudy days, most likely due to the photosynthesis
decline of the underwater plants rather than the carcass
decomposition influence. The fluctuations of water DO, pH,
conductivity, and salinity in the summer were greater than those
during the winter. However, there was no significant difference
of water quality between the locations whether the carcasses
had presented. These measurements of water quality indicated
that the carcasses which would randomly appear in the pond
would not cause serious changes to an aquatic environment with
a large storage capacity. This also indicates that the water in
these conditions can provide a relatively stable physicochemical
environment for the drowned carcasses.

The body weight and TADS score changes
during the decomposition processes are shown in
Supplementary Figure S2. The loss of body weight and the
increase of TADS scores in each trial were continued. However,
the carcasses that decomposed in the summer progressed to the
sunken remains stage more rapidly and had made their weight
and TADS scores reach the plateau much earlier. In fact, the
hyper slow decaying carcasses during the winter trial remained
amounts of soft tissue even after 56-day decomposition. It is
difficult to accurately describe such a slow process in detail using
the protocols described by van Daalen et al. (2017), which limits
the TADS system use for the accurate PMSI estimation for the
winter cases. On the other hand, due to the impact of the water
flow, the linear relationships between the body weight and the
ADD in both trials were not significant. These results suggested
that it is difficult to determine temporal changes precisely
through the decay phenomena and weight loss.

Overview of Sequencing
A total of 131 samples had been collected, including 66 in
the winter trial and 65 in the summer trial. The details of
each sample are shown in Supplementary Table S1. After the
DNA extraction and PCR amplification, a total of 5,816,237
high-quality reads were received from the output data of 16S
amplicon sequencing, and 140,618 OTUs were obtained after
these reads had been classified with 97% similarity. All the read
lengths were distributed in 200–300 bp, which fits the size of
the 16S V4 region (Supplementary Figure S3). Based on the
sequencing data rarefying to 90% of the minimum library size,
a total of 2,366,112 clean reads and 6,897 simplified OTUs
were used for the following statistical analysis. The numbers
of clean reads and simplified OTUs of each sample are shown
in Supplementary Table S1. The average good’s coverage value
for all samples was 99.80 ± 0.14%, which suggested that
the number of reads was enough to analyze biodiversity in
all samples. The rarefaction curves indicated that the species
richness in each sample had approached the plateau phase,
and it was unlikely that more species would been detected
with additional sequencing efforts (Supplementary Figure S4).
After representative sequences of OTUs had been annotated in
the Greengenes database, the taxon number at each taxonomic
level of each sample type is shown in Supplementary Table S2.
The taxa of epinecrotic, epilithic, and aquatic communities in

the winter trial were significantly less than those in summer,
especially the taxa at each taxonomic level in epinecrotic
communities which were less than half of that in summer.
These results suggested that the season could be the main factor
affacting the aquatic environments, thus leading to the changes in
the biofilm community structures on the carcasses in the water.

Community Differences Between
Epinecrotic and Epilithic Biofilms
The calculated alpha diversity indices of Chao1 and Shannon
for each sample are shown in Supplementary Table S1.
The statistical differences in alpha diversity indices between
the epinecrotic, epilithic, and aquatic communities were
estimated using the ANOVA and reviewed as box plots
(Supplementary Figure S5). During the winter trial, there were
significant differences between the alpha diversity indices of the
three communities. Each index of epinecrotic community was
lower than that in the epilithic community, especially for the
late decay periods. However, a significant difference between the
communities was only be found in Chao1 indices for the summer
trial, which indicated that there was a large difference in species
richness, but a small difference in species evenness among the
three communities in summer.

By measuring the weighted UniFrac distances, the beta
diversity variation of the communities was visualized in PCoA
plots and tested by PERMANOVA. As shown in Figure 2A,
three types of samples were clustered into the significant clusters
separately. The epilithic and aquatic community beta diversity
was relatively stable during both seasons. Nevertheless, the
epinecrotic communities showed a significant succession pattern
through the time, which despite being initially close to the
epilithic samples, subsequently separated from the other dots on
the PCoA plots. Additionally, the communities present on the
skeletal remains collected during the sunken remains stage (14
and 21 days) during the summer trial were also similar to the
epilithic communities, indicating that the bones’ adsorbability
to the planktonic microorganisms was similar to that of the
inorganic solid surface. Supplementary Figure S6 shows that
there was a significant difference between the epilithic and
aquatic community structures regardless of the presence of the
decomposing carcasses. The epilithic samples from both the
summer trial and negative control clustered together, while,
aquatic samples formed into another cluster. Similar to the
measurements of the water quality, these results suggested that
the carcasses decomposing in the water had little impact on the
aquatic environments and nearby epilithic biofilms.

According to the LEfSe analysis of the winter trial data, the
phyla, such as Cyanobacteria, Actinobacteria, Planctomycetes,
Fusobacteria, Chloroflexi, and Verrucomicrobia in the
epinecrotic communities have significantly less presence than in
the epilithic communities, whereas Firmicutes and Bacteroidetes
were more present in the epinecrotic communities. As for
the summer trial data analysis, Actinobacteria, Chloroflexi,
Planctomycetes, and Verrucomicrobia in the epinecrotic
communities were significantly less present, whereas Firmicutes
were more present in the epinecrotic communities than in the
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FIGURE 2 | The diversity variations of the bacterial communities during the winter (left panel) and summer (right panel) trials. (A) Two-dimensional PCoA plots of

weighted UniFrac distance matrices for samples obtained from carcasses, tiles, and water at different time points during both seasons. Samples obtained from

(Continued)
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FIGURE 2 | different substrates are presented in different colors. Sampling time points are marked under each dot. The statistical significance of the clustering pattern

in each plot was evaluated with PERMANOVA (top of each plot). (B) The alpha diversity variation of epinecrotic communities during the both seasons. Samples from

each time point were measured with Chao1 and Shannon indices, as shown in each box plot. The X-axis of each plot are the sampling days and “a” represents the

antemortem. The ANOVA results are showing at the top of each plot.

epilithic communities. The main differentiated phyla between
the epinecrotic and epilithic communities were similar during
the two seasons (Supplementary Table S3). The differentiated
genera of the two communities during two seasons are shown in
Supplementary Table S4.

Epinecrotic Community Temporal
Variations During Carcasses
Decomposition
The alpha diversity of epinecrotic communities changed
significantly during both seasons (Figure 2B). For the winter
trial, the Chao1 indices had increased after the carcasses entered
the water (1 day) and during the floating decay stage (14–56
days), however, the Shannon indices had decreased immediately
after death (0 day) and then increased after the carcasses entered
the water (1–21 days). The alpha diversity for the summer trial
followed a similar pattern. The Chao1 indices had increased
after the carcasses entered the water (1 day) and only slightly
reduced in the advanced floating decay stage (5–7 days). The
Shannon indices had increased first after the carcasses entered
the water (1 day), then decreased to a plateau (2–7 days),
and finally slightly elevated during the sunken remains stage
(14–21 days).

On the PCoA plot for the epinecrotic communities of both
seasons (Supplementary Figure S7), all the dots of the summer
samples clustered with the winter samples which were obtained
before the 14 days of the decomposition. The dots of 21–56
days for the winter trial formed another cluster and separated
from the previous samples. Supplementary Figure S8 illustrates
that the seasonal factors had altered the beta diversity of aquatic
communities. These results indicated that the beta diversity
variation in epinecrotic communities during the winter was
much more significant than that in summer, which could be
attributed to the specific aquatic community structure and longer
decomposition processes during the winter trial.

The temporal successions of the epinecrotic communities
are shown in the heat maps by hierarchically clustering OTUs
with Minkowski distance matrices (Figure 3A). Remarkable
and repeatable succession patterns have been observed in
the epinecrotic biofilms. Significant clusters could been found
in the heat map for the winter trial. The features changed
significantly across the time points of 10min before the
sacrifice, immediately after the sacrifice, and during the
subsequent decay process in the water, especially during
the 2–3 weeks when the carcasses were in the advanced
floating decay stage. For the summer trial, the epinecrotic
community structure changed significantly on the first day in
the water and then showed a sequential succession pattern
during the subsequent decay process (2–7 days). Additionally,

the main classes of the 14 and 21 days which are specific
to the communities on the bone remains were similar to
the cluster which represented the early decay stage. In the
epilithic and aquatic communities, the clustered 16S OTUs with
high abundance changed significantly during the winter trial.
However, both communities in summer were short of variable
OTUs, and performed more like the macro-succession pattern
(Supplementary Figure S9).

Taxa annotation and abundance variation for chronological
samples are shown as histograms in Figure 3B. For the winter
trial, the phyla of Proteobacteria (79.04± 11.09%) and Firmicutes
(18.91 ± 10.44%) have been the dominant taxa before the body
have entered the water (antemortem and immediately after being
sacrificed). During the subsequent decay process in the water,
Proteobacteria was still dominant (72.83 ± 17.04%, 1–56 days),
whereas Firmicutes had decreased through the submerged fresh
stage to the floating decay stage (4.44 ± 5.59%, 0–7 days)
and then followed to slowly increase through the advanced
floating decay stage to sunken remains stage (15.55 ± 10.35%,
14–56 days). In addition, Bacteroidetes which represented a
minor part of the antemortem communities (1.26 ± 0.81%)
had increased gradually through the submerged fresh stage
to the floating decay stage (16.20 ± 12.61%, 1–14 days). At
the advanced submerged decay stage, Bacteroidetes had first
decreased (1.54 ± 1.53%, 21–28 days) and then increased
up until the sunken remains stage (19.18 ± 9.39%, 35–56
days). Other phyla, such as Cyanobacteria, Acidobacteria, and
Fusobacteria were scarce and occurred opportunistically during
the winter trial. For the summer trial, the phyla of Proteobacteria
(57.95 ± 15.39%) and Firmicutes (28.93 ± 17.03%) were the
dominant taxa before the body entered the water. During the
subsequent decay process in the water, Proteobacteria was still
dominant (53.73 ± 15.62%, 1–21 days), whereas Firmicutes
had decreased in the early floating stage (4.54 ± 1.09%, 1–
2 days), and then became substantially more abundant during
the floating decay stage and advanced floating decay stage
(45.56 ± 16.80%, 3–7 days). On the bone remains (14 and
22 days), Firmicutes only accounted for 4.92 ± 1.33% of the
communities. Other phyla, such as Acidobacteria, Bacteroidetes,
and Chloroflexi, which were abundant right after the carcasses
have entered the water diminished during the decay process,
but bacame abundant on the bone remains. The variations of
the top 40 genera of the epinecrotic communities are shown in
Supplementary Figure S10.

PMSI Estimation Models Based on the
Epinecrotic Biofilm Succession
We regressed the relative abundances of total OTUs against
ADDs using the RF machine learning algorithm to establish
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FIGURE 3 | The heat maps, taxa histograms, and RF models for the winter (left panel) and summer (right panel) trials. (A) Heat maps for the epinecrotic communities of

both seasons. The samples on the X-axis are grouped by repeating experimental groups and ordered by the sampling time. The OTUs on the Y-axis are hierarchically

(Continued)
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FIGURE 3 | clustered with the Minkowski distance matrices. (B) The phylum composition and variation of the epinecrotic communities during both seasons. The

samples are arranged chronologically on the X-axis. The sample time points are marked on the top of each stacked bar and “a” represents the antemortem. The

stacked bars of disparate colors show the relative abundance of each phylum in the epinecrotic communities. (C) The predicted ADDs calculated by the established

RF models vs. observed ADDs in each trial were plotted with a one-to-one line added for reference. The RF models are based on the total OTUs (the top two plots)

and biomarker sets (the bottom two plots) illustrate the correlation between observed ADD and predicted ADD.

the models to predict PMSI based on the epinecrotic biofilm
succession. The models based on the data of the winter and
summer trials explained 98.90 and 95.80%, respectively, of the
ADDs since the placement of carcasses in the water. Figure 3C
depicts the predicted ADDs vs. the observed ADDs, with the one-
to-one line added for reference. The R2 values between observed
and predicted ADDs were 99.40 and 98.10%, and the MAEs
were 21.59 ± 3.56 and 27.21 ± 5.75 ADD, respectively. Since
the average daily water temperature in the non-flowing aquatic
environment was mostly stable during the winter and summer
trials (14.25 ± 3.70 and 32.51 ± 1.22◦C, respectively), ADDs
increased linearly during both seasons, which allowed the models
to predict PMSI with the error about 1.5 and 0.8 days during 56
and 21 days of decomposition, respectively.

A large proportion of OTUs in the epinecrotic biofilm did
not affect PMSI prediction. We list the taxa annotation of
the top 167 and 186 important OTUs which made significant
contributions (≥0.1%) to the accuracy of the RF models,
respectively (Supplementary Table S5). It should be noted that
these influential taxa use for the PMSI estimation were not
present at the higher abundances in the epinecrotic biofilm.
They only accounted for 36.12 ± 15.60 and 18.25 ± 12.50% of
the communities in each season. For establishing more efficient
models, the OTUs with low contribution were removed and
the important OTUs were used as the predictive biomarkers
in the training sets of the RF machine learning algorithm.
In comparison to using total OTUs, the R2 values of the
RF models based on the biomarker sets increased to 99.56
and 99.14%, and the MAEs decreased to 17.87 ± 2.48 and
20.59 ± 4.89 ADD, respectively (Figure 3C). It means that
the models allow us to predict PMSI with the error of about
1.3 and 0.7 days during 56 and 21 days of decomposition,
respectively. Since only 10 biomarkers were shared in the
training data of the winter and summer trials, the cross-
validation of the different season models was weak in R2 values
(0.20 and 0.69%) and MAEs (202.73 ± 29.57 and 292.25 ±

33.95 ADD). These findings suggested that the RF models
based on different seasons cannot be interchangeably used for
PMSI prediction.

DISCUSSION

While there have been several studies of the PMI estimation using
the microbial succession related to carcasses in the terrestrial
ecosystems (Guo et al., 2016; Fu et al., 2019), research of
such scope is scarce for the aquatic environments. In the
present study, the bacterial succession patterns of epinecrotic
and epilithic biofilms in a non-flowing aquatic habitat have
been analyzed by sequencing the V4 region of 16S rDNA.
Similar to the findings of the previous terrestrial carcass

decomposition studies, prominent bacteria successions occurred
in a predictable and reproducible manner on the surfaces of
the carcasses submerged in water. As shown in the heat maps
(Figure 3A), the clusters of high abundance taxa changed across
each of the decay stages. In addition, these successive changes
were highly repetitive between carcasses within coincident
experimental settings. In the human cadaver experiments done
by Metcalf et al. (2016), the prominent successions of bacterial
communities across terrestrial subjects within a season have
been observed. The heat maps which were generated with
a similar approach as ours have shown the reproducible
succession patterns of bacterial communities colonizing the
skin of human cadavers. The conclusions of these studies
indicated that the epinecrotic community structure variations
during the postmortem decomposition processes of terrestrial
and aquatic cadavers followed specific succession patterns, which
could be quantitatively analyzed by HTS and potentially applied
for estimating PMI/PMSI. However, the disparate community
structures and succession patterns in different seasons have been
observed (Figures 3A,B; Supplementary Figure S10), meaning
that existing findings were not sufficient for the use in diverse
environments. Whether this bacteria-dependent method can be
used in the forensic practice depends on the determination of
the influence of various environmental factors on the succession
patterns. Through the present study, we can confirm that the
seasonal conditions, such as temperature, light, and water quality,
can be the critical factors to community successions and need to
be further clarified in the subsequent researches, which should be
conducted in the artificially controlled conditions.

The epinecrotic communities of aquatic and terrestrial
carcasses shared similar dominant bacterial phyla
(Proteobacteria, Firmicutes, Bacteroidetes, and Acidobacteria).
Using the replicate swine carcasses as models for the human
decomposition research, Pechal et al. (2014) studied the
epinecrotic bacteria throughout decomposition in the forest
habitat. Each decay stage had a unique profile of four dominant
phyla that were changing in disparate trends. Proteobacteria
was the most dominant phylum which decreased over time.
Firmicutes became the dominant taxon as decomposition
progressed. Bacteroidetes occurred only in the fresh and bloated
stages. Actinobacteria, which represented the majority of the
communities found on the skin of the carcasses, had disappeared
during the dry stage. In the present study of the drowned swine
carcasses (Figure 3B), Proteobacteria and Firmicutes were
the dominant phyla before the body had entered the water.
During the decay stages in the water, Proteobacteria remained
dominant throughout, while. Firmicutes had first decreased,
and then increased in the floating decay stage. Bacteroidetes
representing a minor part of the antemortem communities had
increased first, followed with the short decrease, and then kept
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increasing up until the sunken remains stage. Acidobacteria
was scarce and occurred opportunistically throughout the
decomposition. It can be inferred from the above results that the
taxonomic compositions of cadaver epinecrotic communities
were similar, whereas the variation trends of each phylum were
completely different between the habitats. This may be one of
the main reasons why cadaver decomposition is significantly
faster in the terrestrial setting (5 days) than that in the water
(14 days in summer and 56 days in the winter). Therefore,
it is necessary to further study the epinecrotic communities
on the aquatic cadavers to widen their extent for the forensic
microbiology application.

To date, there have been several studies on the PMSI
estimation using succession patterns of the microbial
communities on the aquatic carcasses, involving prokaryotic and
eukaryotic microflorae. Hyun et al. investigated microeukaryotic
biodiversity and community structures on the drowned pig
(Hyun et al., 2019). The sequencing analysis showed the water
molds and algae were related to the carcass decomposition.
Relative abundances of the Filobasidium, Achlya, Saprolegnia,
Hydrodictyon, Lobosphaera, and Scenedesmus varied across
the decay stages. However, the change in microeukaryotic
biodiversity with the decomposition progression was not
significantly related to the PMSI. The insufficient biological
replication limited the establishment of a mathematical model
for the PMSI estimation. By using numerous fresh porcine
cadaver bones as the biological replications, Randall et al.
determined that eukaryotic community succession had occurred
on porcine skeletal remains in a freshwater lake, which allowed
the development of the mathematical approach for the PMSI
estimation using the RF regression (Randall et al., 2021).
Resulting models for the sample data from the ribs and scapulae
predicted PMSI with errors of ± 104 (937 ADD) and ± 63
days (564 ADD), respectively. Such high error rates for PMSI
estimation suggested that the eukaryotic succession patterns
may not be applicable for the rigorous forensic investigation.
Notably, the existing body of research on microbial succession
on aquatic carcasses was focused mostly on bacterial microflora,
especially on that in the epinecrotic biofilms formed on the
liquid–solid surfaces. Recently, Cartozzo et al. (2021) have
conducted a parallel experiment with Randall et al. (2021),
which also used porcine bones submerged in the similar
aquatic habitat to explore the temporal changes in the bacterial
community structure. They found that the community alpha
diversity increased with ADD. Similarly, beta diversity changed
significantly with ADD and had been reasonably explained
using the environmental parameters and inferred functional
pathways. RF models developed using the 24 ribs and 34 scapula
family level taxa allowed the prediction of PMSI with root
mean square error (RMSE) of 57 (522.97 ADD) and 37 days
(333.8 ADD), respectively. By comparing the above parallel
experiments, it is apparent that the PMSI could be estimated
more accurately from the bacterial succession patterns than
that from eukaryotes. Instead of using the porcine bones,
present study explored the bacterial succession on the surfaces
of intact swine carcasses. Based on the RF models, epinecrotic
communities in winter and summer were determined to estimate

PMSI with MAEs of 1.3 (17.87 ± 2.48 ADD) and 0.7 days
(20.59 ± 4.89 ADD). Apparently, these results can so far only
represent the application of epinecrotic biofilm in the present
specific habitats. We also find that the established models based
on different seasons cannot be interchangeably used due to
the rarely shared taxon. Whether it can be applied to other
environments remains to be further explored by studying the
mechanisms of influence of the environmental factors (e.g.,
water quality parameters, and aquatic microbiota) affecting the
bacterial succession.

The succession patterns of bacterial communities found in
the present study have a certain degree of discrepancy from
similar studies conducted in other aquatic habitats. Previously,
we conducted the experiment on the rat carcasses in the water
containers to control the environmental variables such as water
temperature andDO (He et al., 2019). Consistent with the present
study, the phyla of Proteobacteria, Bacteroidetes, Firmicutes,
and Actinobacteria were abundant in the rat epinecrotic
communities. However, the abundance of the Proteobacteria
decreased while Firmicutes increased during decomposition
in the past, which partially contradicted the results of the
present experiments conducted in the field ponds (Figure 3B).
Similar to the present experimental settings, Benbow et al.
(2015) have described the bacterial community succession
in the epinecrotic biofilms of swine carcasses in a flowing
stream during summer and winter. They also confirmed that
Proteobacteria decreased as Firmicutes increased over the
decomposition process during both seasons, which remained
the different from our experiments conducted in the non-
flowing ponds (Figure 3B). In fact, the variation trends of
Proteobacteria and Firmicutes in our observation seemed much
more complicated. They did not show continuous growth
or a downward trend, but rather fluctuated across decay
stages. For example, in the summer trial, Firmicutes increased
significantly from the floating decay stage (3 days) to the
sunken remains stage (7 days), while Proteobacteria had just
a slight decrease. However, Firmicutes was low in abundance
on the final skeleton remains (14 & 21 days), with an increase
of Proteobacteria (Figure 3B). In a study that most closely
matched our experimental settings and conditions, Kaszubinski
et al. (2020) detected the bacterial community structures on
the surfaces of three replicate swine carcasses submerged in
a non-flowing pond over six time points (from submerged
fresh to advanced floating decay stages) in summer. They
found that Firmicutes increased and then decreased with
Proteobacteria changing reversely over the decomposition. The
most accurate model for PMSI estimation was a quadratic
regression of phyla Firmicutes, Proteobacteria, and Bacteroidetes.
Compared with the previous studies, more sampling time
points (11 in our summer trial) gave us a more detailed
interpretation of the epinecrotic community succession in the
aquatic habitats. However, the discrepant and discontinuous
variations in the taxa abundance that occurred in different
habitats also posed a challenge for establishing mathematical
model for the PMSI estimation.

In addition, it can be concluded from our results that although
the decomposition had progressed in the same habitats, there
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were prominent differences between the succession patterns that
occurred during the summer and winter. The water temperature,
DO, conductivity, and salinity in the summer were significantly
higher than those in winter (Supplementary Figure S1), which
could produce variations in the aquatic bacterioplankton.
In the present study, the species richness of the aquatic
communities in winter was significantly lower than that in
summer (Supplementary Figure S4). A great discrepancy in
the community diversity between the two seasons is illustrated
in the Supplementary Figure S8. There were no significant
differences of the water quality and community diversity
between the locations whether the carcasses had presented
(Supplementary Figure S6). The above information provides
the implication that the effect of the seasonal factors on
the bacterioplankton community was greater than that of
the presence of the decomposing carcasses. In this case, the
succession patterns of the epinecrotic community are different
between seasons but repeatable in the parallel experimental
settings (Figures 3A,B), correlating with the carcasses in summer
decomposing much faster than those in winter, while having
the equal decomposition rates during the identical season. The
seasonal differences in the epinecrotic bacterium have also
been demonstrated in the research of Dickson et al. (2011)
and Benbow et al. (2015). They suggested that seasonal factors
influence bacterial composition more than the decomposition
process itself. Understanding the seasonal influences and other
environmental factors on aquatic and epinecrotic communities
is essential to accurately estimate the PMSI, especially for the
long-term decomposition process across the different seasons.

In the present study we have mainly focused on the
bacterial successions in the biofilm formed on the liquid–
solid surfaces. The formation and maturation of the biofilm
on different substrates were accompanied by the specific
bacterial succession patterns. Several differential taxa between
the epinecrotic and epilithic communities have been identified
by LEfSe analysis (Supplementary Tables S3, S4). Significant
different succession patterns have been observed (Figure 3A;
Supplementary Figure S9). The alpha diversity on carcasses
was lower than that on tiles (Supplementary Figure S5). The
distances between the two sample types increased with the PMSI
(Figure 2A). Similar to the aquatic communities during both
trials, the epilithic samples clustered stably. The epinecrotic
communities showed significant variations through time, and
while being initially close to the epilithic samples, subsequently
separated from the other dots on the PCoA plots. These
results were consistent with our previous experiment done
in the water containers (He et al., 2019). Several studies
have already demonstrated that epilithic and epixylic (decaying
plant material) biofilms differ in community composition,
limiting nutrients, exoenzyme activity, and fungal biomass
(Das et al., 2007; Sinsabaugh et al., 2010; Tank and Dodds,
2010). Lang et al. (2016) further found significant differences
in the community composition between the two biofilm types
(inorganic vs. carrion). Notably, dominating microorganisms
in the epinecrotic community included a large portion of
heterotrophs or detritivores, whereas the epilithic community
was mostly represented by autotrophs. This point of view

has been further testified by Hyun et al. (2019), who found
that the microeukaryotic communities on carcasses were also
significantly different from those in the abiotic control objects.
Considering the influences of seasonal and other environmental
factors, the succession patterns of epilithic biofilm which coexist
with epinecrotic biofilm in most aquatic habitats can be used as a
temporal control for PMSI estimation.

In conclusion, this study explored the bacterial community
succession patterns associated with the vertebrate remains
decomposing in the water for further use in the PMSI estimation.
We successfully identified the epinecrotic and epilithic bacterial
community structure variations throughout the decomposition
processes of carcasses submerged in the non-flowing ponds
during two seasons, providing preliminary support for potential
use of the biofilm communities in the forensic investigations.
The prominent bacterial succession patterns in the epinecrotic
biofilms formed on the solid–liquid surfaces of the aquatic
carcasses provide a new insight for the accurate PMSI estimation.
The influencing mechanisms of the environmental factors
and the aquatic bacterioplankton on the epinecrotic biofilm
communities should be studied further before the biofilm could
be considered as an accurate indicator of the PMSI.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found in the
article/Supplementary Material.

ETHICS STATEMENT

The animal study was reviewed and approved by the Medical
Ethics Committee of Xiangya Hospital, Central South University.

AUTHOR CONTRIBUTIONS

XFu and JC designed the study. YH, YL, and XFa collected
the samples for all analyses. LZ performed DNA extraction for
16S rDNA sequencing. KJ performed raw data analysis. FD and
JG performed the statistical analysis. All authors contributed,
reviewed, and approved the manuscript.

FUNDING

This work was funded by the National Natural Science
Foundation of China (81971791 and 82030058), Scientific
Research Fund of Zhejiang Provincial Education Department
(Y202146041), Basic Research Funds of Hangzhou Medical
College (KYYB202009), Doctoral Scientific Research Foundation
of Hangzhou Medical College (00004F1RCYJ2001), and
Undergraduate Training Program for Innovation of Zhejiang
Province (S202113023095 and S202113023093).

Frontiers in Microbiology | www.frontiersin.org 12 July 2022 | Volume 13 | Article 95170717

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Dmitrijs et al. Bacterial Succession in Epinecrotic Biofilm

ACKNOWLEDGMENTS

The authors are grateful for the technical support
provided by Personal Biotechnology Co., Ltd.
(Shanghai, China).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2022.951707/full#supplementary-material

REFERENCES

Battin, T. J., Sloan, W. T., Kjelleberg, S., Daims, H., Head, I. M., and Curtis, T.

P., et al. (2007). Microbial landscapes: new paths to biofilm research. Nat. Rev.

Microbiol. 5, 76–81. doi: 10.1038/nrmicro1556

Benbow, M. E., Pechal, J. L., Lang, J. M., Erb, R., and Wallace, J. R.

(2015). The potential of high-throughput metagenomic sequencing

of aquatic bacterial communities to estimate the postmortem

submersion interval. J. For. Sci. 60, 1500–1510. doi: 10.1111/1556-4029.

12859

Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J. I.,

and Knight, R., et al. (2013). Quality-filtering vastly improves diversity

estimates from illumina amplicon sequencing. Nat. Methods 10, 57–59.

doi: 10.1038/nmeth.2276

Burcham, Z. M., Pechal, J. L., Schmidt, C. J., Bose, J. L., Rosch, J. W., and

Benbow, M. E., et al. (2019). Bacterial community succession, transmigration,

and differential gene transcription in a controlled vertebrate decomposition

model. Front. Microbiol. 10, 745. doi: 10.3389/fmicb.2019.00745

Byard, R. W. (2018). Putrefaction: An additional complicating factor in the

assessment of freshwater drownings in rivers. J. For. Sci. 63, 899–901.

doi: 10.1111/1556-4029.13614

Cartozzo, C., Singh, B., Swall, J., and Simmons, T. (2021). Postmortem

submersion interval (PMSI) estimation from the microbiome of sus scrofa

bone in a freshwater lake. J. For. Sci. 66, 1334–1347. doi: 10.1111/1556-4029.

14692

Claesson, M. J., Wang, Q., O’Sullivan, O., Greene-Diniz, R., Cole, J. R., and Ross, R.

P., et al. (2010). Comparison of two next-generation sequencing technologies

for resolving highly complex microbiota composition using tandem variable

16S rRNA gene regions. Nucleic Acids Res. 38, e200. doi: 10.1093/nar/gkq873

Das, M., Royer, T. V., and Leff, L. G. (2007). Diversity of fungi, bacteria, and

actinomycetes on leaves decomposing in a stream. Appl. Environ. Microbiol.

73, 756–767. doi: 10.1128/AEM.01170-06

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., and Keller,

K., et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and

workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072.

doi: 10.1128/AEM.03006-05

Dhariwal, A., Chong, J., Habib, S., King, I. L., Agellon, L. B., and Xia, J. (2017).

MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual

and meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188.

doi: 10.1093/nar/gkx295

Dickson, G. C., Poulter, R. T., Maas, E. W., Probert, P. K., and Kieser, J. A. (2011).

Marine bacterial succession as a potential indicator of postmortem submersion

interval. For. Sci. Int. 209, 1–10. doi: 10.1016/j.forsciint.2010.10.016

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST.

Bioinformatics 26, 2460–2461. doi: 10.1093/bioinformatics/btq461

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R. (2011).

UCHIME improves sensitivity and speed of chimera detection. Bioinformatics

27, 2194–2200. doi: 10.1093/bioinformatics/btr381

Fu, X., Guo, J., Finkelbergs, D., He, J., Zha, L., and Guo, Y., et al. (2019). Fungal

succession during mammalian cadaver decomposition and potential forensic

implications. Sci. Rep. 9, 12907. doi: 10.1038/s41598-019-49361-0

Guo, J., Fu, X., Liao, H., Hu, Z., Long, L., and Yan, W., et al. (2016).

Potential use of bacterial community succession for estimating post-mortem

interval as revealed by high-throughput sequencing. Sci. Rep. 6, 24197.

doi: 10.1038/srep24197

Haefner, J. N., Wallace, J. R., and Merritt, R. W. (2004). Pig decomposition in lotic

aquatic systems: the potential use of algal growth in establishing a postmortem

submersion interval (PMSI). J. For. Sci. 49, 330–336 doi: 10.1520/JFS2003283

He, J., Guo, J., Fu, X., and Cai, J. (2019). Potential use of high-throughput

sequencing of bacterial communities for postmortem submersion interval

estimation. Braz. J. Microbiol. 50, 999–1010. doi: 10.1007/s42770-019-00119-w

Huang, R., Li, M., and Gregory, R. L. (2011). Bacterial interactions in dental

biofilm. Virulence 2, 435–444. doi: 10.4161/viru.2.5.16140

Humphreys, M. K., Panacek, E., Green, W., and Albers, E. (2013). Comparison

of protocols for measuring and calculating postmortem submersion

intervals for human analogs in fresh water. J. For. Sci. 58, 513–517.

doi: 10.1111/1556-4029.12033

Hyun, C. H., Kim, H., Ryu, S., and Kim, W. (2019). Preliminary study on

microeukaryotic community analysis using NGS technology to determine

postmortem submersion interval (PMSI) in the drowned pig. J. Microbiol. 57,

1003–1011. doi: 10.1007/s12275-019-9198-0

Johnson, C. H., Dejea, C. M., Edler, D., Hoang, L. T., Santidrian, A. F., and

Felding, B. H., et al. (2015). Metabolism links bacterial biofilms and colon

carcinogenesis. Cell Metab. 21, 891–897. doi: 10.1016/j.cmet.2015.04.011

Kaszubinski, S. F., Receveur, J. P., Wydra, B., Smiles, K., Wallace, J. R., and

Babcock, N. J., et al. (2020). Cold case experiment demonstrates the potential

utility of aquatic microbial community assembly in estimating a postmortem

submersion interval. J. For. Sci. 65, 1210–1220. doi: 10.1111/1556-4029.14303

Lang, J. M., Erb, R., Pechal, J. L., Wallace, J. R., McEwan, R. W., and Benbow, M.

E. (2016). Microbial biofilm community variation in flowing habitats: Potential

utility as bioindicators of postmortem submersion intervals.Microorganisms 4,

1. doi: 10.3390/microorganisms4010001

Lauber, C. L., Metcalf, J. L., Keepers, K., Ackermann, G., Carter, D. O., and Knight,

R. (2014). Vertebrate decomposition is accelerated by soil microbes. Appl.

Environ. Microbiol. 80, 4920–4929. doi: 10.1128/AEM.00957-14

Li, C., Wang, K., and Xu, N. (2019). A survey for the applications of content-

based microscopic image analysis in microorganism classification domains.

Artif. Intell. Rev. 51, 577–646. doi: 10.1007/s10462-017-9572-4

Liu, Y. J., Xie, J., Zhao, L. J., Qian, Y. F., Zhao, Y., and Liu, X. (2015). Biofilm

formation characteristics of Pseudomonas lundensis isolated from meat. J. Food

Sci. 80, M2904–M2910. doi: 10.1111/1750-3841.13142
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The diatom test is a forensic technique that can provide supportive evidence in

the diagnosis of drowning but requires the laborious observation and counting

of diatoms using a microscopy with too much e�ort, and therefore it is

promising to introduce artificial intelligence (AI) to make the test process

automatic. In this article, we propose an artificial intelligence solution based

on the YOLOv5 framework for the automatic detection and recognition of the

diatom genera. To evaluate the performance of this AI solution in di�erent

scenarios, we collected five lab-grown diatom genera and samples of some

organic tissues from drowning cases to investigate the potential upper/lower

limits of the capability in detecting the diatoms and recognizing their genera.

Based on the study of the article, a recall score of 0.95 together with the

corresponding precision score of 0.9 were achieved on the samples of the

five lab-grown diatom genera via cross-validation, and the accuracy of the

evaluation in the cases of kidney and liver is above 0.85 based on the precision

and recall scores, which demonstrate the e�ectiveness of the AI solution to be

used in drowning forensic routine.

KEYWORDS

forensic science, drowning, diatom test, artificial intelligence, YOLOv5 framework,

microwave digestion-vacuum filtration-automated scanning electron microscopy

Introduction

In forensic sciences, it has been widely proved that the diatom test is an effective

method for the diagnosis of drowning from other causes of death (Pollanen et al., 1997;

Ludes et al., 1999; Zhao et al., 2017). As one of the unicellular algae, the diatoms exist in

almost all water bodies, and naturally, they would go along with the inhaled water into the
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lung of a drowning person, and these diatoms would appear

in some other organs like the liver and kidney through the

circulation of blood. However, a dead victim that was caused

by other reasons but found in a water body would notpass the

diatom test on his/her liver and kidney samples due to the end

of the blood circulation (Kaushik et al., 2017). Even in drowning

cases, there is only a small amount of diatoms in the closed

organs which makes it difficult for forensic pathologists to detect

them. In addition, there are hundreds of diatom genera living in

the world, and the number of the dominant genera in a specific

water region is countable, which allows for the construction of

a diatom database to infer the drowning site of a drowned body

(Zhang et al., 2021).

Either the diagnosis of drowning or the drowning site

inference can resort to the diatom test by detecting the diatoms

from the sediments in the tissue samples of multiple organs

and then identifying their types for statistical analysis. To

capture the diatoms varying from a few micrometers to a

submillimeter, microscopy is required to scan the images at

a magnification from a hundred to a thousand depending on

optical microscopy or scanning electron microscopy (SEM).

Traditionally, the diatom test always involves large numbers

of laborious and tedious observation and search jobs on the

scanned optical or SEM images, which have to be physically

done by forensic pathologists. This situation is not friendly for

practice and is apt to cause high false negative/positive rates due

to fatigue and decreased concentration. It is of particular interest

for academic research to explore the capability of automatically

detecting the diatoms and/or recognizing the genera of the

diatoms on optical microscope images (Bueno et al., 2018; Zhou

et al., 2019, 2020; Kloster et al., 2020; Krause et al., 2020) or the

SEM images (Deng et al., 2020; Yu et al., 2021). These studies are

inspired by the development of artificial intelligence recently and

especially the giant success of deep learning (LeCun et al., 2015)

in image processing and analysis, such as image classification,

object detection, and region-of-interest (ROI) segmentation,

which then makes it possible to build our own intelligent diatom

test solution.

Deep learning is a category of machine learning (Jordan

and Mitchell, 2015) that is within the scope of artificial

intelligence, and artificial intelligence allows machines to work

efficiently and solve problems automatically based on the

technologies of machine learning and pattern recognition which

is another domain. For machine learning, there is a long

history of development and prosperity, and conventionally the

machine learning methods always contain a key step called

feature engineering to design high-dimensional hand-crafted

descriptors for downstream tasks like classification. In Safavian

and Landgrebe (1991), Fischer and Bunke (2001), Jalba et al.

(2001), and Gloria et al. (2017), a few studies were conducted

on the taxonomy of the diatoms on the microscopic images

based on machine learning. Various features were proposed

to effectively distinguish the diatoms from other objects and

these features were generally computed from statistical, textural,

and morphological information. Then, a classifier such as

a decision tree was trained on the feature data extracted

from the given training images to infer the genera of the

diatoms. However, conventional machine learning is not very

suitable for the detection of diatoms due to the difficulty

in encoding the position of diatoms to a high-dimensional

feature representation. In Paul and Jones (2001), this challenging

work was first and preliminarily evaluated with different visual

descriptors and classifiers based on the Viola-Jones object

detection framework.

In general, optical microscopy is not that powerful for

zooming in on the features of diatoms when compared to

scanning electron microscopy; however, the former with the

advantage of much lower cost is enough for the classification of

the images about if they contain the diatoms or not. In Zhou

et al. (2020), 58 sample slides were scanned by a Leica scanner at

a 40×magnification, and each slide image was split into a group

of 255 × 255 non-overlapping small patches. The deep learning

classification model Inception-v3 proposed by Google (Szegedy

et al., 2016) was learned on the given training patches for binarily

predicting if one test patch includes at least one diatom or not.

By sliding window, the location of the diatoms can be coarsely

determined. Similarly, the study of taxonomically identifying

the morphologically diverse microalgal group of diatoms was

reported on Kloster et al. (2020). The images for the study

were acquired by an optical scanner with a pixel resolution

of 0.1µm. The classical model VGG16 (Karen and Zisserman,

2014) was adapted for the evaluation and a high F1 score of 0.97

was achieved.

Object detection is not well tackled until the introduction of

deep learning on this diatom image processing task (Deng et al.,

2009). In this pioneering work, feature engineering is replaced

by a deep neural network called R-CNN to automatically

learn the representation of a high-dimensional latent space

on a large-scale image database ImageNet (Girshick et al.,

2014), including 14 million images with rich morphological and

textural features, and thus it provides the potential to build a

strong capability of generalization. Faster R-CNN (Ren et al.,

2017), as the third generation of the R-CNN, is a robust object

detection framework that has been used for the detection of

the diatoms on the SEM images (Deng et al., 2020) for the

diatom test. They compared the results achieved by the faster R-

CNN model and three conventional machine learning methods

which demonstrated the superiority of deep learning. This is

a preliminary investigation on the automatic diatom detection

issue, while some detailed information like the magnification of

image acquisition and the false negative/positive rates are not

mentioned. In Yu et al. (2021), we assessed the performance

of detecting the diatoms on an 800× image set and a 1,500×

image set with another well-known object detection model

RetinaNet (Lin et al., 2017). Both image sets were scanned by

a Phenom XL desktop scanning electron microscopy, and we set
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FIGURE 1

A fully connected network with 3 FC layers (Left); An illustration of how a convolutional layer works (Right).

the magnification to a low-medium level to substantially save the

time of scanning which is routinely quite needed. Consequently,

a 12% false negative rate and a corresponding 18% false positive

rate were achieved. In Krause et al. (2020), the evaluation was

performed on a group of two-channel (fluorescence and phase

contrast) microscopic images, and the F1 score of 0.82 was

achieved on another 600 test images.

In our previous work (Yu et al., 2021), we adapted the

deep learning object detection framework RetinaNet for a

preliminary evaluation of the SEM-based diatom detection. In

Yu et al. (2021), considering the quantity limit of the collected

SEM images, we applied a strategy of data augmentation by

randomly cropping a single 1,024 × 1,024 SEM image to a

local 512 × 512 region that contains at least one diatom for

training, and splitting one test image to four 512 × 512 image

patches for inference. In this study, it is not necessary because

we collected much more images for training and testing. We

adopt another AI-based object detection framework YOLOv5

(YOLOv5 GitHub Repository)1 which is the latest version of the

deep learning architectures YOLO (Redmon et al., 2016). One

prominent difference is that the RetinaNet-101 model has more

than 5.532× 107 parameters while a medium YOLOv5 model is

more compact with only about 2.104 × 107 parameters, which

means there is less computation and faster. In the meanwhile,

the YOLOv5 has been proved to be superior to the RetinaNet

model for accuracy.

No matter the RetinaNet or the YOLOv5 object detection

method, both have a structure of convolution neural network

(CNN) belonging to the scope of deep neural network. A

conventional neural network, that is, a fully connected (FC)

network is completely based on the connection of adjacent

neurons along the direction of propagation (Figure 1, Left).

The mathematical form of a fully connected network can

1 https://github.com/ultralytics/yolov5

be represented as y = ̥

(

∑N
i=0 ωi · xi + b

)

, where {ωi}

are the learnable weight parameters, b is either a constant

value or a learnable parameter as a bias factor, and F is an

activation function like sigmoid or softmax function to involve

nonlinearity in the network. In practice, the fully connected

network has some issues with handling the tasks like image

classification, detection, and segmentation. Particularly, when a

fully connected network is a little deep, it is prone to overfitting

due to too intensive computation. By contrast, the convolution

neural network is the combination of multiple types of neural

computing layers, including the convolutional layer, pooling

layer, and the mentioned fully connected layer. A convolutional

layer convolves an input and passes its result to the next layer.

The input is filtered by a set of convolution kernels with a limited

number of learnable parameters (Figure 1, Right) compared

to the fully connected layer. Therefore, the adaptation of the

convolutional layers allows building a deep neural network with

a better capability of the fitting. Besides, the pooling layer is used

to downsample a feature map by voting on a local, for example,

2 × 2 feature. There are some pooling methods, such as average

pooling and max pooling.

Following the previous evaluation (Yu et al., 2021),

we continue the work by investigating new deep learning

technologies to achieve better performance and developing

a practical SEM-based diatom detection technology with an

artificial intelligence engine. Moreover, we conducted a more

comprehensive study trying to approach the potential upper and

lower limits of our proposedmethod which will be introduced in

the following section.

Materials and methods

Figure 2 illustrates the workflow of our proposed SEM-

based diatom detection and recognition solution which can be

broken down into multiple modules. The workflow begins with
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FIGURE 2

The workflow of the proposed diatom detection and

recognition solution.

a hierarchical pre-processing module combining microwave

digestion and vacuum filtration (Zhao et al., 2013, 2017)

developed byGuangzhou forensic science institute, and followed

by the image acquisition using a Phenom XL desktop SEM at

a certain magnification. This workflow has been proved to be

a sensitive method for the forensic diatom test (Zhao et al.,

2013) compared to the conventional acid digestion method.

We scanned the pre-processed tissue samples using back-scatter

electron mode (BSE) as images and fed them into our developed

detection and recognition AI solution, which is composed of a

bunch of automatic functions like the AI-based diatom detection

and recognition, quantitative analysis and report generation,

and the function of training your own models for some specific

sample cases from end-users.

Data acquisition

To comprehensively evaluate the accuracy of the diatom

detection and genus recognitionmodels, we collected three types

of sample data as follows:

A. Samples of five lab-grown diatom genera with the

names of Coscinodiscus, Cymbella, Navicula, Nitzschia,

and Synedra, respectively;

B. Samples collected from lung tissues;

C. Samples collected from liver and kidney tissues.

The samples of Coscinodiscus, Cymbella, Navicula,

Nitzschia, and Synedra were provided by the Institute of

Hydrobiology, Chinese Academy of Sciences (Volume: 13–

15ml, Concentration: >106, Culture Condition: 25◦C). These

samples were processed by the Microwave Digestion-Vacuum

Filtration-Automated Scanning Electron Microscopy as a

Sensitive Method (Zhao et al., 2013).

The SEM membrane samples of lung, liver, and kidney

tissues from nine cases that have been involved here are

confirmed drowning by the eyewitness and autopsy findings

of drowning signs and the exclusion of other injuries, drug,

intoxication, alcohol, and medication-related. In this study,

we assess the performance of the trained AI models on

the given liver and kidney samples via cross-validation and

demonstrate the efficiency of the solution in the general cases of

drowning forensic diatom test. On the other hand, the samples

extracted from lung tissue contain various impurities. Although

the pre-processing steps of microwave digestion followed by

vacuum filtration are applied in our workflow to remove those

impurities, there are still many remaining impurities. Therefore,

it is a real challenge to well detect and recognize the diatoms

located in the SEM images of the lung samples, and herewith,

we test the lung samples collected from those drowning cases

for the evaluation on some extreme conditions with numerous

different sediments which make the background of the images

very complicated.

In addition, the samples of the five lab-grown diatom genera

were collected from a laboratory environment, and an apparent

difference between these samples and the samples collected from

the lung, liver, and kidney tissues of drowning corpses is that

the acquired SEM images from the lab-grown diatoms suffer less

from the interference of impurities. Thus, the given samples are

quite appropriate for the quantitative analysis of the potential

upper limit performance on both the diatom detection and the

genus classification.
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The diatom test method that combines microwave digestion

(MD) and vacuum filtration (VF) was proposed to replace the

conventional pre-processing method based on acid digestion

and centrifugation, and the former has a higher time efficiency

and a better filtration quality (Zhao et al., 2013). We acquired

the SEM images on these processed samples using a Phenom

XL desktop SEM at the magnification of 1,500× with a pixel

resolution of 0.33µm and a field of view (FOV) of 336µm. Each

scanned image has a unified size of 1,024× 1,024 pixels, and the

positions and genera labeling of the diatoms were done by two

senior forensic pathologists experienced in diatom tests.

For the samples of each lab-grown diatom genera, there are

around 2,000 images scanned, and not all of them contain the

diatoms (about 46%). Table 1 is the summary of the scanned

SEM images of the standard samples evaluated in our study.

For the lung tissue samples, we mixed all the scanned images

for training a robust diatom detection AI model based on a

large dataset. In detail, there are totally 2,343 images while 1,783

images contain at least one diatom, and the total number of all

the diatoms is 5,899. In addition, there are totally 11 samples

collected from the liver and kidney tissues which are described

in Table 2. Note that we inherited two sets of images from our

TABLE 1 Summary of the SEM images scanned from the standard

samples.

Genera Scanned

images

Images with

diatoms

Diatom count

Coscinodiscus 2,018 630 812

Cymbella 2,084 672 921

Navicula 1,966 930 1,356

Nitzschia 1,999 1,476 6,515

Synedra 1,875 1,622 5,741

Total 9,942 5,330 15,345

TABLE 2 Summary of the SEM images scanned from the liver and

kidney samples.

Image set Images with diatoms Diatom count

#01 904 2,789

#02 938 1,168

#03 8 8

#04 509 597

#05 108 113

#06 3 3

#07 1,687 2,125

#08 54 56

#09 69 72

#10 58 60

#11 35 39

Total 4,373 7,030

previous work (Yu et al., 2021). The first set was scanned at the

magnification of 800× (#01) and the second one was acquired

under the setting of 1,500× magnification (#02). Besides, there

are images from liver samples (#03→ #05) and kidney samples

(#06→ #11) randomly selected from the nine drowning cases.

In comparison to the standard samples, the samples of

the lung, liver, and kidney tissues are extracted from the real

cases, and the number distribution of different diatom genera

is not uniformly distributed for the training of a multi-class

recognition AI model that can work well on the inference of

all the target genera. The label information of both the lung

data and the liver and kidney data is illustrated in Figure 3, and

we notice that there are two interference labels named “debris”

and “other.” The label “debris” means the incomplete diatoms

and the second label “other” denotes those uncommon diatom

genera in forensic practice. Therefore, we only conduct the study

of assessing the performance of the diatom detection based on

the current samples.

YOLOv5

Same as the RetinaNet framework (Lin et al., 2017), the

YOLOv5 is also a one-stage object detection framework that

takes a batch of the resized 3-channel SEM images as input and

can directly predict the location of the diatoms and optionally

their genera. The localization of each diatom candidate is

predicted by a sub-regression model as a part of the YOLOv5

detection solution. On the other hand, it has a sub-classification

model trained to recognize if the candidate is a real diatom

with a confidence prediction. More specifically, the YOLOv5

has four model structures depending on the number of the

model layers and parameters, ranging from small to super large,

and we picked a medium model YOLOv5m for training and

testing to evaluate the performance on the given image data.

The YOLOv5m model has the network architecture illustrated

in Figure 4, and the architecture can be broken down into a

backbone network followed by a neck structure connecting to

the section for detection prediction. In detail, the construction

of the backbone network is based on the Focus module and

CSP module (see Figure 4), and the neck structure is the

enhancement of the FPN structure (Lin et al., 2017) appeared in

the RetinaNet by adding a structure called PAN for bottom-up

path aggregation. The combination of the FPN structure and the

PAN structure was originally proposed for image segmentation

(Liu et al., 2018) to shorten the information path between lower

and topmost features. It was first introduced into YOLOv4 and

then in the YOLOv5 framework, this structure was slightly

modified with the replacement of some CBLmodules by the CSP

modules which are constructed based on CBL.

The prediction from the neck structure consists of three

outputs with different feature sizes (e.g., 80). The prediction

from the neck structure consists of three outputs with different
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FIGURE 3

The number distribution of di�erent diatom genus in the lung (a), liver and kidney samples (b).

feature sizes (e.g., 80 × 80, 40 × 40, and 20 × 20) and receptive

fields. The 3rd dimension of every output is composed of four

coordinates of a bounding box, one confidence score, and K

probability values for the genus recognition (Redmon et al.,

2016), and K = 1 if we only consider the diatom detection

for counting the diatoms without the genus recognition. In

addition, corresponding to the diatom classification and the

diatom localization regression, the loss function used for the

YOLOv5m model training can be divided into classification

loss and bounding box regression loss. The classification loss is

calculated via binary cross entropy (BCE) and the bounding box

regression loss is calculated by a novel metric CIoULoss which

takes overlapping area, center distance, and aspect ratio into

consideration. The formula of the CIoULoss loss is defined in

Equations (1–3).

CIoULoss = 1−(IoU−
Dist2

2

DistC
2
−

ν2

(1− IoU)+ν
) (1)

IoU =
Ogt

∩Op

Ogt∪Op
(2)

ν =
4

π2

(

arctan
wgt

hgt
−arctan

wp

hp

)2

(3)

IoU is the intersection over the union between the candidate

localization prediction op and the ground truth localization ogt

(rectangle). Dist2 is the center distance between the prediction

and the ground truth, and DistC is the diagonal distance

of the ground truth. In addition,
{

wgt , hgt
}

and
{

wp, hp
}

are the width and height sizes of the ground truth and the

prediction, respectively.

Moreover, the training of a deep neural network model

is generally based on the back-propagation strategy which

follows the chain rule to iteratively update the learnable

parameters of the model. Gradient descent is used to optimize

the training process, and specifically, we adapt the stochastic

gradient descent optimization which can be formulated as

Equations (4–6).

gk = ∇wk + wk ∗ wd (4)

vk + 1 = vk ∗mu+ gk (5)

wk + 1 = wk − vk + 1 ∗ lr (6)

Here, wk is a parameter to be estimated by training, and the

parameters wd,mu, and lr denote weight decaying, momentum,

and learning rate, respectively.
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FIGURE 4

The YOLOv5m architecture.

Evaluation metric

In accordance with our previous work, we also calculate the

recall and the precision given by Equations (6, 7) to evaluate

the performance of the trained YOLOv5m models on the image

data mentioned in the section of “materials and methods—

data acquisition.” Here, the terms TP, FN, and FP are the

numbers of true positives, false negatives, and false positives,

respectively. The recall metric is to reflect the proportion of the

actual positives identified correctly and the precision metric is

to answer the question: what is the proportion of the correct

positive identification? This metric couple is very significant for

the quantitative assessment of the false negative rate and the false

positive rate. For instance, if there are a total of 100 diatoms

for detection, a recall score of 0.95 means only five objects are

not recognized. On the other hand, a precision score of 0.95

represents that 5% of all the detected objects are not diatoms.

Recall =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

The precision-recall curve is another metric to reflect the

overall performance of the trained models on a given data.

Previously (Yu et al., 2021), we obtained a set of precision-

recall measurements by manually setting different confidence

threshold values for inference and plotted them as a precision-

recall curve. Hereby, we propose a more elaborate definition of

the precision-recall curve that is based on the following steps:

1. Sort the confidence scores (i.e., probabilities) of all the

diatom candidates outputted from a trained AI model in

descending order;

2. Iteratively update the confidence threshold from 0 to 1

with the change of a small step like 0.01. The threshold is

the lower limit of accepting a detected object as a diatom

according to its confidence score. For each threshold, we can

calculate a couple of precision-recall values, and then a group

of precision-recall values can be obtained by changing the

confidence threshold;

3. Plot these precision-recall points as a curve and optionally

smooth them if necessary.

The area under a given precision-recall curve (AUC), also

known as average precision (AP), is a metric for assessing the

overall accuracy of a model. In general, a higher AUC score
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indicates potentially better performance on the same test dataset,

and ideally a perfect case would be subject to the AUC score of 1.

The prediction on an SEM image via the trained YOLOv5m

model depends on the inference settings of not only the already-

mentioned confidence threshold but also the IoU threshold

as the lower boundary of the overlapping level between a

diatom candidate and the ground truth to decide whether the

candidate can be accepted as a diatom. There are two more

evaluation metrics associated with the IoU threshold: AP@0.5

and AP@0.5:0.95 that are involved as part of the measurements

in our study. The metric AP@0.5 is the average precision at the

IoU threshold of 0.5 and the metric AP@0.5:0.95 is the mean

value of all the APs corresponding to the IoU threshold setting

from 0.5 to 0.95 with an interval of 0.05.

To evaluate the performance of the multi-class diatom

recognition on the lab-grown diatom samples, we introduce

another two evaluation methods called mAP and confusion

matrix into this study. For each diatom genus, there is

an AP@0.5/AP@0.5:0.95 score and the mAP is essential to

calculate the mean value of the average precisions in terms

of all the classes. Therefore, in the case of the multi-class

diatom recognition, we can also achieve the mAP@0.5 and

mAP@0.5:0.95 scores other than the previous AP@0.5 and

AP@0.5:0.95 for each genus. On the other hand, the confusion

matrix in our scenario is a way of observing the implicit

correlation among different diatom genera. Specifically, it

demonstrates the relations in a matrix where the sum of each

row is the actual number of one genus and each column

includes the prediction results of each genus for a specific

diatom class, in such a way that the number of correct and

incorrect predictions are summarized with their counts and

are broken down by each class. This can help us to find out

which classes are hard to be differentiated and further can

guide us to designmore reasonable algorithms for distinguishing

them. Note that the recall score of each class can be directly

computed from the confusion matrix according to the definition

of Equation (6).

Settings

The following studies were conducted on the hardware and

software environments summarized in Table 3. All the scanned

SEM images have the same image size 1,024 × 1,024 and

considering the trade-off between the available computation

resource of the Nvidia RTX 2080Ti GPU in Table 3 and a

reasonable batch size, we resized each SEM image to either 800

× 800 or 640× 640 before feeding it into the YOLOv5m model.

For these two input image sizes, the corresponding batch sizes

are 16 and 28, so that they are not too small and are not prone

to cause the oscillation of training. The training parameters

wd, mu, and lr for the stochastic gradient descent optimization

are set to be 5e-4, 0.937, and 0.01. Moreover, we define the

TABLE 3 The configuration of hardware and software environment for

evaluation.

Hardware CPU Intel Xeon CPU E5-1620 v2 @ 3.70GHz

RAM 24GB

GPU NVIDIA GeForce RTX 2080 Ti (×1)

Video Memory 12GB

Hard Disk 500GB

Software OS Windows 10

Programming Toolkit Python 3.9+ PyTorch 1.9+ CUDA 11.1

IDE PyCharm Professional

complete pass of a training dataset as an epoch, and the epoch

number of every single training is set to be 100 for all the

proposed studies. For a single training, each model instance

after an epoch was used to test the given test data set, and

we denote the model achieving the best AP@0.5 score as Best-

640/Best-800 and the finally obtained model after 100 epochs

as Last-640/Last-800.

Results

Study on the samples of five lab-grown
diatom genera

According to the summary of Table 1, we collected five lab-

grown diatom genera that areCoscinodiscus, Cymbella, Navicula,

Nitzschia, and Synedra. There are around 2,000 images prepared

for each diatom genus, and about 46% of all the images have

at least one diatom. We applied 4-fold cross-validation on the

available images to evaluate both the single-class detection of

the diatoms and the multi-class diatom recognition. Specifically,

we partitioned the images of each genus into two categories

depending on the criterion if one image contains at least one

diatom or not. Furthermore, we uniformly divided the images

of every category into four groups, and then all the images

labeled with the same group index were mixed for the 4-

fold cross-validation. In each fold, one group was picked for

validation, and the rest three groups were used for training.

All the models were initialized by the pre-trained parameters

learned on the image dataset ImageNet (Girshick et al., 2014)

before training.

For the single-class diatom detection, all the results achieved

at the confidence threshold of 0.5 are outlined as a table

in Figure 5. We can find that the input image size of 800

× 800 is slightly superior to 640 × 640 in terms of precision,

and the recall score achieved by the Best-800 model has

reached 0.94 while the corresponding precision score is 0.914.

Besides, no matter whichever model, the AP@0.5 score is

always around 0.95, which demonstrates the capability of the

trained YOLOv5m models in handling the standard samples.
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FIGURE 5

(a) The precision-recall curves of the single-class diatom detection under the confidence threshold 0.5 and the IoU threshold 0.5. (b) The

precisions and recalls at the confidence threshold 0.5 achieved by di�erent models. (c–g) The qualitative demonstration of the detection cases

of the five test genus.

The precision-recall curves are plotted in the left-upper corner

of Figure 5, and we also exhibited the detection cases of all five

genera. Here, it is noticeable that the sizes of the diatom genera

are quite different, which proves that the YOLOv5m architecture

enables to capture the objects on a large scale.

In a forensic diatom test, the recall should be more

important than the precision, in that the false positives can

be possibly corrected via some post-processing strategies, such

as an individual classification after the current detection.

Since the precision and the recall are commonly a couple

of measurements standing by the false negative rate and the

false positive rate, respectively, we modulated the confidence

threshold and achieved different results. Especially, when the

confidence threshold is set to be 0.4, the recall score achieved

by the Best-800 model is slightly higher than 0.95, while the

associated precision score is 0.9.

For the multi-class diatom recognition which includes

the diatom detection and the classification of every diatom

candidate with a genus label, we computed the mAP@0.5 score

and mAP@0.5:0.95 score from the AP results of each genus and

summarized them in Figure 6. In comparison to the previous

single-class diatom detection test, there are no remarkable

differences between the Best-640 model and the Best-800 model,

while the mean recall of the last-640 model is 1% higher than

the one of the last-800 model. To get a perception of the model

performance in each genus, we plot the precision-recall curves

of the five genera in Figure 6. The AP@0.5 scores of the two

diatom genera Nitzschia and Synedra achieved by the Last-

640 model are considerably better than the Last-800 model,

leading to the overall AP of the Last-640 model being superior

to that of the Last-800 model. In addition, we notice that the

performances of the Best-800 model on every genus are similar

with a smaller variance of the AP@0.5 scores than that achieved

by the Best-640 model.

The normalized confusion matrices in terms of the Last-

640 and Best-640 models are summarized in Table 4, where we

can find some hidden correlations among different genera. For

instance, there is a 45% probability of misrecognizing Nitzschia

as Synedra by the Last-640 model and indeed the two genera

look rather similar in shape. Also, the size of the Synedra is

very small in our standard samples and this genus is easy to be

recognized as background. Moreover, among the false positives,

more than 80% of them are identified as Nitzschia obtained

by the Best-640 model. As well, more than 30% and 65% of

the false positives detected by the Best-640 model are regarded

as Nitzschia and Synedra individually. Overall, the confusion

matrix is a useful tool to indicate the potential intra-class

confusion for solution improvement.
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FIGURE 6

The precision-recall curves of all the diatom genus achieved by the Last-640, Last-800, Best-640, and Best-800 models.

Study on the samples of lung tissue

We applied the evaluation to the lung samples from the

drowning cases. Since there are many sediments in the lung

of a drowning corpse, it is very challenging to effectively

distinguish the diatoms and the non-relevant objects in the

test images. Therefore, this study can be regarded as a

performance evaluation on the worst cases of the drowning

forensic diatom test.

Again, we evenly split the SEM images scanned on the

given lung samples into four groups and conducted a cross-

validation. As already mentioned, due to the existence of two

interference labels “debris” and “other,” as well as the count

imbalance among different genera, it is not suitable to launch

a multi-class diatom recognition study, instead, we only focus

on the search of all the diatoms in the images. Following the

denotation of the models trained on the samples of the lab-

grown diatom genera, we also compared the results achieved by

the Last-640, Best-640, Last-800, and Best-800 models. Note that

each training of the cross-validation begins with an initialization

by the YOLOv5m model pre-trained on the SEM images of the

lab-grown diatom samples, which already have learned some

general features of diatoms.

In Figures 7a,b, the precision-recall curves are plotted in

the left corner, and in the right corner, there is a summary

of the achieved results at the confidence threshold of 0.5. In

accordance with the summary, the recall score is getting higher

by increasing the size of the images fed into the YOLOv5m from

640 × 640 to 800 × 800. As a result, the Last-800/Best-800

models perform better than the corresponding Last-640/Best-

640 models because the textural and morphological information

is more abundant. Quantitatively, the best recall score is above
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TABLE 4 The confusion matrices derived from the multi-class recognition of the lab-grown diatoms with the Last-640 and Best-640 models.

Last-640 Predicted

Coscinodiscus Cymbella Navicula Nitzschia Synedra Background

Actual Coscinodiscus 0.94 0 0 0 0 0.06

Cymbella 0 1 0 0 0 0

Navicula 0 0 0.94 0 0.01 0.05

Nitzschia 0 0 0 0.51 0.45 0.04

Synedra 0 0 0 0 0.71 0.29

Background 0.01 0.01 0.02 0.81 0.15 0

Best-640 Predicted

Coscinodiscus Cymbella Navicula Nitzschia Synedra Background

Actual Coscinodiscus 0.94 0 0 0 0 0.06

Cymbella 0 1 0 0 0 0

Navicula 0 0 0.94 0 0 0.06

Nitzschia 0 0 0 0.88 0 0.12

Synedra 0 0 0 0.05 0.88 0.07

Background 0.01 0.02 0.01 0.31 0.66 0

The boxed values indicate high mis-recognition cases among some diatom genera and background.

0.8 by the Best-800 model and the corresponding AP@0.5 score

is also closed to 0.8. In Figures 7c–f, we qualitatively illustrated

several detection cases achieved by the Best-800 model and

imposed the confidence score of every diatom candidate on the

test images.

Study on the samples of liver and kidney
tissues

In this study, we evaluated the image data scanned from

the liver and kidney tissues of some drowning corpses. Once

more, the available SEM images cannot meet the requirement

for a multi-class diatom recognition study due to the already

mentioned reasons of the uneven count distribution of each

genus, as well as a large portion of diatoms labeled as “other” and

“debris.” Hence, we took an evaluation of the single-class diatom

detection with a 4-fold cross-validation, while only the input

image size 800 × 800 is taken into consideration this time. We

initialized each training of the cross-validation with the weights

pre-trained on the dataset of ImageNet (Girshick et al., 2014) to

reduce the influence of transfer learning. Note that the image

dataset used in this study is composed of 11 samples with an

obvious variation in the dirty level of the image background

which can be found in Figure 8. The image quality of some

samples is as poor as that of the previous lung samples, while

in the best cases, there are only the diatoms left after the MD-

VF pre-processing steps, therefore this study takes the general

situation into account for a fair evaluation of the simulation of

routine cases.

The assessment was conducted on the prepared image data

and all the quantitative results are shown in Figures 9a,b. In

comparison to the RetinaNet-101 architecture, the YOLOv5m

achieved a balance between the precision score of 0.84 and the

recall score above 0.86 at the confidence threshold of 0.5. For

the same threshold, the RetinaNet-101-Last-800 model is tilted

to the precision side, while the false negative rate is therefore

much higher than that achieved from the YOLOv5m model.

In Figures 9c–f, there are two couples of the diatom detection

results predicted by the YOLOv5m-Last-800 model and the

RetinaNet-101-Last-800 model.

Since the diatom candidates predicted from a

YOLOv5m/RetinaNet-101 model will be filtered both by

the IoU threshold and by the confidence threshold defined

empirically, we would like to explore the impact of the two

threshold parameters on both the precision and the recall

to guide our practice. In detail, we kept one threshold at

0.5 and changed the other threshold from 0.1 to 0.5 with

a step of 0.1 to observe the trend of performance. All the

precision and recall scores are outlined in Tables 5, 6 where

the precision and recall scores maintain stable when the

IoU threshold is ≤0.5, and when the threshold is above 0.5,

the average precision drops down according to the AP@0.5

score and the AP@0.5:0.95 score from the same model as

shown in Figure 9. The invariant property of the precision

and recall scores shows that most of the true positives and

the corresponding ground truth are well overlapped with

each other. On the other hand, when progressively changing

the confidence threshold from 0.1 to 0.5, the precision score

increases while the corresponding recall score decreases, and
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FIGURE 7

The demonstration of the quantitative results of the lung samples (a,b). Several qualitative cases achieved by the Best-800 model (c–f).

FIGURE 8

(a–c) Three annotated images acquired from the liver and kidney samples with di�erent situations on background.

we notice that the precision and the recall get closed at a low

confidence threshold of 0.1 for the RetinaNet-101-Last-800

model, while the YOLOv5m-Last-800 model approaches the

balance at the threshold 0.5, which is preferable for practice. In

conclusion, the results in Tables 5, 6 indicate that the training

in distinguishing the diatoms from the other sediments in the
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FIGURE 9

The evaluation result summary of the liver and kidney samples (a,b) and two drowning cases qualitatively compared between the

YOLOv5m-Last-800 model and the RetinaNet-101-Last-800 model (c–f).

images is much more challenging than learning of predicting

the diatom locations.

Discussion

In this article, we proposed an AI solution to assist the

diatom test for searching drowning forensic evidence. Inspired

by the huge success of deep learning in various domains (LeCun

et al., 2015), we collected the samples from different sources and

generated a large image dataset with the microwave digestion

and vacuum filtration pre-processing steps (Zhao et al., 2013,

2017) and the image acquisition by a desktop scanning electron

microscopy to train our deep learning-based diatom detection

models. We adapted the YOLOv5 which is an engineering-

optimized version of a well-known object detection architecture

(Redmon et al., 2016). If the image data used for training is

accompanied by the bounding box annotation, as well as the

genus label for every diatom, we can train the multi-class diatom

recognition model to predict not only the location of a diatom

candidate but also its most possible genus.

As discussed in the “materials and methods—data

acquisition” section, the collected samples include three groups

for different evaluation purposes via cross-validation. All the

scanned images have the same size 1,024 × 1,024 and almost all

of them were acquired at 1,500× magnification except a liver

sample (800×magnification) inherited from our previous work

(Yu et al., 2021). For the lab-grown samples of the five specific

diatom genera, we evaluated the capabilities of both single-class

diatom detection and multi-class diatom recognition. For the

former, we tried to achieve the upper limit of the YOLOv5m

model considering that the images in this group suffer less from

the pollution of impurities. As a result, a recall score of 0.95

together with a precision score of 0.9 are achieved by setting the

IoU threshold at 0.5, the confidence threshold at 0.4, and the

AP@0.5 score around 0.95. For the latter, it is more challenging

due to the extra diatom taxonomy. In conformity with the

results reported in the last section, we achieved the best recall

score of about 0.92 when the corresponding precision score is

0.9. The difficulty in recognizing the genus of each diatom is

not the same, and we observed that the Nitzschia and Synedra

are easy to be misidentified with each other while almost all the

false positives are from these two genera.

Both the lung samples and the samples of the liver

and kidney tissues were extracted from the drowning

cases. We conducted experiments on these samples to

estimate the performance of our AI solution in the general

situations encountered in the drowning forensic routine. Some

interference labels and the distribution of the diatom genera

from both groups make the multi-class diatom recognition

evaluation not applicable, we therefore care only about the

diatom detection issue. Especially, the experiments on the lung
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TABLE 5 The precision and recall scores when changing the IoU

confidence threshold from 0.1 to 0.5 and the confidence score is

always 0.5.

IoU

threshold

YOLOv5m-Last-800 RetinaNet-101-Last-800

Precision Recall Precision Recall

0.1 0.843 0.858 0.905 0.705

0.2 0.843 0.859 0.905 0.705

0.3 0.843 0.860 0.905 0.705

0.4 0.843 0.860 0.905 0.706

0.5 0.843 0.860 0.902 0.706

TABLE 6 The precision and recall scores by changing the confidence

threshold from 0.1 to 0.5 while the IoU score is fixed at 0.5.

Confidence

threshold

YOLOv5m-Last-800 RetinaNet-101-Last-800

Precision Recall Precision Recall

0.1 0.707 0.914 0.778 0.800

0.2 0.764 0.899 0.847 0.764

0.3 0.796 0.887 0.874 0.737

0.4 0.819 0.875 0.891 0.723

0.5 0.843 0.860 0.902 0.706

samples are designed to evaluate the worst cases due to the

existence of various sediments, which indicates the lower limit

of accuracy we can potentially achieve in those real cases. In the

controlled study of resizing the original image to 800× 800 and

640 × 640, respectively, as input for training and testing, the

best recall score is above 0.83 at the confidence threshold of 0.5

and the corresponding precision score is around 0.7 when the

input size is 800 × 800. Also, the AP@0.5 score can reach 0.8.

The precision score of 0.7 indicates that there are many false

positives that are common for the cases of lung samples, and

the candidates predicted from the current model can be further

refined by an individual AI model.

On the other hand, we tested the performance of the

trained YOLOv5mmodels on the given liver and kidney images.

In comparison to the RetinaNet-101 architecture (Lin et al.,

2017) adopted in our previous work, we conducted a 4-fold

cross-validation for both frameworks under the same threshold

settings. When the confidence threshold and the IoU threshold

are both 0.5, the precision score achieved by the RetinaNet-101

(∼0.9) is higher than the score from the YOLOv5m (∼0.84),

while the recall score achieved by the RetinaNet-101 (∼0.71)

is much lower than the score from the YOLOv5m (∼0.87),

and the AP@0.5 score of the YOLOv5m can be almost 0.9.

Moreover, a balance between the precision score and the recall

score was achieved at the confidence threshold of 0.5 and

0.1 corresponding to the YOLOv5m and the RetinaNet-101,

which demonstrates the superiority of the YOLOv5m since the

RetinaNet-101 is prone to be tilted to the precision side. Besides

the mentioned experiments, we also trained a YOLOv5m model

using all the images from the liver and kidney samples and

deployed it in application software for forensic practice.

In future, we will aim at the completion of our diatom

detection and recognition solution by integrating the function of

multi-class diatom recognition into it. Since an even distribution

of the diatom genera is a prerequisite for training, the annotation

on the newly scanned images from more samples is required

while there is another possible way for the same purpose by

generating many synthetic training images. The multi-class

diatom recognition function can be built on either an end-

to-end method or a hierarchical strategy, which has been on

schedule to be explored.
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Floodplains play essential roles in the ecological functions of regional 

environments. The merging and coalescence of bacterial communities in 

aquatic environments results in periodic patterns driven by regular hydrological 

activities, which may, in turn, influence ecological activities. However, the 

degree of bacterial community coalescence in the lateral and vertical directions 

as well as the underlying hydrological mechanism of floodplain ecosystems 

is poorly understood. Therefore, we  investigated the spatiotemporal 

patterns and coalescence processes of planktonic and sedimentary bacterial 

communities during normal and high-water periods in a floodplain ecosystem 

of the Yellow River source region. We  classified bacterial operational 

taxonomic units (OTUs) based on 16S rRNA gene sequencing, and quantified 

community coalescence by calculating the proportions of overlapping OTUs, 

the contributions of upstream sources to downstream sinks, and positive/

negative cohesion. The results revealed major differences in the composition 

and diversity of planktonic and sedimentary bacterial communities. Bacterial 

community diversity in the high-water period was higher than in the normal 

period. Laterally, hydrological connectivity promoted the immigration and 

coalescence of bacterial communities to oxbow lakes in both the mainstream 

and tributaries, with the coalescence degree of planktonic bacteria (2.9%) 

higher than that of sedimentary bacteria (1.7%). Vertically, the coalescence 

degree of mainstream planktonic and sedimentary bacterial communities 

was highest, reaching 2.9%. Co-occurrence network analysis revealed 

that hydrological connectivity increased the complexity of the bacterial 

network and enhanced the coalescence of keystone species to oxbow lakes. 

Furthermore, community coalescence improved the competitiveness and 

dispersal of bacterial communities. This study demonstrated that coalescence 

of bacterial communities is driven by hydrological connectivity in a floodplain 

ecosystem. Further studies should investigate the processes of bacterial 

community coalescence in floodplains in more detail, which could provide 

new approaches for environmental protection and ecological function 

preservation.
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Introduction

Floodplains are alluvial complexes comprising interconnected 
biota and ecological gradients. Being extremely vital ecosystems 
(Argiroff et al., 2017; Wang et al., 2020), floodplains contribute to 
preserving biodiversity (Naiman et al., 1993), maintaining water 
quality (Mitsch et al., 2001; Tockner et al., 2010) and handling 
flood surges (Kousky and Walls, 2014). Floodplains contain a 
vertical tree-like network of mainstream and tributaries (Mansour 
et al., 2018). In addition, numerous ecological niches are present 
as oxbow lakes, formed by shore erosion and overflow floods, 
which are seasonally separated from the original rivers (Durkin 
et al., 2015; Wang et al., 2020). During the normal period, oxbow 
lakes are partitioned from the mainstream, exhibiting a high 
spatial heterogeneity (Mayora et al., 2020). However, during the 
high-water period, the rising water of the mainstream will flood 
the floodplain between the mainstream and the oxbow lake, and 
the mainstream and the oxbow lake are connected. As a result, 
most environment of mainstream and oxbow lake displays typical 
equilibrium effects (Mayora et  al., 2013, 2020). Hydrological 
connectivity not only drives matter and energy flows laterally and 
vertically, but also maintains the spatiotemporal heterogeneity of 
microbial community structure in riverine networks (Mansour 
et al., 2018).

Bacteria constitute a substantial part of microbial communities 
and play a paramount role in biogeochemical processes and 
nutrient cycling in aquatic ecosystems (Findlay, 2010; Madsen, 
2011; Zhang et al., 2022a,b). According to their habitat preferences 
in rivers and lakes, bacterial communities can be divided into 
planktonic and sedimentary. The planktonic bacterial community 
is the sum of the sources of upstream bacteria, including rainfall, 
lake water, groundwater, and soil water, and it is susceptible to 
compositional and structural variations (Liu et al., 2018). The 
sedimentary bacterial community is formed through long-term 
sediment erosion and accumulation (Qian et al., 1987), and it is 
sensitive to environmental disturbances (Labbate et al., 2016; Zeng 
et al., 2019). There are also diversity and compositional differences 
between the two different bacterial communities (Jiang et  al., 
2006; Liu et al., 2018; Zeng et al., 2019). Planktonic bacteria can 
flow to the downstream and benthic zone, where they coalesce 
with sedimentary bacteria (Mansour et al., 2018; Gao et al., 2021). 
However, the extent to which these bacterial communities merge 
and coalesce in aquatic ecosystems is still not fully understood 
(Mansour et al., 2018; Langenheder and Lindström, 2019). This 
question includes the merging and coalescence of the same 
bacterial community in different aquatic environments, and the 
merging and coalescence of different communities in the 
same environment.

From an ecological perspective, a community coalescence 
event is more than just a part of a dispersal process, and it results 
in interactions between the whole community and its environment 
(Rillig et  al., 2015). Meanwhile, community coalescence is an 
exchange event among communities (and the surrounding 
environments); that is, individual communities coalesce with a 
new entity under mixing of relatively large environments (Rillig 
et  al., 2015). By contrast, bacterial dispersal encompasses the 
immigration and establishment of individuals (Hanson et  al., 
2012). In recent years, coalescence of bacterial communities has 
received increasing attention, including the construction of 
theoretical frameworks (Rillig et al., 2015; Mansour et al., 2018), 
verification by microcosmic experiments or mathematical 
algorithms (Livingston et al., 2013; Rillig and Mansour, 2017), 
significance in biological evolution (Castledine et al., 2020), and 
quantitative extent of community coalescence (Zhou and Ning, 
2017; Mei and Liu, 2019). However, comprehensive studies 
elucidate the distribution patterns and ecological significance of 
bacterial community coalescence in natural habitats are still 
limited. Consequently, how hydrological connectivity influences 
bacterial community coalescence in floodplain ecosystems 
remains an open question.

Coalescence is a community assembly process involving 
settlement and interactions of species (Castledine et al., 2020). 
Co-occurrence network analysis is commonly used to explore 
interactions among species and to ascertain the importance of 
certain species (Röttjers and Faust, 2018). Co-occurrence 
networks cannot always illustrate a real biological connection 
(Freilich et  al., 2018; Qiu et  al., 2021). Nonetheless, 
co-occurrence network analysis can visualise the complexity 
of bacterial communities, and identify which taxa are more 
important than others for maintaining the network structure 
(Qiu et al., 2021; Yuan et al., 2021). The network structure of 
bacterial communities in rivers is influenced by water 
environmental factors (Peng et  al., 2017). Community 
coalescence is bound to affect the complexity of the bacterial 
network, the number of keystone species, and the connectivity 
among species. Thus, network analysis can be used as a tool to 
determine the possible influence of bacterial community 
coalescence on interspecies interactions under variable 
hydrological connectivity.

The present study was conducted in a floodplain ecosystem 
in the source region of the Yellow River, China. We analyzed the 
merging and coalescence of planktonic and sedimentary 
bacterial communities in vertical and lateral directions during 
different hydrological periods. We  hypothesized that 
coalescence of planktonic and sedimentary bacterial 
communities occurs in the floodplain during the normal period, 
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and would be enhanced in vertical and lateral directions by 
increased hydrological connectivity during the high-water 
period; in this way, hydrological connectivity positively 
influences the network complexity of bacterial communities 
and community coalescence, ecologically. To verify the 
hypothesis, we  studied the distribution patterns of different 
bacterial communities at multiple spatiotemporal scales, 
quantified the extent of community coalescence, and 
investigated the influence of community coalescence on 
bacterial networks. This study was designed to explore the 
following: (1) Why are there differences in the spatial 
distribution patterns of bacterial communities between normal 
and high-water periods? (2) How does hydrological connectivity 
influence lateral and vertical coalescence of bacterial 
communities, in addition to the community structure and 
keystone species? (3) How does community coalescence 
improve the stability of bacterial communities in the floodplain?

Materials and methods

Study area and sampling

The study area (102°00′–103°00′E, 33°00′–33°30′N) is located 
in the Baihe River Basin in Hongyuan County (Yellow River 
source region), Aba Tibetan and Qiang Autonomous Prefecture, 
Sichuan Province, Southwest China. The Baihe River has a large 
number of tributaries and oxbow lakes, providing a natural 
observation window for this study. We classified the Baihe River 
into three types of water bodies (i.e., mainstream, tributaries, and 
oxbow lakes) based on their connectivity. A total of 36 sampling 
sites were selected along the Baihe River, with 10  in the 
mainstream, 14  in the tributaries, and 12  in the oxbow lakes 
(Figure 1).

Considering the influence of river connectivity on the 
migration and spread of bacterial communities, paired 
samples of surface water (0.5 m depth) and surface sediment 
(0.05 m depth) were collected in September 2019 (normal 
period: the runoff of the Baihe River is 41.81 ± 23.49 m3/s) 
and June 2020 (high-water period: the runoff is 
164.17 ± 136.03 m3/s). In each season, sampling was completed 
within a 5-day period. At each sampling site, water samples 
(10 L each) were collected using two 5 L sterile polyethylene 
terephthalate bottles and kept at a low temperature of 
0°C–4°C. Meanwhile, three sediment samples were collected 
near the water sampling site and mixed to form a composite 
sample, which was sealed in 50 ml sterile polypropylene tubes 
and kept in liquid nitrogen. All samples were immediately 
transported to the laboratory, where water samples were 
filtered through a 0.22 μm polycarbonate membrane (47 mm 
diameter; Millipore, Billerica, MA, United  States). The 
filtered membranes and sediment samples were stored 
at-80°C until DNA extraction. A total of 140 samples (72 
water and 68 sediment) were collected.

Environmental information

A total of 23 environmental variables were measured or 
collected (Supplementary File 2; Supplementary Table S1). Nine 
of the environmental variables were measured in the field. 
Specifically, flow velocity (V) was measured using an FP211 
direct-reading flow meter (Global Water Instrumentation, 
Sunnyvale, CA, United States). Water quality parameters, namely 
water temperature (WT), electrical conductivity (EC), dissolved 
oxygen (DO), pH, oxidation–reduction potential (ORP), and total 
dissolved solids (TDS), were measured using a portable multi-
parameter analyzer (YSI Corp., Yellow Springs, OH, United States). 
Turbidity (Tur) was measured with a 2100Q portable turbidity 
meter (Hach, Loveland, CO, United States), and mud temperature 
(MT) was measured using a DS600T mud thermometer 
(EDKORS, Changzhou, Jiangsu Province, China).

Another 14 environmental variables were determined in the 
laboratory. For water samples, chemical oxygen demand (COD) 
was determined by fast-digestion spectrophotometry based on the 
Chinese Environmental Protection Industry Standard for Water 
Quality (HJ/T 399-2007), and dissolved organic carbon (DOC) 
was determined by combustion based on the International 
Standard for Water Quality (ISO 8245-1987). Total phosphorus 
(TP), total nitrogen (TN), ammonium-nitrogen (NH4-N) and 
nitrate-nitrogen (NO3-N) of water samples were determined by 
spectrophotometry according to standard methods described in 
“Water and Wastewater Monitoring and Analysis Methods” (Third 
Edition). Levels of chlorophyll a (Chl-a) in water samples were 
determined by spectrophotometry after extraction with 95% 
ethanol according to “Specifications for Lake Eutrophication 
Investigation” (Second Edition). Soil total nitrogen (STN), total 
phosphorus (STP) and organic carbon (SOC) were also 
determined based on the Chinese Environmental Protection 
Industry Standards for Soil Quality (HJ 717-2014, HJ 632-2011 
and HJ 615-2011, respectively). Sediment particle size was 
measured using a Mastersizer 2000 Laser Particle Sizer (Malvern 
Instruments Ltd., Worcestershire, United  Kingdom) with a 
working range of 0.02–2,000 μm and relative error vc < 1%. 
Median particle size (D50) was obtained after drawing a gradation 
curve. Sediment type with a grain size was classified as clay 
(particle size <4 μm, 8Φ), silt (4–63 μm, 4–8Φ) and sand (>63 μm, 
4Φ; Huang et al., 2010).

Illumina sequencing and bioinformatics 
analysis

Genomic DNA was extracted in duplicate using a FastDNA 
SPIN Kit (MP Biomedicals, Santa Ana, CA, United  States) 
according to the manufacturer’s protocols. Duplicate DNA 
extracts were pooled for subsequent PCR amplification on a 
BioRad S1000 (Bio-Rad Laboratory, Hercules, CA, United States), 
targeting the hypervariable V4 region of the bacterial 16S 
ribosomal RNA (rRNA) gene. Each DNA sample was amplified 
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using primers 515F (5′-GTGYCAGCMGCCGCGGTAA-3′) and 
806R (5′-GGACTACNVGGGTWTCTAAT-3′; Invitrogen, 
Carlsbad, CA, United States). PCR amplifications contained 25 μl 
of 2 × Premix Taq (Takara Biotechnology, Dalian, Liaoning 
Province, China), 1 μl of each primer (10 mM) and 3 μl of sample 
DNA (20 ng/μl). Thermal cycling included an initial denaturation 
at 94°C for 5 min, followed by 30 cycles of 30 s at 98°C, 30 s at 
52°C, and 30 s at 72°C, and a final extension step of 10 min at 
72°C. Triplicate PCR products for each of the 140 samples were 
purified using an AxyPrep DNA Gel Extraction Kit (Axygen 
Biosciences, Union City, CA, United States). All libraries were 
sequenced on an Illumina MiSeq platform (Illumina Inc., San 
Diego, CA, United  States) using a paired-end (2 × 250 bp) 
approach. The raw 16S rDNA sequence data have been stored in 
a public National Center for Biotechnology Information (NCBI) 
database (accession number: PRJNA853875).

Sequences of bacterial 16S rRNA gene amplicons were 
quality-filtered using QIIME v2.0 (Li et al., 2019) following the 
official suggestions, and detailed processes can be found elsewhere 
(Gao et al., 2020). High-quality sequence data were checked and 
corrected using DADA2 to obtain operational taxonomic units 
(OTUs) with a sequence similarity of 100% (Gao et al., 2021). 
Taxonomic annotation of OTUs was assigned using the Naive 

Bayes classifier trained by the Silva (SSU132) 16S rRNA database 
(Hoyningen-Huene et al., 2019). In order to prevent sequencing 
errors in subsequent analyses, all sequences classified as 
chloroplasts, mitochondria, archaea, or eukaryotes were removed 
(Mo et  al., 2018). Furthermore, to minimize the influence of 
unequal sequencing efforts, random sampling was conducted on 
an ESV table to equalize the number of sequences in each sample 
(n = 9,315).

Data analysis

Alpha-and beta-diversity
We calculated alpha-diversity (i.e., OTU richness, Chao1 and 

Shannon-Wiener indices) of bacterial communities for each 
sample using vegan version 2.5-7 with R program version 4.1.0 
(Chen et al., 2019). One-way analysis of variance (ANOVA) and 
Student’s t-test were used to compare alpha-diversity between 
groups in SPSS version 25.0 (IBM Corp., Armonk, NY, 
United  States). For beta-diversity, bacterial community 
composition was visualized using non-metric multidimensional 
scaling (NMDS) based on Bray-Curtis dissimilarities, and analysis 
of similarity (ANOSIM) was used to evaluate differences in 

FIGURE 1

Locations of sampling sites in Baihe River in the source region of the Yellow River, China. (A) Baihe River Basin. (B) Sampling sites at oxbow lakes 5 
and 6. (C) Sampling sites at oxbow lakes 7 and 8. (D) Oxbow lake in normal period. (E) Oxbow lake in high-water period.
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bacterial communities between groups (Mo et al., 2021). These 
were implemented using the R program (version 4.1.0) with vegan 
(version 2.5-7), ggplot2 (version 3.3.5), and RColorBrewer 
(version 1.1-2) packages.

Community coalescence
We used three standard methods to evaluate the immigration 

and coalescence of bacterial communities. First, R version 4.1.0 
was used to calculate the overlap of species (proportion of shared 
species, or number of reads of common OTUs) between adjacent 
communities (Gao et al., 2021). Second, the Bayesian classifier 
SourceTracker was used to predict the contributions of different 
types of upstream sources to different types of downstream sinks 
(Knights et  al., 2011). Finally, the helperfunctions.r and 
calcCohesion.r packages were used to quantify the connectivity 
between communities (Herren and McMahon, 2017).

Habitat niche breadth
We calculated the Levins’ niche breadth (B) index for bacterial 

communities using the following formula:
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ij
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=∑
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where Bj indicates the habitat niche breadth of OTU j in a 
metacommunity, N represents the total number of communities 
in each metacommunity, and Pij is the proportion of OTU j in 
community i (Wu et al., 2018). A high B value represents a wide 
habitat niche breadth. It is generally believed that at the 
community level, the wider the niche, the broader the distribution 
and the larger the number of species, and vice versa (Jiao et al., 
2020). The calculation was implemented using the R spaa package 
(version 0.2.2; Zhang, 2016).

Co-occurrence network
The OTU distribution patterns in samples of normal and 

high-water periods were displayed across the taxonomic tree by 
directed networks using the prefuse layout algorithm in 
CYTOSCAPE v3.7.1 (Faust and Raes, 2016). We selected prevalent 
OTUs (present in ≥20% of samples) among samples in the same 
habitat type as nodes to prevent inconsistent trends caused by 
transient OTUs (Liu et al., 2018). The network topology of each 
sample was characterized using the subgraph function via the R 
igraph package (Ma et al., 2016), in terms of node number (the 
number of OTUs), edge number (the number of connections 
among all nodes), average path length (APL, average shortest path 
length between any two nodes in the network), and betweenness 
(the number of times a node acts as a bridge along the shortest 
path between two other nodes). Higher node number, edge 
number and APL and lower betweenness represent greater 
network complexity (Gao et  al., 2021; Qiu et  al., 2021). 
Identification of keystone species was based on calculation of 
within-module connectivity (Zi) and among-module connectivity 

(Pi) in the co-occurrence network (Guimerà et  al., 2005). 
Excluding peripherals (Zi < 2.5, Pi < 0.62), the other three types of 
nodes (module hubs, connectors and network hubs) were 
classified as keystone species (Deng et al., 2012; Shi et al., 2016). 
Visualisation of the co-occurrence network was performed using 
Gephi version 0.9.2.1

Results

Comparison of environmental factors 
between normal and high-water periods

Approximately half of the 23 environmental variables in 
floodplain showed a significant difference between normal and 
high-water periods (p < 0.05; Supplementary File 2; 
Supplementary Table S2). In the mainstream, the mean values of 
EC, TDS, NH4-N, TN, and TP were all significantly higher in the 
normal period than the high-water period, while the opposite was 
true for ORP and Tur. In tributaries, the mean values of EC, DO, 
TDS, Si, NH4-N and STN were significantly higher in the normal 
period than the high-water period, in contrast to the trends of 
ORP, Chl-a and Tur. In oxbow lakes, EC, TDS, NH4-N, TN and 
TP displayed similar trends to those in the mainstream, with 
significantly higher mean values in the normal period than the 
high-water period. On the contrary, ORP, Tur, STN and STP 
exhibited higher mean values in the high-water period than the 
normal period. Overall, the mean values of EC, TDS and NH4-N 
were significantly higher in the normal period than in the high-
water period, while only ORP had higher mean values in the high-
water period.

Relative abundances of bacterial 
communities

A total of 181,778 OTUs were retrieved from the 140 
samples by high-throughput sequencing. The rarefaction curves 
revealed that the bacterial OTUs obtained from the applied 
sequencing depth were sufficient to represent the bacterial 
communities in water and sediment samples. In addition, the 
number of OTUs observed in different times and spaces were 
highly variable; the number of sedimentary bacterial OTUs was 
greater than that of planktonic bacterial OTUs, while the 
number of OTUs in the high-water period was greater than that 
in the normal period. Specifically, the number of OTUs in 
different groups were ordered sediment in the high-water 
period (HS) > water in the high-water period (HW) > sediment 
in the normal period (NS) > water in the normal period (NW; 
Supplementary File 1; Supplementary Figure S1).

1 https://gephi.org/
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Regarding planktonic bacteria, irrespective of the season, 
the number of OTUs in tributaries was the highest, and the 
number of OTUs in oxbow lakes was the lowest. In the high-
water period, the mean number of OTUs in the three 
different water environments was 2.4 times that in the normal 
period. Regarding sedimentary bacteria, in both periods, 
tributaries harboured the largest number of OTUs, with the 
fewest found in the mainstream. Similar to planktonic 
bacteria, the number of OTUs in the three different 
sedimentary environments was higher in the high-water 
period than in the normal period. However, the magnitude 
of the increase in OTUs varied in different water body types, 
by 2.3 times in tributaries, 1.7 times in oxbow lakes, and 1.4 
times in the mainstream (Supplementary File 1; 
Supplementary Figure S2).

With respect to the relative abundance of major bacterial 
phyla, Proteobacteria accounted for the largest proportions of 
planktonic and sedimentary bacterial communities in the two 
periods, and the proportions in water were slightly larger than 
those in sediment. Bacteroidetes was the second dominant 
phylum in all samples. In addition, Chlamydiae and 
Cyanobacteria only existed in water, while Latescibacteria and 
Rokubacteria only occurred in sediment. The major bacterial 
phyla also shifted with season. For example, Armatimonadetes 
and Cyanobacteria only appeared in the normal period 
(water), while Nitrospirae only emerged in the high-water 
period (water and sediment). Compared with the planktonic 
bacterial community, variations in the sedimentary bacterial 
community were minimal between the two study periods 
(Figure 2).

Diversity of bacterial communities

With the exception of Good’s coverage, the other five alpha-
diversity indices of planktonic and sedimentary bacterial 
communities were all significantly higher in the high-water period 
than in the normal period (Supplementary File 1; 
Supplementary Figure S3). For the planktonic bacterial 
community, the five alpha-diversity indices were highest in 
tributaries, followed by the mainstream, and lowest in oxbow lakes 
in both periods. However, the five alpha-diversity indices of the 
sedimentary bacterial community in the three types of water 
bodies exhibited distinctively different trends between the two 
periods. In the normal period, there was little difference among 
the three sedimentary environments, despite slightly higher 
bacterial diversity in oxbow lakes and slightly lower bacterial 
diversity in the mainstream. In the high-water period, tributaries 
harboured the highest bacterial diversity, while the mainstream 
showed the lowest bacterial diversity, and there was a significant 
difference between the mainstream and the other two water 
body types.

The NMDS biplot shows that the bacterial communities of 
water samples were significantly different from those of the 
corresponding sediment samples in the normal period, while only 
partial community differences were observed in the high-water 
period (Figure 3). The bacterial communities of sediment samples 
displayed distinct seasonal variations, but the bacterial 
communities of water samples did not form two separated clusters 
for the two seasons. The consistency of the results was 
corroborated by ANOSIM (Supplementary File 1; 
Supplementary Figure S4). Both the planktonic and sedimentary 

A B

C D

FIGURE 2

Relative abundances of major bacterial phyla in water and sediment samples of different periods. (A) Water in the normal period. (B) Sediment in 
the normal period. (C) Water in the high-water period. (D) Sediment in the high-water period.
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bacterial communities were significantly different between normal 
and high-water periods (planktonic, global r = 0.203, p = 0.001; 
sedimentary, global r = 0.263, p = 0.001).

Furthermore, the NMDS and ANOSIM results demonstrated 
a clear separation of different bacterial communities (NW, NS, HW, 
and HS) in samples based on water body type (Supplementary File 1; 
Supplementary Figures S5, S6). For the normal water period, 
separation of the sedimentary bacterial community was clearer 
than that of the planktonic bacterial community; however, 
irrespective of the planktonic or sedimentary bacterial 
community, oxbow lake samples were markedly different from 
mainstream and tributary samples (Supplementary File 1; 
Supplementary Figures S5a,b). For the high-water period, 
separation of the planktonic bacterial community was clearer than 
that of the sediment bacterial community, and there were 
significant differences in the sedimentary bacterial community 
between the mainstream and tributaries (Supplementary File 1; 
Supplementary Figures S5c,d). In the high-water period, the 
planktonic bacterial community in the oxbow lakes and 
mainstream clustered more closely, while the sedimentary bacterial 
community of the mainstream and tributaries tended to 
be separated more clearly, compared with those in the normal 
period. In addition, the sedimentary bacterial community in 
different oxbow lake samples showed significant differences in the 
high-water period (Supplementary File 1; Supplementary Figure S5).

Coalescence of bacterial communities

Water and sediment from adjacent sampling sites were 
regarded as sources and sinks for the coalescence of bacterial 

communities, and default flow directions (from west to east, and 
from tributaries to mainstream to oxbow lakes) were taken into 
consideration to obtain more general and meaningful results. The 
detailed pairs of tributaries–mainstream–oxbow lake samples that 
met the upstream–downstream requirements are listed in 
Supplementary File 2; Supplementary Table S3.

Based on this hypothesis, the relative abundance of 
overlapping (shared) OTUs was calculated for each bacterial 
community and its neighbored upstream communities (Figure 4). 
Following merging of upstream–downstream bacterial 
communities in pairs, OTUs in water were more preserved than 
those in sediment, irrespective of the season. This indicates greater 
coalescence of planktonic bacteria than for sedimentary bacteria 
across different periods. Compared with the normal period, 
preservation of OTUs in both water and sediment was higher in 
the high-water period. Accordingly, there was increased 
connectivity between the tributaries, mainstream, and oxbow 
lakes in the high-water period, which promoted the integration of 
bacterial communities.

The same trends were found based on correlation analysis 
between Bray–Curtis similarity matrices of bacterial communities 
and cumulative dendritic distances. The planktonic bacterial 
community displayed a distance attenuation pattern during the 
high-water period (p < 0.01; Figure 5). In the vertical direction, the 
coalescence of bacterial communities in water and sediment also 
showed temporal and spatial differences; with increasing water 
level, bacterial communities in the mainstream water and 
sediment merged most strongly (normal period, 0.23% ± 0.07%; 
high-water period, 2.94% ± 0.35%; Supplementary File 1; 
Supplementary Figure S7).

The coalescence patterns of bacterial communities were 
corroborated by SourceTracker estimates (Figure 6). In the normal 
period, when the sink was set as the mainstream water or 
sediment, the planktonic and sedimentary bacterial communities 
in tributaries made larger contributions, respectively. Under the 
influence of connectivity, the bacterial communities in both the 
mainstream and tributaries were major contributors when the 
sink was set as oxbow lake water or sediment. When compared 
between water and sediment, there was greater coalescence 
between planktonic bacterial communities than between 
sedimentary bacterial communities. In the high-water period, the 
source of the bacterial community changed, and the contribution 
of the bacterial community in the mainstream increased for both 
planktonic and sedimentary bacteria.

Next, we calculated the cohesion of bacterial communities 
across time and space. The absolute values of both positive and 
negative cohesions of bacterial communities were higher in the 
high-water period than in the normal period, irrespective of 
water body type (Figure 7). The results of positive cohesion 
were consistent with the changes in the mean habitat niche 
breadth of bacterial communities (Supplementary File 1; 
Supplementary Figure S8). In the high-water period, the 
cohesion of both planktonic and sedimentary bacterial 
communities showed spatial differences. For example, the 

FIGURE 3

Non-metric multidimensional scaling (NMDS) biplot showing 
differences in bacterial community composition in water and 
sediment samples of Baihe River across normal and high-water 
periods.
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cohesion of the planktonic bacterial community in oxbow lakes 
reached the highest level, and the cohesion of the sedimentary 
bacterial community in the mainstream was much higher than 
that in the tributaries and oxbow lakes after flooding.

Co-occurrence patterns and keystone 
species of bacterial communities

The networks of bacterial communities constructed for the 
two different periods demonstrated distinct co-occurrence 
patterns (Figures  8A,B). In both periods, the betweenness of 
bacterial networks in water was lower than that in sediment, while 
their node number, edge number, and APL were all higher than 
those in sediment (Figures  8C–F). In the normal period, 
planktonic bacteria dominated the network, which played greater 
roles in the tributaries than in the mainstream and oxbow lakes. 
Compared with the normal period, the complexity of the bacterial 
network increased in the high-water period, and the role of 
sedimentary bacteria was enhanced, especially in the mainstream.

Network analysis identified 39 OTUs and 367 edges in the 
bacterial network of the normal period, compared with 159 OTUs 
and 400 edges in the bacterial network of the high-water period. 
In both periods, the top three phyla with the largest proportions 
were Proteobacteria (normal period 64.1%, high-water period 
58.49%), Bacteroidetes (25.64, 25.79%) and Actinobacteria (10.26, 
6.29%; Figures 8A,B). In the two networks, 39 keystone OTUs 
were identified for the normal period compared with 112 for the 
high-water period (Supplementary File 2; Supplementary Table S4). 

After screening, Proteobacteria, Bacteroidetes and Actinobacteria 
were the three most abundant phyla, regardless of the water body 
type, habitat environment, and season. In the normal period, the 
abundance of keystone OTUs in sediment was extremely low, 
while the keystone OTUs in water were almost twice as abundant 
in tributaries than in the mainstream and oxbow lakes. The 
abundance of keystone OTUs increased dramatically in the high-
water period compared with the normal period, but the magnitude 
of the increase was variable across different water bodies and 
environments due to distinctive connectivity. The most prominent 
increases were observed in water of oxbow lakes and sediment of 
the mainstream (Supplementary File 1; Supplementary Figure S9).

Discussion

Hydrological connectivity is defined as the amount of 
water-mediated transfer of matter, energy and organisms within 
or between elements of the hydrologic cycle (Michaelides and 
Chappell, 2010). Although hydrological connectivity is one of 
the main non-biological factors driving ecological processes 
and organism distribution, its influence on bacterial community 
coalescence in floodplain ecosystems is largely unknown. In this 
work, we  found that the extent of enrichment and the 
composition of planktonic and sedimentary bacterial 
communities vary in different water bodies of a floodplain 
ecosystem over normal and high-water periods, with 
hydrological connectivity being the crucial factor driving 
bacterial community coalescence.

FIGURE 4

Proportions of overlapping operational taxonomic units (OTUs) between adjacent sampling sites in all OTUs of both sites in different study periods. 
The proportions of overlapping OTUs were used to quantify community coalescence between upstream and downstream sites. M&Tr-M 
represents the contribution of the upstream mainstream and tributaries to the downstream mainstream, and M&Tr-Ox represents the contribution 
of the upstream mainstream and tributaries to the downstream oxbow lakes. Data are means ± standard deviation.
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Bacterial communities display 
spatiotemporal patterns in the floodplain 
ecosystem

As expected, NMDS analysis revealed a separate clustering of 
planktonic and sedimentary bacterial communities in the 

floodplain of Baihe River in the normal period, with community 
intersection in the high-water period (Figure 3). This result is 
contradictory to the findings of Liu et al. (2018) showing that 
planktonic and sediment bacterial communities did not intersect 
in the Yangtze River due to seasonal changes. The differences in 
bacterial communities may be  attributable to variations in 

A B

FIGURE 5

Distance-decay patterns based on the Bray–Curtis similarity of bacterial community composition and cumulative dendritic distance in different periods.  
(A) Comparison of planktonic bacterial community between the two periods. NW, water in the normal period; HW, water in the high-water period. 
(B) Comparison of sedimentary bacterial community between the two periods. NS, sediment in the normal period; HS, sediment in the high-water period.

FIGURE 6

SourceTracker estimates of the contributions of source communities to sink communities of planktonic and sedimentary bacteria in the 
mainstream and oxbow lakes of Baihe River across different periods. NW, water in the normal period; NS, sediment in the normal period; HW, 
water in the high-water period; HS, sediment in the high-water period; M, mainstream; Tr, tributaries; Ox, oxbow lakes.
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environmental and hydrographic conditions. The Baihe River 
mainstream in the present study area was shallow (mean depth 
30 ± 15 cm in the high-water period); however, compared with that 
of the normal period, the mainstream flow velocity drastically 
increased during the high-water period (Supplementary File 2; 
Supplementary Table S2), thus contributing to sediment 
disturbance and hence the coalescence between planktonic and 
sedimentary bacterial communities. In addition, the number of 
bacterial OTUs, relative abundances of major taxa (phylum level; 
Figure 2), and alpha-diversity of bacterial communities were all 
higher in the high-water period than the normal period 
(Supplementary File 1; Supplementary Figures S2, S3). These 
seasonal patterns could be explained by several reasons. First, the 

bacterial communities may have experienced seasonal succession. 
Second, in the high-water period, sediment disturbance and the 
coalescence between planktonic and sedimentary bacterial 
communities could lead to an increased number of bacterial 
OTUs and improved diversity. Third, rainfall events might wash 
out bacteria from the surroundings, increasing species richness 
and shifting the bacterial communities in the rainy season (Chen 
et al., 2019).

Among the three typical water bodies (i.e., mainstream, 
tributaries, and oxbow lakes) of Baihe River, the distribution, 
number of OTUs, and diversity of planktonic and sedimentary 
bacterial communities all changed in the study periods 
(Supplementary File 1; Supplementary Figures S2, S3, S5). The 

FIGURE 7

Cohesion metric of bacterial communities in water and sediment samples of the mainstream, tributaries, and oxbow lakes between two different 
periods.
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community differences among these water bodies may be partially 
caused by environmental changes across seasons (Chen et  al., 
2019; Luo et al., 2019; Gao et al., 2020), as distinctive differences 
in some environmental variables (e.g., flow velocity, pH, nutrients) 
were detected (Supplementary File 2; Supplementary Table S2). 
Another possible reason is the potential influence of hydrological 
connectivity, because the mainstream, tributaries and oxbow lakes 
would be connected with each other, and the exchange of matter, 
energy and species in water would be higher than that of sediment 
during the high-water period. Furthermore, biological differences 
(e.g., planktonic and sedimentary bacteria) and interactions 
between external and internal factors (e.g., physicochemical 
factors and bacterial species) can enhance bacterial community 
dynamics (Sommer et al., 2012). Overall, complex interactions 
among aquatic environments, biological conditions, and spatial 
factors result in the distinctive patterns of bacterial community 
diversity and composition in the floodplain ecosystem.

Hydrological connectivity facilitates 
bacterial immigration and community 
coalescence

Similar to previous findings for large rivers (e.g., Liu et al., 
2018), the immigration ability of the planktonic bacterial 
community was higher than that of the sedimentary bacterial 
community in the floodplain of Baihe River. This phenomenon 

depends not only on the living habits of bacterial species 
themselves, but also on the influence of surrounding environments 
(Liu et al., 2018; Gao et al., 2020). During the high-water period, 
the connections between the mainstream, tributaries and oxbow 
lakes would be enhanced with the rising water level. Consequently, 
the Bray–Curtis similarity of the planktonic bacterial community 
increased (Figure 5), and planktonic bacteria aggregated in oxbow 
lakes with increasing flow (Figures 4, 6). However, immigration 
and coalescence of the sedimentary bacterial community showed 
different patterns compared with to those of the planktonic 
bacterial community, consistent with results reported for the 
Yangtze River (Gao et  al., 2021). Accordingly, increased 
hydrological connectivity in the high-water period can promote 
the immigration and coalescence of the planktonic rather than the 
sedimentary bacterial community in the lateral direction of 
the floodplain.

In the vertical direction, there were spatiotemporal variations 
in the proportions of overlapping OTUs between planktonic and 
sedimentary bacterial communities (Supplementary File 1; 
Supplementary Figure S7). Irrespective of the water body type 
(i.e., mainstream, tributaries or oxbow lakes), both the planktonic 
and sedimentary bacterial communities exhibited minimal 
coalescence in the normal period, in agreement with results for 
the Yangtze River and other places (e.g., Liu et al., 2018). However, 
upon the arrival of the high-water period, there was increased 
coalescence of both planktonic and sedimentary bacterial 
communities, especially in the mainstream, compared with 

A

C D E F
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FIGURE 8

Co-occurrence networks of bacterial communities and topological features of sub-networks. Bacterial networks in the (A) normal and (B) high-
water periods were constructed at the phylum level. The network topology was characterized using (C) node number, (D) edge number, 
(E) average path length (APL) and (F) betweenness. W-M, water-mainstream; W-Tr, water-tributaries; W-Ox, water-oxbow lakes; S-M, sediment-
mainstream; S-Tr, sediment-tributaries; and S-Ox, sediment-oxbow lakes.
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that of the normal period (Supplementary File 1; 
Supplementary Figure S7). In addition, the results of microbial 
source tracing indicated the coalescence of the planktonic 
bacterial community with the sedimentary bacterial community 
in the mainstream during the high-water period (Figure 6). These 
results are mainly attributable to the influence of flood tides, 
increased mainstream velocity, and suspension of clay and silt in 
sediment during the high-water period (Padding and Louis, 2004; 
Zeng et al., 2015).

Furthermore, in the high-water period, suspended 
sedimentary bacteria would immigrate to the oxbow lakes with 
flow laterally, while the contribution of tributary bacterial 
communities to mainstream and oxbow lake bacterial 
communities showed a downward trend (Figure 6). In summary, 
hydrological connectivity can facilitate the coalescence of 
planktonic and sedimentary bacterial communities in the 
mainstream vertically, and increase the probability of sedimentary 
bacterial community immigrating from the mainstream to oxbow 
lakes. As a result of community immigration and coalescence, a 
more alike community and more homogeneous environment 
would be formed in the mainstream, tributaries, and oxbow lakes, 
leading to the convergence of environmental conditions in the 
floodplain ecosystem.

Hydrological connectivity influences 
bacterial network complexity and 
keystone species

Co-occurrence network analysis can be  used to explore 
interactions between microbial species (Röttjers and Faust, 2018). 
Compared with that of the normal period, the network of 
planktonic and sedimentary bacterial communities in the high-
water period was more complex mainly because of the increased 
complexity of sub-networks (Figure 8). A plausible mechanism is 
that source limitation played a reduced role in the high-water 
period (e.g., increased availability of nutrients in water and 
sediment); consequently, the diversity of bacterial species and the 
complexity of the bacterial network increased (Barberán et al., 
2011; Hu et al., 2018; Banerjee et al., 2019). This mechanism is 
supported by previous observations in rivers showing that 
microbial network complexity is positively correlated with 
sediment organic matter (Fagervold et al., 2014) and negatively 
correlated with water pollution level (Wu et  al., 2019). Some 
researchers have reported that during high-water periods, matter, 
energy and organic substances within the hydrological cycle can 
readily transfer between each other, increasing the utilization 
efficiency of resources by living creatures (Tang et al., 2020; Xie 
et al., 2020). Therefore, our hypothesis proves that the complexity 
of the bacterial network increases in the floodplain as a result of 
increased hydrological connectivity.

Based on the connectivity within and among modules, 
we identified highly connected bacteria, known as keystone 
species, in the sub-networks. Keystone species play a key role 

in the overall structure of the microbiota, and they can be used 
as indicators of environmental changes (Berry and Widder, 
2014; Gao et al., 2021). Therefore, we also investigated the 
relationships between keystone species and hydrological 
connectivity in the floodplain ecosystem. Across different 
habitat environments and seasons, the top three most 
abundant keystone species both in planktonic and sedimentary 
bacterial communities were always identified as 
Proteobacteria, Bacteroidetes and Actinobacteria 
(Supplementary File 1; Supplementary Figure S9). This result 
suggests that the keystone bacterial species did not shift with 
hydrological connectivity in the study area. Previous studies 
also showed that external factors, including the environment 
(Wu et al., 2019; Tang et al., 2020) and altitude (Lee et al., 
2012) had a profound influence on riverine bacterial species. 
With respect to different water body types, the keystone 
species abundances of both planktonic and sedimentary 
bacterial communities increased in the high-water period 
compared with those of the normal period 
(Supplementary File 1; Supplementary Figure S9). The 
difference is related not only to the seasonal succession of 
bacterial communities themselves, but also their immigration 
and coalescence driven by hydrological connectivity. 
Moreover, a stronger coalescence of keystone species in 
different habitats (water and sediment) could be supported by 
the drastic increase in the keystone species abundance of 
mainstream sediment (Gao et al., 2021). Oxbow lakes, located 
at the end of the mainstream and tributaries in the lateral flow 
during the high-water period, are the sites of pooling of 
keystone species.

We found that some other keystone species in the bacterial 
sub-networks had higher abundances during the high-water 
period than the normal period. These keystone species were 
classified as Verrucomicrobia, Acidobacteria, Fibrobacteres and 
Gemmatimonadetes, all found in terrestrial habitats including 
farmland, forest and woodland (Ludwig et al., 2015). Indeed, these 
land use types were observed around the sampling sites, suggesting 
the possibility of bacterial community coalescence between 
aquatic and terrestrial habitats (Mansour et al., 2018), particularly 
during flood events.

Ecological implications of bacterial 
community coalescence promoted by 
hydrological connectivity

Positive cohesion indicates the extent of cooperative 
behavior between microbial communities in samples, while 
negative cohesion reflects competitive behavior among 
community members (Herren and McMahon, 2017). The results 
of the present study showed that during the normal period, 
positive cohesion of the planktonic bacterial community was 
higher than that of the sedimentary bacterial community in 
different water body types (Figure  7), consistent with the 
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findings reported for China’s Three Gorges Reservoir (Gao et al., 
2021). During the high-water period, there was a higher positive 
cohesion for bacterial communities in the mainstream and 
oxbow lakes compared with tributaries (Figure 7), because the 
mainstream and oxbow lakes were the areas where bacterial 
communities coalesced. This demonstrates that in the 
mainstream and oxbow lakes, the coalescence of bacterial 
communities led to an increase in their positive cohesion, while 
community complexity and stability increased simultaneously.

The results of bacterial community connectivity quantified 
using cohesion were corroborated through calculations of niche 
breadth. During the high-water period, we observed the largest 
increase in niche breadth for the sedimentary bacterial 
community in the mainstream and the planktonic bacterial 
community in oxbow lakes, compared with those of the normal 
water period (Supplementary File 1; Supplementary Figure S8). 
Coalescence of bacterial communities could play a positive role 
in improving competitiveness, expanding the distribution area, 
and increasing biomass. Furthermore, stronger community 
coalescence could result in more similar bacterial communities 
and associated environments (Rillig et al., 2015), with minor 
changes in community structure and species turnover 
(Hengeveld, 2002). Our study demonstrates that hydrological 
connectivity in the floodplain ecosystem facilitates the 
coalescence of planktonic and sedimentary bacterial 
communities, and thereby drives homogenous selection, 
reaching a balance in competition, dispersal, coalescence and 
selection. Consequently, coalescence of bacterial communities 
could increase community complexity and stability, thereby 
enhancing their competition and dispersal capacity.

Conclusion

We analyzed the spatiotemporal patterns and coalescence 
processes of planktonic and sedimentary bacterial communities in a 
floodplain ecosystem of the Yellow River source region. The results 
highlighted the importance of hydrological connectivity in bacterial 
community coalescence in the mainstream, tributaries and oxbow 
lakes. Hydrological connectivity promoted the lateral immigration 
and coalescence of planktonic bacterial community, and increased its 
vertical coalescence with sedimentary bacterial community, with 
plenty of keystone species enriched in the oxbow lakes after 
coalescence. Furthermore, the coalescence of bacterial communities 
enhanced the community complexity and stability, thereby improving 
their competitiveness and dispersal capacity. The findings shed light 
on the ecological significance of bacterial community coalescence 
driven by hydrological connectivity in the floodplain ecosystem.

Despite being successful in demonstrating the role of 
hydrological connectivity in promoting bacterial community 
coalescence, we did not further explore its influence based on the 
strength of hydrological connectivity in the oxbow lakes and 
mainstream. In addition, the shifts in bacterial functions as a 
result of community coalescence were not taken into 

consideration. To gain a full understanding of the ecological role 
of hydrological connectivity in bacterial community coalescence 
and after coalescence, future studies should quantify the strength 
of hydrological connectivity in different water body types, and 
determine how bacterial community coalescence influences 
bacterial functions in the floodplain ecosystem.
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Postmortem interval (PMI) estimation has always been a major challenge 

in forensic science. Conventional methods for predicting PMI are based on 

postmortem phenomena, metabolite or biochemical changes, and insect 

succession. Because postmortem microbial succession follows a certain 

temporal regularity, the microbiome has been shown to be  a potentially 

effective tool for PMI estimation in the last decade. Recently, artificial 

intelligence (AI) technologies shed new lights on forensic medicine through 

analyzing big data, establishing prediction models, assisting in decision-

making, etc. With the application of next-generation sequencing (NGS) and 

AI techniques, it is possible for forensic practitioners to improve the dataset 

of microbial communities and obtain detailed information on the inventory 

of specific ecosystems, quantifications of community diversity, descriptions 

of their ecological function, and even their application in legal medicine. This 

review describes the postmortem succession of the microbiome in cadavers 

and their surroundings, and summarizes the application, advantages, problems, 

and future strategies of AI-based microbiome analysis for PMI estimation.

KEYWORDS

postmortem submersion interval, forensic medicine, microbial community, artificial 
intelligence, microbial succession

Introduction

Postmortem interval (PMI) is the time between the discovery and examination of the 
body and the occurrence of death. Relatively accurate estimation of PMI has always been an 
important issue in the field of forensic medicine. PMI estimation based on postmortem 
phenomena is still the common and feasible way in forensic practice. Owing to the inference 
of PMI being highly susceptible to the individual’s physical condition, cause of death, and 
environmental conditions, the predicted accuracy of PMI cannot meet the requirements of 
the actual work. Microbial communities are involved in the decomposition of deceased 
bodies and present a certain regular succession on the host, making it possible to predict 
PMI based on the microbial communities (Diez Lopez et al., 2022). In the last decade, 
postmortem microbiome has been applied to predict PMI, and technologies for 
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microorganisms cover the shortfall of traditional morphological 
methods. Traditional methods using microbial cultivation of 
target-specific strains are highly dependent on culture conditions 
and have limitations for the analysis of the component and 
function of microbial communities (Cecchini et al., 2012; Zhou 
and Bian, 2018). Next-generation sequencing (NGS) has brought 
revolutionary progress to the study of microorganisms in forensic 
medicine. NGS can quickly and accurately analyze the entire 
microbial community, including many species that cannot 
be cultured in the laboratory (Kuiper, 2016). Meanwhile, the use of 
NGS brings a huge amount of microbial data, which requires an 
efficient data analysis method to process. Recently, artificial 
intelligence (AI) technologies shed new lights on forensic medicine 
through analyzing big data, establishing prediction models, 
assisting in decision-making, etc. (Geradts, 2018). Importantly, the 
development of AI techniques has facilitated forensic practitioners 
to improve understanding of microbial communities through 
analysis of the postmortem changes of microorganisms in different 
organs/tissues at various taxonomic levels (Speruda et al., 2021).

This review summarizes the succession patterns of 
postmortem microbial communities both on cadavers and their 
surrounding environment, and analyzes the advances of AI 
techniques on PMI estimation and their potential application on 
PMI prediction in the future.

Postmortem microbial succession 
in cadavers

Microorganisms predominantly colonize five parts of 
cadavers: the gastrointestinal tract, the oral cavity, skin, the 
respiratory tract, and the genitourinary tract. Due to the 
convenience of sampling from living individuals, most studies 
have focused on the gastrointestinal tract, the oral cavity, and skin 
(Dash and Das, 2022). In recent years, numerous studies have 
been conducted on the succession pattern of microbial 
communities and PMI prediction based on different organs in 
both human remains and animal models. There are dramatic 
postmortem changes of microbial community succession in 
different organs (Pechal et al., 2014; DeBruyn and Hauther, 2017; 
Dash and Das, 2022) The diversity of most microorganisms shows 
similar decreasing trends with PMI, presenting a significant 
negative linear correlation (Pechal et  al., 2014; DeBruyn and 
Hauther, 2017; Li et al., 2020). At the phylum level, Proteobacteria 
and Firmicutes dominate the microbial communities in different 
postmortem organs in both terrestrial and water environments, 
making them potential markers for PMI or postmortem 
submersion interval (PMSI) prediction (Benbow et al., 2015; He 
et al., 2019; Javan et al., 2019; Yuan et al., 2020; Dash and Das, 
2022). The detailed taxonomy on families or genus levels of 
Proteobacteria and Firmicutes would undoubtedly enhance 
understanding of postmortem microbial community succession 
in different samples. For instance, in terrestrial conditions, 
Tuomisto et al. (2013) found that the pericardial fluid and liver 

remain sterile within 5 days postmortem, while the highest 
abundances of Bifidobacteria, Bacteroides, Enterobacter, and 
Clostridia are detected in the liver, mesenteric lymph node, 
pericardial fluid of cadavers within 7 days, providing a short-term 
PMI fetch reference. Some studies revealed changes of dominant 
microorganisms in different human organs and blood specimens 
after death. Bacillus and Lactobacillus predominated in the short-
term after death followed by an exponential decrease with the 
extension of PMI, while parthenogenic anaerobic bacteria, such 
as Clostridium, were predominant in the late phase of PMI (Can 
et al., 2014; Hauther et al., 2015; Javan et al., 2016; DeBruyn and 
Hauther, 2017). This accounted for the phenomenon of 
Postmortem Clostridium Effect (PCE) at decomposition stage 
(Javan et al., 2017). In addition, the alterations in several species 
of Clostridium may provide more information on different stages 
of PMI, for example, C. novyi was relatively more abundant in late 
PMI; however, an unknown member of the genus Clostridium was 
found to be more abundant in early PMI (Javan et al., 2016). In 
consistent with the data in terrestrial conditions, some studies 
demonstrated that Enterococcus and Clostridium were 
predominated on the skin and bones of water-dead pigs in the late 
stage of PMI (Benbow et al., 2015; Cartozzo et al., 2021). Our 
recent studies also showed that Clostridium in the lung and cecum 
were associated with PMSI in the fresh water environment (Wang 
et al., 2020; Zhang et al., 2022).

Numerous studies revealed the influence of different factors 
on PMI estimation, such as sample type (Javan et al., 2019; Lutz 
et al., 2020) and environmental factors (Iancu et al., 2018; Diez 
Lopez et  al., 2022). Furthermore, the effects of gender on the 
analysis of microbial communities cannot be  ignored, with 
evidence that the genera Rothia and Streptococcus were only 
present in the visceral organs of men, while an abundance of the 
genera Clostridium and Pseudomonas were found in a higher 
proportion of heart tissues from women compared with those 
from men (Javan et  al., 2016; Bell et  al., 2018). The study of 
sex-specific microbial communities could help to improve the 
precise of PMI estimation. Considering so many factors that affect 
postmortem microbial community succession and PMI 
estimation, exploration of an effective detection method and 
sufficient microbial datasets should be undertaken in future work.

Postmortem microorganisms 
changes in the surrounding 
environment

Microbial communities of cadavers interact with the 
surrounding environment. Although microbial community 
succession in carcasses placed on different soil types tends to 
be consistent postmortem (Metcalf et al., 2016), the microbial 
community in the environment does affect the process of 
decomposition. For example, mice that interact with normal soil 
decompose faster than the cadavers placed on sterile soil (Lauber 
et al., 2014). In addition, decomposed cadavers release various 
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adipose tissues, volatile fatty acids, organic acids, organic nitrogen, 
and bacterial flora—such as obligately anaerobic Bacteroides—into 
the soil (Vass et  al., 1992). This is followed by changes in the 
microbial community in the soil after death, which make it 
possible to predict PMI based on soil microbes (Cobaugh 
et al., 2015).

Terrestrial soil microbes related to forensic research can 
be broadly divided into surface soil and buried soil (Carter et al., 
2007). Surface soil microbial communities exhibit decreased 
trends in abundance, diversity, and evenness during 
decomposition, with a sharp increase in the abundance of 
Firmicutes and Proteobacteria and a decrease in the abundance of 
Acidobacteria in soils around cadavers (Cobaugh et  al., 2015; 
Adserias-Garriga et al., 2017a,b; Procopio et al., 2019). In contrast, 
a study found that buried soil microbial communities showed the 
trends of increasing abundance, decreasing evenness, and 
consistent diversity, and the microbial composition remained 
unchanged throughout the decomposition process, with 
Proteobacteria being the most abundant phylum (Finley et al., 
2016). According to the microbial community succession of soils 
surrounding cadavers, Procopio et  al. (2019) revealed that 
Bacteroides spp., specific mammal-derived taxa, could be detected 
in the buried soil 6 months after PMI. However, soil microbial 
communities are easily influenced by environmental factors 
(Chernov and Zhelezova, 2020), such as temperature, moisture, 
vegetation cover, and insect activity. Habtom et al. (2019) analyzed 
different soils in five different rainfall zones and found significant 
differences in bacterial population structure among soil types in 
the same geographic location. Yang et  al. (2021) studied the 
variation of microbial community composition in 529 soil samples 
from 61 urban districts of 10 cities in China at a large spatial scale 
and showed that the similarity of urban soil bacterial communities 
decreased significantly with increasing geographical distance. 
Although the population structure of soil bacteria within the same 
city was relatively similar, the identification accuracy of random 
soil samples was 90.0% at the city level and 66.7% at the district 
level within the city. However, the use of distinguished soil 
microorganisms in forensic science needs to be  confirmed in 
further studies. Owing to the inherent microbial communities in 
different soils, it is difficult to compare the microbial databases 
from numerous studies using different soils for PMI prediction. 
Hence, predicting PMI according to the soil microbial community 
succession alone is inadequate; a better option would be  to 
combine the soil microbial community with that in cadavers and 
consider the influence of entomology and ecology.

Application of artificial intelligence 
for PMI prediction based on 
microbial data

Improvements in sequencing technology, especially NGS 
technology, provide sufficient genomic information for analyzing 
entire microbial communities (Kuiper, 2016). However, owing to 

the massive amount of data generated and statistical validity, an 
effective analysis method aligned to digging deeper is needed. AI 
has the advantages of effective assessment models by 
comprehensively examining and mining multidimensional big 
data, evaluating weights, and identifying patterns of data changes 
to establish an effective “time fingerprint” mathematical model 
(Zou et  al., 2020). Hereafter, the presented studies on PMI 
prediction using NGS technology are predominantly based on AI.

Postmortem microbiome analysis for PMI estimation has 
been improved to a relatively accurate stage using AI. At present, 
Machine Learning (ML) is the main AI technology used in 
forensic studies, ML is one type of artificial intelligence that 
develops algorithms to enable computers to learn from existing 
data without explicit programming (Zaharchuk et al., 2018). Such 
ML methods include k-nearest neighbor (KNN), Partial Least 
Squares (PLS), random forest (RF), support vector machine 
(SVM), and artificial neural network (ANN; Table 1). For instance, 
Johnson et al. (2016) and colleagues constructed a KNN model 
(k = 4) for PMI estimation using microbial communities from skin 
in the nasal cavity and ear canal, which developed an error of only 
55 accumulated degree hours (ADD) over a time period of 800 
ADD. Cao et  al. (2021) used segmented cecum microbial 
community data from rats to construct PLS models and found 
that the PLS model was effective in the first 9 days after death. RF 
is the most common ML algorithm in microbial community 
studies for PMI prediction and has the advantages of strong 
learning ability, robustness, and feasibility of the hypothesis space 
(Ao et al., 2019). In the terrestrial environment, Metcalf et al. 
(2013) established a RF regression model for the first time based 
on the microbial community in mouse cadaver skin and 
abdominal cavity samples, and this model predicted PMI with a 
mean absolute error (MAE) of 3.30 ± 2.52 days within the first 
34 days and further provided the concept of “microbial clock.” 
Subsequently, RF regression models were constructed using 
microbial communities from dead pig skin and oral swabs for PMI 
predictions, and the accuracy was up to 94.4% within 5 days 
postmortem (Pechal et al., 2014). Zhang et al. (2021) compared 
the separate RF regression models using microbial communities 
from different organs and buried soils and found that the lowest 
MAE value was for buried soils within 60 days after death. Zhao 
et  al. (2022) and colleagues used rat oral microorganisms to 
construct a RF model, and the R2 of the model within 59 days was 
93.94%. In the aquatic environment, our recent studies provide 
evidence that RF regression models were effective for predicting 
PMSI based on the microbiota succession of the mouse cecum, 
with a MAE of 0.818 days within the 14 days postmortem (Zhang 
et al., 2022). For long-term aquatic environmental decomposition 
(>1 year), different researchers constructed RF regression models 
to predict PMSI using microbial communities of porcine ribs and 
scapula. The model using rib microbiota performed best within 
353 days, with a root mean square error (RMSE) of ±27 days, while 
the model using scapula microbiota performed best within 
579 days with a RMSE of ±63 days (Cartozzo et al., 2021; Randall 
et al., 2021). Kaszubinski et al. (2022) constructed a RF regression 
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model using microbial communities from pig bone within 
547 days, and the model exhibited high accuracy, explaining more 
than 80% of the variation in PMSI. Recently, Liu et al. (2020, 2021) 
compared the performance of RF, SVM, and ANN models using 
microbial communities in cecum and concluded that the ANN 
model performed best, with a MAE of 1.5 ± 0.8 h within 24 h and 
14.5 ± 4.4 h within 15 days after death for PMI prediction. These 
findings suggested the combination of multiple AI methods might 
improve the accuracy of PMI estimation.

Although many exciting results have been achieved to date to 
prove that microbial communities combined with AI are potentially 
effective tools for predicting PMI, there are still many problems with 
using AI analysis of microbiological data to study PMI (Figure 1). 
First, there is lack of unified standardization in experimental models, 
collected samples, and data analysis, which means the predicted 
results of PMI are not credible for the courtroom (Diez Lopez et al., 
2022). Many complex environmental and artificial factors can 
potentially affect the succession of microorganisms. Second, NGS 
has the limitation of short reads and low accuracy of species 
identification (Yakun et al., 2019); consequently, most studies have 
predominantly targeted amplification of the V3 and V4 regions of 
the 16S rRNA gene, and these fragments only provide an 
approximate picture of the bacterial phyla (Verma et  al., 2018). 
Accurate detailed taxonomy annotation of microorganisms requires 
full-length amplification of DNA. In addition, more advanced 
methods to disclose all microbial community species are needed. A 
recent study started to use third-generation sequencing technology 
for microbial research (Wang et al., 2021). Third, the main microbial 

datasets (Silva, Greengenes) for forensic PMI studies were mainly 
established based on clinical or environmental studies (Quast et al., 
2013; Balvočiūtė and Huson, 2017). These datasets contain different 
numbers and types of microbial species, which could result in 
differences in annotation even when using the same sequencing data. 
Finally, the black box and uncertainty are central challenges in 
designing AI tools (Saffiotti, 1987). Although AI techniques are 
widely used for PMI estimation, the different predicted models for 
PMI present difference in estimated effectiveness, especially using 
detailed taxonomic levels, such as species and genera. Consequently, 
it is necessary to explore a well-recognized AI method for its 
application in forensic medicine (Metcalf, 2019).

Future outlook

The widespread use of AI provides new insights into 
forensic PMI estimation. However, current advances in AI 
techniques using the microbiome for PMI prediction highlight 
three key points to improve the accuracy of PMI studies in 
the future.

 1. The establishment and development of microbiome 
biobanks for forensic purposes are necessary. Considering 
the complex influences of models, samples, locations, 
environmental factors, and postmortem intervals, forensic 
researchers should collaborate to pool raw data and 
construct a microbiome biobank for forensic purposes.

TABLE 1 Application of AI on microbiome for predicting PMI.

Animal model Experimental 
environment

PMI/PMSI AI model Model performance Sampling 
location

References

Human Temperate forest 800ADD KNN MAE ±55ADD Nasal cavity, Ear canal Johnson et al. (2016)

Rat Artificial climate chamber 30d PLS RMSE within 9d: 1.96d Cecum Cao et al. (2021)

RMSE 12d later: 5.37d

RMSE within 30d: 6.57d

Mice Laboratory 48d RF MAE 3.30+/−2.52d Skin Metcalf et al. (2013)

Pig Temperate forest 5d RF 94.4% accuracy rate Skin, Oral cavity Pechal et al. (2014)

Rat Gravesoil 60d RF MAE 1.82d Gravesoil Zhang et al. (2021)

MAE 2.06d Rectum

MAE 2.13d Skin

Rat Sterile anti-scavenging cages 59d RF R2 93.94% Oral cavity Zhao et al. (2022)

Porcine bones Natural fresh river 353d RF RMSE±27d Rib Cartozzo et al. (2021)

RMSE±29d Scapulae

Porcine bones Freshwater lake 579d RF RMSE±104d Rib Randall et al. (2021)

RMSE±63d Scapulae

Sus scrofa Freshwater pond 547d RF >80% variation explained Bone Kaszubinski et al. 

(2022)

Mice Artificial climate chamber 15d RF MAE 20.01 h Cecum Liu et al. (2021)

ANN MAE Within 24 h: 

1.5 ± 0.8 h， Within 15d: 

14.5 ± 4.4 h

Liu et al. (2020)
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 2. Deep learning (DL) may shed new light on accurate predicted 
models for PMI. DL are considered one of the cutting-edge 
areas of development and study in almost all scientific and 
technological fields and has allowed for resolving many 
challenges faced by standard ML algorithms. The basis of DL 
is often implicated in neural network systems, where they are 
used to create systems that have the capability to complete 
complex data recognition, interpretation, and generation 
(Rahaman et al., 2020). AI techniques for analyzing microbiota 
data are still in their infancy because the amount of data used 
in most studies is still too low to meet the demands of 
DL. Deep learning—which allows neural networks to learn 
how to capture features by themselves (Cheng et al., 2018)—
will enhance the accuracy of AI models for PMI prediction.

 3. AI technologies for multi-omics provide a future direction 
for PMI estimation. Although microbiome analysis with AI 
has been shown to be  effective for predicting PMI, 
integrated omics—including microbiomes, metabonomics, 

transcriptomics, and proteomics—will further improve the 
accuracy of PMI inference with the development of 
AI techniques.
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Microbial communities in the 
liver and brain are informative for 
postmortem submersion interval 
estimation in the late phase of 
decomposition: A study in 
mouse cadavers recovered from 
freshwater
Linlin Wang 1,2†, Fuyuan Zhang 1†, Kuo Zeng 3, Wenwen Dong 1,2, 
Huiya Yuan 1,2, Ziwei Wang 1, Jin Liu 1, Jiaqing Pan 1, Rui Zhao 1,2* 
and Dawei Guan 1,2*
1 Department of Forensic Pathology, China Medical University School of Forensic Medicine, 
Shenyang, China, 2 Liaoning Province Key Laboratory of Forensic Bio-evidence Science, Shenyang, 
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Law, Beijing, China

Introduction: Bodies recovered from water, especially in the late phase of 

decomposition, pose difficulties to the investigating authorities. Various 

methods have been proposed for postmortem submersion interval (PMSI) 

estimation and drowning identification, but some limitations remain. Many 

recent studies have proved the value of microbiota succession in viscera 

for postmortem interval estimation. Nevertheless, the visceral microbiota 

succession and its application for PMSI estimation and drowning identification 

require further investigation.

Methods: In the current study, mouse drowning and CO2 asphyxia models 

were developed, and cadavers were immersed in freshwater for 0 to 14 days. 

Microbial communities in the liver and brain were characterized via 16S rDNA 

high-throughput sequencing.

Results: Only livers and brains collected from 5 to 14 days postmortem were 

qualified for sequencing. There was significant variation between microbiota 

from liver and brain. Differences in microbiota between the cadavers of mice 

that had drowned and those only subjected to postmortem submersion 

decreased over the PMSI. Significant successions in microbial communities 

were observed among the different subgroups within the late phase of the 

PMSI in livers and brains. Eighteen taxa in the liver which were mainly related 

to Clostridium_sensu_stricto and Aeromonas, and 26 taxa in the brain which 

were mainly belonged to Clostridium_sensu_stricto, Acetobacteroides, and 

Limnochorda, were selected as potential biomarkers for PMSI estimation 

based on a random forest algorithm. The PMSI estimation models established 

yielded accurate prediction results with mean absolute errors ± the standard 

error of 1.282 ± 0.189 d for the liver and 0.989 ± 0.237 d for the brain.
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Conclusions: The present study provides novel information on visceral 

postmortem microbiota succession in corpses submerged in freshwater 

which sheds new light on PMSI estimation based on the liver and brain in 

forensic practice.

KEYWORDS

aquatic habitat, decomposition, internal organ, microbial community, postmortem 
submersion interval

Introduction

Human cadavers are often discovered in a range of natural 
aquatic habitats such as lakes, rivers, and oceans due to drowning, 
disasters, and accidents (Cartozzo et al., 2021b). Bodies retrieved 
from water pose difficulties to the investigating authorities, 
particularly corpses at an advanced stage of decay. A forensic 
pathologist is generally required to determine the cause of death 
and the postmortem submersion interval (PMSI; Humphreys 
et al., 2013). Many studies have been conducted to address these 
questions. Though accumulated degree-days based on the 
morphological state of decomposition has been suggested to 
determine the PMSI (Heaton et  al., 2010), it is unsuitable for 
corpses that have been submerged in very cold water (Dickson 
et al., 2011; Palazzo et al., 2020). In addition, typical macroscopic 
signs including the classic plume of white froth from the nose or 
mouth, overinflated, crepitant lungs, pulmonary edema, and water 
in the stomach have frequently been used to identify drowning as 
a cause of death, but such indicators gradually become less reliable 
with the progression of decomposition (Schneppe et al., 2021). 
Given this, novel methods for PMSI estimation and the 
identification of drowning are required for use in forensic practice.

Aquatic bacteria have recently attracted widespread interest 
from forensic experts (Uchiyama et al., 2012; Lang et al., 2016). 
Bacteria are ubiquitous in natural bodies of water, and they are small 
(0.2–2.0 μm), which facilitates their entrance into blood circulation 
and their deposition in the viscera during drowning (Oliveira and 
Amorim, 2018). A previous study indicates that various bacteria 
spread around the entire corpse after death (Wójcik et al., 2021). 
Specific genera, including Aeromonas in freshwater and Vibrio and 
Photobacterium in seawater, are indicators of drowning when they 
are detected in the blood and viscera of victims via culture-
dependent and/or PCR-based methods (Kakizaki et al., 2008; Aoyagi 
et al., 2009). Ubiquitous microbes including the internal microbiota 
of the carcass as well as those of the surrounding environment play 
an important role in the natural decomposition of carcasses in 
aquatic systems (Metcalf et al., 2016). However, these methods (i.e., 
culture-dependent and/or PCR-based methods) could provide only 
limited information. With the advancement of sequencing 
technologies, especially next-generation sequencing, it is possible to 
obtain a more comprehensive understanding of microbial 
community succession during the decay process. Many studies in 

human and animal corpses indicate the potential value of microbial 
succession for PMI or PMSI estimation (Li et al., 2021; Randall et al., 
2021). To date, microbial studies investigating aquatic ecosystems in 
this context have mainly focused on microbes that have colonized 
the surface of remains or specific body parts (e.g., bones; Wallace 
et  al., 2021; Cartozzo et  al., 2021a), which are vulnerable to 
environmental changes (Kaszubinski et al., 2022). However, there is 
a lack of studies assessing the succession pattern of microbial 
communities colonized in the internal organs, which are relatively 
resistant to environmental abiotic factors (i.e., pH and temperature) 
and biotic factors (i.e., insects and scavenger activities; Tomberlin 
et al., 2011). The liver and brain are believed to be sterile in living 
hosts (Javan et al., 2016). The microbes discovered in these organs of 
cadavers could represent those directly associated with 
decomposition, making them ideal subjects for postmortem 
microbiota investigation.

Using 16S rDNA sequencing, our previous study demonstrated 
that microbial communities in the viscera differed in drowning and 
postmortem submersion groups at 3 days postmortem (Wang et al., 
2020). In another study microbiota succession in the gut was helpful 
for estimating the PMSI (Zhang et al., 2022b). Whether microbial 
succession in other visceral organs could be  used for PMSI 
estimation and the determination of cause of death requires 
investigation. In the present study, to verify this hypothesis, mouse 
drowning and postmortem submersion models were developed, and 
corpses were maintained in freshwater for 0 to 14 days. Microbial 
communities in liver and brain were characterized by 16S rDNA 
high-throughput sequencing, and data were analyzed with machine-
learning algorithms.

Materials and methods

Sample collection and experimental 
setup

All animal experiments were approved by the Animal 
Experiment Committee of China Medical University (approval 
number CMU2021202). All experiments were performed in 
October in a natural freshwater river (Shenyang, China; N41°57′, 
E123°27′). Adult male C57BL/6 J mice (20–25 g, aged 8–10 weeks, 
n = 180) were purchased from the Experimental Animal Center of 
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China Medical University, then housed in micro-isolator cages 
under standard lighting (light/dark periods of 12 h) with free access 
to drinking water and food. Five water samples (1 l each) were taken 
from the experimental sites before the animal experiments and 
filtered through sterile 0.2-μm filters (Fisher Scientific, Hampton, 
NH). A total of 144 mice were randomly distributed into drowning 
(n = 72) and postmortem submersion (n = 72) groups. The drowning 
model was established as previously reported (Zhang et al., 2022a). 
Briefly, mice were deposited in sterile string bags and immersed in 
30-cm-deep water for 1 min before being retrieved from the water 
for 30 s. The above steps were repeated until the animals died, then 
the corpses were submerged underwater. Mice in the postmortem 
submersion group were killed by CO2 inhalation then submersed 
underwater. Nine timepoints were investigated; immediately after 
death, 6 h and 12 h after death, and 1, 3, 5, 7, 10, and 14 days after 
death. At each timepoint liver (the right lobe) and brain (the right 
hemispheres) specimens were harvested from 16 mice (8 per 
group). To assess the percentages of intestine-derived bacteria in 
liver and brain microbial communities during decomposition, 16 
cecal content samples were collected from the corpses immediately 
after death. All samples were immediately frozen in liquid nitrogen 
and stored at −80°C for subsequent sequencing. The remaining 36 
mice were processed in accordance with the above-described 
procedures (drowning group 18 mice, postmortem submersion 
subgroup  18 mice; 2 mice at each indicated timepoint) as an 
independent validation experiment. The specific grouping is 
presented in Supplementary Table 1.

16S rDNA extraction and amplification

Bacterial genomic DNA from all samples, including cecal 
content (n = 16), liver (n = 180), brain (n = 180), and water (n = 5) 
was extracted using the CTAB method. DNA concentration and 
purity were then determined via 1% agarose gels. The V3-V4 
region of 16S rDNA was amplified by PCR (98°C for 1 min, 
followed by 30 cycles of 98°C for 10 s, 50°C for 30 s, and 72°C for 
30 s, then final extension at 72°C for 10 min) using the primers 
341F (CCTACGGGNGGCWGCAG) and 806R 
(GGACTACHVGGGTATCTAAT), which were synthesized by 
Sangon Biotech (Sangon, Shanghai, China). DNA was then 
sequenced on the Illumina NovaSeq platform (Illumina, 
United States), and 250-bp paired-end reads were generated.

Sequence analysis

The 16S rRNA gene sequences were processed using QIIME 
1.9.1 (Caporaso et al., 2010), USEARCH 10.0 (Edgar, 2010), and 
in-house scripts. Paired-end Illumina reads were checked by 
FastQC (de Sena Brandine and Smith, 2019), and further 
processed by USEARCH (including joining of paired-end reads, 
relabeling of sequencing names, removal of barcodes and primers, 
filtering of low-quality reads, and finding non-redundancy reads). 

Based on high-confidence 16S representative sequences, an 
amplicon sequence variants (ASVs) table was generated. The 
taxonomy of the representative sequences was classified with the 
“RDP trainset 16” database (Cole et al., 2014) on the basis of the 
sintax algorithm in USEARCH (−sintax command). ASVs 
assigned to chloroplasts and mitochondria were removed. An 
ASV table was generated within USEARCH (−otutab command). 
For alpha and beta diversity, samples were first rarefied at minimal 
sequences by USEARCH (−otutab_norm command).

Analysis of microbial communities

Data analyses were conducted using R (v.4.1.1).1 Alpha diversity 
was measured by the Chao1 and Shannon indexes with the “vegan” 
package2 in R. The Chao1 index was used to estimate alpha diversity 
richness and the Simpson index to evaluate evenness in addition to 
richness. Analysis of the difference in alpha diversity between 
drowning and postmortem submersion groups was performed 
using Wilcoxon rank-sum tests, and corresponding p values were 
corrected for multiple tests using a false discovery rate set at 0.05. 
Differences in beta diversity metrics (unweighted UniFrac and 
Bray–Curtis) were assessed visually using principal coordinates 
analysis (PCoA) and statistically using permutational multivariate 
analysis of variance tests (PERMANOVAs), with a total of 999 
permutations (“vegan” package). Unweighted UniFrac considers 
phylogeny and taxa, while Bray–Curtis takes taxa and relative 
abundances into account. Multiple PERMANOVAs were 
performed, and the groups tested included cause of death (drowning 
and postmortem submersion), sample type (liver and brain), and 
PMSI (5, 7, 10, and 14 days). Fast expectation–maximization 
microbial source tracking (FEAST) was used to calculate the 
contributions of water and intestine bacterial communities as 
described previously (Shenhav et  al., 2019), with the “FEAST” 
package of R. FEAST can identify the origins of complex microbial 
communities based on a statistical model that assumes each sink is 
a complex combination of known and unknown sources. In this 
study, water and intestine samples were defined as “sources,” and 
liver and brain samples were defined as “sinks.”

Random forest models

Datasets derived from microbiomics have the characteristics 
of high dimensionality and large amounts of noise and redundancy 
(Li et al., 2020; Vidanaarachchi et al., 2020), and they are not 
amenable to analysis with traditional analytical methods (Zhang 
et al., 2019; Park et al., 2021). Random forest (RF) has become a 
popular tool for the analysis of microbial data, given that it is 
relatively robust with respect to outliers and noise, and is not 

1 http://www.r-project.org/

2 https://cran.r-project.org/package=vegan
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prone to over-fitting (Knights et al., 2011). RF reportedly exhibits 
satisfactory performance when used to analyze microbial data to 
address unanswered forensic questions such as cause of death and 
postmortem interval (Metcalf et al., 2013; Zhang et al., 2019).

The present study investigated the use of different organs for 
PMSI estimation and drowning determination. RF regression and 
classification models were established based on microbiota 
profiles (the abundance data of each ASV) using default 
parameters of the R implementation of the algorithm (R package 
“randomForest”; ntree = 1,000, square root of the number of 
variables for the classification model and one-third of the variables 
for the regression model). To visualize the similarity of samples 
from different groups, a multidimensional scaling (MDS) 
ordination plot was generated using the MDSplot function of the 
“randomForest” package. Final performance was assessed via the 
mean absolute error (MAE) for the regression model, and the area 
under the receiver operating characteristic (ROC) curve for 
classification. Bacterial ASVs were ranked in order of their feature 
importance (the percentage increase in the mean-squared error; 
%IncMSE) in the regression model. Biomarker sets were generated 
by selecting the minimum error using 10-fold cross-validation.

Results

Overview of liver and brain microbial 
communities during decomposition

A total of 360 viscera samples including 180 from the liver and 
180 from the brain were collected and analyzed in the exploratory 
and validation experiments at nine PMSIs spanning 14 days 
(Supplementary Table 1). Macroscopically, no significant signs of 
decomposition were observed within 5-day postmortem. Liver 
and brain showed minimal autolysis at 7 days. Mild liquefaction 
was observed in liver and brain at 10 days. At 14 days, there were 
scattered putrefactive blisters on the surface and parenchyma of 
the liver. The brain presented apparent liquefaction. After PCR 
amplification and agarose gel electrophoresis detection, almost all 
samples collected before 5-day postmortem were not qualified 
enough for use in subsequent experiments (The target region of 
16S rDNA could not be amplified efficiently after multiple PCR, 
implying the low abundance of bacteria; Supplementary Table 1). 
Accordingly, only samples with PMSIs ranging from 5 to 14 days 
were further analyzed. The V3-V4 hypervariable region of the 16S 
rDNA gene was sequenced to characterize the microbial 
community. Following quality filtering and rarefaction, a total of 
7,089,046 high-quality sequences were generated from 181 sample 
libraries, which were clustered into 3,071 ASVs. Rarefaction 
curves indicated that as sequence depth increased, species richness 
rose considerably and then reached asymptotes 
(Supplementary Figure 1), demonstrating that the tissues were 
sufficiently sequenced to observe all taxa.

After taxonomy classification, composition analysis of 
microbial communities in the liver and brain was performed at 

different levels. At the phylum level, Firmicutes and Proteobacteria 
were dominant in all samples (Figure 1A). The relative abundance 
of Proteobacteria was higher in liver samples than in brain 
samples. The opposite was true for Firmicutes. In brain samples, 
the abundance of Firmicutes was increased and reached a plateau 
at 10 days, in conjunction with a decrease in Proteobacteria. As the 
taxonomy level increased, the difference between liver and brain 
became greater. At the family level higher abundance of 
Clostridiaceae 1, Morganellaceae, and Enterobacteriaceae was 
observed in liver samples compared to brain samples during the 
decomposition process, whereas the abundance of 
Peptostreptococcaceae was lower (Figure  1B). The relative 
abundance of Aeromonadaceae declined from 5 days and became 
relatively stable after 10 days both in liver samples and in brain 
samples. At the genus level, Clostridium_sensu_stricto and Proteus 
were more prevalent in liver samples, whereas Proteocatella and 
Desnuesiella were more common in brain samples (Figure 1C). 
The abundances of Aeromonas at 10 days and 14 days were lower 
than those at 5 days and 7 days in both organs.

To assess the possible source of microbes acquired from liver 
and brain samples during decomposition, an additional 16 cecal 
content samples and 5 water samples were obtained. The 
compositions of microbial communities in the liver and brain 
were compared with those of the water and intestine. The 
microorganism compositions in different samples were distinctly 
different (Figure 1; Supplementary Figure 2). None of the top 10 
genera in the water, gut, and viscera were the same, indicating that 
great care must be taken to avoid microbial contamination from 
water or other organs during sampling in forensic practice. Given 
that water-derived bacteria may penetrate the viscera via the 
circulation during drowning, and the bacteria in the intestinal 
tract could disseminate to different parts of the body during 
decomposition, FEAST analysis was performed to assess the 
effects of water-derived and intestine-derived bacteria on viscera 
microbiota succession. For the liver samples, the contribution of 
water-derived bacteria decreased in the drowning and postmortem 
submersion groups as PMSI increased (Figure 1D). Similar results 
were observed in brain samples (Figure 1E). The contribution of 
intestine-derived bacteria to the brain microbial community was 
close to zero throughout, which was lower than that in liver (mean 
7.8% ± 1.2%).

Microbial diversity in liver and brain 
samples

Alpha diversity was estimated using the Chao1 and Shannon 
indices (Figures 2A,B; Table 1). For the liver samples, there was no 
significant difference in the Chao1 and Shannon indexes between 
drowning and postmortem submersion groups at each timepoint. 
For the brain samples, there were only marked differences at 7-day 
postmortem. To visualize similarities and dissimilarities in 
postmortem bacterial compositions in different samples, PCoA 
was performed and represented in two-dimensional space. In an 
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unweighted UniFrac distance-based PCoA plot (Figure  2C), 
principal coordinate 1 (PCo1) and PCo2 (42.5 and 12.1% of 
variance explained, respectively) axes showed that the microbial 
communities in the liver and brain were clearly separated during 
14 days of decomposition (PERMANOVA, R2 = 0.247, p = 0.001). 
PCoA2 separated the communities mainly by PMSI (5–7 days and 
10–14 days). Separation between sample types and among PMSIs 
was more notable in a Bray–Curtis-based PCoA plot (Figure 2D). 
However, no difference between drowning and postmortem 
submersion groups was observed based on unweighted UniFrac 
(p = 0.135) or Bray–Curtis distance (p = 0.275) analysis 
(Figures  2C,D). The PERMANOVA test indicated that both 
sample type and PMSI could significantly affect the microbial 
community (p < 0.05). Sample type explained more variance 
(R2 = 0.247 or 0.270) in microbial community compared to PMSI 

(R2 = 0.145 or 0.068) and cause of death (R2 = 0.013 or 0.009; 
Figures 2C,D). These results indicated that there were significant 
differences in microbial communities between the two types of 
viscera and among PMSIs.

Applicability of liver and brain microbial 
communities for drowning determination

To further assess the applicability of microbiota in different 
organs for drowning determination, cause-of-death classification 
models were established based on the relative abundance of 
microbiota at the level of ASV using the RF machine-learning 
algorithm. In MDS plots, drowning and postmortem submersion 
groups were indistinguishable both in liver and brain models 

A

D E

B C

FIGURE 1

Composition of microbial communities in internal organs and microbial source tracking. (A–C) Relative abundance of bacterial taxa at different 
taxonomic levels. Stacked bar charts of the top 6 bacterial phyla (A), top 10 bacterial families (B), and top 10 bacterial genera (C) with the largest 
mean relative abundance in the liver and brain. Percentage source contributions of water-derived and intestine-derived bacteria to microbial 
communities in liver (D), and brain (E), over time were determined using FEAST. D, drowning group; PS, postmortem submersion group.
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(Figures 3A,C). Similar results were observed in ROC curves. The 
areas under the curve (AUCs) were low (liver AUC exploratory 
0.62, AUC validation 0.62; brain AUC exploratory 0.62, AUC 
validation 0.66; Figures 3B,D), indicating the performance of the 
classification models was poor. Thus, there was no significant 
difference in the microbial communities of liver and brain 
between the drowning and postmortem submersion groups when 
the individuals at different PMSIs were taken as a whole. 
Considering that the effect of PMSI on the bacterial community 
(R2 = 0.145 or 0.068) was stronger than that of cause of death 
(R2 = 0.013 or 0.009), we  further analyzed the difference in 
microbiota between the groups at each timepoint. In PCoA 

analysis microbiomes from drowned corpses were clearly 
separated from those of postmortem submersion corpses at 5 days 
and 7 days, both in liver and brain (Supplementary Figures 3, 4). 
The same patterns were reflected in the MDS plots and ROC 
curves from RF classification models at each PMSI 
(Supplementary Figures 5, 6). Classification models were then 
generated based on the microbial communities in the brain and 
liver, which were collected at 5 days and 7 days. Overall 
performance is shown in Supplementary Figures 7 and 8 (liver 
AUC exploratory 0.94, AUC validation 0.56; brain AUC 
exploratory 0.79, AUC validation 0.94). These results 
demonstrated that the difference in microbial communities 

A

B

C D

FIGURE 2

Alpha and beta diversities of microbiota in the liver and brain. Comparisons of the Chao1 (A), and Shannon (B), indices between drowning and 
postmortem groups at each PMSI. Ordination plot for the first two PCoA axes based on unweighted Unifrac (C), and Bray–Curtis (D), distances. 
Different colors indicate different PMSIs. Different sample types (liver or brain) are represented by different shapes. D, drowning group; PS, 
postmortem submersion group.
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between drowned corpses and postmortem submersion corpses 
reduced gradually over the PMSI, and may only be helpful for 
drowning diagnosis for corpse retrieved at 5-day and 7-day 
postmortem. Overall, bacterial communities in liver and brain 

from corpses retrieved later could not be utilized for drowning 
determination. Thereafter, data from the two groups were assessed 
together to trace the common community succession for 
PMSI estimation.

TABLE 1 Comparisons of alpha diversity indexes (Chao1 and Shannon) between drowning and postmortem submersion by Wilcoxon rank-sum test.

PMSI Sample type p_Chao1 p.adjust_Chao1* p_Shannon p.adjust_Shannon*

5d Liver 0.028 0.112 0.574 0.574

7d Liver 0.083 0.166 0.195 0.574

10d Liver 0.234 0.312 0.328 0.574

14d Liver 0.442 0.442 0.442 0.574

5d Brain 0.083 0.166 0.328 0.656

7d Brain 0 0.001 0 0.001

10d Brain 0.505 0.673 0.878 0.878

14d Brain 0.721 0.721 0.721 0.878

*p-values were adjusted using Benjamini-Hochberg (BH) correction and the adjusted p value cut-off was 0.05.

A B

C D

FIGURE 3

(A,B) Performance of the RF classification model built on microbiota in the liver. (C,D) Performance of the RF classification model built on 
microbiota in the brain. (A,C) MDS plot generated by the learning algorithm RF comparing the microbial community between drowning and 
postmortem submersion groups. (B,D) ROC curves of the RF classification model on data from exploratory and validation experiments. D, 
drowning group; PS, postmortem submersion group.
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A B

C D

FIGURE 4

Successional dynamics of microbial communities in the liver and brain, and performances of regression models for PMSI estimation. PCoA of 
bacterial communities in liver (A), and brain (B). Different colors indicate different PMSIs. Predicted PMSI versus actual PMSI for liver (C), and brain 
(D), samples were plotted with a superimposed one-to-one reference line. Dots represent samples from the validation experiment (n = 4 per PMSI).

PMSI estimation based on microbial 
community succession in liver and brain

The postmortem successions of microbial communities in 
liver and brain were assessed for PMSI estimation. PCoA based 
on unweighted UniFrac distance (Figures 4A,B) revealed obvious 
chronological ordination along PCoA1 both in liver and brain. 
Samples were briefly clustered into two categories; 5–7 days and 
10–14 days. Subsequently, the relative abundance of microbiota 
at the level of ASV was analyzed with the RF algorithm to 
establish PMSI estimation models (the initial models). The 
variance explained in the liver model was 81.46%, and the 
variance explained in the brain was 82.45%. The regression 
models obtained satisfactory performances from the 
experimental data (liver MAE 1.137 d ± 0.115 d; brain MAE 
1.114 d ± 0.111 d). The validation data were used to verify the 
efficiency of the models, and the MAE ± SE values were 1.229 
d ± 0.146 d for the liver and 1.077 d ± 0.231 d for the brain 
(Figures 4C,D; Table 2). These results suggested that microbiota 
in liver and brain could be used for estimating PMSI in late-
phase submerged corpses.

Though these models demonstrated satisfactory accuracy for 
PMSI prediction, there may be some ASVs contributing less to the 
models. Hence, cross-validation was performed to select the top 
informative indicator set (Figures 5A, 6A). Eighteen ASVs with 
high PMSI-discriminatory importance were selected as potential 
biomarkers in the liver, and 26 were selected in the brain 
(Figures  5B,C, 6B,C). Some microbes decreased in relative 
abundance over the PMSI, while others increased. According to 
species annotation, Firmicutes (13 ASVs in liver and 19 in brain) 
were dominant. Significant taxa in the liver were related to 
Paraclostridium, Clostridium_sensu_stricto, Propionispira, 
Desnuesiella, Duncaniella, and Aeromonas at the genus level. The 
microbes in brain mainly belonged to Clostridium_sensu_stricto, 
Acetobacteroides, and Limnochorda. Though the compositions of 
these indicator sets differed in liver and brain, Clostridium_sensu_
stricto accounted for the dominant microbiota (10 ASVs in the 
liver and 9 in the brain). Three biomarkers (ASV 37, ASV 103, and 
ASV 1758) were shared between the two organs, which were 
assigned to Clostridium_sensu_stricto. A similar pattern in relative 
abundance for ASV 37 and ASV 1758 was observed in liver and 
brain. Lastly, the relative abundance of microbiota from the most 
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informative indicator sets was further regressed against PMSI (the 
refined models). Compared with the initial models, the explained 
variances in these refined models (liver 85.71%, brain 85.78%) 
were slightly increased. The MAEs of the refined models were 
similar to those of the initial models with respect to data from 
exploratory experiments (liver 0.906 d ± 0.114 d, brain 0.911 
d ± 0.113 d) and validation experiments (liver 1.282 d ± 0.189 d, 
brain 0.989 d ± 0.237 d; Figures 5D, 6D; Table 2). These results 
indicated that these refined models based on selected microbial 
communities in liver and brain had powerful potential for late-
phase PMSI estimation.

Discussion

Many studies have investigated carrion microbial succession 
using high-throughput sequencing in terrestrial habitats (Metcalf 
et al., 2016, 2017; Liu et al., 2021), but there are comparatively few 
studies on microbial communities in the internal organs in aquatic 
ecosystems. Thus, in the current study, we characterized shifts in 
bacterial communities in the livers and brains of mouse cadavers 
in natural freshwater, and compared differences between drowned 
corpses and those only subjected to postmortem submersion. The 
temporal succession of microbiota colonization in some liver and 
brain samples from these corpses was informative for PMSI 
estimation. Bacterial communities in the liver and brain were of 
little use for drowning identification.

Many internal organs including liver and brain are believed to 
be sterile in healthy living hosts (Javan et al., 2016). After death, 

various bacteria begin to spread throughout the entire corpse. The 
microbes discovered in these organs are mainly associated with 
decomposition. In the present study, most of the samples collected 
on days 0 to 3 postmortem were not qualified for subsequent 
detection, implying that there was little to no bacteria proliferating 
in the viscera at these timepoints. In our previous study, liver 
samples collected at 3 days postmortem could meet the 
requirements of next-generation sequencing (Wang et al., 2020). 
Because temperature is one of the most important environmental 
factors affecting the succession of microbes (Zhou et al., 2021), a 
reasonable explanation for the discrepancy between the previous 
study and the current study is that the ambient temperature in the 
present study (5 to 10°C) was substantially lower than that in the 
previous study (15 to 25°C), resulting in limited growth of 
microorganisms. This result suggests that in follow-up 
translational studies, the concept of accumulated degree-days, 
which integrates postmortem interval and ambient temperature 
(Heaton et al., 2010), should be used to minimize error caused by 
temperature fluctuation. Additionally, a previous study reported 
that liver remains sterile up to 5 days after death (Tuomisto et al., 
2013). Our experiment further supported this finding. So, it is a 
wise choice to focus on the microbial communities in other organs 
when it comes to fresh corpses.

In the present study bacterial communities in the liver and 
brain from corpses at advanced stages of decay could not be used 
for drowning determination. There are likely several reasons for 
this. First, bacteria from the external environment and gut would 
influence the microbial community in viscera. Sterile organs could 
be colonized by infiltrating bacteria, and tissues where there is a 

TABLE 2 Prediction results of validation samples derived from the initial and refined regression models.

Sample Group Observed

Predic_ Error_ Predict_ Error_ Predict_ Error_ Predict_ Error_

initial_ initial_ refined_ refined_ initial_ initial_ refined_ refined_

liver* liver* liver* liver* brain* brain* brain* brain*

V1 D 5 5.6 0.6 5.995 0.995 5.215 0.215 5.037 0.037

V2 D 5 6.01 1.01 6.246 1.246 5.357 0.357 5.216 0.216

V3 D 7 6.266 −0.734 6.257 −0.743 6.689 −0.311 6.737 −0.263

V4 D 7 6.755 −0.246 7.051 0.051 6.853 −0.147 6.997 −0.003

V5 D 10 10.223 0.223 10.09 0.09 10.8 0.8 10.873 0.873

V6 D 10 11.025 1.025 11.024 1.024 9.957 −0.043 9.876 −0.124

V7 D 14 12.251 −1.749 12.846 −1.154 12.488 −1.512 12.955 −1.045

V8 D 14 11.762 −2.238 11.433 −2.567 12.06 −1.94 12.545 −1.455

V9 PS 5 7.11 2.11 7.345 2.345 5.426 0.426 5.307 0.307

V10 PS 5 6.545 1.545 6.677 1.677 5.278 0.278 5.009 0.009

V11 PS 7 8.428 1.428 8.486 1.486 9.687 2.687 9.461 2.461

V12 PS 7 8.614 1.614 9.171 2.171 9.338 2.338 9.404 2.404

V13 PS 10 11.163 1.163 11.574 1.574 11.213 1.213 11.364 1.364

V14 PS 10 11.4 1.4 12.039 2.039 11.511 1.511 11.92 1.92

V15 PS 14 12.578 −1.422 13.463 −0.537 11.351 −2.649 11.327 −2.673

V16 PS 14 12.843 −1.157 13.187 −0.813 13.193 −0.807 13.336 −0.664

*Predict_initial and Error_initial: Prediction results of validation samples derived from the regression model based on all ASVs. Predict refined and Error refined: Prediction results of 
validation samples derived from the regression model established by selected taxa (liver 18 ASVs; brain 26 ASVs). PMSI was measured in units of days.
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FIGURE 5

Liver biomarker identification and validation for PMSI estimation. (A) Cross-validation results of the initial model established using liver microbial 
communities. (B) The top 18 ASVs were identified by the RF algorithm. Biomarker taxa were ranked in decreasing order of importance (i.e., 
%IncMSE). (C) Heatmap demonstrating dynamic changes in abundance of the top 18 PMSI-predictive biomarkers. (D) Predicted PMSI versus actual 
PMSI for liver samples obtained by the refined regression model plotted with a superimposed one-to-one reference line. The dots represent liver 
samples from the validation experiment (n = 4 per PMSI).

specific microbiota can be contaminated (Wójcik et al., 2021). The 
genus Aeromonas is ubiquitous in freshwater but absent in the 
healthy human body (Goncalves Pessoa et al., 2019), and it has 
been documented as a potential bacterial marker of freshwater 
drowning (Kakizaki et al., 2011; Huys et al., 2012; Uchiyama et al., 
2012). In the current study, however, there was no significant 
difference in the relative abundance of Aeromonas in liver between 
drowning and postmortem submersion from 5-day postmortem, 
indicating the between-group differences caused by the exogenous 
species were relatively subtle at 5 days. Due to drastic changes in 
the environment, water-derived microorganisms that entered the 
internal organs during drowning might die gradually, resulting in 
decreased contribution of water-derived bacteria. Cartozzo et al. 
(Cartozzo et al., 2021b) reported that microorganisms inherent to 
the surrounding water environment contributed little to the 
dominating bone microbial communities with respect to relative 
abundance. That report is concordant with the present study. 
These results indicated that some changes in the microenvironment 
or in the microbial community during drowning became less 
pronounced as the PMSI extended, making a drowning diagnosis 

more difficult at advanced stages of decomposition. Additionally, 
in the current study classification models based on liver and brain 
microbiota collected at 5 days and 7 days performed well in 
exploratory experiments, implying their potential usefulness for 
drowning identification. The liver model exhibited poor 
performance in validation experiments, however (AUC 0.56), 
probably due to the large individual differences. This finding 
should be viewed with caution due to the small sample size in the 
present study, and should be validated in future larger studies.

Despite its unsatisfactory performance in drowning 
identification, microbial information derived from liver and brain 
exhibited good chronological regularity conducive to use for PMSI 
estimation. Both of the models yielded satisfactory accuracy in 
independent validation samples, suggesting the usefulness of liver 
and brain microbiota for late-PMSI estimation. In the present 
study, the minimum cross-validation errors were obtained when 
using 18 ASVs for the liver and 26 ASVs for the brain. A list of 
candidate taxa, identified via analysis of cross-validation, changed 
in abundance over time. Some of the microbial taxa have also been 
reported in postmortem microbiomes in terrestrial carcass 
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decomposition studies. For example, many selected indicators 
were assigned to Clostridium_sensu_stricto, which was also the 
dominant bacteria in terrestrial carcasses at 5–14-day postmortem. 
Clostridium is a widely variable oxygen-tolerant anaerobic genus 
found in diverse environments such as soil, freshwater, and marine 
sediments (Bergogne-Berezin and Towner, 1996), and it has been 
regarded as a key contributor to the general decomposition 
process on land (Hyde et  al., 2015). The translocation and 
proliferation of Clostridium in postmortem human internal 
organs has been reported in several studies (Tuomisto et al., 2013; 
Javan et  al., 2016). Recent research has even defined a new 
scientific concept, the “postmortem Clostridium effect”—which 
refers to the ubiquitous Clostridium spp. present during human 
decomposition (Javan et al., 2017). The current study demonstrates 
that this phenomenon can also be observed in submerged corpses. 
Further, some taxa unique to aquatic systems were proposed as 
indicators of PMSI. For instance, taxa defined as Aeromonas 
which gradually decreased in the liver could be used for PMSI 
estimation. Desulfovibrio is commonly found in aquatic 

environments (Amrani et al., 2014). Methylogaea is isolated from 
the soil-water interface of rice paddy fields (Tarlera, 2016). A 
species of Limnochorda has been isolated from sediment from a 
brackish meromictic lake (Watanabe et al., 2015). Acetobacteroides 
is found in reed swamps. The abundances of ASVs related to 
Methylogaea, Limnochorda, and Acetobacteroides were higher at 
the advanced decomposition stage, implying that sediment-
dwelling bacteria may play an important role during degradation. 
This warrants further research. Lastly, these bioindicators were 
useful for PMSI estimation with high predictive accuracy (liver 
MAE 1.282 d ± 0.189 d; brain MAE 0.989 d ± 0.237 d).

Although some of the findings in the present study are novel, 
it should be  viewed as an initial investigation into microbial 
succession associated with decomposition in a natural freshwater 
environment. The study had some limitations. Bacterial is 
reportedly more resistant to harsh environmental conditions (i.e., 
chemical and physical agents) due to the wall of peptidoglycan 
matrix, which renders bacteria applicable to studies in corpses at 
advanced stages of decomposition (Tozzo et al., 2020). Further 

AA B
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FIGURE 6

Brain biomarker identification and validation for PMSI estimation. (A) Cross-validation result of the initial model established using brain microbial 
communities. (B) The top 26 ASVs were identified by the RF algorithm. Biomarker taxa were ranked in decreasing order of importance (i.e., 
%IncMSE). (C) Heatmap demonstrating dynamic changes in abundance of the top 26 PMSI-predictive biomarkers. (D) Predicted PMSI versus actual 
PMSI for brain samples obtained by the refined regression model plotted with a superimposed one-to-one reference line. Dots represent brain 
samples from the validation experiment (n = 4 per PMSI).
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research should monitor the entire decomposition process (e.g., 
fresh to skeletonization). The environmental conditions 
surrounding the cadaver influence the bacterial communities 
present and the stages of decomposition, but the present study was 
conducted at a single location during a single season. For broader 
application of the findings in forensic science, it would be helpful 
to develop reliable and robust databases of microbiomes obtained 
in multiple aquatic environments and seasons.

The succession of postmortem microbiota that colonize 
internal organs (including the gut, brain, liver, spleen, and heart) 
has proven useful for PMI estimation in terrestrial environments 
(Can et al., 2014; Javan et al., 2016). The present study provides 
novel and informative context for better understanding the 
decomposition processes that submerged corpses undergo, which 
have important implications for forensic practice. It also sheds 
new light on PMSI estimation based on the succession of microbial 
populations in liver and brain specimens from corpses in water.
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Microorganisms, which are widely distributed in nature and human body, 

show unique application value in forensic identification. Recent advances in 

high-throughput sequencing technology and significant reductions in analysis 

costs have markedly promoted the development of forensic microbiology and 

metagenomics. The rapid progression of artificial intelligence (AI) methods 

and computational approaches has shown their unique application value in 

forensics and their potential to address relevant forensic questions. Here, 

we summarize the current status of microbial metagenomics and AI analysis 

in forensic microbiology, including postmortem interval inference, individual 

identification, geolocation, and tissue/fluid identification.

KEYWORDS

artificial intelligence, microbiome, machine learning, forensic microbiology, forensic 
science, microbial forensics

Introduction

“Microorganism” is a general term for tiny organisms that exist in nature, mainly 
including bacteria, viruses, and fungi, which are invisible to the naked eye or cannot 
be observed clearly. Microorganisms are small, simple in structure, and widely present in 
nature and the human body. The microbiome and metagenomics are rapidly emerging due 
to the progress of genome sequencing technology, improved microbial sampling methods 
and the rise of bioinformatics. In the era of big data, artificial intelligence and its related 
technologies continue to be developed and innovated, and corresponding results have been 
widely used in many disciplines, including forensics (Rahaman et al., 2020; Zhang et al., 
2021a; Chen et al., 2022).

Postmortem interval estimation

Inference of the time of death, or the postmortem interval (PMI), is an important task 
during forensic examination. Host- and environment-related microbial community 
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succession during postmortem decay, which occurs in a regular, 
clock-like manner after human death, provides novel ideas for 
PMI inference (Metcalf et al., 2016). Johnson et al. (2016) sampled 
the skin microbiota in the nasal and ear canals of decomposing 
human cadavers to establish an algorithm for predicting the PMI, 
and thereby successfully demonstrated that the skin microbiota is 
a promising tool in forensic death investigations. The application 
of microbial community changes for PMI estimation has gradually 
become a topic of major interest in forensic research.

The oral cavity is one of the key research fields of human 
microbial communities, and its microbial community richness is 
one of the most abundant areas and the second largest human 
complex after gastrointestinal tract. Adserias-Garriga et al. (2017) 
monitored the oral microbiota of donated human bodies within 
12 days after death. They found that Firmicutes and Actinobacteria 
are the predominant phyla in the fresh stage, Tenericutes is the 
predominant phyla in bloat stage, and Firmicutes is the 
predominant phyla in advanced decay. Dong et al. (2019) found 
that when the PMI was 0 h, the dominant phyla in the oral cavity 
of mice were Proteobacteria, Firmicutes, Actinobacteria, and 
Bacteroidetes. Within 240 h after the death of mice, the 
Proteobacteria and Firmicutes always occupied the dominant 
position. The oral microbiota changes in mice are different from 
those in human decaying bodies. By constructing linear regression 
models between relative abundance and postmortem intervals, 
Gamma-proteobacteria and Proteus species were the best 
candidates for use to infer the PMI, especially the late PMI. The R2 
value of both constructed linear models was 0.99.

Microorganisms play a vital role in the decomposition 
process. However, relatively few studies are available on the 
postmortem migration behavior of microbial communities inside 
cadavers. Liu et  al. (2020) assessed the microbial community 
structure in the brain, heart, and cecum of mice at 15 d 
postmortem and found that an artificial neural network (ANN) 
combined with the postmortem microbial dataset from the cecum 
was the optimal model; mean absolute error of 1.5 ± 0.8 h within 
24-h decomposition and 14.5 ± 4.4 h within 15-day decomposition. 
This model is potential to serve as an advantageous technique in 
PMI inference, however, further verification is needed.

The above studies exposed cadavers to the air during 
decomposition. However, the microbial community in buried 
decomposing cadavers may be different from that in cadavers 
exposed to air due to different conditions such as oxygen 
content, humidity, light, and soil composition. Zhang et  al. 
(2021b) analyzed postmortem microorganisms in the gravesoil, 
rectum, and skin of buried rats using the random forest 
algorithm to predict the PMI. The results showed that the 
predicted MAEs of the microorganisms in the rectum, cadaver 
skin, and gravesoil were 2.06, 2.13, and 1.82 days, respectively, 
within 60 days after death. This study developed the first model 
to predict the PMI based on microbial community succession 
and machine learning algorithms for buried bodies, which can 
provide information on the timing of buried body cases for 
forensic investigations.

Deel et al. (2021) placed six human donor subjects remains 
outdoors to decompose on the soil surface, with three samples 
each placed in spring and summer. Microorganisms in the skin 
and soil can naturally decompose the corpse to expose the ribs. 
The investigators developed a PMI prediction model using 
colonies on ribs in combination with the random forest algorithm. 
The accuracy of PMI prediction within 9 months was 
approximately (±34) days. This study represents a preliminary 
attempt to study the continuity of microbial communities in 
postmortem corpse remains, which may provide a tool for forensic 
investigators to estimate the time since death of skeletal remains. 
However, limitations remain, such as small sample sizes, 
differences between seasons, including differences in soil moisture, 
inorganic salts, and microbial contents, and variations in the 
organic composition of bones and other skeletal degradation  
indicators.

Individual identification

Individual identification is one of the most important tasks in 
forensic science. A number of studies have shown that 
microecosystems such as the skin, oral cavity, and intestine have 
obvious polymorphisms and individual differences. The 
differences in microbial community composition and abundance 
in human microecosystems constitute the basis of microbial use 
for individual identification. In theory, each individual carries a 
unique set of microorganisms that differs from those of other 
individuals, which can be identified through microbiome analysis, 
and this particular microbial community can persist over long 
periods. Therefore, microbiome characterization is potentially 
applicable to forensic human identification.

Franzosa et al. found that the microbiome of an individual can 
specifically identify its source host in a population of more than 
100 people, the performance of the gut microbiome is very stable, 
and more than 80% of individuals can still be accurately located 
after 1 year (Franzosa et al., 2015). Another study found that the 
genotypic composition of the 16S rRNA of Cutibacterium acnes 
is individual-specific. The random forest machine learning 
method was used to combine the 16S rRNA genotype of C. acnes 
with the skin microbiome profile data, and the accuracy of 
individual identification was ~90% (Yang et al., 2019). Over time, 
the 16S rRNA genotype of C. acnes was more stable than that of 
the skin microbiome profile.

The Budowle team conducted a series of studies on the 
application of forensic individual identification using skin 
microorganisms (Schmedes et  al., 2017, 2018). The core 
microbiota of the skin was determined, and clade-specific markers 
were identified. A novel targeted sequencing panel, the 
hidSkinPlex, was developed, which contains 286 markers covering 
a range of taxonomies of specific microorganisms that are in high 
abundance on the human skin. Schmedes et al. (2018) achieved 
accuracy rates between 54.20% and 100.00% when classifying 
eight individuals with samples from three body sites (i.e., foot, 
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hand and manubrium) by using regularized multinomial logistic 
regression and 1-nearest-neighbor classification. Woerner et al. 
(2019) used the same panel to classify 51 individuals across three 
body sites with nearest neighbor machine learning approaches. 
The accuracy rates of using phylogenetic distance or nucleotide 
diversity were 78.00% and 83.70%, respectively. As the number of 
individuals increased, the classification accuracy decreased.

Sherier et al. (2021, 2022) proposed that single nucleotide 
polymorphism genetic markers are more individualized than 
taxonomic markers. They designed an improved “hidSkinPlex+” 
system, which comprises 365 SNPs residing in 135 markers, fewer 
markers than the original hidSkinPlex. Eliminating the markers 
that do not contribute to classification accuracy can improve the 
enrichment process and increase the efficiency of machine 
learning. They reanalyzed the same sequencing data as those in 
Woerner et al. (2019), and found that the highest Wright’s fixation 
index (FST) combined with support vector machine (SVM) could 
achieve higher accuracy in individual identification (p = 0.03, 
chi-squared test).

Tissue/fluid identification

During forensic reconstruction of crime scene activities, 
identification of biological traces and their bodily origin provides 
valuable evidence that can be presented in court. However, traces 
and stains at the crime scene are often exposed to the environment 
outside the human body for a period before being processed in the 
laboratory. Dobay et  al. (2019) detected some characteristic 
microorganisms with high abundance in semen, saliva, vaginal 
secretions, menstrual blood, peripheral blood, and skin. The study 
found that samples with 30 days of indoor exposure still harbor a 
microbial signature that can be used to identify bodily origins. The 
dominant microbial signature in skin, saliva, semen are 
Propionibacterium, Prevotella, and Bacteroides, respectively. 
Vaginal fluid and menstrual blood share their microbial 
signatures, as Lactobacillus makes up on average 75% and 86% of 
the bacterial reads. Hanssen et al. (2017) used standard pattern 
recognition based on principal component analysis in 
combination with linear discriminant analysis and found that the 
microbial community was well differentiated between saliva and 
skin, and the saliva microorganisms of different individuals have 
specificity. The accuracy of cross-validation was 94%. Based on 
massively parallel sequencing of the microbiome, Díez López et al. 
achieved accurate tissue-type classification of skin, saliva, and 
vaginal secretions by using taxonomy-independent deep learning 
networks (Díez López et  al., 2019). Body-site classification 
accuracy of these test samples was very high as indicated by AUC 
values of 0.99 for skin, 0.99 for oral, and 1 for vaginal secretion. It 
can also provide forensically relevant blood samples (e.g., 
menstrual blood, nasal blood, fingertip blood, and venous blood) 
with accurate information about the source of blood in the body 
(Díez López et al., 2020). By analyzing the sequencing data of 
different body parts and soil mixture samples, Tackmann et al. 

(2018) identified a core set of ecologically informed microbial 
biomarkers for human body sites. Using Generalized Local 
Learning, 635 operational taxonomic units (OTUs) were reported 
as biomarkers, between 92 (nostril) and 326 (skin). Bacteroidetes, 
Firmicutes, Proteobacteria, and Actinobacteria were dominant in 
all investigated body sites. They found high fractions of positive 
Firmicutes and Bacteroidetes biomarkers in feces and 
Proteobacteria biomarkers in skin.

Geolocation

The International Metagenomics and Metadesign of Subways 
and Urban Biomes (MetaSUB), which was launched in 2015, is a 
global network of scientists and clinicians developing knowledge 
of urban microbiomes by studying mass transit systems, the built 
environment, and hospitals. In forensic casework, a link is evident 
between a crime scene investigation, the suspect, and an object, 
location, or victim. The study of environmental metagenomics 
also introduces potential for new forensic applications such as 
geographical identification.

Researchers and volunteers of MetaSUB Consortium collected 
~5,000 samples from the mass transit systems of 60 cities around 
the world. Analysis was performed using next-generation 
sequencing and genome sequencing technology, and the largest 
set of global urban microbial metagenomics research results to 
date was reported (Danko et al., 2021). Public data from MetaSUB 
Consortium were used by multiple research teams to perform 
geographic origin inference by using various bioinformatics and 
artificial intelligence algorithms. Huang et al. (2020) extracted 
features from metagenomic abundance profiles. By using logistic 
regression with L2 normalization, the prediction accuracy of the 
model reached 86% to infer city affiliation. Walker and Datta 
(2019) analyzed whole-genome sequenced microbiota sampled 
from 12 cities in seven different countries. The authors applied 
machine learning techniques to identify the geographical 
provenance of the microbiome samples. Up to 90% of the samples 
were correctly classified, demonstrating the potential of machine 
learning applications in biogeography, although further evidence 
is necessary to extend these applications to an evidentiary context. 
Ryan (2019) constructed a random forest classifier based on a 
dataset of 311 urban microbiome samples and correctly classified 
83.3% of the samples.

Conclusion

Microorganisms are widely distributed in nature and the 
human body. Microbial traces from the human body or crime 
scenes can be effectively used in forensic medicine to solve crime 
problems, showing huge potential and unique application value in 
forensic medicine. The rapid progress of artificial intelligence and 
its related technologies has markedly promoted the development 
of forensic microbiology, which has introduced novel ideas and 
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tools for solving the problems in forensic practice. Research is still 
at the preliminary stage, and many challenges need further 
addressed, for example, limited sample sizes, model accuracies, 
unrealistic environmental settings, etc. As artificial intelligence 
analysis in forensic identification is novel innovation, there are 
only limited relevant research reports. Many researchers 
conducted a single study from a single perspective, and there was 
insufficient data to cross-verify the accuracy of these results. 
Although we have summarized these reports, it is not known how 
accurate the studies are. Nonetheless, it is foreseeable that 
microbiome-based evidence could contribute to forensic 
investigations in the future.
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Microorganisms are closely related to skin diseases, and microbiological 
imbalances or invasions of exogenous pathogens can be a source of various skin 
diseases. The development and prognosis of such skin diseases are also closely 
related to the type and composition ratio of microorganisms present. Therefore, 
through detection of the characteristics and changes in microorganisms, the 
possibility for diagnosis and prediction of skin diseases can be markedly improved. 
The abundance of microorganisms and an understanding of the vast amount of 
biological information associated with these microorganisms has been a formidable 
task. However, with advances in large-scale sequencing, artificial intelligence (AI)-
related machine learning can serve as a means to analyze large-scales of data 
related to microorganisms along with determinations regarding the type and status 
of diseases. In this review, we describe some uses of this exciting, new emerging 
field. In specific, we described the recognition of fungi with convolutional neural 
networks (CNN), the combined application of microbial genome sequencing and 
machine learning and applications of AI in the diagnosis of skin diseases as related 
to the gut-skin axis.

KEYWORDS

Artificial Intelligence, microbiome, machine learning, convolutional neural networks, 
microbial sequencing, gut-skin axis

Introduction

A tremendous array of microorganisms widely exist in nature and the human body. In 
healthy humans various types of microorganisms and dominant microbiota are present within 
different parts of the body and a stable number and ratio of microorganisms are maintained 
through competition or synergy (Dominguez-Bello et al., 2019). With changes in the ratio 
between the dominant microbiota and individual microbiota, a microecological imbalance 
occurs, which can lead to specific skin diseases and, the characteristics of these changes are 
related to the progression of the disease. Due to the large number and variety of microorganisms, 
analyzes using previous techniques have been incapable of handling these data (Goodswen 
et al., 2021). However, with the  development of AI and machine learning related technologies, 
information based on  microbial image recognition or genomics data can be applied in many 
fields, including the identification of specific conditions for application in forensic science and 
clinical disease diagnosis. In this review, we provide a detailed introduction to the application 
of AI as based on microbial information for use in diagnosing skin diseases and predicting 
disease progression of these conditions.
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Recognition of fungi with 
convolutional neural networks

Convolutional Neural Network (CNN) is a special type of machine 
learning that can assimilate both isolated topographies as well as entire 
images and classify these images according to their unique features 
(Dildar et al., 2021). Dermatologists can also apply this method for 
disease diagnosis. For example, an image is annotated according to the 
corresponding medical records and pathological results and, after 
generating standardized data, these data can then be analyzed using 
CNN to distinguish and thus diagnose skin lesion images from that of 
normal skin images (Haenssle et al., 2018; Liopyris et al., 2022). This 
method is often used in the diagnosis of fungal infections, such as 
onychomycosis, as this condition represents the most common nail 
disease infected with fungi. The traditional clinical diagnosis for this 
condition is based on direct microscopy with potassium hydroxide 
(KOH), a periodic acid schiff stain (PAS) and/or a fungal culture. 
However, as colony formation requires an extended period of time and 
is susceptible to antifungal drugs, this diagnostic approach can 
be problematic (Gupta et al., 2020). The diagnosis of this condition, 
which involves the observation of a specific type of fungal morphology, 
is particularly suitable for that of CNN (Hogarty et al., 2020; Zhang 
et al., 2021).

The differences in diagnosing onychomycosis using CNN vs. 
manual microscopic examinations have been compared and analyzed. 
Results from one report found that the accuracy of CNN diagnosis was 
10% greater than that of traditional diagnostic methods (Yilmaz et al., 
2022). In that study, 60 nail samples from patients with onychomycosis  
and 297 nail samples from healthy controls were treated with KOH. Two 
different CNN  diagnostic performance models (VGG16 and 
InceptionV3) were developed. These two  models have different 
algorithms, but both accomplish the purpose of diagnosis by  extracting 
fungal-specific structures. As compared with that of the traditional 
clinical method, these two CNN models not only demonstrated a higher 
degree of accuracy, but also showed a better sensitivity (75.04% and 
74.93% vs. 74.81%) and specificity (92.67% and 93.78% vs. 74.25%). 
Similar findings were reported in another study with the specificity of 
diagnosis using VGG16 being 72.7% vs. 49.3% with the traditional 
clinical method, however, the sensitivity of CNN diagnosis was slightly 
lower at 70.2% vs. 73%, as determined in a group of 90 patients (Kim 
et al., 2020). In addition, CNN showed a greater degree of specificity in 
the diagnosis of onychomycosis as compared with conventional 
diagnostic methods using the periodic acid-Schiff reaction (PAS stain). 
As reported in a study with 199 cases, CNN showed an increased level 
of specificity (98% vs. 90.35%) and area under the receiver operating 
characteristic curve (AUC – 0.960 vs. 0.932) as compared to that 
obtained with three dermatopathologists (Decroos et  al., 2021). 
Moreover, CNN can also be used as a primary screening tool to assist 
manual microscopic examinations to greatly improve diagnostic 
accuracy. As the specificity and sensitivity of machine learning can 
be adjusted by changing the intersection over union (IOU) parameter, 
the specificity of machine learning can be increased by increasing IOU 
to ensure a higher true positive rate. Subsequently, the clinician can 
re-screen samples diagnosed as negative in hyphae with use of CNN to 
reduce the false negative rates. Such an approach not only improves 
detection efficiency and reduces expenses, but also increases diagnostic 
accuracy (Koo et al., 2021).

In addition to nails, fungal infections within other regions, such as 
the skin and hair, can also be diagnosed using CNN. However, due to 

the expansive areas involving skin and hair, the lesions are not 
concentrated. As a result, the low fungal content in an individual lesion 
hinders the recognition of mycelial characteristics by CNN, which can 
then decrease the diagnostic accuracy in these regions (Gao et al., 2021). 
One approach to alleviate the deficiency of CNN to extract effective 
information from small-scale data sets, is to combine the CNN model 
with the attention mechanism (AM) to build an IL-MCAM framework. 
IL-MCAM is based on attention mechanisms and interactive learning 
and can be applied to add misclassified images to the training sets using 
an interactive approach after the images have been classified with CNN 
to improve the classification ability of the CNN model. Although, to our 
knowledge, no reports are available using IL-MCAM to diagnose fungal 
skin diseases, a 99.77% correct diagnosis rate for colorectal cancer has 
been reported with this model (Chen et al., 2022a).

Combined application of microbial 
genome sequencing and machine 
learning

Machine learning can provide the means for identifying patterns in 
the sequencing data of a pathogen to generate a system for subdividing 
that pathogen. In this way, it can be used to determine which branch of 
the pathogen is infected to provide a basis for administration of the most 
appropriate medication. This method can be applied for the diagnosis 
of syphilis, as the internal structure of treponema is like that of bacteria 
with five genera, among which treponema is the pathogenic bacteria 
resulting in syphilis. In contrast, the clinical diagnosis of syphilis 
requires serological tests including TPPA and TPHA, which lack the 
ability to determine which branch of the pathogen is infecting the 
patient, thus precluding decisions regarding the most effective 
medication (Forrestel et al., 2020). One example of this approach has 
been applied to enable an advanced determination as to whether a 
patient was infected with drug-resistant spirochetes. Investigators 
collected and sequenced treponema pallidum from syphilis-infected 
patients in 8 countries and 6 continents and classified the spirochete 
branches using machine learning – maximum likelihood phylogeny 
method (ss14 and Nichols). It was found that the clades recognized by 
this model as Nichols C and Nichols B were consistent with resistance 
to azithromycin (Lieberman et al., 2021). This observation not only 
helped in clinically diagnosing the type of syphilis, as achieved using PC, 
but also provided a guide with regard to the initial administrations of 
medications to avoid use of ineffective antibiotics for patients infected 
with drug-resistant strains. While promising, these findings were based 
on a small sample size which lacked South Asian and South American 
populations, which raises an issue regarding the reliability and validity 
of these experimental results.

Machine learning can process 16S sequencing results to obtain 
information on differences in microbial species and composition ratios 
between patients and healthy individuals. Compared with traditional 
diagnostic methods, machine learning has the capacity to obtain 
additional information regarding body skin status and pathogen type. 
The 16S sequencing approach is a commonly used sequencing method 
to reveal species composition and evolution, mainly via its ability to 
detect partial fragments of microbial ribosomal DNA. This fragment 
includes 9 variable and 10 conserved regions, with the former 
determining relationships between species and the latter providing an 
understanding of differences between species. Diversity information of 
microorganisms in a sample can be  obtained by amplifying and 
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sequencing partial regions of the rRNA DNA sequence in the extracted 
sample (Abellan-Schneyder et al., 2021). As an example, males with an 
HPV infection may present with insidious symptoms, but their penile 
microbiota will change, with this change placing their sexual partners at 
risk for HPV infection (Onywera et al., 2020b). The V3-V4 hypervariable 
regions of the 16S rRNA gene from the penile skin microbiota of 238 
South African males were analyzed, and 6 distinct community state 
types (CSTs) were identified. With use of the machine learning – linear 
discriminant analysis effect size algorithm, differences in the abundance 
of microbial populations were observed as a function of different HPV 
infection subtypes. High-risk (HR)-HPV males had a significantly 
greater relative abundance of prevotella, dialister, peptoniphilus, and 
unclassified clostridiales and CST types 2–6, as compared with those not 
infected with HR-HPV. Males with a CST type dominated by 
corynebacterium were less likely to be infected with HR-HPV, but the 
opposite was true for women (Onywera et al., 2020a). While all HPVs 
are contagious, different types of HPV infection can lead to different 
diseases including genital warts, flat warts and even genital cancer. Due 
to its mode of transmission (contact transmission) and the potential for 
latent clinical symptoms following infection, HPV infections can readily 
affect the health of sexual partners, if no treatments and/or protection 
are undertaken. Therefore, 16S sequencing and machine learning 
represent important tools which can be used to predict, not only the 
HPV type, but even the type in their partner, which enables the 
possibility for an early detection and treatment.

In addition to being used in the diagnosis of HPV infection, 16S 
sequencing has also been used in evaluating skin status and generating 
probabilities for the prediction of skin diseases. In one study, 1,200 
microbial samples were obtained from the legs of Canadian women aged 
21–65 and subjected to 16S rRNA sequencing. Combined with skin 
hydration status (including PH value and conductance capacitance), 
three machine learning methods – random forest (RF), XGBoost, and 
LightGBM were used to analyze these samples. In addition, samples 
from the legs of 278 British women were also obtained for analysis using 
machine learning. The results from this study revealed that skin 
moisture levels were higher and a better skin condition was observed as 
a function of increased levels of lactobacilli. With an abundance of 
Bergeyella, the skin was dehydrated and the probability for dermatitis 
was relatively high (Carrieri et al., 2021).

Metagenomics, which differs from that of 16S sequencing, directly 
extracts DNA from all microorganisms of environmental samples, with 
the detection object including all microbial genomes, due to its more 
prolific genome database (Gu et al., 2019). The diagnosis of acne can 
be performed by analyzing the metagenomic sequencing data of acne 
using machine learning methods. Acne, which is associated with 
adipogenic fibroblasts, genetic factors and skin and intestinal microbiota, 
is one of the most common skin diseases worldwide (Mitchell et al., 
2022; Sánchez-Pellicer et  al., 2022). As it remains unclear whether 
changes in skin microbiota play an indicative role in acne, diseased skin 
(DS) and healthy skin (HS) samples from 35 acne patients and 35 
normal control (NC) skin samples were collected for analysis. Through 
metagenomics analysis, 2,520 sequence data points from each volunteer 
were selected. Using machine learning – principal component analysis 
(PCA) and kernel principal component analysis (KPCA) methods, the 
corresponding lipids that largely contributed to the status of each type 
of skin were identified. Using a multiset canonical correlation analysis 
(MCCA) method, lipids which can effectively differentiate among the 
three different skin states were revealed, with the results that lipid No. 
1240 can distinguish a DS sample set, lipids No. 608 and 2334 can 

distinguish a HS sample set and a decrease in lipids No. 95, 1069, and 
1108 indicates an improvement in the disease. Accordingly, the results 
of this study have significant implications with regard to the diagnosis 
of acne (Wang et al., 2021).

AI and skin diseases as related to 
the gut-skin axis

Gut microbiota play an important role in maintaining human 
health. The host and microbiota maintain a state of homeostasis within 
the body through subtle interactions, with disruptions in this balance 
affecting the entire organism, even within organs far removed from the 
gut, such as the integumentary system (De Pessemier et al., 2021). In 
fact, increasing evidence has accrued which indicates that many skin 
diseases are accompanied by alterations in the gut microbiome (e.g., 
atopic dermatitis, psoriasis, vitiligo, and acne vulgaris; Szántó et al., 
2019). Such findings have led to development of the gut-skin axis 
concept. That is, when the relationship between gut microbes and the 
immune system is compromised, subsequent effects on the skin can 
be triggered and even develop into skin diseases. Therefore, skin diseases 
may be diagnosed through the detection of gut microbes (Mahmud 
et al., 2022).

Results from previous studies have shown that microbes on the skin 
surface are highly related to the occurrence and development of vitiligo, 
and the progression of this disease can be  estimated by observing 
changes in skin microbes. For example, increased levels of streptomycin 
and streptococci are observed in active vs. stable vitiligo as detected by 
the Novaseq sequencer; and differences in Beta diversity (Non-Metric 
Multi-Dimensional Scaling) are present between patients with active vs. 
stable vitiligo (Lu et  al., 2021). While the composition of gut 
microbiomes remains stable from infancy, skin surface microbes are 
susceptible to environmental influences. Only in the presence of vitiligo 
does the proportion of microorganisms in gut microbes change as a 
function of disease progression. When gut microbes of 30 patients with 
vitiligo were compared with that of 30 matched healthy controls, results 
from the 16S rRNA sequencing assay revealed that the Shannon and 
Simpson index was higher and the ratio of Bacteroides/Firmicutes 
decreased in vitiligo patients (Ni et  al., 2020). The alpha-diversity 
(a measure of richness and uniformity) in patients experiencing vitiligo 
for >5 years was greater than that of patients experiencing a shorter 
interval of illness. Finally, when combining machine learning with assay 
results indicating the presence of Corynebacterium 1 and Psychrobacter, 
a diagnosis of vitiligo with an accuracy rate of 0.929 was obtained. These 
data suggest that gut microbiota can not only be used to distinguish 
vitiligo in patients vs. healthy individuals, but can also provide a 
determination for the duration of this disease.

Atopic dermatitis (AD) is a chronic inflammatory disease that may 
result from a complex interaction among genetic predisposition, 
immune dysfunction, environmental allergens and skin barrier 
abnormalities. Interestingly, results from previous studies have suggested 
that AD patients show abnormal gut microbiomes prior to the onset of 
this disease. Infants (2 months of age) whose fecal calprotectin was 
greater than normal showed an increased risk of developing AD at 
6 years of age (Lunjani et al., 2018). In addition, these children had 
increased E. coli, fewer bifidobacteria, bacteroides and lower levels of 
alpha-diversity (Arboleya et  al., 2016). Such findings indicate the 
importance of intestinal microbial changes in the diagnosis of AD as can 
be determined using machine learning (Jiang et al., 2022). In that study, 
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data from intestinal epithelial cell transcriptomes and flora were 
collected from 88 AD patients and 73 healthy controls (the average age 
of the healthy group was 3 months younger than that of the AD group) 
and the supervised machine learning pipeline—Logistic Regression 
(LR), Support Vector Machine (SVM), and Random Forest Classifier 
(RFC) were constructed as based on 44,608 gene expression probes and 
366 species of microorganisms in transcriptome and microbial 
databases. Fifty microbial characteristic maps as related to AD were 
screened, including akkermanisia, verrucomicrobia, propionibacterium, 
and those with the highest F1 scores (high precision 0.70 and recall 
0.88), could then be used as AD predictors (Jiang et al., 2022). Finally, 
results from a literature review have verified that these microbial 
characteristics are highly correlated with AD, and therefore cannot only 
be used to predict AD but even distinguish among disease subtypes.

Discussion

The human microbiome is closely related to skin diseases. Accordingly, 
an understanding of the microbial community composition, structure, 
function and its changes within the skin can serve as critical indices for the 
diagnosis of skin diseases. With this method,  different machine learning 
models can be used to analyze changes in the abundance, type, and 
composition ratio of microorganisms in different aspects of the disease state 
versus  that of healthy people, which can then enhance the accuracy of 
diagnosing skin diseases.  Moreover, as compared with that of traditional 
methods, this procedure can also serve to  predict the occurrence and 
progression of diseases.

As this new technology currently resides in developmental stages, 
many limitations remain. For example, sequencing data have low rates 
of representation and insignificant  features as well as easy under-
segmentation caused by the image characteristic which can  result in a 
reduction in the accuracy of conclusions derived with this technique 
(Zhang et  al., 2022). In addition, it is difficult for CNN to identify spores 
and hyphae with varying  degrees of linear curvature and the relatively 
low resolution of pathological images can make it difficult for AI to 
distinguish between serum particles and fungal elements in the images. 
However, this reduction in accuracy resulting from low-resolution 
images can be  resolved by altering the method used for image 
generation, such as using whole slide imaging (WSI) or through 

application of visual transformer models to obtain more stable results 
(Chen et al., 2022b; Li et al., 2022). The development of 269 AI has 
accelerated the progress of research in the study of microorganisms. In 
addition to the capacity for  disease diagnosis and prediction as 
described in this report, AI’s automatic identification  of microbial 
genomes can also be applied for forensic identification of deceased  
individuals and thus offers the potential to assist forensic investigators 
in resolving  medical disputes. While combining AI with microbes 
remains a challenge, this  technology holds great promise for applications 
in the fields of medicine and forensics.
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Studying pulmonary fibrosis due 
to microbial infection via 
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analysis
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Introduction: Pulmonary fibrosis is a consequential complication of microbial 
infections, which has notably been observed in SARS-CoV-2 infections in 
recent times. Macrophage polarization, specifically the M2-type, is a significant 
mechanism that induces pulmonary fibrosis, and its role in the development of 
Post- COVID-19 Pulmonary Fibrosis is worth investigating. While pathological 
examination is the gold standard for studying pulmonary fibrosis, manual review 
is subject to limitations. In light of this, we have constructed a novel method that 
utilizes artificial intelligence techniques to analyze fibro-pathological images. This 
method involves image registration, cropping, fibrosis degree classification, cell 
counting and calibration, and it has been utilized to analyze microscopic images 
of COVID-19 lung tissue.

Methods: Our approach combines the Transformer network with ResNet for 
fibrosis degree classification, leading to a significant improvement over the use 
of ResNet or Transformer individually. Furthermore, we employ semi-supervised 
learning which utilize both labeled and unlabeled data to enhance the ability of the 
classification network in analyzing complex samples. To facilitate cell counting, 
we applied the Trimap method to localize target cells. To further improve the 
accuracy of the counting results, we utilized an effective area calibration method 
that better reflects the positive density of target cells.

Results: The image analysis method developed in this paper allows for 
standardization, precision, and staging of pulmonary fibrosis. Analysis of 
microscopic images of COVID-19 lung tissue revealed a significant number of 
macrophage aggregates, among which the number of M2-type macrophages 
was proportional to the degree of fibrosis.

Discussion: The image analysis method provids a more standardized approach 
and more accurate data for correlation studies on the degree of pulmonary 
fibrosis. This advancement can assist in the treatment and prevention of 
pulmonary fibrosis. And M2-type macrophage polarization is a critical mechanism 
that affects pulmonary fibrosis, and its specific molecular mechanism warrants 
further exploration.
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microbial infection, pulmonary fibrosis, microscopic image, artificial intelligence, image 
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1. Introduction

Microbial infections represent a major culprit behind the onset of 
pulmonary fibrosis. A variety of microorganisms have been identified 
as potential inducers of this debilitating disease, including the human 
T-cell leukemia virus, the human immunodeficiency virus, 
cytomegalovirus, Epstein–Barr virus, influenza virus, avian influenza 
virus, Middle East respiratory syndrome coronavirus, heavy acute 
respiratory syndrome coronavirus, SARS-CoV-2 (Huang and Tang, 
2021), Mycobacterium tuberculosis, Chlamydia and Mycoplasma. The 
pathogenesis of pulmonary fibrosis due to microbial infections, 
especially viral infections, consists of two distinct mechanisms. The 
pathogenesis of viral-induced pulmonary fibrosis entails two distinct 
mechanisms. Firstly, direct viral damage during the infection leads to 
acute and heavy injury to the lungs. This acute insult results in 
persistent lung damage and/or abnormal wound healing, thus 
facilitating the progression of pulmonary fibrosis. Secondly, viral 
infections trigger an immune-mediated response that causes tissue 
damage. Upon infection, immune cells aggregate at the site of injury, 
releasing a vast array of pro-inflammatory and pro-fibrotic cytokines 
that mediate the progression of fibrosis. Consequently, the synergistic 
interplay between viruses and these factors culminates in sustained 
and substantial lung damage, ultimately leading to the development 
of pulmonary fibrosis.

In recent years, COVID-19 caused by SARS-CoV-2 infection has 
had a profound impact on the global population. In fact, over 
one-third of heavy COVID-19 pneumonia survivors discharged from 
hospitals have been found to develop pulmonary fibrosis (Han et al., 
2021). Furthermore, forensic examination of deceased COVID-19 
patients by the Liu Liang team has revealed copious amounts of 
viscous gray-white liquid and visible fibrous strands on lung sections 
(Liu et al., 2020). Grillo and colleagues conducted a systematic analysis 
of lung slice samples from eight COVID-19 patients who died in 
intensive care, and noted significant pulmonary fibrosis remodeling, 
characterized by fibroblast proliferation and alveolar occlusion (Grillo 
et al., 2021). This underscores the fact that pulmonary fibrosis is a 
significant complication that can lead to heavy illness and death in 
COVID-19 patients.

Tissue-resident macrophages are highly plastic cells that can 
polarize into classical activation phenotype (M1) macrophages or 
alternative activation phenotype (M2) macrophages (Sica and 
Mantovani, 2012; Vasse et al., 2021). M2 macrophages can be induced 
by various cytokines and are associated with fibrosis (Zhong et al., 
2014). M2 macrophages can produce pro-fibrotic mediators such as 
transforming growth factor-β (TGF-β), which sustain the activation 
of fibroblasts and promote myofibroblast proliferation, leading to 
excessive deposition of extracellular matrix (ECM) and structural 
remodeling of lung tissue, ultimately resulting in pulmonary fibrosis 
and respiratory failure (Song et  al., 2000). Therefore, after SARS-
CoV-2 invasion, do pulmonary macrophages polarize into M2 
macrophages in large numbers, participating in the initiation of 
pulmonary fibrosis? If the degree of lung tissue fibrosis can 
be correlated with the number of macrophages, it would provide solid 
evidence for this hypothesis.

For a long time, the gold standard for diagnosing pulmonary 
fibrosis has been pathological examination of the affected lung tissue, 
making histopathology the foundation for related research. Therefore, 
the analysis of microscopic images of pathological tissue sections is 

particularly important. However, traditional microscopic image 
analysis techniques have the following main limitations. Firstly, they 
rely on subjective judgments by humans and are experiential in nature, 
with results being significantly influenced by the observer’s individual 
biases. Secondly, image analysis and cell counting only represent 
partial views and are difficult to analyze globally. Finally, because 
different staining for different markers often requires different sections 
of the same tissue block, even consecutive sections on different slides 
are difficult to accurately match for subsequent analysis, making it 
challenging to perform correlation analysis of different indicators in 
the same area. Therefore, using artificial intelligence algorithms is of 
high demand to effectively solve the aforementioned problems.

This paper presents an artificial intelligence-based image analysis 
method for registering, cropping, and classifying fibrosis degree in lung 
FFPE (Formalin-Fixed and Parrffin-Embedded) slice. To automate the 
classification of fibrosis degree, we utilize the ResNet network (He 
et al., 2016) to extract high-dimensional features of lung tissue from 
pathological microscopy images. Then, we  use the self-attention 
mechanism of Transformer (Dosovitskiy et al., 2020) to select the most 
discriminative local features. We  further employ semi-supervised 
learning to improve classification accuracy with a large number of 
unlabeled pathological images. Our results demonstrate that our 
classification model can accurately focus on the pathological tissue in 
the lung and classify images in a way that mimics human interpretation. 
Moreover, we apply the Trimap distance method to automatically count 
the number of macrophages in immunohistochemistry images of lung 
tissue. Given the characteristics of lung tissue, such as the presence of 
many empty areas like blood vessels and airway cavities, we employ an 
effective area calibration method in addition to cell counting to better 
reflect the positive density of the target cells. We applied the above-
mentioned intelligent analysis method for lung FFPE slice images to 
quantitatively analyze SARS-CoV-2-induced lung fibrosis and 
investigate the role of macrophage polarization in the mechanism of 
SARS-CoV-2-induced lung fibrosis.

2. Materials and methods

2.1. Pathological tissue samples

The data used to train the algorithm model in this paper comes 
from 10 lung FFPE slices of COVID-19 death cases. The experimental 
data comes from lung tissue samples of 4 different COVID-19 death 
cases with pulmonary lesions, as well as 3 lung tissue samples without 
pulmonary lesions. HE  staining, CD68 immunohistochemical 
staining, and CD163 immunohistochemical staining were used as 
staining methods, where CD68 represents total macrophages and 
CD163 represents M2 macrophages. HE staining was used for the 
classification task, while immunohistochemical staining was used for 
the counting task.

2.2. Preparing image analysis samples via 
image registration and cropping

Due to spatial position deviation between the original HE staining 
images and immunohistochemical images, we registered them using 
affine transformation in OpenCV to achieve optimal alignment. 
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Moreover, the original pathological image size was extremely large, 
ranging from 600 million to 1.2 billion pixels, which precluded direct 
input into the network for classification and counting. To overcome 
this challenge, we manually selected the region of interest and cropped 
it into patches with a resolution of 1,600 × 1,600 pixels, resulting in 
1589 labeled patches. We separate all labeled patches into 1,082, 269, 
and 198 patches for training, validation, and testing, respectively. 
Furthermore, to enhance the classification accuracy, we  obtained 
1,420 unlabeled patches. We  then used deep learning models to 
automatically classify registered HE  staining patches and count 
macrophage on the corresponding immunohistochemical images. 
Finally, we spliced the target images to restore them to the original 
slice size and analyzed the corresponding classification and counting 
results in the corresponding regions.

2.3. Lung tissue fibrosis classification via 
deep learning

Various improvements have been made to the Visual Transformer 
(ViT) method (Dosovitskiy et  al., 2020), including knowledge 
distillation (Touvron et al., 2021a), Re-attention (Zhou et al., 2022), and 
LayerScale (Touvron et  al., 2021b). In this paper, we  followed the 
automatic classification model Tokens-to-Token ViT (Yuan et al., 2021) 
which consists of a pre-trained ResNet backbone and a Transformer 
encoder-decoder. The ResNet network extracts high-dimensional 
features from image patches. We normalize these features and combine 
them with the positional encoding before they are input into the 
encoder-decoder with multi-head self-attention. The output of the 
encoder-decoder (i.e., the class token) is fed into a prediction head that 
is made up of fully connected layers. Then the output of the prediction 
head determines the specific classification (Figure  1). To further 
improve the classification accuracy, we employed the semi-supervised 
method which combines self-training and consistency learning 
(Tarvainen and Valpola, 2017), and designed a model from the 
perspective of pseudo-labeling (Arazo et  al., 2020). We  adopted a 
similar structure of Cross Pseudo Supervision (Chen et al., 2021) in our 
approach. The loss function is comprised of two parts: supervised and 
unsupervised. The supervised part calculates the cross-entropy loss 
between the predicted classes and the labels. For unlabeled data, 
one-hot pseudo-labels are generated using the output of another model, 
and the cross-entropy loss is calculated between the predicted values 
and the pseudo-labels generated by the other model. By merging the 
ResNet feature extractor and Transformer classifier, our approach is able 
to leverage both high-dimensional image features and long-term 
dependencies of sequence data for classification. This allows for training 
with advanced features, which reduces the need for extensive training 
data, making it ideal for medical datasets. Furthermore, through the use 
of semi-supervised learning, our model effectively integrates finely 
labeled and unlabeled data to improve classification accuracy.

2.4. Manual-labeled fibrosis rubric

After referencing to the refined Ashcroft score criteria (Hubner et al., 
2008), our study evaluated the degree of pulmonary fibrosis in detail, 
assigning a score of 1–8 based on the specific morphological 
characteristics of the lung fibrosis. The score and detailed morphological 

descriptions are shown in Table  1. Based on the morphological 
characteristics, scores of 1–3 were classified as light, 4–5 as moderate, 
and 6–8 as heavy. The annotations were conducted by 5 pathologists with 
experience, who independently evaluated HE-stained patches in the 
algorithm training dataset and scored them according to the standard. 
The group results were then collected and compared for final calibration.

2.5. Cell counting and effective area 
calibration

The post-processing technique extracts the area of minimum 
distance in each local region of the predicted distance map, which 
represents the center of a cell. The number of centers detected 
corresponds to the number of cells in the image. Finally, the density 
of positive cells is calculated by adjusting for the effective tissue area. 
We adopt Trimap (Arteta et al., 2016) which involves three semantic 
segmentation classes to count the number of target cells. Specifically, 
the cell region is divided into two semantic classes, namely the 
segmentation region closer to the cell center and the cell region farther 
away from the center. The third semantic class is defined as the 
background class. To differentiate the two classes in the cell region 
based on proximity to the cell center, such as the orange region in 
Figure 2, the two regions closest to the center (black regions) can 
be  used to separate two adherent cells. To implement Trimap, 
we leveraged the UNet segmentation network (Ronneberger et al., 
2015) which employs a combination of upsampling and downsampling 
layers to extract high-level features and predict a distance map for 
each pixel in the input image. Since the center of a cell is typically 
located within regions closer to the cell centers, the post-processing 
algorithm extracts the local minimum region and calculates the 
centroid to obtain the cell center. To obtain the density of positive 
cells, we calculated the area of valid tissues in the patch to determine 
the effective tissue area. The invalid tissues are typically white in color, 
and threshold can be used to extract the blank connected regions in 
the image. Any small connected regions that are not relevant are then 
excluded based on their minimum area of the alveolar space in the 
patch. The effective tissue area is calculated by subtracting the sum of 
areas of all connected regions larger than the minimum area from the 
total area of the patch.

Finally, the density of cells in each patch is calculated as follow:
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e
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R A

Ae
e
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 A A Ae total white= −  (3)

where Re is the rate of effect area Ae  to the total area of the 
patch Atotal , Awhite , is the area of the white regions in the patch and 
pi  is the predicted count of cells in the image.

Compared to existing counting algorithms (Wan and Chan, 2019; 
Wan et al., 2021), the Trimap distance algorithm is capable of handling 
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adhesive samples by utilizing the distance between pixels and the 
centroid and the use of effective area calibration allows the calculation 
of the effective positive density in combination with the cell count.

3. Results

3.1. Image registration and cropping

The original images contained approximately 900 million pixels. 
After image registration and manual delineation to maximize the 
target area, the samples were cropped into 1600×1600 patches for 
subsequent model training and analysis (as shown in Figure 3 for the 
registration and segmentation results).

3.2. Classification experiments

3.2.1. Evaluation metrics
We utilized the widely-used metrics: Precision, Recall and F1_score 

to evaluate the performance of fibrosis degree classification. Precision 

refers to the proportion of correctly predicted positive samples among 
all samples predicted as positive, as shown in Eq. (4). In Eqs. (4, 5) TP 
(True Positive) represents the number of positive samples correctly 
predicted as positive by the model, FP (False Positive) represents the 
number of negative samples incorrectly predicted as positive, and FN 
(False Negative) represents the number of positive samples incorrectly 
predicted as negative. Recall refers to the proportion of correctly 
predicted positive samples among all actual positive samples. F1_score 
is the harmonic mean of precision and recall as shown in Eq. (6), which 
comprehensively reflects the predictive ability and coverage of the model.

 
Precision
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TP FP
=

+
×%100
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+
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FIGURE 1

This is the flow chart of our classification model. When an original image is input to the ResNet feature extractor, the extractor outputs high-
dimensional features maps of the image. Afterwards, the feature maps are split into blocks(in this case, there are 4 × 4 blocks), flattened, and fed into 
fully connected layer block by block. Meanwhile, a class token is initialized separately and fed into the transformer encoder together with each block of 
the output from the fully connected layer. Finally, the class token is extracted and fed into an MLP to get the classification result.
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3.2.2. Results of classification
The results of pulmonary fibrosis degree classification are shown 

in Table 2.
We compare our final method, i.e., ResNet+Transformer (w/SSL) 

with several variants, including using only ResNet18 for classification, 
using only Transformer for classification, using ResNet+Transformer 
without semi-supervised learning (SSL). Experimental results suggest 
that utilizing ResNet as a feature extractor in combination with a 
Transformer network leads to a significant improvement in 
performance compared to using either ResNet or Transformer 
individually. Additionally, using semi-supervised learning can further 
enhance the model’s capability to focus on the target area and analyze 
complex samples. The normalized confusion matrix for the 
classification task is shown in Figure 4.

3.2.3. Visualization of lung tissue fibrosis 
classification

In Transformer, the key component is the multi-head attention 
module. In each head, the correlation between every two tokens is 
calculated to obtain an attention map. We  focus on those values 
involving the class token, which represent the degree of the influence 
of features from different patches on the classification decision. The 
attention maps in all heads (4 heads) of the multi-head attention 
module of each layer (10 layers) are extracted, then averaged and the 
elements related to the class token(calculated between a patch’ s token 
and the class token) are selected and adjusted to a two-dimensional 
matrix in order to match them with the corresponding locations in the 

original image for visualization. The shades of color are used to 
indicate the relative position of each vector to the class token in this 
two-dimensional space. Darker shades represent closer relative 
distances (i.e., higher correlation with the classification result), while 
lighter shades represent farther relative distances (i.e., lower 
correlation with the classification result; Figure 5). The B4 and D2 
regions are the darkest in the image, indicating that the corresponding 
areas of pathological images have more prominent fibrosis features. 
As a comparison, the token map without SSL(as shown as Figure 5C), 
though it can also focus on some of the fibrotic areas, the areas of 
focus are incomplete and partially incorrect.

In the global visualization map (Figure 6), the deep blue region 
represents heavy fibrosis classification, the lighter region represents 
moderate fibrosis classification, and the colorless region is not 
included in the study due to insufficient tissue.

3.3. Results of cell counting and calibration

The visualization results of the positive cell identified by our cell 
counting method in immunohistochemical staining images (Figure 7), 
in which Figure 7A contains some white regions, while 7B only has 
tissue. Direct counting and calibrated counting results of positive cells 
in Figure 7 are shown in Table 3.

3.4. Results of image analysis of Covid-19 
lung tissue sections

3.4.1. Lung tissue image patch fibrosis 
classification

The HE-stained section images of the new coronal lung tissue 
were cut into 282 patches, and after the classification, the lung fibrosis 
light group (COV-L) 10 patches, the lung fibrosis moderate group 
(COV-M) 144 patches, the lung fibrosis heavy group (COV-H) 128 

TABLE 1 Modified Ashcroft score(Hubner et al., 2008).

Rate Description

1

Alveolar septa: Isolated gentle fibrotic changes (septum ≤3× thicker 

than normal)

Lung structure: Alveoli partly enlarged and rarefied, but no fibrotic 

masses present

2

Alveolar septa: Clearly fibrotic changes (septum >3× thicker than 

normal) with knot-like formation but not connected to each other

Lung structure: Alveoli partly enlarged and rarefied, but no fibrotic masses

3

Alveolar septa: Contiguous fibrotic walls (septum >3× thicker than 

normal) predominantly in whole microscopic field

Lung structure: Alveoli partly enlarged and rarefied, but no fibrotic masses

4
Alveolar septa: Variable

Lung structure: Single fibrotic masses (≤10% of microscopic field)

5

Alveolar septa: Variable

Lung structure: Confluent fibrotic masses (>10% and ≤ 50% of 

microscopic field). Lung structure severely damaged but still preserved

6

Alveolar septa: Variable, mostly not existent

Lung structure: Large contiguous fibrotic masses (>50% of microscopic 

field). Lung architecture mostly not preserved

7

Alveolar septa: Non-existent

Lung structure: Alveoli nearly obliterated with fibrous masses but still 

up to several air bubbles

8
Alveolar septa: Non-existent

Lung structure: Only fibrotic masses in microscopic field

FIGURE 2

Distance map visualization.
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TABLE 2 Results of pulmonary fibrosis degree classification.

Method Precision Recall F1_Score

ResNet18 0.928 0.941 0.934

Transformer 0.936 0.925 0.929

ResNet+Transformer(w/ o SSL) 0.954 0.960 0.957

ResNet+Transformer(w/ SSL) 0.960 0.966 0.963

FIGURE 4

The normalized confusion matrix for the classification task.

patches, and the normal lung tissue sections were segmented into 477 
control groups (Control). The pathological images of lung tissues in 
each group are shown in Figure 8. Because the number of patches in 
the COVID-19 light group was too small, they were combined with 
COVID-19 moderate and analyzed as COVID-19 light-moderate 
group (COV-L/M) to reduce the error, reflecting the early stage of 
COVID-19 fibrosis.

3.4.2. Morphological manifestations of 
immunohistochemical staining of macrophages 
in each group of COVID-19 and control group

CD68 and CD163 immunohistochemically positive cells were 
yellow-brown darkly stained cells in the sections. The common 
results of these four immunohistochemistry groups were 
characterized by a higher number of CD68 positive staining fine 
than CD163 positive staining cells in the field of view (e.g., 
Figures 9–12).

3.4.3. Macrophage counts in COV-L/M Group, 
COV-H group and control group

The results of macrophage counts and M2/total macrophage ratios 
in the COV-L/M, COV-H and Control groups are shown in Table 4.

The total macrophage count and M2/total macrophage ratio were 
significantly higher in the COV-L/M and COV-H groups compared 

with the Control group, but there was no statistical difference between 
the COV-L/M and COV-H groups (e.g., Figures 13A,C). The M2-type 
macrophages were elevated in the COV-H and COV-L/M groups 
compared with the Control group, and the elevation in the COV-H 
group compared with the COV-L /M group were more significantly 
elevated (e.g., Figure 13B).

4. Discussion

Image registration can be understood as the consistency of two or 
more images in spatial coordinates or visual perception. In 

FIGURE 3

Image registration and cropping visualization.
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pathological research, different staining methods are used to display 
different structures or components of the same tissue. In this case, it 
is necessary to align the images of different staining methods to the 
same coordinate system. The AI-based image analysis method 
proposed in this paper solves the problem of image registration for 
histological sections. By registering the HE-stained images with the 
immunohistochemical CD68 and CD163-stained images, the 
differences caused by changes in orientation for each section are 
eliminated, allowing HE staining results to be combined seamlessly 
with immunohistochemical results. Therefore, the image registration 
method proposed in this paper can unify information from different 

staining methods and lay the foundation for subsequent correlation 
analysis of research indicators.

In the process of building the classification model, we compared 
several state-of-the-art models in the literature with ResNet, which 
served as the baseline. By utilizing various combinations of data 
augmentation, we were able to achieve the best performance, as shown 
in Table 2. In this task, since image features are highly abstract, ResNet 
is better equipped to capture the complex features in the images. On 
the other hand, the Transformer pays more attention to local features 
and spatial relationships. However, because only one convolutional 
layer is used for feature extraction, the Transformer is not as effective 

A B C

FIGURE 5

Classification task visualization. From left to right is the original input image (A), the token map with SSL method (B) and the token map without SSL (C).

FIGURE 6

Global visualization map.
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A B

FIGURE 7

Visualization of cell prediction results (red dots are predicted cell locations). A:The patch contains some white regions; B:The patch only contains 
tissue.

TABLE 3 Cell count results of patch with white area (Figure 7A) and patch 
only contains tissues (Figure 7B).

Program Figure 7A Figure 7B

Before calibration 867.0 994.0

After calibration 851.0 859.0

The second and the third row correspond to the original counting results and the density 
results after the effective area calibration.

as ResNet in this regard. After using the pre-trained ResNet model as 
a feature extractor, the model was able to extract higher-dimensional 
features, leading to significant improvements in model accuracy, 
recall, and F1 score. Furthermore, after augmenting the unlabeled 
samples with semi-supervised learning, the model’s performance was 
further enhanced. We observed that, with the use of SSL, our model 
provides more accurate and reasonable feature representations for 
different target regions, as evidenced by the visualized token 
map results.

From an application perspective, our proposed method is not only 
applicable to lung fibrosis classification, but also has broad potential 
applications in other medical imaging tasks or industrial image 
classification that require similar features. However, the current model 
also has certain limitations. For example, since the task is limited by 
the number of light cases, we supplemented some control cases into 
the light group, making it difficult for the current model to distinguish 
between the light and control groups. Patches with limited useful 
information were removed during annotation and were not included 
in the training set. In addition, the differences in semi-supervised 
learning algorithms may also affect the performance of the model. 
Currently, the two mainstream directions are to explore more suitable 
pseudo label strategies and to start with consistency learning to 
explore better data augmentation methods. In future, researcher could 
continue to optimize the model from points above.

By combining cell counting with effective area calibration, the 
counting algorithm presented in this paper can to some extent 

mitigate the influence of large blood vessel and bronchial lumens on 
lung parenchyma area, providing a more accurate reflection of the 
number of target cells in the lung parenchyma. Compared with 
fibrosis classification annotation, manually annotating cells in each 
image requires much more effort than classification, which is a major 
burden for researchers. Therefore, designing algorithms that can learn 
features from a small amount of annotation is a future 
research direction.

This paper is the first to apply artificial intelligence-based image 
analysis methods to systematically analyze lung tissue samples from 
COVID-19 patients. The samples analyzed in this paper showed 
predominantly moderate to heavy levels of lung fibrosis, with only a 

FIGURE 8

HE staining PATCH (1,600 × 1,600 pixels).
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FIGURE 9

COV-L group immunohistochemical staining PATCH (1,600 × 1,600 pixels).

FIGURE 11

COV-H group immunohistochemical staining PATCH (1,600 × 1,600 pixels).

FIGURE 10

COV-M group immunohistochemical staining PATCH (1,600 × 1,600 pixels).
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small proportion showing light fibrosis, which may be attributed to 
the fact that the samples were obtained from COVID-19 patients with 
underlying conditions. HE staining revealed that the light fibrosis 
group had a higher incidence of exudative lesions in the pulmonary 
alveolar spaces, such as edema and inflammatory cells, and the 
pulmonary alveolar septa were slightly thickened without the 
formation of fibrotic nodules. In the moderate fibrosis group, fibrotic 
nodules appeared but did not exceed 50% of the field of view. Almost 
all cases in the heavy fibrosis group showed fibrotic masses with only 
a small amount of free space.

Through immunohistochemical staining and statistical analysis, 
it was found that compared to the Control group, the COVID-19 
group had significantly elevated levels of total macrophages and 
M2-type macrophages. Furthermore, there was a positive 
correlation between the level of M2-type macrophages and the 

degree of fibrosis, with the level of M2-type macrophages being 
higher in the heavy fibrosis group than in the light to moderate 
fibrosis groups. These findings suggest that COVID-19 leads to the 
accumulation of macrophages and an increase in M2-type 
polarization, which is associated with the severity of pulmonary 
fibrosis. The M2/total macrophage ratio was significantly increased 
in all COVID-19 groups compared to the Control group, but there 
was no difference between the different fibrosis groups, which may 
be  due to the increase in both total macrophages and M2-type 
macrophages during disease progression. These results indicate that 
both the total number of macrophages and the M2-type polarization 
phenomenon are significant factors in COVID-19-induced 
pulmonary fibrosis.

In summary, macrophages play an important role in the 
process of COVID-19-induced pulmonary fibrosis, with the 

FIGURE 12

Control immunohistochemical staining PATCH (1,600 × 1,600 pixels).

TABLE 4 Results of macrophage counting in COVID-19 group, paraquat group and Control group.

CD68 (Total macrophages) CD163 (M2-type macrophages) M2/total macrophage ratio

COVID-19 light to moderate group 940.2 ± 289.8 792.2 ± 272.2 1.015 ± 0.7863

COVID-19 heavy group 982.0 ± 355.1 1,020 ± 299.0 1.367 ± 1.070

Control group 440.7 ± 214.2 168.9 ± 135.9 0.3681 ± 0.2383

Values are mean ± standard deviation.

A B C

FIGURE 13

Comparative histogram of each macrophage count in each COVID-19 group and Control group (A) total macrophages, (B) M2-type macrophages, 
[(C) M2/total macrophage ratio; *p < 0.05, ****p < 0.0001].
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number of M2-type macrophages positively correlated with the 
degree of fibrosis. The specific molecular mechanism by which 
M2-type macrophage polarization leads to pulmonary fibrosis 
warrants further exploration.

5. Conclusion

Pulmonary fibrosis is not only a common complication of 
microbial infection of the lung but a serious threat to human health, 
and its pathogenesis and associated targets need to be  further 
explored. In this paper, an artificially intelligent image analysis method 
is developed to align, slice, and discriminate the degree of fibrosis in 
microscopic images of lung tissue. The application of the artificial 
intelligence image analysis method constructed in this paper enables 
a standardized, precise, and staged study of pulmonary fibrosis, 
providing a more standardized method and more accurate data for the 
correlation of the degree of pulmonary fibrosis and aiding in the 
treatment and prevention of pulmonary fibrosis.

Furthermore, in this paper, we also applied this newly developed 
artificial intelligence image analysis method to explore the mechanism 
of Post-COVID-19 pulmonary fibrosis. We  found that the 
accumulation of macrophages is a common pathological manifestation 
of Post-COVID-19-induced pulmonary fibrosis, in which M2-type 
macrophages play a major role. In the future, the related signaling 
molecules before and after the polarization of M2-type macrophages 
can be further explored to identify the key targets of Post-COVID-19-
induced pulmonary fibrosis.
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Forensic microbiology has been widely used in the diagnosis of causes and

manner of death, identification of individuals, detection of crime locations,

and estimation of postmortem interval. However, the traditional method,

microbial culture, has low e�ciency, high consumption, and a low degree

of quantitative analysis. With the development of high-throughput sequencing

technology, advanced bioinformatics, and fast-evolving artificial intelligence,

numerous machine learning models, such as RF, SVM, ANN, DNN, regression,

PLS, ANOSIM, and ANOVA, have been established with the advancement of

the microbiome and metagenomic studies. Recently, deep learning models,

including the convolutional neural network (CNN) model and CNN-derived

models, improve the accuracy of forensic prognosis using object detection

techniques in microorganism image analysis. This review summarizes the

application and development of forensic microbiology, as well as the research

progress of machine learning (ML) and deep learning (DL) based on microbial

genome sequencing and microbial images, and provided a future outlook on

forensic microbiology.

KEYWORDS

forensic microbiology, forensic medicine, machine learning, deep learning, artificial

intelligence

Introduction

Microorganisms, including viruses, bacteria, and fungi, are ubiquitously distributed and

form diverse and rich communities (Oliveira and Amorim, 2018). Forensic microbiology is

a discipline that deals with the study of microbiology in the context of forensic investigation

(Kuiper, 2016). Its applications mainly focus on the diagnosis of cause of death, inference of

crime location, estimation of postmortem interval (PMI), and individual identification.

Numerous studies have explored the application of microorganisms in forensic practice.

Certain specific microorganisms have been proven to contribute to the determination of

various causes of death, including drowning (Lucci et al., 2008; Kakizaki et al., 2010;

Tie et al., 2010; Huys et al., 2012; Lee et al., 2016, 2017; Rácz et al., 2016; Wang et al.,

2020), poisoning (Butzbach, 2010; Skopp, 2010; Grad et al., 2012; Han et al., 2012;

Butzbach et al., 2013; Sastre et al., 2017), and hospital-acquired infections (Klevens et al.,

2007; Sodhi et al., 2013; Lax et al., 2015; Khan et al., 2017). Considering the distinctive

microbial community in soil obtained from a crime scene and other intermediary sites,

soil microbiome provides evidence for inferring the geolocation (Meyers and Foran, 2008;

Costello et al., 2009; Jesmok et al., 2016; Habtom et al., 2019; Yang et al., 2021). Moreover,
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since microorganisms contribute to postmortem decomposition

and have a succession that follows a predictable pattern (Hauther

et al., 2015; Javan et al., 2016; DeBruyn and Hauther, 2017; Lutz

et al., 2020; Scott et al., 2020), forensic researchers began to

explore the feasibility of microbiome succession for inferring the

postmortem interval over the past few years. Some studies used

machine learning and other technologies to establish models for

PMI estimation based on microorganisms, which actually improve

the accuracy of PMI inference (Pechal et al., 2014; Johnson et al.,

2016; Liu et al., 2020; Zou et al., 2020). In addition, the microbiome

composition in humans varies in body location (Kong and Segre,

2012); host characteristics, such as sex, age, and lifestyle (Ross et al.,

2017); and skin care status (Bouslimani et al., 2019). Therefore,

individuals may be identified using skin, hair, and body fluid

microbiomics (Lax et al., 2014; Bäckhed et al., 2015; Wu et al., 2016;

Schmedes et al., 2017; Willis et al., 2018).

In this review, we aim to summarize the developmental

progress of forensic microbiology from classical methods to high-

throughput data combined with artificial intelligence technologies

and discuss the outlook for the future.

Development of forensic microbiology

Forensic microbiology first gained global recognition in 2001

as a result of the Bacillus anthracis attacks through the USA postal

service. In previous studies on forensic microbiology, forensic

microbiological technologies were not specifically described, except

for agar cultures for bacteria and fungi combined with PCR for

certain microorganisms (Aoyagi et al., 2009; Huys et al., 2012;

Uchiyama et al., 2012; Tuomisto et al., 2013; Can et al., 2014;

Hauther et al., 2015; Yu et al., 2021a,b). To date, though more

than 2,460 different species are presented in The Ribosomal

Database Project stores (Maidak et al., 2000), most microbes

in the environment have not been described and accessed for

biotechnology. Few viable bacteria can be cultivated on artificial

media (Kimura and Nobutada, 2006; Cecchini et al., 2012).

Furthermore, traditional microbial culture highly relies on culture

conditions and has limitations in the analysis of microbial

community composition.

The 16/18S rRNA is the common marker for microbial

classification and identification. Fluorescence in situ hybridization

(FISH) (Langendijk, 1995) and denaturing gradient gel

electrophoresis (DGGE) (Muyzer et al., 1993) are used to

detect the specific 16S rRNA and gain access to unculturable

microbes. Sanger sequencing technology (Sanger et al., 1977), also

known as first-generation sequencing technology, allows for the

wide use of 16S rRNA gene sequencing in bacterial taxonomy

and leads to the discovery of a large number of new microbial

taxa. Next-generation sequencing technology (NGS) can measure

tens of thousands to millions of DNA simultaneously and can

provide a high-throughput microbiome database (Metzker, 2010).

With the development of sequencing technology, third-generation

sequencing technology has more advantages in the study of

community diversity due to its ultra-long sequencing reading

(Franzén et al., 2015). However, the 16S rRNA test results are

assembled into operational taxonomic units (OTUs). Most high-

throughput sequencing microbiome data could not be identified

and classified due to the limitation of the referenced genomes and

genetic datasets (Yooseph et al., 2013; Afshinnekoo et al., 2015).

Using targeted 16S rRNA with short amplifiers could not achieve

reliable resolution at the species level, and full-length 16S rRNA

sequences do not necessarily reduce this limitation (Forney et al.,

2004). In addition, whole-genome shotgun (WGS) targets all gene

content in microbial ecosystems and can differentiate microbial

species and taxa to a greater extent than 16S rRNA amplicons

(Schloissnig et al., 2013; Franzosa et al., 2015).

Though the expanding role of NGS and WGS combined

with artificial intelligence will likely be a routine tool in forensic

microbiology, the isolation, detection, and confirmation of specific

microbes (pathogens or colonies) and the use of nucleic acid

sequencing remain less relevant in resolving forensic challenges.

Some investigators suggest the use of nanotechnology to design

biosensors for the identification of foreign pathogens. Recently,

microbial computer image analysis technology combined with

machine learning and deep learning elucidated the identification

of specific microbiomes (Ma et al., 2022). Moreover, some

challenges related to standardization, validation, and procedural

and bioinformatic pipelines persist in the study of forensic

microbiology (Roesch et al., 2009; Lauber et al., 2010; Wu et al.,

2010). Further advancements in technology will continue to

improve the application of microbiology in forensic medicine. The

trend in forensic microbiology is summarized in Figure 1.

Applications of machine learning in
forensic microbiology

Establishing a prognostic model and predicting the dynamic

succession of microbial communities have improved research

in forensic microbiology. High-throughput microbiotic datasets

combined with machine learning extend the application of

microbiomes in forensic issues. Traditional statistical methods

could only determine the general composition of a microbial

community and its basic succession, whereas machine learning

models achieve quantitative analysis and accurate prediction

(Zou et al., 2020). Currently, different machine learning models,

including random forest (RF), support vector machine (SVM), and

AdaBoost, are used in the field of forensic microbiology, and they

have become a promising strategy for several forensic events.

One main use of forensic microbiology is human individual

identification (Fierer et al., 2010; Lax et al., 2015; Leake et al., 2016;

Williams and Gibson, 2017; Yang et al., 2019). In cases without

blood or tissue evidence, a microbiological approach provides a

breakdown of situations with the detection of the microbiome

on skin, saliva, hair, or objects that have been touched. UniFrac

metric (Fierer et al., 2010) and hierarchical clustering (Leake et al.,

2016) are used in determining skin-associated bacteria and salivary

microbiomes. In an RF model used for investigating pubic hair

bacteria, the accuracy of individual identification was 2.7 ± 5.8%,

and the gender accuracy was 1.7 ± 5.2% (Williams and Gibson,

2017).

In addition, machine learning can be used for PMI estimation

in microbial forensics (Johnson et al., 2016; Liu et al., 2020,

2021; Cao et al., 2021; Cartozzo et al., 2021; Randall et al., 2021;

Zhang et al., 2021; Kaszubinski et al., 2022; Zhao et al., 2022).
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FIGURE 1

Trends in forensic microbiology.

RF models are widely used for PMI estimation and postmortem

submersion interval (PMSI) diagnosis (Metcalf et al., 2013; Pechal

et al., 2014; Cartozzo et al., 2021; Randall et al., 2021; Zhang

et al., 2021; Kaszubinski et al., 2022; Zhao et al., 2022). In 2013,

Metcalf et al. (2013) first proposed the concept of a “microbial

clock” to infer PMI by setting up regression models using an RF.

In addition, artificial neural network (ANN) models are used to

infer PMI based on the microbiotic OTU data. In 2020, Liu et al.

combined microbial community characterization and machine

learning algorithms (RF, SVM, and ANN) to investigate microbial

succession patterns during corpse decomposition and estimate PMI

with a mean absolute error (MAE) of 1.5± 0.8 h within 24 h.
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Available evidence demonstrates that forensic microbiology

with machine learning can be used to infer geolocation to a certain

extent (McNulty et al., 2004; Kersulyte et al., 2010; Blaser et al.,

2013; Nagasawa et al., 2013; Tyakht et al., 2013; Escobar et al.,

2014; Li et al., 2014; Suzuki and Worobey, 2014; Huang et al.,

2020). Human gut microbiota plays a significant role in geolocation

inference, which is supported by correlations based on traditional

statistical methods, such as Wilcoxon’s rank-sum test (Suzuki and

Worobey, 2014) and analysis of similarities (ANOSIM) (Escobar

et al., 2014). In 2014, UniFrac, network, and ANOSIM were used

to analyze the human saliva microbiome. The variance between

individuals was 6.75–10.21% (Li et al., 2014). In 2020, Huang

et al. (2020) applied a machine learning framework to determine

geolocations with an accuracy of 86%.

As previously stated, machine learning can be used to establish

models for tissue/body fluid identification (Costello et al., 2009;

Benschop et al., 2012; Lopez et al., 2019, 2020; Salzmann et al.,

2021). Lopez et al. (2019) used ANN to identify different human

epithelial biomaterials with AUC values of 0.99, 0.99, and 1 for

skin, oral, and vaginal secretions, respectively. Later in 2020, deep

neural network (DNN) was additionally used to identify human

forensically relevant blood samples successfully (Lopez et al., 2020).

Investigative forensic microbiology with machine learning

has practical applications in other aspects. Concerns related

to drowning diagnosis (Huys et al., 2012; Wang et al., 2020),

postmortem toxicology (Kaszubinski et al., 2020), and disease

diagnosis are summarized in Table 1. Although the expanding

effect of machine learning on NGS and WGS databases is without

much doubt, some models derived from different machine learning

models still mean less to the actual situation, which limits

their application in forensic practice. The current challenges of

machine learning are insufficient training samples and an imperfect

microbial databank.

Deep learning for microorganisms

Compared with machine learning, deep learning can realize

automatic feature learning through advanced network structure

by combining several simple modules (Lecun et al., 2015; Ma

et al., 2022). The deep learning process generally needs a large

amount of training data followed by the formation of suitable

neural networks. Previous studies have proven that convolutional

neural networks (CNNs) and their derivative models allow for

accurate tissue-type classification and microbiome identification,

which could further extend the diagnosis of microbially caused

death and personal identification in forensic science. A recent

study constructed a CNN model through micorbiome analysis to

classify three different human epithelial materials of skin, oral, and

vaginal origins (Lopez et al., 2019). Other researchers proposed

and designed the CNN based on a system for detecting fungi,

parasite ova, and bacteria (Akintayo et al., 2016; Tahir et al., 2018).

The accuracy for identifying fungi, soybean cyst nematode eggs,

and bacteria was 94.8% (Tahir et al., 2018), 94.33% (Akintayo

et al., 2016), and 96% (Treebupachatsakul and Poomrittigul,

2019), respectively.

Recent studies have demonstrated that CNN models could

differentiate bacteria and algae based on microbiome images. The

application of microbial computer image analysis mainly focuses

on the segmentation, clustering, classification, and counting of

microorganisms (Ma et al., 2022). The CNN models based

on images for microbiome identification are supported by the

study of Panicker (Oomman et al., 2018), which could detect

tuberculosis in microscopic sputum smear images with a precision

of 78.4%. In addition, deep learning on image analysis is mainly

focused on the identification of diatoms and algae, which would

provide a potential strategy for the diagnosis of drowning. In

2018, Bueno et al. (2018) compared the functions of R-CNN

and you only look once (YOLO) in diatom detection; the F-

measure of YOLO was 84%. In 2019, Huang et al. applied

and trained a CNN model based on the GoogLeNet Inception

V3 architecture to identify diatoms with a validation rate of

97.33% (Zhou et al., 2019, 2020), which indicates that DL is an

efficient and low-cost automated diatom detection technology.

In 2020, YOLO and SegNet were compared by Salido et al.

(2020). In 2020, Ruis-Santaquiteria et al. (2020) found that Mask-

RCNN and SegNet models are capable of segment diatoms from

the same raw images used for manual identification, without

any cropping or preprocessing step. With the assistance of

necessary operation systems, such as the Center for Microbial

Ecology Image Analysis System (Dazzo and Niccum, 2015), image

analysis of microorganisms would contribute more to forensic

microbiology due to its convenience and operational speed (Ma

et al., 2022).

Future outlook

Forensic microbiology is still in its infancy. Advanced

technologies, such as NGS and WGS, have provided a sufficient

dataset that could not be imagined previously. Further

advancements in technology will continue to improve the

capacity for forensic microbial investigations. In addition, artificial

intelligence has promoted the technological innovation of forensic

microbiology in the past decades. With the accumulation of

genomic sequencing datasets and microbial images, deep learning

will exert greater power in achieving better prognostic models with

higher accuracy. However, there are several issues that deserve

further discussion.

1. Advantages and defects of AI

Based on the current microbiota database, ML and DL have

the quick and automatic capability of relatively accurate prediction

compared with the conditional methods. The “black box” of AI

methods would not completely and theoretically characterize the

real results. Although the new algorithms of AI will shed light

on microbiotic analysis for forensic purposes, the basic strategy

is focused on the bigger microbiota database to promote AI to

work better.

2. Key points for establishing the forensic microbiota database

Considering the variation of microbial communities,

the development of a forensic microbial bank is urgently

needed. The sampling and sequencing procedures of forensic

microorganisms still need to be further standardized. In
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TABLE 1 Applications of artificial intelligence in forensic microbiology.

Forensic
issue

Animal
model

Sampling
location

AI model Model performance References

Human individual identification

Human Skin, Keyboard,

Smartphone screen

RF Accuracy around 90% Yang et al., 2019

Human Shoes and phones RF Error ratio 3.6 Lax et al., 2015

Human Skin, computer

keyboards

ANOSIM Unweighted PCO1 (17%) PCO2

(6.5%)

Fierer et al., 2010

Weighted PCO1 (61%) PCO2

(19%)

Human Saliva Hierarchical clustering Leake et al., 2016

Human Hair RF Individual 2.7%± 5.8% Williams and Gibson,

2017

Gender 1.7%± 5.2%

Post-mortem interval estimation

Mice Cecum RF MAE 20.01 h Liu et al., 2021

Mice Brain, heart, and

cecum

RF, SVM, ANN MAE within 24 h Liu et al., 2020

Swine Bone RF Variation >80% Kaszubinski et al., 2022

Pig Bone RF RMSE± 104 days Rib Randall et al., 2021

RMSE± 63 days Scapulae

Pig Bone RF RMSE± 27 days Rib Cartozzo et al., 2021

RMSE± 29 days Scapulae

Rat Oral RF R2
= 93.94% Zhao et al., 2022

Rat Gravesoil, rectum

and skin

RF MAE 1.82 days in Gravesoil Zhang et al., 2021

MAE 2.06 days in Rectum

Human Nasal cavity and ear

canal

K-neighbors regression (KNR), Ridge

regression (RR), Lasso regression (LR),

Elastic net regression (ENR), Random

forest regression (RFR), Bayesian ridge

regression (BRR)

MAE± 55ADD Johnson et al., 2016

Rat Cecum Partial least squares (PLS) RMSE within 9 days Cao et al., 2021

Geolocation inference

Human Gut Spearman’s correlations Positive correlation between

Firmicutes abundance and

latitude (ρ = 0.857, p < 0.0001)

Suzuki and Worobey,

2014

Wilcoxon rank sum test Negative correlation between

Bacteroidetes and latitude (ρ =

−0.637, p= 0.001)

Human Gut ANOSIM ADONIS: R2
= 0.22, P = 0.001 Escobar et al., 2014

ANOSIM: R= 0.78, P = 0.001

Human Gut ANOSIM Russian and the US, Danish and

Chinese groups R= 0.74, 0.50 and

0.26, respectively P= 9.999 ∗ 10−5

Tyakht et al., 2013

Human Skin ANOVA, ANOSIM, PERMANOVA US vs. VZ; ANOSIM P < 0.001;

PERMANOVA P < 0.001 for both

unweighted and weighted

measures

Blaser et al., 2013

Human Saliva UniFrac, network, ANOSIM Variance between individuals:

6.75–10.21% within individuals:

89.79–93.25%

Li et al., 2014

(Continued)

Frontiers inMicrobiology 05 frontiersin.org96

https://doi.org/10.3389/fmicb.2023.1163741
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yuan et al. 10.3389/fmicb.2023.1163741

TABLE 1 (Continued)

Forensic
issue

Animal
model

Sampling
location

AI model Model performance References

ANOSIM statistic: R=−0.0935,

P-value= 0.7386

Human Subways and urban

biomes

Logistic regression model with L2
regularization

Accuracy 86% Huang et al., 2020

Tissue/body fluid identification

Human Skin, oral and

vaginal

ANN AUC values of 0.99 for skin, 0.99

for oral, and 1 for vaginal

secretion

Lopez et al., 2019

Human Blood DNN 0.978 for nasal blood Lopez et al., 2020

0.978 for finger-prick blood

Human Vagina Microarray analysis 121 of the 389 probes detected Benschop et al., 2012

Human Blood, menstrual

blood, saliva,

semen, and vaginal

secretion

Lasso regression analysis 26 taxa showed high predictive

value for TsD

Salzmann et al., 2021

Other forensic application

Drowning diagnosis

Rat Skin, cardiac blood,

lung, and liver

Unweighted UniFrac-based PCoA PCo1 60.27% PCo2 19.15% (skin)

PCo1 52.66% PCo2 15.98% (lung)

PCo1 50.52% PCo2 18.37%

(blood)

Wang et al., 2020

Post-mortem toxicology

Human Nose, mouth,

rectum, ears, eyes

Beta-dispersion Cardiovascular disease and

drug-related deaths correctly

classified in 79%

Kaszubinski et al., 2020

Microorganism image analysis

Fungus CNN Accuracy 94.8% Tahir et al., 2018

Bacteria CNN Accuracy 96% Treebupachatsakul and

Poomrittigul, 2019

Actino CNN, ResNet Accuracy 80.8% to 80.1% Sajedi et al., 2019

Diatoms R-CNN, YOLO F-measure of YOLO 84% Bueno et al., 2018

Diatoms Inception V3 Identification rate 89.6% Zhou et al., 2019

Diatoms YOLO, SegNet Specificity, sensitivity, precision Salido et al., 2020

Diatoms SegNet, Mask R-CNN Precision, sensitivity, specificity Ruis-Santaquiteria et al.,

2020

Diatoms CNN Validation set accuracy 97.33% Zhou et al., 2019

Cyanobacteria Fast R-CNN Average precision 0.929 Baek et al., 2020

R2 value of 0.775

Soybean cyst

nematode eggs

CNN Average accuracy 94.33% Akintayo et al., 2016

Tuberculosis CNN Precision 78.4% Oomman et al., 2018

Cell in blood Faster R-CNN Total accuracy 98% Hung et al., 2017

addition, due to the complex influence of sample types,

locations, environmental factors, and postmortem changes,

combining the microbiome data from the experimental animals,

human samples, and certain materials from the crime scene

should be considered. Investigators should carry out multi-

center cooperation.

3. Microbiome combined with other methods to solve

forensic problems

The selection of differential microbes by bioinformatic

technologies could better disclose microbial markers. AI could

establish models for predicting forensic issues. Based on the specific

microbes that could characterize the different body fluids and
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environments, even individual identification, targeted PCR testing

of the selected microorganisms could be explored to improve the

efficiency and accuracy of forensic problems in future.
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