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Fruit and vegetable picking robots are affected by the complex orchard environment, resulting in poor recognition and segmentation of target fruits by the vision system. The orchard environment is complex and changeable. For example, the change of light intensity will lead to the unclear surface characteristics of the target fruit; the target fruits are easy to overlap with each other and blocked by branches and leaves, which makes the shape of the fruits incomplete and difficult to accurately identify and segment one by one. Aiming at various difficulties in complex orchard environment, a two-stage instance segmentation method based on the optimized mask region convolutional neural network (mask RCNN) was proposed. The new model proposed to apply the lightweight backbone network MobileNetv3, which not only speeds up the model but also greatly improves the accuracy of the model and meets the storage resource requirements of the mobile robot. To further improve the segmentation quality of the model, the boundary patch refinement (BPR) post-processing module is added to the new model to optimize the rough mask boundaries of the model output to reduce the error pixels. The new model has a high-precision recognition rate and an efficient segmentation strategy, which improves the robustness and stability of the model. This study validates the effect of the new model using the persimmon dataset. The optimized mask RCNN achieved mean average precision (mAP) and mean average recall (mAR) of 76.3 and 81.1%, respectively, which are 3.1 and 3.7% improvement over the baseline mask RCNN, respectively. The new model is experimentally proven to bring higher accuracy and segmentation quality and can be widely deployed in smart agriculture.
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Introduction

Around the world, the planting area of orchards is very vast, and people all over the world have a large demand for fruit production. However, there are many production links of fruit, and the work content is huge and redundant. As the key of production link, fruit picking consumes a lot of human resources. To liberate the labor force and further expand the production scale of orchards, it is necessary to develop automatic mechanical production and management. Fruit picking is the most time-consuming and laborious link in the production process. The development of intelligent and automatic picking has become a necessary trend in the fruit production process (Luo et al., 2016; Bargoti and Underwood, 2017; Lin et al., 2021b; Zhang et al., 2021). As the key of automatic picking, visual recognition system can determine the efficiency of machine picking. The vision system aiming at accurate location and segmentation has important research significance for various automatic agricultural applications (Jana et al., 2017; Fu et al., 2020; Tang et al., 2020; Chen et al., 2021; Wu et al., 2022). Compared with manual picking, automatic machine picking can improve picking efficiency and save labor cost. However, the fruit growth environment is often complex. The recognition and location of target fruit by picking robot will be affected by the factors such as branch and leaf occlusion, dim light, cloudy and rainy weather, and equipment viewfinder angle, which limits the development of automatic picking operation. The development of an excellent vision system can enable the picking robot to obtain high-precision target fruit positioning and segmentation results in a complex orchard environment, reduce the phenomenon of false detection and missed detection caused by occlusion and the same color system with the background leaves, and reduce the damage to the fruit surface. Therefore, the instance segmentation model with strong robustness, stability, and high accuracy can further improve the picking efficiency, reduce the labor cost, and improve the yield of fruits and other agricultural products.

As the core field of artificial intelligence (Nyarko et al., 2018; Peng et al., 2018; Liu Q. et al., 2019; Jia et al., 2020), traditional machine learning has milestone significance for the development of image recognition. Machine learning methods first need to extract relevant features from many datasets, then learn the data through algorithms, and finally make prediction and decision, which is the key to the realization of artificial intelligence. Tian proposed a recognition algorithm based on the depth image. The gradient information is obtained from the depth image, and the segmentation algorithm is introduced into the red–green–blue (RGB) image. Finally, the center and maximum radius of the target fruit was scanned to fit the contour size of the target fruit, so as to realize apple recognition and location (Tian et al., 2019). Wu proposed a fruit point cloud segmentation algorithm integrating color and three-dimensional geometric features. First, the local descriptor is used to obtain the candidate fruit region, and then, the global descriptor is used to remove the background region. This method improves the fruit recognition ability of the picking robot, but it is difficult to obtain effective three-dimensional geometric features for irregular curved fruits, which makes the generalization ability of the algorithm weak (Wu et al., 2020). Saedi proposed a new model composed of multiple convolutional, max-pooling, global average pooling, and fully connected (Fc) layer to solve the problems of occlusion and light change in orchard environment. Through the optimization test, Nadam with the best effect is selected as the optimizer, which improves the accuracy and reduces the training parameters (Saedi and Khosravi, 2020). Aiming at the problem that the color of green fruit is similar to that of leaf, Sun proposed to roughly determine the fruit region using the attention-based information maximization algorithm and cut the identified apple region using the adaptive pixel expansion method to remove the background information, so as to realize the accurate segmentation of fruit target. However, for the connected highlight regions in the background, the segmentation effect is still not ideal (Sun et al., 2020). Feng proposed a forward-looking infrared camera based on multi-spectral dynamic imaging technology to obtain fruit images. The candidate fruit region is located based on the pseudocolor and texture information of multi-spectral dynamic image (Feng et al., 2019). Most of the fruit recognition methods based on machine learning recognize and segment the fruit based on the texture features, color, boundary shape, grayscale value, and so on. However, the real orchard environment is often complex, and the picking robot will encounter various difficulties in the complex orchard environment. For example, the same color system between background leaves and green fruits makes it difficult to distinguish colors, the serious occlusion and overlap between fruits lead to incomplete fruit shape, and the change of light intensity leads to unclear fruit representation. These problems seriously hinder the development of machine learning.

With the increasing volume and complexity of application data, the method of manually extracting image features from data by machine learning cannot deal with the problem quickly and simply. As a new branch derived from machine learning, deep learning does not need to extract features manually, and there are many layers of neural network. In theory, it can be mapped to any function to solve more complex problems (Hussain et al., 2020; Naranjo-Torres et al., 2020; Jia et al., 2021; Lin et al., 2021a). Ilyas proposed convolutional encoder–decoder network for strawberry fruit maturity recognition and diseased fruit and introduced adaptive receptive field, channel selection module, and bottleneck module to realize the accurate recognition of strawberry fruit, but the model could not segment a single target (Ilyas et al., 2021). Aiming at many problems in complex orchard environment, Kang proposed a one-stage detector DaSNet-v2. DaSNet-v2 used the lightweight backbone network (LW-Net) to realize the tasks of fruit detection and instance segmentation, and semantic segmentation of branches. The three recognition tasks are combined into a single network architecture to realize the accurate recognition of fruits (Kang and Chen, 2020). To predict crop pests and diseases at an early stage, Kavitha Lakshmi et al. proposed an improved framework for detecting plant diseases based on pixel-level mask region convolutional neural networks. The model can effectively locate and segment the pest and disease sites of crops by adjusting the proportion of anchor frames and backbone structure in the region generation network to improve the accuracy and speed (Kavitha and Savarimuthu, 2021). To detect the morphological features of leaves and plant specimens, Triki proposed an instance segmentation method based on deep learning, namely, deep-leaf. This method is used to improve the leaf detection and pixel segmentation based on the traditional mask RCNN model. It can segment the leaves of different families, measure the length and width of the leaves, and reduce the recognition error. However, the blade detection with missing shape is not considered (Triki et al., 2021). The recognition accuracy of the instance segmentation model based on deep learning is significantly improved compared with that based on machine learning. Specifically for algorithms with a large amount of data, deep learning can solve more complex problems with a simple end-to-end processing method. However, the above methods based on deep learning are still not accurate enough for the recognition and segmentation effect of target fruit. The limitations and benefits of previous studies are listed in Table 1.


TABLE 1 Overview of previous research work.

[image: Table 1]

To improve the segmentation quality and recognition accuracy of the model, the flexible MobileNetv3 (Howard et al., 2019) is proposed to be used as the backbone network of mask RCNN (He et al., 2017) to reduce the complexity of the algorithm, and the post-processing module boundary patch refinement (Tang et al., 2021) (BPR) is added at the end of the optimized mask RCNN model to improve the quality of the segmentation mask. The main contributions of the new model are as follows:

1) A lightweight backbone network, MobileNetv3, is used in the new model, which is able to reduce the computational complexity of the two-stage model, reduce the storage resource requirements of the picking robot, and improve the accuracy of the algorithm.

2) A plug-and-play BPR post-processing module is added to the new model to optimize the generated coarse masks, which can effectively correct the erroneous pixels and obtain higher resolution feature maps to improve accuracy.

3) In this study, persimmon dataset was produced to validate the accuracy results of the model, and ablation experiments were conducted with other segmentation models.

4) The new model has strong generalization ability and can be effectively deployed to other automatic fruit picking scenarios, such as apples, cucumbers, and other crops.

The subsequent sections of this paper are organized as follows: In Section Green fruit datasets, the process of making the perspex dataset is described in detail, and some of the data images are shown and introduced. The general structure of the new model is presented in a general divisional structure in Section Overall structure of model. Following the flow of the model, first, the lightweight backbone network MobileNetv3 of the new model is introduced in Section Backbone network MobileNetv3. The prediction output process of the model is presented in Section Mask output based on the optimized Mask RCNN. The process of optimizing the coarse mask of the instance boundary by the BPR module is described in Section Boundary patch refinement post-processing module. The loss function of the model is introduced in Section Loss function. In Section Data analysis and model comparison, the validation results of the new model and the visualization images are presented, and a comparison test with some other mainstream models is performed. A summary of this study is presented in Section Conclusion.



Green fruit datasets


Datasets collection and labeling

In this study, persimmons in the immature period were selected as the research object. The fruits in this period were green and round, which met the research requirements. The reason why green persimmon is selected as the research object in this study is to facilitate the subsequent full-time detection of fruits and lay a foundation for identifying other fruit varieties with similar growth environment.

Image collection object: Green persimmons in growing period, the persimmon varieties include “niuxin” persimmon, “jixinhuang” persimmon, “jingmian” persimmon, etc.

Image collection location: The mountain behind Shandong Normal University (Changqing campus) and the southern mountainous area of Jinan City.

Image collection equipment: Canon EOS 80D Single Lens Reflex camera. The camera used complex metal oxide semiconductor image sensor. The image resolution was 6,000 × 4,000 pixels, saved in JPG format, 24-bit color images.

Image collection environment: The single lens reflex camera was used to collect green fruit images from a variety of different angles in a real complex orchard environment. The shooting angles of the target fruit include front, side, close range, long-range, and other shooting angles. The image acquisition time was selected in the morning, noon, and night for three centralized acquisition in different time periods. In the early morning, fruit images were collected from various angles under soft light, and frost and dew may appear on the fruit. At noon, fruit images were collected at various shooting angles (including forward light, reverse light, and side light) in strong light environment. At night, fruit images were collected from various shooting angles under the environment of light emitting diode artificial auxiliary light source. The fruit images collected in three different time periods need to fully consider the complexity of orchard environment, ensure that the collected data are random and representative, and can maximize the real-time operation requirements of agricultural equipment.

A total of 568 persimmon images were collected and preprocessed in this research experiment. First, gray processing was performed on the color image to reduce the amount of data to be processed. In this study, the mean grayscale method was adopted, and the RGB channel pixels were averaged as the grayscale value. The acquired data were then subjected to image enhancement to enhance the useful information of the image, improve the visual effect of the image, expand the differences between different object features in the image, and suppress the uninteresting features. In this study, the histogram equalization image enhancement method was used to nonlinearly stretch the image and redistribute the image pixel values, so that the number of pixels in a certain gray range is roughly the same. Finally, the contour and type of the target was labeled with LabelMe software, and the processed image was made into persimmon dataset. As shown in Figure 1, the dataset includes many complex situations, such as overlap, rainy day, backlight, occlusion, smoothing, side light, long-range, close-up, night view, and so on. The use of datasets containing many different complex environment images can make the research obtain more representative and convincing results. To meet the requirements of real-time orchard segmentation and reduce the follow-up experimental time, the image resolution was 6,000 × 4,000 pixels compressed to 600 × 400 pixels.


[image: Figure 1]
FIGURE 1
 Green persimmon fruit images under different complex orchard environments. (A) Overlapps, (B) Back-sunlighting fruit, (C) Occlusions, (D) Direct-sunlighting fruit, (E) Distant fruit, (F) LEDs-lighting fruit, (G) Close shot the fruit, (H) Side- Back-sunlighting fruit, (I) Fruit after rain.





Overall structure of model

To solve the problem that it is difficult for intelligent picking robot to accurately locate the target fruit and segment the target fruit with high quality in complex orchard environment, a two-stage instance segmentation method based on anchor frame is proposed in this study. The powerful backbone network and efficient rough mask post-processing module of the new model are beneficial to greatly improve the accuracy and robustness of the algorithm, so as to make the target fruit meet the requirements of high-quality and accurate segmentation.

The classical mask RCNN, as an anchor two-stage segmentation model, has high computational complexity, large number of parameters, and slow speed, there is still much room for improvement in accuracy and efficiency, and the segmented target mask profile is relatively coarse. As shown in Figure 2, to solve these tricky problems, the new model uses MobileNetv3 as the backbone network to reduce the complexity of the model and further improve the accuracy of the model in identifying the target fruit. After the backbone network, the feature pyramid network (Lin et al., 2017) (FPN) is connected to realize multi-scale feature fusion. The detail information of the bottom layer and the semantic information of the top layer are fused to increase the low-level receptive field, so that the small target fruit can obtain more context information. The backbone structure of MobileNetv3 and FPN can be flexibly integrated into different segmentation models and bring more efficient and simple segmentation results. The optimized mask RCNN is used as a two-stage segmentation model. After feature extraction, region proposal network (RPN) is used to generate candidate region in the first stage. Additionally, in the second stage, the classification and regression of region of interest (ROI) are realized through the Fc layer. At the same time, the mask prediction branch of ROI is added in parallel with the classification branch and regression branch. The classification branch and regression branch use the Fc layer as the classifier, and the mask branch uses the Fc network to realize the binary mask segmentation of ROI. The segmentation mask generated by the optimized mask RCNN model is still rough, especially the segmentation of contour boundary is not smooth enough. For the small details of the instance edge, the processing is not accurate, and the segmented contour is not appropriate to the shape of the real target. Therefore, BPR post-processing module is used to optimize the rough mask boundary patches to generate more accurate and smooth contour information. Compared with the traditional mask RCNN model, the optimized model further improves the pixel resolution and mask segmentation quality.


[image: Figure 2]
FIGURE 2
 The overall structure of the optimized mask RCNN. The features of the input image are extracted through MobileNetv3 and FPN structure. The extracted features are used for subsequent classification, regression, and mask operations. Finally, the final segmentation result is obtained by optimizing the rough mask boundary of the boundary through the BPR module.



Backbone network MobileNetv3

A successful backbone network plays a crucial role in image processing, and a better backbone network should reduce the computational complexity while improving the accuracy and stability of the model. To meet the requirements of automated picking systems that can pick target fruits in real time and the storage resources required by mobile devices, the backbone network for vision systems should be a lightweight MobileNetv3 network. The MobileNetv3 network is a model framework that can be used on the embedded devices with a low number of parameters and meets the accuracy requirements compared to other lightweight networks. The model can be easily applied to segmentation or detection tasks. The overall structure of the Mobilenetv3 network is illustrated in Figure 3. The overall structure of this network differs from the residual network that first descends dimensionality and then raises dimensionality, but first raises dimensionality and then lowers dimensionality.


[image: Figure 3]
FIGURE 3
 Overall structure of MobileNetv3 network.


As shown in Figure 3, the overall structure of MobileNetv3 can be divided into four parts. In the first part, MobileNetv3 uses a 1 × 1 extension layer to extend the low dimension to the high dimension. It also uses batch normalization after the extension layer to avoid the gradient dispersion problem in the subsequent activation functions. Note that the nonlinearity here contains both hard-swish and ReLU activation functions, because the activation functions used are not consistent, so nonlinearity is used uniformly. The second part is a 3 × 3 depthwise convolution, also using batch normalization and nonlinearity after the structure. The third part is a squeeze-and-excite (Hu et al., 2018) module similar to the channel attention mechanism. Squeeze-and-excite, as a plug-and-play module, is able to increase the weights of useful channels to enhance the model's ability to extract features. The fourth part is the projection convolution, which uses a 1 × 1 projection layer and BN.


Squeeze-and-excitation

Since each channel has different degrees of importance, an attention mechanism is introduced in this study to locate to the information of interest and suppress the unimportant information. The overall structure of the squeeze-and-excitation module is shown in Figure 4. First, the feature map is subjected to a global averaging pooling operation, which turns each two-dimensional feature map into a real number. It is equivalent to performing a squeeze operation to squeeze the size of the feature map from H×W×C to 1 × 1×C size. The feature map is then passed through Fc1, and the number of Fc1 nodes is 1/4 of the number of channels. ReLU is used as the activation function after Fc1. The number of nodes in Fc2 is the same as the previous number of channels. Finally, the real numbers of each channel are multiplied as weights with the corresponding feature map at the beginning.


[image: Figure 4]
FIGURE 4
 Overall structure of squeeze-and-excite.




Hard-swish activation function

In the previous Mobilenetv2 structure, ReLU6 was used as the activation function after the bottleneck structure. This study is inspired by swish (Elfwing et al., 2018), which can better improve the accuracy of the model. However, swish has the problem that it is complicated to calculate and derive, and it is not friendly to the quantization process. To solve this problem, the sigmoid function σ(x) in swish function is replaced by segmented linear hard analog. Therefore, in this paper, the hard-swish function is defined as the Equation (1):

[image: image]

where ReLU = min[max(i,0),6].



Network layer details for MobileNetv3

To further understand the network structure of MobileNetv3, Table 2 lists the details of each network layer. In Table 2, the input feature size, the convolutional operation, the expanded dimension, and the output channel size for each layer of the network are shown in turn. In addition, the table enables to visualize whether the network uses the squeeze-and-excitation module and whether the nonlinearity used is hard-swish or ReLU. In addition, the stride of each network is given.


TABLE 2 Specification for MobileNetv3.

[image: Table 2]




Mask output based on the optimized mask RCNN

The task of instance segmentation is different from object detection. The former not only needs to find all target fruits in the image, but also needs to segment each target fruit accurately. Based on the optimized mask RCNN, a two-stage segmentation model can accurately locate all object instances in the image and provide high-quality mask segmentation for each instance. The features extracted from the input image through MobileNetv3 and FPN structure are used for subsequent classification branch, regression branch, and mask branch. The implementation process can be summarized as the following three steps: (1) The extracted feature map generates region proposals in the feature map through RPN and performs candidate box regression and category differentiation for each region proposal. (2) The ROI align operation was used to align the features of the extracted ROI, the ROI to a fixed size was cut, and the feature map got after all ROI regularization. (3) The obtained feature map is subjected to boundary box regression and category prediction through the Fc layer. At the same time, additional mask branch is added to realize semantic segmentation of ROI and generate binary mask.

As shown in Figure 2, step 1 takes the features extracted from the backbone as the input of the region proposal network RPN and generates a region proposal. The specific process is shown in Figure 5. The feature map extracted from the backbone is used as the input of RPN, and k candidate windows (k = 9, 9 windows have 3 different shapes and 3 different aspect ratios) are set on each vector of the input feature map using a sliding window of 3 × 3 size as the initial detection box, namely, anchors. The size of each feature map is H × W × 256; that is, each vector is 256 dimensions and has k anchors. Each anchor should be distinguished between positive and negative samples. A 256-dimensional vector passes through the classification layer to obtain 2K score (i.e., the confidence of anchor's foreground and background). Then, through the regression layer, we get (x, y, w, and h) 4K offset coordinates regressed with the ground truth. RPN structure uses softmax (Horiguchi et al., 2019) layer as classifier to judge whether anchors belong to positive samples or negative samples and then uses boundary box regression to modify the anchor box to obtain accurate proposals.


[image: Figure 5]
FIGURE 5
 Structure diagram of RPN.


The region proposals generated by RPN and the features extracted from the backbone are used as the input of ROI align layer in step 2. After synthesizing this information, proposal feature maps are extracted. Unlike the ROI pooling operation in faster RCNN (Bai et al., 2020), mask RCNN uses ROI align layer and bilinear interpolation algorithm to output the coordinates of pixels, which can avoid the problem of position quantization error caused by ROI pooling. Because ROI pooling extracts a 7 × 7 size feature map from each ROI, it is necessary to quantify the ROI of floating-point numbers into cells, which will lead to the error between ROI and extracted features and reduce the accuracy of the predicted mask. The application of ROI align greatly improves the quality of mask segmentation and improves the recognition accuracy of target fruit based on optimized mask RCNN. The fixed size ROI obtained by ROI align operation is used as the input of the Fc layer, and each ROI is subjected to category prediction and detection box regression. The specific process is shown in Figure 2. The extracted ROI obtains the confidence of the category and the offset of the coordinates, respectively, through the classification branch and the regression branch. At the same time, the model adds mask branch to divide ROI into binary mask; that is, ROI realizes semantic segmentation through fully convolutional network to obtain rough instance mask.

The new model realizes the goal of locating and segmenting the target fruit on the image through three branches: classification branch, regression branch, and mask branch. At this time, the optimized mask RCNN has obtained the preliminary segmentation mask, but the quality of binary segmentation mask still has a lot of room to improve.



Boundary patch refinement post-processing module

The traditional mask RCNN has low feature spatial resolution and a small proportion of boundary pixels. These problems lead to the segmentation result of the target fruit that is not fine enough, resulting in rough boundary shape. The new model uses BPR as the post-processing module. BPR uses the strategy of cropping first and then refinement to optimize the rough boundary and correct the wrong pixels at the boundary of the target fruit. Due to the unique performance of instance contour mask optimization, BPR module can effectively improve the recognition rate of target fruits with serious occlusion and overlap and reduce the occurrence of false detection and missed detection. The refinement module first extracts dense small boundary patches for the instance boundary predicted by the optimized mask RCNN and then optimizes the boundary image patches through the refinement network with higher resolution.

As shown in Figure 6, first, the initial rough segmentation result [shown in Figure 6 (1)] generated based on the optimized mask RCNN model is used as the input of the BPR module. Then, a large number of boundary patches are densely distributed along the boundary of the target fruit using the sliding window algorithm [shown in the red rectangle in Figure 6 (2)]. The central area of the rectangular boundary patch covers the pixels of the instance boundary, but these boundary patches contain a lot of redundant information, resulting in a lot of unnecessary calculations. Therefore, the non-maximum suppression (Karthikeyan et al., 2021) (NMS) algorithm (the threshold of NMS is set to 0.25) is used to filter out some redundant and overlapping boundary patches [shown in Figure 6 (3)], so as to take into account the accuracy and speed of the algorithm. After NMS algorithm, the corresponding mask patches were extracted [shown in Figure 6 (5)] from the reserved image patches [shown in Figure 6 (4)], these patches were cut into the same size, and they were used as the input of the refinement network at the same time. The mask patch extracted from the rough instance mask edge provides the location and semantic information for the refinement network and avoids the repeated learning of the refinement network. In this way, the refinement network only needs to learn how to locate the hard pixels around the decision boundary and locate them in the correct position.


[image: Figure 6]
FIGURE 6
 Overall structure diagram of BPR. Where (5) and (6) represent rough mask patches and refined mask patches respectively. “After” represents the result graph after mask optimization. “Before” represents the result before the rough mask optimization.


The BPR module uses high-resolution network v2 (Sun et al., 2019) (HRNetV2) as the refinement network for binary semantic segmentation of each extracted boundary patch. HRNetV2 realizes the feature fusion of high and low resolutions. After sampling the low-resolution feature map, it is spliced with the high-resolution feature map. After convolution, the softmax layer generates the segmentation prediction map. As a refinement network, HRNetV2 makes the processing of boundary patches that have high resolution, so as to improve the quality of mask. Note that in this model, the number of input channels is 4 (RGB image block is 3 + mask block is 1), and the number of output channels is 2 (background color and foreground color). Moreover, the extracted mask patches provide positioning and semantic information for the refinement network. The refinement network only needs to correctly classify the wrong pixels at the boundary extracted by NMS algorithm, which speeds up the training convergence. All the refined mask patches (as shown in Figure 6 (6)] are reassembled into the instance boundary to obtain high-resolution expression and high-quality instance segmentation results. Figure 6 (7) shows the comparison of the optimized segmentation results with the pre-assembly. In the BPR training process, the model only extracts boundary patches from the target instances with IOU > 0.5 of prediction mask and real target mask (other target instances still participate in the inference process). The corresponding real mask patch uses pixel-level binary cross-entropy loss to supervise the output of the refinement network.

Overlapping target fruits inevitably share the same boundary patch, but the learning objectives are different. This problem can be solved by combining different mask patches for each instance. When the two target fruits overlap, the boundary patches overlap. The final result is to take the average value and use 0.5 as the threshold to judge whether a pixel belongs to the foreground or background. BPR model can correct the wrong segmentation of the boundary pixels of the target instance, and to a certain extent, it can distinguish the target fruits with overlapping and branches and leaves, so as to avoid the wrong scene of identifying two overlapping fruits as one fruit. The refinement network improves the accuracy and stability of the model to identify the target fruit and obtains high-quality target fruit segmentation results.



Loss function

Loss function is the most basic and key element in deep learning. It can measure the quality of model prediction, show the gap between predicted value and actual data value, and make the model obtain optimal and faster convergence. Choosing the correct loss function can help the model learn how to focus on the correct set of features in the data. The optimization-based mask RCNN uses the sum of the loss functions of multiple tasks as the final loss function. The loss function consists of Lcls, Lreg, Lmask three parts, using Log loss, Smooth L1 loss, and binary cross-entropy loss, respectively, and the overall loss function is defined as Equation (2):

[image: image]

where pi represents the probability of anchor i being predicted as an object, ti represents the vector of bounding box coordinates for predicted anchor i, and ω represents the set of weights solved. [image: image] stands for ground truth object label and [image: image] stands for true box coordinate. Ncls represents the number of anchors in minibatch. Nreg represents the number of anchor locations. R represents smooth L1 loss function. σi is the return value of the sigmoid function calculated on sample i, based on the parameter ω. Regarding the definition of R and [image: image] in Equation (2) as shown in Equation (3) and Equation (4), respectively.
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where [image: image].




Data analysis and model comparison


Experiment operation platform

The experiment was performed on a personal computer, with a processor of Inter (R) Core (TM) i5-7200U, and Radeon™ R7 M445 graphics card with an 8GB of memory. The software environment was Ubuntu 16.04, python 3.6, and pytorch 3.7. The hardware environment is Intel i7-8700K, random access memory 16G, and Nvidia GeForce GTX 1080 Ti Graphics Processing Unit (GPU).



Model training

The whole process of experimental research includes data collection, dataset production, model training, and testing. The specific flow chart is shown in Figure 7. In the process of model training, the setting of super parameters plays an important role in model training and optimization.


[image: Figure 7]
FIGURE 7
 Overall experimental flow chart based on optimized mask RCNN model.


The new model adopted initial weight of preliminary training based on common objects in context datasets, which helps to stabilize the loss function and improve the training accuracy. For model training, 10 epochs were iteratively trained using minibatch and the total number of iterations was 16,000. In addition, the initial learning rate was set to 0.0025, the decay to 0.0001, and the momentum to 0.9. The learning rate will control the learning progress of the model in the iterative process. In the gradient descent method, the given unified learning rate is given, and the whole optimization process is updated with the determined step size. In the early stage of iterative optimization, if the learning rate is large, the forward step size will be longer. At this time, the gradient descent can be carried out at a faster speed, and in the later stage of iterative optimization, the value of learning rate and step size will be gradually reduced, This will help the convergence of the algorithm and make it easier to approach the optimal solution. The number of iterations refers to the number of times, the whole training set is inputted into the network for training. When the difference between the test error rate and the training error rate is small, the current number of iterations can be considered appropriate.



Evaluation index

Selecting the appropriate evaluation method in the research process can quickly find the possible problems in the process of model selection and training and iteratively optimize the model. In this study, the average precision (AP) and average recall (AR) are used to evaluate the performance of the instance segmentation model. Precision refers to the proportion of the number of positive samples correctly classified by the classifier to the number of positive samples classified by the classifier. Recall refers to the proportion of the number of positive samples correctly classified by the classifier to the number of all positive samples. The calculation method of accuracy rate and recall rate is shown in formula (5) and formula (6):

[image: image]
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where TP represents the positive sample predicted as positive by the model, FP represents the negative sample predicted as positive by the model, and FN represents the positive sample predicted as negative by the model.

Under different IOU thresholds, the values of precision and recall will also change. Average precision summarizes the shape of the accuracy/recall curve and is defined as the average of the accuracy over a set of 11 equally spaced recall levels [0, 0.1, 0.2,..., 1]. The average accuracy can be expressed as formula (7):

[image: image]

where p (r) is a function with r as a parameter.

In fact, this integral is very close to the change of precision value multiplied by recall value for each threshold and then accumulate the products obtained under all thresholds. As shown in formula (8):

[image: image]

where N represents the number of all pictures in the test set, P (k) represents the value of precision when k pictures can be recognized, and Δr(k) represents the change of recall value when the number of recognized pictures changes from k – 1 to k.



Result and analysis
 
Segmentation effect of green target fruit

After the network training based on the optimized mask RCNN model is completed, the optimal model is selected based on mAP index, and the performance of the new model is comprehensively evaluated. The average precision and average recall of the new model based on persimmon dataset are recorded in Table 3. Figure 8 shows the visual segmentation results of some datasets, including the segmentation results of green persimmons in different complex orchard environments such as night, rainy day, occlusion, overlap, and distant view. This paper especially selects the visual pictures with complex environment as the representative, and each complex condition is displayed with two different pictures. Note that each condition marked in the figure may contain a variety of complex situations, such as distant view, occlusion, and overlap in Figure 7A below.


TABLE 3 Based on the optimized mask RCNN model, the average precision, and average recall of persimmon datasets at different thresholds, sizes, and quantities are analyzed.

[image: Table 3]
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FIGURE 8
 Visual diagram based on optimized mask RCNN test. (A) Distant fruit, (B) LEDs-lighting fruit, (C) Fruit after rain, (D) Overlapps, (E) Close shot the fruit, (F) Occlusions.


It can be seen from the Figure 8 that the target fruit often appears in complex and difficult scenes, just as a target fruit will appear many unstable factors such as occlusion, unclear light, rainy days, color system with background leaves, and so on. The complex and changeable orchard environment brings great challenges to fruit and vegetable picking. However, from the segmentation results, the new model has less missed detection and false detection for the target fruit in various complex scenes, and the positioning of the target fruit is accurate, which meets the needs of high-quality segmentation. Even if the target fruit is not annotation due to shooting blur and other reasons, it can still be segmented. Therefore, the optimized mask RCNN model overcomes the difficulties caused by incomplete boundary information and the similarity between fruit color and leaf color and has strong generalization ability and robustness.

Table 3 shows the different average precision and average recalls obtained from the green persimmon dataset under different IOU thresholds and quantities and target fruit size. According to the analysis in Table 3 and Figure 8, the new model has the best effect on large target fruit segmentation (AP achieved 90.7%), and all targets in the picture can be recognized and achieve high-quality segmentation. For the fruit with small vision, the segmentation effect is slightly worse (AP value is 33.2%), but most of the fruit can still be completely recognized, and only the objects at the boundary of the image or blurred cannot be recognized. According to Figure 8, it can be observed that when the target fruit is covered and overlapped by branches and leaves (as shown in Figures 8F,D), although only a small part of the target is exposed, it can still be accurately identified. Combined with the analysis of tables and images, it can be concluded that: The distribution of prospective target fruits is dense, the target size is small, and it is easy to have large area occlusion and overlap, resulting in the serious lack of boundary information. This is the biggest difficulty in intelligent picking. However, in terms of the overall segmentation effect, the optimized mask RCNN model is ideal for the segmentation of target fruits in various complex scenes. Even for the heavily occluded and overlapping target fruits, it still achieves high-precision and high-quality segmentation mask. Thanks to the powerful backbone network and unique post-processing module of the new model, it can better process edge information and improve resolution. Even for fruits with incomplete edge information, it can still achieve accurate positioning and high-quality segmentation.



Algorithm comparison

The new model takes mask RCNN as the baseline, carries out a series of optimization, and achieves high accuracy and high-quality segmentation mask. Moreover, in the process of experimental design, this study fully considered the objectivity and authenticity of experimental evaluation. Therefore, ablation experiment was adopted to fully verify that the new model has higher accuracy and higher quality for green target fruit. In this study, the new model is compared with four algorithms: baseline mask RCNN, SOLOv2 (Wang et al., 2020), YOLACT (Bolya et al., 2019), and Cascade_RCNN (Cai and Vasconcelos, 2019). Among them, mask RCNN model and Cascade_RCNN model are the two-stage instance segmentation methods, whereas SOLOv2 and YOLACT are one-stage segmentation models. To ensure the objectivity and effectiveness of the comparative experiment, the same super parameters will be set in the experimental process, and the same persimmon dataset will be used for testing. The data results of the test are entered as shown in Table 4.


TABLE 4 Comparison of instance segmentation performance of five different networks.

[image: Table 4]

As shown in Table 4, the optimized mask RCNN leads other models with average recall of 81.1% and average precision of 76.3%, respectively. Compared with the baseline mask RCNN, the AP and AR values of the new model increased greatly. Moreover, the recognition rate of small target fruit in the new model is significantly higher than that in other models, especially for the recall rate. Through further analysis of the experimental results, it is found that due to the efficient post-processing operation of BPR module, the phenomenon of repeatedly identifying overlapping multiple targets as a whole and identifying leaves as fruits is reduced in the new model. This shows that the new model reduces the false detection rate and missed detection rate to a certain extent. The experimental data show that a series of optimization of mask RCNN greatly improves the performance of the model, which fully proves the feasibility of this research method. The dataset of this study contains a large number of complex scenes, but the model still achieves satisfactory average precision and average recall, which can meet the requirements of application to the field of agricultural intelligent picking.

As shown in Figure 9, the segmentation effects of five different models are shown. According to the analysis of Figure 9 and Table 4, SOLOv2 has the worst effect, the segmentation effect of the experiment is not clear, the boundary shape is incomplete, and there are a lot of missed detection. The experimental results based on the optimized mask RCNN model are the best. Both the accuracy and the quality of segmentation are better than other models. The segmentation quality of YOLACT and Cascade_RCNN models is relatively good, but they are prone to missed detection and false detection, and the accuracy is far lower than that of the new model. The recognition accuracy of mask RCNN model is second only to the new model, but the segmentation quality of mask RCNN model is poor and the processing of edge pixels is not accurate enough. It is very easy to repeatedly recognize multiple target fruits as a whole. This paper has important research value for the optimization of mask RCNN. At the same time, the model is optimized from the two aspects of segmentation quality and recognition accuracy, so as to realize the real high-quality accurate segmentation. Based on the performance of optimized mask RCNN model with high accuracy, strong robustness, good generalization ability, and high segmentation quality, it is of great significance to deploy to the field of intelligent agriculture.


[image: Figure 9]
FIGURE 9
 Comparison of segmentation effects of five different models.




Ablation study

To verify the effectiveness of BPR module, this study conducted additional ablation experiments based on the persimmon dataset. In the training, the NMS threshold of BPR modules added to all models is set to 0.25. In the inference, set NMS to 0.55. HRNetV2_W18_Small is used as the optimized network of BPR module, and the size of the extracted boundary patches is 64 * 64 without padding. Then, boundary patches are resized to 256 * 256 as the input of BPR. In this experiment, the influence of BPR module on the accuracy and recall of the model is verified by controlling the variable BPR module while keeping other settings unchanged.

This study used three different models to verify the effectiveness of BPR module, including one-stage and two-stage segmentation models. The experimental results are shown in Table 5. By analyzing the data in Table 5, it was found that the model with the addition of the BPR module had higher AP and AR, which could improve the recognition of target fruits at different scales. Moreover, BPR module can be easily integrated into most pixel-based instance segmentation models and greatly improve the segmentation accuracy of the model. Thus, BPR, as a plug and play module, can easily help most models improve accuracy.


TABLE 5 The effect comparison of three different models with or without BPR module.

[image: Table 5]





Conclusion

Based on the classic mask RCNN algorithm, this paper optimizes and innovates the new model to achieve ideal recognition accuracy and segmentation quality in complex orchard environment. The new model applied MobileNetv3 as a lightweight backbone network, which is able to reduce the number of parameters in the mask RCNN model and achieve a significant improvement in the accuracy of identifying target fruits without sacrificing speed! MobileNetv3, as a lightweight backbone network, can further meet the storage resource requirements of automated picking robots and can be easily applied to similar inspection or segmentation networks. The features extracted by the backbone network pass through the subsequent classification, regression, and mask segmentation branches to obtain the coarse segmentation mask. The boundary patches of the rough segmentation mask are used as the input of the post-processing module BPR. The extracted boundary patches are optimized by crop-then-refine strategy, which significantly improves the resolution and segmentation quality. Although the new model has achieved satisfactory results, there are still some rooms for progress:

(1) The experimental dataset used in the new model contains fewer pictures, so we should consider expanding the dataset in the future.

(2) The new model as a two-stage anchor segmentation model, the size of the anchor limits the development of the model, and the association between the presence and absence of the anchor frame should be further searched.
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To accurately evaluate residual plastic film pollution in pre-sowing cotton fields, a method based on modified U-Net model was proposed in this research. Images of pre-sowing cotton fields were collected using UAV imaging from different heights under different weather conditions. Residual films were manually labelled, and the degree of residual film pollution was defined based on the residual film coverage rate. The modified U-Net model for evaluating residual film pollution was built by simplifying the U-Net model framework and introducing the inception module, and the evaluation results were compared to those of the U-Net, SegNet, and FCN models. The segmentation results showed that the modified U-Net model had the best performance, with a mean intersection over union (MIOU) of 87.53%. The segmentation results on images of cloudy days were better than those on images of sunny days, with accuracy gradually decreasing with increasing image-acquiring height. The evaluation results of residual film pollution showed that the modified U-Net model outperformed the other models. The coefficient of determination(R2), root mean square error (RMSE), mean relative error (MRE) and average evaluation time per image of the modified U-Net model on the CPU were 0.9849, 0.0563, 5.33% and 4.85 s, respectively. The results indicate that UAV imaging combined with the modified U-Net model can accurately evaluate residual film pollution. This study provides technical support for the rapid and accurate evaluation of residual plastic film pollution in pre-sowing cotton fields.
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 UAV imaging, deep learning, cotton field, residual film, pollution


Introduction

Plastic film mulching is an agricultural technique that can improve soil temperature, reduce soil water loss, suppress weed growth, and improve crop water use efficiency, yield, and quality (Yan et al., 2014; Xue et al., 2017). However, much of the waste plastic film remains in the soil after harvesting. With polyethylene as raw material, plastic film is decomposed into residual film and microplastics over time under natural conditions (Qi et al., 2020; Zhang et al., 2022). However, complete decomposition of plastic film in the soil requires 200 to 400 years (He et al., 2009). The increase in residual film in the soil has brought a series of serious problems, such as soil structure damage, decreased soil quality, and crop yield loss (Dong et al., 2015).

Cotton is one of the major cash crops in the world (Akter et al., 2018; Alves et al., 2020). China is one of the world’s leading cotton growers, and Xinjiang Province has become an important region for high-quality cotton production in China. In 2021, Xinjiang’s cotton production reached 5.129 million tons, accounting for approximately 89.5 percent of China’s total cotton output. Due to the arid climate in Xinjiang, farms have used film mulching in cotton planting for a long time. However, the accumulation of plastic film waste has caused serious white pollution to farmland (Zhao et al., 2017).

Farmland residual film pollution control is a systematic project. In addition to the development of residual film recycling machines, it is of great significance to carry out efficient and accurate residual film pollution monitoring to provide reference for reducing residual film pollution in farmlands.

At present, artificial collection of residual films is mostly used for residual film pollution evaluation. For example, Zhang et al. (2016) studied the status and distribution characteristics of residual film in Xinjiang, the results indicated that the thickness of the film had significantly negative correlation with the amount of residual film. Wang et al. (2022) analyzed residual film pollution in northwest China and found that plastic debris residing in soil tend to be fragmented, which could make plastic film recovery more challenging and cause severe soil pollution. He et al. (2018) and Wang et al. (2018) used manually stratified sampling to monitor cotton fields with different duration of film mulching according to the weight and area of residual film. They found that residual film content increased year by year as the film mulching continued, and the residual film broke down and moved into the deep soil during crop cultivation. However, artificial collection of residual films, with high labour intensity and low efficiency, cannot meet the requirement for rapid monitoring of residual film pollution. Therefore, it is urgent to develop an efficient evaluation method for evaluating farmland residual film pollution at present.

With the rapid development of UAV remote sensing and deep learning technology, UAV imaging combined with semantic segmentation has been increasingly widely used in agriculture. Zhao et al. (2019) collected UAV RGB and multispectral images of rice lodging and proposed a U-shaped network-based method for rice lodging identification, finding that the Dice coefficients for RGB and multispectral images were 0.9442 and 0.9284, respectively. Zou et al. (2021) proposed a weed density evaluation method using UAV imaging and modified U-Net, and the intersection over union (IOU) was 93.40%. Li et al. (2022) proposed a method for high-density cotton yield estimation based on low-altitude UAV imaging and CD-SegNet. They found that the segmentation accuracy reached 90%, and the average error of the estimated yield was 6.2%.

In recent years, some scholars have preliminarily explored UAV imaging-based plastic film-mulched area detection and residual film identification. Zhu et al. (2019) proposed a method for extracting the plastic film-mulched area in farmlands using UAV images. Based on UAV remote sensing images, the white and black film-mulched areas in farmlands were extracted, and the accuracy reached 94.84%. Sun et al. (2018) proposed an area estimation approach for plastic film-mulched areas based on UAV images and deep learning, and five fully convolutional network (FCN) models were built by multiscale fusion, finding that the optimal identification accuracy of the FCN-4 s model was 97%. Tarantino and Figorito (2012) used the object-oriented nearest neighbour classification method to extract mulching information from aerial images. In addition, focused on farmland residual film pollution Wu et al. (2020) proposed a method for plastic film residue identification using UAV images and a segmentation algorithm. To overcome the influence of light on the accuracy of residual film identification, an impulse coupled neural network based on the S component was built, and the average identification rate was 87.49%. However, this research aimed at farmland that was not ploughed after harvesting in autumn, residual film had good continuity and low fragmentation.

It is of great significance to monitor whether the farmland reaches the qualified conditions for sowing by the rapid detection of residual film pollution in pre-sowing cotton field. Before sowing in the spring, the agricultural mulch turned into film fragments as the cotton field went through a series of operations, such as straw crushing, ploughing, and field preparation et al. Compared with plastic film mulch area detection after sowing in spring and plastic film residue detection after harvest in autumn, residual film pollution evaluation in pre-sowing cotton fields is more difficult.

Aimed at detecting residual film coverage rate in pre-sowing cotton field surface, Zhai et al. (2022) proposed a detection method based on pixel block and machine learning, however, the Mean Intersection Over Union(MIOU) was only 71.25%, and the image acquisition method was near-ground imaging, which is not convenient for rapid monitoring of residual film pollution. Therefore, this study proposed a method for residual film pollution evaluation in pre-sowing cotton fields based on UAV imaging and deep learning semantic segmentation algorithm, aiming to achieve rapid and accurate identification of residual films in pre-sowing cotton fields. This study provides a theoretical basis for further research on the rapid and accurate evaluation technology equipment for residue film pollution.



Materials and methods


Data acquisition

Residual film images were collected from Shihezi City, Xinjiang, China (43°26′ ~ 45°20′N, 84°58′ ~ 86°24′E, a.s.l. 450.8 M), where has a temperate continental climate. The main crops in this area were cotton, and drip irrigation - plastic film mulching has been widely adopted in cotton planting (Wang et al., 2021). The amount of mulch films (thickness: approximately 0.008 mm) used during sowing was between 75 and 120 kg·hm−2. After harvesting in autumn, straw return was performed after crushing, and films were recovered. Ploughing and other operations were carried out in cotton fields before sowing in spring.

In this study, UAV images of 20 residual plastic film-polluted cotton fields were collected using a DJI M200 aircraft (DJI Innovation Technology Co., Ltd., DJI-Innovations) equipped with a Zen Zenmuse X4S camera from 10:00 to 19:00 on sunny and cloudy days from April 5 to April 15, 2021. The image resolution was 5,472 × 3,078 pixels. As shown in Figure 1, the waypoint method was used for flight for image acquisition. Each cotton field had 10 flight points in a straight line, and the distance between each point was 20 m. The flight speed of the UAV was 3 m/s, the camera angle was 90°, perpendicular to the ground, and the image-acquiring height were 5, 7, and 9 M. A total of 600 images were collected. Original UAV image data distribution of residual film in cotton field is shown in Table 1. In this study, 600 images were divided into a training set (480), validation set (60), and test set (60).

[image: Figure 1]

FIGURE 1
 UAV image acquisition (A) and flight control parameters (B).




TABLE 1 Original UAV image data distribution of residual film in cotton field.
[image: Table1]



Image labelling and data enhancement

The images were manually annotated using Adobe Photoshop CS5 (Adobe Systems Inc., United States), and all residual films were manually annotated and filled with blue color. Then, the threshold segmentation method was used for binarization. Residual film pixels were labelled as 1, and background pixels such as soil were labelled as 0. The annotation results are shown in Figure 2.

[image: Figure 2]

FIGURE 2
 Image labelling: (A) Original image; (B) Labeled image.


As the original images were too large to directly use for training, to accelerate the model calculation, the image resolution was resized to 1,200 × 600 pixels. In addition, the training set data were enhanced in the process of model training. In each epoch of training, random cutting (size: 1024 × 512 pixels), random flipping (left and right), random flipping (up and down), and brightness adjustment were used for data enhancement. Each training epoch obtained 480 new training data, and 55 epochs of training were conducted. Finally, a total of 26,400 enhanced images were obtained and used for training.



Residual film images segmentation network structure

The U-Net model is a common semantic segmentation network with an “U” shape (Ronneberger et al., 2015; Zhou et al., 2020) for image segmentation (Figure 3A). The left part of the network, the “encoder,” was repeatedly sampled by two convolution layers and one down-sampling layer. The right part of the network, the “decoder,” was connected by a deconvolution layer to the feature graph output by the “encoder.” Then deconvolution was performed two times. Finally, the channels output the desired number of categories through a 1 × 1 convolution operation. Based on the original U-Net model, a modified U-Net model was proposed in this research (Figure 3B) by reducing the number of convolution layers to accelerate the running time. Moreover, the inception module was used to increase the generalization ability and learning ability of the neural network. In the down-sampling layer, the inception module was used to replace the ordinary 3 × 3 convolutional layer, and a 1 × 1 convolution layer was connected after the inception module to reduce the input information and the model size.

[image: Figure 3]

FIGURE 3
 Network structure: (A) Structure of U-Net; (B) Structure of modified U-Net.


Depth and width are important parameters that affect convolutional neural networks. While increasing the network depth and width, the inception module also solves the problem of too many parameters and reduces the amount of parameter calculation (Szegedy et al., 2015). The inception module used in this study is shown in Figure 4. Features of cotton fields of different scales were extracted using 1 × 1 and 3 × 3 convolutional layers. Therefore, the multiscale inception module is suitable for determining characteristics of the multimorphic, multiscale, and random distribution of residual films in pre-sowing cotton fields. In the inception module, the fusion of different scales and functional branches was realized through the construction of cascade relationships, and then the fusion of multiscale image features was realized.

[image: Figure 4]

FIGURE 4
 Structure of the inception module: (A) Training and validation loss; (B) Training and validation accuracy.




Training for residual film detection

The deep learning model training hardware consisted of an Intel(R) Xeon(R) W-2223 CPU @ 3.60 GHz and 128 GB memory, and an NVIDIA GeForce RTX 3090 Graphics with 24 GB memory. The software environment was Windows 10, CUDA 11.2, CUDNN 8.1.1, Python 3.8, and TensorFlow-GPU 2.5.

To simulate the actual application scenario, the hardware and software for the residual film pollution evaluation included an Intel (R) Xeon (R) CPU E3-1230 V2 @ 3.30 GHz, without GPU acceleration, 16 GB memory, Windows 10 operating system, Python 3.7, and TensorFlow-CPU 2.3.

In this study, in the segmentation of residual films, a pixel is either classified as a residual film pixel or not. Similar to other binary classification networks, the “sparse categorical cross-entropy” function was used as the loss function. The neural networks were trained with a gradient descent method. The Adam optimizer algorithm was used to optimize the network, and the initial learning rate was 0.001. The batch of the training set was 6. During the iterative training process, changes in accuracy and loss were recorded, while only the best model was saved. When the number of training iterations reached 55, the training process converged and stopped.



Network segmentation performance evaluation

In this study, the accuracy, F1-score, and mean IOU (MIOU) were used to assess the segmentation performance. The F1-score represents the combined results of precision and recall. The segmentation time and parameters of model were used to assess the segmentation speed and size, respectively.
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Where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.



Evaluation of residual film pollution

The residual film coverage rate was used as the evaluation index of residual film pollution. For images with a size of M × N, the residual film coverage rate L is the ratio of the total number of residual film pixels [p (x, y) =1] to the total number of pixels in the image (Equation 6).

[image: image]

To test the accuracy of the modified UNet in residual film pollution evaluation, the L values of 60 images were calculated. Then, the relationship between the predicted residual film coverage rate (L1) and true residual film coverage rate (L2) was evaluated by regression analysis. The coefficient of determination (R2), root mean square error (RMSE), and mean relative error (MRE) were selected as the evaluation indexes.
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Where L1 and L2 are the i-th predicted and true L values from N data, respectively.




Results


Training process of the modified U-Net

Figure 5 shows the change in loss and accuracy on the training and validation sets as the number of iterations increases during model training. The changes in the loss and accuracy of the training and validation sets showed the same trend. The loss value dropped first and then remained stable, and the accuracy value rose first and then remained stable. After approximately 10 epochs of training, both loss and accuracy remained stable. Furthermore, there was no significant difference in the previous loss values and the accuracy of the training and validation sets, so there was no model over-fitting. After iteratively training the model for 55 epochs, both the loss value and the accuracy converged, indicating that the model achieved good training results. After the model training stage, the loss and accuracy of the validation set were 0.0037 and 99.85%, respectively.

[image: Figure 5]

FIGURE 5
 Loss and accuracy changes during training: (A) Training and validation loss; (B) Training and validation accuracy.




Residual film segmentation results


Segmentation results of different models

The modified U-Net model was compared with the state-of-the art methods such as SegNet, FCN, and U-Net. The segmentation results of different models are shown in Table 2. The results showed that the modified U-Net model had the best performance and prediction accuracy on the test set. The accuracy of the modified U-Net was 99.72%, which was 0.25, 0.04, and 0.03% higher than that of SegNet, FCN, and U-Net, respectively. The F1-score of the modified U-Net model was 85.59%, which was 14.35, 2.91, and 1.83% higher than that of SegNet, FCN, and U-Net, respectively. The MIOU of the modified U-Net model was 87.53%, which was 10.02, 2.23, and 1.39% higher than that of SegNet, FCN, and U-Net, respectively. In terms of segmentation speed, the average segmentation time per image of the modified U-Net model was 192.50 ms, the minimum parameters of model were 3.14 × 106 and was approximately 1/10 of that of the original U-Net model. Therefore, the modified U-Net model could improve the accuracy and speed of residual film segmentation, which facilitates the rapid and accurate identification of residual film.



TABLE 2 Segmentation results of different models.
[image: Table2]



Residual film segmentation results in different weather conditions

To study the influence of different weather conditions on the segmentation results. The segmentation results of cotton field images acquired in sunny and cloudy weather were compared (Figure 6). The results showed that no matter which model was used, the segmentation performance on images acquired on cloudy days was better than that on sunny days. Figure 7 shows the MIOU of different models based on the images acquired in different weather conditions. It showed that under the same weather conditions, the SegNet model had the worst segmentation performance, followed by the FCN and U-Net models. The modified U-Net model had the optimal performance, with MIOU reaching 85.44 and 89.63% on sunny and cloudy days, respectively.

[image: Figure 6]

FIGURE 6
 Residual film segmentation results under different weather conditions.


[image: Figure 7]

FIGURE 7
 MIOU of different models under different weather conditions.




Segmentation of images acquired at different heights

To study the effect of different image-acquiring height on the residual film segmentation results, the segmentation results of images acquired at the heights of 5, 7, and 9 M were compared (Figure 8). The results showed that the segmentation performance gradually decreased with the increase of height. Figure 9 shows the MIOU of different models based on the images acquired at different heights. The results showed that among the models, the SegNet model had the worst identification results at the same heights, followed by the FCN and U-Net models. The modified U-Net model had the optimal results, and its MIOU reached 90.55, 87.72, and 84.32% at 5, 7, and 9 M, respectively.

[image: Figure 8]

FIGURE 8
 Residual film segmentation results of images acquired at different heights.


[image: Figure 9]

FIGURE 9
 MIOU of different models based on the images acquired at different heights.





Residual film pollution evaluation results

The regression analysis results of the UAV images-based evaluation and manual evaluation of different models are shown in Figure 10. The regression result of the modified U-Net model was slightly better than that of the other models, with a regression equation of y = 0.9477x + 0.7305. The R2, RMSE, and MRE were 0.9849, 0.0563, and 5.33%, respectively. Moreover, it was found that the intercept of the regression equations of different models was positive.

[image: Figure 10]

FIGURE 10
 Regression analysis results of the UAV images-based evaluation and manual evaluation: (A) SegNet; (B) FCN; (C) U-Net; (D) Modified U-Net.


The average evaluation time for 60 images in the test set on the CPU were statistically analyzed, and it was found that the evaluation time was slightly different. The time required to evaluate residual film pollution on the CPU is shown in Figure 11. It was found that the modified U-Net model had a minimum average evaluation time of 4.85 s, which was 41.07% less than the evaluation time of the U-net model.

[image: Figure 11]

FIGURE 11
 Time required by different models for residual film evaluation on the CPU.





Discussion

This study identified residual film and evaluated the residual film pollution in cotton fields before sowing using low-altitude UAV imaging and deep learning. Based on the traditional U-Net model, a residual film semantic segmentation model with a modified U-Net model structure was proposed. This model could effectively segment the residual film from UAV images, the MIOU of the residual film recognition results reached 87.53%, which was 16.28 percentage points higher than the residual membrane pixel block identification method (Zhai et al., 2022). In this study, the residual film coverage rate was used to evaluate residual film pollution, and a rapid and accurate evaluation of residual film pollution was achieved based on the residual film semantic segmentation results. The results showed that the R2 of the modified U-Net model was 0.9849, the RMSE was 0.0563, the MRE was 5.33%, and the average evaluation time per image was 4.85 s on the CPU. These results indicate that the modified U-Net model can rapidly and accurately evaluate residual film pollution.

The residual film pollution evaluation method proposed in this study was mainly designed to identify residual films from the surface of cotton fields before sowing and to evaluate the degree of residual film pollution based on the proportion of residual films’ pixels. In this study, a multi classification neural network model was used to identify residual film, soil, straw, etc. Due to the surface of cotton fields includes residual film, soil, straw, drip irrigation belts, etc., it is very difficult to label each item one by one by pixel. Therefore, in the labelling process, only residual films (1) were manually labelled one by one, and soil, straw, and other items were marked as non-residual films (0). As the surface of the residual film attached to soil, the reflection of soil block and other reasons, resulting the existence of false positive (FP) and false negative detections (FN) in this study. The FP represents the segmentation model mistakenly identifies soil, straw and other samples as residual film samples; the FN represents the segmentation model mistakenly identifies residual film samples as soil, straw, etc.

This study proposed a model for residual film semantic segmentation based on a modified U-Net model. The image segmentation in this study is a binary classification, including identification and classification of residual films and non-residual films. Therefore, the feature extraction of the traditional U-Net model was simplified in this study to reduce the number of parameters and speed up the computation. Moreover, the multiscale feature extraction inception module was introduced to achieve accurate segmentation of residual films of different sizes by fusing multiscale image features. This modified network model may not perform as well on other more complex images but outperforms several traditional semantic segmentation models, including U-Net, SegNet, and FCN.

This study compared the identification performance on sunny and cloudy days and found that the identification performance on cloudy days was better than that on sunny days. This may be due to that the reflection of soil blocks causing them to be misjudged as residual films on sunny days. In addition, by comparing the effect of different image-acquiring height on the residual film segmentation, it was found that the lower the height is, the better the residual film segmentation effect. This may be due to that images acquired at lower heights have higher definition. However, when the height was too low, wind from the UAV’s rotor could blow away residual films, affecting the residual film pollution evaluation. Therefore, in practical applications, the height of UAV should be considered while ensuring image definition.

The residual film pollution evaluation method in this paper has application value for the control of residual film pollution. This evaluation system can achieve a rapid and accurate evaluation of residual film pollution. Moreover, rapid evaluation of the degree of residual film pollution can provide some reference for the objective evaluation of the seeding suitability of cotton fields during the spring sowing stage. In addition, this study also provides the theoretical support for the detection of residual film pollution in cotton field plough layer using UAV imaging, the rapid prediction of residual film pollution in cotton field plough layer can be realized by studying the residual film pollution correlation between the surface and plough layer. Compared to manual sampling to monitor residual film pollution, the approach in this study saves manpower and reduces time costs.



Conclusion

In this paper, residual film pollution images in pre-sowing cotton fields were collected by UAV imaging system. The more suitable residual film segmentation model was built by modified U-Net model. Finally, the residual film pollution was evaluated based on residual film coverage rate. Through the analysis of the test results, it was found that:

(1) The modified U-Net model was proposed by simplifying the U-Net model and introducing an inception module, which can realize the accurate segmentation of residual film from cotton fields before sowing. The MIOU of segmentation reached 87.53%.

(2) The identification performance on cloudy days was better than that on sunny days. The identification performance of residual films gradually decreased with increasing image-acquiring height.

(3) The modified U-Net model outperformed other models in residual film pollution evaluation, with R2 of 0.9849, RMSE of 0.0563, MRE of 5.33% and the average evaluation time per image of 4.85 s on the CPU.

(4) This study provides a theoretical reference for further development of evaluation technology and equipment for residual film pollution based on UAV imaging.
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In this paper, a method for predicting residual film content in the cotton field plough layer based on UAV imaging and deep learning was proposed to solve the issues of high labour intensity, low efficiency, and high cost of traditional methods for residual film content monitoring. Images of residual film on soil surface in the cotton field were collected by UAV, and residual film content in the plough layer was obtained by manual sampling. Based on the three deep learning frameworks of LinkNet, FCN, and DeepLabv3, a model for segmenting residual film from the cotton field image was built. After comparing the segmentation results, DeepLabv3 was determined to be the best model for segmenting residual film, and then the area of residual film was obtained. In addition, a linear regression prediction model between the residual film coverage area on the cotton field surface and the residual film content in the plough layer was built. The results showed that the correlation coefficient (R2), root mean square error, and average relative error of the prediction of residual film content in the plough layer were 0.83, 0.48, and 11.06%, respectively. It indicates that a quick and accurate prediction of residual film content in the cotton field plough layer can be realized based on UAV imaging and deep learning. This study provides certain technical support for monitoring and evaluating residual film pollution in the cotton field plough layer.
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1 Introduction

Agricultural mulch has been widely used to increase soil temperature and moisture, suppress pests and weeds and reduce soil salinity which are conducive to improving crop yields and increase farmers’ incomes (Wang et al., 2020; Li et al., 2021). Plastic film mulching was introduced to China in the late 1970s. After decades of development, it has been widely used for  the cultivation of cotton, corn, pepper, and other crops in northwest China, especially Xinjiang Province. It has made important contributions to the increases in the production and income levels of farmers in arid regions (Yan et al., 2006; Hu et al., 2019).

However, the “white pollution” caused by the widespread use of mulch is becoming increasingly prominent (Liu et al., 2014; Zhang et al., 2021; Li et al., 2021). As an economically important crop, cotton is mainly planted with film mulching  in Xinjiang, China. Due to the continuous use of plastic mulch in cotton fields, and the incomplete recovery of the residual film, the amount of residual film in cotton field is as many as 42 ~540 kg/hm2, and the average residual amount exceeds 200 kg/hm2 (Wang, 1998; Xu et al., 2005; Zhao et al., 2017). However, the pollution of residual mulch film in cotton fields has a massive impact on cotton production (Zhang et al., 2016). For example, a large amount of plastic film left in the plough layer blocks the migration of water and nutrients, destroy the soil structure, and suppresses the germination of seeds and the growth of crop roots. In addition, the residual film is mixed into the seed cotton, which reduces the weight of the cotton (Zhang et al., 2020; Zong et al., 2021).

Fast and accurate monitoring of residual film pollution in farmlands has great significance for the control of residual film pollution. The assessment of the residual film pollution degree in farmlands is mainly through manual sampling. Zhang et al. (2017) adopted the manual stratified sampling method and arranged 7 sampling points at each monitoring site. The data analysis showed that the amount of residual film had an increasing trend of increasing. Wang et al. (2018) took layered samples of soil in cotton fields with different mulching years to analyse the areas and net weights of the residual film, and found that with the increase in years of mulching, the content of residual film increased yearly, with an average increase of approximately 10%. Besides, the residual film fragmented gradually and moved down to deep soil layer during ploughing. Qi et al. (2001) found that the residual film in the soil of cultivated land was mainly distributed in the plough layer (0~10 cm) accounting for approximately 2/3 of the total residual film. The rest was distributed in the 10~30 cm  soil layer, and no residual film was found below 40 cm. However, the manual sampling method for residual film pollution monitoring in these studies is labor-intensive and inefficient and cannot meet the demands of rapid and accurate monitoring of residual film pollution.

UAV remote sensing technology has many advantages such as high operation efficiency, good mobility, low cost, and high spatial resolution (Cao et al., 2021). In recent years, it has been combined with technologies such as artificial intelligence and the Internet of Things and is widely used in agriculture for disease and pest prevention and control, sowing, and so on (Li et al., 2021; Su et al., 2021). In terms of monitoring residual film in farmland, some scholars have also preliminarily explored the application potential of the UAV remote sensing and identification methods. For example, Sun et al. (2018) used a six-rotor UAV equipped with a Sony NEX-5k camera for aerial photography and proposed an end-to-end method for identifying greenhouses and mulched farmland from drone images. As a result, the average accuracy achieved for the testing area was 97%. Zhu et al. (2019) used the  images taken by drones of a research area and a fusion-based supervised image classification algorithm, and found that the recognition accuracy was 94.84%. Ning et al. (2021) proposed an improved deep semantic segmentation model based on the DeepLabv3+ network for plastic film identification and found that this method could effectively segment plastic film from farmland in UAV multispectral remote sensing images and the identification accuracy was 7.1% high than that of the visible light method. In conclusion, the rapid detection of residual film in farmland can be realized based on UAV remote sensing imaging technology. However, in fact, the residual film is mainly concentrated in the plough layer. Currently, there are few reports about detecting residual film pollution in the plough layer with the UAV images and deep learning method, and there is a lack of methods for the rapid detection of residual film pollution in the plough layer.

Therefore, in this study, the cotton field before spring sowing was taken as the research object, and a method for predicting residual film in the cotton field plough layer based on UAV imaging and deep learning was proposed. Through the identification of residual film on soil surface and the linear fitting with the actual weight data of residual film in the plough layer, the content of the residual film in the cotton field plough layer was detected rapidly and accurately. This study will provide a theoretical basis for further study of the rapid and accurate assessment technology residual film pollution in the plough layer and equipment development.



2 Materials and methods


2.1 Image data collection

The data was collected in Shihezi City, Xinjiang, China (42°10′~45°21′N, 84°20′~86°55′E, a.s.l. 450.8 m), where film mulching has been continuously used for cotton cultivation for many years. The data was collected before sowing in early April 2021 and a large amount of residual plastic film remained on the soil surface (Figure 1). A total of 30 cotton fields were selected. The images were collected in sunny and cloudy days, to increase the robustness of the subsequent model and enhance the adaptability to lighting. First, images were collected by drones, with a height of 5 m, and a total of 900 images, which constituted the training set for surface residual film recognition, were collected. Then, ten points (1 m2 per point) were selected to manually collect the residual film in the plough layer (0-10 cm in depth) in each cotton field (a total of 300 sampling points). All the residual film sampled were put into label bags.




Figure 1 | Test area and image acquisition. (A) Location of the test area; (B) Image of the sampling area; (C) Schematic diagram of UAV flighting.



The images of the cotton field were taken by a DJI M200 remote-controlled rotary-wing quadrotor drone (DJI MATRICE 200 V1, DJI, China) equipped with a ZENMUSE X4S cloud platform camera (FC6510, DJI, China). The camera had a fixed focal length of 8.8 mm, a F/2.8-11 focal ratio, and a field of view (FOV) of 84°. The resolution of the image was 5472×3078 pixels (JPG format). A DJI ground workstation (DJI, Shenzhen, China) was used to control the flight of the drone and transmit the images. After the drone landed, the images obtained were transferred to a laptop in the JPG format and checked for integrity. The sampling tools used for the collection of the residual film in the plough layer included a 1 m × 1 m folding ruler, a shovel, and a canvas. The equipment configuration and data acquisition process are shown in Figure 2.




Figure 2 | Schematic diagram of the data acquisition process.





2.2 Dataset construction and data augmentation

Due to the adhesion of soil on the surface of the residual film, the residual straw, and the drip irrigation belts, it was difficult to identify the residual film through a simple image processing method. In this study, a deep learning-based semantic segmentation method was used to identify the residual film. Deep learning is a new research direction in the field of machine learning. Semantic image segmentation is a very important research direction in computer vision. It identifies images at the pixel level, and its accuracy and efficiency greatly surpass those of other methods. In this study, the residual film in a total of 900 images of were manually marked with Photoshop CS5, and saved in the PNG format. The marked PNG images were used as a (Figure 3).




Figure 3 | Schematic diagram of data annotation. (A) Original image; (B) Annotation of image by Photoshop; (C) Annotated image.



The marked dataset was enhanced by random cropping, that is, the image size was adjusted and the images were randomly cropped into images of the same size. Each raw image was normalized, and the corresponding marked image was randomly flipped. Then, the flipped images were normalized.



2.3 Semantic segmentation model construction


2.3.1 LinkNet model

LinkNet uses the idea of a self-encoder with an architecture that includes two parts: an encoder and a decoder (Figure 4). The input contains 2 convolution layers and 1 pooling layer, the output contains 2 deconvolution layers, and the middle part contains 4 encoding layers and 4 decoding layers. The kernel size is 7×7, the number of kernels is 64, and the stride size is 2. The pooling layer utilizes the maximum pooling method. The maximum pooling window is 3 × 3, and the stride is 2. The upper part is the encoder structure, which contains 4 convolutional layers, and the encoder module performs forward propagation. The first 2 convolutional layers scale the input images, and the sizes of the images remain unchanged in the latter 2 convolutional layers. The output obtained by adding the outputs of the first 2 convolutional layers and the outputs of the latter 2 convolutional layers enters the decoder module. The decoder module in the lower part contains 2 convolutional layers and 1 deconvolutional layer; this module is equivalent to the back-propagation process and enlarges the images. After passing through the decoder module, the images enter the upsampling module. Then the images enter the second convolutional layer, and finally, the images are upsampled for the second time to obtain the final output images.




Figure 4 | Schematic diagram of the LinkNet structure.





2.3.2 FCN model

A Fully Convolutional Network (FCN) consists of two parts, full convolution and deconvolution layers (Figure 5). By referring to the Visual Geometry Group 16 (VGG16) pretraining network structure, pretraining weights  were introduced in this study, and the fully connected layer of the VGG16 network was replaced with a 1 × 1 convolutional layer to solve the disadvantage that the number of neurons in the fully connected layer must be fixed and then to achieve input images of any size. The input convolution kernel size was 512, the convolution kernel size was 3 × 3, the input image size was 512 × 1024 pixels, and the number of channels was 3. By creating a submodel and obtaining the output of the middle layer of the VGG16 network, this study sets the last layer of the submodel as pool1 for upsampling, used the rectified linear unit (ReLU) function for activation, and then performed a convolution operation. Pool1 was added to the middle layer to obtain pool2, and in the same way, pool2 was upsampled, and another convolution operation were performed. Then, pool2 was added to the middle layer to obtain pool3. Pool3 was upsampled, and then convolution was performed again. The middle layers were added to obtain pool4, after completing the hopping structure, pool4 was upsampled to obtain the output images. The outputs were upsampled to obtain the final predicted images with the same size as that of the input image. The number of channels was 2. The model was created.




Figure 5 | Schematic diagram of the FCN structure.





2.3.3 DeepLabv3 model

DeepLabv3, a multiscale image segmentation network based on the ResNet structure, is designed with serial and parallel atrous convolution module. It uses a variety of different convolution modules to obtain multiscale content information. It involves the hole convolution and the atrous spatial pyramid pooling (ASPP) with atrous convolution. The first three modules use the original convolution module, and the fourth module uses the atrous convolution module. The multiple-network atrous convolution expansion rate of the atrous convolution module is (2, 4, 8), the output stride is 16, and the size of the feature map is 32×32. Furthermore, the ASPP structure contains 4 parallel dilated convolutions, including one 1×1 convolution and three 3×3 convolutions. The ASPP structure obtains the global context information through a global average pooling layer and uses a 1×1 convolution to achieve fusion of the branch-processed features (Figure 6).




Figure 6 | Schematic diagram of the DeepLabv3 structure. (A) Atrous Spatial Pyramid Pooling; (B) Image Pooling.






2.4 Model training

The proposed deep learning model was built based on Python 3.7 and the Jupyter Notebook editor using the Windows 10 desktop operating system running on an Intel(R) Gold 6126 CPU with a default frequency of 2.60 GHZ and 64 GB of memory. The graphics card used was an NVIDIA GeForce RTXTM 2060 (6 GB of video memory), and the model training framework adopted the TensorFlow 2.0 GPU version. In the experiment, 80% of the image samples were randomly selected as the training set, and the remaining were used as the validation set to verify the identification accuracy of each model. To improve the accuracy of the models, the Adam optimizer was used to optimize the three deep learning models. The learning rate was set to 0.001, the number of iterations was set to 50 epochs, the attenuation coefficient in the Adam optimizer was set to 0.9, and the loss function was the cross entropy loss function.



2.5 Evaluation indicators

In this study, five indicators, including accuracy precision, the mean intersection over union (MIOU), recall, precision, and F1-score, were used to evaluate the identification accuracy of the models. Accuracy is the proportion of positive samples predicted by the model to the total samples (Formula 1). Precision is the proportion of true positive samples predicted by the model to positive samples (Formula 2). Recall is the proportion of samples with predicted true values out of all true values (Formula 3). The F1-score is the harmonic mean of precision and recall (Formula 4). The MIOU is the mean of all categories of IOUs (Formula 5).

	(1)

	(2)

	(3)

	(4)

	(5)

Where TP denotes the number of correctly classified residual film pixels, FP denotes the number of background pixels that are misclassified as residual film pixels, FN denotes the number of residual film pixels that are incorrectly classified as background pixels, TN represents the number of correctly classified background pixels, and k is the total number of segmented residual film images.



2.6 Residual film coverage area detection method

The residual film coverage area S was calculated by the pixel ratio. Let the size of the aerial image be A×B, and the total number of residual film pixels be p. As shown in Figure 7, the aerial photography height is h=5m, and the aerial photography angle is θ=84°. The length of d was calculated to obtain the length of the hypotenuse 2d of the triangle, and the length a and width b of the rectangle were calculated by the Pythagorean theorem. The actual area S1 of the photograph relative to the ground was obtained by multiplying the length by the width (Formula 6). The aspect ratio of the images corresponded to the actual area (Table 1).

	(6)




Figure 7 | Schematic diagram of the residual film area calculation process.




Table 1 | The aspect ratio of the photo corresponds to the actual area.





2.7 Method for the prediction of  residual film content in plough layer

(Figure 8) The collected residual film was first cleaned with clean water. After that, ultrasonic cleaning was performed, followed by air drying. Finally, the air-dried residual film was weighed, counted, and marked. The residual film area calculation method described was applied to obtain the residual film coverage area S. Regression analysis was carried out with the corresponding residual film mass of the 0-10 cm plough layer, and the obtained mathematical relationship was used to predict the content of  residual film in the plough layer. The average value of the residual film content of the plough layer of the five sampling points was taken as the residual film weight of an unit area.




Figure 8 | Calculation process of the residual film weight. (A) Washing with clean water; (B) Ultrasonic cleaning; (C) Air-drying; (D) Weighing.






3 Results


3.1 The identification results of the models

During the training of the three models (LinkNet, the FCN and DeepLabv3), the loss function decreased rapidly, then converged quickly, and finally stabilized (Figure 9). Among the three models, the DeepLabv3 model had the best convergence effect, followed by the FCN model, and the LinkNet model. The accuracy of the three models were relatively high, and during the training process, they quickly reached states of convergence. The DeepLabv3 model had the highest accuracy, followed by the FCN model, and the LinkNet model.




Figure 9 | Loss values and accuracies of the three models. (A) Loss value and accuracy of the LinkNet model; (B) Loss value and accuracy of the FCN model; (C) Loss value and accuracy of the Deeplabv3 model.



The identification performance of the three models were generally better; among them, the DeepLabv3  model had the best identification performance, with an accuracy of 99.71%, a precision of 85.29%, a recall of 79.38%, an F1 of 79.73%, and a MIOU of 74.62% (Table 2). Moreover, the prediction accuracy based on the test set was similar to that based on the training set. It indicates that there is no overfitting.


Table 2 | Evaluation of different models in segmenting residual from UAV film images.



The segmentation results (image size is 5472 × 3078 pixels) predicted by the three models (LinkNet, FCN, and DeepLabv3) (Figure 10), showed that the segmentation performance of the three models were generally improved. The DeepLabv3 model had the best segmentation performance, followed by the FCN model, and the LinkNet model. The FCN model failed to identify many small areas of residual film. The LinkNet model had misidentification, and many small soil blocks were misidentified as residual film, resulting in the worst identification performance.




Figure 10 | Segmentation performance.





3.2 Regression analysis of the residual film content in the plough layer

Therefore, the DeepLabv3 model was determined as the optimal model for the prediction of the residual film in the plough layer. Then, linear regression analysis was performed on the residual film area and the weight of the residual film in the plough layer calculated by the model. To detect and exclude data outliers, the Mahalanobis distances of 255 sample data were calculated (Figure 11). The Mahalanobis distances between the five sets of data and the centre of the dataset were more than three times of the average distance. Therefore, these five sets of data were considered outliers and excluded. The remaining 250 sets of data were used for further analysis and modelling.




Figure 11 | Abnormal sample removal.



Figure 12 shows the analysis results obtained for the 250 sample data. The R2 was 0.83, and the root mean square error was 0.48. The mathematical expression y=15.76x+0.37 was obtained for the prediction of the residual film weight in the plough layer, where x is the area of the residual film on soil surface of the cotton field, and y is the weight of the residual film in the plough layer.




Figure 12 | Prediction results for the residual film content in the plough layer.





3.3 Verification of the predicted results

A total of 25 data sets collected from 5 cotton fields were used to verify the prediction model. The drone image were used to calculate the area of the residual film on the soil surface through model identification, and then the residual film content of the plough layer was calculated by the prediction model. The results predicted by the model and the results obtained by manual sampling are shown in Table 3. The average relative error of the prediction of the residual film content in the plough layer was 11.06%. It indicates that the proposed method has higher prediction accuracy.


Table 3 | Comparison of the prediction results regarding the residual film content in the plough layer.






4 Discussion

This paper compared the performance of three deep learning-based semantic segmentation algorithms, LinkNet, FCN, and DeepLabv3, in residual film identification and residual film coverage area prediction. The results showed that the predicted value of the LinkNet model was slightly higher than the real value, and its prediction speed was the fastest. The original intention of this model was to improve the prediction speed. Due to the simple structure and parameter settings of this model, many other things were misidentified as residual films. The parameters of the FCN model were relatively complex, and pretraining weights were introduced, so the model prediction speed was not fast. The model cannot extract the details of the images and does not fully consider the interpixel relationships. Besides, the space regularization used in the segmentation methods based on pixel classification are ignored, resulting in many small residual films not being identified. The DeepLabv3 model had the best segmentation performance, and its segmentation time was between those of the other two models. Chen et al. (2021) used the threshold segmentation method to identify the residual films in cotton fields and found that light intensity had a great influence on it, and its identification accuracy was high. Wu et al. (2020) used the threshold segmentation method to identify residual film in farmland based on colour characteristics and found that the integrity of the residual film was better and that the process of segmenting the residual film was easier compared with other methods. Our study proposed a deep learning method, which can improve the identification accuracy of residual films. However, the dataset of this study needs to be further expanded, and the influence of light intensity on the identification accuracy of the model should be further explored.

In this study, the DeepLabv3 semantic segmentation model was determined as the optimal segmentation model, the area of residual film on soil surface and the residual film weight of the plough layer were analysed by regression analysis, and finally, a regression model was established. The prediction accuracy was high, and the detection speed was greatly improved compared with that of the manual approach. However, the accuracy of the model needs to be further improved, and the influences of different mulching years and different soil qualities on the weight of the residual film in the plough layer should also be considered. Besides, more datasets need to be added to improve the robustness and generalization performance of the model.



5 Conclusions

Aiming at the monitoring and evaluation of the residual film content in the cotton field plough layer, a method based on UAV imaging and deep learning was proposed. The conclusions are drawn as follows.

(1) Compared with the LinkNet, FCN and DeepLabv3 models, the DeepLabv3 semantic segmentation model had the best performance, with accuracy, precision, recall, F1-score, and MIOU values of 99.71%, 85.29%, 79.38%, 79.73%, and 74.62%, respectively.

(2) A method for predicting residual film contents in the cotton field plough layer was proposed. The regression model was established by fitting the area of the residual film on soil surface and the weight of the corresponding residual film in the plough layer. The R2 of the regression model was 0.83, and the root mean square error was 0.48.

(3) The accuracy of the proposed method for predicting the residual film contents in the cotton field plough layer was verified. The results showed that the proposed method achieved a faster detection and a higher prediction accuracy, and the average relative error was 11.06%. This study makes up for the deficiency that the current monitoring methods can only evaluate the content of residual film on soil surface and provides an effective method for monitoring and evaluating the residual film pollution in the plough layer.
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Visual Question Answering (VQA) about diseases is an essential feature of intelligent management in smart agriculture. Currently, research on fruit tree diseases using deep learning mainly uses single-source data information, such as visible images or spectral data, yielding classification and identification results that cannot be directly used in practical agricultural decision-making. In this study, a VQA model for fruit tree diseases based on multimodal feature fusion was designed. Fusing images and Q&A knowledge of disease management, the model obtains the decision-making answer by querying questions about fruit tree disease images to find relevant disease image regions. The main contributions of this study were as follows: (1) a multimodal bilinear factorized pooling model using Tucker decomposition was proposed to fuse the image features with question features: (2) a deep modular co-attention architecture was explored to simultaneously learn the image and question attention to obtain richer graphical features and interactivity. The experiments showed that the proposed unified model combining the bilinear model and co-attentive learning in a new network architecture obtained 86.36% accuracy in decision-making under the condition of limited data (8,450 images and 4,560k Q&A pairs of data), outperforming existing multimodal methods. The data augmentation is adopted on the training set to avoid overfitting. Ten runs of 10-fold cross-validation are used to report the unbiased performance. The proposed multimodal fusion model achieved friendly interaction and fine-grained identification and decision-making performance. Thus, the model can be widely deployed in intelligent agriculture.
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  1 Introduction

In recent years, deep learning (DL) has reached an advanced stage in computer vision and natural language processing, and multimodal learning has become a popular research topic in deep learning research. In the field of fruit tree disease research, the diagnosis and decision-making of fruit tree diseases traditionally rely on the observations of experts or experienced farmers to remove diseased plants as early as possible. Most applications of deep learning for fruit tree diseases use only single-source data, including images, spectra, and meteorological data (Wang et al., 2019; Zhan et al., 2022), mainly based on visual images for disease recognition and classification (Deng et al., 2019; Lan et al., 2020) or text-based intelligent Q&A for diseases. However, if a machine is trained to become an image analysis of diseased plants, obtaining the corresponding disease diagnosis and decision based on human questions is critical for smart agriculture. Yang et al. (2021) proposed the multimodal bilinear fusion of the Citrus Huanglongbing (HLB) detection network by fusing RGB images and hyperspectral information and achieved good results, which indicates that fusion of multi-source data information can make disease identification more accurate. Multimodal information fusion technology in smart orchards has become a current research hot spot that can solve the problem that single-source data cannot extract more fine-grained fruit tree disease information.

In traditional agriculture, the diagnosis and decision-making of fruit tree diseases depend on the observation of experts or experienced farmers to remove diseased plants as early as possible. However, in practice, the diagnosis of diseased plants first relies on experts to identify and then consult agricultural knowledge before obtaining a treatment method. Training a machine to become an image analyzer of diseased plants and obtain the corresponding disease diagnosis and decision based on human questions aligns well with smart agriculture. To further improve the performance of disease decision issues, we must combine image and text into multimodality for the Visual Question Answering (VQA) task to implement decision-making on fruit tree diseases.

Fruit tree disease decision-making research is based on VQA in a multimodal learning task.  Figure 1  shows four examples of VQA for fruit tree diseases, which illustrates that VQA provides accurate decision-making in orchards by detecting diseases and querying the answers to questions arising from the actual environment, which is important to guide farmers to obtain timely feedback and make decisions on diseases in orchards. VQA aims to answer relevant questions based on images (Malinowski and Fritz, 2014; Antol et al., 2015). It requires a fine-grained semantic understanding of images and questions and also guides visual reasoning to predict precise answers based on the questions. Representation learning of VQA can be divided into extracting images and question features. The image feature extraction models mainly include Convolutional Neural Network (CNN), VGGNet (Simonyan and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), and ResNet (Fukui et al., 2016; Kim et al., 2016; Ben-Younes et al., 2017) on the ImageNet dataset (Krizhevsky et al., 2017). The question feature extraction models mainly include long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997), Glavnoe Razvedivatelnoe Upravlenie (GRU) (Cho et al., 2014), skip-thought (Kiros et al., 2015), and Bidirectional Encoder Representation from Transformer (Bert) (Devlin et al., 2018).

 

Figure 1 | Examples of questions and images and their corresponding answers in fruit tree diseases based on VQA. 



The attention mechanism (Xu et al., 2015; Shih et al., 2016) was introduced to implement model reasoning. Fukui et al. (2016) proposed to learn visual attention to image regions from questions and learn textual attention to question keywords. However, this local attention cannot reflect the similarity between image and question representations. Kim et al. (2016) indicated that the co-attention (Lu et al., 2016) of learning images and questions simultaneously facilitates fine-grained inter-modal representation, enabling more accurate predictions. However, co-attention learns only the coarse interactions between modalities and cannot derive the correlation between each image region and question keywords. The Stacked Attention Network (SAN) model (Yang et al., 2016) was first proposed to learn the attention of question-guided image regions by multi-word iterations, with each attention mechanism observing a different region of the image. Subsequent studies proposed a global attention strategy based on multi-glimpse attention (Fukui et al., 2016; Kim et al., 2016). For example, Lu et al. (2016) proposed the co-attention of image regions guided by question features, which requires not only learning visual attention to images but also textual attention to questions. Yu et al. (2018) simplified co-attention into two parts: one for self-attention learning from questions and another for cross-attention learning from question-guided images. Therefore, there is an inter-modal attention relationship between the image and question; however, existing methods are weak in fusing multimodal features owing to their neglect of inter-modal interactions.

With respect to multimodal feature fusion, the bilinear model encodes full second-order interactions that model the interaction between the two embedding spaces. Multimodal Compact Bilinear (MCB) pooling (Fukui et al., 2016), Multimodal Low-Rank Bilinear (MLB) (Kim et al., 2016), and Multimodal Tucker Fusion for Visual Question Answering (MUTAN) (Ben-Younes et al., 2017) are existing VQA methods for encoding images and questions using the bilinear transformation. They perform remarkably well in feature fusion, but the high dimensionality of the output features and the large number of model parameters may seriously limit the applicability of bilinear pooling. Therefore, some works should be done to simplify the bilinear model by reducing its complexity.

In this work, a new and effective VQA architecture was designed for fruit tree disease decision-making. This work includes (1) generating an image–question–answer triplet VQA dataset, including near-ground images, Unmanned Aerial Vehicle (UAV) remote sensing images, and Q&A text for fruit tree such as litchi, longan, grape, and other; (2) extracting image features by ResNet-152 and extracting question features by skip-thought and pretrained Bert model; (3) proposing a new multimodal factor decomposition bilinear pooling approach to effectively combine multimodal features, reducing the parameters from bilinear interactions between multimodal features through modal tensor decomposition; and (4) developing a co-attention mechanism with an end-to-end deep network architecture to jointly learn image and question attention to achieve model reasoning capabilities. The proposed method can provide fine-grained identification and decision-making for fruit tree diseases and provide a reference for farmers and companies in planning disease management and fertilizer application.


 2 Materials and methods

 2.1 Data acquisition and processing

Most image data in this study were collected in litchi orchards (23.55 N, 113.59 E) in Conghua and Zengcheng District, citrus orchards (23.15 N, 113.35 E) at South China Agricultural University, and other orchards. A total of 8,450 original images were collected through field research and photography. The text data of Q&A were mainly annotated manually under the guidance of agricultural experts and some websites corresponding to images of fruit tree diseases. The (image, question, answer) triplet for fruit tree diseases was constructed using the VQA dataset as a baseline, where each image was annotated manually with two questions, one question was annotated with three annotators, and all images were annotated with ground-truth answers. Specifically, each question was manually annotated after images and questions were accumulated, and for multiple choice questions, there were four candidate answers for each question. Four unique answers were collected that are correct, reasonable, universal, and random. Considering the redundancy of the answers, we initially set the number of annotated answers to 10 before the experiment. Due to a large amount of data annotation and most of the answers are apparent, the three most controversial and unbiased answers were eventually selected for annotation.

The dataset was divided into training set, validation set, and test set, in the ratio 8:1:1 (as  Table 1 ): train (6,750 images and 13,500 questions), val (850 images and 1,700 questions), and test (850 images and 1,700 questions). The test set does not include annotated correct answers. The question–answer pairs include reasoning questions, colors, varieties, counts, and yes/no questions about diseases, including lychee fungal mildew, lychee anthracnose, citrus Huanglongbing disease, longan disease, and grape rot. As shown in  Figure 2 , question types were divided into four categories: yes/no questions, counting questions (how many), inference questions (what/where), and other. The study focused on multiple-choice questions, yes/no questions, and open-ended questions. The main purpose of the model is to answer the multi-categorization questions correctly about the fruit tree disease images in the test set.

 Table 1 | Statistics of the data. 



 

Figure 2 | Data distribution of question types in the training set. 



To evaluate the accuracy of the model properly, we ensured that the results contained three main types of question accuracy (Yes/No, Number, Other, and What/Where) and overall accuracy. For easier reproduction in subsequent work studies, we save our dataset to Baidu.com and provide the download link of the dataset on: https://github.com/guoyaqi1/vqa_Fruit-tree-disease.


 2.2 Data augmentation

To prevent overfitting or non-convergence of the model due to insufficient training data, we adopt data augmentation on images and tokenization on texts. Data augmentation (DA) (Zhang et al., 2021) can also increase the generalization ability of the model. Random data augmentation was adopted to augment the original image data. Random cropping, brightness adjustment, image rotation, ratio change, and random noise operations were performed to augment the image training dataset (Huang et al., 2019). Specifically, the original training image data are augmented with five methods. The first method is random image cropping to remove edge redundant information, with one random crop at edges 0 to 0.1 and 0.9 to 1. The second method is image rotation, which performs one random rotation at a rotation angle from 3° to 10°. The third method is the image ratio change, which scales the image aspect ratio once from 0.8 to 1.5. The fourth method is to inject random noise, creating a new noise-contaminated image for each image at random, using a zero-mean Gaussian noise with the mean and variance of noise injection set to 0 and 0.01. The fifth method is to adjust the brightness to 0.5–1.5 for one random brightness adjustment. For each data augmentation, five new images are generated for each image. All hyperparameters chosen here are empirical, which are used in the open published literature (Zhang et al., 2019; Wang et al., 2021b; Wang et al., 2021a), as shown in  Table 2 .

 Table 2 | The hyperparameter values of the image data augmentation. 



For texts, all questions and answers are converted into lower case letters and remove the punctuation marks and question samples by replacing words, deleting words, text noise addition, and sampling-based methods (Ren and Zhou, 2020). Since word-based tokens will cause a large dictionary, we used the word piece tokenization method, like the Bert model.



 3 Multimodal network architecture

In this work, a new VQA architecture for fruit tree disease decision-making was proposed. The proposed framework of VQA is shown in  Figure 3 . A pretrained network was adopted to first extract the image 144 features v and the question features q; then, a novel fusion scheme with multiple co-attention layers was employed to learn inter-modality relations, which fuses visual features first and then the textual features. The fused features obtained from the last co-attention layer is used for fruit tree disease decision. In particular, a simple but powerful image-centric scheme that emphasizes the image was proposed. The obtained vector of potential features of dimension N = |A| is activated by Softmax and used to predict the most likely answer. As with existing VQA methods, the goal in this study was to predict the most likely answer,  , to a question, q , about an image, v . The problem can be formulated as Equation (1):

 

Figure 3 | The proposed framework of VQA. 



 

Where â is the set of possible answers, and Θ contains all model parameters. The model is divided into three core learnable elements: (i) an image model that extracts visual features from the input images and a question model that encodes the question input; (ii) an attention mechanism that finds important regions in the input images; and (iii) a fusion mechanism with bilinear Tucker decomposition, which combines visual and question features. Finally, the model requires a classifier that selects the highest scoring answer among a set of candidate answers. The architecture of the proposed VQA model is shown in  Figure 4 .

 

Figure 4 | The proposed VQA model architecture together with our multimodal deep co-attention network. 



 3.1 Image and question model

The preprocessing pipeline and data augmentation were first applied to the image data. To erase unnecessary external information (image regions and text) from the image, we normalized the intensity of the input image to 0–255 and set the threshold value of the normalized image to 5 by applying the Otsu method (Otsu, 1979), used to threshold the image based on the difference in grayscale between the target region and the background to be extracted in the image, and selected the best threshold to determine whether the add feature attribute of each pixel point belongs to the target region or the background. An open operation was applied to the post-threshold image, which has a rectangular structuring element of size 40 × 40. After calculating a foreground bounding box, the image was cropped to the bounding box, the cropped image was resized to 448 × 448, and the resized image was inputted to ResNet-152 model to extract image features to obtain 2048-D vector output, as shown in  Figure 5  and  Table 3 .

 

Figure 5 | The ResNet-152 model for image features extraction. 



 Table 3 | The ResNet-152 structure. 



The ResNet-152 model was adopted to extract the image features, we experimentally compared VGG, InceptionResNetV2 (Baldassarre et al., 2017), ResNet-50 (Akiba et al., 2017), and ResNet-152 (Fukui et al., 2016). ResNet-152 is the best performing neural networks in image feature extraction tasks. Different convolutional layers have different feature extraction capabilities. ResNet-152 has five blocks that resize the image by convolution kernels. The features of the image are extracted through the five convolutional layers of ResNet-152. The extracted feature sizes are shown in  Figure 5 . An untrained full convolutional network (Tong et al., 2021) was used to unify the number of feature maps and a global average pooling strategy was used to unify the sizes.

The Residual Unit structure is Conv-BN-ReLU-Dropout-Conv-BN-ReLU-Dropout–Conv-BN-ReLU, where BN is a batch normalization operation to maintain the same input distribution for each layer of the network, rectified linear unit (ReLU) is the activation function, Conv denotes the convolution layer, and dropout layers are added between the convolutional layers in each residual branch to prevent overfitting, where the dropout ratio is 10-4.

For the question representation, the question data were preprocessed using the same data preprocessing techniques used in Fukui et al. (2016) and Ben-Younes et al. (2017), mainly by deleting punctuation marks, converting the question characters to lowercase letters, and removing all combinations. The question was divided into a series of words using the space character. The pretrained skip-thought model was obtained by pretraining on the collected text dataset. A special “unknown” word (“UNK”) was used to state the case that does not exist in the dataset. Finally, after zero padding, the length of all the word sequences was 26 words, matching the maximum sequence.

To overcome the shortcoming of unknown or unseen new term words in the plant domain, we encoded unseen words in the model by transfer learning (Kiros et al., 2015). First, a Word2Vec model (Mikolov et al., 2013) trained on the Google News dataset (Das et al., 2007) was used, which contains a vector of 3 million words and phrases. Second, a weighted linear regression model was fitted by minimizing a least squares criterion, which maps Word2Vec to the skip-thought embedding space. This enabled the pretrained skip-thought model to generate 2,400 dimensions of question features. The above adopted skip-thought models can represent words as vectors for better training; global vectors (Pennington et al., 2014) map words into meaningful space based on semantic similarities. However, this method cannot disambiguate according to the context, since the vector of each word is fixed. Text-embedding model learns the context of words by deep networks. Compared with words vectors, the text-embedding model adjusts the word vector according to the context, but it requires a high computational cost (Wu et al., 2021).

The pretrained models like Bert has achieved a breakthrough result, which performs well on contextualized text representation. Bert was adopted to extract the question features, coping with mask text model tasks and next sentence prediction tasks at the same time. In the Bert model, the second-to-last hidden (768 dimensions) method was applied to generate a pretrained contextual representation similar to Embeddings from Language Models (ELMO) (Devlin et al., 2018). The pretrained Bert model can obtain the fine-grained feature sequence containing the contextual information so that the question sequence contains both its own information and the relationship with all the data.


 3.2 Attention mechanism

As the simple attention mechanism cannot infer the correlation between the question keywords and the image regions, in this study, we proposed a co-attention mechanism and a self-attention and multi-head attention mechanisms based on the transformer architecture. First, we perform self-attention fusion for question and image features separately. Second, the output features of the two modalities are fed into the co-attention mechanism for interaction. Therefore, the attention module can mainly be divided into a self-attention (SA) unit and co-attention (CA) unit, combining into the modular co-attention (MCA) layer, which is capable of modeling the self-attention of questions and images and the question-image guided co-attention.

 3.2.1 Self-attention and co-attention units

The SA unit shown in  Figure 6A  consists of a multi-headed self-attention function and a fully connected feed-forward network, both wrapped in a residual connection followed by layer normalization. The CA unit is extended from the SA unit, as shown in  Figure 6B . The keys and values are from one modality, while queries are from another modality, and the queries are used as a residual item after the multi-head attention sublayer. The rest of the architecture is the same as the SA unit. The CA unit takes the features of two modalities features, and one modality guides the attention learning for another modality. Assuming that Q comes from the question and K and V come from the corresponding images, the attention value calculated by Q and K can be used to measure the similarity between the question and the image and then weight the image. Importantly, co-attention can model the intra-modal interaction between different features.

 

Figure 6 | The comparison of SA, CA, and MCA (A) shows the components of the SA unit, (B) shows the improvement of the CA unit on basis of the SA unit, (C) shows the MCA module obtained by combining SA and CA, and (D) shows the model reasoning obtained by stacking the MCA modules. 




 3.2.2 Multiple co-attention stacking

To deeply fuse multimodal features, we combine the two basic attention units to obtain a MCA layer to handle the multimodal features, which consists of two SA units and one CA unit, named the SA(Y)-SCA(X,Y), image features X and question features Y are used as inputs, as shown in  Figure 6C . The MCA layer models the intra-modal interactions between each image region pair. We stacked multiple MCA layers to compose a deep co-attention model to deliver the input features and evaluate the depth layers, as shown in  Figure 6D .



 3.3 Bilinear fusion scheme

The issues caused by too many learning parameters in the fusion mechanism are twofold: (i) better graphics processing units (GPUs) are needed, and (ii) the VQA model learning process is prone to overfitting. A low-rank bilinear method (Pirsiavash et al., 2009) has been proposed to reduce the rank of the weight matrix. To reduce the large number of parameters generated by multimodal bilinear model interactions, in this study, we proposed a multimodal fusion scheme based on a bilinear pooling fusion model with Tucker decomposition based on the intermodal correlation tensor, which is not simply connecting two modalities (Ren et al., 2015). The tensor T in the bilinear fusion architecture is decomposed using a Tucker decomposition.

In this fusion scheme, the q∈ℝ  J  is the question feature, q∈ℝ  KG  is the image feature, and f∈ℝ  N  is the answer feature corresponding to a∈A . K=2,048 and J=2,400 are the inputs to the image and question, respectively, and K is the dimension of the core tensor of the constant equation. G denotes the number of multimodal attention,  is the weight matrix of features under attention mechanism, and  is a bias item. Before fusing features, transformation must be performed, as shown in  Figure 7 .

 

Figure 7 | The illustration of Tucker decomposition. 



The decomposition of the tensor of a three-way tensor T∈ℝ  d  q  ×d   v  ×|A| is expressed as a tensor product between three intra-modal factor matrixes: W q , W v , and W o , and a core tense T c in Equation (2):

 

where

 W q∈ℝ  d  q ×t  q  ,

 W v∈ℝ  d  v ×t  v  ,

 W o∈ℝ |A|×t  q  , and

 

The probability that each target answer is on all possible target answers is in Equation (3):

 

We combine Equations (2) and (3) such that:

 

In this study, we found that squared transformations on image features improved the attention of the model to image features and reduced the linguistic bias of the model. Inspired by MUTAN (Ben-Younes et al., 2017), we proposed a simple and efficient extension. The improved fusion model yields Equation (5).

As most VQA studies only obtain prediction answers through questions, this study proposed an image-centered model by emphasizing image features, the comparison of VQA fusion schemes is shown in  Figure 8 .

 

Figure 8 | A comparison of VQA fusion models. (A) G-MLB (Vu et al., 2019): full tensor is trainable and is not decomposed like other methods. (B) MLB: Wq, Wv, and Wo are trainable, while Tc is fixed. (C) MUTAN: all four elements are trainable. (D) Our model: similar to MUTAN, with proposed element-wise square of Wv; the full bilinear interaction is structured with a low-rank (R) decomposition. 



 


 3.4 Multimodal fusion and output classifier

After the deep co-attention learning stage, the output image features and question features already contain rich information about the attention weights on the question words and image regions. First, we designed a bilinear multimodality to fuse the image and question features ◯ and ŷ after the modular attention stage, and the bilinear function is defined as the Equation (6):

 

where W  x , W  y ∈Rd× dz  are bilinear projection matrices, and z is the fused multimodal feature that is used to predict the answer. dz is the output dimension of the fused features. Layer normalization (LN ) is used here to stabilize training. We designed the final fully connected layer with the output dimension n and connect the softmax layer for n classification prediction, where the loss function is the categorical cross-entropy. The evaluation metric is strict accuracy.



 4 Experimental results

 4.1 Experiment model setting

The proposed fusion model mainly adopts a co-attention mechanism and a bilinear pooling fusion mechanism using multi-head attention of 8 and a hidden layer size of 512. To balance accuracy and information loss, we set the maximum input length of the text to 26. We set the dimension to 2,048 in the bilinear pooling, which works best for the visual grounding task. The layer normalization before the attention and feedback layers is set with L 2=1×10−12 .

In the optimization process, we replaced all hyperbolic tangent (tanh) activations with ReLU activation functions. The network for fruit tree disease was trained from a random initialization with the AdamW (Kingma and Ba, 2014; Loshchilov and Hutter, 2017) optimizer, with a learning rate of 0.0001. We compared SGD, Adam, and AdamW, among them, AdamW performed the best. Dropout rate was 0.5 for all linear and bilinear layers, learning rate decay was β 1 = 0.9 and β 2 = 0.999, and the mini batch size was 64. Moreover, early stopping was used as a regularization to save model parameters after each epoch to prevent overfitting.

During the training process, early stopping was used as a regularization to save model parameters after each epoch to prevent overfitting. To evaluate the model, we chose the best epoch based on the accuracy of the validation set.

The proposed method was trained using the PyTorch library, and the experiments were run on Nvidia GTX3090 Ti 32GB GPU. The implementation is available at https://github.com/guoyaqi1/vqa_Fruit-tree-disease. After tuning all model parameters by training, we trained the model once on all available data (training set + validation set). Finally, we evaluated the test set to obtain the evaluation results of the model. The main hyperparameter setting is shown in  Table 4 . Most of the values are set by trial-and-error method, and  Table 5  shows the hyperparameters setting in this study.

 Table 4 | Setting of important parameters. 



 Table 5 | The experiments of setting the hyperparameters. 




 4.2 Comparison of fusion schemes

Under the same experimental setting, the proposed model was evaluated and compared with three bilinear models (MCB, MLB, and MUTAN) without using the attention model. The comparison of fusion schemes results are shown in  Table 6 : Concat denotes a baseline where v and q merged by simply concatenating unimodal features without considering inter-modality relations.  Table 6  shows that the proposed model performed better than other bilinear fusion models, which validates the idea that modeling full bilinear interactions between low-dimensional projections yields a more efficient representation than a strong unimodal transformation with simple fusion scheme. Furthermore, there was a well-balanced trade-off between the projection dimension in the core tensor Tc and the bilinear interaction parameters. The last row in  Table 6  presents the proposed model with our attention mechanism, which obtained the best result, validating the idea that the proposed attention mechanism effectively outperforms other bilinear fusions.

 Table 6 | Comparison of fusion schemes with no_att. 




 4.3 Ablation experiments

 4.3.1 Attention mechanism

The evaluation of the impact of the attention mechanism on model performance for four kinds of questions is shown in  Table 7 , where I denotes the image encoding module, Q denotes the question encoding module, A denotes the attention mechanism, NA denotes no attention mechanism, SA denotes that the image or question module contains a self-attention mechanism, CA denotes modeling dense interactions between input modalities by exchanging their information, and MCA denotes the combination of SA and CA to obtain our proposed attention fusion mechanism. Specifically, SA is used in the image and question encoding modules separately and the model with CA in the feature fusion stage, named (Q(SA) + I(SA)) CA in  Table 7 .

 Table 7 | Attention mechanism comparison. 



  Table 7  shows that MCA obtained the best results, proving that the MCA attention mechanism can improve the interaction of image and text multimodal feature fusion. It shows that (Q(SA) + I(SA)) CA outperformed (Q(SA)+I(NA))CA, which illustrates that modeling self-attention for image features is valuable. Moreover, the Q(NA)+I(SA) also outperformed Q(SA)+I(NA) for all question types, which verifies that modeling self-attention for image feature benefits model performance. The above results show that the contribution of the image module is more significant than that of the question module, validating the idea of the proposed Tucker decomposition method to fuse features in an image-centric manner, which reduces the model parameters while also increasing the weight of the model on the image features.


 4.3.2 Depth of MCA

  Table 8  shows the impact of the number of MCA layers L for the stacked attention module on the performance, setting L= 1,2,4,6} and model sizes (number of parameters). The results in  Table 8  shows that the performance of the deep co-attention models steadily improved and finally saturated at L = 4 with the increase of L. Therefore, L = 4 is the best setting considering the optimized performance and reduced resource overhead.  Figure 9  shows the detailed performance of MCA- L with different attention modular under per-type questions. With increasing L, the performance gaps between the four attention modular increased. This validates that the depth of MCA layers for images plays a key role in the model.

 Table 8 | Depth MCA layer L stacking. 



 

Figure 9 | Comparison of four attention modules in depth(All&YES/NO&Num&Other). It shows the detailed performance of MCA- L with different attention modular under per-type questions. With increasing L, the performance gaps between the four attention modular increased. 




 4.3.3 Question representation

  Table 9  shows the results of the ablation experiments with different question representations on MLB, MUTAN, and the proposed model. Considering the text encoding model for extracting question features, there are three question representation models (“Bert-base-uncased,” “Bert-base-cased,” and skip-thought) were used for comparison, and all fusion schemes with attention mechanisms were used for all models. In  Table 9 , J denotes the dimension of the question feature space.  Table 9  shows that using tokens by pretrained Bert significantly outperformed the skip-thought vectors and Bert-base-uncased, which indicates that the pretrained Bert model is more effective in extracting question features.

 Table 9 | Accuracy of the proposed models with different question representations. 





 4.4 Cross-validation

Cross-validation (Albashish et al., 2021) is a way of resampling a dataset to evaluate algorithmic models on limited size dataset (Wang et al., 2021b). Cross-validation reduces the coincidence due to previous random divisions by splitting the dataset multiple times, makes the algorithm accuracy fairer, and improves the generalization of the model.  Figure 10  shows the diagram of the k-fold cross validation. Specifically, the whole dataset is divided into K folds evenly. For the kth (k=1,…,K) trial, the kth fold is used for the test set and the other folds (1,…,k−1,k+1,…,K) for training. In this study, the 10-fold cross-validation was adopted to validate the accuracy of model. It performs 10 iterations of the experiment by splitting the dataset into 10 parts and rotating nine of the dataset as the training set and one as the test set.

 

Figure 10 | Diagram of the 10-fold cross-validation. 




 4.5 Statistical analysis

The results of 10 runs of 10-fold cross-validation of our model are itemized in  Table 10 . The classifier evaluation on yes–no question types was performed using statistical tests, and we selected five evaluation indicators from the confusion matrix: sensitivity, specificity, precision, accuracy, and F1 score. The mean and standard deviation (mean+SD) (Zhang et al., 2021) of all five indicators are calculated over 10 runs. The statistical results of proposed model on yes–no classifier are shown in  Table 6 . The sensitivity and specificity reached 93.48 ± 1.27 and 93.28 ± 1.45, respectively. Its precision and accuracy are 93.29 ± 1.46 and 93.38 ± 1.37, respectively. The F1 score is obtained as 93.37 ± 1.36. As a result, the differences between the algorithms are statistically significant.

 Table 10 | Statistical results of proposed model on yes–no classifier. 




 4.6 Attention visualization

  Figure 11  shows the visualization of the attention learning from the questions and the images. The text on the left of  Figure 11  shows Q&A including the ground truth and the results from the proposed model without attention (No. Att.) and with attention (OtherAtt. &MyAtt) mechanisms. The red area indicates the image region on which the model is focused by attention. It can be observed that the model with the attention mechanism produced a more focused localization area for the disease presented by the question compared with the model without attention. While using our proposed attention scheme, the relevant regions in the input image are highlighted to a greater extent. For example, the first question in the figure is “Is there fruit tree diseased?”. The model focused on the diseased area under our proposed attention scheme. This indicates that learned question attention focuses more on keywords, and learned image attention focuses more on the correlation between keywords and corresponding image regions.

 

Figure 11 | Attention visualization. The first column is the original image of the input, the second column is the image region computed by the model under no attention (NoAtt), and the third and fourth columns are the image region computed by the model under other attention (OtherAtt) and its own attention (MyAtt), respectively. 





 5 Discussion

The abovementioned experiments showed that the proposed VQA model of fruit tree disease was superior to other existing multimodal methods combining an optimized bilinear model with stacking MCA layers. The proposed model achieved high performance for the following main reasons: first, a stacking modular co-attention (MCA) layer for multimodal interaction of images and questions makes the model more capable of learning effective features. Neither self-attention nor co-attention can infer the correlation between each image and each problem separately, so the mutual synergy between self-attention and co-attention, that is, the simultaneous learning of image and question co-attention, is more beneficial for fine-grained feature representation of images and questions. The appropriate depth of the MCA layer can provide more fine-grained extraction and enhance model reasoning capabilities for feature fusion. Second, image and text features are transformed using bilinear pooling instead of inner product operation, and the Tucker decomposition of tensor during fusion makes the parameters of bilinear interaction controllable. Finally, the question features extracted by the pretrained Bert models perform a little better than those produced by the skip-thought vectors, enabling the model to obtain a better question representation. Since this study is a multimodal fusion multiclassification issue, the final statistical test and 10 times 10-fold cross-validation on yes or no question types yielded statistically significant results for the algorithm.

However, there were some limitations to this study. For example, inaccurate positioning of keywords led to incorrect prediction answers. In addition, from attention visualization, it could be found that attention learning was stochastic in the experiments, sometimes, it failed to distinguish keywords in the questions, resulting in focusing on irrelevant image regions and false predictions. These visualization results can help us make further improvements to the model.

In future precision agriculture decision-making, dataset optimization should not only consider visible images and Q&A pairs but also increase the text information of agricultural expert knowledge in the agricultural knowledge map to improve the reasoning of the model.


 6 Conclusion

In this work, we proposed a new multimodal attention network for VQA of fruit tree disease. The model is mainly divided into four modules: image feature extraction, question feature extraction, feature fusion with attention mechanism, and a bilinear fusion model. The main contributions were the co-attention modularity to interact with multimodal information by stacking MCA layers and the bilinear pooling fusion model combining a Tucker decomposition with a low-rank matrix constraint. The experiments showed that the proposed VQA model outperformed other state-of-the-art methods. The average accuracy of the proposed VQA model with stacking MCA layers reached 86.36%, outperforming other bilinear fusion methods; the optimum depth of the MCA layer was 4, and the pretrained Bert outperformed the skip-thought in extracting question features. This work provides in-depth insights for VQA in the field of plants and provides a way to greatly reduce human labor resources and implement effective artificial intelligence applications in agriculture.
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Introduction

Current aerial plant protection with Unmanned Aerial Vehicles (UAV) usually applies full coverage route planning, which is challenging for plant protection operations in the orchards in South China. Because the fruit planting has the characteristics of dispersal and irregularity, full-coverage route spraying causes re-application as well as missed application, resulting in environmental pollution. Therefore, it is of great significance to plan an efficient, low-consumption and accurate plant protection route considering the flight characteristics of UAVs and orchard planting characteristics.



Methods

This study proposes a plant protection route planning algorithm to solve the waypoint planning problem of UAV multi-objective tasks in orchard scenes. By improving the heuristic function in Ant Colony Optimization (ACO), the algorithm combines corner cost and distance cost for multi-objective node optimization. At the same time, a sorting optimization mechanism was introduced to speed up the iteration speed of the algorithm and avoid the influence of inferior paths on the optimal results. Finally, Multi-source Ant Colony Optimization (MS-ACO) was proposed after cleaning the nodes of the solution path.



Results

The simulation results of the three test fields show that compared with ACO, the path length optimization rate of MS-ACO are 3.89%, 4.6% and 2.86%, respectively, the optimization rate of total path angles are 21.94%, 45.06% and 55.94%, respectively, and the optimization rate of node numbers are 61.05%, 74.84% and 75.47%, respectively. MS-ACO can effectively reduce the corner cost and the number of nodes. The results of field experiments show that for each test field, MS-ACO has a significant optimization effect compared with ACO, with an optimization rate of energy consumption per meter of more than 30%, the optimization rate of flight time are 46.67%, 56% and 59.01%, respectively, and the optimization rate of corner angle are 50.76%, 61.78% and 71.1%, respectively.



Discussion

The feasibility and effectiveness of the algorithm were further verified. The algorithm proposed in this study can optimize the spraying path according to the position of each fruit tree and the flight characteristics of UAV, effectively reduce the energy consumption of UAV flight, improve the operating efficiency, and provide technical reference for the waypoint planning of plant protection UAV in the orchard scene.
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1 Introduction

As of 2021, China’s total fruit output was 299.702 million tons, of which citrus output is 55.9561 million tons, ranking first in China ‘s fruit output (Stasistics, 2022). In the process of citrus production, pests and diseases are the main factors affecting the yield and safety of citrus (Du et al., 2011; Bassanezi et al., 2020), and efficient pest control methods are an indispensable and important link to ensure the yield and quality of citrus fruits (Yi, 2007; Zhang et al., 2014; Garcia et al., 2022). In recent years, with the development of precision agriculture, UAVs for plant protection have attracted widespread attention (Lan et al., 2019; Ru et al., 2020). The UAVs can take off and land vertically, with simple operation, high maneuverability and no terrain restrictions (Zhou et al., 2013; Yang et al., 2018), providing a new direction for the development of aerial plant protection technology.

In the research of UAV for plant protection, route planning is one of the key technologies to be solved urgently (Lan et al., 2017; Zhou et al., 2017). Local optimization for operating areas and routes is also a research hotspot for mobile robots (Zhao et al., 2017; Zhang et al., 2018). Liu et al. (2020) developed a short-range, accurate coverage route planning algorithm for aerial spraying with full coverage. In this method, the optimal route is obtained by analyzing the spraying voyage outside the spraying operation area and combining with the full-coverage route planning in order to avoid the problems of repeated and missed application in aerial pesticide application. Han et al. (2021) proposed an infield path planner that can automatically generate pattern-based X-turn path diagrams to provide efficient operation routes for polygonal rice fields. Xu et al. (2020) proposed a UAV route design algorithm for farmland with obstacles. The algorithm uses the characteristic information of the waypoints and combines the hybrid particle swarm algorithm to sort the waypoints, and designs a full-coverage route plan that can effectively avoid obstacles. These studies have carried out local optimization of the route according to the geometry of different farmlands, effectively improving the route coverage and ensuring the operation efficiency. However, this type of research is mainly aimed at densely planted rice field crops, and the operation method is mainly full-coverage reciprocating pesticide application. In the citrus orchard environment, fruit trees are different from field and facility horticultural crops, and have the characteristics of larger plant size, large planting spacing, and non-row planting (Wu et al., 2021). The application of UAVs for full-coverage route spraying may cause repeated and missed applications, and increase operating costs. At present, there are few studies on the precision route planning of UAV in orchard environment. Therefore, it is very important to carry out research on route planning for precision pesticide application in citrus fruit trees.

Route planning is a combinatorial optimization problem. Based on the known environment and operation information, a reasonable movement route was planned according to multiple constraints (Zhang et al., 2020; Zhou and He, 2021). In the route planning research of the orchard environment, we should not only consider the influence of the operating area, but also integrate the flight characteristics of the UAV to plan an operation route suitable for UAV plant protection in orchard. Although rotary-wing UAVs are better able to perform aerial transitions regardless of the terrain, there are still problems that cannot be ignored (Zhu et al., 2022). For example, the turning and starting and stopping of UAV during flight will cause a large energy loss (Fan et al., 2019). Alternatively, the load and battery of the UAV will also affect the battery life (Abeywickrama et al., 2018; Lin et al., 2020). Researchers proposed different solutions to the limitations of rotary-wing UAVs. Li et al. (2019) reduced the flight energy consumption of UAVs during non-working periods and improved operational efficiency by integrating constraints such as the spraying amount of each sortie and the returning point. Peng et al. (2019) used the autonomous constant-speed flight of UAVs and the minimum turning radius constraints to design a route planning method for UAVs in irregular farmland to achieve full-area coverage. Constraints such as distance, energy consumption, and operating time are the optimal route methods often used by researchers, because these constraints directly affect the operating efficiency and cost of UAVs.

At present, commonly used route planning algorithms include artificial potential field method (Zhang et al., 2017), ant colony algorithm (Patle et al., 2019), A* algorithm (Liu et al., 2019), genetic algorithm (Zhao et al., 2021) etc. The artificial potential field method and the A* algorithm have the advantages of simple and small amount of calculation (Huo et al., 2018), and can be better combined with other algorithms to solve various optimization problems. However, the artificial potential field method is mainly used for local trajectory search, usually as an auxiliary algorithm for global path search (Sun et al., 2017; Lin et al., 2019). The A* algorithm can quickly solve the shortest path between the starting point and the ending point, but it is not suitable for independently solving the path optimization problem that traverses all nodes (Erke et al., 2020; Tang et al., 2021a). Genetic algorithm and ant colony algorithm are both bionic algorithms (Tang et al., 2021b). Among them, genetic algorithm has good global optimization ability, but its operation speed is slow and its search efficiency is low. The path search in the face of a large number of nodes is easy to fall into the local optimal solution, and the effect of solving the optimal path problem of traversing nodes is poor. ACO is a probabilistic algorithm that finds the optimal path through steps such as heuristic search, pheromone feedback, and distributed computing (Cao et al., 2021). This algorithm has good problem optimization ability, and is easy to combine with other algorithms, and is widely used to solve optimization problems such as traveling salesman and secondary allocation of resources (Ebadinezhad, 2020; Zhang et al., 2021b). For example, Liu et al. (2022) realized the plant protection route planning for many tea fields in hilly areas by combining genetic algorithm and ant colony algorithm. Cao et al. (2021) added the influence of agricultural machinery operation execution ability to the pheromone update mechanism of the ant colony algorithm, and realized the collaborative management of agricultural machinery. Therefore, this paper solves the route planning problem of plant protection drones in orchards by improving the ant colony algorithm.

In this study, aiming at the problems that UAV full coverage reciprocating routes cannot accurately cover every fruit tree, repeated application, missed application and high energy consumption, precision planning of UAV plant protection routes based on multi-objective tasks was carried out. By improving the ant colony algorithm and integrating the three constraints of distance factor, rotation angle factor and the number of task nodes, MS-ACO was proposed to improve the efficiency of UAV operation and reduce flight energy consumption. First, the corner factor is introduced into the heuristic function of ACO. At the same time, a ranking optimization mechanism is added to the pheromone update. Finally, node cleaning is performed on the optimized path to obtain the optimal path. The algorithm can effectively optimize the path corner and the number of nodes under the condition of ensuring the path length, and improve the efficiency of plant protection. The results provide a theoretical basis for the research on aerial precision plant protection technology in orchards.



2 Materials and methods

This study mainly includes four parts: environment modeling, algorithm improvement, simulation experiment, and field experiment. The first part is the overview of the test area and the establishment of the environmental model; the second part is the improvement of the algorithm, including heuristic information fusion, pheromone update strategy based on sorting and optimization of optimal path nodes; comparing the paths optimized by MS-ACO and ACO with the number of nodes to verify the feasibility of the improved algorithm; finally, we use the built UAV platform to conduct field experiments, and verify the real validity of the algorithm through the optimization of flight time, range, turning angle and energy consumption per meter degree.


2.1 Experimental area overview

The experimental site is located in a citrus orchard in Sihui City, Guangdong Province, China (23°36′N, 112°68′E), as described in Figure 1A, B. The site is a near-plain terrain with an average slope of less than 5°, subtropical monsoon climate, and an average annual rainfall of about 1900 mm (Niu et al., 2021), which is suitable for citrus growth. The citrus trees in this orchard are mostly irregular terrain, divided by an irregular grid of 30×30m. The height of the fruit trees is between 2m and 5m, the average diameter of the crown is 3m, and the spacing between trees and rows is about 3m. We divided the experimental area into 14 plots according to the actual road distribution in the orchard, and selected the numbered 1, 4 and 6 for simulation experiments and field experiments, as shown in Figure 1C.




Figure 1 | Experimental site and site division. (A) Geographic location of the experimental site, (B) Satellite map of the experimental area, (C) Division of the experimental area.





2.2 Environment modeling

In order to ensure that the path optimized by the improved algorithm has practical application value, the coordinate system of our simulation environment was constructed by using the real geographic coordinate system of the orchard, and the simulation environment was constructed by extracting the geographic coordinate information of citrus trees. Since the experimental site of this study is a near-plain terrain with little difference in the height of the fruit trees, the effect of the difference between orchard elevation and tree height is not taken into account, and the coordinate system constructed is a two-dimensional plane coordinate system. At present, there are many methods for coordinate point extraction, such as manual marking, feature point extraction, and image fusion based on geographic information systems (Helmholz et al., 2014; Yu et al., 2020). The method based on manual extraction of coordinate points of fruit trees is cumbersome and not suitable for batch extraction of coordinates of citrus trees. The development of remote sensing images in recent years has make it possible to identify targets or large-scale target research in inaccessible environments (Hu et al., 2021; Ghaderizadeh et al., 2022; Jalayer et al., 2022; Zamani et al., 2022). For example, using satellite remote sensing images to detect the impact of climate change on planting patterns (Tariq et al., 2022a), drawing and detecting the distribution map of farmland and crop types (Tariq et al., 2022b), and large-scale extraction of farmland (Sharifi et al., 2022). Although this approach works very well with high spatial resolution. However, this method is suitable for obtaining large-scale farmland data, and is not suitable for extracting geographic coordinate information of a single fruit tree. Tian et al. (2022) proposed a method for extracting citrus tree coordinates based on YOLOv5s. First, an orchard orthophoto map is drawn using a remote sensing dataset. Secondly, the citrus tree image containing geographic information is identified by the YOLOv5s model and the pixel coordinates of the center of the citrus tree in the image are extracted. Finally, the geographic coordinates of citrus trees are extracted through spatial coordinate system transformation and Gauss Kruger inverse algorithm. This method can automatically identify and extract the geographic coordinates of citrus trees, and the accuracy of the extracted geographic coordinates can reach ±0.15m. It has the characteristics of high recognition and extraction accuracy, and simple and quick extraction steps. Therefore, this method was applied to extract the coordinate information of citrus trees. According to the planting situation of citrus trees and the number of plots, the coordinates of citrus trees were extracted from the three experimental fields numbered 1, 4, and 6 in Figure 1C, and the extracted coordinate information is shown in Figure 2. The coordinate points in the figure are the coordinates of each citrus tree, which is a set of world coordinates containing real geographic information, providing data support for subsequent simulation experiments and field experiments.




Figure 2 | Extraction of citrus tree coordinates.





2.3 Ant colony optimization improvement

The path planned by the traditional ant colony algorithm has the advantage of the shortest path. However, for the complex orchard environment and the maneuvering characteristics of the UAV, the path optimized by the traditional ant colony algorithm has a large cumulative turning angle and a large number of redundant waypoints. This path is very unfriendly to the flight of the UAV, which will seriously affect the flight time of the UAV, increase the flight energy consumption, and reduce the operation efficiency of the UAV. In order to solve such problems, this study improved the traditional ant colony algorithm, including improving heuristic information, improving pheromone update mechanism and node optimization strategy.


2.3.1 Ant colony optimization

The ACO was originally proposed to solve the traveling salesman problem, which is similar to the research content in this study, both of which are to solve the static task assignment problem. Taking the model as an example, there are n citrus trees in the UAV operation plot, that is, n tasks. Each ant needs to search from the first task, and select the next task according to the pheromone concentration on the path until all tasks are completed. The model records the path cost traversed by each ant after each iteration, and outputs the shortest path after all iterations are completed.

In this model, m is the number of ants, dij(i, j = 1, 2,···,n represents the distance between task i and task j, and τij(t) represents the pheromone concentration between task i and task j at time t. At the initial moment, the pheromone concentration on each path is the same, that is, τij = 0 = C (C is a constant), and   represents the probability of the Kth ant transferring from task i to task j, and the equation is as follows:

 

where  ; allowedk represents the set of tasks that ant k is allowed to access.

After each iteration, the pheromone concentrations on all paths will be updated again, and the pheromone update equation are as follows:

 

	(3)

 

where  represents the pheromone concentration of the Kth ant between task i and task j in this iteration; Δτij(t, t + 1) represents the sum of the pheromone concentrations of all ants between task i and task j in this iteration; Q is the pheromone intensity; ρ is the pheromone volatile factor; Lk is the total length of the path searched by ant k in this iteration.



2.3.2 Heuristic information improvement

During the plant protection operation of the UAV, if the task nodes i, j and k are not in a straight line, there is a UAV steering phenomenon, that is, the UAV flies from node i to node j, and then flies to node k after turning. The angle between the extension line of line segment ij and line segment jk is called the steering angle of the UAV, denoted as θj, as shown in Figure 3.




Figure 3 | Diagram of the flight angle.



In the waypoint planning, the influence of the turning angle on the flight energy consumption of the UAV cannot be ignored (Fan et al., 2019). Therefore, the route planning considering the corner factor is particularly important for the plant protection operation of the UAV. The heuristic function in the traditional ACO algorithm only considers the influence of the distance between different nodes on the probability selection of the next node. In this study, the node corner factor is added to the heuristic information of the traditional ACO algorithm, so that the ants can choose a path with the smallest turning angle while ensuring the optimal path. The calculation equation of the corner evaluation function is as follows.

 

where, Rijk is the turning angle factor;c is the turning angle weight coefficient; θj is the turning angle.

The improved ACO can ensure that the ants take into account the dual factors of path length and turning angle when selecting nodes. The improved heuristic function equation is as follows.

 



2.3.3 Pheromone update improvement

Ant colony algorithm is a parallel positive feedback computing mechanism, that is, each ant performs tasks independently according to the same mechanism. In ant colonies, some ants may find poor paths due to probabilistic problems, resulting in slow algorithm convergence, falling into local optimal solutions, and large fluctuations in results. Therefore, in order to improve the convergence speed and reduce the impact of inferior paths on the algorithm, a sorting optimization mechanism was added to the algorithm to update pheromone, that is, to enhance the pheromone concentration in the high-quality paths, thereby reducing the impact of inferior paths on the algorithm results.

Specifically, the sorting optimization mechanism will sort the paths traveled by all ants according to the path length (L1 ≤ L2 ≤···≤Lm) after each iteration. The higher the ranking, the better the searched path. The pheromone weighting is carried out according to the ant’s ranking μ, and the pheromone on the high-quality path is enhanced, so that the ants are more inclined to choose the high-quality path with more pheromone in the next iteration. At the same time, according to the mechanism of elite ants, set the ant ranking w, only the first w−1 ants are allowed to release pheromone, the improved pheromone update equation are as follows.

 

 

 



2.3.4 Node cleaning

The planting methods of fruit trees are mostly arranged in a nearly straight line, that is, the arrangement of the fruit tree hearts in each row is close to a straight line. When UAV carry out plant protection operations, such arrangement of fruit trees can be regarded as a linear arrangement, and precise operations can be carried out by adjusting the spray width and spray direction of plant protection drone spray nozzles. However, in the path planning of such fruit trees, ACO has a large number of redundant nodes and unnecessary turning nodes that approximate straight line segments. Therefore, this study cleans the redundant nodes in the ACO algorithm by setting the error threshold.

The step of node cleaning is set after planning the optimal path. According to the node coordinate information, the algorithm can obtain the rotation angle θj of all nodes except the starting node and the end node. According to the node coordinate information, the algorithm can obtain the rotation angle θj of all nodes except the starting node and the end node, and carry out the redundant node cleaning work through the set heading angle error threshold φ. For example, when cleaning and judging node j, the steering angle θj of node j can be obtained from the angle between node j and the line connecting two adjacent nodes. When θj ≤φ, it is considered that θj is an invalid steering angle and is deleted; otherwise, node is preserved. The cleaning node logic is shown in Figure 4.




Figure 4 | Redundant node clearing logic.





2.3.5 Algorithm implementation process

The path search process of MS-ACO is shown in Figure 5, and the pseudo code is shown in Algorithm 1. The algorithm mainly includes three important functions of task node search, pheromone update and node optimization, as follows:

	(1). Task node search. Ants search for task nodes based on the improved heuristic function, and select task nodes through the dual factors of path length and corner factor.

	(2). Pheromone update. After each iteration, the paths searched by all ants are sorted. Strengthen the pheromone concentration on the top-ranked paths, thereby improving the algorithm optimization ability.

	(3). Node optimization. According to the optimization formula, node optimization is performed on the searched optimal path.






Figure 5 | MS-ACO flow chart.








Algorithm 1. Pseudo code of MS-ACO




2.4 Simulation experiment

Simulation experiments were carried out in the MATLAB R2019b simulation environment, and 20 simulation experiments were carried out on the three experimental fields using ACO and MS-ACO. The simulation results of each test field are solved by averaging several experiments. The simulation results are compared in terms of path length, total angle, total node, and simulation path result graph to verify the feasibility and effectiveness of MS-ACO algorithm. There is no detailed theoretical method for the value of the parameters related to the ant colony algorithm, so this study repeated experiments to find the best values based on experience. The parameters of the ant colony algorithm mainly include the number of ants m, the rank of ants w, and the pheromone volatilization factor ρ, Pheromone importance factor α, Heuristic function importance factor β, Angle weight coefficient c, heading angle error threshold φ. The parameter values are shown in the Table 1.


Table 1 | Related parameter values of improved ant colony algorithm.





2.5 Field experiment

In order to further verify the real validity of the simulation experiment, we used the built UAV to conduct field experiments. The experiment time is September 17, 2022, the wind direction is north wind, the wind speed is 0.1m/s, the flying height of the drone is 7m, and the flight speed at the waypoint is 3m/s. The field experiments were analyzed from two aspects of flight trajectory and flight data. In the flight trajectory analysis, we used ArcMap software to project the GPS information recorded during the operation of the UAV to the orthophoto image of the orchard to analyze the trajectory of the UAV when it performed the route mission. ArcMap developed by Environment System Research Institute, has the functions of spatial analysis, map making, etc. It can match and transform the spatial coordinate system and is widely used in surveying and mapping (Wu et al., 2006). Digital orthophoto map is a kind of map containing geographic information, which has the characteristics of high precision, rich information and strong intuition (Fang, 2007). The flight data obtains the current, voltage and GPS information of the UAV during operation through the UAV flight log, and calculates the voyage time, range, turning angle and energy consumption per meter of the UAV during operation. The range and rotation angle are solved by basic geometric formulas. The calculation formula of the UAV’s flight energy consumption is as follows:

 



where P is the instantaneous power of the drone, w. U is the working voltage of the drone, V. I is the sampling current of the drone, A. Δt is the sampling time, s. Pk is the power value collected at the kth moment, w. W is the flight energy consumption, J.

A quadrotor small UAV was applied as a verification platform for waypoint path planning. The built small quadrotor UAV (left in Figure 6) includes: YH-2216 motor, HOBBYWING XRotor-20A -V1 -Asia Edition electronic governor, HEX MAUCH power module, 1047 carbon fiber propeller, F450 frame, HEX Cube Black flight control, Here+ positioning module. In the field test, in order to ensure the accuracy of UAV waypoint flight positioning and power detection, we use RTK base station for real-time dynamic differential positioning, and the positioning accuracy can reach 0.025m. The current and voltage module is the MAUCH002+015 power module, which uses the ACS758-200 version of the Hall current sensor, which can measure 200A of current with a measurement accuracy of ±3% (Zhang et al., 2021a). The four-rotor UAV cooperates with ground equipment to form a UAV flight platform. The built UAV flight platform is shown in Figure 6 (right).




Figure 6 | The real UAV (left) and UAV platform equipment (right). 1. Control signal receiver;2. MAUCH002+015 power module; 3. Power supply; 4. HEX Cube Black; 5. Data transmission module; 6. Brushless motor; 7. GPS module; 8. RTK base station; 9. Ground station; 10. Power bank.






3 Result


3.1 Analysis of simulation results

According to the analysis of the statistical results in Table 2, it can be seen that MS-ACO has improved in both the optimal path and the total turning angle, among which the optimization effect of the total turning angle is the most obvious. Compared with ACO, the optimization effect of MS-ACO in the three experimental fields increased by 21.94%, 45.06% and 55.94% respectively. The main reason is that ACO searches the path through the path cost, which will cause the ants to fall into the local optimal solution in the densely planted area of citrus trees when searching for the path, increasing the total value of the path angle. In the path length optimization, MS-ACO is improved by 3.89%, 4.6% and 2.86% respectively compared with ACO, and the improvement effect is weak, which also shows that ACO has great advantages in path length optimization, and the improvement space is small. In terms of node optimization, the node optimization effect of the three experimental fields is obvious, all reaching more than 60%. It can be seen from the data in Table 3 that the optimized total nodes and the total rotation angle show a positive correlation phenomenon, but there is no accurate correlation. The main reason is that each experimental field is not planted regularly, and the arrangement of fruit trees will have different degrees of influence on the optimization results. In general, ACO has certain advantages in path length optimization, but this algorithm is not suitable for the path planning of plant protection UAV in orchards. Although MS-ACO has a weak optimization ability in terms of path length, it has a strong ability to optimize the total turning angle of the path. Therefore, the overall optimization performance of MS-ACO is stronger than that of ACO, which is suitable for plant protection UAV orchard waypoint planning.


Table 2 | Simulation results of traditional ant colony algorithm and improved ant colony algorithm.




Table 3 | Statistical results of flight energy consumption.



Figure 7 shows the optimal paths of MS-ACO and ACO in the three experimental fields. The first column in the figure is the optimal path for the MS-ACO to solve the three experimental fields, and the second column is the optimal path for the ACO to solve the three experimental fields. It can be seen from the pictures of the three experimental fields that the arrangement of citrus trees in each experimental field is roughly divided into regular areas and irregular areas. For example, the upper part of field 1 and field 4 are irregularly planted, the lower part is linearly arranged, the left side of field 6 is linearly arranged, and the right side is irregularly planted. The route optimized by MS-ACO roughly retains the advantages of full coverage reciprocating route planning in the regular planting area of citrus trees. However, unlike the full coverage reciprocating route method, MS-ACO can make accurate planning based on the coordinate information of fruit trees, and ensure that the route accurately covers the center of each fruit tree within the range of the tree center deviation threshold; in irregular areas, MS-ACO can more clearly highlight the advantages of its path optimization. Under the condition of ensuring the optimal route, the route is adjusted according to the position of each fruit tree. This also means that the UAV needs to make too many turns to accurately cover each fruit tree, which is inevitable. It can also be clearly seen in the ACO that the algorithm also roughly follows the planning characteristics of full coverage reciprocating routes. However, due to the intensive planting of citrus trees, ACO tends to fall into a local optimal solution, thus increasing the corner cost. At the same time, the increase of nodes also means an increase in the number of plant protection drones. The UAV will experience deceleration and acceleration when passing through each task node. Frequent acceleration and deceleration will greatly increase the energy consumption of the UAV and reduce the cruising time of the UAV. To sum up, although ACO has the advantage of the shortest path, the algorithm is not suitable for orchard waypoint planning due to too many task nodes and total turning angles. MS-ACO can not only better balance the cost of paths and corners, but also effectively reduce the number of task nodes, which has a strong advantage in orchard waypoint planning.




Figure 7 | Comparison of the best paths for MS-ACO and ACO solutions.





3.2 Experimental verification and discussion in the field environment


3.2.1 Flight path analysis

Figure 8 shows the GPS trajectory map of the UAV, which is composed of an orthophoto image and the UAV flight trajectory. In Figure 8, the first row is the flight trajectory of MS-ACO, and the second row is the flight trajectory of ACO. The blue, red and yellow colors represent the GPS trajectories of the three experimental fields respectively. Through the flight trajectory, we can better analyze the state of the UAV during operation. Here we mainly focus on the degree of coincidence between the trajectory and the fruit tree and the degree of fluctuation of the trajectory, which will directly affect the precision operation and flight energy consumption of the UAV. It can be seen from Figure 8 that no matter the route optimized by MS-ACO or ACO, the flight trajectory and fruit trees have a high degree of overlap, indicating that the UAV can accurately execute the route task.For the degree of trajectory fluctuation, the route based on ACO optimization fluctuates greatly, which is not conducive to UAV plant protection operations. The route optimized based on MS-ACO is smoother and more in line with the flight characteristics of UAVs. The main factors affecting trajectory fluctuations are the mission nodes and turning angles in the route. When the UAV passes through each node, it will go through the process of acceleration and deceleration. Frequent acceleration and deceleration will lead to large fluctuations when the UAV is flying, thereby increasing unnecessary energy consumption, which is not conducive to UAV plant protection operations.




Figure 8 | GPS flight trajectory of MS-ACO algorithm and ACO algorithm to solve the path.





3.2.2 Flight data verification

The statistical results of the flight data of the UAV are shown in Table 3. It can be seen that in the field experiment, the flight energy consumption of the path optimized by the MS-ACO is smaller than that of the ACO optimized path. For the three experimental fields, the voyage time optimization rates of MS-ACO are 46.47%, 56%, and 59.01%, respectively, and the energy consumption per meter optimization rates are 30.05%, 33.52%, and 35.33% respectively. Both optimization effects were significant and both improved significantly. The optimization effect of the voyage is less obvious, and even a negative value appears. The main reason is that the optimization effects of the two algorithms on the path are similar, and due to the influence of environmental factors (such as wind speed and GPS signal) in the field experiment, the flight stability of the UAV is poor, resulting in fluctuations in the data results. The optimization effect of the total turning angle of the path can reach more than 50%, but there are some differences. Because the planting of fruit trees is random, the optimization effect of the total turning angle will change with the distribution of fruit trees. The field experiment results show that compared with ACO, MS-ACO can greatly reduce the total turning angle of the UAV flight path, and the energy consumption per meter optimization rate can reach 30%. Although the voyage optimization effect is poor, it shortens the voyage time and reduces the flight energy consumption, which verifies the feasibility and effectiveness of MS-ACO in the waypoint planning in irregular orchards.




3.3 Comparison of simulation and field experiment results

In the above two sections, we analyzed the optimization effects of the two algorithms in simulation experiments and field experiments respectively. In order to further verify the reliability of the improved algorithm, this section carries out visual analysis on the simulation results and experimental results of the algorithm from two parts: Voyage and Turning angle. The comparison of the results of the voyage is shown in Figure 9. The broken line part represents the result of the optimization of the ACO algorithm, and the bar part represents the result of the optimization of the MS-ACO algorithm. It can be seen that, whether it is a simulation experiment or a field experiment, the results of the two algorithms are not much different, indicating that the simulation results are consistent with the experimental results, and the UAV can perform the path flight mission well. For the corner optimization results (Figure 10), we can still see that the simulation experiment of the MS-ACO algorithm is not much different from the field experiment results, showing consistency. However, there is a big difference between the simulation experiment and the field experiment in the corner optimization effect of the ACO algorithm. The main reason is that there are too many path nodes planned by the ACO algorithm, and the UAV has frequent deceleration and acceleration when performing flight tasks, so the trajectory fluctuates greatly, which also causes a surge in the total path angle and increases the flight energy consumption. From this point, it can be shown that the path optimized by the ACO is not suitable for the waypoint planning of plant protection UAVs. In general, the results of MS-ACO both from simulation experiments and field experiments are within the error range, and the optimization results are relatively stable, which proves the reliability and effectiveness of the optimization path.




Figure 9 | Comparison of path results between simulation experiment and field experiment.






Figure 10 | Comparison of corner results between simulation experiment and field experiment.






4 Discussion

Agricultural UAVs have received extensive attention in recent years, and related scholars have also carried out a lot of research on aerial plant protection technology, of which route planning is an important development direction for plant protection drones. At present, the flight path planning mainly focuses on the research on the coverage rate and operation efficiency of the farmland regulation degree, and lacks the waypoint planning for the fruit tree farmland. In this study, an exploration of waypoint path planning based on orchard was carried out to solve this problem. By improving the ant colony algorithm, the drone can achieve point-to-point precision flight operation of fruit trees.

At present, there are few researches on path planning for plant protection UAV node traversal. The ACO can quickly solve the shortest path, and it is easy to combine with other algorithms, which has a significant advantage in the waypoint planning of traversing nodes. Therefore, the ACO algorithm was used to carry out a preliminary exploration of the path optimization of the UAV waypoint. Most route planning studies use raster maps for environmental modeling. For example, Cheng et al. (2021) proposed an improved fusion algorithm of wolf swarm and particle swarm in order to solve the problems of premature convergence and local optimization of traditional particle swarm algorithm, which was effectively verified in the grid map constructed. Dai et al. (2019) combined the characteristics of MAX-MIN ant system and A* algorithm, proposed an improved ant colony algorithm to improve the high search ability of mobile robot complex map path, and verified it in grid map. Although the above research has been successful, the constructed grid map limits the freedom of movement of the robot, which has certain limitations in practical applications. In this study, a simulation environment is constructed according to the geographical coordinates of the orchard, and the optimal path is planned by combining the flight characteristics of the UAV and the position information of each fruit tree. It avoids the influence of grid maps, operation objects and other factors on the final path, and has practical application value.

This research focuses on improving the efficiency of plant protection UAV waypoint flight, including the flight time and energy consumption during UAV operation. In UAV plant protection operations, the primary issue affecting energy consumption is not the range, but the number of corners and waypoints in the path. In this study, the ACO algorithm was improved aiming at this problem. On the premise of ensuring the performance of ACO distance optimization, the corners, redundant nodes and iterations of the algorithm were optimized. The proposed MS-ACO can plan a reasonable spraying path based on the location information of multiple target fruit trees and integrate the three constraints of distance factor, turning angle factor and the number of task nodes. The results of simulation experiments and field experiments show that compared with the ACO algorithm, MS-ACO has been greatly improved in terms of corner optimization and node optimization, which enhances the operating efficiency of UAVs and reduces flight energy consumption. The distance difference between the two algorithms in the simulation experiment and the field experiment is within the error range, showing a high degree of consistency. However, there is a big difference in the total turning angle, and the total turning angle of the path planned by the ACO is multiplied. This further shows that although the path lengths planned by ACO and MS-ACO are not much different, the energy consumption and turning angle are greatly increased, and ACO does not have practical application value. However, the results of MS-ACO in the two sets of experiments are relatively stable, and the optimization of the corner and energy consumption is more consistent with the expected assumptions, and has good energy consumption optimization performance.

A preliminary investigation was conducted in this study on the waypoint planning of the plant protection UAV orchard scene, and the selected orchard is the orchard scene in the near-plain area. In such scenarios, elevation and slope of the orchard, and tree height have less impact on spraying efficiency. The proposed algorithm is capable of 2D optimal trajectory planning for such scenarios. In orchard areas with obvious height differences, elevation and tree height are one of the important factors affecting spraying efficiency. In the vast area of hilly mountainous terrain in China, orchard and tea gardens are commonly planted along the slopes (Wang et al., 2019; Liu et al., 2022). The path planning based on MS-ACO has more application value for such scenarios. Therefore, the waypoint planning for mountain and hilly scenes is one of the important directions of future research (Zheng et al., 2020). In the analysis of algorithm optimization, this study verified the quality of the results by comparing the optimization performance of ACO and MS-ACO algorithms. In future research work, we plan to carry out comparative research on other intelligent optimization algorithms to further improve the optimization performance of the MS-ACO algorithm and make it more generalizable. In addition, ACO has great advantages in solving combinatorial optimization problems. In the future research, it should also be combined with the dynamic changes of the load during the UAV spraying process, the battery life of the UAV, obstacles and other factors.



5 Conclusion

This study conducts research on the problem of UAV waypoint planning, and proposes an improved ant colony algorithm to solve the problem of point-to-point pesticide application in plant protection UAV orchard scenes. The improved algorithm incorporates the corner factor into the original heuristic function, which improves the corner optimization ability of the algorithm. At the same time, a ranking optimization mechanism is added to the pheromone update, which speeds up the convergence speed and avoids the influence of inferior solutions. Finally, the redundant nodes in the path are cleaned to further improve the energy consumption optimization rate of the algorithm. The method proposed in this study can carry out precision plant protection operation route planning according to the geographical location of each fruit tree. In the simulation and field experiment results, we have verified that the algorithm can plan a more low-consumption and efficient UAV plant protection route through performance indicators such as flight time optimization rate and energy consumption optimization rate per meter.

In future research, the influence of different obstacles in the field, take-off point and return point on the optimization rate of route energy consumption will be combined. At the same time, the environment perception of the sensor is used to improve the obstacle avoidance ability of the UAV during the route flight, making the algorithm more generalized and intelligent.
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Multi-rotor unmanned aerial vehicle (UAV) is a new chemical application tool for tall stalk tropical crop Areca catechu, which could improve deposit performance, reduce operator healthy risk, and increase spraying efficiency. In this work, a spraying experiment was carried out in two A. catechu fields with two leaf area index (LAI) values, and different operational parameters were set. Spray deposit quality, spray drift, and ground loss were studied and evaluated. The results showed that the larger the LAI of A. catechu, the lesser the coverage of the chemical deposition. The maximum coverage could reach 4.28% and the minimum 0.33%. At a flight speed of 1.5 m/s, sprayed droplets had the best penetration and worst ground loss. The overall deposition effect was poor when the flight altitudes were greater than 11.09 m and the flight speed was over 2.5 m/s. Comparing flight speed of 2.5 to 1.5 m/s, the overall distance of 90% of the total drift increased to double under the same operating parameters. This study presents reference data for UAV chemical application in A. catechu protection.




Keywords: droplet deposition, multi-rotor UAV, LAI, Areca catechu protection, aerial spray, spray drift



1 Introduction

Areca catechu is native to the tropical Pacific, Southeast Asia, South Asia, and East Africa and belongs to the palm family of perennial evergreen trees. It is grown mainly in India, China, Indonesia, and Africa (Ansari et al., 2021; Salehi et al., 2020). According to relevant statistics, in 2019, the global A. catechu planting area was 1,240,253 ha, with a total production of 1,722,273 tons. In 2019, the area under A. catechu cultivation in China Hainan Island was 115,171 ha, with a total production of 287,043 tons; it is the province’s primary economic source for more than 2.3 million farmers. According to statistics, A. catechu has more than 40 diseases and 100 insect pests, and among the diseases, A. catechu yellowing disease is the most serious (Cao et al., 2021; Wang H. et al., 2020). It is a systemic disease of the bast, affecting leaves and flowers. Bacterial leaf spots, fruit rot, and anthracnose mainly affect the fruit, heart leaves, foliage, and other parts of the areca fruit growing on the tree trunk. Reviewing references and field surveys shows that the general A. catechu disease sites occur on the leaf surface and the heart of the leaf and trunk parts. The height of A. catechu can reach 10–20 m after entering maturity, and the height of 7–8-year-old trees cultivated with new varieties in recent years can reach 8–9 m. A. catechu mainly grows in hilly areas, making the application more complicated. The canopy of branches and leaves overlap each other, and nuts are in the trunk position; these growth forms and pest and disease characteristics make it necessary for pesticide spraying. A. catechu can be manually protected and applied during the seedling period, but the difficulty of manual application increases after the tree height exceeds 2 m. Most farmers adopt rough management after the height of A. catechu is greater than 3 m.

The application of unmanned aerial vehicles (UAVs) provides new viable tools for crop protection (Li et al., 2021). As a new technology, UAVs offer an alternative to ground machines and manual knapsacks, especially for complex terrain and tall trees (Giles, 2016). In the Asia Pacific, UAV application technology can help alleviate the growing labor shortage caused by aging farm populations (Matthews, 2019; Wang G. et al., 2020). Japan began using Yamaha RMAX radio-controlled helicopters for rice pest and disease control in the 1990s (Sheets, 2018). In the United States, UAV spraying is slowly integrating into commercial agriculture, especially in specialized application scenarios such as the treatment of invasive weeds, pest control for vineyard spraying on steep terrain, and fungicide application in the air (Lan et al., 2010; Giles and Billing, 2014; Biglia et al., 2022). In California, RMAX is approved for vineyard-controlling diseases on grape foliage (Giles and Billing, 2015; Giles, 2016). In China, labor shortages in the countryside have accelerated the need to use UAVs for crop spraying (He, 2018). Regarding spraying effect and efficiency, UAV sprayers have absolute advantages in wheat, rice, and other crops while reducing the exposure risk of sprayers (Faiçal et al., 2014; Faiçal et al., 2017; Mogili and Deepak, 2018). Commercial applications of low-altitude, low-volume UAV sprayers are multiplying in East Asian countries such as China, Japan, and South Korea. Especially in China, UAVs are used on low crops such as rice, wheat, corn, and cotton and even on some economic crops such as apples, tea, pineapples, lychees, and sweet potatoes (Meng et al., 2019; Vougioukas and Rutledge, 2019). Most electric multi-rotor UAVs have limited payloads and more flexible and autonomous flight control. These UAVs are rapidly commercialized in related fields and are receiving increasing attention worldwide. For example, the multi-rotor UAV P20 (Guangzhou XAG Technology Co., Ltd.) has an intelligent control system and multi-directional radar mode and uses precision spraying, uniform seeding, and intelligent mapping.

Incorporating UAVs as a new form of plant protection into modern commercial crop protection systems requires extensive research. Evaluation indicators include the effectiveness of pest and disease control and the degree of environmental pollution. The environmental meteorology, wind speed, and temperature indicated on the pesticide instructions are generally suitable for shaped ground or aerial application equipment. Since UAVs are emerging products, these instructions do not specifically mention UAVs. Many factors may influence the coverage, droplet size, and drift potential of UAV spraying, such as the selection of appropriate meteorological conditions, flight altitude, flight speed, nozzle types, and droplets size (Huang et al., 2019; Teske et al., 2019; Wang J. et al., 2019). Spray quality requires to achieve better droplet coverage on crops. Spray drift is defined as droplets evaporating off the target crop, stagnating, or depositing at a distant ground level during or shortly after pesticide application (Chen et al., 2022). The droplet sizes of UAVs are approximately 270–350 μm, the droplet size of ground-based machinery is approximately 300–1,000 μm (Yallappa et al., 2017; Ling et al., 2018), and smaller droplets (less than 200 μm in diameter) have a higher risk of drift (Chen et al., 2022). However, finer droplet sizes can achieve better spray coverage, which contradicts reducing drift. In addition to particle size, flight altitude and speed, ambient wind speed, temperature and humidity, and rotor wind fields influence spray quality and drift (Wang et al., 2022; Zhan et al., 2022). Application environments such as orchards, tall trees, and vast canopies are challenging for any application method, especially when farmers need higher spray penetration and effectiveness for the target area. Therefore, it is essential to pay attention to the risk of drift while discussing the spray quality of crops.

Areca trees in Hainan Island are primarily grown in hilly areas. Farmers usually use knapsack sprayers in the seedling stage, with low efficiency, high intensity, and potential pesticide poisoning risk. Due to the planting density and terrain limitation, it is difficult for ground application machines to operate. There have been little research data on the mechanized application of A. catechu globally. Further research is needed to determine whether UAVs can achieve the expected deposition and penetration to achieve the desired level under a high leaf area index (LAI) due to the small UAV loads and low spraying volumes. The specific objectives of this study were to a) acquire more data to assess the effectiveness of UAVs as spraying devices for tall crops, b) evaluate the leaf area index on the distribution of droplet deposition inside the canopy for different aerial application parameters on A. catechu, and c) evaluate the environmental impact of UAV application in tall crops, including ground loss and drift.



2 Materials and methods


2.1 UAV and spray system

This experiment used a P20 multi-rotor UAV (Guangzhou XAG Science and Technology Co., Ltd., Guangzhou, China) with a SUPERX2 RTK flight control system. Furthermore, a more accurate GNSS RTK positioning module spraying system makes UAV spraying more intelligent, accurate, and efficient (Figure 1). It can map farmland boundaries and intelligently plan high-precision routes. With modular design, it can be interfused between a fixed base station, mobile base station, and handheld mapper, with simple operation and quick surveying and mapping of farmland by one person (Table 1). The accuracy of UAV route planning can reach a centimeter level, realizing high-precision flight routes. The NK-5500 Kestrel weather meter (NK, USA) performs environmental and meteorological monitoring, collecting data every 5 s, including ambient temperature and humidity, wind speed, and wind direction. CI-110 Plant Canopy Image Analyzer (US CID Company, Camas, WA, USA) obtained the LAI of A. catechu, which was taken vertically upward from the bottom of the plant according to the instructions of the instrument. The instrument connects to a handheld tablet computer, which can display test images in real-time. The BeiDou system (an aerial BeiDou positioning UB351 system developed by the South China Agricultural University with the RTK differential positioning function) collects UAV flight trajectory, and the horizontal accuracy reaches (10 + 5 × D × 10−7) mm. The elevation accuracy reaches (20 + 1 × D × 10−6) mm, where “D” represents the distance value measured by the system. The data collection interval was 0.1 s. The BeiDou system can record the flight trajectory and precise operation time of the UAV (Yao et al., 2019).




Figure 1 | The layout of the treatment area by UAV spraying areca test. UAV, unmanned aerial vehicle.




Table 1 | Parameters for UAV application.





2.2 Testing layout

The test site is located at the A. catechu demonstration base (National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology) in Chengmai County, Hainan Province (19°57′57″N, 110°08′58″E). The tree was 5–6 years old before flowering and fruiting. The tree height ranged from 4.7 to 6.3 m, the planting density was 1,800 plants/ha, the leaf area index ranged from 0.81 to 1.91, and the row spacing was 2.0 m × 2.5 m.



2.3 Sampling arrangement

The planting form, canopy structure, fruit location, and plant growth shape of the A. catechu differed from those of low crops such as rice and wheat. The spraying volume should be based on the amount of pesticide required by crop biomass per unit volume rather than the land area size per unit. Leaf area index and vegetation biomass are characteristic parameters of crop growth status information, which can use as an essential basis for controlling the amount of pesticide spraying. At the same spraying rate, crops with different leaf area indices had different droplet deposition results. The pre-experimental data showed that the deposition had a significant coefficient of variation (Yao et al., 2019). In order to test the data more accurately and objectively, the experiment divides into two zones for 5–6-year-old trees. As shown in Figure 2, five plants with similar leaf area indexes were selected for the test according to X type. The average leaf area index of plants was 1.01 and the average tree height was 4.61 m in zone 1, and they were 1.65 and 4.96 m, respectively, in zone 2. The sampling was divided into three sections: canopy, ground, and drift (Wang J. et al., 2020) (the reference model is another DJI multi-rotor model, and the two test programs are the same; for the specific model, please refer to the reference).




Figure 2 | The layout of the test plan for spraying Areca catechu by UAV. UAV, unmanned aerial vehicle.




2.3.1 Areca catechu sampling arrangement

The top of the A. catechu canopy has a small transverse area, and the angle between the leaves and the trunk is small, which is more prone to pests and diseases. The middle part has the largest transverse area, the angle between the leaves and the trunk increases, and the branches and leaves are dense, which was the critical control area. The trunk layer was the location of nut fruiting, which was the critical area for pest and disease prevention when flowering and fruiting. Due to the above reasons, we sampled three layers in the canopy, the upper layer was approximately 0.5 m from the top canopy, and the angle between the leaves and the trunk was approximately 30°–50°. The sampling cards were arranged in a “+” shape; the center was arranged as one sampling point; in each of the four directions, two sampling points, east, south, west, and north, were arranged at equal distances; and a total of nine sampling points were arranged in the layer. Compared with the traditional five sampling points for pests and diseases, there were four more sampling points, and the diameter of this layer was approximately 1.0–1.2 m. The middle layer was approximately 0.6 m from the upper layer, with a diameter of 1.5–1.6 m, and the arrangement was the same as that of the upper layer. The third layer was on the trunk, with a diameter of approximately 0.22 m and 1.0–1.4 m from the middle layer; around the circumference arranged, eight sampling points were at equal intervals. The sampling points were marked in advance with numbered white filter paper for accurate sample recovery and placement. Each flight recovered a total of 260 sampling cards.



2.3.2 Ground loss sampling arrangement

The ground loss sampling of the two LAIs of A. catechu was arranged in six rectangular areas (2 × 7.5 m), with every three areas replicated as a group. Three collection lines are arranged in the upwind, canopy interception, and downwind areas. Each area contained one sampled tree, i.e., A2, A3, A4, B2, B3, and B4. Each collection line arranged seven sampling points, with the arrangement method and spacing shown in Figure 2. A sharpened polyvinyl chloride (PVC) pipe was inserted into the ground, a universal clip was placed approximately 30 cm above the ground, and sampling cards were placed on the universal clip. For each flight, a total of 126 sampling cards were recovered.



2.3.3 Sedimentation drift sampling arrangement

The drift collection area was divided into two areas with three repetitions. The first area was arranged on the extension line of the sampling A. catechu with an average LAI of 1.01 and the second area with an average LAI of 1.65. The spray drift start position was 2 m to the right of the ending position of the spraying area, and the ending line was set at 0 positions; a total of 13 sampling points were set up sequentially at 2, 4, 6, 8, 10, 15, 20, 30, 40, 50, 60, 80, and 100 m. The sampling points were arranged in the same way as the ground sampling arrangement. Each sampling point was marked in advance with filter paper for accurate placement and recovery of droplet collection cards. Each flight collected a total of 78 cards.




2.4 Operation parameters and spraying liquid configuration

Allura Red tracer at 5‰ was selected instead of pesticide spraying. The test was sorted six times,

and the test was repeated in the exact location of the same plant. The droplet sampling card was made of copper plate card with a size of 75 × 25 mm. The test variables were flight altitude and speed of the UAV and LAI of A. catechu, and the spraying volume was 22.5 L/ha.

The UAV operation mode was consistent with the actual operation in the field. The UAV took off from the top of the first row of the areca tree in the field, with a spray width of 3 m, a flight length of 50 m, and a total width of flight area of 60 m. The UAV took off and landed 20 m away from the sampling area. The test was divided into 12 treatments. Table 2 shows the operating and environmental parameters of the test processing. The operating altitude and speed of the UAV in the table were all obtained from the BeiDou RTK positioning system.


Table 2 | Operating parameters and environmental information.





2.5 Data processing method

After each flight execution, when the sampling cards were completely dry, the testers wore disposable gloves, collected the pre-numbered sampling cards in the designated envelopes, placed them in sealed bags, and store them in ice boxes. After the test, the scanned images were analyzed with the processing software Deposit Scan to obtain the droplet deposition, droplet size, number of droplets, and coverage.


2.5.1 Coefficient of variation

The coefficient of variation describes the degree of variation of the same data group. This test describes the variation range of droplet deposition, coverage, and droplet size of each sample in the same group. The larger the coefficient of variation, the worse the uniformity. The uniformity of distribution mentioned below is calculated based on this, and the coefficient of variation (CV) calculation formula is as follows:

	

where S is the standard deviation; Xi is the deposition (μl/cm2), coverage (%), and droplet volume median diameter (μm);  is the deposition of each sample (μl/cm2), coverage (%), and droplet volume median diameter (μm); and n is the number of sampling points in each group.



2.5.2 Deposition level

Deposition level represents the percentage k (%) of droplet deposition in the amount of application.

	.

where βdep  is the droplet deposition (μl/cm2) and  βv  is the spray volume per hectare (L/hm2).



2.5.3 Drift rate and percentage

The droplet drift deposition level calculation is the same as in Section 2.5.2. According to the ISO22866 standard, the total measured value of spray drift βT (100%) is calculated by the following formula:

	.

A 90% drift distance is defined as the distance that reaches 90% of the total spray drift test amount in meters.





3 Results and analysis


3.1 Spray quality


3.1.1 Canopy deposition distribution

During the experiment, the sampling cards were placed according to the angle of leaf growth. The distribution of droplets on the sampling card can approximate the deposition of droplets on the leaf surface, and the difference of each processing data can approximate the influence of the experimental variables on deposition. The scanned image of the sampling card is shown in Figure 3. Areca plantation was sprayed by the UAV with six operational parameters and recorded using a copper plate card, as shown in the figure with sampled images of canopy, ground, and drift areas. The data results showed a trend consistent with the visual observations.




Figure 3 | Partial sampling cards of Areca catechu canopy, ground, and drift areas.





3.1.2 Spray coverage

The UAV sprayed on two LAI areca plants at two flight speeds and three flight altitudes. Figure 4 shows the spray coverage recorded on the sampled copper plate cards. The data analysis showed no statistically significant difference in the coverage for each treatment (p > 0.05), which was different from the visual effect. The results showed that treatment 4 (LAI = 1.65, v = 1.5 m/s, h = 10.31 m) had the highest total spray coverage, and treatment 9 (LAI = 1.01, v = 2.5 m/s, h = 10.31 m) had the lowest. The total canopy coverage was significantly lower for both different LAI trees at the same flight altitude with a speed of v = 2.50 m/s compared to v = 1.50 m/s. At LAI = 1.01, the coverage decreases were 7% (H = 8.84 m), 75% (H = 10.31 m), and 54% (H = 11.09 m). At LAI = 1.65, the coverage decreases were 61% (H = 8.84 m), 78% (H = 10.31 m), and 11% (H = 11.09 m).




Figure 4 | Comparison of spray area coverage of copper plate cards at two flight heights and three flight speeds at three heights in the canopy of two LAI plants. LAI, leaf area index.



At LAI = 1.01 and v = 1.5 m/s, the flight altitude was 10.31 m compared to 8.84 and 11.09 m, and the total coverage decreased by 29% and 18%, and at v = 2.5 m/s, the total coverage decreased by 82% and 57%. At LAI = 1.65 and v = 1.5 m/s, the flight altitude was 10.31 m compared to 8.84 and 11.09 m, and the total coverage increased by 75% and 18%. At v = 2.5 m/s, the uniformity of coverage distribution improved but decreased more. The variability of droplet penetration inside the canopy was expressed in coverage CV values, ranging from 0.20 to 0.69. Only at the operating height of 11.09 m was there a significant difference in the penetration of spray coverage of the two LAI in the interior of the canopy, with v = 1.5 m/s, and CV values were 47% (LAI = 1.01) and 59% (LAI = 1.65), and at v = 2.5 m/s, the CV values were 69% (LAI = 1.01) and 43% (LAI = 1.65).

The larger the LAI value, the denser the branches and leaves, and the lower the spray coverage. The upper canopy had a maximum coverage of 4.28% and minimum coverage of 0.68%. The middle canopy had a maximum coverage of 3.56% and minimum coverage of 0.78%. The lower canopy had a maximum coverage of 1.98% and minimum coverage of 0.33%. Analysis of the full canopy spray coverage showed that when LAI = 1.01, v = 1.5 m/s performed better than v = 2.5 m/s, with an overall coverage increase of approximately 70%. When v = 2.5 m/s, the coverage of height 8.84 m was 5.3 and 2.3 times higher than that of the other two heights. When LAI = 1.65, v = 1.5 m/s performed better than v = 2.5 m/s, with an overall coverage increase of approximately 172%.

The UAVs have two modes of spraying fruit trees, hovering and full coverage. Due to the small diameter of the UAV rotor relative to the tree canopy, the more common full-coverage spraying method was used in this experiment. The UAV uses a counter-rotating rotor running at different speeds to produce a wind field that can directly affect the trajectory of the droplet. The downward wind field can help the droplets penetrate the canopy better and improve penetration. The precise relationship between wind field and droplet motion theory is still under study. How to select appropriate operating parameters and the correct use of downward wind will have an important impact on droplet penetration. The penetration effect of the UAV in the canopy of areca trees in this test is satisfactory.

The distribution of canopy branches and leaves was complex. It was difficult to infer the precise relationship between spray coverage and flight height due to the complex growth pattern of A. catechu trees and the test height of only three groups. The coverage information on the copper plate card can qualitatively describe the distribution of spray deposition within the tree canopy. However, the sample collection area was limited relative to the leaf area and needed to be supplemented with ground and drift area sampling data. The spray coverage data showed that the overall performance at UAV flight altitude was below 10.31 m, and the speed was 1.5 m/s, which can provide data references for UAV application to tall trees in tropical areas.

Uniform coverage of small droplets is considered to increase the effectiveness of pest control. The range of canopy coverage CV values indicates the degree of heterogeneity, with CV values ranging from a minimum of 54% to a maximum of 163%. The lower canopy was more uniformly distributed, related to the size and number of droplets that can move to the trunk layer. Relatively speaking, when pest control is focused on the upper canopy, larger droplet sizes can be selected, with coarse droplets more inclined to deposit upon the first impact with the foliage and smaller droplets more likely to penetrate the lower canopy and trunk. It is essential to recognize that more droplets, even at lower concentrations, are preferable to fewer droplets at much higher concentrations. Spray coverage is vital to ensure effective pest and disease control, and the high temperatures and high humidity conditions of Hainan Island, China, may present evaporation and drift risks. Different droplet particle sizes can be selected as needed for practical applications.



3.1.3 Droplet size

There was no significant difference in droplet size (p > 0.05) between the upper canopy and the lower canopy except for treatment 3 (p< 0.05). The upper layer data showed that only treatment 1 significantly differed from treatment 6 and treatment 10 (p< 0.05). There was no significant difference between the middle and lower layers for the other treatments (p > 0.05). The droplet sizes of all treatments were divided into 630 groups for significance analysis, and only 47 groups were found significantly different (p< 0.05). Significant differences occurred when the operating parameters, canopy position, and LAI were changed simultaneously, mainly in the upper canopy (treatment 1) and lower canopy (treatments 3, 5, 6, 9, 11, and 12). The data analysis in Table 3 showed that when LAI = 1.01, the droplet size in the lower canopy was different from the other sampling layers, with the smallest particle size (190 μm), which may be related to the density of branches and leaves in the canopy of A. catechu.


Table 3 | Droplet size characteristics and distribution uniformity.



Rotor downwash airflow and windward and crosswind airflow had coupling effects on each other. They changed the canopy pore distribution state and affected the droplet movement law, forcing the droplet movement track to change, the droplet to be captured by the leaves, or the pores to continue moving forward. The larger the droplet size, the greater the inertia force, and the less affected the droplets are by an air drag force. The droplets cannot easily penetrate the inner canopy leaf pore space, while the smaller the particle size, the stronger the ability to change the track transport. The data showed that the droplet size of the upper canopy was the largest and the lower canopy was the smallest under the same treatment, which again indicated that the smaller droplet size had a more vital variable orbit ability and could easily penetrate the canopy and reach the bottom.

The droplet size was analyzed for all treatments, with mean values of 235.89 μm for the upper canopy, 226.50 μm for the middle canopy, and 199.57 μm for the lower canopy at LAI = 1.01. At LAI = 1.65, the mean value of the upper canopy was 219.45 μm, that of the middle canopy was 220.75 μm, and that of the lower canopy was 200.18 μm. The mean size of ground loss droplets was 232.92 μm.



3.1.4 Number of droplets

Figure 5 shows the number of canopy droplets, and the analysis showed that treatment 1 had the highest number of droplets at LAI = 1.01 with an average of 43.81 droplets/cm2, and treatment 9 had the lowest of 8.25 droplets/cm2. Treatment 4 had the highest number of droplets at LAI = 1.65 with an average of 44.62 droplets/cm2, and treatment 12 had the lowest number at 10.06 droplets/cm2. At v = 2.5 m/s, the number of droplets was reduced by about half compared with that at v = 1.5 m/s. The performance was poorer at a flight speed of 2.5 m/s, and the number of droplets was higher at v = 1.5 m/s and below an altitude of 10.31 m. The higher the flight altitude, the more the droplet deposition shape expands, and the droplet distribution is more uniform in a particular altitude range. The faster the flight speed, the shorter the rotor’s downwash wind field is in affecting the time on the droplet. A higher height of the wake vortex will increase its duration, resulting in the droplet motion track being more randomly and quickly affected by the surrounding environment.




Figure 5 | Comparison of deposition of copper plate cards at two flight heights and three flight speeds at three heights in the canopy of two LAI plants. LAI, leaf area index.





3.1.5 Droplet deposition

A. catechu canopy size and branch density significantly impact droplet movement, and the instability of droplets reaching the target increases as tree height, canopy depth, and density increase. The release height of aerial application droplets of tall trees was higher, and the time of droplet movement in the air grew. The interaction between the rotor downwash wind field and the canopy crop pore structure affected the droplets below the UAV. The droplets caused by the rotor tip vortex were mainly distributed in the outer circumference with smaller particle size, reduced kinetic energy, and increased stagnation time. The influence of the rotor downwash wind field had been gradually weakened when the droplets reached the interior of the canopy, which was consistent with the results of Hong et al. (2018). The amount of droplet deposition at different canopy locations is shown in Figure 6.




Figure 6 | Comparison of the number of droplets at two flight heights and three flight speeds at three heights in the canopy of two LAI plants. LAI, leaf area index.




3.1.5.1 Upper canopy

At LAI = 1.01 and v = 1.5 m/s, the deposition was higher at all three flight heights; at up to 0.16 μl/cm2 and v = 2.5 m/s, the deposition reached 0.13 μl/cm2 at 8.84-m height and decreased rapidly above 10.31-m height. By Tukey’s test, treatment 1 was significantly different from treatment 11 (p< 0.05), and treatment 9 showed highly significant differences compared with treatments 1, 3, 5, and 7 (p< 0.01). The higher speed and altitude of UAV operation parameters significantly affected the deposition of droplets in the upper canopy. Overall, treatment 1 had the highest mean value of 0.16 μl/cm2, and treatment 9 had the lowest value of 0.03 μl/cm2.

At LAI = 1.65, the mean deposition was 0.09 and 0.14 μl/cm2 at treatment 2 and treatment 4, respectively, and the mean deposition of the rest of the treatments was close to and lower, with treatment 10 having the lowest at 0.03 μl/cm2. By Tukey’s test, the deposition showed a significant difference (p< 0.05) between the altitude of 10.31 m and the others for v = 1.5 m/s and had no significant difference (p > 0.05) for v = 2.5 m/s. In terms of application parameters, both LAIs were more suitable for flight altitudes below 10.31 m, with v = 1.5 m/s. If the flight altitude or operating altitude increased, both decreased the deposition significantly.



3.1.5.2 Middle canopy

At LAI = 1.01 and v = 1.5 m/s, the deposition amount was higher at 10.31-m height; at up to 0.12 μl/cm2 and v = 2.5 m/s, the deposition amount reached 0.11 μl/cm2 only at 8.84-m height and decreased rapidly above 10.31-m height, down to 0.02 μl/cm2. Tukey’s test showed that treatment 9 significantly differed from treatments 1, 3, and 7 (p< 0.05); i.e., there was a significant effect on the deposition in the middle layer at this speed and height. Overall, treatment 1 had the highest mean deposition value of 0.12 μl/cm2, and treatment 9 had the lowest value of 0.02 μl/cm2.

At LAI = 1.65, the mean deposition was 0.08 and 0.15 μl/cm2 only in treatment 1 and treatment 2, respectively, while the mean deposition of the other treatments was close to and lower than 0.04 μl/cm2. By Tukey’s test, there was a significant difference (p< 0.05) between the deposition at 10.31- and 11.09-m height at v = 1.5 m/s, and there was no significant difference (p > 0.05) between the treatments at v = 2.5 m/s. In terms of application parameters, it was found that both LAIs were more suitable for operation at heights below 10.31 m and speed at 1.5 m/s again.



3.1.5.3 Lower canopy

At LAI = 1.01 and v = 1.5 m/s, the highest mean deposition was 0.07 μl/cm2 (H = 11.09 m), and the lowest was 0.03 μl/cm2 (H = 8.84 m). By Tukey’s test, treatment 3 and treatment 5 showed a significant difference (p< 0.05); that is, there was a significant effect on the deposition of droplets in the lower layer at the height of 11.09 m. At v = 2.5 m/s, the deposition reached 0.09 μl/cm2 only at the height of 8.84 m. Above 10.31 m, the deposition decreases rapidly to a minimum of 0.01 μl/cm2. By Tukey’s test, treatment 7 showed a highly significant difference between treatments 9 and 11 (p< 0.01).

At LAI = 1.65, the mean deposition was 0.04 and 0.06 μl/cm2 in only treatment 2 and treatment 4, respectively, and the rest of the treatments were similar and lower than 0.01–0.02 μl/cm2. By Tukey’s test, there was a highly significant difference (p< 0.01) in the mean deposition at v = 1.5 m/s and no significant difference (p > 0.05) among the treatments at v = 2.5 m/s. The operational parameters can be referred to according to the leaf area index when the focus of pests and disease control is on the trunk.

The mean CV value of deposition in each layer was used to express the penetration of droplet deposition, and the results showed that the CV value varied from 0.09 to 0.63. The higher the operating height, the worse the penetration at both speeds. For the same operating parameters, LAI = 1.65 was less penetrating than LAI = 1.01. The worst performance was at 11.09 m with a maximum of 0.63. At v = 1.5 m/s, the CV values were lower than 0.18 (LAI = 1.01) and 0.45 (LAI = 1.65) for heights below 10.31 m. in the analysis of the total deposition of the three layers, at LAI = 1.01, the flight altitude should be below 10.31 m (v = 1.5 m/s) and below 8.84 m (v = 2.5 m/s). For LAI = 1.65, v = 1.5 m/s and height below 10.31 m were recommended; the deposition effect was poorer when the height or the speed increased. From the overall view of canopy deposition, both LAIs of A. catechu at v = 1.5 m/s and below h = 10.31 m achieved relatively satisfactory deposition results, and this operation parameter was recommended.





3.2 Ground loss

Figure 7 shows the sampling data of the ground loss area. By Tukey’s test, at v = 1.5 m/s, there was an extremely significant difference (p< 0.01) between ground loss deposition for LAI = 1.01 and LAI = 1.65 treatments at the same operating height. At v = 2.5 m/s, there was no significant difference (p > 0.05) between ground loss at the same operating height. At LAI = 1.01 and v = 1.5 m/s, there was an extremely significant difference (p< 0.01) in deposition between height 8.84 m and the other two heights; at v = 2.5 m/s, there was no significant difference (p > 0.05) between treatments in the deposition. At LAI = 1.65 and v = 1.5 m/s, there was a significant difference among all three heights (p< 0.05), and at v = 2.5 m/s, there was no significant difference among treatments (p > 0.05).




Figure 7 | Comparison of the deposition of droplets at two flight heights and three flight speeds at three heights in the ground loss of two LAI plants. LAI, leaf area index.



The mean value of deposition of each treatment was analyzed; at LAI = 1.01 and v = 1.5 m/s, the maximum mean value was 0.18 μl/cm2 at 8.84 m, and the other two heights were approximately 0.10 μl/cm2. At v = 2.5 m/s, the mean deposition value at three heights was approximately 0.06 μl/cm2. The difference was more apparent when LAI = 1.65 and v = 1.5 m/s, and the mean deposition was more significant at heights of 8.84 and 10.31 m; at up to 0.20 μl/cm2, the mean deposition decreased to 0.04 μl/cm2 when the height and velocity increased. Overall, the two LAIs of A. catechu had the most significant ground loss at v = 1.5 m/s, at heights 8.84 and 10.31 m. While the canopy deposition was also the largest and the penetrability was the best, it indicates that more droplets were deposited in the crop canopy and penetrated to reach the ground under this mode of operation. Due to the high flight altitude and speed, the rest of the treatment increased the droplet residence time in the air. The droplet trajectory was more susceptible to change by the external environment, and the deposition area was shifted. At the same time, plants with bigger LAI, thicker canopy, and more extensive total leaf area also led to less deposition, penetration, and ground loss. The field test has many uncontrollable factors, such as the crop growth pattern, flight attitude, and sampling point location. All the factors can improve the test results’ reference ability by increasing the sample size and providing referenceable data for spraying tall trees by UAV.

The coefficient of variation of deposition for each treatment of ground loss was relatively small, ranging from 7.64% to 52.90%, with an average of 27.04%. The coefficient of variation of canopy deposition was relatively large, a typical characteristic of field experiments. The middle canopy was the highest for CV value, with a mean of 69.53% and a maximum of 98.90%. The upper canopy had the second-highest coefficient of variation, with a mean of 46.83%. The lower canopy had the lowest coefficient of variation at 37.27%. It could assume that the sampling points in the middle of the canopy were affected by the upper canopy branches and pore distribution, and the unevenness of deposition distribution increased. The lower canopy was approximately 2 m away from the top of the canopy, and the sampling area reduced sharply. Hence, the droplet deposition could hardly reach this small area, and the droplet size was more selective, so the variation coefficient was insignificant. The sampling location of ground loss deposition includes the gap between plants and the bottom of plants; the gap allows the droplets to not be captured by the canopy and settle directly to the ground, with higher deposition and a smaller coefficient of variation.

The deposition and location of sampling points for each treatment were plotted as a line graph and integrated to evaluate the total amount of ground loss deposition. Treatment 4 had the highest loss and set it as 100. For the other treatments compared with treatment 4, Figure 8 shows the results that treatment 12 was the smallest, with only 17.01% of treatment 4. At v = 1.5 m/s, except for treatment 4, ground loss decreases with increasing operating height, and at v = 2.5 m/s, the ground loss was more similar across treatments. The total ground loss at v = 1.5 m/s was more than double that at v = 2.5 m/s. The lowest ground loss at a flight altitude of 11.09 m was presumed to be due to the high flight altitude, which caused some droplets to drift in the air. It was also indicated by the reduction in both canopy and ground deposition.




Figure 8 | Percentage of total ground loss.



Comparing the deposition data between canopy and ground loss showed that both ground loss and canopy droplet deposition were lower at higher flight speeds and operating altitudes, which occurred on both plants with two different leaf area indices. When the UAV is rushing at a high altitude, the rotor wind field, especially the vertical downward airflow, makes the droplet movement and allows the time to become shorter. The droplet moving distance and time in the air increase, and the direction of movement is more likely to change, the ability of droplet deposition to the target becomes poor, and the application quality decreases.



3.3 Spray drift

The deposition of droplets in the drift sampling zone of each treatment was analyzed, as shown in Figure 9.  There was no significant difference between the deposition of the 12 treatments by Tukey’s test (p > 0.05). The deposition was higher at 2 and 4 m in the drift zone, with a maximum of 0.16 μl/cm2, and decreased sharply after 10 m, below 0.04 μl/cm2. The percentage of deposition and spraying volume was calculated for each sampling point, and the total integral value of the deposition curve was used to evaluate the total drift of the test. The results showed that treatment 5 had the largest total drift, set at 100, and treatment 2 had the smallest, at 34.98. The ratio of each treatment to treatment 5 is shown in Figure 10. Figure 11 shows the cumulative 90% total drift position. The locations of 90% of the total drift for treatments 1–12 were 9.46, 14.37, 9.67, 13.15, 18.94, 19.17, 13.64, 14.18, 15.74, 19.50, 25.05, and 28.10 m, respectively.




Figure 9 | Deposition at each sampling site in the drift zone.






Figure 10 | Percentage of spray drift.






Figure 11 | Comparison of the characteristic of downwind drift characteristic for each treatment at two flight heights and three flight speeds at three heights of two LAI plants. LAI, leaf area index.



Comparing v = 2.5 m/s with v = 1.5 m/s, under the same operating parameters, the distance of 90% of the total drift increases, and the difference in the total drift was not too noticeable when the operating height was low. When the flight altitude increases to 11.09 m, the drift distance increases significantly; the maximum can be doubled. The total drift and 90% drift distance increase, so this flight altitude should be avoided. In addition, the ambient wind speed of this test was lower than 1.87 m/s, and the droplet drift was relatively small. According to the pineapple test by Wang et al. (2018), when the instantaneous wind speed increases to 4.7 m/s, the flight altitude is 3.5 m, and the farthest drift distance can reach 47 m. The drift problem caused by the ambient wind speed should be noticed for the application of UAV plant protection of tall trees.




4 Discussion

The initial kinetic energy of the droplets released at high altitudes gradually decreased with operating time, and the deposition area became bigger at lower altitudes. The droplet deposition uniformity, spray range, and penetration are mutually limited during UAV operation. The discussion of UAV spraying capabilities or configurations is irrelevant if canopy characteristics are not considered. Crop deposition largely depends on the crop growth stage; from the crop, the areca plant growth pattern was complex, and planting pattern, density, canopy depth, and pore structure would impact droplet deposition. There are relatively few reports on the application of UAVs on tall tropical crops. As the flight altitude increases, the canopy reflection effect decreases, the droplet flow velocity becomes more concentrated, and the turbulence is more stable than at a low altitude. According to the Tang et al. computational fluid dynamics simulation analysis of single-rotor UAVs (Tang et al., 2020; Tang et al., 2021), the higher the flight altitude, the larger the area of flow expansion along the lateral direction in the deposition area. For centrifugal nozzles, the spray quality depends mainly on the mechanical energy of the rotating atomizer. The electric motor runs at a certain speed, and the droplet size changes accordingly, and the multi-rotor UAV downwash flow field is more complex than that of the single rotor. The co-axial four-rotor wingtip vortices form a coupling effect under their respective rotors and in the crossover region, increasing the potential drift distance, especially at the flight altitude of 11.09 m. In contrast, the uniformity and penetration decreased, consistent with the findings of the six-rotor plant protection UAV studied by Zheng et al. (2018). The UAV operation was located approximately 10 m above the ground, obviously different from rice and wheat at approximately 3 m. The concentrated droplet group moves longer in the air. Due to the different factors, such as particle size, gravity, nozzle speed, ambient wind speed, temperature, and humidity, the droplet trajectory impacts the uncertainty. After the droplets reach the A. catechu canopy, leaf growth and development patterns, planting density, canopy height, density, and pore structure affect the trajectory of droplets.

In practical application, the UAV operating parameters should ensure the uniformity and penetration of droplet deposition. Wen et al. performed a study on a single rotor and showed that the simultaneous increase of speed and height also has an apparent effect on droplet drift (Wen et al., 2018). As the flight speed increases, the height of the spiral tail vortex formed by the wingtip vortex behind the fuselage becomes higher, and the higher the flight height, the longer the tail vortex lasts in the air. From the aircraft, it can be speculated that after the droplets were detached from the nozzle when the flight altitude was low, the deposition tended to be in a striped area. As the altitude increased, the striped area began to expand and was accompanied by a decrease in uniformity. When the flight altitude was too high, the droplets in the air stayed longer, subject to air traction and environmental and meteorological effects of the more significant disorder. Droplets may drift out of the target area, which needs further evaluation of spray volume distribution. Droplet deposition in the canopy and on the ground was relatively low at flight altitudes higher than 11 m. The UAV flight speed affects the droplet deposition to the canopy; it changes the droplet’s spray rate, air energy, and residence time; the slower the speed, the greater the air energy and the greater the penetration. The suitable speed can increase the residence time of droplets and concentrate air energy. The droplets are more easily deposited inside the canopy, but a too-slow speed may lead to branch closure, wasted spray, and compromised coverage.

The UAV model, nozzle type, planting method, environmental meteorology, and leaf formation of half and entire leaves affect droplet deposition and penetration. The ultimate goal of pesticide spraying is to provide sufficient coverage, reduce application volume, and control spray drift. Experiments have shown considerable variability in deposition and coverage under the same operational parameters for two different LAIs of A. catechu, so a study of the effect of areca growth morphology on droplet movement is the main direction of the following work. Given the high altitude of A. catechu and that adult A. catechu can reach 10 m or even tens of meters, the effect of operating height on deposition needs further study. As the crop density and growth develop during the later stage, the crop LAI will gradually increase, and the light transmission rate of each layer will decrease, increasing the difficulty of droplet deposition penetration to the middle and lower layers. The total droplet deposition in the canopy layer will decrease layer by layer, and the crop canopy layer will have a more noticeable effect on droplet interception. The sampling data of spray in the canopy, ground, and drift area can comprehensively reflect the distribution of spray quality, but there were also some limitations. The canopy sampling area was limited and did not accurately reflect the deposition of droplets within the canopy. The number of A. catechu sampled in this paper was 10, and the LAI of the selected A. catechu was close to that of the sampled trees. In practical application, the number of sampling cards should be increased appropriately according to the actual growth size of A. catechu to make the data more objective and accurate. The ground loss area sampling was more reliable in reflecting the droplet loss, and the drift area sampling can only reflect the far ground spray drift distribution. The measurement of drift in the air needs further improvement due to the test terrain’s limitation. Research on pesticide composition is also imminent (Hewitt et al., 2002). We also should conduct a relevant study on pesticide additives to change the droplet particle size by adding adjuvants to increase the deposition uniformity and reduce the drift potential. The application of UAVs in tall trees needs further research. In addition, modeling specific types of plant protection UAVs and tall trees to simulate droplet deposition distribution can further provide theoretical support for applying aerial spraying in tall trees.

The amount of aerial spray drift tends to decrease as the crop thrives, related to the canopy’s ability to capture droplets. The timing of airborne droplets varies with aircraft flight speed and ambient crosswind. Droplets from sidewind and headwind runoff may still be in the areca orchard, deposited into undetected areas, or on the ground evaporated or blown out of the orchard as aerial drift. Because airborne droplets are challenging to collect and quantify (Jensen and Olesen, 2014), sampling results can partially indicate the spraying effect. Studies on the movement trajectory of droplets during UAV operations need to be further enhanced. With plant heights of nearly 5 m in the A. catechu orchard, the wind speed in the orchard was slowed by the dense canopy. The smaller the droplet size, the more likely it was to be trapped inside the canopy. In contrast, finer droplets may be suspended in the air, aggregating into larger droplets or producing drift, and larger droplets are more likely to be deposited on the ground.

This research was based on an exploratory application of a specific quadrotor UAV model to A. catechu in a specific growth period. In this test, we used coated paper to visualize the effect of application, aided by ground and drift, to describe the effect of spray in many ways. These data support the potential application of UAV application technology to tall trees and provide recommendations for UAV application methods. The spray volume was 22.5 L/ha, which can be adjusted or repeated according to the actual application. The area of areca application during the fruit growth period may be concentrated in the trunk layer, which requires droplet size and deposition penetration. The UAV model, wingtip vortex, wake flow, ambient meteorology, nozzle type, boom position and length, droplet size, and operating parameters all pose challenges to the effective operation of the application. The current application of UAV models and droplet spray quality on tall trees must be supplemented by more field trial data. As designed for future planting systems, A. catechu planting structures should integrate spraying strategies.



5 Conclusion

This study describes a new application method to assess the credibility of a specific UAV type to apply to areca trees with different LAIs under different operational parameters. According to the analysis of the results of each treatment data, the flight height had a more significant effect on droplet deposition than speed and LAI, and the higher the height, the worse the overall penetration of droplets. The altitude had a significant effect on droplet penetration, with the CV values at up to 0.63. Comparing v = 1.5 m/s to v = 2.5 m/s, the coverage can be increased by more than 70%. The droplet deposition size and distribution uniformity in the bottom layer have significant differences, with UAV below 10.31-m height and 1.5 m/s speed, and the deposition penetration CV value could be controlled below 0.18 (LAI = 1.01) and 0.45 (LAI = 1.65). Ground loss at velocity 1.5 m/s was about twice as high as at velocity 2.5 m/s. When the operating height was 11.09 m, the ambient wind speed was 1.87 m/s, and the 90% drift distance increased to 28.10 m. The most critical issue is that this study provides more comprehensive data on the application of multi-rotor UAVs in tall trees. More plant protection-focused data are needed to confirm the feasibility of this new method of UAV application, and the deposition patterns of different droplet sizes within the A. catechu canopy need to be further explored.
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Artificial Intelligence has been used for many applications such as medical, communication, object detection, and object tracking. Maize crop, which is the major crop in the world, is affected by several types of diseases which lower its yield and affect the quality. This paper focuses on this issue and provides an application for the detection and classification of diseases in maize crop using deep learning models. In addition to this, the developed application also returns the segmented images of affected leaves and thus enables us to track the disease spots on each leaf. For this purpose, a dataset of three maize crop diseases named Blight, Sugarcane Mosaic virus, and Leaf Spot is collected from the University Research Farm Koont, PMAS-AAUR at different growth stages on contrasting weather conditions. This data was used for training different prediction models including YOLOv3-tiny, YOLOv4, YOLOv5s, YOLOv7s, and YOLOv8n and the reported prediction accuracy was 69.40%, 97.50%, 88.23%, 93.30%, and 99.04% respectively. Results demonstrate that the prediction accuracy of the YOLOv8n model is higher than the other applied models. This model has shown excellent results while localizing the affected area of the leaf accurately with a higher confidence score. YOLOv8n is the latest model used for the detection of diseases as compared to the other approaches in the available literature. Also, worked on sugarcane mosaic virus using deep learning models has also been reported for the first time. Further, the models with high accuracy have been embedded in a mobile application to provide a real-time disease detection facility for end users within a few seconds.
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1 Introduction

Agriculture is considered the backbone of Pakistan’s economy, which is reliant on key crops such as wheat, rice, and maize (Shar et al., 2021). It is considered the primary source of income for the large population in Pakistan. One of the major causes of low yield is diseases, which reduce the quality, quantity, and nutritional value of fruits, vegetables, cereals, and legumes (Saleem et al., 2019; Turkoglu et al., 2019). Nearly 32% of the losses are observed due to diseases in cereal crops (Tudi et al., 2021). Maize is very essential crop all around the world, especially in Pakistan. It is used for different purposes i.e., poultry, cattle feed, food, beverages, etc. It contributes 19% (Abdullah et al., 2021) to the Gross Domestic Product (GDP) but unfortunately, it is prone to various diseases which results in low production. Some major maize plant diseases are Blight (Sun et al., 2020), Sugarcane Mosaic virus (Liu and Wang, 2021), and Leaf Spot (Krawczyk et al., 2021). The diseases look the same in their emerging stages, hence difficult to differentiate from the human eye and are also time-consuming. Therefore, Artificial Intelligence (AI) technologies have become one of the current research hotspots based on the above problem.

AI and deep learning-based methods are progressively being utilized in agricultural research, because of their ability to automatically learn the deep features from the image dataset, also their accuracy and speed levels are higher than the traditional algorithms (Chen et al., 2022). The most popular architecture of deep learning is Convolutional Neural Network (CNN). Specifically, it was intended to work with images, video recognition, medical image analysis, object detection, flow prediction (Miglani and Kumar, 2019), traffic control (Jindal and Bedi, 2018), recommendation systems for healthcare (Shaikh et al., 2022), anomaly detection (Garg et al., 2019), recognition of diseases (Astani et al., 2022), weed detection (Khan et al., 2022), soil monitoring (Chen S. et al., 2022), and pest identification (Cheng et al., 2021; Huang et al., 2022), etc.

Nowadays, deep learning-based approaches, including Single Shot Detector (SSD) (Sinan, 2020), You Only Look Once (YOLO) (Ponnusamy et al., 2020; Ganesan and Chinnappan, 2022) models, etc. are being used for leaf disease classification and recognition. (Cheng et al., 2022) have proposed the improved YOLOv4 which is based on lightweight CNN and was developed for weed detection and seedling of maize crop. They have trained their model on the 1800 images. First, they decrease the number of parameters and increase the speed of feature extraction, also MobileNetv3 is used for building the lightweight feature extraction backbone network to replace the CSPDarkNet53 network in +YOLOv4. Secondly, they applied the transfer learning technique which is used for increasing the training speed. The model gives the Mean Average Precision (mAP) of 89.98%, the detection speed is 69.76 FPS, and the number of parameters was 8.17x106. However, the accuracy of the model could be improved also the dataset should be larger. According to Shill and Rahman, 2021, the detection results for plant disease by using the YOLOv3 and YOLOv4 were obtained as 53%, 52% mAP, and 55%, 56% F1-score, respectively. The overall mAP of YOLOv4 is better than that of the YOLOv3 model, however, the dataset was collected in the lab setting from PlantDoc repository for model training.

Roy and Bhaduri (2021) have developed a real-time object detection framework that is based on an improved YOLOv4 algorithm, and they applied this algorithm to detect apple plant diseases. They acquired the dataset from Kaggle which consists of two diseases of apple plant total of 600 images of each class. The proposed model was modified to enhance accuracy and then it was verified in the orchard with complex background. The algorithm obtained a mAP value of 91.2% with 56.9 FPS and F1-score value is 95.9%. The modified model compared with the original YOLOv4 model showed that the developed model gives a 9.05% increase in mAP and 7.6% in F1-score. Gokulnath and Usha Devi (2020) have developed the BOOSTED-DEPICT model that can do clustering of maize images and many other techniques called k-means clustering, deeply embedded clustering, and regularized deep clustering and has achieved the accuracies of 97.73% and 91.25% on Plant Village (PV) and PDD dataset, respectively. Nayar et al. (2022) have used the YOLOv7 model for the detection of different plant diseases that were collected from the Plant Village dataset and achieved 65% mAP, the results reported in their study don’t meet the real-time detection system. Chen et al. (2022) have proposed an improved YOLOv5 model to detect the rubber tree disease (powdery mildew) with 2375 images and the model obtained 70% mAP. The improved version of YOLOv5 gained 5.4% higher results than the original YOLOv5.

While considering the above discussion, to the best of our knowledge there are fewer attempts in the real-time classification, detection, segmentation, and tracking system of maize crop diseases, also the sugarcane mosaic virus disease is neglected in the literature. The real-field dataset is not publicly available for training and testing of the model, also image dataset used by different authors in the literature is limited to a lab environment which is not suitable for real-time scenarios. Therefore, we have collected the dataset from the real field with a heterogenous background, on contrasting weather, and different lighting conditions. Moreover, we have developed smartphone application for the quick assessment of maize crop. The primary contributions of this paper are as follows:

	A real disease data repository is built containing images of maize crop, collected from the university research farm, located in the Potohar region of Punjab province, Pakistan.

	This repository contains images of three distinct types of diseases acquired in different weather conditions and timestamp values. It also includes the data of sugarcane mosaic virus disease which is not reported in any deep learning-based detection work in the past.

	The state-of-the-art YOLOv8n model for maize plant disease detection and classification is used.

	The best-trained model is integrated with the user-friendly smartphone application for the real-time detection of maize disease to facilitate the end user.



The rest of the paper is organized as follows. The background is presented in section 2. Materials and methods are discussed in section 3. Section 4 elaborates the proposed system’s results and discussion, and section 5 concluded the discussion.




2 Background

YOLO is a SOTA algorithm that is used for real-time object detection, classification, segmentation, and tracking (Jiang et al., 2021). It is the most popular algorithm for speed and accuracy aspects. In our research, maize foliar diseases are trained on YOLOv3-tiny (Malta et al., 2021), YOLOv4, YOLOv5s, YOLOv7s, and YOLOv8n because they are fast, accurate, and real-time object detection algorithms.



2.1 YOLOv3-tiny

The YOLOv3-tiny model is a simplified version of YOLOv3. It has a smaller number of CNN layers and utilizes less memory. In YOLOv3, Darknet-53 is used as a deeper architecture for feature extraction. It means 53 CNN layers have been used, and each CNN layer is followed by the Leaky Rectified Linear Unit (Relu) activation function Equation (1), where x represents the input (Agarwal et al., 2021). It is based on the ReLU activation function but with a small slope or negative values rather than a flat slope. Also, it gives the benefit of fast training. The hyperparameters used for training the YOLOv3-tiny are given in Table 1. The architecture diagram of YOLOv3-tiny is illustrated in Figure 1.




Figure 1 | Architecture diagram of YOLOv3-tiny.




Table 1 | Hyperparameters configuration for YOLOv3-tiny, YOLOv4, YOLOv5s, YOLOv7s, YOLOv8n.



 

Where a ϵ [ 0,1]




2.2 YOLOv4 model

YOLOv4 is the advancement of the YOLOv3 model in the mAP by as much as 10% and frames per second (FPS) by 12%. It is a one-stage object detection model composed of three parts; the first is the backbone, the second part is the neck, and the last part is the head. The backbone is pre-trained CNN on Center and Scale Prediction (CSPDarknet53). The CSPDarket53 means that the model consists of 53 CNN layers and this stage is responsible for extracting the features and computing feature maps from the input images. The neck section is responsible for concatenating the backbone with the head. The neck section is composed of a spatial pyramid pooling (SPP) and a Path Aggregation Network (PAN). The neck collects the feature maps from the backbone and feeds them into the head as input. In the last section, the head is responsible for processing the aggregated features and predicting the bounding box, prediction score classifies into the relevant class. In our study, the image size is fixed to 416×416, for the training and testing process. The architecture of the YOLOv4 model is shown in Figure 2. The hyperparameters used in YOLOv4 for training purposes are shown in Table 1. The activation function used here was Mish as shown in Equation (2). Among other activation functions, Mish is the best choice because it is smooth, and non-monotonic (Mathayo and Kang, 2022). It has various properties which made it popular from Swish and Rectified Linear Unit (ReLU), like unbounded above and bounded below improves its performance and it is low cost.




Figure 2 | Architecture diagram of YOLOv4.





Where softplus (x) = In(1+ex)




2.3 YOLOv5s model

The YOLOv5s model is divided into three main components: backbone, head, and detection. The backbone is responsible for collecting the shape image features at different neurons and it is based on CNN. To create image features, the YoloV5s uses the CSP Bottleneck. Layers make up the head, which combines image features to forward them to a prediction process. For feature aggregation, the Yolov5s additionally uses the PAN. The detection procedure includes phases for box and class prediction in addition to using features from the head. The architecture diagram of the YOLOv5s model is shown in Figure 3 and the hyperparameters used for the training of YOLOv5s model are presented in Table 1.




Figure 3 | Architecture diagram of YOLOv5s.



The YOLOv5s has two mappings in the post-processing and the operation process was as described in Equations 3-6.

 

 

 

 

Where “b” is the size of the prediction box, including bx, by, bw, and bh representing the x-coordinate, y-coordinate, width, and height of the center box, respectively. Cx and Cy are the side lengths of the cell, pw and ph are the width and height of the prior box.   is the sig activation function as shown in Figure 4.




Figure 4 | The schematic diagram for calculating the size of the prediction box.






2.4 YOLOv7s

Yolov7s is the smaller version of YOLOv7. It is the advancement of the YOLOv6 in terms of mAP, detection speed, and inferencing. The Efficient Layer Aggregation Network (ELAN) is extended in the YOLOv7, which is called the extended ELAN (E-ELAN). Different fundamentals are used to enhance the learning ability of the network named as expand, shuffle, and merge without demolishing the gradient path. It also focused on some methods such as trainable “bag-of-freebies” and optimization modules. Various computational blocks are used to learn more distinct features. After being divided into groups of size “s”, the feature maps from each computational block will be concatenated. The final step will merge cardinality using a shuffled group feature map. The architecture diagram of the YOLOv7 is shown in Figure 5 and the hyperparameters used to train the YOLOv7 model in this study are reported in Table 1.




Figure 5 | Architecture diagram of the YOLOv7s.






2.5 YOLOv8n

The YOLOv8n model is the nano version of the YOLOv8 family because it is small and fast with higher detection results. It can be utilized for object detection and classification in conjunction with instance segmentation and object tracking which makes it SOTA. It was created by Ultralytics, who also developed the YOLOv5 model which is a powerful model. It has several architectural updates and enhancements. It is an anchor-free model which means the model directly predicts the center point of an object in an image rather than the offset from a known anchor box illustrated in Figure 6.




Figure 6 | Visualization of an anchor box in YOLOv8n.



The architecture diagram of the YOLOv8 is depicted in Figure 7. The SOTA YOLOv8 augments the images at each epoch. The technique used is mosaic augmentation, which stitches the four images and forces the model to learn the new locations. The change in the structure of YOLOv8 is that the c3 module is replaced with the c2f module. In module c2f, outputs from Bottleneck are concatenated, although the output of the last Bottleneck was used in the c3 module. Also, the first 6×6 convolutional layers are replaced with a 3×3 convolutional block in the Backbone module. The main thought behind using the YOLOv8 model was the performance and accuracy boosts during training and inferencing. It is better than the previous versions of YOLO in all aspects (mAP, latency, speed, FPS, and size).




Figure 7 | Architecture diagram of YOLOv8n.







3 Materials and methods

The quality dataset is the fundamental requirement for building the foundation of the deep learning model because the performance of the deep learning model is highly dependent on the quality, quantity, and relevancy of the dataset. So, the first and crucial step of any deep learning starts with image acquisition. The complete pipeline from image acquisition to model training to smartphone application testing is shown in Figure 8. The other activities of the system are listed below and explained in detail in the below sections.

	1. The maize crop foliar diseases are collected from University Research Farm Koont (URF), Pir Mehr Ali Shah Arid Agriculture University Rawalpindi (PMAS-AAUR), at different growth stages (initial, middle, and mature), different days of the month with contrasting weather conditions.

	2. After data collection, the next step is to perform image preprocessing, including resizing.

	3. After that, data augmentation named flipping, rotating, scaling, and cropping was applied.

	4. In data annotation, images were annotated/labeled after the experts’ knowledge.

	5. The annotated data was then fed into the deep learning model for training.

	6. Finally, the aim of our study was achieved by detecting, classifying, segmenting, and tracking of maize crop diseases i.e., blight, leaf spot, and sugarcane mosaic virus in the real-time environment.

	7. In the end, results are compared, a suitable model was selected for our problem statement and embedded into the mobile application for real-time detection and tracking.






Figure 8 | Proposed pipeline of maize disease detection by YOLO detectors.





3.1 Dataset collection and description

A detailed description of how we collected the dataset and applied different preprocessing and augmentation techniques are discussed below.




3.2 Study area

This study was conducted at URF, Koont PMAS-AAUR, located in Punjab province, Pakistan (33.1166° N, 73.0111° E) as shown in Figure 9. The maize variety was Pak Afghoi and planting was done in June. It was sown on about one acre with no application of pesticides and fungicides, the line-to-line distance was 50cm (about 1.64 ft). The seed quantity was 40 kg per acre, and one bag of urea-based fertilizer and one bag of Diammonium Phosphate (DAP) were applied after sowing. The drill sowing technique was used for sowing the seeds.




Figure 9 | Study Area of Maize Crop.






3.3 Experimental setup

All the experiments from training to validation were performed using a Graphics Processing Unit (GPU: Nvidia RTX A4000) on Ubuntu 20.04 LTS operating system. The software and hardware used for model training/testing and their details are presented in Table 2.


Table 2 | Implementation details.






3.4 Image acquisition

At every stage of object recognition research, from the training phase to assessing the effectiveness of recognition algorithms, a suitable dataset is necessary, because the performance of the deep learning models is highly dependent on the input images. To achieve this, 2675 images of maize diseases were collected at various development stages, in contrasting weather conditions, and on different days of the month (June to September) under the naturally diseased environment. The first two months after sowing (June, and July) there were no diseases monitored in the field, so the data was collected after July. The image dataset was captured through the smartphone camera (SAMSUNG Galaxy A7) by maintaining a specific height of 33cm from the leaf surface. The specifications of the smartphone include 16 megapixels (MP) camera, 3GB Random Access Memory (RAM), and a 3.77 MB size of each image. After the collection of images, they were assessed several times by pathologists. The dataset size of maize diseases is illustrated in Figure 10, where the x-axis represents the dates when the data was collected, and the y-axis depicts the total number of images. The blue horizontal, orange vertical, and green diagonal lines exhibited blight, sugarcane mosaic virus, and leafspot disease, respectively. The sample images collected from the study area are shown in Figure 11.




Figure 10 | Dataset description.






Figure 11 | Maize diseases. (A) sugarcane_mosaic virus, (B) leafspot, (C) blight.






3.5 Image preprocessing

Image Preprocessing refers to activities performed on images at the most fundamental level (Sarki et al., 2021). Deep learning-based models train faster if the size of the images are smaller. Moreover, the collected raw images vary in size and many architectures of deep learning models require the same image size (Sharma et al., 2020). Also, if there is a difference between the training image and the recognition image, the YOLO shows poor performance (Jeong et al., 2018). Hence, for that purpose, the captured raw images are resized to 416×416 dimensions which is an ideal size for training the YOLO models. When the resizing is applied on an image its pixel values reduced in size and the unwanted region of interest is discarded. This preprocessing method is performed by using a python script with the help of OpenCv library before training the object detection and tracking model (YOLO). Figure 12 depicted the raw image collected from the real field which is 899×1599 dimensions and the reduced/resized image.




Figure 12 | Image resizing.






3.6 Data augmentation

Programmers can enhance the diversity and the size of the dataset to train the models using different data augmentation techniques (Waheed et al., 2020). It is a known fact that CNN can handle variations in images and classify items even when they are positioned in distinct orientations (Buslaev et al., 2020; Umer et al., 2022). To train CNN, a considerable amount of data is required so that it can discover and retrieve more features. Deep learning models performed best when the size of the dataset is large enough hence for this purpose, we enlarged our dataset by artificially generating samples from our collected dataset to maximize the performance of deep learning models. The most widely used techniques for augmentation were implemented in this research named rotating (70° and 90 °), flipping, scaling, and cropping by using python script.




3.7 Image annotation

Image annotation is the process of labeling the data into different formats such as images, videos, or text files for machines to understand the input data. The annotated/labeled dataset is the most important part of supervised Machine Learning (ML) because models are trained on the input data, machines process that data and produce accurate results. Different annotation tools have been used in the literature such as labelImg, roboflow, yolo_mark, and many others. For YOLOv3, YOLOv4, YOLOv5, and YOLOv7 data annotation, we have used the yolo_mark tool, which is freely available at the AlexeyAB repository. Whereas roboflow which is the computer vision platform that allows users to build computer vision models and image annotations in conjunction with a data augmentation facility was used for YOLOv8n segmentation. The annotated images in both formats, rectangle and segmented are depicted in Figures 13A, B respectively.




Figure 13 | Image annotation for YOLO model training, (A) YOLO_mark tool, and (B) Roboflow.






3.8 Model performance evaluators

All the models are tested on images that are not part of the training process to check their effectiveness. All the YOLO variants classify the maize diseases very efficiently but YOLOv8n performs best of all. Precision, mAP, Loss, and Recall have been used as evaluation indicators in this study for comparative analysis. Gai et al. (2021) have also used these performance evaluation methods for obtaining and comparing the performance of the different models. Precision refers to the model’s ability to recognize only the pertinent objects. Where True Positive (TP) means our model correctly predicts the correct diseased class and False Negative (FN) means the model correctly predicts the incorrect diseased class. The precision is calculated as shown in Equation (7).

 

Recall (4) refers to the model’s ability to recognize all the pertinent objects. The model can recognize all the detected bounding boxes from the validation set. The false positive (FP) means that the model incorrectly predicts the correct class. The recall is calculated as shown in Equation (8).

 

The mAP is the mean of the AP of each class. The mAP encompasses the trade-off between precision and recall as well as considering both FN and FP and it is calculated as shown in Equation (10), where N is the number of classes.

 

The loss function of the YOLO model is calculated by Equation (10), where cls represents the classification loss, conf represents the loss of confidence, and reg represents the regression loss. These losses are calculated by the formulas given in Equations 11 to 13. Ji et al. (2021) have used the loss formula for calculating the loss of the YOLO model. The lower the loss value of the model the higher the performance of the model. Where represents the predicted and true probability,   exhibits the predicted and true bounding box while the Ac, C, and I are the desired area, the overlapping area, and the real area respectively.

 

 

 

 




3.9 Model training and hyperparameters setup

In the original data set, 80%, and 20% of images from each class were selected to form the training set, and validation set, respectively. The image size was set to 416×416 for both training and validation purposes. In the YOLOv8n model proposed in this study, the training process uses the trained weight file of the original YOLOv8n as the initialization parameter. Because different network structures need to be trained in the comparative experiment, and the number of iterations to achieve the optimal detection performance, this study monitors dynamically during training and saves the weight file of the network at every epoch for the selection of the best train model to prevent overfitting. The hyperparameters used for training the YOLOv3-tiny, YOLOv4, YOLOv5s, YOLOv7s, and YOLOv8n are depicted in Table 1.

The training process was visualized by configuring the weights and biases (Wandb) in this study. It is used to dynamically observe the training status and performance of the model on different iterations. The results of the YOLOv8n model are shown in Figure 14. During model iteration, 0-50, the parameters of the model oscillated significantly. When the number of iterations increased, the performance of the model continuously improved. After the 50th iteration, the model index became stable, and the value of Precision reached 0.89 and progressively stabilized. Therefore, the model gets stable and achieved 99.0% mAP between 50 to 99 iterations.




Figure 14 | Visualization of model performance evaluators during training of the YOLOv8n model.



The performance of the YOLOv8n predictor for classifying, detecting, segmenting, and tracking the blight, leafspot, and sugarcane mosaic virus diseases in a maize dataset was calculated by the loss function (Figure 14). It is used to evaluate the correlation between the given data and the expected outcomes. The lower the loss, the better the performance of the model, and vice versa. There are two types of loss, one represents the training segmentation loss and the other shows the validation segmentation loss of each object. During each epoch, training loss was assessed, and after each epoch testing loss was determined.





4 Results and discussion

This section presents the results generated by the applied models, their comparison, and discussion.



4.1 Maize disease detection results

The results of the adopted model shown in Figure 15 were performed to view the detected maize diseases i.e., blight, leaf spot, and sugarcane mosaic virus after training the YOLOv8n model. The unseen images were used for testing to check the feasibility of the model, and the adopted YOLOv8n model predicted the diseases correctly and efficiently with a higher confidence score among other applied models in this study. The threshold value was set to 0.3, which means if the confidence score is greater or equal to 30% then the model categorizes it into the relevant class. It is shown that blight disease is detected by the model with a confidence score of 0.9%, leaf spot disease by 1.0%, and sugarcane mosaic virus disease with 1.0%.




Figure 15 | Examples of successful recognition of maize plant diseases using the YOLOv8n model.






4.2 Performance evaluation of detection models

Figure 16 shows the Precision curve of each class. Among all three classes (blight, leafspot, sugarcane_mosaic) of the maize plant diseases, the blight class achieves the highest 0.91% AP, and leafspot gains the lowest 0.84% AP, whereas sugarcane_mosaic obtained the 0.89% AP which is in between blight and leafspot class. Furthermore, it is seen that the precision values of all classes are non significantly different from each other. After the 90th iteration, the model gets stable and achieved above 80% results.




Figure 16 | A precision curve of the YOLOv8 model.



Figure 17 demonstrates the Recall curve of every single class. The value obtained for blight, leafspot, and sugarcane_mosaic is 0.96%, 0.73%, and 0.94% respectively. It is clearly shown that the blight and sugarcane_mosaic get stable after 50 epochs and obtain the highest Recall value, while the performance of the leafspot class fluctuates till 55 epochs and then gets stable, and achieves satisfactory results.




Figure 17 | Recall curve of the YOLOv8n model.






4.3 Mobile application

The best-trained model was embedded into a mobile application for real-time detection, segmentation, and tracking which helps the user to timely detect the diseases of the maize crop efficiently. First, the model’s result file is converted to .tflite using the TensorFlow lite converter library1 and deployed into the mobile application. The mobile app was designed using java language2 on Android Studio using the Android Java Development Kit3 (JDK). Finally, the diseases are detected/recognized by the TensorFlow lite interpreter library4 The interface of the mobile application is illustrated in Figure 18 and the full working of the application is depicted in Figure 19. There are different modules/activities in the mobile application. The first activity obtained the user login detail just for keeping the record of the user for next time. For this purpose, a user must select a valid username and a valid email address as well for account verification. Based on the provided information, the user account will be created, and this information could be updated anytime in the future. For real-time disease detection of maize crop, the user can either select the image from the mobile already saved in the mobile gallery, or he/she could capture the new image in real-time from the field for disease detection. Once the image is selected or captured, then it is forwarded to the detection model. After that, the next activity is opened which will show the detected disease of the maize crop.




Figure 18 | Screenshots of the maize disease detection application (A) login/register (B) Image selection (C) detected leaf spot disease (D) detected sugarcane mosaic virus disease.






Figure 19 | Flowchart of the smartphone application.






4.4 Comparative analysis between applied models

The experimental results of the YOLOv3-tiny, YOLOv4, YOLOv5s, YOLOv7s, and YOLOv8n are presented in Table 3 where 0, 1, and 2 represent the blight, leafspot, and sugarcane mosaic virus disease class respectively. It is reported that the YOLOv5s achieved the best results on blight (class 0) with 99.50% AP, YOLOv8n performed best on leafspot (class 1) disease, and sugarcane_mosaic disease (class 2) with AP of 99.01% and 99.07% respectively. It is investigated that the YOLOv8n obtained better results than other applied versions of YOLO in terms of accuracy, segmentation, and tracking. Moreover, this study also investigates the other performance evaluators including precision, recall, and loss. It is reported in the table that the precision value of the YOLOv7s model achieves higher and the loss value it achieves is smaller than other YOLO variants. The higher recall score was gained by the YOLOv4.


Table 3 | A comparative analysis between YOLO versions used in this study.



The results (mAP) of each model applied in this study are depicted in Figure 20, the red color vertical lines, green color horizontal lines, yellow color diagonal lines, purple color horizontal strips, and aqua color diamond grids show the YOLOv3-tiny, YOLOv4, YOLOv5, YOLOv7s, and YOLOv8n respectively. The comparative results illustrate that the YOLOv8n outperforms all.




Figure 20 | Comparison between applied models in this study.



The results of the comparative analysis of deep learning-based disease detection algorithms of our study with the other studies are expounded in Table 4. The authors (Austria et al., 2022; Li et al., 2022b) have used the YOLOv5 algorithm for the detection of apple and corn respectively, and they have achieved 90% and 97% results. Li et al. (2022b) used YOLOv5s, which is the smaller version of the YOLO model, and they obtained 93.10% accuracy. Liu and Wang (2021) have worked on the disease detection of the tomato plant and obtained 92.39% mAP. In this study, we have applied YOLOv3, YOLOv4, YOLOv5, YOLOv7s, and YOLOv8n for the detection, segmentation, and tracking of maize plant diseases in the real-time environment and achieved 69.40%, 97.50%, 88.23%, 93.30%, and 99.04% results respectively.


Table 4 | Comparative analysis of real-time detection systems.







5 Conclusion

Plant diseases have long been a major issue in agriculture. Early disease detection through deep learning models can overcome the spread of diseases at an early stage and minimize the losses. In this work, well known deep learning-based object detection model YOLO is used for the detection of diseases in maize crop. Five different versions of YOLO including YOLOv3-tiny, YOLOv4, YOLOv5s, YOLOv7s, and YOLOv8n are used and the dataset for this purpose is collected from a real environment where crop was grown in a university research farm Koont. Data collected in this work contains three different diseases including blight, leaf spot, and sugarcane mosaic virus, and is pre-processed using different data augmentation techniques. Models trained for disease detection were able to accurately detect, classify, segment, and track the diseases with a high confidence score. A comparison between different versions of YOLO models confirms that the YOLOv8n model achieves the best detection results among all and meets the requirements of real-time detection. The mAP value achieved by this model was 99.04%. To increase the system’s usability the best-trained model with higher detection accuracy was embedded into the mobile application for real-time disease detection and classification. In the future, these kinds of models could be integrated with the Unmanned Ariel Vehicles (UAV) for real-time crop monitoring and management.
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Introduction

Deep learning (DL) is a core constituent for building an object detection system and provides a variety of algorithms to be used in a variety of applications. In agriculture, weed management is one of the major concerns, weed detection systems could be of great help to improve production. In this work, we have proposed a DL-based weed detection model that can efficiently be used for effective weed management in crops.





Methods

Our proposed model uses Convolutional Neural Network based object detection system You Only Look Once (YOLO) for training and prediction. The collected dataset contains RGB images of four different weed species named Grass, Creeping Thistle, Bindweed, and California poppy. This dataset is manipulated by applying LAB (Lightness A and B) and HSV (Hue, Saturation, Value) image transformation techniques and then trained on four YOLO models (v3, v3-tiny, v4, v4-tiny).





Results and discussion

The effects of image transformation are analyzed, and it is deduced that the model performance is not much affected by this transformation. Inferencing results obtained by making a comparison of correctly predicted weeds are quite promising, among all models implemented in this work, the YOLOv4 model has achieved the highest accuracy. It has correctly predicted 98.88% weeds with an average loss of 1.8 and 73.1% mean average precision value.





Future work

In the future, we plan to integrate this model in a variable rate sprayer for precise weed management in real time.





Keywords: artificial intelligence, digital agriculture, object detection, weed management, YOLO




1 Introduction

As the world’s population is growing drastically, food deprivation is increasing worldwide (Gilland, 2002). To cope with the deficiency in food quantity, we need to increase crop yield. Modern agricultural practices like precision agriculture, smart farming, food technology, plant breeding, etc. are using smart technology (Liang and Delahaye, 2019; García et al., 2021; Hati and Singh, 2021; Mavani et al., 2021; van Dijk et al., 2021; Zhang et al., 2021) to intensify crop production. In smart agriculture, artificially intelligent systems are incorporated for making smart decisions, to increase crop yield (Hague et al., 2006; Franco et al., 2017). The major components that affect the crop yield are diseases of plants, irrigation system, application of agrochemicals, pest infestation, and weeds, etc. (Oerke, 2006; Mitra, 2021; Reginaldo et al., 2021; Jastrzebska et al., 2022). Only weeds have caused an economic loss of about 11 billion USD in 18 states of India between the years 2003 and 2014 (Gharde et al., 2018). Automated weed control and management systems can reduce the yield loss up to 50% and above (Dass et al., 2017).

Automated detection and identification of weeds is the first phase in the development of weed reduction system (Fernández-Quintanilla et al., 2018; Munz and Reiser, 2020). DL algorithms are better for image based classification and object identification tasks. They are mainly built on neural networks and are well known for pattern recognition in image (Szegedy et al., 2015; Guo et al., 2016; Shrestha and Mahmood, 2019). These deep neural networks have many hidden layers and each hidden layer performs some operation on input data, which leads to the identification of the object. DL based algorithms are widely used in all kind of research problems in the field of medical diagnosis (Bakator and Radosav, 2018; Yoo et al., 2020), smart traffic management (Aqib et al., 2018; Aqib et al., 2019a; Aqib et al., 2019b), and specifically in smart crop management practices (Balducci et al., 2018; Mohamed et al., 2021). They are producing considerable results in pest detection (Khalid et al., 2023), weeds detection (Khan et al., 2022) etc. using object detection in the agricultural field.

In this paper, we present a DL-based object detection model for weed detection in the agricultural field. For this purpose, a deep convolutional neural network (CNN) based YOLO object detection system is employed. To perform this experiment, the dataset was collected in the agricultural field during different time intervals and light conditions. A dataset of four weed species was collected by using image sensors. This dataset was pre-processed before using it for the training of different models of the YOLO object detection system. The models were trained and evaluated using different model configuration settings. An unseen data set was prepared to validate all the trained models using performance matrices. To the best of the author’s knowledge, we are the first to develop a detection system for the detection of the different weed species in a wheat field in the Pothohar region, Pakistan.

This paper’s contributions in the field of weeds management using DL includes the following:

	Collection and preparation of real weeds dataset, collected from fields in Pothohar, Pakistan.

	After training YOLO models with different configurations, we have provided the best weed detection model with the best configuration settings.

	A study of the application of image transformation techniques on model performance.

	An analysis of the effects of data augmentation techniques on the prediction of objects.



The rest of the study is organized as follows: the review of research articles related to this domain is presented in Section 2. Then Section 3 discusses the process workflow, proposed methodology, and the input dataset, its preprocessing, and other related details. Detailed discussion on experimental Setup and prediction results is given in Sections 4 and 5, and finally we have concluded the study in Section 6.




2 Related work

Classification and detection of objects in agricultural fields for recognition of weeds has been a hot area of research. In this section, we have discussed some of the studies in which the detection and classification of weeds are performed using AI-based techniques like DL, computer vision, robotics etc.

In (Zhuang et al., 2022), a study is organized for the detection of broadleaf weed seedlings in wheat fields. They have concluded that FR-CNN, YOLOv3, VFNet, TridentNet, and CenterNet are not suitable for detection as their recall stays equal to or less than 58%. Whereas classification using AlexNet and VGGNet have produced above 95% F1-scores. In this study, the authors have used a very small image resolution of 200 × 200 px dataset for training the models.

A system was developed in (Potena et al., 2017) study to classify weeds using multi-spectral camera. They used BoniRob robot in the process of data collection (Chebrolu et al., 2017). This data set contained data collected from multiple sensors, including a 4-channel multispectral camera, RGB-D IR sensor, GPS, terrestrial laser scanner, and Kinect sensor. The data set consisted of data from the emergence stage to the stage where a robot can damage the crop. They used two models of CNN: a lightweight CNN was used for binary image segmentation, and a deeper CNN for classification purposes. They also proposed a clustering algorithm for making subsets of images that more closely resembled each other.

In (Madsen et al., 2020), the classification of weed was done on a data set consisting of 7590 images of 47 plant species. ResNet-50-v1 algorithm was used for classification and achieved an accuracy of 77.06% and recall of 96.79%. The data set was collected in a well-illuminated environment rather than collecting it in variable light conditions. In (Gao et al., 2020) study, they developed a detection model based on deep CNN known as YOLO architecture. They trained this model on 452 field images and tested with 100 images from a total of 2271 synthetic images collected of C. sepium and sugar beet. They compared YOLOv3 and YOLOv3-tiny and achieved a mean precision of 76.1% and 82.9% respectively, with an inference time of 6.48ms.

A study was done on the detection of weeds in perennial ryegrass with DL (Yu et al., 2019). They applied several DL models which include VGGNet, GoogleNet, AlexNet, and DetectNet. They had collected 33086 images of dandelion, ground-ivy, spotted spurge, andperennial ryegrass. The data set had 15486 negative and 17600 positive images (containing weeds). They had trained the models individually for multi- and single-weed species. The analysis showed that VGGNet had the highest F1-score and recall score of 0.928 and 0.99 respectively. DetectNet had the highest F1-score value which is above 0.98. Overall, in their experiment VGGNet and DetectNet performed better.

Classification of weeds was done using Naïve Bayes in (Giselsson et al., 2017) study, in which they had created a dataset consisting of approximately 960 plants belonging to 12 species. Data was captured in different growth stages. Images were gathered over the course of 20 days with an interval of 2-3 days. Images were captured from 110-115 cm above the ground. A total of 407 images were captured with a resolution of 5184 × 3456 px. They concluded that this classifier can only be applied to images with similar features.

In (Le et al., 2020), they performed two image enhancement techniques, local binary pattern and plant leaf contour mask on weeds data set to increase performance of classifier. Two data sets were used in that experiment, Bccr-segnet and Can-rad dataset. They performed classification using Support Vector Machine and achieved an accuracy of 98.63% with 4 classes. In (Hoang Trong et al., 2020), a classification approach using the late fusion of multi-model Deep Neural Networks (DNNs) was developed. They experimented with the Plant Seedlings and weeds data sets with 5 DNN models named as NASNet, Resnet, Inception–Resnet, Mobilenet, and VGG. Two data sets were used having 208477 images. The analysis showed that the methods achieved the best accuracy of 97.31% on the plant seedlings dataset and 98.77% accuracy on the CNU Weeds dataset.

In (dos Santos Ferreira et al., 2017), they carried out a study in Campo Grande, Mato Grosso do Sul, Brazil to perform weed detection in soybean crop using CNN. A data set was created using a drone, consisting of 15000 images but after preprocessing 400 images were selected. They carried out this study in five phases. Firstly, collection of data, then classifying the images using the superpixel algorithm. Thirdly, feature extraction based on color, shape, and texture. The fourth stage consisted of training of CNN classifier. The last stage consisted of returning the visual segmentation and classification results. The images were taken from an RGB camera with a size of 4000 × 3000 px and an altitude of 4 m. They applied ConvNets, Support Vector Machines, AdaBoost, and Random Forests, and ConvNet achieved the best accuracy of 98%.

In (Jiang et al., 2020), they proposed a combination of graph convolutional network and VGG16, ResNet-101, and AlexNet for the classification of weeds. Four data sets of corn, lettuce, radish, and mixed were used. The mixed dataset was constructed by combining corn, lettuce, and radish datasets. The proposed GCN approach was favorable for multi-class crops and weeds recognition with limited labeled data. They compared GCN-ResNet-101, GCN-AlexNet, GCN-VGG16, and GCN-ResNet-101 approaches and achieved accuracies of 97.80%, 99.37%, 98.93% and 96.51% respectively.

A prototype of All Terrain Vehicle (ATV) was developed for precise spraying in (Olsen et al., 2019). A data set was prepared consisting of 17,509 labeled images of eight different species of weeds as chine apple, Lantana, Parkinsonia, Parthenium, Prickly acacia, Rubber Vine, Siam weed and Snake weed. This data set was prepared in Australian region and is publicly available on (Olsen et al., 2019). About a thousand images of each species were captured with a high-resolution camera and GPS to track progress. Two DL CNN models were used, inceprion-v3 and ResNET-50, to set a baseline performance on the dataset. Both models were evaluated using performance matrices like inference time, pre-processing time, total inference time, and frame rate. They achieved an accuracy of 95.1% and 95.7% respectively in classification. The results achieved were good, but the prototype ATV was not evaluated in real fields.

In (Bosilj et al., 2020) study, they examined the role of transfer learning in different crops and weed detection, on three data sets, Sugar beets, Carrots, and Onions. They found that the training time was reduced up to 80% even if the data was not perfectly labeled, and the classification result had a 2% error ratio.

Weed detection was performed using transfer learning in (Espejo-Garcia et al., 2020). They merged DL and ML models for weed identification. DL models include Xception, Inception-Resnet, VGNets, Mobilenet, and Densenet. And ML models were Support Vector Machines, XGBoost, and Logistic Regression. They collected 1268 images of two crops and two weed species. They found that DenseNet and SVM achieved the highest F1-score measure of 99.29%.

An FCN-8s model was trained for semantic segmentation using synthetic hierarchical images (Skovsen et al., 2019). A data set was collected, having 8000 synthetic images of ryegrass, red clover, white clover, soil, and weeds. The mean intersection over union value was calculated between ground truth images and predicted images, and scored 55.0%. The IoU values of weed and soil classes were below 40%.

Semantic segmentation of weeds was performed using SegNet (convolution neural network for semantic segmentation) in (Lameski et al., 2017). To separate the plant pixels from ground pixels, Excess Green minus Excess Red (ExG-ExR) index was used. It improved the detection of plants. They collected a carrot weed data set which was comprised of 39 images of size 10 MP from approximately 1m height. Such large-size images were converted into smaller images using a sliding window approach. The data set was imbalanced as images of carrots were more than weeds.

In the prior work done on the development of weed detection systems, different ML and DL models are trained to classify, detect, and semantically segment weeds using various data sets. A variety of sensors and computing systems were employed to collect diverse data sets and train the models. It can be seen in the related work that there is a lack of implementation of image processing and image transformation techniques applied to the dataset to get better results. In this study, we have developed a weed detection model to detect four weed species grown in wheat fields. For this purpose, we have used the latest state-of-the-art object detection models, image processing, and image transformation techniques to achieve better results as compared to other studies presented in this section.




3 Materials and methods

In this section, the steps involved in the whole experimental setup are elaborated. The experiment is designed to evaluate the capability of YOLO models and the effects of image processing for the detection of weeds in the real field. The workflow of our proposed methodology is illustrated in Figure 1. This figure highlights different phases of our proposed research methodology, which includes data collection, data pre-processing, model training, validation, and evaluation of prediction results. A brief overview of these phases is given in the following paragraphs.




Figure 1 | Process workflow of our weed detection system.



In the data collection phase, data is collected from agricultural fields using cameras in different time stamps, environmental conditions, and lightning conditions. This data is prepared to be used in further processes like training, testing, and validation of models, etc. This phase is divided into three sub-phases, normalization, augmentation, and annotation. In normalization, data is regularized and checked for removal of irrelevant, uniform, and duplicated images, etc. In the augmentation phase, the shape and size of data are altered to produce better results in further processing. In annotation, a label is assigned to each entity in data that serves as a piece of initial training information for models.

Model training process is carried out by applying the following YOLO deep neural network architectures.

	YOLOv3

	YOLOv4

	YOLOv3-tiny

	YOLOv4-tiny



These models are trained on the pre-processed data and hyper parameter tuning was performed on each model to get the best configuration. The trained models are validated on unseen data and the predicted outputs of the model are evaluated by using different performance matrices. They include precision, recall, mean average precision, and average loss. These matrices can help in analyzing results produced by the model on the validation set.



3.1 Dataset

The process of data collection is done in the winter season in the Potohar region, Pakistan. The data set collected consists of RGB images of different weed species grown in Triticum (wheat) field. These weeds are divided into four major classes which include Lolium perenne, Dactylis glomerata, Chloris cucullata (grass), Cirsium arvense (creeping thistle), Convolvulus arvensis (bindweed) and Eschscholzia californica (california poppy). The collected data set contains 1065 images collected using a Logitech HD 920c webcam pro camera with a resolution of 1 MP and dimensions of 1280 × 720. The data set is available at GitHub https://github.com/Aqib-Soft-Solutions/Wheat-Crop-Weeds-Dataset.git and a sample of it is illustrated in Figure 2.




Figure 2 | Illustration of (A) classes and (B) annotations.



After dataset collection, to make it ready for training, it needed to be normalized, augmented, and annotated first. To get better results on this data, we have performed certain cycles of training and changing data accordingly. The sub-processes of data pre-processing are described below. After analyzing data image by image, it was identified that it contains some issues that are needed to be resolved first. These issues are made by images that are blurred, uniform, camera distorted, etc. We have cleared such images that can potentially restrain our training process. The process of normalization is divided into sub-processes that are illustrated in Figure 3.




Figure 3 | The process of data normalization.



We have applied different masking techniques to extract plants from the image. Image is converted from RGB to LAB and HSV color schemes, shown in Figures 4, 5 respectively. After converting in LAB, only the ‘b’ channel is preserved. Otsu’s binarization and binary invert thresholding are applied, in which the threshold is set to 105 and the max value to 255. Whereas, after converting the image in HSV, pixels in a range are extracted, where low and high values are set to (30, 25, 0) and (80, 255, 255) respectively.




Figure 4 | Applied masking using LAB color scheme.






Figure 5 | Applied masking using HSV color scheme.



After applying thresholding, the mask obtained has some missing portions of the main plant (object). To fill out these missing parts we have applied morphology on the mask and applied bitwise AND operation on that mask and original image to get the final resultant image.

The final image obtained after using the LAB color scheme has less noise than the image obtained after applying the HSV color scheme.

In the process of data augmentation, we performed augmentation on partial images of the dataset. Firstly, images are rotated at three different angles, 45, 90, and 180 degrees. Secondly, data is also altered with a saturation value of 1.5, exposure value of 1.5, and hue value of 0.1 during training.

In data annotation, a rectangular box is drawn around each object in the image and a label is assigned to it. To do this, we have used the YOLO mark. It produces a text file that contains information about each annotation in the image.





4 Results and evaluation

This experiment is organized to evaluate: (i) the performance of YOLO object detection systems to detect weeds; (ii) the results under different configurations of YOLO models; (iii) the effects of data augmentation on inferencing; (iv) effect of image masking on model performance. The whole process is carried out in multiple different scenarios as described below.



4.1 Performance matrices

In this section, we have described the evaluation matrices used to evaluate the results of YOLOv3, v3-tiny, v4, and v4-tiny models. The parameters used to evaluate results are described as follows,



4.1.1 Precision

Precision is calculated for a particular class by dividing true positives by all positive predictions. We have used equation (1) to calculate the accuracy of trained model.






4.1.2 Recall

Recall of a class is calculated by dividing true positives and the sum of true positives and false negatives. We have used equation (2) to calculate the accuracy of trained model.






4.1.3 F1-score

The F1-score is a measure of a model’s accuracy in classification tasks, especially when dealing with unbalanced data sets. It combines precision and recall into a single measure to provide a balanced assessment of model performance. We have used equation (3) to calculate the F1-score of the trained model.

 




4.1.4 Mean average precision

The mean average precision (mAP) is calculated by taking the mean of the average precision of every class. The average precision (AP) is a measure of the area under the precision-recall curve, calculated by using the formula in equation (4).

 

Where p(r) is precision as a function of r. AP calculates average of p(r) over the interval of 0 ≤ r ≥ 1 (Zhu, 2004). To calculate the mAP, we have used the formula in equation (5).

 

Where n is the total number of classes.




4.1.5 Average loss

The average loss (AL) function of YOLO is the sum of classification loss, localization loss, and confidence loss which are calculated using equation (6) of Residual Sum of Squares (RSS) (Archdeacon, 1994). It is the deviation of predicted values from the actual ground truth values.

 

Where, RSS = Residual Sum of Squares, yi = ith value of the variable to be predicted, f (xi) is the predicted value of yi and n is upper limit of summation.





4.2 YOLOv3 implementation

YOLOv3 is a well-known object detection system. We have evaluated its performance in the detection of weeds in different setups. Data is divided into three sets, train, test, and validation with a ratio of 7, 2, and 1 respectively. To train the YOLOv3 model, we have tuned its parameters like subdivision, dimensions (width and height), max batches, and filters. Max batches and filters are updated according to formulae (7) and (8). Both parameters are highly dependent on the number of classes (ncl) in the dataset.

 

 

The performance of the YOLOv3 version is evaluated with several configuration settings for different cases. In each case, filters and max batches are kept the same with values of 27 and 8000 respectively. Hyper-parameters used for tuning the model are shown in Table 1.


Table 1 | Hyper-parameters used for training of YOLOv3.



In case 1st and 6th, the dataset used was not masked. Whereas, in case 2 nd and 5 th, LAB transformation is used. In case 3 rd and 7 th HSV transformation is used. It can be seen in the results that there is a slight variation in the mAP values but overall performance remains the same. In Figure 6, training results of all models other than the best models are presented.




Figure 6 | Illustration of training 1st, 2nd, 3rd,4th and 7th models for YOLOv3 in (A) and (B).



In case 5th and 6th, both models have achieved the best score among all implementations. In both cases, Models are configured with the same subdivisions of 32 but different dimensions of 384 × 384 and 512 × 512 respectively. Their results during training are shown in Figure 7.




Figure 7 | AL and mAP graphs for YOLOv3 models with 5th and 6th configuration setups.



YOLOv3, 5th model has provided mAP of 52.0%, best mAP of 57%, and AL of 0.4076. Whereas 6th model has gained an mAP of 53.2%, the best mAP of 57%, and AL of 0.3394. Trained models are validated using the same test data. Inference results are shown in Figure 8, where YOLOv3’s 5th model has detected more objects than the 6th model.




Figure 8 | Inferencing results of 5th and 6th models of YOLOv3.



For the evaluation of YOLOv3, we have prepared an unseen dataset, that dataset was not used for model training. In Table 2, the inference results obtained by evaluating the best model on the validation dataset are shown.


Table 2 | Shows performance of best YOLOv3 model on test dataset.



Models trained in case 3rd and 4th have detected more objects of Grass and Creeping Thistle. In case 7th, the model trained has detected the highest number of objects of Bindweed and California poppy. On average, models trained in case 3rd and 4th have detected more objects of every class as compared to other cases. In Table 3, mAP and AL values for each case are shown.


Table 3 | Shows AL, mAP, and Best AP of each model while training.






4.3 YOLOv3-tiny implementation

In the implementation of YOLOv3-tiny, we evaluated its performance in different configuration settings. In the configuration, parameters like maximum batches and filters, calculated by equation (7) and (8), are kept the same in each implementation as they depend on the number of classes in the dataset. In each case, filters and max batches are set to 27 and 8000 respectively. Change in other parameters is given in Table 4.


Table 4 | Hyper-parameters used for training of YOLOv3-tiny.



In case 1st and 3rdthe dataset used was not masked. Whereas, in case 2nd and 4th, LAB transformation is used. In case 5th and 7th HSV transformation is used. It can be seen in the results that there is a slight variation in the mAP values but overall performance remains the same.

In 5th case, the model is configured with subdivisions of 32 and dimensions of 512 × 512. Training of this model is illustrated in Figure 9. The model has an mAP of 48.7%, the best mAP of 55% and an AL is 1.5265. In the above figure, we can see that 5th model is able to detect quite a number of objects with a high confidence score while evaluating the test dataset.




Figure 9 | Training graphs and inferencing results of YOLOv3-tiny’s 5th model trained.



To evaluate YOLOv3-tiny in each case, we have validated models on an unseen dataset and calculated the correctly predicted objects. Inferencing results for the best case is shown in Table 5. Models trained in 1st and 2nd cases can detect more objects than the rest. Objects detected in 4th, 5th and 6th cases are the lowest in Grass, Bindweed, and California poppy.


Table 5 | Shows performance of best model of YOLOv3-tiny on test dataset.



In Table 6, mAP and AL values for each case are shown.


Table 6 | Shows AL, mAP and Best AP of each model trained in different cases.






4.4 YOLOv4 implementation

In the implementation of YOLOv4, we evaluated its performance in different configuration settings. We have tuned each model with parameters max batches, filters, subdivisions, and dimensions. Max batches and filters are calculated by using equations (7) and (8), whereas subdivisions and dimensions are different for each case as shown in Table 7.


Table 7 | Hyper-parameters used for training of YOLOv4.



In 1st and 2nd case, models are configured with subdivision of 16, 384 × 384 width and height, max batches of 8000, and filters 27. Maximum batches and filters are the same for each case, as they depend on the number of classes the dataset has. In case 1st, the model has an mAP of 53.6%, best mAP of 60%, and AL of 2.1259. In case 2nd, the model has an mAP of 53.1%, best mAP of 63%, and AL of 2.3958.

In the case of 1st and 2nd models are trained on LAB and HSV datasets. We have analyzed that 1st model can detect more objects in the image than the 2nd. The mean average precision of both models is quite similar. Table 8 shows the results of YOLOv4’s best model.


Table 8 | Shows performance of best YOLOv4 model on test dataset.



In Table 9, mAP and AL values for each case are shown. We can see that although the best mAP values of case 1 and 2 are relatively high the mAP values of both cases is about the same. The AL of both cases is also the same. In the 3rd case, although we have got less mAP as compared to other cases the AL is also the lowest among these experiments.


Table 9 | Shows AL, mAP, and Best AP of each model trained in different cases.



In case 4th, during training the performance of the trained model was best compared to all, as shown in Figure 10. The AL of this case is also among the lowest end. The average mAP remains above 70% which is the best so far. In the inference, the model has also outperformed others in the detection of objects.




Figure 10 | AL and mAP graph for the best YOLOv4 model with 4th configuration setups.






4.5 YOLOv4-tiny implementation

YOLO model version four tiny is a small DL-based architecture. The rate at which it can detect objects is faster than the YOLOv4 version. But it has a drawback of detecting objects with lower accuracy. The model produced after its training is of very small size, which is mainly required for machines having lower computational power.

In the implementation of YOLOv4-tiny, we evaluated its performance in different configuration settings. In each setting, parameters like filters, max batches, dimensions, etc. are modified. Filters and max-batches are calculated by using equations (7) and (8) respectively, while values of other parameters are variable in every case as given in Table 10.


Table 10 | Hyper-parameters used for training of YOLOv4-tiny.



During the training of YOLOv4-tiny in case 3rd and 4th, models are configured with 32 subdivisions and dimensions of 384 × 384 and 416 × 416 respectively. In case 3rd, the model has an mAP of 56.5%, best mAP of 59%, and AL of 0.8718. While in case 4th, the model has an mAP of 54.9%, best mAP of 57%, and AL of 0.8083. AL and mAP graphs of both cases are shown in Figure 11.




Figure 11 | AL and mAP graphs for YOLOv4-tiny models with 3rd and 4th configuration setups.



Inferencing results of case 3rd and 4th are illustrated in Figure 12, where both models are quite efficient in predicting objects with a high confidence score. Both models have provided an average confidence score of 90% while evaluating them on unseen images.




Figure 12 | Inferencing results of 3rd and 4th models of YOLOv4-tiny.



Every model in YOLOv4-tiny’s implementation has performed outstandingly while predicting the object in the image. In Table 11, the results of the best model of YOLOv4-tiny are shown. The model’s performance in 5th case is the weakest as it has detected the least number of objects in the validation dataset. In Table 12, mAP and AL values for each case are shown.


Table 11 | Shows performance of YOLOv4-tiny on test dataset.




Table 12 | Shows AL, mAP and Best AP of each model trained in different cases.







5 Discussion

In this section, we have done an analysis of the performance of four YOLO variants (v3, v3-tiny, v4, and v4-tiny). Firstly, the results obtained in the training phase are analyzed. Secondly, the performance of each model while inferencing is discussed, and then we examined the impact of data augmentation and image processing on training and evaluation. Lastly, we have done a comparative analysis of the performance of our model with related work.

In the training phase, each YOLO variant is trained on the same system to have a neutral performance comparison. We have analyzed the difference in training performance by changing configuration parameters. In each case of implementation, models are configured with a combination of dimensions (384, 416, 512, 608) and sub-divisions (16, 32). It is observed that between all combinations there is a slight performance difference in mAP values, but a major difference in GPU’s memory usage. Decreasing subdivisions and increasing width and height can consume a lot of GPU memory. Among all YOLO variants, YOLOv4 has provided the best mAP and AL values. It has managed to identify all objects correctly, out of 102 total objects, with an average confidence score of 88.67%.

In the evaluation of trained models, YOLOv4-tiny can identify more objects in overall every scenario. Behind it, YOLOv4 has achieved second best predictions rate, while YOLOv3 and YOLOv3-tiny have provided about the same results in most of the cases. In Figure 13, the number of objects detected by each model is given in (A) and the mean confidence score of the best models trained is illustrated in (B). It is observed that among all the implemented YOLO versions, YOLOv4 has provided us with the best confidence score while predicting.




Figure 13 | (A) Illustration of the number of objects detected by each model in different cases, (B) Mean confidence score of the best model of each YOLO variant.



It is evaluated that by data augmentation the confidence score and the number of objects correctly detected of two classes, Bindweed, and California poppy, has been increased. The augmentation outcome is illustrated in Figure 14.




Figure 14 | Change in each model’s results by the application of data augmentation.



In the above figure, an increase in confidence score can be seen after augmentation. A major increment for the Bindweed class is produced by YOLOv3-tiny. While the difference in California poppy’s results is very subtle. While application of LAB and HSV transformation to mask plants do not have a major impact on performance (in terms of mAP) and also it can potentially increase the processing cost, time, and resources. The YOLOv4 has detected objects with high confidence scores in the prediction process regardless of the data provided. So, we can deduce that YOLOv4 has the capability of detecting objects efficiently despite of insufficient quantity of data. We can see a comparative analysis of the performance of our model with the related work in the Table 13.


Table 13 | Shows comparative analysis with related studies.






6 Conclusion

The use of DL has greatly soared the performance of object detection systems. Detection of objects like weeds in the real field has been a challenging task because of the highly variable environment. In this study, we have proposed a DL-based weed detection model for the identification of weeds in real time. For this purpose, a real field dataset was collected and various data preprocessing techniques were applied to it, before using it as an input for training. Four YOLO versions (v3, v3-tiny, v4, v4-tiny) are implemented using different configuration settings to provide a comparative analysis of their inference results on unseen data.

We concluded that models configured with subdivisions of 16 and dimensions of 416 × 416 can generalize better on unseen data, predict more objects, and gives more accuracy and mAP as compared to other configurations. Data augmentation has also impacted greatly the performance. The model trained on augmented data has detected twice the number of objects as compared to other models. Meanwhile, the difference in performance upon implementation of LAB and HSV image transformation for masking plants is low.

We have analyzed that the best training results are provided by YOLOv4 architecture with an mAP of 73.1% and an average loss rate of 1.8. This model has achieved an accuracy of 98.88% by calculating the number of correctly predicted weeds in the unseen dataset. This model has the capability of being deployed in a real field to detect weeds.

In the future, we plan to build a variable rate spraying system for real-time weed management using the proposed model. In addition to this, we will add a variety of weed data and will also use other latest DL models to improve detection accuracy.





Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://github.com/Aqib-Soft-Solutions/Wheat-Crop-Weeds-Dataset.





Author contributions

Conceptualization, MA and MT; methodology, MA and MS; software, MS and MA; validation, MS and MA; investigation, MS, MA, and YH; resources, MA and MT; data curation, MS and MA; writing—original draft preparation, MS, MA; writing—review and editing, MA, MT, and YH; visualization, MS and MA; supervision, MA, YH, and MT. All authors contributed to the article and approved the submitted version.





Funding

The authors are thankful to the Higher Education Commission (HEC), Islamabad, Pakistan to provide financial support for this study under project No 2230 “Pilot Project for Data Driven Smart Decision Platform for Increased Agriculture Productivity.”




Acknowledgments

The authors gratefully acknowledge PSDP-funded project No 321 “Establishment of National Center of Industrial Biotechnology for Pilot Manufacturing of Bioproducts Using Synthetic Biology and Metabolic Engineering Technologies at PMAS-Arid Agriculture University Rawalpindi”, executed through Higher Education Commission Islamabad, Pakistan.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.





References

 Aqib, M., Mehmood, R., Alzahrani, A., Katib, I., and Albeshri, A. (2018). A deep learning model to predict vehicles occupancy on freeways for traffic management. Int. J. Comput. Sci. Netw. Secu 18, 1–8.

 Aqib, M., Mehmood, R., Alzahrani, A., Katib, I., Albeshri, A., and Altowaijri, S. M. (2019a). Rapid transit systems: Smarter urban planning using big data, in-memory computing, deep learning, and gpus. Sustainability 11, 27–36. doi: 10.3390/su11102736

 Aqib, M., Mehmood, R., Alzahrani, A., Katib, I., Albeshri, A., and Altowaijri, S. M. (2019b). Smarter traffic prediction using big data, in-memory computing, deep learning and gpus. Sensors 19, 2206. doi: 10.3390/s19092206

 Archdeacon, T. J. (1994). Correlation and regression analysis : a historian’s guide (Madison Wis: University of Wisconsin Press).

 Bakator, M., and Radosav, D. (2018). Deep learning and medical diagnosis: A review of literature. Multimodal Technol. Interaction 2, 47. doi: 10.3390/mti2030047

 Balducci, F., Impedovo, D., and Pirlo, G. (2018). Machine learning applications on agricultural datasets for smart farm enhancement. Machines 6, 38. doi: 10.3390/machines6030038

 Bosilj, P., Aptoula, E., Duckett, T., and Cielniak, G. (2020). Transfer learning between crop types for semantic segmentation of crops versus weeds in precision agriculture. J. Field Robotics 37, 7–19. doi: 10.1002/rob.21869

 Chebrolu, N., Lottes, P., Schaefer, A., Winterhalter, W., Burgard, W., and Stachniss, C. (2017). Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields. Int. J. Robotics Res. 36, 1045–1052. doi: 10.1177/0278364917720510

 Dass, A., Shekhawat, K., Choudhary, A. K., Sepat, S., Rathore, S. S., Mahajan, G., et al. (2017). Weed management in rice using crop competition-a review. Crop protection 95, 45–52. doi: 10.1016/j.cropro.2016.08.005

 dos Santos Ferreira, A., Matte Freitas, D., Gonc¸alves da Silva, G., Pistori, H., and Theophilo Folhes, M. (2017). Weed detection in soybean crops using ConvNets. Comput. Electron. Agric. 143, 314–324. doi: 10.1016/j.compag.2017.10.027

 Espejo-Garcia, B., Mylonas, N., Athanasakos, L., Fountas, S., and Vasilakoglou, I. (2020). Towards weeds identification assistance through transfer learning. Comput. Electron. Agric. 171, 105306. doi: 10.1016/j.compag.2020.105306

 Etienne, A., Ahmad, A., Aggarwal, V., and Saraswat, D. (2021). Deep learning-based object detection system for identifying weeds using uas imagery. Remote Sens. 13, 5182. doi: 10.3390/rs13245182

 Fernández-Quintanilla, C., Peña, J. M., Andújar, D., Dorado, J., Ribeiro, A., and Lopez-Granados, F. (2018). Is the current state of the art of weed monitoring suitable for site-specific weed management in arable crops? (Wiley Online Library). doi: 10.1111/wre.12307

 Franco, C., Pedersen, S. M., Papaharalampos, H., and Ørum, J. E. (2017). The value of precision for image-based decision support in weed management. Precis. Agric. 18, 366–382. doi: 10.1007/S11119-017-9520-Y

 Gao, J., French, A. P., Pound, M. P., He, Y., Pridmore, T. P., and Pieters, J. G. (2020). Deep convolutional neural networks for image-based Convolvulus sepium detection in sugar beet fields. Plant Methods 16, 1–12. doi: 10.1186/s13007-020-00570-z

 García, L., Parra, L., Jimenez, J. M., Parra, M., Lloret, J., Mauri, P. V., et al. (2021). Deployment strategies of soil monitoring wsn for precision agriculture irrigation scheduling in rural areas. Sensors 21, 1693. doi: 10.3390/s21051693

 Gharde, Y., Singh, P. K., Dubey, R. P., and Gupta, P. K. (2018). Assessment of yield and economic losses in agriculture due to weeds in India. Crop Prot. 107, 12–18. doi: 10.1016/J.CROPRO.2018.01.007

 Gilland, B. (2002). World population and food supply: can food production keep pace with population growth in the next half-century? Food Policy 27, 47–63. doi: 10.1016/S0306-9192(02)00002-7

 Giselsson, T. M., Jørgensen, R. N., Jensen, P. K., Dyrmann, M., and Midtiby, H. S. (2017). A Public Image Database for Benchmark of Plant Seedling Classification Algorithms. arXiv e-prints

 Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., and Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing 187, 27–48. doi: 10.1016/j.neucom.2015.09.116

 Hague, T., Tillett, N. D., and Wheeler, H. (2006). Automated crop and weed monitoring in widely spaced cereals. Precis. Agric. 7, 21–32. doi: 10.1007/s11119-005-6787-1

 Hati, A. J., and Singh, R. R. (2021). Artificial intelligence in smart farms: plant phenotyping for species recognition and health condition identification using deep learning. AI 2, 274–289. doi: 10.3390/AI2020017

 Hoang Trong, V., Gwang-hyun, Y., Thanh Vu, D., and Jin-young, K. (2020). Late fusion of multimodal deep neural networks for weeds classification. Comput. Electron. Agric. 175, 105506. doi: 10.1016/j.compag.2020.105506

 Jastrzebska, M., Kostrzewska, M., and Saeid, A. (2022). Conventional agrochemicals: Pros and cons. Smart Agrochemicals Sustain. Agric., 1–28. doi: 10.1016/B978-0-12-817036-6.00009-1

 Jiang, H., Zhang, C., Qiao, Y., Zhang, Z., Zhang, W., and Song, C. (2020). CNN feature based graph convolutional network for weed and crop recognition in smart farming. Comput. Electron. Agric. 174, 105450. doi: 10.1016/j.compag.2020.105450

 Jin, X., Sun, Y., Che, J., Bagavathiannan, M., Yu, J., and Chen, Y. (2022). A novel deep learning-based method for detection of weeds in vegetables. Pest Manage. Sci. 78, 1861–1869. doi: 10.1002/ps.6804

 Khalid, S., Oqaibi, H. M., Aqib, M., and Hafeez, Y. (2023). Small pests detection in field crops using deep learning object detection. Sustainability 15, 6815. doi: 10.3390/su15086815

 Khan, F., Zafar, N., Tahir, M. N., Aqib, M., Saleem, S., and Haroon, Z. (2022). Deep learning-based approach for weed detection in potato crops. Environ. Sci. Proc. 23, 6. doi: 10.3390/environsciproc2022023006

 Lameski, P., Zdravevski, E., Trajkovik, V., and Kulakov, A. (2017). “Weed Detection dataset with RGB images taken under variable light conditions,” in ICT Innovations 2017: Data-Driven Innovation. 9th International Conference, ICT Innovations 2017, Skopje, Macedonia, September 18-23, 2017, Proceedings 9, vol. 778. (Springer Verlag), 112–119. doi: 10.1007/978-3-319-67597-811

 Le, V. N. T., Ahderom, S., Apopei, B., and Alameh, K. (2020). A novel method for detecting morphologically similar crops and weeds based on the combination of contour masks and filtered Local Binary Pattern operators. GigaScience 9, 1–16. doi: 10.1093/gigascience/giaa017

 Liang, M., and Delahaye, D. (2019). “Drone fleet deployment strategy for large scale agriculture and forestry surveying,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC). (IEEE) 4495–4500.

 Madsen, S. L., Mathiassen, S. K., Dyrmann, M., Laursen, M. S., Paz, L. C., and Jørgensen, R. N. (2020). Open plant phenotype database of common weeds in Denmark. Remote Sens. 12, 12–46. doi: 10.3390/RS12081246

 Mavani, N. R., Ali, J. M., Othman, S., Hussain, M. A., Hashim, H., and Rahman, N. A. (2021). Application of artificial intelligence in food industry—a guideline. Food Eng. Rev. 14, 134–175. doi: 10.1007/S12393-021-09290-Z

 Mitra, D. (2021). Emerging plant diseases: research status and challenges. Emerging Trends Plant Pathol., 1–17. doi: 10.1007/978-981-15-6275-41

 Mohamed, E. S., Belal, A., Abd-Elmabod, S. K., El-Shirbeny, M. A., Gad, A., and Zahran, M. B. (2021). Smart farming for improving agricultural management. Egyptian J. Remote Sens. Space Sci. 24, 971–981. doi: 10.1016/j.ejrs.2021.08.007

 Munz, S., and Reiser, D. (2020). Approach for image-based semantic segmentation of canopy cover in PEA–OAT intercropping. Agric. (Switzerland) 10, 1–12. doi: 10.3390/agriculture10080354

 Oerke, E. C. (2006). Crop losses to pests. The Journal of Agricultural Science 144, 31–43. doi: 10.1017/S0021859605005708

 Olsen, A., Konovalov, D. A., Philippa, B., Ridd, P., Wood, J. C., Johns, J., et al. (2019). DeepWeeds: A multiclass weed species image dataset for deep learning. Sci. Rep. 9, 1–12. doi: 10.1038/s41598-018-38343-3

 Partel, V., Charan Kakarla, S., and Ampatzidis, Y. (2019). Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Comput. Electron. Agric. 157, 339–350. doi: 10.1016/j.compag.2018.12.048

 Potena, C., Nardi, D., Pretto, A., Potena, C., Nardi, D., Pretto, A., et al. (2017). Intelligent autonomous systems. (Springer International Publishing) 14, 105–121. doi: 10.1007/978-3-319-48036-79

 Rajalakshmi, T., Panikulam, P., Sharad, P. K., and Nair, R. R. (2021). Development of a small scale cartesian coordinate farming robot with deep learning based weed detection. J. Physics: Conf. Ser. 1969, 012007.

 Reginaldo, L. T. R. T., Lins, H. A., Sousa, M. D. F., Teofilo, T. M. D. S., Mendonҫa, V., and Silva, D. V. (2021). Weed interference in carrot yield in two localized irrigation systems. Rev. Caatinga 34, 119–131. doi: 10.1590/1983-21252021V34N113RC

 Shrestha, A., and Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE Access 7, 53040–53065. doi: 10.1109/ACCESS.2019.2912200

 Sivakumar, A. N. V., Li, J., Scott, S., Psota, E., Jhala, A. J., Luck, J. D., et al. (2020). Comparison of object detection and patch-based classification deep learning models on mid-to late-season weed detection in UAV imagery. Remote Sens. 12, 21–36. doi: 10.3390/rs12132136

 Skovsen, S., Dyrmann, M., Mortensen, A. K., Laursen, M. S., Gislum, R., Eriksen, J., et al. (2019). The grassClover image dataset for semantic and hierarchical species understanding in agriculture. Tech. Rep. doi: 10.1109/CVPRW.2019.00325

 Szegedy, C., Wei, L., Yangqing, J., Pierre, S., Scott, R., Dragomir, A., et al. (2015). Going deeper with convolutions Christian. Population Health Manage. 18, 186–191.

 van Dijk, A. D. J., Kootstra, G., Kruijer, W., and de Ridder, D. (2021). Machine learning in plant science and plant breeding. iScience 24, 101890. doi: 10.1016/J.ISCI.2020.101890

 Yoo, S. H., Geng, H., Chiu, T. L., Yu, S. K., Cho, D. C., Heo, J., et al. (2020). Deep learning-based decision-tree classifier for covid-19 diagnosis from chest x-ray imaging. Front. Med. 7, 427. doi: 10.3389/fmed.2020.00427

 Yu, J., Schumann, A. W., Cao, Z., Sharpe, S. M., and Boyd, N. S. (2019). Weed detection in perennial ryegrass with deep learning convolutional neural network. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.01422

 Zhang, P., Guo, Z., Ullah, S., Melagraki, G., Afantitis, A., and Lynch, I. (2021). Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nat. Plants 7, 7 7, 864–876. doi: 10.1038/s41477-021-00946-6

 Zhu, M. (2004). Recall, precision and average precision Vol. 2 (Waterloo: Department of Statistics and Actuarial Science, University of Waterloo), 6.

 Zhuang, J., Li, X., Bagavathiannan, M., Jin, X., Yang, J., Meng, W., et al. (2022). Evaluation of different deep convolutional neural networks for detection of broadleaf weed seedlings in wheat. Pest Manage. Sci. 78, 521–529. doi: 10.1002/PS.6656




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2023 Saqib, Aqib, Tahir and Hafeez. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 17 August 2023

doi: 10.3389/fpls.2023.1190591

[image: image2]


Rapid appearance quality of rice based on machine vision and convolutional neural network research on automatic detection system


Yangfan He, Baojiang Fan, Lei Sun, Xiaofei Fan, Jun Zhang, Yuchao Li and Xuesong Suo *


College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, China




Edited by: 

Muhammad Naveed Tahir, Pir Mehr Ali Shah Arid Agriculture University, Pakistan

Reviewed by: 

Jingjing Liu, Northeast Electric Power University, China

M. F. Mridha, American International University-Bangladesh, Bangladesh

*Correspondence: 

Xuesong Suo
 13903120861@163.com


Received: 21 March 2023

Accepted: 31 July 2023

Published: 17 August 2023

Citation:
He Y, Fan B, Sun L, Fan X, Zhang J, Li Y and Suo X (2023) Rapid appearance quality of rice based on machine vision and convolutional neural network research on automatic detection system. Front. Plant Sci. 14:1190591. doi: 10.3389/fpls.2023.1190591






Introduction

In the process of rice production and storage, there are many defects in the traditional detection methods of rice appearance quality, but using modern high-precision instruments to detect the appearance quality of rice has gradually developed into a new research trend at home and abroad with the development of agricultural artificial intelligence.





Methods

In this study, we independently designed a fast automatic rice appearance quality detection system based on machine vision technology by introducing convolutional neural network and image processing technology. In this study, NIR and RGB images were generated into five-channel image data by superposition function, and image are preprocessed by combining the Watershed algorithm with the Otus adaptive threshold function. Different grains in the samples were labeled and put in the convolutional neural network for training. The rice grains were classified and the phenotype data were analyzed by selecting the optimal training model to realize the detection of rice appearance quality.





Results and discussion

The experimental results showed that the resolution of the system could reach 92.3%. In the detection process, the system designed with this method not only reduces the subjectivity problems caused by different detection environments, visual fatigue caused large sample size and the inspector’s personal factors, but also significantly improves the detection time and accuracy, which further enhances the detection efficiency of rice appearance quality, and has positive significance for the development of the rice industry.
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1 Introduction

Among the most important food crops in the world, rice occupies an unshakable position. Most Chinese take rice as their main food, with an average annual consumption of about 180 million tons (Meng et al., 2019). With the influence of various factors, such as the quantity production of hybrid rice, improvement of residents’ quality of life, and diversification of market development in our country, the rice industry has abandoned the previous model of blindly pursuing high yield and begun to develop in the direction of improving rice quality (Liu et al., 2017). In the process of rice production and storage, the traditional detection methods of rice appearance quality are mainly executed through artificial autonomous identification, that is to say, it is identified by the human eye combined with the intuitive analysis of the reference substance. The method of manual detection and evaluation are not only time consuming and labor intensive, but the results are also basically affected by the subjectivity of professional inspectors. The subjectivity of inspectors and the difference in judging standards caused by different regions make the rapid, automatic and accurate detection of rice appearance quality become the development trend of the industry.

With the development of artificial intelligence in agriculture, the rice quality test with the help of modern and high-precision instrument becomes a new trend at home and abroad. The rice quality inspection technologies that have been developed in recent years include texture analysis technology, near-infrared spectroscopy technology, machine vision technology, scanning electron microscopy technology, intelligent sensory technology, and image processing technology have been developed. In response to the problems of labor intensity, high cost and unstable detection accuracy of manual inspection, Ruan (2021) designed a machine vision-based rice inspection system using image processing technology, which realized the counting of the number of rice grains and the identification of incomplete grains. However, the system needs to improve the discrimination rate of the number of grains and has some problems such as single detection result and the lack of practical application value. Furthermore, Xing and Luo (2021) proposed a data fusion processing algorithm based on image processing to achieve the segmentation of rice samples and background, maximizing the elimination of noise and improving the accuracy of the subsequent detection function. Beyond that, six kinds of rice were selected as the test samples, and the system achieved the detection of broken rice rate, rice species detection, and crack detection for random rice samples, which is better than the traditional manual detection methods. However, the system has a single sample size and lacks the ability to be widely applied. Furthermore, Leethanapanich et al. (2016) observed the morphology of translucent, chalky and treated rice using scanning electron microscopy at an accelerating voltage of 10kv, and analyzed the effect of soaking and drying conditions on rice chalkiness. As revealed by the result drying at a temperature higher than the glass transition temperature of starch also promoted starch granule rearrangement, further decreasing the chalkiness of the rice. Although scanning electron microscopy can capture finer and clearer images of rice compared with industrial cameras, it is more costly and unsuitable for the development of rice inspection systems Zhang et al. (2007) designed a set of electronic nose system suitable for the detection of rice mildew, which tested the rice with different mildew levels. As shown by the experimental results, the system has a high analytical accuracy for the detection of rice mold degree. The system relies on gas sensors, such as ethanol vapor, ammonia and carbon monoxide, to achieve the analysis of rice mold degree. However, the system is a complex process to implement and is highly dependent on the detection environment. Rice texture can be assessed by trained experts through sensory testing, but this method has some disadvantages such as high labor intensity and subjective bias. In order to address this drawback, Liu et al. (2020) used a texture analyzer equipped with a multi-squeezed cell probe to monitor changes in force and evaluated the taste quality of rice by simulating the process of rice in the mouth. The texture analysis technique was mainly used to detect the steaming taste quality of rice, yet this technique lacks intuitiveness relative to appearance detection. Besides, Siriphollakul et al. (2017) used near-infrared spectroscopy for non-destructive determination of edible quality of KDML105 rice through single grain transmission method. Partial least squares regression analysis was used for accurate prediction of straight-chain starch content in raw rice with small prediction error. At the same time, Sampaio et al. (2018) used a combination of near infrared spectroscopy and chemometrics to allow accurate quantification of straight-chain starch content in rice varieties. The partial least squares analysis and other methods Partial Least Squares Regression (PLSR) were also validated, and the results showed satisfactory results for all estimates. Compared with the traditional laboratory methods, this method has the advantages of simple operation, low cost, high speed, low chemical waste, and non-destructive detection, which is suitable for “online” analysis. The combination of NIR spectroscopy and chemometrics is a simple, rapid and reliable method for quantifying straight-chain starch.

Based on the current technology and the previous research, the study has cited image processing technology, near-infrared technology, and machine vision technology for inspecting the rice appearance quality. Although many intelligent inspection methods have emerged as alternatives to manual labor in rice inspection technology, the most widely used and rapidly developing rice appearance quality inspection technology is based on the image processing technology (Image Processing) (Ma et al., 2018). Specifically, Wu et al. (2021) described the application and development prospects of digital image processing technology in fruit and vegetable grading inspection. In addition, Zhang et al. (2021) designed an image sensing technology-based appearance inspection and grading method to analyze the size, weight, and blemish points of baby vegetables. Besides, Du et al. (2018) put forward a non-destructive grading method for garlic seed quality based on the image processing for the problems of easy damage of garlic seeds and high machine cost consumption in garlic seed grading process. With certain application value in garlic seed quality grade screening, it achieves garlic seed quality screening and meets the requirement of normal working in real time.

The current detection model mainly relies on the three-channel value of RGB images, which has the defects of variability and instability. Therefore, near infrared technology (NIR) has been proposed, and near infrared images can capture a smoother seed surface. Simply speaking, the principle is that infrared light has a longer wavelength, which is less likely to cause scattering and refraction on the surface and is more penetrating. Thus, it is not blocked by the pigments on the epidermis, which could better reflect the information of the epidermis itself. Additionally, Mei (2020) designed a multispectral fusion network arithmetic based on convolutional neural network for color and NIR images, which can not only effectively fuse color and NIR images but also generate high-quality fusion images containing texture information of NIR images and color information of color images. This image is characterized by low generation noise, complete details, and good color. Tang et al. (2020) proposed a convolutional neural network-based NIR and low-illumination visible light fusion algorithm, which has an excellent performance in subjective effects and various objective indicators, advancing the application of deep learning to practical NIR and low-illumination visible light fusion problems.

The discussions above still provide insufficient reasons to support the intelligent detection of rice appearance quality. However, the development of machine vision technology has promoted the intelligent and automatic development of the current food crop appearance detection technology. For the detection technology of rice and other grains, Zhou (2016) uses machine vision technology and makes comparison with manual detection. The former has advantages of high accuracy, high efficiency and simple repetitive operation. Adopting machine vision technology for grain grading to replace traditional manual detection is a new trend to improve detection efficiency in the future. Since the adoption of machine vision technology can effectively avoid errors brought by some external factors and many subjective factors occurring in manual detection, Chen et al. (2018) proposed that the grain quality detection based on machine vision technology has basically had the advantages of non-destructive, rapid and high recognition rate. The application of machine vision technology in the detection of food quality has realized the non-destructive detection of food quality, which has a considerable prospect in the detection of food quality, and will become a research hotspot at home and abroad in future (Zhao, 2021).

Considering the shortcomings and advantages of previous work, this study independently designed a hardware device for rice appearance quality detection equipped with a software operating system by taking machine vision technology as the leading technology and combining image processing technology and near infrared technology. As for the method, it proposed for the first time to generate five-channel image data by stacking NIR and RGB images, by which the accuracy and stability of the model are improved. The images are preprocessed by combining the Watershed algorithm with the Otus adaptive threshold function, which can accurately segment the 20g (800-1000) rice grains specified in the national standard. Different grains were labeled and put in the convolutional neural network for training. The optimal training model was selected to classify the rice and analyze its phenotypic data. It was proved that the resolution of the model could reach 92.3%.

GB1354-2018 was used as the basis for rice classification in this paper. Chinese National standard GB1354-2018 has stipulated various terms and definitions, quality requirements, classification, inspection rules and inspection methods of rice. Among them, imperfect grain is characterized by diseased spot, mildew and unripe, and perfect grain is characterized by full grain, no disease spot and no mildew.

In the process of rice appearance quality detection, this system not only reduces the subjectivity problems caused by different detection environments, visual fatigue caused by large sample size and inspector’s personal factors, but also significantly improves the detection time and accuracy, which enhances the detection efficiency of rice appearance quality and grade determination. Thereby, it has realized the automatic, scientific and accurate detection of rice appearance quality, and has become a good substitute for the traditional detection method.




2 System introduction



2.1 The overall structure of the system

The rice appearance quality inspection system designed independently in this study includes the dark box, strip light source, five-channel camera, drawer type carrier table, scale holder, backlight board, control module, and computer. This system has advantages of high efficiency and high precision in comparison to the current stage of manual inspection in rice appearance quality inspection. It excludes the subjectivity of manual work, and improves the inspection efficiency in time. Its general framework is shown in Figure 1, and the physical diagram of the system is displayed in Figure 2.




Figure 1 | The overall structure of the system.






Figure 2 | System physical.



In this study, a five-channel camera (R, G, B, NIR1, NIR2), a global shutter 3CMOS camera under the JAI brand, model FS-3200T-10GE-NNC, was used to transmit image data through the GIGE interface. The working principle is that each of the rear end of the spectral prism is equipped with an independent light-sensitive chip to simultaneously capture color visible light images and black-and-white NIR images, color visible light images and black-and-white NIR images through dual-channel output. Moreover, the metal frame of the dark box is made of aluminum alloy, which not only ensures the simplicity of the frame but also has the durability to avoid the damage caused to the dark box or the frame later in the process of moving. The metal frame of the dark box is made of aluminum alloy. The light barrier of the dark box is made of acrylic board, which adopts opaque design to ensure that the imaging environment of the dark room is not disturbed by the external light, and has the advantages of non-breakable, light weight and high durability. In order to ensure the uniformity of lighting, this article designs a strip light source that integrate visible and near-infrared light. The visible light source is an LED light source. Near-infrared light is an electromagnetic wave located between visible light and mid-infrared light, and the wavelength is generally in the range of 780-2526 nm (Cheng et al., 2022). The detection is completed based on the characteristic of different hydrogen-containing groups in the tested sample having different reflectance values towards near-infrared light (Zhang et al., 2018). The NIR light source uses NIR light in the wavelength range of 700-1000 nm, and the images of rice in this wavelength range can well meet the experimental requirements. The strip light source is designed symmetrically on the left and right side to avoid uneven scattering of light. In addition, there is an LED backlight board with an area of 400×460cm at the bottom of the dark box to ensure the high quality of the sample images. This paper designs a drawer-type glass loading table. The drawer type has the advantages of easy operation and fast speed, which lays the foundation for rapid sample detection and replacement. The glass material has good light transmission and can effectively utilize the role of a light source and improve the quality of the sample images. In the process of drawer pulling, the inertial force can avoid the phenomenon of superposition of rice seeds. If there is a partial superposition of seeds, the phenomenon can be eliminated by shaking the drawer.




2.2 System working processes

In this paper, convolutional neural networks (CNNs) has been invoked to quickly and automatically detect the appearance quality of seeds using machine vision-based image processing techniques (Xiao, 2020; Wang et al., 2021). The working steps of this system are as follows: checking the integrity of the rice appearance quality inspection equipment and connecting the power supply; starting the computer, entering the account number in the login interface, and moving to the camera parameter setting interface and finally to the image acquisition and analysis interface; taking 500-1000 seeds and laying them flat on the drawer-type carrier table; turning on the strip light source and LED backlight board; conducting image acquisition and processing; manipulating the said five-channel camera to capture images and the said image acquisition and analysis interface to transform and display said image, clicking the named data analysis button to complete the said image of rice quality analysis results; completing the image acquisition, pulling out the drawer-type carrier table along the slide, tilting the rice into the rice recycling tank; putting the new rice in the drawer-type carrier table for a new test, and completing a new set of rice testing operation.





3 Experimental methods



3.1 Image pre-processing

Image contains noise or impurities when converting color images to binary images due to interference from equipment or external environment. Therefore, in this paper, we performed image noise and impurity removal on the obtained binary images (Cui et al., 2021), which in turn could make rice counting and phenotype data extraction more accurate.

There are multiple methods to remove noise points in image processing techniques. At present, the more common methods to remove noise points include Gaussian filtering, median filtering, mean filtering, etc. Binary image noise points mainly appear in the white spots in the background part other than the main part of the rice. For this feature, this study adopted the Gaussian filtering method to remove the noise points (Liang and Ma, 2017). The impurity removal function was added to Gaussian filtering to remove the impurities in the binary image.




3.2 Image segmentation

Comprehensively considering the requirements of practical application and detection standards, the image acquired by the system designed in this study contains 20g (800-1000 grains) of rice grains. However, using single grain rice images as input for training in convolutional neural network models yields better result, so it is necessary to conduct image segmentation processing on the pre-processed image. The connected region was labeled by Roundness indicators, and the connected areas of single rice grain and the connected areas of adhered rice were divided. Then the segmentation algorithm combining watershed algorithm and Otus adaptive threshold algorithm was applied to accurately segment the grains in adhered areas.

After removing the noise and impurities, we found that the rice was in two states in the rice image, in which one was the single grain rice state and the other was the adhesive rice state (see Figure 3). The difficulty is how to deal with the adhesive rice state.




Figure 3 | Rice Connected Area. (A) Connected area of single grain rice. (B) Conglutinated rice connected area.



In this study, the single grain rice and the adhesive rice were first segmented effectively. The method of connected area detection is selected for effective division (Ren et al., 2021). We label the connected region in the preprocessed binary image, the labeling results were detected by the Roundness index, according to which the connected area of single rice grains and adhesive rice connected area were divided (Liu et al., 2019). The Roundness index has been defined in Equation.

 

Where, A is the area of the connected region; S is the perimeter of the connected region. The marked connected region of adhesive rice was segmented. At present, the commonly used segmentation methods include notch detection method, DPC+K-means algorithm and watershed algorithm. According to the characteristics of the image and in view of the computational volume, the Watershed algorithm is chosen in this paper (Mo, 2020). The calculation process of Watershed is an iterative labeling process. Firstly, the gray level of each pixel is sorted from low to high. Then, in the process of achieving flooding from low to high, the first-in-first-out (FIFO) structure is used to judge and label each local minimal value in the influence domain of h-order height. The watershed indicates the maximum value point of input image. Therefore, in order to obtain the edge information of the image, the gradient image is usually taken as the input image. The gradient image is calculated by Sobel operator (Han et al., 2020). namely,



where   denotes the original image, and   denotes the gradient operation.

Although the watershed algorithm has a good respond to weak edge, it can produce the phenomenon of excessive segmentation. This phenomenon can be eliminated by threshold processing of gradient image. In the process of threshold processing, it is particularly critical to obtain an appropriate threshold value, which has a great impact on the quality of the final segmentation image. Therefore, Otus adaptive threshold algorithm (Luo and Zhang, 2018; Yao et al., 2020) is added, which can well avoid the disadvantage of manually adjusting the threshold value.




3.3 Image superposition

In order to improve the stability and accuracy of the training model, this paper has used a five-channel camera, the working principle of this camera is to use prism splitting technology to split the original image onto three sensors, and can obtain three images, RGB, NIR1 and NIR2, respectively. In order to enable the three separate images to be treated as one image as input in the model training, the RGB images are firstly separated into R, G, and B channel images. Then, they are uniformly superimposed with NIR1 and NIR2 into a five-channel (RGB+NIR+NIR) image with a pixel size of 100 × 100 and the number of layers is five layers (see Figure 4).




Figure 4 | Five-layer input image.






3.4 Convolutional neural network analysis model

In this study, a convolutional neural network model was used to detection the goodness of rice, because in the current processing and transportation process, it is time-consuming and subjective to manually discriminate the goodness of rice. Therefore, an alternative to manual judgment is urgently needed, deep learning is adopted to train the model for rice (Wang et al., 2021). Meanwhile, the model with better accuracy for rice determination model is selected for the rice quality detection system after comparison. Below is the training process for different detection models.



3.4.1 Analysis of VGG19 model

The model is a CNN model with changes based on the VGG19 network. The network model has a total of 24 layers, which are divided into one input layer, five convolutional layers, five activation layers, five pooling layers, one fully connected layer, five batch normalization layers, softmax function, and one output layer (Ishengoma et al., 2021; Wan et al., 2021). In this experiment, the input layer of the VGG19 model is set as a five-channel rice image with a pixel size of 100 × 100. Both the maximum pooling layer and the softmax function are applied to the network. The advantage of the maximum pooling layer is that it minimizes overfitting. The maximum number of training arguments is set to 100 rounds and the learning rate is 0.001. The network architecture is shown in Figure 5. A total of 2464 images from the pre-processed five-channel images are used, with 2100 as the training set and 364 as the test set. In addition, the VGG19 model is trained to do perfect and imperfect classification training on rice.




Figure 5 | VGG19 network model architecture.






3.4.2 Analysis of Resnet50 model

Resnet, also known as residual neural network, adds the idea of residual learning to the traditional convolutional neural network so as to avoid the phenomenon of learning degradation occurs as the number of layers of the network model deepens (He et al., 2016). In essence, the idea of residual learning can be understood as a block, which can be defined by Equation (3). Where Y denotes the output, F(X,{Wi}) denotes the residual part, and x denotes the sample.

 

Resnet50 consists of 49 convolutional layers and 1 fully connected layer (Wang et al., 2019). The structure is shown in Figure 6. Where, ID BLOCK x2 in the second to fifth stages represents two residual blocks that do not change the size, CONV BLOCK represents residual blocks with added scales, and each residual block contains three convolutional layers. Therefore, there are 1 + 3 × (3 + 4 + 6 + 3) = 49 convolutional layers, in which CONV represents the convolutional layer for the convolution operation, Batch Norm represents the regularization process, Relu represents the activation function, and MAX POOL and Avg POOL represent the maximum pooling layer and the average pooling layer. As shown in Figure 7, ResNet50 is stacked by several residual blocks, and the deep network can be trained with these residual blocks. A total of 2464 images from the pre-processed five-channel images are used, with 2100 as the training set and 364 as the test set. Besides, the set up Resnet50 model is trained to do perfect and imperfect classification training on rice.




Figure 6 | Comparison of binary image denoising and impurity removal. (A) Binary graph with noise or impurities. (B) Binary graph of impurity and noise removal.






Figure 7 | Resnet50 network architecture.








4 Experimental results



4.1 Image processing results

On the basis of Gaussian filtering, bwareaopen function was added to remove impurities in the binary image, and the effect was shown in Figure 6. The method works well in the practical application. By processing the binary image, the noise points and impurities in the image acquisition process can be effectively removed to make sure that the subsequent image segmentation and data processing are more accurate.

The image can be divided into single rice connected region and adhesive rice connected region by the connected region marker. The binary image is classified into single rice connected region and adhesive rice connected region for better segmentation of sticky rice. Then, the combination of adaptive threshold function and watershed algorithm is applied to the adhesive region rice so as to achieve better segmentation effect. The segmentation contrast effect is presented in Figure 8, which can reduce the computational effort of the segmentation algorithm while segmenting the target accurately. Besides, the adaptive threshold function can well avoid the tedious process brought by hand-adjusted thresholding, which not only solves the over-segmentation phenomenon of the watershed algorithm, but also provides convenience for the adjustment of the threshold.




Figure 8 | Segmentation effect comparison chart. (A) Manual threshold segmentation (threshold 190). (B) Manual threshold segmentation (threshold 200). (C) Manual threshold segmentation (threshold 210). (D) Adaptive threshold segmentation.



Figure 8 shows the optimization results of watershed combined with adaptive threshold segmentation algorithm. Figures 8A–C are all obtained by manual threshold value, and rice grains in the figure all have over-segmentation to varying degrees, while Figure 8D is the result of watershed combined with adaptive threshold segmentation algorithm. In the figure, the effect of rice grain segmentation is good without over-segmentation.




4.2 Model testing results



4.2.1 VGG19 model testing

In this study, five-channel images of rice were used as input to VGG19 model, and the VGG19 model so as to classify rice. 25 perfect grain images and 25 imperfect grain images were collected and processed as verification sets. The size of five-channels rice grain image is 100×100 pixels. In order to verify that the final accuracy is not too high or too low due to overfitting or underfitting, VGG19 is used to train the five-channel image of rice for several times. The number of iterations in each training is different. By comparing the training accuracy of several times, it is found that the accuracy deviation is small. The final training accuracy rate is the average of multiple training accuracy rates. The accuracy of verification set results is shown through the confusion matrix, as shown in Figure 9, and the classification accuracy of the validation set of this model is displayed in Table 1.




Figure 9 | Confusion matrix of VGG19 validation set.




Table 1 | Classification accuracy of the validation set of the VGG19 model.



As shown by the test results, 25 perfect grain images and 25 imperfect grain images are used as verification sets. The results showed that the classification accuracy for rice quality VGG19 model achieved was 92%. 21 out of 25 imperfect grains were identified, indicating an accuracy of 86.2%. All the 25 images of the perfect grains were identified, indicating 100% accuracy. After the adjustment of the model, the accuracy of the model has been significantly improved, and the stability has also been enhanced. The model meets the actual production needs, has strong practical application value, and has far-reaching influence on the rice appearance quality detection technology.




4.2.2 Resnet50 model test

A total of 2464 pre-processed five-channel images were put into the Resnet50 model for training. The iteration times were 100 times. The rice grains were put into the Resnet50 model for training of classifying perfect and imperfect grains. Similarly, the prediction of perfection and imperfection is carried out, and a total of 200 pieces of images of perfect grains and 200 pieces of images of imperfect grains are selected as the verification set. The training and verification process are shown in Figure 10, and the accuracy of the model is shown in Table 2.




Figure 10 | Resnet50 network training prediction curve.




Table 2 | Classification accuracy of prediction set of Resnet50 model.



From Figure 10 and Table 2, it can be seen that the training accuracy of the model was 95.5% and the prediction accuracy was 91.3%. The imperfect grains were identified 182 out of 200 sheets, with 91% accuracy; the perfect grains were identified 183 out of 200 sheets, with 91.5% accuracy. The classification accuracy was high. The prediction effect of the model on rice is displayed in Figure 11.




Figure 11 | Rice prediction effect. (A) Complete. (B) Lesions. (C) Mildew. (D) Immature.






4.2.3 Model comparison test

In order to select the optimal model as the classification model of this system, 111 images of perfect grains and 113 images of imperfect grains of the preprocessed rice five-channel images were prepared as prediction sets, which were put into the trained VGG19 network model and Resnet50 network model for prediction. The prediction results were shown in Table 3.


Table 3 | Model prediction effect.



It can be seen from the information in the table that the classification accuracy of VGG19 network model is 92.2%, and the classification accuracy of Resnet50 network model is 91.3%. The classification accuracy of VGG19 network model is higher and the training time is less than that of resnet50, which is more in line with the actual production needs. Therefore, VGG19 is selected as the classification model in this system.





4.3 Comparison of detection efficiency



4.3.1 Detection time

The experimental data were collected from the National Grain Reserve transfer Warehouse, with manual detection by the national quality inspector for detection and machine detection performed by this research system. The test samples were 12 groups of rice samples including 10, 20, 50, 80, 100, 200, 500, 800, 1000, 1500, 2000, and 5000 grains. The rice was randomly sampled under the same environment, and the corresponding appearance quality tests were performed for different number of grains, the testing time and number of grains were compared and analyzed (see the results of the analysis in Figure 12).




Figure 12 | Comparison of detection time.



As shown in Figure 12, the machine inspection did not have an advantage in terms of time when the samples were tested in four groups of 10, 20, 50 and 80 grains, but the machine inspection had a great advantage over the manual inspection for samples above 80 grains. When the test sample was 50 grains, manual test took 0.67 minutes, while machine test took 1 minute. However, when the test sample was 100 grains and 4000 grains, the manual testing time was 1.16 minutes, 33.5 minutes, respectively, and the machine testing time was 1 minute, 5 minutes, respectively. After field research, we knew that most of the rice inspection samples were around 700-800 grains, or even more. Therefore, in practical application, machine test has significant advantages over manual test in terms of testing time.




4.3.2 Detection accuracy

The experimental data were collected from the National Grain Reserve transfer Warehouse, with manual detection by the national quality inspector for detection and machine detection performed by this research system. The test samples were 17 groups of rice samples including 10, 20, 50, 80, 100, 200, 500, 800, 1000, 1200, 1500, 1800, 2000, 2500, 3000, 4000, and 5000 grains. The rice was randomly sampled under the same environment, and the corresponding appearance quality tests were carried out for different grain counts, and the accuracy of the tests and the grain counts were compared and analyzed (see the results of the analysis in Figure 13).




Figure 13 | Comparison of measurement accuracy.



As displayed in Figure, the machine inspection did not have an advantage in terms of accuracy when the samples were 10, 20, 50 and 80 grains, but the machine inspection had a great advantage over the manual inspection for samples above 80 grains. When the sample was 50, the accuracy of manual detection was 100%, while the accuracy of machine detection was 98.2%. When the samples were 800 and 3000, the accuracy of manual testing was 94.3% and 85%, respectively. While the accuracy of machine testing was 95.5% and 93.2% respectively. As the number of grains tested increased and the testing time grew, the manual test had a fatigue effect and the accuracy rate decreased, while the machine did not have this situation. Therefore, machine inspection has a great advantage over the manual inspection.






5 Discussion

In image processing, this study has used Watershed algorithm combined with adaptive thresholding function. Gaussian filtering can effectively remove the noise points in the image binarization process, and the algorithm for calculating pixel point de-impurity is added for the characteristics of binary images to get clear pre-processed images quickly and effectively. The Watershed algorithm alone could produce over-segmentation due to subtle grayscale changes on the surface of the object in the image. In order to avoid the phenomenon of over-segmentation, the adaptive thresholding function is added to avoid the trouble of hand-adjusted thresholding and to eliminate the over-segmentation caused by small changes in grayscale. Both improve the segmentation accuracy and avoid the over-segmentation phenomenon.

Before the establishment of the model, the input data uses five channels of image data. Most of the previous convolutional neural network training used RGB three-channel images, and the accuracy of the trained model was high, but the stability of the model could not be guaranteed. The five-channel image data uses RGB three-channel and two-channel NIR images. The NIR images can capture the smoother seed surface, and the infrared light has a longer wavelength, which is less likely to trigger scattering refraction on the surface and has stronger penetration. Hence, it will not be blocked by the pigment on the epidermis, and the information of the epidermis itself can be better reflected. Compared with the RGB three-channel input image data, the five-channel image reflects more information, and thus the trained model has the higher accuracy and stability.

In the selection of the models, the VGG19 network model has been chosen as the deep learning model of this system in this study. The VGG19 network model and the Resnet50 network model were compared in terms of the accuracy of rice classification. According to the results, the discriminating accuracy of the VGG19 network model was 92.3% and that of the Resnet50 network model was 91.3%. The former is obviously higher than the latter. Thus, the VGG19 network model is chosen as the discriminatory model of this system.

In terms of the detection efficiency, as the manual detection increases with detection time and sample size, the proficiency is improved, but the testing personnel get tired, leading to a decrease in detection efficiency. Therefore, this study compares the detection time and detection accuracy of machine detection and manual detection respectively. As shown by the comparison results, when the detection sample is less than 100 grains, machine detection does not have an advantage over manual detection. However, after the actual research, it was found that the sample size of rice inspection was mostly around 1000 grains, and when the inspection sample was 1000 grains, the time and accuracy of manual detection were 6 min and 94.2% respectively, while the time and accuracy of machine detection were 2 min and 94.6% respectively. That is to say, in practical applications, machine inspection has significant advantages over manual inspection.




6 Conclusion

Given the backwardness of the current stage of rice appearance quality inspection level and the emergence of various inspection technologies, this study has proposed a method for rapid automatic inspection of rice appearance quality. With the characteristics of rapid, accurate, convenient and nondestructive detection, it has been significantly improved in automation and intelligence. Based on machine vision technology and image processing technology, the method uses convolutional neural network to establish a strong and stable rice classification model. At the same time, the watershed algorithm and adaptive threshold function are used to segment the image processing as well as the rice grains with good effect, ensuring the accuracy and stability of network training. Apart from that, the VGG19 network model and Resnet50 network model are established. According to the results, the classification accuracy of the model established by the VGG19 network model could reach 92.3%. Thus, VGG19 is selected as the classification model of this system. After experimental verification, the rice appearance quality detection system independently designed in this study has good use experience, has a good alternative to the traditional detection methods, significantly improves the detection efficiency of rice appearance quality, realizes the rapid automatic detection of rice appearance quality. Meanwhile, it positively affects the rice storage and transportation industry. Rice quality inspection technology has always been a popular research direction. With the increase in people’s requirements for rice quality, innovative challenges in quality inspection technology have emerged. The gradual replacement of time-consuming and laborious manual inspection by rice appearance inspection technology has also become a new method in the industry. Therefore, it is essential to continuously develop and discover more new rice appearance quality testing methods so as to improve our rice quality standard system.
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Mulberry leaves feed Bombyx mori silkworms to generate silk thread. Diseases that affect mulberry leaves have reduced crop and silk yields in sericulture, which produces 90% of the world’s raw silk. Manual leaf disease identification is tedious and error-prone. Computer vision can categorize leaf diseases early and overcome the challenges of manual identification. No mulberry leaf deep learning (DL) models have been reported. Therefore, in this study, two types of leaf diseases: leaf rust and leaf spot, with disease-free leaves, were collected from two regions of Bangladesh. Sericulture experts annotated the leaf images. The images were pre-processed, and 6,000 synthetic images were generated using typical image augmentation methods from the original 764 training images. Additional 218 and 109 images were employed for testing and validation respectively. In addition, a unique lightweight parallel depth-wise separable CNN model, PDS-CNN was developed by applying depth-wise separable convolutional layers to reduce parameters, layers, and size while boosting classification performance. Finally, the explainable capability of PDS-CNN is obtained through the use of SHapley Additive exPlanations (SHAP) evaluated by a sericulture specialist. The proposed PDS-CNN outperforms well-known deep transfer learning models, achieving an optimistic accuracy of 95.05 ± 2.86% for three-class classifications and 96.06 ± 3.01% for binary classifications with only 0.53 million parameters, 8 layers, and a size of 6.3 megabytes. Furthermore, when compared with other well-known transfer models, the proposed model identified mulberry leaf diseases with higher accuracy, fewer factors, fewer layers, and lower overall size. The visually expressive SHAP explanation images validate the models’ findings aligning with the predictions made the sericulture specialist. Based on these findings, it is possible to conclude that the explainable AI (XAI)-based PDS-CNN can provide sericulture specialists with an effective tool for accurately categorizing mulberry leaves.




Keywords: mulberry leaf, depth wise separable convolution, parallel convolution, explainable artificial intelligence (XAI), Shapley Additive Explanations (SHAP)




1 Introduction

Agricultural production, like any other industry, assists farmers in securing their financial future. Agricultural expansion is critical for a powerful nation because it meets a real need in the global economy and ensures sustainability. Plants are susceptible to disease at various phases of development, just like humans. As a result, the farmer’s overall crop output and revenue suffer. With the global population expected to exceed 9 billion by 2050, developing innovative methods for identifying and mitigating plant diseases can increase food supplies while reducing the demand for pesticides (Sharma et al., 2020). Early detection and analysis of the several forms of illnesses that might harm a crop are critical to the profitability of the agriculture business. Traditionally, conventional methods for diagnosing and identifying plant diseases have relied on professional observation with only their naked eyes. Furthermore, this method can be tedious, long, and expensive, rendering it unsustainable for millions of small and medium-sized farms around the world. As a result, there is a significant danger of the illness spreading to other healthy plants. To address these challenges, researchers from around the world have presented cutting-edge automated systems that use machine learning (ML) and deep learning (DL) techniques to detect diseases in various plants such as rice/paddy (Lu et al., 2017; Malvade et al., 2022), tomato (Hassanien et al., 2017; Ireri et al., 2019), cotton (Ferentinos, 2018; Patil and Patil, 2021), watermelon (Pantazi et al., 2019; Singh, 2019), and sunflower (Singh, 2019) from various parts of the plants, particularly their leaves (Singh and Misra, 2017; Dhingra et al., 2019; Pantazi et al., 2019). The bulk of the experiments described used leaf photos from the Plant Village dataset as well as real-time data comparable to these plants. Furthermore, the authors (Ferentinos, 2018) classified plant illnesses using 58 different plant species.

The mulberry (Morus spp.), a member of the Moraceae family, is a fast-growing, deciduous woody tree species native to India and China’s Himalayan foothills (Yuan and Zhao, 2017). Mulberry is economically valuable because silkworm larvae (Bombyx mori) feed on its leaves to make mori silk. Mulberry leaves are also fed to animals. Despite its long history of use in silk manufacture and animal husbandry, the ecological relevance of mulberry has been underestimated. In recent years, there has been a broad acknowledgement of this plant’s effectiveness in a variety of disciplines, including environmental safety, medicine, and industry (Rohela et al., 2020). Figure 1 depicts the various applications of mulberry. Mulberry leaves, on the other hand, are widely utilized in the raising of the silkworm, whose cocoons are spun into silk yarn. The silkworm produces silk protein by using the protein found in mulberry leaves (namely, fibroin and sericin). The silk fiber produced is used in the commercial production of high-quality silk apparel. Mulberry trees provide up to 90% of the world’s raw silk supply, and their cultivation is critical to the economic well-being of countless people, particularly in India and Bangladesh (Chowdhury et al., 2017). Because of the mulberry leaf’s economic importance in sericulture, the quality and amount of leaf produced per unit area have a direct impact on silk cocoon yield.




Figure 1 | The mulberry's varied applications in many scenarios.



Sericulture has been identified as a viable new economic driver in Bangladesh. Bangladesh has a huge possibility to develop major economic growth in this sector with the assistance of the government and non-governmental organizations. To further the study of sericulture, the government of Bangladesh founded the Bangladesh Sericulture Research and Training Centre in Rajshahi. The Bangladesh Sericulture Board was founded in 1977 by Ordinance No. 62, signed by the President of the People’s Republic of Bangladesh (Chowdhury et al., 2017). Only two sub-districts (Bholahat and Shibganj) in the current Nawabganj district of the Rajshahi division were initially suited for sericulture. Since Bangladesh’s independence, sericulture has extended to 36 districts out of a total of 64 (Banglapedia, 2021), contributing to poverty reduction and increased employment prospects throughout the country, particularly in rural areas.

Yet, sericulture can only be successful if the silkworms are fed fresh mulberry leaves. Mulberry plants are vulnerable to several fungal diseases, the most frequent of which are Cercospora moricola’s leaf rust and leaf spot infections (Banglapedia, 2021). Mulberry plants are vulnerable to a variety of pests, including the hairy caterpillar (Spilarctia obliqua), among others. Diseases and pests typically cause a considerable decrease in mulberry leaf yield, which leads to a decrease in silk production. As a result, farmers are incurring enormous economic losses, which has a detrimental influence on Bangladesh’s national economy (Rashid et al., 2014). Furthermore, silk gowns have traditional importance in specific areas of Bangladesh; thus, the loss in silk manufacturing has been exacerbated by the use of various synthetic fibers. If this problem is not addressed properly, future generations will be unaware of this traditional product and its aesthetic worth, and those affiliated with this sector will be unemployed.

However, no study has been conducted to the best of the authors’ knowledge to identify mulberry illnesses from their leaves using image classification. Similarly, because there was no existing image dataset for mulberry leaves, photos of mulberry leaves were obtained in Rajshahi, Bangladesh, for this research to establish a unique dataset, which was manually categorized by a sericulture specialist into “healthy,” “leaf spot,” and “leaf rust.” Only two diseases were considered for this research because they are common in Bangladesh during the winter season, and the photos were obtained during the winter months in Bangladesh. The images are then preprocessed using various methodologies, and a novel lightweight parallel PDS-CNN model for disease classification in mulberry leaves is constructed based on those processed images. It’s also worth noting that, to the best of the authors’ knowledge, no studies have assessed the interpretability capabilities of ML/DL models using SHapley Additive exPlanations (SHAP) or local interpretable model-agnostic explanations (LIME) in this area of the agricultural industry (classify distinct plant ailments from leaf images). As a result, this study provided a novel framework based on explainable artificial intelligence (XAI) that demonstrated which sections of a picture the proposed model paid significantly more attention to than the others. The unique, lightweight model provided here can be put into an embedded system to assist farmers in the field in the early diagnosis of mulberry diseases, avoiding crop loss and ensuring the production of healthy leaves for several applications. The major contributions of this work are as follows:

	1. For the first time, a unique dataset of 1,091 annotated mulberry leaf images (Healthy: 440, Leaf Rust: 489, and Leaf Spot: 162) was created as no such datasets are available in the existing open sources.

	2. To assure the building of a strong AI model with no overfitting concerns, synthetic data was generated using standard data augmentation methods.

	3. To classify mulberry diseases, a novel lightweight parallel depthwise separable convolutional neural network (PDS-CNN) model was developed through customization of existing lightweight CNN model.

	4. The classification performance, as well as the parameters, layers, and sizes of the models, were compared to various well-known transfer learning (TL) models.

	5. For the first time, the interpretability capacity of the proposed framework has been exhibited using SHAP to ensure the model is correctly focused on the area of interest.






2 Literature review

Scientists have recently devised unique approaches for the automatic identification and classification of numerous plant diseases. This section investigates and reviews some of these strategies. To detect bacterial spot disease in peach leaf images, Bedi et al. created a hybrid model by combining a convolutional auto-encoder and a convolutional neural network (CNN) (Bedi and Gole, 2021). The PlantVillage dataset provided the researchers with 4,457 leaf images (healthy: 2,160 and bacterial spot: 2,297), with 70% of the images utilized for training and 30% used to calculate the model’s performance, which reached an accuracy of 98.38%. Similarly, Akbar et al. suggested a VGG-19-based lightweight CNN (LWNet) model identify and categorize peace leaf images into healthy and bacteriosis images (Akbar et al., 2022). Initially, they photographed 625 healthy and 375 diseased leaf images from a research farm at Pakistan’s Agricultural University in Peshawar. Subsequently, using these genuine leaf images, 10,000 (Healthy: 5,500 and bacterial spot: 4,500) synthetic data points were generated, which were then subjected to image pre-processing procedures such as image scaling, noise removal, and background removal. Eventually, 7,000 images were used to train their model, and 3,000 images were utilized to test the LWNet model, resulting in an accuracy of 98.87% and a simulation time of 1 hour 56 minutes and 38 seconds.

Lu et al. developed a deep CNN model to recognize ten types of rice diseases from images of rice plant leaves (Lu et al., 2017). They obtained 500 images from the Heilongjiang Academy of Land Reclamation Sciences in China with the Canon EOS 5D Mark III, then selected 10,000 12×12 patches from these photographs to train their CNN model. They also ran 10-fold cross-validation (CV) on their model and compared the results for different filter sizes, attaining the greatest accuracy of 95.48%. Additionally, Ramesh et al. suggested a deep neural network optimized with the Jaya algorithm (DNN JOA) to classify four types of rice plant diseases from rice plant leaves (Ramesh and Vydeki, 2020). The 650 leaf images (healthy: 95, bacterial blight: 125, blast: 170, sheath rot: 110, and brown spot: 150) were taken in the rural areas of Ayikudi and Panpoli, Tirunelveli District, Tamilnadu, using a high-resolution digital camera (DC). The authors used a clustering algorithm to separate the diseased, normal, and background sections. The DNN JOA model was trained using 70% of the images, 10% of the images were used for validation, and 20% of the images were used to test the proposed model. The model achieved an overall accuracy of 97% after 125 epochs. Anami et al. employed a pre-trained transfer learning (TL) model, VGG-16, to automatically classify 12 forms of stress from paddy plant leaf images (Anami et al., 2020). The proposed VGG-16 model was trained using 3,600 images and tested using 2,400 images, with average stress classification accuracies of 90.75%, 93.38%, 93.135, 95.08%, 92.13%, and 92.89% for Jaya, Abhilasham, Mugad Suganda, Mugad 101, and Mugad Siri, respectively. Malvades et al. also collected 3,355 paddy leaf photos (healthy: 1,488, brown spot: 523, hispa pests: 565, leaf blast: 779) and then used several common image augmentation techniques to reduce overfitting (Malvade et al., 2022). They compared five TL models for the classification of paddy crop stresses; among them, the ResNet-50 model showed promising accuracy of 92.61% while training 70% of all images in 1,626 seconds.

Gonzalez-Huitron et al. used four TL models: MobileNetV2, NasNetMobile, Xception, and MobileNetV3 to diagnose 10 different tomato leaf diseases from images of tomato leaves (Gonzalez-Huitron et al., 2021). A total of 109,290 images were obtained from 18,215 images in the PlantVillage dataset utilizing data augmentation, and 30% of the data was used to test their models, with the best accuracy of nearly 100% attained using Xception at 2,512 seconds per epoch. Furthermore, they deployed their model on the Raspberry Pi 4 single-board computer. Abbas et al. used the PlantVillage dataset with a TL model called DenseNet121 to detect several types of tomato leaf diseases (Abbas et al., 2021). To begin, the authors used a conditional generative adversarial network (771,454 trainable parameters) to create 4,000 synthetic tomato leaf images, which were then mixed with 16,012 genuine pictures. The DenseNet121 was then fine-tuned by replacing the top fully connected (FC) layer and softmax layer with convolutional layers (CL) with the ReLU activation function, followed by an FC layer and a softmax layer to classify ten different forms of tomato leaf diseases. For the 5, 7, and 10 classes, the model achieved 99.51%, 98.65%, and 97.11%, respectively. Similarly, Chowdhury et al. used 18,161 tomato leaf pictures from the PlantVillage dataset to detect tomato leaf illnesses using three TL models: EfficientNet-B0, B4, and B7 (Chowdhury et al., 2021). They used various augmentation approaches to balance the data and reduce overfitting because the dataset was not balanced. They tested their models on 20% of tomato leaf images, and EfficientNet-B4 achieved the maximum accuracy with 99.95%, 99.12%, and 99.89% for 2, 6, and 10-class classification, respectively.

To detect three types of grape diseases from leaf images, Ji et al. developed a combined CNN model based on two TL models: GoogleNet and ResNet50 (Ji et al., 2020). The PlantVillage collection yielded a total of 1,619 grape leaf images (healthy: 171, black rot: 476, esca: 552, and isariopsis leaf spot: 420). The authors used GoogLeNet and ResNet to extract features from leaf images, and the features from these two models were concatenated before being sent into the Fully connected layers and a SoftMax layer to discriminate these diseases from healthy leaf images. The suggested UnitedModel achieved 98.57% accuracy, 99.05% precision, and 98.88% recall, on average. Paymode et al (Paymode and Malode, 2022). used a VGG16 model to detect numerous crop leaf diseases from images of tomato and grape leaves. Farmers from Aurangabad, India, collected a total of 14,421 tomato leaf images (early blight: 1,000, mosaic virus: 373, bacterial spot: 2,127, late blight: 1,909, leaf mould: 952, septoria leaf spot: 1,771, spot: 1,404, spider mites: 1,676, and yellow leaf curf: 3,207). Following that, they used various image processing methods such as filtering, grayscale transformation, data augmentation, and so on. Lastly, for grape and tomato leaf disease classification, the VGG16 model was trained for 40 and 30 epochs, respectively, and attained an accuracy of 98.40% and 95.71%.

Ferentinos used several TL models including as AlexNet, GoogLeNet, VGG, etc to detect 58 specific diseases of various plants such as oranges, apples, onions, watermelons, strawberries, and soybeans from leaf images (Ferentinos, 2018). A total of 87,848 leaf images of healthy and diseased plants were collected, with 70,300 utilized to train their models and 17,548 used to test the suggested models. The VGG model achieved an optimistic accuracy of 99.48% after 48 epochs at a time of 7,294 seconds per epoch. Furthermore, the model classifies every single image in 2 milliseconds on a single graphics processing unit (GPU). Zhang et al., on the other hand, used a BM-500GE digital camera to capture 700 images of cucumber leaves (healthy: 100, downy mildew: 100, anthracnose: 100, grey mold: 100, angular leaf spot: 100, black spot: 100, and powdery mildew: 100). The author presented a global pooling dilated CNN for the classification of six types of cucumber leaf diseases and achieved an accuracy of 94.65%, with training and testing times of 6.2 hours and 3.58 seconds, respectively. Singh classified seven forms of sunflower leaf diseases from leaf images using a particle swarm optimization (PSO) technique (Singh, 2019). Median filtering improved the quality of leaf images, and the PSO algorithm reached an accuracy of 98%. Ayalew et al. used Gabor wavelet characteristics to classify scenes in wild blueberry fields (Ayalew et al., 2021). The authors used an IDSEye 1220SE/C industrial camera to acquire 3,281 images from five fields, and the classification accuracy for each field was between 87.9% and 98.3%, with a total of 27 to 72 Gabor features used. Raouhi et al. classified seven olive disorders, including healthy images, using seven TL models such as EffiecientNetB7, InceptionV3, VGG19, ResNet50, and others with four activation functions: Adam, Adagrad, SGD, and Rmsprop (Raouhi et al., 2022). The scientists collected 5,571 images of olive leaves from various parts of Morocco and employed several data augmentation approaches to deal with the overfitting problem. Using MobileNet with the Rmsprop function, 20% of the data used to test their various models attained the best accuracy of 98.43%. Table 1 outlines various leaf disease classification methods and associated performance factors.


Table 1 | Summary of the state-of-art models.



Based on the literature review, it is possible to conclude that the majority of studies used the PlantVillage dataset and also acquired real-time data equivalent to these plants. Furthermore, the authors (Ferentinos, 2018) classified plant diseases using 58 different plant species. According to the findings of these investigations, no research on the classification of diseases affecting mulberry leaves has been undertaken. The bulk of research employed TL models with a significant number of parameters, such as VGG16 with 138.4 million (M) parameters, and ResNet50 with 25.6M parameters, Xception with 22.9M parameters, DenseNet121 with 8.1M parameters, and so on, which need extensive GPU training time. Furthermore, several researchers spent a long time creating unique CNN models, such as 6.2 hours (Zhang et al., 2019) and 1 hour 56 minutes and 38 seconds (Akbar et al., 2022). Indeed, implementing these algorithms in low-power embedded devices, such as low-configuration Android mobiles, is particularly difficult. As a result, a lightweight model with fewer parameters and layers that require less training time than TL models are required to run on low-configuration Android mobiles. Additionally, no studies proved the use of explainable AI, such as SHAP or LIME, to focus on disease location in leaf images to explain the model’s interpretability.




3 Methodology



3.1 Proposed framework

In response to the difficulties posed by mulberry leaf disease identification, a classification approach based on deep learning has been implemented. Figure 2 depicts the three key processes of the proposed framework: generating an image dataset, applying deep learning for classification, and providing an interpretable model with SHAP. Since there is no dataset available for this domain, leaf images from two regions in Bangladesh with two leaf diseases were collected and labelled by a seasoned sericulture researcher. Following the collection and analysis of the images, the labelled data were separated into three categories (disease-free leaves, leaf rust, and leaf spot). In this work, a disease-affected leaf class was generated for the binary classification by assigning leaf rust and leaf spot to the same class. 70% of the images are used for training, 10% for validation, and 20% for testing the DL models using five-fold cross-validation. The images are then reshaped and pre-processed using standard techniques for normalization and enhancement. Then, a novel lightweight parallel depth-wise separable convolutional neural network (PDS-CNN) was created to categorize leaf diseases and SHAP was used to interpret disease location.




Figure 2 | Proposed framework for mulberry leaf disease classification.






3.2 Mulberry leaf image acquisition

Images of mulberry leaves are typically obtained using a digital camera or smartphone camera. The images may have been captured in a greenhouse, laboratory, or natural habitat. After consulting with researchers from the Bangladesh Sericulture Development Board (BSDB) in Rajshahi, Bangladesh, two certified and widespread mulberry leaf diseases (leaf spot and leaf rust) were selected for this experiment. In this study, images were acquired from mulberry gardens in Mirganj, Bagha, Rajshahi, and Vodra, Rajshahi, using a high-resolution DSLR camera in real-world situations. The mulberry dataset consists of a total of 1,091 images that have been classified by a sericulture expert into three classes: 440 healthy leaves, 489 leaves with leaf rust, and 162 leaves with leaf spots. Each leaf image has a resolution of 4,000 by 6,000 pixels. The sericulture experts were chosen from the main center of sericulture in Bangladesh with more than 10 years of experience in this field. Figure 3 depicts a few examples of the acquired images.




Figure 3 | Samples of (A) disease-free leaf; (B) leaf rust; and (C) leaf spot.






3.3 Image pre-processing

The accuracy of the classification is directly influenced by the quality of the image preprocessing. This study simplifies the image processing stages so they can be easily implemented on embedded systems. During preprocessing, the images in the dataset are reduced to 124 pixels in width and height to reduce the need for more storage space and processing resources. Often, a high number of intensity values are used to depict an image. To simplify the complexity of the images, normalization is conducted, and the scale is modified from 0-255 to 0-1 by dividing the pixel values by 255.




3.4 Image augmentation

The dataset is unbalanced, as shown in Table 2, where 764, 218 and 109 images were used for training, testing and validation respectively. As a result, different image augmentation techniques were used on the training images (Figure 4A) to balance the dataset. A random rotation of 30° was performed (Figure 4B). The images were randomly flipped by 50% in the horizontal and vertical orientations, as seen in Figures 4C, D In addition, as shown in Figure 4E, a random affine (degrees 5-15, translate 0.1-0.2, scale 0.7-0.8) was used. A total of 6,000 synthetic images were generated from the original 764 training images. Following image augmentation, a total of 6,000 and 4,000 training images for the three-class and two-class schemes, respectively, with 2,000 images for each class, were developed.


Table 2 | The division of a dataset into training, testing, and validation sets for both multiclass and binary classes.






Figure 4 | Samples of an (A) original image; (B) random rotation; (C) random horizontal flip; (D) random vertical flip; and (E) random affine.






3.5 Customization of deep learning models

According to a review of the literature on the limits of various transfer learning (TL) models, the bulk of TL models have extremely large parameters, layers, and sizes, resulting in much longer computing power (Ferentinos, 2018; Chohan et al., 2020; Sanga et al., 2020; Chowdhury et al., 2021; Paymode and Malode, 2022). As a result, to address these difficulties, a simple, lightweight parallel depth-wise separable convolutional neural network with fewer parameters, layers, and size while requiring low overhead was designed in a customized form. A detailed explanation of the PDS-CNN model, as well as brief explanations of the state-of-the-art (SOTA) TL models employed in this study, are provided in the following subsections.



3.5.1 Parallel depthwise separable convolutional neural network

The specific objective was to create a CNN model that could efficiently extract the most significant characteristics with a small number of parameters and layers, allowing it to be used in a variety of real-world applications. However, if there aren’t enough parameters and layers, the model may fail to capture distinguishing features, and if there are too many, the model may overfit, resulting in a longer processing time. Taking these considerations into mind, a lightweight PDS-CNN model was created to extract discriminant features with low resources (small parameters, layers, and size). Figure 5 depicts the lightweight PDS-CNN architecture for mulberry leaf disease classification.




Figure 5 | Proposed lightweight parallel depthwise separable convolutional neural network. (*DSConv2D means depthwise separable convolution and BN means batch normalization).



Because a lightweight CNN model is proposed, the model is simplified in comparison to the TL models. The suggested model had nine convolutional layers (CL) and three fully connected layers (FC). The model would not have been able to extract the most critical features if only one CL had been utilized instead of five. In contrast, if five CLs are used sequentially, the number of layers (depth) increases, making the model more complex. As a result, the first five CLs were run in parallel, and their selection was dependent on trial and error. Each CL utilized a total of 256 kernels, with the first, second, third, fourth, and fifth kernel sizes being 11×11, 9×9, 7×7, 5×5, and 3×3, respectively. For picking the kernel size, our work followed the design of Krizhevsky et al., who employed big kernel sizes (such as 11×11, etc.) while ensuring appropriate classification performance (Krizhevsky et al., 2017; Nahiduzzaman et al., 2023a). Because different kernels produce distinct feature maps, different kernels were examined and combined, even if their sizes ranged from tiny to huge, to find notable features and achieve acceptable classification performance. The padding size was kept constant for the first five CLs to extract the relevant information in the border element of the mulberry leaf images. The feature maps generated by the concurrent CLs were then merged and fed into a sequential CL.

Furthermore, depthwise separable convolution (DSC) was employed instead of conventional convolution by dividing the typical convolution operation into two parts: a depthwise convolution and a pointwise convolution. First and foremost, a depthwise convolution applied a small kernel to a small section of an input feature map, resulting in a new feature map with the same number of channels. The depthwise convolution output is then passed through a pointwise convolution, where a 1×1 convolutional kernel is applied to each channel to create a new feature map with fewer channels. This DSC lowered the suggested CNN’s parameters from 2.2 million to 0.53 million (reducing computing complexity) and enhanced the classification performance of the proposed framework. Following the last four CLs, a batch normalization (BN) and a max-pooling layer with a 2×2 kernel were added to the processing chain. The sizes of the four CLs were set to 128, 64, 32, and 16, respectively, with 3×3 kernels, and the padding sizes were set to VALID. BN was used because it re-centers and re-scales each layer’s inputs, which speeds up and stabilizes the model’s execution. The ReLU activation function was used for all CLs. Aside from three fully connected (FC) layers, dropout was utilized to prevent overfitting and speed up the training process by disregarding 50% of all nodes at random. As a result, the proposed model has a sophisticated architecture comprising nine convolutional layers. The initial five layers operate in parallel, effectively functioning as a single layer in the overall structure. Following this unique configuration, four additional convolutional layers are incorporated, bringing the cumulative count to five convolutional layers. The model also includes three fully connected layers in conjunction with these convolutional layers. This intricate arrangement results in a total of eight distinct layers. In this investigation, two dropouts were used after the final two CLs and two more after the first two FC layers. In the final FC layer, the SoftMax activation function was employed to classify mulberry leaf disorders. There were three and two nodes in the final FC layer for multiclass and binary classifications, respectively. The loss function for the model was the sparse categorical cross-entropy loss function, and an ADAM optimizer with a learning rate of 0.001 was utilized. Ultimately, with a batch size of 32, the suggested lightweight PDS-CNN model was trained for 100 epochs. The PDS-CNN model is summarized in Table 3.


Table 3 | An overview of the PDS-CNN model to classify mulberry leaf diseases.






3.5.2 Deep transfer learning models

Transfer learning models have been effectively applied to a wide range of possible applications in recent years, including medical diagnosis and disease classification (Singh and Misra, 2017; Dhingra et al., 2019; Zhang et al., 2019; Chowdhury et al., 2020; Rahman et al., 2020a; Rahman et al., 2020b; Chowdhury et al., 2021; Nahiduzzaman et al., 2021b; Nahiduzzaman et al., 2021a; Qiblawey et al., 2021; Nahiduzzaman et al., 2023a; Nahiduzzaman et al., 2023b). Six TL models were used in this study: MobileNet (Howard et al., 2017), MobileNetV2 (Sandler et al., 2018), VGG19 (Simonyan and Zisserman, 2014), Xception (Chollet, 2017), DenseNet121 (Huang et al., 2017), and ResNet152 (He et al., 2016). All of these pre-trained models were trained using the ImageNet dataset, which comprises over 14 million images and 1,000 classifications. Following the loading of these models, the final layers were updated by adding three FC layers with 512, 256, and 3 nodes for identifying mulberry leaf disorders. Figure 6 depicts the improved architecture of the TL models. These TL models were then trained for 100 epochs with a batch size of 32. In terms of classification outcomes and processing resources (parameters, layers, and sizes), the suggested novel lightweight PDS-CNN model was compared to the TL methods rather than earlier research (since no studies with the new mulberry dataset are available).




Figure 6 | The modified architecture of transfer learning models to classify mulberry leaf diseases.



A concise explanation of these pre-trained networks is reported below. The Visual Geometry Group (VGG) at the University of Oxford introduced the VGG19 (Simonyan and Zisserman, 2014) CNN architecture in 2014. The architecture of VGG19 is made up of CLs with a huge number of filters per layer. After each convolutional layer comes to a max-pooling layer and a ReLU activation algorithm. Towards the end of the model, there are three fully connected layers, followed by a classification SoftMax activation function.

ResNet152 (He et al., 2016), a CNN architecture with deep depth and excellent accuracy, was developed by Microsoft Research in 2015. Due to the “vanishing gradients” problem, where the gradients of the parameters grow very small when the error is backpropagated through several layers, very deep neural networks have trouble learning. To address this issue, ResNet152 employs a residual connection to bypass one or more levels and connect a layer’s input to its output directly. Gradient flow is facilitated, allowing the network to learn effectively even at deep levels.

In 2016, Google released Xception (Chollet, 2017), which used depthwise separable convolutions. The entire input feature map is filtered by standard convolution to produce a single output feature map. A depthwise separable convolution applies the filter exclusively to the depth (channel) dimension of the input feature map, followed by a pointwise convolution to the output. This network can extract features from multiple channels separately, saving computation and memory.

In 2017, Google introduced the MobileNet (Howard et al., 2017) design, a CNN architecture that performs well on mobile and embedded devices with minimal processing capabilities. MobileNet employed a depthwise separable convolutional layer, which was generated by dividing a conventional convolution operation into depthwise and pointwise convolutions. By doing so, we may dramatically reduce the number of computations and parameters that the network must execute. MobileNetV2 (Sandler et al., 2018) is a MobileNet update. In actuality, MobileNet employs typical residual blocks with the same number of filters on the block’s input and output. In contrast, MobileNetV2 employs inverted residual blocks, which have different numbers of filters at the input and output of the block. As a result, MobileNetV2 has a reduced model size and can compute faster than MobileNet.

Huang et al. (2017) introduced DenseNet121, a densely connected convolutional network design, in 2017. It is a variant of the DenseNet structure, which employs a dense block structure with 121 layers, with the feature maps of all previous layers given into the current layer as inputs. As a result, information flows more smoothly across the network, and the issue of disappearing gradients is alleviated. DenseNet121 additionally employs 11 convolutional layers known as “bottleneck layers” to limit the number of feature mappings and control network expansion.





3.6 Explainable artificial intelligence

XAI in deep learning refers to the ability to comprehend and describe how a deep neural network operates and makes decisions (Lundberg, 2017). This is especially crucial for deep learning models, which can be ambiguous and challenging to understand. SHAP was utilized for the first time in this domain in this study to remove the “black box” nature of DL models, allowing the results from the PDS-CNN model to be further evaluated and explained so that sericulture professionals could use it in real-world scenarios. As a result, the model boosts their confidence when categorizing disease-free, leaf rust, and leaf spot leaves.

SHAP ranks the importance of model features by calculating the average of each feature value’s marginal contributions. The scores assigned to each pixel in a predicted image show the function of that pixel and can be used to clarify a categorization. The Shapley value was calculated using all conceivable combinations of mulberry leaf disease features. The Shapley values are pixelated, and the findings show that red pixels improve the likelihood of correctly identifying a class, whereas blue pixels lower it (Lundberg, 2017; Bhandari et al., 2022). The Shapley value was calculated using Equation (1).



Where   denotes the variation in output inclusion caused by Shapely values for a specific feature  .   is a subset of all features from feature  , excluding feature  .   is the weighting factor that counts the number of permutations of the subset  . The predicted result, denoted by  , is derived from equation (2).



SHAP replaces each original characteristic ( ) with a binary variable ( ) that indicates whether   is present or absent, as demonstrated in Eq. (3)



Where   denotes the bias,   represents the contribution of the feature,   represents the number of simplified input features, and   is the substitute model for the proposed framework  . The extent to which the presence of feature   contributes to the final result and   assists in comprehension of the actual model.





4 Assessment metrics and implementation

The efficacy of the lightweight PDS-CNN model was estimated using a confusion matrix (CM). The following equations were used to calculate the accuracy, precision, recall, f1-score, and area under the curve (AUC) from the CM (Swets, 1988; Powers, 2020).











Where true positives, true negatives, false positives, and false negatives were represented by  ,  ,   and  , respectively. Keras was utilized to implement all deep learning algorithms and XAI, with TensorFlow as the backend running on the software PyCharm Community Edition (2021.2.3). A PC with 11th generation Intel(R) Core (TM) i9-11900 CPU @2.50GHz, 128GB RAM, and an NVIDIA GeForce RTX 3090 24 GB GPU running 64-bit Windows 10 Pro was used for model training and testing.




5 Results and discussion

In this study, both three-class and binary classifications were considered with a 5-fold CV and SHAP to assess the performance of the DL models.



5.1 Scheme 1: result for three-class classification



5.1.1 Custom CNN models

First, a parallel CNN (PN-CNN) model without DSC was developed and trained using 764 images from disease-free leaves (0), leaf rust (1), and leaf spot (2), with 308, 342, and 114 images, respectively. This PN-CNN model without augmentation (PN-CNN WOA) was tested and validated using 218 images (88 disease-free leaves, 98 leaves with leaf rust, and 32 leaves with leaf spots) and 109 images (44 disease-free leaves, 49 leaves with leaf rust, and 16 leaves with leaf spots). The confusion matrix presented in Figure 7 was used to conduct class-specific performance assessments. As indicated in Table 4, the average test accuracy, precision, and recall were 85.04 ± 4.89%, 84.0 ± 5.10%, and 78.8 ± 6.93% over the 5-fold mulberry dataset. Several conventional image augmentation approaches were used to improve the performance of the PN-CNN model. Each class had 2,000 images after augmentation, for a total of 6,000 images used to train the PN-CNN WA (with augmentation) model. The same images were utilized for validation and testing the model, and the results were promising, with average accuracy, precision, and recall of 93.12 ± 2.1%, 92.8 ± 2.93%, and 89.20 ± 5.34%, as shown in Table 4.




Figure 7 | Confusion metrices for three-class classification of (A) Fold 1, (B) Fold 2, (C) Fold 3, (D) Fold 4, and (E) Fold 5.




Table 4 | Multiclass classification performance for comparison of PN-CNN WOA (without augmentation), PN-CNN, and PDS-CNN WA.



The suggested PN-CNN model comprises 2.2 million (M) parameters and is 24.5 megabytes (MB) in size. To minimize model parameters and size, the normal CLs were replaced by depth-wise separable CLs. This change lowered the resources (parameters and size) while improving classification performance. With parameters of only 0.53 M (nearly one-fourth of PN-CNN) and six times less (6.4 MB) than the PN-CNN model, the suggested lightweight PDS-CNN achieved an average test accuracy of 95.05 ± 2.86% (2% higher than PN-CNN) and recall of 92.80 ± 4.53% (3.6% higher than PN-CNN). PDS-CNN had an AUC of 98.79 ± 1.22%, which was about 0.5% higher than the PN-CNN (98.48 ± 0.99%) model. The PDS-CNN model achieved a 99.90% class-wise ROC across three classes, demonstrating its greater discriminant competence over the other two models (the ROCs of the PN-CNN WOA and PN-CNN WA were 99.29% and 99.27%, respectively, which are shown in Figure 8).




Figure 8 | Best ROC for three-class classification of (A) PN-CNN without augmentation, (B) PN-CNN with augmentation, and (C) PDS-CNN with augmentation.






5.1.2 Deep pre-trained models

In this section, the six TL models were trained on 6,000 leaf images for three-class classification, with 2,000 images for each class. Actually, prior work has yet to be done on the mulberry leaf disease. As a result, the performance of the PDS-CNN model was compared to that of the six TL models to ensure that its performance (both in terms of classification performance and resource) is appropriate for this new dataset. All of the TL models were validated using the same images (109 leaf images), and the classification performance of the models was evaluated using 218 images. DenseNet121 has the highest average accuracy, precision, and recall scores of 93.12 ± 1.86%, 91.6 ± 2.65%, and 92.0 ± 3.16%, respectively. ResNet152, on the other hand, has the lowest accuracy, with accuracy, precision, and recall of 67.25 ± 5.00%, 64.6 ± 8.50%, and 62.8 ± 6.76%, respectively, as shown in Table 5. The average AUCs for DenseNet121, MobileNet, MobileNetV2, Xception, VGG19, and ResNet152 were 98.77 ± 0.88%, 97.72 ± 1.18%, 88.8 ± 2.99%, 95.42 ± 2.61%, 96.08 ± 1.92%, and 82.06 ± 4.25, respectively. As shown in Figure 9, all of the TL models achieved the best class-wise ROC for fold-4.


Table 5 | Multiclass classification performance of six transfer learning models with augmentation.






Figure 9 | Best class-wise ROC for three-class classification of (A) DenseNet12, (B) MobileNet, (C) MobileNetV2, (D) Xception, (E) VGG19, and (F) ResNet152 with augmentation.







5.2 Scheme 2: results for binary classification



5.2.1 Custom CNN models

The same approach for multiclass classification was used for binary classification. The PN-CNN WOA (no augmentation) model was trained using 764 leaf images, 308 of which were disease-free and 456 of which were disease-affected (1). The model was validated using 109 images (44 of disease-free leaves and 65 of diseased leaves), and the performance was evaluated using 218 images (disease-free leaf: 88 and disease-affected leaf: 130). Figure 10 shows how the CM was used to investigate the models’ categorization performance. The PN-CNN WOA model’s accuracy, precision, and recall were 91.65 ± 4.95%, 92.4 ± 4.45%, and 91.2 ± 4.96%, respectively. Image augmentation was used to improve the model’s performance. Image augmentation was utilized to create 4,000 images after merging the two classes (leaf rust and leaf spot), with 2,000 images from each class used to train the model. The PN-CNN WA model enhanced testing accuracy by about 2% (93.30 ± 5.85%) when validated and tested with the same number of images. The PN-CNN WA (with augmentation) required more resources (more parameters, layers, and size) to distinguish between disease-affected and disease-free leaves. As a result, PDS-CNN was also used to do the binary classification. Table 6 shows that the suggested lightweight PDS-CNN model achieved an optimistic accuracy of 96.06 ± 3.01% (nearly 3% higher than the PN-CNN WA model). Other than that, the recall rose by over 3% (96.2 ± 3.06%) over the PN-CNN WA model with lower resources. The average AUC for PN-CNN WA is slightly lower (98.71 ± 0.84%) than for PN-CNN WOA (98.32 ± 1.91%). Still, the PDS-CNN model achieved a promising AUC of 99.42 ± 1.04%, which is nearly 1% higher than the PN-CNN WOA model, demonstrating that it has a better discriminant capability than the other two models. Based on these findings, it is possible to conclude that the proposed PDS-CNN model is resilient for both binary and multiclass classifications. The fold-5 produced the best class-wise ROC, which was 100% for both models, as shown in Figure 11.




Figure 10 | Confusion metrices for the binary classification of (A) Fold 1, (B) Fold 2, (C) Fold 3, (D) Fold 4, and (E) Fold 5.




Table 6 | Binary classification performance for comparison of PN-CNN WOA (without augmentation), PN-CNN, and PDS-CNN WA (with augmentation).






Figure 11 | Best ROC for binary classification of (A) PN-CNN without augmentation, (B) PN-CNN with augmentation, and (C) PDS-CNN with augmentation.






5.2.2 Deep pre-trained models

The same 4,000 images of leaves were utilized to train the custom CNN model as well as the six TL models used for binary classification in this case. All of the TL models were validated using the same set of 109 leaf images, and their classification accuracy was evaluated across 218 images. DenseNet121 achieved the best overall accuracy (98.78 ± 1.04%), precision (94.2 ± 2.93%), and recall (94.8 ± 2.48%). ResNet152 has the lowest accuracy, precision, and recall, with values of 71.84 ± 5.48%, 73.8 ± 6.31%, and 7.00 ± 2.97%, respectively, according to Table 7. DenseNet121 had an AUC of 98.78 ± 1.04%, MobileNet had an AUC of 97.89 ± 1.88%, MobileNetV2 had an AUC of 98.25 ± 1.12%, Xception had an AUC of 95.13 ± 5.48%, VGG19 had an AUC of 95.99 ± 2.55%, and ResNet152 had an AUC of 79.32 ± 5.26%. All TL models had the best class-wise ROC for fold-4, as shown in Figure 12.


Table 7 | Binary classification performance of six transfer learning models with augmentation.






Figure 12 | Best class-wise ROC for binary classification of (A) DenseNet12, (B) MobileNet, (C) MobileNetV2, (D) Xception, (E) VGG19, and (F) ResNet152 with augmentation.







5.3 Performance comparison of PDS-CNN with SOTA TL models

As indicated in Table 8, this section compares the performance of lightweight PDS-CNN with that of well-known TL models in terms of classification results and computational resources (parameters, layers, and sizes). DenseNet121, as previously stated, achieved the best classification results among the other five TL models for all three class and binary classifications. As shown in Figure 13, the suggested PDS-CNN achieved a reasonable accuracy of 95.05% for three-class classification, approximately 2% higher than the DenseNet121. Except for that, the AUC was 98.79%, which was higher than DenseNet121 (98.77%).


Table 8 | Performance comparison for multi-class and binary classifications in terms of classification results and computational resources. For performance results, average values are mentioned with standard deviations.






Figure 13 | Graphical comparison of classification results for multiclass classification.



For binary classification, the PDS-CNN outperformed the DenseNet121 with accuracy, precision, and recall of 96.06% (almost 2% higher), 95.8% (almost 1.5% higher), and 96.2% (at most 2% higher). Furthermore, as shown in Figure 14, the AUC of the proposed PDS-CNN was nearly 1.0% (99.42%) higher than that of DenseNet121 (98.78%). Based on these findings, the lightweight PDS-CNN produced demonstrated promising discriminant capability across all six TL models.




Figure 14 | Graphical comparison of classification results for binary classification.



Additionally, with 91 layers and a size of 68 MB, MobileNet has the fewest total parameters (for this Mulberry dataset) of any TL model, but its accuracy (93.03% for three-class classification and 92.75% for binary classification) is not greater than DenesNet121. The proposed PDS-CNN model, on the other hand, has only 0.535 million, which is about 8 times smaller than MobileNet, and the proposed custom CNN model includes 8 layers (13 times less than MobileNet). Furthermore, the proposed lightweight model is only 6.3 MB in size, which is ten times lower than the MobileNet, as shown in Figure 15. Based on the findings, the suggested framework efficiently identified mulberry leaf diseases with higher accuracy, fewer factors, fewer layers, and lower overall size.




Figure 15 | Computational resources comparison between the proposed PDS-CNN and TL models.






5.4 Interpretability PDS-CNN using SHAP

The DL models are “black boxes” by definition. To address this issue and explain how the PDS-CNN model classifies the leaf disease by focusing on a specific region of the images, SHAP was incorporated into the proposed model for the first time in this work. The SHAP results (Figure 16) for a specific image offer explanation images for all three classes (disease-free leaf, leaf rust, and leaf spot). The relevant grey explanation backgrounds are almost invisible with the input images to the left. The first row reveals that the first explanation image has more red pixels, indicating that the leaf is disease-free. The lack of blue pixels in leaf rust and leaf spot SHAP explanation images, on the other hand, shows that the input image is not the leaf rust or the leaf spot. In the second row, however, the absence of red pixels in the SHAP explanation images of disease-free and leaf spots, as well as the presence of a large number of red pixels in the SHAP explanation image of leaf rust, accurately indicate that the image belongs to the leaf rust class. Similarly, in the third row, a high concentration of red pixels in the SHAP explanation image of a leaf spot and a high concentration of blue pixels in the SHAP explanation image of a disease-free leaf and leaf rust properly detect the original image containing the leaf spot disease. This visual explanation of the SHAP explanation images validates the model’s findings and gives the sericulture specialist or farmers concerned a clear indication of the mulberry diseases.




Figure 16 | The sample images and the corresponding SHAP explanation images for the three classes.






5.5 Discussion and future work

Although the architecture of the proposed lightweight PDS-CNN model is simple, it has just nine convolutional layers and three dense layers, with the first five CLs running in parallel (cutting nine CLs to five CLs) to ensure that the discriminant features were recorded. Yet, as demonstrated in Table 8, the model outperforms the other six models in classification performance. One of the key goals of this research was to create a model that improved classification results while reducing the number of parameters, layers, and size, which was accomplished by employing DS CLs instead of conventional CLs and making them suitable for use on embedded devices. Furthermore, SHAP has been introduced to ensure that the proposed model focuses on the correct disease-affected regions of an image rather than the other parts, making the model more readable to sericulture experts and assisting them in fast and accurate mulberry leaf disease classification, as well as assisting farmers in learning to distinguish one disease from another from these marked leaf images.

Due to a lack of leaf images, standard image augmentation methods were used to create synthetic images. As a result, this research will be expanded in the future by gathering more leaf images from all three classes and including a new class of powdery mildew leaf disease. As the model was hampered by an imbalanced data problem, a more reliable model will be built and applied on embedded systems such as mobile phones or raspberry pi to classify diseases directly from mulberry fields, which will benefit farmers and sericulture specialists.

The developed model can be applicable to identification of other leaf diseases and this will be considered for other major crops in Bangladesh.





6 Conclusion

An explanation generation (XAI) framework, in conjunction with a novel lightweight PDS-CNN model, is proposed in this paper for classifying disease-free leaf, leaf rust, and leaf spot from the newly made mulberry leaf images database. This XAI-based PDS-CNN model obtained 95.05 ± 2.86% accuracy for three-class classifications and 96.06 ± 3.01% accuracy for binary classifications with 0.53M parameters, 8 layers, and 6.3MB in size. The lightweight model achieved a promising classification performance while using fewer computational resources than the TL models, and the model’s interpretability was induced by SHAP and confirmed by sericulture experts, indicating that the proposed framework is capable of providing convincing and consistent results for mulberry leaf disease classification. Because of the model’s distinguishing features, it has the potential to be practiced by both sericulture professionals and farmers from rural areas. This has the potential to play a critical role in Bangladesh’s agriculture sector by assisting farmers in the early identification of mulberry leaf diseases, resulting in significant production savings and economic gain for farmers.
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To address the current problems of large positioning error, low picking efficiency, and high cost of tea shoot picking, a continuous and precise harvesting scheme for tea shoots based on a two-dimensional (2D) perspective is designed in this study. A high-speed harvesting method for tea shoots in a standardized tea plantation assembly line type was proposed. First, a 2D view recognition model of tea shoot tips in a multi-disturbance environment was constructed, and accurate picking point coordinates were determined by combining a skeleton algorithm and curve growth. To avoid the losses of recognition accuracy caused by the mistaken clamping of blades and vibrations during harvester operations, accurate control of the harvester was realized by combining path planning and the S-curve speed control function. The recognition accuracy for the verification set of the recognition model was 99.9%, and the mean average precision (0.5:0.95) value was 0.97. The test results show that the error between the actual picking point position and the position determined by the model was within ± 3 mm, and the picking success rate was 83.6%. Therefore, we can realize fast and accurate picking of tea shoots and lay the foundation for continuous tea picking in the future by simplifying the identification and picking process.




Keywords: tea shoots, continuous picking, two-dimensional imaging, low-damage picker, You Only Look Once




1 Introduction

China’s tea production ranks first globally, and China is a big consumer of tea products. Hence, tea is an economically important crop for the country. Currently, the picking of tea shoots is primarily performed by hand, resulting in low picking efficiencies. In particular, 60% of the processing cost of tea is expended on fresh leaf acquisition. In addition, short picking times and harsh growing environments for tea leaves can result in personnel injuries during the manual picking of tea leaves, inconsistent tea leaf quality, untimely harvesting of large quantities of fresh leaves, and low picking yields, thereby increasing the prices for premium teas. Moreover, China’s countryside populations are aging and losing young workers, dramatically decreasing their labor forces. Thus, the shortage of labor and growing environmental constraints in the development of premium tea industry prompt the urgent need for a tea leaves picking equipment that can replace manual labor.

In recent years, scholars have explored systems used to harvest premium tea shoots. Xu L. et al. (2022) designed a picking box with clips cut on both sides. The Graham algorithm enabled the picking box to frame as many tea shoots as possible. Subsequently, tea leaves were clamped and cut, and the shoots were collected using negative-pressure airflows. Zhe (2020) studied the microstructures and cutting characteristics of tea stalks and the morphological structures of cricket epiglottal tangential leaves. Consequently, a bionic cutter was designed, and finite element analyses and cutting performance tests were conducted to optimize it. Zhu et al. (2021) designed a plucking device based on negative-pressure guidance for premium tea. The tender tip was guided by a negative-pressure airflow, and a shear knife coordinated with airflow was used to perform harvesting. Another accurate tea plant harvesting model was developed by Wang et al. (2021). Artificial neural network models were established using modeling parameters, such as shoot length, stem length, shoot angle, and growth time. The results showed good performance for predicting picking indicators. Motokura et al. (2020) implemented complex movements for manual picking using machine finger gripping, robotic arms, and motion control algorithms, thereby effectively harvesting tea shoots. Jia et al. (2022) designed a handheld tea leaf picker. By simulating human fingers to lift and pull tea leaves, the picker achieved a picking success rate of 74.3%. Miao (2019) designed a bionic picking finger by analyzing the mechanics of tea shoot tips. The optimization and analysis of the picking structure realized using genetic algorithm and MATLAB resulted in a 90% success rate for finger picking. Current tea shoot pickers are still based on point-to-point sequential picking in a three-dimensional (3D) space. However, such methods are inefficient and can cause damage to the picked tea shoots, thereby posing difficulties for application to actual tea gardens.

Machine vision technology has been extensively applied in the study of tea shoot tip identification. Yan et al. (2022) proposed an MR3P-TS tea shoot tip identification and localization model. This effectively identified overlapping tea shoots in tea plantations. Chen and Chen (2020)  trained a region-based convolutional neural network (R-CNN), referred to as Faster R-CNN, to detect one-bud–two-leaf regions in images. A fully convolutional network (FCN) was then trained to identify the picking points in these regions. The experiments showed that the R-CNN model achieved an accuracy of 79% and a recall of 90%. Meanwhile, the average accuracy of the FCN was 84.91%. Yang et al. (2021) developed a procedure for tea shoot identification using the You Only Look Once version 3 (YOLO-V3) model. The intersection of the bottom edge of the marking frame and shoot was used as the selection point. The shoots were removed using a robotic arm. Zhu et al. (2022) used Faster R-CNN to construct a model for tea shoot detection in complex backgrounds. This algorithm outperformed the conventional algorithm in terms of the root mean square error. Li et al. (2021) developed a tea shoot identification model using the YOLO model. Subsequently, a red–green–blue (RGB)-depth camera was used to obtain point cloud data and RGB images; the shoots were finally picked off by a robotic arm, achieving a harvesting success rate of 83.18%. Xu W. et al. (2022) combined YOLO-V3 and DenseNet201 to accurately detect tea buds; the accuracy of tea bud detection was 95.71%. Zhang et al. (2021) used the Shi-Tomasi algorithm to identify tea shoots and Otsu algorithm to segment them. Finally, the picking point information was obtained using the skeleton algorithm and corner point detection. The picking success rate was 85.12%. Li et al. (2022) used the YOLO-V3-spatial pyramid pooling algorithm to achieve fast tea bud detection, achieving a detection speed of 15.9 fps. Yang et al. (2019) implemented an improved YOLO-V3 deep CNN algorithm for shoot picking point recognition; the accuracy of the training model was 90%. Qian et al. (2020) proposed a tea bud segmentation method (referred to as “tea-sprout segmentation network”) based on an improved deep convolutional codec network. The experimental results demonstrated the good segmentation performance. Peidi et al. (2018) used an improved k-means algorithm to identify tea leaves. The experiments showed that the algorithm improved young leaf segmentation in tea images. These aforementioned algorithms are based on the identification of tea shoots and localization of picking points in 3D space, which require extremely high accuracy of the picking actuator. However, its high cost poses difficulty for practical production. Moreover, the accuracy of recognition and localization algorithms deteriorate in actual environments. As such, none of these models can accurately calculate the location of the picking point. In addition, the low computing speed of recognition and localization algorithms limit the picking efficiency improvement.

The aforementioned scholars have performed in-depth studies of tea shoot identification and harvesting; however, the following problems remain in practical applications: 1) current research on tea identification is aimed at 3D imaging spaces, and the methods struggle to accurately locate the picking point when picking in the field. 2) Current tea pickers damage tea shoots during picking and have low picking efficiencies. 3) The high cost of hardware and picking execution components required to implement the current tea identification algorithms restrict their practical applications. Hence, to achieve continuous, accurate, and efficient harvesting of established tea shoots, this paper proposes a two-dimensional (2D) perspective-based selection scheme of tea shoot picking point location for standardized tea plantations. First, a semiclosed picking system was designed to organize tea stalk into strips. Subsequently, a camera was used to photograph tea leaves from the side, and a You Only Look Once version 5 (YOLO-V5) model, skeleton algorithm, and curve growth were combined to obtain the extract the coordinates of the picking point. The final combination of an S-curve damping algorithm and path-planning control picker facilitated the fast and low-loss picking of tea shoots.




2 Materials and methods



2.1 Growth parameters of tea shoots

The research objects of this study are the established tea shoots in a standardized tea garden. The tea leaf growth conditions during the harvesting period are shown in Figure 1A. When designing a picker suitable for standard tea plantations, the tea shoot growth parameters were first determined. The growth heights and locations of the tea shoots on the surface of the tea canopy determine whether they can be picked intact. In this study, a tea tree was randomly selected from a standardized cultivated tea plantation. The interval between the tea shoot tips on the tea canopy surface was measured to be 50 mm–80 mm, the tea leaf length was 700 mm, and the growth height of the tea shoot tip measured from the tea canopy surface was 50 mm–110 mm. The number of tea shoots per unit area accounted for 15%–20% of the picking operations (Zhu, 2022). The growth parameters related to the tea shoot tips are shown in Figure 1B, and the specific parameters are listed in Table 1, where L is the length of the tea shoot, Φ is the diameter of the stalk at picking, A2 is the pickable region, β is the leaf angle, and A1 is the optimal picking region.




Figure 1 | (A) Growth state of tea shoots and (B) tea shoot picking diagram.




Table 1 | Physical parameters of the tea shoot tips.






2.2 Design of the continuous tea shoot picking system

The structure of the tea shoot picking system is shown in Figure 2A. The picking system consists of seven units: aligning unit, guiding unit, identification camera, light source, housing, vertical track, and picker. The picker comprises two flexible conveyor belts located opposite each other to avoid damaging the tea shoots during clamping. A circular blade and symmetrical blocking blade are set in the middle of the conveyor belt. The tea shoots are harvested and transported to the back of the device via a negative-pressure air tube. The picker is mounted on a vertically moving track mounted on top of the housing. The light strip and camera are fixed on the same side of the track. Three light strips are evenly distributed to illuminate the tea leaves in front of them, and the camera is mounted between the light strips. The aligning mechanism is installed at the front bottom of the housing. The camera and light strip operate in the space between the front of the aligning mechanism and front of the picker. The shooting range of the camera extends from the upper part of the aligning mechanism to the top of the housing. The individual components in the figure are as follows: 1: picking mechanism; 2: light belt; 3: camera; 4: guiding mechanism; 5: tea leaves; 6: bar-clamping mechanism; 7: identification area; and 8: housing.




Figure 2 | Picking system (A) configuration and components and (B) operation diagram.



The operation diagram of the picking system is shown in Figure 2B. The purple dots in the figure denote the tea shoot picking points determined by the recognition system, the purple circles and arrows show the picking point information transmitted by the recognition system, and the gray area shows the recognition area of the camera. The figure illustrates the working process of the picking system in both the main and side views. In the main view, the tea leaves are clamped by the aligning mechanism before they enter the shooting area of the camera, where they are positioned vertically in a strip. The camera captures a picture of the tea leaves and uses this as the input to the recognition algorithm. The algorithm determines the location of the tea shoots and sends the picking point information to the control system. The control system controls the track to move the picker up and down to reach the correct height for shoot picking. In the side view, the entire picking mechanism moves at a constant speed in the picking direction under a negative-pressure airflow, which continuously sucks the tea shoots. In the picture, the first process picker reaches the picking point of the tea leaves and is about to pick them. Meanwhile, the young tea leaves at the back are sucked by the negative-pressure airflow. Once the shoots are picked, the picker performs a second process. The picker moves upward. Before the front end of the picker reaches the tea shoots, the picker has already reached the corresponding height and is on standby for the next cycle. The cycle is repeated until the picking operation is complete.




2.3 Picker workflow and control algorithms

As tea leaves grow in a disorderly manner, the picker collides with the leaves as it moves from the current picking position to the next one. Moreover, the acceleration of the picker during motion can produce vibrations, leading to misalignment of the picking point. To prevent the conveyor clamping mechanism at the front of the picker from accidentally touching the tea leaves, its picking path should be planned according to the growth characteristics of the tea leaves. Furthermore, the movement speed of the picker must be planned to reduce the impact of vibrations, which can reduce the accuracy and damage the tea shoots.

In this study, the picker’s path was planned, as shown in Figure 3. The dashed blue, orange, green, and yellow boxes in the figure denote the waiting area, picker-deceleration area, area where the picker moves vertically and uniformly to the next picking point, and picker-acceleration area, respectively. The picker can move to the left at a constant speed via the picking mechanism. Meanwhile, the picking knife can move up and down. As the picker is always in uniform motion, the actual path of the picker forms an S-shaped curve when moving from the current position to the next. When the picker moves to the next position after picking from point O, it must accelerate to a set value in the vertical direction. Thereafter, it continues moving at the same speed. When the set position is about to be reached, the picker decelerates. When the speed of the picker in the vertical direction becomes zero, the picker reaches a predetermined position and retains the same vertical height while waiting for the tea shoots.




Figure 3 | Picker speed control diagram.



The tea leaf distribution interval was measured to be 50 mm–80 mm in the previous section. A tea protection zone, which is the waiting area denoted by the dashed blue box in Figure 3, was established according to the tea leaf growth characteristics to prevent the picker from accidentally pinching the tea leaves. The width of the waiting zone was 10 mm. The orange, light yellow, and light red curves represent the picking trajectory, acceleration zone, and deceleration zone, respectively.

We chose S-type acceleration and deceleration functions to plan the acceleration and deceleration of the trajectory and reduce the movement of the picker, which produce mechanism vibrations that affect the picking accuracy. When the picker moves horizontally, the horizontal speed V is constant. When the picker moves from point O to the next target picking point, the speed of the picker in the vertical direction must quickly reach the maximum set value, such that the picker can quickly move down to avoid the tea leaves. When the picker is about to reach the height of the tea picking point, it should decelerate vertically. The velocity control function is established in the trajectory of the acceleration and deceleration sections of the curve, given as follows:

 

where vl0 is the initial velocity (m/s), vlmax is the maximum velocity (m/s), Vl is the velocity at different displacements (m/s), a is the curve coefficient, and b is a constant.

As the S-curve function has a long and slow initial growth interval, a constant term b was added to shift the function curve by a specific distance, thereby offsetting the effect of the slow function value growth. The movement of the picker from the current position to the next forms a complete picking cycle. As shown in Figure 4, the picker is controlled using acceleration and deceleration functions at the front and end of the motion trajectory because it must quickly reach the maximum speed. The velocity changes at the front and back ends exhibit the same trends. The speed in the acceleration section increases slowly and then rapidly before slowly decreasing. Meanwhile, the speed in the deceleration section decreases slowly then rapidly before slowly decreasing to zero.




Figure 4 | Vertical velocity planning diagram.



Owing to uncertainty in the movement distance of the picker lead hammer, this study set the acceleration and deceleration zones at a fixed distance S1, where the uniform zone displacement Sy is expressed as follows:

 

An excessively large S1 will cause erroneous clipping of adjacent tea leaves, whereas an excessively small S1 will cause failure in the tea picking. Thus, S1 is set as the distance from the front end of the picker clamping to the front end of the picking knife to ensure that the picker can accurately pick the tea leaves. The initial velocity is zero. When the distance is S1, the velocity is increased to the maximum value vlmax to obtain the velocity control function using the equation:

 

Here, the maximum speed is 0.12 m/s, S1 is 0.04 m, a is 0.0067, and b is 0.02.




2.4 Identification model and picking point location

The field environment of tea plantations has complex lighting systems and low contrast between young and old tea leaves. Therefore, previous image processing and deep learning approaches based on 3D perspectives suffer from limitations in tea shoot tip recognition. In this study, we compared previous methods to establish a tea shoot tip identification model and extract picking point information through a 2D imaging perspective using YOLO-V5 combined with a skeleton algorithm (Zhang L. et al., 2022; Zhang P. et al., 2022; Huang et al., 2023; Li et al., 2023).



2.4.1 Data acquisition

The data used in this study were obtained by taking photographs at the Agricultural Park of Anhui Agricultural University in Hefei, Anhui, China. The shooting time was from mid-March to early April 2022. The row spacing was 0.5 m, and the tea variety was Shucha early. The image acquisition device was an MS-748 camera (specifications: technology: complementary metal oxide semiconductor; pixel size: 3 μm × 3 μm; frame rate: 30 fps; shooting angle: 140°). The distance between the camera and tea leaves also affects the accuracy of tea recognition. Therefore, in this study, the images of the tea leaves were collected at a distance of 5 cm–20 cm. As light influences the photography results, the tea images were collected in the morning, midday, and evening. A total of 971 tea leaf images were collected.




2.4.2 Dataset processing

This study used a labeling software to manually label 971 collected tea leaf images. We expanded the number of images via color adjustment and mirror flipping to improve the diversity of the dataset and allow it to adapt to more complex environments. In particular, 971 datasets were amplified to obtain 5,616 images as the final dataset. The training, validation, and test sets comprised 70%, 20%, and 10% of the dataset, respectively.




2.4.3 Identification model

The network structure of the tea shoot tip identification model is shown in Figure 5. The YOLO-V5 target detection model is an end-to-end model offering faster recognition. The background behind the tea plants was integrated into the recognition environment to facilitate fast recognition in the YOLO-V5 model, thereby further improving the recognition accuracy.




Figure 5 | YOLO model processing flowchart. SPPF, Spatial Pyramid Pooling - Fast; CspLayer, Cross Stage Partial; Conv2D-BN-SiLU, Convolution 2D+ Batch Normalization + Activation; conv2D, Convolution 2D.






2.4.4 Test platform and evaluation index

The computer configuration used for model training was a CPU processor (12th Gen Intel® Core™ i7-12700H 2.70 GHz) with a graphics card NVIDIA RTX3060 GPU and 16 GB of RAM. The model ran on a Windows 11 Professional 64-bit operating system. The software tool was PyCharm 2021.3.2, and the experiments were implemented in the Pytorch framework. The initial learning rate of the weights was 0.001, and the decay coefficient was 0.0005. The total number of model training iterations was 300.

We used recognition accuracy PC, recall RC, and mean average precision (MAP, FC) as evaluation indexes to evaluate the effectiveness of the trained recognition model for recognizing tea shoot tips. The formulas for each index are as follows:

 

 

 

where TP is the number of correctly identified tea shoots, FP is the number of incorrectly identified tea shoots, and FN is the number of unidentified tea shoots. The time between when the tea leaves enter the camera’s field of view and the recognition model obtains the location information of the tea shoot tips also reflects the performance of the model. In particular, the shorter the average processing time is, the better the model.





2.5 Picking point location algorithm

The tea shoot tip recognition model obtains the position of the tea shoot tip in the picture; however, it cannot control the picking mechanism to reach the exact position to pick it. Therefore, the exact picking points of the tea shoots were determined. The top of the tea shoot was crossed by two leaves, its bottom formed a separate stalk, and the area above the leaves was blank. This study proposed a skeleton algorithm and curve growth method to determine the exact location of the picking point of the tea shoot tip. Only the X- and Z-values of the actual coordinate system of the tea shoot tips were required for the identification. The analysis flow of the picking point location of the tea shoot tip is shown in Figure 6.




Figure 6 | Tea tip recognition and picking point positioning flowchart. (A): pictures taken of tea leaves; (B1): framed picture of tea leaf shoots; (B2): extracted skeleton information picture; (C): drawing growth curve pictures; (D): determine the picking point picture.



1. As shown in Figure 6A, we obtained a picture of the tea leaves  (Figure 6A), which was fed into the recognition model. After the YOLO-V5 model identifies the tea shoots, it uses the bounding box to frame the shoots out. The algorithm obtained the coordinate information of the four corner points of the marker box. When a tea shoot was selected, its upper right corner was marked with the type and probability of this object as shown in Figure 6B1.

2. As the picking point position was fixed at 4 mm from the end of the tea shoot, the location of the intersection of the shoot buds and leaves was first used to determine the exact location of the picking point, which is the end of the shoot tip. As shown in Figure 6B2, we used the skeleton algorithm to create a skeleton image of the objects within the image. The skeleton image was represented using a white line with a width of one pixel. In this study, we used the fast parallel algorithm by Zhang and Suen (1984)  to extract the skeleton information of the tea shoot tips (Zhang and Suen, 1984; Layana Castro et al., 2020). First, the collected images of the tea shoot tips were binarized, and a refinement method based on the mathematical morphology was applied to refine the juxtaposed pixels of the leaves and stalks in the tea shoot images.

3. The picking point analysis model obtained the coordinate information of the four corner points of the tea shoot marker box from the recognition model to obtain accurate coordinate information on the tea shoot picking point. As shown in Figure 6C, the image of the bounding box for the tea shoot tip and corresponding image of the tea shoot tip skeleton were simultaneously extracted. The number of pixels in them was scanned horizontally per line. Scanning was stopped when multiple pixels were present in a single line. The growth curve function of the stem was established using the position of the intersection point as the starting point and downward along the skeleton curve in the direction of the stem growth to accurately determine the distance between the picking point and tea shoot tip. Thus, the actual growth curve function of tea stalks based on the actual coordinate system scale was determined.

4. As shown in Figure 6D, the vertical coordinate along the function curve was reduced by 4 mm and set as the location of the picking point depending on the determined function. This point was marked in the graph with a green dot. Thereafter, the green dot was mapped for the complete image to yield the coordinate information of the tea shoot picking point. The coordinate information in the image was calibrated to obtain the actual coordinate information for the tea shoot picking point.




2.6 Tea tender tip identification and picking test bench



2.6.1 Tender tip identification and test bed design

A tea shoot identification and picking test bench, as shown in Figure 7, was designed to verify the accuracy of the identification and picking point location algorithm in an actual environment, the picking mechanism design, and the stability of the control system. The main structure consists of a conveying device, picking mechanism, control system, and identification system. The conveying device is a conveyor belt mechanism modified to fix tea stalks on it using an L-shaped fixing frame. The picking mechanism is a continuous picker designed in Section 2.2 Design of the continuous tea shoot picking system. The control system primarily consists of the respective controllers of the conveyor belt, stepper motor, DC motor, and lower computer that receives the upper model number.




Figure 7 | Test bench structure.



First, the tea leaves with stalks were fixed on the conveyor belt according to their actual growing conditions. Next, the recognition system was initialized. We set the conveyor belt to rotate forward at a constant speed. The tea leaves entered the identification area at a uniform speed, and the camera captured pictures of the tea leaves to obtain the picking point information of their tender tips. Next, the algorithm generated the speed control function to move the picking mechanism, and the lower computer instructed the mechanism to move to the calculated height. The tea leaves then entered the picker to pick the shoot tips off. The stalks were continuously transported backward, and the tea shoots were transported to the rear collection area. The trial was completed when all of the tea shoots within a row have been picked.




2.6.2 Image and coordinate system calibration

As the coordinates in the image are determined in terms of pixel points, the coordinates of the picking points in the image should be calibrated to the actual coordinate system used to control the picking mechanism. A calibration ruler was placed at a fixed position on the tea leaves during actual calibration. The ruler was fixed parallel to the plane upon which the tea leaves were placed and oriented vertically. As shown in Figure 8, the recognition model determined the picking point location of the tea shoot using the upper left corner of the image as the origin. The Z-axis was on the left, and the X-axis was at the top. The number of pixels in the image was set as the coordinate value. Ht in the image denotes the height of the picture, and Zt is the height of the picking point. In the actual coordinate system, Zs is the height of the picking point and Hs is the height of the shooting area. Their relationship is expressed as follows:




Figure 8 | Camera calibration diagram.



 

Xt in the figure indicates the position of the picking point in the image in the transverse direction, and its value in the actual coordinate system can be set at the same scale.

The locations of the picking mechanism and picking point are schematically shown in Figure 9. When the picking mechanism was at its highest position, the height at which the picking blade was located was taken as the starting point to determine the height of the blade position with respect to the picking point. Once the blade reached the current picking point, this position is used as the starting point to calculate the height distance to the next position. According to actual measurements, Hz = 212 mm and Hs = 196 mm.




Figure 9 | Picking mechanism and picking point position diagram.








3 Results and discussion



3.1 Model validation

The tea pictures were imported into the YOLO-V5 training model, and the evaluation index results were obtained, as listed in Table 2. The results for the training and validation sets of the model are shown in Figures 10, 11, respectively. After 300 iterations, the recognition accuracy of the validation set reached 99.9%. The loss values for the training and validation sets were 3.5e–5 and 4.33e–5, respectively. The MAP value (0.5:0.95) after 300 iterations was 0.97.


Table 2 | Model training parameters.






Figure 10 | Model training results.






Figure 11 | Model training accuracy.






3.2 Effect of speed on the recognition accuracy

We investigated the accuracy of the recognition system at different speeds to test its performance. We used a speed meter (DT22360; Guangzhou Rongmei Electronic Co., Ltd.) to measure the linear speed of the conveyor belt surface as the speed of tea movement. A group of tea leaves was selected as the test object, and different tea leaf moving speeds were achieved by varying the speed of the conveyor belt. The recognition accuracy was obtained by testing; the results are shown in Table 3. When the speed of the conveyor belt exceeded 0.47 m/s, the accuracy of the tea shoot identification system started to deteriorate. The accuracy rate decreased faster as the speed was increased. When the speed was lower than 0.47 m/s, the accuracy of the tea shoot identification system stabilized at 100%.


Table 3 | Identification accuracy at different speeds.



The recognition effect of the tea shoot tips at different speeds is shown in Figure 12. The same group of tea leaves gradually became blurred as the speed was gradually increased. A blurred screen reduces the recognition accuracy. Nonetheless, the recognition system can recognize some of the tender tips, which demonstrate the high stability of the recognition system. When the speed increases, the accuracy of the tea shoot identification for the same tea shoot decreases to 0.96 at 0.2 m/s and 0.95 at 1 m/s. Furthermore, the processing speed of the recognition system exhibits a certain lag, suggesting that the image of the current frame was not successfully intercepted for recognition and analysis and some of the tea shoot is missing.




Figure 12 | Recognition effect for tea shoots at different speeds.



As tea leaves pass across the camera lens from left to right, several inconsistencies were observed between the tea leaf images from the left and right sides. Different camera angles can obscure the tea shoots. When the shoots are obscured, the recognition system misidentifies them, resulting in deviations in the picking point information. As the speed was gradually increased, the recognition system becomes less stable. At high speeds, some tea shoots were not identified even though the results for the identified shoots are correct. We narrowed the camera’s field of view to the central section of the image to ensure the stability of the system. The field-of-view width is 200 pixels. Moreover, the number of samples in the model was increased by making it a separate object to avoid large leaves from shading the shoot tips. Furthermore, the picker moved to the very top to avoid large leaves when the system recognizes them.




3.3 Tea shoot identification and picking efficiency

The time taken for the system to identify and locate the picking point and perform picking was used as an index of the picking efficiency. The time required for each phase is shown in Table 4. The picking time is the total time spent from identification to picking completion. The average time taken by the model to identify the shoots was 30.25 ms and that to determine the picking point was 37.375 ms, and the average time taken to complete picking was 0.768 s.


Table 4 | Time taken by different stages.



The improved model takes less time to identify the shoot and can satisfy the requirements of real-time and rapid shoot identification in the field. Increasing the speed of model recognition can further improve the efficiency. However, the too short model recognition time repeatedly recognizes the same tea shoot. The picking mechanism is limited by the speed of the slide; hence, the recognition model cannot be set to operate too fast (i.e., excessive speed can cause the rear picking mechanism to pick out of sequence). We added a time delay in the algorithm loop to ensure the accuracy of the picking mechanism. The interval between the video streams’ interception by the model was set experimentally as 0.7 s. The shoot picking test bench shows that the actual picking point position was within a ±3 -mm margin from the position determined by the model; thus, this satisfies the demand for accurate tea shoot positioning.




3.4 Results of the tea tender tip picking

We selected multiple picking locations along a single row in a tea garden to test the reliability of the tea shoot picking method designed in this study. The trial tested the identification, positioning accuracy, baring success rate, and picking success rate of the system. The success rate of strip clamping expresses the percentage of tea stalks successfully clamped and placed in an upright position as a proportion of the total number of tea stalks. Successfully picked tea leaves are those whose shoots are undamaged and intact and whose stalk lengths are less than 5 mm. The specific test results are shown in Table 5. The results of the picking test are shown in Figure 13.


Table 5 | Tea shoot picking test results.






Figure 13 | Tea shoot picking results.






3.5 Discussion

As shown in Figure 13, most of the stalk lengths of the tea shoots meet the agronomic requirements. In addition, excessively long stalks can also be noted owing to the overgrowth of the tea leaves on an incline. The actual picking test showed that the actual picking point position was within ±3 mm of the model-determined position. The error is mainly attributed to the excessive bending of the tea shoot growth. In addition, the picking mechanism that shears the tea shoots can also cause deviations in the picking point. As such, the picking mechanism will be optimized from the principle of tea stalk mechanics at a later stage to further improve the picking accuracy.

During the system operation, the gripping component of the picker gathered larger leaves, which were shredded by the rear-picking knife. As such, broken leaves and shoots were transported to the collection box. Hence, the tea shoots should be screened after harvesting. However, repeated screening can further damage the tea shoots and reduce their quality. Therefore, the picking knife should be replaced in future research by a simulated manual lifting. Stem breakage but not leaf breakage was observed depending on the different breaking forces of the leaf and shoot stalks (Luo et al., 2022). A picker requires high control accuracy when picking. Moreover, identification should be separated from picking in the future to adapt to the picking requirements for a greater variety of tea leaves.

The coordinates of the end of the median line of the tea shoot tip were previously identified as the picking point location (Chen et al., 2022). This method resulted in the shredding of tea shoots during picking. In this study, identifying the picking point at 4 mm from the tail can avoid the shredding of the shoot tips being. Several scholars have set the location where the lower border of the marker box of the recognition model crosses the tea leaves as the picking point (Yang et al., 2019; Yang et al., 2021). In the 3D view, the lower border of the model was framed in an inaccurate position, causing the chopping of the tea shoots. By calculating the position of 2% of the total length of the tea shoot as the picking point, the average growth length of the tea leaves was obtained according to the growth characteristics of tea buds. Subsequently, the harvesting points were identified at a certain distance downstream (Li et al., 2021). As tea leaves grow in different states and different tea leaves will lead to different picking point locations, these methods cannot realize the precise picking of tea leaves.

Currently, several scholars are utilizing depth information to obtain the coordinates of tea shoot picking points in a 3D view. However, this cannot accurately localize the picking point, and the complex environment in the field can shift the localized picking point during picking. Meanwhile, some researchers have utilized robotic arms to pick tea shoots individually, which is not an efficient method. Previously, a tea shoot can be picked in 2 s–3 s (Yan et al., 2022). In this study, the picking of a tea shoot occurs in less than 1 s.

Several researchers adjusted the height of the overall cutter to coincide the cutter surface with the growth area of the tea shoots, thereby realizing efficient and precise harvesting. Nonetheless, precise selective picking is still not possible because the linear cutter picks a row of tea leaves at the same time (Tang et al., 2016). Thus, in this paper, standardized cultivation of tea leaves is proposed to further improve the picking efficiency and accuracy. Tea shoots are concentrated at the horizontal top of the tea tree. The camera laterally recognizes the tea shoots combed into rows and accurately locates the coordinates of the picking point. Meanwhile, the low-loss picker continuously picks the tea shoots. The streamlined picking program can provide new picking ideas for future tea shoot picking. However, standardized cultivation of tea leaves and optimal design of picking mechanism are still needed to achieve industrial application.





4 Prospect of tea shoot harvesting research

In this paper, a 2D side-view recognition picking scheme was used to improve the accuracy of 3D-view recognition localization. Continuous fast picking was realized by the continuous picking mechanism designed in this study. This provides new ideas and theoretical basis for continuous low-loss picking of tea shoots. However, there are still problems that need to be addressed for practical applications, as follows:

1. As a large amount of famous tea shoots need to be harvested in a short period of time, the identification harvesting methods in this paper satisfy the harvesting requirements; however, the current picking mechanism still suffers from low picking efficiency. This can be improved by adding robotic arms and picking components, which increases the picking cost. Further optimization of the picking mechanism is needed in the future to explore the options for continuous high-speed picking of tea shoots.

2. The picking mechanism still requires a knife cut for the final picking operation. The contact between the knife and tea stalks can have an oxidizing effect on the tea. As such, manual harvesting mechanisms can be further investigated in the future to realize tool-less harvesting that can achieve the desired quality.




5 Conclusion

In this study, a 2D imaging-based continuous picking system was designed to facilitate the continuous picking of tea shoots in standard tea plantations. The YOLO-V5 recognition model was combined with a skeleton algorithm and curve growth algorithm to achieve continuous recognition and localization of tea shoot tips. The proposed system facilitated the continuous picking of tea shoots. The following conclusions were drawn:

1. The 2D recognition perspective can improve the tea shoot recognition accuracy. The combination of the skeleton algorithm and curve growth increased the positioning accuracy of the picking points. After experimental validation, the maximum recognition speed of this method was 0.47 m/s. The identification accuracy, picking success rate, and picking efficiency for the tea shoots satisfy the requirements for practical applications.

2. The recognition accuracy of the validation set for the tea shoot tip recognition model was 99.9%. The average time required for picking was 0.768 s. The picker used an S-curve function to facilitate accurate control of the up and down movements. The shoot picking test bench test results showed that the actual picking point position was within ±2 mm of the modeled position. The picking success rate was 83.6%, which justifies the rationale and demonstrates the efficacy of the continuous low-loss harvesting.

3. This paper addressed the operation in standardized cultivated tea gardens. A continuous picking mechanism combined with a low-cost camera can decrease the cost of the picking system. Moreover, simplifying the identification and picking process reduced the time needed to pick a single shoot to less than 1 s. Moreover, this further improved the stability and accuracy of tea shoot identification.

We anticipate that the findings of this work will help improve the efficiency of automated tea shoot picking systems, thereby securing economic benefits for the tea industry.
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