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Public policy is regularly shaken by health crises or unexpected discoveries; future 
directions in toxicology assessment are therefore urgently needed. 

Convergent evidences suggest endocrine or nervous disrupting effects of pesticides, 
as well as effects on wildlife and the environment. These effects are amplified by the 
use of surfactants and/or combinations of different active principles. 

The usual concepts of regulatory toxicology are challenged by endocrine, nervous 
or immune disruption, or epigenetic effects. Indeed, most pollutants alter cell-cell 
communication systems to promote chronic diseases. They may accumulate in the 
food chain. Mixtures effects with other pollutants may change their bioavailability 
and their toxicity. The lack of scientific knowledge in these matters has large costs 
for public health. 

This Research Topic focuses on the toxic effects of pesticides associated with large 
scale cultivation of genetically modified (GM) plants.
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Editorial on the Research Topic

Toxicity of Pesticides on Health and Environment

The aim of this research topic was to explore different aspects of the effects of pesticides on
human health and the environment from a multidisciplinary point of view. The sustainability of
agricultural cropping systems is a fundamental question on which the future of humanity is relying.
Several indicators tend to suggest that the current system of agricultural production is reaching its
limits and become unsustainable (Nicolopoulou-Stamati et al.). One hallmark of modern intensive
agriculture, as well as a cause of farming system decline, is the intensive use of pesticides. They are
used to kill insects, fungi or undesirable plants, reducing the biodiversity of agricultural landscapes
to only one edible crop. This type of cropmanagement has long-term detrimental effects on farming
systems as the lack of biodiversity directly affects soil resilience.

Public policy is regularly shaken by health crises due to unexpected toxic effects of commonly
used chemicals. This is the case for pesticides and their metabolites which can directly affect
human and animal health (Nicolopoulou-Stamati et al.). Authors contributing to this research topic
focused on pesticides associated to large scale cultivation of crops, for which the toxicity is debated,
such as glyphosate-based herbicides (Cuhra et al.; Székács and Darvas) and neonicotinoids-based
insecticides (Mullin et al.). It should also be borne in mind that the introduction of genetically
modified (GM) crops at the end of the 1990s has considerably modified agricultural practices,
including the use of pesticides. Almost all GM crops cultivated nowadays have been modified to
tolerate an herbicide (mostly glyphosate-based herbicides) or/and produce their own modified
insecticide. The toxicological properties of these insecticides is thoroughly addressed by Hilbeck
and Otto in a review article, with a focus on combinatorial effects of Cry toxins.

The different studies published in our research topic shared a common conclusion. All revealed
that the toxicity of pesticides is generally underestimated. For instance, pesticides are always
commercialized as mixtures of different ingredients but only one declared of these ingredients
is regulated and tested for human health effects. Ingredients such as surfactants, also named
“inerts” or “formulants,” are poorly tested although they can be the most toxic ingredients in a
pesticide formulation (1). This is clearly illustrated in the work by and colleagues, showing that
organosilicone surfactants are potent standalone pesticides, and that they are toxic to honey bees
(Mullin et al.). This work also shows for the first time that surfactant use could be linked with
declining health of honey bee populations. Another important study investigated the inflammatory
effects of a plant protection product, composed of crushed fenugreek seeds, on human peripheral
blood mononuclear cells (Teyssier et al.). This work reminds us that although bio-based pesticides
are of natural origin, direct toxicity of these products to human can be observed. They thus must
be studied carefully to avoid non-target health effects as it is done for synthetic pesticides.

4

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2018.00268
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2018.00268&domain=pdf&date_stamp=2018-09-19
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:robin.mesnage@kcl.ac.uk
https://doi.org/10.3389/fpubh.2018.00268
https://www.frontiersin.org/articles/10.3389/fpubh.2018.00268/full
http://loop.frontiersin.org/people/205792/overview
https://www.frontiersin.org/research-topics/3808/toxicity-of-pesticides-on-health-and-environment
https://doi.org/10.3389/fpubh.2016.00148
https://doi.org/10.3389/fpubh.2016.00148
https://doi.org/10.3389/fenvs.2016.00028
https://doi.org/10.3389/fenvs.2018.00078
https://doi.org/10.3389/fpubh.2016.00092
https://doi.org/10.3389/fenvs.2015.00071
https://doi.org/10.3389/fpubh.2016.00092
https://doi.org/10.3389/fpubh.2017.00074


Mesnage and Séralini Editorial: Toxicity of Pesticides on Health and Environment

However, the problem goes beyond considerations on the
toxicity of pesticides. It has social, political, ethical, and
legal implications that could only be embraced through
multidisciplinary research. Research on human health effects
of environmental chemicals is highly specialized and few
studies address the question from a multidisciplinary point
of view. The debate on glyphosate is a topic for which
multidisciplinary research bring meaningful insights. This idea
is well supported by the analysis of the glyphosate case by
Cuhra and colleagues arguing that specific aspects of the
history, chemistry and safety of glyphosate and glyphosate-
based herbicides should be thoroughly considered in present
and future re-evaluations (Cuhra et al.). It is impossible
to ignore structural changes in glyphosate uses. The use
of glyphosate-based herbicides increased exponentially since
their introduction on the market in the 1970s. It was
amplified in the last decades by the introduction of agricultural
genetically modified organisms (GMOs) designed to tolerate
Roundup.

Perspectives from political economy are equally important.
Glyphosate market is currently highly concentrated, and around
50% of global revenues are shared by only 4 companies. It has
been estimated that Monsanto company made $4.76 billion in
sales and $1.9 billion in gross profits from herbicide products,
mostly consisting in Roundup (US securities and exchange
commission, document 10-K, 1 mon-20150831x10k). It has
been amplified now by the fusion with Bayer (2018). This
may have critical consequences on political decisions related to
the commercialisation of pesticides and GM crops designed to
tolerate their residues. A similar line of thought is found in the
perspective article published by Benbrook, describing 10 reforms

and initiatives to create a more robust, science-driven regulatory
infrastructure in the U.S.

Feeding 9 billion people or more with a healthy food
through sustainable farming systems is one of the main
challenges humanity has to face in the future. Agronomic and
socioeconomic factors such as food availability, disparity in
wealth, waste management, as well as dietary choices, are equally
important to ensure global food security. A democratization
of science is crucial in the current context of agricultural
innovation that is increasingly driven by industrial interests
(Vélot). Strategies to restore links between science, policymakers,
and civil society are presented by (Vélot). This is well illustrated
by the example of a participatory research project, in which
the research work is shared between non-profit organizations
from civil society or groups of citizens and academic researchers
(from universities or major research organizations) like it was
performed in CRIIGEN since 1999 (Vélot). In this line of though,
the Cornell Alliance for Science launched an initiative in which
“citizen scientists” are called upon to evaluate studies on health
risks of GM crops and foods. The meaningfulness and limits of
this project is examined by Antoniou and Robinson.

Our research topic confirms that new directions in agriculture
are urgently needed to evaluate pesticide effects on health
and environment. New agricultural policies should target
sustainable development and protection of the consumers’
health.
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Chemical Pesticides and Human 
Health: The Urgent Need for a New 
Concept in Agriculture
Polyxeni Nicolopoulou-Stamati1*, Sotirios Maipas1, Chrysanthi Kotampasi1,  
Panagiotis Stamatis1 and Luc Hens2
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The industrialization of the agricultural sector has increased the chemical burden on 
natural ecosystems. Pesticides are agrochemicals used in agricultural lands, public 
health programs, and urban green areas in order to protect plants and humans from var-
ious diseases. However, due to their known ability to cause a large number of negative 
health and environmental effects, their side effects can be an important environmental 
health risk factor. The urgent need for a more sustainable and ecological approach has 
produced many innovative ideas, among them agriculture reforms and food production 
implementing sustainable practice evolving to food sovereignty. It is more obvious than 
ever that the society needs the implementation of a new agricultural concept regarding 
food production, which is safer for man and the environment, and to this end, steps such 
as the declaration of Nyéléni have been taken.

Keywords: pesticides, agrochemicals, environmental health, endocrine disruptors, food sovereignty

iNTRODUCTiON

Pesticides are substances or mixtures of substances that are mainly used in agriculture or in public 
health protection programs in order to protect plants from pests, weeds or diseases, and humans from 
vector-borne diseases, such as malaria, dengue fever, and schistosomiasis. Insecticides, fungicides, 
herbicides, rodenticides, and plant growth regulators are typical examples (1–3). These products 
are also used for other purposes, such as the improvement and maintenance of non-agricultural 
areas like public urban green areas and sport fields (4, 5). Furthermore, there are other less known 
applications of these chemical substances, such as in pet shampoos (4), building materials, and boat 
bottoms in order to eliminate or prevent the presence of unwanted species (6).

Many of the pesticides have been associated with health and environmental issues (1, 2, 7–12), 
and the agricultural use of certain pesticides has been abandoned (2). Exposure to pesticides can be 
through contact with the skin, ingestion, or inhalation. The type of pesticide, the duration and route 
of exposure, and the individual health status (e.g., nutritional deficiencies and healthy/damaged 
skin) are determining factors in the possible health outcome. Within a human or animal body, 
pesticides may be metabolized, excreted, stored, or bioaccumulated in body fat (1, 2, 13). The numer-
ous negative health effects that have been associated with chemical pesticides include, among other 
effects, dermatological, gastrointestinal, neurological, carcinogenic, respiratory, reproductive, and 
endocrine effects (1, 2, 8, 10, 14–30). Furthermore, high occupational, accidental, or intentional 
exposure to pesticides can result in hospitalization and death (1, 31).

Residues of pesticides can be found in a great variety of  everyday foods and beverages, includ-
ing for instance cooked meals, water, wine, fruit juices, refreshments, and animal feeds (32–39). 
Furthermore, it should be noted that washing and peeling cannot completely remove the residues 
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(40). In the majority of cases, the concentrations do not exceed 
the legislatively determined safe levels (36, 39, 41, 42). However, 
these “safe limits” may underestimate the real health risk as in 
the case of simultaneous exposure to two or more chemical 
substances, which occurs in real-life conditions and may have 
synergistic effects (1, 43). Pesticides residues have also been 
detected in human breast milk samples, and there are concerns 
about prenatal exposure and health effects in children (13, 44–46).

This current review aims at highlighting the urgent need for a 
new concept in agriculture involving a drastic reduction in the use 
of chemical pesticides. Given the fact that the health effects have 
been extensively discussed in the current literature, this paper 
focuses on the major chronic health effects and recent findings 
regarding health effects that have been associated with exposure 
to common classes of chemical pesticides, i.e., organochlorines, 
organophosphates, carbamates, pyrethroids, triazines, and neo-
nicotinoids. More emphasis is given to the widely used herbicide 
“glyphosate,” which is an organophosphate pesticide very closely 
related to current agriculture (47). The important health effects, 
as discussed below, reveal the urgent need for implementing 
alternative solutions.

ORGANOCHLORiNe PeSTiCiDeS

The most widely known organochlorine pesticide is dichlorodi-
phenyltrichloroethane, i.e., the insecticide DDT, the uncontrolled 
use of which raised many environmental and human health 
issues (2, 48, 49). Dieldrin, endosulfan, heptachlor, dicofol, and 
methoxychlor are some other organochlorines used as pesticides.

There are a few countries that still use DDT or plan to rein-
troduce it for public health purposes (13, 48, 49). Furthermore, 
DDT is also used as a solution in certain solvents (2). It is a 
ubiquitous chemical substance, and it is believed that every living 
organism on Earth has a DDT body burden, mainly stored in 
the fat (48, 50). There is also evidence that DDT and its metabo-
lite p,p-dichlorodiphenyldichloroethylene (DDE) may have 
endocrine-disrupting potential and carcinogenic action (48). 
In  utero exposure to both DDT and DDE has been associated 
with neurodevelopmental effects in children (51). Moreover, a 
recent study related DDE to hepatic lipid dysfunction in rats (50).

The general class of organochlorine pesticides has been asso-
ciated with health effects, such as endocrine disorders (10, 52), 
effects on embryonic development (53), lipid metabolism (54), 
and hematological and hepatic alterations (55). Their carcinogenic 
potential is questioned, but concerns about possible carcinogenic 
action should not be underestimated (38, 39, 56, 57).

ORGANOPHOSPHORUS PeSTiCiDeS

Organophosphates, which were promoted as a more ecologi-
cal alternative to organochlorines (58), include a great variety 
of pesticides, the most common of which is glyphosate. This 
class also includes other known pesticides, such as malathion, 
parathion, and dimethoate; some are known for their endocrine-
disrupting potential (10, 59, 60). This class of pesticides has been 
associated with effects on the function of cholinesterase enzymes 
(58), decrease in insulin secretion, disruption of normal cellular 

metabolism of proteins, carbohydrates and fats (54), and also 
with genotoxic effects (61) and effects on mitochondrial function, 
causing cellular oxidative stress and problems to the nervous and 
endocrine systems (54).

Population-based studies have revealed possible relations 
between the exposure to organophosphorus pesticides and 
serious health effects including cardiovascular diseases (62), 
negative effects on the male reproductive system (63) and on the 
nervous system (58, 64–66), dementia (67), and also a possible 
increased risk for non-Hodgkin’s lymphoma (68). Furthermore, 
prenatal exposure to organophosphates has been correlated with 
decreased gestational duration (69) and neurological problems 
occurring in children (70).

Regarding glyphosate, the safety of which is the subject of an 
ongoing scientific controversy (60, 71–76), it is the most widely 
used herbicide in current agriculture (47, 75), especially since the 
introduction of glyphosate-tolerant genetically modified crops, 
such as certain types of soybean and maize (60, 77–80). Its exten-
sive use in genetically modified soybean cultivation has raised 
concerns about possible synergistic estrogenic effects due to the 
simultaneous exposure to glyphosate and to the phytoestrogen 
“genistein,” which is a common isoflavone present in soybeans 
and soybean products (80, 81).

Glyphosate can display endocrine-disrupting activity (80, 82), 
affect human erythrocytes in  vitro (83), and promote carcino-
genicity in mouse skin (84). Furthermore, it is considered to cause 
extreme disruption in shikimate pathway, which is a pathway 
found in plants and bacteria as well as in human gut bacteria. 
This disruption may affect the supply of human organism with 
essential amino acids (85). Commercial glyphosate formulations 
are considered to be more toxic than the active substance alone 
(80, 83, 86, 87). Glyphosate-based herbicides, such as the well-
known “Roundup,” can cause DNA damages and act as endocrine 
disruptors in human cell lines (60) and in rat testicular cells (88), 
cause damages to cultured human cutaneous cells (89), and 
promote cell death in the testicular cells of experimental animals 
(88, 90). There is evidence also for their possible ability to affect 
cytoskeleton and intracellular transport (91).

A recent study examined the possible relation between 
glyphosate, genetically modified crops, and health deteriora-
tion in the USA. Correlation analyses raised concerns about 
possible connections between glyphosate use and various 
health effects and diseases, such as hypertension, diabetes, 
strokes, autism, kidney failure, Parkinson’s and Alzheimer’s 
diseases, and cancer (82). Furthermore, there are concerns 
about the possible ability of glyphosate to cause gluten intoler-
ance, a health problem associated with deficiencies in essential 
trace metals, reproductive issues, and increased risk to develop 
non-Hodgkin’s lymphoma (92).

CARBAMATe PeSTiCiDeS

Carbamate pesticides, such as aldicarb, carbofuran, and ziram, 
are another class of chemical pesticides that have been associated 
with endocrine-disrupting activity (10, 93), possible reproductive 
disorders (63, 93), and effects on cellular metabolic mechanisms 
and mitochondrial function (54). Moreover, in vitro studies have 
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revealed the ability of carbamate pesticides to cause cytotoxic 
and genotoxic effects in hamster ovarian cells (94) and to induce 
apoptosis and necrosis in human immune cells (95), natural killer 
cells (96, 97), and also apoptosis in T lymphocytes (98).

Furthermore, it has been confirmed that carbaryl, which 
belongs to the category of carbamate pesticides, can act as a 
ligand for the hepatic aryl hydrocarbon receptor, a transcription 
factor involved in the mechanism of dioxin toxicity (99). There 
is also evidence for the ability of carbamate pesticides to cause 
neurobehavioral effects (65, 100), increased risk for dementia 
(67), and non-Hodgkin’s lymphoma (101).

OTHeR CLASSeS OF CHeMiCAL 
PeSTiCiDeS

Triazines, such as atrazine, simazine, and ametryn, are another 
class of chemical pesticides that have been related to endocrine-
disrupting effects and reproductive toxicity (10, 102, 103). 
Moreover, it was found that there is a possible statistical relation-
ship between triazine herbicides and breast cancer incidence 
(104). Atrazine is the most known of the triazines, and it is a very 
widely used herbicide that has been associated with oxidative 
stress (103), cytotoxicity (105, 106), and dopaminergic effects 
(107, 108). Furthermore, the exposure of experimental animals 
to atrazine has been associated with reproductive toxicity (109) 
and delays in sexual maturation (110).

Synthetic pyrethroids, such as fenvalerate, permethrin, and 
sumithrin, are considered to be among the safer insecticides 
currently available for agricultural and public health purposes 
(111, 112). However, there is evidence for their ability to dis-
play endocrine-disrupting activity (10, 113–115), and to affect 
reproductive parameters in experimental animals including 
reproductive behavior (114, 116). Furthermore, a recent study 
related more than one pyrethroid metabolite to DNA damages 
in human sperm, raising concerns about possible negative effects 
on human reproductive health (117). It should also be mentioned 
that there are also concerns about their possible ability to display 
developmental neurotoxicity (25, 118, 119).

Neonicotinoid pesticides, such as imidacloprid, thiacloprid, 
and guadipyr, are relatively new and also the most extensively 
used insecticides (120) that were promoted for their low risk for 
non-target organisms (121). However, there is plenty of evidence 
to the contrary (115, 122–125); their effect on bees is a common 
example (124, 125). There is also evidence for possible effects 
on the endocrine and reproductive systems of animals (115, 
126, 127). Moreover, a recent study demonstrated that neonicoti-
noids are able to increase the expression of the enzyme aromatase, 
which is engaged in breast cancer and also plays an important role 
during developmental periods (128).

URGeNT NeeD TOwARD CLeANeR AND 
SAFeR AGRiCULTURAL PRACTiCeS

Current agricultural practices include the wide production 
and extensive use of chemicals known for their ability to cause 
negative health effects in humans and wildlife and to degrade the 

natural environment. Therefore, an urgent strategic approach is 
needed for a reduction in the use of agrochemicals and for the 
implementation of sustainable practices. Furthermore, current 
agriculture has to implement environmentally friendlier prac-
tices that pose fewer public health risks. Reforming agricultural 
practices aligned to fulfill these criteria is a step toward the 
sustainability of the agricultural sector in contrast to precision 
agriculture (129–134).

However, the reduction in the use of agrochemicals by applying 
them only when and where they are necessary, the spatiotemporal 
variability of all the soil and crop factors of a given field must 
be taken into consideration. This variability includes yield, field, 
soil, and crop variability but also factors, such as wind damage or 
flooding. Technological systems, such as geographical informa-
tion systems, global positioning systems, and various sensors, 
can be useful (130–132, 135). These technological systems are 
developed by precision agriculture which of course we do not 
endorse, but we consider that selected technological tools can 
be used to decrease risks for environmental pollution and water 
pollution and to enhance economic benefits stemming from the 
reduction in the use of chemical products (130, 132).

It should be clear that the reform into an aggregate of machine-
centered procedures and losing a human-centered character are 
not the desired. In contrast, the reduction in the use of pesticides 
assisted by innovative technological methods we strongly believe 
that may reduce the use of chemical substances or maybe it can 
lead to a total abandonment in many cases, such as in the case 
of urban green areas. The decision of the Italian village of Mals 
near the Austrian and Swiss borders to ban the use of pesticides 
and produce pesticide-free foods can be considered as a pioneer 
example across Europe. In 2014, more than 70% of the inhab-
itants of Mals who participated in a referendum voted against 
the use of pesticides (136). This historical decision apart that is 
consistent with the food sovereignty concept, which is discussed 
in the following section, also declares the need for disseminat-
ing information for raising awareness of the public in order to 
develop informed consents.

An innovative idea developed by the international movement 
“Via Campesina,” was the democratic concept of food sovereignty 
that has accompanied the progress toward sustainability for more 
than 20 years. It acquired a strong basis in 2007 in the African 
village Nyéléni in Mali, where representatives from more than 
eighty countries adopted the “Declaration of Nyéléni.” According 
to its principles, all the people of the world have the right to 
choose their own national and local policies to eliminate poverty, 
malnutrition, and hunger, to protect their traditions and also the 
natural environment (137–141).

The industrialization of agriculture has brought a series of 
problems including economic, social, and environmental impacts 
that local populations cannot manage. Furthermore, the overpro-
duction of food, export-oriented monocultures, the demand for 
cheap labor, and the other characteristics of industrialization have 
clearly failed to solve the problems of hunger and malnutrition. 
On the contrary, inequitable food distribution, overexploitation 
of land and water sources, the overuse of agrochemicals, and the 
degradation of the natural environment are some of the results of 
the dominant agricultural model (138, 142–144). Food sovereignty 
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promotes social, economic, and environmental  sustainability, for 
instance, through the protection of the indigenous population 
and the production of food for distribution in local markets, and 
there is an ongoing effort for its recognition as a basic human 
right (138–140, 142, 145).

The dominant agricultural model has increased the chemical 
burden on natural environment (140, 142). Moreover, interna-
tional agrochemical companies absorb traditional agricultural 
companies, leading to an industrialized agriculture model and 
leaving the local farmers and small producers to face the con-
sequences (138, 143). In many cases, these people are obliged to 
adopt environmentally unfriendly techniques to increase their 
production in order to survive in the market, causing more envi-
ronmental degradation (138). However, due to the fact that food 
sovereignty does not necessarily mean pesticide-free, organic 
food production, and because it does not determine pesticide use 
levels, for this reason, international eco-friendly standards should 
be implemented. People must be free to decide the method of 
production of their own food, and an important component of 
this decision concerns agrochemical products. The decision of 
the people of Mals to reject pesticides can be considered a step 
in this direction.

DiSCUSSiON

The need for protection against pests is a given and has its roots 
in antiquity, when both organic and chemical substances were 
applied as pesticides (146). Since then, numerous chemical pesti-
cides have been produced, and now multinational agrochemical 
companies, which mostly control global food production, apply 
new chemical substances with pesticide properties and imple-
ment biotechnological advances, thus diverging from traditional 
agricultural methods. Furthermore, current agricultural practices 
are based on the wide use of chemical pesticides that have been 
associated with negative impacts on human health, wildlife, and 
natural environment (9, 11, 120, 147, 148).

Current agriculture has to deal with important factors, such 
as population growth, food security, health risks from chemical 
pesticides, pesticide resistance, degradation of the natural envi-
ronment, and climate change (149–155). In recent years, some 

new concepts regarding agriculture and food production have 
appeared. A concept as such is climate-smart agriculture that 
seeks solutions in the new context of climate change (152, 153). 
Another major ongoing controversy exists between the advocates 
and the opponents of genetically engineered pesticide-resistant 
plants, regarding not only their safety (29, 156, 157) but also their 
impact on pesticide use (158–160).

Furthermore, the real-life chronic exposure to mixture of 
pesticides with possible additive or synergistic effects requires 
an in depth research. The underlying scientific uncertainty, the 
exposure of vulnerable groups and the fact that there are numer-
ous possible mixtures reveal the real complex character of the 
problem (161–163). The combination of substances with prob-
ably carcinogenic or endocrine-disrupting effects may produce 
unknown adverse health effects. Therefore, the determination of 
“safe” levels of exposure to single pesticides may underestimate 
the real health effects, ignoring also the chronic exposure to 
multiple chemical substances.

Taking into consideration the health and environmental 
effects of chemical pesticides, it is clear that the need for a new 
concept in agriculture is urgent. This new concept must be based 
on a drastic reduction in the application of chemical pesticides, 
and can result in health, environmental, and economic benefits 
(164) as it is also envisaged in European Common Agricultural 
Policy (CAP) (165).

We believe in developing pesticide-free zones by implement-
ing a total ban at local level and in urban green spaces is easily 
achievable. Furthermore, alternative procedures to the current 
model of food production should be implemented in new agricul-
tural policies targeting sustainable development and protection 
of the consumers’ health. Despite the difficulties of establishing 
an innovative concept, the transition to a new cleaner and safer 
agricultural model is necessary.
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Although previously accepted as the less toxic alternative, with low impact on animals,

farmers as well as consumers who are exposed to residues in food, glyphosate chemicals

are now increasingly controversial as new evidence from research is emerging. We

argue that specific aspects of the history, chemistry and safety of glyphosate and

glyphosate-based herbicides should be thoroughly considered in present and future

re-evaluations of these dominant agrochemicals:

• Glyphosate is not a single chemical, it is a family of compounds with different chemical,

physical, and toxicological properties.

• Glyphosate is increasingly recognized as having more profound toxicological effects

than assumed from previous assessments.

• Global use of glyphosate is continuously increasing and residues are detected in food,

feed, and drinking water. Thus, consumers are increasingly exposed to higher levels

of glyphosate residues, and from an increasing number of sources.

• Glyphosate regulation is predominantly still based on primary safety-assessment

testing in various indicator organisms. However, archive studies indicate fraud and

misbehavior committed by the commercial laboratories providing such research.

We see emerging evidences from studies in test-animals, ecosystems indicators and

studies in human health, which justify stricter regulatory measures. This implies revising

glyphosate residue definitions and lowering Maximum Residue Limits (MRLs) permissible

in biological material intended for food and feed, as well as strengthening environmental

criteria such as accepted residue concentrations in surface waters. It seems that

although recent research indicates that glyphosates are less harmless than previously

assumed and have complex toxicological potential, still regulatory authorities accept

industry demands for approving higher levels of these residues in food and feed.

Keywords: glyphosate safety-assessment, history of glyphosate-herbicides, chemical diversity of glyphosates,

glyphosate tolerant transgenic crops, Roundup

INTRODUCTION

In As You Like It by Shakespeare, Rosalind asks Orlando: “Can one desire too much of a good
thing?” ...

The phytotoxic properties of glyphosate were recognized around 1970 and the new compound
was enthusiastically embraced as a good thing; it was perceived as a practically non-toxic alternative,
a safe chemical and a benefit to society. And, best of all, it proved to be an efficient herbicide. After
introduction of first commercial formulations around 1975, glyphosate-based herbicides (GBHs)
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have become globally dominant for eradication of unwanted
weed species and lately also have found other use, e.g., as
desiccants on agriculture crops. At the moment of writing,
glyphosate is the globally dominating herbicide, measured in
tonnage, and revenue.

Archive film from a commercial biotechnology laboratory in
1987 shows George H.W. Bush (at that time vice-president of the
USA) as he asks the assembled researchers; “this gene of yours,
what does it do in the plant?” Before any of the superiors have a
chance to answer, a junior scientist excitedly proclaims; “we have
this fabulous herbicide...” (Robin, 2008). The fabulous herbicide
was glyphosate and the gene in question was the commercially
promising EPSPS gene isolated fromAgrobacterium, which made
it possible to modify agriculture crops into glyphosate-tolerant
varieties. Leading agronomists later described the fabulous
herbicide in a widely acknowledged publication bearing the title;
“Glyphosate: a once-in-a century herbicide” (Duke and Powles,
2008). The headline for this present writing also refers to the
2012–2015 detailed evaluation of glyphosate recently completed
by the European Food Safety Authority: “Glyphosate: EFSA
updates toxicological profile” (EFSA, 2015c), in which EFSA
concludes that glyphosate is probably not a human carcinogen,
but on the other hand also acknowledges the need for tighter
regulation, specifically by adjusting consumer exposure.

GBHs were primarily intended for pre-emergence application
in conventional industrial agriculture. However, genetically
modified cultivars (GM) allow post-emergence application in
herbicide-tolerant genetically modified soybean, corn, cotton,
and canola. These crops are engineered to withstand the effects
of glyphosate and seen as a main incitement for increasing
production of and application of these chemicals (Charles,
2001; Benbrook, 2012, 2016; Bonny, 2014; Cuhra, 2015a).
Annual global production figures for glyphosate have recently
been estimated at 825,800,000 kg (Benbrook, 2016), while less
investigative sources estimate even higher production volumes,
surpassing 1 million ton annually (Székács and Darvas, 2012;
Bøhn et al., 2016) and there are few indications of reduced
use, other than challenges from resistant weed and emerging
evidence.

A string of previous studies investigated aspects such as
toxicity of glyphosate and Roundup toward aquatic invertebrates
(Cuhra et al., 2013), accumulation of glyphosate in glyphosate-
tolerant soybean (Bøhn et al., 2014) and potential effects of
such residues in test animal feed (Cuhra et al., 2014, 2015).
Furthermore, we have reviewed reports from industry studies
investigating these issues. No studies other than our own were
found to specifically assess effects of glyphosate residues (Cuhra,
2015b). We have also published preliminary results from studies
of documentation in archives from US FDA and US EPA,
obtained via freedom of information act requests (Cuhra, 2015c).

Importantly, glyphosate is not one single clearly defined
compound, but rather a family of chemicals that can be
synthesized through different chemical processes, which in
turn will cause various qualitative differences e.g., impurities
and byproducts. Glyphosates exist in several chemical mixtures
and/or forms, primarily as either glyphosate technical acid or as
various salts of glyphosate.

REVIEW OF RECENT FINDINGS

Compositional analysis of soybean samples from major
production areas in USA and Argentina determined that such
transgenic glyphosate-tolerant crops accumulate glyphosate,
causing surprisingly high levels of glyphosate residues (Bøhn
et al., 2014), even far above the spacious maximum residue
limits which exists for soybean at present (Then, 2013; Cuhra,
2015b). Such high levels of glyphosate residues are endemic
for the glyphosate-tolerant GM-varieties. In samples of organic
soy and conventionally grown soy from industrial agriculture,
no such residues were detected (n = 21, LOQ = 0.1 mg/kg)
(Bøhn et al., 2014). Subsequent research indicated that (a)
soy from organic agriculture gave better growth, survival
and reproduction in the indicator organism Daphnia magna,
compared to conventional GM and non-GM varieties of soy
(Cuhra et al., 2014). Furthermore, (b) subsequent testing
demonstrated that when D. magna was fed diets made with
soybean meal from Roundup-ready soybean, the biological
parameters growth and reproduction were negatively correlated
with the magnitude of glyphosate residues (in a 42-day
experiment involving 300 animals allocated to eight separate
diets with known glyphosate-residue concentrations, all below
existing legal limits) (Cuhra et al., 2015). Furthermore, we found

that glyphosate isopropyl amine salt (glyphosate IPA) in water,
had 100-300-fold higher acute toxicity toward test-organism
D. magna, as compared with industry studies using same species
of test-animal and similar methodology of testing. And, in
long-term studies we found that low concentrations (0.05–0.45

ppm) of either glyphosate (glyphosate IPA) or GBH Roundup
formulation (contains glyphosate IPA as active ingredient) had
adverse effects on growth and reproduction (Cuhra et al., 2013).
Several problematic issues relating to existing assumptions on
ecotoxicity of glyphosate were identified, amongst these the
fact that glyphosates are a family of chemicals with distinctly
differing physical properties and biological effects, notably levels
of contaminants from different manufacturing processes, and
basic properties such as solubility in water (Cuhra, 2015c). Also,
numerous studies on toxicity and ecotoxicity of glyphosate and
glyphosate-based herbicides were performed by commercial
laboratories at a time when such research did not adhere to later
quality requirements. Thus, it has been concluded that amongst
the industry-funded studies providing data for the regulatory
basis by documenting glyphosate safety, there are studies which
should be reviewed and discarded as evidence of safety (Cuhra,
2015b,c).

The lack of relevant risk-assessment data may come from lack
of valid studies, since research commissioned and funded by
industry is found to ignore the question of herbicide use as well as
residue levels in the plant material, and possible effects from these
(Millstone et al., 1999; Viljoen, 2013; Cuhra, 2015b). Millstone
et al. documented serious flaws in initial assessments presented
by industry as evidence of safety: Most safety assessments had
been conducted using herbicide tolerant plant material which
was not sprayed with its belonging herbicide, and thus could not
have the levels of glyphosate residues which would be expected
under normal agriculture practice. Later, Viljoen confirmed this
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to still be the case in most feeding studies performed to test
the quality of herbicide tolerant GM plants. Our recent review
of the issue highlights that not only are the test materials for
research cultivated in artificial environments, but the question of
glyphosate residues continues to be an ignored issue. We argue
that such unfortunate gap in knowledge originates in a societal
acceptance of industry autonomy and that the responsibility for
providing data for safety-assessment studies is delegated to the
producer of the product (Cuhra, 2015b). Only one of 30 reviewed
studies was found to address the question of glyphosate residues,
and that was a compositional study performed by us (Bøhn
et al., 2014). Such methodological flaws in industry studies not
only discredit and undermine the claimed substantial equivalence
of GM cultivars, they also point to an insufficient regulatory
oversight over knowledge gaps related to important safety-issues
(Cuhra, 2015b).

Glyphosates and formulated GBH products such as Roundup
have been subjected to a large number of studies: Researchers
have investigated glyphosates and their role in industrialized
farming practices, from various scientific disciplines and from
a wealth of perspectives; agronomy (Duke and Powles, 2008;
Benbrook, 2012, 2016; Bonny, 2011, 2014), socio-economy
(Binimelis et al., 2009; Bonny, 2014), Ecology (Giesy et al.,
2000; Samsel and Seneff, 2015b) and health (Williams et al.,
2000; Samsel and Seneff, 2013, 2015a,b; Mesnage et al.,
2015a). Few independent scientists (researchers not employed by
industry) have voiced such univocal praise as the agronomists
who published the initially mentioned commentary in which
glyphosate is stated to be “a once-in-a-century herbicide,” “a
precious herbicidal resource” and a “unique ideal herbicide”
(Duke and Powles, 2008). Some of these claims seemed justified
at the time of writing, especially since these evaluations arose
before themore recent; (1) findings of high levels of accumulation
in food and feed, (2) findings of destructive outbreaks of
glyphosate-resistant weeds, and (3) indications of complex toxic
effects.

Hence, although glyphosate was initially found to be
environmentally benign, to have low toxicity to farmworkers and
other non-target organisms, and to be biodegradable, several of
these assumptions of the “unique ideal herbicide” have recently
been scrutinized and questioned.

In addition, GBHs include a large diversity of herbicidal
products, i.e., more than 750 formulated products are found
on the market (Guyton et al., 2015), with unknown additive
ingredients, making evaluation and testing even more difficult.

At present, the global database at www.weedscience.org has
registered 32 different species of weeds tolerant to glyphosate
(Heap, 2015). Arguably, the reaction to these recent challenges
has partly contributed to increase the ecological challenges:
we see that a main strategy applied by agroindustry has been
to further develop technical and biological modifications of
agriculture crops, in order to facilitate even higher application
dosage of glyphosates as active ingredients in products (Cuhra,
2015b). This is increasingly affecting local biota and farming
systems as application rates on individual fields increase, in an
unsustainable spiraling development which should be evaluated
carefully (Binimelis et al., 2009). Another approach is to combine

tolerances to several herbicides in the same transgenic plant
(Green, 2009).

Chemistry and History of Glyphosates
The common name “glyphosate” is used indiscriminately in
published literature, denominating various chemical compounds
that differ substantially from the glyphosate-IPA salt (chemical
identity CAS# 38641-94-0), e.g., the technical grade glyphosate
(CAS# 1071-83-6). Toxicological data for technical grade
glyphosate are not relevant when assessing ecological effects
of glyphosate herbicides, which contain water-soluble forms of
glyphosate, e.g., the IPA-salt, as the active ingredient.

In this context we again find it relevant to highlight the types
of glyphosate which are used in agriculture as active chemical
ingredient in glyphosate-based herbicides (GBH). These are
primarily glyphosate isopropyl amine, glyphosate ammonium,
glyphosate sesquisodium, and glyphosate trimesium salts. It is
these glyphosate-salts that are the primary glyphosate chemicals
released into the environment and which are sources of residues
or metabolites subsequently found in various feed- and foodstuff.

Different glyphosate compounds have slightly or profoundly
different properties. An overview can be found at the PubChem
online database (hosted by the US National Institutes of Health
at https://pubchem.ncbi.nlm.nih.gov) presenting a synthesis of
information on physical, chemical, and toxicological properties
of chemicals. Glyphosates are pooled in Compound identity
CID #3496. This entry includes glyphosate technical acid,
but also various other glyphosate chemicals such as the
isopropylamonium salts (IPA-salts), which are commonly used
in commercial herbicides. The PubChem database also provides
common synonyms and lists major producers of glyphosate,
including a range of different glyphosate chemicals which
these producers offer onto the commercial market. Links to
hundreds of records on related compounds in the database
present confusing information, especially as the commercially
and environmentally important glyphosate salts obscurely are
also listed in other subdivisions of the database.

Also, we notice that there are several independent systems for
nomenclature of chemicals including glyphosates. The PubChem
database employs CID-codes for chemical compounds. These
are different from the universally recognized CAS-codes.
Also, although US EPA documentation on glyphosates refers
to CAS-codes, additional codes (e.g., internal codes and
“Shaughnessy” codes) are used. Authorities such as the US
Department of Labor use an altogether different nomenclature
for glyphosate (OSHA–IMIS codes, in which glyphosate-IPA
is given the identity “R107”). This diversity of codes results
in confusing nomenclature which subsequently complicates
scientific assessments and regulatory approvals.

The following examples illustrate the challenges for
identifying correct type of glyphosate for testing: For many
years (and to some degree still) the US EPA Reregistration
Eligibility Decision (RED) on glyphosate (US EPA, 1993) has
been the main document on glyphosate in the US administration
and an important reference for assessment of potential effects
on health and environment. However, the supporting technical
dossier (Shaughnessy Case No. 0178) confuses the physical
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properties of two different main glyphosate chemicals: The
IPA-salt specification gives data on melting point, density,
and water-solubility. Again, amongst these properties, the
water-solubility is most important in a chemical intended to be
diluted with water. However, the documentation presents the
very low solubility of the glyphosate technical acid (at 10 g/l this
is relatively insoluble and not relevant as an active ingredient
in commercial formulations, in comparison the IPA-salt has
solubility exceeding 1000 g/l). The RED is largely based on
data provided by the industry manufacturer of the glyphosate
chemicals (partly confidential information protected by national
and international patents) and evidently has been compiled
without the necessary differentiation between glyphosate forms.

Numerous published experiments on ecotoxicological effects
of GBH in various species and environments have tested the
glyphosate technical acid (the parent compound). However,
studies on effects of glyphosate technical acid are not relevant for
assessing the potential effects of the glyphosate active ingredient
in herbicides. We argue that this is a possible explanation for
the contradictory published results in specific species of test-
animals and specific test-systems, presenting EC50 values which
span several orders of magnitude (Cuhra et al., 2013).

Furthermore, analysis of glyphosate residues in environmental
samples, food and feed, have quantified only “glyphosate” (as
N-phosphonomethyl glycine) and the defined main metabolite
“AMPA” (aminomethylphosphonic acid). The newest revision of
central EFSA documents on glyphosate (EFSA, 2015a) begins
to take these questions into account. The document specifies
that the IPA-salt of N-phosphonomethyl glycine (glyphosate-
IPA) is the relevant compound for assessment and also presents
some details on other metabolites (N-acetylglyphosate (NAG),
N-acetyl-AMPA), and impurities. As presented in the EFSA
document, N-acetylglyphosate, and N-acetyl-AMPA are newly
proposed to be part of the residue definition for monitoring
and for dietary risk assessment. They occur in certain genetically
modified plants such as soybeans or maize following application
of glyphosate and were evaluated by EFSA with regard to setting
of import tolerances. It was noted that formaldehyde may occur
as an impurity and a content of 1 g/kg or higher in the active
ingredient would result in a classification as a 1B carcinogen
(EFSA, 2015a).

We find that the chemical and biological processes of
glyphosate degradation are insufficiently documented and we
expect that other potential metabolites and additional residues
could also be of importance. Also, the break-down rates of
glyphosates are relevant. Glyphosate and AMPA residues in
samples of Roundup-ready soybean were analyzed two years
after harvest. We found high concentrations of both chemicals
(mean 3.3 mg/kg of glyphosate and 5.7 mg/kg of AMPA) (Bøhn
et al., 2014), i.e., somewhat more AMPA (63% of the total)
than glyphosate. This indicates that in stored seeds, glyphosate
degrades slowly.

A classic and somewhat morbid joke states that five out
of six scientists conclude, that Russian roulette is safe. The
evidence on glyphosate safety is of this nature, as a majority
of previous studies (before 2010) find that glyphosate is safe,
contrasted by only a minority of studies which find that

glyphosate causes harm. Returning to the metaphor of the
revolver in the undoubtedly dangerous game of Russian roulette,
an inspection would reveal that only one chamber is loaded with
a functional cartridge, the others are blanks. Based on our review
of published glyphosate safety assessments we conclude that the
mentionedmetaphor is highly relevant.We see that an important
cluster of publications, which can be said to be at the core of
evidence demonstrating safety of glyphosate herbicides, was not
performed using the relevant type of glyphosate chemical. Thus,
those safety assessments investigated “blanks,” whereas a few
supplementary studies have tested the actual glyphosate herbicide
or the active ingredients correctly representative of the actual
chemicals dispersed onto farmlands and into the environment.

We recommend focusing further on the studies which
investigate representative glyphosate, instead of concluding
from studies that have investigated the parental compounds of
glyphosate. Regulatory authorities must be capable to separate
real bullets from blanks when assessing evidence for risk-
assessment. Only the effects of real bullets are relevant.

Toxicity and Ecotoxicity of Glyphosates
and GBHs
Roundup and similar formulated glyphosate herbicides contain
various adjuvants and inert ingredients. We have described
some of the confusion that enshrouds ecotoxicological and
toxicological assessments of these compounds, which are
seen as significantly contributing to toxicological properties
of formulated herbicides (Cuhra et al., 2013; Cuhra, 2015c).
Recognizing the inherent complexity of assessing compounds
which are protected commercial products and which have
properties known to producers, but partly unavailable to
scientists and regulators, we suggest that all ingredients in
herbicide formulations should be regulated and subject to
mandatory declaration. Present regulation allows producers of
formulations to simply declare various additives and adjuvants
as “inert ingredients,” although such GBH-compounds were
initially recognized to have biological and toxicological effects in
non-target organisms (Folmar et al., 1979).

The best-known GBH products are Roundup formulations
that contain additional surfactants, chemical adjuvants. Recent
papers have reviewed published literature on GBH-formulation
toxicity (Mesnage et al., 2014, 2015a). Typically, Roundup
contains glyphosate as IPA-salt, polyethoxylated tallow amine
(POEA) and additional substances. These adjuvants may in
some cases be more toxic than the glyphosate active ingredient
itself (Howe et al., 2004; Peixoto, 2005). The phenomenon of
potentially higher toxicity in formulated herbicides, as compared
to the active ingredient only, is documented for glyphosate-based
herbicides as well as for a number of other herbicide active
ingredients (Mesnage et al., 2014). Recent evidence indicates that
glyphosate has complex toxic effects (Samsel and Seneff, 2015b)
and supports the hypothesis that co-formulants to glyphosate
in Roundup are endocrine disruptors in human cells (Defarge
et al., 2016). Relative to this, our ecotoxicological comparative
testing of glyphosate (IPA-salt) and Roundup “Weed & Grass
Killer Concentrate Plus” in D. magna, has shown that the
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active ingredient and the formulated product have approximately
the same acute toxicity (short-term), although the formulated
product did produce more severe effects in long-term exposure
(life-long) (Cuhra et al., 2013).

GBH (Roundup) has been shown to disturbmale reproductive
systems through Ca2+-mediated toxicity, oxidative stress and
disruption of signaling mechanisms in rats (Cavalli et al., 2013).
This also happened at concentrations below what farm workers
typically are exposed to Cavalli et al. (2013). Further, both acute
and chronic exposure to Roundup may cause oxidative stress and
neurotoxicity in rats (Cavalli et al., 2013; Cattani et al., 2014),
justifying claims of being a neurotoxic hazard also for humans
(Malhotra et al., 2010; Grandjean and Landrigan, 2014). Some
evidence of arrhythmic and cardiac electrophysiological changes
mediated byGBH also indicate cardiovascular risk to animals and
humans (Gress et al., 2015).

A recent study investigated gene expression changes in rats
after long-term exposure to Roundup at very low concentrations
(0.1 µg/kg) in the drinking water. The results showed that 263
genes from kidney and liver had a fold-change >2, indicating
liver and kidney damage and potential health implications also
in other animals including humans (Mesnage et al., 2015b).
Roundup, but not “pure glyphosate” (not clarified what type),
was shown to cause endocrine disruption in Leydig cells (Walsh
et al., 2000), indicating significant activity in other components
of formulations. An additional recent review by Mesnage
et al. summarizes further evidence that Roundup at or below
regulatory limits may be toxic or cause teratogenic, tumorigenic,
and hepatorenal effects (Mesnage et al., 2015a). Such effects can
be linked to endocrine disruption and oxidative stress (Gasnier
et al., 2009).

Glyphosate Mode-of-Action
The herbicidal properties of glyphosate (N-phosphonomethyl-

glycine) inhibit biosynthesis of chorismate from shikimate
(Amrhein et al., 1980), thereby lethally disrupting photosynthesis
and plant cell metabolism. It has been claimed that since
only plants (and some lichens and microorganisms) have
the 5-enolpyruvylshikimic acid-3-phosphate synthase metabolic
pathway (EPSPS pathway) defined as glyphosate target-site, only
such organisms can be expected to be targeted by toxic effects
of this chemical (Duke et al., 2012). Arguably, such general
deduction of safety toward non-target organisms is scientifically
unfounded. It is not justified to assume that specific chemicals
have only onemechanism ormode-of-action in ecosystems, biota
and species. Toxins can interact with numerous biochemical
processes in cells, tissues, and organs of various organisms.

Published Evidence on Glyphosate and
Safety
A brief database search on term “glyphosate,” alternatively the
term “glyphosate” combined with term “safety” or term “risk”
determined by Boolean operator “AND” and “OR” via the Google
Scholar search engine yields data presented in Figure 1.

The total number of peer reviewed scientific articles and
related posts such as technical reports and patent documents on
“glyphosate” published 1965–2014 (search date 24/09/2015) is

found to be 62.200. Using at least one of the terms “safety” or
“risk” in addition to “glyphosate” returns 20.900 scientific articles
and related posts. These total figures on glyphosate are found to
be comparable to the available evidence on herbicide atrazine
and insecticides malathion and dieldrin determined by similar
searches using same search-terms and conducted in the same
period (Table 1).

The annual total publications on “glyphosate” are visualized
in Figure 1. We extracted data for each year from 1970 to
2014, thus covering glyphosate research over 45 years. The
quantity of publications on glyphosate rise exponentially (gray
line) to the present level of 9.435 registrations in 2014. Although
there are some fluctuations in the rates (percentages) of safety-
related studies (dotted curve), the general tendency over time
is that there is an increasing proportion of glyphosate-related
publications which satisfy the related search terms “safety”
and/or “risk.” This brings us to conclude that safety and risk are
relevant terms in present and recent research on glyphosate, as
reflected by the indexed publications.

We have highlighted some of the studies which have been
performed by chemical industry (A), the period of patent
applications and first safety studies by independent researchers
(B) and the time of introduction of GBH- tolerant transgenic
crops (C), as this development has been identified as a most
important single factor accelerating demand for GBH. Also, two
important reviews (Giesy et al., 2000; Williams et al., 2000) were
published around the time when several important national and
international patents on glyphosates expired (D). The reviews are
syntheses of evidence available at the time, notably including data
and conclusions from numerous studies performed by industry.
These industry reports had been reviewed by US authorities
(EPA and FDA) but were recently found to lack the standards
of peer reviewed studies (Samsel and Seneff, 2015b; Cuhra,
2015c). In addition, the actual reports from the laboratory work,
specification ofmethodology, chemistry etc, have previously been
inaccessible for independent verification, due to commercial
interest. Several important studies were subsequently published
by independent scientists (not affiliated with industry) presenting
findings on higher toxicity in test animals and environment,
and thus challenging the previously accepted view of negligible
toxicity toward non-target organisms. Series of new findings also
focused on effects in aquatic environments, finding evidence
of higher toxicity toward amphibians (Relyea, 2005) and

TABLE 1 | Search results as number of publications 1965–2015 on four

pesticide active ingredients (a.i): herbicides glyphosate and atrazine,

insecticides dieldrin, and malathion.

a.i Scholar Scholar ++ PubMed PubMed ++ Science Direct

Glyphosate 62.200 20.900 2021 19 7.061

Atrazine 55.500 21.900 3595 19 12.172

Dieldrin 27.800 20.100 3337 14 10.161

Malathion 32.900 19.200 3235 18 8.534

Databases: Google Scholar (http://www.scholar/google.no),

PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and Science Direct

(http://www.sciencedirect.com). Additional search limited by term “safety” or

“risk” (++).
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FIGURE 1 | Glyphosate research and development. A: Period of development, approval and patenting. B: Initial safety assessments. C: Advent of

glyphosate-tolerant-crops. D: Several important reviews on health and ecotoxicology documenting low toxicity. E: Emerging evidence on crop damage, residue

accumulation and impact on non-target organisms. F: Evidence on complex effect.

invertebrates.We have previously presented a small review of this
evidence (Cuhra et al., 2013).

Resistant weeds and the lowered costs of GBH in recent years
(after the patents expired) have led to crops being subjected to
increasing application rates of glyphosates. Studies on glyphosate
have investigated effects on soil microbiomes (Kremer and
Means, 2009) and as an important parallel, on gastrointestinal
communities in consumers (Samsel and Seneff, 2013). Also, a
review of rodent studies and analysis of common commercial
types of feed formulations for laboratory animals, have disclosed
that such feed to a surprising extent is contaminated by various
toxins and pesticide residues, including glyphosate (Mesnage
et al., 2015c). These contaminations can affect the controls in the
experiments and induce false positives as well as mask relevant
effects. Thus, such feed-quality issues are a serious setback for the
entire analytic community which depends on trustworthy data
from rodent studies. The findings indicate fundamental systemic
defects in rodent studies in general.

Historic Data on Glyphosate Non-Toxicity
For regulatory assessment of glyphosate health effects by US
Food andDrugAdministration (US-FDA) and parallel regulatory
assessment of glyphosate ecotoxicity by US Environmental
Protection Agency (US-EPA), the manufacturer carried out a
wide range of laboratory testing in 1975–1985, in the first decade
following its introduction. The tests were primarily performed
by private subcontracting analytical laboratories according to
established protocols at that time and submitted as evidence
for regulatory assessment. Archive reports of numerous of these
tests have been accessed but will not be discussed in detail here,

other than noting that this archive base is not of peer-reviewed
standard but rather has three levels of quality control; (a) at the
performing laboratory, (b) at the commissioning industry, and
(c) at the regulatory authority.

Through FOIA requests (FOIA, 2009, 2011) we have re-
evaluated specific documentation extracted from the archives
of the US Environmental Protection Agency (US EPA) and
demonstrated faults in historical data assessing glyphosate
toxicity in aquatic invertebrates. For example conclusions had
been changed, regulatory importance exaggerated and wrong
type of glyphosate had been tested (Cuhra, 2015c). Further
investigations into industry safety-studies on glyphosate disclose
notable early indications of carcinogenicity in rodents, albeit
in high doses. A 2-year industry feeding study of glyphosate
technical acid in rat showed significantly heightened incidences
of tumors in high dose groups (US EPA, 1983). The industry
applicant reported this to the US EPA including raw data and
documentation. In a string of memos and letters these results
were discussed internally in the EPA. Following (a) grouping
of adenoma and carcinoma detections in treatment groups
and in controls, and (b) re-evaluations of original histological
slides from organs and tumor tissue, it was concluded that
the incidence of tumors in treatment groups was not higher
than controls (US EPA, 1983). Aspects of this case have
recently been reviewed (Samsel and Seneff, 2015a) although the
authors do not exhaustively discuss the role of the regulatory
interpretation. A parallel case was highlighted in a 1985
internal EPA memorandum on false positives which points out
methodological faults and mistakes in a 24-month study of
glyphosate in mouse (unspecified type of glyphosate) submitted
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as evidence of safety to the EPA (US EPA, 1985). The main EPA
argument against the interpretation presented by the applicant
relates to the cancer incidence in the control group, which was
claimed to be comparable to the treatment groups. The internal
EPA memorandum explicitly states that the industry applicant
interpretation should be overruled. The EPA conclusion from the
statistical review is that the data demonstrates that glyphosate
at 5000 and 30,000 ppm levels in feed, induce renal tubular
adenomas.

Thus, we see buried historical evidence from two long-
term studies of glyphosate in rodents, indicating carcinogenicity.
The main reason these studies failed to achieve regulatory
importance, seems to be the approval process conducted
internally in the US EPA, which re-interpreted data and modified
conclusions. It must be noted however, that both of these
studies used high dosage of glyphosate and thus are not
indications of tumorigenicity at lower dosage, such as found
in a controversial recent two-year rat study with a glyphosate
commercial formulation given in drinking water (Séralini et al.,
2014).

GBH Aimed at New Targets
Agrochemicals such as GBHs will affect both the quality of
agricultural products as well as the surrounding environment,
notably as chemical residue levels in agricultural commodities
and as impact on non-target organisms respectively.

Glyphosate was originally developed and patented as a broad-
spectrum herbicide, with disrupting activity and lethal effects
toward a broad spectrum of plants with active photosynthesis.
Therefore, the use of glyphosate was restricted to pre-plant
clearance of agriculture fields or forestry. In those early days of
glyphosate use, the GBHs were not applied onto growing crops
and thus the question of residues accumulating in plant material
intended for consumption was less relevant. Furthermore, it was
assumed that plants do not take up glyphosate from soil and
thus even if a soil reservoir of un-metabolized glyphosate had
been allowed to build up in agriculture soils, it was not perceived
to be a problem. However, two developments in modern
industrial agriculture have brought new challenges: (1) transgenic
bypassing of the vital plant EPSPS (5-enolpyruvylshikimate-3-
phosphate synthase) metabolic pathway, which is specifically
targeted by glyphosate, allows for herbicide application onto
growing crops, and (2) increasing use of GBHs as desiccants
to kill and force-ripen semi-mature crops. Both of these
developments have resulted in substantial amounts of GBHs
being applied onto the crops intended for feed and food use.
Thus, (1) the target organisms must be re-defined, and (2) the
chemicals intended to eradicate weeds, have increasingly found a
way into the food and feed supply of consumers.

In 2012 EFSA, the European Food Safety Authority, proposed
a dramatic relaxation (increase) of maximum residue levels
(MRLs) of herbicide glyphosate in lentils. The MRL for
glyphosate in lentils was 0.1 mg/kg in the EU. The proposal
aimed at raising the MRL for glyphosate in lentils to 15.0 mg/kg
or alternatively 10.0 mg/kg, effectively by a factor of 150 (or
100) from the existing level. The proposal was submitted by the
rapporteur member state Germany to the European Commission

for approval on behalf of the applicant, Monsanto Europe (EFSA,
2012). The background for the proposal was findings of high
residue levels of glyphosate in lentils grown in Canada. Residue
levels ranging from 0.5 to 4.17 mg/kg were reported by the
applicant, with one extreme high value of 8.8 mg/kg driving the
proposedMRL target value of 15.0 mg/kg. At the same time when
the application was submitted, a notification of food withdrawal
from market was given by EU member state the Czech Republic,
based on our detections of 10.5 mg/kg of glyphosate in lentils
originating from Canada, which were confirmed by analysis of
lentil samples taken from the Czech market (RASFF, 2012).
This indicated that glyphosate residues in Canadian lentils occur
at even more extreme values than envisaged in the requested
relaxation of MRLs.

A communication from the Agriculture and Rural
Development Department, Government of Alberta, Canada,
describes the common practice of pre-harvest application of
glyphosate to lentils in Canada as desiccant and recommends
that the practice be terminated in harvest batches intended
for export to the European Union (Agri-News, 2011). The
newsletter discloses that glyphosate application immediately
before harvest is widely used by farmers to force-ripen the lentil
seed and though this practice is not estimated to conflict with
the relatively relaxed MRLs in Canada, it will produce residues
higher than the former MRLs for glyphosate in lentils in the
European Union.

In the EU there seems to be lack of focus on the evidence
of glyphosate use as desiccant and ripener in agriculture.
Anecdotal evidence from rural areas in Denmark indicates that
GBHs (Roundup) is routinely being used for ripening of wheat,
and the practice is well-known from Germany; “ (...) in der
EU seit einigen Jahren vermehrt Herbizide zur Sikkation von
Erntebeständen, insbesondere von Getreide, Kartoffeln, Raps
und Hülsenfrüchten, eingesetzt werden. Bei dieser Methode
werden Herbizide kurz vor der Ernte direkt auf die zu
erntenden Kulturpflanzen gespritzt. Das Totspritzen, wie die
Sikkation treffender bezeichnet werden sollte, erleichtert durch
gleichmäßig abgestorbene Pflanzen die Ernte (...)” (Brändli and
Reinacher, 2012).

Further German studies (Haalck and Reinken, 2010) provide
details on the practice of “Totspritzen” and document that
a wide variety of herbicides in addition to glyphosates, such
as glufosinate-ammonium, diquat, carfentzarone, cyanamid,
cinidon-ethyl, and pyraflufen are used for this killing and forced
ripening of crops.

The European Union maximum residue levels for glyphosate
in barley grain are 20 ppm. For barley straw, the MRL is
200 ppm. These high MRLs are set to accommodate the use
of glyphosate as desiccant in farming of barley. The main
issue here may have implications far beyond the practicalities
concerning the European Union maximum residue levels for
glyphosate in lentils or barley. We find it disturbing that
dominant agricultures are developing in such a way that toxins
are used rather indiscriminately in order to ease harvesting. This
use of herbicides is non-essential and from the perspective of
both health of environment, hazardous. Again, here we see a
development which contributes to the increasing total load of
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pesticides, and glyphosate in particular, into biota, fields and
consumer organisms (Box 1).

Residues in Plants and Food/Feed
Products
Recognizing the fact that consumers are ingesting more
glyphosate residues via our food supply, it is also relevant
to review this exposure. Bio-active herbicides interact with
biomass and ultimately get into soil and water systems through
processes such as drifting, leaching, and surface runoff (Mensah
et al., 2012). Glyphosate is present in ground water, human
and animal urine, human breast milk, and farmed-animal flesh
(Borggaard and Gimsing, 2008; Krüger et al., 2013, 2014;
Honeycutt and Rowlands, 2014; Niemann et al., 2015). Thus,
potential interaction with other stressors in biological systems or
in the environment need to be studied in more realistic settings
(Then, 2009; Nørgaard and Cedergreen, 2010; Bjergager et al.,
2011). Glyphosate or GBH should not be evaluated or discussed
in isolation. In organisms and biota exposure to glyphosate
will co-occur with exposure to other pesticides. Monitoring
programmes generally detect more than 7-8 different pesticides
in single samples from the environment, and cocktails of multiple
pesticides are routinely present in foods and feedstuffs (EFSA,
2014). In spite of that, current testing regimes for relevant
agrochemicals are predominately based on acute exposure
(short term) and specific testing of isolated single chemicals
(Martin et al., 2003; Nørgaard and Cedergreen, 2010). Studies of
combinatorial effects of multiple toxins are however increasingly
acknowledged as missing (van Haver et al., 2008; Al-Gubory,
2014).

In the late 1997–1999, levels of 1.9–4.4 mg/kg glyphosate was
found in Roundup Ready soy plant parts other than the grains,
and 0.1–1.8 mg/kg was found in the grains (Arregui et al., 2004).
A study from the US noted that repeated herbicide applications
increased the residue levels of both glyphosate and AMPA in the
soybeans. At three applications the highest residue level found
was at 3.08 mg/kg for glyphosate and 25 mg/kg for AMPA (Duke
et al., 2003). Thus, applications closer to time of harvest induce
relatively high residue levels in the soybeans, leading to high
residues in commodities.

The scarcity of published data on glyphosate residues in
glyphosate-tolerant crops such as Roundup-ready soybean is
unfortunate. In this situation estimates must be based on the
few existing data: an earlier publication from Duke et al. (2003),
our recent data from USA (Bøhn et al., 2014) and Argentina
(Then, 2013). Data presented in Cuhra (2015b, Figure 1) are
recalculated from Bøhn et al. (2014) and shows AMPA as
glyphosate equivalents conforming to the FAO standards of the
data presented by Then (2013). Average glyphosate-equivalent
residue concentrations are 11.87 mg/kg in tests of soybeans from
USA and 39.87 mg/kg in tests of soybeans from Argentina. These
average concentrations are in compliance with the maximum
residue levels defined by the US FDA (40 mg/kg) and the results
from USA are also in compliance with the EU MRL of 20 mg/kg.
However, individual samples from Argentina exceed current
MRLs.

BOX 1 | GLYPHOSATE FACTS

Facts 1: Global Omnipresence

• Glyphosate herbicides (GBHs) such as Roundup have been on the market

since 1975 and their use is still increasing, making GBHs the primary

category of pesticides world-wide. By volume and revenue, GBHs are globally

dominant.

• Glyphosate is detected in water, air, animal feed, animal urine, and animal

flesh. Glyphosate is also found in human food, human milk, and human urine.

Facts 2: Higher dosage and increased ingestion

• Regulation of glyphosate has gradually been relaxed, allowing for increasing

maximum residue limits in important food and feed commodities.

• GBHs are used for late-season application and pre-harvest desiccation. Such

practices cause high residue levels.

• Animal- and human consumer ingestion is increasing due to higher residue

levels in food and increasing number of glyphosate sources.

Facts 3: Safety-assessements are flawed

• Reviews of older safety assessment studies of glyphosate have uncovered

flaws and misinterpretations in the regulatory base.

• Numerous safety assessments have been performed with glyphosate

technical acid instead of the glyphosate salts actually used in GBH herbicide

formulations.

• Lack of labeling and low traceability of food/feed, combined with unknown

levels of glyphosate in such biomass, is prohibitive for research on effects in

consumers.

Facts 4: Recent developments

• Recently, regulators such as the EFSA have reduced the annual frequency

of analysis for glyphosate residues in food and feed, giving glyphosate lower

priority

• New research indicates that glyphosate should be recognized as having

potentially more complex and severe effects on health and environment than

previously assumed.

• Other research upholds that since humans and animal consumers do not

have the EPSPS photosynthesis pathway, they will not be affected by

glyphosate.

In comparison to the level of glyphosate in crops, other
pesticides are typically found in much lower concentrations. For
example, in US soybeans we found Fluazifop-P (0.078mg/kg,
one sample “Roundup-ready”), malathion (0.02mg/kg, one
sample “conventional”), and dieldrin (0.002mg/kg, one sample,
“organic”). In pooled samples alpha-endosulfane, trans-
nonachlor, and trans-chlordane was found at levels close the
detection limit of 0.05 µg/kg (Bøhn et al., 2014).

Thus, there are striking concentration differences between
glyphosate and other pesticides in food and feed crops. Contrary
to other pesticides that are measured in low ppm or ppb levels,
glyphosate is detected at ppm-levels, orders of magnitude higher.

Given the very large quantities of soybean material produced,
it is relevant to calculate or estimate the total amount of residues
thus transported and mediated to consumers (mainly farm
animals). Themajority (82%) of global soybean production stems
from glyphosate tolerant soy (James, 2014). The total global
production in the 2013/14 growing season, was estimated to be
320million ton (USDA, 2016), of this 290million ton is estimated
to be cultivated in glyphosate-tolerant varieties (Roundup ready
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soy). Based on the findings of residue concentrations in US
soybeans (11.87 mg/kg glyphosate-equivalents) the quantity
of glyphosate residues which are accumulated, translocated,
and consumed via glyphosate tolerant soy, is ∼3440 ton.
Recalculating by using the data from Argentina (39.87 mg/kg
glyphosate-equivalents), this figure could be as high as 11560
ton (Cuhra, 2015a). However large it may seem, this quantity is
just a fraction of the total load of glyphosate herbicides applied
in soybean cultivation. Exact figures are difficult to obtain, not
least since the cultivation of transgenic soybean is continuously
expanding and application rates of glyphosate active ingredient
are increasing. Based on data from the US Soybean association,
the USDA, the Penn State University online Agronomy-Guide
and similar readily accessible sources it is not unreasonable to
use production figures of 2.5–2.9 ton/ha for present soybean
yield and estimates of 90 Million hectares for the total area
currently in global cultivation with glyphosate tolerant soybean.
Based on the same sources, realistic seasonal application rates
for glyphosate herbicides are likely not <1.7 kg active ingredient
per hectare, probably closer to 2.5 kg. A conservative estimate
can be based on the USDA maximal single-pass application
rate of 1.5 lb/acre, and total area in cultivation. With one
seasonal pass of maximum allowed application, the total quantity
of glyphosate active ingredient applied on glyphosate tolerant
soybean globally would be in the magnitude of 153,000 ton. This
would indicate that roughly 14% of the global production of
glyphosate is used in agriculture of glyphosate-tolerant soybean.
Assessing the application figures via the available production
data for soybean yield, the estimates are similar, ∼140,000 ton.
These figures indicate that 2–7% of the applied glyphosate
active ingredient is accumulated in the soybean commodity.
This represents a sizeable amount of pesticide residues directed
at consumers, via the herbicide tolerant GM crops. We argue
that regulators/governments need to respond and re-evaluate the
potential human and animal health risks from this exposure.

Duke et al. (2003) found a low glyphosate/AMPA ratio
in soybean following late application. The data on residues
in Roundup ready soybean from Iowa show a similar trend
(Bøhn et al., 2014). However, the glyphosate/AMPA ratios in
analyzed samples were found to be inconsistent. Glyphosate is
known to interact with biochemical processes in metabolism of
transgenic glyphosate tolerant plants (Zobiole et al., 2011). The
scarcity of published data on glyphosate residues accentuates the
relevance of further investigating the dynamics of glyphosate
degradation and transformation in plants. EFSA noted in
the annual monitoring report (EFSA, 2015b) that for certain
pesticides covered by the 2013 European coordinatedmonitoring
programme (EUCP), including glyphosate, the number of
determinations reported was significantly below the number
needed to derive statistically sound conclusions. In comparison
to e.g., some pyrethroids or organophosphates, the number
of analyzed samples for glyphosate was ∼25 times lower
(chlorpyriphos–70943 samples, glyphosate–2866 samples). The
reason is that glyphosate is impossible to include in multi-
residual methods as it requires the application of a single
and specific method, which is expensive, demanding, and time
consuming. Only a limited number of laboratories are able to

perform it. For the same reason, not only the number of samples,
but also the number of commodities involved in monitoring
programmes (and thus also in risk assessment) are limited.
Analyses were performed on a limited set of commodities (e.g.,
apples; oats; rye; wine, grapes, wheat) in the EU monitoring
programme in 2013. In spite of this, a total of 7.9% of samples
were glyphosate positive (i.e., above LOQ). In some commodities,
high ratio of glyphosate positive samples were found—e.g., for
oats, 44% of samples were found as positive. According to
the EFSA, reporting countries should extend the scope of the
analytical methods used for enforcement of MRLs to make sure
that the detection rate and the MRL exceedance rate is not biased
by the low number of determinations or lack of data from certain
countries. It is clear, that at present there is lack of reliable and
representative results for most of food commodities in the food
basket. In addition, the main metabolite AMPA is not included in
coordinated EU monitoring programme.

Accepted Levels of Glyphosate Residues
Regulatory threshold of accepted levels of glyphosate residues
are continuously being raised. At present the maximal residue
levels (MRLs) of glyphosate in soybean in the USA has been
increased from 20 up to 40 mg/kg in the fall of 2013. Again,
we accentuate that such ppm-levels are high when compared
to other pesticide active ingredients such high MRLs should
only be accepted for compounds with very low toxicity. Review
of regulatory documents such as the US EPA (1993) RED on
glyphosate shows that such MRLs are defined pragmatically;
to accommodate existing residue levels and existing agriculture
practice (US EPA, 1993). Furthermore, we find that even the
recently raised acceptance levels will not be enough for the
concentrations of residues found in the transgenic soybean
material tested in Argentina.

The global annual soy production equals ∼43 kg per capita.
Of this quantum, ∼39 kg is from glyphosate tolerant varieties.
Direct human consumption of soy is minimal as the majority
of the global production at present is utilized in production of
feed for farmed animals. Many species of farmed animals (cattle,
poultry, pigs, fish, prawns etc) are fed diets with a considerable
proportion of soy. Such feeding is daily and throughout the
whole life span. This fact alone accentuates the relevance of
adequate testing for chronic exposure to, and potential effects
from, glyphosate residues. A recent report of glyphosate residues
in aborted and malformed piglets from sows in intensive animal
farming is remarkable albeit inconclusive (Krüger et al., 2014).
Although this important indication necessitates further research,
we note that due to faults in methodology, lack of a proper
control group, and missing information on feed composition, the
reported abortion rates and malformations cannot be irrefutably
linked to lifelong feeding with GMO ingredients containing
normal levels of glyphosate residues.

Environmental Impact Quotient (EIQ) of
Glyphosates
Herbicides and other chemical substances intended for dispersal
into the environment are evaluated for unintended and
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undesirable effects in indicator organisms representing non-
target species. The results of testing is extrapolated to other
taxonomic groups and extended to ecosystem levels, thus
providing information for regulatory decisions. Furthermore,
indicators from e.g., oral ingestion in representative test species,
dermal exposure, inhalation, and cell culture studies are amongst
the indicators important for assessment of effects on human
biology. Kovach et al. (1992) established the Environmental
Impact Quotient for pesticides (EIQ) as a measure to condense
into one indicative denominator the relative toxicity of specific
chemical compounds, by collecting fragmented evidence on
effects in a variety of indicators. Main components of the EIQ
are three categories of effects defined as; Farmworker component,
Consumer component, and Ecological component. Such relative
indicators can be used as general comparators and the process
involved in determining the EIQ of a novel pesticide compound
can in itself be a useful exercise for regulators and stakeholders.
However, the validity of such a relative indicator is dependent
on regular revisions of the basis, the scientific evidence, which
supplies numerical values to the individual factors in the equation
from which the quotient is calculated.

The Dynamics of Pesticide Regulation
In a time with considerable confusion regarding possible toxic
effects of glyphosate herbicide toward health and environment,
with contradictory findings on potential impacts and strong
voices arguing on one side for precaution, on the other side
incentives for continued high volume use of a chemical, we
find it useful to mention the key elements which constitute the
basis for regulation. In a commercially driven market economy,
the dominating societal model in the world, industry interests
seek to market and employ products. Some products may have
unwanted consequences. In general, the regulation of potentially
toxic chemicals, e.g., pesticides, is largely based on scientific
information produced by the industry which often has strong
financial incitement for unrestricted use. Thus, in society there is
an antagonistic tension between commercial vs. public interests
concerning the regulation of global and local application of
e.g., glyphosate herbicides. This leads to a dynamic interplay
driven by two main vectors, of which one represents commercial
forces (in this case primarily manufacturing chemical industry
and farmers), and the other represents societal interest (health,
environmental protection, qualitative requirements) (Cuhra,
2015c).

The arguments supporting and enhancing the opposing
vectors, are furnished by scientists and other professionals
working within private sector research firms, in publicly funded
university laboratories, in regulatory authorities, as consultants
or in non-governmental organizations representing defined
interests. All of these, we commonly call “experts.” Resulting
policy should be a careful balance of these expert opinions, based
on factual findings from e.g., laboratory testing (Figure 2). Thus,
when scientific evidence shows that a compound or groups of
compounds has low toxicity for consumers and environment,
restrictions on use are relaxed (society accepts more). However,
in the opposite case, if science demonstrates that compounds
are more toxic than previously assumed, their penetration

into environment and food chains should be reduced through
regulatory measures (society accepts less,—such as in the cases
of DDT and PCBs).

In a previous commentary, we have reflected upon the quality
of evidence supporting the notion of glyphosate non-toxicity,
finding that serious flaws confuse the current regulatory basis
(Cuhra, 2015c).

Socioeconomic Aspects
Important societal challenges related to production of
glyphosate-tolerant crops such as Roundup-ready soybean
include ecological damage through deforestation and
degradation of natural habitats (Pengue, 2005) and glyphosate
pollution of the environment. The large-scale cultivation of
glyphosate-tolerant crops, such as Roundup-ready soy (RR-soy),
RR-maize, and RR-canola has also been identified as a main
cause for emergence and widespread occurrence of numerous
glyphosate-resistant agricultural weeds (Duke and Powles,
2008; Benbrook, 2012). The weed-challenges will be met with
alternative and more potent mixes of herbicides (Green, 2009),
whereby older and arguably more toxic herbicides, such as
atrazine, may be reintroduced (Binimelis et al., 2009). This
development has been linked to increased occurrence of severe
medical problems in farmers and farm village populations in
Argentina, in areas where Roundup-ready soybean is produced
(Vazquez and Nota, 2011).

Here, the evolution of glyphosate use and risk-assessment
has been defined as five distinct periods (each a decade)
following the discovery and commercialization of glyphosate

FIGURE 2 | Conceptual model of glyphosate toxicity and maximum

residue level (MRL) over time. The paradox of glyphosate regulation. Red

dots symbolize evidence of toxic effects, measured as a relative denominator

defined in the left y-axis “Glyphosate toxicity.” The red arrow shows the trend

over time, as more evidence demonstrates higher toxicity. Green dots

symbolize acceptance (MRLs) on a relative scale (the right side y-axis). Green

arrow shows trend over time, as MRLs are increased. In science-based policy

evidence of higher toxicity should lead to lowering of acceptance levels

(MRLs). In the case of glyphosate, the development is the opposite: increasing

acceptance is positively correlated with toxicity.
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in 1975 (Figure 3). The first decade (1975–1985) represents
“glyphosate optimism.” Glyphosate was discovered as a
very efficient herbicide, with a systemic action on a broad
spectrum of agriculture weeds. At that time, glyphosate was
perceived to have very low toxicity toward users, non-target
organisms and consumers of agriculture produce. The following
two decades (1986–2005) saw global implementation of
glyphosate based herbicides such as Roundup and a dramatic
increase in glyphosate use. The introduction and successful
commercialization of several glyphosate-tolerant genetically
modified crops in 1995 was a development later identified as
the most important factor accelerating the use of glyphosate
herbicides (Charles, 2001; Duke and Powles, 2008; Benbrook,
2012, 2016). However, although the use of glyphosate has
accelerated even further in the following decade (2006–2015)
this has also been a decade of increasing and sobering challenges,
notably caused by the advent of tolerant and resistant weed
species, globally disrupting the efficacy of this agrochemical
system. We define this latest decade “the decade of glyphosate
skepticism” in our model. Numerous research programs,
reviews and laboratory findings have documented that the
safety assumptions of glyphosate are mature for revision. The
decade culminated with a string of published evidence in 2015
detailing the challenging issues (Mesnage et al., 2015a; Samsel
and Seneff, 2015b) even concluding that glyphosate should
be categorized as a probable carcinogen (Guyton et al., 2015),
in contrast to previously accepted conclusions concerning

these chemicals. EFSA recently reviewed the evidence of
glyphosate carcinogenicity and concluded that glyphosate is not
a carcinogen (EFSA, 2015c). Other research in 2015 indicated
that previous assumptions of safety, have in part been based on
flawed evidence or misinterpretations (Cuhra, 2015c; Samsel and
Seneff, 2015a).

Future Developments
Agricultural industry in general depends on more-or-less toxic
pesticides. This is a generally accepted normality for conventional
agriculture, which has developed gradually since the latest great
war (Alston et al., 2010) and now constitutes an “agroecological-
prison-situation,” in which pesticides and other chemicals are
now unavoidable in order to make industrial farming cost-
effective. Thus, farmers are trapped and dependent on a
combination of selected seeds and selected poisons.

Despite the challenges associated with both the continued
use of glyphosate as the principal herbicide and the continued
cultivation of glyphosate tolerant crops, there are few attractive
chemical-biotechnological alternatives at present. Several crop
varieties tolerant to herbicidal chemicals glufosinate-ammonium,
dicamba, and 2,4-D are currently either in development, awaiting
approval or already on the market. But, it is still an unresolved
issue whether these crop varieties and agrochemical systems
(which are relying on “old” herbicide technology) are as efficient,
cost-effective or “better or worse” for the receiving environment,
as the existing glyphosate-tolerant varieties currently available.

FIGURE 3 | Concept model to visualize how societal perception of glyphosate has evolved through five decades (1975–2025), related to trends in

glyphosate use (Benbrook, 2016) and increasing annual rate of publications on glyphosate.
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Despite the aforementioned challenges posed by glyphosate-
tolerant GMOs, several large biotech firms are now releasing
“second-generation” glyphosate-tolerant cultivars touted as
being even more efficient. Developing a new herbicide and
getting it approved for use is very costly. According to some
estimates, the financial investments of industry can amount
to US $180 million and the regulatory approval can take a
decade (Smith et al., 2008; McDougall, 2010). Furthermore, it
is challenging for industry to meet societal demands in such
developments; new compounds are expected to have high target
specificity and low general toxicity (for the environment, the
users and the consumers of agricultural commodities). The
biotech-agrochemical industry therefore adheres to two general
strategies: it develops and registers new transgenic cultivars
and chemical compounds for the market (ISAAA, 2014); and
it uses existing chemical compounds in new ways, notably
through introduction of transgenic varieties that tolerate higher
doses of approved agrochemicals such as glyphosate (e. g.,
Cao et al., 2012, 2013). The role of glyphosate herbicides
can therefore be expected to remain predominant in global
industrial agriculture, especially in cultivation of glyphosate-
tolerant varieties. As such, it is relevant to consider the possible
benefits vs. challenges associated with continued or increased
glyphosate use.

Returning to the history of glyphosate as depicted in Figure 3,
we suggest that the decade which we are entering at the time of
this writing, should be later seen as the period of “glyphosate
realism.” Hopefully a time when glyphosate will be recognized
as a chemical which has to be stewarded carefully and restricted.
This would allow that glyphosate can be used sensibly, in

moderation, and play a reduced role in global agriculture as the
lesser evil, until an alternative is found.

Returning to Shakespeare, let us join the young prince of
Denmark as he exclaims to his friends: “Why, then,’tis none to you,
for there is nothing either good or bad, but thinking makes it so. To
me it is a prison” (Hamlet, Act 2, scene 2).

CONCLUSION

The recognized higher toxicity and the stronger potential for
negative effects on health and environment should be important
arguments for restrictions in use of glyphposate and GBHs.
Despite this evidence, regulatory authorities have gradually
allowed more sources of glyphosate into the food-supply and
higher residue levels, in an ongoing development contrary to
toxicological principles and common sense.
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Toxicological Risks of Agrochemical 
Spray Adjuvants: Organosilicone 
Surfactants May not Be Safe
Christopher A. Mullin*, Julia D. Fine, Ryan D. Reynolds and Maryann T. Frazier

Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, USA

Agrochemical risk assessment that takes into account only pesticide active ingredients 
without the spray adjuvants commonly used in their application will miss important 
toxicity outcomes detrimental to non-target species, including humans. Lack of disclo-
sure of adjuvant and formulation ingredients coupled with a lack of adequate analytical 
methods constrains the assessment of total chemical load on beneficial organisms and 
the environment. Adjuvants generally enhance the pesticidal efficacy and inadvertently 
the non-target effects of the active ingredient. Spray adjuvants are largely assumed to 
be biologically inert and are not registered by the USA EPA, leaving their regulation and 
monitoring to individual states. Organosilicone surfactants are the most potent adjuvants 
and super-penetrants available to growers. Based on the data for agrochemical appli-
cations to almonds from California Department of Pesticide Regulation, there has been 
increasing use of adjuvants, particularly organosilicone surfactants, during bloom when 
two-thirds of USA honey bee colonies are present. Increased tank mixing of these with 
ergosterol biosynthesis inhibitors and other fungicides and with insect growth regulator 
insecticides may be associated with recent USA honey bee declines. This database 
archives every application of a spray tank adjuvant with detail that is unprecedented 
globally. Organosilicone surfactants are good stand alone pesticides, toxic to bees, and 
are also present in drug and personal care products, particularly shampoos, and thus 
represent an important component of the chemical landscape to which pollinators and 
humans are exposed. This mini review is the first to possibly link spray adjuvant use with 
declining health of honey bee populations.

Keywords: adjuvant, agrochemical formulation, organosilicone surfactant, non-target effects, spray tank mix

inTRODUCTiOn

Applications of modern pesticide formulations, particularly in combinations, are often accomplished 
using proprietary spray adjuvants to achieve high efficacy for targeted pests and diseases (1). An 
adjuvant is an additive or supplement used to enhance the performance or aid in the stability of for-
mulations of active ingredients (2). Adjuvant products are formulated combinations of surfactants, 

Abbreviations: AI, active ingredient; CCD, colony collapse disorder; EBI, ergosterol biosynthesis inhibitor; EC, emulsifiable 
concentrate; IGR, insect growth regulator; NMP, N-methyl-2-pyrrolidone; OSSA, organosilicone surfactant adjuvant; ppm, 
part per million.
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penetrant enhancers, activators, spreaders, stickers, cosolvents, 
wetting agents, pH modifiers, defoaming agents, drift retardants, 
nutrients, etc., depending on their proposed utility. Usually, adju-
vants are much less expensive than formulated active ingredients 
and can reduce the active ingredient dose needed by an order or 
more of magnitude (3, 4). Similarly, contemporary drug delivery 
to humans and animals transdermally (5) and orally (6) is often 
mediated via adjuvant technologies that enhance penetration. 
Newer agrochemical technologies include co-formulants such as 
polyethoxylated tallow amines, cosolvents such as N-methyl-2-
pyrrolidone (NMP), and spray adjuvants such as organosilicone 
polyethoxylates (7).

Numerous studies have found that pesticide active ingredients 
elicit very different physiological effects on non-target organisms 
when combined with their co-formulants and tank adjuvants 
(7–9). Despite the widespread assumption that formulation 
ingredients and spray adjuvants are biologically inert, substantial 
evidence suggests that this is often not the case. Indeed, glypho-
sate has weak ecotoxicity and systemic movement without tallow 
amines and other adjuvants (10–12), including its toxicity to 
mammals (13) and human cells (14). Noteworthy is the fact that 
spray tank adjuvants by themselves harm non-target organisms 
from all taxa studied. Adjuvant-dependent toxicities, often more 
than the associated formulations of herbicides and fungicides, 
have been reported for bacteria (15), cyanobacteria (16), algae 
(17), and snails (18). The non-ionic spray adjuvant R-11 syn-
ergized the acute toxicity of the insecticides spinosad (19) and 
imidacloprid (20) on aquatic crustaceans and, in the absence 
of an insecticide, reduced the growth rate of Daphnia pulex at 
relevant field concentrations found after application near aquatic 
systems (21). Aquatic organisms are particularly vulnerable to 
the general ecotoxicity of adjuvant surfactants ranging from 
invertebrates (22, 23) to fish (19, 24, 25) and amphibians (26). 
Terrestrial insects, in turn, have long been shown susceptible 
to insecticide synergisms associated with spray adjuvants (27, 
28). Many of the classical cases of ecotoxicities found with spray 
adjuvants and used with pesticides other than glyphosate are due 
to older surfactant classes, such as nonylphenol polyethoxylates, 
which environmentally degrade to the endocrine disrupting 
nonylphenols (29). It is clear that agrochemical risk assessment 
that takes into account only pesticide active ingredients and 
their formulations in absence of the spray adjuvants commonly 
used in their application (30, 31) will miss important toxicity 
outcomes that may prove detrimental, even to humans. Here, we 
attempt to characterize the scope of spray adjuvant use, especially 
organosilicone surfactants, and explore a possible link between 
their increasing presence in California almonds and the declining 
health of honey bee populations.

SPRAY ADJUvAnTS COnTRiBUTe TO 
THe TOXiC LOAD

Supplemental adjuvants used in tank mixes generally enhance the 
pesticidal efficacy as well as inadvertently the non-target effects of 
the active ingredient after application (7, 14). Dramatic impacts 
of agrochemical formulants on the bee toxicity of pesticide active 

ingredients have been documented (32). Formulations are gener-
ally more toxic than active ingredients, particularly fungicides, by 
up to 26,000-fold based on published literature. The highest oral 
toxicity of three insecticide formulations tested was for Vertimec® 
18 EC that was 8,970 times more toxic to the stingless bee Melipona 
quadrifasciata and 709 times more toxic to the honey bee than 
the topically applied active ingredient abamectin in acetone (33). 
However, the largest documented formulation compared to active 
ingredient differences in bee toxicity have been with the least 
toxic pesticides, particularly fungicides. Among the 300 pesticide 
formulations tested for oral toxicity to adult honey bee in China, 
a 25% EC formulation of the fungicide tebuconazole was equally 
toxic to the most bee-toxic insecticide known, emamectin benzo-
ate (LD50 = 0.0035 μg/bee), whereas a 5% suspension concentrate 
of tebuconazole was > 25,000 times less toxic (34). This product-
dependent range in toxicity is presumably determined by the 
undisclosed fungicide co-formulants. While technical glyphosate 
has virtually no toxicity for honey bees, common formulations 
such as WeatherMAX® do (35). Commercial formulations of 
fumagillin acid used to control Nosema and other microsporid-
ian fungal diseases in honey bees and mammals, respectively, are 
actually salts of the base dicyclohexylamine. This co-formulant is 
five times more toxic and persistent than the active ingredient to 
rodents and other organisms, serving as a sensitive bioindicator 
of fumagillin pollution (36). Most studies documenting pesticide 
effects on honey bees are performed without the formulation or 
other relevant spray adjuvant components used when applying 
the active ingredient, most often due to lack of such required tests 
for product registration (7).

Less potent bee toxicities are usually found when spray adju-
vants are tested alone or relative to the pesticide formulations 
used in tank combinations. About one-third of non-ionic, orga-
nosilicone and other surfactant spray adjuvants at up to a 0.2% 
aqueous solution have been shown to deter or kill honey bees 
(37–39). Exposure to the nonylphenol polyethoxylate adjuvant 
N-90 by itself at field rates impaired nest recognition behavior 
of two managed solitary bees, Osmia lignaria and Megachile 
rotundata (40). While the organosilicone adjuvant Break-Thru® 
fed to nurse bees at 200  ppm with or without 400  ppm of the 
fungicide Pristine® did not impact honey bee queen development 
or survival (41), toxic interaction of the co-occurring insect 
growth regulator (IGR) dimilin with this adjuvant is likely [cf., 
Ref. (42)]. Higher toxicities were found when honey bees are fed 
related commercial organosilicone surfactants in 50% sucrose 
with oral LC50s around 10 ppm (7). A discontinued agrochemical 
surfactant perfluorooctylsulfonic acid is highly and orally toxic to 
Bombus terrestris (43). The penetration enhancing solvent NMP 
commonly present in agrochemical formulations is a dietary 
toxicant for honey bee larvae at 100 ppm (44).

Organosilicone surfactants are particularly potent as super-
penetrants, super-spreaders, and probable ecotoxicants (7). They 
are used worldwide at up to 1% (10,000 ppm) of the spray tank 
mix, while other adjuvant classes require higher amounts up to 
5% of the spray tank mix (3, 32). All organosilicone surfactant 
adjuvants (OSSA) tested (Dyne-Amic®, Syl-Tac®, Sylgard 309®, 
and Silwet L-77®) impaired honey bee olfactory learning much 
more than other non-ionic adjuvants (Activator 90®, R-11®, and 
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Induce®), while the crop oil concentrates (Penetrator®, Agri-Dex®, 
and Crop Oil Concentrate®) were inactive at 20 μg per bee (45). 
The greater surfactancy of organosilicones over other non-ionic 
adjuvants and crop oil concentrates can drive the stomatal uptake 
of large bacterial-sized mineral particles (46) and Agrobacterium 
transformation of grape plantlets (47), and thus may aid move-
ment of pathogens into bee tissues.

SPRAY ADJUvAnT USe DURinG 
POLLinATiOn OF CALiFORniA ALMOnDS

Pollination of California almonds during February and March 
is the single largest pollination event in the world. Over 60% 
(1.5 million) of USA honey bee colonies are transported to 
California each year to pollinate the crop. A workshop convened 
to address reduced overwinter survivorship of commercial honey 
bee colonies used in almond pollination since the 2006 onset of 
colony collapse disorder (CCD) judged neonicotinoids unlikely 
to be a sole factor and Varroa mites plus viruses to be a probable 
cause (48). However, fungicides, herbicides, and spray adjuvants 
were not evaluated. Recent surveys of migratory beekeepers who 
pollinate almonds do not self-report overwintering losses greater 
than the majority of non-migratory beekeepers, although their 
summer colony losses tend to be higher (49). Better manage-
ment practices employed by migratory beekeepers who pollinate 
almonds may explain their lower winter losses in comparison 
with sideline or backyard beekeepers (50). Nevertheless, it has 
been surmised by beekeepers and documented by researchers 
that decreasing honey bee health issues are initiated in almonds, 
a winter/early spring pollinated crop, and then progressed over 
the course of the year as colonies are employed to pollinate other 
crops including apples, blueberries, alfalfa, cotton, pumpkin, 
cantaloupe, etc. Although the rates of foraging honey bees were 
not reduced over time during almond pollination in contrast to 
those pollinating cotton and alfalfa, there was no corresponding 
increase in foraging population though a significant increase in 
colony size occurred (51). Some of the highest pesticide residues, 
especially fungicides, were found on almonds, which represents a 
notable pesticide exposure risk and ranked fifth in hazard among 
the eight crops assessed (51). Ironically, increasing fungicide load 
in pollen has been associated with increased probability of fungal 
Nosema infection in exposed bees (52).

California law defines adjuvants packaged and sold sepa-
rately as pesticide products that require registration (53). Every 
application of a spray tank adjuvant is reported with detail that 
is unprecedented globally. California almond exposes most USA 
honey bees to highly documented pesticide and adjuvant appli-
cations and is an unique crop to assess all other agrochemical 
inputs in the absence of neonicotinoids, presently considered to 
be the primary pesticide factor associated with pollinator decline 
(54). There are no substantial applications of neonicotinoids to 
this monoculture (55), particularly when honey bees are present, 
and almond pollen and nectar tend to be the sole food source 
unless supplemental sugar feeding is employed (52). Pesticide 
usage information for California has been archived since 1990 
in the pesticide use reporting (PUR) database maintained by the 

California Department of Pesticide Regulations (55). The great 
utility of this data for assessing environmental risks of spatial and 
temporal pesticide use in California almonds to aquatic organ-
isms and earthworms has been demonstrated (56). However, our 
study is the first to include spray adjuvants as potentially toxic 
agrochemical inputs in risk evaluation.

We analyzed annual trends in applications of tank adjuvants 
and associated formulated products of active ingredients during 
almond pollination (February and March). January applications 
were also included since their foliar residues may pose toxicity 
risks for newly arriving bee colonies. Over 3.3 million records 
for almond applications were downloaded from PUR (55) and 
sorted for January to March of 2001–2013 using Microsoft Excel 
(Mac 2011). Only synthetic pesticides were analyzed for trends, 
thereby excluding bulky applications of older natural products 
and biologicals, such as sulfur, petroleum and mineral oils, copper 
salts, and microbials, since CCD was first noted in 2006, decades 
after major regular inputs of these natural pesticides were initi-
ated. While overall statewide synthetic fungicide and insecticide 
use on almonds has not increased over this evaluation period, 
applications of herbicides and spray adjuvants, the latter includ-
ing nutrient and buffer supplements, have doubled (Figure  1). 
Yearly application rates were normalized to total almond bearing 
acres, which increased from 530,000 in 2001 to 850,000 acres in 
2013 (57), indicating that the total synthetic pesticide load has 
increased on almonds since the onset of CCD (Figure 1). Because 
herbicide applications are generally made to the understory and 
not to the flowering canopy where pollinator exposure is likely, 
we focused on actual tank adjuvant and pesticide mixes that may 
provide direct exposure risks for bees. Among adjuvant classes, 
the organosilicone surfactants pose the greatest toxicity risks for 
honey bees (7).

We then conducted a detailed analysis of temporal trends in 
organosilicone applications for Stanislaus Co., a major almond 
producing county in California (57), which had the largest 
number of pesticide applications over our evaluation period. 
PUR records (55) were sorted by date, county/meridian/town-
ship/range/section (COMTRS) location, and amount of treated 
almond acres. Co-occurring and synonymous records were 
assumed to represent combined pesticide and adjuvant products 
within the same tank application mix. Based on this premise, 
most of the spray combinations comprised, in addition to one 
or more pesticide formulations, at least one tank adjuvant. 
Focused assessment was then made out of the total number and 
percentages of applications containing an OSSA, which included 
45 products (Table S1 in Supplementary Material) dominated by 
Dyne-Amic®, Syl-Tac®, Sylgard 309®, RNA Si 100®, First Choice 
Break-Thru®, Freeway®, Kinetic®, Multi-Spred®, Widespread 
Max®, and Silwet L-77®. Similar combinations of products were 
assigned unique tank mix codes and resorted. Almost 10,000 
pesticide applications on almonds in Stanislaus Co. contained an 
OSSA over the years evaluated, each on average to 40 acres. The 
greatest increase in major agrochemical inputs observed before 
and after onset of CCD in 2006 was the tripling of total pesticide 
applications containing an OSSA from 587 in January–March 
2001 to 1,781 in January–March 2006 (Figure  2A). Greater 
than 80% of these applications contained fungicides, followed 
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by 10% insecticides, and 5% herbicides. Ergosterol biosynthesis 
inhibitor (EBI) fungicides and IGR insecticides were greatly 
increased, whereas herbicide and other insecticide applications 
were fairly static across this period (Figures 2A,B). Pristine® (a 
combination of boscalid and pyraclostrobin), chlorothalonil, and 
EBIs (propiconazole  >  myclobutanil  >  fenbuconazole  >  met-
conazole > difenoconazole) dominated the increasing trends in 
fungicide use at the onset of CCD (Figure 2B). The IGRs (dif-
lubenzuron > methoxyfenozide > pyriproxyfen > tebufenozide) 
displayed the greatest increases among insecticides in spray tank 
mixes containing OSSA during the onset and continuation of 
CCD (Figure  2B). Concomitantly, greatest decreasing tenden-
cies in almond pesticide applications were for other fungicides 
(cyprodinil, iprodione, and azoxystrobin) and the older EBI 
myclobutanil, while inputs of herbicides (primarily glyphosate, 
oxyfluorfen, and paraquat) with OSSA did not change mark-
edly. Based on the CDPR data for agrochemical applications to 
California almonds during pollination, increasing adjuvant use, 

particularly the OSSAs, in tank mixes with fungicides, including 
EBIs, Pristine®, and chlorothalonil, and with IGR insecticides 
may be associated with recent USA honey bee declines.

ORGAnOSiLiCOneS: THe MOST 
POweRFUL SURFACTAnTS

Organosilicone surfactants are the most potent adjuvants and 
super-penetrants available to growers (58, 59). These polyeth-
oxylates and those containing the nonyl- and octylphenols are 
widely used as non-ionic surfactants in spray adjuvants or addi-
tives in agrochemical formulations applied during bloom when 
bees are foraging. Organosiloxane surfactants were detected in 
all wax samples and 60% of pollen samples, although absent 
from honey (60). Their general wide occurrence as residues in 
beehive samples is noteworthy since spray adjuvants are not 
presently regulated by the EPA (61). Nonylphenol more than 
organosiloxane and octylphenol polyethoxylates were found in 
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wax samples, while pollen and particularly honey residues were 
lower (62). Major commercial spray tank adjuvants are blends of 
organosilicone, nonylphenol, and octylphenol polyethoxylates, 
making it more difficult to associate environment residues with 
any specific product (63). Nevertheless, sample levels of the more 
abundant nonylphenol polyethoxylate residues may be used as 
a risk predictor for pesticide exposure because of their frequent 
coincidence in tank mixes of formulations and adjuvants (62). 
Spray tank adjuvants containing these polyethoxylates greatly 
influence pesticide fate (64) in pollinator or other environments, 
generally increasing the residue levels, of particularly fungicides 
(65) and herbicides (66), available to expose pollinators and other 
non-target species. The impact of OSSA sprays on the frequent 
incidence of neonicotinoid residues in bee environments (67) 
and their often associated roles in pollinator decline (68) may 
be great since the highest imidacloprid residue ever reported in 
pollen (7.4 ppm) was after use of Dyne-Amic® on citrus [(69), 
Appendix E].

Even at 10  ppm, OSSAs are good, stand-alone insecticides 
and miticides (7, 70), and can be more toxic to beneficial insects 
than the active ingredient used to control the associated pest 
(71). Silwet L-77® and Kinetic® are known to synergize the 
neonicotinoid imidacloprid used to control the psyllid vector of 
citrus greening disease (72). Yearly use of these potent adjuvants 
continues to increase, with an estimated annual global produc-
tion of 1.3 billion pounds of OSSAs in 2008 among 10 billion 
pounds of all organosilicones (73). This is 30 times greater than 
the highest estimated global annual imidacloprid use of 44 mil-
lion pounds (74). Silwet L-77® was the most potent endocrine 
disruptor among surfactants tested in a screen of 1,814 chemicals, 

with composite scores that placed it in the top 38 of the 465 
endocrine disruptors found [(75), supplemental data], much 
more active than polyoxyethylene(10)nonylphenyl ether. All 
six neonicotinoids, including imidacloprid, were inactive in the 
entire battery of endocrine tests used. Organosilicone surfactants 
are also present in drug and personal care products, particularly 
shampoos (76), and thus represent an important component 
of the chemical landscape to which bees (32) and humans (77) 
are exposed. These widely used super surfactants readily move 
across membranes, become systemic in plants and animals, and 
can ultimately degrade to silica (78) causing silicosis in sensitive 
tissues of exposed organisms.

ARe ORGAnOSiLiCOne SURFACTAnTS 
CAUSinG HARM AnD 
UnDeRReGULATeD?

Organosilicone surfactants are the “gold” standard for effecting 
solution of complex mixtures of agrochemical components of 
wide-ranging polarites in the spray tank. Hundreds of thousands 
of pounds of organosilicone adjuvants are applied every year on 
almonds in California alone (7, 45), both during and subsequent 
to bloom when bee pollinators are present. The high incidence 
of OSSAs in USA beehives and their ability to impair adult 
learning and be toxic to honey bees at all stages of development 
points to their great potential to harm bees and other non-target 
species, and yet, they are typically not even considered in the 
risk assessment process. It is clear that relevant pesticide risk 
assessment for pollinators and other non-target species cannot be 
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addressed solely by evaluating the active ingredients without the 
 concomitant formulation ingredients and spray tank adjuvants. 
Lack of risk mitigation on spray tank adjuvants presently allows 
major OSSA products such as Break-Thru®, Kinetic®, RNA Si 
100®, Silwet Eco Spreader®, Syl-Coat®, and Widespread® to be 
used on any “organic” crop under a certified Organic Materials 
Review Institute (OMRI) label (79).

Spray adjuvants are largely assumed to be biologically inert 
and are not registered by EPA at the federal level in the USA 
(7, 55). Registration and monitoring of adjuvant use patterns are 
regulated at the state level in the USA, and most states do not 
participate in this process. To the best of our knowledge, only 
California, Washington, and perhaps Oregon make substantial 
effort to monitor use patterns or regulate these major chemical 
inputs into the environmental landscape. This lack of federal 
oversight is surprising since Department of Transportation 
employees of Pennsylvania and Iowa claim that herbicide 
applications to right-of-ways and roadways always contain a 
separate spray tank adjuvant (personal communications, 2015). 
Leaving regulation to the mandate of individual states results in 
a “wild west” approach that, in most cases, leaves these chemicals 
unaccounted for and allows for their increasing presence in our 
environment. Requiring regulation of spray tank adjuvants at 
the federal level in the USA would be a reasonable step toward 
addressing this problem.

While we recognize that chemical stressors alone are likely 
not responsible for the decline of pollinator or other non-target 
organisms, the true impact of chemical exposure is impossible to 
determine given our lack of understanding of the total chemical 
burden, a burden that clearly includes unknown and unevaluated 
materials. Coincidence of virus and pesticide exposures in declin-
ing honey bee colonies (80) is most noteworthy among other fac-
tors, which also includes malnutrition and elevated Varroa mites. 
More industry and regulatory agency disclosure of the identity 

of agrochemical adjuvant and formulation components would 
aid in evaluating risk and hazard assessment. Most adjuvants and 
inert ingredients are presently exempted from human safety tol-
erances, generally recognized as safe, and thus no environmental 
monitoring is required (7). A needed improvement is to include 
all formulation (81) and adjuvant (82) ingredients at relevant 
environmental input and exposure levels, and not just active 
ingredients, in studies to document the safety and risk for pol-
linators and other non-target species prior to product registration 
and commercialization.
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A commentary on

Estrogenic and anti-androgenic endocrine disrupting chemicals and their impact on the male
reproductive system
by De Falco M, Forte M, Laforgia V. Front Environ Sci (2015) 3:3. doi: 10.3389/fenvs.2015.00003

During the last two decades or so, endocrine-disrupting chemicals (EDCs) and their effects on
human health have become one of the most researched and controversial topics in toxicology. There
are a number of reviews on the health consequences of exposure to EDCs including a comprehensive
report by the World Health Organization and the United Nations Environment Programme (1).
Recently, De Falco et al. (2) addressed the impact of EDCs onmale reproductive system, with special
reference to the effects of bisphenol A (BPA), alkylphenols, and phthalates. Jeng (3) also reviewed the
epidemiological data on the adverse effects of EDCs on male reproduction and experimental studies
that could shed light on mechanisms (disruption of steroidogenesis, oxidative stress, and epigenetic
changes) through which EDCs could impair male reproductive health. Both articles are essentially
narrative reviews of the abundant and highly controversial literature on the health consequences of
exposures to EDCs.

A key feature that distinguishes a narrative review from a systematic review is that the former
review does not include a comprehensive and meticulous search of all potentially relevant articles
on specified sources, and does not use explicit and reproducible criteria to selected articles for review
(4). Compared to systematic reviews, narrative reviews of the literature are more likely to error and
bias in the selection of relevant studies (4, 5). Moreover, if research designs, methods, and study
characteristics do not undergo a critical appraisal, summary, and conclusions of literature reviews
are even more prone to bias.

De Falco et al. were unable to convey to readers an unbiased review of the empirical evi-
dence suggesting that environmental exposures to EDCs might affect male reproduction. The
authors, for instance, did not disclose the conflicting evidence on the enlargement of prostate after
developmental exposure to BPA. In the mid-1990s, a set of studies by vom Saal and coworkers
showed that prenatal exposure to β-estradiol (EST), diethylstilbestrol (DES), or BPA led to enlarged
ventral prostate in adult mice (6, 7). The observation that enlargement of prostate resulted from
prenatal exposures to low doses of estrogenic compounds (e.g., supra-physiological levels of EST),
and exhibited non-monotonic dose–response relationships, fueled considerable debate over the
adverse health consequences of environmental exposure to EDCs. Several studies, however, failed
to reproduce these findings not only with BPA but also with EST and DES (8–10). Although
reproducibility is one hallmark of experimental sciences, the foregoing discrepancy between studies
by different authors has remained unexplained (11).
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Furthermore, authors’ statements that “. . .over 50 years, the
global average spermcountdroppedbyhalf. . .” and that “studiesof
the last decade strongly support that male reproductive health has
been deteriorating. . .” were unaccompanied by any reference to
the conflicting evidence on thismatter (2). Thewidespread notion
that semen quality has decreased over the past decades stands on
some retrospective studies [Ref. (12, 13), and others]. Nonetheless,
results fromanumberof other studies (not citedby the authors) are
inconsistentwith this hypothesis.Most studies showingdownward
trends in sperm counts included samples coming from different
populations and places that do not necessarily allow a valid com-
parison over time. For instance, a re-analysis of US data used
by Carlsen et al. (12) found no decline in sperm counts when
data from New York were excluded from the regression analysis
(14). Therefore, apparent time trend toward lower concentrations
reported by Carlsen et al. (12) resulted, in fact, from geographic
variations in sperm counts (14, 15).Moreover, a longitudinal study
of sperm concentrations for Danish military draftees (5000 men),
collected annually for 15 years (1996–2010), found no indication
that semenquality has changedduring themonitoring period (16).
Although several studies precipitated by reports on “downward
temporal trends in sperm counts” refuted its existence, the “sperm
crisis” notion is still a highly controversial issue in the literature
(17–20). Temporal trends to increasing birth prevalence of male
reproductive tract defects such hypospadias and cryptorchidism
described by some authors are far from being a consistent finding
among studies (21, 22).

The “endocrine disruptor hypothesis,” a landmark of which
was the Wingspread Conference Statement in 1990s (23), fits
like a glove to the beliefs of the public that pesticides and
other manmade chemicals in the environment are undermining
human health and fertility. Two seminal books by Rachel Carlson
(Silent Spring, 1962) and Theo Colborn (Our Stolen Future, 1996)
boosted considerably these concerns on the deleterious effects of
environmental chemicals on human fertility and health. Notwith-
standing the fact that ED hypothesis is instigating, the notion that
“male reproductive health has been deteriorating,” as asserted by
De Falco et al. (2) and others, lacks an unequivocal demonstration
by soundly designed epidemiology studies. It is of note that, even
if a temporal trend toward a worse male reproductive health
had been demonstrated consistently, it would still be missing to
prove that there is a causal link between EDCs, identified as such
in experimental tests, and the incidence of the adverse health
outcome in the human population. A step forward to identifying
relevant research gaps and to unveiling the real impact of EDCs
on male fertility and reproductive health would be to conduct
less and less narrative and potentially biased reviews and more
and more good quality systematic reviews of the literature on the
topic. Finally, we highlight that a critical appraisal of the quality
of original studies is required for both a good quality narrative
and a good quality systematic review. If unbiased, good quality
narrative reviews can also be helpful. Systematic reviews, however,
are a more reliable approach to avoid bias in the selection of
studies.
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Plant defense stimulators (PDSs) rely on the activation of plant innate immunity in order 
to protect crops against various pests. These molecules are thought to be a safer alter-
native to classical plant protection products. Given that innate immune systems share 
common features in plants and vertebrates, PDS can potentially cross-react with innate 
immunity of non-target organisms. To test this hypothesis, we studied effects of the 
commercial PDS Stifenia (FEN560), which is composed of crushed fenugreek seeds. 
We tested various concentrations of Stifenia (0.03–1  mg  mL−1) on human peripheral 
blood mononuclear cells and checked, 20 h later, cell metabolic activity (MA) using XTT 
assay, cell death by flow cytometry analysis, and IL-1β inflammatory cytokine released 
in the culture medium using ELISA. Stifenia induced a general decrease of the cell MA, 
which was concomitant with a dose-dependent release of IL-1β. Our results highlight 
the activation of human immune cells. The inflammatory effect of Stifenia was partially 
inhibited by pan-caspase inhibitor. Accordingly, Stifenia induced the release of p20 
caspase-1 fragment into the culture medium suggesting the involvement of the NLRP3 
inflammasome. Furthermore, we observed that Stifenia can induce cell death. We also 
tested the effect of Stifenia on Zebrafish larvae. After 24 h of exposure, Stifenia induced 
a dose-dependent IL-1β and TNFα gene expression. The human-cell-based approach 
developed in this work revealed a high sensitivity concerning inflammatory properties of 
a plant protection product. These tests could be routinely used to screen the potential 
adverse effects of this type of compounds. Finally, our results suggest a potential danger 
of using extensively certain PDS for crop protection.

Keywords: peripheral blood mononuclear cells, zebrafish, il-1β, pesticides, plant defense stimulator, fenugreek

inTrODUcTiOn

In the context of pesticides reduction, alternative strategies to protect crops have emerged, includ-
ing use of transgenic crops, resistant hybrids, or integrated pest management methods. Among 
these, stimulation of the plant immune system with various molecules is promising. Plant defense 
stimulators (PDSs), plant defense inducers, or elicitors define a class of compounds of diverse 
origins, which can induce disease resistance-related mechanisms by mimicking a pathogen attack 
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or a danger state, resulting in reduced levels of plant infection. 
They comprise a range of purified or mixture-based natural or 
synthetic compounds that have been shown to protect plants 
efficiently (1, 2). To use a new molecule for crop protection in 
France, an authorization is needed according to the European 
Union (EC No. 1107/2009) and French regulations. Various 
toxicological and ecotoxicological tests are required for the pro-
duction of an initial draft assessment report by EU-designated 
rapporteur member state (RMN) (3). Stifenia (FEN560), which 
is exclusively composed of grounded fenugreek seeds (Trigonella 
foenum-graecum) is a PDS authorized by the French Agency 
for Food, Environmental and Occupational Health and Safety 
(ANSES) to fight powdery mildew of grape vine (Erysiphe 
necator) and powdery mildew of melon (Podosphaera fuliginea 
and Golovinomyces cichoracearum) (ANSES agreement no. 
2012-1685 and 2013-0227). Fenugreek, especially its seeds and 
its leaves, has been used for centuries in India and North Africa 
as food or in traditional medicine (4).

Similar to animals, the first step in the activation of the 
plant immune system is the perception of pathogens or 
microbe-associated molecular patterns (PAMPs/MAMPs) by 
pattern recognition receptors (5, 6). In both organisms, their 
perception induces complex cell signaling events, which result 
in cellular re-programming. For instance, PAMP/MAMP-
triggered immunity in plants is associated with the production 
of phytoalexins, a class of antimicrobial metabolites, and with 
the reinforcement of plant cell walls. In mammals, the immune 
response induces, for example, the production of cytokines 
(interleukines, TNFα) and antimicrobial peptides. One of the 
inflammatory cytokine that plays a major role is IL-1β. Indeed, 
this cytokine is produced following inflammasome activation 
in monocytes, macrophages, and dendritic cells upon their 
stimulation by PAMP or damage/danger-associated molecular 
patterns. IL-1β is processed from pro-IL1β by caspase1 in 
several inflammasome complexes (e.g., NLRP3, NLRP1, and 
AIM2) (7, 8). This cytokine upregulates many other inflamma-
tory factors such as IL6 (9) or TNFα (10).

Since plant and animal immune systems share some similari-
ties (11, 12), we hypothesized that the PDS Stifenia could cross-
react with the animal immune system. In fact, both beneficial and 
adverse effects have been described for fenugreek in mammals 
(4, 13–18) and toxicity against insects has also been reported 
(19). We thus tested the effects of Stifenia on human peripheral 
blood mononuclear cells (PBMCs) from different blood donors 
by quantifying the amount of the inflammatory cytokine IL-1β 
released by exposed cells. In parallel, we evaluated the metabolic 
activity (MA) of the stimulated cells using a XTT assay. We also 
checked the intensity of cell death induced by Stifenia. Finally, we 
studied the effects of this compound on the larvae of the model 
fish zebrafish by analyzing cytokine gene induction.

MaTerials anD MeThODs

chemicals
Stifenia (FEN560, Société Occitane de Fabrications et de 
Technologies, France) was extemporaneously suspended in 
Roswell Park Memorial Institute medium (RPMI; for cell 

treatment) at 17 mg mL−1 or in autoclaved mineral Volvic water 
(for zebrafish treatment) at 0.1 mg mL−1 and gently shaken for 
30  min. Since Stifenia is not fully soluble in water, insoluble 
matters were isolated by centrifugation (20,000 g, 30 min, room 
temperature) and supernatant was carefully collected in a new 
tube. All the concentrations indicated in this work refer to the 
initial concentration (17  mg  mL−1 for human experimentation 
and 0.1 mg mL−1 for zebrafish experimentation).

Z-VAD-FMK stock solution [20  mM in 100% dimethylsul-
foxide (DMSO)], purchased from Promega, was first diluted 
in RPMI at 85  µM. This solution was used for cell treatment. 
The final Z-VAD-FMK concentration was 5 µM in cell culture 
(0.025% DMSO). LPS from Escherichia coli 0111:B4 stock solu-
tion (1 mg mL−1 in pure water), purchased from Sigma-Aldrich, 
was diluted in RPMI to reach a final concentration of 10 ng mL−1 
in cell culture. TNBS (2,4,6-trinitrobenzenesulfonic acid) stock 
solution (1  mg  mL−1 in pure water), purchased from Sigma-
Aldrich, was diluted in autoclaved mineral water (Volvic, France) 
at 75 µg mL−1 for zebrafish treatment.

human PBMcs
Buffy coats from healthy donors were obtained from EFS 
Besançon, France (Agreement No. DECO-14-0124). PBMCs 
were prepared using Pancoll (density 1.077 g mL−1, PAN-biotech 
Gmbh, Germany) and Blood Sep Filter tubes (Dominique 
Dutscher, France). Briefly, 15 mL of Pancoll were collected into 
the lower part of a Blood Sep Filter tube by a short centrifugation. 
Then, 25 mL of buffy coat and 15 mL of Dulbecco’s phosphate-
buffered saline (DPBS, PAN-biotech Gmbh, Germany) were 
added, gently mixed, and centrifuged (400 g, 30 min, room tem-
perature) without brake for the deceleration phase. The PBMC 
ring was collected, washed three times in DPBS without Ca2+ and 
Mg2+, and centrifuged (300 g, 10 min, 4°C). Cells were suspended 
in 2–5 mL of DPBS depending on the size of the cell pellet and 
kept on ice. Viable PBMCs were counted using trypan blue (20), 
suspended in RPMI medium supplemented with 10% (bovine 
serum albumin, w/v) and 1% PSA (Penicilline 10,000  U  mL−1, 
Streptomycine 10 mg mL–1, Amphotericin B 25 µg mL–1 prepared 
in water), and then seeded in 96-well plate with 105 cells per well 
in 150 µL of medium.

Immediately after seeding, treatments were done by adding 
10  µL per well of a 17-fold concentrated solution of Stifenia 
made by serial dilution from the stock solution described above. 
For anti-inflammatory studies, 30 min after Stifenia exposure, 
10  µL of LPS solution was added to reach a final concentra-
tion of 10 ng mL–1. Z-VAD-FMK was added simultaneously to 
Stifenia treatment. The final volume of RPMI was adjusted to 
170 µL for all conditions. Twenty hours after treatment, cells 
were centrifuged (600 g, 3 min). Supernatants were collected for 
IL-1β quantification, and cell pellets were used for measuring 
cell MA.

cell Ma
Cell MA, reflecting cell viability, was determined using the XTT 
[2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-
5-carboxanilide] assay (XTT sodium salt, Sigma-Aldrich, 
France), based on the reduction of a tetrazolium salt (XTT) 
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TaBle 1 | list and sequences of primers used for rT-qPcr experiments.

Primer name 5′ → 3′ Oriented sequence

DrActin For CCCAGACATCAGGGAGTGAT
DrActin Rev CACAATACCGTGCTCAATGG
DrHPRT1 For CAGCGATGAGGAGCAAGGTTATG
DrHPRT1 Rev GTCCATGATGAGCCCGTGAGG
DrIL1B For GTCCACGTATGCGTCGCCCA
DrIL1B Rev GGGGCAACAGGCCAGGTACA
DrTNFa For GTGCAATCCGCTCAATCTGCACG
DrTNFa Rev AATGGAAGGCAGCGCCGAGG

Dr, Danio rerio; For, forward; Rev, reverse.
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by dehydrogenases of viable cells into a water-soluble orange 
formazan product. Briefly, PBMCs were centrifuged (600  g, 
3 min) to remove culture medium. Then, 100 µL of RPMI with-
out phenol red and 20 µL of a mixture of 0.9 mg mL−1 XTT and 
0.01 mM phenazine methosulfate (Sigma-Aldrich, France) were 
added on pelleted cells. Cells were incubated at 37°C for 4 h and 
absorbance at 490 nm was measured with a background subtrac-
tion at 660 nm using a microplate reader (Infinites M200 PRO, 
Tecan, France). The results are expressed as percentage of MA 
compared to control non-exposed cells.

Quantification of inflammatory cytokines
Production of the inflammatory cytokine IL-1β was estimated 
in the culture medium using ELISA assay (Human IL-1β ELISA 
Ready-SET-Go! eBiosciences, France) according to the supplier’s 
instructions.

Quantification of cell Death
Two hundred thousand cells were seeded in 24-well plates and 
treated with Stifenia during 20 h as described above. Cells con-
tained in the culture medium were harvested by centrifugation 
(400 g, 5 min) and then suspended in 300 µL of PBS containing 
propidium iodide (PI) (10 µg mL−1). PI-stained cells were detected 
using a LSR II flow cytometer (BD Biosciences) and acquisitions 
were performed during 45 s using BD FACSDiva Software 6.1.2. 
Flow Jaw was used for figure drawing.

p20-caspase-1 assay
Quantity of processed caspase-1 was evaluated by measuring 
the amount of the p20 fragment secreted in the culture medium 
using ELISA assay (Human Caspase-1/ICE Quantikine 
ELISA Kit, R&D Systems, France) according to the supplier’s 
instructions.

Zebrafish strains, Maintenance, and 
Treatment
According to the European Union Directive 2010/63/EU, no 
specific ethics approval was required for this project, as all 
zebrafish larvae used in this study were less than 120-h post-
fertilization (hpf) old (21, 22). Wild-type fishes (WIK strain) 
were obtained from the ZIRC (OR, USA) and kept at 28°C 
with a light:dark cycle 14:10 h. They were fed twice a day with 
dried flake food (Gemma Mirco, Skretting, France). The fish 
were mated and spawning was stimulated by the onset of light. 
Zebrafish eggs were collected immediately after being fertilized 
and distributed in 24-well plates (three eggs per well) contain-
ing 1 mL of autoclaved mineral water (Volvic, France). At 4 days 
postfertilization, water was replaced by fresh water containing 
the desired concentration of Stifenia or 75 µg mL−1 of TNBS. 
Twelve to fifteen zebrafish larvae per condition were incubated 
during 20 h.

rna extraction and rT-qPcr
After 20  h of exposure (Stifenia or TNBS, see above), 12–15 
zebrafish larvae (120  h postfertilization) were euthanized with 
tricaïne, collected, and disaggregated during 5  min at room 

temperature using 17-gage needles in 1  mL of Trizol reagent 
(Invitrogen, France) and vortexed. Total RNAs were extracted 
according to supplier’s instructions. The RNA samples were 
treated with DNAse (TURBO DNA-free, Life Technologies) 
according to the manufacturer’s instructions. Approximatively 
15–20  µg of RNA diluted in water were washed with butanol 
and diethyl ether according to Krebs et  al. (23). Diethyl ether 
was evaporated under a fume hood. The resultant water phase 
containing RNA was mixed with 175  µL of RNA Lysis Buffer 
and 350  µL of RNA Dilution Buffer and loaded on a SV Total 
RNA column (Promega, France) to perform on-column DNAse 
digestion according to supplier’s instruction. Then, 1 µg of total 
RNA was reversed-transcribed to cDNA using the iScript™ 
reverse transcription supermix for RT-qPCR (Biorad, France). 
Analyses were performed on a thermocycler (Step One Plus, 
Applied Biosystems, France) using Power SYBR Green from the 
same purchaser. The parameters used for the PCR were 95°C for 
10 min, 40 cycles of 95°C for 15 s, and 60°C for 1 min. The rela-
tive expression ratio (experimental/control) was normalized with 
Danio rerio HPRT1 (24) according to 2−ΔΔCt method. Sequences 
of primers used in this study are listed in Table 1. RT-qPCR assays 
were performed in duplicates for each cDNA and each primer 
couple and the experiment repeated two times.

statistical analysis
Data obtained were expressed as mean  ±  SEM. Statistical dif-
ferences among treatments were evaluated by Kruskall–Wallis 
method. Post hoc tests were used to identify statistical groups as 
described in each figure legend.

resUlTs

Manufacturer’s instructions indicate that Stifenia has to be 
solubilized in water. However, Stifenia is neither fully soluble 
in water nor in other classical solvents such as 100% DMSO, 
acetone 60% in water (v/v), ethanol 100%, and RPMI medium 
(data not shown), because it is composed of crushed fenugreek 
seeds. To study its effect on human PBMCs or zebrafish larvae, 
we used an aqueous soluble extract obtained as described in 
Section “Materials and Methods.” According to ANSES, the 
recommended use-concentration of Stifenia is 0.15–0.5% (m/v), 
which correspond to 1.5–5 mg mL−1 (ANSES 2012-1685, ANSES 
2013-0227). In our study, we tested concentrations of Stifenia 
below these recommended use-concentrations.
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FigUre 1 | effect of stifenia on human peripheral blood mononuclear 
cell (PBMc) metabolic activity (Ma) and il–1β production. PBMCs were 
stimulated by different concentrations of Stifenia added in the culture 
medium. Cell MA (white bars) was estimated by the XTT assay and IL-1β 
(gray bars) was measured in the culture medium. (a) PBMCs were exposed 
to Stifenia for 20 h. (B) PBMCs were stimulated by addition of 10 ng mL−1 of 
LPS 30 min after the beginning of Stifenia exposure. Results are obtained 
from the blood donor CHR026_91. Bars represent the mean of eight 
technical replicates. Different letters (lowercase for the XTT assay, capitals for 
IL-1β) indicate statistical differences between groups (p < 0.05). If two 
conditions share one or several letters, there are no statistical differences. 
Statistical differences were determined using a Kruskal–Wallis test followed 
by a comparison with the Steel–Dwass–Critchlow–Fligner method. CTR, 
control non-treated cells.
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stifenia induces a Dose-Dependent 
release of il-1β in the culture Medium
Different concentrations of Stifenia (0.03–1  mg  mL−1) were 
independently tested for 20  h on PBMC from nine different 
healthy human blood donors (Figure 1A; Figures S1 and S2 in 
Supplementary Material; Table 2). Cell MA was then measured 
using the XTT assay and IL-1β production was quantified in the 
culture medium using ELISA. A decrease of MA was observed 
from 0.1–1 mg mL−1 of Stifenia (Figure 1A). This decrease was 
observed with eight out of nine blood donors but to a different 
extend (Figure S1 in Supplementary Material). For these blood 

donors, it ranged from 9.5 to 33.2% when 0.3 mg mL−1 of Stifenia 
is used (Table 2).

In culture medium from unexposed cells, IL-1β was either not 
detected or very close to background level (Figure 1A). In this 
cell batch CHR026_91, the lowest Stifenia concentration used 
(0.03 mg mL–1) did not induce IL-1β production. Higher concen-
trations progressively increased IL-1β release, which peaked at 
3,240 pg mL–1 with 1 mg mL–1 of Stifenia. This quantity is equiva-
lent to the one induced by 10 ng mL–1 of LPS. Although the pattern 
of IL-1β induction was always similar among the different PBMC 
batches tested, we noticed great variations in the quantities of 
IL-1β released (Table 2; Figure S1 in Supplementary Material). 
Thus, the lowest quantity found was 5 pg mL–1 after treatment 
with 0.3 mg mL–1 of Stifenia while the highest was 3,268 pg mL–1 
(Table 2). The LPS-induced IL-1β production was also systemati-
cally measured and was also variable among the different blood 
donors. LPS (10 ng mL–1) induced the release of 18–2,984 pg mL–1 
of IL-1β in the culture media, depending on the donor. No clear 
relationship was found between LPS- and Stifenia-induced IL-1β 
productions (Table 2; Figure S1 in Supplementary Material). In 
an exploratory experiment, we evaluated the production of oth-
ers cytokines in the culture medium of Stifenia-exposed PBMC 
using a Multiplex assay (Table S1 in Supplementary Material). 
As observed with ELISA, Stifenia induced a dose-dependent 
production of IL-1β. We also detected a slight induction of TNFα 
and of the anti-inflammatory cytokine IL-10. No modulation of 
IFNγ, IL2, or IL-12p70 concentrations was observed.

stifenia Does not inhibit lPs-induced 
inflammation in PBMc
Literature frequently reported anti-inflammatory effects of fenu-
greek seed extracts (13, 25, 26). We thus tested the hypothesis 
that Stifenia could decrease the LPS-induced IL-1β production 
in PBMC. Figure 1B shows representative results of experiments 
conducted on PBMC isolated from six different blood donors. 
Cells were exposed with Stifenia as previously described and then 
stimulated 30 min later with 10 ng mL–1 LPS. IL-1β was measured 
20 h later. Stifenia pretreatment did not reduce LPS-induced IL-1β 
production (Figure  1B; Figure S2 in Supplementary Material). 
For each Stifenia concentration tested, the IL-1β produced was 
either higher or equal to the LPS alone-induced IL-1β synthesis. 
Regarding MA, while LPS alone never reduced it, Stifenia pre-
exposure (0.3–1 mg mL–1) decreased the MA in a dose-dependent 
manner as observed when used alone (Figure 1B; Figure S2 in 
Supplementary Material).

stifenia Does not contain contaminating 
Microorganisms
In order to check if inflammatory activity of Stifenia was not 
due to contamination by microorganisms, we compared results 
obtained from a Stifenia preparation that was either directly used 
for cell treatment or previously filtered on 0.22 µm pore size mem-
brane. In both cases, a dose-dependent induction of the cytokine 
production was found. IL-1β induction was not significantly dif-
ferent between filtered and non-filtered Stifenia although it seems 
that filtered Stifenia induce more IL-1β (Figure 2).
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FigUre 2 | comparison of filtrated and non-filtrated stifenia 
preparation on il-1β production. Results are obtained from the blood 
donor CHR026_128. IL-1β was measured in the culture medium 20 h after 
the addition of filtered (white bars) and non-filtered (gray bars) Stifenia. Each 
bar corresponds to four technical replicates. Statistical differences were 
determined using a Kruskal–Wallis test followed by a comparison with the 
Conover–Iman method. Similar letters indicate no significant differences 
(p < 0.05). CTR, control non-treated cells. This experiment was repeated 
once with peripheral blood mononuclear cell from another blood donor 
(CHR026_135) with similar results (data not shown).

TaBle 2 | comparison of stifenia or lPs exposure on metabolic activity (Ma) and induced il–1β production of peripheral blood mononuclear cells from 
nine different healthy human blood donors.

Blood 
donor

cTr stifenia 0.3 mg ml−1 lPs

Ma il-1β 
(pg ml−1)

Ma il-1β (pg ml−1) Ma il-1β (pg ml−1)

CHR026_62 100.00 ± 0.51 3.68 ± 1.24 83.18 ± 3.39 228.35 ± 12.99 97.15 ± 1.33 276.53 ± 8.98
CHR026_76 100.00 ± 1.67 0.00 ± 0.00 87.22 ± 4.13 563.99 ± 29.62 127.17 ± 3.12 517.39 ± 42.65
CHR026_91 100.00 ± 2.25 0.00 ± 0.00 85.86 ± 7.90 2,069.41 ± 86.84 93.34 ± 1.46 2,984.13 ± 75.03
CHR026_93 100.00 ± 3.27 4.44 ± 2.06 74.68 ± 5.45 2,276.04 ± 224.08 99.61 ± 1.08 1,403.12 ± 26.94
CHR026_95 100.00 ± 2.70 2.13 ± 2.13 76.47 ± 3.31 3,268.65 ± 62.54 90.23 ± 2.98 1,631.87 ± 52.96
CHR026_128 100.00 ± 2.41 3.90 ± 3.90 90.57 ± 3.39 5.09 ± 2.96 102.30 ± 2.39 718.22 ± 28.63
CHR026_135 100.00 ± 9.91 0.00 ± 0.00 69.71 ± 7.14 715.86 ± 47.95 108.68 ± 2.10 76.13 ± 7.72
CHR026_152 100.00 ± 10.37 0.00 ± 0.00 66.8 ± 1.82 788.61 ± 423.84 90.65 ± 11.20 18.24 ± 18.24
CHR026_153 100.00 ± 1.41 0.00 ± 0.00 110.34 ± 3.36 946.77 ± 84.61 119.91 ± 2.28 626.87 ± 13.94

Cell MA was estimated by the XTT assay, and IL-1β was measured in the culture medium 20 h after the addition of Stifenia or LPS. Results represent the mean between eight 
technical replicates.
CTR control non-treated cells.
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inflammatory effect of stifenia is inhibited 
by caspase inhibitor
IL-1β is processed to its active released form by caspase-1 through 
the inflammasome multiprotein complex NLRP3 (7, 27). We used 
a pan-inhibitor of caspases in order to test whether IL-1β released 
upon Stifenia stimulation was generated via an inflammasome 
complex. Sixty per cent of the cytokine production induced by 
Stifenia was abolished by Z-VAD-FMK. As expected, Z-VAD-
FMK also strongly reduced LPS-induced IL-1β production 
(Figure  3A; Figure S3 in Supplementary Material). We then 
checked the involvement of caspase-1 by ELISA on the produc-
tion of IL-1β induced by Stifenia. In unexposed cells, detection of 

p-20 caspase-1 fragment in the culture medium was close to the 
detection threshold. Stifenia 0.3 mg mL −1 induced a huge release 
of extracellular p-20 Caspase-1 fragment that is much higher than 
with LPS exposure alone (Figure 3B).

stifenia induces cell Death of PBMc
Using flow cytometry and PI, we checked if a 20-h Stifenia expo-
sure can induce PBMC cell death (Figure S4 in Supplementary 
Material). In our experiments performed on two independent 
blood donors, the lowest concentrations of Stifenia tested (0.03 
and 0.1  mg  mL−1) did not induced cell death. However, treat-
ment of PBMC with 0.3 or 1 mg mL−1 induced cell death that 
ranged from 22.8 to 38.6% depending of the blood donor. LPS 
(10  ng  mL−1) alone did not significantly induced cell death as 
described by others. Furthermore, LPS treatment did not modify 
or potentiate the toxicity of Stifenia.

stifenia induces cytokine gene 
expression in Zebrafish larvae
To analyze the inflammatory effect of Stifenia on a whole organ-
ism, we used zebrafish larvae. Using RT-qPCR, we investigated 
the effect of Stifenia on IL-1β and TNFα gene expression. Twelve 
to fifteen zebrafish larvae were exposed to different concentra-
tions of Stifenia for 20  h and then harvested for total RNA 
extraction. TNBS used as a reference inflammatory compound 
induced a slight IL-1β gene expression compared to unexposed 
fishes as previously described (24, 28). The lowest concentration 
of Stifenia induced a higher IL-1β gene expression than TNBS. 
Furthermore, we observed a dose-dependent effect of Stifenia on 
IL-1β gene expression. For TNFα gene expression, an increase 
was observed from 0.01 mg mL−1 of Stifenia exposure (Figure 4).

DiscUssiOn

inflammatory effect of stifenia
In this study, we demonstrated that the commercial plant protec-
tion product Stifenia decreased the MA of PBMC and affected 
cell viability. Stifenia also induced IL-1β production in all the 
PBMC batches tested, but to a different extent depending on 

43

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive


FigUre 4 | effect of stifenia treatment on cytokine gene expression 
in zebrafish larvae. Induction of cytokine gene expression in zebrafish 
larvae exposed for 20 h to Stifenia aqueous extract. The transcript levels of 
IL-1β (a) and TNFα (B) were quantified by RT-qPCR using the Danio rerio 
HPRT1 gene as housekeeping gene and normalized to the transcript level of 
larvae that were not exposed (CTR) using 2−ΔΔCt method. Data are the means 
of duplicates from one representative experiment out of two.

FigUre 3 | stifenia-induced il-1β production is mediated by 
caspase1. (a) Peripheral blood mononuclear cells were stimulated by 
0.3 mg mL−1 of Stifenia or 10 ng mL−1 of LPS. Cell metabolic activity (MA) 
(white bars) was estimated by the XTT assay and IL-1β (gray bars) was 
measured in the culture medium 20 h after treatment. Five micromolars 
Z-VAD-FMK (Z-VAD) were added simultaneously to Stifenia in the culture 
medium. LPS was added 30 min after Z-VAD-FMK treatment. The results 
showed are obtained from the blood donor CHR026_93. Bars represent the 
mean between eight technical replicates. Lowercase and capital letters 
indicate statistical groups for MA and IL-1β concentration, respectively. 
Different letters indicate statistical differences between groups (p < 0.05). If 
two conditions share one or several letters, there are no statistical 
differences. CTR, control non-treated cells. (B) Quantity of p-20 Caspase-1 
fragment was measured using ELISA in the culture medium 20 h after the 
addition of 0.3 mg mL−1 of Stifenia or 10 ng mL−1 of LPS. Each bar 
corresponds to a mean of eight technical replicates. Results are obtained 
from the blood donor CHR026_93. This experiment was repeated once on 
another blood donor with similar results (data not shown). (a,B) Statistical 
differences were determined using a Kruskal–Wallis test followed by a 
comparison with the Steel–Dwass–Critchlow–Fligner method. Similar letters 
indicate no significant differences (p < 0.05). CTR, control non-treated cells.
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the blood donor. IL-1β is an inflammatory cytokine circulating 
at very low levels (0.5–10 pg mL−1) in blood stream of healthy 
people (29, 30). In our culture conditions, unstimulated PBMCs 
produce similar concentration of IL-1β in the culture medium. 
When PBMCs were exposed to Stifenia 0.1  mg  mL−1, they 
released around 500 pg mL−1 of IL-1β, which corresponds to a 
50- to 1,000-fold increase of IL-1β concentration compared either 
to control conditions or to the concentrations of IL-1β found in 
blood of healthy people. It could be hypothesized that such an 
increase of IL–1β concentration induced by Stifenia could have 
physiological effects.

The inflammatory effect of Stifenia contrasts with other 
published data indicating that fenugreek seed extracts exhibit 
anti-inflammatory properties [reviewed by Goyal et al. (13)]. We 
did not detect any anti-inflammatory properties when Stifenia 
was used as pretreatment before LPS stimulation. A similar 
protocol was, however, efficient when used with other natural or 
synthetic compounds (31, 32). The discrepancy between our data 
and published ones could be explained. First, we used an aqueous 
extract of Stifenia while other studies used organic extracts. For 
instance, Mandegary et al. (25) performed a methanol extraction 
of fenugreek seeds followed by a fractionation using water and 
different organic solvents. They showed that the aqueous fraction 
mostly contains flavonoids and inhibits carrageenan-induced 
paw edema in mice. Furthermore, ethanol extract of fenugreek 
seeds reduced Freund’s complete adjuvant-induced arthritis in 
rats by lowering cytokine induction (26). We suspect that the 
anti-inflammatory effect found in these extracts (25, 26) could be 
hidden or lowered by other components present in our aqueous 
Stifenia extract. Second, the biological/experimental models used 
to demonstrate the anti-inflammatory effects were different from 
the human PBMC model used in this study. However, the use of 
an aqueous extract in our study is of relevance because it reflects 
what is done by farmers when Stifenia is prepared according to 
the manufacturer’s instructions. In other words, the aqueous 
extract we tested is similar to what is sprayed by farmers on crops.

We showed that caspase-1 was involved in the inflammatory 
response induced by Stifenia suggesting a role for the inflamma-
some NLRP3. IL-1β is produced by immune cells as a response 
to NLRP3 inflammasome activation when cells are confronted to 
PAMP but also to different danger signals (DAMP) of metabolic 
origin (27, 33). It could be suspected that some compounds con-
tained in the Stifenia extract could stimulate the NLRP3 inflam-
masome and lead to caspase-1 activation that is responsible for 
pro-IL-1β processing.

Because Stifenia induced IL-1β production in a caspase-
1-dependant pathway, one may suggest that Stifenia effects are 
partly due to a contamination with LPS which induce pro-IL-1β 
gene transcription after its perception by TLR4, a phenomenon 
known as priming. Thus, the presence of LPS in Stifenia aqueous 
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extract has to be considered. To test this hypothesis, we checked 
for the presence of 3OH-fatty acids that compose LPS in the 
Stifenia aqueous extract using an HPLC/MSMS method (34). 
Interestingly, we detected 3OH-C10:0, 3OH-C12:0, 3OH-C14:0, 
and 3OH-C16:0 revealing a LPS contamination of Stifenia (data 
not shown). After filtration of the Stifenia aqueous extract on 
a poly-lysine column, LPS contamination was decreased by 
about 40%. However, this extract was still efficient in inducing 
IL-1β production on PBMC (data not shown). Furthermore, 
PBMC harvested from two blood donors, CHR026_135, and 
CHR026_152 (Figures S1D,E in Supplementary Material), are 
not or very slightly susceptible to LPS while they are highly reac-
tive to Stifenia. We also showed that Stifenia exposure induced 
cell death of PBMC, whereas LPS did not. All these data suggest 
that Stifenia-induced IL-1β production and Stifenia-induced cell 
death are unlikely due to a direct effect of LPS, but we cannot 
rule out that LPS present in Stifenia aqueous extract could prime 
pro- IL-1β gene transcription.

are inflammatory effects relevant for 
human health?
The ANSES has assessed the acceptable exposure level of 
Stifenia for operators (0.3–2.9  mg  kg−1 of body weight/day), 
workers (3–9 mg kg−1 of body weight/day), and neighborhood 
(0.01–0.09 mg kg−1 of body weight/5 min of continuous exposi-
tion) (ANSES 2012-1685 and 2013-0227). Even if these estimated 
contaminating doses seems to be low, recurrent or longer 
exposures have not been tested so far. Our results demonstrated 
some inflammatory properties and toxicity of Stifenia on blood 
mononuclear cells. Of importance, the potential toxicity of fenu-
greek was recently highlighted by some studies both in human 
and animals. Thus, a survey in Moroccan maternity hospital has 
linked consumption of fenugreek by pregnant women to con-
genital malformations (14, 35). In mice, feeding females during 
the entire period of pregnancy with a lyophilized aqueous extract 
from fenugreek seeds affects their reproduction and shows tera-
togenic and foetotoxic effects (4). Khalki et al. (15) also reported 
growth retardation and altered neurobehavioral performance of 
mice prenatally exposed to fenugreek seed extracts. Antifertility 
effects of fenugreek seed extract has also been reported in rabbits 
(17), and other toxic effects have been described in mice, rats and 
rabbits (16, 18). However, since fenugreek seeds have been used 
for centuries in traditional medicine or in food, many tests were 
not included in the risk assessment of Stifenia (36). Our results 
pointed out the possible danger of an extensive use of the plant 
defense stimulator Stifenia at the level of human health.

environmental Toxicity
Our data demonstrated in vivo inflammatory effect of Stifenia on 
zebrafish larvae. We observed an induction of IL-1β and TNF-α 
gene expression that started at Stifenia concentration as low as 
3 and 10  µg  mL−1, respectively. The predicted environmental 
concentration (PEC) of Stifenia in surface water was established 
by the ANSES at 0.160 µg mL–1 (ANSES 2012-1685). This is only 
20-fold lower than the 3  µg  mL−1 concentration that induced 
significant IL-1β gene expression in our experiments. This raises 
the issue of whether a longer exposure of zebrafish larvae to 

the PEC concentration could have similar inflammatory effects 
to those we observed. However, the methods used to predict 
PEC in surface water are controversial and could not reflect 
the actual concentrations of the molecule in the environment 
(37). Recently, it has been shown that the PEC calculated for 
several insecticides are underestimated by the procedure used 
by the European Union (38). Regarding the toxicity of fenugreek 
on animals, a study showed that topical application of 6 µg of 
fenugreek acetonic seed extract on two coleopteran species, 
Acanthoscelides obtectus and Tribolium castaneum, decreased 
their fertility and induced their mortality. These authors also 
showed that the presence of fenugreek seeds in the immediate 
environment of insects was sufficient to kill them (19). All these 
results suggest that the use of Stifenia could have adverse effects 
on non-target organisms.

cOnclUsiOn

Our results demonstrated unexpected effects of a plant protection 
product on human and animal health. As written by Burketova 
et  al. (2), “although bio-based products are of natural origin, 
direct toxicity of these products to human, animals, insect, 
microbe communities, or even plants must be studied carefully 
to avoid toxicity as observed with classical pesticides.” The 
human cell-based approach developed in this work revealed a 
high sensitivity concerning inflammatory properties of a plant 
protection product. These tests could be routinely used to screen 
the potential adverse effects of this type of compounds that can 
potentially cross-react with human innate immunity. This should 
be the first step before engaging more expensive studies on ani-
mal models and according to the European legislation, and this 
approach fits with the goal of reducing studies on animal models 
(No. 1107/2009).
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TaBle s1 | cytokine concentrations in culture medium of stifenia-
exposed peripheral blood mononuclear cells. Cytokines were measured in the 
culture medium 20 h after the addition of Stifenia at the indicated concentrations 
using a multiplex kit (ProcartaPlex human simplex, Affymetrix, France) according to 
the manufacturer’s instructions on blood donor CHR026_91. C, concentration; IF, 
induction factor; CTR, control non-treated cells.

FigUre s1 | effect of stifenia il-1β production and metabolic activity (Ma). 
Peripheral blood mononuclear cells were exposed to different concentrations of 
Stifenia added in the culture medium for 20 h. Cell MA (white bars) was estimated 
by the XTT assay, and IL-1β (gray bars) was measured in the culture medium. 
Results are obtained from six blood donors (a–F). Bars represent the mean of eight 
technical replicates. Different letters (lowercase for the XTT assay, capitals for IL-1β) 
indicate statistical differences between groups (p < 0.05). Statistical differences 

were determined using a Kruskal–Wallis test followed by a comparison with the 
Steel–Dwass–Critchlow–Fligner method. CTR, control non-treated cells.

FigUre s2 | effect of stifenia on lPs-induced il-1β production and 
metabolic activity (Ma). Peripheral blood mononuclear cells were stimulated 
by addition of 10 ng mL−1 of LPS 30 min after the beginning of Stifenia exposure. 
Cell MA (white bars) was estimated by the XTT assay, and IL-1β (gray bars) was 
measured in the culture medium. Results are obtained from five blood donors 
(a–e). Bars represent the mean of eight technical replicates. Different letters 
(lowercase for the XTT assay, capitals for IL-1β) indicate statistical differences 
between groups (p < 0.05). Statistical differences were determined using a 
Kruskal–Wallis test followed by a comparison with the Steel–Dwass–Critchlow–
Fligner method. CTR, control non-treated cells.

FigUre s3 | effect of ZVaD on stifenia- or lPs-induced il-1β production 
and metabolic activity (Ma). Cell MA (white bars) was estimated by the XTT 
assay, and IL-1β (gray bars) was measured in the culture medium 20 h after 
treatment. Five micromolars Z-VAD-FMK (Z-VAD) were added simultaneously to 
Stifenia (0.3 mg mL−1) in the culture medium or 30 min before the addition of LPS 
(10 ng mL−1). Results are obtained from blood donors CHR026_95 (A) and 
CHR026_153 (B). Bars represent the mean between eight technical replicates. 
Different letters (lowercase for the XTT assay, capitals for IL-1β) indicate statistical 
differences between groups (p < 0.05). Statistical differences were determined 
using a Kruskal–Wallis test followed by a comparison with the Steel–Dwass–
Critchlow–Fligner method. CTR, control non-treated cells.

FigUre s4 | Peripheral blood mononuclear cell (PBMc) viability after 
stifenia treatment. Cell viability was estimated by propidium iodide (PI) staining 
20 h after PBMC treatments. The results shown are obtained from blood donors 
CHR026_153 (a,B) and CHR026_152 (c,D). (a,c) Cell death was expressed as 
a percentage of PI-stained cells vs. total cells. Bars represent the mean between 
four technical replicates. Different letters indicate statistical differences between 
groups (p < 0.05). Statistical differences were determined using a Kruskal–Wallis 
test followed by a comparison with the Dunn’s method. (B,D) Flow cytometry 
diagram of PI-stained cells 20 h after treatment. For each treatment, a 
representative diagram out of four technical replicates is shown for the blood 
donor CHR026_153 (B) or the blood donor CHR026_152 (D).
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Agriculture is fundamental for human survival through food production and is performed

in ecosystems that, while simplified, still operate along ecological principles and retain

complexity. Agricultural plants are thus part of ecological systems, and interact in

complex ways with the surrounding terrestrial, soil, and aquatic habitats. We discuss

three case studies that demonstrate how agricultural solutions to pest and weed

control, if they overlook important ecological and evolutionary factors, cause “surprises”:

(i) the fast emergence of resistance against the crop-inserted Bt-toxin in South Africa,

(ii) the ecological changes generated by Bt-cotton landscapes in China, and (iii) the

decline of the monarch butterfly, Danaus plexippus, in North America. The recognition

that we work with complex systems is in itself important, as it should limit the belief

in reductionist solutions. Agricultural practices lacking eco-evolutionary understanding

result in “surprises” like resistance evolution both in weeds and pest insects, risking the

reappearance of the “pesticide treadmill”—with increased use of toxic pesticides as the

follow-up. We recommend prioritization of research that counteracts the tendencies of

reductionist approaches. These may be beneficial on a short term, but with trade-off

costs on a medium- to long-term. Such costs include loss of biodiversity, ecosystem

services, long-term soil productivity, pollution, and reduced food quality.

Keywords: Bt-toxins, ecology, herbicides/pesticides, glyphosate, GM crops, non-target organisms, resistance

evolution

THE USE OF PESTICIDES IN AGRICULTURAL PRACTICE WITH
TRANSGENIC PLANTS

Genetic modifications of crop plants have great potential and promises, but current growing
practices are overwhelmingly restricted to four crop species and two kinds of GM modifications.
The four species are soybean (Glycine max), maize (Zea mays), oilseed rape (Brassica oleracea),
and cotton (Gossypium hirsutum). The majority of these crops (except cotton) are grown on large-
scale industrial–style farms, mostly in North and South America (James, 2016). The two dominant
modifications, herbicide tolerance (HT) and insect resistance (IR), can make crops tolerant to
selected herbicides, or toxic to specific groups of herbivorous insects, respectively. Most of the GM
soybean and oilseed rape are HT, while transgenic maize and cotton are mostly IR. An increasing
number of GM cultivars are “stacked” and/or “pyramided,” containing both kinds of modifications,
and several constructs.
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HT GM plants open the formerly narrow time window when
herbicides could be sprayed on crop fields without risk to the
crop itself. Farmers planting HT crops can use herbicides, even at
higher concentrations than previously, without damaging their
crop. As a result, the global share of the few herbicides that
can be used on such GM crops has increased dramatically. The
commercially most successful application is linked to herbicides
with glyphosate as the active ingredient (Roundup products),
whose use only in the USA increased from 3.6 million kg in 1987
to 108 million kg in 2014 (Myers et al., 2016).

To make cultivated plants toxic to herbivores, the most
commonly used method is the insertion of activated toxin genes
from the soil-living bacterium Bacillus thuringiensis (Barton
et al., 1987). Numerous strains of this bacterium have been
isolated, characterized, manipulated and inserted into a variety
of crop plants (Bravo et al., 2011), but the majority of field-
grown insect resistant GM plants are maize and cotton. In
the case of maize, the aim was to defend the plant from the
attack of two pests that are important in the USA: the non-
native European corn borer Ostrinia nubilalis (Lepidoptera:
Pyralidae), and a native beetle, the corn rootworm (Diabrotica
virgifera, Coleoptera: Chrysomelidae). In the case of cotton,
the primary target pest was the cotton bollworm (Helicoverpa
armigera, Lepidoptera: Noctuidae), an important pest in Eurasia,
Africa, and the Americas. The presence of the bacterial toxin
in the plant defends it from damage by these main pests. After
the introduction of Bt-plants a reduction in the amount of
insecticides sprayed was observed, especially on cotton, the most
intensively insecticide-treated crop plant in the world (Deguine
et al., 2008).

GM plants represent an important trajectory of modern
agriculture, with a strong focus on weed and insect control.
Moreover, in GM plants, whether HT or IR, permit new ways
to use pesticides in agriculture. This has interesting practical as
well as ecological and evolutionary consequences in comparison
to other agricultural practices.

There is an ongoing and rapid change in GM crop plants.
In 1996, the first year of commercial planting, GM crop plants
predominantly expressed a single transgene of bacterial origins,
either a cry1Ab Bt gene in IR crops, or a cp4 epsps gene
(glyphosate tolerance) in HT plants. Twenty years later, an
increasing number of GM crop plants can express up to 6
different Bt-toxins and up to 3 different herbicide tolerance traits
(Hilbeck and Otto, 2015; Venter and Bøhn, 2016). We may even
expect up to 14 different transgenes in a single GM plant by 2020
(Hakim, 2016). What is the driving force for “stacking” all these
traits on top of each other?

In order to forecast the environmental consequences of
field-growing GM plants, it is important to stress that genes
alone do not determine the outcomes: the gene-organism-
environment (“The Triple Helix”) interactions are crucial for
the understanding of any biological system (Lewontin, 2000).
If we ignore the dynamic responses of nature, “surprises” and
failures will be the order of the day. In contrast, by using
ecological and evolutionary theory, we would have been able to
foresee and possibly avoid many unwanted outcomes that we are
experiencing today.

Pesticides are an integral, nearly unavoidable, part of the
dominant current agricultural practices. Their dominance can be
traced back to the period during and after the Second World
War. Problems emerged gradually, and started to be voiced
in the early 1960s with the “Silent Spring” of Rachel Carson
(Carson, 2002). Since then, pesticides have been under tighter
and tighter regulation, and were increasingly recognized as
the mixed blessing they are. Notwithstanding the technological
advances with pesticides and their applications, the serious global
health effects caused by hazardous pesticides has recently made
the UN formulate a new set of recommendations. These includes
that (i) pesticide use must be closely monitored, regulated and
reduced worldwide, and that (ii) non-chemical alternatives must
be considered first, e.g., use (agro)ecological methods to naturally
supress pests (United Nations, 2017).

In this article, we aim to illustrate the dynamics of
ecological/evolutionary responses to field growing of transgenic
plants, an important component of modern agriculture. We
present three case studies and use these to discuss dynamic
ecological and evolutionary responses related to insect and
weed control with GM crop plants. Our center of attention
concerns the sustainability of this agricultural practice, and
whether the ignoring of ecological complexities may lead to
new, mistaken technological solutions, resistance evolution and
further pesticide use.

CASE STUDY 1. RESISTANCE EVOLUTION
IN BUSSEOLA FUSCA TO CRY1AB TOXIN,
SOUTH AFRICA

Several important insect pests of maize are internal feeders, and
thus not easy to control by traditional pesticides. This was a
strong motive to develop transgenic GM maize lines that can
express an insect toxin in planta, thus presenting the potential
to control such internal feeders. In South Africa, the main target
insect pest, Busseola fusca (Lepidoptera: Noctuidae), is such a
pest, whose larvae are boring inside the maize plant. They were
successfully controlled by Bt-maize expressing the Cry1Ab-toxin
(MON810) after its introduction in 1998, for a period of about
6 years. In the 2004/5 season, the first reports on resistant
insects were coming in: B. fusca larvae could be found feeding
on Bt maize plants (van Rensburg, 2007; Figure 1A). By 2010,
the area where such resistant insects were found increased to
cover most of the maize growing areas in the country (Kruger
et al., 2012; Van den Berg et al., 2013). Where resistant insects
appeared, farmers responded by re-starting the previous practice
of spraying insecticides—now on the transgenicMON810 variety
(Figure 1B).

This resistance evolution of B. fusca in South Africa triggered
the replacement of the original, single toxin-expressing MON810
with MON89034, a plant that expresses two toxins: Cry1A.105
and Cry2Ab2 (Van den Berg et al., 2013). Thus, the emerging
resistance in pest insects led to the stacking of two insect toxins
in the same plant. This may resemble the start of the “pesticide
treadmill,” where the typical response to emerging resistance to
an insecticide was to start using cocktails of various ones, with
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FIGURE 1 | Resistance development to Cry1Ab in South Africa. After the

development of resistance to Bt, the larvae of the target pest, Busseola fusca,

could be observed in the field, feeding on MON810 maize cobs (A). The

response from the farmers was to spray insecticides, paid by Monsanto, on

the “insect resistant” MON810 Bt-maize plants to reduce yield losses (B).

Photos taken in the Vaalharts region in 2012 by Thomas Bøhn.

the argument that these combinations will remain effective for
longer (Nicholls and Altieri, 1997). For sprayed pesticides, this
has not been a sustainable solution, because multiple resistances
emerged, making the problem more severe.

CASE STUDY 2. HELICOVERPA
ARMIGERA REPLACED BY MIRID BUGS
AS MAJOR PESTS, CHINA

China is among the biggest cotton producers of the world. On
five of the six major cotton-growing regions, mostly smallholders
grow cotton, using it as a cash crop. Before 1997, the use
of pesticides to control insect pests, the cotton bollworm
H. armigera in particular, was very high and included 14–28
treatments per season (Pemsl and Waibel, 2007). Resistance was
widespread, and the increased frequency of sprayings did not
provide a lasting solution, even if the serious human safety
issues are disregarded. The introduction of Bt-cotton after a
government decision in 1996 resulted in quick take-up of
the technology, and improved the conditions for the farmers
considerably. Not only was there a decline in pest attacks on
cotton, especially in the early season; other important crops

harmed by the polyphagous H. armigera also started to show
reduced pest densities (Wu et al., 2008). The reason was that
the typically small cotton fields were dispersed in the landscape
and cotton, the previously preferred crop for H. armigera,
was replaced by Bt-cotton and suddenly became unusable as
a habitat for that insect species. The efficient killing of the
target pest had turned cotton plots into a population sink at the
regional/landscape level (Lu et al., 2010). This shows the potential
dynamics in source and sink populations, i.e., conditional sources
and sinks (Loreau et al., 2013), altered by context dependent
conditions, here the introduction of Bt-toxin in cotton, and the
particular distribution of cotton plots in the overall cultivated
landscape.

Had the story ended here, it would have been a great success
story of the Bt-cotton (Wu et al., 2008). The fact that Bt-cotton
led to a regional decline in a major pest species and therefore
also diminished the damage caused by H. armigera on multiple
crop plants also coincided with a reduced load of toxic pesticides
(Pemsl and Waibel, 2007).

However, due to ecological responses and interactions, the
full story is more interesting. As Bt-cotton became less suitable
to H. armigera, large resources, both in terms of pesticide-free
habitat and cotton plant biomass became available to species
less susceptible to Bt-toxins. Additionally, the reduced pesticide
pressure also, at least initially (Carrière et al., 2016), eased the
pesticide pressure on other insect groups. A formerly secondary
pest group, mirid bugs (Miridae, Heteroptera) now increased in
numbers, and became an important pest on cotton (Lu et al.,
2010). With the high densities of mirids on Bt-cotton, these
plots now became population sources of mirids that subsequently
migrated to other crops. The outcome was that the higher
proportion of cotton was Bt-transgenic in the landscape, the
higher became the densities of mirids on other crops in the
region (Lu and Wu, 2011). Thus, the management regime of Bt-
cotton, including the change in pesticide use triggered by the use
of the GM cultivars, made the same cotton patches sources of
another herbivorous pest, and caused the subsequent spread of a
non-target, secondary pest at the landscape level (Lu et al., 2010).

Case study 2 illustrates how the single-species focus can
backfire when a “technological solution” is employed against
a single species, and ecological complexity gets ignored. Crops
usually have numerous target pests, or potential target pests,
some of whichmay beminor due to various reasons; this does not
mean that they do not have the potential to cause large damage—
their damage potential is only suppressed by the dominating pest
species. Change the density of this major pest, and these other
potential pests may quickly respond due to competitive release
(Zeilinger et al., 2016).

CASE STUDY 3. THE MONARCH
BUTTERFLY AND LANDSCAPE LEVEL
EFFECTS OF HERBICIDE USE, NORTH
AMERICA

One of the most fascinating insect migrations is performed
by the North American monarch butterfly, Danaus plexippus

Frontiers in Environmental Science | www.frontiersin.org September 2017 | Volume 5 | Article 6050

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Bøhn and Lövei Eco-Evolutionary Responses to Pesticides

(Lepidoptera: Danaidae), that migrates from its summer
distribution area, covering a large part of North America, to
winter in a small part of central Mexico, in spectacular masses
(Stenoien et al., 2016). For this reason, as well as for its
spectacular coloration, the monarch has become a symbol of
beauty and freedom—one of the conservation icons of North
America. The monarch larvae feed on milkweed, Asclepias
syriaca, which is a common weed, especially in maize and
soybeans fields (Oberhauser et al., 2001). In 1999, an article
in Nature reported that the larvae of the monarch butterfly
suffered high mortality in laboratory trials where they fed on
milkweed leaves dusted with a high density of transgenic Bt-
maize pollen (Losey et al., 1999). This study generated heated
discussions, but also triggered a large research project examining
the possible consequences of planting transgenic maize over vast
areas in the summer distribution range of the monarch butterfly.
The summary conclusion was that the risk of being exposed
to significant amounts of Bt-toxin from maize plants through
pollen in the field was negligible (Sears et al., 2001). However,
Oberhauser and co-workers cautioned that the issue needed to be
looked at from a larger perspective, including weed control and
the use of pesticides by farmers (Oberhauser et al., 2001).

By the mid-2010s it became obvious that the cautions were
justified: the monarch population densities were dramatically
reduced with a loss of an estimated 40 million individual
butterflies per year (about 9% decline per year) after 1993/1994
(Williams and Brower, 2016; Oberhauser et al., 2017). The lowest
recordings of the monarch densities on the wintering ground are
from 2013 to 2015 (Rendón-Salinas and Tavera-Alonso, 2015),
and the probability that the fascinating migration of the eastern
monarch will go extinct within 20 years is estimated to be 11–
57% (Semmens et al., 2016). Alarmed by these perspectives,
initiatives across borders (US, Mexico, Canada) have been started
to conserve the monarch butterfly. However, management action
needs an understanding of the causes of the decline in order
to improve the situation. So what are the key causal factors to
explain the monarch decline?

The exponential growth of hectares with GM plants after 1996
in the US increased the acreage under Bt-transgenic plants, but
even more those of glyphosate tolerant GM plants. From 2004
and until 2015, plants with “stacked” traits, i.e., both with Bt-
toxins and herbicide tolerance increased from <10 million ha
to about 60 million ha (James, 2015). As a result, non-target
organisms including monarchs would interact, not only with Bt-
toxins and herbicides directly, but also with the indirect effects of
these factors at a landscape level.

A subtle but highly important indirect effect on the landscape
level is related to herbicide tolerant GM crops and themassive use
of broad-spectrum herbicides. The increased use of glyphosate
products have caused a dramatic decline in the dominant host
plant for the monarch. This is, seen from the monarch point of
view, a serious habitat destruction of its highly specialized habitat.
What is efficient weed management for the farmers can be fatal
for a butterfly depending on a dominant host plant that grows
between the rows of HT GM plants.

Monarch butterflies have experienced a dramatic decline in
the availability of their host plant, the milkweed. In Iowa,

milkweed was present in 51% of the fields in 1999, but only in 8%
a decade later. In addition, even in the fields where still observed,
milkweed density was reduced to about 10% of its original value
(Hartzler, 2010). In sum, the decline in milkweed amounted to
a near-complete elimination in the core of the breeding range
of the monarchs (Pleasants, 2015). The maize and soybean fields
were turned into milkweed deserts.

At the landscape level over the whole mid-western USA,
the decline in milkweed has been almost 40%. However, since
the monarch butterflies on average lay 3.9 times more eggs on
milkweed stems in agricultural fields, where the reduction of
milkweed is most severe, the capacity to support the monarch as
a species is reduced by 71% (Pleasants, 2017).

The threat to the monarch triggered various conservation
responses, including a restoration goal of reaching “six ha
of overwintering monarchs” (i.e., six ha of trees covered by
monarchs). To succeed, 1.6 billion additional milkweed plants
would be needed, a number higher than the estimated current
total population (1.34 billion plants) for the whole Midwest
(Pleasants, 2017). Restoration of themilkweed seems to be crucial
and the use of HT GM plants is identified as a key for the
milkweed decline (Pleasants and Oberhauser, 2013; Zalucki et al.,
2016).

DISCUSSION

The three case studies described above exemplify that agricultural
ecosystems, even if arguably simplified, retain complexity, and
that solutions to agricultural problems should be scrutinized
from an ecological point of view. Ignoring ecological interactions
tends to undermine the overly simple solutions, here exemplified

with insect and weed control by the dominating GM plant traits
and associated technology. When a pest insect or weed species
overcomes a suggested “solution” to hold their density low,
strong selective advantages will play out. Under such conditions,
natural selection may be effective in a timespan of a few years,
and threaten to undermine the efficiency of our weed and
insect control, and thus also the goal of improved agricultural
productivity.

When we look at the dominant technologies currently
accompanying GM plants, there are particular challenges related
to resistance evolution, both for herbicide tolerance traits and for
insect resistance.

Herbicide Tolerant Crops and Weed
Resistance Evolution
From 1995 to 2014, the global agricultural use of glyphosate
rose 14.6-fold, from 51 million kg to 747 million kg and
HT GM crops have been a major driver for this change.
Moreover, by 2016, about 56% of the global use of glyphosate
was connected to HT GM crops (Benbrook, 2016). Specific for
the HT GM plants is that herbicides can be sprayed in higher
doses and repeatedly during the growth season of the plants.
The vast “experiment” that was initiated with HT GM crops and
glyphosate as a stand-alone herbicide on millions of hectares
of cropland, imparted tremendous selection pressure on the
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weed populations. This has been a key factor for the resistance
evolution, now documented for 37 species of weeds globally.
Such development may lead to the familiar “treadmill” where
resistance triggers more applications/higher doses, which leads
to stronger selection pressure for resistance, etc. and eventually
the use of additional herbicides like atrazine and 2,4D (Binimelis
et al., 2009).

Unfortunately, the glyphosate resistant crops were not
integrated into a total weed management program, rather it
replaced all of the other programs (Shaner et al., 2012). In
hindsight, this was not a wise move and showed us that no
herbicide is invulnerable to resistance. At least three different
mechanisms of resistance is identified: (i) alteration of the target
site; (ii) changes in sequestration and/or translocation of the
herbicide, and (iii) changes in the rates of metabolism of the
herbicide (reviewed in Shaner et al., 2012).

For the farmers, resistant weeds are a difficult practical
obstacle to handle. Although farmers often have a long-
term perspective on their farming activity, they may also be
attracted to quick-fix solutions, including pesticides and growing
monocultures. Unfortunately, crop and herbicide monocultures
create conditions for resistance development (Beckie, 2011).

The magnitude of resistance problems should be incentive
enough to further explore the plurality of methods that can
be used under integrated pest management, not only to delay
resistance but to promote alternative and preferably non-
toxic pest control systems (United Nations, 2017). Chemical
treatments, coupled with the unavoidable resistance development
are major blocking factors to a sustainable agriculture.

The use of herbicides like glyphosate also has the potential to
affect ecosystem, animal and human health. The massive use of
glyphosate, totaling 852 million kg globally by 2014 (Benbrook,
2016), which directly or indirectly will expose non-target
biodiversity in terrestrial, soil and aquatic communities (Venter
and Bøhn, 2016), represent a major source of environmental
pollution. In addition, glyphosate is shown to accumulate in (i)
soils that have a history of glyphosate use (Duke et al., 2017), and
(ii) in HT soybeans (Bøhn et al., 2014), more when the plant is
sprayed later in the season (Duke et al., 2003). This will bring
glyphosate residues into the global food and feed chains (Bøhn
et al., 2014).

The increased awareness of glyphosate toxicity, coupled with
the increased volume used, should lead to stronger restrictions,
for example lower acceptance level for glyphosate residues in
food and feed (Cuhra et al., 2016). In this context it is perplexing
why the maximum residue level (MRL) for glyphosate was raised
200-fold from 0.1 to 20mg/kg in Europe, and to 40mg/kg in
the US (Cuhra, 2015). This set of events has been termed “The
Glyphosate Paradox” (Cuhra et al., 2016). The WHO/IARC
categorization of glyphosate as probably carcinogenic to humans
(Guyton et al., 2015), although disputed by EFSA (EFSA, 2015),
is underlining the significance of the controversy around the
glyphosate-based herbicides.

Glyphosate is now also implicated in the decline of the
monarch butterfly (Stenoien et al., 2016), further illustrating the
various kinds of environmental damage that reliance on a few
plant protection chemicals may bring. However, the monarch

may not be the only species at risk for similar reasons—a total
of 39 protected European lepidopteran species have maize weeds
in their host plant range (Lövei et al., 2016).

Insect Resistant Crops and Resistance
Evolution
GMO related “internal” pesticides such as Bt-toxins have a
particular problem related to resistance evolution. The GM
plants express Bt-toxins continuously, also when the “pests” are
not a problem due to their low density. Pesticides expressed
continuously, as in current insect resistant crops, simply raises
the bar and offers continuous “trial and error testing” within
potential pest populations, with a huge fitness reward on
individuals that acquire resistance.

That evolution will eventually result in resistance developing
in the target pest populations was foreseen before Bt-transgenic
plants were grown commercially, and different strategies have
been suggested and adopted to delay undesirable pest adaptation.
For transgenic Bt- plants, the high-dose/refugia strategy is the
most frequently recommended (Carrière et al., 2016). The role of
the non-GM refugia is to secure the reproduction of susceptible
insects and assure that the genes that make the target sensitive
to the Bt-toxin do not disappear from the population. Thus, the
high-dose Bt should remain effective, killing insects that have
resistance alleles from one of the parents, and keeping the target
population heterozygous.

The South African case with B. fusca showed that farmers
initially did not follow the recommendation; only 8% of them
established a refuge. By 2008, however, most or all farmers had
established refugia (Kruger et al., 2009). This may have been too
late, it seems likely that the initial non-compliance played a role
in the fast appearance of the resistance (Van den Berg, 2016). The
other key factor in promoting field-evolved resistance to Bt-toxin
is that the high-dose standard is not met. The Cry1Ab maize
used in South Africa in the relevant period did not fulfill this
criteria for B. fusca (Van den Berg, 2016). Finally, the hypothesis
of functionally recessive inheritance of resistance in the insect,
meaning that when resistant and susceptible parents mate, the
offspring will be susceptible, was rejected by experimental data in
the South African B. fusca (Campagne et al., 2013).

The B. fusca case illustrates that the positive effect of reduced
amounts of insecticides sprayed (e.g., Marvier et al., 2007; Osteen
and Fernandez-Cornejo, 2013) may not last, or lead to the use
of stacked events with multiple Cry toxins inserted. A recent
review (Carrière et al., 2016) concluded that under the current
way of growing, the pyramiding of Bt-toxins is not a stand-alone
solution to the resistance development problem.

Another reason for pyramiding different Cry toxins in the
same plant is to protect the plant from pest insects from different
taxonomic groups, e.g., from both Lepidoptera (Cry1 and Cry2
toxins) and Coleoptera (Cry3 toxins). In maize, up to six different
Cry toxins are combined in the same plant, as in hybrid MON
89034 × 1507 × MON 88017 × 59122, from Monsanto and
Dow AgroSciences, which expresses cry1A.105, cry1F, cry2Ab2,
cry3Bb1-, cry34Ab1, and cry35Ab1. Clearly, the added range of
targeted pests is likely to produce stronger effects on non-target
communities as well (Then, 2009).
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When two toxins are active against the same insect species,
resistance may be delayed. In North Carolina, transgenic cotton
with two Cry-toxins resulted in much higher mortality (96 vs.
44%) in the pest Helicoverpa zea compared to cotton with a
single Cry-toxin (Carrière et al., 2016). At the same time, using
several toxins at the same time is analogous to the use of
multiple antibiotics in the same treatment. The risk is that fewer
agents are left unused when resistance appears. In a long-term
perspective, resistance will inevitably develop, even if a range of
pest management practices will delay the process. Reliance on
pesticides, does not represent a sustainable agricultural practice.
Therefore, the UN is recommending (i) proactive measures to
reduce or eliminate harmful pesticides, and (ii) to consider non-
chemical alternatives first (United Nations, 2017).

The risk that control measures against target pest insects are
lost due to resistance evolution can be tracked back more than
100 years, and is particularly relevant if there is a continuous
selection pressure for resistance (Andow, 2008). Nevertheless,
most pest populations have remained susceptible to Bt toxins, but
5 out of 13 major pest species have already acquired field-based
resistance (reviewed in Tabashnik et al., 2013).

A pesticide could best solve a pest problem if it was perfectly
specific for the target species, and killed only that harmful
organism. In that case, effects on other species would be limited
to the altered ecological interactions in the ecosystem, most
plausibly on species directly linked to the target species in the
food web. However, known chemical and biological pesticides
are either very broad, harming all insects with an exoskeleton
(as for DDT), or are more specific because their action requires
certain conditions (like high pH, cleavage by enzymes, etc.
as with Bt-toxins). This may limit the range of species/taxa
harmed, although there still may be several species in the harmed
group. For example, the order Lepidoptera, the main target
group of Cry1 and Cry2 toxins, contains 126 families and some
180,000 known species (Capinera, 2008). Moreover, a single plant
species may be a host to numerous species. Maize and cotton
are registered as hosts for 776 and 872 lepidopteran species,
respectively (Robinson et al., 2010).

When the criteria of specificity to the pest species is not
fulfilled, harmful effects on non-target species (biodiversity) can
be expected. A range of factors contributes to potential negative
effects on non-target species.

Firstly, the toxicity of the pesticides will be crucial, which is
typically taxa/species/age- and context- dependent.

Secondly, the break-down rate will modify and reduce the
toxicity over time. Pesticides that are decaying slowly may
accumulate in the food web and have serious long-term effects,
such as the PCBs (Gobas et al., 2016). Pesticides that do not break
downmay be a part of the food or feed produced and have further
effects on humans or animals along the food/feed chain. The
break-down rate of chemicals depends on environmental factors
like pH, soil type, binding to other particles etc., which adds to
the complexity.

Thirdly, the timing and dosage of applications are important
for potential unwanted effects. Treatments with toxic pesticides
are ideally precisely timed to hit when the problem is severe. The
option to time the application of a pesticide can therefore be a

good thing. With pesticides that are expressed continuously from
the plant genome, as in Bt-plants, such flexibility is lost.

In the context of negative effects on biodiversity, the sensitivity
of non-target organisms, most of the species in soil and aquatic
communities have never been tested for their vulnerability to Bt-
toxins. Several aspects of the fate of Bt-toxins are not well-known,
including amounts, break-down rates and effects. Further, studies
of tri-trophic relationships and food web interactions may
provide insight to community responses (Yu et al., 2014).

Can Stacked Traits Act as Multiple
Stressors?
The understanding of resistance evolution and
stacking/pyramiding of traits must be linked to potential
combinatorial effects on non-target organisms. The use of
stacked events represents: (i) increased doses/more applications
of herbicides per season, and (ii) a broader range of Cry toxins
in insect resistant GM plants. Both these effects trigger positive
feedback loops with stronger selection pressures and further
resistance evolution. Since these toxins/chemicals/traits will
meet and interact, also with other stressors in the environment,
the co-exposure and potential combinatorial effects need to be
studied (Nørgaard and Cedergreen, 2010; Bjergager et al., 2011).
Combinatorial effects between Bt-toxins and herbicides may
enhance toxicity (Then and Bauer-Panskus, 2017). For example,
Bøhn and co-workers showed that Cry1Ab and Cry2Aa toxins
act in combination (additively), indicating that “stacked events”
may increase negative effects on non-target organisms (Bøhn
et al., 2016). However, combinatorial effects represents a major
knowledge gap in the scientific literature (Venter and Bøhn,
2016).

Sustainability of Agriculture
Agriculture has been fundamental for the rise of human
civilization (Diamond, 1999) and continues to be vital for human
survival through food production. However, many modern
agricultural innovations relied on non-renewable resources that
are not sustainable (Gliessman, 2015). We need a strong
prioritization of resources for research to build knowledge to
ensure that future food production is sustainable. In particular,
there is a need to counteract agricultural practices that are
beneficial on a short term, but with trade-off costs on a medium
to long term scale. Such costs includes loss of biodiversity,
ecosystem services, soil productivity, pollution and reduced food
quality.

CONCLUSIONS

The currently dominant agricultural practice has changed
the natural spatial distributions of plant species that provide
food, fiber, and other important resources for us (classified
as provisioning ecosystem services), and resulted in habitats
that are less diverse than the original habitats that were
converted to croplands. Nonetheless, these are biological entities,
supporting and interacting with various plant, animal, fungal,
and microbial communities in complex ways. The recognition
that when trying to manage agricultural fields and landscapes,
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we work with a complex biological system is in itself important,
as adopting this view should limit the belief in reductionist
solutions.

Moreover, from an evolutionary perspective on sustainable
food production, chemical pesticides, both insecticides such
as Bt-toxins and sprayed herbicides, carry problems that are
hard to solve. Dominant technologies in transgenic plants
rely on new ways of using pesticides. These practices does
not utilize and often contradicts ecological understanding
and are therefore likely to exacerbate current problems. It
is not likely that pesticides can be eliminated from our
dominant agricultural practices in the near future. Key factors
to uphold or improve their efficiency would be to increase
the precision (specificity, timing) while minimizing the amount
used. This would reduce pollution, lower their accumulation
in the environment as well as in food, both of which are
positive outcomes for ecosystem and human health. We
also have to place the analysis of possible environmental
consequences into an agroecological context, because that
approach inherently considers the possibility of multiple
stressor interaction, sublethal effects, non-linear, and synergistic
outcomes that are so characteristic of biological systems. The

examples discussed in this article also underline the importance
to incorporate landscape-level ecological knowledge into the

evaluation practice, because spatially explicit analysis of potential
impacts are important tools in making agricultural practice more
sustainable.

In the three case studies discussed, the GM plants associated
with simple pesticide-solutions were unable to solve complex
agricultural problems. We argue that the resulting resistance
development and increased use of herbicides arose because basic
ecological and evolutionary theory was overlooked. Had such
knowledge been included, we would have foreseen and possibly
been able to avoid some of the unwanted outcomes we are
experiencing today.

AUTHOR CONTRIBUTIONS

TB and GL conceived the study and wrote the paper.

FUNDING

The study was funded by GenØk—Centre for Biosafety, Fujian
Agriculture and Forestry University, and Aarhus University.

REFERENCES

Andow, D. A. (2008). The risk of resistance evolution in insects to transgenic

insecticidal crops. Collect. Biosaf. Rev. 4, 142–199. Available online at: http://

www.icgeb.org/biosafety/publications/collections.html

Barton, K. A., Whiteley, H., and Yang, N.-S. (1987). Bacillus thuringiensis §-

Endotoxin expressed in transgenic Nicotiana tabacum provides resistance to

lepidopteran insects. Plant Physiol. 85, 1103–1109. doi: 10.1104/pp.85.4.1103

Beckie, H. J. (2011). Herbicide-resistant weed management: focus on glyphosate.

Pest Manag. Sci. 67, 1037–1048. doi: 10.1002/ps.2195

Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States

and globally. Environ. Sci. Eur. 28:3. doi: 10.1186/s12302-016-0070-0

Binimelis, R., Pengue, W., and Monterroso, I. (2009). “Transgenic treadmill”:

responses to the emergence and spread of glyphosate-resistant johnsongrass in

Argentina. Geoforum 40, 623–633. doi: 10.1016/j.geoforum.2009.03.009

Bjergager, M. B., Hanson, M. L., Lissemore, L., Henriquez, N., Solomon, K. R., and

Cedergreen, N. (2011). Synergy in microcosms with environmentally realistic

concentrations of prochloraz and esfenvalerate. Aquat. Toxicol. 101, 412–422.

doi: 10.1016/j.aquatox.2010.11.004

Bøhn, T., Cuhra, M., Traavik, T., Sanden, M., Fagan, J., and Primicerio, R.

(2014). Compositional differences in soybeans on the market: glyphosate

accumulates in roundup ready GM soybeans. Food Chem. 153, 207–215.

doi: 10.1016/j.foodchem.2013.12.054

Bøhn, T., Rover, C. M., and Semenchuk, P. R. (2016). Daphnia magna negatively

affected by chronic exposure to purified Cry-toxins. Food Chem. Toxicol. 91,

130–140. doi: 10.1016/j.fct.2016.03.009

Bravo, A., Likitvivatanavong, S., Gill, S. S., and Soberón, M. (2011). Bacillus

thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol.

41, 423–431. doi: 10.1016/j.ibmb.2011.02.006

Campagne, P., Kruger, M., Pasquet, R., Le Ru, B., and Van den Berg, J. (2013).

Dominant inheritance of field-evolved resistance to bt corn in Busseola fusca.

PLoS ONE 8:e69675. doi: 10.1371/journal.pone.0069675

Capinera, J. L. (2008). Encyclopedia of Entomology. Dordrecht: Springer

Science+Business Media B.V.

Carrière, Y., Fabrick, J. A., and Tabashnik, B. E. (2016). “Advances in managing

pest resistance to Bt crops: pyramids and seed mixtures,” in Advances in Insect

Control and Resistance Management (Berlin: Springer), 263–286.

Carson, R. (2002). Silent Spring. Boston, MA: Houghton Mifflin.

Cuhra, M. (2015). Review of GMO safety assessment studies: glyphosate residues

in roundup ready crops is an ignored issue. Environ. Sci. Eur. 27, 1–14.

doi: 10.1186/s12302-015-0052-7

Cuhra, M., Bøhn, T., and Cuhra, P. (2016). Glyphosate: too much of a good thing?

Front. Environ. Sci. 4:28. doi: 10.3389/fenvs.2016.00028

Deguine, J.-P., Ferron, P., and Russell, D. (2008). Sustainable pest management

for cotton production. A review. Agron. Sustain. Dev. 28, 113–137.

doi: 10.1051/agro:2007042

Diamond, J. M. (1999). Guns, Germs, and Steel: The Fates of Human Societies. New

York, NY: Norton.

Duke, S. O., Rimando, A. M., Pace, P. F., Reddy, K. N., and Smeda,

R. J. (2003). Isoflavone, glyphosate, and aminomethylphosphonic

acid levels in seeds of glyphosate-treated, glyphosate-resistant

soybean. J. Agric. Food Chem. 51, 340–344. doi: 10.1021/jf02

5908i

Duke, S. O., Rimando, A. M., Reddy, K. N., Cizdziel, J. V., Bellaloui, N., Shaw,

D. R., et al. (2017). Lack of transgene and glyphosate effects on yield, and

mineral and amino acid content of glyphosate-resistant soybean: glyphosate

effects on glyphosate-resistant soybean. Pest Manag. Sci. doi: 10.1002/ps.4625.

[Epub ahead of print].

EFSA (2015). Conclusion on the peer review of the pesticide risk assessment of the

active substance glyphosate. EFSA J. 13:4302. doi: 10.2903/j.efsa.2015.4302

Guyton, K. Z., Loomis, D., Grosse, Y., El Ghissassi, F., Benbrahim-

Tallaa, L., Guha, N., et al. (2015). Carcinogenicity of tetrachlorvinphos,

parathion, malathion, diazinon, and glyphosate. Lancet Oncol. 16, 490–491.

doi: 10.1016/S1470-2045(15)70134-8

Gliessman, S. R. (2015). Agroecology: the Ecology of Sustainable Food Systems. Boca

Raton, FL: CRC Press/Taylor & Francis Group.

Gobas, F. A., Burkhard, L. P., Doucette, W. J., Sappington, K. G., Verbruggen, E.

M., Hope, B. K., et al. (2016). Review of existing terrestrial bioaccumulation

models and terrestrial bioaccumulation modeling needs for organic

chemicals. Integr. Environ. Assess. Manag. 12, 123–134. doi: 10.1002/

ieam.1690

Hakim, D. (2016). Doubts about the promised bounty of genetically modified

crops. N. Y. Times.

Hartzler, R. G. (2010). Reduction in common milkweed (Asclepias syriaca)

occurrence in Iowa cropland from 1999 to 2009. Crop Prot. 29, 1542–1544.

doi: 10.1016/j.cropro.2010.07.018

Frontiers in Environmental Science | www.frontiersin.org September 2017 | Volume 5 | Article 6054

http://www.icgeb.org/biosafety/publications/collections.html
http://www.icgeb.org/biosafety/publications/collections.html
https://doi.org/10.1104/pp.85.4.1103
https://doi.org/10.1002/ps.2195
https://doi.org/10.1186/s12302-016-0070-0
https://doi.org/10.1016/j.geoforum.2009.03.009
https://doi.org/10.1016/j.aquatox.2010.11.004
https://doi.org/10.1016/j.foodchem.2013.12.054
https://doi.org/10.1016/j.fct.2016.03.009
https://doi.org/10.1016/j.ibmb.2011.02.006
https://doi.org/10.1371/journal.pone.0069675
https://doi.org/10.1186/s12302-015-0052-7
https://doi.org/10.3389/fenvs.2016.00028
https://doi.org/10.1051/agro:2007042
https://doi.org/10.1021/jf025908i
https://doi.org/10.1002/ps.4625
https://doi.org/10.2903/j.efsa.2015.4302
https://doi.org/10.1016/S1470-2045(15)70134-8
https://doi.org/10.1002/ieam.1690
https://doi.org/10.1016/j.cropro.2010.07.018
http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Bøhn and Lövei Eco-Evolutionary Responses to Pesticides

Hilbeck, A., and Otto, M. (2015). Specificity and combinatorial effects of Bacillus

thuringiensis Cry toxins in the context of GMO environmental risk assessment.

Front. Environ. Sci. 3:71. doi: 10.3389/fenvs.2015.00071

James, C. (2015). Global Status of Commercialized Biotech/GM Crops: 2015. Ithaca,

NY: ISAAA.

James, C. (2016). Global Status of Commercialized Biotech/GM Crops: 2016. Ithaca,

NY: ISAAA.

Kruger, M., Van Rensburg, J. B. J., and Van den Berg, J. (2009). Perspective on

the development of stem borer resistance to Bt maize and refuge compliance

at the Vaalharts irrigation scheme in South Africa. Crop Prot. 28, 684–689.

doi: 10.1016/j.cropro.2009.04.001

Kruger, M., Van Rensburg, J. B. J., and Van den Berg, J. (2012). Transgenic

Bt maize: farmers’ perceptions, refuge compliance and reports of

stem borer resistance in South Africa. J. Appl. Entomol. 136, 38–50.

doi: 10.1111/j.1439-0418.2011.01616.x

Lewontin, R. C. (2000). The Triple Helix - Gene, Organism and Environment.

Cambridge, MA: Harvard University Press.

Loreau, M., Daufresne, T., Gonzalez, A., Gravel, D., Guichard, F., Leroux, S. J., et al.

(2013). Unifying sources and sinks in ecology and Earth sciences. Biol. Rev. 88,

365–379. doi: 10.1111/brv.12003

Losey, J. E., Rayor, L. S., and Carter, M. E. (1999). Transgenic pollen harms

monarch larvae. Nature 399, 214–214. doi: 10.1038/20338

Lövei, G. L., Holst, N., and Lang, A. (2016). “Can the growing of transgenic maize

threaten protected Lepidoptera in Europe?” in: Dutch Butterfly Conservation

2016/Future 4 butterflies in Europe (Wageningen), 39. Book of Abstracts.

Lu, Y., and Wu, K. (2011). Mirid bugs in china: pest status and management

strategies. Outlooks Pest Manag. 22, 248–252. doi: 10.1564/22dec02

Lu, Y., Wu, K., Jiang, Y., Xia, B., Li, P., Feng, H., et al. (2010). Mirid bug outbreaks

in multiple crops correlated with wide-scale adoption of Bt cotton in China.

Science 328, 1151–1154. doi: 10.1126/science.1187881

Marvier, M., McCreedy, C., Regetz, J., and Kareiva, P. (2007). A meta-analysis

of effects of bt cotton and maize on nontarget invertebrates. Science 316,

1475–1477. doi: 10.1126/science.1139208

Myers, J. P., Antoniou, M. N., Blumberg, B., Carroll, L., Colborn, T., Everett,

L. G., et al. (2016). Concerns over use of glyphosate-based herbicides and

risks associated with exposures: a consensus statement. Environ. Health 15:19.

doi: 10.1186/s12940-016-0117-0

Nicholls, C. I., and Altieri, M. A. (1997). Conventional agricultural development

models and the persistence of the pesticide treadmill in Latin America. Int. J.

Sustain. Dev. World Ecol. 4, 93–111. doi: 10.1080/13504509709469946

Nørgaard, K. B., and Cedergreen, N. (2010). Pesticide cocktails can interact

synergistically on aquatic crustaceans. Environ. Sci. Pollut. Res. 17, 957–967.

doi: 10.1007/s11356-009-0284-4

Oberhauser, K. S., Prysby, M. D., Mattila, H. R., Stanley-Horn, D. E., Sears,

M. K., Dively, G., et al. (2001). Temporal and spatial overlap between

monarch larvae and corn pollen. Proc. Natl. Acad. Sci. U.S.A. 98, 11913–11918.

doi: 10.1073/pnas.211234298

Oberhauser, K., Wiederholt, R., Diffendorfer, J. E., Semmens, D., Ries, L.,

Thogmartin,W. E., et al. (2017). A trans-national monarch butterfly population

model and implications for regional conservation priorities. Ecol. Entomol. 42,

51–60. doi: 10.1111/een.12351

Osteen, C. D., and Fernandez-Cornejo, J. (2013). Economic and policy issues

of US agricultural pesticide use trends. Pest Manag. Sci. 69, 1001–1025.

doi: 10.1002/ps.3529

Pemsl, D., and Waibel, H. (2007). Assessing the profitability of different

crop protection strategies in cotton: case study results from Shandong

Province, China. Agric. Syst. 95, 28–36. doi: 10.1016/j.agsy.2007.

02.013

Pleasants, J. (2017). Milkweed restoration in the Midwest for monarch butterfly

recovery: estimates ofmilkweeds lost, milkweeds remaining andmilkweeds that

must be added to increase the monarch population. Insect Conserv. Divers. 10,

42–53. doi: 10.1111/icad.12198

Pleasants, J. M. (2015). “Monarch butterflies and agriculture,” in Monarchs in

a Changing World: Biology and Conservation of an Iconic Insect, eds K. S.

Oberhauser, S. Altizer, and K. R. Nail (Ithaca, NY: Cornell University Press),

169–178.

Pleasants, J. M., and Oberhauser, K. S. (2013). Milkweed loss in agricultural

fields because of herbicide use: effect on the monarch butterfly population:

herbicide use and monarch butterflies. Insect Conserv. Divers. 6, 135–144.

doi: 10.1111/j.1752-4598.2012.00196.x

Rendón-Salinas, E., and Tavera-Alonso, G. (2015). Forest Surface Occupied by

Monarch Butterfly Hibernation Colonies in December 2015.WWF-Mexico, DF.

Robinson, G. S., Ackery, P. R., Kitching, I. J., Beccaloni, G. W., and Hernández,

L. M. (2010). HOSTS – A Database of the World’s Lepidopteran Hostplants.

London: Natural History Museum. Available online at: http://www.nhm.ac.uk/

hosts (Accessed August 18, 2017).

Sears, M. K., Hellmich, R. L., Stanley-Horn, D. E., Oberhauser, K. S., Pleasants, J.

M., Mattila, H. R., et al. (2001). Impact of Bt corn pollen on monarch butterfly

populations: a risk assessment. Proc. Natl. Acad. Sci. U.S.A. 98, 11937–11942.

doi: 10.1073/pnas.211329998

Semmens, B. X., Semmens, D. J., Thogmartin, W. E., Wiederholt, R., López-

Hoffman, L., Diffendorfer, J. E., et al. (2016). Quasi-extinction risk and

population targets for the Eastern, migratory population of monarch butterflies

(Danaus plexippus). Sci. Rep. 6:23265. doi: 10.1038/srep23265

Shaner, D. L., Lindenmeyer, R. B., and Ostlie, M. H. (2012). What have the

mechanisms of resistance to glyphosate taught us? Pest Manag. Sci. 68, 3–9.

doi: 10.1002/ps.2261

Stenoien, C., Nail, K. R., Zalucki, J. M., Parry, H., Oberhauser, K. S., and

Zalucki, M. P. (2016). Monarchs in decline: a collateral landscape-level effect

of modern agriculture: landscape-level effect of GM crops on monarchs. Insect

Sci. doi: 10.1111/1744-7917.12404. [Epub ahead of print].

Tabashnik, B. E., Brévault, T., and Carrière, Y. (2013). Insect resistance to

Bt crops: lessons from the first billion acres. Nat. Biotechnol. 31, 510–521.

doi: 10.1038/nbt.2597

Then, C. (2009). Risk assessment of toxins derived from Bacillus thuringiensis-

synergism, efficacy, and selectivity. Environ. Sci. Pollut. Res. 17, 791–797.

doi: 10.1007/s11356-009-0208-3

Then, C., and Bauer-Panskus, A. (2017). Possible health impacts of Bt

toxins and residues from spraying with complementary herbicides in

genetically engineered soybeans and risk assessment as performed by

the European Food Safety Authority EFSA. Environ. Sci. Eur. 29, 1–11.

doi: 10.1186/s12302-016-0099-0

United Nations (2017). Report of the Special Rapporteur on the Right to Food.

Van den Berg, J. (2016). Insect resistance management in bt maize: wild host plants

of stem borers do not serve as refuges in africa. J. Econ. Entomol. 110, 221–229.

doi: 10.1093/jee/tow276

Van den Berg, J., Hilbeck, A., and Bøhn, T. (2013). Pest resistance to Cry1Ab Bt

maize: field resistance, contributing factors and lessons from South Africa.Crop

Prot. 54, 154–160. doi: 10.1016/j.cropro.2013.08.010

van Rensburg, J. B. J. (2007). First report of field resistance by the stem borer,

Busseola fusca (Fuller) to Bt-transgenic maize. South Afr. J. Plant Soil 24,

147–151. doi: 10.1080/02571862.2007.10634798

Venter, H. J., and Bøhn, T. (2016). Interactions between Bt crops and

aquatic ecosystems: a review. Environ. Toxicol. Chem. 35, 2891–2902.

doi: 10.1002/etc.3583

Williams, E. H., and Brower, L. (2016). A conservation concern: how many

monarchs are there. News Lepidopterists Soc. 58, 90–93.

Wu, K. M., Lu, Y. H., Feng, H. Q., Jiang, Y. Y., and Zhao, J. Z. (2008). Suppression

of cotton bollworm in multiple crops in china in areas with Bt toxin-containing

cotton. Science 321, 1676–1678. doi: 10.1126/science.1160550

Yu, H., Li, Y., Li, X., and Wu, K. (2014). Arthropod abundance and diversity

in transgenic bt soybean. Environ. Entomol. 43, 1124–1134. doi: 10.1603/

EN13337

Zalucki, M. P., Parry, H. R., and Zalucki, J. M. (2016). Movement and egg laying

in monarchs: to move or not to move, that is the equation: movement and egg

laying. Austral. Ecol. 41, 154–167. doi: 10.1111/aec.12285

Zeilinger, A. R., Olson, D. M., and Andow, D. A. (2016). Competitive release and

outbreaks of non-target pests associated with transgenic Bt cotton. Ecol. Appl.

26, 1047–1054. doi: 10.1890/15-1314

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Bøhn and Lövei. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org September 2017 | Volume 5 | Article 6055

https://doi.org/10.3389/fenvs.2015.00071
https://doi.org/10.1016/j.cropro.2009.04.001
https://doi.org/10.1111/j.1439-0418.2011.01616.x
https://doi.org/10.1111/brv.12003
https://doi.org/10.1038/20338
https://doi.org/10.1564/22dec02
https://doi.org/10.1126/science.1187881
https://doi.org/10.1126/science.1139208
https://doi.org/10.1186/s12940-016-0117-0
https://doi.org/10.1080/13504509709469946
https://doi.org/10.1007/s11356-009-0284-4
https://doi.org/10.1073/pnas.211234298
https://doi.org/10.1111/een.12351
https://doi.org/10.1002/ps.3529
https://doi.org/10.1016/j.agsy.2007.02.013
https://doi.org/10.1111/icad.12198
https://doi.org/10.1111/j.1752-4598.2012.00196.x
http://www.nhm.ac.uk/hosts
http://www.nhm.ac.uk/hosts
https://doi.org/10.1073/pnas.211329998
https://doi.org/10.1038/srep23265
https://doi.org/10.1002/ps.2261
https://doi.org/10.1111/1744-7917.12404
https://doi.org/10.1038/nbt.2597
https://doi.org/10.1007/s11356-009-0208-3
https://doi.org/10.1186/s12302-016-0099-0
https://doi.org/10.1093/jee/tow276
https://doi.org/10.1016/j.cropro.2013.08.010
https://doi.org/10.1080/02571862.2007.10634798
https://doi.org/10.1002/etc.3583
https://doi.org/10.1126/science.1160550
https://doi.org/10.1603/EN13337
https://doi.org/10.1111/aec.12285
https://doi.org/10.1890/15-1314
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


REVIEW
published: 09 November 2015

doi: 10.3389/fenvs.2015.00071

Frontiers in Environmental Science | www.frontiersin.org November 2015 | Volume 3 | Article 71

Edited by:

Robin Mesnage,

King’s College London, UK

Reviewed by:

M. Jahangir Alam,

University of Houston College of

Pharmacy, USA

Yue-Wern Huang,

Missouri University of Science and

Technology, USA

*Correspondence:

Angelika Hilbeck

angelika.hilbeck@env.ethz.ch

Specialty section:

This article was submitted to

Environmental Health,

a section of the journal

Frontiers in Environmental Science

Received: 26 August 2015

Accepted: 15 October 2015

Published: 09 November 2015

Citation:

Hilbeck A and Otto M (2015)

Specificity and Combinatorial Effects

of Bacillus Thuringiensis Cry Toxins in

the Context of GMO Environmental

Risk Assessment.

Front. Environ. Sci. 3:71.

doi: 10.3389/fenvs.2015.00071

Specificity and Combinatorial Effects
of Bacillus Thuringiensis Cry Toxins
in the Context of GMO Environmental
Risk Assessment
Angelika Hilbeck 1* and Mathias Otto 2

1Department of Environmental Systems Science, Swiss Federal Institute of Technology, Institute for Integrative Biology,

Zurich, Switzerland, 2 Federal Agency for Nature Conservation, Bonn, Germany

Stacked GM crops expressing up to six Cry toxins from Bacillus thuringiensis (Bt) are

today replacing the formerly grown single-transgene GM crop varieties. Stacking of

multiple Cry toxins not only increase the environmental load of toxins but also raise the

question on how possible interactions of the toxins can be assessed for risk assessment,

which is mandatory for GM crops. However, no operational guidelines for a testing

strategy or testing procedures exist. From the developers point of view, little data testing

for combinatorial effects of Cry toxins is necessary as the range of possibly affected

organisms focuses on pest species and no evidence is claimed to exist pointing to

combinatorial effects on non-target organisms. We have examined this rationale critically

using information reported in the scientific literature. To do so, we address the hypothesis

of narrow specificity of Cry toxins subdivided into three underlying different conceptual

conditions (i) “efficacy” in target pests as indicator for “narrow specificity,” (ii) lack of

reported adverse effects of Cry toxins on non-target organisms, and (iii) proposed modes

of action of Cry toxins (or the lack thereof) as mechanisms underlying the reported

activity/efficacy/specificity of Cry toxins. Complementary to this information, we evaluate

reports about outcomes of combinatorial effect testing of Cry toxins in the scientific

literature and relate those findings to the practice of environmental risk assessment of

Bt-crops in general and of stacked Bt-events in particular.

Keywords: Bt toxins, non-target organisms, target organisms, synergistic effects, mode of action, adverse effects

BACKGROUND

Today, many crop plants have been genetically modified (GM) to contain transgenic DNA
sequences from the bacterium Bacillus thuringiensis (Bt) coding for the expression of so-
called Cry toxins from 3 to 4 different classes (Cry1, Cry2, Cry3, and to a very limited
extent Cry9 class) (Schnepf et al., 1998; Sanchis, 2011; Sansinenea, 2012; van Frankenhuyzen,
2013). These microbial toxins engineered into GM crops plants aim to control certain
target pest species which differ depending on the regions where the crops are grown. In
Bt plants, the Cry toxins are present persistently and usually in all plants parts from
germination to harvest of the crops. Specifically, it is through genetic engineering that also
the pollen of GM plants can express these bacterial toxins. Bt-toxins in pollen are not
degraded by UV light and remain bioactive when, for example, deposited on host plants
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(Ohlfrest et al., 2002). Toxic pollen is rare in nature as, typically,
there is little selective advantage for such a trait to evolve.

When used as sprayable, externally applied B. thuringiensis
based insecticides, the risk for non-target organisms to ingest
the Cry toxins is low due to the limited persistence of these
sprays in space and time as the Bt toxin is quickly degraded by
UV light and removed from plants by rain (Behle et al., 1997).
Risks to non-target insects are further reduced because sprayable
B. thuringiensis products usually consist of Cry toxins in their
inactive crystalline form (hence their abbreviation “Cry”) that
need to undergo a complex activation process before becoming
active (see below for details). With the introduction of Cry toxin
producing GM crop plants into industrial agricultural systems,
a whole new dimension of spatio-temporal exposure to Cry
toxins opened up involving a far broader range of non-target
organisms below- and above ground (Hilbeck, 2001, 2002). Thus,
the potential for chronic longterm effects became more likely to
occur than with short-lived, inactive sprayable B. thuringiensis
insecticides. Consequently, it was with the introduction of Cry
toxin producing GM crops that the likelihood of potential
adverse effects (i.e., risks) on non-target organisms, in particular
beneficial insects like natural enemies of pests, pollinators, and
species of conservation concern, came on the research agenda
(Hilbeck, 2001, 2002).

Since about one decade, there is a marked increase in
the commercial approval and adoption of GM plants carrying
multiple transgenes coding for the simultaneous expression
of several insecticidal Cry toxins (and also transgenes for
herbicide resistance), so called “pyramided” or “stacked” events
(Fernandez-Cornejo et al., 2014; United States Department of
Agriculture and Economic Research Service (ERS), 2014). In
2014, stacked GM cotton reached almost 80% of cotton plantings
up from around 25% 10 years earlier. Stacked GM maize made
up 76% of the planted maize area in 2014 up from less than
10% a decade ago (Fernandez-Cornejo et al., 2014; United
States Department of Agriculture and Economic Research Service
(ERS), 2014). Stacking Bt transgenes was triggered by spreading

TABLE 1 | Maximum Cry toxin concentrations [µg/g] measured in field-grown SmartStax, several US locations in 2006*; FW, fresh weight; DW, dry weight.

Bt toxin Leaves Roots Whole plant Pollen Kernels

DW FW DW FW DW FW DW FW DW FW

Cry1A.105 210 34 100 12 86 10 21 16 4.9 4.3

Cry2Ab2 350 60 120 18 80 19 2.3 1.8 7.5 6.7

Cry1F 31 4.7 15 2.0 16 1.9 32 25 7.4 6.7

Total Lepidopteran-active Cry 591 99 235 32 182 31 55 43 20 18

Cry3Bb1 490 92 260 31 220 26 24 19 26 23

Cry34Ab1 279 42 150 19 196 23 117 90 94 85

Cry35Ab1 158 24 71 9.0 82 9.6 0.5 0.4 2.3 2.0

Total Coleopteran-active Cry 927 158 481 59 498 59 142 109 122 110

TOTAL 1518 257 716 91 680 90 197 152 142 138

*Source: compilation based on Phillips (2008) and Stillwell and Silvanovich (2007).

resistance among target pest populations against GM crops
expressing only single Cry toxins (Tabashnik et al., 2013). The
underlying assumption is that pest species are less likely to
develop resistance simultaneously against multiple Cry toxins
because of their somewhat different modes of action. Whether
or not this assumption will hold true for the currently employed
Cry toxins that still share significant similarities in their modes
of action (Hernández-Rodríguez et al., 2013) is not subject of our
evaluation in this paper but deserves a separate analysis.

In this review, we are concerned with the drastically increased
Cry toxin load in stacked or pyramided Bt crop varieties resulting
in persistent exposure of a wide range of non-target organisms
in terrestrial and aquatic ecosystems. In SmartStax R© maize,
for example, combining six Cry toxins, maximum amounts
of >250µg/g fresh weight in leaves, > 90µg/g fresh weight
in roots, and > 150µg/g fresh weight in pollen was reported
(Table 1; Stillwell and Silvanovich, 2007; Phillips, 2008). Potential
combinatorial effects of these multiple Cry toxins have been
recognized by the European regulatory authorities only few years
ago (EFSA, 2010a), and are still intensely discussed by regulators
and in the scientific community alike (de Schrijver et al., 2014).
Yet, most regulators, including EFSA, still operate under the
current controversial paradigm that limits the environmental risk
assessment to focusing on the added novel substance only which
is tested as single purified protein, produced by microbes, in
isolation of the GM plants, following testing schemes developed
for the regulatory approval of synthetic insecticides (for more
details see Hilbeck et al., 2011). The results of these tests are then
used in all risk assessments for Bt crops that express these Cry
toxins but irrespective of the GM event (e.g., Garcia-Alonso et al.,
2006; Romeis et al., 2008; Dolezel et al., 2011; Hilbeck et al., 2011).
Consequently, for stacked GM crop plants combining multiple
Cry toxins, developers of GM plants are arguing for minimal
regulatory oversight of stacked events, if any at all, on the basis
that “previously approved GM events that have been combined by
conventional plant breeding and contain GM traits that are not
likely to interact in a manner affecting safety should be considered
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to be as safe as their conventional counterparts” [Pilacinski et al.,
2011, similar arguments by Raybould et al. (2012) and CropLife
International (2015)]. EFSA (2010b) largely follows this view and
has approved stacked events based on the above arguments—
exemplary statements from an opinion for approval of a stacked
event expressing three Cry toxins are as follows:

“The safety of Cry1A.105 and Cry2Ab2 proteins expressed in
maize MON 89034, the Cry1F and PAT proteins expressed in
maize 1507, and the CP4 EPSPS and CP4 EPSPS L214P proteins
expressed in maize NK603 have been assessed for their safety
previously and no safety concerns were identified for humans
and animals.... the EFSA GMO Panel considers it unlikely that
interactions between the single maize events will occur that may
impact on the food and feed safety and nutritional pro perties.”
[excerpts from EFSA (2010b)—similar justifications and wording
has been used in other approvals of stacked events].

In this paper, we examine the two claims that serve as
justification to minizime or omit the testing of combinatorial
effects of multiple Cry toxins expressed in stacked GM Bt crop
plants: (1) Due to narrow specificity of Cry toxins, no species
outside of the primary class of target pest organisms are affected
and (2) as long as single Cry toxins do not elicit adverse effects,
they will not do so in combination with other Cry toxins or other
naturally occurring compounds.

Lastly, we will reflect on the regulatory practice of risk
assessment of stacked Bt-crops in the EU and will provide
recommendations for improvements of the current testing
practice.

DEFINITIONS AND DATA USED IN THIS
REVIEW

We carried out a data base search of the Web of Science for peer
reviewed international publications in English language for the
following key word categories: Category I: “Bacillus thuringiensis”
or “Bt” or “toxin” or “protein” combined with Category
II: “synergistic” or “interaction” or “combined/combinatorial”
“effects.” We then selected those studies that reported about
in vivo tests only, e.g., bioassays with target and non-target
organisms. On occasion, these reports contained also data on
in-vitro tests with cell lines that we disregarded for comparability
reasons. We restricted our evaluation to studies that reported on
combinatorial effects between Cry proteins and some naturally
occuring plant-, bacteria-, or insect-compounds as they can be
encountered by non-target organisms feeding on stacked GM Bt
plants in their natural environment. Studies on combinatorial or
complementary effects with herbicides and other pesticides, such
as neonicotinoid residues (Douglas and Tooker, 2015), have been
omitted and left for future evaluations. In Table 2, we compiled
the selected key reports to allow for a quick overview of the
involved compounds, test organisms, and proposed mechanisms.

We report our findings according to the claims outlined above.
The definitions for various types of combinatorial effects followed
those by Tabashnik (1992):

Synergistic effects in the context of this paper entails effects—
e.g., mortality rates—of combined toxins exceeding those

found for the individual toxin with the highest activity. If
synergistic effects occur, this means that the toxicity of a
mixture cannot be predicted from the individual ingredients.
Antagonistic effects in the context of this paper are effects
contrasting synergistic effects: when a mixture of toxins leads
to less toxicity than found for individual toxins with the lowest
activity. If potency is less than expected.
Additive effects in the context of this paper entail effects—
e.g., mortality rates—of combined toxins not exceeding those
found for the individual toxin with the highest activity. If
additive effects occur, this means that the toxicity of a mixture
could be predicted from the individual ingredients.

RESULTS

The first claim of narrow specificity rests on two premises: (i)
“efficacy” determined in economically important target pests is
a reliable indicator for “narrow specificity” of Cry toxins, and (ii)
the mode of action of Cry toxins supports the claim of narrow
specificity. In the following, we will evaluate the data base for
these two premises.

Furthermore, we will summarize the scientific literature
documenting effects of single and multiple combined Cry
toxins and their postulated mechanisms to examine whether
the reported data and methodologies confirm the conclusion of
predictability (likelihood) of combinatorial effects.

NARROW SPECIFICITY OF Bt PROTEINS

Since the claimed narrow specificity of Bt toxins serves as the first
line of justification to forego the testing of non-target organisms,
the premises this claim rests upon should be well-supported
with scientific evidence. Below, we, firstly, scrutinize the current
definition of specificity and its application within risk assessment
of Bt-crops and non-target organisms. Secondly, we summarize
the current state of knowledge regarding the proposed mode of
action of Cry toxins.

Assumptions vs. Evidence
B. thuringiensis bacteria express and deposit a multitude of
proteineous, insecticidal toxins in various crystalline forms in the
bacterial mother cell (called Cry proteins). When the insecticidal
properties of these deposited Cry proteins were discovered a
century ago, very quickly their potential utility for pest control
was recognized and research and development of B. thuringiensis
based sprayable insecticides began. Today, several commercial B.
thuringiensis based insecticide formulations are broadly available
commercially and used in organic crop production as one
of the few permitted sprayable insecticides. Hence, ever since
their discovery, research and development efforts have focused
almost exclusively on studying their efficacy on economically
important, herbivorous pest species (e.g., Hoefte and Whiteley,
1989; Schnepf et al., 1998; Sanchis, 2011; van Frankenhuyzen,
2013). Naturally, for practical pest control purposes, the most
efficacious B. thuringiensis-produced Cry proteins are considered
to be those that induce maximum—if possible 100%—mortality
in a given target pest population with the least amount of toxin
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TABLE 2 | Some key publications highlighting different types of combinatorial effects on insects reported in the scientific literature.

Cry × Cry LE Cry × (insect- or plant-) proteins LE Cry × cytolytic (Cyt) Bt proteins LE

LEPIDOPTERA—Bt TOXINS FROM var. kurstaki (Btk)

Species:

Helicoverpa armigera

Toxin types:

Cry1Ac, Cry1Ab, Cry2Aa, Cry1F—trypsin

activated toxins

Findings:

Single toxins: Cry1Ac, Cry1Ab, Cry2Aa

Cry1F

Cry1Ac × Cry1Ab

Cry1Ac × Cry2Aa

Cry1Ac × Cry1F

Charkrabarti et al., 1998

+

0

+

+

++

Species:

Manduca sexta (M.s.)

Heliothis virescens (H.v.)

Helicoverpa zea (H.z.)

Toxin and protein types:

Cry1Ab, Cry1Ac, Cry toxin-binding cadherin

Bt-R1 peptide called CR12-MPED extracted

from M.s. expressed in E. coli

Findings:

CR12-MPED synergizes low Cry1Ab toxin

doses providing enhanced insecticidal activity

in H.v. and H.z.

Chen et al., 2007

++

Species:

Trichoplusia ni cell lines, Trichoplusia ni

Toxin and protein types:

Cry1Ac toxin (from B.t.kurstaki), Cyt1A1 (from

B.t.israelensis) engineered into bacteria (not

stated which species)

Findings:

Cry1Ac

Cyt1A1

Cry1Ac × Cyt1A1

Antagonistic effects between the two in-vitro

and in-vivo

Rincon-Castro et al., 1999

+

+

–

Species:

Earias vitella

Toxin types:

Cry1Ac, Cry2Aa—trypsin activated toxins

Findings:

Single toxins: Cry1Ac, Cry2Aa

Cry1Ac × Cry2Aa—1:1, 1:2, 2:1—all

Yunus et al., 2011

+,–

++

Species:

Helicoverpa zea

Heliothis virescens

Spodoptera frugiperda

Diatraea grandiosella

Toxin and protein types:

Crystal protein: Cry2A—toxin (sublethal

concentrations)

Other protein: Plant cysteine protease Mir1- CP

(a plant defensive compound accumulating at

wound site after plant injury)

Findings:

Mir1-CP inhibits larval growth by attacking and

permeabilizing insects peritrophic matrix (PM)

Low doses of Mir1-CP synergized sublethal

doses of Cry2A in all four species

Mohan et al., 2008

++

Species:

Bombyx mori (B.m.)

Lymantria dispar (L.d.)

Toxin types:

Cry1Aa, Cry1Ab, Cry1Ac—toxin

Findings:

Single toxin: Cry1Aa>Cry1Ab>Cry1Ac

L.d.: 1Aa × 1Ac

L.d.: 1Aa × 1Ab

L.d.: 1Ab × 1Ac

B.m.: all

Lee et al., 1996

++

–

0

0

Species:

Spodoptera exigua

Toxin and protein types:

Bt strains (70) not specified

Other protein: Chitinases

Findings:

Chitinases produced by bacteria B.t. increased

activity of Cry toxins more than two-fold

Liu et al., 2002

++

Species:

Chilo partellus

Toxin types:

Cry1Aa, Cry1Ab, Cry1Ac—toxin

Species:

Spodoptera littoralis (relatively insensitive to

Cry1 toxins)

Toxin and protein types:

Cry1C, endochitinase ChiAII

(Continued)
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TABLE 2 | Continued

Cry × Cry LE Cry × (insect- or plant-) proteins LE Cry × cytolytic (Cyt) Bt proteins LE

Findings:

Single toxin: Cry1Ab>Cry1Ac>Cry1Aa

L.d.: 1Ab × 1Ac

L.d.: 1Ab × 1Aa

L.d.: 1Aa × 1Ac

Sharma et al., 2010

++

+

+

Findings:

ChiAII

Cry1C (low, sublethal concentration)

Cry1C × ChiAII

Regev et al., 1996

+

+

++

Species:

Choristoneura fumiferana, Ch. occidentalis, Ch.

pinus, Lymantria dispar, Malacosoma disstria,

Orygia leucostigma (O.l.)

Toxin types:

CryIA crystal protoxins from cloned and native

microbial strains

Findings:

All except O.l.: CryIA × CryIA

O.l.: CryIA × CryIA

Tabashnik, 1992

0

–

Species:

Helicoverpa armigera, Earias insulana

Toxin types:

Cry1Ac, Cry2Ab, Cry1Fa—trypsin-activated

toxins

Findings:

Cry1Ac—H.a., E.i.

Cry2Ab—H.a., E.i.

Cry1Fa—H.a., E.i.

Cry1Ac × Cry2Ab—H.a., E.i.

Cry1Ac × Cry1Fa—H.a., E.i.

Ibargutxi et al., 2008

+,+

+,+

0,+

++,+

+,+

MOSQUITOS—BT TOXINS FROM var. israelensis (Bti)

Species:

Anopheles stephensi (A.s.); Aedes aegypti

(A.a.), Culex pipiens (C.p.)

Toxin types: Bti

Crystal protein: CryIVA and CryIVB crystal

protoxins

Findings:

CryIVA all species,

CryIVB only to A.a. and A.s.

CryIVA × CryIVB all species

Delécluse et al., 1993

+++

++,0

+++

Species:

Anopheles albimanus

Toxin and protein types: Bti

Crystal protein: Cry4Ba, Cry11Aa

Cytolytic protein: Cyt1Aa

All protoxins—spore × crystal combinations

Findings:

Cyt1Aa nontoxic

Cry4Ba toxic at 43–360 ng

Cry11Aa toxic at 90–360 ng

Cry3Ba × Cyt1Aa

Cry11Aa × Cyt1Aa*

Cry4Ba × Cry11Aa × Cyt1Aa

*remarkable because both were non-toxic

when administered individually at that

concentration—in combination they yield clear

toxicity

Fernández-Luna et al., 2010

0

+

+

++

+

++

Species:

Aedes aegypti, Anopheles stephensi, Culex

pipens

Species:

Culex quinquefasciatus, Aedes aegypti

(Continued)

Frontiers in Environmental Science | www.frontiersin.org November 2015 | Volume 3 | Article 7160

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Hilbeck and Otto Specificity and combinatorial effects of Cry toxins

TABLE 2 | Continued

Cry × Cry LE Cry × (insect- or plant-) proteins LE Cry × cytolytic (Cyt) Bt proteins LE

Toxin types:

CryIVA, CryIVB, CryIVD crystal protoxins

Findings:

CryIVA × CryIVB × CryIVD

CryIVB × CryIVD

Poncet et al., 1995

++

+

Toxin and protein types:

Bti and Bacillus sphaericus (wild-type)

producing Cry11a, Cry4A, Cry4B, and Cyt1Aa

Findings:

When Cry toxins from Bti were combined

with B. sphaericus, in presence or absence

of Cyt1Aa, synergistic increased toxicity and

expanded host range were observed

Wirth et al., 2004

++

Species:

Culex quinquefasciatus

Toxin and protein types:

CryIVD crystal protoxins

CytA toxin

Both co-transformed into B. thuringiensis

bacteria

Findings:

CryIVD

CytA

CryIVD × CytA (co-expressed in Bt)

Chang et al., 1993

+

+

++

Species:

Culex quinquefasciatus (C.q), Aedes aegypti

(A.a.)

Toxin and protein types:

Bti and Bacillus darmstadtiensis (wild-type)

expressed in E. coli; Cry4Ba and Cyt2Aa2

Findings:

Cry4Ba (C.q., A.a.)

Cyt2Aa2 (C.q., A.a.)

Cry4Ba × Cyt2Aa2 (C.q., A.a.)

Cry4Ba toxins were inactive as single toxin

to C. quinquefasciatus but in combination with

Cyt2Aa2 had strong effect

Promdonkoy et al., 2005

+,0

+,+

++,++

COLEOPTERA—Bt TOXINS FROM var. tenebrionis (Btt)

Species:

Diabrotica undecimpunctata howardi (D.u.h.),

Diabrotica virgifera virgifera (D.v.v.),

Leptinotarsa decemlineata (L.d.)

Toxin and protein types:

Cry3Aa, Cry3Bb toxins

toxin-binding fragment of cadherin receptor

(CR 8 and 10) expressed in E. coli

Findings:

CR8 and 10 isolated from D.v.v. and expressed

in E. coli binds activated Cry3Aa and Cry3Bb

toxins and enhances toxicity of both toxins in

L.d., D.u.h., and D.v.v. from 3- to 13-fold

(synergistically). Indivdually, they did not elicit

an effect and Cry3 toxins efficacy was lower

and differed when administered alone

Park et al., 2009

++

LE, Level of effect; “–”, antagonistic; “0”, neutral; “+”, additive (definitions see text).
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ingested in the shortest period of time. We refer to this as the
concept of “quick kill.” Based on this economically motivated
concept of “efficacy,” most Cry toxins affect most efficaciously
only a relatively narrow range of so called “target” pest
species. However, this pest control-focused concept underlies the
generalization of narrow specificity of all Cry toxins applied to
all non-target species and the assumption that Cry toxins are
unlikely to affect other species outside of their range of primary
(target) organisms (e.g., Soberón et al., 2009; Sanchis, 2011;
Pardo-López et al., 2013).

It was with the introduction of GM crops expressing activated
Cry toxins constitutively, meaning in all tissues of the GM plants
throughout their entire lifespan, that ecologists urged to revisit
the validity of the economic definition of “specificity,” or “quick
kill,” and began testing various Cry toxins on non-pest non-
target organisms (Hilbeck, 2001, 2002). Today, with the vastly
expanded spatio-temporal exposure of Cry toxins from GM crop
plants, easily also reaching beyond the crop field (Hofmann
et al., 2014), the need arose to investigate ecologically relevant
adverse effects beyond the narrow scope of a small group of
economically relevant herbivores considered pests in crop fields
and also beyond the single economic parameter of “quick kill.”
Ecological parameters including cumulative lethal effects, i.e.,
“slow kill,” and sublethal impacts (e.g., developmental time,
weight gain, behavioral changes) have now gained importance.
Such effects could cause as severe or even more severe ecological
consequences for a terrestrial or aquatic ecosystem as a “quick
kill” could.

The most comprehensive data source concerning the
specificity of Bt proteins is the Bt Toxin Specificity Database
(http://www.glfc.cfs.nrcan.gc.ca/bacillus/; van Frankenhuyzen
and Nystrom, 2002). Analyses from this database have been
published by van Frankenhuyzen in 2009 and 2013 with a
recent update in de Schrijver et al. in 2014. While, originally,
Cry toxin activity was assumed to be restricted to the insect
order of Lepidoptera, this has successively been expanded to
include today up to six arthropod orders for which so-called
cross-active Bt toxins have been reported (van Frankenhuyzen,
2013). Notably, today, the most widely employed and studied
Cry toxins, such as Cry1Ab or Cry1Ac, have been reported to
affect species from different insect orders or even phyla (Cry1Ab:
Coleoptera, Lepidoptera, Diptera, Hemiptera; Neuroptera,
Trichoptera and Nematoda; Cry1Ac: Lepidoptera, Diptera,
Hemiptera). But van Frankenhuyzen (2013) found that only
a small fraction (17%) of Cry toxins have ever been tested
with species from more than 1 or 2 insect orders. Despite this
restriction to certain tested pest species, approximately 40%
of all Bt toxins tested across two or more orders did show
cross-activity (de Schrijver et al., 2014). Yet, even for the most
tested lepidopteran-active Cry1 toxins, only a little more than
one third has ever been experimentally tested outside of that
order. In total, van Frankenhuyzen (2013) compiled evidence
for cross-activity of 27 Bt toxins and 69 insect taxa. We expect
that the number of reported cross-activities will likely rise as
more experiments with non-target organisms emerge and the old
definition of order-specifity of Bt-toxins (van Frankenhuyzen,
2013; de Schrijver et al., 2014) may no longer be regarded as a

functional concept—cross-activity may actually become rather
a common phenomenon than an execption, certainly under an
ecological definition of “efficacy” or “specificity.” Apart from
few exceptions, the majority of available data from the van
Frankenhuyzen-database rely on mortality as the measured
endpoint. However, sub-lethal effects such as growth inhibition,
changes in developmental time or other parameters which may
affect fitness can be expected to occur at far lower effect-doses
than those inducing a “quick kill.”

Proposed Mode(s) of Action (Mechanism)
Much of the claimed specificity of Bt-toxins rests on what is
known about the mode of action of Cry toxins from research
with this narrow set of herbivorous target pest insects and from
studying predominantly one Cry toxin class only, Cry 1. By
comparison, modes of action of Cry 3 and Cry 2 toxins have
received far less attention (Schnepf et al., 1998; Whalon and
Wingerd, 2003; Vachon et al., 2012). Some authors think that
specificity rests equally on the solubilization-activation process
as on the receptor-binding and pore-formation process (Smouse
and Nishiura, 1997), while others postulate specificity to rest
mainly on (affinity to) specific receptors (Schnepf et al., 1998).
Today, quite a controversy exists over the mode of action of
Cry toxins which is owed to the fact that there is less scientific
certainty about it today than there was when cry transgenes from
B. thuringiensis were first engineered into GM plants roughly
30 years ago. Until about a decade ago, the predominant and
most agreed model for the mode of action of Cry proteins
(the “classical model”) as produced by B. thuringiensis went as
follows: ingested, inactive crystalline (Cry) proteins must be
solubilized in an insect gut environment with a high pH (>10).
The solubilization of crystalline proteins yields a still inactive so-
called full-length protoxin (ca. 130 kDa Cry1 class and ca 73 kDa
Cry3 class) that requires further biochemical cleavage to produce
a small toxic fragment. This toxic fragment (ca. 65 kDa Cry1
class and 55 kDa Cry3 class) then must bind to certain receptors
located in the midgut ephithelium and, thereby, induce pore
formation (also called ion channel forming) and lysis of the gut
resulting in septicemia subsequently killing the insect (Schnepf
et al., 1998; Whalon and Wingerd, 2003; Vachon et al., 2012).
Different sized fragments of the same Cry class have been shown
to exhibit different activities in different ranges of affected insects
(Haider and Ellar, 1987). A whole range of membrane binding
proteins have been suggested as receptors, including numerous
cadherins, aminopeptidases, and alkaline phosphatases as well as
glycolipids (Pigott and Ellar, 2007; Sanchis, 2011; Vachon et al.,
2012).

Today, additional models for Cry toxin mode of action
have been suggested with supporting new data. In a recent
review, Vachon et al. (2012) describe and critique three
models: the “classical” model, the “sequential binding” model,
and the “signaling pathway” model. The first two models
have in common that the mode of action of activated Cry
toxins hinges on the binding of activated (i.e., cleaved) toxic
fragments of the original Cry protein to receptors in the
midgut epithelium in insect larvae. The sequential binding
model proposes a more complex sequence of events with
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more binding steps involving more receptors and the removal
of an alpha helix from the Cry toxin leading to a required
oligomerization step of the Cry toxins before inserting into
the gut membrane and inducing pore formation in the gut of
the insect (Soberon et al., 2012). Consequently, in addition to
the cadherin receptors of the “classical” model, which are now
called to be “primary” receptors, so called “secondary” receptors,
GPI (glycosylphosphatidyl-inositol)-anchored receptors, are
suggested to have a significant role in pore formation (Soberón
et al., 2009; Soberon et al., 2012; Pardo-López et al., 2013). While
in the classical model it was believed that monomeric Cry1 toxins
can bind to cadherin receptors and induce pore formation, in the
sequential model it is proposed that cadherin-bound monomeric
Cry1 toxins cause conformational changes favoring proteolytic
cleavage that allows the rest of the toxin to oligomerize (Jiménez-
Juárez et al., 2007; Soberon et al., 2012; Vachon et al., 2012). The
Cry1 toxin oligomers subsequently bind to the GPI-anchored
receptors and only then pore formation is induced. Mechanisms
of resistance in target pests were found to be often associated
with mutations affecting the binding to these cadherin receptors.
Hence, a proposed solution to overcome such cadherin-based
resistance was “the rational design of improved toxins” (Sóberon
et al., 2007, 2009). This led to the development of modified Cry1
toxins, so called CryMod toxins, lacking an alpha-helix that
circumvented the cadherin-binding step by oligomerizing simply
in the presence of trypsin and, subsequently, continue to induce
pore formation requiring only binding to “secondary” receptors
(Sóberon et al., 2007). Vachon et al. (2012) challenge the validity
of this model and also Pigott and Ellar (2007) pointed out that
“other explanations of the data are possible.” The credibility of
the sequential binding model was further eroded because of
later, admitted manipulations of images of the gels, including
the removal of stains from the blot and shifting positions of the
bands of the blot (e.g., Jimenez-Juarez et al., 2013), which were
offered as evidence for the sequential binding model in a total of
11 publications. We conclude that the sequential binding model
is, therefore, in need of independent validation and experimental
reconciliation with the critique by Vachon et al. (2012) and
Pigott and Ellar (2007).

Yet another model has been suggested by Zhang et al. (2005,
2006a) that differs from the two above in that pore formation
is not an essential feature anymore in the cause of death
of the insect. Instead the signal transduction model proposes
that binding of Cry toxin monomers to cadherin activates an
intracellular cell death mechanism (Smouse and Nishiura, 1997;
Zhang et al., 2005, 2006a). This model also has been questioned
by Vachon et al. (2012) and also by Soberón et al. (2009) who
developed the competing “sequential binding model.” In contrast,
Jurat-Fuentes et al. (Jurat-Fuentes and Adang, 2006), suggested a
combination of the Zhang et al. (2005, 2006a) and the “sequential
binding” model to be at work, and Kumar and Kumari (2015)
consider both modes of action to act in a complementary fashion.
Most authors, however, seem to agree that much still needs to
be learned about the modes of action of Cry proteins. Pigott and
Ellar (2007) expect that “as more toxin receptors are discovered
and as our understanding of toxin-receptor interactions increases,
it will be interesting to see the extent to which Cry toxins utilize a
common mode of action.”

Further complexity has been added to the presented new
proposals of modes of action of Cry toxins by research suggesting
that Cry toxins require the interaction with gut microbes in order
to exert their lethal effects in target pest organisms (Broderick
et al., 2006, 2009). When highly susceptible lepidopteran larvae
were fed with antibiotics prior to being offered Cry toxin-spiked
diet, the Cry toxins lost entirely their activity and no adverse
effects on survival could be observed. The hypothesis proposed
is that the Cry toxin induced pore formation of the midgut of
susceptible larvae allows pathogenic gut bacteria to enter the
hemocoel, allowing the bacteria to multiply and kill the host
larvae via septicemia. Without the presence of such bacteria Cry
toxins alone do not kill the larva (Broderick et al., 2006, 2009).
When Enterococcus faecalis bacteria were added again to the diet,
susceptibility to the Cry toxins was restored and high mortality
observed. Hence, E. faecalis, which is a commensal bacteria
in an intact gut, can become a pathogen when invading the
hemocoel. A process the authors referred to as the “commensal-
to-pathogen” switch (Mason et al., 2011). Similarly, Jung and
Kim (2006) reported that while B. thuringiensis subsp. aizawai
(Bta) did efficiently kill third instar Spodoptera exigua larvae,
it did not cause high mortality of fifth instar larvae. But when
adding nematodes to Bt fed fifth instar larvae, it resulted in
significant synergistic effects. They also suggested that this was
due to Bta damaging at least somewhat the midgut cells of
the fifth instars allowing the nematodes to enter the hemocoel.
While the controversy remains regarding whether or not midgut
microbiota (bacteria or nematodes) is essential for Cry toxins
to kill susceptible insect larvae (Johnston and Crickmore, 2009;
Raymond et al., 2009), it does highlight that the modes of action
of Cry toxins are far from conclusive to date (Graf, 2011), and that
co-factors which naturally occur in the environment impact the
efficacy and specificity of Cry toxins which may help explaining
some of the effects of Cry toxins on non-target organismes
reported in the literature.

SIGNIFICANT EFFECTS OF SINGLE CRY
TOXINS ON NON-TARGET ORGANISMS

Interestingly, there are indeed many documented cases of cross-
order activities of Cry toxins on non-target organisms including
reports about a range of lethal and non-lethal developmental
(e.g., Lövei and Arpaia, 2005; Hilbeck and Schmidt, 2006;
Marvier et al., 2007; Lövei et al., 2009; van Frankenhuyzen,
2009, 2013) or behavioral effects (e.g., Meier and Hilbeck,
2001; Zemkova Rovenska et al., 2005) challenging the narrow
specificity narrative of Cry toxins, in particular when expressed
as activated Cry toxins in the GM plants (Table 2). These
reports include significant adverse effects of Cry toxins on non-
target coccinellid species,Harmonia axyridis andHenosepilachna
vigintioctomaculata (Stephens et al., 2012; Song et al., 2012)
with research groups reporting significant cross-order effects
of lepidopteran active Cry1 proteins on coleopteran coccinellid
predators both when administered directly (Dhillon and Sharma,
2009; Schmidt et al., 2009; Hilbeck et al., 2012a) and via
unaffected and affected prey (Zhang et al., 2006a,b,c; Table 2).
In some cases reports of adverse effects even on non-arthropod
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species have been published.When studying Cry toxins expressed
in GM maize material with the snail species Cantareus aspersus,
the researchers found 25% lower growth rate than in the control
treatment (Kramarz et al., 2009). Just recently Shu et al. (2015)
reported about significant effects of Cry1Ab from Mon810
maize on compost worm Eisenia fetida. Furthermore, several
researchers reported about adverse effects of Cry toxins fromGM
host plant material on several aquatic organisms. In laboratory
feeding trials, Rosi-Marshall et al. (2007) and Chambers et al.
(2010) showed that consumption of single Cry toxin maize plant
material reduced growth and increased mortality of the non-
target stream insects Lepidostoma liba and Helicopsyche borealis,
respectively. Also Bøhn et al. (2008; Bøhn et al., 2010) reported
that mortality was higher, a lower proportion of females reached
sexual maturation, and the overall egg production was lower
in Daphnia magna that were fed Cry1Ab toxin producing GM
maize compared to D. magna fed control maize. The authors
argued specifically that the combination of reduced fitness with
earlier onset of reproduction of D. magna fed Cry toxin maize
indicated a direct toxic effect. Other aquatic taxa for which
negative effects on single species have been observed include
crane flies (Isopods; 19% growth reduction; Jensen et al., 2010),
Chironomids (Prihoda and Coats, 2008), and even crayfish (Linn
and Moore, 2014).

The reported diversity of lethal and sublethal, chronic effects
may sum up and lead to shifts in species composition at
the community level. For example, Campos and Hernandez
(2015) reported significant differences in dung beetle species
composition—an important functional group—possibly leading
to impaired ecosystems services such as feces removal, seed
dispersal, edaphic aeration, and incorporation of organic matter.
For aquatic habitats, Axelsson et al. (2011) reported that the
composition of aquatic insect communities colonizing the litter
from Cry3Aa expressing GM trees was significantly affected in
unanticipated ways. Similarly, Rosi-Marshall et al. (2007) raised
concerns that effects of Bt pollen and debris may negatively
affect caddisflies and the food-web. Although this seems not to
be the case for highly degraded industrial agricultural habitats
(Chambers et al., 2010), the risk could not be clarified for more
natural terrestrial and aquatic habitats which play an important
role in ecosystem functioning.

In light of the above reports, it is clear that the claim of no
reported adverse effects of single Cry toxins on cross-order non-
target organisms is not supported by the scientific evidence in
the scientific literature. In fact, there is an increasing body of
evidence suggesting significant effects of Cry toxins far beyond
the originally postulated primary taxa of herbivorous target pest
organism are possible.

COMBINATORIAL EFFECTS OF CRY
PROTEINS

Combinatorial (including synergistic) effects of Bt toxins were
reported already decades ago (e.g., Wu et al., 1985). Best known
are the synergistic effects of spores of B. thuringiensis subsp.
kurstaki to increase toxicity of Cry toxins in susceptible and

resistant larvae of the diamondblack moth, Plutella xylostella
(Dubois and Dean, 1995; Tang et al., 1996; Liu et al., 1998).
Cry toxins combined with spores “can be toxic even though the
toxins and spores have little or no independent toxicity” (Liu
et al., 1998). Tang et al. (1996) observed synergistic effects among
spores and the three Cry toxins Cry1Aa, Cry1Ab, and Cry1Ac.
They also reported about synergistic effects between spores and
Cry1C toxins on P. xylostella but, interestingly, not between
spores and Cry2A toxin. However, since spores play no role
in stacked or pyramided Bt crops—although they may still be
around naturally—combinatorial effects of Cry toxins with other
compounds encountered in nature are at the center of this review.
These include combinatorial effects with (a) other Cry toxins, (b)
bacteria-derived compounds, (c) plant-derived compounds and
(d) insect-derived compounds. In the following, we address the
reported effects (phenomena) and the suggestedmodes of actions
(mechanisms) separately. In Table 2, we compiled the data from
some widely cited key reports to allow for a quick overview
of reported combinatorial effects, the involved compounds, test
organisms, and proposed mechanisms.

Combinatorial Effects
Combinatorial Effects of Different Cry Toxins
Of the eight studies listed in Table 2 that tested various Cry toxin
combinations, seven reported significant combinatorial effects
involving lepidopteran and dipteran species. Lee et al. (1996)
reported a synergistic effect for a combination of Cry1Aa with
Cry1Ac but an antagonistic effect for Cry1Aa and Cry1Ab and no
combinatorial effect for Cry1Ab and Cry1Ac in Lymantria dispar.
Interestingly, when keeping Cry1Aa stable (at 1) but increasing
Cry1Ac two-fold (1:2), susceptibility increased from 49.9 to 34.9
ng ID (growth inhibition dose). But when increasing Cry1Ac
more (1:4, 1:6 up to 1:12), susceptibility dropped substantially.
Yet, none of these combinatorial effects was observed in Bombyx
mori, the other test organism (Lee et al., 1996). More recently,
Sharma et al. (2010) reported synergistic effects of various Cry1A
toxins in Chilo partellus larvae. Poncet et al. (1995) found
synergistic and additive effects of combined Cry toxins in three
differentmosquito species. Both Ibargutxi et al. (2008) and Yunus
et al. (2011) reported synergistic effects of Cry1Ac and Cry2A
toxins on Earias insulana, the spotted bollworm. In contrast, in
two studies involving Helicoverpa armigera larvae and testing a
similar combination of Cry1Ac and Cry1F, Ibargutxi et al. (2008)
found no synergistic interaction while Charkrabarti et al. (1998)
did (Table 2).

Combinatorial Effects of Cry Toxins with

Bacteria-derived Compounds [Cytolytic (Cyt) Toxins]
Rincon-Castro et al. (1999) tested Cry1Ac toxins and Cyt1A1
toxins from engineered bacteria on Trichoplusia ni cell lines
and larvae and found antagonistic effects. In contrast, Cyt1A
proteins were found to synergize toxicity of Cry4A and Cry4B
toxins, Cry10Aa and Cry11Aa in mosquito larvae (Chang et al.,
1993; Wu et al., 1994; Wirth et al., 2004; Fernández-Luna
et al., 2010). In fact, Wirth et al. (2004) reported that when
Cry toxins from Bti were combined with B. sphaericus, in
the presence or absence of Cyt1Aa, synergistically increased
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toxicity and an expanded host range were observed. Also
Promdonkoy et al. (2005) reported that Cry4Ba toxins were toxic
to A. aegypti larvae but virtually inactive to C. quinquefasciatus
larvae. Cyt2Aa2 exhibited moderate activity against A. aegypti
and C. quinquefasciatus larvae. But the combination of both
toxins dramatically increased toxicity to both A. aegypti and
C. quinquefasciatus larvae. Chitinases produced by bacterial B.
thuringiensis increased activity of the produced Cry toxins more
than two-fold in Spodoptera exigua larvae (Liu et al., 2002,
Table 2). Chitinases are widely produced in many bacterial B.
thuringiensis strains and in some cases enhanced the toxicity of
the produced Cry toxins (Ramírez-Suero et al., 2011; Hu et al.,
2013). It was proposed that they could be used to enhance efficacy
of Bt toxins for pest control (Liu et al., 2002).

Combinatorial Effects of Cry Toxins with

Insect-derived Compounds
Chen et al. (2007) reported that a peptide fragment of a
toxin-binding cadherin isolated from Manduca sexta guts and
expressed in E. coli synergistically enhanced toxicity of Cry1
toxins in other lepidoptera species (Table 2; Chen et al., 2007).
Similarly, a fragment of a cadherin from A. gambiae was found
to enhance the toxicity of Cry4Ba mosquitocidal toxins. For
both types of co-factors, effects of individual proteins were often
lower and non-lethal while in combination observed effects were
stronger and lethal.

Combinatorial Effects of Cry Toxins with

Plant-derived Compounds
Mohan et al. (2008) report synergistic effects of Cry2A toxin with
plant defense compounds like Mir1-cysteine protease (Table 2)
in maize varieties from Antiqua (Carribean). The combinatorial
effects observed were lethal and, as in the example above, much
stronger than the sub-lethal effects caused by Mir-CP alone.
They were discovered in exotic maize varieties from Antiqua
(Carribean) and bred conventionally into local varieties. Also
here, effects of individual proteins were at best sublethal but when
administered in combination effects were more dramatic and
lethal (Table 2).

Proposed Mechanisms for Combinatorial
Effects
Below, we summarize the diversity of possible mechanisms
proposed for the various observed combinatorial effects as
this information will contribute to understanding whether
combinatorial effects can be predicted.

Combinatorial Effects of Different Cry Toxins
Three different hypotheses are proposed. One hypothesis
suggests that individual pores are formed by each Cry1A toxin
individually and may act cooperatively, together inducing higher
toxicity. A second theory proposes the formation of additional
hetero-oligomers which may have better insertion ability than
a homo-oligomer complex (Charkrabarti et al., 1998). A third
theory suggests that the toxin mix might enhance toxicity
by preventing non-productive binding (Schnepf et al., 1998).
However, all of these hypotheses presume that all toxin molecules

interact similarly with the BBMVs following more or less the
“classical model.” Sharma et al. (2010) found that all three
Cry toxin combinations showed increase in binding and direct
positive correlation between increased binding and mortality.
Many reports involve a great deal of speculation.

Combinatorial Effects of Cry Toxins with Cytolytic

(Cyt) Toxins
As possible mechanism of the observed antagonistic effect
between a Cry1 toxin and the cytolitic Cyt1A1, the forming of
a complex blocking one or more binding sites or the competition
for space instead of receptors was offered as explanation.
However, none of this has been confirmed yet. For the observed
synergistic effects between Cry11Aa and Cyt toxin, Pérez et al.
(2005) suggest that the Cyt1Aa toxin acts as receptor for
Cry11Aa. Wirth et al. (2004) propose an interplay between
different affinities of the varying toxins for receptor binding sites
as mechanism—either masking or enhancing toxicity through
competition, blocking or preferential binding dynamics working
in conjunction.

Combinatorial Effects of Cry Toxins with

Insect-derived Compounds
For combinatorial effects with insect-derived compounds like
various cadherin fragments or chitinolytic proteases different
mechanisms have been suggested supported by data to some
degree. Some researchers suggested that the presence of cadherin
binding sites, i.e., fragments of cadherin receptors isolated
from different target pest organisms allowed for increased
oligomerization of activated, monomeric Cry toxins which in
turn increased the ability of a Cry toxin-CR complex to insert into
the midgut membrane and induce pore formation (Chen et al.,
2007; Park et al., 2009). Chitinolytic proteases are known to affect
the peritrophic matrix (PM) and, thus, like cysteine proteases,
allow greater access for Cry toxins to epithelial cells where pore
formation takes place. The PM is an extracellular matrix of
chitin, glycoproteins and proteoglycans that lines and protects
the midgut epithelium from damage and assists in nutrient
uptake. Through greater (affinity) or faster access, their efficacy
is likely enhanced and toxicity increased, meaning a smaller dose
of Cry toxins can induce the formation of more pores quickly.

Combinatorial Effects of Cry Toxins with

Plant-derived Compounds
For combinatorial effects with plant-derived compounds like
the Mir-cysteine proteases (Mir-CP), it was suggested that they
increase the permeability of the PM which in turn facilitates the
movement of Cry toxins through the PM to allow greater access
to epithelial cells where pore formation takes place.

DISCUSSION

The objective of this review was to evaluate the scientific basis of
the claims serving as the rationale for minimizing or omitting the
testing of combinatorial effects of multiple Cry toxins expressed
in stacked GM crop plants. To do so we compiled and evaluated
published experimental evidence.
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Narrow Specificity Narrative Depends on
Definition of Efficacy and Reference
Systems
In our analysis, we observed that the prevailing narrative
of specificity is based on a narrow economically motivated
definition of efficacy. This definition of efficacy relies on the
“quick kill” from experiments carried out with a narrow spectrum
of focal—because economically important—pest species. In the
context of ecological risk assessment, such a narrow definition
is insufficient and non-precautionary. When extending the
definition of efficacy beyond a “quick kill,” thus, including
ecologically relevant endpoints like sublethal effects that include
developmental time and growth, or cumulative lethal effects
over the entire juvenile life stage (“slow kill”) or reproductive
effects, we see little evidence to support the assumption of narrow
specificity.

However, a current report commissioned by COGEM
(de Schrijver et al., 2014) and van Frankenhuyzen (2013)
use mortality under the “quick kill” definition as the sole
meaningful indicator for specificity. From an ecotoxicological
and agronomic pest control perspective, this may suffice in
particular when the focus lays on short-lived B. thuringiensis
based pesticides. However, it does not suffice from an ecological,
longterm perspective resulting from year round large-scale
industrial cultivation of Bt crops including soybeans, maize,
and cotton. The latter produce and release Bt toxins at an
unprecedented spatio-temporal magnitude in agroecosystems.
We argue that this can and probably has already lead to
shifts in community structures and alterations in ecosystem
services that may become particularly noticable outside of highly
disturbed industrial agricultural areas (Axelsson et al., 2011;
Campos and Hernandez, 2015). Agroecosystems in industrial
agricultural areas are highly degraded and subject to multiple,
persistent anthropogenic stressors, like chemical fertilizer, and
massive pesticide inputs (Benbrook, 2012; Douglas and Tooker,
2015). Thus, all invertebrate communities in such industrial
agroecosystems—terrestrial and aquatic—are the survivors of
these degraded conditions, and, therefore, the impact of a single
stressor, such as Bt toxins, may not be readily discernable
(Chambers et al., 2010).Massive areal applications of pesticides in
addition to the ubiquitous routine treatment of seeds of industrial
commodity crops with persistent neonicotinoids will likely mask
any additional effect of the bacterial Cry toxins (Douglas and
Tooker, 2015). But with Cry toxin coding transgenes and GM
plants moving beyond the arable field and entering also aquatic
ecosystems, longterm ecosystem services, and conservation
issues should receive special attention.

Increasing Uncertainty on Modes of
(Inter-)action of Cry Toxins
Over the past decade, substantially differing modes of action
have been proposed, which all are contested to some degree.
The classical model of mode of action has largely been studied
with crystalline B. thuringiensis produced proteins which require
a complex solubilization and activation process. These steps
of activating the crystalline B. thuringiensis proteins have been

shortcut in GM plants most of which express the already
activated Cry toxins. Much of the complex proposed modes
of action that determine their “specificity” has been eliminated
in GM plants. Neither particular pH conditions nor cleavage
enzymes are required for their activation. Hence, with Cry
toxin producing GM plants, specificity would be determinded
exclusively by receptor binding and pore formation. However,
with the signaling pathway model, pore formation may be
obsolete and most of the proposed receptors are not necessarily
restricted to target organisms or target taxa (e.g., Watanabe et al.,
1995; Luan and Xu, 2007; Hulpiau and van Roy, 2009) as are
trypsin and other suggested enzymes necessary for Cry toxin
activation. Because research has focused on herbivorous target
pest species, hardly any knowledge about the presence or absence
of midgut receptors required for Cry toxin activation in insects
outside of the studied range of herbivorous pests exists.

Furthermore, most of the research into the modes of action
of the past decade was driven by exploring the mechanism
underlying the spreading resistance in some target pests in
order to find ways to overcome resistance (e.g., Soberon et al.,
2012; Storer et al., 2012). Consequently, an even more narrow
subset of target pests namely those that have evolved resistance
was studied. Notably, none of the newly discovered modes of
action were discussed or investigated in the context of non-target
organisms. Except for two studies (Rodrigo-Simón et al., 2006;
Song et al., 2012), no efforts have been spent on understanding
the mechanisms behind the reported adverse effects on non-
target organisms despite the ensuing scientific dispute (Waltz,
2009a,b; Hilbeck et al., 2012b). In these disputes, the specifitiy of
Bt-toxins are stressed in a paramount way. However, the narrow
specificity narrative must be re-defined asmore andmore data on
the cross-order acticivity are available (van Frankenhuyzen, 2009,
2013).

No Lack of Reported Cross-order Effects
of Single Cry Toxins
From our analyses, we conclude that the claim of no reports
of adverse effects of Cry toxins—directly or indirectly—on non-
target organisms is invalid. In the scientific literature both can
be found, reports from experimental studies that do find adverse
effects of Cry toxins and those that do not and the outcome is very
sensitive to the appliedmethodology including exposure schemes
and measured endpoints and the author’s interpretation of the
data. As the range of organisms and the endpoints tested have
been expanding, scientists began to find adverse effects of Cry
toxins administered directly as microbially- or plant-produced
compounds or indirectly via prey on a far broader range of
organisms than previously assumed (van Frankenhuyzen, 2009,
2013; de Schrijver et al., 2014).

Because regulatory standards for GMO-testing are lacking—
not only in the EU—the scientific interpretation of effect studies
are subject of intense debate in the science and regulatory
community. Studies pointing at potential negative effects are
met by heavy criticism from developers and proponents of
GM products (e.g., Waltz, 2009a,b). Dissenting interpretations
and extrapolations are typically based on different conceptual
approaches to (narrow vs. broad) risk assessment (e.g.,
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Andow et al., 2006; Hilbeck et al., 2011, 2012b; Wickson et al.,
2013 vs. Romeis et al., 2006) or are primarily concerned with, and
triggered by, the policy responses the reported adverse effects on
non-target organisms invoked (e.g., Ricroch et al., 2010; Kuntz
et al., 2013; Romeis et al., 2013) rather than driven by scientific
curiosity.

Different outcomes of experiments determining the sensitivity
of testing organisms have been linked to differences in exposure
length and intensity via the offered diets during the time period
tested. While in many studies reporting significant effects, the
tested non-target organisms were exposed to the test substance
(Cry toxin containing diets or prey) continuously throughout
most or all of their (susceptible) larval stage, this is often not the
case in the studies not finding significant effects. For example,
Hilbeck et al. (1998a,b, 1999, 2012b) Schmidt et al. (2009), Dutton
et al. (2002), Stephens et al. (2012), Zhang et al. (2006a,b), Dhillon
and Sharma (2009) did ensure exposure throughout the (almost)
entire larval stage and, consequently, did observe effects. This was
not the case in studies by Romeis et al. (2004), Rodrigo-Simón
et al. (2006), Porcar et al. (2010), Zhang et al. (2006c,d). In other
cases, exposure was ensured throughout the entire larval stage
but with intermittent phases of recovery by offering optimal, non-
Cry toxin diets (Alvarez-Alfageme et al., 2011) or by offering a
Bt-laced suboptimal food in combination with a non-Bt optimal
food (Zhang et al., 2014). The conclusions of Lövei et al. (2009)
still hold today based on their meta-analysis: “it is clear that
conclusions that Bt... transgene products have “no harm” to natural
enemies are currently overgeneralized and premature.”

Combinatorial Cry Toxin Effects Commonly
Known
Also combinatorial effects of Cry toxins with other proteins or
chemicals are actually widely recognized and reported in the
literature. Combinatorial interactions of Cry toxins with each
other or with other compounds enhancing their toxicity have
been known and discussed in the scientific community since at
least the 1980s (Wu et al., 1985; Schnepf et al., 1998). Already
Schnepf et al. (1998) devoted a separate subchapter of this
standard textbook on Bt toxins to unpredictable combinatorial
interactions, mostly synergistic. They also pointed out the fact
that “little is known about the mechanism of this synergistic
interaction or potentiating effects,” keeping in mind that this
knowledge is restricted to the target pests studied. Again,
combinatorial effects have been recognized and discussed only
under a utilitarian “quick kill” narrative, i.e., in the context
of enhancing the pest control capacity either of GM crop
plants expressing the Cry toxins or of sprayable Cry toxin
formulations. Under this utilitarian narrative, combinatorial
effects are explored also as a means to aid its application in
pest control strategies. For example, Li and Yu (2012) are
heading a section on combinatorial effects in their chapter with
“Utilizing the synergistic effect of helper proteins.” Such “helper
proteins” are in fact nothing else but substances that exert
combinatorial effects with Bt toxins. For example, “chitinases
for enhancing the entomotoxicity of engineered Bt strains” are
receiving considerable attention to develop “new strategies” for
pest control (see Li and Yu, 2012 for references therein). Or

as George and Crickmore (2012) put it “to boost the efficacy
of Bt insecticidal toxins and overcome resistance posed by insect
pests, the use of other proteins like cadherin fragments have been
shown to be a successful strategy” or “also combinations of Cry
toxins have proven to be a very useful strategy employed in
boosting efficacy and hting resistance.” For example, the secondary
compound gossypol derived from the cotton has been applied in
combination with Cry1Ac to boost its efficacy against a resistant
population ofHelicoverpa zea (Anilkumar et al., 2009).Why such
previously unexpected and unpredictable combinatorial effects
with co-factors—whether called “helpers” or otherwise—should
be restricted only to those organisms that humans declare as
target “pests” lacks a scientific hypothesis and certainly critical
rigor (Then, 2010).

No Predictability of Combinatorial Effects
Many of the reported synergistic interactions in target organisms
were entirely unpredictable and occured when their individual
components did not elicit a response at all or only a sublethal
response when tested in isolation. Liu et al. (1998) reported
that spores and crystal toxins can act synergistically when
administered together even if “the toxins and spores have little
or no independent toxicity.” Mohan et al. (2008) observed that
low doses of Mir1-cysteine protease (a plant defense compound)
“synergized sublethal doses of Cry2A” toxin. Similarly, it was
shown that CR12-MPED peptide enhanced insecticidal activity
of low Cry1Ab toxin doses (Table 2; Chen et al., 2007). Low
(sublethal) doses of Mir1-CP synergized greatly sublethal doses
of Cry2A. Both compounds hardly affected the lepidopterans
when administered individually. Similarly for mosquito larvae,
Promdonkoy et al. (2005) reported virtually no observable effect
of a Cry4B toxin that in presence of a Cyt protein became deadly
toxic to the larvae.

In some cases, cadherin receptor fragments increased toxicity
of some Cry toxins but not of others (Lee et al., 1996). Masking
effects by differential affinities to binding sites depending on
kinetics of hetero-oligomer complex to receptors with higher or
lower binding affinity or straightforward competing effects for
binding sites were offered as explanation (Lee et al., 1996).

Chen et al. (2007) were surprised to find an enhancement
of Cry1Ab toxicity. Because Cr12MPED peptide contains the
critical Cry1Ab binding region, it was expected that Cry1Ab
toxicity would be reduced in the presence of CR12 MPED
peptides as they would bind the Cry toxin prior to their binding
to the receptors in the midgut epithelium. Thus, the CR MPED
bound Cry toxin would not be able anymore to induce pore
formation. However, the opposite was true, also for Cry1Ac. In
spectroscopy examinations, the authors found that CR12 MPED
was present in an unfolded state which exposed more amino acid
residues to the surrounding environment. It was speculated that
this could modify interactions with Cry 1A toxins in the insect
midgut and enhance toxicity. Also Park et al. (2009) suggested a
similar mechanism as Chen et al. (2007) where Cry3 toxins are
activated to a 55 kDa toxic fragment. This activated Cry3 toxic
fragment binds to brush border membrane vesicles (BBMV) and
recognizes a 144 kDa binding region in the BBMV. However,
Cry3 toxins differ in capacity to oligomerize, solve and bind.
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The suggested mechanism is presumed to be like CR12 MPED
for lepidoptera. CR12 fragements induce the formation of a
pre-pore Cry1Ab oligomer, a critical step in the intoxication
of lepidopteran larvae, leading to an enhancement of Cry1Ab
toxicity. A similar mechanism is expected also for Cry3 and
CR8-10 fragments.

Additionally, adverse effects can arise from combining various
biotic stressors. When studying the singular effect of microbially
produced, activated Cry toxin Cry1Ab or via Cry1Ab producing
GM maize in snails (Helix aspera), Kramarz et al. (2007a) found
no negative effect on H. aspersa during the observed life stages.
However, when snails were infected with nematodes, the growth
of the snails was significantly slower than when fed control maize
(Kramarz et al., 2007b). The authors concluded that “long-term
exposure is needed to reveal an effect of Bt maize.”

None of the observed combinatorial effects could have
been predicted from the effects induced by their individual
compounds. In a number of studies, researchers found that the
synergistic lethal effects could be triggered in the absence of any
effect when the toxins were administered individually or when
administered at non-toxic doses or at low doses eliciting only
sublethal effects (Table 2).

CONCLUSIONS FOR REGULATIONS AND
ENVIRONMENTAL RISK ASSESSMENT

The regulatory requirements for the risk assessment of Bt-crops
in the EU include testing combinatorial effects of different novel
proteins such as Bt toxins expressed in the GMO. In practice,
however, tests for combinatorial effects are carried out without
plant material and with minimal effort. The rationale behind
the test regime relies on the narrative of a narrow specificity of
Bt toxins, which, from the developers perspective, backs their
argument that relevant interactions between different Cry toxins
should not be expected if the organisms are not known to be
affected by single microbial Cry toxins. As a result, information
on combinatorial effects is at best based on one laboratory
study with a target pest species using a minimal combination of
microbial Cry toxins.

Need to Re-define the Specificity of Bt
Toxins for the Risk Assessment of GMO
We have argued here that the “narrow specificity” narrative
of Cry toxins is based on an agro-economical perspective of
specificity. However, in an environmental regulatory context,
ecologically motivated studies (e.g., butterflies: Losey et al., 1999,
lacewings: Hilbeck et al., 1998a, ladybird-beetles: Schmidt et al.,
2009, daphnia: Bøhn et al., 2008, 2010; caddisflies Rosi-Marshall
et al., 2007) are quite relevant as these must address protection
goals and end-points that are different from and transcend those
relevant from a narrow economically motivated pest-control
perspective. Because of their relevance for environmental
risk assessments in the European regulatory context, studies
showing negative effects on groups of organisms which were
not supposed to be sensitive to the Bt toxins in question and
often occur outside of the agricultural field, were met with

fierce criticism from circles favoring a narrow apporach to
environmental risk assessment because they were pointing to
existing uncertainties in these risk assessments and were not in
line with the assumption of narrow specificity of Bt proteins.
However, as these studies did deal with relevant questions for
environmental risk assessments with a broader perspective,
they were included in the evidence basis for policy decisions
under the precautionary principle (e.g., German suspension
for the cultivation of MON810, 2009; http://www.bvl.bund.de/
SharedDocs/Downloads/08_PresseInfothek/mon_810_bescheid.
pdf?__blob=publicationFile&v=2). As the available data show
and the currently proposed modes of action of Bt-proteins
are seemingly not exhaustive, the present definition of narrow
specificity is of limited and, indeed, declining value for GMO
environmental risk assessment in particular when operating
under the precautionary principle.

Mode of Action not Conclusive for the
Assessment of Non-target Effects
While not all non-target organisms will be adversely affected
by Cry toxins, there is presently no way of predicting which
species may or may not be affected based on the current state
of understanding of the proposed modes of action of Cry toxins.
The current knowledge on the modes of action for Bt toxins is
clearly incomplete. All of the discussed requirements for activity
of Cry toxins, suggested receptors or involved enzymes, occur in
many organisms. Hence, more research into relating observed
effects to possible mechanisms in non-target organisms going
beyond the traditional narrow spectrum is urgently needed to
better understand the likelihood and magnitude of non-target
effects.

Sublethal and Chronic Effects Bound to be
Overlooked
From our analyses, we conclude that relying on the narrow
economic “quick kill” definition of efficacy, the risk assessment
is bound to overlook sublethal, chronic, and cumulative adverse
effects. Compared to acute lethal effects such effects are
equally important for ecological functioning as they can trigger
significant adverse effects on ecological processes. Sublethal
effects in form of developmental delays or behavioral changes
in host or prey preferences, for example, can lead to significant
ecological consequences via disruption and altering of existing
predator-prey relationships or synchronies within food webs. In
an agroecosystem, such disruptions or shifts in preferences and
behavior can cause significant shifts in arthropod community
structures possibly favoring non-target pest species and giving
rise to secondary pests (e.g., Lumbierres et al., 2004; Lu et al.,
2010; Qui, 2010; Cantarino et al., 2015). Just recently, Campos
and Hernandez (2015) observed adverse impacts of transgenic
Cry toxin producing GM maize in Brazilian fields on the
functional group dynamics within dung beetle communities.
Furthermore, sublethal effects may substantiate only after several
generations. For this reason, generational tests that provide
the possibility to analyse important life-history parameters may
improve the assessment of long-term effects on ecosystems.
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However, generational tests with GMOs (Bøhn et al., 2010; Shu
et al., 2015) are virtually absent to date.

Improvement of Regulatory Practice
To date, information on non-target effects of GMOs do not
have to comply with a standardized and agreed methodology
in terms of test protocols or test batteries. Likewise, no
standards for the testing of combinatorial effects of Cry toxins
or possible interactions with other bioactive plant compounds
exist (Dolezel et al., 2011). Currently, regulatory dossiers in
the EU include only a minimal data set on combinatorial Cry
toxin effects, justified on the grounds discussed above. However,
the regulatory importance of combinatorial Bt effects has
recently been recognized by the European Food Safety Authority
(EFSA) and national biosafety authorities. For example, The
Netherlands Commission on Genetic Modification (COGEM)
recently commissioned two reports, one on the mode of action
(van der Hoeven, 2014) and the other on the predictability of
combinatorial Bt effects (de Schrijver et al., 2014). The reports
were complemented by a scientific workshop of EFSA and
COGEM in October 2014. While the reports list many of the
key literature of this review, the conclusions of the authors
clearly reflect the utilitarian perspective of pest and resistance
management at the expense of detecting and managing risks
on biodiversity and ecosystem services. While, de Schrijver
et al. (2014) acknowledge certain types of combinatorial effects
(addition, synergism, antagonism) that may exhibit a high level
of species-specificity and cannot be predicted they also argue that
sufficient information is available to conclude that Cry toxins
with different primary order of activity are not likely to interact.

In contrast to this interpretation, we argue that the concept
of primary-order specificity of Cry toxins should be discarded as
more and more evidence is being published that Cry toxins are
cross-order active in quite unexpected ways (van Frankenhuyzen,
2009, 2013). Hence, even on grounds of the assumption that
combinatorial effects can only arise if single toxins elicit effects on
their own in isolation, combinatorial effects in a number of non-
target insects should be expected. Together with the uncertainties
regarding a multitude of possible modes of action of Cry toxins,
the precautionary principle clearly applies. The first rational
measure of precaution would be to require robust experimental
testing of combinatorial effects of all Cry toxins as expressed in
the stacked GM events on a broader taxonomic range of non-
target organisms selected independent of their pest status. Such
experiments require ecologically relevant and agreed protocols
which are indeed available since many years (Birch et al., 2004;
Andow et al., 2008; Hilbeck et al., 2012b).

For both the scientific community and regulators another
political issue urgently needs to be resolved. Any experiments
with GMOs and non-target organisms are in need of GMO
plant material and/or synthetic variants of the Bt toxins. At
present, technology agreements linked with the purchase of seeds
prevent the use of GM seeds in the regulatory pipeline for
biosafety research and, thus, are limiting industry-independent
research on the activity spectrum, the mode of action and
on the combinatorial effects of multiple Bt traits. To resolve
this problem, policy action is required to allow independent

biosafety research not to be restricted to GMOs that are already
commercially available.

Inherent Biases and Gaps of Knowledge
Unaccounted for in Current Regulatory
Risk Assessments of GM Crops
The recent report commissioned by the Netherlands
Commission on Genetic Modification (COGEM; de Schrijver
et al., 2014) did include some—but not all—of the studies
listed in Table 2. Both van Frankenhuyzen (2013) and the
updated version in the COGEM report (de Schrijver et al., 2014)
recognized that the published data depart from the dominant
narrative of narrow specificity and lack of reported effects of
single Cry toxins on non-target beneficial organisms. Yet, in
their interpretation, most studies reporting non-target effects
were dismissed on the following grounds: their evidence was (i)
“not established unequivocally” in comparison to other studies,
(ii) “not confirmed” by “subsequent studies” or (iii) “at odds with
other studies showing no effects” (de Schrijver et al., 2014, p.
36; van Frankenhuyzen, 2013, pp. 80–81). van Frankenhuyzen
(2013, p. 81) stated that since the contradictions in quantitative
data could not be resolved they presented “enough uncertainty
to indicate lack of evidence for unequivocal cross-toxicity” and,
therefore, these cases were excluded in an effort to maintain the
dominant narrative, reducing the number of reported cross-
activities substantially from 27 proteins affecting 69 high ranking
taxa to 19 proteins affecting 45 taxa. We argue that a balanced
evaluation in light of the different narratives explained above,
in particular when working under the precautionary principle,
should include these peer-reviewed, independent reports and
engage in a deeper analysis as to the underlying methodological
commonalities and causes explaining the differences between the
contradicting studies as we have attempted in this review.

Furthermore, another serious gap of knowledge exists
regarding interaction effects with other chemical pollutants in
particular the many chemicals that are integral components
of the industrial agricultural system and of GM crops. The
majority of GM crops are also resistant against herbicides.
These are systemic chemicals that are taken up by plants and
translocated into all tissues including pollen and seeds. This
has lead to a substantial increase in chemical use as well as
residual chemical loads in the harvested products (Aris and
Leblanc, 2011; Benbrook, 2012; Then, 2013). Additionally, maize
seeds, both GM and conventional varieties, are routinely coated
with chemicals such as the neonicotinoid Clothianidin. Because
of seed coating, Chlothianidin has recently been shown to be
present in substantial concentrations (8µg/ml) in guttation
fluid (Reetz et al., 2011) and in maize pollen (Krupke et al.,
2012). Both are preferred sources of food for a wide range of
beneficial insects, honeybees, predators, butterflies, and many
more.

Neonicotinoids are also systemic and therefore result in
similar exposure pathways as herbicidal residues and Cry toxins
in GM crops. Despite the fact that Cry toxins, synthetic
pesticides such as glufosinate, glyphosate, 2,4D, Dicamba, and
neonicotinoids may all be jointly present in GM crops, none
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of the synthetic pesticides have been tested in combination
with single or multiple Cry toxins. For “SmartStax R©,” the
biggest stacked GM crop plant currently commercially produced
combines 6 Cry toxins. From developers data, we calculated the
total Cry toxin values (Stillwell and Silvanovich, 2007; Phillips,
2008; Table 1) and found that the toxin load, depending on
the specific plant tissue, varies from 90 to 250 and from 140
to 1500µg Bt toxin/g fresh and dry weight respectively. The
toxin load from SmartStax introduced into the environment
has been estimated to total 4.2 kg Bt/ha (Benbrook, 2012). With
such unprecedented concentrations of potent bioactive bacterial
toxins, we see a high probability that this increase of active
ingredients will adversely affect the communities of organisms
associated with these agroecosystems, alone and in conjunction

with the likewise significant loads of herbicide and neonicotinoid
residues. While such stacked varieties offer benefits to farmers
for agronomic problems, these benefits may come with serious
health and environmental risks that we find prudent to be
experimentally studied prior to field release andmarket approval.
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Cornell Alliance for Science has launched an initiative in which “citizen scientists” are 
called upon to evaluate studies on health risks of genetically modified (GM) crops and 
foods. The purpose is to establish whether the consensus on GM food safety claimed 
by the American Association for the Advancement of Science (AAAS) is supported by 
a review of the scientific literature. The Alliance’s citizen scientists are examining more 
than 12,000 publication abstracts to quantify how far the scientific literature supports 
the AAAS’s statement. However, we identify a number of fundamental weaknesses in 
the Alliance’s study design, including: evaluation is based only on information provided 
in the publication abstract; there is a lack of clarity as to what material is included in the 
12,000 study abstracts to be reviewed, since the number of appropriately designed 
investigations addressing GM food safety are few; there is uncertainty as to whether 
studies of toxic effects arising from GM crop-associated pesticides will be included; 
there is a lack of clarity regarding whether divergent yet equally valid interpretations of 
the same study will be taken into account; and there is no definition of the cutoff point for 
consensus or non-consensus on GM food safety. In addition, vital industry proprietary 
biosafety data on GM crops and associated pesticides are not publicly available and 
thus cannot inform this project. Based on these weaknesses in the study design, we 
believe it is questionable as to whether any objective or meaningful conclusion can be 
drawn from the Alliance’s initiative.

Keywords: cornell Alliance for science, citizen science, genetically modified foods, glyphosate, scientific 
consensus, genetically modified food health risks

cONseNsUs ON GeNeticALLY MODiFieD (GM) FOOD sAFetY?

Cornell Alliance for Science has launched an initiative in which “citizen scientists” are called upon 
to evaluate studies on health risks of GM crops and foods (1).

The background to the initiative is that in 2012 the board of the American Association for the 
Advancement of Science (AAAS) issued the following statement:

Consuming foods containing ingredients derived from GM crops is no riskier than con-
suming the same foods containing ingredients from crop plants modified by conventional 
plant improvement techniques.

74

http://www.frontiersin.org/Public_Health
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2017.00079&domain=pdf&date_stamp=2017-04-12
http://www.frontiersin.org/Public_Health/archive
http://www.frontiersin.org/Public_Health/editorialboard
http://www.frontiersin.org/Public_Health/editorialboard
https://doi.org/10.3389/fpubh.2017.00079
http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:michael.antoniou@kcl.ac.uk
https://doi.org/10.3389/fpubh.2017.00079
http://www.frontiersin.org/Journal/10.3389/fpubh.2017.00079/abstract
http://www.frontiersin.org/Journal/10.3389/fpubh.2017.00079/abstract
http://www.frontiersin.org/Journal/10.3389/fpubh.2017.00079/abstract
http://www.frontiersin.org/Journal/10.3389/fpubh.2017.00079/abstract
http://loop.frontiersin.org/people/396362
http://loop.frontiersin.org/people/396363


Antoniou and Robinson Cornell GMO Safety Evaluation: Weaknesses

Frontiers in Public Health | www.frontiersin.org April 2017 | Volume 5 | Article 79

However, as the Alliance explains, others have denied that 
any consensus on the safety of GM foods exists. In 2013, the 
European Network of Scientists for Social and Environmental 
Responsibility (ENSSER) issued a statement, which criticized the 
2012 AAAS statement and asserted: “We strongly reject claims… 
that there is a ‘scientific consensus’ on GMO safety and that the 
debate on this topic is ‘over’” (2).

The purpose of the Alliance’s initiative is to establish whether 
the claimed consensus on GM food safety is supported by a 
review of the scientific literature. The project aims to perform 
this task using a similar methodology to that employed by Cook 
and colleagues in their 2013 study of the climate change literature. 
This study concluded that 97% of the peer-reviewed literature 
supported the consensus on the existence of human-caused 
climate change (3).

In order to address this question for the similarly contested 
proposed consensus on GM food safety, the Alliance is examin-
ing more than 12,000 publication abstracts (1996–2015) available 
from the Web of Science. The aim is to quantify, using these 
abstracts, how far the scientific literature supports or does not 
support the AAAS statement on the consensus on GM food safety.

In principle, this is a laudable initiative that aims to address 
an important public health question. However, in our view, some 
aspects of the methodology give rise to concerns that deserve to 
be addressed. If they are not addressed, we believe that the initia-
tive risks failing to meet its stated objectives.

tHe ALLiANce’s MetHODOLOGY

We have been informed by Jaron Porciello, Associate Director 
for Research Data and Engagement at the Alliance for Science, 
that the abstracts included in the citizen scientists’ review  
were selected in the following way. A total of 12,000 abstracts 
were chosen from approximately 144,000 using the Web of 
Science database. After 6  months of testing, keywords were 
selected that were informed by exploring other meta-analyses 
(critical, supportive, and neutral regarding GM foods). Tests 
were run to analyze what was lost when using one word over 
another, and, where overlap exists, by consulting references such 
as the UN Food and Agriculture Organization’s AGROVOC 
and MEDLINE in order to ensure that the broadest possible 
concepts were covered.

The website of the Alliance for Science further explains, “Each 
abstract will be rated twice, by two independent raters (and no 
rater will receive the same ‘set’ of abstracts to rate), and once again 
by the author of the abstract (pending their participation).”

cONcerNs ABOUt tHe MetHODOLOGY

We believe that there are a number of problems with the Alliance’s 
approach.

First, each reviewed publication will only be judged as to 
its significance purely from the abstract. However, the message 
of a study lies in the fine detail of its results and their various 
interpretations. This is especially the case with many studies on 
GM food health risks. Frequently, the authors conclude that there 
were no treatment-related adverse effects in the GM-fed groups 

of animals, but a close reading of the detail of the study reveals 
indications of toxicity or signs of toxicity in the GM-fed animals.

For example, a Monsanto-sponsored 90-day rat feeding study 
with the company’s GM Bt insecticidal maize MON863 con-
cluded that it was as safe and nutritious as the non-GM control 
maize (4). However, a reanalysis of the full published results 
in combination with the complete raw dataset, undertaken by 
a team of academic scientists working independently of the 
industry, revealed adverse effects or signs of potential toxicity, 
especially pertaining to liver and kidney function, in the GM-fed 
animals (5).

Monsanto responded by dismissing these statistically signifi-
cant and potentially adverse effects as “unrelated to treatment or 
of no biological or clinical importance because they failed to 
demonstrate a dose-response relationship, reproducibility over 
time, association with other relevant changes (e.g., histopathol-
ogy), occurrence in both sexes, difference outside the normal 
range of variation, or biological plausibility with respect to cause-
and-effect” (6).

This type of dismissal is contrary to normal scientific practice, 
which calls for statistically significant biological differences 
caused by an intervention to be followed up with further research 
in order to determine their long-term consequences with respect 
to health.

As another example, a three-generation feeding study in 
rats with GM Bt insecticidal maize reported in the abstract that 
there were “some minimal histopathological changes in liver and 
kidney” in the GM-fed animals (7). These changes were described 
as “minor” in a much-cited review of GM food safety studies by 
Snell and colleagues (8). Yet examination of the detail of the 
study reveals that the GM-fed rats suffered damage to their liver 
and kidneys and alterations in blood biochemistry, which some 
scientists may view as unresolved safety questions demanding 
further study.

These examples suggest that statistically significant changes 
in GM-fed animals can either be viewed as unimportant or as 
indications that further research is needed to understand their 
mechanism and significance, depending on the individual view-
points of the authors and/or reviewers.

These examples also illustrate that it is necessary to have full 
access to (minimally) the full results section of a publication and 
that conclusions about the safety of a GM food cannot be derived 
purely from the information provided in the abstract.

FeW LONG-terM stUDies ON HeALtH 
iMPLicAtiONs OF GM FOODs

The number of properly designed and executed long-term studies 
looking at health implications of GM foods are very few. A com-
mercial lifespan feeding study in pigs under real farm conditions 
found that animals fed a mixture of commercialized GM crops 
(soy and maize) resulted in elevated levels of severe stomach 
inflammation and heavier uteri in females, compared with con-
trols fed a non-GM diet (9).

In another example, in 2012, a study was published that found 
liver and kidney damage in rats fed glyphosate-tolerant GM 
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maize NK603 and low doses of its associated herbicide Roundup 
over a 2-year period (10).

The study gave rise to a great deal of controversy. In response, 
the French food safety agency ANSES conducted a search for 
other comparable long-term laboratory animal feeding studies 
on GM herbicide-tolerant crops. It found only two (11). One 
was a two-year study in mice by Malatesta and colleagues, 
which found more pronounced signs of liver aging in the GM 
soy-fed group (12). The other was a study that found “no appar-
ent adverse effect in rats” fed GM soybeans (13). However, in 
this latter study, the fact that glyphosate was only detected at 
the level of quantification (0.1 ppm) in the GM soy implies that, 
contrary to usual farming practice, this crop was not sprayed 
with this herbicide during cultivation, since it is well established 
that relatively high residues of glyphosate are routinely found in 
US-grown soy (14, 15).

Given the results of ANSES’s search, it is unclear how 12,000 
study abstracts with direct relevance to health have been identi-
fied. This raises the question of which types of publication will be 
included in the review. Will only publications describing original 
research be evaluated, or will reviews of the literature also be 
included?

This is an essential consideration because it is important not 
to take at face value the conclusions of reviews of studies, but 
instead to examine the results of the original studies covered by 
the reviews. This is because the conclusions of reviews can be 
marred by bias and omissions.

For instance, Snell and colleagues published a review of animal 
feeding studies with GM foods (8). Some of these studies showed 
toxic effects in the GM-fed animals. This included Malatesta 
and colleagues’ study showing more pronounced liver aging 
in the animals fed GM soy (12). However, Snell and colleagues 
dismissed these effects as being of “no biological or toxicological 
significance” on the grounds of various methodological weak-
nesses (8)—in spite of the fact that studies concluding safety for 
the GM food tested suffered from the same inadequacies in study 
design (16).

GM crOP-AssOciAteD HerBiciDe 
resiDUes As A sOUrce OF tOXicitY

Multiple sources of potential harm from GM food consumption 
are acknowledged and covered in the scientific literature. Toxic 
effects in principle could arise directly from the GM transfor-
mation process, resulting from disturbed gene function leading 
to altered biochemistry. Alternatively, toxicity could arise from 
increased exposures to the pesticides that are used in GM crop 
cultivation. Around 85% of GM crops are engineered to withstand 
application of herbicides (17), which in the majority of cases are 
glyphosate-based products such as Roundup.

Thus the question arises as to whether studies that examine 
the toxic effects of glyphosate will also be included in the 
Alliance’s review. This question is not addressed by the Alliance’s 
website and was not answered by Jaron Porciello in his email 
communications with the authors. However, it is important as 

animals and humans will inevitably be exposed to high levels 
of residues in food made from glyphosate-tolerant GM crops 
(14, 15, 18, 19) and these may pose health risks in their own 
right (20–22).

By the same token, will studies looking at toxicity from Bt toxin 
in a non-GM-related context be included? Although these studies 
are not on GM crops, they are relevant to a discussion of GM 
crop toxicity since large numbers of these crops are engineered 
to systemically express this protein (17).

vArYiNG iNterPretAtiONs  
OF DAtAsets

Experimental datasets are subject to more than one interpreta-
tion, that is, different and perhaps even divergent yet equally 
valid interpretations of results can be arrived at by different 
scientists. This is inherent in the nature of the scientific exercise 
and an essential driver of scientific discourse. To illustrate this 
point in the context of the Alliance’s initiative, statistically 
significant differences in physiological parameters arising from 
the consumption of a GM food compared to its non-GM control 
can be viewed by some scientists as biologically not relevant/
significant and thus an indication of safety, while other scientists 
may see such differences as signs of possible toxicity that need 
to be followed up with additional research. Thus conclusions 
of safety arrived at by the authors can frequently be open to 
challenge.

The only way that the Alliance’s citizen scientist reviewers can 
confirm the validity of the authors’ conclusions is to have access 
to the whole study dataset. Restricting the evaluation of a study 
simply to the scrutiny of a given publication’s abstract does not 
meet this crucial requirement and thus introduces a high level of 
risk that the citizen scientists’ exercise will fail to meet its stated 
objectives.

It is, therefore, open to question as to whether the Alliance can 
derive any meaningful conclusions by having the citizen scientists 
look only at the abstracts. It is unclear if the citizen scientists and 
the reading public will be made aware of these major limitations 
of the exercise.

trANsPAreNcY

We also have concerns about the transparency of the method-
ology. According to Jaron Porciello in email communications 
with the authors, the full dataset, including all the selected and 
tested keywords and search strings, will only be made available 
upon conclusion of the study. However, this is unacceptable as it 
denies observers the opportunity to constructively critique the 
methodology with the aim of ensuring scientific rigor. From an 
objective standpoint, it is a concern that the methodology has 
not been made fully available at the outset. This may raise sus-
picion among the skeptical public who form the target audience 
for this exercise that the criteria upon which the abstracts are 
evaluated might be retrospectively selected to fit a preordained 
conclusion.
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MissiNG iNDUstrY PrOPrietArY DAtA

The study of GM food safety is undermined by the fact that the 
GM seed developer and pesticide companies own the biosafety 
studies that they conduct on their products to support regula-
tory approval. Frequently, the data from these investigations are 
kept hidden as commercial secrets and not published in the peer 
review literature. In addition, scientists working outside of the 
industry lack access to the necessary research materials, that is, 
the GM crop under examination and its non-GM isogenic closest 
relative, grown under the same conditions.

A review addressing these issues stated that confidential busi-
ness information (CBI) is often claimed for documentation and 
materials supporting the biosafety assessments of GMOs intended 
for environmental release and food, and feed use, but “such claims 
oftentimes marginally serve their legitimate purpose to protect 
commercial interests and unnecessarily limit transparency and 
public peer review of data submitted to regulatory authorities.” 
The author added that CBI and proprietary claims also restrict 
access to transgene sequence data, GM seeds, and other GMO 
materials, which “precludes the development of independent 
research and monitoring strategies.”

The author concluded that such claims “hinder the accumula-
tion of biosafety data in the open, peer-reviewed literature, which 
is needed for both public and scientific consensus-building on 
safety issues and for improvements to the risk-assessment pro-
cedure itself ” (23).

These vital biosafety data thus are not available to inform 
projects such as the Alliance’s initiative, which are designed to 
make judgments on GM food safety.

cUtOFF POiNt FOr cONseNsUs

It is unclear at which cutoff point the organizers of the Alliance’s 
initiative will conclude on a “consensus” on GM food safety. From 
the point of view of protecting public health, even if 90% of the 
studies reviewed conclude in favor of safety and 10% do not, this 
should be sufficient to prove a lack of consensus. By analogy, if 
a new aircraft type is tested and only 10% of the tests show a 
problem, it is clear that those 10% of test results should not be 
dismissed in favor of the 90% of results demonstrating safety.

cONcLUsiON

In this commentary, we have highlighted weaknesses in the 
study design of the Cornell Alliance for Science’s citizen scientist 

initiative to evaluate the scientific literature pertaining to GM 
food safety. Amongst these shortcomings are:

 1. Evaluation is based only on information provided in the 
abstract of any given publication, even though the full impact 
of the GM diet is only revealed by a close reading of the study’s 
complete dataset.

 2. It is unclear what material is included in the 12,000 study 
abstracts to be reviewed by the citizen scientists, since the 
number of appropriately designed investigations directly 
addressing GM food safety are very few.

 3. It is unclear whether studies of actual and potential toxic 
effects arising from GM crop-associated pesticides (for 
example, glyphosate and Bt toxin) will be included in the  
review.

 4. Different scientists can interpret the same results in different 
yet equally valid ways, with some concluding safety while 
others see potential or actual harm. This again highlights 
the need to examine the full dataset of any given publica-
tion to arrive at a conclusion of either safety or harm. If such 
differing interpretations of the same dataset still exist, then 
this necessitates a conclusion of non-consensus on GM food 
safety.

 5. The cutoff point for consensus or non-consensus on GM food 
safety has not been defined from the outset.

Based on the above weaknesses in the study design, it is ques-
tionable as to whether any objective or meaningful conclusion 
can be drawn from the Alliance’s exercise.
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One of the most controversial societal issues today, regarding pesticide registration in

the European Union (EU) may be the case surrounding re-registration of the active

herbicide ingredient glyphosate. Shortly before the announcement of the conflicting views

regarding the carcinogenicity status of this regulated agrochemical by EU Agencies, the

European Food Safety Authority (EFSA) and the European Chemicals Agency (ECHA)

on the one hand, and the International Agency for Research on Cancer (IARC) on

the other hand, the Cancer Assessment Review Committee of the US Environmental

Protection Agency (US EPA) also published re-evaluations. The US EPA assessment

classified glyphosate into Group E, “not likely to be carcinogenic to humans.” Similar

positions were reached by EFSA and ECHA, assessing glyphosate as “unlikely to pose

a carcinogenic hazard to humans” and “not classified as a carcinogen,” respectively.

A strongly opposing evaluation has previously been reached by IARC by classifying

glyphosate into Group 2A, “probably carcinogenic to humans.” IARC identified potential

cancer hazards in this case, but did not estimate the level of risk it may present, which was

taken into consideration by opposing agencies. Multiple effects of glyphosate have been

reported, of which carcinogenic effects are only one component. Formulated glyphosate

products—especially with polyethoxylated tallowamine and related compounds—have

been shown to cause stronger cytotoxic or endocrine disrupting effects than the active

ingredient glyphosate alone. Questions related to hazards and corresponding risks

identified in relation to this active ingredient and its formulated herbicide preparations

divide scientific circles and official health and environmental authorities and organizations,

and touch upon fundamental aspects of risk assessment and product regulation. The

decision has to consider both hazard-based (IARC) and risk-based analysis (EFSA);

the former may not be suitable to calculate practical significances, and the latter being

challenged if exposure estimations are uncertain in light of new data on residue levels.

The results of current analytical surveys on surface water are particularly worrisome. In

turn, the precautionary principle appears to be the optimal approach in this case for

regulation in the EU.

Keywords: glyphosate, plant protection products, formulating agents, polyethoxylated tallowamine, hazard

identification, risk assessment
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Székács and Darvas Re-registration of Glyphosate in the European Union

INTRODUCTION

Since its introduction as an herbicide active ingredient in 1971
(Baird et al., 1971), glyphosate [N-(phosphonomethyl)glycine]
became and remains the market leading herbicide active
ingredient worldwide (Dill et al., 2010; Székács and Darvas, 2012;
Benbrook, 2016). Its initial patent protection commenced in 1971
(Franz, 1974), and was renewed in the eighties on the basis of
novel composition—through a process that involved property
acquisitions among major pesticide companies. However,
even this extended patent protection eventually expired, and
glyphosate became a generic compound in 1991 in many parts of
the world outside the United States (US), and even the US patent
expired in 2000. The introduction of glyphosate-tolerant (GT),
genetically modified (GM) crops, began in the US in 1996 and
gave a further protected status and market boost to glyphosate,
securing its market leading position ever since.

Nonetheless, not only the intellectual property rights, but also
the legal authorization of any given pesticide active ingredient
has to be periodically renewed by national or international
authorities in different parts of the world, when the substance
is intended to be applied in agriculture. In the European Union
(EU), the re-registration of glyphosate was scheduled for 2013,
and Germany was chosen as Rapporteur country, with Slovakia
as co-Rapporteur. Re-registration of the compound received
prominent attention, due to significant commercial interests and
also environmental and health concerns.

The applied formulations may contain various additives (e.g.,
surfactants), besides the active ingredients, and these additives
have long been classified as being inert or inactive components
in relation to the main biological effects of the formulation.
Such “inertness” is consequent by definition, as any component
exerting the main biological effect would be considered an active
ingredient, not an additive. However, these inert ingredients may
be biologically or chemically active in their side-effect profile,

Abbreviations: AChE, acetylcholinesterase; ACS, American Chemical Society;

ADI, acceptable daily intake; AMPA, aminomethyl phosphonic acid; ARfD, acute

reference dose; BfR, German Federal Risk Assessment Institute, BVL, German

Federal Office for Consumer Protection and Food Safety; CRP, Co-operative

Research Programmes; DNA, desoxyribonucleic acid; EC, European Commission;

ECHA, European Chemicals Agency; EEC, European Economic Community;

EFSA, European Food Safety Authority; ELISA, enzyme-linked immunosorbent

assay; ERD, enforcement residue definition; EU, European Union; FAO, Food

and Agriculture Organization; GAT, glyphosate acetyltransferase; GM, genetically

modified; GM38, human fibroblast cell line; GOX, glyphosate oxidoreductase; GT,

glyphosate-tolerant; HEK293, human embryonic kidney cell line; HeLa, human

cervical cancer cell line; HepG2, human hepatoma cell line; HT, herbicide-

tolerant; HT1080, human fibrosarcoma cell line; HUVEC, primary neonate human

umbilical vein endothelial cell line; IARC, International Agency for Research on

Cancer; IPA salt, isopropylamine salt; IPA, isopropylamine, isopropylammonium;

JEG3, human choriocarcinoma cell line; JAr, human chorioplacental cell line;

JMPR, Joint Meeting on Pesticide Residues; LC-MS/MS, liquid chromatography

coupled to tandem mass spectrometry; MS, Member State; NE-4C, murine

neuroectodermal stem cell-like cell line; NOAEL, no observable adverse effect

level; OECD, Organisation for Economic Co-operation and Development; PAN,

Pesticide Action Network; POEA, polyethoxylated tallowamine; PPP, plant

protection product; RR, Roundup Ready R©; T47D-KBluc, human transfected

estrogen-dependent breast adenocarcinoma cell line; UF, uncertainty factor; US

EPA, US Environmental Protection Agency; US, United States (of America);

WHO, World Health Organization.

which also has to be considered in risk assessment and policy-
making.

This survey attempts to summarize relevant data and
information regarding decision-making in the re-registration
process of glyphosate and its formulated herbicides, as well as
main statements and events in evidence-based risk assessment
that impacted it. It does not aim to justify or deny legislatory
steps, but intends to reveal scientific data that had to be or should
be considered in the corresponding decisions, with particular
emphasis on results that have come to light since 2013, the
preparation of themain risk assessment document on glyphosate,
and with special attention to hazards identified in (eco)toxicity
studies and to increased potential exposure levels corroborated
by environmental monitoring of glyphosate residues.

THE WORLDWIDE MARKET OF
GLYPHOSATE

Due to its patent protection, the market for glyphosate has been
very favorable for the patent holder Monsanto Corporation
for almost three decades. The leading glyphosate-based
herbicide of Monsanto has been the Roundup group (Roundup
Original R©, Roundup Classic R© Roundup UltraMAX R©, Roundup
WeatherMAX R©), containing mostly isopropylammonium
(IPA) or potassium salts of glyphosate having excellent water
solubility. Other salts are also used, of which ammonium and
sodium salts have less water solubility, while the trimesium
(trimethylsulfonium) or IPA salts are almost twice as water
soluble as the already highly soluble potassium salt—in fact
this physicochemical feature has been used in formulations and
claimed as an innovative novelty during patenting. Expiration
of the patent protection outside the US in 1991 caused a 30, 40,
and 50% drop in the market sales of Roundup within 1, 2, and 5
years, respectively. However, the introduction of GT GM crops
has more than compensated Monsanto for initial market losses,
as Roundup could then continue to be exclusively marketed as a
product linked to Roundup Ready R© (RR) crops, the first GT crop
being RR soybean in 1996, followed by GT cotton, GT maize, GT
canola, GT alfalfa, and GT sugar beet (Dill et al., 2010).

Regardless of the position of Monsanto in patenting and
marketing glyphosate, the worldwide market for the active
ingredient is continuously increasing as depicted in Figure 1

on the basis of data reported (Bonny, 2011; Swanson et al.,
2014; Benbrook, 2016). After average annual increases of 8%
between 1982 and 1990, sales rose 16-fold in the 14 years between
1974 and 1990 (31% annual growth) and 26-fold in the 15
years between 1990 and 2005 (44% annual growth), and then
maintained 8% annual growth between 2005 and 2014. The
increasing boost after 1990 was clearly due to the worldwide
introduction of GT crops, and this growth in consumption was
further intensified with the expansion of the use of multiple
trait (stacked genetic events) GM crops. Nonetheless, the use
of glyphosate increased in regions without GM crop cultivation
(due to pre-harvest or post-harvest chemical desiccation) as well:
the overall consumption of glyphosate in Germany was boosted
5.7-fold between 1992 and 2012 (Berger et al., 2018). Thus, since
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2012 glyphosate alone represented globally a stable 12% of the
overall pesticide market and 13% of the market for synthetic
pesticides (BCC Research, 2012; Transparency Market Research,
2014, 2016).

In 2014–2015, glyphosate accounted for 26% of maize, 43% of
soybean and 45% of cotton herbicide applications. Considering
oral rat LD50 or 24-month oral rat no observable adverse
effect level (NOAEL) values for acute or chronic toxicity for
all herbicide active ingredients used, glyphosate was estimated
in a study (Kniss, 2017) to contribute only 0.1, 0.3, and 3.5%
of the chronic toxicity hazard in those crops, respectively, on
the basis of the hazard quotient approach weighting the hazard
(toxicity) with the areas and dosages applied. Nonetheless,
this estimation considered a factor termed “area-treatment”
(instead of the absolute amounts applied), solely the average
exposure (vs. exposure dynamics), and only of the active
ingredients. Therefore, it did not take environmental fate,
leaching toward drinking water supplies, ubiquitous exposures,
side-effects by specific modes of action (genotoxic, hormonal,
immunomodulant), as well as effects of the co-formulants into
consideration. The study claims that increases in herbicide
usage increased more rapidly on non-GM crops than on GM
crops, and concludes that the replacement of glyphosate with
other herbicides would be likely to result in increased chronic
health risks to pesticide applicators. This strongly contradicts
to earlier surveys (Heinemann et al., 2014; Benbrook, 2016;
Perry et al., 2016), and is likely to be related to the fact
that Kniss’ study considered 159 herbicide formulations of
118 herbicide active ingredients, while herbicide-tolerant (HT)
crops are designed against 8 herbicide active ingredients or
active ingredient types (2,4-D, dicamba, glufosinate, glyphosate,
oxynil type, sulfonylureas, imidazolinones, isoxaflutole), of which
glyphosate by far is used most substantially in cultivation.
Therefore, such an “overall” trend of all active ingredients
considered, the vast majority of which not being related to
HT crops is biased particularly for glyphosate, concealing the
immense increases in glyphosate use in the grand average.

Overall production capacities have also risen over the decades.
In 2012, the overall production capacity was 1.1 million tons/year
which far exceeded the actual worldwide demand. Of the overall
production, the Republic of China represents a substantial
portion, and has increased its production capacity. Chinese
production capacity was 323 thousand tons/year in 2007, but
increased by 2.6-fold to 826 thousand tons/year in 2010,
corresponding to a 37% annual increase rate. Statistics indicate
that China alone is capable to meet the entire global glyphosate
demand to date.

The success of glyphosate started with a predominant use of
the active ingredient in the US in the seventies. Subsequently,
the share of the US in the global annual turnover of glyphosate
gradually decreased from 47% in 1974 to 15% in 2014, as seen
in Figure 2 on the basis of literature data (Benbrook, 2016).
The decline of the US share has taken place more or less at
a constant rate of −0.6%/year, except for the period of 1990–
1995, when a steep decline of ∼-2.0%/year occurred, attributed
to large increases in cultivation of GT crops in South America.
The steep drop in 1991 also correlates with the expiration of

the patent protection of glyphosate in different regions of the
world (except for the US). The share of the US consumption may
continue to decrease more rapidly as US consumption appeared
to have leveled out after 2010 (reflected in a continuing decrease
in the US share on the global consumption), while worldwide
glyphosate consumption appeared to grow at an unchanged rate,
partially due to GT crops gaining acreage in regions other than
the US, and partially due to expanding glyphosate use in pre-
or post-harvest crop desiccation. Globally, usage in GT crop
cultivation and non-GT crop desiccation boosted the commercial
success of glyphosate, while its manufacturing has shifted to Asia,
resulting in a leading production role currently played by China.

REGISTRATION OF GLYPHOSATE IN THE
EUROPEAN UNION

At the time of its introduction and following its approval in
1974, registration in 1983 and subsequent re-registration for use
in cropland, forests, residential, and aquatic areas in 1993 by
the US EPA (United States Environmental Protection Agency,
2016a), glyphosate had to be registered in Europe in each country,
where it was intended to bemarketed, and registration conditions
and requirements varied by country. According to current patent
laws, it was subjected to full product patent protection in
Germany and other Common Market countries, while in the
Soviet Bloc countries, where so-called “process patents” were in
power, anyone could patent and register the active ingredient,
who demonstrated by patent protection the invention of a novel
chemical means for its synthesis.

A detailed and harmonized two-level registration system
for plant protection products (PPPs) was introduced in the
EU in 1991 with Council Directive 91/414/EEC (European
Commission, 1991), specifying that pesticide active ingredients
are regulated at EU level, managed by the European Commission
(EC), while formulated pesticides are registered at Member
State (MS) level. In addition, the new legal framework also
requested re-registration of “old” active ingredients (already
in use in the EU before 1991) (Klátyik et al., 2017a). Active
ingredients subject to re-registration were specified in Annex I
of the Directive, and the re-registration process was carried out
in a four-stage work program completed by the end of 2010
(Anton et al., 2014). The first evaluation of glyphosate under
Council Directive 91/414/EEC took place in 1995 within the
first stage of the work program for existing active substances
referred to in Article 8 (Dill et al., 2010). The basis of the
evaluation was a joint dossier submitted by three industrial
task forces, and Germany was designated as Rapporteur MS.
Upon peer review of the documentation submitted, glyphosate
was included in Annex I of Council Directive 91/414/EEC
with CommissionDirective 2001/99/EC (European Commission,
2001) coming into force in 2002. This authorization expired in
2012, when PPPs were already subject to Regulation 1107/2009
(European Commission, 2009) which came into force in 2011,
and renewal of authorization of glyphosate under Regulation
540/2011 (European Commission, 2011b) was ordered.
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FIGURE 1 | The global annual turnover of glyphosate and the intensity of the cultivation of glyphosate-tolerant (GT) genetically modified (GM) crops: agricultural

(slashed line), non-agricultural (dotted line) and overall (solid line) use of glyphosate, along with cultivation of single trait (light columns) and multiple traits (dark

columns) GT GM crops. On the basis of Székács and Darvas (2012), Benbrook (2016), Cuhra et al. (2016), Myers et al. (2016) and the updated dataset of the

International Service for the Acquisition of Agri-biotech Applications (James, 2015).

FIGURE 2 | The share of glyphosate uses in the United States from the global annual turnover. On the basis of Benbrook (2016).

The re-registration process took an unexpected turn that
triggered wide public responses, when the renewal of the
authorization of glyphosate, along with 38 other pesticide active
ingredients, was postponed until 2015 (European Commission,
2010) and to be completed only in 2016. The reasoning for
the postponement was related to delays in the overburdening
task of pesticide authorization renewals. However, then more
recent studies have indicated a range of potential harmful
effects, including hepatotoxicity or hepatorenal effects on rats
(Benedetti et al., 2004; Larsen et al., 2012), and the number
of published studies increased by orders of magnitude e.g.,
publications related to glyphosate intoxication rose from 44 in

1978–1987 to 152 in 1996–2005 and to 875 in 2006–2015 (Zyoud
et al., 2017). Although reviews of genotoxicity studies deemed
DNA damage by glyphosate and glyphosate-based formulations
secondary to cytotoxic effects (Kier and Kirkland, 2013; Kier,
2015), DNA-damaging effects and genotoxicity of glyphosate
and particularly of its formulations (Roundup R©, Glyfos R©,
Glyphogan R©, Glyphosate-Biocarb R©, etc.) on vertebrates (murine
and human cells) (Bolognesi et al., 1997; Koller et al., 2012;
Young et al., 2015; Townsend et al., 2017), cytotoxic effects of
glyphosate-based herbicides on human embryonic and placental
cells (Benachour et al., 2007; Benachour and Séralini, 2009;
Gasnier et al., 2009, 2010; Mesnage et al., 2013a,b), indication
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of endocrine disrupting effects by showing activity on estrogen
receptors in human hormone-dependent breast cancer cells
(Thongprakaisang et al., 2013; Mesnage et al., 2017a), inhibition
of the biosynthesis of testosterone and estradiol (Romano et al.,
2010) and progesterone (Young et al., 2015) or inhibitory effects
on aromatase, a key enzyme in steroid hormone biosynthesis
(Cassault-Meyer et al., 2014; Defarge et al., 2016), teratogenic
effects on vertebrates by inhibiting the retinoic acid signaling
pathway (Lajmanovich et al., 2003; Paganelli et al., 2010;
Carrasco, 2013), birth defects in rats (Guerrero Schimpf et al.,
2017), and nephrotoxic and hepatotoxic effects of Roundup R©

have been demonstrated in rats in connection to RR GM
maize (originally published in the journal Food and Chemical
Toxicology in September 2012, but retracted by the journal
in November 2013 following an alleged intervention from
the industry stakeholder (Foucart, 2016), and subsequently
republished in another journal a year later) (Séralini et al.,
2014). The analysis of kidney and liver tissues from the
same rats by molecular profiling (transcriptomics, proteomics,
metabolomics) confirmed pathology of these organs in the lowest
dose Roundup R© treatment group culminating in non-alcoholic
fatty liver disease (Mesnage et al., 2015a,b, 2017a,b).

The in vitro data on the cytotoxicity of glyphosate on
various cell lines, as determined in the corresponding effective
concentration values causing 50% mortality (EC50), are shown
in Figure 3, and range over two orders of magnitude (between
0.1 and 10 mg/ml, corresponding to ∼0.5–50% of the dilution
used in agricultural applications ∼2%), with a very broad range
in sensitivity among various cell lines tested. In general, the
most sensitive cell lines appeared to be the human hematopoietic
Epstein-Barr virus transformed lymphocyte Raji cells (Townsend
et al., 2017), regenerative fin cell lines of fish origin (Qin
et al., 2017), human epithelial HaCaT keratinocyte cells (Elie-
Caille et al., 2010; Heu et al., 2012a,b; Qin et al., 2017) and
a murine neuroectodermal stem cell-like line, NE-4C (Székács
et al., 2014). In contrast, cell types with the lowest apparent
sensitivity were human choriocarcinoma cells (JEG3) (Benachour
et al., 2007; Benachour and Séralini, 2009; Gasnier et al.,
2009; Romano et al., 2010; Mesnage et al., 2013a), human
chorioplacental cells (JAr) (Young et al., 2015), human hepatoma
cells (HepG2) (Benachour et al., 2007; Benachour and Séralini,
2009; Gasnier et al., 2009, 2010), murine osteoblast precursor
cells (MC3T3-E1) (Farkas et al., 2018), human embryonic
kidney cells (HEK293) (Benachour et al., 2007; Benachour and
Séralini, 2009; Gasnier et al., 2009; Mesnage et al., 2013a),
and human primary neonate umbilical vein endothelial cells
(HUVEC) (Benachour et al., 2007; Benachour and Séralini, 2009;
Gasnier et al., 2009). Cytotoxicity has also been detected by
other biochemical markers e.g., mitochondrial functions, release
of lactate dehydrogenase, cell proliferation determined by the
use of sulforhodamine B, or membrane integrity and lysosomal
activities indicated by the uptake of neutral red dye (Koller et al.,
2012; Defarge et al., 2016). The interaction of between glyphosate
and mitochondrial succinate dehydrogenase has been verified by
molecular modeling (Ugarte, 2014). The IPA salt of glyphosate
was indicated to be genotoxic at concentrations of 0.16–1.6µg/ml
on human lymphocytes, fish erythrocytes and plant staminal

nuclei in vitro and in vivo (Alvarez-Moya et al., 2014). Glyphosate
has also been shown to be able to disrupt regenerative diploid
(DIMF) and triploid fin cell lines from the Oriental weather
loach (Misgurnus anguillicaudatus) with cytotoxicity of LC50

= 0.315 and 0.372 mg/ml, respectively. It also was found to
induce DNA damage (micronucleus formation), cell damages
(chromatin condensation, nucleus distortion, broken, and
reduced endoplasmic reticulum, mitochondria and ribosomes)
and apoptosis (Qin et al., 2017), intracellular oxidative cascade,
morphological modifications, and apoptosis (Elie-Caille et al.,
2010) caused by oxidative stress due to mitochondrial membrane
potential disruption (Heu et al., 2012b) and cell morphological
changes (Heu et al., 2012a). In addition to detection of decreased
cell viability (tested in the above examples), cytotoxicity has
been tested on other end points as well, including mutagenicity
within the same range of toxicity (EC50 = 0.6–0.9 mg/ml) for
human epithelial type 2 cells (Hep-2) as occurs for human
cervical cancer cell (HeLa) contaminant (Mañas et al., 2009),
human fibroblast cells (GM38) (Monroy et al., 2005), and
human fibrosarcoma cells (HT1080) (Monroy et al., 2005).
Exposure of hippocampal pyramidal cells from rats to glyphosate
at 2–6 mg/ml caused impaired neuronal differentiation and
development and axon growth (Coullery et al., 2016), and
a glyphosate absorption study across epithelial tissues e.g.,
across Caco-2 cells revealed saturable glyphosate uptake through
epithelial transporter enzyme activity in an ATP- and Na+-
independent manner, not competed by specific amino acids or
transporter inhibitors. Enhanced uptake into the epithelial cells
at barrier mucosae has been pointed out to potentially result
in more significant local and systemic effects than predicted
from the passive permeability of glyphosate, and may lead to
neural disposition and risk for brain-related toxicities (Xu et al.,
2016). It has been indicated that glyphosate at concentrations
of 0.09–1.69 mg/ml may induce DNA damage in leucocytes
such as human peripheral blood mononuclear cells, cause DNA
damage (single and double strand-breaks by the comet assay) and
DNA methylation (global DNA methylation and methylation of
p16 (CDKN2A) and p53 (TP53) promoter regions), and trigger
DNA methylation in human cells (Kwiatkowska et al., 2017).
Correlations were less apparent for other biochemical end points
e.g., endocrine disrupting effects. Glyphosate was found to inhibit
aromatases in JEG3 cells with EC50 values of 7 mg/ml (Richard
et al., 2005), but causing ∼10% inhibition only at 0.024 mg/ml
(Defarge et al., 2016). It has not been reported to exert estrogen
agonist effects in the estrogen receptor activation-reporter assay
on JEG3 cells, but was proven to be anti-androgenic at sub-
agricultural and non-cytotoxic dilutions (Gasnier et al., 2009).
In contrast, it has been indicated to exert estrogen receptor
activation on human transfected estrogen-dependent breast
adenocarcinoma cells (T47D-KBluc) with an EC50 value of
0.005 ng/ml (Thongprakaisang et al., 2013) or in a later study
0.002mg/ml (Mesnage et al., 2017a), i.e., two orders of magnitude
below concentrations causing cell mortality. Glyphosate-based
herbicide preparations, containing polyethoxylated tallowamine
(POEA) as formulating surfactant, showed a somewhat similar
pattern at dilutions corresponding to two orders of magnitude
lower glyphosate concentrations, (between 0.001 and 0.1 mg/ml,
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corresponding to ∼0.005–5% of the dilution used in agricultural
applications), with notable outstanding sensitivities for cell
lines NE-4C and JAr. A study of exposure to glyphosate on
human HepG2 cells using biomarkers of oxidative stress found
prompt (upon 4 h) elevated levels of permanent DNA damage
(micronucleus formation) in cytokinesis-block micronucleus
cytome assay and in alkaline comet assay (indicating a possible
aneugenic effect), as well as decreases in lipid peroxidation,
glutathione peroxidase activity and total antioxidant capacity at
occupational exposure level (0.0035 mg/ml) revealing oxidative
damage. In contrast, no significant effects remained upon 24 h of
exposure in the levels of reactive oxygen species, glutathione and
lipid peroxidation, indicating a certain ability of the cells to cope
with prolonged exposure (Kašuba et al., 2017). Supported by an
optical biosensor method and holographic microscopy, Roundup
Classic R© and glyphosate have recently been shown to inhibit
normal cell adhesion of MC3T3-E1cells with IC50 values upon
1 h of exposure of 0.086 and 0.59 mg/ml in serum-containing
medium and 0.10 and 1.97 mg/ml in serum-free conditions,
respectively; and the approximately one order of magnitude
higher inhibitory potency of Roundup Classic R© was proven to
be attributed to POEA (Farkas et al., 2018).

Substantially higher cytotoxicities recorded for glyphosate-
based herbicide preparations at given dilutions than those seen
for the corresponding glyphosate concentrations indicate that
the excessive toxicity is clearly due either to component(s)
in the formulation, or to their interaction with the active
ingredient (see below). A problem occurring frequently in the
scientific literature is, however, that reports do not always
accurately specify the actual glyphosate formulation used, and
often attribute the observed effect to the active ingredient,
glyphosate. This is, in several cases, a wrong assumption, which
can be verified only with the use of pure glyphosate. For this
reason, comparative studies with glyphosate, co-formulants and
formulations involved are of increasing significance (Klátyik
et al., 2017a; Székács, 2017; Defarge et al., 2018; Mesnage and
Antoniou, 2018).

Three glyphosate-based formulations, Roundup Express R©,
Roundup Bioforce R©, Roundup GT R© and Roundup GT Plus R©

at 5% dilutions corresponding to 0.04–2.3 mg/ml concentrations
of glyphosate showed 22–97% inhibition of the mitochondial
activity and activation of caspase 3/7 enzymes of HepG2
cells, while such levels of inhibition with glyphosate alone
could be achieved only at or above 20 mg/ml concentration
(Benachour et al., 2007; Benachour and Séralini, 2009; Gasnier
et al., 2009; Mesnage et al., 2013a). Effects were similar, but
even somewhat stronger on the more sensitive human Hep3G
hepatic cell line (Gasnier et al., 2010). Roundup Bioforce R©,
but not glyphosate, caused cytotoxicity through caspase 3/7
inhibition on testicular Leydig, Sertoli, and germ cells from rat
and through adenylate cyclase activation on Leydig cells (IC50

= 0.36–0.9 mg/ml; 0.1–0.25%) (Clair et al., 2012). Roundup
Original R© similarly induced calcium-mediated cell death in
rat testis and Sertoli cells (de Liz Oliveira Cavalli et al.,
2013). A study using a glyphosate-based herbicide formulation
Glifosato Atanor R© and spray adjuvant alkylphenol ethoxylate
(Impacto R©) on the human Hep-2 cell line after 24 h of exposure

indicated cytotoxicity due to oxidative damage by increased
levels of reactive oxygen species with an IC50 value of 0.38
mg/ml (corresponding to glyphosate concentration of 0.14
mg/ml) (Coalova et al., 2014), while glyphosate or its primary
metabolite did not exert observable cytotoxicity in the test at
concentrations up to 1 mg/ml (Chaufan et al., 2014). Addition
of the spray adjuvant further reduced the IC50 value to 0.18
mg/ml (corresponding to glyphosate concentration of 0.064
mg/ml). Vice versa, the glyphosate formulation also increased
the toxicity of the spray formulant; i.e., the two substances
showed synergistic cytotoxicity. The same formulation was
shown to inhibit proliferation and differentiation of adipocyte
3T3-L1 fibroblasts (Martini et al., 2012) and to increase lipid
peroxidation and antioxidant enzyme activity by oxidative stress,
and to inhibit the expression of genes normally up-regulated
during adipogenesis, e.g., master gene PPAR gamma (Martini
et al., 2016a). Three glyphosate-based formulations showed
cytotoxicity on adipocyte 3T3-L1 fibroblasts in the order of
Roundup FG R©

> Glifosato Atanor R©
> Glifogran R© in the

range of IC50 values corresponding to glyphosate concentrations
of 2.5–63µg/ml, while glyphosate itself exerted an IC50 value
of 3.5 mg/ml (Martini et al., 2016b). In addition, Glifosato
Atanor R© was found genotoxic, correlated with lipid peroxidation
and DNA fragmentation effects, at concentrations of 9–26%
(corresponding to glyphosate concentrations of 0.038–0.113
mg/ml) on human peripheral blood leukocyte cells (Barbosa
et al., 2017). Roundup Original R© was found cytotoxic to
human adipose-derived mesenchymal stem cells with an IC50

value corresponding to glyphosate concentration of 43.0 ±

1.7µg/ml, induced death by apoptosis and necrosis upon 24 h
of exposure, and caused reduced alkaline phosphatase activity
in cells induced to osteogenic differentiation (de Melo et al.,
2018). Formulations containing glyphosate IPA salt, Roundup
3 Plus R©, Roundup Biovert R©, Amega R©, Cargly R© and Cosmic R©,
unlike glyphosate alone, were shown to affect cell proliferation
in embryonic cells 360min upon fertilization of the sea urchin
Sphaerechinus granularis inducing a delay in entry into the M-
phase in the cell cycle (Marc et al., 2002, 2004). A Roundup R©

formulation, but again not glyphosate, was shown to affect cell
proliferation and steroid production, as dramatically decreased
cell numbers, as well as estradiol and progesterone production
were recorded in granulosa cells from beef heifer ovaries upon
exposure to Roundup R© at 0.01–0.30 mg/ml (corresponding
to glyphosate concentrations of 0.0018–0.054 mg/ml) (Perego
et al., 2017). Roundup R© inhibited the survival of human L-02
hepatocytes (IC50 = 0.15 mg/ml, corresponding to glyphosate
concentration of 0.062 mg/ml) by inducing mitochondrial and
DNA damage, changes in membrane integrity and permeability,
inhibition of the antioxidant system, and thus, apoptosis
(Luo et al., 2017). Roundup Transorb R© exerted cytotoxicity
on a zebrafish (Danio rerio) hepatocyte cell line ZF-L at
concentrations as low as 0.068–0.27µg/ml (corresponding to
glyphosate concentrations of 0.033–0.13µg/ml), due mostly to
lysosomal instability and inhibition of mitochondrial function,
and slightly to impaired cell membrane integrity. Synergistic
detrimental effects were observed when Roundup Transorb R©

was applied with an insecticide formulation (Furadan 350
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FIGURE 3 | In vitro cytotoxicity of glyphosate (light columns) and its formulated preparation Roundup® (dark columns) on various cell lines Raji: human hematopoietic

Raji (Epstein-Barr virus transformed human lymphocyte) cells (Townsend et al., 2017), DIMF, diploid fin cell line from the Oriental weather loach Misgurnus

anguillicaudatus (Qin et al., 2017); HaCaT, human epithelial keratinocyte cells (Elie-Caille et al., 2010); NE-4C, murine stem cell-like neuroectodermal cells (Székács

et al., 2014); Hep-2, human epithelial type 2 (HeLa contaminant) cells (Mañas et al., 2009); GM38, human fibroblast cells (Monroy et al., 2005); HT1080, human

fibrosarcoma cells (Monroy et al., 2005); HUVEC, primary neonate human umbilical vein endothelial cells (Benachour et al., 2007; Benachour and Séralini, 2009;

Gasnier et al., 2009); HEK293, embryonic kidney cells (Benachour et al., 2007; Benachour and Séralini, 2009; Gasnier et al., 2009; Mesnage et al., 2013a);

MC3T3-E1, murine osteoblast precursor cells (Farkas et al., 2018); HepG2, human hepatoma cells (Benachour et al., 2007; Benachour and Séralini, 2009; Gasnier

et al., 2009); JAr, human chorioplacental cells (Young et al., 2015); JEG3, human choriocarcinoma cells (Benachour et al., 2007; Benachour and Séralini, 2009;

Gasnier et al., 2009; Mesnage et al., 2013a, 2017a). Plain and grid column patterns indicate cytotoxicity detected by MTT test and mutagenicity tests, respectively.

SC R©) of no known interaction between the active ingredients,
indicating that toxicity was likely to be due to the surfactants
in the commercial formulations (Goulart et al., 2015). Moreover,
Roundup Full II R© exerted acute toxicity (LC50 = 0.009 mg/ml
upon 96 h of exposure) and genotoxic effects in blood, gill,
and liver cells of the pacu fish (Piaractus mesopotamicus)
determined in comet micronucleus and nuclear abnormalities
assays (Leveroni et al., 2017). Roundup Transorb R© was found
mutagenic and genotoxic on gill erythrocyte cells of the
guppy Poecilia reticulata (De Souza Filho et al., 2013), and
a glyphosate-based herbicide at dilutions corresponding to
glyphosate concentrations above 1.7 ng/ml caused significant
decreases in the numbers of differentiated neuronal clusters and
myotubes on primary embryonic stem cells from Drosophila
melanogaster, being indicative of potential teratogenic effects
(Argueta and Torres, 2017).

Upon clinical observations that surfactants used in
glyphosate-based formulations substantially contributed
to development of symptoms e.g., hypotension, mental
deterioration, respiratory failure, acute kidney injury, and
arrhythmia in intoxication cases by those formulations (Seok
et al., 2011), targeted studies on surfactant-induced cellular
effects found that cytotoxicity via apoptosis and necrosis caused
by mitochondrial damage by surfactant POEA (TN-20) on
mouse alveolar epithelial, fibroblast-like, and heart cell lines
was reduced in the presence of glyphosate, while that of a
corresponding polyoxyethylene lauryl amine ether (LN-10)
surfactant was unaffected on alveolar cells, but increased on
fibroblast-like and heart cell lines in the presence of glyphosate.

Glyphosate alone did not exert cytotoxicity at up to 0.17 mg/ml
(100µM) (Song et al., 2012; Kim et al., 2013).

Moreover, the primarymetabolite of glyphosate, aminomethyl
phosphonic acid (AMPA) was found to be genotoxic on
human and murine cell lines using the comet assay, the
chromosome aberration test and the micronucleus test (Mañas
et al., 2009). Assessing cytotoxicity of glyphosate, its metabolite
AMPA and impurities (N-(phosphonomethyl) iminodiacetic
acid, N-methylglyphosate, hydroxymethylphosphonic acid and
bis-(phosphonomethyl)amine) on human peripheral blood
mononuclear cells, found statistically significant decreases in
their viability and ATP levels. Thus, N-methylglyphosate and
bis-(phosphonomethyl)amine exerted cytotoxicity upon 24 h
of exposure with IC50 values of 1.8 mg/ml, AMPA showed
significant but minor inhibitory effects at concentrations of
0.06–1.1 mg/ml, while the others affected viability only slightly
at concentrations of 0.48–1.7 mg/ml, glyphosate itself being
the least cytotoxic (Kwiatkowska et al., 2014, 2016). AMPA as
photodegradation product of glyphosate was shown to cause high
genotoxicity on Chinese hamster ovary cells (CHO-K1) (Roustan
et al., 2014). In addition, the side-product of AMPA formation,
glyoxylate was shown by activity-based protein profiling to be
capable to react with cysteines across many proteins in mouse
liver, inhibiting fatty acid oxidation and thus, increasing liver fat
(Ford et al., 2017).

Consequently, reported in vivo effects of glyphosate and
its formulated herbicide preparations are far more scattered
than data from in vitro assays (Mesnage et al., 2015b). In vivo
toxicity has been reported for a wide range of organisms of
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various phylogeny and with diverse symptoms (Gill et al., 2018).
Glyphosate and even more its commercial formulations were
indicated to induce DNA damage (micronucleus formation) in
a wide range of animal species by numerous studies and a
meta-analysis (Ghisi et al., 2016), moreover, the active ingredient
was found to be genotoxic also in plants (Nardemir et al.,
2015) and to induce oxidative stress and catalase activity in
submerged macrophytes (Zhong et al., 2018). It has also been
shown to serve as a source of phosphorous for algae at low
concentrations (Klátyik et al., 2017b; Wang et al., 2017), and
therefore, to potentially induce algal bloom (Drzyzga and Lipok,
2017). Formulated glyphosate-based herbicides, Touchdown R©

and Roundup R© caused neurotoxicity (McVey et al., 2016) as
well as locomotion and fertility inhibition (García-Espiñeira
et al., 2018) on the nematode Caenorhabditis elegans. Following
the results of the late Andrés Carrasco and his research
group (Paganelli et al., 2010; Carrasco, 2013), recent findings
in environmental toxicology of glyphosate and its formulated
products include its revealed toxicity on amphibian species
(Mann et al., 2009; Relyea and Jones, 2009; Meza-Joya et al.,
2013; Wagner et al., 2013; Henao Muñoz et al., 2015; Baier
et al., 2016a,b), on mollusks (Conners and Black, 2004) and
on earthworms (Zaller et al., 2014; Gaupp-Berghausen et al.,
2015). It affected hemocyte parameters and acetylcholinesterase
(AChE) activity, but not antioxidant enzyme activities in mussel
Mytilus galloprovincialis (Matozzo et al., 2018) with disruption
of key biological processes including energy metabolism, Ca2+

homeostasis and endoplasmic reticulum stress response, as
well as cell signaling identified by transcriptome analysis
(Milan et al., 2018). Glyphosate exerted acute toxicity on the
invasive snail Pomacea canaliculata with a 96-h LC50 value
of 175 mg/l, overly high for control purposes, but indicating
oxidative stress, enhanced overall metabolic rate and altered
catabolism from protein to carbohydrate/lipid mode (Xu et al.,
2017).

Among organisms with life cycle related to water bodies,
a glyphosate-based herbicide Factor 540 R© at exposures
corresponding to glyphosate concentrations of 1–1000 µg/l
modified structural and functional properties of freshwater
phytoplankton communities (6 algal and 3 cyanobacterial
species/strains) living in streams located in agricultural areas,
causing a concentration-dependent reduction in chlorophyll-a
and carotenoid levels, changes in the algal community structure,
reduced diversity, as well as biochemical, and physiological
parameters (shikimate content, lipid peroxidation, antioxidant
activity of superoxide dismutase, catalase, and ascorbate
peroxidase) (Smedbol et al., 2017, 2018). Roundup R© was shown
to be toxic to the food-borne trematode Echinostoma paraensei
developing in given life stages in aquatic hosts (Monte et al.,
2016). Roundup Express R© and POEA were detected to exert
toxicity on juveniles of the Pacific oyster Crassostrea gigas
upon sub-chronic (35-day) exposure at concentrations of 0.1, 1
and 100 ng/ml (Mottier et al., 2013, 2014; Séguin et al., 2017).
Roundup Original R© exerted lethal and sub-lethal effects on
the widely distributed in dipteran freshwater nematoceran
fly Chironomus xanthus with a 48 h LC50 corresponding to
glyphosate concentration of 251.5 mg/l, as well as reduced
larval growth of and disturbed emergence of adults at lower

concentrations (Ferreira-Junior et al., 2017), and it reduced the
growth rate, the escape swimming speed and the fat storage
also on the endangered damselfly Coenagrion pulchellum at a
level corresponding to a glyphosate concentration of 2 mg/l,
which is likely to lead to negatively influence fitness, mortality by
predation and population dynamics (Janssens and Stoks, 2017).
As in the latter test Roundup systematically resulted in 25–100%
higher effects than glyphosate at equivalent concentrations, the
enhanced effect was attributed to POEA. Toxicity to the water
flea (Daphnia magna) is of special importance, and not only
formulated glyphosate-based herbicides (Cuhra et al., 2013;
Ørsted and Roslev, 2015), but also glyphosate residues in GT
soybean (Cuhra et al., 2015) were shown to exert toxicity on this
standard ecotoxicity indicator organism. Effects of glyphosate
on somatic and ovarian growth, as well as of glyphosate-
based formulations on ovarian growth and immune status of
freshwater and estuarine crab species were reported (Hong et al.,
2017; Avigliano et al., 2018; Canosa et al., 2018). Toxicities have
extensively been reported for fish, including the zebrafishD. rerio,
on which both glyphosate (Armiliato et al., 2014; Lopes et al.,
2014; Uren Webster et al., 2014) and its formulated products
(Bridi et al., 2017; Sulukan et al., 2017) were found to exert acute
toxicity through inhibited carbonic anhydrase activity due to
oxidative stress (production of reactive oxygen species), cellular
apoptosis, effects on locomotor activity and aversive behavior,
as well as reproduction disorders, deteriorating sperm quality,
embryotoxicity malformations, and other endocrine disruption
symptoms. Another study found carp (Cyprinus carpio) more
sensitive to embryotoxicity of glyphosate at high concentrations
(50 mg/l) than zebrafish (Fiorino et al., 2018). Glyphosate
and AMPA were found toxic to guppies Poecilia reticulata
(Antunes et al., 2017) with median lethal concentrations (LC50)
for 96-h exposure of 0.07 and 0.16–0.18 mg/ml, respectively,
with tissue- and gender-specific histopathological responses at
sublethal concentrations. Formulated glyphosate preparations
(Roundup R©, Roundup Transorb R©) exerted even stronger
toxicity to this and related guppy species (De Souza Filho et al.,
2013; Harayashiki et al., 2013; Rocha et al., 2015; dos Santos et al.,
2017) with exposure-time dependent hepatic histopathological
damage (dos Santos et al., 2017) or genotoxicity (De Souza Filho
et al., 2013). Roundup R© was shown to affect hematological
response and tissue AChE activity in carp (C. carpio) (Gholami-
Seyedkolaei et al., 2013; Kondera et al., 2018), increased
glycogen and triacylglycerol consumption and lipid deposition
in the liver, as well as changes in muscle glycogen in catfish
(Rhamdia quelen) (Persch et al., 2018), DNA strand breaks in the
goldfish (Carassius auratus) (Çavas and Könen, 2007; Lushchak
et al., 2009; Li et al., 2017). Cytotoxicity by oxidative stress
by Roundup R© has been shown by transcriptomic profiling in
carp and zebrafish (Uren Webster and Santos, 2015; Sulukan
et al., 2017). Acute toxicity, harmful physiological effects
including hepatotoxicity, neurotoxicity, deteriorated sperm
counts, early life stage development and DNA-damaging effects
have been reported for numerous other fish species as well
for sublethal exposures to Roundup R© products including
Roundup Original R©, Roundup Transorb R© and Roundup WG R©,
Garlon R©, and other glyphosate-based herbicides (Soso et al.,
2007; Cavalcante et al., 2008; Guilherme et al., 2010, 2014a,b;
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Modesto and Martinez, 2010; Shiogiri et al., 2012; Ghisi and
Cestari, 2013; Nwani et al., 2013; Marques et al., 2014; Moreno
et al., 2014; Navarro and Martinez, 2014; Richard et al., 2014;
Sinhorin et al., 2014; Braz-Mota et al., 2015; Menéndez-Helman
et al., 2015; Li et al., 2016; de Moura et al., 2017; Sánchez et al.,
2017; Gonçalves et al., 2018; Zebral et al., 2018) or POEA (Yusof
et al., 2014). Roundup R© was found to disrupt 17β-estradiol and
reduce glutathione concentration in the liver of the endangered
fish species delta smelt (Hypomesus transpacificus) upon 6 h
of exposure at levels corresponding to 78 µg/l glyphosate
concentrations and above (Jin et al., 2018). As described earlier,
effects of glyphosate and its formulated products on amphibians
andmollusks (Conners and Black, 2004; Mann et al., 2009; Relyea
and Jones, 2009; Paganelli et al., 2010; Carrasco, 2013; Meza-Joya
et al., 2013; Wagner et al., 2013; Henao Muñoz et al., 2015;
Baier et al., 2016a,b) received particular attention due to their
known hormonal sensitivity. Differential toxicity of glyphosate
and its formulated PPPs have been also considered in the official
scientific opinion by EFSA on pesticide risk assessment for
amphibians and reptiles (Ockleford et al., 2018). Identification
of acute lethal, physiological and genotoxic effects of glyphosate-
based herbicides, including Roundup Original R© and Roundup
Transorb R©, have continued on amphibians (Lajmanovich et al.,
2011, 2013, 2014; Yadav et al., 2013; Bellantuono et al., 2014;
Levis and Johnson, 2015; Gandhi and Cecala, 2016; Rissoli
et al., 2016; Soloneski et al., 2016) and reptiles (Latorre et al.,
2013; Siroski et al., 2016). Teratogenic effects were reported
in a treefrog (Scinax nasicus) (Lajmanovich et al., 2003) and
in the embryo of the African clawed frog (Xenopus laevis)
(Paganelli et al., 2010) in response to exposure to Glyfos R© or
Roundup Classic R© at levels corresponding to 3–7.5 and 96–160
mg/l glyphosate concentrations, respectively. Hepatotoxicity of
glyphosate and Roundup Ultramax R© was observed in tadpoles
of the neotropical frog Leptodactylus latrans (Bach et al., 2018),
but the formulated herbicide product was found 10-fold more
toxic than glyphosate, leading to histopathologic lesions at a
level corresponding to a glyphosate concentration of 0.37 mg/l.
Teratogenicity is not exclusively related to POEA, as a POEA-
free micro-emulsion formulation containing polyethoxylated
isotridecyletherpropylamine as a surfactant, Roundup R© Power
2.0 has been found to exert embryotoxicty on X. laevis in
the frog embryo teratogenesis assay–Xenopus (FETAX) with
a 96-h EC50 value of 7.8 mg/l, while glyphosate was not
found to be embryolethal, only causing edemas at the highest
concentration tested, 50 mg/l (Bonfanti et al., 2018). Toxic effects
were correlated with the inhibition of degradative enzymes
(esterases and glutathione S-transferase) (Lajmanovich et al.,
2011, 2013, 2014), while teratogenic effects and malformations
have been linked to inhibition of the retinoic acid signaling
pathway (Paganelli et al., 2010; Carrasco, 2013). Other studies
on amphibians indicated increased excretion of defensive
chemicals in the common toads (Bufo bufo) upon exposure
throughout larval development to Glyphogan Classic R© (360 g/l
glyphosate—the same composition as Roundup Classic R©, 41.5
w/w% glyphosate and 15.5 w/w% POEA) at a level corresponding
to 4 mg/l glyphosate concentration (Bókony et al., 2017; Miko Z.
S et al., 2017a) and behavioral changes of adult newts (Lissotriton

vulgaris) in response to exposure to Glyphogan Classic R© at levels
corresponding to 2 and 6.5 mg/l glyphosate concentration (Mikó
Z. et al., 2017b), even though the same research group previously
reported no observable effects on L. vulgaris with Glyphogan
Classic R© at a final glyphosate concentration of 6.5 mg/l (Ujszegi
et al., 2015, 2016). In artificial pond mesocosm experiments
exposure to the generic glyphosate-based herbicide GLY-4
Plus affected mortality, body size, cellular immune response
and tail morphology of the larvae of the spotted salamander
Ambystoma maculatum in an UV-B radiation dependent manner
(Levis and Johnson, 2015), and similar effects were observed
on the blue ridge two-lined salamander Eurycea wilderae as
well (Gandhi and Cecala, 2016). The exposure of wild-living
amphibians present in agricultural fields was assessed to be
increased in parallel to the 5.7-fold increase of the overall
consumption of glyphosate in German agriculture between 1992
and 2012 (TransparencyMarket Research, 2016). The formulated
glyphosate-based herbicide Clinic R© at a level corresponding to
a glyphosate concentration of 30 mg/l at 96-h exposure caused
significant increases in the gene expression and activities of
catalase, superoxide dismutase, and AChE in the freshwater
turtle, the red-eared slider Trachemys scripta elegans and the
Mediterranean pond turtle Mauremys leprosa, on the basis of
which the herbicide is considered a threat to these turtle species
(Héritier et al., 2017).

Among mammals, the highest toxicity has been reported on
rats during a near life-long exposure (Séralini et al., 2014). A
feeding experiment was carried out with Sprague-Dawley rats
(55-day old at the beginning of the experiment) and substance
(Roundup GT Plus R© containing 450 g/l glyphosate IPA salt)
administration ad libitum in drinking water through 2 years.
The final three groups were fed with the control diet and
had access to water supplemented with, respectively, 1.1 ×

10−8% of Roundup GT Plus R© (100 ng/l, corresponding to
∼50 ng/l of glyphosate—a common contamination level of
regular tap waters), 0.09% of Roundup GT Plus R© [corresponding
to ∼400 mg/kg of glyphosate—the US maximal residue limit
(MRL) of glyphosate in GM feed], and 0.5% of Roundup GT
Plus R© (corresponding to 2.25 g/l of glyphosate—half of the
minimal agricultural working dilution). The highest tumorogenic
activity was noted on day 600 in female rats treated at
the lowest dose, i.e., the effect did not appear to increase
with dose. As the numbers of rats used in the experiment
were too few to constitute a definitive carcinogenicity study,
it is only suggestive of a trend and possible outcome that
needs to be repeated with a greater cohort of animals. In a
study on Wistar rats treatment with glyphosate at 0.7 or 7
mg/l ad libitum in the drinking water for 30 and 90 days,
respectively, resulted in reduced glutathione and enhanced
glutathione peroxidase levels in the liver, kidney and gut
of the treated animals (Larsen et al., 2012), and similarly,
when Wistar rats treated with 4.87, 48.7, or 487 mg/kg
of Roundup (commercialized under the name Glyphosate-
Biocarb R© in Brazil), reduced alanine aminotransferase and
aspartate aminotransferase levels were recorded in their liver
(Benedetti et al., 2004). Roundup Transorb R© administered to
Wistar rats at 50 mg/kg body weight (b.w.) ad libitum in
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their drinking water given at 0.25 ml/100 g of b.w. caused a
testosterone-disruptor effect (Romano et al., 2012). In addition,
nephrotoxicity (Hamdaoui et al., 2016), hepatotoxicity (El-
Shenawy, 2009; Haskovic et al., 2016; Tang et al., 2017;
Lozano et al., 2018), neurotoxicity on dopaminergic markers
(Hernández-Plata et al., 2015; Martínez et al., 2018), and on
the immature rat hippocampus (Cattani et al., 2014), effects on
intestine peristalsis (Chłopecka et al., 2014, 2017), sperm quality
(Abarikwu et al., 2015; Dai et al., 2016) and reproductive toxicity
(Owagboriaye et al., 2017), estrogenic effects (Vandenberg
et al., 2012; Varayoud et al., 2017) and the effect of neonatal
exposure to female adult reproductive performance (Ingaramo
et al., 2016, 2017) have been demonstrated. Liver dysfunction
observed in rats correlated with gut microbiome disturbances
identified in a recent study (Lozano et al., 2018): long-
term effects of Roundup Grand Travaux Plus R© at 3 doses
(corresponding to glyphosate concentrations of 50 ng/l, 100µg/l,
and 2.25 g/l) on the gut microbiota in Sprague-Dawley rats
were observed by determining 141 bacteria families by high-
throughput sequencing, of which alteration of the Firmicutes to
Bacteroidetes ratio was recorded at different levels in females
(but not in males). In contrast, another recent study using
Glyfonova R© 450 Plus at doses corresponding to glyphosate
concentrations of the established European Acceptable Daily
Intake (ADI), 0.5 mg/kg body weight, found only limited short-
term effects on the gut bacterial community in Sprague Dawley
rats (Nielsen et al., 2018), but warned that the effects can be more
pronounced under malnutrition, when aromatic amino acids
are less available. Repeated 4-week intranasal administration of
Glifoglex R© in male CF-1 mice (∼2 mg/nostrils/day) affected the
central nervous system (probably by altering neurotransmission
pathways), caused neurobehavioral effects (by decreasing the
ambulatory activity and increase in thigmotaxis, indicating
higher anxiety levels), and impaired recognition memory as early
as after 6 h (Baier et al., 2017). Results on hormonal effects
of glyphosate-based herbicides on rats indicate modulation
of the expression of estrogen-sensitive genes in the exposed
animals with non-monotonic dose-response curves (Varayoud
et al., 2017), indicating the need for hazard-based considerations
in risk assessment (Vandenberg et al., 2012; Varayoud et al.,
2017). A recent meta-analysis of eight previous studies on
reproductive toxicity on males, carried out between 1992 and
2016, on sperm counts in rodents (Kunming and B6C3F
mice and Sprague Dawley, Wistar and Fischer F344 rats)
upon glyphosate administration at 40–50,000 mg/kg resulted
in decreased sperm concentrations showing that glyphosate-
based herbicides exerts reprotoxicity to male rodents. The effect,
however, has erroneously attributed to glyphosate (Cai et al.,
2017). Among mammals, significant increases in chromosome
aberration (including chromatid breaks) frequencies and sister
chromatid exchanges per cell were seen in large hairy armadillo
Chaetophractus villosus peripheral blood lymphocytes upon
treatment with Roundup Full II R© at doses corresponding to
glyphosate concentrations of 0.065–0.26 mg/ml, confirming
genotoxicity of the formulated glyphosate-based herbicide,
evaluated by cellular and genetic biomarkers e.g., the mitotic
index, cell proliferation kinetics, as well as frequencies of

chromosome aberrations and sister chromatid exchanges (Luaces
et al., 2017; Rossi et al., 2018).

Exposure to glyphosate during pregnancy has been indicated
to significantly correlate with shortened pregnancy lengths in
a cohort study in the US (Parvez et al., 2018). In addition,
glyphosate has been potentially correlated with disruption of
glycine homeostasis (Pérez-Torres et al., 2017) and pathological
conditions e.g., autism (Nevison, 2014), fatal chronic kidney
disease (in regions with heavy metal contamination in water)
(Jayasumana et al., 2014, 2015), bronchial inflammation (Kumar
et al., 2014), cardiovascular diseases (Gress et al., 2015), and
cancer (Paumgartten, 2017). Dermatology problems upon skin
contact with glyphosate-based herbicides have also been reported
(Amerio et al., 2004; Heras-Mendaza et al., 2008; de Ávila et al.,
2017; Elsner et al., 2018). A recent clinical study on the severity
of cardiovascular effects due to poisoning with glyphosate-
based herbicides attributed differential cardiovascular toxicity to
the salt form (ammonium or IPA) of glyphosate used in the
formulation (Moon et al., 2018), which in light of the toxicity
data of the formulants used, may not be fully justified, as
could easily be caused by differences in the formulant. Among
environmental factors, glyphosate or its formulated products
have been indicated to be linked with increased incidence of
and mortality by multiple diseases (including cataract related
to subsequent breast carcinoma) and cancer (Swanson et al.,
2014; Singh et al., 2017). In the latter category, associations
were found with non-Hodgkin lymphoma or multiple myeloma
incidence (Hardell and Eriksson, 1999; McDuffie et al., 2001;
Hardell et al., 2002; De Roos et al., 2003, 2005; Eriksson et al.,
2008; Schinasi and Leon, 2014; Mesnage et al., 2015b), although
other reviews claimed no causal relationship between exposure to
glyphosate and lymphohematopoietic cancers (Acquavella et al.,
2016; Chang and Delzell, 2016; Williams et al., 2016a). Some of
these findings have been questioned by Monsanto (Acquavella
et al., 1999) and a recent cohort prospective epidemiology study
carried out in the US on 57310 licensed pesticide applicators
and 32347 spouses in Iowa or North Carolina States found no
apparent correlation between glyphosate use and solid tumor
or lymphoid malignancies, including non-Hodgkin lymphoma,
except for increased risk of acutemyeloid leukemia in case of high
exposure (Andreotti et al., 2018). Alleged attribution of certain
chronic diseases (e.g., diabetes, neuropathies, obesity, asthma,
infections, osteoporosis, infertility) to long-term exposure to
glyphosate were judged unreasonable (Mesnage and Antoniou,
2017), but extremely low levels of a glyphosate-based herbicide
(Roundup R©) have been shown in a multiomics study to possibly
correlate to the development of metabolic syndrome, causing
marked alterations of the liver proteome and metabolome
revealing the presence of non-alcoholic fatty liver disease and
its progression to non-alcoholic steatohepatosis (Mesnage et al.,
2017b).

As glyphosate-based herbicides have been indicated to
be associated with birth defects in the exposed population
(Antoniou et al., 2011, 2012), the Pesticides Action Network
(PAN) Europe and Greenpeace brought forward a lawsuit against
the EC in connection to the postponement of authorization
of glyphosate until 2015, based on the claim that they failed
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to properly consider the teratogenicity and cytotoxicity data
in the risk assessment provided by the German Federal Office
for Consumer Protection and Food Safety (BVL). Although
the legal case has not been finalized to date, it has led to a
decision by the Court of Justice of the EU that the EC has to
make information on the release of PPPs into the environment
accessible to any applicant requesting it, including the “identity”
and the quantity of all of the impurities contained in the active
substance, as well as the composition of the PPPs (InfoCuria,
2017). This is of particular importance, as in the previous policy
the manufacturer had only to account for the technical purity of
the active ingredient (i.e., unidentified technical impurities could
be present in the product up to 5%), and the exact chemical
identity of the formulating agents could be handled as proprietary
information.

The German Federal Risk Assessment Institute (BfR)
compiled its Renewal Assessment Report on glyphosate at the end
of 2013 (German Federal Institute for Risk Assessment, 2013),
and expanded it in its voluminous (4,322 pages!) addendum
(German Federal Institute for Risk Assessment, 2015) by 2015, on
the basis of which the European Food Safety Authority published
its peer review report (European Food Safety Authority,
2015b) and statement (European Food Safety Authority, 2015a).
This report concluded that glyphosate is “unlikely to pose a
carcinogenic hazard to humans.” If accepted by the EU MSs,
this verdict would allow immediate renewal of the authorization.
However, in the meantime, after the BfR report, but prior to
the EFSA statement, the International Agency for Research on
Cancer (IARC), an expert organization of the World Health
Organization (WHO), announced its evaluation on glyphosate
(along with four other organophosphate active ingredients,
diazinon, malathion, parathion and tetrachlorvinphos) in its
periodical IARC Monographs (International Agency for Research
on Cancer, 2015), and classified glyphosate in its Group 2A
carcinogenicity category, “probably carcinogenic to humans.”
This classification has also been published in a leading medical
periodical on this subject, Lancet Oncology (Guyton et al., 2015),
and the full monograph was published recently (International
Agency for Research on Cancer, 2017). The IARC classification is
of particular importance for policy-making, because Regulation
1107/2009 on PPPs (European Commission, 2009) specifies strict
conditions and restrictions for known or presumed human
carcinogens and partly for suspected human carcinogens.

The diverging opinions among international risk assessment
agencies EFSA and IARC has triggered a fierce debate in the
scientific literature. A large team of researchers including 96
research professors from 22 countries worldwide (Portier et al.,
2016) analyzed the data. Taking a contrary position were a
set of six studies published in the journal Critical Reviews
in Toxicology (Acquavella et al., 2016; Brusick et al., 2016;
McClellan, 2016; Solomon, 2016; Williams et al., 2016a,b),
sponsored by Monsanto and other members of the pesticide
industry, as declared in the papers themselves. These reviews
focused on the carcinogenicity, genotoxicity of glyphosate and
exposures to it, but considered partly the same data and followed
the same concept published in a previous risk assessment by the
same lead author (Williams et al., 2000). Subsequently in 2016,

the expert body Joint Meeting on Pesticide Residues (JMPR) of
the Food and Agriculture Organization (FAO) and the WHO
of the United Nations, including the FAO Panel of Experts on
Pesticide Residues in Food and the Environment and the WHO
Core Assessment Group on Pesticide Residues, discussed re-
evaluation of diazinon, glyphosate and malathion in the light
of new studies that had become available since their last full
assessments. The meeting concluded that glyphosate is “unlikely
to pose a carcinogenic risk to humans from exposure through the
diet” (Joint FAO/WHO Meeting on Pesticide Residues, 2016)—
a conclusion quite similar to the opinion of EFSA. To provide
openness and transparency in the risk assessment process and to
facilitate the public debate, as a part of its “Open EFSA” policy,
EFSA has shared the raw data used in the EU safety evaluation of
glyphosate (European Food Safety Authority, 2016).Moreover, in
its additional position regarding risk assessment on the potential
endocrine activity of glyphosate as a follow-up assessment to
its previous conclusion in 2015, EFSA stated that glyphosate
does not have endocrine disrupting properties through estrogen,
androgen, thyroid, or steroidogenesis mode of action, based on
a comprehensive toxicology database (European Food Safety
Authority, 2017a). In connection to hazard identification, an
IARC expert has stressed that causal relationships need to be
empirically tested; prior assumptions may affect conclusions; and
conflicts of interest have to be avoided (Saracci, 2016), another
statement claimed that the IARC classification of glyphosate
as a probable human carcinogen was the result of a flawed
and incomplete summary of the experimental evidence (Tarone,
2018), while others voice the opinion that such accusations
against IARC and its Monographs Program evaluation process
are driven by economic interests, and are intimidating to IARC
(Infante et al., 2018). The debate over glyphosate even caused
the Netherlands to ban non-agricultural uses of glyphosate as
of November, 2015, as well as a conflict between the EC and
the European Parliament. The scientific background behind the
risk assessment by EFSA and BfR was published in a research
paper in 2017 (Tarazona et al., 2017a), and was immediately
challenged and discussed in the same periodical (Portier et al.,
2017; Tarazona et al., 2017b).

In June 2016, the EC extended the registration of glyphosate
for 18 months. For this decision, an important factor, besides
the ones discussed above, has been that the draft assessment
by the European Chemicals Agency (ECHA) published in the
meantime also concluded that there was no sufficient evidence
to support a carcinogenicity hazard classification of glyphosate
(European Chemicals Agency, 2017b). Public consultations were
held over the summer of 2016, and ECHA, on the basis of the
Harmonized Classification and Labeling Report (BAuA Federal
Institute for Occupational Safety and Health, 2016) submitted by
the German competent authority and other comments received
during the public consultation, according to its statement in
March 2017, endorsed that glyphosate was capable of causing
serious eye damage and exerted toxicity to aquatic life with
long-lasting effects, but concluded that it cannot be classified
as a carcinogen, a mutagen or a reprotoxic compound on
the basis of currently available scientific evidence (European
Chemicals Agency, 2017a). Just as before regarding the opinions
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by EFSA or JMPR (AgroNews Scientists challenge EFSA claim
of glyphosate safety, 2015; Nelsen, 2016), members of the Risk
Assessment Committee of ECHA have also been accused of
having competing financial interests leading them to a biased
decision in favor of the re-registration of glyphosate (Johnston,
2017). In July 2017, the EC restarted negotiations with theMSs on
the renewal of the approval of glyphosate with specific provisions
regarding (a) protection of groundwater, as well as terrestrial
animals and non-target plants; and (b) a ban of POEA as a
formulating agent for glyphosate (see below). The aggregated
economic impacts of a possible ban on glyphosate were assessed
to be relatively small by a highly detailed, spatially explicit
bio-economic model of silage maize production in Germany
(Böcker et al., 2018). The debate remained unsuccessful until
November 2017, when, upon the fourth revision of the EC
proposal and Germany unexpectedly changing its position, the
EC Appeal Committee reached a qualified majority in favor of
the renewal the approval of glyphosate for 5 years (European
Commission, 2011a) adopted by the EC in December 2017
(Erickson, 2017; European Commission, 2017). In retrospect,
the Executive Director of EFSA warns not to entangle broader
societal issues e.g., the role of modern agricultural practices and
multinational biotech firms in our food supply with evidence-
based risk assessment of regulated products (Url, 2018). Others
express concern regarding the expertise used by the regulatory
agencies to evaluate the safety of glyphosate and point out that
toxicologists at Monsanto Corp. anticipated the carcinogenicity
classification of glyphosate by IARC (Foucart and Horel, 2018;
Infante et al., 2018).

In the meantime, focus has been gradually put on the issue
of differential toxicity of glyphosate and its formulated herbicide
preparations. It has been previously shown that pesticide
formulations exert higher toxicity than their active ingredients
alone. In a study on formulated herbicide, insecticide, and
fungicide preparations (three PPPs in each group), French
researchers (Mesnage et al., 2014) demonstrated an increased
cytotoxicity of the formulations of herbicides Roundup
GT Plus R© (glyphosate), Matin EL R© (isoproturon), and Starane
200 R© (fluroxypyr-meptyl), insecticides Pirimor G R© (pirimicarb),
Confidor R© (imidacloprid), and Polysect Ultra R© (acetamiprid),
as well as fungicides Maronee R© (tebuconazole), Opus R©

(epoxiconazole), and Eyetak R© (prochloraz). These formulations
were shown to be 2–2,000 times more toxic on human cell
lines (HepG2, HEK293, and JEG3), than their active ingredients
(indicated in parentheses). The effects of elevated cytotoxicity
were attributed to formulating surfactants POEA, alkyl-aryl
sulfonates, docusate sodium, N,N-dimethyldecanamide, 1,2-
benzisothiazoline-3-one, and benzenesulfonic acid, as well as
solvents naphtha, 1-methyl-2-pyrrolidinone, xylene, isobutanol,
and ethanol. POEA derivatives refer to non-ionic surfactants
as mixtures differing in their ethoxylation rate, originating
from animal fats. These substances are principally used as
formulation agents (Castro et al., 2014; Klátyik et al., 2017a)
both as built-in and tank-mix adjuvants, for herbicides,

especially for glyphosate, and previously for diquat. POEA is
added to glyphosate to allow uptake of the water-soluble active
ingredient across plant cells, affecting membrane transport
and to reduce the wash-off effect after spray application. Less

ethoxylated POEA products are used for emulsifying mineral
oils, and as dispersants, stabilizers, sanitizers, and defoaming
agents, industrial detergents, metal cleaners, textile dye-leveling
agents, paper de-inking reagents, and drilling lubricants. Among
a number of surfactants used in the formulation of PPPs
(Table 1), POEA appears to be associated with highest toxicity
concerns, particularly in of formulated glyphosate-based PPPs
(Romano et al., 2010; Mesnage et al., 2013a; Székács et al.,
2014; Farkas et al., 2018). Considering this unfavorable toxicity
profile, particularly as related to aquatic toxicity (Prosser et al.,
2017; Rodriguez-Gil et al., 2017a,b), cytotoxicity and also the
assessment by EFSA (European Food Safety Authority, 2015c),
the EC has recommended EUMSs in September, 2016 to exclude
POEA as a co-formulant from the use in PPPs containing
glyphosate (European Commission, 2016a,b). As a result, a
number of glyphosate-based herbicides containing POEA as
a formulant have been banned for use in Hungary (Table 2)
(National Food Chain Safety Office, 2016) and in other EU
MSs. A yet unrefined issue regarding the EC recommendation
is, however, why the use of POEA is proposed to be restricted
only in conjunction with glyphosate. If the toxicity parameters
of a substance justify restrictions, those should apply to all
uses of the given substance in formulations of any pesticide
active ingredient (e.g., diquat, nicosulfuron, or others) or
should be considered for other industrial applications as
well.

As seen in Table 2, glyphosate-based PPPs containing POEA
as a formulant can be found in all three approval categories,
original, derived, or parallel trade authorization. As specified
by EU Regulation 1107/2009 (European Commission, 2009) at
an EU level and in a Ministerial Decree 89/2004 (Ministry of
Agriculture Rural Development Hungary, 2009) in Hungary,
original authorization is based on full documentation of the PPP,
derived authorization applied to PPPs distributed under names
other than trade names on the original authorization, and parallel
trade permits to be obtained to PPPs authorized in other MSs.
As seen, 11, 7, and 6 PPPs with original authorization, derived
authorization, and parallel trade permits have been banned
due to their POEA content. (Note that one product, Roundup
Classic R©, has been authorized both under original authorization
and parallel trade permit).

EFSA VS. IARC

Shortly before the announcement of the conflicting views
by EFSA and IARC (WHO) about glyphosate, the Cancer
Assessment Review Committee of the US EPA also published a
re-evaluation in 2015 (United States Environmental Protection
Agency, 2015), followed by a more detailed assessment topic
a year later (United States Environmental Protection Agency,
2016b). Their assessment classified glyphosate into Group E, not
likely to be carcinogenic to humans. The Agrochemical Division
of the American Chemical Society (ACS) dedicated an entire
symposium to glyphosate during the 252nd Annual ACSMeeting
in 2016, the presentations of which having been published
recently (Duke, 2018). The 23 papers presented covered the
history of glyphosate, plant glyphosate resistance management,
its plant biology and societal issues, but not the toxicology
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TABLE 1 | Various types of surfactants used in pesticide formulations.

Surfactant product Manufacturer Chemical class CAS Noa Conc. (%)b Usec

ANIONIC

Agrosurf WP85 Lankem Ltd Sodium dodecyl benzene sulfonate 25155-30-0 75–90 SL, EW

Eucarol Age SS Lamberti SpA Sodium alkyl polyglucoside sulfosuccinate 151911-53-5 45 SL, EW, ME

Eucarol Age 91/S K Lamberti SpA Sodium alkyl polyglucoside sulfosuccinate 151911-53-5 45 SL, EW, ME

Eucarol Age EC Lamberti SpA Sodium alkyl polyglucoside citrate 151911-51-2 30 SL, EW, ME

Imbriol OT/NA/70 Lamberti SpA Dioctyl sulfosuccinate sodium salt 577-11-7 70 SL

Kemgluco CLM Kemcare Ltd Lauryl glucoside 110615-47-9 45–60 SL

Plantapon LGC BASF Lauryl glucose carboxylate, lauryl glucoside 383178-66-3

and

110615-47-9

28.5–34 SL

Rolfen Bio Lamberti SpA Polyethoxylated alkyl phosphate ester 68130-47-2

and

50769-39-6

70 SL, EW, ME

CATIONIC

Emulson AG CB 30 Lamberti SpA Quaternary ammonium compound 66455-29-6 30 SL

NON-IONIC

Emulson AG GPE 3SS Lamberti SpA POEAd 61791-26-2 100 SL

Emulson AG GPE 3/SSM Lamberti SpA POEAd 61791-26-2 70 SL

Tergitol 15-S-9 Dow Chemicals Secondary alcohol ethoxylate 68131-40-8 100 SL, EW

Triton N-57 Dow Chemicals Nonylphenol polyethylene glycol ether 127087-87-0 100 SL, EW

aChemical Abstracts Registry Number.
bPercentage concentration (w/w).
cSL: soluble liquid, EW: emulsion (oil in water), ME: microemulsion.
dPOEA: polyethoxylated tallowamine.

of the compound, reflecting the favorable evaluation by the
US EPA. In contrast, agreeing with the IARC classification,
California listed glyphosate as a known carcinogen on July 7,
2017, under Proposition 65 law, which would require indicating
this carcinogenicity hazard on the product label of glyphosate-
based herbicide products. However, in response to a legal claim
by an agricultural coalition including the National Association
of Wheat Growers, Monsanto Corporation and farmer groups
the U.S. District Court issued a preliminary injunction against
this evaluation on the basis that the classification by IARC
claims glyphosate only probably carcinogenic, while apparently
all other regulatory and governmental bodies found the opposite,
including the US EPA (Erickson, 2018). The positions of
BfR, EFSA, JMPR, and ECHA were in accordance with the
US EPA opinion, but the IARC evaluation (that followed
the BfR statement, but preceded both EU Agency and
FAO/WHO Agency statements, in chronology) was strongly
opposed to it. It is worth noting that this has not been
the only dramatic difference between classifications by IARC
and the US EPA (see classification of lindane, 2,4-D and
chlorothalonil).

Why is there a striking difference between statements by
the US EPA, EFSA, ECHA, and JMPR on the one hand
and IARC on the other hand? Why is it that while the
formers concluded that glyphosate is unlikely to cause cancer,
and suggested to increase its ADI value from 0.3 to 0.5
mg/kg b.w./day within the EU, the latter have classified it
as probably being carcinogenic to humans on the basis of

limited evidence on humans and sufficient evidence on animals?
Factors that resulted in these substantial differences between
the opinions as stated by EFSA and IARC include: (a) The
IARC evaluation is hazard-based, while EFSA is committed,
by its legal mandate (European Parliament Council, 2002) to
risk-based assessment. Risk-based assessment does not disclaim
possible hazards, but assesses the likelihood of their actual
occurrence under realistic scenarios. (b) The EFSA statement is
restricted to the assessment of the active ingredient glyphosate,
while IARC also considered reported effects of formulated
herbicide preparations of practical importance. Within the latter
approach, toxicity of tallowamine substances (e.g., POEA) used
as formulants in PPPs has been well demonstrated and cannot
be disregarded from the toxicology evaluation. (c) IARC based
its assessment on peer reviewed publications in the scientific
literature, while EFSA based its assessment also on non-public
data from industry documentations submitted for the product
approval into consideration. An analysis by PAN found that
peer reviewed studies were dismissed by BfR and thus were
not included in the EFSA assessment (Pesticide Action Network
and Use of science in EU risk assessment, 2018). Indeed,
the EFSA opinion does not cite any peer reviewed studies
(European Food Safety Authority, 2015a). As a follow-up, a
recent evaluation publication condemns the BfR, EFSA, and
ECHA of violating current risk assessment guidelines, when
dismissing 11 statistically significant cases of increased tumor
incidences in two rat and five mouse studies, and claims that
glyphosate should have been classified in the EU category 1B,
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TABLE 2 | Glyphosate-based herbicide formulations banned n Hungary, as of November 30, 2016, due to their content of polyethoxylated tallowamine (POEA).

PPPa Manufacturer a.i.b CAS No.c Conc. of a.i.d Conc. of POEAd,e HUN/EPA Reg. No.f

ORIGINAL AUTHORIZATION

Clinic 480 SL® Nufarm GmbH and Co KG g IPA 38641-94-0 41.5% (486 g/l) 8.1% 02.5/10717-2/2010

Dominator® Dow AgroSciences p IPA 38641-94-0 41.5% (480 g/l) 10-20% (150 g/l) 02.5/10718-2/2010

Glialka 480 Plus® Monsanto Europe g IPA 38641-94-0 41.5% (485.8 g/l) 15.5% 02.5/968/1/2010

Glyfos® Cheminova A/S g IPA 38641-94-0 42% (480 g/l) 9% (150 g/l) 02.5/12019-2/2010;

EPA 67760-49

Glyphogan 480 SL® Agan Chemical Manufacturers Ltd. g IPA 38641-94-0 41.5% (485.8 g/l) 15.5% 04.2/829-1/2011;

EPA 66222-105

Roundup Classic® Monsanto Europe g IPA 38641-94-0 41.5% 15.5% 02.5/915/2/2010

Roundup Classic Plus® Monsanto Europe g K 70901-12-1 35.5% 7% (surfactant) 02.5/118/1/2009

Roundup Forte® Monsanto Europe g K 70901-12-1 49% (540 g/l) 5-6% 02.5/10505-1/2010

NASA® Agria S.A. g IPA 38641-94-0 41% 12% 02.5/2575/2/2009;

EPA 87845-2

Nufozát® Nufarm GmbH and Co KG g IPA 38641-94-0 41.5% (480 g/l) 8.1% 02.5/422/1/2010

Taifun 360® Adama Deutschland GmbH g IPA 38641-94-0 480 g/l 10-25% 02.5/1625/1/2009

DERIVED AUTHORIZATION

Amega® Nufarm GmbH and Co KG g IPA 38641-94-0 41.5% 8.1% 04.2/1285-1/2011

Figaro® Monsanto Europe g IPA 38641-94-0 41.5% 15.5% 04.2/254-3/2011

Gladiator 480 SL® Agan Chemical Manufacturers Ltd. g IPA 38641-94-0 39-43% (480 g/l) 13-18% 04.2/4501/1/2011

Glyphogan Classic® Monsanto Europe g IPA 38641-94-0 41.5% 15.5% 04.2/176-3/2011

Hardflex 480 SL® Adama Agan Ltd g IPA 38641-94-0 41.5% (485.8 g/l) 15.5% 04.2/4468/1/2011

Rodeo® Monsanto Europe g K 70901-12-1 35.5% 6% 04.2/93-1/2016

Vesuvius® Ventura Agroscience Ltd. g IPA 38641-94-0 41.1% (480 g/l) 15.5% 04.2/4184-2015

PARALLEL TRADE PERMIT

Agria Glypho® Monsanto Europe g IPA 38641-94-0 41.5% (485.8 g/l) 15.5% 02.5/1393/2/2010

Glifostar 480 SL® Monsanto Europe g IPA 38641-94-0 41.5% 15.5% 04.2/4185-4/2015

Glyfogan® Agan Chemical Manufacturers Ltd. g IPA 38641-94-0 41.5% (485.8 g/l) 15.5% 04.2/3069-1/2016

Roundup Classic® g Monsanto Europe g IPA 38641-94-0 41.5% 15.5% 02.5/10576-1/2010

Sherif 480 SL® Monsanto Europe g IPA 38641-94-0 41.5% 15.5% 04.2/64-2/2011

Uyuni® Monsanto Europe g IPA 38641-94-0 41.5% 15.5% 04.2/1207-1/2012

aPPP: plant protection product.
ba.i.: active ingredient; g IPA: glyphosate isopropylammonium salt; g K: glyphosate potassium salt.
cChemical Abstracts Registry Number.
dPercentage concentration (w/w), in some cases specified as g/l as well.
ePOEA: polyethoxylated tallowamine.
fHungarian Registration Number; US Environmental protection Agency (EPA) Registration Number.
g Identical to Roundup Classic® approved under original authorization, also permitted for parallel trade.

“presumed human carcinogen” (Clausing et al., 2018). EFSA, in
the meantime, published its guidance document on uncertainty
analysis (Benford et al., 2018) that considers possible omission of
carcinogenicity data on the basis of genotoxicity/carcinogenicity
margins of exposure, differences in the benchmark dose level
due to unquantified uncertainties, the relevance and adverseness
of the effects seen animals to humans, or misinterpretation of
the probability of a given chemical having a carcinogenic mode
of action as the probability cancer caused in an individual.
It has to be noted that not only the German authority study
(BAuA Federal Institute for Occupational Safety and Health,
2016), but also the evaluation by US EPA (United States
Environmental Protection Agency, 2016b) covered these studies,
and although admitting the occurrence of statistically significant
differences, also disregarded them due to various considered
reasons, including non-monotonic of flat dose response, effects

deemed due to unusually low negative controls, no statistical
significance in pairwise analyses or in multiple comparisons,
effects concluded to be not compound-related, not always
clearly apparent adenoma/carcinoma effects or no evidence of
progression from adenomas to carcinomas, overly high dosages,
or the presence of a viral infection within the colony tested.

Risks related to glyphosate may originate from increasing
residue levels and incidence due to increased usage; and from
modified residue composition due to the use of GT crops.
Increasing use of glyphosate on GT crops and also as a crop
desiccant on non-GT crops, and its subsequent release into the
environment is seen both in increased residue levels found in
environmental matrices, first of all drinking water (see below,
Environmental and food analysis of glyphosate) and in more
frequent occurrence reported, on the basis of which glyphosate
and AMPA have been considered as ubiquitous surface water
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contaminants (Villeneuve et al., 2011; Székács and Darvas, 2012).
These trends both increase risk through exposure. Thus, large
increases in use in the EU, and even larger increase in exposures
for citizens due to uses of GT crops have been evidenced
(Myers et al., 2016). In addition, expanding applications of
GT crops have modified residue composition: while a type of
GT crops modified with a cp4-epsps gene achieves tolerance
to glyphosate by expressing enolpyruvylshikimate-3-phosphate
synthase (EPSPS) enzyme derived from Agrobacterium sp. strain
CP4 not inhibited by glyphosate, other types of these GT
plants modified with gox or gat genes provide tolerance to the
compound by its enhanced degradation by transgenic metabolic
enzymes, glyphosate oxidoreductase (GOX), or glyphosate
acetyltransferase (GAT) expressed in the plant, leading to
increased levels of the main metabolite AMPA (Székács and
Darvas, 2012; Myers et al., 2016). Therefore, risk assessment has
to consider such modified exposures to glyphosate and AMPA
(Vandenberg et al., 2017) and other metabolites. Moreover,
increasing occurrence of new metabolites has to be taken into
account in the enforcement residue definiton (ERD) used for
setting MRLs in various commodities and food products.

As risk assessments undertaken by government or
government-related agencies concluded rather favorably for
the re-registration of glyphosate, the ADI of glyphosate has
been recommended by the BfR and endorsed by EFSA to be
raised from 0.3 to 0.5 mg/kg b.w./day in the EU (European Food
Safety Authority, 2015a). The new proposed ADI value was
established on the basis of maternal and developmental NOAEL
values of 50 mg/kg b.w./day from a developmental toxicity study
in rabbits, considering the standard uncertainty factor (UF)
of 100. If approved, the recommendation has several serious
implications. On the one hand, it represents a significant (66%)
rise, which raises questions. Have our previous estimations
on human exposure been improper to such extent, that the
ADI can now be raised in spite of the increasing occurrence
of glyphosate and AMPA in food, feed, drinking water, and
the environment? Or is this rise simply a consequence of a
technological issue: the increase of glyphosate residues due to
excessive use on GM crops or as a pre-harvest desiccant? On the
other hand, and probably even more importantly, the increase
in ADI has consequences on future regulatory assessment. ADI
is a crucial value in policy-making being a threshold level, below
which no adverse effects are anticipated, and which already
contains a 100-fold UF relative to the NOAEL. In consequence,
doses below the ADI level are considered safe, and are not
considered in regulatory assessments. However, several studies
have indicated a range of toxic effects (hepatorenal and chronic
toxicity below the ADI), which in this way skip the attention
of the regulatory decision-maker. It is worth noting that while
proposing an alleviation of the ADI as a part of the update of
the toxicological profile of glyphosate, EFSA also proposed new,
modified MRLs and ERD (see see below, Exposure to glyphosate
– environmental and food analysis, human biomonitoring),
and increased severity of the toxicity indices by setting, for the
first time, an acute reference dose (ARfD) for the compound
(European Food Safety Authority, 2015a). The reason for the
ARfD has been severe toxicity and mortality seen in pregnant

females in seven rabbit developmental toxicity studies, as well
as post-implantation losses observed in two of those studies. It
is noted that JMPR established an ADI of 1.0 mg/kg b.w./day
for the sum of glyphosate, N-acetylglyphosate, AMPA and
N-acetyl-AMPA, and considered as unnecessary to set an ARfD
(Food and Agriculture Organization of the United Nations,
2011).

It should also be noted that glyphosate and AMPA were
proposed as lead compounds in the design of possible new
anticancer drugs as well, due to their reported inhibitory effect
on the proliferation and induction of apoptosis of cancer cells
(while not affecting non-cancerous cells) (Li et al., 2013). The
public debate is evidenced by a degree of outrage on both sides
claiming short-sitedness, ignorance on one side (Zaruk, 2016) or
conflicting interests or corruption of the evaluators on the other
side (Burtscher-Schaden et al., 2017).

A recent GM technology development has been that
Monsanto is extending the range of its Roundup Ready R©

crops toward older, potentially more toxic active ingredients
e.g., dicamba (Roundup Ready 2 Xtend R© crops) (Monsanto
Corp, 2016). The prime driver of the technology is the wide
scale presence of glyphosate-resistant weed species infesting
agricultural fields in the US, and glyphosate by itself has failed
as a stand-alone weed control agent. The Xtend R© crops are
not only glyphosate-tolerant, but also tolerant to dicamba. Thus
glyphosate is not being replaced but being added to by systems
such as Xtend R©.

EXPOSURE TO
GLYPHOSATE—ENVIRONMENTAL AND
FOOD ANALYSIS, HUMAN
BIOMONITORING

Glyphosate is a globally occurring pollutant in surface water
due to its widespread use, good solubility (11.6 g/l at 25◦C)
and degradation (half-life time (DT50) = 28–91 days, if
photodegradation is excluded) in water (MacBean, 2012).
Numerous surveys indicated residue levels between the limit
of detection (LOD) of the analytical method used (e.g., 0.01
µg/l) and substantial concentrations (Table 3), with a striking
difference between the Americas and Europe.

As pointed out earlier (Székács and Darvas, 2012), glyphosate
and AMPA used to be detected in environmental studies
previously less frequently due to the limited sensitivity of the
traditional analytical methods based on gas chromatography.
This has created an advantageous reputation for glyphosate of
being environmentally benign. With the development of novel
methods of increased sensitivity e.g., hyphenated techniques,
such as liquid chromatography coupled to tandem mass
spectrometry (LC-MS/MS) or immunoanalytical methods, such
as enzyme-linked immunosorbent assays (ELISAs), and their
subsequent wide availability for routine analysis, glyphosate
residues have been detected at lower concentrations more
frequently during the last two decades, than before, as also
seen in the data listed in Table 3. Nonetheless, increasing
research needs demand the development of advanced chemical
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TABLE 3 | Glyphosate residues found in surface and ground water in selected environmental monitoring studies.

Location Residue level found (µg/l) Comment Year References

NORTH AMERICA

USA (North Appalache) up to 5200 Leaching from agricultural areas to

watersheds, influenced by application

rates and time of run-off event after

application

1973–1975 Edwards et al., 1980

Canada (British Columbia) 3.2–162 Leaching from agricultural areas, primarily

associated with bottom sediments

1987 Feng et al., 1990

Canada (British Columbia) 0.15–1.8 25–75m Leaching after silvicultural

applications

1987 Payne et al., 1990;

Payne, 1992

USA (Washington DC, Maryland,

Missouri, Wyoming)

Glyphosate: up to 8.7 (in 35–40% of

samples)

AMPA: up to 3.6 (in 53–83% of samples)

Residue level in surface water depended

on pre- and post-emergence applications

2002 Battaglin et al., 2005

USA (Arizona, Colorado, Georgia,

Iowa, Kansas, Minnesota, Nevada,

New Jersey, New York, South Dakota)

Glyphosate: 0.1–2.2 (in 17.5% of samples)

AMPA: 0.1–3.9 (in 67.5% of samples)

US Geological Survey, stream samples

collected upstream and downstream of

waste water treatment plants

2002 Kolpin et al., 2006

USA up to 887 Run-off events in 7 small watersheds

sampled for run-off from agricultural fields

of maize or soybean with different tillage

practices; increased glyphosate run-off

associated with conservation tillage (no-till)

2002–2004 Shipitalo and Owens,

2011

Canada (Southern Ontario) Glyphosate: 1.2–40.8 (in 21% of samples)

AMPA: 0–48.4

Through binding to soil particles,

glyphosate is likely to enter surface waters

sorbed onto water-borne particles during

run-off events

2004–2005 Struger et al., 2008

Canada (Pacific, Prairie, Ontario,

Quebec, Atlantic)

Glyphosate: up to 11.8

AMPA: up to 2

glyphosate and AMPA occurred as

frequent contaminants in urban rivers

across Canada, mainly in Prairie Province,

with concentrations greater after rainfall

events

2004, 2007 Glozier et al., 2012

USA (Washington, DC, Maryland,

Iowa, Wyoming)

Glyphosate: 0.1–328

AMPA: 3.0–15

Leaching into vernal pools and adjacent

flowing waters in protected areas from

agricultural areas or from control of

nonindigenous plants

2005–2006 Battaglin et al., 2009

USA (Mississippi, Iowa, Indiana) Glyphosate: 0.02–430

AMPA: 0–400

Common contaminants in basin rivers,

levels dependent on application (source

strength), rainfall run-off and flow route

2007–2008 Coupe et al., 2012

USA (34 States and the District of

Columbia)

Glyphosate: 0–476 (in 39.4% of samples)

AMPA: 0–397 (in 55% of samples)

US Geological Survey, found as common

contaminants in streams, groundwater,

ditches and drains, large rivers, ground

water, lakes, ponds wetlands,

precipitation, soil and sediment and waste

water treatment plant effluents

2001–2010 Battaglin et al., 2014

Canada (Ontario) Glyphosate: up to 0.66 (in 10.5% of

samples)

AMPA: up to 0.70 (in 5.0% of samples)

Residues found persistent enough to allow

groundwater to store and transmit

glyphosate residues to surface waters,

also supported by atmospheric transport

occurrence in precipitation

2010–2011,

2013

Van Stempvoort et al.,

2016

USA (South Dakota, Nebraska,

Kansas, Minnesota, Iowa, Missouri,

Wisconsin, Illinois, Michigan, Indiana,

Ohio, Kentucky

up to 27.8 (median 1.68) US Geological Survey, 100 streams in the

Midwestern US, median AMPA/glyphosate

ratio at agricultural sites 3.31, residue

occurrence differing by land use

2013 Mahler et al., 2017

USA (New York State) up to 90 Rainfall-triggered occurrence in the

outflow of agricultural fields (run-off and

shallow drainage) right after controlled

spray applications of glyphosate

2015–2017 Richards et al., 2018

Mexico up to 36.7 Rain facilitates the mobility and leaching of

glyphosate from agricultural fields to water

bodies, but also reduces the final

environmental concentration by dilution

2014 Ruiz-Toledo et al., 2014

(Continued)
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TABLE 3 | Continued

Location Residue level found (µg/l) Comment Year References

Mexico (Yucatan Peninsula) up to 1.4 Glyphosate found in 90% of groundwater

samples evaluated

2016 Rendón-von Osten and

Dzul-Caamal, 2017

Belize 0.22–1.7 Residues found in phytotelmic water at

seven sites near Maya Mountain Protected

Areas

2006–2007 Kaiser, 2011

SOUTH AMERICA

Argentina (Buenos Aires Province) 100–700 Flow increased by rain caused the

transport of the herbicide from the direct

area of influence to downstream sites

2004 Peruzzo et al., 2008

Argentina (Buenos Aires Province) Glyphosate: up to 298

AMPA: up to 235

Glyphosate and AMPA are present in the

soil of the agricultural basin (35–1502 and

299–2256 µg/kg, respectively), and reach

surface water via surface run-off of soil

particles

2012 Aparicio et al., 2013

Argentina (Buenos Aires Province) Glyphosate: up to 258 (in 69% of samples)

AMPA: up to 5865 (in 69% of samples)

Surface stream, ground water sampled;

the sampling site under urban-industrial

land use had high concentrations in the

spring (attributed to point pollution),

2010–2013 Caprile et al., 2017

Argentina (Formosa, Chaco, Santa

Fé, Buenos Aires, Entre Rios

Provinces)

Glyphosate: 0.2–1.8 (Galeguay River)

up to 0.7 (in 15% of samples) (Paraná

River)

AMPA: 0.1–1.9 (Galeguay River)

<0.3 (Paraná River)

Higher levels in the middle- and

lower-course tributaries of Paraná River in

accordance with the intensive agriculture

in those regions; pollutant adsorption on

suspended matter

2011–2012 Ronco et al., 2016

Argentina (Buenos Aires Province) Glyphosate and AMPA: up to 0.5 (in 33

and 20% of samples, respectively)

(Quequén Grande River)

Glyphosate and AMPA were registered in

almost all matrices at different sampling

times (pre- and post-application events).

2012–2013 Lupi et al., 2015

Argentina (Buenos Aires Province) Glyphosate: up to 18.5 (in 78.9% of

samples)

AMPA: up to 47.5 (in 96.5% of samples)

Glyphosate and AMPA predominated in

surface water and sediment samples in

the El Crespo stream

2014–2015 Pérez et al., 2017

Argentina (Buenos Aires Province) Glyphosate: up to 4.5 (in >40% of

samples)

AMPA: up to 0.9

In shallow lakes in the Pampa region 2015 Castro Berman et al.,

2018

Brazil (Rio de Janeiro region) Glyphosate: 2.6–10.1, AMPA < 0.1 (LOD)

in surface water

glyphosate < 0.35 (LOD), AMPA < 0.1

(LOD) in ground water

Surface and ground water used for

irrigation from the region of Rio de Janeiro

tested

2017 Pinto et al., 2018

ASIA

Malaysia Glyphosate: 0–6.23

AMPA: 0.34–3.76

Higher glyphosate and AMPA

concentrations detected in surface water

near oil palm plantation area

2011–2012 Mardiana-Jansar and

Ismail, 2014

AUSTRALIA

Australia (Western Australia) 380 Glyphosate is by far the most widely used

pesticide in Australia; it is considered as a

pesticide active ingredient with

intermediate persistence; the use of

Roundup Ready® crops may result in

substitution of low volumes of sulfonyl

urea and other herbicides with high

volumes of Glyphosate

1995 Australian Academy of

Technological

Sciences, and

Engineering, 2002

Australia (Queensland) up to 54 Substantial off-site herbicide movement

from irrigated sugarcane farms

2005–2010 Davis et al., 2013

EUROPE

Germany (Northern Rhine-Vestphalia,

Ruhr)

Glyphosate: 0–0.59

AMPA: 0–0.07

Glyphosate occurred in surface water due

to weed control application in rail tracks as

one of the main sources

1995–1996 Skark et al., 1998

(Continued)
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TABLE 3 | Continued

Location Residue level found (µg/l) Comment Year References

Mediterranean region – Not commonly detected 1997 Barceló and Hennion,

1997

UK (East Midlands) 50–650 Rainfall intensity after herbicide application

may increase total herbicide

concentrations discharging from the

treated area

1997 Ramwell et al., 2002

Norway Glyphosate: 0.01–0.93

AMPA: 0.01-0.2

12 stream and river locations sampled,

86% of 49 samples analyzed found

contaminated

1995–1999 Ludvigsen and Lode,

2001

Norway – 6 small catchment areas sampled, 91% of

57 samples analyzed contaminated

1996–2000 Ludvigsen and Lode,

2002

Denmark Glyphosate: 0.54–4.7 or 0.01–0.03

AMPA: 0.17–0.73 or 0.05–0.15

Glyphosate and AMPA can leach from

agricultural fields through structured soils

posing a potential risk to the aquatic

environment

2000–2002 Kjaer et al., 2005

France (Burgundy) Glyphosate: up to 17

AMPA: 0.2–9.4

Glyphosate, and to a greater extent,

AMPA, leach through the soils; thus, both

may be potential contaminants of

groundwater

2001–2002 Landry et al., 2005

France Glyphosate: up to 90

AMPA: up to 3.6

Glyphosate detected in 99.7% of 303

surface water samples

2003–2006 Coupe et al., 2012

Switzerland Glyphosate: up to 28 (93% occurrence in

river water)

AMPA: up to 8.8 (95% occurrence in river

water)

Monitored in groundwater, in rivers and

streams, and in waste water treatment

plants effluents

2006–2013 Poiger et al., 2017

France Glyphosate: 0.2–1.0

AMPA: 0.2–0.6

Peak glyphosate contamination due to

urban run-off

2007–2008 Botta et al., 2009

Spain (Valencian Mediterranean

region)

0.10–0.85 92% of 13 surface and ground water

samples were found contaminated with

glyphosate

2005 Ibánez et al., 2006

Austria Glyphosate: up to 0.67 (0.5–2.0 in waste

water treatment plant effluents)

AMPA: up to 2.8 (4–14 in waste water

treatment plant effluents)

Elimination of glyphosate and AMPA from

waste water at the present concentration

levels is not straightforward

2008 Popp et al., 2008

Spain 0.1–2.6 47% of 139 ground water samples were

found contaminated with glyphosate

2007–2010 Sanchís et al., 2012

UK (York) Glyphosate: up to 9.0

AMPA: up to 1.2

Mitigation against glyphosate inputs to

surface waters are targeted at the

appropriate source of emission

2009 Ramwell et al., 2014

France (Maine-et-Loire) Glyphosate: up to 386.9

AMPA: up to 47

Maximum concentrations in 20

rainfall-run-off events in this vineyard

catchment area were over one order of

magnitude higher than those reported in

French vineyards

2009–2012 Lefrancq et al., 2017

Switzerland Glyphosate: 0.05–4.2

AMPA: 0.04-1.1

The occurrence of glyphosate in surface

waters could not be explained by

agricultural use only; more than half of the

load during selected rain events originated

from urban areas via drainage and

effluents from waste water treatment

plants

2010 Hanke et al., 2010

Switzerland Glyphosate: up to 12

AMPA: up to 6.5

Moisture increases downhill transport of

glyphosate and AMPA by surface run-off,

in a dissolved state or bound to small

colloids

2010–2011 Daouk et al., 2013

(Continued)
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TABLE 3 | Continued

Location Residue level found (µg/l) Comment Year References

Hungary 0.04–0.98 50% of 42 surface water samples were found

contaminated with glyphosate at significant

concentrations after a rainy period

2010–2011 Mörtl et al., 2013

Hungary 0.13–0.46 Varying leaching or run-off of glyphosate to

surface water

2012 Székács et al., 2015

France (Auvergne-

Rhône-Alpes,

Provence-Alpes-Côte

d’Azur))

Glyphosate: 0.05–0.81 AMPA: 0–05–0.09 Quantified in the low µg/l range in Rhône River

and its tributaries

2013 Slomberg et al., 2017

Switzerland Glyphosate: 0.15 (up to 1.43 in tributaries,

0.018–0.35 in waste water treatment plant

effluents)

AMPA: 0.13 (0.024–0.42 in tributaries, up to

1.7 in waste water treatment plant effluents)

Seasonal occurrence in Lake Greifensee in July

(below concentrations in the two main

tributaries) and rapid dissipation of glyphosate,

but not AMPA

2013 Huntscha et al., 2018

Hungary – Slowreed dissipation of glyphosate in

formulation and in the presence of algal biofilms

2017 Zhong et al., 2018

Italy (Lombardy Region) up to 96 Sampling intensity increased due to more

concern about glyphosate residues during

2012–2014 than previously, 2008–2011

2008–2014 Di Guardo and Finizio,

2018

analysis methods of better sensitivity and accuracy (Huhn, 2018).
Glyphosate and AMPA were found to emerge in surface water
by leaching from agricultural areas in the US and Canada
(Edwards et al., 1980; Feng et al., 1990; Payne et al., 1990;
Payne, 1992; Battaglin et al., 2005, 2009; Kolpin et al., 2006;
Struger et al., 2008; Shipitalo and Owens, 2011; Coupe et al.,
2012; Glozier et al., 2012) among others by the US Geological
Survey (Kolpin et al., 2006), at concentrations up to 5,200
and 400 ng/l, respectively in the US North Appalache and the
Midwest (Battaglin et al., 2005, 2009) in regions, where the use
of glyphosate-based pesticide formulations is substantial e.g., due
to the cultivation of GT (RR) crops (Cuhra, 2015). Glyphosate
has also been indicated as a significant water pollutant from
intensive agriculture in Mexico (Ruiz-Toledo et al., 2014). The
concentrations of glyphosate in surface waters in the EU appears
to be lower, but consistently occurring e.g., Germany (Skark
et al., 1998), the Mediterranean (Barceló and Hennion, 1997),
the Northern region (Ludvigsen and Lode, 2001, 2002; Kjaer
et al., 2005), in France (Botta et al., 2009; Van Stempvoort et al.,
2016; Clausing et al., 2018) and elsewhere, and its dissipation
has been found to be slowed down in formulation and in the
presence of algal biofilms (Klátyik et al., 2017b). Thus, glyphosate
residues have been deemed to be worldwide the most common
pesticide contaminant in freshwater ecosystems, AMPA being
the most frequent, glyphosate being the third most frequent
contaminant in France (Villeneuve et al., 2011). The geographical
distribution of peak glyphosate residue concentrations in surface
and drinking water, reported worldwide, are depicted in Figure 4.
As reference values, maximal permitted concentrations of
glyphosate residues in drinking water in given regions are also
indicated, revealing that maximum allowed pesticide residue
levels in drinking water are 7,000-fold higher in the US than
in the EU, and Australia is even more permissive (Note, that
concentrations depicted worldwide, being peak values, do not

reflect real life, everyday situations, rather correspond to worst
cases).

It has been concluded that glyphosate and AMPA often
occur as run-off from fields originating from glyphosate-based
herbicide application. These residues not only became ubiquitous
or “pseudo-persistent” contaminants in surface water, in periods
with increasing concentrations over the years (McKnight et al.,
2015; Carvalho, 2017; Primost et al., 2017), but through surface
waters they were shown to be able to reach the seas as well,
as documented in Germany in the estuaries of the Baltic Sea
(Skeff et al., 2015). Glyphosate and AMPA were also found
at up to 2.5 and 0.48 µg/l in rain and up to 9.1 and 0.97
ng/m3 in air, respectively in the USA in Mississippi, Iowa
and Indiana States in 2004 and 2007–2008 (Chang et al.,
2011), where both have been identified in the same period as
common surface water contaminants near agricultural fields
(Majewski et al., 2014). Glyphosate and AMPA were detected
both in rain and air near agricultural fields in the estuarine
region of the Mississippi River in 2007, while such residues
were not detected (possibly due to less sensitive analytical
methods available at the time) in 1995 (Maqueda et al.,
2017).

Glyphosate residue contamination has been demonstrated
to correlate with sources of agricultural applications (Payne,
1992; Coupe et al., 2012) corresponding to GM crop cultivation
(Barceló and Hennion, 1997; Skark et al., 1998; Australian
Academy of Technological Sciences, and Engineering, 2002;
Ramwell et al., 2002; Peruzzo et al., 2008; Aparicio et al., 2013;
Davis et al., 2013; Mardiana-Jansar and Ismail, 2014; Lupi et al.,
2015; Ronco et al., 2016; Caprile et al., 2017; Pérez et al., 2017),
post-harvest chemical desiccation (Shipitalo and Owens, 2011;
Soracco et al., 2018) or other technologies in intensive agriculture
e.g., biomass production of industrial crops (Mardiana-Jansar
and Ismail, 2014). Moreover, non-agricultural or urban uses of
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FIGURE 4 | Maximal residue levels (µg/l) of glyphosate (black) and AMPA (gray in parentheses) in surface and ground water reported worldwide. Corresponding

permitted levels in drinking water are indicated in red e.g., maximum admissible concentration (MAC) in the European Union, maximum contaminant level (MCL) in the

US and health-based guideline value (HBGV) in Australia.

glyphosate have also been indicated (Kolpin et al., 2006; Botta
et al., 2009; Hanke et al., 2010; Glozier et al., 2012) to contribute
to environmental contamination. Soil contamination appears to
show a closer correlation with agricultural usage intensity, while
water contamination results from run-off events by precipitation
(Landry et al., 2005; Maqueda et al., 2017; Poiger et al., 2017).
Thus, glyphosate and AMPA were detected at concentrations
4–17 and 4–9 times greater than the sources of emission,
respectively from agricultural soil and emitted respirable dust, 12
months after glyphosate application, in a central semiarid region
of Argentina, indicating that these compounds are accumulated
in the respirable dust and can potentially be a source of air
contamination (Mendez et al., 2017). Moreover, glyphosate
residues have often been detected in soil and sediments (Peruzzo
et al., 2008; Aparicio et al., 2013; Battaglin et al., 2014; Mardiana-
Jansar and Ismail, 2014), and it has been shown by numerous
studies that glyphosate reaches surface waters via dispersed small
soil particles or colloids (Struger et al., 2008; Slomberg et al.,
2017). A recent study provides a Europe-wide assessment of the
dispersal of glyphosate and AMPA in EU agricultural topsoils,
being present in 45% of the topsoils collected, originating
from 11 countries and six crop systems, with a maximum
concentration of 2 mg/kg, as well as their potential spreading
by wind and water erosion (Silva et al., 2018), further affected
by small-scale sediment transport in water erosion (Bento
et al., 2018), persisting under low bacterial activity in limited
aerobic conditions or non-neutral pH (la Cecilia and Maggi,
2018), and adversely affecting soil microbial and nematodal
diversity (Dennis et al., 2018). From the soil glyphosate can

be translocated by plant roots; and it can affect non-target
plants near agricultural ditches (Saunders and Pezeshki, 2015),
and affect soil rhizosphere-associated bacterial communities
(Newman et al., 2016) and soil Pseudomonas species (Aristilde
et al., 2017). Toxicity of Roundup R© to the soil filamentous
fungus Aspergillus nidulans was reported with a median lethal
dose (LD50) corresponding to glyphosate concentrations of
90–112 mg/l, ∼100-fold below agricultural application levels
(Nicolas et al., 2016). A proteomic analysis indicated protein
expression modulation and possible metabolic disturbances
(Poirier et al., 2017). Similar effects were not observed for
Aspergillus section Flavi strains and A. niger (Carranza et al.,
2017). Negative effects of glyphosate and/or N fertilization on
soil enzymes and arbuscular mycorrhizal fungi were reported
(Nivelle et al., 2018). A recent concern is that glyphosate (along
with other herbicide active ingredients dicamba and 2,4-D),
as well as common surfactants (Tween80, carboxymethyl
cellulose) at or below recommended application concentrations
can change the susceptibility of bacteria to a diverse range
of antibiotics (ampicillin, chloramphenicol, ciprofloxacin,
kanamycin, tetracycline) upon concurrent exposure, and thus,
glyphosate may serve as one of the drivers for antibiotic
resistance (Kurenbach et al., 2017; Van Bruggen et al., 2018).
As indicated, through water pollution its formulations can
disturb aquatic ecosystems (Vera et al., 2010; Perez et al., 2011)
including fish (Jofré et al., 2013). Removal or degradation of
glyphosate residues from raw drinking water by bank filtration
may not be efficient, but oxidants used in water treatment
(e.g., Cl2 or O3) were shown to be effective in degrading their
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concentration below the EU drinking water threshold level of
0.1 µg/l (Jönsson et al., 2013). Nonetheless, glyphosate residues
were reported in bottled drinking water (Rendón-von Osten
and Dzul-Caamal, 2017). Glyphosate residues were detected
in honey and soy sauce (Rubio et al., 2014), in produce (Bøhn
et al., 2014), processed food products, even in human specimens
(blood, urine, mother’s milk) (Knudsen et al., 2017; Rendón-von
Osten and Dzul-Caamal, 2017). It should be noted, however, that
measurements of glyphosate in complex biological matrices e.g.,
blood and breast milk, that led to positive scores used ELISA
methods of questionable accuracy, and instrumental analysis by
LC-MS/MS did not find glyphosate above its limit of detection
in human breast milk (McGuire et al., 2016; Steinborn et al.,
2016). As a result of its expanding release into the environment,
increased residue levels have been detected in crops, 0.3–5.2
mg/kg glyphosate, 0.3–5.7 mg/kg AMPA (Arregui et al., 2004).

In the US, the accepted MRL for glyphosate residues
in drinking water is 700 µg/l (United States Environmental
Protection Agency, 2003), while 0.1 µg/l in the EU under the
Drinking Water Directive (European Parliament Council, 1998).
The MRL of glyphosate (among all pesticide residues) in the
aquatic environment used to be 1.0 µg/l in the EU (European
Parliament Council, 1976). Currently, there are no MRLs defined
for surface water according to the Water Framework Directive
(European Commission, 2000), as glyphosate or AMPA are not
listed among priority substances for which environmental quality
standards have been set. However, both compounds are likely
to be re-considered as priority substances (European Parliament
Council, 2006; European Parliament, 2008).

Most recent results in residue analysis in food in the EU
indicated a more favorable picture. Analyzed in 22 countries
in EU MSs (predominantly in Germany) in raw and processed
food products (mainly fruits, nuts, vegetables and cereals, yet in
limited numbers in oilseeds and soybeans, and none reported in
animal products) in 2014, detectable levels of glyphosate residues
were found in 4% of the samples, but at levels all below the
MRL with the exception of a dry bean sample, where the residue
level, 2.3 mg/kg was 15% above the MRL. The highest incidence
of glyphosate residue levels was detected in sunflower seeds,
dry lentils and peas, mustard and linseeds, soybeans, as well as
barley, wheat, oats and rye among cereals (European Food Safety
Authority, 2017b). Characterizing and quantifying glyphosate
residues in food and feed of plant and animal origin, considering
their stability in those matrices, estimating dietary exposure of
consumers and comparing it to EFSA reference toxicity values for
glyphosate and AMPA published in 2015 (European Food Safety
Authority, 2015a) and for N-acetyl-glyphosate and N-acetyl-
AMPA published in 2018 (European Food Safety Authority,
2018a), without their any further assessment, EFSA proposed
207 new MRLs with proposed ERD (glyphosate plus AMPA and
N-acetyl-glyphosate) to replace the existing ERD (glyphosate)
(European Food Safety Authority, 2018b), and considered them
to pose no apparent risk to consumers (European Food Safety
Authority, 2018a,b). These proposed MRLs are in 153 cases more
restricting (lower than before) than the existing ones, being set
at an improved LOD (0.05 mg/kg) made possible by advanced
analytical methods, but are more permissive (higher than before)

for main commodity crops e.g., potatoes, dried commodities
(beans, lentils, peas, lupine beans and linseeds), olives for oil
production, grains (barley, buckwheat and other pseudo-cereals,
millet, oat, rye, sorghum, wheat), seeds (borage, rape/canola,
cotton, maize), soybeans and sugarcanes, as well as food of animal
origin (swine, bovine, sheep, bovine, equine and poultry muscle
and tissues, milk and bird eggs). The stricter MRLs represent
2- to 10-fold (in the case of wild fungi 1,000-fold) lower values,
than the existing ones, while proposed alleviations correspond to
1.5- to 300-fold increase in other MRLs. However, while lowered
MRLs apply mostly to non-problematic commodities, higher
values are proposed for commodities, where common glyphosate
contamination has been reported, or where high glyphosate
metabolite levels are endogenous (GT crops with transgenic
GOX or GAT enzymes). Such mitigation in the requirements is
consonant with the increase proposed also in the ADI value for
glyphosate, on the one hand, yet appears to reflect as if regulatory
rigor yielded to technology, as limits previously considered
necessary and accepted by industry are proposed to be replaced
with more permissive ones, on the other hand. As for compliance
of MRL, it is worth mentioning that negative health outcomes
have been observed in laboratory animal studies showing toxicity
at levels of exposure below regulatory set safety limits (Mesnage
et al., 2015b, 2017b; Defarge et al., 2016).

Although the number of results available in the scientific
literature on glyphosate residue levels in human tissues is
limited, human biomonitoring is of prominent importance as
its results serve as primary end-point indicators of exposure.
Biomonitoring of glyphosate residues in human urine have been
carried out in the USA (Acquavella et al., 2003; Curwin et al.,
2007; Mills et al., 2017), Europe (Mesnage et al., 2012; Krüger
et al., 2014; Connolly et al., 2017; Conrad et al., 2017) and
Sri Lanka (Jayasumana et al., 2015), and indicated maximal
concentrations of 0.45–233 ng/ml. Within these studies, one
report compared glyphosate levels in the urine of humans and
livestock, and found over one order of magnitude higher levels
in the latter (Krüger et al., 2014). A survey of the human
biomonitoring studies argued that the results posed no health
concerns as corresponding exposures were estimated to be
magnitudes below the ADI or Acceptable Operator Exposure
Level values, but conceded characteristic differences between
exposure levels in Europe and North America with substantially
higher maximum levels in the latter region (Niemann et al.,
2015), levels being 0.65–5 ng/ml in Europe and 18–233 in the US.
A systematic study carried out in Southern California found that
the mean glyphosate and AMPA levels in human urine increased
between 1993 and 2016, and reached 0.449 and 0.401 ng/ml,
respectively (Mills et al., 2017). It has to be noted that levels of
3.3–73.5 ng/ml have been reported in a non-peer reviewed report
in Germany (Connolly et al., 2017).

A wide range of ecotoxicological and human health problems
related to glyphosate and its formulated PPPs have been indicated
(Székács and Darvas, 2012; Mensah et al., 2015; Kurenbach
et al., 2017), partially related to the chelating properties of
glyphosate (Mertens et al., 2018). Moreover, ecotoxicological
and resistance-related consequences of the extended use of
glyphosate (Schütte et al., 2017) or of the use of GT GM
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crops (Pandolfo et al., 2018) have been emphasized, along with
effects non-target terrestrial plants as well (Cederlund, 2017).
As for emerging plant resistance against glyphosate, glyphosate
itself and glyphosate-based herbicides have been shown to affect
the disease resistance and health of plants by undermining
their innate physiological defenses in mechanisms related to
the mode of action of glyphosate, even in crops engineered
for glyphosate-tolerance, and by interferences with the local
microbial ecology in the rhizosphere (Martinez et al., 2018).
The evolution of resistance was shown to occur due to gene
amplification (Chen et al., 2017; Dolatabadian et al., 2017;
Fernandez-Escalada et al., 2017; Han et al., 2017; Jugulam and
Gill, 2018). Epigenetic alterations through increased levels of
DNA and histone methylation were identified in response to
exposure to glyphosate (Nardemir et al., 2015; Kim et al.,
2017; Margaritopoulou et al., 2018; Markus et al., 2018).
The results suggest that epigenetic pathways may influence
the regulation of genes important for herbicide detoxification
(Markus et al., 2018). As for ecotoxicity, more research on
the effects of exposure, particularly at sub-lethal levels, using
appropriate target biomonitor species (Kissane and Shephard,
2017) and a corresponding new concept in agriculture are
urged (Nicolopoulou-Stamati et al., 2016; Torretta et al., 2018).
Taking these indications into consideration, and also considering
the wide occurrence of glyphosate residues in environmental
matrices, foodstuff and biological matrices, including the urine
of livestock and humans, our current estimations of dietary
exposure (Stephenson et al., 2018) may need to be reconsidered,
which could substantially modify risk assessment. It has to be
noted that the ecotoxicological profile of replacement herbicide
active ingredients proposed as alternatives to glyphosate appear
to be similar or worse than that of glyphosate itself, both in the
area of conventional treatment and desiccant technology (e.g.,
bromoxynil, diquat or other total herbicides) or on HTGM crops
(e.g., 2,4–D, oxynil, dicamba, glufosinate). Nonetheless, this does
not constitute a part of risk assessment of glyphosate, but is to be
considered by risk managers in their decision-making. Moreover,
practically any xenobiotic substance is prone to lead to adverse
effects when used in such excessive quantities as glyphosate.

CONCLUSION

The issue of re-registration of glyphosate in the EU and
corresponding evaluation reports clearly show a fundamental
difference between risk- and hazard-based assessments of
regulated products. Considering acute toxicity, legislatory
decision-makers focus on risks as a product of hazard and
exposure, and weigh the subsequently identified hazards based
on their likelihood of occurrence through real exposures. In
contrast to acute toxicity, however, EU pesticide regulation
is hazard-based (and not risk-based) for carcinogenicity,
reproductive/developmental toxicity, neurotoxicity and
endocrine effects. The main problem, where the re-registration
routine of pesticides may become seriously perplexed, is that at
EU level, the authorities, following their legal mandate, focus
on the toxicology of the active ingredient(s), while in real life

situations subjects are exposed to the formulated, complex
products, reflected in the IARC evaluation, as that agency
is not legally bound to EU authorization policies. Moreover,
government or government-related agencies have to consider
all stakeholders, including patent holders and industry, in their
assessment. An international expert agency in public health,
however, may focus on hazards in its assessment, particularly
if novel hazards have been identified in relation to the target
substance, and also if concentration- or dose-dependence of
the health effects are questionable or do not exist, as often seen
for endocrine disruption effects (Vandenberg et al., 2012). A
particular issue in the EU is that active ingredients used in PPPs
are regulated at the EU level, while formulated pesticide products
are governed at MS level. In other words, the responsibility of
sound toxicological evaluation of the formulated products lies
in the EU at MS level. Therefore, re-assessment of glyphosate
can indeed focus on the parent compound itself, as possible
biological and health effects of other formulants (e.g., surfactant
and other additives) will be considered during the registration
of the formulated products at MS level. The withdrawal of
glyphosate-based herbicides containing formulating agent POEA
and the ban of the use of glyphosate as a post-harvest chemical
desiccant atMS level are effective means to reduce environmental
contamination and to mitigate environmental and human health
consequences. Nonetheless, the wide occurrence of glyphosate
and its residues as a ubiquitous contaminant in environmental
matrices, feed and food, and even in livestock and human
samples indicates that our exposure to this substance, boosted
in use by expansion of GM crops worldwide and the use of
pre- or post-harvest chemical desiccation in agriculture, may
be substantially higher than predicted from dietary exposure
models, which may therefore cause our current position in risk
assessment to be re-assessed.

Data on occupational or community exposure to glyphosate
residues have been shown to be limited (International Agency
for Research on Cancer, 2017), and thus, expected exposure
levels need to be updated, based not only on earlier estimations
on the total food basket, but also on recent environmental
and biological monitoring data indicating increased levels or
more wide-spread occurrence of glyphosate residues. Critical
gaps in the re-registration of glyphosate, including the EU
re-registration process itself, have been addressed (European
Parliament Council, 2002; Myers et al., 2016), particularly those
considered more pressing by recent scientific findings. These
include: (a) increasing exposures of EU citizens to glyphosate
residues, supported by human and environmental biomonitoring
data in limited number (Curwin et al., 2007; Mesnage et al.,
2012; Krüger et al., 2014; Niemann et al., 2015; Connolly et al.,
2017; Conrad et al., 2017; Mills et al., 2017; Vandenberg et al.,
2017), but identifying a clearly rising trend; (b) carcinogenicity
classification by IARC, evidence of linkages of glyphosate or
its formulated products to non-Hodgkin’s lymphoma (Hardell
et al., 2002; De Roos et al., 2003, 2005; Eriksson et al., 2008;
Schinasi and Leon, 2014; Mesnage et al., 2015b), and effective
dose levels indicated in rodent oncogenicity studies being 1–2
orders of magnitude lower when formulated glyphosate-based
herbicides were used compared to those obtained with the pure
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active ingredient; (c) evidence of contributions to fatal chronic
kidney disease by glyphosate in areas with heavy metals in
water (Jayasumana et al., 2014, 2015) and the finding of non-
alcoholic fatty liver disease upon exposure to a glyphosate-
based herbicide (Roundup R©) (Mesnage et al., 2017b), coupled
with the powerful animal metabolism data embedded within
the re-registration document appendices (showing glyphosate
and AMPA levels higher in kidney than in liver, and much
higher than in muscle tissue); as well as (d) problems (e.g., risk
assessment studies for regulatory purposes of re-registration of
glyphosate being carried out with pure glyphosate) arising from
the dual character of pesticide registration in the EU with active
ingredients authorized at EU and formulated products at MS
level (Klátyik et al., 2017a). In light of these findings, earlier risk
assessment statements (Williams et al., 2000) are untenable for
both hazard and exposure levels.

In summary, the “glyphosate debate” among agencies is
mostly confined to carcinogenicity, while a variety of other effects
(e.g., non-alcoholic fatty liver disease, endocrine disruption)
have also been found. The in vitro sensitivity assays on a
variety of cell lines indicate that glyphosate is less toxic than
its common co-formulants e.g., POEA. Moreover, synergistic
effects between glyphosate and its co-formulants cannot be ruled

out. POEA has been banned in glyphosate-based preparations in

various MSs in hope to solve the „glyphosate case.” Nevertheless,
inhibition of aromatases has been demonstrated at very low
concentrations, implying hormonal disrupting effects, and the
estrogenic potential of glyphosate (and its formulated products)
have been indicated by their estrogen receptor activation.
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Genetically engineered (GE) crops, multi-ingredient foods derived from one or more 
GE ingredients, and GE agricultural inputs are regulated in the United States under a 
“Coordinated Framework” that was literally cobbled together in the early 1990s. Via this 
Framework, responsibility is spread across three federal agencies for the assessment 
and management of potential risks arising from the planting of GE crops, the raising of 
GE animals, or uses of GE inputs. The Framework was incomplete and conceptually 
flawed from the beginning. Despite multiple, piecemeal efforts to update aspects of GE 
risk assessment and regulatory policy, the Coordinated Framework survives to this day 
largely unchanged. Its shortcomings are recognized in both the scientific and legal com-
munities, but meaningful reforms thus far remain out of reach, blocked by the intense 
controversy now surrounding all things biotech. Five generic reforms and another five 
specific initiatives are described to create a more robust, science-driven GE regulatory 
infrastructure in the U.S.

Keywords: coordinated Framework, substantial equivalence, resistance management, gene editing, scientific 
integrity, resistant weeds, labeling Ge food

Over most of the last 20 years, the limitations of the Coordinated Framework (1), and the U.S. gov-
ernment’s lax approach to genetically engineered (GE) risk assessment, triggered deep-set concern 
and scrutiny among some stakeholders and consumers, food companies, and organizations but not 
much beyond that. In the last 5–10 years though, the slice of U.S. and global markets responsive 
to concerns regarding the safety, environmental impacts, and/or the socioeconomic consequences 
of GE crops and inputs has grown, and is now driving economically meaningful shifts in market 
share (2).

Given that GE applications are now spreading to fresh fruits and vegetables and animals, the 
range of potential risks and gaps in risk-assessment science are likely to become both more acute and 
undeniable. At some point, U.S. Ag Inc., and especially those companies and growers significantly 
dependent on exports, will no longer accept the collateral market damage caused by the shortcomings 
of the Coordinated Framework and the corollary erosion of confidence in the science supporting the 
regulation of agricultural biotechnology in the U.S.

Recognizing the growing demand for constructive change, the Obama Administration announced 
in 2015 that it would undertake a long-overdue review of the Coordinated Framework (3, 4). Their 
goal is to identify at least some improvements that would garner widespread support and could be 
implemented via Executive Orders and/or regulatory policy changes prior to the transition to a new 
Administration in January 2017. As part of this ongoing process, the Food and Drug Administration 
(FDA) issued a notice calling for public comments under the ponderous title: “Clarifying Current 
Roles and Responsibilities Described in the Coordinated Framework for the Regulation of Biotechnology 
and Developing a Long-Term Strategy for the Regulation of the Products of Biotechnology” (5).
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Such an Executive Branch review will hopefully guide the 
actions of this and the next Administration, as well as Congress, in 
providing federal agencies a clear mandate and stronger authority 
to conduct state-of-the-art risk assessments on GE plants and 
foods, animals, and microbes. Herein, I describe current agency 
roles and the most important reforms that are needed if this effort 
is to bear fruit worth harvesting.

AGeNcY rOLes AND resPONsiBiLities

the Food and Drug Administration
The FDA was given responsibility for assessment of food safety 
risks and most aspects of food labeling, drawing primarily on 
the Food, Drug, and Cosmetic Act (FDCA). Agency regulations, 
data requirements, and decision criteria are, in turn, grounded in 
legislation crafted and passed years before the first applications 
of genetic engineering in the food industry and agricultural sec-
tor. While the FDA’s role within the Coordinated Framework is 
arguably the most important in terms of protecting public health, 
its role and actions have for the most part flown below the radar.

The FDA regulates GE animals as new animal drugs, for which 
there is a mandatory, FDCA requirement for a safety assessment. 
For GE plants, FDA regulates them under a 1992 Statement of 
Policy that asserts that GE (a) is just an extension of conventional 
breeding, (b) does not raise new health risks, and (c) does not 
need any special safety assessments once nutritional and compo-
sitional “substantial equivalence” is demonstrated (6).

There is only a cursory agency review of industry-submitted 
documents over the course of a “voluntary consultation” (7, 8). 
The FDA neither conducts research, review experimental designs, 
and statistical analyses nor reaches independent conclusions 
about the safety of a proposed GE trait or plant. In essence, FDA 
has allowed companies to assert that new, “substantially equiva-
lent” GE crops are “generally recognized as safe” (GRAS) (8).

Once so designated, officially or in practice, there is little or no 
justification for any ongoing, food safety-focused regulatory scru-
tiny, or need for federal investment in research on possible food 
safety risks. In short, the FDA’s process and actions suggest that 
the science is settled, despite the lack of modern, well-designed 
studies of the sort needed to detect subtle cellular, metabolic, 
genetic, and epigenetic impacts that do not substantially change 
the nutrient composition of harvested foodstuffs.

the environmental Protection Agency
The Environmental Protection Agency (EPA) was, and remains, 
responsible for the assessment and approval of GE applications 
accompanied by pest management-related claims. EPA science 
reviews and actions evolve in accord with the detailed require-
ments and regulations put in place over decades in administering 
the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), 
an Act addressing chemical and botanical pesticides. The EPA’s 
GE-related responsibilities include

• characterizing and quantifying exposures to novel proteins or 
other toxins produced by GE crops;

• assessing the need for new or altered tolerance levels for GE plant 
proteins and/or pesticides used in conjunction with GE crops;

• determining whether a new GE application poses any new or 
worrisome worker or applicator risk, or environmental risks; and

• addressing the risk of resistance, and whether and how steps 
should be taken via mandatory label directions to mitigate the 
risk of resistance.

The EPA regulates GE microorganisms under the Toxic 
Substance Control Act, despite the indisputable fact that the risks 
stemming from release of GE microorganisms that can reproduce 
and spread are very different than the risks posed by toxic chemi-
cals, which cannot reproduce.

United states Department of Agriculture
Ironically, the United States Department of Agriculture (USDA)’s 
role in GE regulation is the least important relative to risk iden-
tification and prevention, but has triggered the most extensive 
delays, as well as the most intensely contested litigation and 
public controversy. The USDA regulates the agronomic and some 
environmental impacts of GE plants under the Plant Protection 
Act (PPA), a statute that limits the purview of USDA assessments 
to whether GE plants might act as “plant pests” (e.g., as a weed or 
virus) (8). Thus, if a plant is GE but does not contain genetic mate-
rial from a known, plant pest, the plant is typically not considered 
a “regulated article” (9).

The USDA regulates GE insects under the Animal Plant 
Health Protection Act, which was designed to protect livestock 
and poultry, including farmed fish from animal diseases. Thus, 
for GE insects, USDA only considers whether the GE insect has 
an impact on communicable diseases of livestock and poultry, 
rather than broader environmental or ecological impacts.

criticAL cHALLeNGes cONFrONtiNG 
tHe cOOrDiNAteD FrAMeWOrK

No one expects the Coordinated Framework review process 
started by the Obama Administration to quickly solve any of the 
foundational problems with biotechnology regulation in the U.S. 
(4). But it will hopefully clarify the major issues and challenges, 
and bring new players and ideas into the ongoing policy-reform 
process.

I suspect that eventually the U.S. will be forced to upgrade 
the science supporting the assessment and management of risks 
arising from agricultural biotechnologies. The now-heavy dose of 
wishful thinking embedded in GE risk assessments will hopefully 
be replaced with hard science. Progress is especially needed in five 
areas in order to create a biotechnology regulatory framework 
that is as dynamic as the science and technology it seeks to help 
manage.

Focus on Fetal and child Development
To date, there has been little serious research on the impact of GE 
crops and technology on human reproductive performance and 
childhood development, despite wide recognition that untimely, 
very low dose pesticide and toxin exposures can trigger endocrine 
system and epigenetic effects of lasting consequence (10).

For this reason, it is indeed unfortunate that EPA has failed 
to invoke the historic, health-promoting provisions of the 1996 
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Food Quality Protection Act (FQPA) in its assessments of the 
acceptability of GE technology. The FQPA calls for an added 
10-fold safety factor in regulating pesticides, and indeed any crop 
protection technology, when there is (a) uncertainty regarding 
risks to pregnant women, infants, and children or (b) inadequate 
data to characterize exposure levels (11).

On both of these counts, several GE technologies and their 
associated pesticides should have triggered the FQPA’s added 
safety factor. This is an area ripe for litigation.

Gene editing technologies
The high-priority issues throughout the review of the Coordinated 
Framework will surely include how to deal with gene editing tech-
nologies, such as RNAi, and other new gene editing technologies 
(e.g., CRISPR-cas9, TALEN, ZNF, and meganucleases) (4, 12). 
Many of these gene editing techniques will presumably not entail 
movement of foreign deoxyribonucleic acid (DNA) into crops.

Under current policy, companies or teams using RNAi and 
gene editing tools can simply write to the USDA and request a 
letter from the Department acknowledging that the resulting GE 
plants are not “regulated articles.” To date, USDA has sent letters 
exempting over 30 GE plants from USDA reviews  –  including 
multiple glyphosate-tolerant crops and Loblolly pine trees with 
increased wood density.

If these new gene editing technologies are deemed exempt 
from U.S. regulatory reviews, as many in the GE industry have 
requested, these presumably safer technologies will invite intense 
scrutiny and likely create a new wave of litigation, market disrup-
tion, and labeling confusion.

New tools to Manage Adoption
The revised Framework must recognize that the scale of adoption 
of any GE crop technology will drive the nature and magnitude 
of possible adverse environmental, public health, or marketplace 
consequences.

Under current law and regulations, federal agencies assess 
the risks and benefits of a new GE technology when planted or 
adopted on a given field. It is assumed that the risks arising from 
the planting of any particular field to a GE crop will be determined 
solely by what happens in that field. Current risk assessments do 
not take into account whether a given GE technology is likely to 
be adopted on 1%, or 10%, or nearly 100% of the cropland planted 
to a specific crop.

Current policy and risk assessments also fail to consider incre-
mental and cumulative adverse impacts that can worsen over 
time, such as the rise in the costs of weed management (13, 14), 
loss of biodiversity, and increases in the volume and number of 
herbicide applications that invariably follow the emergence and 
spread of herbicide-resistant weeds (15–17).

For technologies that depend on biological and ecological 
impacts and interactions to work as intended (e.g., essentially all 
GE crop technologies), wider and more frequent use will generally 
result in additional, and/or potentially more severe, unintended 
consequences. This general rule applies to all biologically based 
technologies and has stood the test of time.

Going forward, the revised Coordinated Framework must 
grapple with the challenge of calibrating the sophistication and 

sensitivity of risk assessments, and risk mitigation interventions, 
to the scope of adoption and the magnitude of possible and 
actual adverse impacts. Fortunately, there are already accepted 
regulatory strategies and tools in place to do so in the U.S., and 
several have already been invoked in approvals of GE crop tech-
nology [e.g., refuge requirements, limiting deregulation decisions 
(approvals) to specific geographic areas or fixed time periods, and 
mandatory monitoring of target insects for resistance].

The revised Framework should work toward calibrating the 
risk assessment process to the scope of adoption by seeking 
from technology developers an estimate of the expected degree 
of market penetration in specific regions, within say 5  years 
of approval. Agencies could then focus risk assessments on 
high-adoption regions, and if deemed necessary, limit approv-
als or impose targeted monitoring or risk mitigation measures. 
After 5 years, the agency and technology developers could then 
re-assess estimates of adoption, actual experiences in the field, 
and the need for any further efforts to better characterize or 
mitigate risk.

Such new tools and authority is badly needed to avoid the pro-
liferation of collateral damage to farmers and the food industry 
(e.g., failing and increasingly expensive pest management sys-
tems; loss of markets) and/or the environment and public health.

Dealing with risks Arising from the 
emergence and spread of  
resistant Organisms
The failure of the Coordinated Framework to address the risk and 
consequences of resistance is a serious deficiency. In fairness to the 
agencies implementing the Coordinated Framework in the early 
years, several constructive steps were taken to build resistance 
management into the Bt-transgenic corn- and cotton-approval 
processes. These included sizable, mandatory refuges planted to 
non-GE-Bt seeds and rigorous, annual resistance monitoring of 
insect populations.

After about a decade of largely successful prevention, GE 
technology developers pressured the EPA to relax Bt-crop refuge 
requirements, despite warnings from many independent ento-
mologists. The consequences, and price tag, associated with this 
regrettable error in judgment are steadily rising and will continue 
rising for years to come.

To prevent resistance from eroding the benefits of GE crop 
technology and GE-based animal health and microbial products, 
the revised Framework should direct all federal agencies to take a 
variety of steps. The most important include

• sponsoring competitive research grant programs on the 
genetic mechanisms triggering resistance and/or the spread of 
GE technology-induced resistance;

• phasing out the use of antibiotic-related marker genes;
• requiring resistance risk assessments and management plans 

as a routine part of applications for approval and evaluating 
such plans via an independent review panel;

• post-approval resistance-monitoring provisions, including how 
ongoing resistance management testing will be paid for; and

• establishing resistance thresholds when exceeded will quickly 
trigger a second tier of resistance risk prevention strategies.
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Need for independent science
Most people expressing a view on how the Coordinated 
Framework needs to be updated agree on one thing  –  poor 
and inadequate science has become an endemic problem in the 
GE risk assessment and regulatory processes (4). The revised 
Coordinated Framework must broaden and deepen the science 
base supporting GE regulation in order to enhance confidence 
in the scientific judgments supporting government decisions on 
GE technology.

Another step is equally important in convincing those skepti-
cal of current GE crop safety assessments, within and outside the 
scientific community. The majority of the new, more sophisticated 
risk-assessment science should be conducted by scientific teams 
with no ties to the companies developing and marketing GE crop 
technology. In addition, institutions funding and carrying out 
this work should take proactive steps to insulate the individuals 
conducting the work from non-scientific criticisms, personal and 
professional attacks, and initiated or supported by GE companies 
and their surrogates. Regrettably, such unprecedented measures 
are now needed to slow the erosion of scientific integrity in this 
economically important, fast-moving area of technology.

Several practical, low-cost steps can be taken immediately. 
Federal agencies should require, as part of the application pro-
cess, a guarantee from technology developers that requests for 
isolines and/or genetic markers and probes, or other technical 
information necessary to conduct risks assessments will be pro-
vided to federal agency scientists and independent researchers, 
and without imposition of restrictions on what non-commercial 
research can be conducted with them, or when and how results 
may be reported.

The FDA should publicly disclose the data provided by GE 
technology developers and allow for public comments on these 
data as well as on the adequacy of risk assessments. Both steps 
should be completed before the GE organisms are allowed on the 
market. Approvals can then incorporate any needed actions and 
requirements, such as post-approval surveillance and additional 
testing for applications in areas outside those studied prior to 
commercial launch.

Before any field trial of a new GE trait, USDA should require 
and disclose the exact sequence information of the inserted genetic 
material so that USDA, the grain trade, and food companies can 
detect possible contamination. Presently, USDA does not require 
detailed sequence information and therefore has no way to detect 
contamination. In addition, the locations of GE field trials should 
be disclosed, so that neighboring farmers and the food industry 
can guard against genetic contamination.

Independent scientists should be awarded funding and granted 
both the needed time and data/tools necessary to conduct state-
of-the-art, GE technology risk assessments. They must be free to 
raise questions and reach independent conclusions without fear 
of personal or professional retaliation. Efforts to elucidate the 
metabolic-breakdown pathways of novel proteins in the edible 
portions of GE plants should receive special focus and dedicated 
funding, now that some widely consumed, GE fresh fruits 
(e.g., Artic apple) and vegetables (Innate potatoes, and Bt and 
Roundup Ready sweetcorn) have been approved and are in the 
food supply in several countries.

tOWArD A BriGHter FUtUre OF 
BiOtecH reGULAtiON iN tHe U.s.

Currently in the U.S., the trigger for GE regulatory oversight is 
based on the attributes of GE organisms not the process used to 
create them (e.g., GE via a gene gun). This is conceptually flawed 
and leads to all sorts of problems: the USDA exempts GE plants 
produced without plant pest DNA from its admittedly limited 
purview; the FDA allows GE plants to be treated as GRAS if 
deemed substantially equivalent, with little or no focus on novel 
risks that are outside the parameters considered in judging 
substantial equivalence. It also means that some of the risks 
associated with GE organism (genetic contamination, resistant 
pests) are simply neither assessed nor addressed.

Five steps discussed below address specific, concrete steps 
the U.S. federal government could take to improve the GE risk 
assessment and risk mitigation processes. Steps 3.1 and 3.5 
could be adopted relatively quickly, while more time to craft 
and implement solutions will be necessary in the case of the 
other three.

Adopt the internationally Accepted 
Definition of Biotechnology
The U.S. should adopt the definition of “modern biotechnology” 
set forth by the Codex Alimentarius in the Principles for the Risk 
Analysis of Foods Derived from Modern Biotechnology (18):

‘Modern biotechnology’ entails the application of:
(i) In vitro nucleic acid techniques, including recom-

binant deoxyribonucleic acid (DNA) and direct injec-
tion of nucleic acid into cells or organelles, or (ii) Fusion 
of cells beyond the taxonomic family, that overcome 
natural physiological, reproductive, or recombinant 
barriers and that are not techniques used in traditional 
breeding and selection.

Assess All Aspects of Ge Applications
The new Coordinated Framework should direct federal agencies 
to take into account both the novel proteins and other compounds 
produced by a GE plant, as well as any other related chemicals that 
must be, or typically will be used in conjunction with the GE crop 
technology. These will, of course, include all herbicides associated 
with a herbicide-tolerant crop variety, as well as seed treatments 
marketed as important in order for farmers to bring a GE crop 
to harvest.

restore scientific integrity in Judging 
substantial equivalence
Despite its flaws, “substantial equivalence” is likely to remain 
part of the GE regulatory process. Accordingly, the erosion of 
scientific integrity in the assessment of GE crop equivalence must 
be reversed by

• Assuring that the protein, trait, or plant under investigation in 
risk-assessment studies is identical to those from the GE plant 
under evaluation;
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• No longer considering the range of “natural variation” in nutri-
ent and phytochemical levels in a GE crop versus its isoline, 
when both are grown in properly designed side-by-side trails;

• Requiring that the diet fed to control animals consists of the 
isoline of the GE crop being tested, and the GE crop and its 
isoline should be grown in the same environment; and

• The diet of the control animals should be tested for the pres-
ence of contamination from other GE crops and pesticides 
typically used in conjunction with GE crops.

Acknowledge that stacked varieties May 
Pose Unique risks
The new Framework should require agencies to develop new 
test requirements for stacked varieties, acknowledging that 
multiple traits and regulatory sequences can lead to unexpected 
interactions and possibly adverse outcomes, just as treatment 
with multiple medications can lead to drug interactions and 
contraindications.

require Labeling of Ge Products
All products from GE crops, animals, and microorganisms 
should be accurately labeled, both to ensure consumer choice 
and to enhance the odds that public health officials, doctors, 
and scientists will quickly recognize unexpected problems, 
if and when they arise. In addition, companies that develop 
GE organisms should be required to disclose any GE trait, 
marker genes, or other genetic constructs in commercial, GE 
seed products, including traits and genes from obsolete and no 
longer-marketed traits.

Today, FDA requires labeling on food products when there 
has been a change in a “material fact,” such as a food product’s 

nutritional value, organoleptic properties, or functional charac-
teristics. But several times in the past, and for good reason, the 
FDA has required labeling under the “material fact” construct in 
the absence of a change in nutritional value, organoleptic proper-
ties, or functional characteristics.

For example, in the final food irradiation rule, the FDA 
acknowledged that the large number of respondents who 
asked for labeling of irradiated retail products was evidence 
that irradiation was, indeed, a “material fact” (19). In its 
decision, the FDA wrote “Whether information is material 
under section 201(n) of the act depends not on the abstract 
worth of the information but on whether consumers view 
such information as important and whether the omission of 
label information may mislead a consumer. The large number 
of consumer comments requesting retail labeling attest to the 
significance placed on such labeling by consumers” (Emphasis 
added) (19).

Clearly, state and national polling, and the near 50–50% split 
in the voting on several state GE food ballot initiatives, is evidence 
of the significant consumer interest in whether a food product 
contains GE ingredients.
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In the current context of research and innovation that are increasingly driven by short-term indus-
trial interests, science and technology require thorough social, political, ethical, and legal changes 
leading to better democratic control. A huge gap has opened between citizens and scientists, with 
the latter sometimes inspiring more mistrust than trust. Major health and environmental scandals of 
past years (for example, asbestos, Bovine Spongiform Encephalopathy, PCBs, and nuclear disasters) 
may be related to this situation.

To restore the links between science, policy makers, and civil society is a difficult task with many 
challenges. This involves (a) substituting a research approach strictly entrusted to the scientific com-
munity, with approaches based on a willingness to access and respect various forms of knowledge; 
(b)  taking into account, at a very early stage in public research policy, the societal challenges of 
science and the tools for its democratic orientation; (c) expanding access to scientific knowledge 
in society, allowing those that are often wrongly called “ignorant” to interact with researchers in a 
balanced dialog and a co-construction of knowledge. How is it conceivable, for instance, to develop 
an agricultural research project without a close exchange and collaboration with those people who 
invented agriculture  –  not the researchers, or even the agronomists, but farmers? Moreover, in 
a knowledge society, in which innovation does not necessarily mean “progress,” citizens may be 
especially willing to participate in choosing scientific and technological orientations.

Such a task implies in particular the setting up of systems enabling civil society to access oppor-
tunities to develop scientific knowledge, as well as for innovation and expertise (1). Participatory 
research, which is joint research work with equal partnerships between non-profit organizations 
from civil society or groups of citizens and academic researchers (from universities or major research 
organizations), is an integral part of this process of democratization of science. Several public 
programs successfully promote participatory research. Examples include the Canadian program of 
Community-University Research Alliances (ARUC)1; several regional research programs in France, 
such as Partnerships between Institutions and Citizens for Research and Innovation (PICRI),2 set up 
by the Region Ile-de-France under the leadership of the Fondation Sciences Citoyennes organization3; 
and the Social Appropriation of Sciences (ASOSC),4 developed by the Brittany Region.

A project resulting from collaboration between researchers and actors of civil society often 
addresses a societal issue. Thus, participatory research involves mainly applied research projects and 
projects that fall within the field of expertise (health, environmental, ethical, etc.). For basic research, 
i.e., research that is conducted solely for the sake of increasing human knowledge, such collaborations 
are more difficult to consider, since this research generally falls into skills that are specifically those 
of scientists. However, citizens can participate in some basic research projects, by collecting data on 

1 http://www.sshrc-crsh.gc.ca/funding-financement/programs-programmes/cura-aruc-fra.aspx
2 http://www.iledefrance.fr/competence/picri
3 http://sciencescitoyennes.org
4 http://xnet1.region-bretagne.fr/Recherche
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a large scale (for example, in the field of biodiversity). In this case, 
participants train themselves with the files and protocols that are 
given beforehand. Besides, citizens could be consulted about the 
fundamental questions that they are concerned with and that they 
would like to be addressed by scientists.

The requirement for openness of science to civil society is 
particularly striking in the area of technologies and the products 
of technology. The phenomenon of lucrative research driven by 
industrial interests that require rapid returns on investment leads 
to negative consequences in terms the quality and transparency 
of health and environmental assessment. The time required to 
conduct these assessments with proper rigor is not compatible 
with the urgency of patents and profits, and commercial confi-
dentiality is used to justify the failure to communicate raw data 
from regulatory tests.

Many civil society organizations have emerged to oppose 
the possible assessment deficiencies of new products placed on 
the market. These organizations play an important role at the 
interface between the assessment authorities and civil society as a 
whole, not as mediators, but as shields designed to protect citizens 
from potential hazards resulting from inadequate assessments. 
Participatory research projects provide an opportunity for civil 
society organizations to intervene as interlocutors and collabora-
tors with scientists who are engaged in research on assessment 
issues. These organizations are then able to relay the results to the 
general public and decision makers and develop arguments for 
possible revision of assessment regulations by public authorities.

An example of this was provided by the international confer-
ence on “Assessment and Regulation of Genetically Modified 
Organisms (GMOs) and Pesticides,”5 held in France at the 
Orsay Scientific Centre (University of Paris-Sud) on 12 and 13 
November 2015.

The originality of this symposium was the fact that it was 
open to civil society (with French/English simultaneous trans-
lation), organized as part of a participatory research (PICRI 
project, funded by the Île-de-France Region), and managed 
collaboratively between University Paris-Sud and two associa-
tions: Générations Futures6 and the Committee for Research and 
Independent Information on Genetic Engineering (CRIIGEN).7 
This project8 focuses on the study of the “substantial equiva-
lence” principle (i.e., close nutritional and element similarity 
between two crop-derived foods), which has been used as 
the basis to allow the commercial approval of all agricultural 
GMOs cultivated across the world. This concept, adopted by 
the Organization for Economic Co-operation and Development 
(OECD) in 1993 and endorsed by the Food and Agriculture 
Organization (FAO) and World Health Organization (WHO) in 
1996, is registered in the Food and Drug Administration (FDA) 
regulation (Part IX: Foods derived from New Plant Varieties) and 
was used to claim that GM crops are as safe and nutritious as 
currently consumed plan-derived foods (2). Since this concept 
applies at the chain end (i.e., to the food from these plants), it 

5 http://picriogm.weebly.com/colloque.html
6 http://www.generations-futures.fr
7 http://www.criigen.org
8 http://www.picri-ogm.fr

should consider the context of the growing crops. Precisely, in 
the case of herbicide-tolerant GM crops, this context is not the 
same as for their conventional counterparts since the former 
are sprayed with the herbicide. Surprisingly, during substantial 
equivalence studies, either the tested plants are not sprayed with 
the recommended herbicide (3) or the herbicide residues are not 
measured anyway (4).

The international dimension of the conference was not only 
due to the panel of speakers but also to those who attended. 
Among the 140 participants, many came from different countries 
(not only in Europe but also in America and Africa).

According to the spirit of participatory research, this confer-
ence allowed the creation of a bridge between academic research 
and the “scientific third sector” (citizens, associations, NGOs, 
policy makers), with presentations of experimental scientific 
data, made accessible to the general public, as well as round 
tables bringing together civil society stakeholders. Both were 
followed by long interactions with the public. This spirit was 
also the reason why we chose to organize this conference at the 
Orsay Scientific Centre: because companies are allowed to sit on 
university boards of directors, it was important for my colleagues 
and myself, concerned about the democratization of science, to 
offer the opportunity for citizens to penetrate inside the walls of 
the university.

Together with results from Brazilian (5) and Norwegian (6) 
research groups, some of the results of the PICRI project (7) 
questioned the relevance of the substantial equivalence prin-
ciple, especially when used to approve the commercialization 
of herbicide-tolerant GM crops. The second scientific session 
offered a state-of-the-art review of experimental data showing 
the insufficiencies of regulatory toxicity tests of GMOs and 
pesticides (8, 9). It was emphasized that the duration of feeding 
trials is insufficient to detect potential chronic (long-term) toxic 
effects and that contamination of laboratory rodent diets by toxic 
environmental pollutants is a confounding factor in regulatory 
tests. Some of the results presented at this conference showed that 
commercial formulations of pesticides are always more toxic than 
their so-called “active principles.” Yet, the latter are tested alone 
to calculate safety thresholds, even though they are never used 
in isolation, but always mixed with toxic adjuvants. Last but not 
least, it was explained that regulatory tests are unable to detect 
endocrine disrupting effects, a common toxic mechanism shared 
by many pesticides. During the third scientific session, the panel of 
speakers showed the detrimental effects of pesticides and GMOs 
on soil ecosystems, for example, on rhizosphere microflora and 
earthworms (10), and on food microorganisms (11).

Round tables allowed exchanges on various models of partici-
patory research and highlighted the need to involve civil society in 
research programs and in the choice of major research directions. 
The regulation of pesticides and GMOs (including those resulting 
from the use of new genetic engineering technologies other than 
transgenesis) at national and European levels was also widely dis-
cussed. There was a particular emphasis on the questions of data 
transparency, conflicts of interests in assessment committees, and 
the responsibility of experts and policy makers. Finally, a farmer, 
an agronomist, a physician, and a company manager producing 
flour and animal feed explained and exchanged their views on 
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the question of agricultural sustainability and food choices in the 
future.

These 2 days of exchanges, where multiple participants from 
different backgrounds contributed to a unified collective intel-
ligence, were particularly rich and intense. They confirmed the 
need to open up science to the public, not only to share results 
but also to build on each other’s knowledge.

To this end, and in line with proposals made by Fondation 
Sciences Citoyennes,9 the following arrangements must be 
implemented:

 (a) integrating participatory research programs in all public 
research policies;

 (b) taking into consideration the value of the participation of 
civil society (non-profit) to research;

 (c) setting up evaluation criteria for researchers involved in 
participatory research projects;

 (d) supporting the mobility of researchers toward civil society 
organizations;

9 http://sciencescitoyennes.org/rubrique/tiers-secteur-de-la-connaissance/
recherche-participative/

 (e) expanding communication on participatory research to 
researchers, students, and civil society.

There are professional scientists – the researchers – and pro-
fessional politicians, including elected officials. But the scientific 
approach, like political action, belongs to everyone. It is time to 
move toward a new science, considering the “substantial equiva-
lence” between professional scientists and citizens.
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