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Editorial on the Research Topic

Investigating complex phenomena: bridging between systems thinking

and modeling in science education

1. Introduction

Complexity is all around us, from sub-atomic particles to distant galaxies. Modern

technology and knowledge provide us with incredible abilities to investigate the complexity

of systems of various kinds, such as human societies, biological ecosystems, chemical

reactions, and physical interactions between energy and matter. In recent years, complexity

has become prominent in most human local and global challenges, such as climate change,

pandemic outbreaks, and sustainable energy sources. Understanding the complexity of

phenomena is essential for scientific reasoning and sense-making, problem-solving in

STEM, and technological tools development. Complexity pushes us beyond the dichotomic

determinism of black-and-white classification and simple, straightforward solutions. It

allows us to examine systems from different perspectives, explore alternative explanations,

and keep an open mind while investigating phenomena—all of which lays at the heart of

good critical thinking.

Certain key competencies are crucial for engaging constructively and responsibly with

today’s complexity challenges, including systems thinking and modeling. For instance,

competency in systems thinking competency is suggested as one of the eight key

competencies for sustainability (UNESCO, 2017). Most conceptualizations of systems

thinking in science education encompass the ability of “systemmodeling” (e.g., Schuler et al.,

2018; Mambrey et al., 2020), emphasizing the importance of modeling as a scientific practice

for investigating and understanding complex phenomena (Passmore et al., 2017). Systems

thinking andmodeling are important competencies that provide students with essential tools

when investigating complex phenomena and solving complex real-world problems. A recent

literature review and bibliometric analysis reported a sharp increase in the number of studies

about systems thinking in STEM education since 2016 (Bielik et al., 2023). However, most of
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the identified studies focused on higher education, while only

a few focused on teachers or elementary students. There was

also an increase in systems thinking studies, particularly on how

the use of digital tools and modeling support system thinking

competencies. This trend in studies about systems thinking and

modeling in STEM education indicates a growing interest of the

research community in these issues and the relevance of it for the

complexity of today’s challenges and problems.

Modeling is a key process of understanding complex

phenomena as systems (Godfrey-Smith, 2006; Leonelli, 2007).

Hence, it can be assumed that explicit knowledge about systems

and system characteristics, such as metacognitive level awareness

of how and why phenomena are conceptualized as systems,

is beneficial for developing an initial system model and for

deducing hypotheses related to specific structures or processes

of the system (Verhoeff et al., 2008). Therefore, it can be further

assumed that systems thinking and modeling are critical for

science education in particular, and for STEM education in general

when investigating complex phenomena. However, this mutually

supportive relationship between systems thinking and modeling

has not yet been deeply investigated in science education.

This Research Topic aims to advance current research focusing

on bridging systems thinking and modeling when investigating

complex phenomena in science education. It includes a set of

studies that provide science education researchers, practitioners,

and decision-makers with in-depth analyses and insightful findings

that can promote our understanding of how to improve teaching

and learning about complex phenomena and how to support

students’ systems thinking and modeling when engaging with

complex phenomena in their science classrooms.

2. Theoretical background

2.1. Systems thinking in science education

In science education, systems thinking is generally defined as

an approach to understand, explain, and interpret complex and

dynamic phenomena, a learning strategy that explicitly considers

system characteristics to explain and predict natural phenomena

(Verhoeff et al., 2018). Systems thinking can be defined as the

ability to recognize, describe, and model a complex phenomenon

in its structure, behavior, and function as a system, including the

metacognitive awareness about systems and system characteristics

(Verhoeff et al., 2008; Riess and Mischo, 2010). Systems thinking is

widely acknowledged as an important goal in science education that

is necessary for “developing coherent understanding of complex

biological processes and phenomena” (Verhoeff et al., 2018, p.

1). Three generally agreed-upon central systems thinking skills

are proposed in the literature: identifying system organization,

analyzing system behavior, and system modeling (Ben-Zvi-Assaraf

and Orion, 2010; Mehren et al., 2018; Schuler et al., 2018; Mambrey

et al., 2020).

Recent studies suggest three effective strategies for fostering

systems thinking skills: modeling, cross-level reasoning, and use

of systems language. For example, Rachmatullah and Wiebe

(2022) found that computational modeling significantly improved

middle school students’ understanding of food web concepts

and systems thinking. Düsing et al. (2019) found that when

students were presented with integrative cases, where all levels of

organization are considered through matter and energy transfers,

they developed their cross-level reasoning ability. According to

Krist et al. (2019), thinking across levels allows students to explain

and make predictions about phenomena, and implicitly support

mechanistic reasoning. Other studies showed that exposure to

systems language helps students deconstruct a phenomenon to its

characteristics and support the discussion on how patterns emerge

from the interactions among system components (Gilissen et al.,

2021; Nguyen and Santagata, 2021; Momsen et al., 2022).

2.2. Models and modeling in science
education

Models are defined as epistemic tools for investigating and

making sense of phenomena (Knuuttila, 2011). The developed

model has to be evaluated for internal consistency and adequate

representation of what was observed (Frigg and Hartmann, 2017).

The model should allow the modeler to deduce predictions about

how the system should behave under certain conditions bymentally

or materially manipulating the model (Giere et al., 2006). These

predictions can be tested by conducting empirical investigations.

If the predictions turn out to be false, it is likely that the model is

not accurate and should be rejected or revised and retested in an

iterative cyclic process (Göhner and Krell, 2020).

Modeling competency is the ability to engage in the process of

developing and using models for reasoning in science (Nicolaou

and Constantinou, 2014; Upmeier zu Belzen et al., 2019). Hence,

modeling is mostly defined as a procedural and epistemological

competency (Upmeier zu Belzen et al., 2019). There is a wide

consensus that developing modeling competency is an important

goal of science education (Passmore et al., 2014; Chiu and

Lin, 2019). When achieving modeling competency, students are

expected to understand scientific concepts better, develop an

appreciation of the nature of science, and advance in their

mastery of the scientific process (Gilbert and Justi, 2016).

Modeling has been identified as a key competency for investigating

complex phenomena and developing hypothetical explanations and

reasoning abilities (Passmore et al., 2017; Zangori et al., 2017).

However, most studies in science education propose that students

and teachers struggle with understanding models as hypothetical

entities and research tools but rather hold representational views

on models (Krell and Krüger, 2016; Gouvea and Passmore, 2017).

When engaging in modeling for reasoning, one major challenge is

the need for prior experiences and conceptual understanding of the

investigated phenomenon on which a model can be built (Ruppert

et al., 2017; Göhner et al., 2022).

2.3. Bridging between systems thinking and
modeling when investigating complex
phenomena

Systems thinking is conceptualized as a specific form of

knowledge organization that allows a coherent understanding of
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complex phenomena (Verhoeff et al., 2018), while modeling is

seen as a procedural and epistemological competency (Upmeier

zu Belzen et al., 2019). Passmore et al. (2017) emphasize that the

essence of modeling is to figure out “the behavior of systems in the

natural and designed world” (p. 113). Developing system models is

important for achieving advanced systems thinking (Hung, 2008;

Verhoeff et al., 2008; Gilissen et al., 2020). For example, Hung

(2008) showed that digital system modeling supported university

students’ systems thinking. Generally, computer modeling is

suggested to be a powerful tool to support systems thinking by

highlighting the central components of a system, making systems

mechanisms tangible, easily running simulations to examine

possible emerging outcomes, and helping students to grasp

complex relationships within a system (Damelin et al., 2017; Bielik

et al., 2021; Nguyen and Santagata, 2021).

From a cognitive psychology perspective, systems thinking

and modeling are connected by their shared reliance on the

concept of mental models. Mental models are internal cognitive

representations of ideas, events, objects, or systems, which humans

draw upon when generating external representations. These mental

models result from an internal modeling process that includes

constructing new information upon existing knowledge to build

a stable model (Johnson-Laird, 2004). Goldstone and Wilensky

(2008) describe the connection between modeling and complex

phenomena, noting that developing a model of a situation requires

to ground the interpretation of its components and extract a

general principle from the situation. For the model to work, the

mechanisms through which system components interact must be

modeled. Godfrey-Smith (2006) describes the strategy of modeling

(in biology) as gaining an understanding of a complex real-world

phenomenon through investigating a simpler, hypothetical system

(i.e., a model) that resembles it in selected aspects.

3. The contributions to this Research
Topic

Several contributions to this Research Topic focus primarily

on systems thinking when exploring complex phenomena (e.g.,

Bielik et al.; Sabel et al.; Tamir et al.). For example, Tamir et al.

explored high school students’ conceptualization of complexity

while designing, assembling, and testing a nanosatellite. Findings

show that the broader the participants’ involvement was, the

greater the progress they experienced in their systems thinking.

Participants who stayed focused on a single subsystem of the

nanosatellite did not show progress, while participants who

involved themselves with several subsystems exhibited a more

meaningful progress. The challenge of a multidimensional lens

in students’ understanding of complex systems was also found

by Sabel et al., who pointed to students’ difficulty in considering

both natural and societal aspects of systems. They investigated

undergraduate students’ engagement in systems thinking and

modeling using causal maps, focusing on identifying the factors

that undergraduate students prioritize when considering causal

relationships within an ecosystem. Although humans and human-

related factors were included in the assignment picture, few

students included human-related causes and effects in their causal

maps or in the answers to the questions following the causal maps.

Other contributions in this Research Topic focus mostly

on students’ reasoning with models when exploring complex

phenomena (e.g., Eidin et al.; Engelschalt et al.; Ryan et al.).

For instance, Ryan et al. explored how computational tools

mediated middle school students’ mechanistic reasoning. They

report that, as students interacted with the computational tools,

their mechanistic reasoning about their models increased in

complexity. Eidin et al. also expand research in a similar

vein, exploring how different kinds of computational modeling

experiences support secondary students’ development of complex

causal reasoning structures. The authors suggest “a system

dynamics approach has the potential to encourage a more

complex causal scheme of the phenomenon which the static

equilibrium model was unable to support” (Eidin et al., p.

16). Engelschalt et al. explored the role of abductive reasoning

when undergraduate students modeled complex systems. Their

study participants used components of abductive reasoning

in constructing models of biological systems, but using those

components did not necessarily lead to generating scientific

explanations. The authors suggest that individual may need an

“interplay between abductive reasoning and systems thinking skills

such as cross-level reasoning” (Engelschalt et al., p. 13) in which

individuals may need to develop both systems thinking skills and

cross level reasoning to consider causal relationships across system

time and space.

Using computational models when exploring complex

phenomena was another aspect investigated in several

contributions in this Research Topic (e.g., Eidin et al.; Langbeheim

et al.). These studies provided students and teachers with

opportunities to engage with different modeling tools such as

NetLogo (Langbeheim et al.) and SageModeler (Eidin et al.). For

example, Langbeheim et al. found that participatory computational

simulation can support 9th grade students’ explanations of crowd

evacuation counterintuitive required behavior provided students

having prior opportunity to engage with a participatory simulation

in a different context.

Finally, several publications explored the connection between

systems thinking and modeling when exploring complex

phenomena (e.g., Ke et al.; Lankers et al.; Peretz et al.). For example,

Peretz et al. investigated the effect of an interdisciplinary online

course on the development of pre- and in-service science and

engineering teachers’ systems thinking and modeling competency.

Based on the findings of their qualitative case study, the authors

propose that teachers need scaffolding to gain systems-related

ontological knowledge (e.g., understanding systems language)

before being able to apply this knowledge—as previously suggested

to foster competency development in science education in general

(e.g., Krell et al., 2023). Miller and Yoon developed modeling units

on biological concepts (e.g., gene regulation) for students. They

investigated how students’ understanding of biological models

influenced their understanding of complex systems. A regression

analysis proposed that growth in students’ meta-modeling

knowledge predicts growth in complex systems understanding.

For instance, a better understanding of the purpose of models

provided students “with strategies to interpret data generated from

multiple runs and to develop explanations of the system” (Miller

and Yoon, p. 13–14). Similarly, students developed more elaborate

theories about the investigated phenomena when understanding
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FIGURE 1

Idealized model of the cyclic and iterative system modeling process (based on Giere et al., 2006 and Göhner and Krell, 2020). A system model is

developed, evaluated, and revised to represent selected relevant parts of the investigated complex phenomenon. The system model comprises of

system characteristics (structures, processes, interactions, boundaries, and emergent states) represented by di�erent shapes and arrows.

the dynamic and changeable nature of models because this led to

more model manipulations.

4. Summary

Systems thinking and modeling are two intertwined

competencies that support students when investigating complex

phenomena. On the one hand, modeling is a procedural and

epistemological competency that allows to develop and evaluate

systems (Passmore et al., 2017). It is significantly supported by a

coherent understanding of the respective phenomenon (Ruppert

et al., 2017). On the other hand, systems thinking is viewed

as a content-related competency (Verhoeff et al., 2018), which

encompasses the ability of systemmodeling (Mambrey et al., 2020).

However, there is still much to be researched about how these two

competencies are empirically interconnected and how they interact

when engaging students and science teachers when investigating

complex phenomena.

In Figure 1, we present a model for the system modeling

process, as reflected in the literature and the contributions

to this Research Topic. In this model, a system model is

developed, evaluated, and revised to represent and make sense of

selected relevant parts of the investigated complex phenomenon.

The system model comprises of system characteristics (e.g.,

structures, processes, interactions, boundaries, and emergent

states), represented by different shapes and arrows in Figure 1. This

model demonstrates the connection between systems thinking and

modeling when investigating complex phenomena.

In summary, this Research Topic provides a collection

of contributions focusing on modeling, systems thinking, and

the connections between them when investigating complex

phenomena. The contributions range from middle school to

undergraduate students and pre- and in-service teachers, focusing

on all science and engineering disciplines. We hope these

contributions will further advance the understanding and promote

the discussion among science education researchers, practitioners,

and decision-makers regarding how to support teachers and

students when engaging with complex phenomena.
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Developing and assessing pre- 
and in-service science and 
engineering teachers’ systems 
thinking and modeling skills 
through an asynchronous online 
course
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1 Faculty of Education in Science and Technology, Technion, Israel Institute of Technology, Haifa, Israel, 
2 Faculty of Data and Decision Sciences, Technion, Haifa, Israel, 3 The Samuel Neaman Institute for 
National Policy, Technion, Haifa, Israel

Systems thinking and modeling are two critical 21st-century skills that teachers and 
educators are expected to impart to students, and students are expected to acquire 
and master them as part of their preparation to become literate citizens of a society 
and environment that is becoming ever more complex. Systems thinking is a thought 
process in which assumptions about interactions among interconnected elements 
of a system or a phenomenon can help predict the system’s behavior, outcomes, 
and in the case of human-made artifacts, the value to its beneficiaries. Conceptual 
modeling involves the simultaneous visual and textual representation of one’s 
ideas about a phenomenon or system in science or engineering. The qualitative 
study described here aimed to examine the effect of an online interdisciplinary 
asynchronous course on the development of systems thinking and conceptual 
modeling skills among pre- and in-service science and engineering teachers. 
Engaging in a qualitative case study with an exploratory orientation, we investigated 
how science and engineering teachers and teacher educators coped with (a) online 
learning of conceptual modeling and systems thinking using Object-Process 
Methodology in a food and sustainability context, and (b) developing an online 
assignment for teaching those skills to their students and assessing them. Research 
tools included the online assignment that the participants developed, a dedicated 
rubric for analyzing their assignments, accounting for use of modeling and systems 
concepts and the integration of sustainability and COVID-19 issues, a variety of 
thinking skills, visualizations and disciplines, and a mix of closed- and open-ended 
questions. Additionally, the participants’ reflections were analyzed to characterize 
their sense of self-efficacy and academic progression. We  characterize five 
teacher-developed assignment cases along with the related teachers’ reflections, 
which exposed the benefits they had gained from the online course, as well as the 
systems thinking and modeling challenges they had faced. Analysis of the effect of 
the course with emphasis on the final task reveals that this approach is effective for 
developing the systems thinking and modeling skills of the teachers and serves as 
a catalyst for their professional development. The study offers a methodological 
contribution by providing a basis for evaluating teachers’ assessment knowledge 
and skills using a six attributes rubric.

KEYWORDS

STEM teachers, systems thinking, modeling, online assignments, rubric, Object-Process 
Methodology—OPM
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Introduction

As the world is becoming increasingly interconnected, a 
knowledge-based economy vigorously and ceaselessly drives 
globalization forward (Ritzer and Dean, 2019). Like any other social 
system, education systems need to prepare new professionals to tackle 
complex systems that characterize today’s world and complex problems 
that arise as these systems, whether man-made or natural, affect 
humanity and the environment (Vivekanandan and Pierre-Louis, 
2020). An example of a complex system is the National Healthcare 
Service (Checkland, 2000), or the stock market (Amaral and Ottino, 
2004). These kinds of systems often combine people, technology, 
information, stakeholders, enablers, conflicting interests, and external 
influences. However, a flock of migrating birds or a termite colony are 
also (natural) complex systems (Amaral and Ottino, 2004). Common 
to all complex systems is the fact that they consist of a large number of 
parts or details that interact with each other and with their 
environment, making the system highly adaptable, and they are not 
organized based on a known external organization principle (Amaral 
and Ottino, 2004). Unlike simple or even complicated systems, complex 
systems are hardly amenable to predicting long-term performance or 
outcomes. Differences between simple, complicated, and complex 
systems can be found in detail in Amaral and Ottino (2004).

A thought process for examining interconnected elements within 
systems to predict their behavior (Dori, 2016), systems thinking is a 
higher-order thinking skill that is crucial to responding to the 
challenges and complexities of the 21st century (Sterman, 1994). A 
complex system, the National Healthcare Service, for example, requires 
systems thinking for designing or changing it (Checkland, 2000).

Despite its emergence from the complex reality, systems thinking 
is neither natural nor innate, and often it is even counterintuitive 
(Gharajedaghi, 2011). Various educational practices must therefore 
be adopted in order to foster systems thinking. Leading among these 
practices are systems modeling, interdisciplinary learning, and 
context-based learning. These are recognized as essential to 
21st-century learners according to various educational frameworks in 
science, technology, engineering, and mathematics (STEM) disciplines 
(e.g., Partnership for 21st Century Skills, 2004; NGSS Lead States, 
2013; Accreditation Board for Engineering and Technology, 2021).

Yoon et al. (2017) discussed the crucial position of professional 
development programs for teachers. These are imperative to ensure 
successful instruction about complex systems and increase teachers’ 
awareness of using models and modeling in science education. Such 
professional development programs are equally vital for pre-service 
teachers. The research described in this paper offers an in-depth view 
of the challenges and opportunities involved in a conceptual 
modeling-based online interdisciplinary course. We also investigated 
the learning process pre- and in-service science teachers went through 
as they were studying this course, as well as their learning outcomes. 
We focus on imparting the basis for systems thinking skills and their 
assessment, followed by self-developed assignments as the final stage 
of the learning process of the course participants.

Theoretical framework

In this section, the theory underlying systems thinking and 
conceptual modeling is presented with a focus on their relations to 
STEM education and teachers’ understanding of these skills.

Systems thinking: Definitions and recent 
research

Scholars have defined systems thinking differently, but many of 
the definitions share important commonalities. Arnold and Wade 
(2015) claimed that the breakdown of systems thinking into its main 
components may facilitate its teaching and assessment, which is 
consistent with other studies (e.g., Assaraf and Orion, 2005; Lavi et al., 
2019). The main systems thinking components include (1) recognizing 
interconnections, (2) understanding feedback loops, (3) understanding 
the system’s structure, (4) differentiating stock and flow variables, (5) 
understanding non-linearity, (6) understanding dynamic behavior, (7) 
reducing complexity by conceptual modeling, and (8) recognizing 
different scales of systems (Arnold and Wade, 2015). These 
components are common to different frameworks for systems 
thinking (e.g., Assaraf and Orion, 2005; Stave and Hopper, 2007; Lavi 
et al., 2019). Arnold and Wade (2017) also divided systems thinking 
into two facets, extending beyond just understanding systems: Gaining 
insights, which relates to approaching systems from the outside and 
investigating them from several viewpoints, and conversely using 
insights, which is, broadly speaking, approaching systems from the 
inside, such as rearranging their structure. Each facet encompasses a 
specific set of techniques that may be used in parallel or in series, 
constantly strengthening each other.

In this study, we define systems thinking according to Dori et al. 
(2020) as thinking that involves examining the connections and 
interactions between elements within a system or phenomenon to 
understand how they function to influence behavior and to 
determine the value of human-made artifacts for their 
intended beneficiaries.

Although a considerable number of studies have examined the 
development and assessment of systems thinking in different STEM 
education settings (e.g., Assaraf and Orion, 2005; Gero and Zach, 
2014; Lavi and Dori, 2019), the teaching and instruction of this 
important concept are at best mainly implicit, and students struggle 
when faced with a topic that requires a high degree of systems thinking 
(Arnold and Wade, 2017; Chen et al., 2019; Talanquer, 2019). Explicit 
instruction about complex systems and systems thinking concepts can 
lead to the deepening of knowledge and understanding and the 
transfer of these concepts among students (Goldstone, 2006; Hung, 
2008), as well as teachers (Yoon et al., 2017). Rates et al. (2022) found 
that explicitly teaching students about complex system concepts was 
more effective than self-monitoring scaffolding, which is important in 
its own right. They referred to explicit learning as “ontological 
scaffolding,” building on the work of Jacobson et al. (2011). In this 
context, ontology can be defined as the explicit formal specification of 
the nature and structure of a system, described in terms of categories 
and relations (Guarino et al., 2009). Chowdhury (2023), conversely, 
argued that instead of enclosing systems thinking in a framework that 
is loaded with professional language, considering systems thinking as 
a cognitive skill might lead to its greater acceptability by a wider target 
audience. Verhoeff et al. (2018) claimed that given the current research 
knowledge of how to foster higher-order systems thinking skills and 
the conflicting curricular considerations, a complete curricular 
program of systems thinking teaching is not yet possible. Higher-
order systems thinking skills include the ability to understand 
nonlinearities and cyclicity in systems and recognize complex patterns 
and relationships, and predict future behavior from current systemic 
interactions (Assaraf and Orion, 2005; Verhoeff et al., 2018). Another 

11

https://doi.org/10.3389/feduc.2023.1154893
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Peretz et al. 10.3389/feduc.2023.1154893

Frontiers in Education 03 frontiersin.org

key higher-order systems thinking skill is modeling (Stave and 
Hopper, 2007).

Conceptual modeling and STEM education

Modeling can facilitate the understanding of complex systems, as 
well as their explicit teaching and assessment (Hung, 2008; Dori, 
2016). Modeling languages and methodologies are important for 
expressing what complex systems do, why and how they do it, and 
what is required for that purpose. Researching natural systems or 
designing human-made ones often involves complexities that cause a 
significant cognitive load on the learner or designer. By modeling, 
unnecessary complexity can be reduced, while necessary complexities 
can be expressed and emphasized (Dori, 2016). To engage students in 
model-based complex systems thinking, their teachers must master it 
first (Yoon, 2008; Krell and Krüger, 2016), and these practices must 
be systematically integrated into the curriculum (Rosenkränzer et al., 
2017; Talanquer, 2019).

Science and technology education is largely driven by models and 
modeling (Gilbert et  al., 2000). Merriam-Webster (n.d.) online 
dictionary defines the verb “to model” as “to produce a representation 
or simulation of (something).” In the same spirit, models are 
representations or simulations of something—a phenomenon, a 
system, the desired product, or even an idea or event (Gilbert et al., 
2000). Unlike the internally generated mental models (Johnson-Laird, 
1983), conceptual models are external, or ‘expressed’ (Gilbert et al., 
2000) representations that can be  shared within a given group 
(scientists, engineers, teachers, etc.) and are coherent with the 
accepted knowledge of that group. Conceptual modeling is of high 
value to STEM education as it reflects the transition from models that 
are personal, incomplete, and lacking firm boundaries, to more precise 
and complete representations of the accepted knowledge (Norman, 
1983; Gilbert et al., 2000). However, conceptual modeling is seen from 
a didactic point of view as complex and difficult to master by learners 
and teachers (Rosenthal et al., 2019).

As early as 1989, Richard Mayer concluded his article named 
Models for Understanding with the statement that “One particularly 
exciting avenue concerns the role of interactive computer graphic 
simulations as a vehicle for expanding the power of conceptual models” 
(Mayer, 1989, p. 61), backing the statement by the work of White 
(1984). The conceptual modeling language and methodology used in 
the current study is OPM—Object-Process Methodology (Dori, 
2016)—which is ISO1 19,450 and has been implemented in a 
dedicated online modeling platform, as elaborated in the Materials 
and Methods section. OPM has been researched over the years in 
educational contexts (Lavi and Dori, 2019; Akiri et al., 2020; Peretz 
et  al., 2023), and it is the most researched model-based systems 
engineering modeling method (Dong et  al., 2022). Due to its 
simplicity, intuitiveness, and bimodality (Dong et al., 2022), as well 
as its domain-independent nature, OPM is most suitable for teaching, 
learning, and assessment of learning in various disciplines (Dori, 
1995). However, a qualitative evaluation of an OPM-based learning 
process has not yet been carried out. In this research, OPM has 
served to assess teachers’ systems thinking-related knowledge and 

1 International Organization for Standardization.

abilities as they develop learning materials based on inherently 
interdisciplinary system ideas.

Modeling is an activity that inherently involves various aspects of 
the modeled system or phenomenon. This may increase the 
opportunity for interdisciplinary collaboration between STEM 
disciplines in authentic settings and, in turn, promote successful 
integration between and outside STEM disciplines (Hallström and 
Schönborn, 2019). From the opposite perspective, systems thinking 
may be  fostered through interdisciplinary learning processes, as 
reported by Gero and Zach (2014) and others (e.g., Ackerman and 
Perkins, 1989). This is especially important in educational 
environments that are often disciplinary, and when dealing with 
inherently complex and multifaceted issues, such as sustainability 
(Riess and Mischo, 2010; Harsaae et al., 2022). Interdisciplinarity is 
usually defined as the integration and communication across at least 
two different academic disciplines (Frodeman, 2013). For example, 
considering waste production and particulate emission, food 
production requires an understanding of biology, chemistry, and 
environmental aspects. Engineering and economic aspects need to 
be considered too in order to comprehend engineered systems such 
as food production ones. The interdisciplinary approach is already a 
fait accompli in STEM research and STEM industries, but its 
application to STEM education is still superficial (Klaassen, 2018).

Teachers’ understanding and teaching of 
complex systems

The ability of teachers to engage in the instruction of systems 
thinking through conceptual modeling in an interdisciplinary learning 
environment depends, among other things, on their ability to assess 
this kind of learning in a relevant context-based learning setting (Pilot 
and Bulte, 2006). As assessment knowledge depends on pedagogical-
content knowledge, PCK (Avargil et al., 2012; Tal et al., 2021), both the 
teachers’ instructional abilities and the content knowledge have to be at 
a sufficiently high level to fundamentally change the teaching of 
systems thinking and conceptual modeling as standalone disciplines 
and as part of STEM teaching (Rosenkränzer et al., 2017). Yoon et al. 
(2018) pointed out that there is a lack of research on what teachers need 
in professional development activities concerning complex systems.

Research aim and research questions

In our study, we used a case study approach to investigate the 
knowledge and ability teachers need to develop conceptual modeling-
based online assignments after being introduced to basic system 
concepts through an OPM-based online learning process. Engaging 
in a qualitative case study with an exploratory orientation, 
we investigated the following two research questions (RQs):

 RQ1: How did online learning of conceptual modeling and 
systems thinking in the context of food production and 
sustainability affect the STEM teachers’ performance?
 RQ2: What was the level of each of the six attributes—conceptual 
modeling, systems thinking, sustainability and COVID-19, 
thinking skills, visual representations, and interdisciplinarity—as 
expressed in the online assignments developed by the STEM 
teachers for their students?

12

https://doi.org/10.3389/feduc.2023.1154893
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Peretz et al. 10.3389/feduc.2023.1154893

Frontiers in Education 04 frontiersin.org

Materials and methods

Rather than generalizing to a wider population or testing a 
hypothesis, case studies aim to provide a rich, detailed understanding 
of a specific case. In a collective case study, the phenomenon of 
interest is researched through selected cases that have both 
similarities and differences. For each case in the study, the researcher 
considers its key circumstances, particularity, and complexity (Stake, 
1995, p. xi). We implemented a descriptive collective case study to 
examine how pre- and in-service STEM teachers of various 
backgrounds approached an online, model-based interdisciplinary 
learning process.

Research context and procedure

The soaring complexity in almost every aspect of life calls for 
proper preparation to enable teachers to tackle this reality 
(Rosenkränzer et  al., 2017). To this end, we  developed an 
asynchronous interdisciplinary online learning process, containing 
four food-related modules that aim to both develop and assess systems 
thinking and conceptual modeling. Upon completing the learning 
process, the participants were asked to develop their own assignments 
as the final stage of their learning process. They were instructed to 
choose a topic related to food production and combine in their 
assignment a variety of representations and thinking skills. They were 
also instructed to include at least one aspect of sustainability and one 
related to COVID-19. All the assignments had to be accompanied by 
corresponding conceptual OPM models the participants had to create 
from scratch.

OPM

OPM is a model-based systems engineering methodology and 
language (Dori, 2016). Conceptual models created in OPCloud, a 
web-based collaborative software environment for modeling in OPM 
(Dori et al., 2019), contain only things and links. In OPM, the link 
types are divided into two main groups: structural and procedural (see 
the scoring rubric in the Conceptual Modeling subsection regarding 
link types and their impact on the scoring). A thing may be a process 
or an object, each representing a basic unit of knowledge, namely a 
concept, whereas links represent the relations between things (Dori, 
2016). OPM includes both graphical and textual modalities, with the 
latter automatically generated while the former is created by the 
modeler. OPM models are organized in a hierarchical tree structure 
using object-process diagrams (OPDs. See Table 1 for acronyms). The 
system diagram, SD, is the OPD at the highest level of abstraction in 
this hierarchy, and it can be further refined into a more detailed view 

called SD1. This more detailed OPD elaborates on the structural, 
behavioral, and functional aspects of the system described in SD. An 
example of SD and its corresponding OPL is presented in Figure 1. 
Although the refinement process can go on to more detailed levels in 
other diagrams of the model (SD1.1, SD1.2, SD1.2.1, and so on), in this 
research the refinement did not go beyond SD1. As OPM is bimodal, 
each element that is added to the graphical representation in the model, 
OPD, simultaneously generates a corresponding sentence in object-
process language (OPL)—a subset of English or any other natural 
language. This provides for ongoing metacognitive reflection while 
building the OPM model and not just retrospectively. Consequently, 
each OPL paragraph of any given OPD expresses textually the same 
model facts that the OPD expressed graphically (Dori, 2016).

Figure 1 presents the Chocolate Producing process which is part 
of the fourth module of the learning process. This OPD formed the 
background for the questionnaire of the fourth module, in which 
respondents were required, among other questions, to determine the 
kind of the missing link marked with the letter L. As in any OPD, 
rectangles represent system objects, ellipses represent processes, and 
the rounded-corner rectangles inside an object represent states, which 
are situations at which that object can be. The OPM default colors are 
blue for processes, green for objects, and gold for states, both in the 
OPD and OPL. The black words in the OPL are reserved phrases that 
unambiguously describe in text all the modeled facts. For example, 
the sentence at the bottom of the OPL paragraph reads “Chocolate 
Eating consumes Chocolate.” This is the unambiguous textual 
description of the model fact that is expressed graphically within the 
red rectangle: the object Chocolate linked to the process Chocolate 
Eating using a consumption link—the arrow from that object to 
the process.

Research participants

All pre- and in-service teachers were recruited at the Technion, 
Israel Institute of Technology. We used critical case sampling, which 
is a purposive sampling method, in which researchers aim to gain 
deeper understanding of the process being examined by selecting 
cases that are of special importance to the study. This guideline 
enabled obtaining a diverse set of critical cases within the sample 
(Ritchie et al., 2003).

The participants were both in- and pre-service teachers enrolled 
in the Technion’s Faculty of Education in Science and Technology. 
Some participants took part in the research to receive academic 
credits within a course or a research project, while others took part 
after receiving a personal request. After excluding those who did 
not complete most requirements, 12 teachers made up the initial 
sample, of which nine were women (Table 2), none of whom had 
previous experience with OPM. A small minority of the 12 
participants had superficial and sporadic previous familiarity with 
basic system concepts, such as function, structure, behavior, 
and purpose.

Case studies of five STEM teachers

Of the 12 teachers above, we chose five to form our collective case 
study, two of whom were men. While case studies in education 

TABLE 1 List of Object–Process Methodology-related acronyms.

Acronym Meaning

OPM Object-Process Methodology

OPL Object-Process Language

OPD Object-Process Diagram

SD System Diagram
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typically include at most two or three cases, we included five cases to 
increase generalizability and the likelihood to gain diverse insights. 
We based our selection on differences in their performance during the 
study and their different backgrounds, as well as the similarities 
among them: all five were current or future STEM teachers who 
completed the online learning process we had developed. One of them 
(Eli) was a pre-service teacher, while the other four were in-service 
teachers. All five held a teaching certificate. As shown in Table 2, the 
five represented different age groups, academic backgrounds, teaching 
areas, seniority, and levels of teaching.

The online learning process

According to our previous research (Akiri et al., 2020; Peretz 
et  al., 2023), most pre- and in-service STEM teachers lack basic 
systems thinking and conceptual modeling proficiency. These 
deficiencies have been noted also by Yoon et al. (2017) and Arnold 
and Wade (2017). Therefore, it was necessary to provide the teachers 
with the basics of systems thinking and conceptual modeling to 
enable them to create for their students assignments that involve 
these skills. To this end, we developed a food-related four-module 

FIGURE 1

SD level OPD and its corresponding OPL of Chocolate Producing process.

TABLE 2 The background of the 12 participants that made up the initial sample.

# Pseudonym Age (years) Academic 
background (first 
degree 
completed)

Teaching 
discipline

Teaching 
experience 
(years)

Teaching 
experience 
earned in:

1 Ron* <50 Electrical engineering Physics 5–10 High school

2 Danielle 41–50 Management and 

Economics

Science and 

management

<10 Academy and high 

school

3 Anna <50 Biology Science and 

Mathematics

<5 Elementary school

4 Eli 21–25 Mathematics and 

computer science

Mathematics <5 (Pre-service) High school

5 Romy 41–50 Industrial engineering 

and management and 

computer science

Industrial engineering 

and management

<5 Technology college 

(non-academic)

6 Jenny 41–50 Industrial engineering 

and management

N/A N/A N/A

7 Ben 31–40 Chemical engineering Chemistry and physics <5 High school

8 Benny <50 Chemistry Chemistry <10 High school

9 Jasmin 41–50 Chemistry Chemistry <10 Technology college and 

academy

10 Suzy <50 Chemistry Chemistry and science 5–10 High school

11 Sofía 41–50 Environmental science Environmental science 

and chemistry

5–10 High school

12 Yulia 41–50 Environmental chemistry Chemistry 5–10 Technology college

*A name in bold indicates that the participant was among the five selected for the case analysis.
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online learning process in the form of an elective professional 
development course for STEM teachers. We chose food-related topics 
because they are interdisciplinary and complex (Jagustović et al., 
2019) while also being highly relevant. The online learning was 
carried out asynchronously at a pace adapted to the limitations and 
constraints of each learner. Indeed, the time it took the teachers to 
complete the learning process ranged from a few days to a few weeks. 
We hypothesized that following the implementation of the learning 
process, the teachers would internalize instructional and assessment 
principles, and not only the content area we explicitly sought to 
develop, i.e., conceptual modeling and systems.

Besides establishing a basic knowledge of conceptual modeling 
and system concepts for the participating teachers, their average 
score of the responses to questions included in the modules 
provided us with an indication of the systems thinking level of each 
participant, as elaborated below. Although the learning process 
included conceptual modeling requirements, we did not use their 
scores to assess the conceptual modeling level. This is because the 
modeling requirements were highly structured, so they could not 
serve as a measure of the teachers’ ability to create model diagrams 
from scratch, as explained in the section “Developing Online 
Assignments” below.

Systems thinking

The learning process that preceded the assignment development 
was based on studying four modules whose content was chocolate 
production and cod fish value chain. Each module included a 
questionnaire and a quiz. The score for each questionnaire and quiz 
was calculated as the percentage of correct answers. Closed-ended 
questions were automatically scored by using Google Forms, while 
open questions were checked manually. The content of each module 
is presented in Table 3. A detailed description of the content included 
in the learning process appears in Akiri et  al. (2020) and Peretz 
et al. (2023).

The principle that guided us in designing the process is a gradual 
increase in the difficulty level. The difficulty level gradually increased 
from one module to the next, as well as within each module. The 
questions’ complexity increased gradually, requiring more advanced 
thinking skills as the modeling principles and systems concepts 
gradually became more difficult to internalize. For example, while the 
first module focused on the introduction of OPM entities—processes, 
objects, and states, in the fourth module learners were exposed to 
synchronous versus asynchronous processes and their different 
refinement mechanisms into more detail levels. Previous research 
we conducted (Akiri et al., 2020; Peretz et al., 2023) suggests that the 
online modules, which cover cross-disciplinary processes, can serve 
as a foundation for developing and assessing students’ and teachers’ 
systems thinking.

Developing online assignments

In the assignments that the participants developed, they had to 
apply on several levels what they had learned earlier. The first level 
was modeling the content knowledge they had acquired, i.e., system 

and modeling concepts, which provided the common basis for all the 
ensuing assignments. The participants had to integrate into their self-
developed assignment conceptual models that they had created. At 
the second level, the participants had to apply assessment knowledge 
while integrating a variety of thinking skills and visual 
representations. Thirdly, they had to integrate interdisciplinary 
topics, specifically sustainability and COVID-19, into the topic they 
had chosen to contextualize their assignment.

In analyzing the assignments, we focused on six attributes: (1) 
conceptual modeling, (2) systems thinking, (3) visual 
representations, (4) thinking skills, (5) sustainability and COVID-
19, and (6) interdisciplinarity. While conceptual modeling and 
systems thinking were explicitly taught during the learning process, 
visual representations, thinking skills, and interdisciplinarity were 
supposed to be internalized implicitly, following the completion of 
four learning modules that included multiple visual representations, 
diverse thinking skills, and different disciplines. No explicit or 
implicit instructions were given in the learning modules on 
integrating sustainability and COVID-19 issues into the 
assignments except that this was a requirement for the assignment 
development. Since the learning process occurred during the 
pandemic peak period and while the energy crisis was frequently 
discussed in the news, we were interested in testing the ability of the 
participating teachers to integrate these issues into each teacher’s 
broader chosen context.

Table 4 presents the scoring rubric for the six analyzed attributes. 
As noted, the systems thinking score was based on the learning 
process rather than on the developed assignments. This is so because 
the systems thinking learning process was more extensive and 
included more aspects related to systems thinking than the other five 
attributes, whose scores were based on the assignments the teachers 
had developed.

As recommended by Kaczynski et al. (2008), the scores for the 
six attributes are presented in the Results section as spider charts to 
enhance qualitative inquiry in instructional settings. This kind of 
chart generally considers six related attributes, each with a 

TABLE 3 The content of the four modules that formed the learning 
process.

Module Content description

1
 - Introduction to OPM.

 - Identifying objects, processes, and states in a system.

2
 - System aspects: function, structure, and behavior.

 - Structural relations, state transitions, system aspects, and 

OPM modalities.

3
  Understanding the System Diagram (SD): System Purpose 

– beneficiary and benefit, system function; and process 

enablers – agents and instruments.

4
 - Diving into the details: the first detail level (SD1) of the 

OPM model, divided into major subprocesses.

 - Synchronous vs. asynchronous processes.
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five-point scale, so we  made a minor adaptation of the scale to 
be 1–3 instead of 1–5 to match our assignment assessment rubric 
(See Table 4).

Conceptual modeling

To assess the participants’ ability to create conceptual OPM 
models, we  explicitly instructed them to include in their self-
developed module a complete OPM model with two OPDs: SD 
(system diagram)—the top-level, abstract system view, and SD1—
the first detail level, in which the main process from SD is zoomed 
into. We  asked them to also supplement each OPD with its 
automatically generated textual OPL sentences, in a structured 
subset of English. The entire model had to be included even if not 
all of it was needed for the assignment they had developed. In some 
cases, the model itself was the answer to a modeling requirement in 
the assignment. The conceptual modeling score was calculated 
based on a modified version of the Systems Thinking Assessment 
Rubric—STAR, developed by Lavi et al. (2019), and presented in 
Table 5.

Trustworthiness

Following basic criteria for trustworthiness in qualitatively 
oriented research (Guba and Lincoln, 1982), we took some measures 
to establish the trustworthiness of our study’s findings. To triangulate 
our data and enhance the clarity and depth of our findings, we utilized 
an array of data sources, including questionnaires featuring both 
open- and closed-ended questions, conceptual models, self-developed 
assignments, and written reflections. To facilitate the reproduction of 
our research process by future researchers, even if their findings may 
vary, a comprehensive description of the research process is provided. 
All three authors took an active part in the research to minimize the 
researcher bias, each bringing their own unique perspective to the 
research. Lastly, to minimize the positive confirmation bias 
(Nickerson, 1998), we used a pre-registered research design that may 

reduce interpretation bias, as data collection occurs after the research 
plan has already been established.

Ethics

All participants had to agree to an informed consent form at the 
beginning of the learning process. Choosing the “disagree” option 
in the informed consent section ended the process so that it was not 
possible to answer any further questions, let alone continue 
developing an assignment. All the names presented in this article 
are pseudonyms, and no detail that could identify participants in 
any way was included. The research process was approved by the 
Technion’s Behavioral Sciences Research Ethics Committee, 
Approval #2020–165.

Results

In the first part of this section we present the five cases—
assignments, each developed by one of the participants, a pre- or 
in-service STEM teacher. Each case is presented with segments 
from its developed assignment and OPM model, along with the 
respective analysis. The analysis is performed both quantitatively, 
through the modified systems thinking assessment rubric to assess 
the OPM model quality, and qualitatively, via a description of the 
development process. The second part of the Results section 
presents a collective analysis of the six predefined attributes for each 
participant, both through spider charts and a table explaining 
each scoring.

Five selected cases: Focusing on 
conceptual modeling and systems thinking

We start with the findings relating to systems thinking and 
conceptual modeling of each case separately. The five participant 
names below are pseudonyms.

TABLE 4 Scoring rubric for the assignments developed by the teachers.

Scoring
Attribute

Low
1 point

Intermediate
2 points

High
3 points

Conceptual modeling The OPM score ranges from 0 to 4 The OPM score ranges from 5 to 7 The OPM score ranges from 8 to 10

Systems thinking (ST) The ST score ranges from 0 to 4 The ST score ranges from 5 to 7 The ST score ranges from 8 to 10

Sustainability and COVID-19 Negligible reference to both 

COVID-19 and sustainability

At least one aspect of COVID-19 

or sustainability is integrated into 

the task, but not both

At least one aspect of COVID-19 and 

one aspect of sustainability are 

integrated into the task

Thinking skills—understanding, applying, 

comparing, evaluating and designing

Only one thinking skill is included Two to three thinking skills are 

included

Four or more types of thinking skills are 

included, with at least one “designing” 

activity

Visual representations—text, tables, figures, 

diagrams, videos, links, and illustrations

Two or fewer representations are 

included

Three to four representations are 

included

Five or more visual representations are 

included

Interdisciplinarity—chemical, physical, biological, 

economic, environmental, technological, and 

societal aspects of the chosen topic

Only one aspect is included Two aspects are included Three or more aspects are included

Six attributes with a maximum score of 3 points each, with a possible maximum score of 18 points per assignment.

16

https://doi.org/10.3389/feduc.2023.1154893
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Peretz et al. 10.3389/feduc.2023.1154893

Frontiers in Education 08 frontiersin.org

Case 1—Anna: A novice biology teacher

Anna is a novice biology teacher with an academic background—a 
master’s degree in biotechnology and a teaching certificate in biology. 
She has 2 years of experience as an assistant teacher in an elementary 
school. It took her about 3 months to complete the learning process 
and about a month and a half to develop the assignment.

The topic she chose for her assignment was tofu production and 
its by-products. She explained that it was not a random choice of the 
first food production process she encountered online, but a result of 
personal experience: She makes and sells homemade tofu and 
okara—soy pulp, the insoluble phase of crushed soybeans that 
remains after filtering. Therefore, as she stated, she knows the process 
inside out and feels connected to it. She emphasized that she had 
chosen this topic because the assignment she was asked to develop 
seemed complex to her, and her commitment to the process and the 
final product called for choosing a relevant, familiar topic. She began 
her assignment by introducing tofu and its production: its 
geohistorical roots, its production method, its nutritional-chemical 

composition, and its virtues. She then focused on the different stages 
of tofu making from a food engineering perspective, starting from 
raw soybeans, through soy milk, to the pasteurized product ready for 
marketing. Figure 2 presents selected segments from her assignment. 
As can be seen in this figure, she included a variety of thinking skills 
and used diagrams alongside the text. However, the relevance and 
integration of sustainability and COVID-19 into the tofu context 
were insufficient.

The top-level OPD which Anna created focused on okara 
fermentation. In SD1 it is refined into four subprocesses, but not 
all of them are related to the okara fermentation. For example, the 
first subprocess, Cooking, precedes the fermentation process. Her 
model received a score of 6/10, with points deducted due to 
insufficient definition of the system’s purpose and little variety in 
link types. Table 6 provides the scoring of this OPM model with 
explanations according to each attribute included in the 
modified STAR.

In her reflection, Anna wrote that conceptual modeling helped 
her to better define boundaries when it comes to complex systems. 

TABLE 5 Modified Systems Thinking Assessment Rubric (STAR).

Aspect Attribute Expected implementation of the attribute Scoring

System Aspect

Function

A1-Intended Purpose

Beneficiary and benefit are linked with the correct link 

(Exhibition-Characterization), and both are phrased correctly 

according to the context.

Both beneficiary and benefit are absent – zero points. 

Only one of them (beneficiary/benefit) is used or both 

without a correct link – one point. Both beneficiary and 

benefit are used and linked, but not accurately phrased 

– two points. Both beneficiary and benefit are correctly 

used – three points.

A2-Main Function

Exactly one main process, which transforms at least one object, 

all of them phrased correctly according to the context. For SD1, 

At least three sub-processes, with the same specification as 

above.

No main process, or the main process which is 

irrelevant to the context – zero points. The main 

process is correct but transforms no object(s) or is 

wrongly phrased – one point. The main process 

transforms at least one object, phrased, and linked 

correctly – two points.

Structure A3-Structural relations Correct use of at least two out of four kinds of links between 

objects or between processes.
No links- zero points. One link or more – one point.

A4-Level of Complexity
Both SD and SD1 are included.

Only one level included – zero points. Both levels 

included –one point.

Behavior A5-Procedural relations Correct use of at least three procedural links between objects 

and processes

Less than two links – zero points. Two links or more 

– one point.

Model Aspect

Clarity A6-Model readability The layout of all the model diagrams is organized to facilitate its 

understanding.

1 – links do not cross things, things do not occlude 

each other, 2 – minimal links cross each other, 3 – 

entity (object, process, state) text is complete and words 

are not split. At least one violation – zero points. All 

fulfilled – one point.

OPL A7-OPL main process 

procedural sentences

 1. The beneficiary is linked with an agent link, e.g., “Winemaker 

handles Harvesting.”

 2. The operand is linked with a correct result/effect link, e.g., 

“Bread Making yields Bread Loaf,” or: “Harvesting changes 

status of Grape from on tree to picked.”

 3. An instrument or consumption link used correctly, e.g., 

“Bread Making requires Mixing Machine,” and “Bread 

Making consumes Flour and Water.”

No more than one of the three sentences is present or 

no OPL is attached at all – zero points. Two or three 

sentences (out of three) are present – one point.
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She had no background in modeling or systems, so at the beginning 
of learning, she had difficulty finding herself given the unfamiliar 
territory of system concepts and system-related language. She pointed 
out that she had “no relevant background at all, […] it was difficult for 
me to focus on the unfamiliar concepts and unique terminology 
involved.” The OPM itself, she stated, was understandable as soon as 
she was aware of the background and terminology. The most difficult 
concept for her to understand was “defining the various levels and 
aspects of the system as reflected in the OPM model.” This issue was 
reflected in her model (Table 5) by not modeling the beneficiary, and 
by the somewhat vague definition of the benefit. Since human-made 
systems are usually designed to benefit one or more beneficiaries—
the stakeholders who extract value and benefits from the system, the 
purpose cannot be  described in OPM models and modeling in 
general without including both the system beneficiaries and the 
benefit it provides. She needed help a couple of times during the 
learning process in using OPCloud to create the model, and this was 
provided online by one of the authors.

Regarding the assignment Anna developed, she noted that it 
required a lot of knowledge of various kinds, and even though she is 
very knowledgeable about tofu and okara production, searching 
online for relevant material on the processes was necessary to model 
them appropriately. The learning process, from her experience, gave 
her “a clear framework for planning the learning, […] which in turn 
helped me even more to understand the system I  chose for the 
assignment. The modeling allowed me to better plan and design my 
assignment and not only to create a better model.”

Case 2—Eli: Pre-service mathematics 
teacher

Eli is a pre-service mathematics teacher who is currently pursuing 
his mathematics and computer science bachelor’s degree combined with 
a mathematics teaching certification. It took him about 2 weeks to 
complete the learning process and about a month to develop his 
assignment. His assignment topic was gummy bears production, starting 
with the technological and food engineering aspects of the process: from 
mixed ingredients to soft candies ready for packing. Figure 3 presents 
selected segments from his assignment. The figure might explain why 
his assignment score was 18/18: Eli included diverse thinking skills—
basic alongside advanced ones. He combined sustainability and the 
pandemic in an integrative and context-relevant way, relating to a variety 
of disciplines.

The main process he chose to model in the assignment is the 
Gummy Bears Production. Eli produced a high-quality model in all 
three major system aspects—function, structure, and behavior, as well 
as model clarity.

The layout of elements in his model diagrams were perfectly 
organized, without a single link crossing another and without spelling 
mistakes or incorrect phrasing in terms of OPM. His awareness of the 
model readers’ need to understand his model was higher than that of 
others, as expressed in his reflection regarding suggestions for 
improvements that the participants had:

“When we convince ourselves that we can think about components 
[of the system] and communicate them, it’s time to start modeling.” 

FIGURE 2

Selected segments from Anna’s tofu production assignment.
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He scored 10/10 for his OPM model, demonstrating a high level of 
attention to detail, model readability, and accuracy, as well as 
proficiency with concepts and terms associated with the system. 
Table 7 provides the analysis of his OPM model.

Although Eli got a full score for his model, based on his 
experience, building OPM models “requires a lot of imagination 
and it’s hard to attain this skill in such a short time.” When asked 
how the learning process benefitted him, he wrote that he has 
“learned that any process can be described by a model, [and that] 
any process can be displayed by objects, sub-processes, and links. It 
will benefit me in the future when I try to learn or apply something 
new. Now that I know how to model any process, it will be easy to 
understand every subject.”

Eli’s assignment related well to his OPM model. He used multiple 
representations, disciplines, and thinking skills, and skillfully 
integrated relevant sustainability and COVID-19 issues. As a result 
of the learning process, he reflected that “the more processes I learned 

and the more ideas I was exposed to in the learning process, the more 
I was able to understand and develop the best assignment I could. […] 
The number of examples and the variety of questions gave [me] more 
possibilities both to understand things and later create things.” As for 
the relevance of the assignment, he stated that “the more the topic 
related to me, the more I enjoyed it and the more willing I was to take 
on the challenge.” He also emphasized the importance of sustainability 
and COVID-19 to the relevance of the assignment, saying: “I really 
enjoyed that there were things that concerned me and related to 
my world.”

Case 3—Danielle: Experienced economics 
and management and science teacher

Danielle has over 10 years of teaching experience, mostly with 
college students. She has a teaching certificate and also teaches 

TABLE 6 Scores and explanations for the OPM model created by Anna.

Attribute Scoring and explanation Examples in the model (screenshots)

A1-Intended Purpose

1/3. A beneficiary is missing and the 

benefit, Okara at state renewed, is 

vague

A2-Main Function

2/2. The main process, Okara 

Fermenting, transforms (changes) 

four objects: Nutritional Value, 

Flavor, Food Waste, and Okara

A3-Structural Relations

0/1. One generalization-

specialization link was incorrectly 

used. Properties and attributes in 

OPM are denoted by an exhibition-

characterization link and not as done 

here

A4-Level of Complexity 1/1. Both SD and SD1 are included n/a

A5-Procedural relations

0/1. Input-Output link-pairs and 

instrument links. No agent links 

were used at all. Three effect links 

were wrongly used

A6-Model readability
1/1. No points were taken off for 

misspellings in English
n/a

A7-OPL main process procedural 

sentences 1/1. Two out of three sentences are 

included

Total score: 6/10 points
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science and technology in high school. She holds a PhD in 
economics and management, a field she teaches in colleges. It took 
her about 2 weeks to complete the learning process and about 
3 weeks to develop her assignment. The food-related topic she 
chose was ice cream production, focusing almost exclusively on 
the engineering aspect. Selected sections of her assignment are 
shown in Figure 4, demonstrating that while she incorporated a 
variety of thinking skills, her assignment was at a low level. The 
model parts she used in her assignment were taken from her 
low-quality OPM model, which received a score of 4/10.  
For example, in the middle-upper area of Figure 4, a part of the 
model is missing. The disciplinary diversity was the lowest  
among the participants: only technology and environment 
were discussed.

Danielle had considerable difficulties during the learning 
process and in modeling as part of developing her assignment. She 
attended an online training delivered by one of the authors in the 
middle of the learning process, from which it emerged that she 
had specific difficulties internalizing the terms and ideas behind 
conceptual modeling and system concepts. Despite this training, 
no substantial improvement was evident from the modeling she 
performed during the learning process to the creation of the 
model for the assignment she developed. Indeed, she received a 
4/10, the lowest score among the five participants. Her model 
lacked crucial parts: SD included only the main process without 
any linked objects, which was refined to SD1 with eight 

subprocesses, but not as a level by itself to provide abstract 
information about the system. Her SD1 was incomplete and 
inaccurate. The objects she included were only inanimate enablers, 
i.e., instruments, and human enablers, i.e., agents. As agent and 
instrument links indicate enablement rather than transformation, 
not a single subprocess in SD1 transformed an object. Object 
transformation is a key concept without which neither the purpose 
of a system can be described nor its behavior—the way the system 
changes over time. In her feedback, Danielle wrote that in 
developing her assignment “the main difficulties were adapting my 
way of thinking to the model,” and not, as might be  expected, 
adapting the model to her way of thinking. She added that another 
difficulty in modeling was “transitions between levels of analysis, 
combined with the interface [i.e., OPCloud] that was not so user-
friendly for me.” It is worth noting that the rest of the participants 
expressed a positive opinion about the user-friendliness of 
OPCloud, and after the struggles of using it at first, they generally 
found it convenient.

Apart from the OPM model quality, which was rather low, her 
assignment was monotonous from both interdisciplinary and 
instructional points of view. Beyond the engineering aspect of ice 
cream production, the assignment included only an economic 
aspect. She referred to the effect of COVID-19 on the consumption 
of ice cream but did not include it in the model. Due to the low 
quality of her model, we do not present its analysis as done with the 
other cases.

FIGURE 3

Selected segments from Eli’s gummy bears production assignment.
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Case 4—Ron: Physics high school and 
science middle school teacher

Ron is a high school physics teacher and a middle school science 
teacher with over 5 years of experience. His academic background 
includes a bachelor’s degree in electrical engineering and a master’s 
degree in science education with a teaching certificate. Relative to 
other participants, developing the assignment took him a lot of time, 
about three and a half months after having completed the learning 
process, which took him about a month.

The assignment he developed was framed by sustainability in the 
context of using writing paper. As he explained, developing a complex 
assignment like this requires a topic that he is passionate about, not 
just one he is familiar with or even knowledgeable about. We approved 
his selection because the topic he chose is complex enough to form a 
basis for the OPM model and because it relates to sustainability, an 
aspect that had to be incorporated into the assignment. Segments 
from his assignment are shown in Figure 5, where Hebrew parts are 
translated in red. Particularly prominent in his assignment and 
evident in Figure 5 is the monotony of the variety of thinking skills: 

TABLE 7 Scores and explanations for the OPM model created by Eli.

Attribute
Scoring and 
explanation

Examples in the model (screenshots)

A1-Intended Purpose

3/3. The beneficiary, Gummy 

Bears Producer, is linked to the 

benefit, Profit at state high, via an 

exhibition-characterization link

A2-Main Function

2/2. The main process, Gummy 

Bears Producing, transforms 

(changes) the object Profit from 

state low to state high

A3-Structural Relations

1/1. One whole-part link and two 

exhibition-characterization links 

were correctly used

A4-Level of Complexity 1/1 Both SD and SD1 are included n/a

A5-Procedural relations

1/1. An instrument, agent, and 

effect link, and one Input-Output 

link pair. There were five 

consumption links, but there 

should have been only one such 

link, linked to a whole (Ingredient 

Set) and not to its parts

A6-Model readability
1/1. No points were taken off for 

misspellings in English
n/a

A7-OPL main process procedural 

sentences
1/1. All three sentences are 

included

Total score: 10/10 points
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the potential student needs only a basic understanding level to 
complete the assignment. Consequently, he received the lowest score 
for the variety of thinking skills attribute (see Analysis of the 
developed assignments). Additionally, he was the only one who did 
not include any part of his OPM model in the assignment.

The main process in SD of the OPM model Ron created included 
Paper Recycling, which is refined in SD1 into eight subprocesses. His 
model received 7/10, with three points deducted for not attaching the 
model’s OPL and not defining the beneficiary (Table 8). The model, 
both SD and SD1, was created in Hebrew, his mother tongue, rather 
than English, as in the other cases. He explained that he could have 
done it in English, but the attention to detail would not be the same 
for him in this case. Reflecting on the modeling side of the learning 
process, he stated: At first, I had the feeling that conceptual modeling is 
limiting because it puts every occurrence and data into a model of 
processes and objects. After practice and work, I reached a high level of 
thinking thanks to the organized structure of the modeling, and thus 
actually developed thinking processes at a very high level. For me, this is 
reflected in the instructional aspects of the assignment planning and not 
only in the modeling requirements [throughout the learning process].

Regarding the assignment development, he explained that it took 
him considerable time to understand how to include in the model 
educational aspects, not just technical ones. As he explained, the 
assignment he developed is part of a lesson plan on misconceptions 
about recycling and sustainability that he had been contemplating for 
several years. He emphasized the difficulty in translating the already 
crystalized educational idea into a learning unit based on modeling 
and systems concepts. Working with OPM, he added, “helped me 

understand what the appropriate goals for the lesson plan are for 10th 
graders, and how to apply them.” The main effect that the learning 
process had on the development of the assignment for him is the 
gradual increase in the level of difficulty, and accordingly, the 
construction of the system and modeling ideas that focus on the 
details first and eventually converge into a complete model.

Case 5—Romy: A novice technology 
college teacher

Romy holds a bachelor’s degree in industrial engineering and 
management and textile engineering. In addition, she has a PhD in 
science and technology education and a teaching certificate in 
computer science. Her teaching experience includes about 2 years as 
a teaching assistant and lecturer in teacher training and development 
programs, and about a year as a teacher at a technology college. It took 
her about 2 days, much faster than the other participants, to complete 
the learning process, and another month to develop her assignment. 
The assignment revolved around the bread making process, from 
making the dough to packaging the bread for distribution. It began 
with a video of the entire process, which was followed by a list of 13 
steps it includes. Figure 6 shows selected sections of her assignment, 
strongly highlighting the variety of visual representations that she 
included in the assignment. The high level of the other attributes is 
also evident in the variety of thinking skills, the variety of aspects and 
disciplines, and a successful combination of sustainability and 
COVID-19 in the context chosen for the assignment.

FIGURE 4

Selected segments from Danielle’s ice cream production assignment.
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The main process of the OPM model she designed was Bread 
Baking and Packing, a model that clearly described each step included 
in the assignment. The scoring of her OPM model is explained in 
Table 9. She gained the biggest improvement in modeling from the 
level of the models she created during the learning process to the level 
of the model she created in the assignment she developed. She wrote 
that “The difficulties increased as the lessons continued. In the beginning, 
it was not difficult at all, but in the end, it was very difficult.” Unlike 
most of the participants, at the beginning of the learning process she 
did not encounter the difficulty that others encountered as they 
needed to acquire a new language and new concepts. However, she 
thought that “in using [and learning] the OPM, I think more practice 
is required, starting with simpler systems.” In addition, she “felt that 
more advanced concepts were missing, and with more learning time this 
would also be possible, in addition to imparting the basic concepts in a 
more sustainable way.”

Analysis of the developed assignments

Once participants achieved basic systems thinking and conceptual 
modeling skills, they could seemingly begin to develop an assignment 
based on system concepts and conceptual modeling. However, the 
level that was sufficient to create conceptual diagrams according to 
specified guidelines may not be sufficient to independently create a 
complete model from scratch.

We wanted to test their ability to integrate conceptual models and 
system concepts into context-based learning rather than teach isolated 
facts. We  also wanted to test their ability to combine in their 
assignment different thinking skills, information representations, and 
aspects of the topic they chose. Following the rubric for the 
assignments presented in the Materials and Methods section, we start 
with presenting the assessment charts of each of the five assignment 
cases. A common and effective way to present a qualitative assessment 
of learning and skills is spider charts, also known as radar charts, as 
shown in Figure 7. Explanations for the scoring of the six attributes 
for each chart are presented in Table 10. The assignment development 
process of the five participants is described qualitatively in the 
previous section. In this section, we  present quantitatively the 
weaknesses and strengths of each participant for each of the six 
attributes. At the same time, both in the spider charts (Figure 7) and 
in Table 10, the performance of all five participants is presented along 
each attribute. This section thus complements the previous one, 
expanding on insights derived from the results.

Discussion

This study describes a new online learning process based on 
conceptual models, system basics, and food contexts, at the end of 
which participants are required to develop an assignment for their 
current or future students based on conceptual models in the spirit of 

FIGURE 5

Selected segments from Ron’s paper recycling assignment. The left-bottom part was not included in the assignment, but it appears in an appendix 
along with his model.
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the learning process they had gone through. Once the fundamentals 
have been acquired through the learning process, they had the needed 
content knowledge to develop their assignments. In analyzing the five 
assignment cases included in the study, we assessed the participants’ 
performance in two aspects: (1) conceptual modeling and systems 
thinking, and (2) integration of conceptual models, systems thinking, 
visual representations, and interdisciplinarity, as well as sustainability 
and COVID-19 topics into their assignments.

The study adopted the collective case study approach, combining 
qualitative and quantitative methods aimed to discover new insights. 
In the next sections, we respond to the two research questions. The 
first question deals with the way STEM teachers cope with online 
learning of conceptual modeling and systems thinking in the context 
of food production and sustainability. The second question focuses on 

these teachers’ online assignments that they developed for their 
students. This RQ is addressed in the last section of the Discussion: 
“Teachers’ conceptual modeling and system concepts knowledge 
while developing learning materials.”

Conceptual modeling and systems thinking 
competence of STEM teachers

Most of our participants with an educational background who 
performed the online learning process we had developed did not have 
a background in conceptual modeling and systems thinking. 
Regardless of their teaching experience, none of the five assignment 
case authors selected for this study had a relevant background, and 

TABLE 8 Scores and explanations for the OPM model created by Ron.

Attribute Scoring and explanation Examples in the model (screenshots)

A1-Intended Purpose

1/3. A beneficiary is missing. One agent is 

included, Factory Workers*, but workers 

generally do not directly derive value and 

benefits from the system but get paid by its 

beneficiary. The benefit, from the recycling 

plant’s point of view, is Recycled Paper

A2-Main Function

2/2. The main process, Paper Recycling, 

transforms (changes) two objects, Energy 

Consumption and Deforestation Rate**, and 

yields Recycled Paper

A3-Structural Relations

1/1. One whole-part link was correctly used 

(right side). Two exhibition-characterization 

links were used, one of them incorrectly (left 

side)

A4-Level of Complexity 1/1. Both SD and SD1 are included n/a

A5-Procedural relations

1/1. Two input-output link-pairs. Two 

instrument links and one agent link. One 

consumption and one result link

A6-Model readability

1/1. The SD1 has several links that cross 

each other, but most of the model is readable 

and clear

n/a

A7- OPL main process 

procedural sentences

0/1. OPL is not attached
n/a

Total score: 7/10 points

*According to the Singular Name OPM Principle, plurals have to be converted to singulars by adding the word “Set” for inanimate things or “Group” for humans. Therefore, it should have 
been Factory Worker Group and not as modeled.
**Environmental objects and processes in OPM are represented by a dashed line, as opposed to a solid line representing systemic processes. In this case, both Energy Consumption and 
Deforestation Rate should have been modeled with dashed lines, but no points were deducted for that matter.

24

https://doi.org/10.3389/feduc.2023.1154893
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Peretz et al. 10.3389/feduc.2023.1154893

Frontiers in Education 16 frontiersin.org

therefore it would not be unreasonable to infer that the knowledge and 
skills with which the participants began to develop their assignment 
were acquired as a result of the learning process they had previously 
completed. During the learning process, participants gained varying 
levels of knowledge and understanding of conceptual modeling and 
systems thinking. For most of them, this was the first introduction to 
these concepts, as evidenced by their reflections.

Explicit teaching of systems thinking: Using 
ontological scaffolding

Talanquer (2019) presented a year-long systems thinking-
oriented undergraduate general chemistry pilot course. As a result of 
the course, students were reportedly able to identify processes, 
interactions, and components in given systems, and also to produce 
related explanations and build arguments, but only after significant 
scaffolding and prodding. Our objective was to get educators 
acquainted with system fundamentals, such as function, structure, 
behavior, and purpose, by using conceptual modeling in OPM and 
using them to compose assignments for their current or future 
students. To this end, we provided the learners with an ontological 
framework that involved teaching system concepts and modeling 
them in context. This is in line with other studies, such as those of 
Verhoeff et al. (2008), Yoon (2008), Yoon et al. (2018), and Rates et al. 
(2022), who emphasized the importance of explicitly instructed 
ontological knowledge regarding system concepts and ideas. 

Engaging in conceptual modeling activities before and during the 
assignment development was the practical part of the participants’ 
learning process. This became possible after participants had acquired 
the ontological foundations of OPM that enabled them to start 
engaging in OPM-based conceptual modeling. We agree with Rates 
et  al. (2022), who argued that complex systems can easily 
be misunderstood and misconceptualized when learners have wrong 
ontologies. As we  saw, at the beginning of the learning process, 
teachers often lack basic systems-related ontological knowledge. This 
may significantly impede learning that is based on systems thinking, 
and even more so when such knowledge has to be combined with 
assessment knowledge, as was the case in our study. One participant, 
Danielle, who failed to achieve mastery of basic system concepts, 
experienced major difficulties throughout the entire process, 
especially in developing her assignment. Arnold and Wade (2017) 
also argued that while ontological scaffolding is indeed important 
(e.g., Jacobson et al., 2011; Rates et al., 2022), the inclusion of overly 
complex system terms and concepts may withhold their instillation 
among educators. Arnold and Wade (2017) called for a more 
approachable language for those lacking profound systems 
knowledge, one accessible outside the systems community. We agree 
with this because we  believe that making systems thinking and 
conceptual modeling accessible calls for combining different 
approaches: primarily an explicit systems ontology (e.g., Rates et al., 
2022), against the background of treating systems thinking as a 
cognitive skill like any other skill, which is not reserved only for the 
systems community (Chowdhury, 2023).

FIGURE 6

Selected segments from Romy’s bread making assignment.
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Systemic knowledge acquisition versus 
systemic knowledge application

Based on our findings, we view the conceptualization of Arnold 
and Wade (2017), gaining systemic insight vs. using systemic insight, as 
an appropriate description of the learning process we have developed 
and implemented. First, the participants acquired basic knowledge 
that allowed them to gain systemic understanding and communicate 
the knowledge acquired in systems science language. Then, as the 
scaffoldings were gradually removed, they could use this knowledge 
to create models on their own as a central artifact of their self-
developed student assignments. As reflected in the last learning 

module score, most of the participants gained a sufficient level of 
modeling and proficiency in system concepts that enabled them to 
develop the assignments.

Modeling engineered systems in 
combination with natural phenomena

Only one assignment—paper recycling—involved a model 
that focused on an engineered system with environmental, 
natural objects undergoing a transformation—deforestation and 
energy consumption. The low level of integration of natural 

TABLE 9 Scores and explanations for the OPM model created by Romy.

Attribute Scoring and explanation Examples in the model (screenshots)

A1-Intended Purpose

3/3. The beneficiary Bakery Owner is linked 

to the benefit, Stock For Selling at state 

higher

A2-Main Function

2/2. The main process, Bread Baking and 

Packing, transforms (in this case, changes 

and yields, respectively) the objects Stock 

For Selling and Bread Loaf Set

A3-Structural Relations

1/1. Two link types were used: a whole-part 

link (Left figure), and

an exhibition-characterization link  

(Right figure)

A4-Level of Complexity 1/1. Both SD and SD1 are included n/a

A5-Procedural relations

1/1. Input-Output link-pair, consumption 

link, result link, instrument links, and agent 

links

A6-Model readability 1/1 n/a

A7-OPL main process procedural sentences 0/1. OPL is not attached n/a

Total score: 9/10 points
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aspects into human-made engineered systems in the participants’ 
assignments despite the instruction to include a sustainability 
aspect in the assignment content calls for further research to 
understand why this posed a challenge and how such integration 
can be fostered.

Teachers’ conceptual modeling and system 
concepts knowledge while developing 
learning materials

Developing assignments based on conceptual models presented 
the participating teachers with a complex task. This complexity was 
reflected throughout the process in two main aspects. First, the 
need to create models from scratch to represent their system of 
choice required a significant leap from the learning process, where 
the modeling requirements were more structured. Second, the 
participants had to combine instructional knowledge, assessment 
knowledge, content knowledge, and systems and modeling 
principles into a coherent, thought-provoking, and cohesive 
assignment. The focus shifted from teachers acquiring systems 
thinking and modeling content knowledge in the learning process 
to practicing creativity in composing assignments that we strive to 

endow them with so they apply it in their educational work. Indeed, 
teachers often need to combine principles from different fields to 
reach quality learning materials. We thus join the recommendations 
for meaningful curricular integration of systems thinking and 
conceptual modeling in teacher training and professional 
development (e.g., Krell and Krüger, 2016; Rosenkränzer et  al., 
2017; Yoon et al., 2017). However, one aspect that has not been 
sufficiently researched and promoted is interdisciplinary domain-
independent assessment knowledge-based teacher training and 
professional development. A number of researchers view assessment 
knowledge as a separate construct from PCK (e.g., Avargil et al., 
2012; Tal et  al., 2021). As a separate construct, assessment 
knowledge requires developed PCK as a prerequisite, so developing 
PCK may also directly or indirectly benefit assessment knowledge 
(Avargil et  al., 2012). Therefore, assessment knowledge-focused 
training can better equip teachers with the necessary assessment 
knowledge and skills. Further research may clarify the differences 
between assessment knowledge-focused versus PCK-focused 
training in the context of complex systems and conceptual 
modeling. The learning modules we developed were designed to 
provide implicit guidelines to leverage instructional principles that 
make up both PCK and assessment knowledge. These guidelines 
can be used in follow-up studies.

FIGURE 7

Spider charts of the five teacher assignments showing for each teacher the total score and scores of each of the six attributes.
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Conclusion

The cases described and analyzed qualitatively and quantitatively 
in this paper indicate that the learning process presented in this study 
may significantly benefit teaching complex phenomena and processes 
in STEM disciplines. Teachers’ engagement in learning complex 
systems basics in conjunction with conceptual modeling can 
be  facilitated by putting them in the context of real-life complex 
phenomena that are relevant to the learner. Based on the desired 
learning outcomes, teachers can apply systems thinking and modeling 
methods and techniques they had acquired in their professional 
development to teach system principles and explain complex 
phenomena. Adequate accessible modeling methods and tools, such 
as OPM on the OPCloud platform, are key to endowing teachers and 
later their students with systems and modeling concepts whose 
abstract nature is alleviated by grounding them to concrete visual 
models that are interpreted textually on the fly.

The rubric enabled tracking different levels of assessment 
knowledge through six different attributes, but additional quantitative 
research is needed to further validate this conclusion. This rubric can 
be used to assess a large number of participants in teacher training and 
professional development programs, not only for summative 

assessment but also for formative one, as argued by Panadero and 
Jonsson (2020). The rubric provides for monitoring learners’ progress 
during task performance to identify individual strengths and 
weaknesses. Formative assessment is of paramount importance in 
context-based learning professional development programs for 
teachers (Pilot and Bulte, 2006). The spider charts can also be applied 
as part of formative assessment for tracking the learning process, not 
just for summative assessment and not only for research purposes but 
also for educational assessment in practice (Kaczynski et al., 2008).

Limitations and further research

The participants’ perceptions, experiences, and contexts in the 
cases described in this article are described in detail, so other 
researchers can assess whether the conclusions arising from our 
findings can be applied to other circumstances, times, and frameworks. 
Yet, the low degree of generalizability that characterizes case studies 
calls for quantitative follow-up studies that would validate the findings 
on large samples.

The focus of this research was on human-made systems and 
processes, but science teachers are more into teaching natural systems 

TABLE 10 Assignment scoring explanations for all five cases, six attributes for each.

Participant
attribute

Anna Eli Danielle Ron Romy

Conceptual modeling – 

OPM score

6/10 – Intermediate-2
10/10 – High- 3 4/10 – Low-1 7/10 – Intermediate-2 9/10 – High-3

Systems thinking mean 

score for the learning 

process

8/10 – High- 3

8.8/10 – High-3 6.4/10 – Intermediate-2 7.8/10 – Intermediate-2 6.6/10 – Intermediate-2

Visual representations 

variety

Three representations: 

Text, diagrams, and links 

– Intermediate-2

Five representations: 

Photos, diagrams, figures, 

text, and links – High-3

Four representations: 

Text, diagrams, tables, 

and links – 

Intermediate-2

Three representations: 

Text, photos, and links 

– Intermediate-2

Six representations: Text, 

diagrams, photos, figures, 

videos, and links – High-

3

Thinking skills variety

Four thinking skills: 

Understanding, applying, 

comparing, and 

designing – High-3

Four thinking skills: 

Understanding, 

comparing, evaluating, 

and designing – High-3

Four thinking skills: 

Understanding, applying, 

comparing, and 

designing – High-3

One thinking skill: 

Understanding – Low-1

Four thinking skills: 

Understanding, applying, 

evaluating, and designing 

– High-3

Sustainability and 

COVID-19

Indirect reference to 

sustainability. The 

COVID-19 aspect was 

not relevant to tofu 

production – Low-1

Both sustainability and 

COVID-19 were 

integrated and relevant to 

the assignment: The 

economic, social, and 

behavioral effects of 

COVID-19. Socio-

economic effects related 

to the confectionery 

industry – High-3

Both are included, but 

their relevance and 

integration could have 

been better – 

Intermediate-2

Most, if not all, of the 

assignment, deals with 

sustainability, but with no 

reference to COVID-19 

at all – Intermediate-2

Both sustainability and 

COVID-19 were 

integrated and relevant to 

the assignment: The 

impact of environmental 

awareness and 

COVID-19 lockdowns 

on bread consumption 

habits – High-3

Interdisciplinarity: number 

of involved disciplines or 

aspects

Three aspects: economic, 

food engineering, and 

scientific – High-3

Four aspects: economic, 

social, technological, and 

economic – High-3

Two aspects: 

Technological and 

environmental – 

Intermediate-2

Four aspects: 

environmental, physical, 

technological, and 

economic aspects – 

High-3

Four aspects: Economic 

technological, 

environmental, and 

social – High-3

Total: (out of 18) 14 18 12  12 17
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and phenomena. This is especially true for biology, the field from 
which general systems theory emerged, as well as for chemistry and 
physics, where many complexities can be simplified by engaging in 
conceptual modeling. Being domain independent in its nature, OPM 
“opens system modelling to the entire scientific, commercial, and 
industrial community” (Dori, 2016, p. 376). That is, human-made and 
natural systems and phenomena alike can be  modeled using 
OPM. Although OPM has been investigated in relation to natural 
sciences education (e.g., Lavi and Dori, 2019), it was almost exclusively 
for the purpose of assessing systems thinking and not for developing 
such thinking or for integrating it into educational content developed 
by the teachers themselves. The potential implications of this study 
may be extended through the inclusion of natural phenomena rather 
than or in addition to engineered systems in further studies.

Most of the participants in this study, as well as in previous studies 
that applied a learning process similar to the one described in this paper 
(e.g., Peretz et al., 2023), demonstrated the acquisition of adequate 
systems thinking and modeling foundations. However, more advanced 
concepts and ideas such as feedback loops and conditional links are 
very relevant to many topics that science teachers are expected to teach. 
Since the completion of the current research, we have developed three 
additional modules that have been added to the learning process, 
containing more advanced approaches to systems engineering with 
OPM, such as decision nodes, conditional links, feedback loops, and 
logical operators. Future research should examine how educators 
without a relevant background cope with similar but more advanced 
learning and assignment development processes. Including the 
advanced modules is expected to expose the full potential of this 
learning process, and consequently, improve teachers’ and students’ 
modeling and understanding of complex systems. Being a formal 
conceptual modeling methodology and language, OPM includes 
recognized, unambiguous definitions of key system principles and their 
modeling. Further research will be needed to determine if OPM can 
be used to develop advanced systems thinking among teachers, similar 
to the process that has been taking place in systems engineering courses 
at the Technion.

With the exception of one, the models created by the participants 
in their self-developed assignments were significantly more elaborate 
and extensive than those created during their learning process, where 
they did not get to choose the domain and context of their interest. 
Further quantitative research is needed to determine if this finding can 
be  generalized, and if so, what is the strength of the relationship 
between the quality of the model and the relevance of the chosen topic.

Finally, a follow-up study on the participants who completed the 
learning and development processes at a future point in time will 
provide a longitudinal view of the extent to which systems thinking 
and conceptual modeling skills developed by the participants are 
retained over time.

Contributions

This study integrates systems thinking and conceptual modeling 
skills, sustainability, interdisciplinary thinking, instructional 
knowledge, and assessment knowledge into student assignments 
developed by educators. This unique combination has provided for 
monitoring and documenting difficulties, challenges, and 
opportunities that arose in the process, opening the door for possible 
implementation in STEM education beyond research. The theoretical 

knowledge gained through this research can help to better design 
teacher training and professional development programs to cater to 
the growing need for systems thinking and modeling skills as 
emerging 21st century skills that teachers need to acquire and impart 
to their students. Knowing what to focus on in the development of 
teachers’ knowledge and how to do it is a step towards a more 
competent education system that is ready for the changing, complex 
challenges we face in all areas of life. The study offers a methodological 
contribution by providing a basis for evaluating teachers’ assessment 
knowledge and skills using the six-attribute rubric, subject to further 
validation in follow-up studies. After being established as a reliable 
and valid tool, this rubric will allow measuring progress in 
professional development and teacher training programs of a cross-
disciplinary nature with activities focused on systems thinking and 
conceptual modeling in diverse contexts. As reflected in some of the 
cases in the research, modeling and systems thinking not only helped 
in gaining content knowledge and skills for teaching science, but also 
in structuring and contemplating teaching planning. This is an 
interesting aspect that we did not expect before starting the research, 
and establishing it may provide important added value to our 
research and science education research in general.
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TABLE 3 The content of the four modules that formed the learning process.

Module Content description

1 - Introduction to OPM.

- Identifying objects, processes, and states in a system.

2 - System aspects: function, structure, and behavior.

- Structural relations, state transitions, system aspects, and OPMmodalities.

3 Understanding the System Diagram (SD): System Purpose—beneficiary and benefit, system function; and process enablers—agents and instruments.

4 - Diving into the details: the first detail level (SD1) of the OPM system diagram, divided into major subprocesses.

- Synchronous vs. asynchronous processes.
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Introduction: Complex systems are prevalent in many scientific and engineering 
disciplines, which makes system thinking important for students of these fields. 
Duchifat 3 is a unique engineering educational extracurricular program, where 
high school students designed, assembled, and tested a nano-satellite.

Methods: This study applied qualitative methods to explore how the participants’ 
systems-thinking developed during the program. Participants were interviewed 
using the repertory grid interview, and a semi structured interview at the beginning 
and at the end of the project, while various observations were conducted throughout.

Results: While the participants were initially assigned narrow roles, each dealing 
with a single sub-system of the satellite, some chose to be involved with other 
sub-systems and aspects of the project. Our findings show that the broader the 
participants’ involvement was, the greater the progress they experienced in their 
systems-thinking. Participants who stayed focused on a single subsystem did not 
show progress, while participants who involved themselves with several sub-
systems exhibited a more meaningful progress.

Discussion: Although the program design aimed to assign students to a narrow 
role to enable them to achieve the educational goals, from the perspective of 
systems-thinking this was counterproductive. These findings shed light on the 
design of engineering programs such as the one examined here in terms of 
systems-thinking development. We discuss the implications of the findings for 
similar programs and make suggestions for improvement.

KEYWORDS

systems-thinking, project-based learning, case study, repertory grid, CubeSats

Introduction

Trends in science education have emphasized the integration of core ideas and crosscutting 
concepts in STEM subjects—including the complex systems ideas that comprise systems 
thinking (NGSS Lead States, 2013). Complex systems are prevalent in many scientific and 
engineering fields, and at all scales—from the micro-scale of a single cell to complex macro 
systems such as cities or ecosystems (Yoon et al., 2017). The ability to understand the whole 
system and see the big picture, understand interconnections, understand synergies, and 
understand the system from multiple perspectives is one of the cognitive characteristics required 
of successful systems professionals (Frank, 2010). Although research in engineering system 
thinking is somewhat limited, it is becoming ever more important as engineering systems 
become more complex (Greene and Papalambros, 2016).

This study examines a specially designed engineering extracurricular program, in which 
high school students participated in the task of assembling a nanosatellite, Duchifat 3, which 

OPEN ACCESS

EDITED BY

André Bresges,  
University of Cologne, Germany

REVIEWED BY

Alfonso Garcia De La Vega,  
Autonomous University of Madrid, Spain
Cristal Schult,  
University of Cologne, Germany

*CORRESPONDENCE

Ram Tamir  
 ramtam@post.bgu.ac.il

SPECIALTY SECTION

This article was submitted to  
STEM Education,  
a section of the journal  
Frontiers in Education

RECEIVED 05 January 2023
ACCEPTED 31 March 2023
PUBLISHED 20 April 2023

CITATION

Tamir R, Ben-Zvi Assaraf O and Maman S (2023) 
System-thinking progress in engineering 
programs: A case for broadening the roles of 
students.
Front. Educ. 8:1138503.
doi: 10.3389/feduc.2023.1138503

COPYRIGHT

© 2023 Tamir, Ben-Zvi Assaraf and Maman. 
This is an open-access article distributed under 
the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Original Research
PUBLISHED 20 April 2023
DOI 10.3389/feduc.2023.1138503

34

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2023.1138503%EF%BB%BF&domain=pdf&date_stamp=2023-04-20
https://www.frontiersin.org/articles/10.3389/feduc.2023.1138503/full
https://www.frontiersin.org/articles/10.3389/feduc.2023.1138503/full
https://www.frontiersin.org/articles/10.3389/feduc.2023.1138503/full
mailto:ramtam@post.bgu.ac.il
https://doi.org/10.3389/feduc.2023.1138503
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://doi.org/10.3389/feduc.2023.1138503


Tamir et al. 10.3389/feduc.2023.1138503

Frontiers in Education 02 frontiersin.org

was launched into orbit in 2019 and was functional in space for about 
a year. The program involved the use of STEM content, and is part of 
a series of projects where high school students engage in the task of 
engineering, integrating and testing CubeSat satellites (Brosch et al., 
2017; Millan et al., 2019). Although there are a number of programs 
that introduce satellite design into high schools (Millan et al., 2019), 
to the best of our knowledge, this is the first in-depth study of such an 
educational program. In this paper, we analyze the development of the 
participants’ systems thinking, describing the progress the participants 
made and offering insights into what may encourage such progress in 
terms of program design.

Background

Systems thinking

Systems thinking is a way to understand, explain, and interpret 
complex and dynamic systems. A complex system is composed of 
various elements that interact via simple local rules (Fuentes, 2014) 
and give rise to certain functions (Gilissen et al., 2020). Interactions 
are characterized by feedback loops and are usually nonlinear 
(Fuentes, 2014; Yoon et al., 2018). Complex systems have a hierarchical 
structure, with multiple components that interact dynamically, 
nonlinearly, and simultaneously, within or across levels. Such 
interactions, moreover, are often implicit, occurring over time, at 
varying microscopic and macroscopic levels, and with indirect 
causality that is difficult for students to trace and grasp (Hmelo-Silver 
and Azevedo, 2006; Schneeweiß and Gropengießer, 2019). Systems 
thinking is a set of skills that can be taught separately, and a learning 
strategy that explicitly considers system characteristics in trying to 
understand and predict natural phenomena and complex man-made 
systems (Verhoeff et al., 2018).

There are several conceptualizations of systems thinking skills in 
the literature. Table 1 maps these conceptualizations, highlighting 
their common themes. Though not a comprehensive or exhaustive 
review of the literature, the table features those works in the field that 
are most prominent and relevant to this study. As this table shows, a 
proficient systems thinker must identify the systems’ components and 
their interrelations, consider the system and its subsystems at various 
scales and levels of organization, identify and describe feedback loops 
that may control processes in the system, identify the dynamic 
relationships and consider the temporal dynamics of the system, make 
generalizations and predictions in regard to the system, and identify 
emergent properties and understand decentralized control.

Fostering systems thinking

Several strategies for fostering systems thinking have emerged 
from the literature. Our study focused on the three most prominent, 
as identified by Gilissen et al. (2021): (1) Modeling; (2) Cross-level 
reasoning; and (3) Use of systems language.

Modeling
Models are representations of natural phenomenon, data, theory, 

or of engineered manmade objects and processes. They may consist of 
3D or 2D representations, and they may be verbal, mathematical, or 

computational. Models represent a subset of the parts of the modeled 
entity depending on its purposes. (Krell et al., 2019). Modeling can 
help students better understand the dynamics of a system and 
integrate knowledge about it (Wilson et al., 2020). Its use in education 
consists of two central parts: models that communicate scientific or 
engineering content to students and modeling done by students to 
gain insight (Upmeier zu Belzen et  al., 2019). In the latter case, 
modeling is instrumental in making students’ understanding visible, 
helping students organize their ideas, and facilitating constructive and 
collaborative discussion (Hmelo-silver et al., 2017; Bielik et al., 2021). 
It allows students to engage in inquiry practices by gathering data, 
generating hypotheses, and testing them (Hmelo-Silver et al., 2015).

Cross level reasoning
Weintrop et al. (2016) identify cross-level reasoning (thinking 

across levels in their terms) as core to systems thinking. Systems can 
be understood by analyzing different levels of organization from the 
micro scale to the macro scale. Different insights can be gained from 
examining different levels which can lead to a better understanding of 
the emergent characteristics of the system as a whole (Weintrop et al., 
2016). Challenging students to reason between various levels of 
organization has been shown to improve system thinking (Verhoeff 
et al., 2008; Gilissen et al., 2021).

Systems language
Systems language is the explicit use of terms that refer to system 

characteristics. Proponents of this strategy contend that when teaching 
about complex systems and encouraging system thinking, teachers 
should make explicit use of systems language and encourage their 
students to use that language explicitly (Eberbach et  al., 2021). 
Deconstructing a phenomenon to its characteristics and discussing 
them explicitly has been shown to help clarify it for both students and 
teachers (Zion and Klein, 2015). Jordan et al. (2013) showed that 
exposure to the systems language helps students in their explanations 
by linking multiple ideas and improving their explanations’ 
sophistication by enriching references to invisible elements. Nguyen 
and Santagata (2021) have shown that the teacher’s prompts greatly 
affect how middle school students respond when asked about 
connections in systems. The language teacher’s use is adopted by 
students, not only in their discussions with the teacher but also in their 
group discussions without the immediate presence of the teacher, thus 
assisting their understanding of systems (Hmelo-silver et al., 2015). 
Systems language may help students to better communicate 
information about s system, which is also important for systems 
thinking according to Weintrop et al. (2016).

Evaluating students’ conceptualization of 
complex phenomena

Several models have been put forth as useful means of representing 
the various forms and levels of system thinking. One promising 
approach is Structure-Behavior-Function (SBF) thinking (Hmelo-
Silver et al., 2007). The “structure” in SBF models is represented in 
terms of the system’s elements or components, the substances 
contained in the components, and connections among the 
components (Goel et al., 2009). “Behavior” refers to the mechanisms 
by which the structures perform their function, represented as a 
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TABLE 1 Mapping of different conceptualizations of systems thinking skills.

Systems’ 
elements and 
relationships

Cross-level 
reasoning

Feedback 
loops

Dynamic 
relationships

Temporal 
dynamics

Generalizations Emergence

Arnold 

and Wade 

(2015)

Recognizing 

interconnections; 

understanding 

system structure

Understanding 

systems at 

different scales

Identifying and 

understanding 

feedback; 

differentiating 

types of stocks, 

flows, and 

variables

Identifying and 

understanding 

non-linear 

relationships; 

understanding 

dynamic behavior

Ben-Zvi 

Assaraf 

and Orion 

(2005)

Identifying simple 

relationships 

between or among 

the system’s 

components; 

organizing the 

systems’ 

components, 

processes, and their 

interactions, within 

a framework of 

relationships

Recognizing 

hidden 

dimensions of the 

system—

understanding 

natural 

phenomena 

through patterns 

and 

interrelationships 

not seen on the 

surface

Identifying 

cycles of matter 

and energy 

within the 

system—the 

cyclic nature of 

systems.

Identifying dynamic 

relationships within 

the system

Thinking 

temporally: 

retrospection 

and prediction; 

understanding 

that some of the 

presented 

interaction 

within the 

system took 

place in the 

past, while 

future events 

may be a result 

of present 

interactions

Making 

generalizations—solving 

problems based on 

understanding of 

systems’ mechanisms; 

system-adequate 

intention to act

Sweeney 

and 

Sterman 

(2000)

Discovering 

and 

representing 

feedback 

processes; 

identifying 

stock and flow 

relationships.

Identifying 

nonlinearities.

Considering 

time related 

dimensions.

Homologous 

reasoning—identifying 

similar underlying 

feedback structures in 

spite of different surface 

features; policy thinking

Understanding how 

the behavior of a 

system arises from 

the interaction of its 

agents over time

Evagorou 

et al. 

(2009)

Identifying the 

elements of a 

system; identifying 

influence of specific 

elements on other 

elements

Identifying 

subsystems within 

a system

Identifying 

feedback effects

Identifying 

temporal 

boundaries

Identifying the changes 

necessary for certain 

patterns to be observed

Gero and 

Danino 

(2016)

Understanding the 

interrelations 

between the 

components and 

their synergies

Observing the 

system from a 

temporal 

viewpoint—

examining the 

system’s 

behavior as a 

function of 

time

Observing the system 

from a generic 

viewpoint—looking for 

similarity between the 

system and other 

systems; observing the 

system from an 

operational viewpoint—

regarding the system as 

a black box

Seeing the system as 

a whole beyond its 

components

Gilissen 

et al. 

(2019)

Components that 

have interactions

Hierarchical 

nature of systems

Feedback loops, 

input and 

output

Dynamics Emergence

(Continued)
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sequence of states and transitions between these states. Explanations 
for state transitions may include scientific laws, functions of the 
subsystems, structural constraints, or other behaviors (Hmelo-Silver 
et al., 2007; Goel et al., 2009). “Function” refers to the role or the 
purpose of elements in the system. A function is represented as a 
schema containing a reference to the behavior that accomplishes the 
function (Hmelo-Silver et al., 2007; Goel et al., 2009). Hmelo-Silver 
et  al. (2017) modified the SBF model, creating an alternative 
conceptual framework called Components-Mechanisms-Phenomena 
(CMP). This framework provides a representation of all the system’s 
attributes, including the structures (components) within the system, 
the specific processes and interactions (mechanisms) that occur 

between them, and the macro scale of processes and patterns within 
a system—the phenomena.

In addition to providing a vocabulary for discussing complex 
systems, these frameworks also serve as a means of externalizing and 
assessing the development of students’ systems thinking. Thus, for 
instance, when explaining complex systems within the CMP 
framework, referring to phenomena and mechanisms indicates more 
advanced systems thinking than referring to components (Hmelo-
Silver et al., 2017; Snapir et al., 2017).

Assessing traditional learning is often challenging enough, but 
modern notions of science teaching, such as system thinking, 
require creative assessment designs. One tool that has been used on 

TABLE 1 (Continued)

Systems’ 
elements and 
relationships

Cross-level 
reasoning

Feedback 
loops

Dynamic 
relationships

Temporal 
dynamics

Generalizations Emergence

Hmelo-

Silver and 

Pfeffer 

(2004)

Identifying 

behaviors and 

functions; 

connecting 

structures to 

behaviors and 

functions

Capturing the 

dynamic 

interdependencies

Focus on abstract 

processes and 

mechanisms

Hmelo-

Silver et al. 

(2017); 

Snapir 

et al. 

(2017)

Identifying and 

describing 

components in 

relation to 

mechanisms and 

behaviors

Identifying 

relationships 

between micro 

and macro

Identifying how 

phenomena are achieved

Identifying the 

overall behavior or 

property of the 

system that results 

from many 

interactions

Lavi and 

Dori 

(2019)

Identifying links 

between objects, 

links between 

process and links 

between objects and 

processes

Identifying 

number of detail 

levels and the 

refinement of 

diagrams into 

lower-level 

processes

Identifying 

different types 

of procedural 

sequences—

linear, 

divergent, 

convergent and 

looping

Identifying different 

types of procedural 

sequences—linear, 

divergent, 

convergent, and 

looping

Identifying the intended 

purpose of the system, 

its main function and 

main process; 

identifying the object 

transformed by main 

process and its parts

Mambrey 

et al. 

(2020)

Complex system 

organization

Complex 

causality

Mehren 

et al. 

(2018)

Identifying 

networked elements 

and relationships

Identifying 

feedback loops

Identifying linear 

and nonlinear 

dynamics

Consideration 

of systems 

dynamics

Making prognoses based 

on direct and indirect 

effects; consider 

regulative measures 

based on complex effect 

analysis

Identifying emergent 

characteristics

Samon and 

Levy 

(2020)

Local dynamic 

processes, which 

result in the system; 

approaching 

equilibrium. These 

processes continue 

after reaching 

equilibrium

The whole is more 

than the sum of its 

parts; Decentralized 

control, the 

macrophenomenon 

results from random 

actions, and 

interactions at the 

micro-level
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multiple occasions as a means of assessing systems thinking is 
Kelly’s repertory grid (RG) technique, which explores learners’ 
perceptions through the personal constructs they create. The 
technique is based on Kelly’s theory of personal constructs, which 
states that the world is perceived in terms of the meaning people 
apply to it (Kelly, 1955). According to this theory, people make 
sense of the world by viewing reality through personal constructs. 
These allow them to make predictions about the future, which are 
later tested against reality and reformulated in an iterative process 
(Jankowicz, 2001). As a person experiences repeated events, he or 
she starts to make sense of them, identifying similarities and 
differences between events, and separating them based on 
constructs (Rozenszajn et al., 2021). As a result, one’s personality, 
attitudes, and concepts are developed on a system of personal 
constructs which are tacit in nature.

Kelly developed a methodology for exploring these systems of 
personal constructs with repertory grids (RG). This technique is a 
form of highly structured interview, designed to assign relationships 
to personal constructs and given objects of discourse (Kelly, 1955). 
The repertory grid technique has been acknowledged for several 
decades as a reliable way to represent how learners think and help 
them represent their mental models explicitly (Bezzi, 1999; Ben-Zvi 
Assaraf and Orion, 2010; Rozenszajn and Yarden, 2015; Snapir et al., 
2017; Wu et  al., 2018). Previous studies have demonstrated the 
strength and validity of the RG as an effective tool for assessing 
learners’ conceptual models, providing valuable insights into the 
learning process, and identifying problems in understanding 
biological concepts (McCloughlin, 2017). Several studies have 
demonstrated the added value of the technique for assessing students’ 
conceptual models and system thinking abilities in the context of 
ecology (Keynan et al., 2014), biogeochemical cycles (Ben-Zvi Assaraf 
and Orion, 2010), and human body complexity (Ben Zvi Assaraf 
et al., 2013; Snapir et al., 2017).

Research question

This paper presents part of a larger study that examined the 
Duchifat 3 extracurricular project, in which high school students were 
involved in designing, building, and testing a nano-satellite. It 
addresses the following question:

What aspects of systems thinking were exhibited by the 
participants and how did their systems-thinking progress during 
the program?

Methods

Methodological foundation

This study is based on the qualitative research paradigm and 
utilizes a case study approach (Mills et  al., 2010). The context-
dependent knowledge that we glean from it takes into consideration 
the idiosyncrasies of the examined case, including its different 
elements, such as students, teachers, resources, and overall culture 
(Case and Light, 2011). As the data did not allow for a fully worked-up 

grounded theory, the main analytic method used in this work is 
thematic analysis (Braun and Clarke, 2006).

Research setting

This study examines a unique engineering education program, 
which involved high school students in the design and assembly of a 
fully functional CubeSat that was subsequently launched to space. 
CubeSats are a type of a very small satellite, based on a standardized 
unit of mass and volume (10 cm × 10 cm × 10 cm). CubeSats have been 
incorporated into education in several previous initiatives, but to the 
best of our knowledge, ours is the first study of a satellite building 
project conducted at a high school. One study, for instance, followed 
engineering graduate students while developing components such as 
antennae for inter-satellite communications (Martínez Rodríguez-
Osorio and Fueyo Ramírez, 2012). Another studied students from Cal 
Poly and Stanford, who were involved in developing the CubeSat 
standard (Lan et  al., 2006). These studies, however, are quite 
superficial, only briefly describing the programs and the authors’ 
impressions of them.

The program examined here is the Duchifat program—a CubeSat-
based program, which involves 12–18-year-old students in the task of 
engineering, integrating, and testing a satellite. The program was a 
joint endeavor by an extracurricular science center for high school 
students situated in a major city within Israel’s central urban area and 
a Southern Israeli high school. This study follows the construction of 
Duchifat 3, the third of a series of satellite-building extracurricular 
projects undertaken by high school students, focusing specifically on 
the participating students from this high school.

The Duchifat program was designed as a project-based learning 
experience. According to a recent review, PBL is the dominant 
educational paradigm used in interdisciplinary engineering education 
(Van den Beemt et  al., 2020). PBL in engineering education can 
expose students to core engineering competencies (Nguyen 
et al., 2020).

Research participants and program 
description

Participation in the program was voluntary and required students 
to be in the top 25% in their class in science, mathematics, and English. 
More than 20 students started this program, but only 15 students from 
the high school completed it. Thirteen of the who eventually finished 
the program also agreed to take part in this study. However, not all the 
participants in the study were able to complete all the research tools. 
The program had a high attrition rate, and the study demands proved 
to be too much for some of the participants who elected to drop from 
the research. The study was thus completed by only seven participants 
in total (Table 2). All names given in this paper are pseudonyms in 
order to protect the participants’ anonymity. Participants who did not 
finish all research tools but appear in some of the observed interactions 
are referred to as “student.” Because this study focuses specifically on 
the development of the participants’ systems thinking, we will focus on 
the case studies of four of the participants that exemplify the trends 
we  observed. A comprehensive and detailed description of all the 
participants would be well beyond the scope of this paper.
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The satellite designed in the Duchifat 3 program was a CubeSat—a 
satellite composed of 10 cm × 10 cm × 10 cm cubes that can be fitted 
with different components, which can be bought off-the-shelf from 
various companies. The satellite was designed as three cubes joined 
together (3 U) to create a 30 cm × 10 cm × 10 cm structure. Subsystems 
included an Electrical Power System (EPS), communications system, 
Attitude Determining and Control System (ADCS), On-Board 
Computer (OBC), and an RGB camera as the main payload.

Figures 1A,C show the satellite at the initial stage of testing upon 
its arrival at the school. The initial stage of testing, which consisted of 
turning the different subsystems on and off was conducted by some of 
the participants. The students worked in teams, participating in 
various aspects of the satellite’s design, as well as a number of design 
reviews. These reviews consisted of a preparation period of 2–3 weeks, 
where students prepared presentations of their work and were 
reviewed by staff and various experts. The preparations for these 
reviews and other learning activities entailed the analysis of system 
models and their construction. The modeling activities necessitated 
cross-level reasoning in order to consider subsystems and their 
components (which are subsystems themselves) and considering 
system characteristics, such as boundaries, input and output, 
components and their interactions. The systems engineer’s practices 
led to the implicit introduction of these strategies.

The students were also involved in the operation of the ground 
station that was created in the school (Figure 1D).

It is essential to emphasize that this program is an after-school 
program and that an expert systems engineer led the majority of the 
learning activities. The nature of the tasks necessitated verbal 
instructions, and the work was performed in line with the systems 
engineer’s implementation of industry practices and standards. 
Therefore, we are unable to provide the materials that would have 
been accessible if this program had been included in the 
standard curriculum.

Figure 1B shows a diagram of the satellite’s subsystems which the 
participants analyzed and used as a resource in their models of how 
the different subsystems interact in terms of both hardware and 
software. The analysis of this diagram entails considering system 
characteristics—identifying the components, how they connect with 
each other and their interactions, their input and output when 
considering them in terms of hardware and in terms of software and 

data transfer. Going into further details regarding the subsystems of 
these subsystems entails cross-level reasoning (for instance, how the 
reactions wheels, magnetometers and magnetotorquers interact and 
are controlled in order to implement the function of the ADCS). Some 
of the students took part in designing testing protocols and scenarios 
but testing the satellite itself was eventually conducted elsewhere and 
not by the participants. The satellite was eventually launched from 
India, onboard the PSLV C-48, on December 11, 2019.

The program began with a semester of preparation, in which 
lecturers from various universities conducted weekly classes to 
provide the students with an introduction to the topic of satellites 
(Millan et  al., 2019). The students were then divided into teams 
(according to their preference and field of interest) and assigned to 
work on various components of the larger project, under the guidance 
of expert scientists or engineers. At the program’s early stages, the 
project was guided by a physics PhD student who was in the final stage 
of his degree. After that, the students were supported by a computer 
science student in the last year of his first degree and mentored by a 
professional systems engineer with experience in the space industry. 
Teachers from the school were also involved with the project at 
different stages. Their roles were to head the establishment of the 
ground station in the school, teach and mentor the students and 
coordinate with the outside experts. Each team of students also 
independently studied relevant topics, such as the conditions in space 
that might be  relevant to their mission, the satellite’s optional 
components, and other subjects as they became relevant. For a 
detailed description of the program and its contents, see Table 3.

Although the original program planned for the participants to 
take part in programming the satellite, the participants described in 
this paper did not take part in that aspect of the project. They did 
study some programming and the algorithms of the satellite’s software 
in relation to the various subsystems, but did not participate in writing 
any code.

The participants mainly focused on learning the scientific 
background, researching the components and subsystems, and 
presenting the design to various stakeholders in several design 
reviews. The design reviews entailed producing models of the satellite 
at different levels of organization, from the single component (e.g., 
reaction wheels) through the subsystem (e.g., the ADCS) to the 
satellite as a whole (e.g., input and output of the entire satellite system). 

TABLE 2 Details of participants that finished all research tools.

Name Gender Grade at start of project Other electives Position in project Remarks

Andy M 11th Physics CEO and head of ADCS

Michael M 11th Physics Head of EPS

Adam M 10th Physics (switched to 

mechatronics later)

EPS team member Research project in Biology involving 

remote sensing

Diana F 10th Physics ADCS team member Joined several months into the 

project

Sarah F 10th Art Communications team 

member

Joined several months into the 

project

John M 10th Physics Head of communications Ham radio enthusiast. Research 

project in physics that was related to 

communications

Morton M 10th Mechatronics EPS team member
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They were explicitly asked to consider the boundaries at each scale, 
the input and output, unintended consequences, system requirements 
and constraints research tools.

Repertory grid

We used the repertory grid twice—once during months 1–2 of 
the program and again after month 16 (Table 3). Using the repertory 
grid allowed us to explore how the participants understand certain 
terms relevant to their project, subsystems in the satellite, and the 
various relationships among them. This allowed us to determine the 
level of sophistication in the participants’ understanding of these 
concepts and their level of systems thinking. Comparing their 
sophistication level at the beginning and end of the program can 
illuminate the process that the students went through while 
participating in the project, (i.e., whether their understanding of the 
subject matter changed and whether they made any progress in their 
systems thinking).

The building blocks of the RG are elements (the topics of study 
within the domain of the investigation), constructs (the participants’ 
ideas about these elements), and ratings (relations among elements 
and constructs as viewed by the participants). Elements can either 
be  supplied by the researcher, or elicited from the participants 
themselves (Latta and Swigger, 1992). In this case, they consisted of a 
list of terms obtained after consulting several academics and 
industry experts.

Each provided a list of 15–20 terms that they deemed most 
important for a student participating in such a project to 
understand. These lists were pooled together, and each term 
received a numeric score based on the number of times it occurred. 

The 15 top-scoring terms were gathered into a new list of terms: 
ADCS, communications, launch, remote sensing, EPS, flight 
software, rockets, structure design, thermal control, solar panels, 
payload, orbit control, tests and integration, space environment, 
telemetry, and command. These elements represented all the 
subsystems within the satellite (ADCS, EPS, etc.) as well as parts of 
those subsystems (solar panels). The list also contained processes 
(structure design, thermal control, etc.), elements that are 
peripheral to actual satellite-building (launch, rockets), and 
non-physical elements (flight software).

Constructs represent the participants’ interpretations of the 
elements and the relationships between them. This study employed 
the most common method of eliciting constructs, the triadic elicitation 
process, in which the participants are asked to compare three elements 
and describe in what ways two are similar to one another and different 
from the third (Hunter and Beck, 2000; Edwards et al., 2009). Each 
participant drew eight triads for every RG interview.

From these descriptions, we  extracted a short sentence to 
represent the construct that was reflected by the participant’s 
explanation, using the participant’s own words as closely as possible. 
These were then used to create a bipolar description relating to the 
components of the investigation. For example, a student may say that 
the ADCS and EPS are both subsystems in the satellite while the space 
environment is not. From this, the researchers would deduce the 
construct of a subsystem/not a subsystem in the satellite.

In the second stage, the participant received a large table 
containing all the elements (terms), one in each column, and the eight 
constructs, one in each row. They were then asked to rate, on a scale 
of 1–5, the strength of the relationship between each term and each of 
their constructs, where 1 represents the strongest relationship and 5 
the weakest. For example, regarding the construct of a subsystem/not 

FIGURE 1

The Duchifat 3 CubeSat during initial tests, the ground station and a diagram representing the satellite’s subsystems.
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a subsystem, a student may indicate a high relation (1) for the term 
“communications,” and a low relation (5) for the term “launch.”

The three building blocks, (elements, constructs, and ratings) were 
mapped onto a grid using Rep Plus v1.1 software. This software 
calculates correlations between the elements as well as between the 
constructs based on the participant’s ratings, and presents grids of 
relations that demonstrate how similar the participant perceives them 
to be. The more similar the ratings are for two constructs or two 
elements, the higher they are correlated by the program. An example 
of such a grid with its explanation is given in Figure 2.

In the top part of the grid the two polars of each construct are 
written on opposite sides of the table, which shows the ratings given 
by the participants. The scale above the constructs on the right side 
indicates the degree of similarity between the constructs based on the 
point at which they branch out. The list of elements is written on the 
bottom and organized by the degree of similarity which is indicated 
by the point at which elements branch out. Thus, the more similar a 
participant perceives two elements to be, the closer they would be to 
each other. For further explanations of the method see Rozenszajn 
et al. (2021).

Observations

Participatory observations were carried out throughout the 
program by the first author, and audio recordings of several of those 
observations were transcribed verbatim by a research assistant. One 
major activity, where students were preparing for a preliminary design 

review by producing a presentation that described the proposed 
software architecture, was videotaped and analyzed.

Analytic process

The data presented here were discussed by the authors throughout 
the analytic process until we were able to reach a consensus. The first 
author was deeply involved with the project and took part in most 
activities—both documented and undocumented. In essence, 
he performed participant observation—a central method in cultural 
anthropology, in which the researcher takes part in a group and 
participates in its daily activities, interactions and events (DeWalt and 
DeWalt, 2011). Doing this allowed the first author to gain an extensive 
familiarity with the participants. The other researchers had only a few 
very brief encounters with the participants. These different 
positionalities allowed us to gain an in-depth understanding of the 
participants and their experience, while ensuring the validity of our 
interpretation of the data.

Repertory grid analysis

Each of the seven participating students produced two 
repertory grids—one pre and one post—representing the 
constructs arising from their descriptions of the elements they 
had picked and the relationships between them. We  then 
compared the grids from the end of the project with the ones 

TABLE 3 Description of the program.

Month Engineering content Scientific content

1–2 Opening sessions - background and expectation coordination.

3–4 Group work to learn about satellite specifications Study of space environment and conditions such as temperature, radiation, etc.

5–6 Preparation of preliminary design review (PDR) Power and supply of different subsystems.

Defining constraints Solar energy

Defining specifications and demands Mechanics and angular movement (Inertia moment, center of mass, and reaction 

wheels)

Devising alternative solutions for the satellite’s mission Electromagnetic signals, radio waves and radio communications, communications 

balance, receiver and transceiver, antennae, and frequencies

Devising alternative solutions to different problems and mission needs, 

and the system’s architecture

Thermal aspects, thermodynamics, and structural integrity

Devising solutions for the satellite’s algorithms Remote sensing fundamentals

6 Presenting PDR in front of extended staff and various stakeholders

7–8 Preparation of Critical Design Review (CDR) Electricity balance

Choosing the most suitable solutions

Determination of the satellite’s configuration

Determining the final design

9 Presenting the CDR in front of extended staff and various stakeholders

10–16 Integration review—Integration of subsystems Writing test protocols for the different subsystems and their integration

Preparing test protocols

Various tests and QA (Some of the participants conducted preliminary 

tests upon the satellite’s arrival)

Determining EPS algorithm parameters

The timeline spanned two school years, excluding summer vacations.
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from the early stages, which allowed us to infer the development 
of each participant’s perceptions regarding these terms. In the 
second stage of analysis, the elicited constructs were grouped into 
primary categories according to SBF theory (Hmelo-Silver and 
Pfeffer, 2004; Goel et  al., 2009). We  used the SBF model to 
determine the level of sophistication of the understanding 
exhibited by the participants (Table 4).

This categorization process was conducted separately and 
discussed by the researchers until a consensus was reached.

Results

Systems thinking

We analyzed the participants’ answers in the first stage of the 
repertory grid, assigning each construct to either the structure, 
behavior, or function category. The results are presented in Figure 3.

Overall, participants demonstrated varying degrees of change in 
their system thinking. As Figure  3 shows, most participants had 
constructs categorized as functions even at the start of the program. 
An exception to that is John who had no functions in either occasion, 
while Sarah moved from having none at the first to having two at the 
end. Interestingly, we found that the participants’ system thinking 
development was dependent on the roles they assumed in the program 
and on how broad their involvement was with the project. We illustrate 
this point below using four representative case studies. However, it is 
important to stress that the other three participants exhibited the same 
pattern and were not included for the sake of brevity.

John’s case
John was a gifted student who was also a ham radio enthusiast. 

He skipped a grade in primary school and was involved in an advanced 
mathematics program in one of the Israeli universities. He served as 
the head of the communications team and managed the ground 
station which was built in the school. He was very involved with the 

FIGURE 2

An exemplar repertory grid from the beginning of the study.

TABLE 4 Examples of how structures, behaviors and functions are displayed in the repertory grid interview.

SBF model Elaboration Exemplar construct

Structures Referring to the solar panels or one of the satellite’s subsystems 

as components.

Similar elements: solar panels and EPS, distinct element: orbit control.

“The solar panels and EPS are important parts of the electricity system, while orbit 

control is not directly related.”

Behaviors Referring to the necessity of electricity provided by the EPS for 

the other subsystems to work, or to how certain subsystems or 

components operate.

Similar elements: T&C, EPS. Distinct element: payload.

“EPS provides electricity to the satellite and T&C tells it what to do with the 

electricity.”

Functions Stating that the communications system is supposed to transfer 

telemetry from the satellite to the ground station and 

commands from the ground station to the satellite.

Similar elements: communications, T&C. Distinct element: structure design.

“The communications system is in charge of transferring T&C from the satellite to the 

ground station and commands from the ground station to the satellite”
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communications aspect of the project, but refrained from involving 
himself in any other system and refused to delve into programming, 
which the students were encouraged to do. He was one of the few 
students who were able to finish their research projects, which also 
focused on satellite-ground station communications. Thus, John was 
deeply involved with a narrow aspect of the project.

In his first repertory grid (Figure 4), John referred primarily to 
structures, but also to some behaviors. For instance, he said that “T&C 
is bidirectional [from the earth to the satellite and vice versa], while 
the launch and ADCS is only leaving the atmosphere.” He implicitly 
considers the boundaries of the earth and satellite systems and their 
input and output. However, even though he referred to the behavior 
of the communications system, and implicitly considers system 
characteristics he did so in a perfunctory way. In the second repertory 
grid (Figure 5), all of John’s constructs were categorized as structures. 
He said, for instance, that the “EPS is a system in the satellite while 
structure design and launch are stages in getting the satellite into 
space.” He  did not refer, however, to the importance of structure 
design in withstanding launch (which might have been considered a 
function). He could also have considered the EPS as a component 
which plays a major role in the process of structure design but did not 
do so. In another answer, he said that “the ADCS and the payload are 
both systems in the satellite, while tests and integration are a stage in 
the satellite’s development.” In doing so, he  disregarded possible 
non-structural connections between the elements, like the function of 
the ADCS in allowing the payload (RGB camera) to perform its 
function. Moreover, although he referred to the ADCS and payload as 
systems, he  did not exhibit meaningful consideration of system 
characteristics. All in all, John did not show any progress in his 
perceptions of the complexity of the system, and maybe even regressed 
in that regard. He  went from mentioning a few behaviors at the 
beginning of the project to only referring to structures at the end.

When comparing the grid maps, we can see that in the first, the 
most related elements in his eyes were thermal control to 

communications, structure design and space environment, and 
remote sensing and orbit control (Figure 4). However, in his second 
repertory grid, he considered flight software, payload, and solar panels 
to be identical in terms of their ratings (Figure 5). His ratings show 
that he  rated all three in the highest degree of relation to all his 
constructs. However, we  would expect that at least in relation to 
outside/inside the satellite, some discrimination between the three 
would be evident. Thus, here he exhibits a lack of consideration for the 
system boundaries.

This lack of nuance seems to suggest a lower degree of complexity 
in John’s understanding of the satellite as a system. The appearance of 
elements perceived as identical in the second grid also suggests a lack 
of progress, if not regression, in his systems thinking. Not only did 
he  not explicitly consider system characteristics, it seems that his 
previous implicit consideration for system boundaries and input and 
output was lacking in his second repertory grid. This is corroborated 
by the results from analyzing his constructs through the SBF model.

The high relatedness of communications to structure design is a 
bit puzzling as well, since there is no reason to relate those two 
elements closer than any other subsystem. This may indicate the 
centrality of communications in his eyes, since he dealt with that 
subsystem almost exclusively. Since structure design involves all the 
subsystems and their components this can also be attributed to his 
lack of cross-level reasoning, where he  did not understand the 
relationships between different levels of organization.

As mentioned before, John was quite involved with the project 
and was a gifted student who achieved advanced learning goals. 
We therefore feel safe in determining that the reasons for his lack of 
progress with regard to systems thinking are a result of neither 
cognitive difficulties nor lack of engagement. His narrow focus on the 
communications aspect was evident not only in his choices (i.e., 
focusing only on communications and avoiding any other aspect like 
programming, and his choice of research project), but also in our 
observations of him during the learning process. In an activity where 

FIGURE 3

Participants’ construct distribution.
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the students were producing several models of the software 
architecture, software demands, and the relationships between 
subsystems at various levels, he  was expressive only when the 
communications system was very explicitly brought up. He was quiet 
throughout discussion of the ADCS system, in which students from 
various teams participated, but as soon as the communications came 
up, he became very vocal:

Teacher: What goes into the TxRx?
John: Commands are going in.

Teacher: Commands?
John: Like, input… all sorts of input go in, noise.
Teacher: What goes out?
John: A receiving signal, roger, acknowledged.

This exchange went on exclusively between John and the teacher, 
where John displayed a comprehensive familiarity of the 
communications system. However, when the communications 
system’s relations to other systems came up, John became less sure of 
himself, and other students became part of the discussion:

FIGURE 4

John’s first repertory grid.

FIGURE 5

John’s second repertory grid.
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Teacher:  What else goes into this system? Not necessarily from the 
outside, but from the inside as well?

John: Electricity.
Teacher: No, that’s not a system capacity.
Andy: Its capacity is to relay commands.

Here we see an example where Andy, who is the head of the ADCS 
team, gets involved in the discussion regarding the communications 
system. This behavior was displayed by Andy throughout our 
observations of him, but was not displayed by John. John’s reluctance 
to involve himself with any other aspect of the project other than 
communications was very noticeable throughout our observations. 
Since he  did not take an active part in considering how the 
communications subsystem relates to other subsystems, thereby also 
not thinking about the satellite at higher levels of organization, it may 
not be surprising that his systems thinking did not show progress. 
Andy, who we describe next, showed quite the opposite tendencies.

Andy’s case
Andy was a very active student in the project. He started as the 

head of the ADCS team. During the program, the students assumed 
the roles of a quasi-independent organization and Andy was chosen 
to serve as CEO. He involved himself with all aspects of the project, 
communicated with all teams and was active in representing the 
project and school to visitors. He chose not to complete his research 
project, which was supposed to be related to the testing and integration 
of the satellite.

Andy had representations of all the categories in both repertory 
grids. For instance, when he explained the connection he saw between 
the EPS and the solar panels in the first repertory grid (Figure 6), 
he said: “both terms are related to the EPS. One is the EPS itself and 
the solar panels are part of the EPS.” He noted the hierarchy between 
the two elements, and identified the different levels of organization but 
not their relationship in terms of their functions or behaviors. In 
another triad, he said that: “T&C is an ability the communications 
system can perform.”

He thus referred to the behavior of the communications system, 
if only in a perfunctory way. He was also able to consider functions: 
“The solar panels generate electricity with which you can send T&C 
to the different systems.” He considered the function of the solar 
panels and connected the generation of electricity to handling T&C.

In his second repertory grid (Figure 7) Andy described more 
functions, but perhaps more importantly, his reasoning seemed more 
complex. For instance, he said: “The EPS operates different systems in 
the satellite. It activates wheels and other things. As a byproduct, it 
causes the satellite to heat up and the thermal control moderates that 
phenomenon.” Andy’s description here goes beyond merely noting 
two elements that affect one another. He  considered unwanted 
consequences of certain elements through a series of connections. 
He was also aware that solutions are not complete, since he used the 
word “moderates,” and not “solves,” for example. He also identified 
causal relationships between different levels of organization of 
subsystems, subsystems’ components and their relation to physical 
processes such as the buildup of heat. Andy’s recognition of cause and 
effect as a series of couplings (EPS–reaction wheels–thermal control), 
and his concern with the regulation of excess heat, which suggest he is 
taking the dynamics of the system into consideration are indicative of 
progress in his systems thinking. We  can also see various related 

elements in his grid, but no identical elements, as opposed to John. 
This demonstrated a high resolution in his thinking. For instance, 
remote sensing and payload could have been considered identical by 
participants, since their payload was a camera, yet Andy makes a 
distinction between the two.

In an activity where the students had to represent their systems in 
different levels of organization, Andy tried to figure out how the 
remote sensing system was represented (even though he was in the 
ADCS team). He  spoke to another student about the remote 
sensing system:

Student: What’s this whole thing on the board?
Andy:  That’s the system. Actually, that’s level 2, which begins at 

the…first level. Actually, that’s the whole satellite. So, what’s 
level 0?…

Andy: So, what are we doing? Imaging?
Student: Yes, that’s in the camera.
Andy: And where does it go? Here?
Student: Yes, and then it goes out, image data.
Andy: What goes out?
Student: The image data, the index, I do not know.
Andy:  What do you mean you do not know? You took an image, 

what data do you have?
… I’m asking because I do not know. I want to know… So, I’m 
guessing what the image data is, maybe it’s its size, date, time…

As in the previous instance, where Andy involved himself in the 
communications system discussion, here he involves himself in the 
remote sensing system. He is asking questions, thinking across levels 
when considering different levels (“that’s the whole satellite, what’s 
level 0?”), trying to identify connections and making educated 
guesses. His tendency to initiate discussions with other teams, 
thinking about other systems and not only his own, may have 
contributed to the development of his systems thinking.

Sarah’s case
Sarah was a gifted student who joined the program (on the 

communications team) 2 months after it began. She wrote a research 
proposal that was accepted in computer science which would have 
been equivalent to a full matriculation exam. Her research proposal 
dealt with trying to develop an algorithm that could use the input 
from the camera to determine the satellite’s attitude and position. 
She made progress on her project but chose not to finish it. 
However, she did a lot of research into the ADCS and remote 
sensing parts of the project, as well as programming in 
MATLAB. Sarah was involved with various aspects, but put less 
time into the program than other participants. Still, she was able to 
display a marked progression in her systems thinking. Our 
recording of a communications assignment in which she 
participated showed her to be  very active, demonstrating 
understanding and engagement. The communications team were 
modeling their system by creating a 2D representation:

Sarah:  Let us move that up and connect this. Now let us move to 
the manager. Let us see, it connects to these two, does not it?

Student: Yes.
John: The manager goes to…
Sarah: Both through here and here.
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Despite joining the project late, Sarah was quite involved with her 
team, as we can see from her making suggestions and observations 
regarding their model. On other occasions, we observed her helping 
other teams. She also wrote a reasearch proposal for a five-point CS 
credit, where she was planning on designing a star sensor as part of an 
ADCS system. She started working on her personal project for quite 

some time, but was unable to finish it. Thus, she did not limit herself 
to the sub-system team she initially joined, but was broadly involved 
with other aspects of the project.

When analyzing her constructs through the SBF framework, 
we  can see that she showed marked advancement in her systems 
thinking, from focusing on structures to focusing on behaviors and 

FIGURE 6

Andy’s first repertory grid.

FIGURE 7

Andy’s post repertory grid. The left side constructs are truncated for the sake of readability.
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functions. For instance, in her first repertory grid, when explaining 
why space environment is less related to ADCS and communications, 
she states: “space environment refers to the position [of the satellite]” 
(Figure 8). In her post repertory grid (Figure 9), on the other hand, she 
addressed the control flows, feedback loops and dynamics of the 
satellite. For instance: “There are times when there is no communication 
with the satellite and the flight software compensates for that.” Thus, 
she is considering system characteristics in her reasoning.

Her pre vs. post repertory grids show a shift from considering 
simple relations, such as “related to the satellite’s orbit,” to more 
complex interactions in the form of her construct: “related to the fact 
that space environment determines the orbit.” She also referred to 
various control processes in her post grid, which were lacking in the 
pre grid. This shows development of her systems thinking, even 
though she spent less time on the project. As a byproduct of her lower 
consistency in attending the group sessions, she was involved with 
various teams and aspects of the project, and that may have 
contributed to her systems thinking.

When describing her research proposal in her reflective interview, 
she said:

At the beginning I wanted something else, to examine something 
else related to images of stars. That would have required much 
bigger images, not like the ones from our satellite. I was trying to 
come up with something else and then I read a few interesting 
papers about the use of star sensors. I got very excited and if 
we can determine not only the attitude of the satellite but also its 
position. I saw this method that also uses Earth sensor. I thought 
I might be able to combine them and use a star sensor instead of 
the Earth sensor. We’ll see if it works.

This too reflects how she further broadened her interests beyond 
what her team, communications, focused on. Even though she was not 
able to complete her project, her research in the context of writing a 
proposal exposed her to various aspects of ADCS features and 
remote sensing.

Adam’s case
Adam was part of the EPS team. At the project’s outset, Adam 

displayed a lack of confidence in his ability to contribute. He had some 
misgivings regarding his ability to participate, and especially to carry 
out a research project.

Q:  If we are talking about questions, do you expect any difficulties 
[in the project]?

Adam: Sure, it is not easy, this satellite thing.
Q: Why is not it easy?
Adam: Cause it is a lot of stuff.
Q: What do you mean a lot of stuff? Like what?
Adam:  All the studying, we are just joining this, it is not as if 

we have knowledge to begin with.
Q: How is that any different from any other subject?
Adam:  You  need to do research here. It is not as if you  have 

material you  need to study. You  need to research 
by yourself.

Q: What do you mean by research?
Adam:  This whole satellite programming, the EPS, we need to 

study it, we do not know what it is. It is not like a teacher 
already knows it and just explains the code to us. We’re 
studying it together from the beginning.

Q: Do you think that will be hard for you?
Adam: Yes.

Adam took part in the various activities and group tasks 
we observed. He was never the most prominent member in the team, 
and other members demonstrated more involvement and leadership 
in the teamwork. However, the subject he  chose to study in his 
personal research project was quite different. He studied dynamics of 
algae in a freshwater lake (the sea of galilee) using remote sensing. His 
research project was equivalent to a five-point matriculation exam in 
biology and received a very high mark (97%). Thus, he studied remote 
sensing in addition to his part in the EPS team. Moreover, he had the 
opportunity to deeply explore another complex system in the context 

FIGURE 8

Sarah’s pre repertory grid.
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of ecology. In the reflective interview at the study’s later stages, his 
attitude toward his ability to carry out a research project was 
completely changed, and he was very confident in that regard.

Adam’s pre repertory grid (Figure  10) reveals several 
misconceptions. For instance, he regards solar panels as very closely 
related to thermal control, perhaps because of his perceptions of their 
relations to the sun. When considering the triad of “space 
environment,” “solar panels” and “communications,” he considered the 
first couple to be more related, saying “there is no connection between 
the sun and communications.” This argument corroborates the 
importance he assigns to the sun’s influence. In his post repertory grid 
(Figure 11) this association does not exist.

Another interesting point is that the payload is quite far removed 
from other satellite systems in his first repertory grid. In the post 
repertory grid, on the other hand, he recognizes the payload as being 
more closely related to the other systems. The second repertory grid 
shows that Adam perceives the various subsystems as closely related, 
while still making high resolution distinctions between them. It also 
shows how the complexity of his constructs has increased. 
He  considers the function of the thermal control and unwanted 
consequences of its hypothetical lack of function (“Related to the fact 
that without thermal control the satellite will be ruined”). He generally 
pays more attention to the functions of the different subsystems, 
instead of mainly referring to them as components (structures) only.

FIGURE 9

Sarah’s post repertory grid. The left side constructs are truncated for the sake of readability.

FIGURE 10

Adam’s pre repertory grid.
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Discussion

Understanding complex systems is known to be  difficult for 
students at various stages of their education (Hmelo-Silver and 
Azevedo, 2006; Schneeweiß and Gropengießer, 2019) and our findings 
support this. At the early stages of the program, the participants’ 
personal constructs demonstrated a low level of sophistication in their 
systems thinking. Although they seemed to understand the terms they 
were given in the repertory grid interview, their constructs revealed a 
relatively simple understanding of the satellite as a system. In contrast, 
by the program’s end, most participants showed varying degrees of 
progress in their systems thinking, and for some participants, a much 
deeper understanding of the satellite as a system. All the participants 
were very capable in terms of cognitive abilities. Thus, despite the fact 
that systems thinking is a higher-order thinking skill, cognitive 
capacity cannot explain the observed disparities in systems-thinking 
development. The varying levels of systems-thinking growth could not 
be explained by the amount of time spent working on the project 
either. These two themes are best shown by John, who was both 
cognitively adept and devoted a great deal of time to his work on the 
communications team, but displayed very little systems-
thinking growth.

What seemed to explain the differences was the breadth of the 
different participants’ involvement, rather than other possibilities, like 
level of engagement. By breadth of involvement, we mean the degree 
to which a certain participant was involved with the various aspects 
of the project. In other words, the contributing factor was not whether 
a participant was deeply involved with the program, but rather how 
many different aspects he or she was involved with.

Involvement with several subsystems allowed students to better 
identify and understand interrelations between the subsystems, 
feedback loops (for instance, how the ADCS relies on the EPS to 
maintain the satellite’s attitude and in turn affects the power generation 

of the solar panels), and dynamic interdependencies. Furthermore, 
they were able to better identify the intended purpose of their 
subsystem in relation to other subsystems, which may have 
contributed to their identification of behaviors and functions in the 
system rather than only structures. All of these abilities characterize 
proficient system thinkers (Table 1).

The program designers’ reason for focusing the students on 
narrow roles was to enable them to successfully accomplish the goals 
of the program without formal engineering education (Millan et al., 
2019). However, our study suggests that, with respect to the 
development of systems thinking, this may be counterproductive. 
Some might argue that in order to foster the development of systems 
thinking, education programs need to expose students to a wide 
variety of ideas and practices in different disciplines (Brookes, 2017). 
Indeed, systems thinking has been suggested to be closely linked to 
multidisciplinarity, problem-based learning, design and the 
management of risk and uncertainty (Milke, 2017).

People with a great depth of knowledge in a single area are 
referred to as “I-shaped,” which can describe most engineering 
graduates. People with some knowledge in many areas are “dash 
shaped.” The combination of the two is called “T shaped,” meaning 
someone with deep knowledge of one field with broad familiarity with 
other fields. There are quite a few studies that discuss the benefits of 
T-shaped education in fostering systems thinking approaches, but 
most of them advocate for initial specialization followed by acquiring 
broad skills, also known as soft skills (van den Beemt et al., 2020). This 
is the common route of first gaining deep expertise in a single area 
during one’s studies while gaining a broad knowledge in many areas 
during one’s career as an engineer (Boehm and Mobasser, 2015; 
Brookes, 2017).

However, there is a recent approach that suggests that not only 
should engineering graduates be T-shaped, but also that engineering 
programs can start by giving the students a broad education before 

FIGURE 11

Adam’s post repertory grid. The left side constructs are truncated for the sake of readability.
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going deep into one area (Boehm and Mobasser, 2015). Our results 
suggest that even at the high school stage, students may benefit from 
a broad engineering education, and that the approach of forming 
teams of “experts” in programs like the one studied here may need to 
be reconsidered. Still, there remains a question of what may be the 
underlying mechanisms that can explain the pattern we observed. In 
other words, why did students who were more broadly involved with 
various aspects of the project developed a more sophisticated systems-
thinking in the context of the satellite? We  suggest that broader 
involvement may have provided more opportunity to engage in 
practices that foster systems-thinking development.

Under the guidance of the systems engineer, the participants in 
this study were very involved with models of the satellite, which 
consisted of 2-D representations of the various levels of organization—
from the whole satellite, through its subsystems, down to the 
individual components of that subsystem, as well as the physical 
characteristics of the space environment (radiation, temperature) and 
micro scale processes such as power generation through the solar 
panels. The practice of modeling was a major part of the participants’ 
work in preparation for the design reviews, as can be  seen in 
our results.

Central artifacts of model-based engineering education are 
conceptual models of complex systems, which build a common 
language between the scientific education and engineering education 
communities by modeling natural or artificial systems (Lavi and Dori, 
2019). Modeling is part of scientific reasoning and enables 
comprehension of complicated systems by employing simpler 
hypothetical systems that, in certain respects, resemble the complex 
system they represent. Knowledge about the model is converted to 
knowledge about the phenomenon (Krell et al., 2019).

Modeling can help students better understand the dynamics of a 
system and integrate knowledge about it (Wilson et  al., 2020). 
Modeling while studying complex systems allows students to evaluate 
the system’s properties and to express its complexity by depicting the 
relationships between its components while iteratively revising them. 
The model revision process allows students to think about the system 
in new ways (Bielik et  al., 2022). The use of models in education 
consists of two central parts: models that communicate scientific or 
engineering content to students, and modeling done by students to 
gain insight (Upmeier zu Belzen et  al., 2019). The latter mode of 
modeling, which was evident in our observations, is instrumental in 
making students’ understanding visible, helping students organize 
their ideas, and facilitating constructive and collaborative discussion 
(Hmelo-silver et al., 2017; Bielik et al., 2021). It allows students to 
engage in inquiry practices by gathering data, generating hypotheses, 
and testing them (Hmelo-Silver et al., 2015).

However, the modeling the participants were engaging in 
consisted of constructing 2D-representations of the satellites systems 
and components. The fact that they were ultimately unable to test their 
models may have well been a factor in hindering the development of 
more sophisticated systems thinking. Studies show that modeling has 
multiple cognitive benefits in terms of scientific reasoning and 
understanding (Louca and Zacharia, 2012). However, an important 
part of modeling is testing the model, revising it and validating it 
(Bielik et al., 2021; Nielsen and Nielsen, 2021), activities which were 
lacking in this case. This illustrates the importance of professional 
development for educators of metamodeling knowledge as Bielik et al. 
(2021) point out.

Gilissen et al. (2019) have described several system characteristics 
that are relevant to complex systems in nature. These characteristics 
include components, interactions, boundaries, input and output, 
hierarchy, emergence, feedback loops, and dynamics. Although many 
of the complex systems characteristics may be  addressed by 
generating 2D representations, some may not be. For instance, the 
dynamics of a complex system in terms of changes in time and space 
may not be addressed by static representations (Hmelo-Silver et al., 
2015). Feedback loops, which also contain a time dimension, can 
be  only partially represented in static models. Modeling in this 
program was also done mostly with a reductionistic approach where 
each system was modeled by dividing it to subsystems, while less 
attention was given to how subsystems interactions may give rise to 
emergent properties. Thus, it may be worthwhile to employ software 
that will enable students to create dynamic models that will allow 
them to explore the system’s changes over time, emergent properties, 
and other system characteristics in a more meaningful way.

Depending on their goals, models represent a subset of the parts 
of the modeled item. They must reflect certain facets of the examined 
phenomena and be  utilized to produce predictions. Models are 
evaluated by comparing their predictions with data from the real 
world and changing them as necessary (Krell et al., 2019). In this 
program, the students did study the parts that were needed to 
be modeled and were used to predict the functioning of the satellite. 
The testing period could have served as a means of comparing the 
model to the real world and revision of the model, but unfortunately, 
most of the testing was not carried out by the participants, hence 
we cannot remark on the meaningfulness of that phase in terms of 
systems thinking development.

While the participants were involved in modeling, they also 
engaged in thinking across levels of organization, which fosters 
systems thinking (Ben-Zvi Assaraf and Knippels, 2022). Weintrop 
et al. (2016) identify cross-level reasoning as core to systems thinking 
(though they call this “thinking in levels”). Systems can be understood 
by analyzing different levels of organization from the micro scale to 
the macro scale. Different insights can be gained from examining 
different levels, which can lead to a better understanding of the 
emergent characteristics of the system as a whole (Weintrop et al., 
2016). Challenging students to reason between various levels of 
organization has been shown to improve systems thinking (Verhoeff 
et  al., 2018; Gilissen et  al., 2021). Thus, it may be  the case that 
participants who modeled more subsystems, thereby also utilizing 
thinking across levels more than participants with a narrow focus, 
were able to make more progress in their systems thinking. This is in 
accordance with Bielik et al. (2021), who suggest that repeated use of 
models in different contexts fosters systems thinking.

Another relevant suggestion is to constantly revisit the level of the 
whole system. While working on specifics, students may get bogged 
down in detail and lose the bigger picture, as some of the students in 
this case might have done by focusing only on the subsystem they 
were initially assigned to. Deliberately encouraging students to 
reconsider the satellite as a whole may be an important guideline for 
complex engineering projects such as the one presented here. Bielik 
et al. (2022) stress the need to revisit the overarching phenomenon, 
since students can easily lose the big picture of what they are modeling, 
and our findings seem to support that recommendation.

A final aspect of the program was the use of explicit systems 
language by the systems engineer, as we  saw in our observations. 
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Under his guidance, the students were asked to consider the system 
components and the interactions between them, input and output, 
system boundaries at various levels of organization, unintended 
consequences, and the dynamics of the systems. Systems language is 
the explicit use of terms that refer to system characteristics. Proponents 
of this strategy contend that when teaching about complex systems 
and encouraging system thinking, teachers should make explicit use 
of systems language and encourage their students to use that language 
explicitly (Eberbach et al., 2021). Deconstructing a phenomenon to its 
characteristics and discussing them explicitly has been shown to help 
clarify it for both students and teachers (Klein and Zion, 2015). Jordan 
et al. (2013) showed that exposure to systems language helps students 
in their explanations by linking multiple ideas and improving their 
explanations’ sophistication by enriching references to invisible 
elements. The use of systems language seemed to have been a natural 
tendency as a result of the instructor’s experience as a systems 
engineer. An engineering teacher who lacks such experience may need 
to consciously incorporate the use of systems language, since such use 
supports the development of systems thinking (Fick et al., 2022).

Nguyen and Santagata (2021) have shown that the teacher’s 
prompts greatly affect how middle school students respond when 
asked about connections in systems. The language teacher’s use is 
adopted by students, not only in their discussions with the teacher but 
also in their group discussions without the immediate presence of the 
teacher, thus assisting their understanding of systems (Hmelo-silver 
et al., 2015). However, since instructors with no experience in systems 
engineering may not utilize systems language as naturally as the 
engineer in our program did, program designers need to consider how 
to deliberately incorporate this language into instruction.

Reflecting on the body of work we have included in Table 1, there 
are several themes that are involved in systems thinking. We have 
observed the implicit use of some of the themes by the systems 
engineer such as the analysis of systems’ elements and relationships, 
consideration of feedback loops and cross level reasoning to a certain 
degree. Some attention was also paid to the dynamics of the system, but 
since there was no dynamic modeling, or testing done by the 
participants, it was limited. Moreover, other themes such as emergence 
was not evident in our observations. A dynamic model of the satellite, 
which could be built from physical components that are not intended 
for use in space, could be very affordable considering the overall budget 
of such a program. Such a model which could be tested by students, 
experimented upon and manipulated, could serve as a very meaningful 
scaffolding for fostering systems thinking. Emergence (Table 1) could 
be made evident in terms of understanding how the behavior of a 
system arises from the interaction of its agents over time (Sweeney and 
Sterman, 2000). Generalizations (Table  1) could be  achieved by 
comparing the model satellite to the satellite itself which could facilitate 
observing the system from a generic viewpoint—looking for similarity 
between the system and other systems (Gero and Danino, 2016). 
Dynamic relationships (Table 1) could be made more explicit by using 
the model to identify different types of procedural sequences—linear, 
divergent, convergent, and looping (Lavi and Dori, 2019).

This study has some limitations. The number of participants who 
were able to finish all research tools is quite small. The program 
studied here is a very demanding program for students. There is a 
natural attrition as a result from the participation in the program itself. 
The research tools used add to that attrition and result in a low 
completion rate. Since this is a unique program, this study may present 

a challenge to replicate. We certainly acknowledge that the pattern 
observed here requires more evidence, but we think it is interesting 
and important enough to be relevant to most engineering educational 
programs and any other program that involves the approach of 
assigning students to narrow roles.

In sum, we suggest that the instinctive use of various strategies 
by the systems engineer had the potential to facilitate the 
development of the students’ systems thinking. However, for that 
to take place, students need to be involved with various aspects of 
the system, in order to engage with the system from different 
aspects and through different lenses. This broad view may 
be  achieved through students assuming broader roles in 
engineering projects, or by engaging in different learning activities 
that research projects can provide. Moreover, since not all learning 
programs can involve expert system engineers, it may be advisable 
to design similar programs while explicitly considering the role of 
modeling, cross level reasoning and systems language in fostering 
systems thinking.
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How do students apply systems thinking to make sense of a computational 
model of crowd evacuation? We developed a participatory simulation in which 
users play the role of evacuees that move through a narrow passageway. This 
simulation demonstrates that when exceeding a certain speed, moving through 
narrow bottlenecks, is more likely to create clogs, leading to a slower passing 
rate. The participatory simulation was introduced in a lesson about school 
evacuation in a group of 9th graders. Their explanations of crowd evacuation, 
were compared to a similar group of 9th graders who learned the same ideas in 
a lecture without using the simulation. We  found that using the simulation did 
not improve students’ system thinking about crowd evacuation compared to 
lecture-based instruction. About 80% of the students in both groups suggested 
partial/incomplete explanations of the inverse relationship between the desire to 
move faster as individuals and the opposite consequence of slower evacuation. 
Interviews with students revealed that some of them perceived the simulation 
scenario to be different from the organized and coordinated evacuation drills that 
they partook. Others, were engrossed in their own experiences as evacuees, that 
obscured their ability to relate the motion of individual evacuees and the overall 
evacuation rate of the crowd. In a second study, we  examined whether prior 
learning of a different emergent process (spread of a disease) with a computational 
model, can prepare students for learning the counterintuitive phenomenon 
of crowd evacuation. We  found that introducing a participatory simulation 
of the spread of a disease in a different group of 9th graders, increased their 
appreciation of the evacuation simulation as a learning tool, and consequently–
their explanations. We conclude that computational models have the potential to 
enhance systems thinking, but their affordances depend on prior preparation for 
learning with other complex systems models.
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systems thinking, computational models, participatory simulations, agent-based 
models, crowd evacuation
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1. Introduction

Clogging appears when a large group of people moves too fast 
through a narrow opening. When individuals race towards the 
opening to save themselves, they can stumble and collide with others, 
thereby slowing the average evacuation rate, and increase the risk of 
injury and even death (Shapira et al., 2018; Zhou et al., 2018). One 
known example of the deadly materialization of such a threat occurred 
during The Station Nightclub fire in Rhode Island, United States, in 
February 2003. The rush of the crowd towards the club’s exits and the 
subsequent congestion resulted in the death of 100 people and the 
injury of nearly 200 other people (Aguirre et al., 2011). The “faster-is-
slower” phenomenon refers to situations in which the desire to move 
faster, creates a congestion, as shown in laboratory experiments in 
which higher individual efforts to evacuate, decreased the average 
evacuation rate of the crowd (e.g., Hoogendoorn and Daamen, 2005; 
Garcimartín et  al., 2016). Similarly, simulations of pedestrian 
evacuation calculate the trajectories and motion of computationally 
driven particles and reveal the onset of clogging (Helbing et al., 2000). 
These computational models of crowd evacuation allow users to 
determine variables such as the ‘desired’ speed of the computational 
agents, their density and their size in relation to the narrow opening, 
and to examine the influence of these variables on the actual passing 
rate. For example, the simulation in Figure 1 shows an evacuation 
scenario through a narrow opening at the bottom of the two yellow 
walls, and a graph showing the number of passages vs. time. A 
temporary clog is a period of time in which no agent moves through 
the passageway, and is represented by the flat section of the graph 
indicated by the arrow.

In order to observe the faster-is-slower effect, one needs to run the 
simulation several times, to produce a series of graphs that resembles 
the one shown in Figure 2. These graphs reveal that as the desired 
speed increases from 0.4 to 0.7–so does the number of people who 
pass through the bottleneck. However, when exceeding the speed of 
0.7 (orange curve)–the overall number of people who pass through 
the bottleneck–decreases, as shown by the lower number of overall 

passes of the red curve. This means that the overall passing rate 
through the bottleneck has a critical value or a tipping-point (at a 
given crowd density and passage width) below the desired speed of 
0.7. Raising the speed towards the opening is likely to increase to faster 
passing rate, but above that speed – the average passing rate decreases. 
The reason for this decrease, is the increase in the occurrence of 
temporary clogging events.

Clogging in bottlenecks is a universal phenomenon that appears 
in human crowds, herds of sheep, and even granular materials 
(Zuriguel et al., 2014), all of which, are complex systems. Complex 
systems are ubiquitous to science education, and the “emergence” of 
patterns such as the abovementioned faster-is-slower phenomenon, is 
a paradigmatic aspect of their behavior (National Research Council, 
2012). Emergent processes in complex systems can be described from 
two complementary perspectives: using aggregate or system dynamics 
models, and using agent-based models (Stroup and Wilensky, 2014). 
System dynamics models relate changes in macro-level properties of 
the system such as stocks or flows, to changes in the behavior of other 
variables of the systems or the environment. For example, the SIR 
(Susceptible, Infected, Recovered) model of the spread of a disease, 
relates the rate of infection (new cases per day) to the ratio of sick to 
healthy individuals in the population (Meyer and Lima, 2022). An 
agent-based model of the same phenomenon, describes it as an 
accumulation of individual agent interactions. The model is composed 
of agents that move in a random-walk pattern, and if they encounter 
nearby “sick” agents, they may become infected (Stroup and Wilensky, 
2014). The agent-based disease model, is usually realized as a 
computer simulation with a random-walk algorithm, and a procedure 
that calculates the infected agents at each time step. Such models show 
that emergent patterns, are rooted in random events and interactions 
and lack central control–i.e., the overall behavior of the system cannot 
be attributed to a single agent or entity (Chi et al., 2012). Agent-based 
models are therefore important bridges between modeling and 
systems thinking – the subject of this special issue and our paper 
highlights their implementation for learning about crowd evacuation 
through bottlenecks.

FIGURE 1

A bottleneck simulation in which a crowd moves towards a narrow passage at the bottom of the screen (right). The blue graph (left) shows the number 
of people that pass through the opening vs. time. The horizontal section marked by the arrow, represents temporary clogging.
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The two complementary models of emergent processes, reflect 
two possible learning goals for students, in terms of scientific 
systems thinking. One form of systems thinking is realized in 
macro-level system dynamics explanations that focus on the causal 
relationships between variables, rate of changes in the processes, 
and cyclic, feedback loops (Batzri et  al., 2015). Such forms of 
systems thinking are common in earth science processes such as 
the water cycle (Lee et al., 2019) or the carbon cycle (Batzri et al., 
2015), that are described as a sequence of steps or events. The 
other form of systems thinking reflects explanations that construe 
the macro-level properties of the system from the motion and 
interactions between its constituent-entities that are called agents. 
In systems composed of few types of agents, and emergent 
processes that cannot be  broken down into a sequence of 
sub-processes, students are expected to link the agent-level to the 
macro-level, either by creating a “midlevel” – a small subset of 
agents (Levy and Wilensky, 2008) or by showing how summing/
averaging the properties of the agents, produces the macroscopic 
state of the system (Chi et al., 2012).

The latter method of averaging or summing, brings to mind an 
important aspect of systems thinking: it often entails quantitative 
explanations and predictions. Let us consider the following 
explanation for the faster-is-slower effect: “clogs form in a bottleneck 
and their onset is attributed to collisions between people and walls. 
The probability of these collisions increases, when people move 
faster. Therefore, moving faster can result in more frequent clogging 
events, and an overall slower flow through the bottleneck.” Verbal 
explanation include quantitative terms such as “probability,” 
“increases” and “faster” but quantitative systems thinking often also 
requires students to interpret patterns in graphs, and critical values 
at which the system undergoes a drastic change. For students to 
develop quantitative systems thinking, learning requires an 
underlying mathematical or computational model (e.g., Helbing 
et al., 2000). In light of these considerations, this study focuses on 

the following question: what aspects of systems thinking do students 
develop when exploring computational models of crowd evacuation 
through bottlenecks?

2. Using computational models to 
explain emergent processes

Computational models are central pedagogical tools for fostering 
student systems thinking. Computational models such as SageModeler 
(Damelin et  al., 2017) or InsightMaker (Fortmann-Roe, 2014) 
illustrate the system dynamics model perspective, while agent-based 
environments such as Net Logo (Wilensky, 1999) illustrate the agent-
based model perspective. Students’ engagement with computational 
models can be  further divided into activities in which students 
construct and revise models on their own (Wilensky and Reisman, 
2006; Tullis and Goldstone, 2017), and others in which they use 
readymade models (Chi et  al., 2012; Xiang et  al., 2022). Building 
computational models using SageModeler has been shown to boost 
systems thinking of the system dynamics type (Nguyen and Santagata, 
2021), and NetLogo has been shown to enhance the second, agent-
based type of systems thinking (Saba et al., 2022), when compared to 
traditional instruction.

Among computational models, participatory simulations are 
particularly effective for building conceptual connections between 
agent-level interactions and observed emergent processes such as the 
vaporization of liquids (Langbeheim and Levy, 2019). In participatory 
simulations, users play the role of an agent in the system, and observe 
the macro-level pattern, that emerges from their interactions with 
other agents. Role playing in participatory simulations raises attention 
to the agent-based interactions, and the playful game-like format, 
promotes enjoyment. Enhanced engagement, partially explains the 
affordances of participatory simulations when compared to regular 
non-participatory simulations (Langbeheim and Levy, 2019).

Computer simulations are helpful for cultivating systems thinking 
because they ground abstract system ideas in concrete visual 
representations (Goldstone and Wilensky, 2008). Participatory 
simulations can further concretize ideas, by providing embodied 
interaction (Langbeheim and Levy, 2019). However, some of the 
system-related concepts are not only abstract, they are also 
counterintuitive, and hinder the ability to explain complex systems 
mechanisms, even with the utility of computational models. Science 
education researchers suggested two main conjectures, or approaches 
to the difficulty of comprehending and explaining emergent processes 
in complex systems. The first, “soft” approach identifies the main 
difficulty in connecting the macro-level and the micro/agent-level 
(Wilensky and Resnick, 1999). This approach claims that the 
challenging reputation of complex systems originates from intricacies 
of the agent-based models that do not lend themselves to a clear 
explanation. This leads to messy descriptions of the micro and macro 
levels and to inter-level “slippage”–i.e., carrying attributes of the 
individual agents over to the emergent macro-level pattern. The 
second, “intractable” approach, relates the difficulties to a clash 
between the decentralized mechanism of the system and the 
centralized “mindset” of the students (Resnick, 1996). According to 
Resnick (1996), a mindset is a biased worldview, which, in our case, is 
an inclination to interpret processes as controlled by a supervising 
authority. Put slightly differently, there is a clash between the ontology 

FIGURE 2

A graph showing the faster-is-slower effect to the number of passes 
increase with speed from 0.4 to 0.7, but then it decreases for 0.8. The 
arrow shows that the number of passes is lower for the red curve, 
than for the orange curve.
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of agent-based models of emergent processes, that is rooted in an 
indirect causality, and the way people usually view these processes: as 
sequential or direct (Chi et al., 2012; Henderson et al., 2017). This 
“clash” between the direct causal mindset or personal ontology, and 
the actual complex decentralized mechanism of agent-based models, 
prevents students from perceiving the complexity of emergent 
processes that are depicted in computer simulations.

The two approaches regarding the source of difficulty of 
comprehending complexity, give rise to two educational “remedies.” 
The first “soft” approach, focuses on scaffolding the computational 
explorations with discussions or worksheets that are aimed at eliciting 
the connections between the micro/agent level behavior and macro 
level one (e.g., Chang and Linn, 2013; Li and Black, 2016; Samon and 
Levy, 2017). The second, “intractable” approach focuses on preparing 
students to “overcome” the decentralized/sequential mindsets, by 
providing ontological trainings that distinguish and contrast 
explanations of emergent/decentralized processes and explanations 
based on direct/centralized causation (Slotta and Chi, 2006; Chi et al., 
2012). These trainings provide examples of emergent processes and 
discuss their invariant attributes, as a preparation for future learning 
(PFL) about similar systems and processes (Bransford and Schwartz, 
1999; Goldstone and Wilensky, 2008). Ontological trainings were 
successful for fostering systems reasoning about complex systems of 
particles such as electrons in a conductor (Slotta and Chi, 2006) or dye 
molecules in a process of diffusion (Chi et al., 2012). However, the 
decentralized control of systems composed of particles, may be easier 
to comprehend than human-based systems such as an evacuating 
crowd. In these cases, it is more likely to perceive the system as 
controlled by individual, “leader” agents, and not by random events. 
We therefore set to examine how using computational participatory 
simulations of evacuation through a bottleneck, influenced students’ 
systems thinking, and specifically, their understanding of the “faster-
is-slower” phenomenon. The paper describes two studies: the first 
study examines students’ development of complex systems thinking 
in light of their perceptions of the computational model vis-à-vis the 
actual dangerous phenomenon of clogging during evacuation. In the 
second study, we examine the differences in learning about the faster-
is-slower effect, after an ontological training experience with a 
different participatory simulation of the spread of a disease.

3. Methods

In the first study, students used a “bottleneck” participatory 
simulation programmed with Netlogo (Wilensky, 1999) to learn about 
the hazards of evacuation, and specifically, the “faster-is-slower” effect. 
The goal of the participating agent in this simulation is to pass through 
a narrow opening as fast as possible, while avoiding “hitting” the other 
agents that try to evacuate as shown in Figure 3. After initial attempts 
with the simulation, students were instructed to increase the desired 
speed of the agents, and to realize that when the desired speed of the 
agents moving towards the bottleneck increases – the likelihood of 
temporary clogs also increases, and so the average passing rate 
– decreases.

We examined student learning using a quasi-experimental 
research design, assigning classrooms to two conditions: The 
experimental group entailed two 9th grade classrooms (N = 26) from 
all-girls schools in the south of Israel. These classrooms were 

introduced to the phenomenon of emergency indoor evacuation with 
a powerpoint presentation, and then used the participatory simulation 
to investigate the conceptual connections between their motion and 
the overall passing rate. Another 9th grade all-girl classroom (N = 16) 
served as a comparison condition. This classroom learned about 
clogging and the faster-is-slower phenomenon in a traditional lecture-
based lesson using a powerpoint presentation that included snapshots 
and animation of the computer simulation, as shown in Figure 4.

The comparison group did not use the participatory simulation, 
but spent more time discussing the behaviors that can prevent 
clogging and congestion. At the end of the lesson, students in both 
groups responded to a conceptual knowledge questionnaire. The 
questionnaire was a modified and independently validated version of 
the instrument used by Schwartz et al. (2014) to assess knowledge, 
attitudes, and perceptions related to emergency scenarios. The 
questionnaire was piloted with twenty-one 8th-grade students and 
refined to the final version which included multiple choice and open-
ended questions related to appropriate behavior during an indoor 
emergency evacuation, and understanding of the “faster-is-slower” 
phenomenon. The full questionnaire can be found in the appendix. In 
addition, the questionnaire included three rating items regarding their 
experience with the simulation.

Three students from the experimental group were chosen based 
on their performances on the questionnaire and were interviewed 
about their experience with the simulation. One of the interviewees 
was high-performing student, and two were intermediate. In these 
semi-structured interviews, we aimed at gaining some insight into 
students’ reasoning about the mechanism of crowd evacuation. For 
example, we asked them, whether they as individuals can influence the 
evacuation of the entire class and how they perceive the relation 
between the simulation and an actual evacuation scenario.

Study 2, was conducted with a third group of 9th grade students 
(N = 17) from a different school in the same urban area, that included 
boys and girls. The group learned about disease spread model before 
learning the model of crowd evacuation. The students explored the 
agent-based model of disease spread using the “Disease solo” 
participatory simulation (Wilensky, 2005), as ontological training for 
learning about crowd evacuation. In the disease simulation, shown in 
Figure 5, users can move one of the agents in a system with 100 agents 
that move randomly. At initialization, an agent chosen at random is 
infected, and the virus spreads (with a certain probability) every time 
infected agents come into contact with “healthy” ones. The overall 
phenomenon is represented by the logistic curve of the number of 
infected individuals, The study was conducted during a temporary 
school shutdown due to Covid-19.

Two 90-min lessons about disease spread were taught by the 3rd 
author. The students first reviewed real Covid-19 infection and 
mortality data, and were then introduced to the agent-based model 
and discussed the simplifications that were used to construct it. Next, 
they downloaded the model and used the “setup” and “Go” buttons to 
run it. They were instructed to try to move and to prevent their agent 
from getting infected as long as they could, and competed against each 
other. They explored the model further by changing the infection 
chance, and other features that are shown the panel in Figure 5, and 
ran the model again. Then, they were given a worksheet with 
conceptual questions about the model, and specifically, the effect of 
various parameters such as the density of the agents or the chance of 
transmitting the virus, on the infection curve.
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In a third, subsequent lesson, this ontological training group 
learned about the bottleneck phenomenon with the same teacher 
(the 2nd author), and the same participatory simulation and 
powerpoint presentation that was used in study 1. Seven slides that 
compared and contrasted the disease and bottleneck models as two 
examples of complex systems that yield emergent phenomena were 
added to the presentation. Some of the slides are shown in Figure 6. 
The lesson ended with the same conceptual and attitudinal 
questionnaire that was used in study 1 (see Appendix). The 
averages of the ontological trainings group, were compared to the 
experimental classrooms from study 1 (N = 26), who learned about 
the faster-is-slower phenomenon using the participatory 
simulation (but without using the disease simulation and learning 
about behavior of complex systems beforehand). Two attitudinal 
questions were added to assess how students perceived the 
contribution of the disease simulation and the complex systems 
framing, to learning the bottleneck model and the faster-is-
slower effect.

3.1. Data analysis

Written responses to the open-ended questions were scored based 
on the level of complex systems thinking that students expressed. As 
in Rates et al. (2022), we identified explanations that reflect “expert” 
level complex systems-thinking that view macro-level phenomena as 
emerging from agent-level interactions. “Intermediate” level 
explanations, misinterpreted agent-level interactions, and novice-level 
ones lacked a clear mechanism. For example, responses to question 
8–“During a schoolwide assembly in the gym, an emergency warning 
was announced and students were asked to evacuate themselves from 
the building into an open outside area. How should they proceed with 
the evacuation?,” that related the interactions at the agent level to the 
overall evacuation rate, or mentioned the formation of clogs, were 
identified as “full” or “expert” and received 2 points. Explanations that 
merely stated that moving too fast causes a slower passing rate or 
mentioned the faster-is-slower effect as related to the average speed of 
the evacuees, without a clear micro–macro connection, reflect an 

FIGURE 3

the participatory simulation of evacuation through a bottleneck: The brown circle is controlled by the user with the up-down-left–right control keys 
(right). The graph (left) shows the points gained by the user (20 point for each successful pass, minus one point taken away by each collision) in the 
gray curve, and the overall passing rate in the red curve.

FIGURE 4

Two slides from the presentation shown to both groups, that shows the bottleneck simulation: the width of the doorway (left) and the influence of 
speed (right) on the passing rate.

58

https://doi.org/10.3389/feduc.2023.1137828
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Langbeheim et al. 10.3389/feduc.2023.1137828

Frontiers in Education 06 frontiersin.org

“intermediate” level systems thinking. The intermediate level 
responses, were given 1 point, whereas responses that did not mention 
the danger of moving too fast were given a score of 0. Table 1 shows 
the scoring rubric for this question. Student explanations were coded 
separately by the 1st and 2nd authors. Each one coded ten explanations 
separately, then compared their coding and discussed coding 
discrepancies until consensus was reached and rubrics were clarified.

We performed reliability analyzes for both the knowledge 
scale and the appreciation of the simulation scale. The internal 
consistency of the latter scale (α = 0.71) was based on the 
experimental group students from study 1 and the students from 
study 2 (N = 43), and the internal consistency of the of the 
conceptual questions (α = 0.65) was based on all students in both 
studies (N = 59).

The interviews were transcribed and open-coded, to identify the 
main themes (Charmaz, 2006). The codes were used to characterize 
the students’ mindsets and to gain an in-depth understanding of the 
mechanism through which the simulation contributed (or not) to 
students’ comprehension of the “faster-is-slower” phenomenon. 
Finally, interview excerpts were triangulated with the students’ 
responses in the conceptual questionnaire.

4. Findings

The first objective of study 1, was to evaluate the affordances of the 
participatory simulation for learning about evacuation and the faster-
is-slower phenomenon. We found that the difference between the 

FIGURE 5

The adapted “Disease solo” participatory simulation. The user controls the blue agent. Agents with red dots are “infected” and those without are 
“healthy.” The graph shows the number of infected agents vs. time.

FIGURE 6

Slides presented after interacting with both the disease and the bottleneck simulations. The left slide mentions the random setup of both systems and 
right slide presents how parameters influence the emergent pattern in each simulation, as represented by the graphs of the overall passers through the 
bottleneck and the overall infected individuals.
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conceptual questionnaire scores of the experimental (participatory 
simulation) condition (N = 26, Mean = 61%), and the comparison 
condition (N = 16, Mean = 63%), was not significant (t = −0.29, 
p = 0.717). Table 2 shows that only the responses to item number 1 
revealed a significant difference between the experimental condition 
(21/26 correct) and the comparison condition (8/16 correct, 
chi-squared = 4.39, p = 0.036). The difference is due to more students 
in the comparison group who stated incorrectly that both widening 
the doorway and moving faster will ensure quicker evacuation 
through the passageway–a statement that contradicts the faster-is-
slower phenomenon. Another notable finding, is that only 5/26 of the 
students in the experimental and 3/16 of the students in the 
comparison condition, responded correctly to question 7–that one 
cannot know based on the information given, which classroom will 
evacuate faster. Most students claimed that students in classroom B 
that move faster, will eventually evacuate slower than their 
counterparts in classroom C. This indicates that the concept of the 
“tipping-point” in the behavior of the system–i.e., that moving faster 
will result in slower motion, only beyond a certain speed–was grasped 
by relatively few students in both conditions.

The second objective was to relate the students’ appreciation of 
using the computational model to their conceptual understanding. 

We found a significant correlation between students’ appreciation of 
the computational model and their knowledge scores (r = 0.58, 
p = 0.002). Namely, students with higher appreciation of the 
participatory simulation in terms of its contribution to their learning, 
also performed better on the conceptual knowledge test, and 
vice versa.

The final objective of this study was to relate students’ 
understanding of the faster-is-slower phenomenon, to their mindsets. 
Students’ mindsets are their mental inclinations to interpret the 
processes as either emergent/decentralized or sequential/centralized. 
The identification of the mindsets is based on a qualitative analysis of 
the responses to the open-ended questions in the questionnaire and 
to the interview questions Most of the responses of the students in the 
experimental condition (15/26) were categorized as “intermediate” 
according to Table  1, while only (5/26) students’ responses were 
categorized as “full.” As shown in Table 1, intermediate level responses 
to question 8, often suggested that evacuees should move to the 
bottleneck, in a “uniform, moderate” speed, when in reality, the 
bottleneck slows the flow of the evacuees, so that their speed is not 
uniform. Full responses that represent adequate complex systems 
thinking, acknowledge the danger of collisions and clogs in crowd 
evacuation, and suggest that evacuees should adjust their speed to the 

TABLE 1 Categorization and scoring of student answers for question 8.

Category(score) Description Example
Novice (0) Responses that do not mention the danger of moving too fast, or that lack a clear 

mechanism

“They should evacuate quickly and responsibly so that 

no one would get hurt”
Intermediate (1) Addressing the faster-is-slower effect by suggesting to move at a uniform moderate pace, 

but without reference to collisions or the formation of clogs

“They should leave the classroom at a uniform pace, 

move fast, but not too fast”
Full/Expert (2) Addressing the faster-is-slower effect by suggesting that the motion of individuals should 

be adjusted to the motion of those around them to prevent collisions and clogs

“They should evacuate not by running, but by walking 

quickly and keeping safe distances, to prevent collisions 

and clogs”

TABLE 2 Descriptive statistics of the groups in study 1 and study 2.

Study 1 Study 2

Group Control (N = 16) Experiment (N = 26) Sig. difference Ontological 
training (N = 17)

Sig. difference 
exp. group study 

1

Conceptual overall – 

pct correct

63% 61% t = (−0.37), p = 0.717 69% t = 1.45, p = 0.16

Item 1 (faster-is-slower) 8/16 21/26 χ2=4.39, p = 0.036** 13/17 χ2=0.11, p = 0.73

Item 2 (release of clogs) 1.50 1.42 U = 186, p = 0.575 1.75 U = 153, p = 0.16

Item 3 (true/false) 5.25 5.04 U = 161, p = 0.23 5.06 U = 196.5, p = 0.78

Item 4 (moving out the 

fastest)

11/16 12/26 χ2=2.04, p = 0.15 4/17 χ2=2.25, p = 0.13

Item 5 (mark the most 

correct)

4/16 15/26 χ2=1.88 p = 0.17 12/17 χ2=2.49, p = 0.11

Item 6 (open-ended) 0.94 0.77 U = 176, p = 0.41 1.23 U = 133, p = 0.03 **

Item 7 (tipping point) 3/16 5/26 χ2=0.002, p = 0.97 6/17 χ2=1.39, p = 0.24

Item 7 (open-ended) 0.63 0.44 U = 165, p = 0.36 1.00 U = 131, p = 0.06 *

Item 8 (optimal 

evacuation)

1.06 0.96 U = 191.5, p = 0.68 1.31 U = 153.5, p = 0.16

Appreciation learning 

with simulation

NA 3.24 NA 4.22 p = 0.009**
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motion of their neighbors to prevent collisions/clogs. The interviews 
with students revealed two main themes related to their mindsets that 
may explain the difference between students who expressed 
intermediate responses and full responses. The first theme is awareness 
to the motion and interactions of single agents, and the second 
concerns the perception of whether real evacuation should (or could) 
be organized by a “supervising” agent. The interviews included two 
students (A and B) who provided intermediate level responses, and 
one student (C) who provided full responses as indicated in Table 3.

In her responses to the questionnaire, student C, was aware of 
the role of clogs in slowing down the motion of the evacuees: 
“[classroom C will evacuate faster] since the slower the pace, the 
higher the chance to pass faster through the doorway, since it is 
possible to know what happens, and prevent the formation of clogs”. 
In the interview, she relates the evacuation speed, to pushes and 
collisions between the evacuees: “There is a class that runs during 
the alarm… they rush to the entrance, the girls push each other... if 
they walk slower, each when her turn comes, they will not push and 
no one will fall.” That is, for student C the collisions between the 
agents are a salient aspect of the evacuation process. Similarly, as 
shown in Table 3, student A, acknowledged collisions between the 
agents both in the interview (“girls might bump into me”), and in the 
questionnaire (“will not fall and get injured and slow the others 
down”). However, her answer to question 8  in the questionnaire 
“They should move at a uniform, medium pace, without pushing or 
being pushed” was scored as intermediate since it indicates an 
unclear connection between the micro (“without pushing”) and the 
faster-is-slower phenomenon.

Unlike student A and C, student B focused on self-inflicted 
dangers to individual agents and did not mention collisions between 
evacuees at all: “they [the agents in the simulation] are disorganized, 
they stumble and fall.” This shows that for student B, individual agents 
will slow down when moving too fast, because they may stumble and 
fall. This is indicated also by her response to question 7 of the 
questionnaire. When asked which classroom will evacuate faster, she 
wrote “classroom C, since they move with more caution, there will 
be less injuries.” According to student B, the injuries themselves slow 

the individual agents down, and not collisions between agents that 
create clogs.

The second theme that characterizes the differences between the 
interviewees’ mindsets, is the role of supervision and control in an 
actual evacuation process. For example, student C related the 
evacuation process depicted by the simulation to the real scenario, 
stating that “in reality, we have no control because everyone can go out 
how they want.” In addition, when asked whether the brown agent 
(the student’s avatar in the participatory simulation), can influence the 
average evacuation rate, she said: “I do not think that he [the agent/
avatar] has an effect. He might not want to pass, but he does not 
manage the others.” Her friend, student B also commented that: “[in 
real evacuation] we cannot control the situation, we are under pressure 
and are aware only to ourselves without seeing if anyone else needs 
help.” Both responses echo the idea that real evacuation is a chaotic 
process with no central control.

The responses of student A were quite different from those of 
student B and C. When asked whether single people/agents can 
impact the evacuation process, student A said: “Obviously! … If I’m 
under pressure, I can stop and freeze, and [other] girls might bump 
into me. However, I can also be the one who takes responsibility and 
calms others down and tries to help them leave one after the other in 
an orderly manner.” This response described two ways in which the 
student as agent would experience an emergency evacuation: either by 
freezing with panic, or by being aware of the danger and helping 
others evacuate. When asked about her perception of proper 
evacuation, student A said: “They should evacuate like soldiers in the 
army, robots, one after the other, someone should organize [them].” 
These two quotes describe a super-agent that has control over other 
agents, indicating a centralized mindset.

To conclude, both the perception of evacuation as a controlled 
process by student A and the focus on individual injuries, and not on 
collisions by student B, prevented them from developing proper 
systems thinking about the faster-is-slower phenomenon. Only 
student C, who seemed to have a less centralized mindset, and was 
aware of the collisions between agents, was able to provide a proper 
explanation to the faster-is-slower phenomenon.

TABLE 3 Student utterances in the interviews, their interpretations, and their open-ended question responses.

Student Interview statement Responses to questionnaire Interpretation

A “If I’m under pressure I can stop and freeze, and [other] 

girls might bump into me. However, I can also be the one 

who takes responsibility and calms others down…” “They 

should evacuate like soldiers in the army, robots, one after 

the other, someone should organize [them]”

“Classroom C, since this way students will not 

fall and get injured and slow the others down” 

(Q7 - full) “To move in a uniform pace, 

without pushing and being pushed” (Q8 - 

intermediate)

Believes that an evacuation process should 

be organized by a controlling agent, and 

although she acknowledges the danger in 

collisions, she does not mention clogs.

B “We cannot control the situation, we are under pressure, 

and focused only on ourselves, without noticing whether 

others need help” “Order, it needs to be organized”

“Classroom C, since they move with more 

caution, there will be less injuries” (Q7 - 

intermediate) “To leave slowly with caution, 

and not to push the others” (Q8 - 

intermediate)

Focuses on self-inflicted injuries and is not 

aware of the role of collisions and interactions 

between agents. She mentions order, but not 

control.

C “There is a class that runs during the alarm… they rush to 

the entrance, the girls push each other…if they walk 

slower, each when her turn comes, they will not push and 

no one will fall.” “I do not think that he [the agent 

controlled by the student] has an effect. he might not want 

to pass, but he does not manage the others”

“[classroom C] The slower the pace, the higher 

the chance to pass faster through the doorway, 

since it is possible to know what happens, and 

prevent clogs” (Q7- Full) “Not slowly, quickly, 

but with caution, to prevent clogs from forming 

at some point” (Q8 - Full)

Opposes the idea of a controlling agent, and 

perceives the process as decentralized. She is 

aware of the role of collisions, or pushes in the 

formation of clogs, and the faster-is slower 

phenomenon.
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4.1. Study 2–the influence of ontological 
training

In the second part of the study, we examined whether introducing 
the general principles of complex systems, and demonstrating them 
with a different system, influenced students’ readiness of learning 
from the computational model, and consequently, the depth of their 
systems thinking about the bottleneck phenomenon.

4.1.1. Findings of study 2
The first objective of the study was to examine the influence of the 

ontological training on students’ systems thinking about the 
bottleneck phenomenon. We  found that the ontological training 
group (Mean = 69%) outperformed the regular group from study 1 
(Mean = 61%) in the conceptual knowledge about the bottleneck 
phenomenon after the intervention, but the difference was not 
significant (t = −1.45, p = 0.16). The difference between the groups in 
the scores of the open-ended questions was significant: the ontological 
training group had a mean score of 3.52 (of 6), and the group from 
study 1 had a mean score of 2.14 (t = −2.81, p = 0.009). This reflects a 
much higher proportion of “full” responses (8/17), that represent a 
complex, decentralized mindset, compared to (5/26) in the regular 
group from study 1. In addition, more than a third of the ontological 
training group (6/17) responded correctly to question 7–that one 
cannot know based on the information given, which classroom will 
evacuate faster, which is slightly higher than the proportion of the 
students in study 1 (5/26), but the difference is not significant (see 
Table 2).

The second objective of this study was to identify the role of the 
computational model in the ontological training. The last row of 
Table 2, shows that the ontological training group had a significantly 
higher appreciation of the effectiveness of computational models for 
learning (mean of 4.22 on a scale of 1–5) than the experimental group 
from study 1 (Mean of 3.24, t = −4.65, p < 0.001). In addition, we found 
that 11 / 17 of the ontological training students stated that the disease-
spread simulation was “helpful,” or “very helpful” for understanding 
the bottleneck participatory simulation. Only 2/17 stated that the 
simulation was “unhelpful” or that it “helped a little.” Likewise, 12/17 
stated that the complex systems framing was “helpful” or “very 
helpful” for understanding evacuation through narrow passageways, 
and none of the students reported that the complex systems framing 
was “unhelpful” or that it “helped a little.”

5. Discussion

The findings of study 1 indicate that the short learning experience 
with the participatory simulation, did not enhance students’ systems 
thinking, compared to the traditional lecture-based format. These 
findings differ from a prior comparison study in which students who 
used the participatory simulation to learn particle-based explanations 
of evaporation, outperformed their peers who studied with a regular 
simulation (Langbeheim and Levy, 2019). The difference between 
these two results has two possible origins: The first is related to the 
ontological framing of the systems’ agents. While particle-agents are 
not likely to be perceived as having control over the system - people-
agents can be perceived as having control. That is, direct causality is 
more likely to obscure agent-level and macro-level connections in the 

crowd evacuation model, than in the particle-based liquid model. The 
second explanation is related to the duration of the interaction with 
computational model. In the current study, students interacted with 
the simulation for 15–20 min, while in Langbeheim and Levy (2019), 
they explored the model for about 35–40 min, in two different lessons. 
The longer exposure to the simulation in two subsequent lessons, 
provided better acquaintance with the simulation as a learning aid. 
The strong correlation between the appreciation of learning with the 
simulation, and the conceptual knowledge score – corroborates this 
result. As in similar studies on learning with computational models of 
complex systems (Brom et  al., 2017), students who rated the 
simulation as more helpful, were also more likely to perform well on 
the conceptual questionnaire. Furthermore, the finding from study 2, 
that students in the ontological training group, who used a different 
participatory simulation beforehand, appreciated learning with 
simulation significantly more than their counterparts who were not 
exposed to a similar simulation–is also a strong indication that 
students needed more time and guidance to make better use of the 
simulation for learning. However, at least for two of the 17 students, 
the important part of the training, was the “ontological” framing of the 
two phenomena within the perspective of complex systems, and not 
the use of the computational model per-se.

Despite the lack of an overall learning effect in study 1, the 
responses to item 1 (see Table 1), indicate that engagement with the 
participatory simulation provided clearer understanding of the faster-
is-slower effect. This shows that using computational models can 
contribute to systems thinking, in the context emergent processes. 
Finally, the interviews show that students’ perceptions of the evacuation 
phenomenon are shaped by the fact that the agents in the system are 
human. Some of the students, such as student A identified agents as 
having control over the evacuation phenomenon, and produced partial 
explanations of the faster-is-slower phenomenon. This may indicate a 
“clash” between the ordered, centralized mindset that frames 
evacuation as an organized process, and the disorganized depiction of 
the process in the simulation (Resnick, 1996). In addition, the 
responses of student B showed that her focus on injuries, seemed to 
prevent her from acknowledging the role of collisions between people, 
that leads to the faster-is-slower phenomenon. In order to overcoming 
the tendency of automatically analyzing human activity through the 
“direct” causality perspective, students need to develop “flexible” 
systems thinking that allows them to view collective phenomena also 
from an emergent, complex systems perspective. Indeed, student 
explanations of the evacuation process were more aligned with proper, 
emergent perspective, in study 2. However, we did not interview these 
students and cannot say that their mindsets were different.

Furthermore, study 2 shows that ontological training about 
complex systems with the disease spread participatory simulation, 
brought to the fore the mechanism of clogging, as indicated by the 
higher proportion of “full” responses. Similar to prior studies on the 
phenomenon of diffusion (Chi et al., 2012) and electric conduction 
(Slotta and Chi, 2006), framing of the evacuation phenomenon within 
the complex systems perspective, fostered more sophisticated systems 
thinking and formulate more “full” explanations that link the macro 
level phenomenon to agent-level interactions. However, the 
ontological training that was based on the computational model did 
not contribute much to understanding the tipping-point aspect in the 
faster-is-slower effect. The responses to question 7, indicate that only 
few students acknowledged only beyond a certain speed. Behaviors 
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that change abruptly at tipping points, or in which local events have a 
dramatic effect on the system, like the “butterfly effect,” are aspects of 
complex systems that are especially difficult to explain and 
comprehend (Jacobson et al., 2017).

One caveat in our study is that although participants from both 
studies come from the same urban area, the students in study 2 were 
not from the same school, and had different science teachers than the 
students in study 1. We cannot therefore conclude that the difference 
in response patterns between the group of study 2 and the group of 
study 1, is only a result of the intervention. However, the unanimous 
high rating of the contribution of the complex systems training to 
understanding among the students in study 2, is strong evidence that 
at least part of the difference in systems thinking between the groups, 
is attributed to the ontological training with the disease simulation.

6. Conclusions and implications

Our two studies investigated the contribution of computational 
models to students’ system thinking about emergent, counterintuitive 
phenomena that are common in science education. One unique aspect 
of our studies is the use of participatory simulations, which are 
interactive forms of computational models where users play the roles 
of agents. Another novelty is the composition of the systems under 
investigation: a crowd of humans, and not animals or particles that are 
usually studies in science curricula. In this special issue, our studies 
highlight how bridging systems thinking and modeling in the context 
of systems of human crowds, depend on students’ mindsets (i.e., an 
inclination to perceive the system as abiding to central control), and 
their readiness to learn from computational models.

Study 1 showed that the short learning experience with the 
bottleneck participatory simulation, did not enhance students’ systems 
thinking compared to their counterparts that did not use the 
computational model (although responses to one item indicated that 
learning with the participatory simulation raised students’ attention 
on the faster-is-slower phenomenon). Since prior studies on complex 
systems, revealed significant affordances to learning with agent-based 
simulations (Samon and Levy, 2017; Langbeheim and Levy, 2019), 
current results required further explanation. We found that students 
ratings of contribution of the computational model (the participatory 
simulation) to their understanding, was correlated with their system 
thinking scores. From the interviews, we realized that some students’ 
perceptions of the computational model were obscured by their 
experiences with evacuation drills that were organized by teachers and 
supervisors. This means, that for most students, systems thinking 
when using an agent-based computational model in which the agents 
represent humans, is rooted in a direct, centralized mindset.

In study 2, we found that prior engagement with a computational 
model of a different phenomenon – the spread of a disease, resulted 
in higher readiness to learn from the bottleneck participatory 
simulation. This is indicated in significantly higher appreciation of the 
simulation among students, when compared to the participants in 
study 1. In addition, we found that the responses to the open-ended 
questions in study 2 reflected more sophisticated micro–macro 
connections than their counterparts in study 1. These findings shed 
light on the unexpectedly small learning effect in study 1, where only 
few students provided ‘full’ responses that explain the faster-is-slower 
phenomenon with proper agent-level and macro/crowd-level 

connections. It is therefore likely that the short encounter with the 
participatory simulation, without explicitly framing it within the 
complex systems perspective, was not enough for many of the students 
in study 1, and most of them maintained their preconceived views of 
evacuation as an organized, controlled process. Further research is 
needed to explore whether the enhanced performance was due to 
exposure to another model interface, or to the framing provided by 
the teacher, that discussed the similar attributes of the two models.
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Introduction: To develop a foundation of scientific understanding, undergraduate 
biology students need to integrate ideas about individual concepts into thinking 
about complex biological systems.

Methods: To investigate the extent to which undergraduate students engage 
in systems thinking, we conducted a pre-post study with students in a required 
undergraduate botany course at a small liberal arts college in the Midwest. All 
students in the study completed a causal map at the beginning and end of the 
course. Casual maps are similar to concept maps but demonstrate cause and 
effect relationships rather than other connections included in a concept map.

Results: Analysis showed that the majority of students did see some connections 
within the system but did not reach a high level of systems thinking.

Discussion: This work highlights the difficulties undergraduate students have with 
engaging in systems thinking but provides important insight into the particular 
areas in which students do engage in more complex thinking and areas in which 
we can specifically target with instruction and intervention.

KEYWORDS

systems thinking, ecosystems, undergraduate biology, causal maps, botany

Introduction

To develop a foundation of scientific understanding, undergraduate biology students need 
to understand causal interactions within biological systems. This need is highlighted in Vision 
and Change (AAAS, 2011). Specifically, within the biological sciences, undergraduate students 
should develop understanding of “complex biological processes through an elucidation of the 
dynamic interactions among components of a system at multiple functional scales” (AAAS, 
2011, p. 13). Developing a system dynamics perspective occurs through asking students to use 
complex causal reasoning to understand how interconnected components occur within the 
system (Mehren et al., 2018; Verhoeff et al., 2018; Mambrey et al., 2020). When students are able 
to make these connections, then they are able to conceptualize causal effects as both linear, 
non-linear, and separated by time and space (Jacobson, 2001).

According to Momsen et  al. (2022), there is an “implicit understanding that ‘system’ 
encompasses both the entities it comprises and the operational rules that govern how these entities 
interact.” (p. 2). Systems thinking is the ability to understand how systems work and how changes 
in a system affect the other parts of the system (Evagorou et al., 2009; NRC, 2011; Momsen et al., 
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2022). Helping students engage in systems thinking is needed because 
thinking about systems is a fundamental aspect of understanding biology 
more broadly (Momsen et al., 2022). As thinking about systems requires 
understanding causal relationships, causal reasoning is also an important 
skill for students to master. In addition to highlighting Systems as a Core 
Concept, Vision and Change (AAAS, 2011) calls for a Core Competency 
of Ability to Use Modeling and Simulation. Modeling is one of the tools 
scientists use to describe living systems (AAAS, 2011). Therefore, 
supporting students to use modeling can help them to engage in thinking 
about thinking and develop both a Core Competency and a Core 
Concept (AAAS, 2011).

To investigate the extent to which undergraduate students build a 
system dynamic perspective, we used the causal map models they 
developed at the beginning and end of a botany course at a small 
liberal arts college as pre/post measures. We  asked the following 
research questions:

 1. To what extent do undergraduate students engage in systems 
thinking about an ecosystem?

 2. How do undergraduate students reason about the causal 
relationships within an ecosystem?

 3. What factors do undergraduate students prioritize when they 
consider causal relationships within an ecosystem?

Literature review

Ecosystem dynamics

The goal of our work is to support students in developing systems 
thinking about socio-ecological systems (SES). SES “seeks to overcome 
the dichotomy between natural and social systems by viewing the 
interrelationship between society and nature as a system in its overall 
context” (Mehren et al., 2018, p. 688). While ecosystems are frequently 
taught in K-12 instruction and course foci within undergraduate 
instruction, embedding frameworks to include SES within the 
classroom is rare (Sterk et al., 2017; Mehren et al., 2018). Overall, there 
are few studies that consider the complexity of undergraduate 
students’ causal reasoning about SES (Davis and Stroink, 2016; Sabel 
et al., 2017). Yet, understanding the interrelationship between societal 
systems and ecosystems is crucial as “human actions transform 
ecosystems with consequences for human livelihoods, vulnerability, 
and security” (Sterk et al., 2017, p. 109). This concern is particularly 
salient when considering plant life.

Plants are the foundation of all life on Earth, so it is critical that 
students understand the criticality of plants within ecosystems as well 
as SES. Yet, there are few studies that explore if and how undergraduate 
students causally reason about plant function (e.g., Zangori and 
Koontz, 2017; Busta and Russo, 2020) and we could not locate studies 
that explore how undergraduate students causally reason about plants 
in SES. For these reasons, this study takes place within a botany 
course. The course focus was supporting undergraduate students in 
understanding the plant as a system as well as a critical component of 
ecological and societal systems.

An important part of considering relationships within ecosystems 
is reasoning about causes and effects. Causal reasoning occurs as 
students are able to link the components together within the system 

to realize causal patterns that span time and space. We draw on an 
ecological literacy framework proposed by Jordan et al. (2009) which 
is intended to build students’ causal reasoning through three elements:

 • Ecological links: understanding interrelationships between 
ecosystem systems and process.

 • Human links: understanding human and human social systems 
interrelationships within the ecosystem.

 • Ecological reasoning: causal reasoning about socio-
ecological systems.

The three elements (ecological links, human links, and ecological 
reasoning) build in causal complexity (Zangori and Cole, 2019). 
Ecological links are the initial element in which students express 
ecological relationships, for example recognizing causal relationships 
between flowers and bees. Human links are separated out from ecological 
links because emphasis within western schooling tends to be placed on 
a system boundary that separates humans from ecosystems. This 
boundary is called the “nature-culture divide” (Bang et al., 2012, p. 303) 
which can create a barrier to students realizing and reasoning about 
causal links across systems (Jacobson, 2001). However, being able to 
successfully consider causal interactions across time and space requires 
that students conceptualize all inputs into the ecosystem, which includes 
societal inputs. If ecosystems are taught without considering the 
interrelationship between ecosystems and societal systems, then students 
do not have adequate information with which to ecological reason which 
leads to increased difficulty in understanding how societal systems 
impact ecosystems and vice versa (Coyle, 2005).

For this reason, we consider the framework to be hierarchical with 
the top level of complexity as students’ ability to causally reason about 
the connections between human societal systems, and ecosystems. 
Reasoning about causal patterns within these systems moves against 
the cognitive heuristics that students developed as part of their daily 
lives (Grotzer and Tutwiler, 2014). These heuristics are based on 
observation and experience in which students interpret cause and 
effect as simple and linear with centralized control. This is seen most 
prevalently within students’ understanding of food webs where prey 
is food for predators while predators maintain control on ecosystem 
carrying capacity by eating prey (Perkins and Grotzer, 2005). Yet, this 
simplifies the causal mechanism as a linear relationship between 
predator and prey (which is easily visible) when the actual mechanism 
is much more complex and includes a web of relationships within the 
ecosystem. Other “hidden” causal mechanisms are also crucial to 
system behavior such as chemical processes through natural ecosystem 
processes (e.g., photosynthesis, digestion, and biosynthesis) and 
anthropogenic processes (e.g., excess combustions, and photosynthesis 
reduction due to forest removal). If a student does not have the 
opportunity to make all of these processes visible to consider how 
these processes interact to form system behavior, then it is more 
challenging for students to build causal complexity (Bennett 
et al., 2020).

Modeling ecosystem dynamics

For students to consider the ecological and human links and 
obtain ecological reasoning, then they need a means to make the 
system components visible. We do this through modeling. Modeling 
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is considered an epistemic practice of science as the act of modeling 
is central to the development of knowledge by both scientists as well 
as students’ learning science (Gilbert, 2004). Modeling is a multi-
phase process in which, first, students develop a model to answer a 
question or consider a problem about the causal relationships within 
a system. This initial model is a 2D diagrammatic model that is a 
mixture of drawing and writing developed from students’ prior 
knowledge. Students are able to use this model to reason about the 
causal relationships within the system and articulate their answer or 
solution. In this manner, students are accessing and expressing their 
mental model of the system. The mental model serves as the building 
block for integrating new knowledge (Schultz et al., 2022). Students 
use this model as both a reasoning tool and as an evaluative tool to 
assess their own knowledge about system behavior. As they recognize 
reasoning gaps in their model, they seek out new ideas to build their 
conceptual understanding.

Because of our interest in students’ ecological reasoning, we use 
a specific form of modeling called causal maps (Shin and Jeong, 2021) 
or within science education literature, referred to as socio-scientific 
models (Ke et al., 2020). Students create systems models, but the 
structure of the model forces students to focus on the links between 
components and use these links to convey causal relationships 
occurring across time and space within the system boundary (Schultz 
et al., 2022). This type of modeling is prevalent in other disciplines 
such as business (Montibeller and Belton, 2006), public health (Pronk 
and Faghy, 2022) and policy (Buchholz et al., 2007), but not widely 
used in science education (Ke et al., 2020). For example, Buchholz 
et al. (2007) created systems maps to assess the sustainability policies 
of bio-energy systems and recommend using causal mapping to 
understand and assess the societal and ecological impacts 
of bioenergy.

As seen from other disciplines, causal map modeling is relevant 
to socio-ecological systems as they “take social factors into 
consideration for the purposes of illustrating, explaining and 
predicting” causal factors within complex systems (Ke et al., 2020, 
p.  597). Modeling through causal maps is critical to building an 
understanding of system dynamics because students must consider 
how each component is causally connected to the scientific 
phenomenon, if the effect is immediate or delayed, where feedback 
loops occur within system elements, and if each factor is additive or 
reductive to the connecting factor (Richardson, 2011). The completed 
causal map models serve as a leverage for defining overall system 
behavior. Student construction and evaluation of causal maps have 
been embedded in secondary geography curriculum to support 
students systems thinking (Cox et  al., 2018) and used to support 
secondary students’ causal reasoning about evolutionary change 
(Hanisch and Eirdosh, 2021).

Methods

Context and participants

Our study took place over two semesters and included all students 
in an undergraduate botany course at a small Midwestern 
undergraduate liberal arts college. Thirty-eight students (100%) 
consented to participate in the first semester and 40 students (100%) 
consented to participate in the second. See Table 1 for demographic 

information. The course consisted of primarily junior-level (3rd year) 
undergraduate students, was required for all biology majors, and 
lasted ten weeks as the university operated under a trimester schedule. 
While the course was introductory in skill level and largely lecture-
based, the professor also used a mixture of class discussion, the 
Socratic method, PowerPoints for students to add information to, 
worksheets, exposure to primary literature that also involved group 
activities, and debates that required preparation outside of the 
classroom. The topics covered included plant anatomy, morphology, 
physiology, and diversity. Basic ecology was a programmatic 
(departmental) mandate that was woven throughout the course. 
Course work included two-unit exams (consisting of a mix of multiple 
choice, fill-in-the-blank, drawing/labeling drawings, short answer, and 
short essay questions), class participation and assignments, a class 
discussion with worksheets and reflections on the book Walden 
Warming by Richard B. Primack, and a final exam. The final served as 
a third unit exam with an added section covering material from the 
entire course. Like the two-unit exams, the format was a mix of 
question types.

The course also required concurrent enrollment in a weekly, 
two-hour long botany lab, which constituted 20% of the overall 
grade in the course and included three lab quizzes and an inquiry-
based research project. The lab content closely followed the topics 
covered in class. The research project lasted the entire semester. 
Students chose a common garden plant with short germination 
time (e.g., radish, broccoli, turnip, tomato, white clover, lettuce) 
and designed and conducted a controlled experiment testing an 
ecological issue (e.g., amount of water, intensity of light, amount 
of fertilizer, kind of fertilizer, exposure to UV light, exposure to 
acid rain, etc.). In addition to the control group, students were 
required to have three treatment levels of the independent variable. 
Students worked in teams of four and wrote sections that ultimately 
were put together in a PowerPoint poster as if they were going to 
present it at a professional meeting. This study was intended to 
determine whether students develop systems thinking during a 
class that discussed many aspects of systems thinking but did not 
provide specific instruction on how to think about systems or 
causal relationships among various aspects of systems. In this way, 

TABLE 1 Student demographic information.

Semester 1 Gender Ethnicity

Man 10 Asian/Asian American 3

Woman 26 Native Hawaiian, or Other 

Pacific Islander

1

Hispanic, Latino, or 

Spanish origin

3

White 29

Semester 2 Gender Ethnicity

Agender 1 Another race/not listed 1

Man 8 Asian/Asian American 3

Woman 30 Black/African American 2

Hispanic, Latino, or 

Spanish origin

6

White 27

*Genders or ethnicities are not included in the list if no one identified in that category.
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FIGURE 1

Picture of an environment students were asked to consider for 
development of their causal maps.

we were examining a “business as usual” course. Future work will 
focus on more directed instruction on both systems thinking and 
consideration of causal relationships.

Causal map assignment

To develop a scaffold to support students in systems thinking, 
we used the FRAMER scaffold design framework (Sabel, 2020). In the 
first semester, we assigned a causal mapping activity before and after 
the semester took place. Causal maps are a type of concept map but 
instead of writing a word to describe the relationship on the 
connection between concepts, students write a plus or minus sign to 
indicate whether the causal relationship is positive or negative (i.e., it 
is increased or decreased). We instructed students how to construct 
a causal map via a handout and gave them a picture of an environment 
very similar to their own. Students were instructed to base their 
causal map on the environment picture. We did not administer any 
extra instructions beyond what a causal map was and how to 
make one.

In the second semester, we included a short activity published by 
the Institute of Play (2020). The activity included a definition of a 
system and various characteristics of systems that students could use 
to better understand how to model a system with their causal maps. 
After the activity was introduced, the students completed their causal 
maps in the same manner as the first semester, with the same model 
environment picture.

To assist students in building their causal map with a particular 
environment in mind, we included a picture of an environment that 
included objects like crops, a farmer, a cow, a factory, water, etc. (see 
Figure 1). The prompt for the causal maps was, “What roles do plants 
play in the environment shown?” Students answered this by drawing 
a causal map of their own about the environment described above. The 
entire assignment is included in Appendix A.

Students were also asked to answer two questions about their 
causal map: (1) explain how your causal map demonstrates the 
relationships of plants and the environment? and (2) if someone, 
a non-scientist, asked you  to explain how plants connect to 
everyday life or situations, how would you  answer using your 
causal map?

Data analysis

The maps were coded using a rubric developed specifically for this 
study. The rubric was developed using an ecological framework 
(Jordan et al., 2009) and a systems reasoning framework (Hokayem 
and Gotwals, 2016). We chose these frameworks and adapted them to 
our rubric specifically because we wanted to take both an ecological 
and a systems approach to see how much students know about plants 
and their role in the environment. Using these frameworks, 
we developed a rubric based on the factors we saw in the causal maps. 
The rubric included five scoring criteria: plant links, human links, 
ecosystem links, causal reasoning, and systems reasoning. All of the 
criteria had a range of 0 to 3, 0 being the lowest score and 3 being the 
highest. See Appendix B for the entire rubric.

When assessing the criterion plant links, we  considered the 
presence or absence of plants as a part of the requirement, as well as 
the presence or absence of both producer/consumer and 
photosynthetic relationships involving plants. For human links, 
we focused on whether or not humans were included, as well as how 
humans were integrated into the map using multiple relationships. For 
ecosystem links, we focused on whether or not students used both 
abiotic and biotic factors in their maps equally. For causal reasoning, 
we considered whether students included a causal relationship on 
every connection they indicated, and if so, how correct those 
relationships were. For systems reasoning, we evaluated the level of 
interconnectivity of the map, as well as a clear flow of ideas and the 
presence of one or more causal loops. Two authors completed multiple 
rounds of co-scoring and rubric revision on ten of the student 
responses (13% of total maps), until we reached an instrument that 
fully captured the students’ responses, and we  obtained a high 
interrater reliability (86% agreement). We then scored an additional 
ten student responses reaching a total of 20 dual-coded causal maps 
(26% of total maps) and reached 100% agreement following 
discussion. The first author then completed the remaining scoring 
alone which consisted of 18 causal maps from semester one, and 40 
causal maps from semester two.

We coded all the causal maps according to our rubric and took 
averages for each criterion in the rubric, as well as an overall score for 
how well students did by adding the score on each criterion together. 
The highest score possible was 15 and the lowest score possible was 
zero. With that data, we  completed a one-way repeated measures 
ANOVA to determine if there was a significant difference between pre 
and post scores. We repeated this process for both semesters and 
compared pre-test answers using an Independent Samples T-test to 
determine equivalency of scores between both semesters before causal 
maps were administered. We  completed a second Independent 
Samples T-test to compare post-test scores among the 2 semesters to 
determine if the group with the scaffold in the second semester 
performed better than the group in the previous semester.

To evaluate the questions students answered after drawing their 
causal maps we  began with the framework for systems thinking 
developed by Mehren et  al. (2018) as utilized by Mambrey et  al. 
(2020). This framework is defined by three stages of progress toward 
developing skills of systems thinking. We used qualitative open coding 
to determine if we could identify a similar type of hierarchy regarding 
systems thinking in their responses. To do this, we first identified 
whether or not students identified cause-and-effect relationships and 
feedback loops. We found a clear connection between recognizing 
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systems relationships with the extent to which students included and 
described their feedback loops. We were able to determine three stages 
based on how students (1) identified simple cause and effect 
relationships, (2) identified multiple different cause and effect 
relationships within the system, or (3) noted multiple complex 
relationships within the system while including multiple feedback 
loops. See Table 2 for the stages of systems thinking we identified in 
the written responses.

In Stage 1 for Mehren et al. (2018) students “identified a low 
number of elements and relations mainly isolated or monocausal 
and as a vague set of relationships.” In comparison, in our Stage 1, 
students only identify minimal cause and effect relationships 
within the system. In Stage 2 for Mehren et al. (2018), “the student 
is able to identify moderate number of elements and relations and 
they are mainly linear.” This is similar to what we found in our 
data: students identified a moderate number of cause-and-effect 
relationships within a system but included little to no feedback 
loops. Finally, Stage 3 for Mehren et al. (2018) was reached when 
a “student was able to identify a high number of elements and 
relations and they were mainly complex and highly differentiated 
sets of relationships and as part of nested systems.” In our scale, 
students scored as Stage 3 when they were able to identify multiple 
complex relationships within the system and be able to identify 
multiple feedback loops.

Results

Causal map scores

We used one-way repeated measures ANOVA to analyze the 
changes in causal map rubric scores and found that the only 
aspect of the causal maps that students improved upon over the 
semester was using Ecosystem links (p < 0.05). This indicates that 
students did not improve their abilities to use causal maps to 
explain their views on plants and their role in the environment, 
except for with ecosystem links. See Table 3 for results from the 
first semester and Table 4 for the results from the second semester. 
Note that the pre to post difference in the scores for Ecosystem 
links was only significant in the first semester, but not in the 
second semester.

An Independent Samples T-test indicated few differences in pre 
or post scores between the first and second semesters. For the pre-test, 
first semester scores were significantly higher than second semester 
scores for Causal Reasoning and Explanation to non-scientists 

(Table 5). However, we saw no significant differences in any categories 
when we  compared the post-tests between the first and second 
semesters (Table 6).

Because a significant difference in Ecosystem links occurred only 
in one semester and differences between the semesters were limited to 
two categories in the pre-test, but not the post-test, we conclude that 
the trends indicate no real differences between pre and post or 
between the first and second semesters.

Focus on human links

To further examine what students included in their causal maps, 
we  chose the category of human links. This category was not 
significantly different from pre to post, however, we  found it 
interesting how few students included contributions from humans in 
their causal maps even though a human, and human-related items 
(factory, car, etc.) were included in the picture students were shown. 
Figure  2 shows the distribution of causal map scores across all 
assignments in both semesters. Most students fell into the score 
categories of 1 and 2 in all the assignments indicating most included 
some aspect of how humans interact with the environment, but most 
did not to a high degree.

In the first semester, we found that five students fell above and 
five students fell below one standard deviation of the mean for the 

TABLE 2 Stages of understanding of systems thinking.

Stages Descriptions

Stage 1 Provides a vague level of understanding when trying to comprehend 

the importance of causal maps.

Stage 2 Makes moderate connections between plants and the environment 

but does not emphasize specific examples to create broader 

connections.

Stage 3 Identifies multiple different connections relating to plants and the 

environment, these connections are complex and identify multiple 

different examples.

TABLE 3 Pre/post causal map scores for semester 1.

Test
Pre-

mean
Post 

mean
F value p

CM overall 10.03 10.36 0.231 0.634

Plants 1.17 1.31 0.263 0.611

Humans 1.25 1.28 0.036 0.851

Ecosystem 1.28 1.67 5.514 0.025*

Causal reasoning 1.31 1.36 0.139 0.711

Systems reasoning 0.97 1.03 0.139 0.711

Explanation 1.25 1.14 0.302 0.586

Correctness 1.00 1.06 0.085 0.773

Non-scientist 1.81 1.53 0.907 0.348

TABLE 4 Pre/post causal map scores for semester 2.

Test Mean 1 Mean 2 F p

Plant links 1.55 1.60 0.051 0.822

Human links 1.525 1.625 0.394 0.534

Ecosystem 1.425 4.65 1.491 0.229

Causal reasoning 0.850 0.975 0.526 0.473

Systems reasoning 0.95 1.225 2.951 0.094

Explanation of map 1.33 1.15 0.923 0.343

Scientific correctness 

of explanation

1.21 0.871 2.398 0.130

Explanation to non-

scientist

1.231 1.128 0.291 0.593

Total score 9.675 10.325 0.943 0.338
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TABLE 5 Comparison of pre-test causal map scores between semester 1 and 2.

Test Levene’s 
pass?

N CM1 N CM2 Mean CM1 Mean CM2 T p

Plant links 0.336, yes 38 40 1.16 1.55 −1.487 0.141

Human links 0.324, yes 38 40 1.21 1.53 −1.642 0.105

Eco links 0.316, yes 38 40 1.32 1.43 −0.620 0.537

Causal reasoning 0.186, yes 38 40 1.26 0.85 2.790 0.007*

Systems reasoning 0.084, yes 38 40 1.0 0.95 0.290 0.772

Explanation of map 0.736, yes 38 39 1.26 1.33 −0.284 0.777

Scientific correctness 0.074, yes 38 39 1.0 1.21 −0.786 0.434

Explanation to nonscientist 0.384, yes 38 39 1.82 1.23 2.445 0.017*

Total scores 0.207, yes 38 40 10.03 9.68 0.447 0.656

TABLE 6 Comparison of post-test causal map scores between semester 1 and 2.

Test Levene’s 
pass?

N CM1 N CM2 Mean CM1 Mean CM2 T p

Plant links 0.062, yes 36 40 1.31 1.60 −1.085 0.281

Human links 0.137, yes 36 40 1.28 1.63 −1.865 0.066

Eco links 0.510, yes 36 40 1.67 1.65 0.076 0.939

Causal reasoning 0.920, yes 36 40 1.36 0.98 1.878 0.064

Systems reasoning 0.008. no 36 40 1.03 1.23 −1.056 0.295

Explanation of map 0.933, yes 36 40 1.14 1.15 −0.05 0.960

Scientific correctness 0.474, yes 36 40 1.06 0.93 0.590 0.557

Explanation to nonscientist <0.001, no 36 40 1.53 1.18 1.149 0.255

Total scores 0.881 36 40 10.36 10.33 0.045 0.965

pretest. Of the 26 students who were within 1 standard deviation of 
the mean, 12 were above it and 14 were below it. A high scoring map 
completed by a student who received a 12 out of a possible 15 points 
overall for their second map in the course connected plants to both 
food and photosynthesis; included humans as a connection to 
oxygen, carbon, and food; included approximately equal numbers of 
both biotic and abiotic factors in their map; indicated clear and 
correct causal relationships; and had a highly interconnected map 
with nested causal loops as a central figure. However, another 
student received a 1 out of 15 on their causal map. One reason for 
this is that the student likely did not understand the point of the 
exercise as they primarily referred to photosynthesis in their map, 
but they also did not specifically talk about plants at all. They did not 
include humans in their map, all of their ecosystem factors were 
abiotic, they indicated no causal relationships on their map, and all 
of the relationships considered on the map were linear and not at 
all interconnected.

Figure 3 shows examples of causal maps that received each level 
of scoring.

Score of 0. In Figure 3A, the student did not refer to “humans,” or, 
“people,” and did not include any type of concept that is directly 
related to or caused by humans. Every other item on the map is 
something found in nature and not focused on humans in a 
socioscientific context.

Score of 1. In Figure 3B, the student included components such 
as, “factories,” “cars,” “pollution,” “agriculture,” and even, “jobs” which 
are all concepts relating to what humans do in an environment. 
However, this student did not actually use the word, “humans,” or, 
“people,” in their map either, despite the fact that many of the concepts 
included in the map are directly caused by humans in a 
socioscientific context.

Score of 2. In Figure 3C, the student included the word, “humans,” 
in their pre-test map, however, humans have only one connection to 
the rest of the map and are largely separated from all of the other 
elements appearing in the map. Additionally, the word, “humans,” is 
only connected to the word, “oxygen,” which is not a concept directly 
caused by humans in a socioscientific context.

Score of 3. In Figure 3D, the student included the word, “people,” 
but also included several connections between, “people,” and other 
elements of the map. There are seven total connections between the 
element, “people,” and other concepts in the map. Of those seven, 
three can be thought of as concepts directly caused by humans in a 
socioscientific context. “People” is connected to “cars,” “gas,” and 
“factory pollution,” all of which are related to human impacts on the 
environment. The other four elements connected to the term, “people,” 
are “oxygen,” “cows/livestock,” “energy production,” and “produces O2 
and CO2 to help balance [the] environment,” which is the central idea 
of the map. These connections point to an understanding of how 
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FIGURE 2

Number of causal maps assigned to each human links score category.

FIGURE 3

Examples of each level of causal map scoring. (A) Score of 0. No mention of humans or any human-caused phenomena. (Participant 11, pre-test 
causal map). (B) Score of 1. Human-caused phenomena (e.g., agriculture, pollution, wind energy) are mentioned, but humans are not. (Participant 8, 
post-test causal map). (C) Score of 2. Humans are mentioned on the map but are isolated from the other ideas present. (Participant 40, pre-test causal 
map). (D) Score of 3. Humans are present and so are human-caused phenomena (e.g., cars, gas, factory pollution) and humans are highly connected 
with the rest of the ideas on the map, as well as the human-caused phenomena. (Participant 12, pre-test causal map).
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humans are dependent upon plants for oxygen, and how we have 
domesticated cows for agricultural use.

Written answers to questions

To analyze students’ systems thinking understanding and level of 
use in the answers to the questions about their causal maps, 
we developed a modified scale using the chart of Skills of Systems 
Thinking developed by Mehren et  al. (2018) and as utilized by 
Mambrey et al. (2020). Qualitative analysis revealed three levels of 
systems thinking within students’ answers to the questions (see 
Table 2). At Stage 1, students provided a vague level of understanding 
when trying to comprehend the benefit of drawing causal maps. At 
Stage 2, students made moderate connections between plants and the 
environment but did not elaborate with specific examples that would 
help them to create broader connections. At Stage 3, students 
identified multiple different connections relating to plants and the 
environment. These connections were complex and identified 
specific examples.

Question 1. In Question 1, students were asked to “Explain how your 
causal map demonstrates the relationships of plants and the environment.” 
Students were asked to answer this question about both their pre-class 
and post-class causal maps. Analysis of Pre-Question 1 showed that 21 
out of the 40 students fell into Stage 2 of the level of utilizing systems 
thinking regarding explaining their causal maps (Table 7). This conveys 
that students were only making moderate or broad connections when 
attempting to demonstrate the relationships between plants and the 
environment. For example, one student said “Plants help to reduce 
emissions in this environment. It shows that pollution, cars, structure, 
electricity, etc. add problems for plants to clean up” (Student 24).

This is considerably more complex than a student who scored in 
Stage 1 who simply said, “Plants allow for survival” (Student 4). The 
response given by this student shows a vague level of understanding 
when making connections between plants and the environment. Students 
who scored in Stage 3 wrote a well-developed answer that made use of 
specific connections between plants and the environment. For example:

My causal map demonstrates the interconnected relationships 
that plants have within the environment. Plants use CO2 (product 
of many living things) to produce O2 (necessity of many living 
things). Taking in CO2 in a large amount can be considered a 
carbon sink, returning the carbon from the air back into the 
ground. Not only do plants produce CO2, but they also create 
habitats for living things and produce resources living things can 
use (wood, food, etc.). Agriculture plays a big role in the 
production of food for humans, but with this, both positive and 
negative effects occur. Over usage of land results in desertification. 
Over usage of fertilizers results in runoff and dead zones, 
negatively impacting surrounding ecosystems. Agriculture allows 
humans to have time to do other things besides hunting and 
gathering (the old way of collecting food) showing a positive 
impact. Plants play a larger role in everyday life, one that many 
do not realize (Student 38).

This response makes several connections between the positive 
and negative impacts on the relationship between plants and the 
environment. Of note, all Stage 3 responses were much longer and 
contained more details than either Stage 1 or Stage 2 responses.

When this question was administered again at the end of the 
semester, results showed the majority of students falling in Stage 1 (17 
out of 40) and Stage 2 (16 out of 40) (Table  7). Students showed 
minimal improvement, or no improvement at all, in their responses 
between the pre-class and post-class assignments.

Question 2. In Question 2, students were asked “If someone, a 
non-scientist, asked you to explain how plants connect to everyday life 
or situations, how would you  answer using your causal map?.” 
Analyzing the results from Pre-Question 2 showed that, as with 
Pre-Question 1, 19 out of 40 students fell in the Stage 2 category 
(Table  7). For example, a student who scored in Stage 2 wrote, 
“Without plants we would not have air, a lot of shelter comes from 
trees, food, etc. Plants are necessary for survival” (Student 4). This 
student expressed why plants are important and the different 
components we gain from them but did not rank in Stage 3 because 
they did not draw specific connections to everyday life.

A student who scored in Stage 1 wrote, “It represents how so 
many different factors in the environment can be correlated and have 
an impact within society” (Student 14). This student scored in Stage 
1 because, although they mentioned that many different components 
are related, they did not include specific factors and how those factors 
impact the environment.

Analysis of answers to Post-Question 2 exhibit nearly the same 
results as Pre-Question 1, most students scored as Stage 2. We did not 
see an enhancement in the development of the responses from the 
pre-class to the post-class assignment. For example, a student who 
ranked at Stage 2 for Pre-Question 2 stated, “My causal map shows how 
plants help maintain the lives of all living organisms and how 
everything feeds off each other. Plants feed off the CO2 that humans 
produce, and humans feed off all of the benefits plants give us” (Student 
40). When asked the same question again in Post-Question 2 the 
student stated, “My causal map shows how humans can use plants in 
many different ways. We need them because they produce oxygen for 
us, food, shelter, medicine, and many other things without plants it 
would be very difficult for us to exist,” and again scored in Stage 2.

In both Pre- and Post-question 2, few students scored in the Stage 3 
level of drawing connections (eight out of 40 for Pre-Question 2 and 
seven out of 40 for Post-Question 2) (Table 7). A Stage 3 answer requires 
multiple connections between plants and the environment and would 
thoroughly explain how those connections are important. A student who 
scored in Stage 3 for Post-Question 2 stated,

My causal map would show them what plants do for every day like 
through the simple points made in the causal map. The plant 
provides oxygen, income, food, oxygen, and consumes CO2. The 
oxygen, income, food, and sustainability of life are where 
we  receive from plants while CO2 is what is removed. CO2 
emission affects the amount of oxygen made and the amount of 
cash crops (food) affects income” (Student 21).

We found little to no improvement in regard to drawing more 
in-depth connections within the environment. For example, a student 

TABLE 7 Scores in each stage for each question.

Pre-Q1 Post-Q1 Pre-Q2 Post-Q2

Stage 1 13 17 13 14

Stage 2 21 16 19 19

Stage 3 6 7 8 7
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who scored in Stage 1 for Pre-Question 2 states, “They’re need[ed] for 
survival because you need O2 to breathe and need to live off of it” (Student 
10). When asked again in Post-Question 2, the students wrote “We need 
them to breathe and eat and make money. They’re essential for us to live,” 
which again scored in Stage 1. Because we saw 21 out of 40 students 
scoring in the Stage 2 category, we can conclude that many students tend 
to make broad connections rather than making specific connections with 
a variety of different components.

Next, we analyzed the extent to which students changed stages 
in their answers to the questions between the pre- and post-
assignments. We saw students who improved to a higher stage, 
remained at the same stage, and who regressed to a lower stage. 
For Pre- to Post-Question 1 we found that a total of nine students 
improved, 20 were unvarying, and ten regressed (Table 8). For 
Pre- to Post-Question 2, eight improved, 22 remained the same, 
and nine regressed (Table 8).

As shown in Figure 4, of the students who were categorized in 
Stage 1 for Pre-Q1, five improved to Stage 2, while seven stayed at 
Stage 1 in their answer to Post-Q1. No students scoring in Stage 1 
for Pre-Q1 increased to Stage 3 in Post-Q1. For students placed in 
Stage 2 for Pre-Q1 we found that four improved to Stage 3, ten 

remained at Stage 2, and seven regressed to Stage 1 when 
answering Post-Q1. Finally, of the students placed in the Stage 3 
category for Pre-Q1, three remained in Stage 3 while three 
regressed down to Stage 1 when answering Post-Q1. We attribute 
this last regression to students not taking the second assignment 
as seriously as the first.

As shown in Figure 5, of the students who were categorized in 
Stage 1 for Pre-Q2, five improved to Stage 2 and seven remained at 
Stage 1 in their answers to Post-Q2. As with Question 1, no students 
who scored in Stage 1 increased to Stage 3. For students categorized 
as Stage 2, three improved to Stage 3, ten remained in Stage 2, and six 
regressed to Stage 1 for Post-Q2. Lastly, of the students in the Stage 3 
category, four remained in Stage 3 while three regressed to Stage 2 and 
one regressed to Stage 1 for Post-Q2.

TABLE 8 Pre- and post-assignment totals for question 1 and 2.

Improved Remained Regressed

Q1 9 20 10

Q2 8 22 9

FIGURE 4

Analysis of the number of students who improved to a higher score, remained at the same score, or regressed to a lower score between the Pre- and 
Post-answers to Question 1.
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Discussion

Undergraduate biology programs should include 
opportunities for students to engage in complex biological 
processes and causal reasoning to understand how 
interconnected components are necessary for systems to 
function linearly, non-linearly, and across time and space 
(Jacobson, 2001; Evagorou et al., 2009; AAAS, 2011; NRC, 2011; 
Mehren et al., 2018; Verhoeff et al., 2018; Mambrey et al., 2020). 
Thinking about systems requires students to both understand 
that a system is both the entity and how the entities interact 
(Momsen et  al., 2022). While the term “ecosystem” is often 
taught across the K-16 spectrum, it is rarely done so without 
systems thinking, particularly with how natural and social 
systems are intricately linked (Mehren et al., 2018; Sterk et al., 
2017). Further, little work has focused on how undergraduate 
students engage in causal reasoning socio-ecological systems 
(Davis and Stroink, 2016; Sabel et al., 2017).

Vision and Change (AAAS, 2011) included Systems as one of the 
five Core Concepts and Modeling and Simulation as a Core 
Competency. Modeling is an important part of the development and 
integration of scientific knowledge (Gilbert, 2004; Schultz et al., 2022). 

Integrating modeling with systems thinking requires students to also 
develop causal reasoning. This, too, is challenging for students because 
of the difficulty in considering both natural and societal aspects of 
systems such as ecosystems (Jacobson, 2001; Coyle, 2005; Jordan et al., 
2009; Bang et  al., 2012; Zangori and Cole, 2019). Our focus on 
ecosystems in this study is, in part, because of this interaction between 
nature and society. In addition, little research has focused on how 
students reason about plant function and how plants are a crucial part 
of ecosystems (e.g., Zangori and Koontz, 2017; Busta and Russo, 2020; 
Parsley et al., 2022).

In this study, we focused on the use of causal maps as a form 
of modeling causal relationships within ecosystems (Shin and 
Jeong, 2021). Although causal modeling has been used in other 
disciplines (Montibeller and Belton, 2006; Buchholz et al., 2007; 
Pronk and Faghy, 2022), they have been only limitedly utilized 
in science education (e.g., Cox et  al., 2018; Ke et  al., 2020; 
Hanisch and Eirdosh, 2021). This focus on causal relationships 
is not something that students typically consider in their daily 
lives beyond linear reasoning such as in food webs (Perkins  
and Grotzer, 2005; Grotzer and Tutwiler, 2014). Therefore,  
it is important for students to have exposure to causal  
complexity such as feedback loops for them to develop causal 

FIGURE 5

Analysis of the number of students who improved to a higher score, remained at the same score, or regressed to a lower score between the Pre- and 
Post-assignments for Question 2.
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reasoning and systems thinking skills (Richardson, 2011; 
Bennett et al., 2020).

In our first research question, we asked “To what extent do 
undergraduate students engage in systems thinking about an 
ecosystem?” We  found that the majority of students fell into 
mid-range scores meaning they did see some connections within 
the system but did not reach a high level of systems thinking. 
We did not see an improvement in the causal maps from pre to 
post except among ecosystem links and then only in the first 
semester. One reason for this result may be that students did not 
have prior experience with using causal maps and may not yet 
have had the skills necessary to demonstrate connections. While 
they may have recognized part of the system, it seems they did 
not fully consider the system itself or how the entities interact 
(Momsen et  al., 2022). It seems students also exhibited the 
difficulty in merging both natural and society aspects of the 
ecosystem they were asked to analyze as previously described 
(e.g., Jacobson, 2001; Coyle, 2005; Jordan et al., 2009; Bang et al., 
2012; Zangori and Cole, 2019). Therefore, future work will need 
to focus on providing more foundational work on thinking about 
systems both as a whole and as the entities that make up the 
whole, as well as considering both natural and societal impacts 
on the system.

In our second research question, we  asked “How do 
undergraduate students reason about the causal relationships 
within an ecosystem?” The only significant difference we found 
in the causal reasoning category was between the pre-tests of 
semester 1 and semester 2. This indicated there may have been a 
difference in how students came into the class thinking about 
causal relationships, but it did not last from pre- to post-
assignment in a single semester. In the written responses to the 
questions accompanying the causal maps, we also saw little usage 
of feedback loops or connections that went beyond simple, linear 
relationships. Again, this aligns with previous work that has 
shown it is rare that students consider causal relationships 
beyond linear reasoning (Perkins and Grotzer, 2005; Grotzer and 
Tutwiler, 2014). Future work will need to focus on how to engage 
students in reasoning that will allow them to consider complexity 
in relationships in ways that are non-linear and that span time 
and space (Jacobson, 2001; Evagorou et al., 2009; AAAS, 2011; 
NRC, 2011; Mehren et al., 2018; Verhoeff et al., 2018; Mambrey 
et al., 2020).

In our third research question, we  asked “What factors do 
undergraduate students prioritize when they consider causal 
relationships within an ecosystem?” We found little consistency in 
what students considered beyond including the basic features 
found in the ecosystem picture they were given with the assignment 
and topics they had previously learned were associated with plants 
and ecosystems (i.e., photosynthesis). However, although humans 
and human-related factors were included in the assignment 
picture, few students included human-related causes and effects in 
their causal maps or in the answers to the questions following the 
causal maps. Again, this points to the difficulty students have with 
considering both natural and societal aspects within systems 
(Jacobson, 2001; Coyle, 2005; Jordan et al., 2009; Bang et al., 2012; 
Zangori and Cole, 2019). Future work will need to focus on how to 

help students understand the multiple factors involved in 
systems thinking.

Overall, our work has further shown many of the aspects of 
systems thinking that were already known. However, we have 
expanded that knowledge to include undergraduate biology 
students. We  show that the problems with systems thinking 
observed in K-12 students persist into undergraduate courses. 
This highlights the importance of prioritizing thinking about 
systems in undergraduate education, particularly as it has been 
identified as a Core Concept of biology (AAAS, 2011). While the 
use of a causal map assignment did not significantly improve 
students’ engagement in systems thinking, this study did help us 
to better understand the particular challenges we need to address 
to better support undergraduate students in both the Core 
Concept of Systems and the Core Competency of Modeling 
(AAAS, 2011). This study was intended as a pilot to determine 
whether students develop systems thinking during a class that 
discussed many aspects of systems thinking but did not provide 
specific instruction on how to think about systems or causal 
relationships among various aspects of systems. Therefore, 
we did not expect students to improve dramatically, however, 
we were still surprised by the consistent lack of improvement 
given consideration of systems (even though not systems 
thinking) in the course. Future work will focus on more directed 
instruction on both systems thinking and consideration of 
causal relationships.

This study is limited because of the small sample size within 
the botany course and limited time within the semester to 
complete the study and administer the causal maps. However, it 
has important implications for undergraduate biology instructors 
as they consider how to teach students about botany topics either 
in stand-alone botany courses, or as part of general biology or 
ecology courses.
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Introduction: The COVID-19 pandemic showed the critical importance of 
supporting teachers’ and students’ systems thinking when making sense of complex 
phenomena. This study sets to explore preservice biology teachers’ (PBTs) mental 
models of COVID-19 as complex phenomenon using concept maps.

Methods: 27 PBTs concept maps of COVID-19 outbreak were collected and taken 
for analysis. Structural and complexity attributes were identified in participants’ 
concept maps and the relationships between them were tested, providing 
statistical analyses using exemplary concept maps.

Results: The results suggest that the appearance of many concepts in a map 
(structural attribute) does not necessarily indicate high level of complexity, but 
rather the amount of simple structural relationships (complexity attribute). On 
the other hand, the results indicate that higher structural sophistication (e.g., high 
number of connections and junctions) could be associated with the complexity 
level of the map.

Discussion: This study provides a practical method for evaluating the complexity 
level of PBTs’ systems thinking, suggests a possible link between structural and 
complexity attributes in their concept maps, and demonstrates the need to 
further support PBTs in developing their systems thinking skills in the context of 
complex biological phenomena.

KEYWORDS

systems thinking (ST), complexity, concept map (CM), COVID-19, preservice biology 
teachers

1. Introduction

In the modern world, people are exposed to a variety of phenomena, such as climate 
change, ozone depletion and rising carbon dioxide levels, which are characterized by a complex 
web of interactions. More recently, the COVID-19 pandemic, also known as the coronavirus 
pandemic, is an ongoing global pandemic of coronavirus disease 2019 (COVID-19), which is 
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic has 
upended the lives of all people across the globe (see Supplementary material 1 for summary 
World Health Organization, 2021 information about COVID-19 from the World Health 
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Organization). COVID-19 vaccines can help end the pandemic, but 
it’s essential that everyone has access to them. It is also important to 
recognize that there are several scientific and non-scientific 
opponents for the COVID-19 vaccines who question the effectiveness 
and usefulness of the vaccination regimes adopted around the world. 
This requires the public and science students to be more aware of the 
different views, the scientific and non-scientific evidence that are 
available to support these views, and the complexity of information 
that should be considered when making decisions on this matter. This 
complexity cannot be fully understood and, hence, solved with the 
disciplinary tools or methodology that are commonly use, in which 
each variable is isolated and tested separately. Rather, it requires the 
development of an appropriate approach, which addresses such 
problems holistically, as an interconnected, complex system (Haley 
et al., 2021; Puig and Uskola, 2021)–a whole that is more than the 
sum of its parts (Jacobson and Wilensky, 2006). Uskola and Puig 
(2023) argued that the pandemic of COVID-19 has highlighted the 
need to develop a citizenry with skills to analyze complex 
socioscientific problems, in which systems thinking and futures 
thinking worked together, allowing students to make decisions and 
to be active citizens.

Capra and Luisi (2014) Systems View of Life portrays the twenty-
first century as having inherited major problems involving the 
environment, energy, climate change, biosecurity, and financial 
security. They characterize these as systemic problems in that they are 
all connected. Capra’s deep ecological view requires a “radically new 
conception of life” and a new understanding of how the world is 
changing. Capra and Luisi (2014), have asked for shifts in perceptions 
and ways of thinking understanding social–ecological systems as 
complex adaptive systems, especially at the level of the Earth System 
as a whole. This approach emphasized the systemic properties level 
that emerge from the underlying patterns of organization—
suggesting that systems cannot be understood, nor their behavior 
predicted on the sole basis of information relating to their 
individual parts.

Understanding and analyzing such complex phenomena requires 
students to engage in “systems thinking”—a higher order thinking 
skill associated with the ability to understand how the behavior of 
complex systems is manifested at different scales (from the 
microscopic to the global/biospheric) and how patterns emerge from 
the interactions among system components (Gilissen et al., 2021). 
Rachmatullah and Wiebe (2021) suggested that given this broad 
definition of systems thinking, research in science education has 
identified many different types of thinking processes that fall under 
the umbrella of systems thinking, such as thinking in levels, causal 
reasoning, mechanistic reasoning, structure–function-behavior, 
dynamic thinking, cyclic thinking, and interdisciplinary thinking.

Complex systems are prevalent in many scientific fields, and at 
all scales—from the micro scale of a single cell (such as a human 
fertilized egg) to macro complex systems such as cities or ecosystems 
(Yoon et  al., 2017). Systems are a central feature of biological 
sciences. Such systems are made up of many entities, reflecting the 
multiple levels of organization, and whose interactions emerge into 
distinct collective patterns (Verhoeff et al., 2018). Hmelo-Silver et al. 
(2000) defined the dynamic system as a coherent whole composed 
of multiple components working cooperatively both on a single level 
and between levels. Because of the dynamic nature of the connection 
between the system’s different levels of hierarchy, complex systems 

are difficult to understand, even for experts (Hmelo-Silver and 
Azevedo, 2006). Recent review studies indicate that there are only 
few studies on science teachers and systems thinking (York et al., 
2019; Bielik et al., 2023). further, little is known about (preservice) 
teachers’ abilities to appreciate complex phenomena—such as the 
COVID-19 pandemic—as systems. Supplementary material 2 
provides detailed description of the COVID-19 pandemic as 
complex system, using the eight system characteristics of Gilissen 
et al. (2020).

In biology education, the teaching of complex systems is further 
emphasized, since many complex biological systems also incorporate 
a variety of social, political, and cultural elements, which expand the 
boundaries of the system and add even more layers of complexity (de 
Sousa et  al., 2019). One of the important questions that should 
be asked, in light of this issue, is: Are biology teachers able to grasp 
these issues well enough to convey them to their students?

This study addresses the above question by examining the 
systems thinking of preservice biology teachers (PBTs). Specifically, 
concept maps were used through which the PBTs were able to 
externalize their mental models of one of the most pertinent examples 
of a complex, socio-scientific system—the Coronavirus pandemic. 
Following this, both qualitative and quantitative analyses of PBTs’ 
concept maps were performed in order to determine which 
characteristics of systems thinking were reflected in their visual 
representations. The goal in doing so was that the specific strengths 
and weaknesses revealed by their concept maps could be used as a 
basis for scaffolding strategies in future preservice education.

2. Theoretical background

2.1. Systems thinking

Systems thinking is widely acknowledged as an important 
component in science education, the development of which is 
necessary for helping students make sense of complex phenomena in 
biological systems (Verhoeff et al., 2018). As mentioned in the Next 
Generation Science Standards (NGSS Lead States, 2013) and stressed 
in Nordine and Lee (2021), systems and system models are a critical 
crosscutting concepts that K-12 science students are required to 
develop in order to make sense of phenomena. Researchers agree that 
this higher-order thinking skill provides students with a more 
coherent understanding of biology by revealing the universal 
principles that apply to biological systems on different biological 
levels of organization (Hmelo-Silver et  al., 2017; Knippels and 
Waarlo, 2018; Mambrey et al., 2020). These universal principles, or 
“system characteristics,” are generally divided into three different 
groups, which Yoon et al. (2018) summarize in their comprehensive 
review as (a) structures, referring to the components, the physical 
features of the system, (b) processes, referring to the dynamic 
interactions and mechanisms that fuel the evolution of complex 
systems, and (c) emergent states, which describes the systemic 
patterns and properties that govern how complex systems exist in 
the world.

While systems thinking is part of many science curricula or 
standard documents (e.g., KMK, 2005, 2019; NGSS Lead States, 
2013), multiple definitions of systems thinking can be  found in 
science education literature. The differences between the various 
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models for assessing systems thinking are largely due to variations in 
how the precise characteristics of a complex system are defined, based 
on the specific scientific phenomena addressed in the respective  
studies.

Several models have been put forth as useful means of 
representing the various forms and levels of system thinking. One 
promising approach for portraying systems thinking in a way that 
reflects the system’s multiple interacting components and their states 
is Structure-Behavior-Function (SBF) thinking (Hmelo-Silver et al., 
2007). In SBF terms, the structure portion of an SBF model of a 
complex system specifies the “what” of the system, meaning the 
components of the system as well as the connections among them. 
Behaviors specify the “how” of the complex system, namely the causal 
processes occurring in it. Functions specify an understanding of the 
“why” of the system. The SBF model, has been recognized as useful 
for students’ understanding of various biological systems, including 
human body systems (Hmelo-Silver et  al., 2007; Gnidovec et  al., 
2020), and ecological systems (Jordan et al., 2014; Nesimyan-Agadi 
and Ben-Zvi Assaraf, 2021). Recently, Momsen et  al. (2022) 
introduced the biology systems-thinking (BST) framework, which 
describes four levels of systems-thinking skills: (1) describing a 
system’s structure and organization, (2) reasoning about relationships 
within the system, (3) reasoning about the system as a whole, and (4) 
analyzing how a system interacts with other systems. Each level of the 
BST is described using structure–relationship–function (SRF) 
language, where structures are the components that comprise the 
system; relationships are the mechanisms that explain how structures 
are related; taken together, structures and behaviors interact to result 
in a particular system function.

Hmelo-Silver et al. (2017) modified the SBF model, creating an 
alternative conceptual framework called Components-Mechanisms-
Phenomena (CMP). This framework provides a representation of all 
the system’s attributes, including the structures (components) within 
the system, the specific processes and interactions (mechanisms) that 
occur between them, and the macro scale of processes and patterns 
within a system—the phenomena. The refined conceptual 
representation was presented by Hmelo-Silver et al. (2017) and was 
later adopted by Snapir et  al. (2017), reflecting the mechanistic 
reasoning of human body learning. Another form of conceptual 
representation is the Systems Thinking Hierarchy (STH) model 
developed by Ben Zvi Assaraf and Orion (2005). This model divides 
how people think about and understand complex systems according 
to eight hierarchical characteristics or abilities, which are evinced by 
students in an ascending order. These eight characteristics are 
arranged in ascending order of advancement and subdivided into 
three sequential levels: (A) analyzing the system components (e.g., 
identifying the components and processes of a system); (B) 
synthesizing system components (e.g., identifying dynamic 
relationships within the system, and organizing the system’s 
components, processes, and interactions, within a framework of 
relationships); and (C) implementation (e.g., thinking temporally, 
identifying patterns and making generalizations). Each level of 
systems thinking in this model serves as the prerequisite and the basis 
for developing the thinking skills on the level above.

Summarizing, three generally agreed-upon central skills of 
systems thinking are proposed in the literature (e.g., Ben Zvi Assaraf 
and Orion, 2005; Mehren et al., 2018; Mambrey et al., 2020): (1) 
“identifying system organization”: identifying a complex 

phenomenon in terms of its organization as a system and be able to 
describe the relevant components and patterns within it; (2) 
“analyzing system behavior”: examining the system’s development 
and functional processes, as well as both direct and indirect cause-
and-effect relations between the identified elements of the system; 
and (3) “system modeling”: modeling the hypothesized prospective 
target states of the system. This study explores these skills using the 
CMP conceptual framework. Specifically, Hmelo-Silver et al. (2017) 
declared that the CMP conceptual framework reflects the mechanistic 
reasoning of ecosystem learning, in the context of a complex system. 
Since the aim is to explore students’ conceptualization of the 
underling mechanism of the COVID-19 outbreak, this framework is 
appropriate for this study allowing identify system thinking 
learning trajectories.

2.2. Concept maps as a tool for the 
externalization of mental system models

One of the key principles in planning the teaching of complex 
systems is representing the conceptual framework explicitly to the 
students and helping them to represent their mental models 
explicitly (Knippels and Waarlo, 2018; Eberbach et al., 2021). The 
external representation of mental models is a useful means of 
assessing students’ understanding of the multilevel structure that 
characterizes complex, non-linearly organized biological phenomena 
(Dauer et al., 2013). One way to do this is to use concept maps as a 
visual means of externalizing and examining students’ internal 
mental models (Kinchin et al., 2000; Hay et al., 2008; Brandstädter 
et  al., 2012). Snapir et  al. (2017) emphasize the importance of 
presenting complex systems within a conceptual framework that 
addresses, expresses and organizes all of the system’s components 
and the relationships between them. Such conceptual representations 
can not only help students organize their ideas, but might also make 
it possible to identify differences in the extent of individuals’ system 
thinking skills, and of the development of these capacities within 
each learner.

The importance of concept maps as a research tool lies in the 
possibility of conducting comparisons between multiple maps—
either to compare the mental models of different people or to 
compare the mental models of the same person at different points in 
time. Comparisons between the maps of multiple students can also 
help researchers and educators identify and assess recurring patterns 
in the development of students’ systems thinking (Dauer et al., 2013). 
Concept maps can also be analyzed for their structural attributes. The 
structural attributes reflect the way the concepts are organized and 
connected in the map, such as identifying junctions where more than 
two concepts are connected to another one (Tripto et  al., 2017; 
Nesimyan-Agadi and Ben-Zvi Assaraf, 2021). This is important for 
complex phenomena in which students may display fragmented 
understanding (Kinchin et  al., 2000). External representations of 
mental models (like concept maps) are used to evaluate not only 
conceptual understanding, but also the ability to solve problems in a 
complex system’s content (Johnson-Laird, 2001, 2004).

Nevertheless, Kinchin (2011, 2014), claimed that “poor” maps are 
not always indicators of poor performance and “good” maps not 
always predictors of good performance. There is no one common 
determination whether a concept map is really good in terms of 
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indicating the presence of a sophisticated understanding. For example, 
a spoke structure may develop into a chain or a network over a period 
of time as the student’s understanding develops and is more systemized 
and complex in response to further learning.

Akçay (2017) used concepts maps to identify prospective 
elementary science teachers’ difficulties regarding the connection 
between photosynthesis and cellular respiration processes in terms of 
energy and matter cycling. De Sousa et al. (2019) analyzed primary 
school teachers systems thinking concept maps on the 
interconnectedness of soil and climate change. The research study 
indicates that the teachers struggled to use systems thinking to 
illustrate understanding of the interconnectedness of soil and climate 
change, for example, how healthy soils can mitigate the impact of 
climate change. Ben Zvi Assaraf and Orion (2005, 2010) demonstrated 
how concept maps allow students at the junior high school level, to 
link processes to the nodes representing the system components to 
present causal dynamics and cyclic mechanism, within the earth 
system. Although concept maps enable relational links to be made 
between relevant concepts, Safayeni et  al. (2005) pointed their 
limitation in to capture “cyclical” relationships representing complex 
natural and social systems. Therefore, they suggested cyclic concept 
maps for representing dynamic relations and hybrid maps for 
representing both the concept map and the cyclic concept map 
portion of a knowledge representation in an aggregated map.

2.3. Aims and research questions

This is a mixed methods study aiming at identifying PBTs’ systems 
thinking in the context of COVID-19 using concept maps. To do so, 
concept maps were qualitatively analyzed for their complexity and 
structural attributes, and statistical analyses between obtained scores 
was performed.

The following research questions are addressed in this paper:
What are the complexity and structural attributes of PBTs’ concept 

maps about COVID-19?
What are the relationships between the complexity and structural 

attributes of PBTs’ concept maps about COVID-19?

3. Methodology

3.1. Context and participants

This study was carried out at one public university in Germany, 
that is, in the first phase of teacher education. Preservice teachers in 
Germany usually study two subjects in a six-semester bachelor’s 
program, followed by a four-semester master’s program (concurrent 
teacher education programs). At the end of their studies, preservice 
teachers are expected to develop basic professional knowledge and 
competences needed for their profession (Neumann et  al., 2017). 
These include knowledge and competences regarding complex 
biological phenomena and systems thinking skills (Fanta et al., 2019).

The sample of this study consists of concept maps produced by 
PBTs from the fourth (i.e., the last) semester of the Master of 
Education program. All students enrolled in a course focusing on 
biology education research, were asked to participate in this study by 
producing a concept map on the COVID-19 pandemic. The 

participation in the study was not mandatory for the course; 
participation was voluntary and anonymous. Researchers and 
participants had no formal relationships to one another.

3.2. Tools and methods

3.2.1. Concept maps
Twenty seven concept maps were produced and submitted by 

students in the course after receiving explicit instructions provided 
both orally by the course teacher and as written text in the task 
introduction. All produced concept maps included text on most or all 
of the connecting arrows and were taken for analysis.

3.2.2. Semi-structured interviews
To test whether the aspects of complexity identified in 

students’ concept maps reflect their systems thinking and 
understanding, semi-structured individual interviews with three 
additional PBTs were conducted, in which they were asked to 
reflect about their concept map as a visual representation of 
COVID-19 outbreak as complex phenomena, provide evidence 
for that given connection, and add concepts or connections if 
needed. The aim of the interviews was stimulating students’ 
explicit use of the system characteristics to evaluate how the 
analysis capture their system thinking reasoning in terms of the 
components (C) of a particular phenomenon (P) and how they 
interact to result in a specific mechanism (M) of the phenomenon 
(COVID-19 outbreak).

Interview questions and protocol were based on Tripto et  al. 
(2016) and revised collaboratively developed by all authors (interview 
questions provided in Supplementary material 3). The three 
interviewed students, named students A, B, and C, were females 
master students in the same program as the rest of the study 
participants and were selected as a convenience sample. Interviews 
lasted 20–30 min each. An example of one of the interviewed students’ 
concept map is provided in Figure 1.

3.3. Data collection

The PBTs were asked to anonymously produce a concept map 
that describes their understanding of the COVID-19 outbreak (“In 
recent months, we  have experienced COVID-19 as a global 
phenomenon. Please create a concept map that describes your 
understanding of the various factors influencing the spreading of 
COVID-19”). To produce and save the concept maps, the PBTs used 
SageModeler (Bielik et al., 2019), an open access online drawing tool, 
which allowed them to add as many boxes to the drawing board, to 
connect between them with arrows, and to label the boxes and 
arrows. The software allowed the PBTs to create and digitally send a 
shared link of their final concept map. PBTs were not provided with 
specific instructions on how to produce a concept map, as they were 
already familiar with this method from their previous studies. As far 
as we know, PBTs did not receive any explicit teaching materials 
concerning COVID-19  in their academic studies at the time of 
administration of the task. However, it was accepted that they all were 
exposed and informed of the COVID-19 situation from media and 
other sources.
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The semi-structured interviews that were conducted with three 
additional PBTs took place online and were led in German by one of 
the authors. Each interview lasted between 20 and 30 min and all 
interviews were video recorded. Interviews were fully transcribed and 
translated into English. Authors collaboratively analyzed the 
interview transcripts.

3.4. Analysis

All 27 maps were translated from German to English and 
qualitatively analyzed for complexity and structure attributes. The 
analysis was conducted as a collaborative social interaction over 
time, with the combined efforts of three of this manuscript’s 
authors, which are researchers in the field of science education. 
The concept maps were examined repeatedly, with the CMP 
model serving to guide the reading and the analysis toward the 
formation of a series of codes. Since every researcher interprets 
data according to their own subjective perspective, content 
validation was done until 90% agreement was achieved. Following 
this, interrater agreement was tested by two researchers 
independently and Cohen’s Kappa (K = 0.85) indicates an “almost 
perfect” (Landis and Koch, 1977) interrater agreement. Cases of 
disagreement were resolved by discussion until full agreement 
was reached.

Because of the multidisciplinary nature of the COVID-19 
outbreak, almost all concept maps described systems that included 
both biological concepts (e.g., COVID-19 outbreak, virus mutation, 
infectious rate, etc.) and social concepts (e.g., lockdown, globalization, 
travel restrictions, etc.), with the exception of student #17 map which 
included only biological concepts.

To test students’ understanding of social and biological concepts, 
student in the interview were asked to identify these concepts in their 

maps. All three students were able to correctly identify and distinguish 
between social and biological concepts. For example, one student said:

“The social aspect for me would be, on the one hand, the interaction 
of organisms in factory farming or also the volume of travel or the 
density of people in cities, that would be the social aspect for me. How 
do people deal with each other, as well as lack of information and 
governments. So social constructs in society. And the biological 
[concepts] would be for me then just something like mutations, infection 
times, but also intervention in nature and habitats, where it is for me 
then really about the natural factor.” (Student B interview).

The analysis did not focus on the disciplinary content since this 
was not the aim of this study, as it aims to characterize the system 
language in the maps rather than assessing the sophistication level of 
students’ biological conceptual knowledge.

Based on the statistical analysis that was performed to address the 
second research question, two exemplary concept maps were chosen 
for in-depth analysis. The two concept maps represent typical cases 
that demonstrate the statistical correlations that were found.

3.4.1. Complexity attributes
For complexity attributes, maps were analyzed based on Hmelo-

Silver et al. (2017) CMP framework, which provides a representation 
of all the system’s attributes. The analysis was performed by Snapir 
et al. (2017) for specific CMP and structural attributes was carried out, 
as described below.

3.4.4.1. Components
Concept maps were analyzed for component attributes that 

describe COVID-19 as complex systems. As suggested by Ben Zvi 
Assaraf et al. (2013), biological concepts in each map were analyzed 
for their organizational level, with three types of biological 
organizational levels that were classified: only macro level concepts, 
macro and cellular micro level concepts, and macro level and 

FIGURE 1

Concept map of interview student C.
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molecular micro level concepts (elaboration and examples provided 
in Table 1). These organizational levels represent the commonly used 
levels when examining biological phenomena. In their interviews, all 
three students were able to identify the correct biological 
organizational level of their biological concepts or to recognize which 
organizational levels are missing from their concept maps. For 
example, student C said: “So the organism level I would definitely be the 
wild animals and the zoonosis, the molecular then would 
be the mutations.”

3.4.1.2. Mechanism
To analyze the concept maps for mechanism attributes, specific 

processes and interactions between components and the outcomes of 
these interactions, such as feedback loops, were identified by analyzing 
the connections between concepts in the maps. Analysis included two 
categories: type of relationship and organizational level changes.

Type of relationship were coded based on the nature of 
connections between concepts in maps. Three types were 

identified, based on Tripto et  al. (2017): simple structural 
relationships, simple mechanistic relationships, and sophisticated 
time-based relationships (see Table 2 for elaborated description 
and examples). Percentage of each type of relationships from total 
number of connections in each map was calculated. In their 
interviews, all students were asked to identify sophisticated time-
based relationships in their maps and were able to correctly do so. 
For example, student B said: “High travel increases the density of 
people in the cities, so to speak. And high travel volume also 
increases rapid spread. That would be  something like that 
[sophisticated time-based relationship].”

Organizational level change was defined as a connection between 
two concepts that are from different biological micro/macro 
hierarchical levels (e.g., viral RNA attacks human host, student #24). 
Percentage of organizational level changes was calculated as number 
of connections with organizational level change out of the total 
number of connections in the map.

In their interviews, students were able to identify organizational 
level changes. For example, student B said:

“Then cellular to organism [organizational level] for me would 
be human infection and mutation. So, what happens at the cellular level 
and what effects it has on the organism. And then of course cellular to 
pandemic [organizational level] would be then from infection to rapid 
spread and then to pandemic.” (Student B interview).

3.4.1.3. Phenomena
For the phenomena attributes, characteristics of the overall 

behavior or properties of the system that results from certain 
mechanisms or processes were analyzed. The phenomena present the 
macro scale of processes and patterns within a system (Tripto et al., 
2017). Two categories were coded: number of mechanistic 
relationships chains and global dynamic concepts included in 
the maps.

A mechanistic relationships chain was identified as a sequence of 
three or more concepts connected by simple or sophisticated 
mechanistic relationships. For example, map of student #9 included 
the following chain: governments fight COVID-19 influences 
economy of countries. Total number of mechanistic relationships 
chains in each map was calculated.

To test this in the interviews, students were asked to identify 
mechanistic relationship chains in their maps. They were all able to 
correctly point out the chains in their maps. For example, 
student A said:

“Yes, I think above all below left [pointing at a series of variables in 
map]: COVID, bat, patient zero, Wuhan, epidemic, globalization and 
pandemic, and maybe also individual countries. This is in any case a 
very long chain of events, at least that’s how I thought of it and that’s how 
I  also started when constructing to show the temporal course [of 
events].” (Student A interview).

Maps were also analyzed for including at least one global dynamic 
concept, such as immigration, trading between countries, moving of 
COVID-19 variants etc.

In their interviews, all students were able to identify these types of 
concepts, as student C said:

“I have also written globalization here in the middle [pointing at 
the concept on map] … More contact with people, which comes about 
because of globalization, leads to more mutations, which is why more 
research must take place worldwide, which means also globally, because 

TABLE 1 Biological organizational levels analyzed in concept maps in this 
study.

Level Description Example of concepts

1 Maps that include only macro 

level concepts

Habitats, population, animals, 

humans

2 Maps that include both macro 

level and micro cellular level 

concepts without any micro 

molecular level concepts

Virus, immune system cells

3 Maps that include at least one 

micro molecular level concept

mRNA, mutation

TABLE 2 Type of relationships in concept maps.

# Type Description Possible 
connecting 
terms

Example 
of 
constructs

1 Simple 

structural 

relationships

Relationships 

describing how 

components are 

connected or part 

of other 

components

“Part of,” 

“connects to,” 

“has”

“Disease has 

severe 

symptoms,” 

student #5

2 Simple 

mechanistic 

relationships

Relationships 

describing how 

components are 

affecting other 

components 

without 

determining the 

kind of effect or 

rate

“Influence,” “lead 

to,” “effects”

“COVID-19 

influences 

economy of 

countries,” 

student #8

3 Sophisticated 

time-based 

relationships

Relationships 

describing the 

rate and trend of 

the effect

“Increase,” 

“decrease”

“Mutation can 

increase 

COVID-19 

outbreak,” 

student #14
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you have to gather the world’s knowledge or global knowledge about this 
virus in order to draw conclusions from it.” (Student C interview).

3.4.2. Structural attributes
For the structural attributes, indicators were identified, which 

emphasize the structural aspects of the concept map as a lens for 
understanding students’ mental model complexity. As analyzed by 
Snapir et al. (2017), structural indicators included the number of 
concepts, number of connections, and ratio between connections 
and concepts in each map. The higher the ratio between concepts 
and connections, the more structurally complex the map, since 
there are more concepts that are connected to each other. In 
addition, number of junctions was calculated. Junction was 
defined as a concept in the map that had more than two arrows 
going in or out of it. The more junctions, the more structurally 
complex the map.

The analysis process of the concept maps included the 
following steps: first, each concept was identified as biological or 
social. Each biological concept was coded as global or non-global. 
Each biological concept was than coded for its biological 
organizational level (macro, micro-cellular, or micro-molecular, 
see Table 1). Next, each connection between concepts was given a 
number and coded for type of connection, and whether it 
represents an organizational level change. Each map was than 
coded for the number of mechanistic connection chains, and all 
structural indicators were calculated.

To address research question two (i.e., relationships between the 
complexity and structural attributes), the data were z-standardized 
and the Spearman correlation coefficient was calculated. As there are 
45 separate correlational analyses (Table 3), p = 0.001 (i.e., p = 0.05/45) 
was set as the criterion for significance to control the familywise error 
rate (“Bonferroni correction”; Field, 2013).

4. Results

4.1. Complexity and structural attributes of 
preservice biology teachers’ concept maps

To address the first research question, what are the complexity 
and structural attributes of PBTs’ concept maps about COVID-19, all 
27 concept maps were analyzed and scored for complexity and 
structural attributes. Table 4 provides the descriptive statistics for 
complexity attributes. Full data obtained from all 27 maps is provided 
in Supplementary material 4. From the component perspective, in the 
organizational level attribute, about half of the maps included only 
macro level biological concepts (13 out of the 27 maps), while only 7 
maps included also micro level concepts and 7 maps included also 
included molecular level concepts. From the mechanisms perspective, 
about 20% of the connections in the maps demonstrated 
organizational level changes, and most of the relationships in the 
maps were of the simple mechanistic type. From the phenomena 
perspective, maps included an average of about 5 mechanistic 
relationships chains.

Table  5 provides the descriptive statistics for the structural 
attributes. Maps included a wide range of number of concepts, 
connections and ratio between them, and an average of about 4.5 
junctions in each map.

4.2. Relationships between complexity and 
structural attributes

To address the second research question, what are the relationships 
between PBTs’ complexity and structural attributes as portrayed in 
their COVID-19 concept maps, correlational statistical analysis was 
performed (Table 3)—with a corrected criterion for significance of 
p = 0.001 as described above.

Concerning the relationship between complexity and structure 
indicators, the number of concepts was significantly positively 
correlated with the percentage of simple structural relationships 
(r = 0.63; p < 0.001). This means that the more concepts a concept map 
included, the higher was the amount of simple structural relationships 
in the map—and vice versa—but not the amount of more sophisticated 
relationships (i.e., simple mechanistic and sophisticated time-
based relationships).

The number of mechanistic relationships chains was significantly 
positively correlated with all three other structural attributes besides 
concepts (connections: r = 0.64; p < 0.001; ratio between connections/
concept: r = 0.69; p < 0.001; junctions: r = 0.76; p < 0.001). Hence, there 
is a positive association between these three structural attributes and 
the amount of mechanistic relationships chains in the concept maps.

4.3. Examples of concept maps

Two concept maps were chosen to further examine the 
correlations that were found between the structural and complexity 
attributes. Descriptive analysis of the maps is provided below.

The map produced by student #8 (Figure  2), demonstrates 
relatively low scores of structural and complexity attributes. From the 
structural perspective, the concept of COVID-19 is placed in the 
center of the map and most other concepts are connected to it. The 
map includes below average number of concepts and connections and 
below average ratio between connections and concepts (11 concepts, 
10 connections, ratio of 0.91), and two junctions (“COVID-19” and 
“governments”).

From complexity perspective, the component attribute includes 
only macro level components (e.g., “governments,” “WHO,” 
“Superspreader”). In the mechanism attributes, most of the 
connections (90%) are of the simple mechanistic type (e.g., 
“COVID-19 influences economy of countries”) with no connection of 
the sophisticated time-based type, and with a relatively average 
percentage of the connections demonstrating organizational level 
change (20%, e.g., “patient zero unconscious spreading worldwide”). 
From the phenomena attributes perspective, this map has only four 
chains of mechanistic connections and it includes several global level 
concepts, such as “spreading worldwide” and “interconnected 
world globalization.”

The map produced by student #24 (Figure  3), demonstrates 
relatively high structural and complexity attributes. From the 
structural perspective, this map demonstrated high level of 
interconnectedness among concepts. The map includes above average 
number of connections and very high ratio between connections and 
concepts (14 concepts, 23 connections, ratio of 1.64), and seven 
junctions (e.g., “outbreak of COVID-19,” “risk of infection,” “viral 
RNA” etc.). From complexity perspective, this map describes 
connections between both biological and social concepts, e.g., “risk of 
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TABLE 4 Descriptive statistics for complexity attributes.

Range Mean SD

Components

Organizational level1 1–3 1.78 0.85

Mechanisms

Simple structural relationships (% of relationships in maps) 0–77.27 27.50 22.10

Simple mechanistic relationships (% of relationships in maps) 0–100 53.24 25.94

sophisticated time-based relationships (% of relationships in maps) 0–100 19.26 26.76

Organizational level change (% of maps) 0–57.14 19.26 18.74

Phenomena

Mechanistic relationships chains (#) 0–10 4.56 2.46

Global dynamic concepts (no/yes) 0 or 1 0.67 0.48

1Organizational levels includes 1 (only macro level concepts), 2 (macro and micro cellular level concepts), and 3 (including micro molecular level concepts).

infection” connects with the social concept “protective measures” and 
the biological concepts of “viral RNA” and “number of infections.” The 
component attributes include macro level components (e.g., “aerosol”), 
and one micro molecular level component, “viral RNA.” In the 
mechanism attributes, the map includes connection of all types, with 
43.5% of them of the structure type (e.g., “mouth-nose covering is 
protective measures”), 30.4% of them are of simple mechanistic type 
(e.g., “risk of infection affects number of infections”), and 26.1% of 
them are of the sophisticated time-based type (e.g., “aerosols decreased 

by mouth-nose covering”). From the phenomena attributes 
perspective, this map has eight chains of mechanistic connections, 
however it does not include any global level concepts.

5. Discussion

This study explores PBTs’ concept maps that externalize their 
mental models of one of the most pertinent examples of a complex, 

TABLE 3 Results of correlational analysis (Pearson r) between all attributes (z standardized) considered in this study.

2 3 4 5 6 7 8 9 10 11

1. Macro–micro level r −0.10 0.07 0.01 0.46 0.19 −0.19 0.14 0.02 −0.16 −0.13

p n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

2. Simple structural relationships r −0.39 −0.45 −0.05 0.13 0.01 0.63 0.57 0.17 0.25

p n.s. n.s. n.s. n.s. n.s. <0.001 n.s. n.s. n.s.

3. Simple mechanistic relationship r −0.65 0.30 0.13 0.01 −0.23 −0.18 0.00 −0.02

p <0.001 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

4. Sophisticated time-based relationship r −0.25 −0.24 −0.01 −0.30 −0.30 −0.14 −0.19

p n.s. n.s. n.s. n.s. n.s. n.s. n.s.

5. Organizational level change r −0.02 −0.29 −0.15 −0.09 −0.02 −0.12

p n.s. n.s. n.s. n.s. n.s. n.s.

6. Mechanistic relationships chain (#) r 0.16 0.41 0.64 0.69 0.76

p n.s. n.s. <0.001 <0.001 <0.001

7. Global dynamic concepts (yes/no) r 0.20 0.21 0.10 0.23

p n.s. n.s. n.s. n.s.

8. Concepts r 0.85 0.17 0.41

p <0.001 n.s. n.s.

9. Connections r 0.65 0.77

p <0.001 <0.001

10. Connections/concepts r 0.87

p <0.001

11. Junctions

Highlighted in gray: correlations between complexity and structure indicators. Statistically significant correlations are highlighted in bold (p < 0.001); N = 27.
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socio-scientific system—the COVID-19 pandemic. The maps created 
by the students expressed the CMP complexity attributes, encouraging 
learners to explore the parts or components of the system (C) and to 
generate or recall plausible mechanisms (M) that result in the emergence 
of the observed phenomenon (P) (Hmelo-Silver et  al., 2017). The 
concept maps as a conceptual cognitive modeling tool was used to help 
students construct explanatory models in terms of CMP, allowing 
students to create, note, and link representations with the nodes 
representing the system components and links representing mechanisms.

The first research question focused on what are the complexity and 
structural attributes of PBTs’ concept maps about COVID-19. Using the 
CMP framework, It was found that most maps did not fully address the 
mechanistic chain of events describing how the COVID-19 outbreak 
spread out, as evident from the relatively low number of sophisticated 
time-based relationships and the low number of mechanistic 
relationships chains. Also, it was found only few incidents of cross-level 
reasoning, as evident from the low percentage of maps with 
organizational level change in the relationships. These findings indicate 
that PBTs did not have a sophisticated perception of COVID-19 as a 
complex phenomenon at the time of the activity. This could be explained 
by the fact that the concept maps were collected in the first months of 
the COVID-19 outbreak, when not enough information was known 
about the pandemic and the disease. Another possible explanation is 
that the task itself did not provide appropriate guidance or supports for 
the students to produce a sophisticated concept map of the phenomenon.

The second research question focused on what are the 
relationships between the complexity and structural attributes of 
teachers’ concept maps about COVID-19. The results suggest that the 
appearance of many concepts does not necessarily indicate high level 
of complexity, as indicated by the positive correlation between the 
percentage of simple structural relationships (complexity attribute) to 
the number of concepts in the map (structural attribute). On the other 
hand, the results indicate that higher structural sophistication (i.e., 
high number of connections and junctions, and higher ratio between 
connections and concepts) could be associated with the complexity 
level of the map, as evident by the positive correlation between these 
structural attributes to the number of mechanistic relationships chains 
(complexity attribute). These findings support the assumption that 
concept maps are external representation of learners’ mental models 
and that the organizational structure of the map reflects the way 
learners reorganize the concepts in their mental models (Kinchin 
et al., 2000; Hay et al., 2008). Understanding how students’ systems 
thinking advances is essential in order to develop and facilitate a 
pedagogical scaffolding that allows students to engage in 
counterintuitive modes of thought and overcome the variety of 
cognitive barriers that can prevent them from fully understanding the 
system’s complexity (Snapir et al., 2017).

This study emphasizes the potential of concept maps as a tool to 
identify understanding of complex systems. Concept maps are a 

powerful instrument for knowledge integration and externalization, 
helping students advance to higher levels of systems thinking, while 
also allowing researchers access to their externalized mental system 
models (Nesbit and Adesope, 2006; Dauer et al., 2013; Schwendimann 
and Linn, 2016; Hmelo-Silver et al., 2017).

5.1. Cross-level reasoning

A pertinent outcome of this study was that the students’ concept 
maps showed very little evidence of cross-level reasoning. Biological 
phenomena manifest themselves at various levels of organization 
(Gilissen et al., 2021). As noted by Verhoeff et al. (2008), in order to 
understand biological phenomena, students need to connect concepts 
and processes across a single level of organization (horizontal 
coherence) and concepts and processes on different levels (vertical 
coherence). By asking the students to portray COVID-19 as a 
complex system, the PBTs were expected to represent different levels 
of biological organizational levels and acknowledge the various 
interconnections between them. It is possible that the students’ 
emphasis on the social aspects of the pandemic limited this element 
in their concept maps by creating an over-representation of macro 
level system components. Indeed, fewer than one third of the maps 
included cellular level concepts (e.g., virus) or molecular level 
concepts (e.g., mRNA) that are essential for cross-level reasoning.

Cross-level reasoning is challenging to both preservice and 
in-service teachers (Gilissen et  al., 2020). In this regard, various 
researchers have adopted the “yo-yo” learning and teaching strategy 
to assist teachers to explicitly engage in cross-level reasoning (see, for 
instance Knippels et al., 2005; Verhoeff et al., 2008; Jördens et al., 
2016; Knippels and Waarlo, 2018). Moving up and down the levels of 
organization is the underlying principle of yo-yo learning, and this 
technique has been valuable for structuring learning sequences and 
guiding teaching processes. This emphasizes the role of explicit 
guidance in developing systems thinking. As Mor and Zion (2019) 
noted, without explicit teaching that emphasizes the connection 
between micro and macro levels in the system’s hierarchy, students 
have difficulty seeing the interactions that make complex system 
patterns like homeostasis possible.

In this study, the task did not explicitly prompted students to use 
cross-level reasoning in their concept maps. One strategy that could 
be implemented in future tasks is to prompt students to use explicit 
mechanisms that involve cross-level reasoning in their explanations. 
This was recently presented by Gilissen et  al. (2021), who asked 
secondary school students to formulate a hypothesis to explain why 
Tibetan people are naturally more capable than Dutch people of 
climbing Mount Everest. The aim was to prompt students to reason 
between the different levels of biological organization (Mount Everest 
on the ecosystem level, Tibetan people on the population, respiratory 
system on organism levels, and genes on the cellular level).

Furthermore, from methodological perspective, although 
concept maps were already proven to be fruitful in the context of 
systems thinking and they are known for their capability to foster 
conceptual system interrelations, It is suggested that presenting 
cross-level reasoning using concept maps may be challenging for 
PBTs. It is therefore suggested that future research should combine 
zooming with concept-mapping (Schneeweiß and Gropengießer, 
2022). In this approach, vertical arrows indicate vertical 

TABLE 5 Descriptive statistics for structural attributes.

Range Mean SD

Concepts (#) 8–30 14.37 4.84

Connections (#) 8–33 16.70 6.74

Ratio connections/concepts 0.89–1.81 1.15 0.24

Junctions (#) 0–14 4.56 3.07
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interrelation; horizontal arrows indicate horizontal interrelation, 
enabling the student present a sophisticated model of cross-level 
reasoning. The zoom map fosters students’ causal explanations 
across levels of organization through the inherent demand to 
consider the respective levels. Therefore, the zoom map may help 
students structure and interrelate fragmented knowledge and 
achieve integrated knowledge.

5.2. Mechanistic reasoning

Understanding biological phenomena entails an 
understanding of the causal relationships across different levels of 

organization that result in the emergent phenomenon (Knippels 
and Waarlo, 2018; Asshoff et al., 2020). According to Krist et al. 
(2019), thinking across levels is an essential heuristic in 
mechanistic reasoning, which allows students to explain and make 
predictions about phenomena, directs their intellectual work and 
implicitly guides mechanistic reasoning. In this study most of the 
students expressed simple mechanistic relationships, describing 
how components are affecting other components without 
determining the kind of effect or its rate. In dynamic systems, two 
events may be connected, but separated from one another in space 
and time. Thus, recognizing dynamism also means identifying the 
interaction between events and predicting the consequences of 
changes (Hmelo-Silver et al., 2000). In this study, only some of the 

FIGURE 2

Concept map of student #8.

FIGURE 3

Concept map of student #24.
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maps presented sophisticated time-based relationships, describing 
the rate and trend of the effect. This was reflected in the structure 
of the concept maps: Very few of which presented a chain of 
mechanistic relationships, identified as a sequence of three or 
more concepts connected by simple or sophisticated 
mechanistic relationships.

Hmelo-Silver et al. (2000) argued that when engaging with complex 
systems, novices tend to focus on readily observable and stable 
structures, rather than acknowledging invisible elements, dynamic 
processes, and exhibit mechanisms and outcomes as experts do. Studies 
have shown that difficulties with complex systems extend beyond 
secondary school students to preservice teachers and practicing teachers 
as well (Yoon et al., 2017, 2018). Akçay (2017), for example, examined 
advanced education students who intended to pursue science teaching. 
He found that they had difficulties with micro–macro relations and 
cross-level reasoning, and with understanding energy flow and matter 
cycles. Similarly, Haskel-Ittah et al. (2020) have explored undergraduate 
students’ mechanistic reasoning regarding phenotypic plasticity, where 
genes and environment interact to produce different phenotypes. When 
trying to explain the mechanisms involved in complex phenomena, 
first-year students tend to refer to the direct effect of the environment, 
while third-year students refer more to sensing-responding mechanisms 
that involve indirect relationships. A possible explanation for this is that 
students may need more domain-specific knowledge in order to be able 
to utilize more sophisticated mechanistic reasoning. Since this study did 
not include a content related intervention about COVID-19 as complex 
systems, additional studies are required that focus on students’ ability to 
perceive the biological mechanism related to COVID-19 outbreak.

5.3. Social and biological aspects of 
COVID-19

Almost all of the students’ concept maps included both social 
and biological concepts. This result highlights the 
multidisciplinary nature of the COVID-19 pandemic, and its 
profound effect on all aspects of society, including psychological, 
social, and neuroscientific effects (Holmes et  al., 2020). The 
multidisciplinary nature of complex systems like the COVID-19 
pandemic requires educators to expand and adapt models of 
complexity beyond the biological. Mehren et  al. (2018) have 
developed a competence model for systems thinking in the context 
of socio-ecological systems. Their competence model consists of 
four dimensions, namely system organization, system behavior, 
system-adequate intention to act, and system-adequate action. 
Reiss (2020) pointed to the potential opportunities for promoting 
cross-curricula and interdisciplinary approaches in school STEM 
lessons when addressing wider societal issues like COVID-19. 
However, engaging with complex socio-scientific issues, such as 
COVID-19, requires specific knowledge and skills, such as the 
understanding and competence to comprehend and follow 
arguments embedded in a complex social and political context. 
Furthermore, these must be  combined with scientific content 
knowledge, knowledge about the nature of science, and higher-
order thinking (Sadler, 2009). Uskola and Puig (2023) employed 
concept maps as a research tool to analyze dimensions related to 
systems thinking (System structure) and futures thinking 

developed by a group of pre-service elementary teachers. They 
demonstrated how different activities designed were effective in 
relation to scientific reasoning about the origin of pandemics and 
possible ways to prevent them as socioscientific problems.

5.4. Limitations, recommendations, and 
conclusions

This study has several limitations. First, this study included only 
a small sample of concept maps that may not represent the broader 
population of PBTs. In addition, the concept maps were produced in 
the first few months following the COVID-19 outbreak, when not 
enough understanding of the phenomena was established. Also, the 
task was performed remotely (because of the COVID-19 restrictions), 
which may have influenced students’ engagement in the task. It is 
suggested that future studies will include an intervention that explicitly 
prompts students to use system language and guidance about 
COVID-19 as complex phenomenon. Another follow-up study can 
compare these results to PBTs’ concept maps about COVID-19 several 
years after the outbreak of the pandemic, when much more is known 
and understood about the pandemic outbreak. This may reveal 
possible increase in sophistication of PBTs’ understanding of 
COVID-19 as a complex phenomenon as the knowledge about 
it developed.

From a pedagogical perspective, these findings suggests that in 
order to support teachers’ and students’ level of systems thinking, they 
should be  explicitly directed to increase the complexity of their 
concept maps by enhancing the plethora of network connections 
between the concepts in their maps. This can be achieved by directing 
them to consider adding a range of sophisticated causal relationships 
chains to demonstrate the complexity of their understanding of the 
target phenomenon. In addition, teachers can support their students’ 
systems thinking by reflecting on their produced concept maps and 
directing their attention to include biological and social aspects, 
address different organizational levels, and provide sophisticated 
mechanistic relationship rather than simple structural connections.

Altogether, this study provides a detailed analysis of PBTs’ 
understanding of COVID-19 as a complex phenomenon, adding to the 
research fields’ understanding of the relationships between complexity 
and structural attributes of concept maps as representations of students’ 
mental models. These findings further support the argument that the 
number of concepts in produced maps does not necessarily reflect 
students’ systems thinking or the sophistication level of their mental 
models. However, higher number of connections and junctions in 
concept maps can indicate a higher sophistication level of students’ 
mental models. These findings contribute to the understanding of 
systems thinking and complexity, as reflected in students’ mental model 
concept maps, by pointing out to the possible connection between higher 
structural sophistication of maps to its complexity level. These findings 
contribute to the understanding of students’ and teachers’ systems 
thinking as well as to possible scaffolds and practices that can be used to 
further support their systems thinking skills. Youth need an opportunity 
to engage with the science and practice of infectious disease epidemiology 
in classroom environments. Kafai et  al. (2022) scoping review of 
interventions in K-12 education showed, that learning and teaching 
about infectious diseases in science education is not yet embrace the full 
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spectrum of practices that provide K-12 students to collaboratively 
investigate growing levels of complexity around infectious disease as a 
complex system that included variability and randomness.
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This paper discusses the potential of two computational modeling approaches in 
moving students from simple linear causal reasoning to applying more complex 
aspects of systems thinking (ST) in explanations of scientific phenomena. While 
linear causal reasoning can help students understand some natural phenomena, 
it may not be sufficient for understanding more complex issues such as global 
warming and pandemics, which involve feedback, cyclic patterns, and equilibrium. 
In contrast, ST has shown promise as an approach for making sense of complex 
problems. To facilitate ST, computational modeling tools have been developed, 
but it is not clear to what extent different approaches promote specific aspects of 
ST and whether scaffolding such thinking should start with supporting students 
first in linear causal reasoning before moving to more complex causal dimensions. 
This study compares two computational modeling approaches, static equilibrium 
and system dynamics modeling, and their potential to engage students in applying 
ST aspects in their explanations of the evaporative cooling phenomenon. To make 
such a comparison we analyzed 10th grade chemistry students’ explanations of 
the phenomenon as they constructed and used both modeling approaches. The 
findings suggest that using a system dynamics approach prompts more complex 
reasoning aligning with ST aspects. However, some students remain resistant to 
the application of ST and continue to favor linear causal explanations with both 
modeling approaches. This study provides evidence for the potential of using 
system dynamics models in applying ST. In addition, the results raise questions 
about whether linear causal reasoning may serve as a scaffold for engaging 
students in more sophisticated types of reasoning.

KEYWORDS

systems thinking, computational system modeling, system dynamics, linear causal 
reasoning, static equilibrium models

1. Introduction

Systems thinking (ST) has gained recognition as a necessary approach for addressing 
complex problems in various domains (Assaraf and Orion, 2005; Jacobson and Wilensky, 2006; 
Meadows, 2008). Although much of the research in ST was in disciplines such as biology and 
Earth science (Yoon et al., 2018), lately there has been a growing awareness and advancement 
in integrating ST in chemistry education (Flynn et al., 2019; Orgill et al., 2019; York et al., 2019), 
moving the field forward in an effort to apply ST across disciplines. In recent years, the 
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integration of ST into science education standards has been adopted 
by a number of countries (National Research Council, 2012; Reynolds 
et al., 2018; Chiu et al., 2019). According to Meadows (2008), a system 
is an interconnected set of elements that demonstrates behavior that 
cannot be understood by examining individual elements in isolation. 
There have been numerous efforts to operationalize ST and develop 
frameworks for evaluating its application (Richmond, 1993; Assaraf 
and Orion, 2005; Hmelo-Silver et al., 2007b).

Despite various approaches in developing students’ understanding 
of ST, educators continue to face challenges in its application. Many 
students explain complex phenomena using simple linear cause and 
effect relationships (Sweeney and Sterman, 2000; Chi, 2005; Chi et al., 
2012; Grotzer et al., 2013; Tripto et al., 2013). However, simple linear 
cause and effect mechanisms cannot account for phenomena that 
involve equilibrium, feedback, cyclic patterns, and perturbations 
(Richmond, 1993). Hence, there is a need to facilitate student 
understanding of non-linear system behaviors to cultivate scientific 
reasoning and produce scientifically literate citizens (Meadows, 2008; 
Ke et al., 2021). Despite attempts to engage students in mechanisms 
that go beyond linear causal thinking, students have shown resistance 
to adopting an ST approach (Assaraf and Orion, 2005; Chi, 2005; 
Hmelo-Silver et al., 2007a; Chi et al., 2012).

It has been nearly four decades since scholars began attempting to 
utilize technology to enhance students’ understanding of ST 
(Costanza, 1987; Mandinach, 1989; Metcalf et  al., 2000). 
Computational modeling tools have emerged as a promising avenue. 
There are three main approaches in the field: static equilibrium 
modeling, system dynamics modeling, and agent-based modeling. 
Static equilibrium modeling is a computational approach that 
facilitates the creation of linear and/or branching cause and effect 
relationships such that changes to one variable are instantly reflected 
by changes in the values of related linked variables (Bielik et al., 2018). 
Unlike static equilibrium modeling, system dynamics modeling allows 
representation of changes in a system over time (Sterman, 2002; 
Martinez‐Moyano and Richardson, 2013), opening the door for 
representing dynamic equilibrium and feedback. Agent-based 
modeling, another time-based modeling system, enables users to 
explore the actions of individual agents in the system and observe the 
impact of their interactions on the emergent behavior of the system 
(Wilensky and Resnick, 1999; Jacobson and Wilensky, 2006). All of 
the approaches enable users to test and evaluate their models (Bielik 
et al., 2018). In this paper, we focus on static equilibrium and system 
dynamics modeling. There are two main reasons to prioritize these 
two approaches. Firstly, both approaches share similar underlying 
affordances that enable the setting of causal relationships between 
variables. Secondly, from a practical standpoint, there is a software 
tool that we  will discuss in detail later, which facilitates seamless 
switching between these approaches. This feature significantly reduces 
the learning curve associated with adapting to a new 
digital environment.

Few studies have compared the effects of various modeling 
approaches on students’ application of ST (Carolyn and Lee, 2019). In 
this study, we advance our understanding of how to support students 
in system modeling by analyzing the effects of static equilibrium and 
system dynamics modeling on students’ explanations and the 
mechanisms they use to understand complex phenomena. We also 
explore to what extent engagement in a simpler modeling approach 
serves as a scaffold to support students in applying more complex 

aspects of ST. Our goal is to gain insights into computational tools and 
scaffolds that can expand students’ ideas from linear to more complex 
non-linear thinking.

2. Theoretical framework

2.1. Linear causal reasoning

Linear causal reasoning is a fundamental way in which individuals 
explain the world and make sense of their surroundings from a young 
age (Driver et al., 1985; Leslie and Keeble, 1987). This method of 
explanation is commonly used in science to describe mechanisms, 
such as the direct linear relationships between mass, acceleration, and 
force in Newton’s third law. Science education often teaches students 
to reduce complex mechanisms to simple cause and effect 
relationships, leading to a reductionist approach across disciplines. 
This has been observed in various areas of study, such as Earth science 
(Raia, 2005), biology (Gilissen et al., 2019), and chemistry (Tümay, 
2016). Additionally, linear causal reasoning often leads to assigning a 
central agent in a domino-like mechanism (Resnick, 1996; Galea et al., 
2010; Kahneman, 2011). While appropriate for understanding topics 
such as Newton’s third law, this method of explanation is particularly 
problematic for phenomena with dynamic features such as erosion, 
evolution, disease spread, and global average temperature rise (Sander 
et al., 2006).

In this paper, we use the term “linear causal reasoning” as coined 
by Driver et al. (1985) to refer to thinking about sequential chains of 
causes and effects. This tendency has further generated more nuanced 
terminologies. Chi et al. (2012) made a distinction between a direct-
causal schema and an emergent-causal schema. Accordingly, the 
direct causal schema relies on linear, narrative-like cause and effect 
scripts that when applied in the context of complex and non-sequential 
processes often result in developing non-canonical understandings. 
Perkins and Grotzer (2005) suggested evaluating students’ 
explanations according to dimensions of causality, differentiating 
between various levels of causal explanations in each of these 
dimensions. Grotzer et al. (2013) differentiated students’ explanations 
as event-based or process-based. For example, they noticed that 
students interpret ecosystems as distinct events with linear cause and 
effect explanations (event based), instead of a dynamic time-based 
mechanism (process based), which is more appropriate in that context.

2.2. Systems thinking

Although students need to develop linear causal reasoning, having 
access to only this type of reasoning restricts the types of problems 
and phenomena students can explore. Enabling students to familiarize 
with non-linear reasoning prepares them to be scientifically literate 
citizens equipped with the intellectual tools to understand and address 
complex issues and phenomena such as global warming, the spread of 
diseases, and the impact of invasive species on ecosystems (Liu and 
Hmelo-Silver, 2009; Yore, 2012).

To support students in developing a more comprehensive 
understanding of the world, scholars examined the reasoning 
processes used by experts when facing complex problems (Hmelo-
Silver et al., 2007b). This line of inquiry has led to the recognition of a 
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broad range of reasoning skills commonly referred to as ST (Senge and 
Sterman, 1992; Richmond, 1993; Sterman, 2002; Assaraf and Orion, 
2005; Meadows, 2008). Despite the variations in ST approaches, there 
is a general agreement about the key aspects that support students in 
solving complex problems and understanding complex phenomena 
(Sweeney and Sterman, 2000; Hmelo-Silver et al., 2007b; Assaraf et al., 
2013). A recent literature review (Shin et al., 2022) summarized ST 
aspects that are commonly found across various studies on the topic, 
including framing problems or phenomena in terms of behavior over 
time (Richmond, 1993; Forrester, 1994), engaging in causal reasoning 
(Stave and Hopper, 2007; Meadows, 2008), and identifying 
interconnections and feedback (Richmond, 1993; Sweeney and 
Sterman, 2000; Haraldsson, 2004; Zuckerman and Resnick, 2005).

Perkins and Grotzer (2005) devised a framework that identifies 
dimensions of causality and characterizes each dimension’s complexity 
level. This framework can be  used to evaluate the application of 
systems thinking in student explanations of phenomena. The 
dimensions are agency, interactive patterns, mechanism, 
and probability.

 • Agency refers to the attribution of the cause given for a 
phenomenon. The complexity of this causal dimension can range 
from centralized agents with intentional cause to decentralized 
agents with non-intentional cause such as self-organizing or 
emergent systems.

 • Interactive patterns describe the complexity of the causal 
relationship between components in the system. Interactive 
patterns range from sequential patterns (e.g., A causes B) to 
simultaneous patterns (e.g., patterns that include feedback 
and cycles).

 • Mechanism refers to the scale or level used to explain a 
phenomenon. Mechanisms range from an explanation that 
includes macroscopic entities to an explanation that includes 
microscopic entities and underlying laws.

 • Probability denotes explanations that range from deterministic to 
random behavior of the components in the system.

Utilizing the more complex levels within each causal dimension 
is essential to make sense of complex phenomena that are often 
characterized by steady states, feedback, cyclic patterns, dynamic 
relationships, and occasional perturbations (Meadows, 2008). In 
addition, ST has recently been recognized in K-12 science curriculum 
guides (National Research Council, 2012). The challenge researchers 
have experienced is devising strategies to support students in applying 
ST. One of the most promising avenues is in the use of computational 
models (Sterman, 2002; Gilissen et al., 2019).

2.3. Computational systems modeling

Computational systems modeling offers a valuable tool for students 
to develop their problem-solving skills and explain complex scientific 
phenomena (Stratford et al., 1998; Sins et al., 2009; Chandrasekharan 
and Nersessian, 2015; Shin et  al., 2022). Particularly, it provides 
students the opportunity to explore the interconnected relationships 
between multiple variables in a system and gain a deeper understanding 
of the underlying processes that drive a particular phenomenon 

(Ainsworth, 2008; Linn and Eylon, 2011). Computational models often 
have simulation features that allow the manipulation of variables in 
these models. These simulation features provide students with the 
ability to generate outputs, which they can then compare with data 
obtained from external sources, such as empirical studies or their own 
investigations (Lorenz, 2009; Damelin et al., 2017; Hassanibesheli et al., 
2020). If the model’s output does not match the external data, students 
can revise their model or question the validity of the data source. This 
iterative process of refining the inputs and relationships between 
variables can help students to improve their models over time 
(Weintrop et al., 2016; Shin et al., 2022).

Several approaches to computational system modeling exist, each 
with its own affordances that support learning about complex systems. 
Because this research focuses on static equilibrium and system 
dynamics modeling, we will focus on these two approaches.

The first, static equilibrium modeling, provides a computational 
representation of a system that consists of a set of variables linked by 
relationships that define how one variable influences another. Any 
change to an input variable is immediately reflected in new values 
calculated for each variable in the system (Shin et al., 2022). While 
enabling users to construct models with cause and effect relationships 
between system elements, the approach encourages students to go 
beyond simple linear causal chains and create models with long 
branching structures and mediating causes (Metcalf et  al., 2000; 
Perkins and Grotzer, 2005); however, static equilibrium modeling does 
not consider time as a factor.

The second approach, system dynamics modeling, enables the 
representation of change over time and includes interactions between 
system components that include stocks and flows (Sweeney and 
Sterman, 2000; Ossimitz, 2002). Stocks refer to system components 
that accumulate or deplete over time while flows refer to system 
components that decrease or increase the amount in the stocks. 
System dynamic models allow the user to construct nonlinear 
interactions and structures such as feedback loops and to produce an 
output that represents change over time (Richmond, 1993, 1994; 
Forrester, 1994; Sweeney and Sterman, 2000). This approach addresses 
two major aspects of ST that the static equilibrium modeling approach 
cannot. The first aspect, feedback present in complex systems 
(Richmond, 1993, 1994; Forrester, 1994; Sweeney and Sterman, 2000) 
refers to any action that causes an effect back to the starting point of 
the action (Haraldsson, 2004). For example, an increase in greenhouse 
gasses (including methane) causes an increase in global temperatures. 
Warmer temperatures cause the permafrost in Earth’s Northern 
regions to thaw. The thawing of the permafrost causes the release of 
methane, which further adds to the rise in global temperatures. This 
in turn exacerbates the thawing of the permafrost, which releases 
more methane to the atmosphere, and so on. The second aspect 
addresses how a system can change over time. Many phenomena 
require the consideration of change over time in which a time lag 
between the cause and effect exists. In some cases, the delay is 
negligible, as in certain chemical reactions while in others, the time 
delay is thousands or millions of years, as in evolution or the formation 
of a canyon (Kali et al., 2003; Assaraf and Orion, 2005; Meadows, 2008).

Researchers have studied students’ use of static equilibrium 
models constructed to support sensemaking of scientific phenomena 
(Metcalf et al., 2000; Bielik et al., 2018; Shin et al., 2022), and system 
dynamics modeling (Eidin et al., 2023), but have not tested the use of 
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both in the same curriculum context. Both static equilibrium and 
dynamic modeling approaches involve applying aspects of 
ST. Although using system dynamics has the potential to engage 
students in additional ST aspects, such as identifying feedback and 
framing problems in terms of change over time, it does not guarantee 
that using a system dynamics approach gives rise to different reasoning 
and growing causal complexity. Despite its potential, constructing 
system dynamics models remains challenging and it is not clear to 
what extent their use can benefit students compared to other 
approaches (Mandinach, 1989; Sweeney and Sterman, 2000; Eidin 
et al., 2023).

In this work, we  investigate the complexity in students’ 
explanations from an ST perspective as they construct and interpret 
static equilibrium and system dynamics models. In addition, 
we examine if static equilibrium models, which engage students in 
cause and effect reasoning but are considered simpler and more 
straightforward, could serve as a scaffold for constructing dynamic 
models that include feedback and thinking in terms of change over 
time, two of the most challenging aspects of ST.

3. Research question

How do students’ explanations of static equilibrium and system 
dynamics models reflect aspects of systems thinking as indicated by 
the presence of various levels of complexity in multiple dimensions 
of causality?

4. Context

4.1. Curriculum

The present study was part of a six-week project-based learning 
chemistry unit that incorporated five investigations. The unit was 
designed to align with the Next Generation Science Standards (NGSS) 
performance expectations HS-PS1-3, “Plan and conduct an 
investigation to gather evidence to compare the structure of substances 
at the bulk scale to infer the strength of electrical forces between 
particles” and HS-PS3-2, “Develop and use models to illustrate that 
energy at the macroscopic scale can be accounted for as a combination 
of energy associated with the motion of particles (objects) and energy 
associated with the relative positions of particles (objects)” (NGSS 
Lead States, 2013). The study took place in a school setting, where 
students participated in two to three lessons per week, each 
lasting 80 min.

The unit was centered around a driving question: ‘Why do 
I feel colder when I am wet than when I am dry?’ In an introductory 
activity, students engaged in a tactile experience by placing 
droplets of water, ethanol, and acetone on their hands, followed by 
a group discussion to generate questions and hypotheses using a 
driving question board (Weizman et al., 2008). To facilitate the 
process of defining the key components underlying the 
phenomenon, students worked in small groups of three to four 
members to develop paper-pencil models, depicting the 
interrelationships among the variables. This step served as a 
foundation for a subsequent discussion comparing and contrasting 
the relative strengths and limitations of paper-pencil versus 

computational models. Students were introduced to the affordances 
of computational models, such as their ability to simulate and 
validate models using real-world data.

After the aforementioned discussion, students were instructed to 
represent their paper-pencil models as a static-equilibrium model 
using SageModeler, a free web-based modeling tool to facilitate both 
static equilibrium and system dynamics modeling (Damelin et al., 
2017). Since students had some experience in building static 
equilibrium models using SageModeler during a previous unit, they 
were provided with a brief exercise to refresh their memory before 
constructing models to address the driving question.

Throughout the unit, students took part in various learning 
experiences, such as conducting hands-on experiments, working with 
computer simulations, and analyzing real-world data, which they 
used to iteratively revise their models. Initially, the focus of the unit 
was on modeling what factors would affect the evaporation rate and 
“coldness” of an evaporating liquid. These concepts were appropriately 
modeled using a static equilibrium approach. For example, an 
increase in intermolecular attractions between the molecules of a 
liquid would mean a decrease in evaporation rate and a decrease in 
the “coldness” felt when the liquid evaporated from your skin. 
Students completed an activity where they used sensors to measure 
the change in temperature over time, creating a cooling curve for 
each liquid. This activity led to a plenary discussion on the limitations 
of static equilibrium models in representing changes over time, as 
illustrated by the evaporative cooling processes, and created a need 
for a system dynamics modeling approach.

To support students in constructing dynamic models, they 
completed an introductory tutorial, which guided them in 
constructing a simple system dynamics model of their own while 
learning about the unique features of system dynamics modeling. 
After that experience, students built a dynamic model to address the 
driving question while considering the change over time of 
components in the system.

To validate their system dynamics model, students compared the 
simulation output from the dynamic models with their experimental 
results. This process allowed students to test the validity of their 
models and refine them.

The phenomenon of evaporative cooling presents significant 
challenges from an ST perspective. Understanding why one feels 
colder when wet than when dry requires a high level of performance 
in all dimensions of causality. The transfer of kinetic energy to 
potential energy, a dynamic process that affects multiple components 
in a system simultaneously, is a fundamental aspect that must 
be  considered (Chen et  al., 2014). In addition, a comprehensive 
mechanism should address the microscopic and macroscopic entities 
involved in the process, explaining how interactions between 
intermolecular forces result in emerging patterns (Ben-Zvi et al., 1986; 
Dori and Hameiri, 2003; Krist et al., 2019). Moreover, the cooling 
effect that emerges as a result of the random movement of molecules 
requires a departure from the use of linear causal reasoning and the 
attribution of a central causal agent. Research demonstrates that 
explaining emergent properties at the macroscopic level as a result of 
interactions at the microscopic level is extremely challenging (Chi, 
2005; Tümay, 2016).

The exponentially shaped cooling curve resulting from 
evaporation cannot be explained by a simple linear cause and effect 
mechanism. Rather, it involves feedback, which is a prominent ST 
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aspect. The shape of the graph is also a result of the random movement 
of particles which accounts to an uneven distribution of kinetic energy 
among the molecules. Molecules with the highest kinetic energy leave 
the system first, causing the average kinetic energy (and thus 
temperature) to drop, lowering the evaporation rate. This feedback 
causes the liquid to evaporate and cool quickly at first, but over time 
both evaporation rate and cooling slow down as more molecules with 
the highest energy leave the system. However, explaining such 
behavior through feedback mechanisms has been documented as 
particularly challenging for students (Haraldsson, 2004; Tripto et al., 
2013). Further details about the unit and the implementation of the 
evaporative cooling phenomenon using SageModeler can be found in 
Shin et al. (2022).

Figure 1 shows an example of an appropriate static equilibrium 
model of the evaporative cooling phenomenon. Figure 2 shows an 
example of an appropriate system dynamics model of the same 
phenomenon. The static equilibrium model represents an outcome 
behavior that accounts for why different liquids have different degrees 
of “coldness” as they evaporate from the skin at different rates. For 
example, one can notice in Figure 1 the intermolecular forces variable 
eventually affects the mass of the liquid evaporated and the final 
temperature of the liquid. Figure 2 shows a system dynamics model 
simulation output in which temperature and evaporation rate steeply 
drop at the beginning and then taper off in an exponential decay 
trend. This behavior requires the construction of a 
feedback relationship.

4.2. SageModeler

SageModeler1 is a web-based open-source tool designed to 
support student learning by facilitating engagement in ST through 

1 https://sagemodeler.concord.org/

constructing, evaluating, revising, and using models (Damelin et al., 
2017). SageModeler allows students to construct static equilibrium 
and system dynamics models. The tool has two major modeling 
affordances: representation of variables and relationships and 
supporting model validation.

4.2.1. Representation of variables and 
relationships

SageModeler allows learners to represent components of the 
system as nodes in a system diagram. The nodes represent variables 
that are linked together, forming a visible network of cause and effect 
relationships. For example, consider the evaporative cooling 
phenomenon. In a static equilibrium model, one can set relationships 
in which an increase in intermolecular forces causes an increase in 
the energy required to overcome the intermolecular forces (IMFs) 
(Figure  1). In a system dynamics model, with one variable 
representing ‘amount of liquid’ and another representing ‘amount of 
gas particles,’ the user can set a different type of relationship, called 
a transfer link, to represent a flow from the liquid state to the gas 
state (Figure 2). By focusing on an explicit representation of the 
components and their relationships, SageModeler provides an 
accessible way for students to create an instantiation of their 
conception of the system.

To scaffold students in developing system models, SageModeler 
includes pull-down menus and graphs that students set to describe 
semi-quantitatively how one variable influence another. This 
eliminates the need for students to write complex mathematical 
equations or learn how to code, thus reducing cognitive load (Metcalf 
et  al., 2000). We  are not arguing that the use of mathematical 
equations or programming is not important for 21st century citizens; 
however, a viable strategy for making computational modeling more 
accessible is to reduce such barriers. In SageModeler, the relationship 
setting appears in the form of a sentence, such as, ‘An increase in 
[variable X] causes [variable Y] to increase by about the same.’ To 
define the relationship, students choose words with associated graphs. 

FIGURE 1

An example of a static equilibrium model constructed by students JU and TR. The nodes represent variables. The red and blue arrows represent a 
causal relationship between two variables. Red arrows represent a relationship in which an increase in one variable causes an increase in the other. 
Blue arrows represent a relationship in which an increase in one variable causes a decrease in the other.
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For example, a linear graph is associated with the about the same 
relationship while an exponential graph is associated with the more 
and more relationship (Figure 3).

4.2.2. Supporting model validation
SageModeler allows users to simulate their model and test it by 

comparing their model behavior to real-world data. SageModeler 
facilitates that comparison by integrating the Common Online Data 
Analysis Platform (CODAP), which offers graphing and data 
analysis tools (Finzer and Damelin, 2015) and supports data 
imported from various sources. Students can import real-world and 
experimental data or output from other expert models and compare 
it to data generated from a SageModeler simulation. The software 
allows users to create graphs from various datasets and make 
decisions about the validity of their model.

4.3. Participants

Twenty-six 10th grade students from two chemistry classes in a 
magnet school from a rural–urban fringe district in the Midwestern 
U.S. participated in this study. Each class consisted of 24 students. The 
students were selected from the two classes, one taught by Mr. H, a 
chemistry teacher with 15 years of experience, and the other one 
taught by Mr. M, a chemistry and environmental science teacher with 
6 years of experience. The sample, representative of the two classes, 
included 12 female and 14 male students, with a mixture of high- and 
low-achievers. The sample of participants was a convenience sample, 
based on students’ and their parents’ agreement to participate in 
human subject research. No data was collected on the students’ 
socioeconomic background. Among the participants, two identified 
as Black, one as Asian, and the rest as White. Both teachers had prior 

FIGURE 2

An example of a system dynamics model, which allows learners to set variables that accumulate over time and set the rate of flow between them. The 
simulation output produces mini-graphs inside the nodes, which represent change over time.

FIGURE 3

Users can set both the direction (increase or decrease) and the magnitude (about the same, a lot, a little, more and more, less and less) of relationships 
between variables in SageModeler.
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experience using SageModeler and teaching both modeling 
approaches in their classes, although in a different context than the 
evaporative cooling unit. Mr. H and Mr. M had several meetings with 
the authors to walk through the activities and experiments in the unit 
and to discuss strategies for supporting students in constructing 
models using SageModeler. These meetings, which totaled seven 
hours, served as a preparatory step before the start of the unit.

5. Methodology

To answer the research question, we utilized two primary sources 
of data: student interviews and screencasts. The interviews served as 
the main data source, enabling us to compare the differences in 
students’ explanations as they used both modeling approaches to 
explain evaporative cooling. The screencasts enabled a valuable insight 
into students’ reasoning as they constructed models using each 
modeling approach. We utilized both the screencasts and interview 
transcripts to capture student reasoning and application of ST through 
the analysis of dialog and discussion.

5.1. Interviews

Student interviewees included 11 students, 5 female and 6 male, 
with each interview lasting 45–60 min. Students were asked to explain 
the phenomenon as they walked the interviewer through their static 
equilibrium model and then their system dynamics model. These 
interviews were semi-structured and included questions such as “Can 
you walk me through your model?” and “what does your model tell us 
about the evaporative cooling phenomenon?.” The full interview 
protocol can be  found in the Supplementary material. During the 
interview students were shown their models on a laptop; their 
responses to questions and references to their model were recorded. 
The interviews were fully transcribed. Conducting interviews in which 
students walk the interviewer through their model has been shown to 
be an efficient strategy to elicit students’ understanding and reasoning 
(Schwarz et al., 2009; Eidin et al., 2023; Stephens et al., 2023). We coded 
and analyzed students’ utterances that followed questions asking them 
to use their model to explain the evaporative cooling phenomenon.

Interviews were analyzed using the dimensions of causality 
framework described by Perkins and Grotzer (2005), as it provided a 
means to assess the complexity of students’ explanations of the 
evaporative cooling phenomenon and make a fine-grained 
differentiation between linear causal explanations and more complex 
types of explanations that address ST aspects. We applied three of the 
dimensions of the framework (agency, interactive pattern, and 
mechanism). We established that only two levels of the probability 
dimension were applicable in the context of the phenomenon, and 
during the coding and analysis of the interview data, we found that 
the probability dimension exhibited significant overlap with the levels 
of the agency dimension. Therefore, we determined that the inclusion 
of the probability dimension did not yield any additional insights into 
the evaluation of students’ reasoning, so we decided not to include it 
in our analysis. Table 1 provides an overview of the different levels of 
causal dimensions and specific examples of each level in the context 
of the phenomenon. Table 2 shows which levels of complexity of each 
causal dimension align with which ST aspects.

A scientific explanation for evaporative cooling using the causal 
dimension framework suggests that the agency in the system emerges 
due to the random collisions of particles. This leads to an uneven 
distribution of energy, creating a reentrant interactive pattern. In this 
pattern, particles with the highest kinetic energy overcome 
intermolecular forces and leave the system, which lowers the average 
kinetic energy of the remaining particles in the liquid phase. 
Additionally, as the particles overcome intermolecular forces to 
evaporate, the increased distance between attracting particles results 
in an increase in potential energy at the expense of some of the kinetic 
energy of the particles. This process results in a decreasing temperature 
and evaporation rate. The explanation also describes a mechanism that 
accounts for the random collision between particles and the 
conservation of mass and energy.

Two authors coded the data after two cycles of discussions. The 
first cycle had a 75% agreement. The second cycle had a 90% 
agreement. The coders discussed their differences to achieve 100% 
agreement. Further analysis conducted using Atlas.ti software, focused 
on differences in the dimensions of causality in students’ explanations 
of the phenomenon in the static equilibrium and system dynamics 
models. Each dimension was analyzed separately, allowing for the 
detection of specific differences in students’ reasoning between the 
two modeling approaches. Of note, the time allotted during the 
interviews for students to explain the phenomenon using each type of 
model was relatively equal for both models.

The following excerpt from student KY offers an example of how 
we utilized the dimensions of the causality framework when coding 
the interview transcripts.

“The average kinetic energy is transferring into potential energy. 
And the spacing of particles and IMF is affecting that transfer. 
Potential energy is the spacing of particles when you are talking 
about evaporation. So as the spacing particles increase, so is the 
potential energy. And then IMF is the opposite of that, because the 
IMF is the attraction between the particles and it wants to keep the 
particles together and it does not want them to space out. So, if the 
IMF is keeping the particles from spacing out, then if that was high, 
the particles would not be spacing out as much and there would 
be less potential energy. And then it’s showing that the transfer from 
kinetic energy to potential energy affects the rate of evaporation.”

To code the excerpt above, we identified various dimensions of 
causality. It is noteworthy that not all dimensions are necessarily 
present in each student’s remarks. To determine the level of agency in 
the student’s explanation, we first identified the variables within the 
explanation: intermolecular forces, potential energy, kinetic energy, 
and the rate of evaporation. The student mainly focused on 
intermolecular forces as a significant variable affecting different 
variables in the system, albeit not as a central cause that accounts for 
the evaporative cooling phenomenon. Therefore, we assigned a level 
2 to the agency dimension. Moreover, intermolecular forces were also 
identified as a mediating variable that regulates the transfer from 
kinetic to potential energy and, accordingly, the rate of evaporation. 
Consequently, we  assigned a level 3 to the interactive pattern 
dimension. Additionally, since the student addressed the particle 
level and illustrated the impact of intermolecular forces on the flow 
of energy within the system, we  assigned a level 6 to the 
mechanism dimension.
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TABLE 1 Dimensions of causality (Perkins and Grotzer, 2005).

Agency Interactive pattern Mechanism

Level 1 Central agents with immediate influence: 

One or a very small number of key factors 

fairly directly yield the result. May 

be interwoven with intentional causality.

Example in the context of the evaporative-

cooling unit

“Adding thermal energy to the liquid 

causes evaporation. “

Simple linear causality: A impinges on, pushes, 

influences B. A is seen as not affected. (e.g., A pushes, 

pulls, initiates, resists, supports, stops B. A is typically 

seen as active as in pushing but can be passive as in 

resisting).

Example in the context of the evaporative-cooling unit

“Thermal energy increases Kinetic energy and potential 

energy”

Surface generalization: Simply describes the 

regularity under consideration in a generalized way 

(“When it is hot and it rains, there is lightning”) or 

confuses correlation with causation. (“Heat and rain 

cause lightning”)

Example in the context of the evaporative-cooling unit

“When water evaporates of your hand your hand feels 

colder”

Level 2 Nonobvious central agents: with a passive 

role or spatially delayed (e.g., 

intermolecular forces)

Example in the context of the evaporative-

cooling unit

“Adding thermal energy causes the increase 

in kinetic energy that causes the increase of 

space between particles, which causes an 

increase in potential energy. Intermolecular 

forces of the substance affect this process 

and have an impact on the rate of 

evaporation.”

Multiple linear causality: Multiple unidirectional 

causes and/or effects: Multiple immediate causes and/

or multiple immediate effects; Domino casualties in 

which effects in turn become causes as in simple 

causal chains like A causes B causes C or branching 

patterns; Necessary and sufficient causes, etc. Often 

includes previously neglected agents of lower saliency 

in the causal story.

Example in the context of the evaporative-cooling unit

“The amount of thermal energy increases the amount 

of potential energy which increases the rate of 

evaporation”

Token Explanation: Some entity or phenomenon, 

intentional or not, made things come out that way. 

Entity/phenomenon’s behavior parallels outcome, no 

real differentiation. | (“Static electricity makes it 

happen. “)

Example in the context of the evaporative-cooling unit

“Thermal energy makes evaporation happen”

Level 3 Additive causes: Cumulative effects over 

time (e.g., erosion).

Example in the context of the evaporative-

cooling unit

“There is a decrease in the temperature of 

the evaporating substance over time, as 

molecules with higher kinetic energy 

continue leaving the system.”

Mediating cause: At least three agents in play, M 

mediates the effect of A on B but not simply in the 

sense of A causes M causes B (e.g., M is a barrier to A 

affecting B, or a catalyst, or an enabling condition).

Example in the context of the evaporative-cooling unit

“The transfer from kinetic energy to potential energy is 

controlled by the intermolecular forces of each 

substance as it dictates how much kinetic energy is 

required to eventually cause evaporation.”

Functional explanation: Explains in terms of purpose 

(Giraffes have long necks so that they can eat the 

leaves on the top of the tree.)

Example in the context of the evaporative-cooling unit

“In order to evaporate a substance, you need more 

kinetic energy”

Level 4 Emergent entities and processes-The 

actions of many individual agents at a 

lower level converge to give rise to new, 

complex patterns that are not easily 

anticipated based on the lower order 

actions

Example in the context of the evaporative-

cooling unit

“The random collisions between particles 

set the average kinetic energy of the system, 

that will affect overcoming the 

intermolecular forces between the particles 

of the substance that eventually result in 

evaporation.”

Interactive causality: Two-Way Causality: Interactive 

causation with a mutual effect (as in particle 

attraction); Mutual cause with two outcomes (as in 

symbiosis); Relational causality where the outcome is 

due to the relationship between two variables, (as in 

pressure or density differentials).

Example in the context of the evaporative-cooling unit

“The molecules with the highest kinetic energy leave the 

liquid substance first, leaving the rest of the system with 

a low kinetic energy.”

Commonplace elements: Constructs explanations 

with familiar elements of the system in question 

rather than those underlying it.

Example in the context of the evaporative-cooling unit

“The temperature of the substance is decreasing as it 

evaporates”

Level 5 Reentrant causality: Simple causal loops as in 

escalation and homeostasis.

Example in the context of the evaporative-cooling unit

“As the molecules with the highest kinetic energy 

leave the liquid, average kinetic energy decreases, and 

as a result evaporation rate decreases, this process 

repeats itself causing evaporation rate to decrease 

over time.”

Analogical model: System explains target 

phenomenon by analogy and analogical mapping 

(e.g., electricity as fluid flow).

(Continued)
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5.2. Screencasts

We conducted a screencast analysis of 10 groups engaged in 
constructing models using SageModeler. The groups were 
composed of the same individuals who participated in the 
interviews, along with their modeling partners. The screencasts 
recorded both the screen and voices of the participants, and varied 
in length among the different groups, with an average screen time 
of 120 min per group. The analysis focused on the discussions that 
transpired between the students, between the students and their 
teacher, and among students in neighboring groups. Notably, such 
episodes of discussion were infrequent and heterogeneous across 
the groups.

The analysis specifically targeted three aspects of ST: cause and 
effect, change over time, and feedback mechanism (Richmond, 1993; 
Orgill et al., 2019; Shin et al., 2022). To assess the level of cause and 
effect, we  utilized the interaction pattern causal dimension from 
Perkins and Grotzer’s (2005) framework. The levels of the interaction 
pattern provided insight into usage of cause and effect and feedback. 
To assess thinking in terms of change over time, we  utilized the 
agency dimension with a focus on discussions about processes and 
aggregative effects. Particular attention was paid to terminology that 
indicated such thinking and included phrases such as ‘first A happens 
then B,’ ‘it starts fast, but it slows down,’ and ‘over time as this change 
and goes down, the other changes and goes up.’ We  compared 
students’ reasoning as reflected at the time they constructed their 
model and at the time they interpreted their model in the interview. 
We specifically looked for congruence between the type of reasoning 
students applied as they constructed the static equilibrium and 
system dynamics models and the reasoning they applied when they 
used their model to explain the phenomenon during the interview. 
For example, we examined correlations between discussions about 
change over time during the model construction process and the 
levels of dimensions of causality elicited in students’ explanations 
during the interviews (Table 3).

6. Results

Student utterances were coded for levels of causal dimensions 
when providing explanations using their static equilibrium models 
and compared with those made when using their system dynamics 

models of evaporative cooling. The differences indicated by the 
level of causal dimensions revealed three distinct categories 
of students:

(a) those who demonstrated a consistently low level in dimensions 
of agency and interactive pattern in both modeling approaches, (b) 
those who maintained a high level of agency and interactive pattern in 
both static equilibrium and system dynamics models, and (c) those 
who showed an increasing level of complexity in dimensions of agency 
and interactive pattern, starting with a low level in the static 
equilibrium modeling approach and shifting to a higher level in the 
system dynamics approach.

To present a detailed differentiation between students’ reasoning 
while using the two modeling approaches to explain the evaporative 
cooling phenomenon, we conducted separate analyses for each causal 
dimension. This fine-grained approach allows us to gain unique 
insights into students’ application of the ST aspect in each modeling 
approach. The figures below provide a visualization of the level of the 
three causal dimensions as elicited from students’ explanations during 
the interview as well as the number of utterances assigned to each 
level. The different color of the dots in the figure indicates the category 
each student fell under; consistently low, consistently high, and 
increasing in complexity. In the following sections, we discuss the 
results for each dimension.

6.1. Agency

According to the patterns illustrated in Figure  4, 90% of the 
students’ utterances who utilized their static equilibrium models to 
explain the evaporative cooling phenomenon, demonstrated a lower 
level of complexity in the agency dimension. It was the maximum level 
achieved for 9 out of 11 students during the interviews, as opposed to 
when they used system dynamic models. In the system dynamic 
model, 64% of students’ utterances confined themselves to a 
lower level.

Levels 1 or 2 were used as cutoffs for determining lower levels as 
they both describe simplistic agency.

Figure 4 shows students falling into three groups as previously 
mentioned: one student who’s max utterances were high for both 
modeling approaches (ER), five students who demonstrated a 
consistent lower level in both modeling approaches (CA, GR, LU, TR, 
TY), and four students who exhibited an increasing level of complexity 

TABLE 1 (Continued)

Agency Interactive pattern Mechanism

Level 6 Underlying mechanism: Properties, entities and rules 

introduced that are not part of the surface situation 

but account for it (explanation refers to laws like 

conservation of mass and energy, collision of 

particles).

Example in the context of the evaporative-cooling unit

“The increase of collisions between the particles means 

that the average kinetic energy increases. The growing 

collisions result in overcoming the interactions between 

particles.”
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when explaining the phenomenon using system dynamics models 
(BE, CH, KA, KY). The increase in levels refers to explanations that 
address aggregative effects and emergent behavior which align with 
these particular aspects of ST.

The data suggests that the use of system dynamics models 
increases the likelihood of students moving from a view that 
emphasizes a single prominent factor as the central agent affecting all 
other variables to a view that recognizes the cumulative effects of 
multiple factors over time.

Figure 5 shows the total number of utterances within each level of 
the agency causal dimension. We interpret this graph as indicating that 
the system dynamics model approach, (1) reduces the tendency to 
explain the phenomenon with a central component that has an 
instantaneous effect on the system and (2) encourages explanations 
with higher levels of complexity that consider accumulation over time 
and an emergent behavior.

Next, we present student quotes to illustrate the different levels of 
the agency causal dimension as revealed in the context of this research.

6.1.1. Level 1: salient central agent
GR: “I would say the key variable would probably be the temperature 

because we determined that thermal energy was like the starting point 
of evaporation. So, then that would be like the main thing.”

In the statement above, GR posits that the addition of thermal 
energy to the system is the primary variable responsible for initiating 
the evaporation process and, in turn, induces a cooling effect. In this 

sense, thermal energy serves as a salient central agent, warranting an 
evaluation at level 1.

6.1.2. Level 2: non-obvious central agents with 
long causal chains and branching structures

BE: “So as intermolecular force increases, the time for evaporation 
also increases. And then you  have the amount of the substance. 
Obviously, the more substance you  have, the longer it will take to 
evaporate. And then you have the kinetic energy. So an increase in 
kinetic energy of the substance causes the time for evaporation to 
decrease. Also, we said the same for potential energy. Because potential 
energy is a measure of energy, when the particles are getting farther 
apart, that means that they are more likely to evaporate.”

BE’s explanation of her static model is characterized by individual 
cause and effect relationships and shorter causal chains, rather than a 
prominent variable that directly influences a specific output. Due to 
the absence of a salient central agent and a more complex causality 
relationship considering the influence of different components in the 
system on each other, this explanation is evaluated at level 2.

6.1.3. Level 3: additive causes, causes with 
cumulative effect over time

KY: “The average kinetic energy should decrease over time and then 
the potential energy should increase, which would increase the rate 
of evaporation.”

KY describes the accumulating change over time for kinetic and 
potential energy as one type of energy transfers to another. Therefore, 
this explanation is evaluated at level 3.

6.1.4. Level 4: emergent entities and processes, 
interaction of system components at a lower 
level interacting that produces new behavior

CH: “The particles that are being evaporated are taking away the 
kinetic energy of the surface area by bumping into each other and 
transferring the kinetic energy. Since they are bumping into water 
particles, they are just transferring kinetic energy. It’s not like there if 
I put water on the table, it’s not like the table’s gonna evaporate with the 
water. It’s just that the table is going to get cold. Like your hand 
got colder.”

CH explains that the random collisions between particles 
eventually lead to an uneven distribution of kinetic energy that leads 
to the evaporative cooling phenomenon. Considering how random 
behavior of components in the system lead to an emergent behavior 
at the macroscopic level warrants this explanation at level 4.

TABLE 2 An alignment between higher levels of complexity of causal dimensions and ST aspects.

Higher levels of causal dimension Alignment with ST aspects

Agency Additive causes Aligns with thinking in terms of change over time, which includes the recognition of time-related patterns within and 

across the system (Tripto et al., 2013). It also entails the determination of the time frame relevant to the phenomenon 

under concern (Richmond, 1993; Sterman, 2002)

Emerging entities and 

processes

Aligns with considering an explanation that addresses the interactions between individual components within the 

system which results in a behavior different from the components’ properties (Chi et al., 2012; Tümay, 2016).

Interaction pattern Reentrant causality Aligns with considering a feedback mechanism in which the interaction between system components results in an 

effect that loops back, causing a change in the magnitude of that effect (Wilensky and Resnick, 1999; Haraldsson, 2004).

Mechanism Underlying mechanism Aligns with thinking across levels (Wilensky and Resnick, 1999), which includes the consideration of components and 

laws that underlie the emergent behavior and those that are manifested in it.

TABLE 3 List of students who participated in the screencasts and 
interviewees.

Screencasts Interviewees

KY and AD KY

BE and AL BE

CH and SU CH

KA and MA KA

ER and AU ER

TR and JU TR

CA and NA CA, NA*

TY and BR TY

LU, FR, and DR LU

GR and AN GR

*Students were interviewed separately.
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6.2. Interactive pattern

According to the patterns illustrated in Figure  6, 73% of the 
students’ utterances who utilized their static equilibrium models to 
explain the evaporative cooling phenomenon, demonstrated a lower 
level of complexity in the interactive pattern dimension. It was the 
maximum level achieved for 6 out of 11 students during the interviews, 
as opposed to when they used system dynamic models. In the system 
dynamic model, 48% of students’ utterances were evaluated as 
lower level.

Levels 1 or 2 were used as cutoffs for determining lower levels as 
they both describe simple linear causal patterns.

Figure 6 shows students falling into three groups as previously 
mentioned: 4 students who’s max utterances were high for both 
modeling approaches (ER,CH,CA, KY), 4 students who demonstrated 
a consistent lower level in both modeling approaches (GR, LU, TR, 
TY), and 2 students who exhibited an increasing level of complexity 
when explaining the phenomenon using system dynamics models 
(BE, KA). The increase in levels refers to explanations that demonstrate 
more complex causal patterns like those that address mediating 
variables and feedback, which align with aspects of ST. Of note, the 
same students who demonstrated low level in the interactive pattern 
dimension also demonstrated a low level in the agency dimension.

Five students exhibited a relatively high level of interactive patterns 
while using static equilibrium to explain the phenomenon (CA, CH, 
ER, KY, NA). A causal explanation that included a mediating variable 
characterized those explanations. Notably, the use of a system 
dynamics approach appeared to have a significant impact on the 
inclusion of feedback (Level 5) of four students’ explanations.

Figure 7 shows the total number of utterances within each level of 
the interactive patterns causal dimension. It strengthens the notion 
that the system dynamics modeling approach is more conducive to 
addressing feedback mechanisms in students’ explanations. In 
addition, the data presented reveals a reduction in the frequency of 
simple cause and effect utterances (Level 1) in the system dynamic 
context. It is interesting to note that many students included feedback 
as part of their explanations even if their system dynamics model did 
not include a feedback loop as part of the model’s structure.

Next, we present student quotes to illustrate the different levels of 
the interactive pattern causal dimension as revealed in the context of 
this research.

6.2.1. Level 1: simple linear causality, A affects B
TY: “So as the strength of the intermolecular forces increases, the 

amount of liquid particles also increases. And the amount of gas particles 
decreases because the stronger the intermolecular forces are in the liquid, 
the harder it is for the particles to get away.”

FIGURE 4

Frequency of students’ utterances that refer to the agency causal dimension. The level variable in the y-axis refers to the four levels of complexity 
shown in Table 1. Each data point represents a single coded student utterance.

FIGURE 5

Students’ level of agency causal dimension. Each column represents 
the total number of utterances in each modeling environment. The 
level variable stands for the level of complexity, from the lowest 
value of 1 to the highest value of 4.
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FIGURE 7

Students’ level of interactive pattern causal dimension. The level 
variable stands for the level of complexity, from the lowest value of 1 
to the highest value of 5.

TY provides a simple linear relationship in which variable A 
increases variable B and A decreases variable C, in which B and C are 
the amount of substance in liquid and gas phase, respectively. Given 
the explanation’s simple linear cause and effect pattern, it was 
evaluated at level.

6.2.2. Level 2: multiple linear causality, A affects B 
affects C, may also include a branching pattern

TR: “What our model is saying is that the more thermal energy 
in particles that you have, the more kinetic energy the particles have. 
And then when they move around more, they’ll bounce around more, 
causing molecular forces to get weaker and increase the chances of 

breaking and then these breaking increases the amount of 
potential energy.”

This student describes a pattern where A leads to B and then to 
C. TR characterizes intermolecular forces as extrinsic rather than 
intrinsic properties of a substance and explains that they become 
weaker due to particle collisions instead of being overcome by them. 
However, this simplified representation of a dynamic process does 
not accurately align with the scientific consensus and may result 
from the difficulty of representing a complex concept within a static 
equilibrium model. The rather detailed causal chain warranted a 
level 2 evaluation.

6.2.3. Level 3: mediating cause, M mediates the 
effect of A on B

KY: “Right. So like I  said earlier, the average kinetic energy is 
transferring into potential energy, and the spacing of particles and 
intermolecular forces is affecting that transfer…. So if the intermolecular 
forces is keeping the particles from spacing out, then if that was high, the 
particles would not be spacing out as much and there would be less 
potential energy. And then it’s showing that the transfer from kinetic 
energy to potential energy is the rate of evaporation, which is affected by 
intermolecular forces.”

KY refers to intermolecular forces as the mediating factor that 
controls the transfer from one type of energy to another. The ability to 
create a transfer link and set a relationship that mediates this transfer 
in the shape of a valve (Figure 3) supported students in including a 
mediating cause to their explanations. This explanation was coded at 
level 3.

6.2.4. Level 4: interactive causality, two-way 
causality

BE: “So, as the particles gain kinetic energy, the higher energy 
particles are evaporating, and as they are evaporating, they are taking 
the kinetic energy with them, and that’s decreasing the temperature of 

FIGURE 6

Frequency of students’ utterances that refer to interactive pattern causal dimension. The level variable in the y-axis refers to the five levels of 
complexity shown in Table 1.
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the water on your hands. So, when you have water on your hands, it 
makes you  feel colder because that puddle of water is actually 
losing heat.”

BE describes how the evaporation affects the temperature of the 
liquid remaining and how this in turn affects the evaporation. This 
description of interdependency warranted a level 4 evaluation.

6.2.5. Level 5: reentrant causality, simple causal 
loops

ER: “So as the temperature goes down, the rate of evaporation is 
going to go down as well because it’s going to have less high kinetic 
energy because the average kinetic energy is going down. Well, we are 
going to have some particles with high, some with low kinetic energy, but 
if the average going down as the molecules with high kinetic energy leave 
the system, that means you are losing higher kinetic energy molecules 
and you are not replacing them with anything. So it just keeps going 
down slower [temperature].”

In this example, ER addresses the relationship between the 
distribution of kinetic energy within the particles of a substance and 
the rate at which its temperature decreases over time. Addressing the 
gradual change in the rate of evaporation (“keeps going down slower”) 
distinguishes ER’s explanation from BE’s. ER describes a feedback 
mechanism where the leaving of particles with high kinetic energy 
from the system results in a decrease in the average kinetic energy 
within the system. This, in turn, leads to a reduction in evaporation 
and a slower decrease in temperature, thus causing a further slowdown 
in the rate of temperature drop over time.

6.3. Mechanism

The findings presented in Figure  8 reveal that most students 
reached the highest level in which they mention an underlying 

mechanism to explain the phenomenon in both modeling approaches. 
Yet a deeper examination of the explanations shows a difference 
between the static equilibrium and system dynamics context. In the 
static equilibrium approach, students explain the evaporative cooling 
phenomenon by referring to the particle level and describing 
interactions between molecules. In the system dynamics model 
approach, in addition to addressing the particle level, students also 
address underlying laws like the conservation of mass and energy. For 
example, in the context of static equilibrium modeling, NA says, “Um, 
I think that because as the number of collisions increases, it increases the 
ability for the fastest particles to leave the system. So, as more collisions 
occur, more of those particles are going to be having that high speed, 
giving them the potential to leave the system in the form of vapor.”

In the context of system dynamics modeling, CH says, “Well, 
I believe kinetic energy does transfer into potential energy when it phase 
changes because energy cannot be created or destroyed, so when gas 
changes into a liquid and then into a solid, the energy has to be stored 
somewhere, and it cannot be stored as kinetic, so then it has to be stored 
as potential.”

Besides those differences the patterns demonstrated in Figure 9 
indicate no significant difference in the level of complexity with 
regards to the mechanism causal dimension between static equilibrium 
and system dynamics modeling approaches. Therefore, we do not 
provide examples of quotations for lower levels regarding the 
mechanism causal dimension as they were rare and insignificant.

To summarize the findings so far, we outline three salient patterns 
in the students’ explanations pertaining to the agency and interactive 
pattern dimensions as they use the model they constructed in each of 
the modeling approaches to explain the evaporative cooling 
phenomenon. Additionally, we  observed patterns in students’ 
utterances within each dimension, with more complex levels of 
explanations being prevalent as students used their system dynamics 
model to explain the phenomenon.

FIGURE 8

Frequency of students’ utterances that refer to mechanism causal dimension. The level variable in the y-axis refers to the six levels of complexity 
shown in Table 1.
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FIGURE 9

Students’ level of mechanism causal dimension. The y-axis represents the frequency of the total utterances from the interviews.

6.4. Transitioning from static equilibrium to 
system dynamics modeling

The interviews solicited descriptions of the students’ experiences 
during the transition from static equilibrium to dynamic modeling. 
Six of the 11 students reported a positive experience, stating that the 
shift from one approach to the other enabled them to better convey 
their understanding of the underlying processes. Following is a 
representative comment from a student.

KY: “I think the whole time we were doing the static model, it was 
hard because we all wanted to explain it dynamically and we had to 
refine it to a static model where it wasn’t changing over time. But then 
with the dynamic model, we got to show how it changed over time and 
explain the situation (the phenomenon). It makes more sense to look at 
a dynamic model because it’s easier to look at a situation from this 
starting point and then this is the ending point. You  can say like, 
you start with kinetic energy and then it transfers into potential energy. 
So, I feel like it’s easier to understand a situation looking at a dynamic 
model and it was easier in some ways to put our ideas into it, so it helped 
[the transition from static equilibrium to system dynamic modeling].”

The quote shows how student KY perceived the transition as 
supporting her in expressing her understanding of the phenomenon 
better in the dynamic model. She also describes a sense of frustration 
with the static equilibrium’s limitations. Additionally, three students 
mentioned that the affordances of system dynamics modeling 
supported their understanding of the phenomenon. Below is a 
representative quote from student ER.

ER: “But actually seeing the effect of intermolecular forces on the 
evaporation rate was a really big connector for me because I did not 
understand how it changes through time because at first, I thought the 
rate of evaporation was constant the entire way through the process.”

The data analysis uncovered two recurring themes in the 
responses of students who reported positive attitudes about the 
transition. First, these students displayed a greater degree of 

sophistication in the agency and interactive patterns causal dimensions 
as evidenced by their interview responses. Second, the screencasts of 
these students showed that they included time-related variables, such 
as ‘time,’ ‘time for evaporation,’ and ‘process of phase change,’ while 
constructing their static equilibrium models. In many instances, the 
inclusion or exclusion of these variables was accompanied by 
discussions regarding limitations in accurately representing the 
evaporative cooling phenomenon, such as the phase change from 
liquid to gas or the transfer of kinetic energy to potential energy. A 
summary of these findings can be found in Table 4.

For example, KY and her partner integrated in their static 
equilibrium model variables they named ‘time’ and ‘phase change.’ 
When Mr. M approached them and asked about those variables, KY 
answered, ‘We tried to represent the phase change.’ When BE was 
asked by her peers about their static equilibrium model and the 
variable they named ‘time for evaporation,’ BE answered, ‘We tried to 
represent the process of evaporation and the time it takes the substance 
to evaporate.’

At some point, Mr. M noticed that some students tried to 
represent a process in their static equilibrium models, so he addressed 
the whole class, noting, “With the tool given to us, we cannot model a 
process. We can only model position. If you got things that are procedural, 
you may want to remove them. You cannot set up a relationship like A 
becomes B.”

On the other hand, the students who did not perceive that the 
transition to a different modeling approach supported their 
understanding of the phenomenon showed a tendency to think of the 
phenomenon in a linear cause and effect fashion, as evidenced in their 
interviews and screencasts. CH and NA are a representative example 
of a group for whom the transfer to dynamic modeling was not 
sufficient to shift to a more complex explanation and model. The 
discussion during the construction of their static equilibrium model 
mostly concerned specific single relationships, even as the teacher was 
trying to get them to ‘zoom out’ and consider the overall interaction 
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between the system’s components. As they were working on their 
dynamic model, the pair continued to define linear causal chain 
relationships and interpreted the dynamic components (i.e., stocks 
and flow) in the system as cause and effect relationships.

While analyzing students’ dialog and discussion in the screencasts 
that recorded the construction and revision of their models, 
we  noticed how the limitations of static equilibrium modeling in 
representing simultaneous events created a confusion about setting 
relationships between variables. The following quote in which CA, 
NA, and ER have a discussion is a representative example for such a 
confusion (While working as a pair, CA and NA talk with ER, who is 
from a different group).

ER: So you  start off with your temperature affecting potential 
energy, but temperature does not directly affect potential energy.

NA: Yeah, it does.
ER: That’s, well, I  mean, temperature affects how far apart the 

particles are, which affects potential energy.
NA: No, because potential energy affects the spread of particles.
ER: Well, I  mean, yes. So, temperature, how does it affect 

potential energy?
NA: I mean, looking at this yesterday when we put all that heat in 

it measured the potential energy increasing because of the temperature, 
it could be related to…

ER: I’m pretty sure that it does not affect the potential energy like it. 
I’m pretty sure temperature affects the spread of particles.

CA: Yeah eventually.
ER: I am  pretty sure the spread of particles is affected by, no, 

potential energy is affected by the spread of particles.

An analysis of this dialog from a causal dimension perspective 
reveals a rather low level with both the agency and interactive pattern 
dimensions. With regard to the agency dimension students perceive 
temperature as a salient agent serving as a precursor impacting the 
other variables in the system, hence aligning with a lower level of the 
agency causal dimension. Examining the interactive pattern causal 
dimension, it is apparent that students employ a linear causal 
mechanism to explain the increase in potential energy. The assumption 
of a single variable driving the behavior of the system with a simplistic 
linear reasoning impedes students’ ability to consider simultaneous 
changes. Specifically, they overlook a simultaneous perspective in 
which kinetic energy converts to potential energy as it overcomes 
intermolecular forces. This dialog excerpt is an exemplar of how linear 
causal tendencies can constrain explanations of complex, feedback-
oriented phenomena. It suggests that static equilibrium modeling may 
not be effective in breaking these patterns of thinking.

7. Discussion

Modeling is an essential practice within scientific disciplines, 
which is crucial to engage students from a young age (Gobert and 
Buckley, 2000; Matthews, 2007; Schwarz et  al., 2009; Louca and 
Zacharia, 2012). However, modeling tools, particularly those with 
different computational modeling approaches, have distinct 
affordances that can support various learning objectives. Therefore, it 
is imperative to examine to what extent these affordances facilitate 
students’ application of higher levels of causal complexity and ST to 
make sense of a phenomenon.

The present study addresses this need by comparing students’ 
explanations of a phenomenon as they constructed and used two 
computational modeling approaches to comprehend evaporative 
cooling. Specifically, this study investigates the extent to which the 
static equilibrium and system dynamics modeling approaches support 
explanations that surpass simple linear causal reasoning and apply ST 
aspects, such as thinking in terms of change over time and identifying 
feedback. We specifically used the dimensions of causality framework 
to assess the application of ST in students explanations, as higher 
levels of dimension of causality align with ST aspects, and the 
identification of these allowed to assess the application of ST.

Based on our findings, the utilization of both static equilibrium 
and system dynamics models evoked variations in the rationales 
provided by students regarding the causal dimensions of agency and 
interactive pattern as they used the two modeling approaches. Notably, 
our investigation demonstrated that more complex levels of those 
dimensions were found in students’ responses when employing system 
dynamics models compared to static equilibrium models. We do not 
believe that those results are due to students’ gaining more experience 
in SageModeler as they progressed throughout the unit, as those 
students had prior experience with constructing static equilibrium 
models before the implementation of the unit. If anything, they were 
lacking more experience with system dynamics models.

Though the discrepancy in the level of explanations and the 
application of ST between the two modeling approaches does not 
seem surprising as static equilibrium modeling is not designed to 
support change over time, one must keep in mind that at the time 
students were interviewed they had already completed the unit, which 
included activities that aimed to support them in explaining the 
evaporative cooling phenomenon in terms of change over time. Also, 

TABLE 4 The table summarizes three criteria: (1) students’ positive 
attitudes about shifting to system dynamic modeling as elicited in the 
interviews, (2) students’ inclusion of a ‘time’ component during the 
construction of their static equilibrium models, (3) students’ engagement 
in a discussion which addressed process or change over time during the 
construction of their static equilibrium models.

Students’ 
name

Positive 
attitude 
about 

shifting to 
system 

dynamics

Time 
component 
in the static 
equilibrium 

model

Discussion 
about 

process and 
change over 

time

KY + + +

BE + + +

CH + + +

KA + + +

ER + + +

JU + − +

CA − − −

NA − − −

TY − − −

LU − − −

GR − − −

Regarding the first criteria, the plus sign indicates at least one utterance in which students 
expressed a positive attitude toward the transition from static equilibrium to system 
dynamics modeling approach. Regarding the second criteria, the plus sign indicates at least 
one event in which students included a time related variable during the construction of their 
static equilibrium model. Regarding the third criteria, the plus sign indicates at least one 
episode in which students engaged in a discussion about change over time as they were 
constructing their static equilibrium model.
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no additional information was provided to them except the models 
they constructed during the unit. Hence, we did not expect such a 
divergence in students’ explanations as our assumption was that the 
experience from the unit would have caused an overlay of the static 
equilibrium model explanations with higher level utterances. In that 
sense the findings are intriguing, because they show that each 
modeling approach prompts certain types of explanation and 
reasoning, with the use of system dynamics modeling more likely 
prompting explanations that address ST aspects. These findings align 
with prior empirical studies that have established the utility of system 
dynamics models in fostering reasoning that accounts for temporal 
transformations (Eidin et al., 2023).

The findings suggest that when utilizing either modeling approach, 
students interchangeably apply high and low levels of causality to explain 
phenomena. These results align with the cognitive theory proposed by 
Chi et al. (2012), which posits two competing causal schemas: direct and 
non-direct. The former is characterized by a linear narrative script while 
the latter is characterized by non-linear causal patterns. Notably, Chi 
(2005) and Chi et al. (2012) demonstrated that students can provide 
explanations based on both linear directionality and self-organization 
simultaneously. This theoretical framework corresponds with the work 
of other cognitive scientists who argue that two types of cognitive 
processing—one that is more intuitive and the other that is more 
logical—exist (Anderson, 1996; Kahneman, 2011). Our results 
corroborate these findings in cognition by demonstrating the presence 
of reductionist reasoning, which is based on a salient agent and simple 
linear causal chain, as well as a more complex reasoning that is based on 
thinking in terms of change over time and feedback. Based on these 
findings, we argue that a system dynamics approach has the potential to 
encourage a more complex causal schema of the phenomenon, which 
the static equilibrium model was unable to support.

The present study reveals that students who incorporated high 
level dimensions of causality into their explanations, and hence 
applied ST aspects while utilizing the system dynamics model, 
engaged in deliberations about change over time while constructing 
static equilibrium models. Conversely, students who did not 
incorporate such high levels did not engage in such deliberations. 
We  suggest that the dynamic nature of the phenomenon and the 
requirement to represent it in a static equilibrium environment may 
lead to a cognitive dissonance for some students, as a static 
representation in which variables have an instantaneous effect on one 
another did not align with the consideration of the system’s change 
over time. As such, shifting to a system dynamics approach may have 
reduced that dissonance. However, the factors that prompted such 
deliberations and the cognitive dissonance that some students 
experienced are unclear. One possibility is that the extensive time 
spent working on the static equilibrium models reinforced pre-existing 
tendencies to think in simple linear causal patterns, perpetuating a 
linear narrative schema.

This study demonstrates that the use of system dynamics models 
facilitated some students’ ability to incorporate high levels of agency, 
such as including cumulative effects over time and addressing 
emergent behavior in their explanations. Such reasoning, based on the 
order that emerges from chaos and the random behavior of system 
components, is not intuitive and often conflicts with prevalent human 
reasoning across disciplines, which emphasizes salient components 
that instantaneously affect system behavior (Assaraf and Orion, 2005; 
Hmelo-Silver et al., 2007b; Chi et al., 2012). Our contribution to the 
field lies in providing evidence that system dynamics models can 

prompt students to consider both emergent behavior and change over 
time, thereby serving as a promising tool for engaging students in 
these aspects of system thinking.

We also found that both modeling approaches had the potential 
to elicit high level explanations with regards to the interactive pattern 
dimension with a high frequency of explanations of multiple linear 
causality. These results align with previous research that has 
demonstrated the ability of static equilibrium models to support and 
encourage multiple linear causality in students’ explanations (Bielik 
et al., 2018; Shin et al., 2022). Our findings expand upon this previous 
work by demonstrating the affordances of system dynamics modeling 
in supporting students in considering a feedback mechanism. Users 
can represent feedback structures using both modeling approaches, 
and despite the fact that none of the students included a feedback 
structure in their static equilibrium or system dynamics models, their 
dynamic models prompted an explanation based on a feedback 
mechanism. The results lead us to conjecture that the model’s output 
that represents change over time elicits more sophisticated causal 
mechanisms. This claim is based on research that argues that thinking 
in terms of change over time and accounting for a feedback 
mechanism are inextricably linked, as the feedback requires the 
consideration of time delays (Richmond, 1993; Haraldsson, 2004). 
We acknowledge that the limited amount of evidence collected does 
not support a substantive generalization; however, the evidence and 
findings do point to the potential of system dynamics models in 
considering feedback as an explanatory mechanism of the evaporative 
cooling phenomenon. In that sense, this work advances the field in 
supporting students in applying feedback mechanisms, a challenge 
that has been well documented (Haraldsson, 2004; Hmelo-Silver et al., 
2007b; Martinez‐Moyano and Richardson, 2013; Tripto et al., 2013).

Our findings also show no notable differences between the two 
modeling approaches regarding the mechanism causal dimension. This 
observation can be attributed to the design of the unit, which effectively 
integrated macroscopic and microscopic levels (Dori and Hameiri, 
2003) and used various simulations that illustrate the behavior of 
particles. Additionally, the simulations allowed the students to explore 
abstract concepts such as kinetic energy, potential energy, and 
intermolecular forces, supporting students in understanding the 
underlying components that explain the system’s behavior.

Our work also contributes to the field of chemistry education, as it 
addresses some of the questions posed by York et al. (2019) about the 
potential implications for integrating ST into chemistry education. For 
example, by analyzing students’ level of the agency causal dimension in 
their explanation, we reveal that though the use of thermal energy as 
an external cause of the evaporative cooling phenomenon is prevalent, 
such misunderstanding can be  mitigated by the use of a system 
dynamics modeling approach. An implication for chemistry education 
suggests that the use of system dynamics models can support students 
in focusing on the system’s variables and distinguish those from 
external components students may use to make their explanation of the 
phenomenon more complex than necessary. Furthermore, we show 
that students’ adopting thinking in terms of change over time, which 
has also been recognized as a significant component in integrating ST 
into chemistry education (Flynn et al., 2019; Orgill et al., 2019; York 
et al., 2019), is pivotal to understanding a phenomenon in which rate 
is integral. Therefore, we  suggest that chemistry educators should 
be aware of the importance of thinking in terms of change over time, 
especially when exploring phenomena and concepts that relate to rate, 
such as chemical kinetics and equilibrium. Using system dynamics 
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models could be a promising approach to meet those goals. Our work 
suggests that a promising avenue in supporting students in 
understanding such phenomena and concepts is to engage students in 
tasks that promote thinking in terms over time, and refrain from 
encouraging a reductionist approach based on simple cause and effect 
relationships that might hinder further progress.

7.1. Research limitations

We acknowledge that the sample size of students in this study is 
small, and, therefore, caution must be exercised when generalizing the 
findings to a broader population of students. The population of students 
was also unique as the research was conducted in a magnet school 
serving students who excel in science from 16 surrounding districts. 
Furthermore, we acknowledge that the order in which students were 
asked to use each modeling approach, starting with a static equilibrium 
and then moving to a system dynamics model, might have an impact 
on the results. It might be that starting with a system dynamics modeling 
approach would impact students’ ST in a manner that would render no 
discernable difference in their explanations when subsequently using 
their static equilibrium models. Additionally, this study was conducted 
within the context of the evaporative cooling phenomenon, which 
involves understanding the emergence of phenomena from 
microscopic-level interactions among entities. It is possible that different 
phenomena involving interactions between macroscopic entities, such 
as those related to ecosystems or geology, may have yielded greater 
opportunities for the application of ST aspects in both modeling 
approaches. While the teachers played a crucial role in facilitating 
students’ understanding, this study did not focus specifically on the 
teachers’ supporting strategies due to the limited scope of the research. 
Moreover, both teachers deviated from the curriculum, particularly by 
the time the students constructed their dynamic model. A greater 
adherence to the curriculum may have resulted in a higher proportion 
of students demonstrating complex ST aspects.

7.2. Conclusion

Our study provides evidence of both modeling approaches 
supporting students in ST, though to different extents. We showed that 
system dynamics modeling promotes more complex aspects of ST 
compared to static equilibrium modeling. Our findings demonstrate 
that system dynamics modeling can support students in shifting from 
a reductionist, centralized view, in which a major variable dominates 
the system’s behavior or a simple linear cause and effect relationship 
accounts for the whole system’s behavior to a more comprehensive 
perspective that considers the dynamic changes of variables over time 
and the emergence of patterns from interaction between system’s 
components. Our contribution lies in elaborating on the potential of 
using system dynamics models to enhance ST learning and in raising 
new questions about the use of tools that support cause and effect 
reasoning as scaffolding for applying ST aspects. We  also show 
evidence that engaging students in linear causal relationships in a 
context of which a phenomenon is experienced as evolving over time 
may hinder further application of ST aspects. Given that forming 
causal relationships is fundamental to science education, our findings 
open an avenue to further investigation regarding the necessity of 

striking a balance in which linear causal thinking does not hinder the 
application of ST aspects.

Moreover, further research is needed to explore the potential of 
system dynamics modeling in different contexts, including those that 
exclusively involve macroscopic entities as well as those that involve 
both macroscopic and microscopic entities. Finally, more research is 
necessary to better understand whether scaffolding students’ 
development of complex reasoning skills can facilitate their future 
adoption of ST practices.
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Real-world complex systems research seeks to understand how systems in the 
world can follow the same rules of complexity. Scientists have found similarities 
in processes—such as self-organization, micro-to macro-level emergence, 
and feedback loops—in seemingly disparate phenomena such as the spread of 
infectious diseases and how traffic patterns are formed. Our project, BioGraph 
2.0, was developed to respond to the issue of students’ disjointed understanding 
of biology due to the fragmented nature of how high school biology is taught 
in high school classrooms. We  hypothesized that by framing multiple biology 
concepts through the lens of complexity using dynamic simulations, or models 
featuring complex systems processes, students would be able to see complex 
systems as a unifying concept throughout biology. We  built a series of units 
modeling phenomena on biological concepts such as gene regulation, ecology, 
and evolution using an agent-based modeling tool called StarLogo Nova. While 
previous research over the last decade of this project has highlighted students’ 
growth in complex systems understanding, in this study, we  explored the 
relationship between complex systems and agent-based models. We investigated 
pre and post intervention data from over 300 high school students to determine 
how their metamodeling knowledge influenced their understanding of complex 
systems. Through a regression analysis, we demonstrate that growth in students’ 
modeling understanding significantly predicted growth in complex systems 
understanding. We  further triangulate our findings with interview data from 
students who highlight the importance of the modeling tool to support their 
complex systems learning.

KEYWORDS

complex systems, modeling, agent-based simulation, biology, metamodeling 
knowledge

1. Introduction

The natural and social world that surrounds us is made up of systems that follow the rules 
of complexity (Servedio et al., 2014; Camazine et al., 2020). Complex systems can be defined as 
macrolevel patterns or structures that emerge from the activity of microlevel interacting agents 
(Yoon et al ., 2018a). Researchers from different disciplines have noted that, regardless of the 
kinds of agents (e.g., predator and prey) and the ontological phenomenon under investigation 
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(e.g., ecosystems), complex systems are composed of web-like 
structures in which individuals follow rules (e.g., wolves eat rabbits; 
Chi et al., 2012; West, 2014; Bar-Yam, 2016). Complex systems also 
have intricate interdependencies and structures that exist at different 
scales (e.g., trophic levels in ecosystems; Bar-Yam, 2016). Because of 
this web-like nested structure, information travels in nonlinear ways, 
which makes understanding cause and effect in complex systems 
behaviors challenging (Grotzer and Tutwiler, 2014). Moreover, often 
the dynamics that fuel complex systems behaviors (e.g., feedback 
loops and self-organization) are hidden and take place over large time 
spans (e.g., evolution) or spatial scales (e.g., climate change), which 
limits what we can understand about the whole system at any point in 
time or place (Grotzer and Tutwiler, 2014).

It is not surprising then that students in K–12 education harbor 
misconceptions about systems. A number of empirical studies have 
shown that they tend to adopt a linear approach when thinking about 
the relationships among system components rather than recognizing 
their nested non-linear nature (Sweeney and Sterman, 2007; Gotwals 
and Songer, 2010; Riess and Mischo, 2010). For example, Gotwals and 
Songer (2010) found that students struggled with reasoning about 
how a disruption in one part of a food chain could impact changes in 
another part of the food chain that was not directly connected to it. 
These indirect relationships, as Chi et al. (2012) argue, are hard to 
comprehend because the perceptual apparatus through which 
we  observe phenomenon is limited to the information about the 
system we  have access to at a particular point in time. Another 
common challenge that researchers have discussed is the tendency for 
students to attribute an outcome to a central agent or cause (Penner, 
2000; Taber and García Franco, 2010; Levy and Wilensky, 2011). 
Students are unable to recognize that often control in systems is 
decentralized and that structures or behaviors at macro levels emerge 
from micro-level system activities. For example, ecosystems are able 
to stay in equilibrium (macro-level pattern) because of the combined 
activities of micro-level components (e.g., predator–prey interactions). 
But even more fundamentally, in a series of studies, Ben-Zvi Assaraf 
and colleagues have found that students often struggle to accurately 
identify the components that comprise a system and how those 
components are interrelated or exist as an integrated whole (e.g., 
Assaraf and Orion, 2010; Assaraf and Orpaz, 2010; Assaraf and 
Knipples,  2022).

To address these learning challenges, researchers have posited that 
computational modeling tools such as agent-based simulations could 
provide access to structures and behaviors of systems to support sense 
making and have been researching their uses and affordances (Wilensky 
and Jacobson, 2015; Wilensky and Rand, 2015; Yoon et al., 2018a; 
Mambrey et  al., 2022; Yoon, 2022). A majority of this research has 
examined learning of biological systems. In our recent systematic review 
of complex systems research in K–12 science education, we found that 
topics within the field of biology were investigated in 83% of studies (Yoon 
et al ., 2018a). Within these studies, agent-based simulations have been 
used to represent the complexity of biology systems in a more tangible 
and accessible format for students to explore complex systems thinking 
(Hmelo-Silver et al., 2017; Markauskaite et al., 2020; Housh et al., 2022; 
Jacobson and Wilenski, 2022; Yoon et al., 2022).

Models and modeling approaches have, in fact, received a great 
deal of attention in science education research due to their importance 
in conducting real-world scientific inquiry (NGSS Lead States, 2013). 

However, while learning and participation outcomes through the 
study of computational complex systems models have been generally 
understood to be  positive, we  found that only two studies in our 
systematic review (Yoon et al., 2018a) explored the relationship 
between instructional approaches that use complex systems models 
and student learning of complex systems. However, there is extensive 
research into how students conceive of models (e.g., Nicolaou and 
Constantinou, 2014; Nielsen and Nielsen, 2021). While content 
knowledge is important for working with models, so is metacognitive 
knowledge of models or metamodeling knowledge (Schwarz et al., 
2009; Upmeier Zu Belzen et al., 2019; Chiu and Lin, 2022). This study 
explores how the instructional approach of agent-based models to 
represent complex systems afforded change in students’ metamodeling 
and complex systems knowledge and the relationship between the two.

The research reported here builds on more than a decade of work in 
which we have explored the use of computational complex systems 
models to support teaching and learning in high school biology. We built 
a series of units modeling phenomena of biological concepts such as gene 
regulation, ecology, and evolution using an agent-based modeling tool 
(described in more detail below). In this program of research, we have 
explored various educational goals such as designing curriculum and 
instruction to support complex systems and biology learning (Yoon et al., 
2016), professional development for classroom instruction (Yoon et al., 
2017), building teachers’ social capital for complex systems teaching 
(Yoon et al., 2018b), a learning progression for complex systems 
understanding (Yoon et al., 2019a), and supports for teacher community 
building to scale complex systems PD in online platforms (Yoon et al., 
2020a,b). In this study, we address the need articulated in the review by 
Yoon et al. (2018a) for more studies that investigate the relationship 
between instructional approaches and student learning outcomes. 
Specifically, we investigated how students’ understanding of biological 
models using the modeling tool influenced their understanding of 
complex systems. To this end, we ask the following questions:

 1. To what extent did biology students’ complex systems and 
modeling knowledge change over time?

 2. To what extent is there a relationship between students’ 
modeling knowledge and their complex systems understanding 
for biology systems?

 3. What affordances of the modeling tool and process can explain 
this relationship?

2. Theoretical background

Knowledge and understanding of complex systems and scientific 
models are inextricably linked due to the nature of complex systems 
and the need to create models to understand and analyze them, 
however there is an additional need to understand how high school 
students perceive and utilize this link in building their complex 
systems knowledge. The Next Generation Science Standards (NGSS) 
emphasize the connection in combining the two into a single 
crosscutting concept, systems and system models, which is explained 
as “defining the system under study—specifying its boundaries and 
making explicit a model of that system—provides tools for 
understanding and testing ideas that are applicable throughout science 
and engineering” (NGSS Lead States, 2013, Appendix C, p. 1). As 
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such, there is a need to explore how both complex systems and 
scientific models are conceived by students and how those conceptions 
might influence knowledge development across both areas and their 
combined real-world applications.

2.1. Dimensions of complex systems 
understanding

Within K–12 research, several conceptual frameworks have been 
applied to what has been generally called systems learning (Yoon et 
al., 2018a). Specifically in biology, three frameworks have been 
popular for providing the theoretical foundation to understand how 
students learn: (a) systems thinking; (b) components-mechanisms-
phenomena (CMP); and (c) complexity from emergence. Briefly, 
systems thinking focuses on the interrelationships and 
interdependence of system structures, which first requires 
identifying the components that comprise the system (e.g., the 
boundaries) and then considering the dynamic relationships 
between the components (Assaraf and Orion, 2010; Assaraf et al., 
2013). Thus, the focus is on understanding particular qualities of the 
system under investigation that are unique from system to system. 
Similarly, a CMP framing emphasizes components, connections, and 
behaviors that phenomenologically define a particular system 
(Hmelo-Silver et al., 2017). Researchers have investigated aspects of 
systems understanding in CMP categories, noting that instruction 
often only focuses on macro-level structural components (e.g., trees, 
oxygen) at the expense of learning about mechanisms or behaviors 
(e.g., photosynthesis, carbon cycle) that underpin the function of a 
system (e.g., Jordan et al., 2014).

The third characterization of systems learning—complexity from 
emergence—aims to apply common processes that fuel systems. 
Researchers from this tradition recognize that systems from within 
and between disciplines often exhibit similar characteristics (e.g., 
feedback loops, self-organization, nonlinearity) that happen in 
microlevel interactions to produce macrolevel patterns (Chi et al., 
2012; Wilensky and Jacobson, 2015; Yoon et al., 2017). This framing 
of emergent behaviors from local (simpler) behaviors to global (more 
complex) structures has supported research in notable organizations, 
like the Santa Fe Institute, to investigate some of the worlds’ most 
pressing problems such as disease epidemics and climate change. Our 
own work has taken this approach to learning about systems and has 
sought to understand how students reason through specific complex 
systems dimensions (Yoon et al., 2016, 2017) that include (a) the 
predictability of effects caused by small changes to the system, (b) the 
dynamism of the mechanisms and processes underlying the system, 
(c) the level of centralization of the organization of the system, and (d) 
the scale of the effects and capacities of the system (see Yoon et al., 
2016 for more details). These four components are comprehended on 
a scale that ranges from, on one end, a clockwork framework of 
systems, in which systems are examined as individual parts, to, on the 
other end, a complex framework of systems understanding that 
acknowledges that the whole is greater than the sum of the parts. In 
other words, the properties of the whole complex system are properties 
that none of the parts have alone (Jacobson et al., 2011). In order for 
students to develop their understanding of complex systems, they 
must shift their ontological categories and move from a clockwork to 
a complex understanding of systems (Chi, 2005).

2.2. Scientific modeling and the 
importance of metamodeling knowledge

As the NGSS crosscutting concept systems and system models 
suggests, models and modeling are a vital part of science education 
but have also been identified as primary tools for achieving STEM 
integration (Kelley and Knowles, 2016; Hallström and Schönborn, 
2019). As technological advances make computational models easier 
and more accessible, the ability to interpret these models is a driving 
factor for the integration of technology into other fields of science and 
engineering that, in turn, creates a need to include modeling as a 
component of STEM courses (Schwarz et  al., 2009; Kelley and 
Knowles, 2016). To this end, numerous research studies have been 
conducted to understand and measure how students conceive of 
scientific models (e.g., Schwarz et  al., 2009; Louca and Zacharia, 
2012). The knowledge to understand and work with models, to create 
models within scientific practice, and to apply that knowledge to 
authentic context is often referred to as modeling competence 
(Upmeier Zu Belzen et al., 2019; Nielsen and Nielsen, 2021; Chiu and 
Lin, 2022). In a systematic review of empirical research on assessing 
modeling competence, Nicolaou and Constantinou (2014) found that 
modeling competence falls into two primary categories—namely, 
modeling practice, which is the ability to create and use models, and 
meta knowledge of models (also referred to as metamodeling 
knowledge), which is the understanding of the purpose, process, and 
use of models. This second category, meta knowledge of models, refers 
to the epistemological awareness about the nature and purposes of 
models and modeling, which is a form of metacognitive knowledge 
(e.g., Grosslight et al., 1991; Schwarz et al., 2009; Fortus et al., 2016; 
Upmeier Zu Belzen et  al., 2019; Lazenby et  al., 2020) rather than 
cognitive knowledge of the modeling process. In this project, students 
did not create their own models but instead engaged in activities that 
highlighted the utility of the modeling process to interpret simulated 
biological phenomenon. Thus, we use metamodeling knowledge as a 
measure of students’ understanding of scientific modeling.

In a highly cited article based on their work on the Modeling 
Designs for Learning Science (MoDeLS) project, Schwarz et al. (2009) 
sought to develop a set of learning progressions for metamodeling 
knowledge. They identified three components of metamodeling 
knowledge: nature of models, purpose of models, and the criteria for 
evaluating and revising models. The nature of models component 
includes an understanding that models are an abstract rather than 
literal representation of real-world phenomenon and that different 
models have different advantages and limitations. Purpose of models 
includes an understanding that models are a tool to advance 
knowledge about the world and specific phenomena (e.g., for 
explanation or for prediction). Finally, there should be  an 
understanding that models change based on information that is 
generated from accumulated empirical data. Thus, the component of 
change as an essential criterion for evaluating and revising models is 
an important aspect of metamodeling knowledge (Grosslight et al., 
1991; Gogolin and Krüger, 2018; Upmeier Zu Belzen et al., 2019).

In comparing student metamodeling knowledge to that of experts, 
three levels of thinking about models have been identified (Grosslight 
et al., 1991; Upmeier Zu Belzen et al., 2019). In Level 1 thinking, 
models are viewed as exact replicas of reality and are assessed based 
on whether they “correctly” illustrate reality. In Level 2 thinking, 
models are understood to have a purpose that dictates the nature of 
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the model. The model can be used to communicate something about 
the already known reality it represents, but the main focus is on the 
model itself rather than the underlying ideas. A Level 3 understanding 
identifies models as part of the scientific process from which data can 
be collected and analyzed. Gogolin and Krüger (2018) found that most 
high school students have a Level 2 understanding of the nature of 
models and a Level 1 understanding of the purpose of models, though 
with some variation across grade level and context. They noted that 
only a handful of students reached Level 3 understanding about the 
nature and purpose of models and theorized that this was due to a lack 
of emphasis on models as tools for hypothesis and prediction within 
classroom instruction. As models are becoming more ubiquitous in 
science classrooms and are an integral tool for learning about complex 
systems, there is a need for a more explicit focus on promoting 
understanding of scientific models across contexts at the high school 
level (Nicolaou and Constantinou, 2014; Gogolin and Krüger, 2018; 
Upmeier Zu Belzen et al., 2019; Lazenby et al., 2020).

2.3. Complex systems modeling

Scientific computational models such as agent-based simulations 
can help the process of developing systems thinking and an 
understanding of complexity by enabling students to dynamically 
observe the interactions and interdependencies of individual parts and 
emergent system-wide patterns as they develop over time (Chi, 2005; 
Jacobson et al., 2011; Markauskaite et al., 2020; Yoon et al., 2022). 
Several studies have been conducted on complex systems modeling 
using agent-based simulation tools such as NetLogo and StarLogo 
Nova (e.g., Hmelo-Silver et al., 2017; Yoon et al., 2017; Markauskaite 
et al., 2020). The use of the agent-based modeling simulation StarLogo 
Nova allows for three different representations of the complex system 
being modeled: first, a visual representation of the interactions of the 
complex system model; second, mathematical representations of 
specific outputs over time; and, finally, the blocks-based code 
representation used to build the model (see Figure 1). It has been 
shown that multiple representations of the same system can support 
students’ understanding of the system (Jacobson et al., 2011; Ryu et al., 
2015; Hmelo-Silver et al., 2017).

In our previous research, we have shown that the use of biological 
agent-based simulation in StarLogo Nova led to improvement in both 
biology and complex systems understanding (Yoon et al., 2017, 2020b). 
These findings are supported by the work of others, which showed that 
agent-based simulations of complex systems support the development of 
students’ understanding of complexity (e.g., Jacobson et al., 2011; Hmelo-
Silver et al., 2017). Hmelo-silver et al. (2017) found that the use of an 
agent-based computational model of an ecosystem led students to a 
deeper understanding of the causal mechanisms within a complex system 
compared to students in a control group who did not engage with models. 
However, a CMP framework for complex systems understanding only 
focuses on macro-level structural components and does not consider 
understanding of complexity from emergence. Additionally, the study 
measured modeling practice against complex systems knowledge, rather 
than focusing on metamodeling knowledge. Similarly, Markauskaite et al. 
(2020) examined modeling practices in connection with a specific 
complex system of climate change but focused more on the content 
knowledge connections than generalizable components of complex 
systems knowledge. This suggests there is space for more research into the 

explicit nature of the relationship between students’ metamodeling 
knowledge and their knowledge of complex systems (Markauskaite et al., 
2020) and how the affordances of the models support growth in 
understanding of complexity.

3. Methods

This is a mixed methods study that combines qualitative coding 
and analysis of open-ended responses with quantitative analysis of the 
coding in order to explore the relationship between students’ 
knowledge of modeling and knowledge of complex systems.

3.1. Intervention details and study 
parameters

This study is part of a long-standing program of research that has 
sought to increase engagement with and understanding of biology 
systems through the design and dissemination of a curriculum to teach 
common topics in high school biology through agent-based complex 
systems models. The curriculum is built around the computational 
modeling tool StarLogo Nova. The curriculum includes five units, each of 
which utilize their own complex system model, and each of which focuses 
that model on a particular topic typically taught in high school biology: 
genetics, evolution, ecology, the human body, and animal systems. They 
entail working with the scientific models to engage in core scientific 
practices as outlined in the NGSS, such as analyzing and interpreting data, 
engaging in argument from evidence, and obtaining, evaluating, and 
communicating knowledge claims. The student and teacher materials for 
the units engage learners with the nature and purpose of models by asking 
students to make predictions about what will occur in the system and 
then having them change the model parameters to test and observe what 
happens. Figure 2 presents a page from the student activity packet for the 
human body model; students are asked to observe the model, predict 
what the model will do using different input conditions, and then run the 
model with different conditions and record what the model does. Students 
normally worked in groups of two to complete the units, each of which 
take 2 to 3 days to complete. The program of research has been published 
on extensively; see previously published work for more details on the 
context of the program (e.g., Yoon et al., 2019b; Yoon, 2022).

This study encompasses data collected during the 2019–2020 and 
2020-2021school years. The project shifted from an in-person format 
for teacher recruitment and training to an online format in 2018; 2019 
was the first year that the program was fully accessible online for 
teachers to participate in training. It is important to note that the 
Coronavirus pandemic began during spring of 2020 and, as a result, 
the context of classroom implementation shifted across the time 
period of this study, as many teachers switched from in-person to 
hybrid or fully remote learning.

3.2. Participants

One of the goals of the larger study was to understand the efficacy and 
effects of the curriculum across different contexts. As such, this study 
involved eight teachers from five different schools in two countries 
(U.S. and India). These teachers were chosen from the larger group of 42 
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teachers who completed the online training course in 2019 based on 
several parameters, including their high level of engagement with the PD 
course, their commitment to implementing at least three of the five 
modules throughout the school year, their student populations and the 
degree of survey completion, and their interest in and enthusiasm for 
participating in the study. Ultimately the primary reason for selection was 
the teachers’ agreement to participate in the research. The study 
encompasses 2 years of implementation. Three of the eight teachers 
implemented the curriculum in both years of the study. The teachers all 
identified as female, and their teaching experience ranged from 3 to 
28 years in the classroom. A summary of the teachers’ descriptive statistics 
can be found in Table 1. Each of the participating teachers implemented 
at least three of the units; therefore, the participating students worked with 
at least three different agent-based simulations of complex systems.

A total of 369 students participated in this study. Descriptive 
statistics for the student participants can be found in Table 2. Most of 
the teachers implemented the curriculum with ninth-grade students; 
however, a few of the classes were mixed grade and therefore included 
upper classmen.

3.3. Data sources

To investigate our research questions, survey tests of students’ 
pre-and post-implementation complex systems knowledge and 
metamodeling knowledge were conducted in both years, and student 
focus group interviews were conducted in Year 2 to further probe the 
relationship between modeling and complex systems knowledge.

FIGURE 1

StarLogo Nova Interface: Model on Evolution. The top image shows the simulations of the fish interacting in the virtual environment. The mathematical 
representation can be seen in the top right in the form of a time-series graph, and the bottom half of the figure depicts the code used to build and run 
the simulation.
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Students completed two surveys pre-implementation and two 
surveys post-implementation. Though the surveys contained the same 
questions, they were administered 9 months apart, to mitigate the 
effects of item exposure. The first survey consisted of one open-ended 
question to measure their knowledge of complex systems (i.e., “Imagine 
a flock of geese arriving in a park in Philadelphia, where geese have not 
lived before. Describe how the addition of these geese to the park may 
affect the ecosystem over time. Consider both the living and nonliving 
parts of the ecosystem.”). The second survey included three open-ended 

questions about scientific models. These were: (a) How would 
you describe what a scientific model is to someone who did not know 
what a model is?; (b) Describe what models are used for and how they 
could be used in science; and (c) What, if anything, would cause a 
scientist to change a model of a scientific concept? These three prompts 
about models were designed to solicit understanding of the three 
components of metamodeling knowledge (Schwarz et al., 2009).

In Year 2, which was taught mostly remotely or through hybrid 
remote and in-person learning, virtual semi structured focus group 

FIGURE 2

Student Activity Packet: Enzymes in the Human Body.

TABLE 1 Teacher descriptive statistics.

Teacher School Country Years of teaching 
experience*

Year implemented # Students 
2019–2020

# Students 
2020–2021

1 A India 28 2019–2020 7

2 A India 15 2019–2020 26

3 B India 20 2019–2020 10

4 C U.S. 7 2019–2020 14

5 C U.S. 13 2019–2020, 2020–2021 51 33

6 D U.S. 8 2019–2020, 2020–2021 46 58

7 D U.S. 5 2019–2020, 2020–2021 36 57

8 E U.S. 3 2020–2021 31

Total 190 179

*At end of 2019–2020 school year.
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interviews were conducted over Zoom with one or two groups of three 
to five students from each class for a total of six focus group interviews 
across the four teachers participating in Year 2 implementation. These 
interviews sought to explore how students experienced the models in 
relation to their understanding of complex systems and conduct 
deeper exploration into the affordances those models and the process 
of modeling provided in order to more fully answer the third research 
question. Some example questions from these interviews include: 
Based on your understanding of biological systems, what 
characteristics do they exhibit, and how do you know this from the 
models? and What do you think are characteristics of good scientific 
models or explanations in terms of helping you learn or understand 
the science behind them? These interviews ranged in length from 52 
to 66 min and were recorded and transcribed for analysis.

3.4. Data analysis

Analysis for this study was conducted using a mixed methods 
approach that combined qualitative and quantitative strategies for 
measuring student learning of scientific models and complex systems.

3.4.1. Coding of students’ complex systems and 
metamodeling knowledge

Three separate rounds of qualitative analysis were conducted on the 
data for this study: coding of the open-ended responses on content 
knowledge for complex systems; coding of the open-ended responses on 

metamodeling knowledge; and mining of interview transcripts for 
information that supported the findings from the coding and 
quantitative analyses.

The coding manual used for coding the complex systems open 
responses has been reported on previously (see Yoon et al., 2016, 2020b). 
The coding manual was originally constructed from theories presented in 
Pavard and Dugdale (2000) and refined based on Jacobson et al. (2011) 
and through over a decade of use in studying complex systems 
understanding. The manual consists of four components each scored on 
the level of understanding as 1 (clockwork), 2 (emerging complexity), or 
3 (complex) for a possible total score from 3 to 12. Table 3 presents 
descriptions of the components and example responses from students at 
the clockwork and complex levels of understanding. For example, the 
student response provided below is an example of a Level 3 (completely 
complex) understanding in the component of predictability because the 
student lists many different options for potential directions the ecosystem 
could take and uses the word “could” to show unpredictability:

Since the geese arrive at a place they haven’t ever been before, there 
are many ways they can affect the ecosystem and it is impossible to 
say exactly how. For example, they could drive other birds away so 
that they can lay eggs. They could drive other birds away because 
they compete for the same kind of food. They could cause the 
increase of other animals who feed on geese. They could cause the 
increase of other birds because the geese have become an alternative 
food source for existing predators. It’s really hard to tell.

However, despite representing completely complex thinking for 
predictability, this response also depicts a Level 2 (emerging 
complexity) understanding for the other three components. For 
example, while acknowledging the existence of other species with 
agency in the ecosystem, the response is still centered on the geese as 
the central driving factor in the changes that occur in the system, 
which is scored as a Level 2 understanding in the category of order.

Responses to the complex systems survey were coded by three 
members of the research team in two rounds, one for each year of the 
study. As there were two responses that needed coding for each 
student (pre-and post-test), there were 380 responses from Year 1 and 
358 responses from Year 2. One of the researchers was involved in 
coding responses from previous iterations of the project and 
conducted training on the codebook for the other two researchers. 
After multiple rounds of test coding, an inter-rater reliability test was 
conducted on 80 responses (21%), and a Cronbach alpha correlation 
coefficient of α = 0.863 was achieved, which represents good reliability 
(Stemler and Tsai, 2008). After the disagreements were discussed and 
resolved, the remaining responses were divided evenly among the 
three researchers for coding. For Year 2 coding, the three researchers 
reconvened about 9 months later and conducted a second inter-rater 
reliability test on 72 of 358 responses (20%) from Year 2 and received 
a correlation coefficient of α = 0.858. The disagreements were again 
discussed and resolved, with the remaining responses divided evenly 
among the three researchers for coding.

The coding manual for the modeling responses was adapted from 
prior work conducted on measuring metamodeling knowledge 
(Grosslight et  al., 1991; Schwarz et  al., 2009; Fortus et  al., 2016; 
Gogolin and Krüger, 2018; Lazenby et  al., 2020). Responses were 
scored on a scale of 1 (models as copies of reality) to 3 (models as tools 
for understanding and predicting reality) for each of three different 

TABLE 2 Student descriptive statistics.

Student 
characteristics

2019–2020 
cohort

2020–2021 
cohort

Number of students 190 179

Gender

  Male 84 75

  Female 98 101

  Nonbinary 0 1

  Other 1 0

Grade

  8th NA 1

  9th 126 156

  10th 33 7

  11th 6 3

  12th 20 11

Nationality

  United States 147 179

  India 43 NA

Ethnicity

  White 74 97

  Black 4 7

  Asian & Pacific Islander 91 51

  Hispanic 4 7

  Multi-ethnic or other 9 14

Bold values are the combination of Years 1 and 2.
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TABLE 3 Properties of complex systems knowledge.

Complex systems 
components

Descriptions Level descriptions and example responses

Predictability The emphasis is on the predictability 

of the effects caused by the agent in 

question. In a complex framework, it 

is impossible to precisely anticipate 

the behavior of the system. This is 

because the actions of agents cannot 

be predicted (as random forces or 

chance factors can affect an agent’s 

actions) even if we know the rules or 

characteristics of the agent.

Level 1: Clockwork – Agent actions/effects are predictable.

No alternative possibility is offered in the response. Certain words may hint at predictability of the 

effects of agents: “will,” “is going to lead to/cause.”

Example: When the geese are there, I think that it would greatly affect the people who go there. A lot of 

people would leave because of the bird poop.

Level 2: Emerging Complexity – Agent actions/effects are largely predictable consider alternative 

possibilities.

The tone of the response indicates that agents’ effects are somewhat predictable. However, some 

randomness in the system is suggested. More than 1 alternative is offered, or the answer has a 

minimum of two instances that indicate uncertainty in the outcome (e.g., the use of “probably” or 

“maybe”).

Example: If the geese arrive, they would probably help the ecosystem. The bird droppings might make the 

soil fertile [1st alternative]. It would start to look a lot greener. However, the increase of plants and roots 

might cause paths or walkways to be damaged [2nd alternative].

Level 3: Complex – Agent actions/effects are unpredictable.

There are many alternative possibilities suggested in the response. Certain words discuss the 

unpredictability of the effects of agents: “may,” “perhaps,” “maybe,” “evolve.”

Example: Since the geese arrive at a place they have not ever been before, there are many ways they 

can affect the ecosystem and it is impossible to say exactly how. For example, they could drive other 

birds away so that they can lay eggs. They could drive other birds away because they compete for the 

same kind of food. They could cause the increase of other animals who feed on geese. They could 

cause the increase of other birds because the geese have become an alternative food source for existing 

predators. It’s really hard to tell.

Processes The focus is the dynamism of the 

mechanisms that underlie the 

phenomena (i.e., how the system 

works or is thought to work). In a 

complex systems framework, there is 

no definite beginning and end to the 

activity. System processes are ongoing 

and dynamic.

Level 1: Clockwork – Characterized by static and punctuated events

Response indicates that the system is composed of static events. While perturbations (actions by/on 

parts) in the system may cause change to occur, the change terminates once an outcome is achieved 

(i.e., there is a definite end).

Example: When geese arrive in the park, it would greatly affect the people who go there. A lot of people 

would leave because of the amount of bird poop. People would also leave because of all the birds flying 

around. The statues in the park would be corroded and fall off, which also cause people to leave.

Level 2: Emerging Complexity – Somewhat static but recognizes that changes occur over a long period of 

time.

Response indicates that the system reflects some continual movement, fluctuations, and changes. 

There is indication of various components in the system increasing and decreasing. Responses that 

include a word or phrase that indicate a significant passage of time, such as “over time” or “eventually” 

would also warrant a level 2 code. Fundamentally however, there is an end.

Example: Geese may chase off other animals which could stop geese from eating the food they normally 

eat. These animals would have to adapt [dynamic – signals emerging complexity] or die. The other 

animals in the park will have to fight with the geese for food, and shelter. Once a species wins [suggests 

an end], the other types of animals may move away or die [possible end].

Level 3: Complex – Continual state of activity and fluctuation to maintain balance

Response indicates that the system is an ongoing, dynamic process. Perturbations cause changes to 

the system, and the system continues to be in a state of flux (i.e., continual, and reoccurring changes 

happening to the system). The parts adapt or evolve and continue to do so accordingly. There is a 

sense that despite these changes, the system is maintained.

Example: The geese would eat some animals to survive. This may increase the competition for the 

same food with other animals. The other animals may leave the park to seek greener pastures. They 

and the geese may also simply starve, and their populations decrease. However, over time, with 

more geese in the park, the amount of nutrients in the soil is likely to increase as there is more 

decaying matter (feces and dead geese). This allows the park to support more producers and 

consumers. At the same time, overcrowding may occur. The lack of space may again decrease the 

populations.

(Continued)
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dimensions of metamodeling knowledge (Schwarz et al., 2009). These 
dimensions are listed and explained in Table 4. The responses to three 
separate open-ended questions were combined into a single response 
for coding, and codes of 0 were allowed for responses that consisted 
of “I do not know” or blank answers for one of the dimensions. 
Therefore, total possible scores ranged from 0 to 9.

To explain the coding in a little more detail, below is a sample 
response from a student:

I would describe [a scientific model] as something that shows or 
represents in detail what the science is trying to show. Models are 
used to visualize things and to get a better look and understanding. 

TABLE 3 (Continued)

Complex systems 
components

Descriptions Level descriptions and example responses

Order The focus is the organization of the 

system or phenomenon as centralized 

or decentralized. In a complex 

systems framework, control is 

decentralized and distributed to 

multiple parts or agents. Order in the 

system is self-organized or ‘bottom-

up’ and emerges spontaneously.

Level 1: Clockwork – Central agent has the power or force to impose order on the system

Response indicates that the system is perceived to be controlled by one central agent (i.e., all action is 

dictated by a leader). Order in the system is established ‘top-down’ or determined with a specific 

purpose in mind.

Example: Since the geese have not lived in the park, they probably do not know where to get food from. 

No goose from the population would be able to tell the rest [a central actor] so there is little effect of geese 

on the park ecosystem.

Level 2: Emerging Complexity – Order of the system is distributed amongst several agents.

Response indicates that the system is largely perceived to be controlled by at least 2 agents but that 

these agents dictate how the system behaves. Thus, order in the system is still established ‘top-down’ 

with a specific purpose in mind.

Example: When the geese [a central actor] are there, it would affect the people who go there. A lot of 

people would leave because of the amount of bird poop, and the birds are constantly flying around. All 

the fountains and benches would be corroded by the bird poop, and since there are so much poop around, 

there would be more flies. The predators [a central actor] that usually hunt the geese would move to that 

area too.

Level 3: Complex – Numerous agents

Response indicates that the system is decentralized (i.e., there is no central agent controlling the 

system). (Response indicates at least 3 agents.) Order in the system is self-organized or ‘bottom-up’ 

and emerges spontaneously.

Example: When geese come to the park, they will eat most of the grass. There will be a decrease in the 

food that geese eat. The caterpillars and the other grass-eaters will starve, die or move to another place. 

This means the decomposers will have less to eat, and probably decompose any dead geese faster. The soil 

may have less nutrients and the trees may grow less green.

Emergence and scale Emergence refers to the phenomenon 

where the complex entity manifests 

properties that exceed the summed 

traits and capacities of individual 

components. In other words, these 

complex patterns simply emerge from 

the simpler, interdependent 

interactions among the components. 

In a complex system, because parts or 

agents are interdependent in multiple 

ways, an action (small or large) that is 

imposed on the system may have large 

and far-reaching consequences on the 

numerous parts and agents of the 

system. This may in turn result in 

large-scale change and evolution.

Level 1: Clockwork

Response indicates that (a) the parts of a system are considered to be isolated, where there is no 

interdependency among them; and (b) there is a sense that the action causes localized changes only.

Example: The geese are staying because they probably have a good resource of food here. The number of 

bugs will therefore decrease.

Level 2: Emerging Complexity

Response indicates one complex component of emergence: either (i) a small action creates a large 

effect (scale) OR (ii) initial action has a cascading effect on several components of the ecological 

system that indicates interdependence, for example a change in the food chain (emergence)

Example: The geese arrival would drive the other birds away so they can lay eggs. There would be less 

worms that geese eats. People may see the geese and try to feed them. A lot of these things can fall into 

the lake and cause the fish to eat them and they may die. (Interdependency is evident between geese and 

worms, geese and fish, geese and other birds, etc.)

Level 3: Complex

Response indicates that (a) the parts cannot be understood by decomposing them from the larger 

system because of their interdependency in multiple (2 or more) ways; and (b) there is a sense that the 

action can produce both localized changes and cascading effects (small actions → large effects).

Example: The geese will probably help the ecosystem. First, their droppings might make the soil more 

fertile, and plants will grow better. There may be more O2 as a result. The result of O2 and plant increase 

could cause a wet and warm ecosystem. However, geese may also eat most of the grass. Other grass-eaters 

will die or move. This would mean that the decomposers will have less to eat. The soil may have fewer 

nutrients, and the trees will grow less well. The geese may also damage statues with their droppings.
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[A scientist might change a model if] they saw that their model 
didn’t accurately represent the data they’re trying to show.

In this response, the use of the words “show” and “accuracy” 
demonstrates an understanding of a model as a static representation 
of an intended outcome whose role is to depict that outcome in 
alignment with expected reality. This response was scored as a Level 1 
for all three properties. In contrast, the following example response 
demonstrates a more advanced level of metamodeling knowledge:

A scientific model is a concept to make something easier to 
understand. It could be any type of model to visualize something that 

is being experimented. Models are used to represent something in the 
real world. It is a way that scientists can make predictions and propose 
new ideas. [A scientist might change a model] based on their new 
findings and concepts that they are developing in their experiment.

In this second response, the student recognizes the active role of 
models in the scientific process (scored as a 3 for purpose) and cycle of 
changing models as part of that process (scored as a 3 for change). While 
they still connect models to real-world representations, they understand 
that a model is not an exact replica (scored as a 2 for nature of the model).

We worked with a member of the research team who was not 
involved in creating the codebook to test the coding manual for 

TABLE 4 Properties of metamodeling knowledge (MMK).

MMK property Description Level descriptions and example responses

Nature The “nature of models” property 

represents how a model is 

conceptualized. This includes 

how literal models are believed 

to be and how general or 

specific they can be.

Level 1: Models are literal replications of a single phenomenon that can be perceived by human senses. At this 

level, a model is believed to be “correct” or “wrong” based on its adherence to reality.

Example: “A model is a miniature replica of the original concept aiming to provide a better understanding about 

the concept. It is a detailed visual representation.”

Level 2: Models are idealized representations of a phenomenon that may not be accessible to the human senses. 

Though models might not be literal replications of reality, they are based entirely on existing data from reality. 

At this level, models are understood to be created by a modeler with a purpose that dictates certain choices 

about how the model represents reality.

Example: “A scientific model is a model used to describe a scientific process of concepts. It can either be either 

physical or virtual but in some way, it will model either the concept of the process that it was supposed to represent.”

Level 3: Models are a reconstruction of a phenomena (or a series of related phenomena), based on theoretical 

understanding, data, and hypothesis. Importantly, at this level there is an understanding that models can extend 

beyond rigid adherence to existing data and can include hypothetical theories. At this level, models are known 

to represent multiple interrelated systems or phenomena.

Example: “A scientific model is a creative representation or formulation of an idea that is created in order to 

analyze how that idea would fit into the real-world using evidence and scientific knowledge.”

Purpose The “purpose of models” 

property represents the reason 

for a model’s existence and what 

can be achieved with it. This 

includes the way it is used to 

communicate and to conduct 

predictions or discover new 

information and understanding.

Level 1: Models are used to demonstrate how something looks or operates on a superficial level. Their purpose is 

to describe only.

Example: “Models are used to visually show about the real thing.”

Level 2: Models are used to explicitly highlight underlying mechanisms or key concepts within a phenomenon. 

This differs from Level 1, where representations aim for superficial replication and direct representation of the 

overall phenomenon. At Level 2, models have been shifted from direct visual replications of reality to 

communicate something specific about how the phenomenon functions.

Example: “It is a representation of a concept or system of ideas used to provide further explanation or clarification. 

Models are used for organizing ideas and explanations to understand systems or complex ideas in science. They 

could be used by a presenter or scientist explaining ideas to another, or to simply record discoveries.”

Level 3: Models are used to interpret or predict the process or outcome of a phenomenon or system. The 

purpose of models is to serve as a thinking aid to guide the construction and interpretation of data. Models can 

lead to new understandings and hypotheses.

Example: “Scientists use models to identify patterns in the world. Based on their knowledge with these models and 

scientific knowledge they can make predictions on future patterns.”

Change The “changeability of models” 

property demonstrates how and 

when a model could or should 

be changed and the reason or 

purpose for doing so.

Level 1: Models may be changed if there is something wrong with them, if errors are found, or if the model is 

not communicating effectively. There is one “correct” model.

Example: “If their model was incorrect or not used properly.”

Level 2: Models may be changed if new data or information is discovered about the underlying phenomenon. At 

Level 2, responses may be referring to the process of aligning the model with more modern or contemporary 

understandings of the underlying science.

Example: “If new information comes out disproving the previous scientific model.”

Level 3: Models are revised as part of a cyclic process of prediction, data collection, and analysis. The 

interpretation of data from the model is the agent of change.

Example: “Based on their new findings and new concepts that they are developing in their experiment.”
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understanding and clarity. Two additional researchers were trained on 
the codebook who achieved an inter-rater reliability Cronbach alpha 
coefficient of α = 0.90 on 70 responses (9% of the total of 738 over the 
2 years). We realize that this is less than the standard of 20% of the data 
used to obtain interrater reliability, there were additional time 
constraints and availability of the coders decreased substantially due 
to the time of year that coding was requested. However, as the alpha 
coefficient is well over the 0.70 limit indicating good reliability 
(Stemler and Tsai, 2008), and as the sample is large, we deemed this 
was a sufficient measure of reliability and decided to proceed with 
coding of the remaining responses. After the differences were 
discussed, one researcher (first author) coded the remaining responses.

The student focus group interviews were mined by the first 
author for responses that could explain how the curriculum and 
models afforded better understanding of complex systems. Responses 
were then grouped into themes that supported the three categories of 
metamodeling knowledge.

3.4.2. Relationship between students’ complex 
systems and metamodeling knowledge

The resulting codes were compared pre-to post-test scores for both 
modeling knowledge and complex systems understanding. A paired 
samples t-test was conducted to determine whether there was positive 
significant growth in both measures. The results were then analyzed to 
understand whether there was a relationship between the two measures 
through hierarchical regression modeling. The analysis was conducted 
to determine whether there was a significant effect on complex system 
understanding beyond their prior knowledge of modeling and 
understanding of complex systems measured at the pre-test survey.

4. Findings

Results from the analysis of the coded open-ended survey responses 
revealed significant growth in both metamodeling and complex systems 
knowledge. The results of the regressions analysis showed that modeling 
knowledge had a significant positive effect on complex systems 
understanding when holding all other variables constant. Finally, the 
student focus group interviews supported these findings with quotes 
from students depicting how aspects of the models were viewed to 
enhance their learning of the complex biological systems.

4.1. Knowledge growth in both scientific 
modeling and complex systems

The results of the surveys showed growth from pre-test to 
post-test for both measures, where a paired samples t-test showed 

positive significant growth t (368) = 6.03, p < 0.001 with a Cohen’s 
d effect size of 0.39 for students’ modeling knowledge which is a 
small to medium effect (Lakens, 2013), and positive significant 
growth t (368) = 4.62, p < 0.001 with a Cohen’s d effect size of 0.27 
which is a small effect for students’ complex systems 
understanding (see Table 5 for more details).

While these results supported previous findings that students 
experienced growth in their complex systems knowledge, in this study 
we were primarily interested in the relationship between change in 
modeling knowledge and complex systems knowledge. This 
relationship was explored through a regression analyses.

4.2. Change in metamodeling knowledge 
has significant positive impact on change 
in complex system understanding

To test if students’ metamodeling knowledge improved their 
understanding of complex systems beyond their prior knowledge 
of modeling and understanding of complex system measured at 
the pre-test, a hierarchical regression was conducted with two 
blocks of variables. The first block included students’ pre-test of 
knowledge of modeling and pre-test of knowledge of complex 
system as the predictors, and with students’ post-test measure of 
understanding of complex system as the dependent variable. In 
block two, students’ post-test measure of metamodeling 
knowledge was also included as the predictor variable, with 
students’ post-test measure of understanding of complex system 
as the dependent variable (see Table 6 for a summary).

Overall, the results show that the first model was significant 
F (2,366) = 28.85, p < 0.001, R2 = 0.14. But only students’ pre-test 
measure of understanding of complex system was significantly 
associated with the post-test measure of understanding of 
complex system (b = 0.37, t = 6.81, p < 0.001). The second model 
(F (1,365) = 32.49, p < 0.001, R2 = 0.21), which included students’ 
post-test measure of modeling knowledge (b = 0.33, t = 5.70, 
p < 0.001), showed significant improvement from the first model, 
∆R2 = 0.07, p < 0.001. Overall, when students’ pre-test of 
knowledge of modeling and pre-test measure of understanding 
of complex system were included in the model, the variables 
explained 14% of the variance. The final model, including 
students’ post-test measure of understanding of modeling, 
accounted for 21% of the variance. Thus, with the addition of the 
second independent variable of students’ post-test modeling 
scores, results showed that it significantly predicted students’ 
complex systems understanding in the post-test beyond students’ 
prior knowledge of modeling and understanding of complex 
systems measured at the pre-test.

TABLE 5 Scientific metamodeling and complex systems knowledge.

Scientific metamodeling knowledge Complex systems knowledge

Year N Pre-test avg 
(SD)

Post-test avg 
(SD)

Diff Pre-test avg 
(SD)

Post-test avg 
(SD)

Diff

Year 1 190 4.47 (1.51) 5.31 (1.33) 0.84 5.97 (1.46) 6.28 (1.56) 0.31

Year 2 179 4.79 (1.41) 5.05 (1.35) 0.26 6.04 (1.51) 6.58 (1.63) 0.54

Both Years 369 4.63 (1.47) 5.18 (1.34) 0.56 6.01 (1.48) 6.43 (1.60) 0.42

Bold values are the combination of Years 1 and 2.
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4.3. How metamodeling knowledge 
supports complex systems learning

To answer our third research question about the specific affordances 
that allowed for the connection between metamodeling knowledge and 
complex systems understanding, an analysis of the student focus group 
interviews was conducted. The three components of metamodeling 
knowledge: nature of models, purpose of models, and the criteria for 
evaluating and revising models (Schwarz et al., 2009) were identified 
within the interviews and three themes emerged that connect those 
components of metamodeling knowledge to complex systems 
understanding and highlight specific affordances of the StarLogo Nova 
models that support students’ complex systems understanding 
development. For the nature of models, students focused on the 
“realistic” quality of the models, which allowed for aspects of complex 
systems in biology to be viewed and explored. Students understood the 
purpose of the models to have a role in communicating different aspects 
of the system through the different representations within the model. 
Finally, students engaged with the changeability of models through 
manipulating parameters to highlight characteristics of complex systems 
such as randomness and interconnectedness.

4.3.1. The nature of models as “realistic” 
representations of complex systems

While viewing scientific models as exact copies of reality supports 
a low-level understanding of the nature and purpose of models, it is 
important to understand that models are used to represent reality in 
some way that is useful. The connection to reality was a component of 
the models that students were drawn to, and which was brought up by 
multiple students in response to a question about the nature of good 
scientific models. For example, a student from a focus group for 
Teacher 5 said, “They model a real-life system, so we can see how, in 
real life, they work. We can actually see each component of every 
system, and that really helped me, at least, understand how all these 
things work.” In response to the same prompt, a student from Teacher 
8’s class identified the importance of keeping models close to reality 
while also modifying them to make them simple:

I generally think of things that are easy to navigate, but also keeping 
it realistic. So, they're not so simple that it's not enough information, 
but just the right amount that it still looks relatively real to what 
you're learning about. Keeping it simple but realistic at the same 
time, because if it's not realistic, it's not benefiting you for learning 
what that system really looks like.

These quotes support students’ metamodeling knowledge of the 
nature of models as useful representations of reality. Students also 
connected the realistic nature of the models to characteristics of 
complex systems. One student from Teacher 8’s class said, for example, 
that “Even if you would test [the model] again and again, it was super 
unlikely you’d come to the same answer twice just because they are 
trying to make it as realistic as possible.” A student from Teacher 5’s 
class had a similar observation, saying “Getting different outcomes 
with different numbers or even that the same numbers, just like a 
more realistic model, and I think that’s how scientific models should 
be.” These quotes show that students were making connections 
between the nature of models and the nature of complex systems.

4.3.2. The purpose of models: to communicate 
through different representations of the system

Most of the students interviewed spoke about the purpose of 
models to communicate and explain complex systems through 
multiple representations of the system and the data within it. While 
the students did not talk about the code representation, both the visual 
and mathematical representations were highlighted as important 
factors in building their understanding of the complex systems and 
underlying concepts. A student from a focus group for Teacher 8 
mentioned that having the visual representation was an added benefit 
over auditory methods she was more used to encountering, saying:

I feel like it really helped just to put a visual to the things that 
we  were learning. Not just have the words in an auditory 
explanation of what was going on, but to see what was actually 
going on and have a good visual of it.

Mathematical representations, in the form of graphs that tracked 
output data from the simulations, were also a source of information that 
students used to interpret complex systems. In the focus group with 
students from Teacher 5, one student responded to a comment about 
tracking changes in the system by highlighting the graphs, saying, “We 
could usually tell that by the two graphs on the side, which would kind 
of help to see how dramatic or undramatic the changes were.”

Students also made connections between the visual and 
mathematical representations within the simulations. One student 
from a focus group for Teacher 6 talked about how the visual 
representation helped simplify the complexity while the mathematical 
representation helped him understand the process:

These models, they help simplify a very complex scientific idea and 
it helps me visualize and, for example, the graph for the gene 

TABLE 6 Results of regression of post measure of understanding on predictors.

Predictor Variables B t Sig.

Model 1

Pre-test of understanding of complex system 0.37 6.81 < 0.001

Pre-test of modeling 0.83 1.52 = 0.130

Model 2

Pre-test of understanding of complex system 0.34 6.46 < 0.001

Pre-test of modeling 0.03 0.52 = 0.602

Post-test of modeling 0.33 5.70 <0.001

R2 = 0.14 for Model 1, p < 0.001; ∆R2 = 0.07 for Model 2, p < 0.001; Total R2 = 0.21, p < 0.001.
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regulation, it helps you understand how the graph was developed 
and instead of making biology feeling like it's something that's just 
needs to be memorized, it helps you understand the process more.

The students recognized that having multiple representations of 
the model in the StarLogo Nova simulation allowed them to explore 
complex systems in multiple ways that helped them understand the 
concepts and complex systems in general. For these students, the 
model was a tool for building understanding.

4.3.3. Changing the model parameters to explore 
randomness and connectivity as components of 
complex systems

Though the students did not change the underlying code of the 
simulations, they did change the parameters that were used as initial 
conditions for running the model and chose different scenarios to 
model, which served as examples for thinking about model 
changeability. This ability to change the model in response to the data 
produced by the model in order to further explore the system being 
simulated supported students in developing complex systems 
knowledge. A student from Teacher 6’s class explained this process:

Something else I noticed with this simulation was that you could 
customize the different scenarios, so that it fit with what you were 
trying to learn. I remember we would put in different barriers in 
different types of sugar. I remember that was really helpful because 
we could, and with all of the simulations too, you could create these 
different scenarios to separately explore different concepts.

The changeability of the models allowed students to observe 
the connected nature of the complex systems and the way that the 
models were able to make those connections observable to them. 
In talking about the ecology model, one student in Teacher 5’s 
class said,

What we learned was how when one species is affected, it's not just 
affected individually. It's kind of like a domino effect that affects the 
organisms it feeds on and the organisms that feed on it, which was 
really interesting.

A student from Teacher 6’s class made an explicit connection 
between this interconnectedness of the components of the models and 
the fact of that as a defining characteristic of complex systems saying,

There are a lot of different parts to all of [the models], it's just part 
of what a complex system is, and they all work together, and there 
are different outcomes based on how they work together, so I would 
say that's the characteristic that they exhibit.

The students also noticed the ability of the models to simulate the 
emergent nature of complex systems, which can seem like randomness 
due to the complexity of the interactions of the components within the 
system. One student from Teacher 5’s class noted the relationship 
between the randomness displayed by the models and what might 
happen in real life, saying,

One thing I noticed about these [models] is that the outcomes were 
kind of different every time. If multiple people in the class did the 

same numbers or same data, it wasn't guaranteed to get the same 
response and the same outcome. Obviously, that’s how it is in real life.

A student in Teacher 6’s class made a connection between the 
randomness displayed by all the models and the unpredictability of 
complex systems, showing a high-level understanding of both the 
nature of models and of complex systems, saying, “All the models had 
different models of different parts of things, and they all moved 
randomly, and you have that element of unpredictability, which would 
be a characteristic of complex systems.” Finally, a student from Teacher 
7’s class summed up all three of the themes from the interviews in a 
single quote, saying,

The graph there in the Gene Regulation, that's useful. So, it's not just 
that I think there's more of these over time and then they decrease, 
you can see the graph, you can see it's actually happening. Also, 
I think the randomness … In all of these, if you run the simulation 
multiple times, it's not just the same exact thing. The factors are 
working off each other with a bit of randomness. You can tell that 
whatever is happening is actually happening. In the real world, it's 
not going to be the same every single time. It's more realistic.

These three themes and the quotes that illustrate them add further 
support to the quantitative analysis of the student knowledge surveys 
and suggest that there is a significant connection between students’ 
metamodeling knowledge and their learning about complex systems. 
Students’ ability to see models as useful representations of an aspect 
of reality and to understand that they could be manipulated to view 
that reality from different angles and different starting scenarios 
allowed them to develop a deeper understanding of complex systems 
and their emergent nature.

5. Discussion

Our findings answer our research questions in the following ways. 
There was significant growth both in students’ metamodeling 
knowledge and in their complex systems understanding across both 
years of the study. The hierarchical regression analysis also showed a 
significant effect of students’ growth in metamodeling knowledge on 
their growth in complex systems understanding. Furthermore, student 
interviews identified three distinct ways that their modeling experiences 
supported learning about complex systems, highlighting supports for 
metamodeling knowledge reported in the literature review (i.e., the 
nature, purpose, and changeability of models; Schwarz et al., 2009). 
From the focus interview responses about the nature of models, the 
agent-based simulations in our study enabled students to observe 
system structures through visualizations of system component 
interactions (Chi, 2005; Jacobson et al., 2011; Markauskaite et al., 2020). 
These dynamics are normally hidden to the naked eye, which makes it 
challenging to understand how system patterns emerge (Yoon et al., 
2018a). Emergent patterns in biology, such as climate change or natural 
selection, are also difficult to witness in real time because they appear 
over large geographic and temporal scales (Grotzer and Tutwiler, 2014). 
Many students in our study noted that being able to see the system all 
at once was important to their learning. Regarding the purpose of 
models, the existence of multiple representations of the scientific 
phenomenon under investigation provided students with strategies to 
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interpret data generated from multiple runs and to develop explanations 
of the system (Gogolin and Krüger, 2018; Upmeier Zu Belzen et al., 
2019). Finally, regarding the changeability of models, the ability to 
manipulate initial conditions and the ability to compare varying results 
allowed students to develop more sophisticated scientific theories (e.g., 
that there is built-in variation and randomness in all systems) than 
what only a single run of the simulation would otherwise afford. These 
findings support previous research showing the affordances of 
computational models as tools for increasing students’ complex systems 
understanding (e.g., Hmelo-Silver et  al., 2017; Yoon et al., 2017; 
Markauskaite et al., 2020; Nguyen and Santagata, 2021).

While these findings support previous research and add to the 
research on modeling and complex systems by explicitly 
demonstrating a quantitative significant effect of metamodeling 
knowledge on complex systems understanding, there are limitations 
to the study. The sample of teachers in the study were self-selecting 
into the professional development for the StarLogo Nova simulations 
and resources, and into the study. As such, the teachers were highly 
motivated and likely represented an ideal population of students. 
Additionally, the Covid-19 pandemic made working with the 
teachers and students in India impossible for the second year of the 
study which limited the diversity of the students in the study and 
may have skewed the regression model. Another limitation is that, 
while this study focused on students’ metamodeling knowledge, 
modeling practices were not measured and certain components of 
modeling competence such as multiple models and testing models 
(Upmeier Zu Belzen et al., 2019) were not included in the study. 
Finally, we acknowledge that this work is embedded firmly within 
the context of Biology and while metamodeling knowledge is 
conceived as content general knowledge, it has been found that there 
exists a difference between contextualized and decontextualized 
metamodeling knowledge so our results may only speak to 
contextualized knowledge (Göhner et al., 2022).

While acknowledging some limitations, the findings reported here 
emerge from over a decade of research on this project that involved years 
of iterative design and implementation cycles to reach a point where the 
curriculum and PD experiences fully supported teachers and students in 
using models to support learning of complex systems (see Yoon et al., 
2016, 2020b; Yoon, 2022). Our research has produced significant 
outcomes for student learning and supported attempts to scale up access 
to project resources more globally (Yoon et al., 2020b). Developing 
greater understanding of complex systems (Yoon et al., 2018a) and 
systems more generally (NGSS Lead States, 2013) has also been a focus 
of educators and educational researchers for many years. Despite this 
longstanding interest, however, complex systems curricula and tools have 
still not made their way widely into biology classrooms (Gilissen et al., 
2020; Markauskaite et al., 2020). Perhaps this slow progress is related to 
the lack of studies that make explicit the connection between growth in 
student understanding of complex systems and specific instructional 
approaches such as agent-based modeling, as noted in a previous 
literature review (Yoon et al., 2018a). Without assurances that learning 
outcomes will improve, it may be difficult to convince teachers to adopt 
new pedagogies and tools like ours that add additional time to the 
standard biology curriculum. That we  found improvements in both 
student measures of metamodeling knowledge and complex systems 
understanding even in Year 2 of the project—where teaching and 
learning happened fully online—is also worth highlighting given the 
documented learning losses that we  have experienced due to the 
pandemic (Nowicki, 2022).

6. Conclusion

In this study, we investigated how students’ understanding of biological 
models using an agent-based modeling tool influenced their understanding 
of complex systems. Through many years of design iterations, we developed 
a curriculum that supports growth in students’ knowledge of scientific 
models and complex systems understanding in high school biology. 
Through a regression analysis of 2 years of student data, we demonstrated 
that growth in students’ modeling knowledge significantly predicted 
growth in their understanding of complex systems. We further showed that 
students perceived multiple aspects of the agent-based modeling tool as 
important to supporting their understanding of complex systems. Studies 
that demonstrate explicit relationships between instructional approaches 
and improvements in complex systems content learning are rare, which 
underscores the overall value and contribution of this research. We hope 
that future research will continue to explore the relationship between 
metamodeling knowledge and complex systems understanding both to 
replicate our work with different systems’ representations to show that the 
effects are significant in other contexts and content areas, and to expand 
upon our work to include more components of modeling competencies 
(Schwarz et al., 2009; Fortus et al., 2016; Upmeier Zu Belzen et al., 2019). 
Specifically, embedding agent-based simulations within the scientific 
inquiry process to support students’ deeper exploration of complex systems 
and their development of systems thinking.
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Students’ systems thinking while 
modeling a dynamic ecological 
system
Annika Lankers *, Justin Timm  and Philipp Schmiemann 

Biology Education Research and Learning Lab, University of Duisburg-Essen, Essen, Germany

The world is facing global ecological changes, making it essential to prepare 
the future generation with the necessary understanding to effectively navigate 
and address complex tasks. Previous research has shown that both systems 
thinking and scientific modeling are particularly relevant in investigating the 
comprehensive understanding of such complex phenomena. However, there has 
been little research on the interrelation between systems thinking and scientific 
modeling. To address this research gap, we conducted a thinking-aloud study with 
nine high school students by confronting them with a simulation of a dynamic 
ecological system. Our qualitative content analysis of the students’ statements 
indicates an interrelation between systems thinking and scientific modeling. The 
students infrequently show systems thinking during the exploration, whereas 
when developing a graphical model, the students are involved in identifying the 
system organization and analyzing the system behavior. When predicting future 
system states, students engage in modeling the system evolution. Furthermore, 
during verbalizing analogies and experiences, students refer to the system 
organization and behavior, whereas in mental modeling, students additionally 
model the system evolution. These results illustrate a central difference between 
the two perspectives. Thus, scientific modeling focuses on students’ activities 
during their understanding process, while systems thinking addresses students’ 
analysis of systems and their properties. While the phenomenon exploration may 
not require systems thinking, pattern recognition and model development are 
frequently associated with identifying the system organization and analyzing the 
system behavior. Systems thinking must also be applied when deriving possible 
future system states by modeling the system evolution, an activity that is closely 
related to the prediction phase of scientific modeling. Interestingly, in our study, 
the students also demonstrated the modeling of system evolution in their mental 
modeling. In conclusion, a complementary consideration of systems thinking 
and scientific modeling affords a deeper understanding of students’ cognitive 
processes in dealing with complex phenomena.

KEYWORDS

complex phenomena, systems thinking, scientific modeling, dynamic ecological system, 
alien species, science education, secondary students, qualitative content analysis

1. Introduction

Attention to global changes and its consequences have increased immensely over the last 
decades. The world is facing global social and environmental issues. One of them is biotic 
homogenization including several losing and a few winning species (McKinney and Lockwood, 
1999). Of particular concern are invasive alien species, as they are a significant threat not only 
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to biodiversity (Early et  al., 2016). Invasions negatively affect 
ecosystem stability and have a direct impact on habitat design, 
ecosystem performance, agricultural success, the spread of diseases, 
and human well-being (IPBES, 2019). To deal with such global 
challenges, a comprehensive understanding of biodiversity and 
ecosystem functioning is critical for constructive policy and 
management (Early et al., 2016). Future generations must be prepared 
for these tasks by developing a holistic understanding of global 
changes facing the world community (NGSS Lead States, 2013; 
Ladrera et  al., 2020). This issue persists, as the findings of the 
Programme for International Student Assessment (PISA) reveal that 
students with little knowledge and skills have naïve and unrealistic 
ideas about the self-regulation of the world, whereas scientifically 
educated students are able to make realistic assessments based on 
ethical reasoning (OECD, 2022). Hence, science education aims to 
provide students with a set of essential skills and subject-specific 
concepts that can be used as a basis for dealing with decision-making 
and problem solving in issues of global concern as well as everyday life 
challenges (National Research Council, 2012; NGSS Lead States, 
2013). Systems thinking and scientific modeling are cognitive activities 
discussed in the context of a deeper understanding of such complex 
phenomena in dealing with personal, social, and global challenges 
(Jackson et al., 1991; Hogan, 2000; Gotwals and Songer, 2010; NGSS 
Lead States, 2013; Bielik et  al., 2021). Both are directly related to 
understanding complex phenomena, but from different perspectives: 
Scientific modeling focuses on the process of accessing complex 
phenomena and primarily addresses how students proceed, whereas 
systems thinking primarily addresses how students analyze complex 
systems. Even though it seems plausible that there might be a close 
relationship between systems thinking and scientific modeling, the 
connection between the two perspectives has not yet been investigated 
systematically. This study investigates how students integrate systems 
thinking and scientific modeling when instructed to develop a model 
that explains the observed population dynamics of an ecological 
system invaded by an alien species.

1.1. Systems thinking

Systems thinking is a cognitive skill that provides the theoretical 
concepts for explaining and predicting natural phenomena (Verhoeff 
et al., 2018). In recent years, systems thinking has been examined for 
a variety of systems in manifold contexts, such as ecology (Riess and 
Mischo, 2010; Eliam and Reisfeld, 2017; Dor-Haim et  al., 2022), 
human physiology (Liu and Hmelo-Silver, 2009; Tripto et al., 2018; 
Kiesewetter and Schmiemann, 2022), cell biology (Verhoeff et al., 
2008), and biogeochemistry (Ben Zvi Assaraf and Orion, 2005; Lee 
et al., 2019; Torkar and Korfiatis, 2022). All (biological) systems share 
universal characteristics. For example, systems are composed of 
system elements that together form a complex whole. Ecosystems 
encompass the entirety of abiotic and biotic factors within a specific 
habitat. Despite their interconnectedness, (eco-)systems are open to 
their environment, allowing for the exchange of matter, energy, and 
information. Generally, the openness of systems is closely related to 
the dynamics of systems. Systems with constant composition of 
elements may exhibit temporary behavioral stability. However, over 
the long term, system dynamics can be  significantly affected by 
internal factors or external disturbances, such as the presence of alien 

species as a destabilizing element (Andrade et al., 2015; Mehren et al., 
2018). Understanding the complexity of system dynamics can 
be challenging (Wellmanns and Schmiemann, 2022). This especially 
applies to ecological systems undergoing degradation, which results 
in significant modifications to the ecosystem, leading to noticeable 
changes in species composition and overall dynamics (Zimmerman 
and Cuddington, 2007).

Several frameworks of systems thinking exist alongside each other 
(Ben Zvi Assaraf and Orion, 2005, 2010; Hmelo-Silver et al., 2007; 
Verhoeff et al., 2008; Riess and Mischo, 2010; Sommer and Lücken, 
2010; Boersma et al., 2011; Hokayem and Gotwals, 2016; Hmelo-Silver 
et al., 2017; Snapir et al., 2017; Mehren et al., 2018; Gilissen et al., 2020; 
Mambrey et al., 2020; Momsen et al., 2022). However, many of these 
frameworks incorporate similar cognitive skills, even if individual 
frameworks assume different relationships between these skills or 
define additional skills (e.g., Ben Zvi Assaraf and Orion, 2005; Mehren 
et al., 2018). Most systems thinking frameworks consider in some way 
the following three skills: identifying the system organization, 
analyzing the system behavior, and modeling the system evolution. 
The first skill, identifying the system organization, covers recognizing 
the structure and boundaries of the system as well as identifying the 
elements and their relationships (Ben Zvi Assaraf and Orion, 2005; 
Evagorou et al., 2009; Riess and Mischo, 2010; Sommer and Lücken, 
2010; Hmelo-Silver et al., 2015; Mehren et al., 2018; Mambrey et al., 
2020). The second skill includes analyzing the system behavior by 
capturing system interactions and dynamics as well as emerging 
patterns (Ben Zvi Assaraf and Orion, 2005; Hmelo-Silver et al., 2007; 
Sommer and Lücken, 2010; Mehren et al., 2018; Mambrey et al., 2020). 
The third skill incorporates modeling the system evolution and thus 
the development of predictions (Ben Zvi Assaraf and Orion, 2005; 
Mambrey et al., 2020), possibly to derive regulatory measures (Riess 
and Mischo, 2010; Mehren et al., 2018). Overall, the naming of the 
individual skills is consistent with the terminology of Mambrey et al. 
(2020), who conducted research in the field of ecology, and thus based 
on the work of Mehren et al. (2018), who originally derived the three 
listed skills theoretically and empirically tested their model in the 
context of geography.

In addition to describing individual skills that constitute systems 
thinking, it is possible and reasonable to consider the complexity of 
systems thinking (Hokayem and Gotwals, 2016; Lee et  al., 2019). 
Systems can be big or small, and relationships and behaviors may 
be  simple or complex. Notably, there is a considerable difference 
between the degree of linkage in relationships (Jin et  al., 2019; 
Mambrey et al., 2020, 2022b). Simple relations immediately connect 
two elements. Whereas relationships that involve a minimum of three 
elements form either a linear chain or a complex linkage through a 
central node. This can be well exemplified with a food web and the 
representation thereof. A statement mentioning rabbits eating grass 
would name a simple relationship (Mambrey et al., 2022b). This direct 
predator–prey relationship would be graphically represented by an 
arrow from prey to predator within a food web. In addition, a typical 
linear linked relationship is a food chain between a carnivore and a 
producer. The populations of grass, rabbit, and predator form a food 
chain as the elements are linked by two arrows in an unbranched 
manner. In contrast, we define all relationships as complex linked that 
do not represent mere chains but contain at least one branch 
(Mambrey et  al., 2022a). The most simple example of a complex 
relationship is food competition between two herbivores such as 
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rabbit and goose for grass, as the system is branched starting from the 
grass as central node. Previous research in the context of ecology 
shows that students often prefer to refer to low linked relationships 
including a small number of elements as an increased number of 
elements in a system strongly affects the difficulty of comprehension 
(Strogatz, 2001; Gotwals and Songer, 2010; Hokayem, 2016; Mehren 
et al., 2018; Mambrey et al., 2022b).

1.2. Modeling in systems thinking research

Various authors imply that systems thinking is connected in some 
way with models or modeling (Ben Zvi Assaraf and Knippels, 2022; 
Bielik et al., 2023). However, very different aspects of modeling have 
been emphasized in the systems thinking literature: Various 
frameworks explicitly include modeling as a systems thinking skill, 
which, however, can describe different skills. For example, modeling 
can involve inferring statements about future system states but also 
understanding and/or creating system models (e.g., Sommer and 
Lücken, 2010; Mehren et al., 2018; Gilissen et al., 2020; Mambrey et al., 
2020; Streiling et al., 2021). From a different perspective, models are 
viewed as representations of complex systems (Streiling et al., 2021; 
Kiesewetter and Schmiemann, 2022; Mambrey et  al., 2022b). In 
addition, they are the starting point for developing predictions 
(Gilissen et al., 2020). External representations of students’ mental 
models are evaluated as expressions of their systems thinking and thus 
serve as an indicator of skill (Ben Zvi Assaraf and Orion, 2005; 
Brandstädter et  al., 2012; Tripto et  al., 2013). From yet another 
perspective, modeling can be  used as an activity and strategy to 
improve systems thinking (Verhoeff et al., 2008; Wilson et al., 2020). 
Modeling thus can have a variety of meanings in the context of 
systems thinking; in this study we focus on the cognitive activity of 
scientific modeling.

1.3. Scientific modeling

Scientific modeling is a practice aimed at examining and 
explaining complex phenomena or systems (NGSS Lead States, 2013; 
Krell et al., 2019; Schwarz et al., 2022). It describes the process of 
gaining access to phenomena that are not completely accessible 
without further examination (Krell et  al., 2019). Accordingly, the 
emerging models are not just products but useful tools for investigating 
phenomena (Gouvea and Passmore, 2017). The process of scientific 
modeling entails activities of model development, evaluation, and 
revision (Schwarz and White, 2005), which can occur individually or 
continuously and in cycles (Oh and Oh, 2011; Campbell et al., 2013; 
Gilbert and Justi, 2016; Krell et al., 2019). The frameworks of Clement 
(1989), Krell and Krüger (2016) and Justi and Gilbert (2002) provide 
a process-oriented conceptualization of modeling activities. Usually, 
the process of scientific modeling starts with the perception of a real-
world phenomenon (Krell et al., 2019), based on which and with the 
activation of analogies and experiences, a mental model arises 
(Upmeier zu Belzen et  al., 2019), which may be  labeled mental 
(Nersessian, 2008), initial (Clement, 1989), or proto-model (Gilbert 
and Justi, 2016). The mental model is expressed or externalized in any 
kind of representation (Justi and Gilbert, 2002; Gilbert and Justi, 2016; 
Upmeier zu Belzen et al., 2019), which is subsequently evaluated for 

consistency (Clement, 1989; Krell et al., 2019). Once this evaluation is 
completed, an epistemological change of perspective may take place: 
A shift toward the epistemic usage of the model can be accomplished 
by working beyond the developmental perspective of scientific 
modeling (Gouvea and Passmore, 2017). This perspective of model 
utilization is characterized by the performance of empirical tests of 
model-based predictions (Clement, 1989; Justi and Gilbert, 2002; 
Giere et al., 2006; Gilbert and Justi, 2016; Krell et al., 2019; Upmeier 
zu Belzen et  al., 2019). Therefore, comparing obtained data and 
predictions provides information on model fit (Krell et al., 2019). If 
the predictions turn out to be true, the model has proven its validity, 
at least within the scope of the predictions, and can fulfill its epistemic 
aim (Justi and Gilbert, 2002; Gouvea and Passmore, 2017; Krell et al., 
2019). If the data do not bear out the prediction, the model needs to 
be revised or rejected (Clement, 1989; Justi and Gilbert, 2002). This 
leads back to the process of model development, thereby revealing the 
cyclic nature of scientific modeling (Schwarz and White, 2005; Oh and 
Oh, 2011; Krell et  al., 2019). However, recent research has 
demonstrated that this cyclic nature of scientific modeling does not 
necessarily describe students’ real procedures, as they tend to omit or 
jump between phases (Knuuttila and Boon, 2011; Meister and 
Upmeier zu Belzen, 2020; Göhner and Krell, 2022). To investigate the 
modeling process depicted, Krell et al. (2019) developed a coding 
manual that allows to analyze student activities during 
scientific modeling.

1.4. Simulation of complex systems

Exploring complex phenomena, like ecosystems in biology, is an 
essential part of science education. However, ecosystems are 
characterized by an effectively infinite number of variables that 
students cannot capture easily. A common tool to investigate the 
understanding processes of complex systems is simulations (Eilam, 
2012; Grotzer et al., 2015; Hmelo-Silver et al., 2015; Yoon et al., 2018; 
Streiling et al., 2021). Simulations give access to complex systems, for 
example, by making the structure and dynamics observable. Due to 
this, simulations are employed in various studies, although there are 
major differences regarding the options for manipulation and the 
research aim. Often, these system simulations are used within 
interventional settings in order to improve systems thinking (Jordan 
et al., 2013; Hmelo-Silver et al., 2017; Yoon et al., 2017; Wiebe et al., 
2019; Eilam and Omar, 2022; Rachmatullah and Wiebe, 2022; Torkar 
and Korfiatis, 2022). A slightly different approach is using simulations 
to foster systems thinking from a modeling perspective (Damelin 
et al., 2017; Bielik et al., 2022; Bowers et al., 2022). However, digital 
tools such as simulations can also be  used as representations of 
complex systems within the context of non-interventional studies as 
integral parts of assessments (Sauvé et al., 2007).

2. Research questions and aim of the 
study

Given the current biodiversity crisis, understanding complex 
phenomena is of paramount importance. Systems thinking and 
scientific modeling are two different but likely interdependent 
perspectives on understanding complex phenomena. In the context of 
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this study, we  sought to examine the relationship between these 
concurrent perspectives more closely. Therefore, we  address the 
following research questions:

 1. Which systems thinking skills do students commonly use while 
analyzing a simulation of a dynamic ecological system?

 2. Which activities of scientific modeling do students commonly 
use while analyzing a simulation of a dynamic ecological system?

 3. How do students’ systems thinking and scientific modeling 
activities interrelate in terms of co-occurrence during their 
analysis of a simulation of a dynamic ecological system?

3. Method

3.1. Simulation of a dynamic ecological 
system

Following these considerations, to engage students with a dynamic 
ecological phenomenon we have developed an interactive data-driven 
web application in R (R Core Team, 2022) utilizing the packages Shiny 
(Chang et  al., 2022) and ggplot2 (Wickham, 2016). The web 
application illustrates the dynamics of an ecological system comprising 
six different species, including pasture grass, red clover, European 
rabbit, graylag goose, Canada goose, and red kite through an 
adjustable line graph showing the relative population sizes and thus 
their changes over time (see Figure 1). Decisive for the dynamic of the 
simulation are multiple predator–prey relationships, whereas the 
individual population sizes are estimated based on coupled differential 
equations by the R package deSolve (Soetaert et al., 2010). Initially, the 

simulation includes populations of pasture grass, red clover, European 
rabbit, graylag goose, and red kite, with the Canada goose being 
introduced later as an alien species. In consequence of the invasion, 
the dynamics of the ecological system are clearly disturbed and 
demonstrate emergent behavior in the extinction of the red kite. The 
participants’ task was to infer the structure of the underlying food web 
based on the observed population dynamics. They were explicitly 
requested to develop a graphical model that explains the observed 
population trends by stating underlying relationships and how the 
species behave in relation to each other. Beyond that, the students did 
not receive any additional information about the species or 
instructions on how to proceed. The development of a graphical 
model was intended to ensure that the students keep their own 
modeling process in mind instead of reasoning on what they 
immediately see (Rellensmann et  al., 2017). Within the web 
application, the participants could select the displayed time period 
and species at any time and as often as they wanted. Additionally, they 
could switch between one line graph for all species and individual 
graphs for each species (see Figure  1) to make it easier for the 
participants to examine individual relationships if desired. The correct 
solution to the students’ task is represented in the food web in 
Figure 2, which served as basis for programming the simulation.

3.2. Data collection

To gain insights into the thinking process of the participants, 
we asked them to think aloud while exploring the given phenomenon 
(Ericsson and Simon, 1993; Zhang and Zhang, 2019). Students were 
tested individually, which avoids social influences and takes into 
account that the given scientific modeling category system (Krell et al., 

FIGURE 1

The simulation analyzed by the students.
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2019) has been proved for individual problem solving, unlike group 
proceedings (Métrailler et al., 2008). The think-aloud protocol was 
explained to the participants and practiced on a simple and 
non-specialized topic before the actual survey started (Oh and 
Wildemuth, 2016). The students were reminded to think aloud and 
graphically develop their model during the survey, if necessary. For 
later evaluation, students’ complete work was recorded (audio, screen 
recording). In addition, students were requested to develop their 
models on a tablet computer utilizing a digital whiteboard that 
enabled them to freely draw and illustrate their ideas (Microsoft 
Corporation, 2020). Since there was no time limitation, students could 
end the survey at any point they wanted, whether or not they judged 
the task to be completed. The mean processing time was M = 43.3 
(SD = 17.7) minutes. Before further analysis, the collected data were 
processed through transcription of the audio files. Transcripts were 
supplemented by screenshots of the recorded graphical modeling 
process, where the audio transcript alone appeared to be ambiguous.

3.3. Sample

Nine German upper secondary level school students participated 
in our study (6 female and 3 male participants). Students’ age ranged 
from 15 to 18 (M = 16.7) years. One-third of the students attended an 
advanced biology course, while the others took a basic biology course. 

Unfortunately, we do not have detailed records of individual students’ 
current and completed biology teaching topics. However, all students 
were enrolled in the qualification phase for the Abitur, the highest 
secondary school diploma and higher education entry certificate in 
Germany. Ecology is one of three main subject areas in biology 
courses during this qualification phase. Courses at both levels include 
concepts regarding anthropogenic impacts on ecosystems and their 
consequences as well as concepts dealing with biodiversity and 
population dynamics (Kultusministerkonferenz, 2004). In addition, 
ecology is also part of the educational standards for the intermediate 
secondary level. Therefore, all students should in any case be familiar 
with basic concepts in the realm of ecology, for example regarding 
ecosystem organization, dynamic processes within ecosystems, and 
predator–prey relationships (Kultusministerkonferenz, 2005).

3.4. Coding scheme

To evaluate the students’ statements, we performed a qualitative 
content analysis (Schreier, 2012; Mayring, 2014) using MAXQDA 
2022 (VERBI Software, 2022), which is a well-established method for 
analyzing qualitative data whose value has already been proven in the 
context of modeling processes and systems thinking approaches 
(Gogolin and Krüger, 2018; Krell et  al., 2019; Wellmanns and 
Schmiemann, 2022; Mambrey et  al., 2022a). For the qualitative 
content analysis, we developed coding schemes based on the model of 
systems thinking by Mambrey et  al. (2020) and the activities of 
scientific modeling described by Krell et al. (2019). In order to evaluate 
students’ systems thinking in detail, we differentiated the levels of 
students’ systems thinking described by Mambrey et  al. (2020). 
We  added multiple subcategories using a deductive approach to 
account for nuances in students’ systems thinking (Schreier, 2012): 
We  broke the level of direct relations down by distinguishing 
unidirectional relations and bidirectional relations. The level of linear 
relations was divided into linear relations bridging one element and 
linear relations bridging multiple elements. Similarly, we distinguished 
complex relations bridging one element from complex relations 
bridging multiple elements (see Mambrey et al., 2020). An overview 
of the coding scheme is given in Table 1. For the coding of students’ 

FIGURE 2

Food web underlying the simulation. It is not shown to the students.

TABLE 1 Overview of students’ levels of systems thinking in the context of a dynamic ecological system.

Level

Systems Thinking Skill

Identifying System 
Organization

Analyzing System 
Behavior

Modeling System 
Evolution

Reasoning Based on Simple Relations

Unidirectional Relation 130 66 6

Bidirectional Relation 40 31 0

Reasoning Based on Linear Relations

Linear Relation Bridging One Element 0 6 1

Linear Relation Bridging Multiple Elements 0 0 0

Reasoning Based on Complex Relations

Complex Relation Bridging One Element 87 30 7

Complex Relation Bridging Multiple Elements 4 5 1

The levels, based on the framework of Mambrey et al. (2020), are listed in differentiated subcategories. Numbers represent the frequency of occurrence. Examples of student statements are 
available as Supplementary material.
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scientific modeling activities, we  adjusted the descriptions of the 
coding framework of Krell et  al. (2019) to match our ecological 
context (Schreier, 2012). In contrast to our procedure for systems 
thinking, we  used an inductive approach to extend the coding 
framework for scientific modeling by new categories. This inductive 
extension was necessary for the analysis of scientific modeling 
activities as the existing framework of Krell et al. (2019), unlike the 
systems thinking framework of Mambrey et  al. (2020), required 
adaption for the presented multilayered phenomenon in an ecological 
context. We disclose the final coding frame for students’ scientific 
modeling in the results section, as it is involved in answering the first 
research question. New categories are listed in Table 2 and marked 
with an asterisk.

3.5. Data analysis

Before coding the students’ statements, two raters extensively 
discussed the existing frameworks of Krell et  al. (2019) and 
Mambrey et  al. (2020) and adapted them to this study and the 
ecological context. They then independently coded the data of a 
test participant and compared their coding result afterwards. 
Non-matching codes were analyzed, and the coding instructions 
were refined, as was the inductive differentiation of the category 
system in scientific modeling. An analysis of inter-rater reliability 
after re-coding of the test participant’s statements revealed an 
almost perfect result for our coding schemes, for both systems 
thinking and scientific modeling (κ > 0.8) (Landis and Koch, 1977). 
As a result, the coding manual was classified as final and ready to 
use to code the participants’ statements (Kuckartz and Rädiker, 
2019). In the next step, the two raters independently coded all 
statements of the participating students. To ensure that the 
complete thinking process is considered, we  used event-based 
coding (Ciesielska et al., 2018), whereas content correctness was 
no criterion (e.g., Krell et al., 2019). Consistency of the coding was 
checked by measuring inter-rater reliabilities for each participant 
and for systems thinking and scientific modeling separately using 
Kappa (Brennan and Prediger, 1981). In this regard, a coding was 
scored as matching if the segments of both codings were assigned 
to the same category and substantially overlapped. Overall, the 
analysis of the inter-rater reliabilities showed good results: For 
systems thinking, we achieved values of Kappa between 0.84 and 
0.96 (M  = 0.88) for eight students, which indicates an almost 
perfect agreement (Landis and Koch, 1977). For one student, 
neither rater found any statement related to systems thinking. For 
scientific modeling, the estimated values of Kappa are in the range 
of 0.73 and 0.86 (M  = 0.79) for the nine students, which may 
be interpreted as substantial (κ > 0.6) to almost perfect (κ > 0.8) 
agreement (Landis and Koch, 1977).

To address our first two research questions, we  analyzed the 
observed activities of scientific modeling and systems thinking using 
absolute and relative frequencies. In order to examine our third 
research question, which refers to the interrelationship between both 
perspectives, we created a contingency table. Using MAXQDA’s Code 
Relations Browser (VERBI Software, 2022), we  estimated the 
intersection of the applied codes of systems thinking with those of 
scientific modeling to reveal patterns of co-occurrence (Kuckartz and 
Rädiker, 2019).

4. Results

Overall, we coded 1,412 students’ statements, which included 414 
statements regarding systems thinking and 998 statements regarding 
scientific modeling. The number of segments per student varied 
widely, ranging from 103 to 292 (M  = 173). Statements regarding 
systems thinking were most frequently (63.0%; absolute frequency of 
261) assigned to the skill of identifying the system organization, which 
means, they describe the type of relationship between two or more 
species. For instance, one student stated: “I would say now that 
European rabbits eat pasture grass.” (P. 4, Pos. 183). Also common were 
statements about analyzing the system behavior at 33.3% (absolute 
frequency of 138). Statements in this category describe a cause for a 
change in at least one population size usually by reference to another 
(changing) population size. An example of such a statement is: “The 
Canada goose gained quite strongly in population in the following year, 
which is probably due to the high food supply of pasture grass.” (P. 5, Pos. 
93). The third skill of systems thinking, modeling the system evolution, 
in our context entails developing a forecast of one or more population 
size changes, such as: “My assumption is that if the [red] kite goes 
extinct, there must be more and more [European] rabbits because then 
there are no more predators.” (P. 10, Pos. 287). Statements regarding 
modeling the system evolution were rare (3.6%; absolute frequency of 
15). The evaluation of the named linkage (see Table 1) reveals frequent 
mentions of simple relations, including unidirectional and 
bidirectional relations. For instance, one student pointed out the 
bidirectional predator–prey relation between European rabbits and 
red clover: “If the number of European rabbits is very low, the red clover 
can of course grow well and then it still rises here. There are more and 
more European rabbits because they find more to eat and at a certain 
point, the climax is reached by red clover [...] and then it [red clover] 
falls. And then at some point the European rabbit decreases as well.” 
(P.  10, Pos. 45). Furthermore, students frequently used complex 
relations, typically bridging one element: “Well, pasture grass and red 
clover is the food, especially for the European rabbit.” (P. 2, Pos. 12). 
Whereby complex relations bridging multiple elements were less 
frequent. Students rarely referred to linear relations bridging one 
element, like: “Then the European rabbit eats the red clover and if there 
is a lot of red kite, then there is little of European rabbits, which means 
that the population [of red clover] increases. And conversely, when there 
are few European rabbits, there is a lot of red clover.” (P. 5, Pos. 112), 
whereas linear relations bridging multiple elements were never 
mentioned. For additional examples of students’ statements on 
systems thinking see the Supplementary material.

The surveyed activities of scientific modeling were classified as 
follows: 62.5% exploration (absolute frequency 624), 6.4% activation 
of analogies and experiences (absolute frequency 64), 10.3% mental 
modeling (absolute frequency 103), 15.4% development (absolute 
frequency 154), and 5.3% prediction (absolute frequency 53). In 
addition to the deductively derived categories (Krell et al., 2019), six 
categories were added by induction. Five of these categories follow a 
logical addition (Schreier, 2012). For example, negating statements 
about pattern, like: “[...] however, bears no resemblance to either of the 
other two [graphs of red clover and pasture grass], i.e., the European 
rabbit” (P. 8, Pos. 147), were added in the newly included category 5b: 
Student negates presence or detection of a pattern. Statements 
describing a model’s inconsistency and/or inconsistency between 
model and observation, such as: “That means that [the drawn arrow] 
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makes no sense to me here. The red kite decreases very strongly, very 
suddenly, and the graylag goose decreases only very slowly.” (P. 3, Pos 
192), were covered by the new category 13b. Similarly, student 
statements about modifying the model based on confirmed 

hypothesis, like: “This allows us to conclude that the Canada goose feeds 
a bit on the red clover. [Student writes down] Canada goose eats red 
clover.” (P. 3, Pos 167–169), were added as affirmation in category 18a. 
During the survey, students repeatedly took written notes in their 

TABLE 2 Overview of students’ activities in the process of scientific modeling in the context of a dynamic ecological system.

Phase ID Activity Category with Explanation Frequency

Exploration 1 Perception of Phenomena Student describes observed behavior of the ecological system as spontaneous 

or incomprehensible.

53

2 Arbitrary Exploration of the System Student arbitrarily chooses a time interval and/or species and/or display mode. 78

3a Description of Observations Student describes observed behavior of the ecological system without 

recognizing any pattern.

145

3b* Notes on Observations Student takes notes on the observed behavior of the ecological system (see 3a). 17

4 Purposive Exploration of the System Student selects a time interval and/or species and/or display mode to detect a 

pattern in the behavior of the ecological system.

153

5a Recognition of Pattern Student recognizes or confirms a pattern (see 4). 130

5b* Negation of Pattern Student negates presence or detection of a pattern (see 4). 21

5c* Notes on Pattern Student takes notes on the recognized, confirmed, or negated pattern. 27

– 6a Activation of Analogies and 

Experiences

Student verbalizes ideas about the organization and/or behavior of the 

ecological system and/or thinks about these ideas aloud, based in each case on 

analogies and/or experiences.

64

– 6b* Mental Modeling Student verbalizes ideas about the organization and/or behavior of the 

ecological system and/or thinks about these ideas aloud, based in each case on 

observations of the ecological system.

103

Development 7 Analogy and Experience-Based Model 

Development

Student develops graphical model of the ecological system based on analogies 

and/or experiences (see 6a).

8

8 Design-Based Model Development Student develops model to improve internal logic, functionality, or aesthetics. 15

9 Observation-Based Model 

Development

Student develops graphical model retrospectively based on observations of the 

ecological system.

85

10 Observation-Based Model Rejection Student rejects model retrospectively based on observations of the ecological 

system.

0

11 Design-Based Model Evaluation Student evaluates model regarding internal logic, functionality, or aesthetics. 1

12 Observation-Based Model Evaluation Student compares model with observations of the ecological system. 12

13a Confirmation of Model Consistency Student confirms model consistency (see 11) and/or consistency between 

model and observations (see 12).

29

13b* Denial of Model Consistency Student identifies model inconsistency (see 11) and/or inconsistency between 

model and observations (see 12).

4

Prediction 14 Generation of Predictions Student deduces hypothesis based on the model about the organization and/or 

behavior of the ecological system.

13

15 Purposive Manipulation of the System Student selects a time interval and/or species and/or display mode based on a 

hypothesis (see 14).

18

16 Confirmation of Predictions Student confirms hypothesis (see 14) by observing a pattern within the 

behavior of the ecological system (usually through 15).

10

17 Falsification of Predictions Student falsifies hypothesis (see 14) by observing a pattern within the behavior 

of the ecological system (usually through 15).

5

18a* Model Modification Based on 

Confirmed Prediction

Student modifies model based on a confirmed hypothesis (see 16). 5

18b Model Modification Based on Falsified 

Prediction

Student modifies model based on a falsified hypothesis (see 17). 2

19 Prediction-Based Model Rejection Student rejects model based on a falsified hypothesis (see 18). 0

The coding scheme is based on the existing framework of Krell et al. (2019). New categories are marked with an asterisk. Examples of student statements are available as 
Supplementary material.
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representation regarding descriptions and patterns of the ecological 
system. For example, one student pointed out while observing the 
system behavior: “I’m writing this down now. Pasture grass increases at 
500, then decreases again.” (P. 3, Pos. 55–56). To differentiate these 
activities from the existing categories, which solely pertain to verbal 
expressions, we added the categories 3b: Student takes notes on the 
observed behavior of the ecological system, see previous student 
statement, and 5c: Student takes notes on the recognized, confirmed, 
or negated pattern. Another new activity that emerged within the 
process of scientific modeling is described in category 6b: Mental 
modeling, as the students in our study did not always document their 
ideas about the model mechanism in written form, opting to express 
them verbally instead. For instance, a student verbalizes the assumed 
correlation between the population dynamics of the Canada goose 
and its food sources: “I would have thought that if I added these two 
feed together, I  could conclude that by having a lower feed supply, 
I would also have fewer populations [of Canada geese].” (P. 6, Pos 160). 
Such verbal expressions were even observed when the students were 
reminded to create a graphical representation. Table 2 shows the full 
coding scheme, including observed frequencies. Exemplary statements 
from the present study for each category of scientific modeling are 
provided in the Supplementary material.

To answer research question three on how students’ systems thinking 
and scientific modeling activities interrelate when they examine the 
dynamic ecological system, we determined co-occurrences of coded 
segments of both perspectives (see Table 3). This analysis revealed several 
noticeable interrelations. During system exploration, students 
demonstrated systems thinking almost exclusively in the area of system 
behavior and during the interaction with data patterns (modeling 
activities 5a-c). When students addressed notions referring to the system 
organization, it was in the context of deducing hypothesis-based graph 
interactions (modeling activity 4). In the phases of model development, 
we frequently observed systems thinking. Especially during the broadly 
observed phases of developing and refining the model, students dealt 
with the system organization and behavior. In both scientific modeling 
phases, system exploration and model development, no modeling of the 
system evolution took place. This changes for the development of 
predictions, where all three skills of systems thinking were observable. 
The system modeling, however, is almost entirely tied to the activity of 
using the model to deduce hypotheses. In addition, activities 6a, referring 
to the verbalization of analogies and experiences, and 6b, covering the 
development and usage of mental models, have a special status. During 
the activation of analogies and experiences (modeling activity 6a), 
students extensively refer to notions related to the system organization 
and occasionally deal with concepts regarding the system behavior as 
well. The mental modeling (modeling activity 6b) was accompanied by 
systems thinking skills of all kinds. While the system behavior and 
especially the system organization predominate, modeling system 
evolution was also observed at least occasionally.

5. Discussion

In this study, we confronted students with a dynamic ecological 
phenomenon in order to examine their systems thinking and scientific 
modeling as well as the interrelations between these perspectives. The 
results enable us to provide a detailed account of the students’ 
comprehension process of a complex and dynamic system.

5.1. Systems thinking

We were able to assess students’ systems thinking using a coding 
scheme based on the framework of Mambrey et al. (2020). However, 
when examining the frequency of occurrence, it was observed that 
activities of identifying the system organization and analyzing the 
system behavior were much more frequent than modeling the system 
evolution. This pattern may be attributed to a difference in the cognitive 
perspective, as identifying the system organization and analyzing the 
system behavior requires the application of broad, globally applicable 
skills, whereas modeling the system evolution demands mental 
application specific to the task at hand. Students must use their gained 
knowledge about the system to derive predictions about system 
development and future states (Mehren et  al., 2018), which also 
requires imagination and creative thinking (Mambrey et al., 2022a). 
Moreover, and due to the openness of the survey, the task may lack the 
imperative character necessary to evoke prediction generation. In our 
opinion, it could therefore be highly rewarding to fill this gap by adding 
tasks in future research that demand prediction generation, even when 
this means structuring the process through individual instructions or 
prompts. In order to analyze students’ systems thinking in detail, we also 
examined the linked structure of relations they took into account. First, 
and in line with previous results (Strogatz, 2001; Gotwals and Songer, 
2010; Hokayem, 2016; Mehren et al., 2018; Mambrey et al., 2022b), 
we observed that students’ mentions of low linked relationships greatly 
outweighed the references to high linked relations connecting multiple 
elements. When examining the specific types of relations, there was a 
particularly high occurrence of unidirectional, bidirectional, and 
complex relations bridging one element. Whereas complex relations 
bridging multiple elements or linear relations were rarely mentioned. 
We suppose this pattern arises from a moderate linking performance 
in combination with a sound understanding of isolated predator–prey 
relationships among the participants (Grotzer and Basca, 2003; 
Sommer and Lücken, 2010; Mambrey et al., 2022a). Indeed, students 
often referred to feeding relationships commonly covered in class, such 
as a predator–prey and competitive relationship, with and without 
naming the competing food source (NGSS Lead States, 2013). This may 
even be a good strategy to identify the system organization. However, 
it is not possible to understand the emergent extinction of the red kite 
by analyzing individual predator–prey or competitive relationships. 
Even though the presented phenomenon demands an understanding 
of emergence, we have not explicitly demanded this and a food web, as 
typical representation of the trophic relationships within an ecosystem, 
does not directly reflect this emergent behavior. Therefore, future 
systems thinking research could focus on systems demonstrating 
emergent behaviors or systems with an ever-changing system 
organization in order to evoke more complex systems thinking.

5.2. Scientific modeling

We successfully utilized the scientific modeling framework 
developed by Krell et al. (2019) to analyze students’ scientific modeling 
activities in the context of a dynamic ecological system: Our analysis 
revealed that students were extensively engaged in the exploration of 
the system, which is consistent with previous research (Göhner and 
Krell, 2022). Frequently, we observed students taking notes during 
exploration, particularly when summarizing or describing an observed 
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TABLE 3 Contingency table of the interrelationship between scientific modeling and systems thinking.
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1 Perception of Phenomena

2 Arbitrary Exploration of the System

3a Description of Observations

3b* Notes on Observations

4 Purposive Exploration of the System 1 4 1

5a Recognition of Pattern 16 9 1 3

5b* Negation of Pattern 1 2 1

5c* Notes on Pattern 5 3

6a Activation of Analogies and Experiences 15 2 9 4 1

6b* Mental Modeling 37 10 18 2 16 10 1 15 2 4

D
ev

el
op

m
en

t

7 Analogy and Experience-Based Model Development 1 3

8 Design-Based Model Development 2 1 1

9 Observation-Based Model Development 60 20 38 2 20 9 1 7 3

10 Observation-Based Model Rejection

11 Design-Based Model Evaluation 1

12 Observation-Based Model Evaluation 2 7 1 1

13a Confirmation of Model Consistency 5 5 6 6 3 1 4

13b* Denial of Model Consistency 2

Pr
ed

ic
tio

n

14 Generation of Predictions 1 6 1 5 1
15 Purposive Manipulation of the System 1
16 Confirmation of Predictions 1 1 1 2 1 6
17 Falsification of Predictions 2 1
18a* Model Modification Based on Confirmed Prediction 4 2 2
18b Model Modification Based on Falsified Prediction 1
19 Prediction-Based Model Rejection

The frequency of the overlaps is given in absolute numbers. The coding scheme for scientific modeling is based on the existing framework of Krell et al. (2019). The systems thinking skills and levels are based on the framework of Mambrey et al. (2020).
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behavior (modeling activity 3) and recognizing or confirming data 
patterns (modeling activity 5). Therefore, we  inductively added 
categories in each phase to account for this behavior (Schreier, 2012). 
We suppose that taking notes may be functional or even necessary in 
some situations due to the system’s complexity, which includes 
numerous not directly recognizable relations. Some students probably 
used this strategy as a cognitive aid to visually represent knowledge 
about specific relations (Peper and Mayer, 1986). Generally speaking, 
prior knowledge in the form of analogies and experiences (modeling 
activity 6a) is frequently observed during scientific modeling (Krell 
et al., 2019; Meister and Upmeier zu Belzen, 2020). Besides exploring 
the system or reflecting on prior knowledge (modeling activity 6a), 
students comprehensively dealt with graphical model development. 
They frequently incorporated findings from their observations of the 
system (modeling activity 9) and evaluated the model consistency 
(modeling activities 11, 12, 13). By extending the coding scheme to 
differentiate students who found consistency (modeling activity 13a) 
from those detecting inconsistency between their graphical model and 
the systems behavior, we noted an interesting pattern: At this point of 
model development, students almost never detect inconsistency. This 
could be the case, as they frequently perform mental modeling instead 
of recording their ideas about the model in a graphic format. Indeed, 
this process of mental modeling is a key phase of scientific modeling 
(Clement, 1989; Nersessian, 2008; Gilbert and Justi, 2016) and has 
been observed in previous modeling studies (Meister and Upmeier zu 
Belzen, 2020). We added a category to our coding scheme to account 
for this behavior (modeling activity 6b), though the frequency of 
occurrence of this activity certainly raises the question of the 
underlying substructure of mental modeling for future research. To 
investigate this question, analyzing students’ individual modeling 
processes will help determine the position and weight of mental 
modeling within the overall process of scientific modeling (e.g., 
Göhner and Krell, 2022). In particular, there is evidence that the 
mental model and the emerging graphical representation of the model 
may not be fully equivalent (Chandrasekharan and Nersessian, 2015).

Where we found limited evidence, however, was in the phase of 
predictive model usage. This could be the case because students often 
do not fully understand the use of models for prediction, as noted by 
Gogolin and Krüger (2018). In addition, previous research indicates 
that model application can be challenging (Campbell et  al., 2013; 
Passmore et al., 2014; Krell and Krüger, 2016; Meister and Upmeier zu 
Belzen, 2020; Göhner and Krell, 2022). The lack of predictive model 
usage may also be an expression of students’ struggling to generate 
hypotheses from prior knowledge, their model in progress or previous 
observations of the system behavior. This would fit the results and the 
model of Klahr and Dunbar (1988), who assume that exploration 
without hypothesis is a strategy to search for some kind of pattern 
within the data and is applied if the generation of hypotheses fails. 
Surprisingly, when students derived hypotheses, they modified their 
model not only in response to falsified hypotheses but also in response 
to confirmed hypotheses (modeling activity 18b). This may be due to 
the complexity of the system, as new knowledge about individual 
relationships within the system may require adjustments to the model 
or allow for model enhancements without necessitating a complete 
overhaul of the previous understanding. In addition, confirming 
findings may be suitable not only to the recent hypothesis but also to 
previous ideas which appear more promising or worthy of 
investigation (Klahr and Dunbar, 1988).

5.3. Interrelation between scientific 
modeling and systems thinking

From the combined analysis of systems thinking and scientific 
modeling, we can identify the following relationships in our study: 
During the exploration of the ecological system, we rarely observed 
systems thinking. In the event of pattern recognition, we detected 
systems thinking almost exclusively with the objective of analyzing the 
system behavior. Otherwise, systems thinking occurred frequently 
during model development. We suppose that these findings perfectly 
illustrate a central difference in the perspectives of systems thinking 
and scientific modeling. While the former includes the description and 
explanation of complex phenomena as well as the prediction thereof, 
the latter additionally involves incidental perception as the early phase 
of exploration. Another difference in perspective is that systems 
thinking often describes several skills that relate to specific system 
properties (Mambrey et  al., 2020; Momsen et  al., 2022), whereas 
scientific modeling primarily focuses on the process and activities of 
modeling the initial natural phenomenon or system. However, 
identifying the system organization and analyzing the system behavior 
are mandatory preconditions for successfully developing a model that 
explains the phenomenon or system (Passmore et al., 2014; Gouvea 
and Passmore, 2017; Krell et  al., 2019). Our results match this 
assumption, as the students frequently utilize both skills of identifying 
the system organization and analyzing the system behavior during 
model development. Another result of the independent coding of 
systems thinking and scientific modeling was the third skill of systems 
thinking, modeling the system evolution, being closely linked to the 
scientific modeling activity of hypothesis generation. This even makes 
sense, as the former entails statements developing a forecast of one or 
more population size changes, while the latter covers statements 
deducing predictions based on an existing model (Clement, 1989; Justi 
and Gilbert, 2002; Giere et al., 2006; Gilbert and Justi, 2016; Krell et al., 
2019; Upmeier zu Belzen et al., 2019). The juxtaposition makes clear 
that the definition of modeling the system evolution and hypothesis 
generation in the realm of scientific modeling are closely related. It is 
therefore not surprising that beyond this, modeling the system 
evolution as one skill of systems thinking only appeared in conjunction 
with the phase of mental modeling. This seems even plausible, as the 
modeling process starts in mental space and can involve cycles of 
development, evaluation, and modification before any graphic 
development (Meister and Upmeier zu Belzen, 2020). And indeed, 
students generally utilize all systems thinking skills in the process of 
mental modeling. Considering the ratios throughout the mental 
modeling phase, the participants are more often involved in analyzing 
the system behavior than in identifying the system organization, while 
identifying the system organization appears slightly more frequently 
during the graphical production phase. Perhaps this may be explained 
by a finding of Mambrey et al. (2022a), who demonstrated that a food 
web as representation is strongly associated with identifying the system 
organization but rather no reference for students when analyzing the 
system behavior or modeling the system evolution. This may explain 
our observations, as most students drew food webs as models to 
represent the ecological system. As this type of representation does not 
provide quantitative information about population growth or decline 
(Begon and Townsend, 2021), it may, in fact, not evoke thinking about 
the system behavior. In contrast, the line graph we used in our task 
focuses on the population dynamics and should thus be a stronger 
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trigger for analyzing the system behavior. Our data clearly support 
that assumption.

6. Limitations and implications

Our study is limited in some areas that we would like to discuss 
briefly in the following: to gain a comprehensive understanding of 
students’ systems thinking and scientific modeling, we provided each 
participant individual time for analyzing the ecological system 
simulation. Hence and due to the task complexity, it was not possible 
to test multiple systems. Therefore, the results may be  limited 
regarding potential context effects (Grotzer and Basca, 2003; Verhoeff 
et al., 2013; Mambrey et al., 2020). Furthermore, our analysis focused 
on the general expression of systems thinking and scientific modeling. 
In consequence, we  did not assess students’ content knowledge 
explicitly, even though modeling activity 7 does provide evidence of 
the incorporation of analogies and experiences that directly relate to 
the process of model development. In addition, our coding scheme as 
well as the underlying framework of Mambrey et al. (2020) do not 
address systems thinking from a perspective of system properties. As 
individual system properties, including dynamic changes and 
susceptibility to disruptive factors like invasive species, play an 
important role in our simulation, this perspective may be interesting 
for future research. Furthermore, characteristics of our simulation 
may also impact students’ thinking. For example, the simulated 
population dynamics may have drawn students’ attention on thinking 
about the system behavior in particular. We found that students rarely 
mentioned emergent effects resulting from complex interrelationships, 
as well as predictions about future system states or behaviors. One 
reason for this may be  that the task and the simulation do not 
encourage this explicitly. Hence, future research should emphasize on 
systems with greater changes in their dynamics and complex emergent 
effects. Additionally, it would be worthwhile to include tasks that 
stimulate the prediction of these changes in system development.

Although we did not analyze the students’ individual procedures 
yet, we wish to discuss possible implications for engaging students in 
systems thinking and scientific modeling. Our results imply that a task 
involving students in the exploration of a dynamic system to deduce the 
system structure seems suitable to evoke systems thinking and modeling 
insofar as the students develop models. However, the generation of 
predictions and, consequently, the modeling of the system evolution as 
well fell short of our expectations. We  suppose that the regular 
oscillatory nature in population dynamics is too foreseeable, even if the 
introduction of the invasive Canada goose was a functional disturbance. 
In this regard, it may be beneficial to utilize even less predictable system 
dynamics, for example, by modeling alternative stable states or multiple 
regime shifts in ecosystems (Scheffer and Carpenter, 2003), to focus on 
the cyclic nature of modeling through predicting outcomes and 
modifying the model. However, it remains open whether all students 
used the same approach or if they showed distinctive styles of scientific 
modeling and systems thinking (e.g., Meister and Upmeier zu Belzen, 
2020; Göhner and Krell, 2022). In order to answer this research question, 
it might be beneficial to analyze the individual chronological sequences 
of students’ proceedings. Additional insights could be  revealed by 
analyzing students’ drawings, as individual students also created 
representations other than food webs. In this context, we are especially 
interested in whether different types of representations correlate with 

distinct patterns of systems thinking and how students account for the 
system’s dynamic behavior in their representations.
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Introduction: This study reports on a classroom intervention where  upper-
elementary students and their teacher explored the biological phenomena of 
eutrophication using the Modeling and Evidence Mapping (MEME) software 
environment and associated learning activities.  The MEME software and activities 
were designed to help students create and refine visual models of an ecosystem 
based on evidence about the eutrophication phenomena. The current study 
examines how students utilizing this tool were supported in developing their 
mechanistic reasoning when modeling complex systems. We ask the following 
research question: How do designed activities within a model-based software 
tool support the integrations of complex systems thinking and the practice of 
scientific modeling for elementary students?

Methods: This was a design-based research (DBR) observational study of one 
classroom. A new mechanistic reasoning coding scheme is used to show how 
students represented their ideas about mechanisms within their collaboratively 
developed models. Interaction analysis was then used to examine how students 
developed their models of mechanism in interaction.

Results: Our results revealed that students’ mechanistic reasoning clearly 
developed across the modeling unit they participated in. Qualitative coding of 
students’ models across time showed that students’ mechanisms developed from 
initially simplistic descriptions of cause and effect aspects of a system to intricate 
connections of how multiple entities within a system chain together in specific 
processes to effect the entire system. Our interaction analysis revealed that when 
creating mechanisms within scientific models students’ mechanistic reasoning 
was mediated by their interpretation/grasp of evidence, their collaborative 
negotiations on how to link evidence to justify their models, and students’ playful 
and creative modeling practices that emerged in interaction.

Discussion: In this study, we closely examined students’ mechanistic reasoning 
that emerge in their scientific modeling practices, we offer insights into how 
these two theoretical frameworks can be effectively integrated in the design of 
learning activities and software tools to better support young students’ scientific 
inquiry. Our analysis demonstrates a range of ways that students represent their 
ideas about mechanism when creating a scientific model, as well as how these 
unfold in interaction. The rich interactional context in this study revealed students’ 
mechanistic reasoning around modeling and complex systems that may have 
otherwise gone unnoticed, suggesting a need to further attend to interaction 
as a unit of analysis when researching the integration of multiple conceptual 
frameworks in science education.
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Introduction

Scientific modeling remains a critical practice in the process of 
understanding phenomena through scientific inquiry (National 
Research Council, 2012; Pierson et al., 2017). A persistent challenge 
for science educators is to teach young students modeling practices in 
the context of complex systems, where disparate connections and 
relations in a system make up a network of emergent causal processes 
that produce observable scientific phenomena, such as eutrophication 
in an aquatic ecosystems (Hmelo-Silver and Azevedo, 2006; Assaraf 
and Orion, 2010). Past science education research demonstrates that 
elementary students have the capacity to effectively engage with 
complex systems concepts when supported by strong scaffolds in 
instruction which support students’ engagement in scientific modeling 
practices (Yoon et  al., 2018). However, mechanisms remain a 
challenging aspect of scientific explanations for young learners to 
articulate because students often do not recognize the underlying 
hidden relationships between elements of a system (Russ et al., 2008).

In order to scaffold the alignment of students’ modeling practices 
with systems thinking, we  developed the modeling and evidence 
mapping environment (MEME) software tool (Danish et al., 2020, or 
see http://modelingandevidence.org/), which explicitly scaffolds the 
Phenomena, Mechanism, and Components (PMC) framework (Hmelo-
Silver et  al., 2017a), a systems thinking conceptual framework 
designed to support students in thinking about these three levels of 
biological systems, within a modeling tool (see Figure 1). MEME was 

created to allow students to create and refine models of a biological 
ecosystem through a software interface. The aim of the current study 
is to examine how students utilizing this tool reason about mechanisms 
when iteratively modeling complex systems. Towards these ends, 
we  investigate the following research question: How do designed 
activities within a model-based software tool, scaffolded with the PMC 
framework, support the integration of complex systems thinking and the 
practice of scientific modeling for elementary students?

Theoretical framework

Our work is grounded in sociocultural theories of learning 
(Vygotsky, 1978), which assert that the cultural contexts and 
communities that people interact in are inseparable from the process of 
learning, and therefore must be rigorously analyzed. We had a particular 
focus on how the designed elements of a learning environment mediate 
(i.e., transform) the ways in which students reason about ideas in 
science. Mediation here refers to something in an environment that 
comes between a subject and their goal, and consists of mediators, or 
the tools, rules, community, and divisions of labor which support and 
transform students’ participation in an activity as they pursue particular 
goals (Engeström, 2001; Wertsch, 2017). A key feature of mediation is 
that it constitutes a reciprocal relationship between subjects and objects. 
So, while a mediator certainly shifts how we pursue certain goals in 
activity, we in turn transform the mediators through taking them up 

FIGURE 1

Screenshot of the MEME interface with PMC scaffolds highlighted.
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and appropriating them. This appropriation internalizing them into our 
own practices, and of course the goals of our activity further shape how 
we recognize the potential value or role of the mediator (Wertsch, 2017). 
For instance, while particular features in MEME, such as being able to 
link evidence in a model, might mediate students’ mechanistic reasoning 
about a complex system, that mechanistic reasoning will in turn affect 
how they utilize and take up that particular feature in their collaborative 
model creation and revision.

In the larger project this work is situated in, titled Scaffolding 
Explanations and Epistemic Development for Systems (SEEDS), our 
primary goal was to design a software tool and set of collaborative 
inquiry learning activities which integrated support for multiple 
theoretical frameworks to foster robust science learning. Specifically, 
we  aimed to bridge complex systems thinking (Hmelo-Silver and 
Azevedo, 2006), scientific modeling (National Research Council, 
2013), epistemic criteria (Kuhn, 1977; Murphy et al., 2021), and grasp 
of evidence (Duncan et  al., 2018) in order to integrate the use of 
evidence in creating and revising models of a complex system (an 
aquatic ecosystem) in late elementary classrooms. We  therefore 
adopted a design-based research approach (Cobb et  al., 2003; 
Quintana et  al., 2004) in order to pursue these goals in order to 
systematically and iteratively test how these frameworks integrated 
within a modeling unit directly in the context of a 5th/6th grade 
classoom. We then iteratively implemented and revised our design 
throughout the study, streamlining the software and classroom 
prompts to help explore the potential of this approach.

Complex systems thinking

Complex systems have become increasingly relevant in science 
education and are highlighted by the Next Generation Science 
Standards (NGSS) as an important crosscutting concept because of 
their value in understanding a wide range of emergent phenomena 
(NRC, 2013). Learning about complex systems often proves difficult 
for students because they struggle to view the system from multiple 
perspectives, and assume it is centrally controlled as opposed to 
emerging from many simple local behaviors (Jacobson and Wilensky, 
2006). To learn how observable phenomena emerge in a complex 
system, learners must attend to, study and represent the underlying 
mechanisms at play in a system, rather than just the surface-level 
observable components or details (Wilensky and Resnick, 1999; 
Assaraf and Orion, 2010). This focus is necessary for students to 
understand how systems function instead of focusing solely on their 
components or individual functions (Hmelo-Silver and Azevedo, 
2006). Other important aspects of complex systems that are valuable 
for learners to understand include multiple levels of organization, 
numerous connections between entities, invisible elements that 
connect the system, and dynamic causal chains that make up the 
interactions within a system. These aspects can make it difficult for 
young learners to begin to understand how a system functions 
(Jacobson and Wilensky, 2006; Hmelo-Silver et al., 2007; Chi et al., 
2012). Additionally, complex systems have emergent properties that 
are only observable when attending to multiple parts of the system 
interacting and can go unseen when only considering individual 
elements (Wilensky and Resnick, 1999). As a result, reasoning about 
complex systems can often overwhelm students and create too high of 
a cognitive load for students to effectively reason about.

One example of this – and the focus of this study – is aquatic 
ecosystems. In the present study, we introduce students to a pond-
based aquatic ecosystem where they can observe the eutrophication 
phenomena in action. This system consists of fish interacting with 
other entities including, but not limited to, algae, plants, predators, 
and levels of dissolved oxygen present in the water. When something 
new is introduced to the system to disrupt these interactions, it can 
be catastrophic for the system for reasons that may not be immediately 
salient to learners who may just study one aspect of the system, such 
as students thinking fish get sick and die because of pollution in the 
water rather than the system falling out of equilibrium. In our 
imaginary yet realistic context, nutrient runoff from local farms has 
washed into a local body of water during heavy rainfall, diminishing 
fish populations during the summer months when the algae blooms. 
Students are tasked with developing scientific models to represent and 
explain this phenomena informed by various pieces of data and 
evidence that we provide to them via the MEME interface. It is a 
challenge for many students to discern the cause of the fish population 
decline from disparate pieces of data and evidence, though this is a 
more realistic experience of scientific analysis than being presented 
with all of the key information in one tidy package. Our design goal 
was to create both a software tool (MEME) and a set of activities to 
scaffold students’ reasoning about this complex system.

Prior research on systems thinking has demonstrated that scholars 
and educators should focus on identifying instructional tools and 
activities that can explicitly mediate students’ reasoning about 
complex systems, helping orient learners to the need to understand 
the system on multiple levels (Danish, 2014). In this context, 
we grounded our learning designs in the PMC conceptual framework, 
which has been shown to support students in engaging with key 
dimensions of systems (Hmelo-Silver et al., 2017a; Ryan et al., 2021). 
The PMC framework is a way to support students in explicitly 
thinking about three key levels of biological systems (phenomena, 
mechanisms, and components) that can help make many of the 
underlying relationships within a system salient. In the PMC 
framework, students frame their ideas around a given phenomena 
(e.g., an aquatic ecosystem), uncover underlying causal mechanisms 
that undergird a phenomena (e.g., excess nutrients in a pond causing 
an algal bloom), and investigate the components (e.g., fish, algae, and 
dissolved oxygen) that interact to create the mechanisms. Activities, 
scaffolds, and tools that align with the PMC framework explicitly 
represent complex systems through the combinations of various 
components within a system, and represent the relationships between 
them through descriptive mechanisms, resulting in students’ 
developing a metacognitive awareness of the system and its various, 
disparate features (Saleh et al., 2019). To help orient students towards 
the importance of these levels (P, M, and C), we designed MEME to 
make them required and salient as students represented the system 
they were exploring.

Student modeling of complex systems

Scientific modeling has been long established as a core scientific 
practice relevant to young students’ science learning (Lehrer and 
Schauble, 2005; National Research Council, 2012). Modeling in this 
context refers to a representation created in order to abstract the 
causal mechanisms of complex phenomena, and highlight particular 
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causal chains and features to scaffold scientific reasoning and 
prediction (Schwarz et al., 2009). Therefore, many educators focus on 
modeling as a practice that involves creating and revising a 
representation rather than a single representational product. 
Nonetheless, models can take many forms including a diagram of the 
water cycle illustrating how water shifts and changes form in response 
to environmental stimuli, or a food web highlighting interactions 
between organisms in an ecosystem.

When one constructs a scientific model, choices must be made in 
how simple or complex a model should be, and what features of a 
phenomenon should be highlighted. For students new to the practice 
of modeling, these choices can be  overwhelming. When teaching 
modeling to students, it is necessary to not only teach students how to 
create a good model, but to help them to understand the epistemics of 
what makes a scientific model good according to the scientific 
community (Barzilai and Zohar, 2016). We  draw on the idea of 
epistemic criteria, or the standards established in the scientific 
community of what constitutes a valid and accurate product of science 
(Pluta et al., 2011). For instance, in our projects we worked with the 
students to establish a set of epistemic criteria about what constitutes 
a good scientific model, including model coherence, clarity, and how 
well the model fits with evidence. This allowed for streamlined goals 
for students to work towards when constructing their models, such as 
fitting their models to evidence, which in turn supported the validity 
of the components and mechanisms they represented in their models. 
We then represented these criteria within MEME in the interface used 
for students to give each other feedback.

Pluta et  al. (2011) emphasize that students’ understanding of 
epistemic criteria is interconnected with their understanding of 
modeling. They emphasize that if students “hold that models are literal 
copies of nature, they will likely fail to understand why models need 
to be  revised in light of evidence” (p.  490). Models are not static 
entities and require revision as scientists’ understanding of phenomena 
changes. With this epistemic criteria in mind, we aligned our activity 
designs with the grasp of evidence framework which focuses on 
developing students’ understanding of how scientists construct, 
evaluate and use evidence to continually develop their understanding 
of phenomena, such as creating and revising models (Ford, 2008; 
Duncan et al., 2018).

We focused specifically on how students, who are not yet 
experts in scientific inquiry, interpreted evidence and determined 
what parts of data are significant to represent or revise in their 
models (Lehrer and Schauble, 2006). In fact, a primary feature in 
MEME was a repository of data and reports which we created for 
the unit, which was directly embedded into the software interface 
for students to explore as they created and refined their models. 
Students were able to directly read over empirical reports and data, 
and decide what reports were useful evidence that either supported 
or disproved claims they made about the aquatic ecosystem (Walton 
et al., 2008).

As the unit went on, students were tasked with revising and 
iterating on their model, based on their interpretation of new sets of 
evidence introduced to them. Students added new elements or 
modified existing elements in their models, and could directly link a 
piece of evidence to a specific feature of their model to support their 
reasoning. Not only were students learning to interpret and reason 
around empirical evidence, but the evidence they reviewed was 
grounded within the PMC framework as well. As students began to 

interpret multiple, disparate pieces of data about the aquatic 
ecosystem, they began to make claims about the system, and 
represented this in their models through various components 
and mechanisms.

In the current study, the practice of modeling included creating 
a box and arrow representation of the aquatic ecosystem (see 
Figure 1), collaboratively evaluating it alongside peers, and iterating 
on models based on peer and expert feedback (Danish et al., 2021). 
Models in MEME build on the idea of simple visual representations, 
such as stock-and-flow diagrams (Stroup and Wilensky, 2014) and 
concept maps (Safayeni et al., 2005), both of which can help students 
to link disparate ideas, and grow more complex as they iteratively 
refine them while also supporting the development of more coherent 
systems understanding. The difference here that distinguishes MEME 
from other model-based tools, is that the software interface was 
intentionally designed to directly bridge students’ developing 
epistemic criteria around the practice of modeling through a 
comment feature where peer feedback was given based off of a list of 
epistemic criteria.

Students’ interpretation of evidence in relation to claims around 
complex systems could be directly linked into their model through 
a “link evidence” button, and their learning of complex systems 
through representing aspects of the PMC framework in their 
models were directly scaffolded as pieces for them to create their 
models (see Figure 1 for a look at all these features). Taken alone, 
any of these concepts are difficult for students to take on, but 
we  argue here that designing both tools and activities with the 
integration of these critical scientific practices, help to scaffold 
students in their complex scientific reasoning. In this particular 
study, we focus on how this integration led to incredibly rich and 
detailed interactions around mechanistic reasoning for the students 
we worked alongside.

Development of mechanisms represented 
in models of complex systems

In this study, we were interested in focusing on the PMC feature 
of a causal mechanism in order to closely examine how students’ 
mechanistic reasoning was mediated through the use of the MEME 
tool and designed learning activities. Here, we define mechanism as 
the “entities and activities organized such that they are productive of 
regular changes from start or setup to finish” of a scientific phenomena 
(Machamer et al., 2000, p. 3). Within complex systems, mechanisms 
are the underlying relationships that often go unobserved by novices, 
and are only made clear when focusing on how various components 
are interrelated to each other. As a result, mechanistic processes are a 
common challenge for students when first learning about phenomena 
(Hmelo-Silver and Azevedo, 2006).

Schwarz and White (2005) outline plausible mechanisms as a 
key epistemic criterion needed to understand the nature of 
scientific models. There is a need for students to understand that 
models consist of causal mechanisms in order to understand their 
explanatory purposes (Pluta et al., 2011). Our design goals were to 
engage students in scientific modeling activities which explicitly 
scaffolded mechanistic explanations to support students in 
developing their systems thinking and understanding of scientific 
modeling. In MEME for example, one of the core modeling features 

142

https://doi.org/10.3389/feduc.2023.1159558
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Ryan et al. 10.3389/feduc.2023.1159558

Frontiers in Education 05 frontiersin.org

present within the tool is for students to represent processes (i.e., 
mechanisms) through the form of labeled arrows (see Figure 1) 
connecting two entities (i.e., components) in a system.1

Attending to how students represent mechanisms as they engage 
in constructing and iterating on a scientific model can help us to better 
understand how their mechanistic reasoning develops within 
interaction. For example, Russ et al. (2008) noted that mechanistic 
reasoning shifts between levels of reasoning tend to occur when 
students shift from describing the phenomena in a “show-and-tell 
manner to identifying the entities, activities, and properties of complex 
systems” within interaction (p. 520). They also noted that lower levels 
of mechanistic reasoning may act as “building blocks” to lead into 
higher forms of reasoning (p. 521). Further, prior work indicates that 
when modeling, students “generate mechanisms using a wide variety 
of pre-existing ideas” (Ruppert et al., 2019). Looking closely at how 
students’ mechanistic reasoning developed across a modeling unit 
through the use of various mediators can help us to understand how 
to better support these practices and provide insight into designing for 
these kinds of mediating interactions in future iterations of the project.

While the literature emphasizes that domain-specific knowledge 
can foster the development of mechanistic reasoning in models 
(Duncan, 2007; Bolger et  al., 2012; Eberbach et  al., 2021), a key 

1 The names here were substituted based on feedback from students in prior 

iterations of SEEDS. For instance, In earlier implementations, students remarked 

even after the unit concluded that they were unclear what a mechanism was, 

but understood it as a process.

finding in our prior work was “that neither the type nor the number 
of domain-specific propositions included was important to how 
students developed mechanisms,” (Ruppert et al., 2019, p. 942). These 
contradictions in the literature indicate a need for further 
investigation on how students’ mechanistic reasoning develops in 
interaction when engaging in modeling. Researchers are undertaking 
these kinds of efforts, such as work by Mathayas et al. (2019) utilizing 
epistemic tools, such as embodied representations of phenomena 
through gesture, which can support the development of mechanistic 
explanatory models. We set out with similar goals in this study to 
investigate how MEME and our designed learning activities can help 
to support these same shifts in students’ representations of 
mechanism in their modeling.

Methods

Design

The larger project that this study is a part of, SEEDS, aimed to 
understand how fifth and sixth grade students engage with evidence 
as they explore complex aquatic ecosystems through modeling. In 
commitment to our design-based research approach (Cobb et al., 
2003; Quintana et al., 2004), we created conjecture maps (Sandoval, 
2004; 2014) to outline how we believed our theory was represented 
in our design in order to achieve our curricular and design goals as 
we  moved through designing the modeling unit (see Figure  2). 
Conjecture maps are visual representations of design conjectures, 
which “combines the how and the why, and thus allows the research 

FIGURE 2

Conjecture map of our theoretical and embodied conjectures of the larger project. Bolded items are the focus of the present study.
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to connect a value (why in terms of purpose) with actions (how in 
terms of design or procedures) underpinned by arguments (why in 
terms of scientific knowledge and practical experience)” (Bakker, 
2018, p.  49). This framing allows designers to make explicit 
connections between theoretical commitments and material features 
of a design. Within the conjecture map, aspects of our design that 
emerged as the focus of the current study are bolded to indicate the 
guiding design principles that grounded this analysis.

In the spirit of DBR, we have iterated on the design of the MEME 
tool across the project’s lifespan. For example, based on prior pilot 
work (Moreland et al., 2020) that revealed that students had a difficult 
time parsing the PMC framework, we adapted the language of the 
framework to better accommodate our younger 5th/6th grade 
participants. In MEME, the tool allows students to create entities 
(components), processes (mechanisms), and outcomes (results of the 
phenomena) of the aquatic ecosystem (see Figure 1). Through these 
kinds of design choices, such as using simple visual elements in how 
students could construct their model, we were able to directly embed 
scaffolds for the PMC framework into the tools students utilized when 
learning how to create and refine their model of a complex system.

We carried out a 7 days modeling unit aimed at teaching the 
phenomena of eutrophication, or when a body of water receives a high 
amount of nutrients and creates an algal bloom and takes up all of the 
dissolved oxygen in the water, creating a dead zone. We took part in 
roleplaying with students, where a team of scientists we called the 
Fresh Org tasked the students with trying to figure out and create a 
model of what was going on in Blue Pond. Students took on the task 
of solving the problem of why fish were suddenly dying during the 
summer months in a local aquatic ecosystem. 15/17 consented 
students were assigned to small groups (2–3 students), and used 
MEME to develop a comprehensive model to explain what caused the 
fish to suddenly die in the summertime. On day 1, we introduced the 
concept of scientific modeling in a short lesson we created based on 
prior implementations of SEEDS (Danish et  al., 2020). We  also 
introduced the activity that students would be tasked with researching 
the problem and building a model to represent what was going on in 
the system. From days 1 through 4, students received new evidence 
sets from Fresh Org related to sunlight, algae, nutrients, dissolved 
oxygen, the fish in the pond, and water quality related to the system 
(see Figure  3 for an example of these reports). Each evidence set 
consisted of 2–3 pieces of empirical data or reports, via the evidence 
library in MEME (see Figure 1).

The evidence sets each had a theme (e.g., fish death, algae, 
fertilizer and nutrients) and disparate pieces of evidence were 
deliberately paired together for students to connect in their models 
(e.g., a piece of evidence that had fish deaths highest in the summer, 
and a farmer’s inventory list marking that they distributed pesticides 
and fertilizer in the month of June). As students interpreted evidence 
and created their models, facilitators including the research team and 
the classroom teacher went around the room helping with technical 
difficulties and asked scaffolded probing and discussion questions 
(e.g., “do you think this evidence supports anything in your model?”). 
At the end of each day, students would provide feedback of questions 
they still had about the complex system, which Fresh Org would then 
respond to with a summary at the start of each day.

Students collaboratively worked through this evidence in their 
groups, and then constructed and refined their models in 
MEME. During days 2 and 4, students participated in a structured 

“gallery walk” activity where they (1) gave peer feedback on peer 
models, (2) addressed comments made by peers on their models, and 
(3) made revisions to their models based on peer feedback. Students 
finalized their group models on day 5 of the unit, and on day 6 the 
whole class collaboratively created a consensus model. Finally on day 
7 the entire class participated in a discussion of the implementation, 
where students discussed the epistemic nature of evidence and 
modeling, along with what caused the initial problem in the pond, the 
wider effects algal blooms and fertilizer can cause, and the possible 
solutions on how farmers and community members might prevent 
these kinds of problems from happening in the first place.

Context and participants

Across the larger DBR project, we  have worked closely with 
multiple teachers in both public and private schools. The context of 
the present study was a local private school in the Midwestern 
United States in the fall of 2021, where we had previously worked 
with the 5th/6th grade teacher of the school on pilot studies of this 
project. We  met with the teacher multiple times in the months 
leading up to the implementation, where he had direct input into the 
decisions and designs, such as our empirical reports and evidence, 
before we  began. During the implementation, while the teacher 
preferred that we run the activities and technology, he was an integral 
facilitator and supported the activities in the classroom. He often 
asked discussion questions to students as we wrapped up the day. 
During modeling activities, he would walk around the room and 
assist students when creating and revising their models, and during 
gallery walk activities where students critiqued each other’s models 
he instilled a classroom norm of offering two compliments for every 
piece of critique offered in someone’s model. He  also helped to 
facilitate any whole class discussions that occurred in the class, such 
as on day 7 when the class had a debrief discussion on the unit.

The research team went in every other day for 4 weeks for a total of 
7 days, with a pre-post interview taking place at the beginning and end 
of the implementation According to our demographics survey 
we administered, of the 15 consented students who participated in the 
study, there were 8 girls, 6 boys, and 1 other/unspecified. Researchers 
taught a designed model-based inquiry unit about eutrophication in 
an aquatic ecosystem over 7 days, with each day being 90 min long. The 
unit was created by the research team, which consisted of science 
education and learning sciences scholars, to align with the NGSS Lead 
States (2013) standards and core goals, such as cross-cutting concepts. 
We chose to create this unit from the ground up to align it with the 
design of our research goals and the MEME software tool. Additionally, 
we  collaborated with the teacher while we  designed the unit. 
He informed us of what his students had learned in his science units 
already, including how to test water quality and the importance of 
keeping water within the community’s watershed clean. This 
collaboration allowed us to better integrate the modeling unit to 
connect with the teacher’s existing science curriculum, including the 
creation of pieces of evidence related to water quality that students used 
to inform their model construction. Each day of the activity unit took 
place during the students’ science block time in their schedule during 
regular class time. Students then worked in small groups (6 dyads and 
1 triad) in MEME to iteratively build and edit scientific models using 
a library of designed empirical evidence.
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Data collection

The primary data source for this analysis was the set of models that 
students created throughout the project. While students revised their 
models daily, we focused on their progress through the curriculum unit 
by examining the models on days 1, 3, and 5 out of the 7 days. These 
days were chosen because day 1 was the first-time students used MEME 
to begin constructing their models, day 3 was approximately the 
mid-point of the implementation, and day 5 was the final day that 
student groups created their models. On day 6 the class made a 
consensus model, and day 7 was a debrief with the whole class. A 
second data source consisted of video and audio recordings of 

classroom interactions and screen recordings of students building their 
models in MEME to look into what scaffolds and interactions supported 
students’ systems thinking. Specifically, we were interested in what 
within student interaction mediated their construction and reasoning 
around mechanisms of the complex aquatic ecosystem, as well as how 
their mechanistic reasoning shaped their model construction.

Data analysis

Analysis of this data consisted of qualitatively coding students’ 
models for mechanistic reasoning. This was followed by a close 
examination of content-logged video data capturing the creation of 

FIGURE 3

An example of an empirical report given to students.
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mechanisms in models, and the interactions between peers which led 
to their creation. Students’ models were qualitatively coded by three 
researchers focusing on the complexity of students’ mechanistic 
reasoning. We  adapted Russ et  al. (2008) coding of mechanistic 
reasoning, which specifies a hierarchy of mechanistic reasoning 
developments in student interactions (see Table 1). One code from 
the original codebook, “identifying entities,” was removed due to 
“entities” being one of the embedded features of the MEME modeling 
tool and thus we wanted to avoid inflating students’ code frequencies. 
While Russ’s coding scheme was originally meant for looking directly 
at student interactions, it has also been used to code student 
generated models as well (Ruppert et al., 2019). Qualitative coding of 
models consisted of looking at MEME models at certain points in 
time in the unit and coding the individual processes and entities 
within a model as a represented mechanism. For consistency within 
our data set, a mechanism in a MEME model consisted of two entities 
connected by a process (see Figure 1 for an example). Each of these 
were coded within a groups’ model, with each group having an 
average of 3–6 mechanisms per model, depending on the group and 
day of the unit.

To begin the coding process, we carried out Russ’s coding scheme 
on a subset of models to establish interrater reliability. Following 
conventions of interrater reliability (McDonald et al., 2019), Author 1 
coded the models from the end of day 5 of the implementation (33% 
of the total data set). The final models from day 5 were initially 
selected because we anticipated that as the final model, they were 
likely to be the most complex and complete. Following coding of this 
subset, two additional members of the research team coded the same 
set of models. In two separate collaborative coding sessions, the team 
reviewed the coding and discussed each discrepancy that arose 
between the researchers. By the end of the two sessions, the coding 
between the three researchers reached a high degree of interrater 
agreement (95%). Once agreement was reached on this subset of data, 
we proceeded to code the remaining models from day 1 and day 3. 
Once models had been coded for days 1, 3, and 5, Author 1 brought 
the data set back to the research team to look over the results of the 
coding, where agreement was once again reached (95%).

Following analysis of students’ models, we conducted interaction 
analysis (IA; Jordan and Henderson, 1995) to closely investigate how 

students’ mechanistic reasoning emerged and developed across the 
modeling unit. We looked at previously content-logged video data 
consisting of students’ discourse as well as their screen recorded 
actions carried out on the computer within MEME. The content-
logged video data identified specific moments where groups created 
or revised a mechanism in their MEME model, and marked the 
interactions occurring during these moments. Different student 
groups were chosen at random to analyze their interactions each day. 
The models were analyzed (1, 3, and 5) to report on more general 
group trends as opposed to the unique developments had by any one 
group. This way, the interactions analyzed highlighted how the 
students’ engagement with the different mechanisms in the system 
mediated and in turn were mediated by various features of MEME 
(e.g., the evidence linking feature) and participating in modeling 
activities (e.g., taking time to revise their models based on 
interpretation of new evidence). In these episodes, we  looked for 
elements in MEME and the overall activity which directly influenced 
students’ reasoning about the complex aquatic ecosystem.

Specifically, we unpacked what occurred during group interaction 
through examining students’ talk and corresponding moves made 
within MEME just before or during the creation of mechanisms in 
models. We were interested closely examining interactions to better 
understand the ways in which students discussed and represented 
mechanisms in ways that might not be clear in simply reviewing the 
static representation of models. We  focused on the reciprocal 
relationship of the identified mediators: students’ interpretation of 
evidence, features of MEME linking evidence to their models, their 
negotiations surrounding mechanisms, and their modeling practices. 
By reciprocal relationship, we  mean that each mediator shaped 
students’ participation in the activities and how they took up other 
mediators present to support students’ learning throughout the unit. 
For instance, while students’ interpretation of evidence mediated how 
students’ represented mechanisms in their models, their mechanistic 
reasoning in turn mediated how they read through and interpreted 
the sets of evidence. The IA we conducted revealed how features of 
MEME and interaction around the creation and revision of their 
model transformed their mechanistic reasoning, but also how 
students’ focus on mechanisms within the complex system shaped the 
way they used MEME and developed their epistemic criteria of what 

TABLE 1 List of codes used for student models.

Mechanistic reasoning code Description Examples from student models

 1. Describing target phenomena When students clearly state or demonstrate the particular 

phenomenon or result they are trying to explain.

[Within a description of a created entity “Fish”] 

– “Fish are dying in the pond that is near the farm”

 2. Identifying setup conditions Moments when students identify particular enabling conditions of 

the environment that allow the mechanism to run.

[Process in MEME] – “Fish start to die ➔ new 

season ➔ less algae”

 3. Identifying activities When students who articulate the actions and interactions that occur 

among entities.

[Process in MEME] – “pesticides ➔ spreads to ➔ 

lake/pond”

 4. Identifying properties of entities When students articulate general properties of entities that are 

necessary for this particular mechanism to run.

[Entity in MEME] – “Farmers like [pesticides] 

because it kills bugs”

 5. Identifying organization of entities When students attend to how the entities are spatially organized, 

where they are located, and how they are structured.

[Process in MEME] – “Fish ➔ fish are in the blue 

pond ➔ Blue pond”

 6. Chaining: Backward and forward We observe students reasoning about one stage in a mechanism 

based on what is known about other stages of that particular 

mechanism and code this type of reasoning as “chaining.”

[Processes in MEME] – “Algae ➔ lowers ➔ Low 

dissolved oxygen ➔ suffocates fish ➔ dead fish
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makes a good model. We unpack the results of both the coding and 
the interaction analysis in the results below.

Results

Russ et al. (2008) hierarchy (see Table 1) of students’ mechanistic 
reasoning was based on what they determined to be more or less 
scientifically sophisticated. We took up that same hierarchy based on 
our prior work of adapting this coding scheme from interaction to 
student generated models (Ruppert et al., 2019). Our analysis of 
student models showed a general trend that the mechanisms 
represented across all group models became more complex as the 
unit continued (see Figure 4). Interaction analysis carried out on 
students’ interactions surrounding the creation of these mechanisms 
revealed several distinct mediators which promoted the creation or 
refinement of mechanisms in their group models. These include 
interpreting disparate forms of data in order to make claims 
identifying mechanisms, utilizing and linking evidence to help 
develop and refine their mechanistic reasoning, and how playful 

peer interactions helped to shape their reasoning 
around mechanisms.

Development of mechanistic reasoning 
across time

Students’ coded models clearly exhibited development in complex 
mechanistic reasoning as students iterated on their models of the 
aquatic ecosystem (see Table  2). Collectively, the development of 
mechanisms across student models across time improved from the 
end of day 1 to the end of day 5 (when student models were finalized), 
with high level mechanisms (levels 4–6 in our coding scheme) being 
present in all student groups’ models starting at the end of day 3. Not 
only do our results indicate that students identified and represented 
more mechanisms within the system as the unit went on, but the 
majority of mechanisms coded across all final models at the end of day 
5 were coded on the upper half of the Russ’s coding scheme for 
mechanistic reasoning (54% of all mechanisms across all group 
models). This distribution was evenly spread across groups, with 7 out 

FIGURE 4

Bar chart of total codes for each day of models.

TABLE 2 Results of qualitative coding of student models.

Models – day 1 
(n = 7)

Models – day 3 
(n = 7)

Models – day 5 
(n = 7)

Totals (n = 21)

Mechanistic reasoning Describing target 

phenomena
3 3 3 9

Identifying setup 

conditions
4 2 6 12

Identifying activities 6 7 18 31

Identifying properties of 

entities
4 11 13 28

Identifying organization of 

entities
4 1 3 8

Chaining: backward and 

forward
2 8 15 25

Total codes 23 32 58 113

Bold values denote the totals for each row and column.
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of 7 of the groups representing at least one high level mechanism 
within their final models.

These results are a clear indication that students were using 
MEME to represent sophisticated mechanisms of the complex system, 
as seen in the increase in higher coded mechanisms across all models 
as the unit progressed (see Figure 4). Even lower coded parts of the 
model, such as describing target phenomena, and identifying setup 
conditions indicate that students were reasoning about causal 
mechanisms within the system, which are critical for students to 
understand if they are to effectively learn about both modeling 
practices (Pluta et al., 2011) and complex systems thinking (Goldstone 
and Wilensky, 2008). This meant regardless of complexity, students 
were making causal connections to each and every component of the 
system that they chose to represent in their modeling. This highlighted 
that students represented what they interpreted as key aspects of 
complex systems as they carried out their scientific inquiry.

Furthermore, the majority of all mechanisms that emerged across 
models were in the middle of the hierarchy and higher, going all the 
way up to the highest code of chaining together causal chains of 
various mechanisms to explain how the aquatic ecosystem functions. 
The three most common coded mechanisms that emerged in students’ 
models were: identifying activities (level 3; 27% of mechanisms), 
identifying properties of entities (level 4; 25% of mechanisms), and 
chaining (level 6; 22% of mechanisms), accounting for 74% of all 
mechanisms present across student models. Two out of three of the 
most common codes were in the top levels of Russ’s coding scheme, 
with only one high level code not commonly occurring across student 
models in high volume, identifying organization of entities (level 5, 7% 
of mechanisms). However, in total 7 out of the 7 final models had 
>50% of their mechanisms coded as the top half of mechanistic 
reasoning codes. These percentages represent the distribution of 
mechanisms across all student models on days 1, 3, and 5, which were 
consistent across individual models as well.

Student models ranged from having between 3–10 mechanisms 
present in their model depending on the day and group, but 
distributions of codes were evenly spread across groups. Table 2 
highlighted that the three most complex forms of mechanistic 
reasoning were the majority of coded mechanisms across all 
models (54% of all coded mechanisms). As we move across each 
selected day of modeling, we  can see a clear development of 
mechanistic reasoning happening for student groups. The total 
number of mechanisms identified increase as we move from day 1 
to day 3 to day 5 (see Figure 4), which indicated that student groups 
added more elements to their model in total. We also see a distinct 
shift in how many complex types of mechanistic reasoning begin 
to emerge in students’ models. Specifically, identifying activities, 
identifying properties of entities, and chaining appear at much 
higher volumes in models as we  move across time in the 
implementation. Figure  4 provides a bar chart visualizing the 
distribution of coded mechanisms at the conclusion of days 1, 3, 
and 5 of the unit.

Students’ development of mechanistic reasoning as time went on 
can be seen most clearly in the development of students’ use of causal 
chaining in their models, or when students reason about one stage in 
a mechanism based on what is known about other stages of that 
particular mechanism (see Figure 4). For instance, at the end of day 1 
few groups had used any sort of chaining to represent how components 
of the aquatic ecosystem were related (8% of coded mechanisms). 

However, at the end of day 5, when students finalized their models of 
the aquatic ecosystem, chaining causal mechanisms was the second 
most occurring code across student models (26% of coded 
mechanism). Breaking this down by group, 5 out of 7 groups had more 
than one mechanism coded as chaining in their models, and 7 out of 
7 groups each had between 2–4 mechanisms coded in the top half of 
Russ’s coding scheme. Students’ development in their mechanistic 
reasoning can clearly be seen across time as they iterate and refine 
their models.

Mediating the creation of mechanisms 
within models

Analysis of student interactions around the creation of 
mechanisms highlighted the key role of the features of MEME, 
including the evidence resources that students were investigating. 
These directly mediated students’ talk within their groups surrounding 
the creation of mechanisms in their models. Below, we  analyze 
episodes of interaction at moments where students created 
mechanisms within MEME during days 1, 3, and 5 of creating and 
refining their models of aquatic ecosystems.

Interpreting disparate evidence in the 
construction of mechanisms

At the start of day 1, students only had access to two pieces of 
evidence to support their model creation. This was intentional, as this 
was students’ first-time using MEME, and they were working to 
understand the primary features of MEME including creating new 
components and mechanisms to represent the system through their 
modeling. Students were just starting out and trying to represent and 
explain the initial problem they had been given – that fish were dying 
in the pond during the summer months. The first piece of evidence 
introduced the problem, and provided a graph showing what months 
the fish deaths rose (July–September). The second piece of evidence 
was a list of materials used by farmers in nearby local farms, which 
included pesticides and fertilizer which were distributed in June. 
Students were tasked with reading these two separate pieces of 
evidence and creating an initial model.

Students were new to MEME and scientific modeling in general, 
and were given the task of creating a few entities and processes of the 
phenomena they were just introduced to. While the mechanisms across 
groups began as fairly straightforward at the end of day 1 (see Table 2), 
student interaction revealed the nuanced interactions surrounding the 
creation of students’ first mechanisms within their models. For 
example, a group with two students created their first four processes to 
represent the possible causal mechanisms of farms spreading pesticides 
into the pond, which then kill the fish. Students had just reviewed the 
farmer’s inventory list in the evidence library, and like many other 
groups gravitated towards the use of pesticides in the farm. While 
pesticides were merely a part of the inventory list, they were not framed 
in any particular way in the data. For instance, in an exchange with a 
facilitator, Eddy and Lily explained why they connected the two pieces 
of evidence to construct their first causal mechanism (see Figure 5).

When the facilitator initially called their attention to the inventory 
list, Eddy noted that fertilizers and pesticides could be  harmful 
because they were distributed to the local farms in the month of June 
(lines 2–3). The facilitator inquired how they knew this, and Lily 
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navigated to the first piece of evidence in MEME, pointed the 
computer mouse to the graph and pointed out that fish deaths were 
the most in the summer months (line 7). She then made a claim that 
the pesticides likely took a while to get to the water, and “so you can 
see it goes up and up and up and up more and then a straight stop” 
(lines 9–10). Eddy and Lily interpreted separate pieces of evidence, 
and integrated them into their initial claim represented in their model 
of the complex systems.

They chose to only represent pesticides (possibly because of prior 
knowledge surrounding mainstream debates around pesticide use), 
but reasoned that the farm distributes pesticides, which then spread 
to the pond, and so the pesticides kill the fish, which then restarted 
the process. Figure  6 shows how their representation of this 
mechanism was represented across multiple entities and processes 
within their model.

What stopped these mechanisms from being coded at higher 
levels, such as chaining, was that they were isolated in how they were 
represented, as opposed to being informed by other mechanisms of 
the system. Given that this instance was at the start of the unit, this 
makes sense, and the interaction above marked a promising start 

given their sophisticated interpretation of evidence. The overall trends 
of mechanism codes at the end of day 1 indicate that Eddy and Lily’s 
model was typical of what other student groups created as well (see 
Table 2). This meant that students had a similar interpretation of the 
two disparate pieces of evidence to reason about the causal 
mechanisms of the system.

Within these interactions, students analyzed and interpreted 
novel and distinct forms of data, interpreted connections between 
them in order to make an initial claim, and then represented their 
claims through a series of causal mechanisms within their PMC 
model. Eddy and Lily’s grasp of evidence here, specifically their 
interpretation and integration of evidence, mediated the ways in 
which they chose to represent their initial constructions of their 
model. Their integration of disparate evidence directly supported the 
claims that they represented through their mechanisms within 
their model.

Negotiating and linking evidence in the model
During days 2 and 3, students had their first opportunity to offer 

peer feedback through a “gallery walk” activity where students went into 

FIGURE 5

Transcript of Eddy and Lily’s initial claim that they added to their model.

FIGURE 6

Eddy and Lily’s model at the end of day 1.
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each other’s models in MEME and commented how well they thought 
it represented the problem they were trying to solve (see Figure 1 for 
how this feature looked in MEME). They then were able to revise and 
refine their models based on that feedback. They also examined new sets 
of evidence that might help them to solve the problem of why fish were 
dying in the pond. This led to students iteratively improving their 
representation of mechanisms in their model in response to peer 
critiques, which we detail in an example below.

The distributions of coded mechanisms within models (see Figure 4 
or Table 2) revealed that at the end of day 3 students were using MEME 
to represent more complex forms of causal mechanisms in their model. 
This occurred primarily by more explicitly naming the process that 
caused the mechanism between two components of the system. Our IA 
during this point of the implementation revealed that all student groups 
were collaboratively reasoning around causal mechanisms of the system 
to negotiate revisions and changes made to their model. For example, 
two students in a group, Jenny and Claire, made several revisions of both 
components and mechanisms within their MEME models (see Figure 7).

In one instance, upon receiving peer feedback in the form of a 
comment which read “it’s a great model but I  think you  should 
be more specific,” the group revised a specific entity and process to 
better represent the causal mechanism of the system. They modified 
an existing entity which originally read “More Oxygen” and revised 
it so that the entity was “Less Algae” and added “More Dissolved 
Oxygen” to the existing process “less death.” This may not seem 
significant, but it marked a shift in their mechanistic reasoning 
represented in their models (along with 5 out of 7 of the total 
groups). Based the feedback and new data that Jenny and Claire had 
just read, they modified the claim that less algae present in the pond 
was the main reason that there was more dissolved oxygen in the 
water and less fish death at the start of a new season. This was Jenny 
and Claire’s first mechanism that was coded as Chaining, the highest 
code for mechanistic reasoning present within the models. In 
changing one of their mechanisms from “new season ➔ less death 
➔ fish” to “less algae ➔ more dissolved oxygen and less death ➔ 
fish lay eggs,” they began to chain together their reasoning across 
mechanisms (see Figure  7). What’s more, however, is that their 
further interactions when deciding to link a piece of evidence reveal 
further insight to how they worked towards representing their claims 

surrounding this particular mechanism of the system, that less algae 
in the water provided more oxygen and therefore less fish death (see 
Figure 8).

In this exchange, Claire and Jenny negotiated how to provide 
reasoning behind choosing to link a piece of evidence, a report on how 
much algae grew in the pond over the course of 6 months, in support 
of one of their claims represented in their model. Claire narrated her 
thoughts to Jenny, who typed for her. Jenny misunderstood Claire’s 
explanation during this exchange and typed an incorrect claim (that 
there were less algae at the same time the fish die). Claire noticed this 
and called this out by correcting Jenny and says “The algae is lower at 
the same time the fish die? [but] death is low! (lines 16–17). Jenny 
recognized this and corrected it quickly, but let Claire know that 
explanation was not what she had in her own mind (lines 18–19). 
Claire remarked that it still worked however, and the pair were left 
satisfied by their linked evidence.

Their conclusion in linking their evidence was that “Because the 
algae is lower the same time that the fish death is lower.” They linked 
this to the process in their model to support their mechanism which 
claimed that less algae meant more dissolved and less fish death. 
Two distinct mediators emerged which supported students’ 
mechanistic reasoning here for Claire and Jenny. The first is the act 
of revising their models upon receiving peer feedback. Peer 
feedback within their model led them to revisit evidence and 
negotiate how to better represent their mechanism. This supported 
them in making revisions to their model. These changes to existing 
features of their model led to higher coded mechanistic reasoning 
represented in their model, as evidenced by the emergence of 2 
distinct instances of mechanisms coded as chaining to this group’s 
model at the end of day 3.

Second, MEME’s link evidence feature, which allowed for 
students to directly link their evidence interpretations into their 
models, supported further interactions and reasoning on how to 
explain their claims. The interaction above highlighted how the 
feature in turn supported negotiation on how Claire and Jenny 
represented their claims and led to a deeper collaborative 
understanding of their collective reasoning. The evidence link 
feature has a prompt which asks students to draw a conclusion from 
the connection they made to their model (see Figure  1 for an 

FIGURE 7

Jenny and Claire’s model on day 3 of the modeling unit with changes highlighted.
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example of this). Jenny and Clair spent time negotiating on how to 
frame this conclusion, eventually coming to an agreement about how 
they should frame their reasoning (lines 16–20). This negotiation 
around how to frame their conclusion led to a collaborative 
understanding of how Jenny and Claire represented their claims 
within their models.

Mechanistic reasoning through creative modeling 
practices

On day 5 out of 7 of the unit, students received their final set of 
evidence, which informed them that nutrients within fertilizer helped 
to promote plant growth, and that the algal bloom coincided with a 
heavy rainfall. Here, two modeling trends began to stick out to us as 
we moved through the data, all of which stemmed from students 
using the MEME tool to represent their thinking around the complex 
system in novel ways. First, students began to create parts of their 
model to note aspects of the complex system that they did not 
currently have a full explanation for. For instance, in one group Ben 
and Henry created two processes related to algae and dissolved 
oxygen to mark that they thought there was a relationship between 
the two, but were unsure of what the specific relationship was, a 
practice which we encouraged to help drive conversations about how 
to support and clarify such claims (see Figure 9).

Ben and Henry elected to create two processes, “Low Dissolved 
Oxygen → idk (i.e., I do not know) algae dies or something → High 
Dissolved Oxygen,” and “High Dissolved Oxygen → idk algae grows 
or something → Algae.” They noted the relationship between algae 
and dissolved oxygen, but could not yet support their claims with 

evidence. These ended up being coded on the lower end of the 
coding scheme. Their other mechanisms, which were more detailed 
and coded higher in their models, were all directly linked to pieces 
of evidence (see Figure 9). Here, Ben and Henry not only represented 
their model as something that could be revised as they learned more, 
but also that the mechanisms they were confident in were directly 
supported by their grasp of the evidence available to them through 
directly linking evidence to parts of the model they were sure of (see 
Figure 9). This lined up with how their model at the end of day 5 was 
coded, with their two highest coded mechanisms of chaining being 
connected to the parts of their model directly supported by evidence. 
This is noteworthy because it indicated that even their lower coded 
mechanistic reasoning present in their models did not necessarily 
represent a lack of understanding on their part, but rather coincided 
with modeling practices which noted parts of their model as a work 
in progress which needed refinement.

Second, many groups began to engage in playful inside jokes and 
goofing around and tapped into what Gutierrez et al. (1995) call the 
underlife of the classroom, where students “work around the 
institution to assert their difference from an assigned role” (p. 451). As 
Gutierrez and colleagues point out though, this is not inherently 
unproductive or off-task behavior, and can be  mediated through 
interaction to be powerful moments of learning. For instance, upon 
looking over evidence that showed that one fish died from a turtle 
attack while the others suffocated from low oxygen levels, Ben and 
Henry decided to add the turtle to their model as an entity.

When this turtle emerged in their model alongside a process 
labeled “lol” (see Figure  10), Ben and Henry decided that they 

FIGURE 8

Transcript of Jenny and Claire revising their model to improve their mechanisms.
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needed to show this off to a facilitator. They showed the turtle to a 
facilitator, who proceeded to ask if this was now their primary 
theory of how the fish died. Ben remarked that “No! That’s why 
we added it to the side cause one of them killed them” (line 7). Ben 
then proceeded to inform the facilitator that the evidence they had 
learned about the turtle also confirmed their original claim that the 
fish had suffocated in the water due to low oxygen (line 10). Ben 

went on to further explain that “the turtle killed him, but he was 
already going to suffocate anyways because it also had low blood 
oxygen levels so the turtle just killed it early” (lines 12–13). Despite 
their fixation on the turtle, their interaction around it revealed a 
deep understanding of what was happening within the system on an 
unseen level, that fish were suffocating because of a lack of oxygen 
due to the algal bloom.

FIGURE 10

Screenshot and transcript of Ben and Henry reading over a piece of evidence.

FIGURE 9

Ben and Henry’s model at the end of day 5.
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This particular interaction was important for us to unpack 
because without the rich interactional context, the static mechanism 
of “Turtle → lol → Fish Die” may appear to be off-task behavior or 
even an incorrect interpretation of the evidence and their model. Ben 
and Henry noted their clear interpretation of the evidence within 
their discourse with each other and the facilitator, which further 
supported already created mechanisms in their model, which they 
later linked with evidence to further support their claim. Ben and 
Henry’s interaction also highlights how levity and playfulness can 
lead to deeply nuanced reasoning around the causal mechanisms of 
a complex system. The underlife of the classroom, such as the inside 
jokes, silly remarks, or adding funny additions to a sophisticated 
scientific model further mediated and deepened students’ 
understandings of complex systems and their epistemic ideas of what 
a scientific model should consist of.

Discussion

This study contributes to larger discussions of how to better 
integrate ideas of teaching both scientific modeling and complex 
systems thinking in elementary students’ scientific inquiry. 
We  closely investigated how students’ mechanistic reasoning 
progressed and developed while participating in a scientific 
modeling curriculum unit which was scaffolded with the PMC 
conceptual framework for systems thinking (Hmelo-Silver et al., 
2017a). Our goals of this study were to closely analyze how our 
various design frameworks, including sociocultural theories of 
learning (Vygotsky, 1978), mediation (Wertsch, 2017), epistemic 
criteria (Murphy et al., 2021), grasp of evidence (Duncan et al., 
2018), and mechanistic reasoning (Russ et al., 2008) were taken up 
by our research team and collaborating teacher to better integrate 
concepts of complex systems thinking (Wilensky and Resnick, 1999; 
Hmelo-Silver and Azevedo, 2006) and scientific modeling (Pierson 
et al., 2017) in teaching upper elementary students the nature of 
science. We sought to deeply understand how our designed activities 
within a model-based software tool, scaffolded with the PMC 
framework, support the integration of complex systems thinking 
and the practice of scientific modeling for elementary students.

The MEME software tool that students used to construct their 
models directly embodied the core elements of the PMC framework 
(i.e., outcomes, processes, and entities) as the building blocks in 
which students constructed their models, as well as making the use 
of evidence to revise a model salient to learners. Additionally, 
MEME and the designed modeling unit emphasized constant 
revision and iteration on student models in light of new evidence 
given to students surrounding the phenomena they investigated. 
Initially, students had middling to low levels of mechanistic 
reasoning emerge in their models, which is to be  expected. As 
students progressed, their reasoning began to improve, and more 
sophisticated mechanisms began to emerge both in their models and 
in their peer interactions. By the end, students had a higher number 
of total mechanisms present in their models, and the majority of 
coded mechanisms in student models were in the top half of Russ’s 
mechanistic reasoning learning progression (52% of coded 
mechanisms across models).

Overall, the findings of this study demonstrated that not only were 
students able to improve their representations of causal mechanisms 

in these models over the course of the implementation, but that this 
type of sophisticated reasoning was mediated in students’ interactions 
in a number of ways across the implementation. These mediators 
included (1) the designed materials such as the empirical reports and 
data structuring students’ inquiry, (2) features of MEME such as the 
PMC representation, evidence library and evidence linking features, 
and (3) students’ diverse and playful interactions with their peers 
which provided constant feedback and opportunities to negotiate 
meaning of parts of their models.

Limitations

There were several limitations of this study. First, while the 
overall project collected data at a number of diverse sites and 
contexts, the data for this study was collected at a private school with 
much more flexibility in curriculum and structure of students’ day 
than a typical public school. The school had a free form curriculum 
that was in complete control of the teachers, which made it easier for 
us to collaborate with and integrate our unit alongside our partner 
teacher. While we have run implementations of the SEEDS project in 
public school contexts, we  had also previously worked with this 
teacher before, so these specific findings may not be generalizable to 
school settings with more rigid schedules and curriculum without 
further investigation. Second, students were creating a very specific 
kind of model within MEME, and it is difficult to say whether or not 
a similar result of the development of mechanistic reasoning may 
emerge when students engage in different kinds of modeling, such as 
agent-based simulations (Wilensky and Resnick, 1999) or embodied 
models (Danish, 2014). Finally, the population of students we worked 
with, along with the identities of researchers, were fairly homogenous 
and is likely reflected in the ways in which we  interacted with 
students, the materials we designed, and the models that were created 
during this implementation. Further work is needed to investigate 
these findings in more heterogeneous spaces, to see what possibilities 
students have to contribute as they develop their own mechanistic 
reasoning in new contexts.

Future directions

These findings contribute to ongoing research by demonstrating 
the effectiveness of bridging together aspects of scientific modeling 
and systems thinking concepts to teaching scientific inquiry to 
elementary students. It highlights the effectiveness of embedding 
aspects of systems thinking directly into modeling tools and 
curriculum to support students reasoning around complex systems, 
particularly in relation to students’ understanding of underlying and 
emergent relationships within systems. The results of this study 
support prior research that demonstrated students’ mechanistic 
reasoning developing on a similar trajectory (Ryan et al., 2021), and 
extend prior work in analyzing students’ development of mechanistic 
reasoning (Ruppert et al., 2019).

Overall, across the modeling unit students participated in, it was 
evident that within their interactions with both peers and facilitators, 
students developed competencies in their reasoning around the 
causal mechanisms of complex systems, the epistemic criteria that 
made up a scientific model, and interpreting data to develop their 
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understanding and represent their claims within their model. What’s 
more, students’ interactions revealed how intimately connected 
these aspects of their scientific inquiry were. Their reasoning around 
mechanisms of the complex system was directly influenced by their 
interpretations of evidence, which in turn influenced their modeling 
practices to focus more explicitly on refinement and iteration rather 
than a single, static representation of the complex system.

Further investigation into how researchers and practitioners can 
scaffold systems thinking frameworks, such as the PMC framework 
(Hmelo-Silver et  al., 2017b), into modeling tools, curricula, and 
activities which focus on developing students’ epistemic criteria of 
models (Pluta et al., 2011), and their grasp of evidence (Duncan et al., 
2018), can help to improve the bridge between these two core pieces 
of scientific inquiry. We continue to work to more developed more 
nuanced understandings of how our designs mediate students’ 
developing understanding of both modeling and complex systems, 
and hope that this study can offer researchers pursuing similar kinds 
of work design focal points which may further help to bridge these 
essential processes of scientific inquiry.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

The studies involving human participants were reviewed and 
approved by Indiana University Bloomington Internal Review Board. 
Written informed consent to participate in this study was provided 
by the participants’ legal guardian/next of kin.

Author contributions

ZR led the majority of research, analysis, and writing on this 
project. JD helped substantially with research and revisions to the 
analysis process. JZ and CS helped substantially with interrater 
reliability and analysis. DM helped with initial designs of the 
larger project. JD, RD, CC, and CH-S are Co-PIs on the larger 
projects. ZR, JD, JZ, CS, DM, RD, CC, and CH-S helped 
substantially with revisions and feedback to drafts of this 
manuscript. All authors contributed to the article and approved 
the submitted version.

Funding

This work was produced through the research project Scaffolding 
Explanations and Epistemic Development for Systems, which is 
supported by the National Science Foundation under grant Nos. 
1761019 & 1760909.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

References
Assaraf, O. B.-Z., and Orion, N. (2010). System thinking skills at the elementary 

school level. J. Res. Sci. Teach. The Official Journal of the National Association for Research 
in Science Teaching, 47, 540–563. doi: 10.1002/tea.20351

Bakker, A. (2018). Design research in education: a practical guide for early career 
researchers. London, UK: Routledge.

Barzilai, S., and Zohar, A. (2016). “Epistemic (meta) cognition: ways of thinking about 
knowledge and knowing” in Handbook of epistemic cognition. eds. J. A. Greene, W. A. 
Sandoval and I. Bråten (New York, NY, USA: Routledge), 409–424.

Bolger, M. S., Kobiela, M., Weinberg, P. J., and Lehrer, R. (2012). Children’s 
mechanistic reasoning. Cogn. Instr. 30, 170–206. doi: 10.1080/07370008.2012.661815

Chi, M. T., Roscoe, R. D., Slotta, J. D., Roy, M., and Chase, C. C. (2012). Misconceived 
causal explanations for emergent processes. Cogn. Sci. 36, 1–61. doi: 10.1111/j.1551-6709. 
2011.01207.x

Cobb, P., Confrey, J., Di Sessa, A. A., Lehrer, R., and Schauble, L. (2003). Design 
experiments in educational research. Educ. Res. 32, 9–13. doi: 10.3102/0013189X032001009

Danish, J. A. (2014). Applying an activity theory lens to designing instruction for 
learning about the structure, behavior, and function of a honeybee system. J. Learn. Sci. 
23, 100–148. doi: 10.1080/10508406.2013.856793

Danish, J. A., Enyedy, N., Saleh, A., and Humburg, M. (2020). Learning in embodied 
activity framework: A sociocultural framework: A sociocultural framework for 
embodied cognition. Int. J. Computer-Support Collab Learn. 15, 49–87. doi: 10.1007/
s11412-020-09317-3

Danish, J., Vickery, M., Duncan, R., Ryan, Z., Stiso, C., Zhou, J., et al. (2021). Scientific 
model evaluation during a gallery walk. In VriesE. De, Y. Hod and J. Ahn (Eds.), 
Proceedings of the 15th International conference of the learning sciences-ICLS 2021. (pp. 
1077–1078). Bochum, Germany: International Society of the Learning Sciences.

Duncan, R. G. (2007). The role of domain-specific knowledge in generative reasoning 
about complicated multileveled phenomena. Cogn. Instr. 25, 271–336. doi: 
10.1080/07370000701632355

Duncan, R. G., Chinn, C. A., and Barzilai, S. (2018). Grasp of evidence: problematizing 
and expanding the next generation science standards’ conceptualization of evidence. J. 
Res. Sci. Teach. 55, 907–937. doi: 10.1002/tea.21468

Eberbach, C., Hmelo-Silver, C. E., Jordan, R., Taylor, J., and Hunter, R. (2021). 
Multidimensional trajectories for understanding ecosystems. Sci. Educ. 105, 521–540. 
doi: 10.1002/sce.21613

Engeström, Y. (2001). Expansive learning at work: toward an activity theoretical 
reconceptualization. J. Educ. Work. 14, 133–156. doi: 10.1080/13639080020028747

Ford, M. (2008). Grasp of practice as a reasoning resource for inquiry and nature of 
science understanding. Sci. & Educ., 17. 147–177, doi: 10.1007/s11191-006- 
9045-7 

Goldstone, R. L., and Wilensky, U. (2008). Promoting transfer by grounding complex 
systems principles. J. Learn. Sci. 17, 465–516. doi: 10.1080/10508400802394898

Gutierrez, K., Rymes, B., and Larson, J. (1995). Script, counterscript, and underlife in 
the classroom: James Brown versus Brown v. Board of Education. Harv. Educ. Rev. 65, 
445–472.

Hmelo-Silver, C. E., and Azevedo, R. (2006). Understanding complex systems: some 
core challenges. J. Learn. Sci. 15, 53–62. doi: 10.1207/s15327809jls1501_7

Hmelo-Silver, C. E., Jordan, R., Sinha, S., Yu, Y., and Eberbach, C. (2017a). “PMC-2E: 
conceptual representations to promote transfer” in ManaloE. , Y. Uesaka and C. Chinn 
(Eds). Promoting spontaneous use of learning and reasoning strategies (London, UK: 
Routledge), 276–291.

154

https://doi.org/10.3389/feduc.2023.1159558
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://doi.org/10.1002/tea.20351
https://doi.org/10.1080/07370008.2012.661815
https://doi.org/10.1111/j.1551-6709.2011.01207.x
https://doi.org/10.1111/j.1551-6709.2011.01207.x
https://doi.org/10.3102/0013189X032001009
https://doi.org/10.1080/10508406.2013.856793
https://doi.org/10.1007/s11412-020-09317-3
https://doi.org/10.1007/s11412-020-09317-3
https://doi.org/10.1080/07370000701632355
https://doi.org/10.1002/tea.21468
https://doi.org/10.1002/sce.21613
https://doi.org/10.1080/13639080020028747
https://doi.org/10.1007/s11191-006-9045-7
https://doi.org/10.1007/s11191-006-9045-7
https://doi.org/10.1080/10508400802394898
https://doi.org/10.1207/s15327809jls1501_7


Ryan et al. 10.3389/feduc.2023.1159558

Frontiers in Education 17 frontiersin.org

Hmelo-Silver, C. E., Jordan, R., Eberbach, C., and Sinha, S. (2017b). Systems learning 
with a conceptual representation: a quasi-experimental study. Instr. Sci. 45, 53–72. doi: 
10.1007/s11251-016-9392-y

Hmelo-Silver, C. E., Marathe, S., and Liu, L. (2007). Fish swim, rocks sit, and lungs 
breathe: expert-novice understanding of complex systems. J. Learn. Sci. 16, 307–331. 
doi: 10.1080/10508400701413401

Jacobson, M. J., and Wilensky, U. (2006). Complex systems in education: scientific and 
educational importance and implications for the learning sciences. J. Learn. Sci. 15, 
11–34. doi: 10.1207/s15327809jls1501_4

Jordan, B., and Henderson, A. (1995). Interaction analysis: foundations and practice. 
J. Learn. Sci. 4, 39–103. doi: 10.1207/s15327809jls0401_2

Kuhn, T. S. (1977). The essential tension: selected studies in scientific tradition and 
change. Chicago, Illinois, USA: University of Chicago Press.

Lehrer, R., and Schauble, L. (2005). “Developing modeling and argument in the 
elementary grades” in Understanding Mathemat: Cs and science matters. eds. T. A. 
Romberg, T. P. Carpenter and F. Dremock (New Jersey: Lawrence Erlbaum), 29–53.

Lehrer, R., and Schauble, L. (2006). “Cultivating model-based reasoning in science 
education” in The Cambridge handbook of the learning sciences. ed. R. K. Sawyer (New 
York, NY, USA: Cambridge University Press), 371–387.

Machamer, P., Darden, L., and Craver, C. F. (2000). Thinking about mechanisms. 
Philos. Sci. 67, 1–25. doi: 10.1086/392759

Mathayas, N., Brown, D. E., Wallon, R. C., and Lindgren, R. (2019). Representational 
gesturing as an epistemic tool for the development of mechanistic explanatory models. 
Sci. Educ. 103, 1047–1079. doi: 10.1002/sce.21516

McDonald, N., Schoenebeck, S., and Forte, A. (2019). “Reliability and inter-rater 
reliability in qualitative research: norms and guidelines for CSCW and HCI 
practice” in Proceedings of the ACM on human-computer interaction, vol. 3  
 CSCW), 1–23.

Moreland, M., Vickery, M., Ryan, Z., Murphy, D., Av-Shalom, N., Hmelo-Silver, C. E., 
et al. (2020). “Representing modeling relationships in systems: student use of arrows” in 
The Interdisciplinarity of the learning sciences, 14th International conference of the 
learning sciences (ICLS) 2020. eds. M. Gresalfi and I. S. Horn, vol. 3 (Nashville, 
Tennessee: International Society of the Learning Sciences), 1773–1774.

Murphy, D., Duncan, R. G., Chinn, C., Danish, J., Hmelo-Silver, C., Ryan, Z., et al. 
(2021). Students’ justifications for epistemic criteria for good scientific models. In 
VriesE. De, J. Ahn and Y. Hod (Eds.), 15th International conference of the learning 
sciences – ICLS 2021 (pp. 203–210). Bochum, Germany: International Society of the 
Learning Sciences.

National Research Council. (2012). A framework for K-12 science education: practices, 
crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

National Research Council. (2013). Next generation science standards: For states, by states.

NGSS Lead States. (2013). Next generation science standards: for states, by states. 
Washington, DC: National Academies Press.

Pierson, A. E., Clark, D. B., and Sherard, M. K. (2017). Learning progressions in 
context: tensions and insights from a semester-long middle school modeling curriculum. 
Sci. Educ. 101, 1061–1088. doi: 10.1002/sce.21314

Pluta, W. J., Chinn, C. A., and Duncan, R. G. (2011). Learners' epistemic criteria for 
good scientific models. J. Res. Sci. Teach. 48, 486–511. doi: 10.1002/tea.20415

Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., et al. 
(2004). A scaffolding design framework for software to support science inquiry. J. Learn. 
Sci. 13, 337–386. doi: 10.1207/s15327809jls1303_4

Ruppert, J., Duncan, R. G., and Chinn, C. A. (2019). Disentangling the role of domain-
specific knowledge in student modeling. Res. Sci. Educ. 49, 921–948. doi: 10.1007/
s11165-017-9656-9

Russ, R. S., Scherr, R. E., Hammer, D., and Mikeska, J. (2008). Recognizing mechanistic 
reasoning in student scientific inquiry: a framework for discourse analysis developed 
from philosophy of science. Sci. Educ. 92, 499–525. doi: 10.1002/sce.20264

Ryan, Z., Danish, J., and Hmelo-Silver, C. E. (2021). Understanding students’ 
representations of mechanism through modeling complex aquatic ecosystems. In VriesE. 
De, Y. Hod and J. Ahn (Eds.), Proceedings of the 15th International conference of the 
learning sciences – ICLS 2021. (pp. 601–604). Bochum, Germany: International Society 
of the Learning Sciences.

Safayeni, F., Derbentseva, N., and Cañas, A. J. (2005). A theoretical note on concepts and 
the need for cyclic concept maps. J. Res. Sci. Teach. 42, 741–766. doi: 10.1002/tea.20074

Saleh, A., Hmelo-Silver, C. E., Glazewski, K. D., Mott, B., Chen, Y., Rowe, J. P., et al. 
(2019). Collaborative inquiry play: a design case to frame integration of collaborative 
problem solving with story-centric games. Inf. Learn. Sci. 120, 547–566. doi: 10.1108/
ILS-03-2019-0024

Sandoval, W. A. (2004). Developing learning theory by refining conjectures embodied 
in educational designs. Educ. Psychol. 39, 213–223. doi: 10.1207/s15326985ep3904_3

Sandoval, W. A. (2014). Conjecture mapping: an approach to systematic educational 
design research. J. Learn. Sci. 23, 18–36. doi: 10.1080/10508406.2013.778204

Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., et al. (2009). 
Developing a learning progression for scientific modeling: making scientific modeling 
accessible and meaningful for learners. J. Res. Sci. Teach. 46, 632–654. doi: 10.1002/tea.20311

Schwarz, C. V., and White, B. Y. (2005). Metamodeling knowledge: developing students’ 
understanding of scientific modeling. Cogn. Instr. 23, 165–205. doi: 10.1207/s1532690xci2302_1

Stroup, W. M., and Wilensky, U. (2014). On the embedded complementarity of agent-
based and aggregate reasoning in students’ developing understanding of dynamic 
systems. Technol. Knowl. Learn. 19, 19–52. doi: 10.1007/s10758-014-9218-4

Vygotsky, L. S. (1978). Mind in society: development of higher psychological processes. 
Cambridge, Massachusetts, USA: Harvard university press.

Walton, D., Reed, C., and Macagno, F. (2008). Argumentation schemes. Cambridge 
University Press.

Wertsch, J. V. (2017). “Mediated action” in A companion to cognitive science. eds. W. 
Bechtel and G. Graham (Hoboken, New Jersey, USA: Blackwell Publishing Ltd), 
518–525. doi: 10.1002/9781405164535.ch40

Wilensky, U., and Resnick, M. (1999). Thinking in levels: a dynamic systems approach 
to making sense of the world. J. Sci. Educ. Technol. 8, 3–19. doi: 10.1023/A:1009421303064

Yoon, S. A., Goh, S., and Park, M. (2018). Teaching and learning about complex 
systems in K-12 science education: a review of empirical studies 1995-2015. Rev. Educ. 
Res. 88, 285–325. doi: 10.3102/0034654317746090

155

https://doi.org/10.3389/feduc.2023.1159558
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://doi.org/10.1007/s11251-016-9392-y
https://doi.org/10.1080/10508400701413401
https://doi.org/10.1207/s15327809jls1501_4
https://doi.org/10.1207/s15327809jls0401_2
https://doi.org/10.1086/392759
https://doi.org/10.1002/sce.21516
https://doi.org/10.1002/sce.21314
https://doi.org/10.1002/tea.20415
https://doi.org/10.1207/s15327809jls1303_4
https://doi.org/10.1007/s11165-017-9656-9
https://doi.org/10.1007/s11165-017-9656-9
https://doi.org/10.1002/sce.20264
https://doi.org/10.1002/tea.20074
https://doi.org/10.1108/ILS-03-2019-0024
https://doi.org/10.1108/ILS-03-2019-0024
https://doi.org/10.1207/s15326985ep3904_3
https://doi.org/10.1080/10508406.2013.778204
https://doi.org/10.1002/tea.20311
https://doi.org/10.1207/s1532690xci2302_1
https://doi.org/10.1007/s10758-014-9218-4
https://doi.org/10.1002/9781405164535.ch40
https://doi.org/10.1023/A:1009421303064
https://doi.org/10.3102/0034654317746090


Frontiers in Education 01 frontiersin.org

Exploring system dynamics of 
complex societal issues through 
socio-scientific models
Li Ke 1, Eric Kirk 2, Rebecca Lesnefsky 2 and Troy D. Sadler 2*
1 College of Education and Human Development, University of Nevada, Reno, NV, United States, 
2 University of North Carolina at Chapel Hill, Chapel Hill, NC, United States

Research on socio-scientific issues (SSI) has revealed that it is critical for learners 
to develop a systematic understanding of the underlying issue. In this paper, 
we explore how modeling can facilitate students’ systems thinking in the context of 
SSI. Building on evidence from prior research in promoting systems thinking skills 
through modeling in scientific contexts, we hypothesize that a similar modeling 
approach could effectively foster students’ systematic understanding of complex 
societal issues. In particular, we  investigate the affordances of socio-scientific 
models in promoting students’ systems thinking in the context of COVID-19. 
We  examine learners’ experiences and reflections concerning three unique 
epistemic features of socio-scientific models, (1) knowledge representation, 
(2) knowledge justification, and (3) systems thinking. The findings of this study 
demonstrate that, due to the epistemic differences from traditional scientific 
modeling approach, engaging learners in developing socio-scientific models 
presents unique opportunities and challenges for SSI teaching and learning. It 
provides evidence that, socio-scientific models can serve as not only an effective 
but also an equitable tool for addressing this issue.

KEYWORDS

socio-scientific issues (SSI), modeling, systems thinking, epistemology, science 
education

Introduction

In the 21st century, we are confronted with a myriad of complex societal issues such as 
climate change that are multifaceted and lack universally agreed-upon solutions. These issues 
not only impact our day-to-day lives but also have long-lasting effects on the environment and 
society. As educators, we need to prepare future generations to navigate and respond to these 
complex issues as responsible citizens (De Boer, 2000). Ideally, students should develop the skills 
necessary to critically evaluate scientific information, understand the social and ethical 
implications of scientific advancements, and engage in informed decision-making. However, 
science standards worldwide often fall short in promoting or achieving the full measure of these 
aims (Feinstein and Kirchgasler, 2015). A primary focus on canonical scientific knowledge and 
practices fails to address the need for learners to grapple with the real-world complexities that 
accompany complex societal issues.

Over the past two decades, researchers have explored socio-scientific issues (SSI), complex 
societal issues with connections to science knowledge, as meaningful learning contexts to 
promote scientific literacy (Sadler, 2009). Research on SSI has revealed that a significant 
challenge for learners is to appreciate the complexity of the systems associated with these issues 
(Sadler et  al., 2007; Zeidler, 2014). It is essential for learners to develop a systematic 
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understanding of the issue, considering both scientific and social 
dimensions (e.g., cultural, political, economic, and ethical factors) and 
the system dynamics within and between dimensions for informed 
decision-making (Ke et al., 2021).

The notion of systems thinking is not new to science education 
(Yoon et al., 2018). Systems thinking entails the ability to recognize 
patterns, interconnections, and feedback loops within complex 
systems, as well as the capacity to predict how alterations in one part 
of the system might impact the whole (Hmelo et al., 2000). Systems 
thinking is an important skill in STEM education that learners need 
to master to engage in scientific and engineering practices (Yoon, 
2008). Prior research has found that engaging students in modeling 
practice can promote their systems thinking skills (Stratford et al., 
1998; Hmelo-Silver et al., 2007; Dickes and Sengupta, 2013; Nguyen 
and Santagata, 2021). By engaging students in the creation, revision, 
and manipulation of models representing complex natural systems, 
they are expected to develop an understanding of the underlying 
structure and dynamics of the system through examination of the 
relationships and interactions among various components (Bielik 
et al., 2022).

It is important to note that prior research on system models has 
predominantly focused on exploring systems thinking within the 
context of science disciplines. Nevertheless, there are significant 
differences between systems from a science perspective and those 
involving social components. Therefore, it is critical to consider 
unique attributes of systems that involve science and social dimensions 
when teaching systems thinking in the context of SSI, as they differ 
markedly from systems exclusively defined by science.

In this paper, we explore how modeling can facilitate students’ 
systems thinking about complex societal issues. Building on evidence 
from prior research in promoting systems thinking skills through 
modeling in scientific contexts, we hypothesize that a similar modeling 
approach could effectively foster students’ systematic understanding 
of complex societal issues. In our previous work, we introduced socio-
scientific models that incorporates social factors and address the 
learning needs of students making sense of SSI (Ke et al., 2021). Here, 
we advance this work and further investigate the affordances of socio-
scientific models in promoting students’ systems thinking in the 
context of SSI. Specifically, we  examine learners’ experiences and 
reflections concerning the unique features of socio-scientific models 
that distinguish them from scientific models.

From the outset, we aim to clarify the terms used in this paper 
related to model categorization, given the lack of consensus in the 
field. A model can be classified into various types depending on the 
criteria used. For instance, a NetLogo (Wilensky, 1999) simulation on 
predator–prey relationships could be  viewed as a computational 
model (vs. a diagrammatic model), a system model (vs. a mechanistic 
model), a scientific model (vs. a socio-scientific model), or an agent-
based model (vs. a system dynamics model). Thus, it is crucial to 
explicitly define how we categorize models.

Aligned with our prior work, we categorize models into two broad 
categories: scientific models and socio-scientific models (Ke et al., 
2021). This distinction is important because most models familiar to 
the science education and learning sciences community are scientific 
models. However, socio-scientific models, which consider social 
dimensions, are vital when reasoning about complex societal issues. 
We further categorize models based on their primary epistemic goals, 
for either scientific or socio-scientific models. For example, scientific 

models can be mechanistic models, system models, or data models, 
among others (Ke et al., 2021). In contrast, work on socio-scientific 
models is still emerging, and further categorization has not been 
attempted. The socio-scientific models used in our work have a 
primary epistemic goal of understanding complex issues from a 
systems perspective, making them system models within the broader 
socio-scientific model category.

Given the topic on systems thinking and modeling in this 
collected issue, we focus on system models in the scientific model 
category and system models in the socio-scientific model category in 
this paper. Hereafter, we use “system models” to refer to scientific 
system models and “socio-scientific model” to refer to socio-scientific 
system models, as the term “system model” in the literature typically 
refers to scientific system models.

In the following sections, we first briefly review relevant prior 
work in the areas of modeling, systems thinking, and SSI. We then 
highlight three major differences between socio-scientific models and 
system models. Next, we  present an exploratory study of college 
students’ engagement in socio-scientific modeling in the context of 
COVID-19. We  conclude the paper by discussing implications of 
using socio-scientific models in classroom instruction.

Background

Scientific models and system thinking

In science, models play a crucial role in developing knowledge and 
theories that guide scientific inquiry and evidence-based reasoning 
(Nersessian, 2008). Models are simplified representations that 
visualize, describe, explain, and predict real-world phenomena or 
systems. Modeling is an epistemic practice that involves creating, 
revising, testing, and evaluating models. In K-12 science classroom, 
models and modeling are increasingly emphasized as effective 
pedagogical tools to help learners gain valuable insights into the 
practices and norms of scientists’ work (Lehrer and Schauble, 2006; 
Windschitl et al., 2008; Schwarz et al., 2009; Manz, 2012; Krist et al., 
2019; Ke and Schwarz, 2021). With appropriate instructional support, 
learners are able to develop and use models to make sense of 
underlying mechanisms and relationships within the natural world.

Models can take a variety of forms, including drawings, physical 
objects, computer simulations, mathematical equations, and more—each 
serving a unique purpose and providing insights into the underlying 
phenomena or systems (Schwarz et al., 2009). In our previous work, 
we argue that instead of focusing on their forms, it is useful to distinguish 
models based on their epistemic goals (Ke et al., 2021). This approach 
acknowledges the intrinsic link between the nature of model and its 
intended purpose in the process of scientific inquiry.

A common type of models in K-12 science education is system 
models that describe the constituent components and their 
interactions within a system (National Research Council, 2012). The 
primary epistemic goals of a system model are to understand the 
organization and predict the behaviors of the system (Assaraf and 
Orion, 2009; Bielik et al., 2022). Models can be particularly valuable 
in understanding and predicting behaviors of complex systems, such 
as ecosystems and cellular networks. A complex system comprises 
interacting components at multiple interacting levels (Wilensky and 
Resnick, 1999), and its aggregate nature cannot be easily predicted by 
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merely examining the individual components in isolation. Prior 
research on science education has revealed that models are effective 
sensemaking tools for learners, helping them recognize two important 
features that characterize complex systems: causality and emergence 
(Yoon and Hmelo-Silver, 2017).

A complex system can have multiple causal factors that occur at 
different levels. Simple causal relationships often cannot account for 
the complex causality inherent in complex systems. Therefore, 
students often miss the connectedness and complex causal 
relationships within the system (Perkins and Grotzer, 2000). Hmelo-
Silver and Pfeffer (2004) argued that a structure-behavior-function 
(SBF) model could help learners construct explanatory mechanisms 
about complex systems. They found that experts’ behavioral and 
functional understanding served as a “deep principle” to organize their 
knowledge of complex systems. In contrast, novices like middle school 
students tended to focus only on the structure of a system. In a proof-
of-concept study, Liu and Hmelo-Silver (2009) demonstrated that the 
SBF model could promote complex systems understanding, especially 
with respect to non-salient function and behaviors.

Emergence, another central concept of complex systems, is 
challenging for students to understand (Jacobson, 2001). This difficulty 
arises because emergent behaviors are often counterintuitive in nature 
and require thinking beyond the simple cause-and-effect relationships 
students are familiar with (e.g., feedback loops). Understanding 
emergence also calls for thinking at multiple levels, such as micro 
(individual), meso (clusters), and macro (the entire system). To address 
this challenge, Wilensky and his colleagues have extensively researched 
student learning about complex systems within computer-based multi-
agent modeling environments such as NetLogo. NetLogo provides an 
interactive graphical environment that allows learners to visualize 
system components, explore their interactions, and observe emergent 
patterns in real-time. It supports the representation and analysis of 
multiple levels of a complex system, enabling students to explore 
connections between individual components and emergent system 
behaviors (Wilensky and Reisman, 2006).

Many complex systems can be viewed as causal, emergent, or 
both, depending on the levels of the systems being examined (Hmelo-
Silver and Azevedo, 2006). This dual nature highlights the importance 
of understanding both the causal relationships and emergent 
properties inherent in complex systems. Regardless of the perspective, 
a modeling approach has been demonstrated to effectively support 
learners in developing system thinking skills that might otherwise 
be difficult to acquire.

Socio-scientific models and systems 
thinking about SSI

Socio-scientific issues, such as climate change, can be viewed as 
complex social systems, as they encompass multiple components that 
span both scientific and social dimensions (Ke et al., 2020). These 
components interact at different levels, ranging from individual (e.g., 
personal choices and behaviors) to community (e.g., community-
shared values and practices) and societal scales (e.g., national policies 
and economic systems). The interconnectedness of these components 
across different levels creates a dynamic, complex system that 
demands a comprehensive understanding of the underlying causal 
relationships and emergent properties. By considering SSI as complex 

social systems, learners can better grasp the multifaceted nature of the 
issues and make informed decisions on the issues (Sadler et al., 2007).

Previous research on SSI has indicated that students often struggle 
to fully appreciate the complexity of the issues from a systems 
perspective (Hogan, 2002; Sadler et al., 2007). Instead of recognizing 
the multidimensional nature of SSI under study, students tend to pose 
relatively simple solution to SSI indicative of simple causal reasoning. 
They also find it challenging to take into account the social aspects of 
the issue. In fact, many teachers either feel uncomfortable about 
incorporating social dimensions into their teaching or are unsure of 
how to do so effectively (Tidemand and Nielsen, 2017; Hancock et al., 
2019; Friedrichsen et al., 2021; Ke et al., 2023). Given the demonstrated 
success of modeling approaches to promote systems thinking across 
various scientific disciplines, it is worth exploring how the use of 
models could similarly enhance students’ systems thinking about SSI.

A growing body of literature has begun to explore the integration 
of modeling and SSI (Evagorou and Puig-Mauriz, 2017; Zangori et al., 
2017). For example, in our previous work, we found that high school 
students, with appropriate instructional and curriculum supports, 
developed robust scientific understanding about carbon cycling and 
climate change through modeling (Zangori et al., 2017). However, 
much of the research in the area, including our prior work, focuses on 
using scientific models to promote student understanding of scientific 
knowledge within the context of SSI, rather than using models to 
foster students’ systems thinking about SSI.

In other words, most of the modeling-in-the-context-of-SSI work 
that has been conducted thus far does not directly support learners in 
connecting science to their everyday lives, much like traditional science 
teaching approaches. It falsely assumes that students, once equipped 
with relevant scientific knowledge, can readily apply it to real-world 
problems. As such, in our recent work, we proposed a new type of 
modeling, socio-scientific models, to leverage students’ prior experience 
and knowledge about the social dimensions of underlying issue as 
students develop models in the context of SSI (Ke et al., 2021). The goal 
was to encourage students to construct new knowledge about how these 
issues connect to their own lives. Socio-scientific models are similar to 
system models in that they both involve systems thinking. However, 
there are subtle yet important epistemic differences between the two due 
to the introduction of social elements. It is crucial to be aware of how 
these epistemic differences might affect SSI teaching and learning.

Epistemic differences between 
socio-scientific models and system 
models

Investigating the epistemic dimensions of modeling practices is 
essential for fostering meaningful science teaching and learning (Pluta 
et al., 2011; Berland et al., 2016; Ke and Schwarz, 2021). It sheds light 
on how learners construct, evaluate, and validate scientific knowledge 
through modeling. Likewise, it is important to understand how 
students generate and justify their knowledge around SSI using socio-
scientific models. Socio-scientific models incorporate social 
components, which calls for a different set of epistemic knowledge 
compared to system models or other models in the disciplines of 
science. In this section, we highlight three epistemic aspects where 
socio-scientific models differ from systems models, (1) knowledge 
representation, (2) knowledge justification, and (3) systems thinking.
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Knowledge representation

A key epistemic consideration for any type of model is 
determining the relevant components or variables to represent the 
underlying phenomena or systems. With system models, learners 
must consider epistemic questions such as, what are the system’s 
boundary? Which components or variables are important for 
representing and simplifying the system under study? These questions 
apply regardless of the type of systems being examined. For socio-
scientific models, learners need to ask similar epistemic questions. 
What scientific and social components are relevant and important for 
the issue I am investigating?

Incorporating social dimensions in socio-scientific models is not 
trivial. It fundamentally changes how learners perceive the legitimacy 
of knowledge in science classrooms. Socio-scientific models encourage 
learners to integrate components from various disciplines such as 
policy, economics, or sociology, based on their relevancy to the issue. 
For example, when modeling climate change, learners might consider 
the impact of government policies on carbon emissions or the 
economic implications of transitioning to renewable energy sources.

Contrasting with system models that primarily value scientific 
ideas and principles, socio-scientific models rely on learners’ 
understanding of various subject areas. This interdisciplinary 
modeling approach allows learners to explore the connections 
between science and other domains within complex societal issues. 
Consequently, scientific knowledge is not treated in isolation; instead, 
it is constructed and represented in relation to knowledge from other 
social disciplines, promoting a more integrated understanding of the 
issue being studied.

As such, when developing socio-scientific models as opposed to 
system models, learners must expand their knowledge representation 
beyond purely scientific dimensions. Not only do they need to ask 
themselves, “What scientific components do I need to include in my 
model?” but also delve into social aspects, asking, “What social 
components are relevant for the issue? How do the scientific 
components relate to the social components?”

Knowledge justification

Another important epistemic aspect of modeling is knowledge 
justification, which involves evaluating the validity of the knowledge 
being represented in a model. How can one determine if a model is 
correct? In system models, learners are expected to use scientific 
evidence and reasoning to justify their choices of components, 
relationships, and structure. In contrast, when developing socio-
scientific models, learners must also consider social factors, ethical 
and moral implications, and multiple perspectives from different 
stakeholders. Therefore, socio-scientific modeling requires learners to 
provide justifications based on a broader range of evidence that may 
also include personal experiences, narratives, and values.

Moreover, knowledge justification in modeling not only concerns 
what constitutes evidence but also involves determining the robustness 
of that evidence. In system models, the evidential criteria are 
predominantly focused on how well the model is grounded within 
empirical data, how well it aligns with established scientific principles 
and theories, and how accurate it predicts system behaviors under 
various conditions. However, in socio-scientific models, the evidential 

criteria are more complex. In addition to evaluating empirical 
evidence based on different methodological traditions (e.g., 
qualitative, quantitative), learners also need to take into account 
factors such as how well the evidence represents diverse perspectives 
and marginalized communities, whether the evidence aligns with 
generally accepted ethical standards and moral principles, and how 
relevant or applicable the evidence is to the specific issues under study.

Take the issue of water scarcity for an example. When constructing 
socio-scientific models, learners may need to rely on various types of 
evidence to justify their models. This can include quantitative data 
such as precipitation and groundwater levels, as well as qualitative data 
gathered from interviews with local residents and experts. 
Furthermore, learners may also need to consider the ethical 
implications of different water management strategies, such as water 
privatization, and assess their impacts on marginalized populations. 
The justification process requires learners to apply different evidential 
criteria based on the type of evidence used. Due to the diverse 
evidential criteria involved in socio-scientific models, it can 
be  challenging for learners to navigate them without adequate 
instructional support. Prior research in science education has 
highlighted the role of uncertainty as a productive pedagogical 
construct to promote students’ disciplinary understandings (Manz 
and Suárez, 2018; Chen et al., 2019). We argue that making explicit the 
uncertainty inherent in social sciences due to various evidential 
criteria used in socio-scientific models could likewise enhance 
learner’s appreciation of the complexity of societal issues.

Systems thinking

One epistemic aspect specific to socio-scientific models is systems 
thinking from a broader social science perspective. The goal of this 
form of thinking is to understand complex societal issues by 
examining interrelationships, feedback loops, and emergent properties 
within social, economic, and political systems, where human behavior, 
values, and decision-making are crucial factors. Systems thinking in 
socio-scientific models differs from systems thinking in scientific 
disciplines due to the contrasting epistemic foundations. While 
scientific disciplines primarily emphasize objectivity, quantifiability, 
and replicability, social sciences prioritize diverse perspectives, 
qualitative data, and the complexities of human interactions within 
systems. So how might systems thinking look different in socio-
scientific models?

The levels in a socio-scientific model are often different from those 
in a system model due to the inclusion of social components and 
human involvement. Socio-scientific models often feature a multi-
level structure, with personal, community, and societal levels. 
Different relationships can exist at each level, making it challenging to 
predict behaviors across them. The multi-level nature of systems in 
socio-scientific models is closely tied to values and priorities, which 
are essential factors in decision-making for SSI. For instance, when 
addressing air pollution, an individual may choose biking based on 
their personal values and priorities. However, this choice does not 
guarantee a community investment in bike lanes, as it also depends on 
community values and local resources. At the society level, 
governments might implement loose emission standards for vehicles 
to stimulate the economy, which prioritizes short-term economic 
gains over long term environmental and public health concerns.
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Another area where socio-scientific models differ from systems 
models in terms of systems thinking is causality. While complex 
causality can be involved in system models, as noted above, causal 
relationships in socio-scientific models are often more nuanced. This 
is due to potential biases and assumptions held by researchers when 
interpreting causal relationships in social sciences, even when 
established through rigorous methods like experimental designs or 
advanced statistical techniques. Furthermore, causal relationships in 
social sciences can be  highly context-dependent, varying across 
different populations, cultures, and time periods. Thus, it is essential 
to consider the specific context in which causal relationships 
are established.

In many instances, establishing causality is challenging, leading to 
a focus on correlation rather than causation. While correlations do not 
necessarily imply causation, they can still provide insights into how 
variables are connected and interact within the system. For instance, in 
the context of public health, there is often a correlation between 
socioeconomic status and overall health outcomes. Although it may not 
be possible to establish a causal relationship between these factors, 
understanding the correlation can help identify patterns and inform 
policy decisions. Additionally, recognizing correlation necessitates an 
understanding of uncertainty. Uncertainty refers to the degree of doubt 
in the relationships between the variables. By quantifying uncertainty, 
we can better understand the limitations of the correlation and make 
more informed decisions based on the available data.

An exploratory investigation

In the previous section, we examined three epistemic differences 
between socio-scientific models and system models from a conceptual 
standpoint. We  argue that these differences can have important 
implications for SSI teaching and learning. To further this work, 
we  conducted an exploratory study to investigate how learners 
respond to these three epistemic differences. We aimed to gain insights 
into the challenges and opportunities learners encounter while 
engaging in socio-scientific modeling activities. Specifically, we ask the 
research question: How do learners develop a socio-scientific model on 
COVID-19 with respect to knowledge representation, knowledge 
justification, and systems thinking?

The findings from this exploratory study will contribute to our 
understanding of how learners make sense of and coordinate both 
scientific and social components of the underlying issue within the 
context of socio-scientific models. Additionally, the findings will 
inform our design of socio-scientific modeling activities, making them 
more meaningful and accessible for learners. This study is exploratory 
because little research has been conducted on socio-scientific models 
and we  focus specifically on learners’ use of epistemic ideas 
represented in in socio-scientific models. Although the sample size is 
small, the goal is not to make generalized claims; instead, we aim to 
provide empirical evidence that illustrates what these epistemic ideas 
might look like in the context of socio-scientific models.

Research context and participants

This study investigated collaborative construction of socio-
scientific models among six female college-age students at a large 

public research university in the southeastern United  States. 
Participants were recruited through convenience sampling and 
consisted of three pairs: one consisting of an African American female 
(Tia, a psychology major) and a Latina (Clara, an English major), and 
two pairs of white high school graduates (Sally & Stephanie, Aria & 
Chloe). All pairs know each other well. The study took place on the 
university campus spring 2022 and it was not associated with any 
science-related coursework. The study design involved an initial 
30-min session where the first author guided each pair in constructing 
a socio-scientific model on local river water quality, familiarizing 
them with the processes and norms (e.g., adding arrows to indicate 
the direction of causal relationships) involved. The participants were 
then asked to collaboratively develop a COVID-19 socio-scientific 
model on a whiteboard in approximately 20 min. During the process, 
the participants were encouraged to think aloud and to discuss with 
each other what to and not to include in their models. Upon 
completion, each student participated in a semi-structured interview, 
reflecting on their experiences in constructing the socio-
scientific models.

Socio-scientific models

We selected COVID-19 as the focal issue for the socio-scientific 
models, assuming that participants would be  familiar with both 
scientific and social dimensions of the issue. This choice was 
appropriate, as no instructional intervention about the focal issue was 
involved, and participants had no prior experience with socio-
scientific models. As a result, we  designed the initial session to 
familiarize participants with this type of model.

During the initial session, we  provided scaffolds to support 
learners in the following aspects. We divided the process of creating 
socio-scientific models into two steps, (1) identifying key factors 
relevant to the system and (2) establishing relationships between these 
factors. When identifying key factors, we  prompted learners to 
consider both scientific and social components. We illustrated that 
pesticides washing into a river, a scientific component, could be one 
factor affecting water quality. In turn, the water quality would 
influence the money spent cleaning the river, an economic component 
relevant to the issue. Figure 1 was one of the slides used during the 
initial session.

We then demonstrated that arrows could be used to represent 
causal relationships. We also informed learners that not all factors had 
obvious causal relationships; some factors might be closely correlated. 
To encourage learners to consider the system dynamics of the 
underlying issue, we introduced conventions of “+” and “-” signs to 
represent positive and negative causal/correlation relationships. For 
instance, a negative sign between pesticides washing into a river and 
water quality indicates that an increase in pesticide use will result in 
decreased water quality. This approach prompted learners to think 
about causal or correlational relationships in a semi-quantitative 
manner. After familiarizing the participants with the process and 
conventions, we asked them to identify factors and relationships they 
deemed significant for the issue of water quality on their own.

For the COVID-19 socio-scientific model, we gave participants 
the driving question, “how has COVID-19 impacted your life?” 
We  encouraged participants to consider relevant factors that 
encompassed both scientific and social components. Additionally, 
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we provided participants with the component, COVID-19 infection 
rates, at the center of the whiteboard, allowing them to start creating 
the model with factors affected or were affected by COVID-19 
infection rates.

Data sources and analysis

The primary data sources for this study were video recordings 
of participants working on their COVID-19 socio-scientific 
models and individual interviews. The video recordings captured 
the detailed process of creating socio-scientific models and the 
negotiation between pairs. The interviews focused on participants’ 
reflections concerning the epistemic dimensions of the modeling 
process, as well as the perceived affordances and challenges of 
socio-scientific models. We  selected these sources as they 
provided evidence of participants’ epistemic ideas used during the 
socio-scientific modeling process. The video recordings offered 
in-the-moment data as participants were encouraged to think 
aloud. The interviews provided reflective data on students’ 
epistemic ideas, allowing us to inquire about ideas not explicitly 
mentioned during the session. Both sources were transcribed for 
data analysis. We also used the socio-scientific models participants 
developed as supplementary evidence to inform and triangulate 
our analysis.

To address the research question, we compared and contrasted 
data among the three pairs concerning knowledge representation, 
knowledge justification, and systems thinking in the socio-scientific 
modeling activities. We  used the constant comparative approach 
(Glaser and Strauss, 1967) to develop codes that were subsequently 
modified and aggregated into emergent themes. Given the small 

sample size and the exploratory nature of the study, we do not present 
the frequency of the emerging themes. Instead, in the following 
findings section, we highlight the patterns observed across the three 
pairs and trends that were unique to specific pairs.

Findings

Knowledge representation
Regarding knowledge representation, all three pairs incorporated 

various social factors into their COVID-19 models, including 
economic, educational, public health, and policy elements. For 
example, Tia and Clara from Pair 1 incorporated employment, mental 
health, international travel policies, and remote teaching into their 
model (see Figure 2).

Additionally, the interview data revealed that participants chose 
these social components because they were personal and relevant to 
them. For instance, Sally and Stephanie from Pair 2 incorporated 
virtual schooling into their model because they lived in the same 
area and had similar experiences with online learning. Likewise, 
Chloe from Pair 3 included lockdown, quarantine, and labor 
shortage in their model because she had recently contracted 
COVID-19 and her family’s small business was significantly affected 
by labor shortages.

One interesting pattern we observed was that most factors identified 
by the participants were social components. Only Pair 3 included a few 
scientific components, such as vaccines and testing, and their potential 
impact on reducing COVID-19 infection rates. While it was possible 
that participants were more familiar with the social dimensions of 
COVID-19 (compared to other issues such as climate change), based on 
the data, we hypothesized that this pattern might be attributed to the 

FIGURE 1

The slide used in the initial session to introduce socio-scientific models.
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participants’ backgrounds. The excerpt below, from Clara’s interview, 
reveals that they did not include scientific components mainly due to 
their humanities backgrounds. Instead, they chose to include social 
components that were relevant to them.

I think if you  would have asked two different people, maybe 
someone who was like in a science field, they would go into how 
the infection rate affects your health wise. But because Tia and 
I are kind of both into like humanities, we did focus. And we're 
both people of color. So, we  both like wrote down ways that 
affected us and that's why, and our things are kind of unique to 
our experiences. (Clara, Pair 1)

Knowledge justification

Regarding knowledge justification, participants leveraged various 
sources of evidence to establish relationships within their models. 
Personal narratives emerged as the primary source upon which 
participants relied. As these narratives were based on their own 
experiences, participants felt it was legitimate to include them in the 
model. For instance, in Pair 1, Clara drew from her experience of 
losing a family member to justify a relationship between mortality 
rates and travel ban, and how these travel bans impacted people’s lives 
and cultures.

Clara:  families had lost people, family members. I know that 
like particularly for –.

Tia: So you want another one to be like mortality rates?
Clara: Yeah, could you write that?
Tia: Yeah, mortality, okay, what do you want to say about that?

Clara:  I know that I did have family members who passed 
away in other countries because, um - and you just - 
you  are not able to  - you  are not able to, I  do not 
know, travel.

Tia:  Oh, that could be another one, the traveling. There were 
like a lot of travel bans.

Clara:  When my uncle died, we were not able to go to Mexico, 
even his family were not even able to be with him.

…
(Towards the end of the session, when asked to explain 

the model)
Clara:  We  tried to incorporate mortality rates into that 

because that is an immediate effect of the infection 
rates, sadly. Some of the biggest issues with not being 
able to travel is that you  cannot directly help with 
funeral arrangements. And we know in certain cultures 
that’s a really big deal, especially doing it properly.

Our findings revealed that, across all three pairs, participants were 
often uncertain about many of the relationships they identified in their 
models if they were not related to their personal experiences. 
Uncertainty was a common theme among the participants. As one 
participant reflected, “a challenge (of creating a socio-scientific model) 
would be  the lack of credibility.” Participants expressed a lack of 
confidence in the relationships, mainly because they had not 
conducted extensive research on the topic and might have only 
encountered the information through news sources or social media 
platforms like TikTok.

Furthermore, some of the uncertainty expressed by participants 
originated from the complex nature of epistemic knowledge in 

FIGURE 2

Tia and Clara’s COVID-19 socio-scientific model.

162

https://doi.org/10.3389/feduc.2023.1219224
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Ke et al. 10.3389/feduc.2023.1219224

Frontiers in Education 08 frontiersin.org

FIGURE 3

Sally and Stephanie’s COVID-19 socio-scientific model.

social sciences. For example, Chloe from Pair 3 described her 
struggle with establishing relationships in their model during 
her interview:

Like with lockdowns, we could not quite place like do we put it as 
a cause or an effect. I guess there’s room for, subjectivity or opinions, 
kind of, just in like where everything is. And also, I do not know, 
I  think you  could argue some of these things are like they could 
be positive or negative, instead of just one or the other. (Chloe, Pair 3)

In the excerpt, Chloe mentioned the “subjectivity” involved in 
determining relationships among social components, stating, “just like 
where everything is.” To her, the causal relationships were not apparent 
among some the components they had selected.

For the relationships in which participants felt confident, the 
primary epistemic criterion used by all participants was whether it 
made sense to them. For example, Stephanie from Pair 2 remarked, 
“We just kind of knew that, okay, these things are related. Like it makes 
sense. We only stuck with what made sense to us. So in our minds, it 
was right.” Likewise, Aria from Pair 3 stated, “I just pictured in my 
brain, making sure it makes sense. And if it does not, then I try and 
find something different.”

Systems thinking

Regarding system thinking, most participants noted that one of 
the affordances of socio-scientific models was their ability to help 
them see the connections among relevant components that they might 
otherwise not consider. The following quote from Tia’s interview is 
representative of how participants perceived the advantage of socio-
scientific models:

If I hadn't seen it all put together like this, I wouldn't have been 
able to make the connections where these two things (work 
culture and public discourse) are connected to mental health, and 
now it's visually here so I can see that. (Tia, Pair 1)

Furthermore, with the scaffolds of positive and negative signs, all 
participants were able to reason, to varying degrees, about the systems 
dynamics of the underlying issue. For instance, Stephanie from Pair 2 
explained their model (see Figure 3) during the session:

Infection rates, we  start with the basics, you  know, social 
distancing, mask mandates, businesses closing down, and 
quarantine. And those led into bigger issues. So, quarantine led to 
mental illness because you’re away from people, your mental 
health deteriorates. And then social distancing led to relationship 
impact, which was also connected to mental illness.

As evident in the excerpt, Stephanie was able to use a chain of 
reasoning to explain how an increase in infection rates could result in 
mental illness through intermediate factors such as quarantine and 
social distancing policies.

Another common pattern we  observed was how participants 
considered factors and relationships at different levels: personal and 
family, community and specific groups of people, and national or 
international societal level. Interestingly, each pair seemed to have 
unique approaches. For pair 1, Tia and Clara, they started with the most 
personal and relevant factors, themselves and their family members, and 
they moved on to groups of people with whom they could resonate. 
Below is the excerpt from Tia’s interview when asked about her strategy 
to create the model:
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I went with the most important ways like the biggest impacts that 
it had. I started with myself and education, because that's just the 
biggest thing I have going on right now. And then, I went from like 
family members which is financial, which is the most important 
thing that my mom has going on. And then I went from there.

I felt that we got really personal. We did reflect a lot on what 
affected us more. So, what affected other populations that 
we weren't familiar with? We had a lot to say about the housing 
and mental health, especially as college students who aren't from 
affluent neighborhoods or anything. So, we definitely had a lot to 
say about that, because it was more personal. (Tia, Pair 1)

In contrast, Aria and Chloe from Pair 3 took an opposite 
approach. While still drawing from their personal experiences, they 
were hesitant to include too many personal level components in the 
model. The excerpt below explains their rationale for emphasizing 
more on the societal level:

I think, overall, we were listing like scientific explanations, and not 
as much personal. I guess I was able to think back to my time. But 
also, at the same time, we didn't list that many personal things, so 
I didn't see my experiences in it as much. I think we were listing 
more general, like the world, the impacts on society actually. 
(Aria, Pair 3)

It appeared that Aria and Chloe’s focus on the societal level was 
because they believed it might be more “scientific.” This also reflects 
that they might prefer a large sample size over personal experiences 
based on their evidential criteria.

Indeed, there seemed to be a tension between whether to focus more 
on the personal level or the larger societal level. What makes this complex 
is that different levels also involve different values and perspectives. For 
instance, Clara from Pair 1 made the following comment, highlighting the 
tension she felt when trying to make the model personal, while also 
wanting to account for various perspectives and experiences:

 It was difficult to decide whether it was a positive or a 
negative relationship. We  can't really see it just from our 
perspective, as we  mentioned earlier. It was kind of thinking 
outside of yourself, like, the unemployment that we mentioned, 
and the funding received for that. Well, for some families who are 
already making like maybe underneath what is deemed as the 
poverty line, that would have been a humongous help, because 
that's a grant that's more than what you've actually been working 
towards. But for other families, that probably just wasn't enough. 
So, it really depends on the situation. And we  tried to not 
be biased, because we tried to make it personal. But at the same 
time, there are so many people in this world affected by the 
pandemic, and we really can't account for all of their perspectives 
and experiences just from our generalizations. (Clara, Pair 1)

For Clara, her struggle with the contextual nature of some of her 
claims highlights the epistemic difference between science and social 
sciences. It is likely that she was not very familiar with the context-
based aspect of social sciences. Sally from Pair 2 shared the same 
sentiment, expressing that she could not speak for something that she 
had not personally experienced. She noted, “The things that were not 

as directly affecting me like poverty, I wasn’t affected by poverty. My 
parents did not lose their jobs. I do not know. It felt like, I cannot 
really speak for this. But this is just like from outward looking in.”

Discussion and implication

The findings of this study demonstrated that, due to the epistemic 
difference from traditional scientific modeling approach, engaging 
learners in developing socio-scientific models presents unique 
opportunities and challenges for learners for SSI teaching and 
learning. The inclusion of social elements enabled learners to leverage 
their personal experiences, values, and perspectives into the modeling 
process. At the same time, socio-scientific models can be challenging 
for learners. Being unfamiliar with certain epistemic traditions in 
social sciences hindered learners from fully realizing the potential of 
socio-scientific models and using them to make informed decisions 
on issues that mattered to them. In the following section, we discuss 
how socio-scientific modeling can promote diversity, equity, and 
inclusion in science classrooms and what additional supports are 
needed for socio-scientific modeling to be meaningful for learners. 
We conclude the section with suggestions for future research.

Socio-scientific models to promote 
diversity, equity, and inclusion

An important finding of the study was the critical role personal 
experiences or narratives play in the development of socio-scientific 
models. This was evident in all three epistemic aspects of the model-
building process. During knowledge representation, most learners 
selected social components based on their personal experiences. In 
knowledge justification, the majority of learners used personal 
experiences as evidence to justify their model components. Regarding 
systems thinking, some learners preferred to start with components 
and relationships at the personal level and then progressed towards 
community and societal levels.

This emphasis on learners’ personal experiences makes socio-
scientific models a productive approach for promoting diversity, 
equity, and inclusion (Schwarz et al., 2022). Fundamentally, socio-
scientific models disrupt the traditional notion of legitimate 
knowledge and embrace diverse voices and perspectives in science 
classrooms. By highlighting personal experiences, socio-scientific 
models empower learners from marginalized communities to 
contribute their unique perspectives and knowledge to classroom 
discourse, as exemplified in Tia and Clara’s case. This approach can 
also enrich the learning experience for all learners by exposing them 
to a broader array of viewpoints and experiences.

From a systems thinking perspective, socio-scientific models can 
also promote science learning for social-justice. By exploring complex 
societal issues at the community level, students can gain a better 
understanding of the systemic factors contributing to structural 
inequalities affecting marginalized communities and work towards 
developing potential solutions. For instance, in their socio-scientific 
models, our participants identified historically marginalized 
individuals such as people living in poverty, immigrants with distant 
families, and those who lost their jobs. and how the pandemic 
disproportionally affected these groups. Focusing on social justice 
issues within the context of SSI can foster a more inclusive and 
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equitable learning environment while also promoting empathy and 
civic engagement among students (Calabrese Barton et  al., 2021; 
Rawson Lesnefsky et al., 2023).

Additional supports for socio-scientific 
modeling

The present study showed various challenges learners face as they 
engage in socio-scientific modeling. Additional supports are needed 
to further scaffold the modeling process and make it meaningful for 
all learners. One major challenge learners encountered was related to 
the epistemic traditions in social sciences. Participants from all three 
pairs were unfamiliar with, and therefore uncomfortable with the 
uncertainty involved in determining the relationships among social 
components and the tensions in balancing multiple perspectives at 
different systematic levels.

As such, learners need supports in navigating these epistemic ideas 
that may differ significantly from those they are accustomed to in 
science. For example, providing explicit instruction on how personal 
narratives, qualitative data, and different perspectives are valued in 
social sciences could be potentially helpful. In addition, learners would 
benefit from understanding how uncertainty or probability plays a role 
in our comprehension of correlational relationships, and how these 
relationships can be highly context specific.

Another significant challenge learners faced was a lack of sufficient 
evidence to justify their models. This, in part, contributed to the 
uncertainty learners experienced as they determined the relationships 
among components. Participants in this study had to primarily rely on 
their personal judgments to determine the validity of the relationships, 
considering whether they made sense to them or not. This justification 
process could lead learners to a false sense that everything was 
connected. Therefore, to help learners systematically understand the 
complexity of the underlying issue, more evidence is needed, either by 
encouraging learners to seek evidence on their own or providing them 
with a variety of evidence sources. By doing so, learners can have the 
opportunity to learn how to use and evaluate different types of evidence 
for knowledge justification in the context of socio-scientific models.

One limitation of the socio-scientific model described in this 
study is its paper-pencil format. Due to technological constraints, it 
primarily emphasizes the causality aspect of systems thinking, and 
limits attention to emergence as a feature of systems. To further 
support learners in understanding emergent outcomes, computational 
technologies, such as NetLogo, may be helpful. For example, in its 
current form, learners can reason about system dynamics in a semi-
quantitative way as evident in our data, but it was challenging, if not 
impossible for them to predict system outcomes with high 
quantitative accuracy. However, with the support of computational 
tools, achieving more accurate predictions might be possible.

Direction for future research

Given initial results of this study, we suggest further exploration in 
the following three areas. First, additional empirical evidence should 
be  gathered to demonstrate how using socio-scientific models can 
facilitate equitable learning opportunities for students, especially those 
from underrepresented populations, across a range of SSI topics. This is 

important as students may have diverse reactions to different SSI topics, 
and we need to figure out how to best leverage students’ prior knowledge 
and experiences. Second, further research is needed to investigate how 
learners use different epistemic understandings and evidential criteria 
to develop socio-scientific models. This link between students’ epistemic 
ideas and modeling practice is crucial for making instruction 
meaningful for all learners. Third, we need to learn more about how to 
adequately evaluate socio-scientific models. Given the distinct epistemic 
understandings and criteria used in socio-scientific models, a new 
framework needs to be developed to assess how well the socio-scientific 
models capture the system dynamics of the target complex issue, 
including both science and social dimensions.

Conclusion

As the world faces complex societal challenges, including the 
global pandemic, it is more critical than ever to prepare our future 
generations to be scientifically literate and responsible citizens. SSI 
teaching and learning have the potential to achieve this goal, yet 
many teachers find it challenging to address the social aspects of 
complex societal issues. This paper provides evidence that, socio-
scientific models can serve as not only an effective but also an 
equitable tool for addressing this issue. The three epistemic features 
highlighted in this paper contributed new knowledge for fostering 
meaningful SSI-based instruction. By focusing on these features, 
science educators can better support learners in understanding the 
complexity of the underlying issues while empowering them to 
become informed citizens capable of tackling pressing 
societal issues.
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Introduction:Abductive reasoning is a type of reasoning that is applied to generate

causal explanations. Modeling for inquiry is an important practice in science

and science education that involves constructing models as causal explanations

for scientific phenomena. Thus, abductive reasoning is applied in modeling for

inquiry. Biological phenomena are often best explained as complex systems, which

means that their explanations ideally include causes and mechanisms on di�erent

organizational levels. In this study, we investigate the role of abductive reasoning

in modeling for inquiry and its potential for explaining biological phenomena as

complex systems.

Methods: Eighteen pre-service science teachers were randomly assigned to

model one of two biological phenomena: either a person’s reddened face, for

which participants knew of explanations from their everyday lives, or a clownfish

changing its sex, for which participants did not know about explanations. Using

the think-aloud method, we examined the presence of abductive reasoning in

participants’ modeling processes. We also analyzed modeling processes in terms

of participants’ ability to model the phenomena as complex systems.

Results: All participants reasoned abductively when solving the modeling task.

However, modeling processes di�ered depending on the phenomenon. For the

reddened face, participants generated simple models that they were confident

with. In contrast, for the clownfish, participants generated more complex models

that they were insecure about. Extensive engagement in abductive reasoning

alone did not lead to the generation of models that explained the phenomena

as complex systems.

Discussion: Based on the findings, we conclude that engagement in abductive

reasoning will not su�ce to explain phenomena as complex systems. We

suggest examining in future studies how abductive reasoning is combined with

systems thinking skills to explain phenomena as complex systems in biological

model construction.

KEYWORDS

reasoning, modeling, abduction, explanation, inquiry, complexity, systems thinking (ST),

mechanism

1. Introduction

Modeling is a key practice in science (Koponen, 2007; Lehrer and Schauble, 2015; Frigg

andHartmann, 2020) and, thus, a central practice in standards for science education (OECD,

2008; NGSS Lead States, 2013; KMK, 2020). In science and science education, modeling has

two functions. One is representational modeling, where a model is constructed as a focused

representation of the phenomenon and is applied as a medium for communicating about

the phenomenon (Oh and Oh, 2011; Gouvea and Passmore, 2017; Upmeier zu Belzen et al.,

2021). The other function ismodeling for inquiry, where a model is constructed as a possible
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explanation for the phenomenon, and it is applied as a research tool

for deriving hypotheses and conducting investigations to test them

(Oh and Oh, 2011; Gouvea and Passmore, 2017; Upmeier zu Belzen

et al., 2021). Both functions of modeling deal with the explanation

of phenomena, but they refer to different meanings of explaining

(Rocksén, 2016; Ke and Schwarz, 2019; Upmeier zu Belzen et al.,

2021): while representational modeling is about explaining tomake

something clear about a well-studied phenomenon, modeling for

inquiry is about explaining to justify something about a so-far-

explained phenomenon. In both explanatory senses, and thus in

both functions of modeling, biological phenomena are often best

explained as complex systems (Hmelo-Silver et al., 2017; Snapir

et al., 2017). A phenomenon is explained as a complex system

if its explanation includes causes and mechanisms on different

organizational levels (Schneeweiß and Gropengießer, 2019, 2022;

Ben Zvi Assaraf and Knippels, 2022; Penzlin et al., 2022).

Systems thinking is conceptualized as higher-order thinking

skills that help learners to “make sense of complexity” (Ben Zvi

Assaraf and Knippels, 2022, p. 250). Thus, systems thinking skills

are needed to explain biological phenomena as complex systems.

Scholars have argued that modeling scaffolds learners in applying

systems thinking skills by providing a focused representation of

complex phenomena (Ben Zvi Assaraf and Knippels, 2022; Dauer

et al., 2022; Tamir et al., 2023). This bridges representational

modeling and systems thinking skills.

Although representational modeling is highly important to

teach content knowledge about concrete phenomena (Stieff et al.,

2016; Upmeier zu Belzen et al., 2019) in science and biology

education, it is “insufficient to capture the full scope of the function

of models” (Cheng et al., 2021, p. 308). Therefore, it is also

important to consider the function of modeling for inquiry and

its relation to systems thinking in science and biology education

(Passmore et al., 2014; Gouvea and Passmore, 2017). Adding to

the bridge between representationalmodeling and systems thinking

skills, we propose to link systems thinking skills and modeling

for inquiry: modeling for inquiry involves generating explanations

for so-far-unexplained phenomena (e.g., Gouvea and Passmore,

2017; Upmeier zu Belzen et al., 2021). Thus, systems thinking skills

are needed in modeling for inquiry to explain so-far-unexplained

phenomena as complex systems.

Abductive reasoning is defined as the type of reasoning that

generates causal explanations (e.g., Peirce, 1978; Magnani, 2004).

It has been stated that abductive reasoning is the primary mode

in model construction for inquiry (e.g., Svoboda and Passmore,

2013; Oh, 2019). Modelers apply abductive reasoning in model

construction when they generate novel explanations using creative

analogies or when they select between concurring explanations

(Clement, 2008; Schurz, 2008). This important role of abductive

reasoning in modeling for inquiry in biology has been justified by

historical analysis of modeling processes leading to important ideas

in biology (Adúriz-Bravo and González Galli, 2022), theoretical

argumentations (Upmeier zu Belzen et al., 2021), and case studies

(Clement, 2008; Svoboda and Passmore, 2013). In this study,

we aim to add to these findings by examining the role of

abductive reasoning in modeling for inquiry and the relationships

between abductive reasoning and the ability to explain biological

phenomena as complex systems. Generated inferences will

contribute to research by providing further empirical arguments

discussing the role of abductive reasoning in modeling of complex

biological phenomena. In addition, the findings of this study should

help to develop instructional strategies for modeling of phenomena

as complex systems in biology education.

2. Theoretical background

2.1. Modeling for inquiry in biology
education

We conceptualize modeling for inquiry as the iteration between

model construction and model application (Krell et al., 2019;

Upmeier zu Belzen et al., 2021). This concept of modeling is

supported by empirical evidence from studies that have examined

the modeling processes of middle-school students (Meister and

Upmeier zu Belzen, 2020) as well as pre-service biology teachers

(Göhner and Krell, 2020; Meister et al., 2021; Göhner et al., 2022)

and matches concepts of modeling among other researchers who

use similar terminology (constructing and evaluating models, see

Cheng et al., 2021; construct and improve models, see Nicolaou and

Constantinou, 2014, p. 53; creating and using models, see Oh, 2019).

In modeling for inquiry, model construction is about

generating a plausible explanation for a so-far-unexplained

phenomenon (Gouvea and Passmore, 2017; Upmeier zu Belzen

et al., 2021). Based on this perspective, a generated explanation

for a phenomenon is the product of model construction and

conceptualized as the model (Rohwer and Rice, 2016; Rice

et al., 2019). Scientific inquiry aims to find causal explanations,

i.e., to explain why and how phenomena emerge (Perkins and

Grotzer, 2005; Haskel-Ittah, 2022). Causal explanations should

at least provide a cause for why phenomena occur. Ideally,

causal explanations in science combine a cause with a concrete

mechanism that explains not only why but also how phenomena

have emerged (Salmon, 1990; Alameh et al., 2022; Penzlin et al.,

2022). Different modelers have different views of what counts

as a satisfying explanation (Cheng et al., 2021). However, if a

modeler has generated a plausible explanation for themselves,

then “model construction temporarily ends” (Upmeier zu Belzen

et al., 2021, p. 4). In the following stage of model application,

the generated explanatory model is used to derive predictions and

strategies to test them with inquiry methods, such as experiments

or observations (Giere, 2009; Gouvea and Passmore, 2017; Upmeier

zu Belzen et al., 2021).

2.2. Abductive reasoning in modeling for
inquiry

Different stages of scientific inquiry are connected to different

types of reasoning (Lawson, 2003, 2010; Adúriz-Bravo and Sans

Pinillos, 2019). The relationships between and definitions of

reasoning types in inquiry are discussed in the philosophy of

science literature (e.g., Kuipers, 2004; Adúriz-Bravo and González

Galli, 2022). According to Peirce (1978), induction, deduction, and

abduction are the types of reasoning that are involved in scientific

inquiry. Within the Peircean framework, inductive reasoning is

defined as generalizing from observations, deductive reasoning
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as predicting based on existing theories or rules, and abduction

as generating and selecting causal explanations. The example of

observing a wet sidewalk has previously been used to illustrate these

reasoning processes (e.g., Adúriz-Bravo and González Galli, 2022).

Using inductive reasoning, one would generalize that all sidewalks

are wet. Using deductive reasoning, one would predict that the next

sidewalk one walks on will also be wet. Using abductive reasoning,

one could generate the explanation that the wet sidewalk is caused

by cleaning activity in the city, but upon considering that people are

walking with raincoats and seeing gray clouds in the sky, one would

decide that the wet sidewalk having been caused by rain is a more

plausible explanation.

The three reasoning types are involved in modeling for inquiry

(Upmeier zu Belzen et al., 2021). Induction is involved if models are

constructed based on the generalization of observations. Induction

leads to testable models but does not bring new ideas into modeling

for inquiry (Wirth, 2003; Magnani, 2004; Upmeier zu Belzen

et al., 2021). New ideas in model construction are generated by

abductive reasoning (Wirth, 2003; Magnani, 2004; Upmeier zu

Belzen et al., 2021), since abduction is about generating causal

explanations for a phenomenon and selecting between them.

Deductive reasoning is involved in model application when using

models to derive predictions that act as hypotheses for planning

and conducting further inquiry into the phenomenon (Dunbar,

2000; Giere et al., 2006; Halloun, 2007). In this study, we focus

on abductive reasoning. We operationalize this by applying the

theoretical concepts of the steps of abduction that have been

proposed in a cognitive psychological framework of abductive

reasoning (Johnson and Krems, 2001; Baumann et al., 2007) and

the patterns of abduction that are described in the philosophy of

science literature (Habermas, 1968; Wirth, 2003; Schurz, 2008).

2.2.1. Steps of abduction
In their framework, Johnson and Krems (2001) proposed

seven steps of abduction, which are not taken in a fixed sequence;

hence, they interact with each other and depend on situational

preconditions. In our study, we use six of the steps to operationalize

abductive reasoning in model construction (Table 1).

TABLE 1 Steps of abduction, adapted from Johnson and Krems (2001).

Step Description

Collect data Modelers observe a phenomenon and gather

information.

Comprehend Modelers integrate collected data into their prior

knowledge to generate a primary explanation for the

phenomenon.

Refine Modelers specify on explanations, for instance by

combining multiple explanations or by generating a

mechanism.

Discriminate Modelers select between explanations and decide which

explanation is worth further investigation.

Check Modelers evaluate the logical consistency of

explanations.

Resolve anomaly Modelers eliminate logical inconsistencies from an

explanation.

Test is another step proposed in Johnson and Krems’s (2001)

framework of abductive reasoning. The test step is about developing

strategies (e.g., experiments) to further investigate the generated

model. Those testing strategies are ideally based on model-derived

predictive hypotheses (Giere et al., 2006; Godfrey-Smith, 2006).

Deductive reasoning is considered to be the type of logical

reasoning that leads to predictive hypotheses about a phenomenon.

Thus, we do not refer to the test step as a step in abductive reasoning

in model construction, but rather as the step that indicates the

transition from abductive reasoning in model construction to

deductive reasoning inmodel application (Upmeier zu Belzen et al.,

2019, 2021).

2.2.2. Patterns of abduction
The pattern of abduction that is applied in modeling for inquiry

depends on how much modelers already know about possible

explanations for a phenomenon (Habermas, 1968; Wirth, 2003;

Schurz, 2008). The pattern of creative abduction is applied if

modelers do not know possible explanations for the phenomenon

(Schurz, 2008). Thus, they need to create a novel one, e.g., by

creating analogies, whichmeans transferring knowledge from other

contexts (Clement, 2008). When Darwin observed the diversity of

finches with different beak shapes and diets, he explained it through

the concept of a common ancestor and evolution by natural

selection over time. This was a novel explanation that he generated

creatively based on the analogy of change in domesticated animals

under human selection (Adúriz-Bravo and González Galli, 2022).

The pattern of selective abduction is applied if modelers know

about explanations (or at least about concrete causes) for the

phenomenon and need to apply their knowledge to select plausible

ones (Schurz, 2008). For example, if a patient presents with a

common symptom such as high blood pressure, a doctor needs

to apply knowledge of the patient’s medical history to select one

among many possible explanations for the symptom.

2.3. Complexity and systems thinking skills
in biology education

Biology is the science of life (Hillis et al., 2020). Biological

phenomena are observable processes or events that occur within or

involving living organisms at various levels of organization, from

molecular to populational or biosphere levels. Since interactions

among these levels result in emergent properties (Schneeweiß and

Gropengießer, 2019, 2022), biological phenomena are inherently

complex (e.g., Ben Zvi Assaraf and Knippels, 2022; Haskel-

Ittah, 2022) and best explained as complex systems (Duncan,

2007; Hmelo-Silver et al., 2017; Snapir et al., 2017). A biological

phenomenon is explained as a complex system if its explanation

involves causes and mechanisms at different levels of organization

(Schneeweiß and Gropengießer, 2019, 2022; Penzlin et al., 2022).

As systems thinking skills help learners to understand and interpret

complex systems (Dor-Haim and Ben Zvi Assaraf, 2022), they are

needed to explain biological phenomena (Verhoeff et al., 2018).

Among others, cross-level reasoning and identification of system

components and relationships are important systems thinking skills
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(Tamir et al., 2023). These skills are addressed in the component

mechanism phenomena (CMP) approach by Hmelo-Silver et al.

(2017). The CMP approach addresses the skill of identifying the

components of systems (which we consider as causes;1 Penzlin

et al., 2022) and their relationships by emphasizing whether

they are linked by mechanisms. Furthermore, the CMP approach

addresses cross-level reasoning by emphasizing whether causes

and mechanisms refer to micro- or macro-levels of biological

organization (Hmelo-Silver et al., 2017; Snapir et al., 2017).

2.4. Research about abductive reasoning in
modeling for scientific inquiry

The role of abductive reasoning in scientific inquiry has been

justified by theoretical and historical argumentation. Philosophers

of science argue that revolutionary scientific ideas, such as Kepler’s

model of elliptic planet orbits or Darwin’s theory of biological

evolution, emerged by abductive reasoning, which means the

generation and selection of novel explanations that expand what

is already known about a natural phenomenon (Wirth, 2003;

Schurz, 2008; Lawson, 2010; Adúriz-Bravo and González Galli,

2022). Since in modeling for inquiry a model is constructed as a

possible explanation for a phenomenon (Rohwer and Rice, 2016;

Rice et al., 2019), it has been argued that “the primary mode

of reasoning during model construction is abductive” (Svoboda

and Passmore, 2013, p. 124). By analyzing historical episodes of

mathematical model construction, Park and Lee (2018) assign an

abductive nature to mathematical modeling that leads to new

models that are applied subsequently in mathematical inquiry.

In case studies with pre-service elementary school teachers,

Oh (2019, 2022) provides empirical evidence about abductive

reasoning in modeling of geoscientific phenomena. The author

states that the participants struggle to generate a plausible

explanation if they search for a linear and direct relationship

between a single cause and the observed phenomenon. Oh

(2022) concludes that abductive reasoning is well-suited to the

construction of models that explain phenomena in earth science

if abductive reasoning is combined with systems thinking skills.

Based on case studies with middle- and high-school students

who constructed models for physical and biological phenomena,

Clement (2008) argues that abductive reasoning is present in

model construction, i.e., when modelers rely on analogies when

generating explanations. This analogical reasoning connects to

the pattern of creative abduction suggested by Schurz (2008, see

1 The CMP approach has been applied to assess how learners describe

complex systems (Hmelo-Silver et al., 2017; Snapir et al., 2017). In the systems

thinking literature, and under the CMP approach, the term “component” is

commonly used to describe entities in a system’s explanation (e.g., Goldstone

and Wilensky, 2008; Ben Zvi Assaraf and Knippels, 2022). However, in this

study, we apply the CMP approach to modeling for inquiry, which aims

to explain the emergence of a phenomenon. In the context of scientific

inquiry, the term “cause” is used to describe the initial entity that leads to

the emergence of the phenomenon. Therefore, in this article, we use the

term “cause” instead of “component” when applying the CMP approach to

modeling for inquiry.

Chapter 2.2). Svoboda and Passmore (2013) explicitly describe

the usage of the selective abduction pattern during biological

model construction in their article about modeling strategies

among undergraduate biology students. They also describe how

students apply creative abduction when generating models to

explain phenomena by using analogies. The case studies of Clement

(2008) and Svoboda and Passmore (2013) provide evidence that

indicates the important role of abductive reasoning in modeling of

biological phenomena.

In these related studies, the authors define abductive reasoning

broadly as the reasoning that leads to the generation and selection

of causal explanations for so-far-unexplained phenomena. In this

article, we add to these studies by applying concrete theoretical

concepts to operationalize abductive reasoning. These concepts are

the proposed steps from the cognitive psychological framework

of abduction (Johnson and Krems, 2001) and the patterns of

creative and selective abduction as proposed by philosophers of

science (e.g., Schurz, 2008). Furthermore, we aim to examine the

relationship of these abductive reasoning concepts to the ability to

model biological phenomena as complex systems.

Our research questions (RQ) are:

RQ1: To what extent are the steps of abductive reasoning present

in modeling processes to explain biological phenomena?

RQ2: What are the differences between patterns of selective

abduction and creative abduction when modeling

biological phenomena?

RQ3: How do steps and patterns of abductive reasoning

relate to modeling of biological phenomena as

complex systems?

3. Methods

3.1. Study type and sample

This study investigated abductive reasoning inmodeling and its

relation to modeling of biological phenomena as complex systems.

Participants were 20 pre-service biology teachers (mean age = 27,

SD = 2.6) from master’s programs at two German universities.

Participants were recruited in university seminars and confirmed

their intention to voluntarily participate in this study via email

before the interviews.

Using modeling for inquiry is challenging for both students

and teachers (e.g., Cheng et al., 2021; Göhner et al., 2022).

Therefore, the inclusion criterion for the participants in this

study was that they had completed a course on scientific inquiry

methods. In this course, they learned about using modeling as

a method for inquiry, such as constructing models based on

evidence or using a model to predict a phenomenon. Although

they most likely engaged intuitively in abductive reasoning

during modeling activities as part of the seminar, they were not

explicitly taught about the concept of abduction. This allowed

the examination of abductive reasoning in modeling biological

phenomena for inquiry among individuals who had learned how

to use modeling for inquiry without having been explicitly taught

about abductive reasoning.
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3.2. Implementation of the modeling task

To analyze abductive reasoning processes in modeling, think-

aloud interviews (Ericsson and Simon, 1980) were conducted; these

were implemented online due to the pandemic situation in the

winter of 2021. During the interviews, participants worked on a

modeling task implemented in SageModeler (Bielik et al., 2018),

which is an online application that allows learners to be engaged

in several modeling activities from the drawing of simple diagrams

to the construction of semi-quantitative simulation models. In

our study, SageModeler was used as a drawing tool for creating

process diagrams, enabling participants to create and label boxes

and arrows. The more advanced features of the program, e.g.,

performing semi-quantitative simulations, were not needed for

our study. Therefore, these features were not introduced to the

participants and were disabled in the settings section of the

SageModeler online environment. We chose SageModeler as the

drawing tool for this study because it allows the drawing of

process diagrams on a computer. Thus, it was a solution to enable

monitoring of the drawing processes, even in an online interview

situation. Additionally, we had prior experience in using this tool

for drawing diagrams in previous studies with pre-service science

teachers. In those studies, we found that SageModeler had good

usability for a task that requires the drawing of process diagrams

(Engelschalt et al., 2023).

The instruction for the modeling task given to the participants

was “Draw your solution process of how a specific phenomenon has

emerged in a process diagram while referring to concrete causes.”

Abductive reasoning in model construction is about generating

a causal explanation for a phenomenon. Causal explanations in

science ideally include causes and mechanisms (Salmon, 1990;

Alameh et al., 2022; Penzlin et al., 2022). By prompting the

participants to find concrete causes and elaborate on how the

phenomenon emerged, this instruction referred to both generating

causes and mechanisms to explain a phenomenon and was

applied to operationalize abductive reasoning processes in model

construction. This instruction was also open for the participants

to develop strategies to test their explanations; this corresponds

to Johnson and Krems’s (2001) test step, which according to our

conception indicates the transition from abductive reasoning in

model construction to deductive reasoning in model application.

Drawing their solution process in a process diagram was

implemented as a way to scaffold participants’ mental modeling

activities. Furthermore, themodels andmodeling processes thereby

externalized were analyzed regarding their complexity by applying

the CMP approach (see Section Complexity in model construction

processes). Examples of the process diagrams produced can be

found in Figures 1A, B.

Two biological phenomena were chosen as contexts for the

task. One phenomenon concerned a person with a reddened face

(the reddened face phenomenon, RFP). The other concerned a

male clownfish changing its sex after the only female fish in the

population died (the clownfish phenomenon, CFP). We applied

these phenomena to operationalize the patterns of abduction.

Specifically, the RFP is relevant to participants’ daily lives and most

participants likely have personal experience with it. Therefore, we

expected participants to know about explanations or at least causes

for a person’s reddened face. This argumentation is also supported

by the findings of a previous study in which we implemented the

RFP modeling task with pre-service science teachers and most

participants generated multiple explanations for the phenomenon

(see Upmeier zu Belzen et al., 2021). Thus, the RFP was used to

operationalize the pattern of selective abduction (Schurz, 2008). On

the other hand, as the CFP is a very specific biological phenomenon,

we did not expect that most of the participants would know of

an explanation for it. Given this, model construction for the CFP

is about creating a plausible explanatory model by transferring

knowledge from other contexts and the challenge is more to

find a possible explanation meeting the given constraints. Thus,

the CFP was applied to operationalize the pattern of creative

abduction (Schurz, 2008). In this way, the patterns of abduction

were operationalized by applying two phenomena as modeling

contexts: in the RFP context, participants were expected to know

about explanations or at least concrete causes, while in the CFP

context, participants were not expected to have such knowledge.

To ensure this difference in the modeling contexts, we excluded

participants from the analysis if they reported in the think-aloud

interview that they already knew about a specific explanation for

the CFP or if they reported not knowing of explanations for the RFP

(see Section Data processing). To generate more detailed evidence

on participants’ prior knowledge about explanations for the RFP

and CFP, pre-tests could have been performed. Like other studies

assessing knowledge and reasoning processes involved in modeling

(Ruppert et al., 2017; Bennett et al., 2020), we decided against pre-

testing our participants’ prior knowledge about explanations for the

CFP and RFP. We justify this with three arguments:

1. There are many causes to explain the RFP, and anticipation of all

knowledge that is related to these causes is neither economic nor

possible to fully achieve in a pre-test.

2. Prompts employed in prior knowledge pre-tests could have

possibly influenced which knowledge participants would refer

to, which would make their responses to the modeling task less

spontaneous and less authentic.

3. Think-aloud interviews as conducted for this study are

linked to high cognitive load and fatigue among the

participants (Sandmann, 2014). Answering a knowledge

pre-test before the interview could enhance cognitive load

and fatigue.

3.3. Interview method

Participants were interviewed using the think-aloud method

(Ericsson and Simon, 1980; Sandmann, 2014). Under this method,

participants were asked to speak out loud about any thoughts

that came into their minds while working on the modeling task.

The method of think-aloud has been shown to capture reasoning

processes (Sandmann, 2014; Leighton, 2017). Matching this, think-

aloud has been implemented in previous studies examining pre-

service science teachers’ (Meister et al., 2021; Göhner et al., 2022)

and high-school students’ (Meister and Upmeier zu Belzen, 2020)

reasoning processes in modeling for inquiry. The structure of

the interviews followed the suggestion by Sandmann (2014): after

a short introduction about the aim of the interview and an

explanation of the think-aloud method, participants started with
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FIGURE 1

Examples process diagrams by (A) participant CFP08 and (B) participant RFP05. While participant CFP05 referred to causes and mechanisms that

might explain the CFP, RFP05 referred only to causes that might explain the RFP but additionally added strategies to test the causes.

a warm-up task to get used to speaking every thought out loud.

In this study, the warm-up task was to formulate a heading for

a short picture story. Before working on the modeling task, each

participant watched a short video (1:42min) that explained how

to draw a process diagram in SageModeler. After watching the

video, either the RFP or the CFP was randomly presented to the

participant in the form of a short text to read. Randomization was

automatically implemented in SoSci Survey. While the participant

worked on the modeling task (either the CFP or the RFP modeling

task), the interviewer did not comment on their thoughts. The

interviewer only replied to questions from the participant that

concerned their general understanding of the instruction. If a

participant asked specific questions about the phenomena, the

interviewer did not answer them concretely and just referred to the

task. On average, the interviews lasted around 21min each (M =

20.87min, SD= 5.7 min).
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3.4. Data processing

The audio of the interviews and the screens of the

interviewed participants were recorded. The audio was transcribed.

Furthermore, the process diagrams produced were collected via

a shared link. Two participants were excluded from the analysis.

One was excluded since the participant (pseudonym CFP01) stated

that they already knew of an explanation for the CFP. Therefore,

the participant had explicit prior knowledge about the CFP, which

does not match the definition of creative abduction (Schurz, 2008).

The other participant (pseudonym RFP09) modeled the RFP and

was excluded due to not being able to produce a process diagram

in SageModeler, which inhibited this participant’s progression in

the task.

3.5. Data analysis

3.5.1. Abductive reasoning steps
To analyze participants’ engagement in abductive reasoning

steps during model construction, a coding scheme was developed

based on Johnson and Krems (2001, Table 2). In the development

process, the steps collect data and comprehend were adapted from

their original descriptions. This was necessary due to differences in

the task format. In contrast to our task, the task used in the study

by Johnson and Krems (2001) allowed the participants to always

collect additional data, which they needed to comprehend. While

in Johnson and Krems’s framework collect data was about actively

generating data and comprehend was about understanding the

collected data, in our study collect data was about explicating ideas

on how to generate data and comprehend was about understanding

the data that were given in the modeling task instruction.

The test step, which is another step in Johnson and Krems’s

framework of abduction, was used to operationalize the transition

from abductive reasoning in model construction to deductive

reasoning in model application in this study.

The coding scheme shown in Table 2 was used to identify

the abductive reasoning steps in the transcripts of the interviews.

Coding was performed using the MAXQDA program (VERBI

Software, 2022), which allowed coders to watch recorded videos

while coding passages from the transcripts. Coders were instructed

to assign codes to related passages that were as short as possible

but as long as necessary. Therefore, passages of varying lengths

(from small word groups to several sentences) were assigned to

the steps. Passages that did not fit into any of the steps (such as

when participants talked about how they arranged their diagram)

were not coded. The reliability and objectivity of the analysis were

supported by substantial intra-rater agreements for two transcripts

(k = 0.73, calculated according to Brennan and Prediger, 1981;

interpreted according to Landis and Koch, 1977) and substantial

inter-rater agreements between two coders for six transcripts (k

= 0.71, Landis and Koch, 1977). Agreement was counted if at

least 95% of a passage received the same code from the two

independent coders.

Referring to RQ1, the occurrence and frequency of each of

the steps were analyzed. This was done by examining which of

the steps occurred in each participant’s transcript and how often

they occurred. By counting occurrences of each step, we gathered

information about how often a step occurred in modeling processes

for each participant and overall for the 18 participants whose data

were analyzed.

Referring to RQ2, frequencies of the abductive reasoning

steps addressed were compared between CFP participants and

RFP participants to examine possible differences between the

modeling processes.

3.5.2. Complexity in model construction
processes

In modeling for inquiry, models are constructed as

explanations for phenomena (Rice et al., 2019; Upmeier zu

Belzen et al., 2021). If this explanation involves causes and

mechanisms on different organizational levels, the phenomenon is

explained as a complex system. However, modelers are not always

able to formulate mechanisms. In such cases, phenomena are only

explained by a cause. This is why, for our analysis, we defined a

model as an attempt to explain the phenomenon that includes at

least one concrete cause for its emergence.

Both implemented phenomena, the RFP and CFP, refer

to physiological processes within an organism as well as the

interplay of an organism with the environment. Thus, they

can be explained as complex systems (Hmelo-Silver et al.,

2017; Snapir et al., 2017). Our task instruction allowed the

participants to suggest several concurring models for the same

phenomenon. Therefore, we did not analyze the complexity of

single models but all models that participants proposed in their

model construction processes. Participants’ model construction

processes were analyzed discursively in terms of complexity by two

coders who analyzed the diagrams in combination with the think-

aloud protocols. Therefore, a coding scheme was adapted based on

the CMP approach (Hmelo-Silver et al., 2017). The approach scores

complexity based on connections between causes (C, originally

labeled components by Hmelo-Silver et al., 2017, see Chapter 2.3),

mechanisms (M), and the phenomenon (P) in the CMP score and

the connection of micro- and macro-levels of organization in the

micro–macro score.

The adaptation of the scheme for our study mainly involved

changes in the CMP score. In the study of Hmelo-Silver

et al. (2017), participants were instructed to model a lake

ecosystem. The participants received points for describing concrete

phenomena within their externalized models. The instruction

of our study differed from the study of Hmelo-Silver et al.

(2017) in that our participants were explicitly prompted to find

causes for a given phenomenon (the RFP or CFP). Therefore, a

concrete phenomenon was described in the instruction, and only

representing this description in the instruction was not scored

(“P,” Table 3). Participants who generated only one cause, which

they directly connected to the emergence of the phenomenon

(“C→P”), generated a simple linear explanation that is most

likely not adequate for explaining biological phenomena (Haskel-

Ittah, 2022). Participants who generated multiple causes (|:C→P:|)

showed higher complexity in their model construction processes,

because this indicates that they acknowledged the presence of

more than one entity that might cause a phenomenon. However,
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TABLE 2 Coding scheme for analyzing abductive reasoning steps.

Code Coding rules participant… Example

Collect data . . . develops ideas on how to generate data without referring

to concrete explanations or claims that more information is

needed to start solving the phenomenon.

The first thing I do is, when the person enters, I look at him

or her and try to find some indications on his or her body.

Comprehend . . . activates prior knowledge to understand the given data of

the instruction or reports difficulties in understanding the

given data of the instruction.

Okay, so, when the female dies, then somehow some kind of

communication process must take place. Okay, the question

now, how can the fish suddenly change its sex?

Refine . . . specifies generated explanations. Maybe it is not only the presence of hormones (. . . ) Perhaps

some sort of threshold needs to be reached as well.

Check . . . evaluates plausibility/probability of thought-up

explanation.

My idea was that the person did sports (. . . ) that seems

logical to me.

Discriminate . . . decides against an explanation if it was not evaluated as

plausible or if others were more plausible.

I guess he did not paint himself, it is more likely a body

reaction.

Resolve anomaly . . . discards (parts of) generated explanations. Something else is happening here. So, I’d like to change that

again.

Test∗ . . . derives a prediction from a generated explanation or

derives a strategy for how to test the generated explanation.

If I want to examine whether doing exercise is the cause, I

could measure heart rate.

∗According to our conceptualization of modeling for inquiry, the “test” step represents the transition from abductive reasoning in model construction to deductive reasoning in

model application.

TABLE 3 Coding scheme for CMP scoring of model construction processes.

CMP relation Explanation Score

P Participants described the phenomenon without elaborating on causes and mechanisms for its

emergence.

Example RFP: No examples in our data

Example CFP: Female of the population dies→ biggest male fish changes sex→ new female

0

C→ P Participants generated a single cause to explain the phenomenon without elaborating on mechanisms

by which this cause might lead to the phenomenon.

Example RFP: Anger—causes→ reddened face

Example CFP: Hormones—influence→ sex change

1

|:C→P:| Participants guessed multiple causes to explain the phenomenon without elaborating on mechanisms

by which the causes might lead to the phenomenon.

2

C→M→P Participants guessed a single cause to explain the phenomenon and elaborated on a mechanism by

which the cause might lead to the phenomenon.

Example RFP: A stress situation—leads to→ secretion of stress hormones—body reaction of→

increasing blood pressure—higher blood flow in the head—results in→ the reddened face

Example CFP: Absence of female fish —lack of pheromone changes→ hormonal system of the male

fish—leads to→ sex change.

3

|:C→ M→ P:| Participants guessed multiple causes to explain the phenomenon and elaborated on mechanisms by

which the causes might lead to the phenomenon.

4

only when they included at least one cause and a mechanism

to explain the phenomenon had participants explained it as

a complex system. Participants who connected several causes

and mechanisms to explain the phenomenon (“|:C→M→P:|”)

demonstrated the highest levels of complexity in their model

construction processes. This indicates that they recognized that

multiple entities in a system can cause a biological phenomenon

and that there are hidden mechanisms that lead to the emergence

of biological phenomena. Within the coding scheme, causes

were defined as the initial entity for why the phenomenon

emerged (Kampourakis and Niebert, 2018) and mechanisms were

defined as the entity’s activities and interactions describing how

the phenomenon emerged (Craver and Darden, 2013; Haskel-

Ittah, 2022). Direct arrows from cause to phenomenon without

any descriptions or arrows containing verbal connection that

include only vague filler terms such as influence, affect, and

lead to (black boxes, Haskel-Ittah, 2022) were not counted as

concrete mechanisms and thus not scored under our scheme.

Technical terms summarizing concrete biological mechanisms

such as natural selection or blood vessel dilation were coded

as mechanisms.

The coding scheme for the micro–macro score was adopted

from Hmelo-Silver et al. (2017). The lowest micro–macro scores

were coded when participants only referred to either the micro-

or macro-level of biological organization (Table 4). The highest

scores were coded when participants connected elements on both

the micro- and macro-levels during model construction. The

latter indicates that participants took the complexity of biological

organization into account.

The micro-level refers to “the part of reality that is only

accessible through the use of science-based technologies such as

microscopes” (seemicrocosm, Schneeweiß and Gropengießer, 2022,
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TABLE 4 Coding scheme for analyzing micro–macro relationships in model construction processes.

Micro/Macro relationship Explanation Score

Micro/Macro Participants refer to causes or mechanisms either on macro-level or on micro-level only

Example RK: Anger—causes→ reddened face

Example CF: Need for reproduction→ sex change

1

Micro+Macro Participants refer to causes or mechanisms on macro-level and micro-level, without

elaborating on their connection

Example RK: Pigments→ reddened face

Example CF: Chromosomes→ sex change

2

Micro⇋Macro Participants link causes and mechanisms on macro- and micro-level

Example RK: A stress situation —leads to→ secretion of stress hormones—body reaction of

→ increasing blood pressure—higher blood flow in the head—results in→ the reddened

face

Example CF: Absence of female fish lack of pheromone changes→ hormonal system of the

male fish —leads to→ sex change

3

p. 145), which are parts on the cell level and below (Hmelo-

Silver et al., 2017; Schneeweiß and Gropengießer, 2022). Parts on

the tissue level and above (e.g., organisms and populations) were

considered as macro-level entities (see mesocosm and macrocosm,

Schneeweiß and Gropengießer, 2022). Emotions such as anger or

shame were scored as macro-level causes for the RFP, since they are

reactions of a person (organism) to a specific situation.

Referring to RQ3, the relationship between abductive reasoning

patterns and complexity, as along with the relationship between

the abductive reasoning steps and complexity, was examined.

Specifically, the relationship between complexity in model

construction and abductive reasoning patterns was analyzed by

comparing how many participants achieved high scores in CMP

(scores of 3 and 4) and micro–macro (score of 3) for the

RFP (selective abduction) and the CFP (creative abduction).

To investigate possible relationships between the complexity of

generated models and abductive reasoning steps, we analyzed

whether frequent engagement in abductive reasoning steps

correlated with CMP and micro–macro scores. Therefore, the

frequency of abductive reasoning steps that each participant

engaged in was counted. Subsequently, Spearman’s correlation

coefficients (Field, 2013) between the frequency of engagement in

abductive steps and complexity scores (CMP score and micro–

macro score) were calculated.

4. Results

4.1. RQ1: abductive reasoning steps in
biological model construction

In this study, we applied Johnson and Krems’s (2001)

framework to operationalize cognitive processes in abductive

reasoning with six steps that were analyzed by a coding scheme.

Analysis showed that all six steps were present in the modeling

processes of our 18 participants (Table 5). According to our coding,

abductive reasoning steps occurred approximately 9 times (M =

9.33, SD = 6.12) in the model construction processes of each

participant. However, only the comprehend step was found in the

transcripts of all participants. Although the refine and check steps

were coded frequently, in most of the transcripts, the collect data

and discriminate steps were coded rarely. The step resolve anomaly

was coded once and independently by the two coders at the same

position in the relevant transcript.

4.2. RQ2: comparison of creative and
selective abduction

We applied the CFP to operationalize the pattern of creative

abduction and the RFP to operationalize the pattern of selective

abduction. While the frequencies of refine, check, and discriminate

were similar between the modeling processes for the CFP and the

RFP (Table 5), we found five differences between the phenomena.

1. Presence of collect data. The collect data step was found

in the modeling processes of the RFP, but not the CFP.

The code appeared when participants explicated strategies for

how to examine the phenomenon generally, without explicit

assumptions, and mostly (in all but one case) before participants

explicated a model for explaining the phenomenon.

“First of all, of course, I would examine the room, yes

observe the room, I’ll write ‘observe the room’. Then I would

look if I found things or objects that explain the problem or the

red face.” (Think-aloud transcript of RFP06, passage related

to the code collect data, at the beginning of the transcript).

2. Initiation of the modeling process. While all CFP participants

started their model construction with comprehend, this was

only the case for four participants modeling the RFP. Three

participants modeling the RFP explicated strategies referring

to collect data first and two participants started immediately

with the generation of models for the RFP. On average,

CFP participants needed a longer period of time before they

generated their first primary model to explain the phenomenon

than RFP participants (Figure 2). As an extreme example,

participant CFP09 only represented the information given by the

instruction in the diagram and thus did not generate any model

for the CFP. The participant finished the task by claiming not to

be able to produce a better solution due to a lack of knowledge

of clownfish.
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TABLE 5 Frequency of coded abductive reasoning steps and number of participants who referred to them when modeling the CFP or RFP.

Code Frequency of codes Number of participants

CFP RFP Total CFP RFP Total

Collect data 0 7 7 0 4 4

Comprehend 29 24 53 9 9 18

Refine 25 21 46 9 7 15

Check 37 18 55 8 8 16

Discriminate 3 3 6 3 2 5

Resolve anomaly 1 0 1 1 0 1

Test∗ 6 12 18 2 6 8

∗According to our conceptualization, the “test” step represents the transition from abductive reasoning in model construction to deductive reasoning in model application.

3. Proposal of alternative models. For both phenomena, most

participants generated at least two alternative models for their

phenomenon (8 out of 9 for the RFP; 6 out of 9 for the

CFP). However, while CFP participants worked longer on

one generated model by checking its plausibility and refining

it, participants modeling the RFP often continued in their

modeling process by proposing alternative models to explain

the RFP immediately. This was observed 13 times in the

modeling processes of five RFP participants, as illustrated by

the following quote, where three models to explain the RFP are

generated immediately:

“Exercise is a possible explanation for the reddened face.

I write down ‘Person may have done

exercise’. The person could also have a fever

[. . . ] I write down ‘Person may have fever’.

Or the person could also deal with high blood pressure.”

(Think-aloud transcript of RFP03, underlined passages are

first primary models to explain the RFP).

4. Plausibility check of generated models. A plausibility check of

generated models was found more often for the CFP (n = 37)

than for the RFP (n = 18). Within the passages that were coded

as check, participants modeling the CFP reported uncertainty

about their models, as illustrated by this quote:

“I am uncertain if I have taken the right path, so I am

going through it again. The phenomenon is: [. . . ] The female

dies, the strongest male turns back into a female, and the same

clownfish population is created. [...] I assume it could be death,

which is related to the absence of certain hormones that are

no longer released. Whether it has to do with fish perception,

I am unsure, but it does somehow result in a change in

gene expression.” (Think-aloud transcript of CFP06, passage

related to the code check).

Furthermore, the uncertainty of CFP participants was

frequently linked to vague explanations in combination

with the explication of lacking specific prior knowledge

about clownfish:

“The female changes something in the environment

[. . . ]. So, it is not about other living beings. I do not

know anything about clownfish. [The female clownfish]

can send any information somehow into the water”

(Think-aloud transcript of CFP02, passage related to the

code check).

Plausibility checks in RFP modeling processes were less

frequent (n = 18), and seldom linked to uncertainty and

vague formulations. In contrast, participants referred to prior

experiences from their everyday lives to justify the plausibility

of their generated models:

“Nervosity makes sense. My best friend, for example,

always blushed extremely when she had to present

something in front of the class” (Think-aloud transcript

of RFP01, passage related to the code check).

5. Although the focus of our study was on examining abductive

reasoning in modeling, the fifth examined difference relates

not only to abductive reasoning in model construction but

moreover to the transition from abductive reasoning in model

construction to deductive reasoning inmodel application. In our

study, the transition to model application was operationalized

by Johnson and Krems’s (2001) test step, when strategies on how

to investigate generated explanations were developed. Test was

coded 18 times for eight of the 18 participants. It was considered

twice as often for the RFP (n = 12, from six participants) as for

the CFP (n= 6, from two participants).

“If I want to examine whether doing exercise is the

cause, I could measure heart rate.” (Think-aloud transcript

of RFP05, passage related to the code test. RFP05 also

included testing strategies in the generated process diagram,

see Figure 1B).

4.3. RQ3: relationship between abductive
reasoning and modeling of phenomena as
complex systems

We operationalized the extent to which participants

modeled the phenomena as complex systems by examining

CMP and micro–macro relations, as proposed by Hmelo-Silver

et al. (2017). Participants achieved an average CMP score
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FIGURE 2

Amount of time that every participant needed to generate an initial explanatory model for the phenomenon*. *Participant CFP09 did not produce a

model to explain the phenomenon. Participants RFP09 and CFP01 were excluded from the analysis (see Section Data processing).

of 2.72 (SD = 1.23) and an average micro–macro score of

2.20 (SD= 0.97).

We found a significantly strong correlation between the

frequency of abductive reasoning steps and CMP score (r = 0.52,

p < 0.05; Cohen, 1988, Figure 3). On the level of concrete steps,

significant correlations were found between the CMP score and

the frequency of refine (r = 0.48, p < 0.05) and check (r =

0.51, p < 0.05). However, no correlation was found between the

frequency of abductive reasoning steps and the micro–macro score

(Figure 2).

Referring to both CMP and micro–macro scores,

CFP participants addressed higher complexity in their

model construction processes than RFP participants

(Table 6). While most of the CFP participants achieved

the highest scores for complexity regarding CMP

relations (5 out of 9) and micro–macro relations (6

out of 9), this was only the case for two of the nine

CFP participants.

It is also notable that six of the eight participants who

transitioned from model construction to model application by

developing strategies to test their explanations showed a low CMP

score (all six received a CMP score of 1) and a low micro–macro

score (five participants received a micro–macro score of 1 and one

participant received a micro–macro score of 2). Thus, only two

participants developed strategies to test generated explanations and

received high complexity scores for model construction (a CMP

score of 3 or 4 and a micro–macro score of 3). Both participants

modeled the CFP.

5. Discussion

5.1. RQ1: abductive reasoning steps in
biological model construction

Johnson and Krems (2001) stated that abductive reasoning

processes do not always include all proposed steps. Congruently

with this, we observed some steps more frequently than others.

The steps collect data, discriminate, and resolve anomaly were only

found rarely in the modeling processes of this study’s participants.

However, this does not necessarily indicate that these steps are

not important in biological model construction, since their rare

presence is probably explained by the limitations of this study’s

modeling task format. For instance, to be able to collect data, it is

important to observe the phenomenon (Greve and Wentura, 1997;

Constantinou, 1999). This was hardly possible in the modeling task

of our study. Participants could only use information about the

phenomenon that was given to them in the instruction to explicate

ideas on how they might collect data.

Hence, comprehend, refine, and check were frequently found

in the modeling processes in our study, and this indicates the

important role of these steps in model construction for biological

phenomena. We assume that the steps collect data, discriminate,

and resolve anomaly, which we rarely found in our data, are also

involved in model construction for biological phenomena. For

instance, studies with more interactive modeling tasks have shown

that collecting data is an important part of modeling for inquiry

(e.g., Constantinou, 1999; Meister et al., 2021).
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FIGURE 3

Distribution of participants’ CMP scores (left) and micro-macro scores (right) in relation to the frequency of abductive reasoning steps that occurred

in their modeling processes.

5.2. RQ2: comparison of creative and
selective abduction

The pattern of abduction that is applied in model construction

depends on the extent to which modelers already know about

possible explanations for a phenomenon (Schurz, 2008). For

operationalization of creative abduction, we applied the CFP

as a modeling context in which participants did not know of

explanations. For operationalization of selective abduction, we

applied the RFP as a modeling context in which participants knew

of explanations, e.g., from their everyday lives and individual

experiences with the phenomenon. The findings that CFP

participants explicated lacking knowledge and RFP participants

referred to concrete examples from everyday life during their model

construction support this methodological operationalization.

Moreover, we identified five differences between the modeling

processes of the CFP and the RFP, which is consistent with previous

research suggesting that engagement in the modeling process is

context-dependent (Svoboda and Passmore, 2013; Bennett et al.,

2020; Schwarz et al., 2022).

The first difference examined relates to participants’ wishes and

ideas to collect data, only found in RFP modeling processes. This

may be interpreted as a wish to obtain evidence to be able to select

between possible alternatives in selective abduction. However, the

format of the task did not allow the participants to collect new

data about the phenomena, which might have inhibited them

TABLE 6 Distribution of participants’ complexity scores for model

construction for CFP and RFP.

CFP (n) RFP (n)

CMP score

4 |:C–>M–>P:| 5 2

3 C–>M–>P 1 1

2 |:C–>P:| 1 6

1 C–>P 1 0

0 P 1 0

Micro–Macro score

3 M< − >M 4 2

2 M+M 3 1

1M or M 2 6

from discriminating between generated explanations based on data.

Thus, this limitation of the modeling task might also explain

the infrequent occurrence of discriminate, especially in modeling

processes for the RFP, in which most participants generated

concurring models.

The second difference examined was about the initiation of

model construction: while all RFP participants generated their
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first explanatory model relatively quickly—two participants started

generating models right away—all CFP participants began with an

attempt to comprehend the phenomenon at first and needed more

time to construct a (primary) explanatory model. The observation

that learners spend a great deal of time comprehending what is

going on when they construct models for phenomena that they

do not know much about is also reported by other scholars (e.g.,

Bierema et al., 2017; Schwarz et al., 2022). Participant CFP09

only engaged in the comprehend step and did not generate a

plausible model. This example illustrates how a lack of knowledge

about a phenomenon and the inability to create analogies inhibit

model construction in such a way that no plausible explanation

for a phenomenon can be generated (Göhner and Krell, 2020;

Göhner et al., 2022). We interpret the differences in initial model

construction (i.e., longer time spent comprehending the CFP

compared to the quick generation of explanatory models for the

RFP) as indicators of higher difficulty in constructing explanatory

models for the CFP than for the RFP. This is also supported

by the third and fourth differences examined (RFP participants

generated alternative models more quickly than CFP participants,

and CFP participants checked their generated models for internal

consistency more often than RFP participants did).

The fifth difference was that RFP participants engaged more

frequently in the test step than CFP participants. Thus, RFP

participants transitioned more often from generating explanations

in model construction to testing explanatory model applications.

This result might indicate that developing strategies to test

generated models is easier when modelers can rely on explanations

from their prior knowledge. This connects to studies in the field of

experimental competencies stating that prior contextual knowledge

influences students’ ability to plan experiments for scientific inquiry

(Schwichow and Nehring, 2018). To illustrate this argument with

examples from this study’s modeling contexts, it seems easier to

develop testing strategies to determine whether a person’s reddened

face is caused by exposure to the sun or alcohol abuse than to

develop strategies for testing whether the sex change of a male

clownfish is caused by the absence of female pheromones. This

supports argumentation from Schwarz et al. (2022), who argue that

“the more a person or group ‘knows’ about the phenomena [. . . ],

the more they can do within that modeling context.” (p. 1,091).

Another explanation for the fact that CFP participants engaged less

frequently in the test step can be derived from the result that they

needed more time to generate their models. Although there was

no time limit for the interviews, constructing plausible models for

the CFP was time-consuming (Figure 3) and thus might have been

mentally exhausting. As a result, participants may have eventually

become cognitively fatigued and lost further motivation to derive

strategies to test their generated models.

5.3. RQ3: relationship between abductive
reasoning and modeling of phenomena as
complex systems

Model construction is about generating a plausible explanation

for a phenomenon (e.g., Upmeier zu Belzen et al., 2021; Adúriz-

Bravo and González Galli, 2022). Phenomena are explained

as complex systems if their explanations include causes and

mechanisms on different organizational levels (Schneeweiß

and Gropengießer, 2019, 2022; Penzlin et al., 2022). In this

study, we analyzed the complexity of model construction

processes determining the extent to which participants explain a

phenomenon as a complex system during model construction.

Therefore, we applied the CMP approach of Hmelo-Silver et al.

(2017) to evaluate the extent to which participants linked causes

and mechanisms to explain a phenomenon (CMP score) and the

extent to which they linked micro and macro levels of biological

organization (micro–macro score).

Adúriz-Bravo and González Galli (2022) assumed that the

complexity of initial generated explanations will be low as

a result of individuals staying close to intuitive formulations

and will probably increase during the process of abductive

reasoning in model construction. The significant correlation

between frequencies of abductive reasoning steps with CMP scores

supports this assumption, by indicating that extensive abductive

reasoning in model construction is related to the connection of

causes and mechanisms to explain the phenomenon in model

construction. However, no correlations were found between the

frequency of abductive reasoning steps and the micro–macro

score. This implies that extensive abductive reasoning does not

necessarily lead to the connection of macro and micro levels,

which indicates that abductive reasoning alone is not enough

to explain phenomena as complex systems in biological model

construction. We assume that an interplay between abductive

reasoning and systems thinking skills, such as cross-level reasoning

(Tamir et al., 2023), is necessary for explaining biological

phenomena as complex systems in model construction. This idea

has also been proposed in the field of earth science education

by Oh (2019, 2022). On the other hand, with respect to the

large number of different organizational levels that can be

addressed when generating biological explanations (Schneeweiß

and Gropengießer, 2019, 2022), the distinction between micro-

and macro-levels as suggested by the CMP approach (Hmelo-Silver

et al., 2017) could fall short to examine a possible relationship

with abductive reasoning steps. Consequently, it might be powerful

to consider a more fine-grained analysis of the organizational

levels addressed, and how they are connected in the interplay of

cause, mechanism, and phenomenon, as was done in the study by

Penzlin et al. (2022).

In addition to connecting causes and mechanisms on different

organizational levels, the systems thinking literature suggests that

further skills need to be applied to explain phenomena as a complex

system. Among others, these skills also include developing complex

mechanisms such as feedback loops or considering the system’s

change over time (Ben Zvi Assaraf and Knippels, 2022; Tamir

et al., 2023). Future studies are needed to examine how cognitive

processes of abductive reasoning, which we operationalized as the

steps of abduction (Johnson and Krems, 2001), are related to

further systems thinking skills.

CFP participants addressed higher complexity in their model

construction processes than RFP participants according to both

CMP and micro–macro scores. This indicates that participants

modeling the CFP tended to explain their phenomenon as

a complex system, combining causes and mechanisms across

micro- and macro-levels of biological organization. In contrast,

Frontiers in Education 13 frontiersin.org180

https://doi.org/10.3389/feduc.2023.1170967
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Engelschalt et al. 10.3389/feduc.2023.1170967

participants modeling the RFP mostly referred to simple cause-

and-effect relationships in their model construction processes. We

explain this by the strong everyday life relevance of the RFP. In

everyday life situations, explanatory models usually do not refer to

multiple causes and mechanisms on different organizational levels

but to simple cause–effect relations. It is likely that the pre-service

biology teachers engaged in their master’s studies who participated

in our study would be capable of explaining the RFP as a complex

system. However, most of the RFP participants constructed simple

models and transitioned to developing strategies to test them in

model applications. Göhner et al. (2022) found that if modelers

constructed complex models, this would not automatically lead

them to engage in model application. Moreover, to transition

from model construction to model application, modelers need

to perceive their generated models as plausible. For our results,

this might indicate that less complex models for the RFP were

plausible and therefore suited to enabling the participants to move

on by developing strategies to test their generated models. Since

only two participants (both of whom modeled the CFP) engaged

in model application and received high complexity scores, our

results might suggest that addressing high complexity in model

construction could stunt the transition to model application.

Explaining phenomena as complex systems in model construction

and developing strategies to test these complex explanations in

model application are difficult tasks that require the highest level

of systems thinking skills (Ben Zvi Assaraf and Knippels, 2022;

Tamir et al., 2023) and modeling competencies (Upmeier zu Belzen

et al., 2021). Thus, it is not surprising that only two of the 18

participants explained their phenomenon as a complex system

in model construction and developed strategies to test generated

explanations in model application.

6. Conclusion and outlook

An important role of abductive reasoning in modeling for

inquiry in biology has been justified by historical analysis of

modeling processes leading to important ideas, such as Darwin’s

theory of evolution (Adúriz-Bravo and González Galli, 2022),

theoretical argumentations (Upmeier zu Belzen et al., 2021),

and case studies (Clement, 2008; Svoboda and Passmore, 2013).

With this study, we add to prior findings by applying concrete

theoretical concepts to operationalize abductive reasoning in

the form of the steps (Johnson and Krems, 2001) and the

patterns of abduction (Schurz, 2008), and by examining their

role in modeling of biological phenomena as complex systems.

Our results provide evidence that the abductive reasoning steps

comprehend (understanding the phenomenon), check (evaluating

the plausibility of an explanation), and refine (specifying an

explanation) are involved in model construction for biological

phenomena. However, participants’ frequent engagement with

these steps alone did not indicate that they were explaining

phenomena as complex systems. As also suggested in the field of

earth science education (Oh, 2022), we assume that an interplay

between abductive reasoning and systems thinking skills, such as

cross-level reasoning (Tamir et al., 2023), is needed to explain

biological phenomena as complex systems in model construction.

Testing this assumption in future studies will require a fine-grained

examination of abductively generated explanations, as in the study

by Penzlin et al. (2022).

The creative pattern of abduction, as operationalized by the

CFP modeling context, was associated with frequent consistency

checks and high complexity in model construction. However,

there were rare transitions from generating explanations in model

construction to testing them inmodel application. Thismay suggest

thatmodeling contexts in which learners need to creatively generate

a novel explanation for a phenomenon do not encourage them to

test the generated explanations. Nevertheless, these contexts may

be suited to fostering learners’ construction of complex explanatory

models. On the other hand, the selective pattern of abduction,

as operationalized by the RFP modeling context, was connected

to rapid generation of multiple simple models and to frequent

transitions from model construction to model application. This

might indicate that modeling contexts in which learners already

have explanations for a phenomenon may not foster learners’

construction of complex models. However, such contexts could be

suitable to foster learners’ transition from generating explanations

in model construction to testing them in model application.

The findings of this study are limited by the openness of the

format of the modeling task and its small sample of 18 pre-service

science teachers during their master’s studies. The stated differences

between creative and selective abduction operationalized by the

CFP and RFP in this study need to be supported with further

evidence by larger studies on pre-service teachers’ modeling

processes and studies that operationalize patterns of creative and

selective abductive reasoning with other biological phenomena. To

further investigate the other findings of this study (for instance,

to examine the extent to which complexity in model construction

stunts transition to model application), studies with focused

modeling tasks that guide participants more during their modeling

processes are needed.
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