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Complex disorders including obesity, diabetes, fatty liver disease, cardiovascular disease and 
cancer are results from a combination of genetic, environmental and lifestyle factors. The prev-
alence of such disorders has increased dramatically in the last two decades and there is an 
urgent need for the development of new prognostic tools for the treatment of such diseases. 
However, this requires a deep understanding of the underlying molecular mechanisms involved 
in the occurrence of the diseases. With the advances in high throughput technologies, biological 
components of cells can be measured with a very high resolution and these data can be used 
for investigating whole systems properties using a network-based approach. Systems medicine 
provides an integrative platform for studying the interactions between the biological compo-
nents of the cell using a holistic approach and generating mechanistic explanations for the 
emergent systems properties. This inter-disciplinary field of study allows for understanding 
biological processes of cells in health and disease states, gaining new insights into what drives the 
appearance of the disease and finally identifying proteins and metabolites implicated in human 
disease. Systems medicine utilizes mathematical approaches to generate models which can be 
employed for designing new sets of experiments and for mapping the response of the system 
to perturbations quantitatively. These models as well as the developed tools can accelerate the 
emergence of personalized medicine which can transform the practice of medicine and offer 
better targets for drug development with minimum side effects. 
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Editorial on the Research Topic

The Impact of Systems Medicine on Human Health and Disease

Complex disorders including obesity, diabetes, fatty liver diseases, cardiovascular disease (CVD),
and cancer are results from a combination of genetic, environmental, and lifestyle factors. The
prevalence of such disorders has increased dramatically in the last two decades and there is an
urgent need for the development of new prognostic tools for the treatment of such diseases.
However, this requires a deep understanding of the underlying molecular mechanisms involved
in the occurrence of the diseases. With the advances in high throughput technologies, biological
components of cells can be measured with a very high resolution and these data can be used
for investigating whole systems properties using a network-based approach. Systems medicine
provides an integrative platform for studying the interactions between the biological components
of the cell using a holistic approach and generating mechanistic explanations for the emergent
systems properties (Mardinoglu and Nielsen, 2012). This inter-disciplinary field of study allows
for understanding biological processes of cells in health and disease states, gaining new insights
into what drives the appearance of the disease, and finally identifying proteins and metabolites
implicated in human disease. Systems medicine utilizes mathematical approaches to generate
models which can be employed for designing new sets of experiments and formapping the response
of the system to perturbations quantitatively. These models as well as the developed tools can
accelerate the emergence of personalized medicine which can transform the practice of medicine
and offer better targets for drug development with minimum side effects.

Genome Scale Metabolic Models (GEMs) are important tools in systems biology and employed
for simulating the metabolism of cells/tissues in different states (Mardinoglu et al., 2013). GEM
includes all known metabolic reactions and associated protein coding genes in a particular cell
or tissue and the reconstruction of GEMs is costly and time consuming process. Pacheco et al.
benchmarked the algorithms that have been used in the automated reconstruction of context-
specific GEMs. This may allow researchers to identify limitations of each method and help them
to increase the quality of context-specific reconstruction algorithms and as well as the generated
models. Zhang and Hua reviewed the potential applications of GEMs in systems medicine and
industrial biotechnology. The authors described the key concepts and assumptions used in the
application of the GEMs and provided detailed explanation about the recent applications which
may promote the use of GEMs by biologists.

GEMs have been widely used in the discovery of biomarkers and drug targets that can be used in
the development of efficient treatment strategies (Mardinoglu and Nielsen, 2015). These integrative
models can also be used in the stratification of the patients as well as the identification of the subjects
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at risk of developing complex diseases. CVD includes all the
diseases of the heart and circulation and continues to constitute
the leading cause of death globally. Therefore, there is an urgent
need to develop tools and methods for identifying individuals
at risk of developing CVD. Björnson et al. reviewed the current
CVD risk scores and discussed how systems medicine could
improve the identification of risk and maximize personalized
treatment benefit.

Tumor cells alter their metabolism to maintain their growth
and proliferation. Ghaffari et al. reviewed the metabolic
alterations that are known to occur in cancer and underlined the
use of genome-scale metabolic modeling approach in perceiving
a system level perspective of cancer metabolism which can
be used in discovery of biomarkers and drug targets. Özcan
and Çakır have reconstructed glioblastoma multiforme (GBM)
specific GEMs based on gene expression data and used their
context-specific model to predict metabolic flux distributions in
the brain tumor cells. The authors identified the GBM specific
metabolic alterations and provided a comprehensive coverage
of tumor metabolism. Moreover, flux distributions in glycolysis,
glutaminolysis, TCA cycle, and lipid metabolism were predicted
and validated by additional computational analysis and literature
information.

Zhang et al. evaluated the potential value of current major
systems biology-based approaches, including genome wide
association studies, gene regulatory networks, and protein–
protein interaction networks and GEMs. The authors discussed
how integrative analysis of personal multi-omics data may
provide increased understanding of personal genotype–
phenotype relationships. Moreover, the potential benefit of
integrating different type of networks in increased understanding
of the interactome is discussed. Recently, metabolic networks
have been integrated with other biological networks and these
networks have been used in the analysis if omics data obtained
from different clinical conditions (Lee et al., 2016a,b). In the
same context, Brown reviewed the challenges in the generation
of SuperModels where computational models were integrated
with various data types and analytics. The author has also
discussed how these SuperModels may assist in the development
of personalized and precision medicine.

Stable isotope assisted metabolomics techniques have been
used in systemsmedicine for metabolic flux analysis and pathway
discovery. It is essential to understand the pathophysiology of
dyslipoproteinemia in humans since it has major role in the
progression of complex diseases including CVD and diabetes.
The use of tracers labeled with stable isotopes and mathematical
modeling may provide a powerful tool for probing lipid and
lipoprotein kinetics in vivo. Adiels et al. reviewed the recent
kinetic studies and discussed how these studies may improve
our understanding of impaired human lipoprotein metabolism.
Even though, stable isotope labeling analyses have been highly
targeted, in recent years, tools for the global non-targeted
detection, quantification, and computational analysis of isotopic
enrichment have become available. Weindl et al. discussed how
such non-targeted stable isotope labeling analyses can be applied
for systems medicine applications.

Finally, Shmelkov et al. described an approach to improve
in silico identification of a comprehensive ensemble of targets
for any drug weighted by the expression of those receptors
in relevant tissues. Their approach may increase the sensitivity
of target detection and allow for systematic integration
of bioactivity/docking scores between drugs/compounds and
proteins with the expression patterns of those proteins in human
tissues.

The work presented in this Research Topic addresses many of
the recent progress in the applications of the GEMs is medical
applications. The integration of GEMs with other biological
networks and generation of whole cell models may foster the
development of personalized medicine which may increase
benefits and reduce risks for patients.
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Recent progress in high-throughput data acquisition has shifted the focus from data
generation to processing and understanding of how to integrate collected information.
Context specific reconstruction based on generic genome scale models like ReconX
or HMR has the potential to become a diagnostic and treatment tool tailored to the
analysis of specific individuals. The respective computational algorithms require a high
level of predictive power, robustness and sensitivity. Although multiple context specific
reconstruction algorithms were published in the last 10 years, only a fraction of them is
suitable for model building based on human high-throughput data. Beside other reasons,
this might be due to problems arising from the limitation to only one metabolic target
function or arbitrary thresholding. This review describes and analyses common validation
methods used for testing model building algorithms. Two major methods can be
distinguished: consistency testing and comparison based testing. The first is concerned
with robustness against noise, e.g., missing data due to the impossibility to distinguish
between the signal and the background of non-specific binding of probes in a microarray
experiment, and whether distinct sets of input expressed genes corresponding to i.e.,
different tissues yield distinct models. The latter covers methods comparing sets of
functionalities, comparison with existing networks or additional databases. We test those
methods on several available algorithms and deduce properties of these algorithms that
can be compared with future developments. The set of tests performed, can therefore
serve as a benchmarking procedure for future algorithms.

Keywords: metabolic networks and pathways, metabolic reconstruction, constraint-based modeling, tissue

specific networks, benchmarking, validation

1. INTRODUCTION

Metabolic network reconstructions become ever more complicated and complete with
reconstructions like Recon2 (Thiele et al., 2013) or HMR (Mardinoglu et al., 2014) containing
more than 7000 reactions. While these reconstructions are a great tool for the analysis of the
potential capabilities of an organism, one challenge faced by many researchers is that different
cell types in multicellular organisms exhibit diverse functionality and the global generic network
is too flexible. This issue has been addressed in two ways, by manually generating tissue specific
models (Gille et al., 2010; Quek et al., 2014) or by creating algorithms for automatic reconstructions
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(Becker and Palsson, 2008; Jerby et al., 2010; Zur et al., 2010;
Agren et al., 2012; Wang et al., 2012; Vlassis et al., 2014;
Yizhak et al., 2014; Robaina Estévez and Nikoloski, 2015). Ryu
et al. (2015) and Robaina Estévez and Nikoloski (2014) recently
reviewed this field and give a good overview of the available
reconstructions and point to many algorithms used in this
context. While Ryu et al. (2015) are more concerned with the
the state of the reconstructions, Robaina Estévez and Nikoloski
(2014) focused on the applicability and properties of the available
algorithms. With that many methods available, the method
selection is difficult, and it is an enormous effort to try and
distinguish which network, of a set of generated networks is best.
Quality assessment is therefore essential but the methods used to
evaluate the currently available algorithms are very diverse and
it is difficult to compare them with each other. There are several
approaches for validation which can essentially be split into two
different categories: Consistency testing and Comparison based
testing. The first is concerned with robustness against noise,
e.g., missing data, and whether distinct sets of input data yield
distinct models. The second commonly aims at validating the
resulting model against other models or against additional data.
Comparison tends to be the more common approach so far,
while consistency is often ignored. This leads to the problem that
algorithms are often prone to be over-specific to the comparison
dataset (e.g., parameters like expression thresholds or weights
working well for only one specific tissue). While comparison
methods validate the reconstructed model, they are however
not validating the consistency. Thus, it is possible that small
differences in the input dataset can lead to vastly different
networks, or even very diverse datasets yield the same models.
The latter is particularly true if e.g., a biomass function is set as
objective function, since it will lead to the inclusion of amultitude
of reactions, which might not be necessary if a specific tissue is
supplied with some metabolites by other tissues. To investigate
the quality of automatically reconstructed networks it is therefore
necessary to rigorously test them. In the following paragraphs, we
describe multiple methods that were used in the past.Table 1 also
gives an overview of these approaches, and details which concept
was used for validation of which algorithm.

1.1. Methods for Testing Algorithmic
Consistency
The idea of consistency testing covers two major aspects:
Robustness of the method and its capacity to distinguish slightly
different contexts.

If feasible, random cross validation of the resulting models
for a given set of input data can help to determine the
robustness of the method with respect to noisy data (Vlassis
et al., 2014). Left-out cross-validation allows identifying the
reactions that if left-out from the input set would nevertheless
be included (or excluded for inactive reactions) in the output
model as their inclusion is supported by other reactions of the
input set (Pacheco et al., 2015). The robustness of algorithms
against noise can also be assessed by adding noise to the
expression data i.e., by using a weighted combination of real and
random data (Machado and Herrgård, 2014). The main issue
of using random and left-out cross validation with most of the

TABLE 1 | Overview of methods used for validation of automated tissue

specific reconstruction algorithms.

Method Used by

Consistency testing

Cross validation PRIME, FASTCORE, MBA, FASTCORMICS, iMAT

Diversity of generated models GIMME, mCADRE, tINIT, FASTCORMICS

Comparison based testing

Comparison with manually
curated network

INIT, MBA

Comparison with additional
databases

mCADRE, RegrEx, iMAT

Comparison with shRNA
knockdown screens

MBA, FASTCORMICS

Comparison with literature
mining

iMAT

Comparison with metabolic
exchange rates

PRIME

Comparison with known
metabolic functions

MBA, mCADRE, FASTCORE

current algorithms is that running times of several hours makes
decent cross-validation with hundreds of test and validation
sets infeasible. While small cross validation runs (e.g., when
multiple sources of input data are available and only some sets
are considered, Jerby et al., 2010) can give an indication of
robustness, they cannot replace random sampling runs, which
reflect noisy data much better.

To test the diversity of generated networks, many algorithms
are employed to generate multiple networks and those networks
are then investigated for dissimilarity (Becker and Palsson, 2008;
Wang et al., 2012; Agren et al., 2014; Pacheco et al., 2015; Uhlén
et al., 2015). If networks of similar cell types group together
in a clustering and networks of divergent cell types are further
apart, this indicates that themethod does indeed generate specific
networks. While it is desirable to obtain distinct networks for
distinct tissues, the optimal method should not be too sensitive to
small changes in the input data. Otherwise the resulting networks
are prone to overfitting to the provided input data.

1.2. Methods for Comparison Based
Testing
Comparison based testing is commonly employed to show the
advantages of the presented algorithm compared over previous
algorithms or to show the quality of the reconstructed network
based on additional, formerly unknown, data. While the former
has been employed for the validation of some algorithms (Wang
et al., 2012; Vlassis et al., 2014; Robaina Estévez and Nikoloski,
2015), and becomes more important with an increasing number
of available methods, it has also recently been used to compare
multiple methods systematically (Machado and Herrgård, 2014;
Robaina Estévez and Nikoloski, 2014). In the review by Machado
and Herrgård (2014) 8 different methodologies (including
GIMME, Becker and Palsson, 2008, iMAT, Zur et al., 2010 and
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a method by Lee et al., 2012) where tested on an independent
dataset. However, their focus was on comparing the quality of
flux value predictions, i.e., flux bounds specific to a condition
in Escherichia coli and yeast, and not the reconstruction of
tissue specific networks, i.e., the extraction of an active sub-
network.

1.2.1. Comparison Against Manually Curated
Networks
Comparison to a manually curated tissue was employed by Agren
et al. (2012) for the INIT algorithm, when they compared
their automatically generated liver reconstruction to HepatoNet.
However, they were restricted to a comparison on the gene
level, since the source network used by INIT was the HMR
database (Mardinoglu et al., 2013), while HepatoNet used
its own identifiers. As they mention the difference between
the reconstructed and manually curated models was partially
due to absence of genes from HMR that were present in
HepatoNet. Simultaneously, it is likely that the curators of
HepatoNet lacked information on some of the genes present
in HMR. Thus, to validate a methodology it is necessary for
both the “reference” network and the source network to be
compatible.

1.2.2. Comparison Against Additional Datasets and
Databases
Similarly, many methods compare the resulting reconstructions
to additional databases that contain tissue localization data (like
BRENDA, Schomburg et al., 2013, HPAm Uhlén et al., 2015
or the Gene Expression Omnibus, Barrett et al., 2013), which
was performed for multiple reconstruction methods (Shlomi
et al., 2008; Wang et al., 2012; Robaina Estévez and Nikoloski,
2015). The common approach is to check for matches of either
genes or proteins that the algorithm assigned to the tissue. This
validation (and the results) are however highly dependent on
whether the reconstruction method aims at creating a consistent
network, or whether it allows inconsistent reactions to be part
of the reconstruction. The latter will very likely increase the
amount of correctly assigned genes, as enzymatic activities
that cannot carry flux in the source reconstruction, would
otherwise be excluded. In addition, when extracting reactions
from a source network, the associated gene-protein reaction
relations are commonly not altered. Thus, genes, which are
inactive in a specific tissue show up as assigned to the tissue.
Removing them however, could potentially be problematic if
the tissue does express the removed gene under a specific
condition. In this instance the tissue reconstruction would no
longer contain information about this fact, and would indicate
wrong potentials of the tissue. Another method that could be
used as an assessment for predictive quality of an algorithm
was performed by Folger et al. (2011) and subsequently by
Pacheco et al. (2015). They used gene silencing data from
an shRNA screen and compared it with gene essentiality
predictions from a flux balance analysis (FBA) screen. The
cancer network generated in this work showed an enrichment
of essential genes in the genes indicated in the shRNA screen.
In Pacheco et al. (2015), the list of essential genes predicted

by FASTCORMICS was further compared to essential genes
predicted by PRIME, MBA, mCADRE, and GIMME. Likewise
bibliographic approaches have been employed to determine the
agreement of reactions belonging to a certain subsystem in the
reconstructed network and those subsystems being mentioned in
connection with the reconstructed tissue in the literature (Shlomi
et al., 2008).

To assess the predictive capability of the Model Building
Algorithm (MBA), Jerby et al. (2010) used flux data from a study
performed in primary rat hepatocytes and compared the ability
of the source reconstruction and the generated reconstruction
to predict internal fluxes given the exchange fluxes (and vice
versa). This allowed them to assess whether the tissue specific
network was indeed performing better in estimating the internal
fluxes than the generic reconstruction (in this instance Recon1).
They could show that indeed the tissue specific network had a
better capability to capture the actual fluxes than the generic
reconstruction. This concept was also used by Machado and
Herrgård (2014) in their assessment of multiple methods for
network contextualization. However, while contextualization
commonly aims at altering flux bounds, which leads to a good
comparability of flux measurements with predictions, tissue
specific reconstruction is aiming at determining the network
available in a given tissue. This means that bounds from the
underlying source reconstruction are used and these are often
unsuitable for the tissue of interest. But as shown by Jerby et al.
(2010), even the pure network structure alteration can already
improve the agreement between network fluxes and measured
data, at least on a qualitative level.

A method developed by Shlomi et al. (2009) to compare the
resulting network for the effects of inborn errors of metabolism
(IEM) is also often used inmodel quality assessment. The concept
is, briefly, to analyse flux ranges of the exchange reactions of the
created network and compare them with clinical indications of
increased or decreased metabolite levels. This concept has also
been used for assessment of Recon2 (Thiele et al., 2013) who
investigated a diverse set of IEMs and could show their effect even
on the level of a generic reconstruction. Similarly, the authors
of PRIME (Yizhak et al., 2014) used experimentally measured
uptake and excretion rates and compared them to the secretion
rates determined by the models their algorithm generated. While
the former approach is commonly used to provide a qualitative
assessment of increase or decrease in production potential,
the latter results in a quantitative comparison. However, it
requires the availability of uptake and secretion rates, which
are commonly only available for cell lines and could be largely
different in real tissues.

Another common approach to investigate the quality of
reconstructions is the comparison with lists of metabolic
functions. This approach is both used to validate automated
reconstructions (Jerby et al., 2010; Wang et al., 2012) as well as
manual reconstructions (Gille et al., 2010). The aim is to establish
whether the reconstruction supports the current knowledge of
the target tissue (e.g., a liver reconstruction should support
the conversion of ammonia to urea), and to show that there
are no structural issues in the reconstructed network (e.g., free
regeneration of ATP or reductants).
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1.3. A Benchmark for Testing Tissue
Specific Reconstruction Algorithms
In this paper we present a potential benchmark that is using
several of the mentioned methodologies to assess the consistency
and quality of reconstructed networks and tested it with several
of the available algorithms.

There are however multiple obstacles, when defining a
benchmark for contextualization algorithms. There is no such
thing as a “perfect” measurement, which will always leave us
with noisy data to incorporate. Furthermore, we do not yet have
a contextualized model that perfectly reflects a given context
which could be used as a target model. In addition, the global
reconstructions are not yet complete, and will likely never be
and finally, there is a wide variety of data that can be used
to contextualize models. Thus, to define a benchmark we will
address these questions by generating networks which we define
as reference networks for out testing.

The actual benchmark is preceded by a characterization of the
algorithms, in which the similarity level of the context-specific
reconstructions obtained with real and artificial input data is
assessed. In the latter test, artificial models of different sizes were
built and 50, 60, 70, 80, and 90% of the reactions of these networks
were used as input for the tested algorithms. The capacity of the
algorithm to distinguish between different models was compared
for the different percentages of input data.

In the actual benchmark, the confidence level of the reactions
included in the context-specific reconstructions using real data
was assessed by matching z-scores obtained by the Barcode
method (McCall et al., 2011) that basically indicate the difference
in intensity between the measured intensity and the intensity
distribution observed in an unexpressed state and through
a comparison against the confidence score at the proteomic
level of the Human Protein Atlas (Uhlén et al., 2015). In
a second comparison, artificial models were built and 50,
60, 70, 80, and 90% of the reactions of these networks
were used as input for the tested algorithms and the output
models were then compared to the complete input model.
The context-specific networks obtained with the real data were
also tested for the functionalities established by Gille et al.
(2010).

2. MATERIALS AND METHODS

2.1. Models Used for Benchmarking
There are currently two competing global reconstructions
for humans available: Recon2 (Thiele et al., 2013) and
HMR2 (Mardinoglu et al., 2013). To be able to test multiple
validation techniques, we needed to select one of those
reconstructions as the source network used by the tested
algorithms. We decided to employ Recon2, as we used
functionalities originating from HepatoNet (Gille et al., 2010),
a model based on Recon1 (Duarte et al., 2007) and largely
incorporated into Recon2. However, we still had to modify
Recon2 to allow the algorithms to fully reconstruct HepatoNet
(the procedure can be found in Supplementary File 1).
HepatoNet was also adapted to match reactions and metabolites

TABLE 2 | Algorithms available for tissue specific metabolic network

reconstruction.

Algorithm Input Publication

Akesson04 Set of inactive genes Åkesson et al., 2004

FASTCORE Set of active reactions Vlassis et al., 2014

FASTCORMICS Gene expression data Pacheco et al., 2015

GIMME Gene expression data, objective
function

Becker and Palsson, 2008

GIM3E Gene expression data,
metabolomics data, objective
function

Becker and Palsson, 2008

iMAT Gene expression data Zur et al., 2010

INIT Gene expression data and
metabolite presence data Agren et al., 2012

MBA High, medium and low reaction sets Jerby et al., 2010

mCADRE Gene expression data Wang et al., 2012

PRIME Growth rates, gene expression data Yizhak et al., 2014

RegrEx Gene expression data Robaina Estévez and
Nikoloski, 2015

tINIT Gene expression data, functions,
metabolite presence

Agren et al., 2014

Most methods can use expression data as input but there are some that need additional

inputs.

with Recon2. This modified Recon2 was used as source model
for all runs.

In addition to HepatoNet as a comparison model for real data,
we constructed ten artificial sub-networks from Recon2. Those
networks were generated to be approximately equally spaced in
a range between 1000 and 3500 reactions. They were generated
by randomly removing up to 4500 reactions from our Recon2
version and determining the consistent part of the remaining
model. The first model within ±50 reactions of equally spaced
points in the interval [1000, 3500] was selected as representative
for this point. The models and model sizes can be found in
Supplementary File 5.

2.2. Characterization of the Algorithms
There are many algorithms available for tissue-specific metabolic
network reconstructions (see Table 2). In this section we will
detail the algorithms used in our study and give reasons, why
others were excluded.

In order to test the algorithms with real data, liver
models were built by the tested algorithms using as input
22 arrays from different datasets downloaded from the Gene
Expression Omnibus (GEO; Edgar et al., 2002) database
(Supplementary File 2). The same data was also used for the
cross-validation assays.

2.2.1. GIMME (Becker and Palsson, 2008) and
iMAT (Zur et al., 2010)
For the benchmarking of the GIMME (Becker and Palsson, 2008)
and the iMAT (Zur et al., 2010) algorithms, the implementation
provided by the COBRA toolbox (Schellenberger et al., 2011)
was used with an expression threshold corresponding to the 75th
percentile. The proceedExp option was set to 1 as the data was
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preprocessed. For GIMME, the biomass objective coefficient was
set to 10−4.

2.2.2. INIT (Agren et al., 2012)
In the original paper, INIT (Agren et al., 2012) assigns weights
to the genes associated to the input model that were computed
by dividing the gene expression in the tissue of interest by the
average expression across all tissues. As for the first experiment,
only liver arrays were available, z-scores obtained by the Barcode
discretization method (Zilliox and Irizarry, 2007; McCall et al.,
2011), were used as weights (see below).

2.2.3. RegrEx (Robaina Estévez and Nikoloski, 2015)
The RegrEx implementation in the supplementary files of
Robaina Estévez and Nikoloski (2015) was used. This algorithm
has previously only been used with RNA-seq data and therefore
no established discretization method exist for microarray data.
In order to allow a comparison with the others methods,
the intensity values after frma normalization and the standard
variation were directly mapped to the reactions of the model
using the Gene-Protein-Reaction rules (GPR). For reactions that
are not associated to any gene, the expression and the standard
deviation were set to 0 and 1000, respectively.

2.2.4. Akesson (Åkesson et al., 2004)
For this algorithm, the data was normalized with the frma
normalization method and then discretized with Barcode. Genes
with z-scores below 0 in 90% of the arrays, were considered
inactive and the bounds of the associated reactions, taking into
account the Gene-Protein-Reaction rules (GPR), were set to 0.
FASTCC (Vlassis et al., 2014) was then run to remove reactions
that are unable to carry a flux.

2.2.5. FASTCORE z-score
For FASTCORE z-score, the expression data was normalized
with the frma method and discretized using Barcode. Barcode
uses previous knowledge on the intensity distribution across
thousands of arrays to calculate for each probe set of the analysed
array the number of standard deviations to the median of the
intensity distribution for the same probe set in an unexpressed
state. Genes with a z-score above 5 in 90% of arrays are
considered as expressed and mapped to the reactions according
to the Gene-Protein-Reaction rules (GPR) to obtain a core set
that is fed into FASTCORE (Vlassis et al., 2014).

2.2.6. FASTCORMICS (Pacheco et al., 2015)
The expression values were first normalized with frma, converted
into z-scores using Barcode (McCall et al., 2011) and further
discretized using an expression threshold of 5 z-scores and an
unexpression threshold of 0 z-score. Genes with 90% of the arrays
above the expression threshold are assigned a score of 1 while
those below the unexpression threshold are assigned a score of
−1. All other genes are associated with a discretization score of
0. These scores are then mapped onto the model using the Gene-
Protein-Reactions rules to obtain lists of core and unexpressed
reactions. Unexpressed reactions are excluded from the model.

The FASTCORMICS workflow allows the inclusion of a
medium composition, which was not used in the tests, as the

aim was to provide the same information to all algorithms. A
modified version of FASTCORE is then run that maximizes the
inclusion of core reactions while penalizing the entry of non core
reactions. Note that transporter reactions are excluded from the
core set but are not penalized.

2.2.7. Context-Specific Reconstruction Algorithm
that were not Tested
PRIME and tINIT were not included in the tests as they require,
in addition to expression data, growth rates for PRIME and
information on tissue functionalities for tINIT. Determination
of growth rates in multicellular organisms is restricted to cell
lines or cancerous cells, as most other cell types are finally
differentiated and therefore no longer divide. Since growth rates
are an essential part of PRIME it was excluded from the tests.
While functionalities are available for some metabolically very
active tissues (like kidney and liver), they are often not available
for others. Since we wanted to test a wide range of potential
tissues, we decided not to employ functionalities in our input
set. Therefore, tINIT would be reduced to INIT as the remaining
functionality is the same. Since we wanted to focus on gene
expression data, which is currently the most readily available
type of data, we did not add metabolomic information into our
screens. GIM3E would need this type of information and was
therefore not tested. Finally, MBA, Lee and mCADRE took more
than 5 days for a single run on 2 cores of our cluster and where
therefore not included.

2.2.8. Similarity of the Context-Specific Models and
Algorithm-Related Bias
The similarity level between the context-specific models built
by the tested algorithms was assessed by computing the Jaccard
index between each pair of models. The matrix containing the
Jaccard indices was then clustered using Euclidian distance.
Further, for each context-specific model, the number of reactions
found by only 1, 2 up to all of the methods was computed and
represented as a stacked boxplot. The colored areas represent
the different models built by the tested algorithms and for each
bin the colored area is proportional to the number of shared
reactions.

2.2.9. Sensitivity and Robustness Testing Using
Artifical Data
While there are methods that take continuous expression
measurements into account (Colijn et al., 2009; Lee et al., 2012,
and reviewed in Machado and Herrgård, 2014), other methods
require the user to define sets of reactions that are present
(FASTCORE, MBA) or perform some form of discretization
to determine the presence or absence of a gene or a reaction
(Akesson, GIMME, iMAT, FASTCORMICS). The latter types of
methods, using some form of presence/absence calls can be more
rigorously tested for robustness, as a target model can be used to
provide the present and absent genes/reactions.

We also tested these algorithms using the artificially created
networks. The test was performed as follows:
The potential available information was defined as the sets
of reactions present in each submodel and absent from each
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submodel. Based on this data different percentages of input
information (50%, 60%, 70%, 80%, and 90%) were provided to
the algorithms. The same random samples were provided to
the tested algorithms to allow a further comparison between
the algorithms (generating a total of 5000 models for each
algorithm). To be able to use reaction data, we modified the
implementation of the GIMME algorithm to allow the direct
provision of the ExpressedRxns and UnExpressedRxns fields.
The model similarities were assessed by calculating the Jaccard
index between each pair of models generated for input sets
from different target models. In addition, the internal distances
of all models generated for one target model were calculated
(a total of 50,000 comparisons per algorithm). Furthermore,
the corresponding models for each algorithm and each tested
input percentage were compared, to obtain the inter-algorithm
distance.

2.2.10. Robustness Testing Using Real Data
For the cross-validation, 20% of the reactions were removed
from the core set and transferred to the validation set. The
number of these reactions that were included in the output model
was determined and a hypergeometic test was computed. The
process was repeated 100 times randomizing at each iteration
the core set to form different validation sets. For algorithms that
take continuous data as input, the cross-validation assay was
adapted as follows: 20% of the gene-associated reactions were
removed from the input set by setting the expression to 0 and
the standard deviation to 1000 for RegrEX and the rxnsScores to
0 for INIT. But only reactions considered to be expressed with a
high confidence level formed the validation set i.e., for INIT only
reaction with z-scores above 5 and with expression value above
10 for RegrEX. For Akesson the validation set was composed of
inactive reactions. The results for Akesson have to be taken with
care as the validation set is only composed of 4 reactions. This is
due to Barcode only indicating very few genes as absent, which
led to only about 40 reactions being removed from Recon2.

2.3. Benchmarking with Real Data
2.3.1. Confidence Level of the Reactions
The z-scores computed by Barcode give the number of standard
deviations of a gene expression level above the mean of the
same genes in an unexpressed state. The z-scores of the genes
were mapped to the reactions of Recon2 (Thiele et al., 2013),
HepatoNet (Gille et al., 2010) and to the context-specific models
built by the different workflows using the Gene Protein Rules
(GPR). In the same way, the confidence levels assigned by the
Human Protein Atlas (HPA) to the proteins of the database were
mapped to the reactions of the different context-specific models.

2.3.2. Comparison Between Different Tissue Models
The ability of the algorithm to capture metabolic variations
among tissues was tested using the GSE2361 dataset (Ge et al.,
2005) downloaded from Gene Expression Omnibus (GEO) that
contains 36 types of normal human tissues. Twenty-one of the
36 tissues matched tissues in the Human Protein Atlas. The
confidence levels of the proteins in the different tissues were
first matched to the modified version of Recon2 to determine if

proteins with high and medium confidence level are ubiquitously
expressed or expressed in a more tissue specific manner. Then
the confidence levels werematched to the corresponding context-
specific models to verify if the variation observed among the
tissue context-specific models matched the one observed in the
Human Protein Database.

To further access the quality of the reconstructed models,
the fraction of reactions of the Recon2 pathways that are active
in the output models were computed. The obtained matrix
was then clustered in function of the Euclidean distance (see
Supplementary Figure 6).

2.4. Benchmarking with Artificial Data
The runs using artificial data, performed for sensitivity and
robustness analysis, were also used to provide an additional
benchmarking measurement for the algorithms. Sensitivity,
specificity and false discovery rate were calculated by comparison
of the reconstructed networks with the respective target network.
The artificial nature of these networks allowed us a complete
knowledge of the actual target thus making these calculations
possible.

2.5. Network Functionality Testing
Function testing is commonly achieved, by defining a set of
metabolites that are available and can be excreted and requiring
other metabolites to be produced/consumed or a reaction to
be able to carry flux. The input and output can either be cast
into a linear problem by adding importers and exporters or
by relaxing the steady state requirement for the imported and
exported metabolites. Gille et al. (2010) used the latter definition
and we adapted this approach using the following modification
of the standard FBA approach:

min
∑

v+i + v−i

s.t bl ≤ S′ ∗ v′ ≤ bu

0 ≤ v+i ≤ ubi ∀i ∈ internal reactions

0 ≤ v−i ≤ −lbi ∀i ∈ internal reactions

v+i − v−i = 0 ∀i ∈ exchange reactions

with S′ = [S,−S]and v′ =

[

v+

v−

]

bl,i =



















−10000 ∀i ∈ imported metabolites(−/ =)

−1 ∀i ∈ produced objectives(+)

1 ∀i ∈ consumed objectives(−)

0 else

and bu,i =



















10000 ∀i ∈ exported metabolites(+/ =)

−1 ∀i ∈ produced objectives(+)

1 ∀i ∈ consumed objectives(−)

0 else

The test is considered to be successful if there is a non zero value
for all evaluators when calculating S′ · v′.
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2.6. Computational Resources
Except for RegrEx, all runs using the liver data were performed
on two cores of a 2.26Ghz Xeon L5640 processor on the HPC
system of the University of Luxembourg (Varrette et al., 2014) to
achieve comparable running times. Tissue comparison runs and
artificial simulation runs were performed on the same cluster but
not limited to specific node types.

3. RESULTS

3.1. Characterization of the Algorithms
3.1.1. Similarity of the Context-Specific Models and
Algorithm-Related Bias
The aim of this characterization step is to categorize the
algorithms based on the similarity of their output models in order
to gain insight into algorithm-related bias, requirements of the
algorithms i.e., thresholds and more importantly when to use
which algorithms. In an ideal case, one would expect that when
fed with the same input data, the different algorithms would
produce similar networks. But when comparing the context-
specific liver models generated with the different algorithms
and HepatoNet, only 530 reactions were found in all networks
and 77 reactions of our version of Recon2 were inactive in
all context-specific models and HepatoNet. The 530 reactions
were found among 54 different subsystems, including reactions
belonging to pathways expected in all tissues like i.e., the
Krebs cycle, glycolysis/gluconeogenesis, but also pathways that
were described to take place mainly in the liver, like i.e., bile
acid synthesis (Rosenthal and Glew, 2009; Wang et al., 2012)
or some reactions of the vitamin B6 pathway (pyridoxamine
kinase, pyridoxamine 5′-phosphate oxidase and pyridoxamine
5′-phosphate oxidase; Merrill et al., 1984). This huge variability is
due to workflow-related bias and to different strategies and aims
of the algorithms. FASTCORE (Vlassis et al., 2014), expects as
input a set of reactions with a high confidence level which are
assumed to be active in the context of interest and therefore all
core reactions are included in the output model (Table 3). In
contrast, FASTCORMICS (Pacheco et al., 2015) only includes a
core reaction if it does not require the activation of reactions with
low z-scores. Themain objective of GIMME (Becker and Palsson,
2008) is to build a model by maximizing a biological function.
The input expression data is used to identify, which reactions
are not required for the objective and can function therefore be
removed from the model due to low expression values (Table 3).
iMAT (Zur et al., 2010; Lee et al., 2012) and RegrEx (Robaina
Estévez and Nikoloski, 2015) maximize the consistency between
the flux and the expression discarding reactions that have high
expression values if necessary, which might be problematic
if reactions have to be included in the model like i.e., the
biomass function. INIT (Agren et al., 2012) uses weighted activity
indicators as objective, with those having stronger evidence being
weighted higher. Whereas the Akesson’s (Åkesson et al., 2004)
algorithm aims to eliminate non expressed reactions.

The models, when clustered in function of the Jaccard
Similarity Index (Figure 1), form 2 branches and an outlier:
HepatoNet. The first cluster is composed of algorithms that

TABLE 3 | Models numerics: Size, number of input reactions with high

expression, respectively z-score levels, fractions of input reactions set

included in the output models, number of genes-associated reactions in

the model and running time.

Model Size Input Gene-associated Time in

reactions reactions seconds

GIMME 3513 2441 2087 4458

iMAT 3649 2441 2440 2098

INIT 3913 2020 2787 36,002

RegrEx* 3239 1626 2576 64

Akesson 5740 1594 3715 54

FASTCORE z-score 2882 1595 2084 17

FASTCORMICS 2663 1595 1906 112

*Note that RegrEx was run on a different computer with an Intel(R)Xeon(R)CPU E3 1241-v3

@ 3.50 GHz processor.

take as input continuous data and attempt to maximize the
consistency between the data and the Akesson algorithm that
eliminates inactive reactions. The second cluster is composed
of algorithms that discretize the data in expressed and non-
expressed genes. Among this cluster, a second subdivision is
observed between the algorithms that used z-score converted
data (i.e., FASTCORE z-score and FASTCORMICS) and the ones
that use normalized data without further transformation.

Overall the highest similarity level are found between
FASTCORE z-score and FASTCORMICS with a score of 85% of
similarity followed by iMAT and GIMME with 77% of similarity.
The lowest similarity level is found between FASTCORMICS and
HepatoNet with only 26% of overlap. The largest overlap between
HepatoNet and context-specific reconstructions is found for
INIT with 43% of similarity. Note that the INIT model although
having as input Barcode discretized data does not cluster with
FASTCORE z-score or with the FASTCORMICSmodels but with
RegrEx, suggesting that the choice to consider continuous data
rather than defined core set has a larger impact on the output
models.

As the algorithms were fed with the same input data, reactions
that are predicted by one or only few algorithms are more likely
to be algorithm-related bias (Figure 2). The Akesson model that
contains 98.56% of the input model includes the largest number
of reactions (201) that are absent in the others models.

The reactions included in the FASTCORE, FASTCORMICS,
iMAT and GIMME models are for 97%, 98%, 96%, respectively
89% supported by at least 3 other algorithms and display a similar
profile shifted to the right. HepatoNet, INIT and the Akesson’s
model share 92%, 83%, respectively 91% with 3 other algorithms
and have different profiles from the algorithms of the first group
composed of algorithm that include a discretization step.

In summary, discretization-based algorithms show the highest
similarity level and therefore the lowest number of reactions due
to potential algorithm-related bias.

3.1.2. Sensitivity and Robustness Testing Using
Artifical Data
Since we noticed that there are two sets of algorithms among the
discretizing algorithms, we decided to further test their properties
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FIGURE 1 | Similarity index of the models built by the different algorithms. The Jaccard index was computed for each pair of models and clustered in function
of the Euclidean distance. Contrary to what was expected, the output models of the tested algorithms, despite having been fed with the same input show a huge
variability.The descritization-based algorithms (GIMME, iMAT, Akesson, FASTCORE, and FASTCORMICS) show the highest similarity
levels.

FIGURE 2 | Reactions overlap: The number of reactions that are shared

by the models built by the tested algorithms. Each line represents
HepatoNet or a model built by one of the tested algorithm. The plot illustrates
the number of reactions that are common to 1, 2, 3 up to all of the models.

with artificial networks by comparing resulting models from
multiple runs for different models and levels of completeness of
input data.

Figure 3 provides the average similarities for all models
reconstructed for each target model at different available
information percentages (A full set of mean similarities for each
percentage and each artificial model along with the data for
the plots is provided in Supplementary Files 1, 3). Each square
represents the mean Jaccard index of the all combinations of
networks generated for different input networks [e.g., (1,2) is
the average similarity of all networks generated for models 1 to
all networks generated for model 2]. The diagonal represents
the internal similarity of all networks generated for one model.
When 90% of the data is available, all the algorithms are able
to distinguish variation between the different models. But with
a less complete data set, inclusive algorithms lose in specificity
and therefore also progressively lose the capacity to distinguish
between different models. Further with 30 and 50% reactions
missing, it would be expected that the algorithms get less robust,
but Akesson and GIMME only show a modest decrease of
robustness (as shown in the diagonal). A similar behavior for the
GIMME algorithm was also described by Machado and Herrgård
(2014) in a experiment where noise was progressively added to
the input data to finally obtain a random input dataset. GIMME
showed the same average error in prediction for the random
and original data (Machado and Herrgård, 2014), suggesting that
due to the optimization of the biomass function, the expression
data has a reduced impact on the model building. Comparing
the models resulting from runs with different completeness
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FIGURE 3 | Resolution power: The plot shows Jaccard distances for the networks generated by the algorithms, when trying to create the artificial

networks. For each of the ten artificial models 100 runs were performed and each square represents the mean Jaccard distance between these networks. E.g., For
each percentage and algorithm, the tenth square in the first row is the mean of all pairwise Jaccard distances between the 100 models generated for artificial model 1
(the smallest) and the 100 models generated for artificial model 10 (the largest) generated for the respective algorithm and percentage. The diagonal is the mean of the
pairwise Jaccard distances between 100 runs performed. The diagonal can therefore be an indicator for robustness (the brighter, the more similar the models) while
the off diagonal indicates similarities between the generated models and is therefore an indicator for specificity to the input (the darker, the more distinct the generated
models). When 90% of the data is available, all the algorithms are able to distinguish variations between the different models. But with a less complete data set,
inclusive algorithms (here GIMME and Akesson) lose in specificity. It would also be expected that when only 50% of the data is available, the robustness decreases.

of input data illustrates that the methods tend to converge
on more complete data sets, with the Akesson approach and
GIMME being more inclusive and the FASTCORE family being
more exclusive (see Figure 4 and Supplementary File 4). While
initially, with incomplete data, the methods are distinguishable
by the networks generated, this difference becomes smaller with
additional knowledge.

3.1.3. Robustness Testing Using Real Data
In order to further evaluate the confidence level of the reactions
included in the different context-specific models a 5-fold cross-
validation was performed. The experiment was repeated 100
times with a different validation set. GIMME, iMAT, and
FASTCORMICS show the highest robustness, followed by
FASTCORE and FASTCORE z-score (see Table 4). Algorithms
that maximize the consistency between the data and the flux,
e.g., INIT and RegrEx, are less robust with insignificant p-
value. For Akesson no hyper-geometric test was performed as
the validation set was too small to obtain a reliable p-value.
Note that for context-specific reconstruction algorithms a trade-
off has to be found between robustness and the capacity to
capture differences between similar contexts. For this reason, a
too high robustness might not be desirable as it would imply

that the algorithm might lose in resolution power, i.e., the ability
to distinguish between different sets of input data. Therefore, it
is also advisable to not test for robustness without testing the
resolution power.

3.2. Benchmarking with Real Data
3.2.1. Confidence Level of the Reactions Included in
the Different Models
As shown by the previous similarity test, there are several
alternative approaches to build context-specific models. To
assess the confidence level of a reconstruction, one can
quantify the confidence level of the reactions included by
each algorithm. Context-specific algorithms assume that the
higher the reactions associated expression levels, the more
likely the reactions to be active. Following this logic, context-
specific reconstructions should be enriched for higher expression
levels. As the background level is non negligible and highly
dependent on the probes, we corrected for probe effect using the
Barcode method. The z-scores computed by Barcode translate
the number of standard deviations to the intensity distribution
of the same genes in an unexpressed state. The z-scores of the
genes mapped to the reactions of Recon2 (Thiele et al., 2013),
HepatoNet (Gille et al., 2010) and to the context-specific models
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FIGURE 4 | The plots show the mean Jaccard distance between the networks generated by the different algorithms for several artificial models and

input percentages. For each algorithm, the corresponding networks (using the same input data) are compared. The models are provided in Supplementary File 5.
Sizes are: Model 1: 961; Model 4: 1876; Model 7: 2629; Model 10: 3455. Smaller models (e.g., Model 1) tend to yield more distinguishable results, while larger
models (due to a larger fraction of common reactions), tend to yield more similar networks. Overall, the difference between inclusive (GIMME/Akesson) and exclusive
(Fastcore/FASTCORMICS) algorithms is clearly visible.

TABLE 4 | Number and percentage of reactions recovered from the validation set, average model size over 100 reconstruction processes.

Validation set Recovered % of Recovered Sample size Input Hypergeometric

reactions reactions p-value

GIMME 488 408 (6.42) 83.57 1878 (6.42) 3871 < 1e− 100

iMAT 488 335 (10.85) 68.68 1631 (29.85) 3871 < 1e− 100

INIT 345 (7.16) 83.7 24.26 1931 (113.63) 4469 (7.16) 1

RegrEX 326 (12.79) 160 (19.25) 48.9 2528 (201) 4524 (12.79) 0.96

Akesson 4 0.98 (1.41) 24.5 5343 (6.54) 5828 (24.5) ND

FASTCORE z-score 319 121.6 (8.26) 38.12 1332 (27.33) 4548 0.0051

FASTORMICS 335(0.4) 192( 7.79) 57.14 1516 (27.13) 4782 (7.57) 1e-18

without medium

built by the different algorithms show that the distribution of
the z-scores are for most models shifted, as expected, toward
higher z-scores values with a significant p-value for all context-
specific models except RegrEX (Robaina Estévez and Nikoloski,
2015). Algorithms that use a discretization method show a
larger shift to the right than algorithms that maximize the
consistency between the flux and the data. Within this group the
FASTCORMICS (Pacheco et al., 2015) shows the most significant
shift toward the highest z-score values followed by FASTCORE
z-score, GIMME (Becker and Palsson, 2008), and iMAT (Zur
et al., 2010) (Figure 5 and Table 5). Surprisingly, the consistent
version of HepatoNet (Gille et al., 2010) is associated to slightly
higher z-scores than Recon2 (Thiele et al., 2013) but significantly

lower than most discretization based automated context-specific
reconstructions.

Further, unlike their competitors, all the discretization-based
context-specific reconstructions show an enrichment of genes
with a high and medium confidence scores to be expressed at
the protein level (Uhlén et al., 2015). A stronger enrichment
is observed for FASTCORE z-score and FASTCORMICS with
46 and 50% of the gene associated reactions having a high
or medium confidence level Table 6, respectively. GIMME and
iMAT include 28 and 30% reaction with high or medium
confidence levels, respectively. Again surprisingly, HepatoNet
does not show an enrichment for high and medium confidence
levels.
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FIGURE 5 | Confidence score at the transcriptomic level. Median
z-score of the intensity measured in the liver samples to the median intensity
distribution for the genes in an unexpressed context mapped the
genes-associated reactions of Recon2 (yellow), HepatoNet (orange) the
GIMME (dark blue), iMAT (light blue), INIT (green), RegrEx (gray), Akesson (dark
green), FASTCORE z-score (pink), and FASTCORMICS (brown)
Discretization-based algorithms (GIMME, iMAT, FASTCORE, and
FASTCORMICS) are enriched for higher z-score values.

TABLE 5 | Comparison between the z-score distribution associated to the

models build by the different methods.

Model 1 Model 2 KS p-value

FASTCORE z-score FASTCORMICS 1e-10

GIMME FASTCORE z-score 3e-111

iMAT GIMME 2e-24

INIT iMAT < 1e− 100

HepatoNet INIT 9 e-18

Akesson Hepatonet 6e-20

consistRecon Akesson 0.04

RegRexp consistRecon 3e-14

A low p-value indicates that the z-score distribution of Model 2 is shifted toward higher

values (to the right) compared to Model 1 (Kolmogorov-Smirnov test).

In summary, dicretization-based algorithms include reactions
with a higher confidence level at the transcriptomic and
proteomic level than their competitors.

3.2.2. Comparison Between Different Tissue Models
The aim of a context-specific algorithm, as indicated by the name,
is to build models that capture the metabolism of a cell for a
given context and therefore these algorithms have to be able to
capture variations in the metabolism of different tissues. To pass
the following test, context-specific algorithms not only have to be
sensitive (or to have a high resolution power) in order capture
metabolic difference between tissues, but the reconstructions
for different tissues have to be enriched for high or medium

confidence levels based on HPA. The last criteria allows to
identify algorithms that build different models based on noise
or algorithm-related bias. In order to assess the variation among
tissues in HPA, the genes with high, medium and low confidence
levels for 48 different tissues were mapped to the input model
Recon2, showing that very few reactions have a high or medium
confidence level in all tissues. In summary, most reactions with
high and medium confidence scores have a more tissue-specific
expression (Figure 6).

A similar experiment was performed with context-specific
reconstructions built by the tested algorithms, in which the
number of algorithms that shared a reactions was assessed
(see Figure 7). For RegrEX, INIT and Akesson models, the
majority of reactions are found in all tissues. For GIMME, most
reactions are either tissue-specific or present in all the tissues. In
contrast, the models built by the members of the FASTCORE
family show a distribution similar to the that obtained in
Figure 6, for HPA. For iMAT only 8 models could be obtained
as the computational demands for the reconstructions of the
others tissues surpasses the number of core available and the
maximal running of 5 days. When looking at the confidence
levels associated with the 21 different tissue-specific models,
FASTCORE z-score and FASTCORMICS show in 20 out of
21 the highest percentage of reactions with a high or medium
confidence level (see Figure 8). The size of the different tissue
metabolic models built by the tested algorithm can be found in
the Supplementary File 6).

The quality of the tissue-specific models built by the different
algorithmwere accessed by focusing on selected pathways known
to have a more tissue-specific expression, namely bile acid
synthesis and heme synthesis. The bile acid synthesis occurs in
liver, although one or the other enzyme of the pathways might
occasionally be expressed by other tissues (Rosenthal and Glew,
2009; Wang et al., 2012). As expected the FASTCORE family,
GIMME and iMAT predicted that the highest fraction of active
reactions are found in the liver followed by the foetal liver for
the FASTCORE family members and iMAT and by placenta and
foetal liver for GIMME. Whereas, the INIT models of skin, bone
marrow, corpus, thalamus, pituitary gland and foetal liver had a
higher fraction of active reactions than the liver model. Thirteen
out of thirty-six of the tested Akesson models predicted 90%
and more reactions of the bile acid pathway as active. RegrEX
predicted a slightly higher fraction in the thalamus than in the
liver and a comparable fraction in the ovary, the foetal brain and
the corpus (Supplementary Files 1, 6).

The heme synthesis that occurs mainly in the developing
erythrocytes and in the liver (Ajioka et al., 2006), was given as
100% active by the FASTCORE family and completely inactive
by GIMME and iMAT in the liver. But these two algorithms
predicted the pathway to be active in other tissues. As a matter
fact, all the algorithms predicted the pathway to be active in
others tissues than the liver. INIT, RegrEX and Akesson included
this pathway in 20, 22, and all tested 36 tissues, respectively.
Fewer models of the FASTCORE family contained reactions of
this pathway: uterus and tyroid for FASTCORMICS and spleen,
placenta, uterus, thyroid, skin, bone marrow, amygdala, lung and
foetal liver for FASTCORE.
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TABLE 6 | Number, percentage of gene-associated reactions and percentage of reactions of each context-specific reconstruction that have a high,

medium and low confidence score to be expressed at the protein level.

Algorithms Description High Medium Low Not detected

Number of reactions 628 641 65 265

Recon % of the reactions of the model 11 % 11 % 1 % 5 %

% of the gene-associated reactions 17 % 17 % 2 % 7 %

Number of reactions 213 266 47 108

HepatoNet % of the reactions of the model 9 % 11 % 2 % 5 %

% of the gene-associated reactions 12 % 15 % 3 % 6 %

Number of reactions 518 444 47 126

GIMME % of the reactions of the model 15 % 13 % 1 % 4 %

% of the gene-associated reactions 25 % 21 % 2 % 6 %

Number of reactions 574 525 55 153

iMAT % of the reactions of the model 16 % 14 % 2 % 4 %

% of the gene-associated reactions 24 % 22 % 2 % 6 %

Number of reactions 453 499 55 155

iNIT % of the reactions of the model 12 % 13 % 1 % 4 %

% of the gene-associated reactions 16 % 18 % 2 % 6 %

Number of reactions 376 418 41 186

RegrEX % of the reactions of the model 12 % 13 % 1 % 6 %

% of the gene-associated reactions 15 % 16 % 2 % 7 %

Number of reactions 624 637 64 260

Akesson08 % of the reactions of the model 11 % 11 % 1 % 5 %

% of the gene-associated reactions 17 % 17 % 2 % 7 %

Number of reactions 584 413 21 123

FASTCORE z-score % of the reactions of the model 20 % 14 % 1 % 4 %

% of the gene-associated reactions 28 % 20 % 1 % 6 %

Number of reactions 570 391 15 73

FASTCORMICS % of the reactions of the model 21 % 15 % 1 % 3 %

% of the gene-associated reactions 30 % 21 % 1 % 4 %

An enrichment in high and medium confidence level is observed for discretization-based algorithms (GIMME, iMAT, FASTCORE z-score and FASTCORMICS).

3.3. Benchmarking with Artificial Data
To further evaluate the quality of the algorithms, we also
used the artificial data (see Section 3.1.2) to benchmark the
algorithms. Comparing the resulting models with the target
models, we again see that for more complete input sets, the
model quality tends to become more similar (see Figure 9). It
is interesting to note that the false discovery rate (FDR) of
FASTCORE for higher percentages is similar to those of the
inclusive models, while FASTCORMICS achieves a better FDR.
This indicates alternative routes to activate reactions. In general,
there is again the tradeoff between adding too much or too
little. It is however interesting that the exclusive algorithms
tend to miss targets and their sensitivity is independent on
the size of the target model while this is different on inclusive
algorithms. Exclusive algorithms show a better FDR than

inclusive algorithms. Further, for smaller target models, the
loss in precision of inclusive algorithms (1-FDR) is more
pronounced for 50 and 70% of the input data, as the inclusive
algorithms tend to overestimate the actual model. Similar to the
previous experiment, it would be expected that the sensitivity
(robustness) would decrease with an increased percentage of
missing data. But the inclusive algorithms show an invariant
sensitivity in function of the available data suggesting that the
expression data has reduced impact on the model building. The
specificity for the exclusive algorithms is independent of the
target model size and are less affected by the increased missing
data than the inclusive algorithms. The sizes of the different
reconstructed models also indicates the trend for convergence,
and a figure showing the converging sizes is provided in
Supplementary File 1.
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3.4. Functionality Testing
Functional testing allows us to assess which known functions of
a specific tissue are captured by a reconstruction. We used the
set of functions defined in HepatoNet and formalized in Section
2.5 for the liver and tested them on all reconstructed networks.
We noticed that the success rate of HepatoNet and the generic

FIGURE 6 | Ubiquity of expression: Number of reactions of Recon2

with a high or medium confidence level that are shared between 1, 2,

3, up to 48 tissues of the Human Protein Atlas. Reactions with a high
confidence level tend to have a tissue-specific expression.

reconstruction Recon2 are comparable with 244 vs. 247 of 310
network tasks and 109 vs. 98 of 123 physiological tasks for Recon2
and HepatoNet, respectively. The discrepancy with the original
publication is likely due to alternative solutions and we noticed
that HepatoNet allows free production of NADH and thereby
ATP (see Table 2 in Supplementary File 1). The discrepancy
between the consistent and inconsistent HepatoNet is due to the
formulation of the functionalities, which do not require exchange
reactions but modify the b vector, thus generating implicit
importers and exporters and allowing inconsistent parts of the
network to carry flux. We also noticed an important issue with
functional testing: For random models, the larger the models,
the higher the functionality score (with R2 = 0.869 and 0.915 for
network and physiological functions, respectively). To illustrate
this issue, we generated 400 random networks by removing a
random number of up to 2000 reactions from the consistent
part of Recon2 and subsequently removing all reactions which
could no longer carry any flux. We then tested all network
and physiological functions on these networks. The results can
be seen in Figure 10, for both the network and physiological
tests.

Blue circles represent the random networks; the consistent
HepatoNet and the original HepatoNet are displayed in orange,
and show a strong enrichment in functionalities. The higher
number of functionalities covered in HepatoNet stems from
several reactions which are inconsistent, but can be used in a
functional testing as described above.We alsomarked themodels
generated using the GEO dataset for liver, which score similar
to equally sized random models. One of the main reasons for
the strong correlation between model size and successful tests

FIGURE 7 | Tissue specificity of reconstructed models. Number of reactions that are present in 1, 2, 3, up to 36 tissues models. For INIT and RegrEX, more than
1500 and 3000 reactions are present in all tissues models, while a similar number is present in all but one model created by the Akesson method. Due to
computational complexity of iMAT it was only possible to generate 14 out of 36 tissue models.
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FIGURE 8 | Fraction of reactions that are associated with high confidence (dark blue), medium confidence (light blue), low confidence HPA level

(khaki), and not detected (yellow). Each subplot represent a different tissue. The x-axis represent the different algorithms: 1-GIMME, 2-iMAT, 3-INIT, 4-RegrEX,
5-Akesson, 6-FASTCORE z-score, and 7-FASTCORMICS and the y-axis the percentage of reactions.

FIGURE 9 | Statistical measures of the algorithms. FDR, False discovery rate; Spec, Specificity; Sens, Sensitivity. Data shown is a the mean of 100 runs for each
model/input data. The model sizes are: Model 1: 961, Model 4: 1876, Model 7:2629, Model 10: 3455 While the quality of the FASTCORE models is independent of
the target model size, the inclusive approaches tend to largely overestimate smaller models, when insufficient data is available. A plot with all models can be found in
Supplementary File 1.
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FIGURE 10 | Scores in the physiological tests correlate with the size of the network. Two hundred and sixty Random Networks are shown with blue circles.

is the amount of “positive” testing. Many tests are concerned
with some type of biosynthesis or degradation and a larger
model is more likely to be able to fulfil these requirements
than a smaller model. But even using e.g., the biomass function
(like GIMME) as part of the input, the models do not get
significantly better than a random model on expression data for
liver. None of the algorithms tested achieves high scores in the
functionality test and several algorithms are on the lower end of
the random network reference. A plot showing the tests passed
by the different algorithms is supplied in Supplementary File 7.
tINIT could potentially surpass most other algorithms on this
test, as it includes functionality information in its reconstruction
routine. However, the formulation of tINIT functions is again
slightly different from the formulation inHepatoNet and thus not
directly compatible.

4. DISCUSSION

The primary aim of this work was to review and discuss the
existing validation methods and to propose a unified benchmark
for the assessment of context-specific reconstruction algorithms.
This benchmark will help to identify potential deficiencies of

existing and new algorithms and by such increase the quality of
context-specific reconstruction algorithms and the models they
generate. Although the tested algorithms were validated by their
authors in order to be published, the validation methods applied
are often incomplete, e.g., a particular aspect of the output model
fitting the context of the paper is tested like the ability to produce
lactate from glucose in cancer models, leaving other pathways
unconsidered. Further, discretization thresholds and other free
parameters of the algorithms are likely to be set to optimally
fit a particular dataset. Thus, when used in another context the
algorithm might perform worse than expected from the original
publication. The need of a unified benchmark is nicely illustrated
by Figure 1 which shows that despite being fed with the same
inputs, the output models vary considerably from each other e.g.,
the output models of RegExp and FASTCORE that share only
around 30% of the reactions.

Part of the variance between the output models is due to
different aims and philosophies of the tested algorithms but also
due to algorithm-related bias. The second aim of this work was to
demonstrate to the users that the context-specific reconstruction
algorithms are not equivalent and that the choice of the algorithm
and selection of parameter settings for the algorithms have to
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be performed with care respecting the philosophy of the tested
algorithm. For example, GIMME maximizes a chosen biological
function and when using GIMME the user assumes that the
metabolism of a cell is aimed at the fulfilment of this function.
While this biological function can be assumed to be growth for
many microorganisms or cancer cells, it is likely to be more
complex for multicellular organisms, where multiple “objectives”
have to be balanced. In the same way, FASTCORE takes as input
core reactions that are always included in the output model
and therefore a higher threshold corresponding to a higher
confidence level should be set when using FASTCORE.

Although the parameters were set according to the original
papers, we are aware that some of the tested algorithms might
perform better with a different parameter setting. We decided
nevertheless when possible not to change the original parameter
settings of the algorithm. First, because the main objective of
this paper is not to assess existing algorithms but to propose a
benchmark to validate context-specific algorithms. Second the
finding of the optimal parameter setting is a computational
demanding processes that would require i.e., crossvalidations or
other criteria that are not always available. Finding the optimal
parameter setting is beyond the scope of a benchmark and rises
other questions like overfitting to the data. Third, algorithms
should be sufficiently robust to be applied to other datasets with
the optimal settings as defined by the authors. As a general
principle, in order to avoid overfitting, the parameter estimation
should not be performed on the same data than the one used
for model generation. We therefore encourage the authors and
the users of these algorithms to test them with others parameter
settings that might be more appropriate.

The benchmark that we suggest and for which we provide the
scripts (http://systemsbiology.uni.lu/software) is based on several
criteras:
First of all the algorithms have to produce models of high quality
that include genes or reactions that are supported by some
evidence to be expressed in the context of interest. This aspect
was assessed in the workflow by mapping Barcode z-scored gene
information and confidence levels established by the Human
Protein Atlas to the models. Context-specific reconstruction that
extract sub- networks composed only of active reactions in the
context of interest from a general reconstruction tend to produce
output models that are enriched for genes with high z-scores
and a high confidence level to be expressed at the protein level.
Indeed although the activity does not correlate perfectly with
expression intensities, it was shown that algorithms that exclude
reactions with low expression values show a better predictive
power than the generic models from which they were extracted.
Both tests show that algorithms that perform a discretization
of the input data perform better in these tests than algorithms
that maximize the consistency between flux values and
the data.

We noticed that within the discretizing algorithms, there
are two conceptually distinct approaches when considering
unsupported reactions. An inclusive concept which considers
unknown data as present and an exclusive concept that considers
unknown data as absent. Inclusive concepts tend to produce
larger networks and score lower, when comparing the networks

to additional data, while exclusive concepts tend to produce
smaller networks and score higher.

This can be considered as algorithm related bias and it is likely
that when multiple algorithms are supplied with the same inputs,
reactions that are found by only one or only few algorithms
are more likely to be due to algorithm-related bias. Algorithm
related bias is not negligible as shown by the huge variability
of liver reconstructions with e.g., up to 30% of the reactions
being different between the FASTCORE and RegrExp algorithm
(Figure 1).

Further, algorithms have to be robust to noise but nevertheless
be precise enough to capture the variations in the metabolism
of a cell in different contexts i.e., different cell types, different
states e.g., healthy vs. disease and eventually between different
patients. These two criteria were tested using both experimental
and artificial data. Algorithms like GIMME are performing
extremely well in the cross-validation assay but score low in
the tissue comparison test, as GIMME produces quite similar
reconstructions for the different tissues tested. The algorithms
using an inclusive concept tend to be more robust to noisy
data but have a reduced resolution power. In contrast, exclusive
algorithm are less robust as they tend to only recover reactions
that are supported by the input data or reactions that are needed
to obtain a consistent model, which allow a greater resolution
power. Therefore, among the tested algorithms, the FASTCORE
family capture best the variation between the different tissues.
Further, the confidence level of the reactions included in the
21 tissue models showed that the variability captured by the
FASTCORE family models, was not due to noise or algorithm
related bias. In the same aspect, the artificial model test gave
some interesting insight into the quality of the reconstruction
algorithms. While both groups of algorithms, including and
excluding, generated about the same model when perfect
information was available, they start to diverge at lower amounts
of available data. In particular, with less information available
the exclusive algorithms underestimate the target network and
the including ones overestimate it. While this is to be expected
it indicates that the use of two algorithms can give a good
approximation of the quality of the available input data and
completeness of the reconstruction. If both types of algorithms
(inclusive and exclusive) do diverge substantially, it is likely that
a relevant amount of input information is missing and that the
“true” model is somewhere in between. Similarly, if the models
are almost identical, it is likely that the input information and the
reconstruction quality is high. GIMME will always include the
objective function and all reactions necessary for this function to
carry flux. Therefore, those reactionsmight influence the network
size considerably. One advantage of an exclusive concept in this
respect, is that its variability is less target model dependent than
an inclusive approach. For smaller models, the FDR for inclusive
models tends to rise much more rapidly with a more incomplete
input data set than for larger models. As we commonly are
unaware of the actual size of the target network, this might cause
problems when using inclusive approaches.

Another important aspect is the computational demand.
To determine the processing time we decided when possible
not to change the solver used in the original paper as we
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noticed that algorithms like e.g., RegrEX are sensitive to the
used solver, with gurobi finding an initial solution guess faster
than e.g., cplex and thus the result returned by cplex being
unusable for the algorithm. The range of computational times
is however substantial, with fast algorithms running in seconds
to minutes and others taking hours or even days. One of the
greatest advantages of faster algorithms, is their capability to
be more thoroughly evaluated using cross-validation techniques,
which is infeasible for an algorithm running several days. We
also observed an issue when running the INIT algorithm. For
unknown reasons, the algorithm consistently stopped after 10
h of computation. In particular, the resulting models were odd
at best, as they should be close to the models generated by
FASTCORE, and in the artificial test, should be optimal on
optimal inputs. However, the artificial test was far from optimal,
and we assume that the solver does terminate computation at
some point.

Finally, we also assessed the capacity of the context-
specific reconstruction to pass the functional test as established
in Gille et al. (2010). We found that no algorithm outperforms
random models, but that a fitted model can indeed show
higher scores without adding more reactions, as seen in
Figure 10. Unfortunately, obtaining functional data is a very time
consuming process and necessitates intensive literature research
every time a new tissue model is created. The failure of the
tested algorithms in the functional test is mainly due to the high
number of non-gene associated reactions in the generic input
model (one third of Recon2) and due to the reactions associated
to genes with low expression levels. The tested algorithms extract
a sub-network from the input model that includes all or most
reactions associated with high expressions levels (core) and few
reactions with low expression levels (non-core) in order to obtain
a consistent model. A slightly different core reactions set, can
cause the core reactions to be connected in a different way and
as a result the model displays different functionalities. As the
choice of the non-core reactions is to a large extent not guided
by the data, the obtained functions are random as shown by the
functionality test. Interestingly, the reactions found inHepatoNet
do have weak evidence when compared to HPA or z-scores,
which partially provides another explanation for the inability of
the tested algorithms to recover these activities. This however
indicates that the general reconstruction currently used lacks
either the correct gene-protein-reaction associations for several
reactions necessary for the functionalities in liver, that there
are alternative pathways missing in the reconstruction and the
reactions used in HepatoNet are not the “true” reactions, that
the functions are incorrectly assumed to be available in liver
or that the functionality lacks information about the consumed
cofactors. Indeed, as all the exchange reactions are closed, some
reactions might not carry a flux as the associated cofactor cannot
be regenerated. This would also explain why bigger models
accumulate more functions. The larger the models, the higher
the likelihood of internal loops that could allow a regeneration
of cofactors. Further it might also indicate that transcriptomics
alonemight not be sufficient to build functionally correct models.
Information on the uptake and excreted metabolite added to
the input reactions set would probably increase the score of

most algorithms. We did nevertheless not include this type of
information in the input data as the latter is not available for in
vivo tissues. While presence of importers and exporters does not
influence the functional tests, they are however highly influenced
by the availability of internal transporters.

Assuming that the defined functions are indeed present in
liver, this would indicate the importance of algorithms like tINIT
which do take these functionalities into account and which could,
given the right reference network, indicate potential missing
links in the current reconstructions. tINIT is nevertheless not
able to capture metabolic differences between different tissue as
shown in Uhlén et al. (2015), calling for a new generation of
algorithms that capture metabolic variation and that are able
to take as input functionalities. Note here that algorithms like
PRIME that do not extract a subnetwork to obtain a context-
specific model, but modifies the bounds of the reactions of
the input model, will have regardless of the modeled cell-
type or context the same functionalities as the input model.
Therefore, PRIME would score as high as the generic Recon2 in
a qualitative test. Nevertheless, the approach used by PRIME is
extremely dependant on the accuracy of the growthmeasurement
and biomass formulation, leading to a very variable quality
of the flux prediction (Yikzah et al, 2014). In a quantitative
test aiming to predict the production rate of lactate by cancer
cells, PRIME showed a lower correlation to the experimental
data than FASTCORMICS (Pacheco et al., 2015). This suggests
that building context-specific algorithms with the discretization-
based algorithms and then constraining the uptakes rates of
several key amino-acids and glucose as performed in Pacheco
et al. (2015) seems to be favorable. Further, as discussed in the
main text, there is no unique function to which the metabolism
of a non-cancerous pluricellular cell could be reduced and sofar
is limited to handle one metabolic function.

In general, we would recommend to assess the quality of
an algorithm based on a combination of functional tests for a
reconstructed tissue always in comparison to random networks,
confirmation using an independent source of information (e.g.,
proteomics data, when only using expression data for the
reconstruction), and an assessment of algorithmic properties, like
dependence on target or input model size and dependence on
input data quality. For the latter we would suggest using artificial
networks to provide a complete knowledge on the expected
outcome.
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Genome-scale metabolic models (GEMs) have become a popular tool for systems

biology, and they have been used in many fields such as industrial biotechnology and

systems medicine. Since more and more studies are being conducted using GEMs,

they have recently received considerable attention. In this review, we introduce the basic

concept of GEMs and provide an overview of their applications in biotechnology, systems

medicine, and some other fields. In addition, we describe the general principle of the

applications and analyses built on GEMs. The purpose of this review is to introduce the

application of GEMs in biological analysis and to promote its wider use by biologists.

Keywords: genome-scale metabolic models, systems biology, metabolic capability analysis, in silico metabolic

engineering, systems medicine

INTRODUCTION

Genome-scale metabolic models (GEMs) are reconstructions of the metabolic networks of many
kinds of cells, including those of microorganisms, plants, and mammals. In some cases, GEMs
could represent the whole tissue or body of a multicellular organism. In these metabolic networks,
the gene-protein-reaction (GPR) relationships are annotated. In addition, all the reactions in GEMs
are mass- and energy-balanced, ensuring stoichiometric balance. Thus, GEMs enable researchers
to conduct system-level metabolic response analysis and flux simulation, which is not possible
using general metabolic pathway databases such as KEGG. Furthermore, since GPR relationships
are included in GEMs, other omics data such as transcriptomic and proteomic data could be
systematically integrated into GEMs. Thus, GEM-based multi-omic analyses are more informative
with stoichiometric balance and could possibly provide deeper biological insights.

In the past 15 years, GEMs have garnered considerable research attention. In 2000, the first
GEM, a model of Escherichia coliMG1655, was reported (Edwards and Palsson, 2000). A few years
later, a yeast GEMwas published (Doerks et al., 2002), thus initiating a new era for systems biology.
In the beginning, researchers tried to use GEM-based in silico simulations to guide the rational
design of industrial microorganisms (hereafter referred to as in silico metabolic engineering). In
2003, a method called OptKnock (Burgard et al., 2003) was published and it employed a bi-level
optimization program to search for reaction knockout targets that would yield overproduction
of a desired biochemical while maintaining optimal growth. Following that, a series of in silico
metabolic engineering methods were developed for various gene manipulations other than knock-
out (Pharkya et al., 2004; Pharkya and Maranas, 2006; Choi et al., 2010; Ranganathan et al.,
2010; Park et al., 2012; Chowdhury et al., 2014; Mahalik et al., 2014), leading to a marked
expansion in the usage of GEMs. Furthermore, many of the in silicometabolic engineeringmethods
were experimentally validated (Fong et al., 2005; Izallalen et al., 2008; Asadollahi et al., 2009;
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Brochado et al., 2010; Choi et al., 2010; Yim et al., 2011; Xu
et al., 2011; Park et al., 2012; Ranganathan et al., 2012; Otero
et al., 2013; Kim et al., 2014), which showed the power of GEM-
based applications. With the development of systems biology,
GEMs were also used as scaffolds for systematic integration of
omics data because GEMs could be used to reconstruct the
relationship among genes, enzymes, and metabolism. Numerous
algorithms have been developed to integrate various types
of omics data such as thermodynamics (Henry et al., 2007),
transcriptomics/proteomics (Becker and Palsson, 2008; Colijn
et al., 2009; Zur et al., 2010), fluxomics (Wiback et al., 2004),
and metabolomics (Cakir et al., 2006). In return, the integration
of omics data could improve the prediction of GEMs. More
recently, GEM has been applied to systems medicine. Since the
reconstruction of the first global GEM for humans, Recon 1,
which was established in 2007 (Duarte et al., 2007), researchers
have started to explore the possibility of clinical applications
of GEMs and have reported several successful cases (Agren
et al., 2014; Gatto et al., 2014; Jerby-Arnon et al., 2014). In
fact, GEMs and their applications have received considerable
attention recently.

Although GEMs are becoming increasingly popular, they are
not easy to understand or use by non-experts. The complex
code and script usually used for GEM-based computational
applications and analyses are not readily available to the
community of biologists, greatly hampering the wide usage
of GEMs. In this review, we describe the key concepts and
assumptions of GEMs. In addition, we describe the general
principle of the applications and analyses built on GEMs. The
information presented here is expected to promote the spread of
GEM usage by biologists.

BASIC CONCEPT OF GEMs

As mentioned above, GEMs are metabolic networks. Figure 1A
shows a partly visualized glycolysis pathway in a GEM of E.
coli, and within this part, we can see that metabolites are
linked with each other by reactions, which are associated with
enzymes, which are encoded by genes. It should be noted that
the stoichiometric coefficient in metabolic reactions in Figure 1A
(as shown in Figure 1B) could not be visualized in a graph.
Therefore, GEMs employ a stoichiometric matrix (S matrix) to
represent all the coefficients in metabolic reactions (Figure 1C).
In the S matrix, the ijth element represents the stoichiometric
coefficient of the ith metabolite in the jth reaction in the GEM. If
the coefficient is positive, the metabolite is produced; otherwise,
it’s consumed. In addition, the GPR relationships in GEMs are
simplified into a two-dimensional binary matrix showing the
association between genes and reactions (Figure 1D), in which
the ijth element is one if the ith reaction is associated with the jth
gene, and it’s zero if they aren’t associated.

GEMs have several notable features: (1) They are collections
of existing knowledge of the metabolism of a specific organism,
and in most GEM-based applications, it’s assumed that the
metabolic network is complete, with very few exceptions, such
as for gap finding and gap filling (Latendresse, 2014). (2) They
are stoichiometric-balanced networks, which means mass as

well as energy balance, reduction, and proton balance are well
considered. (3) GPR relationships are annotated in GEMs, but
the interactions are not quantitatively described. (4) Even though
GEMs describe the metabolism, concentrations of metabolites
are not directly included and flux balance analysis (FBA; Orth
et al., 2010) is employed for flux simulations, which assumes
that there is no (unexpected) accumulation of metabolites within
GEMs.

USING GEMs FOR ESSENTIALITY AND
SYNTHETIC LETHALITY ANALYSIS

As mentioned above, since GEMs are complete metabolic
networks, they can be used for gene/reaction essentiality analysis
(EA; Edwards and Palsson, 2000). In general, EA identifies
all essential genes or reactions whose knockout will disable a
specific biological function through FBA. EA could be easily
implemented in silico using GEMs by enumerating all single
gene/reaction knockouts and testing whether their biological
objectives are still functioning. In addition, synthetic lethality
analysis (SLA), which scans for combinatory knockouts of
multiple reactions/genes that lead to blocking of the target
biological function, could also be implemented in a similar way.
And recently, several methods have been developed to perform
advanced SLA efficiently (Suthers et al., 2009; von Kamp and
Klamt, 2014; Pratapa et al., 2015; Zhang et al., 2015).

It’s generally believed that gene/reaction EA could be
performed by topologic analysis of the metabolic network.
However, since the stoichiometric coefficients are absent in
topologic metabolic networks, they’re less accurate. For example,
Figure 2 shows the topologic network of the toy model from
Figure 1. Based on its topologic properties, this metabolic
work can use D-glucose-6-phosphate, NAD, and phosphate as
substrates and produce 3-phospho-D-glycerate, NADH, and
a proton. However, this pathway always consumes more
ADP than it produces, and produces more ATP than it
consumes. Therefore, this pathway will be blocked without ADP
supplementation and this finding was not possible by topologic
analysis.

Essentially, if a GEM is well established, its EA and SLA results
could be very accurate. For example, in the most used E. coli
and S. cerevisiae GEMs, around 90% of the predicted essential
genes have been validated in vivo (true-negative; Feist et al.,
2007; Heavner et al., 2013). This is within expectation, because
if a function is blocked in silico, it’s very unlikely that there
could be a complimentary solution in vivo to recover it. The
explanation for the very few false-negative predictions (negative
growth in silico and positive growth in vivo) is that there’s a
knowledge gap, such as unknown enzyme or unknown function
of an existing enzyme, which leads to the underestimation of the
capability of the GEM. On the other hand, even if the GEMs
are 100% complete, there may still be false-positive predictions
since themissing information of regulation and protein (enzyme)
efficiency could lead to extra constraints to GEMs, thereby
rendering a nonessential reaction/gene in silico essential in vivo.
It’s worth mentioning that, after a certain period of adaptive
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FIGURE 1 | Toy model showing the basic structure of GEMs. (A) Visualized toy model,(B) biochemical equations within the toy model, (C) stoichiometric matrix

of the toy model, and (D) gene-reaction association matrix. In (A), the dashed blue, green, and orange frames indicate the metabolic reactions, enzymes, and genes,

respectively. G6P, D-glucose-6-phosphate; F6P, D-fructose-6-phosphate; FDP, D-fructose-1-6-bisphosphate; G3P, glyceraldehyde-3-phosphate; 13DPG,

3-phospho-D-glyceroyl-phosphate; 3PG, 3-phospho-D-glycerate; and Pi, phosphate.

evolution, a false-positive knockout could become nonessential
in vivo again (Patil et al., 2005).EA and SLA have mainly been
used to validate newly constructed GEMs and in recent years, EA
and SLA were applied to study of systems medicine (see Section
Using GEMs in Studies of Systems Medicine).

USING GEMs AS SCAFFOLDS FOR MULTI
OMICS DATA INTEGRATION AND
INTERPRETATION

Recently, increasing volumes of transcriptomic, proteomic, and
metabolomics data are becoming publically available, and it’s
believed that GEMs are good scaffolds to make use of these
multi omics data. In GEMs, omics data could be quantitatively
integrated as constraints for metabolic fluxes, thereby allowing
systematic and quantitative evaluation of these data, which was
not possible using traditional metabolic networks. This is the
most significant advantage of using GEMs as scaffolds.

Although, GEMs are metabolic networks, the most used
omic data for GEMs are transcriptomic and proteomic. This is
because the technic is really advancing in the field and makes
large number of high quality transcriptomic and proteomic data
available. However, since the GPR relationships are qualitative in
GEMs (Figure 1C), one needs to make assumptions to define the
quantitative relationship between gene/protein expression and
metabolic fluxes when integrating transcriptomic or proteomic
data into GEMs. This is problematic because the complicated
relation between fluxes and expression level of genes and
enzymes in vivo are unlikely to be captured by a general
assumption (MacHado and Herrgård, 2014). On the other hand,
there’re many well-defined approaches to integrate fluxomics
and metabolomics, data (Khodayari et al., 2014; Martín et al.,
2015; Miskovic et al., 2015). However, it’s very difficult (if
not impossible) to get genome scale data of them. Hence, we
suggest that even though omics data are integrated, one should
be skeptical about the quantitative results of simulations or
predictions from GEMs.
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FIGURE 2 | Metabolic networks vs. GEMs. Left, metabolic part of the toy model in Figure 1. Right, metabolic network based on the toy model. Circles linked to a

dashed orange arrow are unbalanced metabolites within the metabolic network according to topological analysis. Red circles in the right part are metabolites that

could not be balanced according to the flux balance analysis based on the toy model.

Nonetheless, we believe that it is better to qualitatively
interpret the omics data using GEMs. For instance, it would be
much more reliable to use omics data to determine the presence
or absence of reactions and to construct high-quality and specific
GEMs (Zur et al., 2010; Agren et al., 2012, 2014;Mardinoglu et al.,
2013; Yizhak et al., 2014). In addition, many researchers started
to integrate significance of differential expression of genes with
GEMs rather than their quantitative expression to interpret the
biological information behind omic data (Patil and Nielsen, 2005;
Cakir et al., 2006; Jensen and Papin, 2011; Fang et al., 2012; Navid
and Almaas, 2012). Moreover, qualitative interpretation of omics
data with GEMs have recently been applied to systems medicine
(see Section Using GEMs in Studies of Systems Medicine).
These studies demonstrated the usefulness of GEMs as scaffolds.
In short, we suggest that GEMs are powerful platforms for
integration of omics data for gaining biological insights rather
than quantitative results.

USING GEMs FOR IN SILICO METABOLIC
ENGINEERING

Using GEMs for in silico metabolic engineering has been a
widely discussed topic for years. It’s generally believed that
GEM-based methods could predict gene modification strategies
for overproduction of desired biochemicals and thus, accelerate
the overall metabolic engineering process. In the last decade,
various kinds of in silicometabolic engineeringmethods had been
developed and many of them were applied experimentally (Kim
et al., 2015; Long et al., 2015; MacHado and Herrgård, 2015).

Although in silico metabolic engineering methods seemed
quite different from each other, they follow a similar procedure:
(1) they define what a desired strain is and (2) identify
approaches that push the wild-type strain to become the
desired one. So far, a variety of approaches were used in in
silico metabolic engineering, such as reaction/gene knock-out
(Burgard et al., 2003; Patil et al., 2005; Kim et al., 2012; Ren
et al., 2013; Ruckerbauer et al., 2014; Zhang et al., 2015),
overexpression/suppression (Pharkya and Maranas, 2006; Choi
et al., 2010; Ranganathan et al., 2010; Park et al., 2012;
Chowdhury et al., 2014), foreign pathway knock-in (Pharkya
et al., 2004), and swapping the co-factor for a target enzyme
(NADH toNADPHor vice versa; King and Feist, 2013). However,
the methods for knock-out identification are the majority since
a knockout is much easier to define in silico than up-/down-
regulation of genes as mentioned before. On the other hand,
different methods could have independent definition of desired
strains. For instance, some of the methods define the desired
strain by simply setting thresholds for growth and production,
respectively, and others could define the desired strain following
some biological assumptions (Edwards et al., 2001; Segrè et al.,
2002).

Interestingly, methods pursuing different type of desired
strains could all lead to experimentally valid strategies for
metabolic engineering (Fong et al., 2005; Trinh et al., 2008;
Fowler et al., 2009; Choi et al., 2010; Yim et al., 2011; Ng et al.,
2012; Nocon et al., 2014), but the production of target products
predicted in silico seldom achieved in vivo. The explanation to
this is complicated, and could come from both the computational
and experimental side. However, one of the key reasons should
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be that GEM with only metabolic network is not enough
to quantitatively predict the behavior of strains in vivo. In
conclusion, we suggested that all kinds of in silico metabolic
engineering methods are instructive, but it’s better to use them
for gaining information rather than to develop exact strategies.

USING GEMs IN STUDIES OF SYSTEMS
MEDICINE

Using GEMs for systems medicine studies have recently been
highlighted (Mardinoglu and Nielsen, 2015; Yizhak et al., 2015).
GEMs simulate the human metabolism in a holistic way, and
this greatly advances systems medicine studies by enabling
systematic evaluation of metabolic feature of human disease.
Great efforts had been made in reconstructing GEMs of human,
and there’re now several publically available generic human
metabolic networks such as Recon 1, Recon 2, EHMN, and
HMR (Duarte et al., 2007; Ma et al., 2007; Agren et al.,
2012; Thiele et al., 2013). In addition, since the technology is
advancing, tissue specific or cell specific genomic, proteomic
and transcriptomic data are becoming available (Cancer Genome
Atlas Research Network, 2008; Uhlén et al., 2015). These led to
rapid development in reconstruction of high quality tissue or
cancer specific GEMs (Zur et al., 2010; Agren et al., 2012, 2014;
Mardinoglu et al., 2013) and, therefore, enabled more confident
interpretation of metabolism of diseases.

For instance, cancer specific GEMs together with EA
and SLA analysis were recently used for identification of
oncogenes/metabolites and biomarkers for diagnosing specific
cancer (Agren et al., 2014; Jerby-Arnon et al., 2014; Gatto et al.,
2015; Gatto and Nielsen, 2015). Since this procedure mainly
uses the true-negative part of EA and SLA, the analysis could
be highly reliable. For example, (Agren et al., 2014) identified
101 drug targets for liver cancer treatment; and 83 of them are
currently in use or have shown strong correlation with cancer
progression. In addition, together with multi-omic data, GEMs
were used to find the mechanistic explanation of various diseases.
By interpreting clinical omic data with GEMs, the mechanistic
understanding of non-alcoholic fat liver disease and type two
diabetes were reported (Mardinoglu et al., 2014; Väremo et al.,
2015). Moreover, GEMs were also used to explore the effect of
microbiota (Ji and Nielsen, 2015). By simulate and predict the
interaction of gut microbiota and their effect on hosts, several
recent studies revealed that microbiota modulate the amino acid
and glutathione metabolism of their host (Shoaie et al., 2013,
2015; Mardinoglu et al., 2015). These exciting studies exhibited
the great potential of GEMs in the field of systems medicine, and
hopefully there would bemuchmore excellent works coming out.

DISCUSSION

GEMs are very useful platforms and tools for systems biology,
but they’re still very young compared to traditional ones.

Fluxes of reactions could be quantitatively simulated using
GEMs, although caution should be exercised before drawing
conclusions based on simulated fluxes owing to the huge
solution space of GEMs (Reed, 2012). Although solution space
could be reduced by adding constraints through integration of
omics data, it would be better to gain biological insights by
qualitative interpretation of omics data rather than quantitative
fluxes.

In order to achieve accurate quantitative prediction, the scope
of GEMs should be expanded. The establishment of ME-models
set a good example for this (Thiele et al., 2009, 2012). In
ME-models, the interaction of genes (mRNA), enzymes, and
metabolic fluxes are quantitatively expressed, enabling proper
integration of transcriptomic and proteomic data. However, it
is still difficult to integrate metabolomics data into ME-models.
A potential option to integrate metabolite concentration into
GEMs is cybernetic modeling. However, to date, there has been
no study on genome-scale cybernetic modeling because there
are too many parameters to simulate, making it computationally
infeasible.

In general, no model is perfect. Genome-scale modeling
methods are still under development and have several drawbacks.
In addition, it has been recently reported that many published
GEMs are of low qualities (Chindelevitch et al., 2014;
Ravikrishnan and Raman, 2015). Therefore, they should be
used with caution. As concluded in this review, GEMs are
more suitable for qualitative applications at this stage, such
as EA and SLA analysis. When using GEMs for quantitative
applications such as in silico metabolic engineering, one should
be aware of the key assumption behind the method and
take the results as instructions. However, it should also be
noted that, GEMs are open platforms and have great potential
in a wide array of applications. Currently, GEMs are used
for simulating the interactions between multiple organisms,
multiple tissues (Bordbar et al., 2011), and even between
microbiota and human tissues. On the other hand, EA and
SLA were developed years ago, but they were not used in the
discovery of anti-cancer drugs until recent years. These are good
examples of how to explore novel applications based on classical
methods. Thus, in future, GEMs can be expected to be more
widely used in biotechnology, bioengineering, and many other
fields.
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Cardiovascular disease (CVD) continues to constitute the leading cause of death globally.
CVD risk stratification is an essential tool to sort through heterogeneous populations and
identify individuals at risk of developing CVD. However, applications of current risk scores
have recently been shown to result in considerable misclassification of high-risk subjects.
In addition, despite long standing beneficial effects in secondary prevention, current
CVD medications have in a primary prevention setting shown modest benefit in terms of
increasing life expectancy. A systems biology approach to CVD risk stratification may be
employed for improving risk-estimating algorithms through addition of high-throughput
derived omics biomarkers. In addition, modeling of personalized benefit-of-treatment
may help in guiding choice of intervention. In the area of medicine, realizing that
CVD involves perturbations of large complex biological networks, future directions in
drug development may involve moving away from a reductionist approach toward a
system level approach. Here, we review current CVD risk scores and explore how novel
algorithms could help to improve the identification of risk and maximize personalized
treatment benefit. We also discuss possible future directions in the development of
effective treatment strategies for CVD through the use of genome-scale metabolic
models (GEMs) as well as other biological network-based approaches.

Keywords: patient stratification, risk estimation, metabolism, systems medicine, systems biology, network

medicine

INTRODUCTION

Cardiovascular disease (CVD), specifically ischemic heart disease and stroke, remains to be the
world leading cause of death by a considerable margin (World Health Organization, 2012). It
also remains a challenge to accurately predict who is going to develop CVD. For this purpose,
several CVD risk-estimating algorithms including the Framingham risk score (Wilson et al., 1998),
Reynolds risk score (Ridker et al., 2007), Pan European score (SCORE; Conroy et al., 2003),
ASSIGN Scottish algorithm (Woodward et al., 2007), and QRISK2 UK algorithm (Hippisley-Cox
et al., 2008) have been developed (Simmonds andWald, 2012). The purpose of these algorithms are,
by considering traditional risk factors for CVD such as age, BMI, smoking status, and blood lipid
parameters (Table 1), to estimate the 10-year risk of a CVD-event so that preventative measures
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TABLE 1 | The five CVD risk scores QRISK2, Framingham, ASSIGN, SCORE, and Reynolds include the following parameters.

Parameter QRISK2 Framingham ASSIGN SCORE Reynolds

Age X X X X X

Smoking status X X X X X

Total cholesterol X X X X

Systolic blood pressure X X X X

Family history of CVD X X X

HDL cholesterol X X

Sex X X

Rheumatoid arthritis X X

Diabetes status X X

Geographic information (postcode) X X

C-reactive protein X

Cholesterol/HDL ratio X

Ethnicity X

BMI X

Atrial fibrillation X

Chronic kidney disease X

Blood pressure treatment X

An “X” marks the inclusion of a parameter in the risk score in question.

can be initiated for people whowill benefit from this intervention.
However, the current algorithms have been developed for
population-based prediction of CVD and not for personalized
prediction, making the task of predicting exactly who is going to
develop CVD difficult. For this reason, even though drugs such as
statins have shown tremendous benefit in secondary prevention,
in a primary prevention setting the benefits have arguably
been modest. Preventative intervention is likely beneficial in a
subset of the population, hence accurate risk stratification is an
essential tool to enable effective preventative treatment. Rapid
and continuous efforts are needed to develop novel biomarkers
for achieving high diagnostic accuracy to predict CVD.

Technical breakthroughs have enabled unprecedented
progress in the field of omics (i.e., genomics, transcriptomics,
proteomics, metabolomics, and lipidomics). Arguably, this
should result in great potential in the field of biomarker
discovery. Publications in the field of biomarker discovery have
increased dramatically over the past two decades, however the
increase in the number of clinically useful biomarkers have been
meager (Drucker and Krapfenbauer, 2013). In the area of drug
development, there is a need for new effective preventative drugs
for CVD. But even the most effective drug must be given to
the correct subjects. An important distinction must be made
between accurate risk identification and accurate personalized
prediction of treatment benefit. In a clinical setting, this means
that the following two questions should be able to be answered
by a CVD risk score as accurately as possible: (i) Will this patient
develop CVD within a certain time period? (ii) What is the
increase in life expectancy and disease-free years if this particular
patient initiates this particular (drug-based or life style-based)
intervention? In this review, we discuss the challenges associated
with the current CVD risk-estimating algorithms as well as the
potential of a systems biology approach to produce better risk
scores as well as more effective CVD drugs.

CURRENT CHALLENGES IN CVD RISK
PREDICTION

The ultimate goal of a CVD risk-estimating algorithm is to
accurately predict who and when someone is going to develop
CVD. This ability should not be confused with the ability of
an algorithm to predict how many out of a population will
develop CVD during a certain time period. Thus, population-
based prediction is different from personalized prediction. In
a study by van Staa et al. (2014) this question was addressed
by following 1.8 million subjects for an average of 3.3 years.
The three widely used risk prediction algorithms Framingham,
ASSIGN, and QRISK2 were evaluated to see if the risk scores
accurately predicted not only population-based risk but also
personalized risk of CVD. To achieve this, the three risk scores
were applied at each of the 1.8 million subjects and compared
to a competing risk Cox proportional hazard (CRCPH) model.
The study reported that the algorithms accurately predicted how
many CVD events would occur in the population, and accurately
predicted low-risk subjects. However, for high-risk subjects the
three algorithms agreed modestly with the CRCPH model. What
this study illustrates is that the Framingham, ASSIGN, and
QRISK2 CVD risk scores accurately estimate population-based
risks and do identify low risk subjects but the algorithms do not
accurately predict who is going to develop CVD.

Predicting benefit from an intervention at a personalized level
may be a very valuable tool in CVD treatment. Ferket et al. (2012)
estimated how much personalized benefit is gained from statin
therapy in a population of 2428 Dutch people. Amicrosimulation
model was used to create a personalized calculator of gains
in total and CVD-free life expectancy with statin therapy, and
the results of the model for each person was compared with
the CVD risk predicted by SCORE. The authors observed an
average of 0.3 years of increased life expectancy and 0.7 years
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of increased CVD-free life expectancy gained from an average
of 18.3 years of statin therapy. These gains from statin therapy
was considered modest, especially considering that side effects
were ignored by the model. Further on, statin therapy is currently
encouraged with increasing age due to its correlation with higher
CVD risk scores. However, importantly; due to competing risk
of death from other diseases, it might not follow that increased
10-year risk of CVD implies larger benefit from statin therapy.
For example, as stated in the paper “both a 55-year-old non-
smoking woman with a ten-year CVD mortality risk of 2% and
a 65-year-old male smoker with a ten-year CVD mortality risk of
15% might both gain one year of CVD-free life expectancy with
statin therapy.” For the entire population, 25% with a low SCORE
risk achieved equal or larger gains in CVD-free life expectancy
than the median gain in participants with a high SCORE risk
estimation. This distinction between risk of CVD and benefit-
of-treatment may appear subtle but is important. For secondary
prevention, statin therapy have shown tremendous benefit, but
what this study illustrates is the challenge of primary prevention
treatment decision and that there exist a need for risk scores
which also estimates personalized benefit of treatment.

CURRENT CVD BIOMARKER DISCOVERY

With the recent advances in metabolomics technologies,
hundreds to thousands of metabolites can be simultaneously
detected in tissues and biofluids (e.g., blood and urine) to provide
a snapshot of the current physiology. Metabolic signatures of
obesity (Newgard et al., 2009), future insulin resistance, T2D
(Wang et al., 2011), CVD (Shah et al., 2010; Magnusson et al.,
2013), NAFLD, and different types of cancer (Ganti and Weiss,
2011; Tan et al., 2012; McDunn et al., 2013; Zeng et al., 2014) have
been characterized for identification of associated risk factors as
well as for discovery of novel biomarkers.

Branched chain amino acids (BCAAs), valine, leucine, and
isoleucine as well as aromatic amino acids, tyrosine, and
phenylalanine were discovered to predict the development of
diabetes, which is strongly associated with CVD (Wang et al.,
2011). Moreover, BCAAs together with the urea cycle metabolite
levels in the plasma were used to predict the development of
CVD (Shah et al., 2010). Magnusson et al. (2013) developed a
method called diabetes-predictive amino acid (DM-AA) score
using the metabolic signature of three amino acids (tyrosine,
phenylalanine, and isoleucine) and showed that the plasma level
of these amino acids correlated with intima-media thickness,
plaque formation and exercise-induced myocardial ischaemia,
which are three signs of CVD-related abnormalities. The authors
also followed 4577 subjects for an average of 12 years, of
which 253 suffered a CVD event. Compared to subjects with
lowest quartile values of DM-AA score the odds ratio for CVD
development were 1.27, 1.96, and 2.20 for quartile 2, 3, and 4,
respectively.

Insulin resistance (IR) has been strongly linked to increased
risk of CVD (Ginsberg, 2000), yet no measure of IR is
included in the current risk-estimating algorithms (Table 1).
The so called Quantose IR algorithm has been developed to
estimate IR using metabolomics and lipidomics data (Cobb

et al., 2013). Quantose IR is apart from the level of fasting
insulin based on α-hydroxybutyrate and the two lipid species
1-linoleoylglycerophosphocholine and oleate. This algorithm
is an example of a possible improvement in the evaluation
of IR through the need of only a fasting blood test and
it may increase the accuracy of the current CVD risk-
estimating algorithms; however, this has not been systematically
evaluated.

Recently, three lipid species TAG(54:2), CE(16:1), and
PE(36:5) were discovered as useful for improving the
Framingham risk score in 685 subjects of the prospective
population-based Bruneck cohort (Stegemann et al., 2014).
Addition of another three lipid species and exclusion of HDL-
cholesterol and total cholesterol from the Framingham risk
score resulted in an additional improvement. Framingham
risk score has also been improved by adding the three
microRNAs including miR-126, miR-223, and miR-197 as
biomarkers of CVD (Zampetaki and Mayr, 2012). Moreover,
Bolton et al. (2013) evaluated a panel of 27 single nucleotide
polymorphisms (SNPs), discovered from genome-wide
association studies, to predict the occurrence of coronary
heart disease. Compared to a Cox proportional hazard model
based on traditional risk factors, the addition of the SNP panel
significantly improved the accuracy of the model. Hence, evident
improvements upon the traditional risk scores estimated by
the existing algorithms have already been achieved by omics-
derived biomarkers of CVD. However, the gains are arguably
modest.

WHY HAVE SO FEW NEW BIOMARKERS
BEEN DISCOVERED?

There exist a large discrepancy between the number of biomarker
discovery publications and the number of new biomarker patents
(Drucker and Krapfenbauer, 2013). For all diseases (not only
CVD) only 1–2 new biomarkers were approved by the Food
and Drug Administration each year in the US between 1995 and
2009 despite the enormous technical advances in the omics fields
during the same period (Anderson, 2010). There are probably
a number of reasons for this, including lack of standardized
biomarker discovery pipeline, lack of good verification platform
for large sample sets and lack of an underlying theory of
biomarkers.

There are three categories in which newly discovered potential
biomarkers fall into: chance, bias, and generalizability. The
only category that may result in a potentially clinically useful
biomarker is the latter. The risk of a false discovery increases
with increasing number of measured parameters. Therefore, the
current ability to measure hundreds to thousands of analytes
in a single experiment will result in potential false discoveries.
However, this problem can be remedied by commonly used
statistical techniques and is therefore probably not the largest
explanation to the lack of novel biomarkers.

The issue of bias is however not a problem to be overcome
by statistical analysis techniques but is instead inherent in the
experimental design. For example, when a biomarker study is
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commenced a study population is separated into a diseased group
and a control group. However, when analyzing the characteristics
of the groups, it might be discovered that the diseased group is
also in average older and heavier than the control group. Is it
then possible to say that a discovered biomarker is a biomarker
of the disease, the age, or the weight? For this reason, the
groups are often matched against each other to minimize known
confounding factors. However, unknown confounding factors
might still bias the study. The only remedy to this problem
is randomization. Unfortunately, by definition, a biomarker
discovery study can never be randomized thus making the risk
of so called bias of inequality at baseline an inherent problem
of biomarker discovery. How important this issue is and if it
can explain the lack of accurate CVD biomarkers is currently
unknown, but it is likely an important contributing factor. Bias
can also be introduced if the samples from the different groups
are treated differently throughout the analysis pipeline. It is
therefore of vital importance that the handling and analysis of
samples are conducted consistently. If there is bias of inequality
at baseline between two groups, there is a risk that a measured
parameter will correlate with an unknown confounding factor
and not with the disease. The risk to have any discovery due to
bias thus increases both with the number of confounding factors
and with the number of parameters analyzed. To overcome this
problem it might (paradoxically to the field of omics) be desirable
to measure as few parameters as possible. Thus, one way of
achieving maximum chance of detecting true biomarkers is to
have a biomarker theory. An underlying theory would be able to
a priori point to what should be measured, thus limiting the need
to measure lots of parameters.

As an alternative to the search for a single biomarker of CVD,
another approach is to use a panel of biomarkers. If such a
panel is to be highly sensitive and highly specific it requires that
the individual biomarkers are so called orthogonal against each
other. This means that every biomarker adds diagnostic value
to the panel rather than just co-vary with other markers. Recent
technologies such as protein multiplex platforms do invoke hope
that effective biomarker-panels of CVD could be created and used
in the clinic.

NOVEL TOOLS IN SYSTEMS MEDICINE

Genome Scale Metabolic Models (GEMs) are employed for
simulating the metabolism of cells/tissues. When generating a
GEM, all known metabolic reactions in a particular cell or tissue
are integrated into one network topology. Once the model has
been constructed, it can be used in conjunction with flux balance
analysis which allows for in silico metabolic simulation of the
cell or tissue type in question (Mardinoglu and Nielsen, 2012,
2015; Mardinoglu et al., 2013; O’Brien et al., 2015; Yizhak et al.,
2015). GEMs in combination with transcriptomics, proteomics,
metabolomics, or lipidomics data have the potential to identify
perturbed metabolic subnetworks in silico (Agren et al., 2012,
2014; Shoaie et al., 2013, 2015; Yizhak et al., 2013, 2014a,b;
Galhardo et al., 2014; Mardinoglu et al., 2014; Gatto et al.,
2015; Ghaffari et al., 2015; Varemo et al., 2015; Zhang et al.,
2015). GEMs constitute a possible powerful tool in the area

of human complex disease since it enables the potential of
pathophysiological understanding of a disease (Ryu et al., 2015).

Another interesting tool in systems medicine is protein–
protein interaction (PPI) networks (Rolland et al., 2014). PPI
networks has the potential to provide useful information in CVD,
since each protein is placed in a larger network context and
thus alterations in proteins in the diseased state can be compiled
and translated into meaningful biological tasks. For example,
if 100 different proteins are shown to be altered in the blood
macrophages or endothelial cells of people with CVD and 80 of
them happen to be highly connected, shown by a PPI, then that
part of the network and the related metabolic function could be
concluded to be perturbed in the diseased state. Further on, if a
few of the proteins are shown to interact with lots of the other
disease-related proteins, these highly connected proteins might
be central to the disease progress itself. Thus, PPIs could identify
central hubs in the disease-network, hubs that might provide
pathophysiological understanding and be suitable as drug targets.

As mentioned, an a priori theory of biomarkers could aid in
biomarker discovery. A theory of biomarkers could be created
through the use of GEMs and PPI networks. A hypothetical
example for use of GEMs in CVD would be to model the
metabolism of cell types in the blood, for example macrophages,
endothelial cells or myocardial cells. If this would be done,
predictions about the metabolism of these cells and possible
metabolic alterations in CVD could be enabled. Specifically,
if GEMs would provide a mechanistic understanding of for
example macrophages and their possible metabolic alterations
in CVD, a limited set of plausible biomarkers (proteins or
metabolites) could be selected and measured independently
in a biomarker discovery study. This approach, coupled with
stringent experimental biomarker discovery design would limit
the risk of bias and could increase the chance of discovering
clinically useful biomarkers.

A concrete example for using GEMs which could be relevant
to CVD involves macrophage activation. Since there is a link
between inflammation and CVD and since macrophages play
an important role in the build-up of atherosclerotic plaques,
studying the metabolism of macrophages could aid in the
understanding of CVD. Bordbar et al. (2012) used genome-scale
metabolic modeling in combination with transcriptomics,
proteomics, and metabolomics to reveal the metabolic features
and modulators of macrophage activation. They identified
metabolites which enhanced (glucose and arginine) and
suppressed (tryptophan and vitamin D3) macrophage activation.
These particular metabolites were previously known to be
associated with immunoactivation but the mechanism was
unknown. Such a mechanistic insight into what regulates
macrophages could help in designing effective interventions. In
this case, the plausible intervention would be to limit glucose and
arginine intake and increase tryptophan and vitamin D3 intake
to decrease the activity of the blood-macrophages. Probably,
an intervention like this is not as straight-forward but it does
provide a rational approach for the development of treatment
strategies which could be tested empirically.

Heart performance is naturally relevant for cardiovascular
health and is plausibly affected by the heart’s energy metabolism.
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Little is however known about the energy metabolism of the
heart in humans in vivo, during varying nutrient conditions and
pathological conditions such as heart failure and diabetes. In
order to simulate cardiac performance Karlstädt et al. (2012)
developed CardioNet—a GEM covering the metabolism of the
cardiomyocyte. Simulations for different nutrient conditions
were performed and the efficiency (howmuch ATPwas produced
compared to substrate and oxygen consumption) of the heart
was evaluated. Differences were seen when comparing different
combinations of substrates in terms of cardiac output. The
authors observations suggested that high levels of the ketone
body acetoacetate (which can be seen in for example diabetes)
would decrease cardiac output and increase ROS production
indicating possible decreased cardiac contractility. It is currently
not known how e.g., diabetes could affect cardiac health. The
study by Karlstädt et al. provide a possible pathophysiologic
mechanisms of heart malfunction related to diabetes and more
generally provide a framework for evaluating how varying oxygen
and nutrient conditions could affect the heart.

In order to simulate the entire human cellular and tissue
functions in a holistic approach, a whole cell/tissue model
could be used. One example of a whole-cell model of the
human pathogen Mycoplasma genitalium has been successfully
developed and simulation of dynamic cellular states has been
demonstrated (Karr et al., 2012). This holistic approach has not
yet been employed on human cells but does show the potential
use of such models. This process typically involves construction
and employment of metabolic, regulatory, signaling, and PPI
networks in conjunction with GEMs. The COBRA Toolbox
(Schellenberger et al., 2011) and RAVEN Toolbox (Agren
et al., 2013) which are valuable supports for researchers in
genome-scale metabolic modeling should also be expanded to
deal with simulation of these integrative models. Considering
the 3675 protein coding genes (18% of the genome) in the
generic human GEM HMR2 (Mardinoglu et al., 2014) and
their interactions with other proteins in biological networks,
such integrated computational models may provide further
information about the relationship between the genotype and
phenotype of CVD.

There are a number of hurdles to overcome for successful
simulation of human metabolism in a biologically relevant
matter. Reconstructing GEMs involves correctly defining, for
each metabolic reaction, the stoichiometry, the substrate(s), the
product(s), the enzyme(s), and the gene(s) which characterize
that specific reaction. This information has to be correct for
thousands of reactions. During the generation of the GEMs,
the network often needs to be so called gap-filled in order
for the network to be connected and complete. This gap-
filling step is one source of potential errors in the model.
Compartmentalization of the reactions is also a relevant issue,
not least when constructing human GEMs. It is often not
known where a reaction occurs in the cell and whether
the substrate/product can be exported/imported into other
compartments. Even though there is an extensive effort in
defining the subcellular localization of proteins (Kampf et al.,
2014; Uhlén et al., 2015), the complete draft information will not
be available for another few years.

Another issue relevant for human cell specific metabolic
models regards defining the environment. In microbial
conditions, the growth media is very well-defined so that the
possible uptake and secretion fluxes are also known. For human
cells the environment is much less known, which can greatly
affect the behavior of the model. For a GEM to simulate the
function of a cell/tissue accurately a so called objective function
needs to be defined. Usually, maximization of growth is used as
an objective function for microorganisms. However, defining
an objective function for human cells is not as straight-forward.
For human cells, this could feasibly be very context specific,
depending on for example regulation and signaling effects.
Integrating regulatory and signaling networks with GEMs could
therefore be important in order to capture biologically relevant
behavior. This integration is however a challenging task due
to increase in size of the networks. A GEM usually needs a
pre-defined biomass equation. The biomass equation greatly
influences the behavior of the model (directs the fluxes) and
thus the model is very sensitive to the definition of the biomass
equation. A number of issues has been raised on this topic and
the genome-scale metabolic modeling community has responded
successfully (Chindelevitch et al., 2015; Ebrahim et al., 2015).

Lastly, a model is often validated by its predictive ability, for
example for a microorganism GEM to predict the growth rate
and production rate of various substances. However, models are
rarely shown to not be able to perform infeasible tasks. The
unknowns in cell biology coupled with the degrees of freedom
in the generated networks makes genome scale modeling
challenging. However, several cancer related studies, testifying to
the value of the genome scale modeling in portraying a network-
level view of the cancer metabolism and in discovery of novel
drug targets and biomarkers have been recently reviewed (Yizhak
et al., 2015) and a similar framework could plausibly be used
for CVD.

In conclusion, placing high-dimensional omics data in a
network context, whether through the use of GEMs, PPIs, or
other networks (e.g., regulatory and signaling), may allow for an
increased pathophysiologic understanding of CVD. In addition,
GEMs together with other networks could provide a rational
approach to biomarker discovery, limiting the risk of bias and
increasing the chance of improving CVD risk scores (Figure 1).
However, important limitations do currently exist regarding the
biological relevance of human GEMs.

NETWORK MEDICINE AND DRUG
DEVELOPMENT

As stated, network-dependent analyses may allow for
identification of metabolic perturbations in CVD. Biological
networks have arguably evolved to be robust. For example,
single blockade of 85–90% of all proteins in yeast do not
result in any noticeable phenotypic alterations (Peters, 2013).
Similarly, knock-out studies in mice suggest that only 10% of all
potential drug target genes would have any effect as single targets
(Peters, 2013). In the traditional reductionist approach to drug
development, a disease modifying activity is reduced to a single
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FIGURE 1 | Integration of genome-scale metabolic models and other biological networks including protein–protein interactions may provide an

excellent scaffold for integration of omics data including transcriptomics, proteomics and metabolomics data. These integrated models can be used for
the discovery of biomarker and identification of drug targets. Moreover, biomarkers predicted for CVD can be used together with other risk estimating algorithms for
personalized risk prediction of CVD.

target. While this can be effective for certain diseases, it may not
be enough for treatment of a complex disease such as CVD. CVD
specifically could have multiple or complex causes which result
in network-level perturbations. If this is the case, an alternative
approach to CVD drug development would be identification of
network-level perturbations and developing drugs that can affect
the network rather than only a single protein.

The upcoming branch of network medicine or
polypharmacology, integrates systems biology tools with
pharmacology. Recently, a drug-target and a target–target
interaction network was constructed to identify which targets
of CVD drugs that possesses the most interconnectedness
with drugs and other targets (Zheng et al., 2014). These
targets have high probability of being important hubs in the
CVD-related metabolic networks and thus interesting to treat
with a multi-target compound. Subsequent virtual screening
of compounds revealed several potential multi-target drug
candidates and in vitro validation of five randomly selected
candidate compounds revealed that four of them could indeed
bind to these targets and thus possibly affect the CVD-
related metabolic network. However, this approach to drug
discovery could perhaps also increase the risk of adverse effects
precisely because the compounds in question are unspecific.
Nevertheless, this method illustrates how a polypharmacological
approach to CVD drug development could be conducted. If
these types of methods of drug development will produce
effective CVD-risk lowering interventions remains however
to be seen.

Risk scores based on multi-biomarker panels might also
aid in system-level drug development. If a potential drug
affects a single target but does not affect a plethora of other
biomarkers, this could provide an early indicator that the drug
candidate might not prevent CVD. However, if multiple markers
change after administration of a potential drug candidate, that
might be indicative of reduced risk of CVD and a potentially
successful drug. Risk scores based on multi-biomarker panels
could of course similarly be used for evaluation of other
types of interventions such as diet, and not only drug-based
interventions. The field of polypharmacology is, albeit promising,
still new. Future efforts in this area could hopefully result in the
development of novel preventative CVD medications.

CONCLUSIONS

Systems medicine uses omics data for reconstruction of cellular
networks. High dimensional omics data is often not easy to
directly translate into biological meaning. Therefore, the systems
medicine approach could, by integrating different kinds of
omics data and putting them in a network context, enable
pathophysiological understanding of a disease in question.
Systemsmedicine aims at identifying how the integrated network,
rather than single genes or proteins, is altered in a diseased state.
This approach allows for identification of perturbed subnetworks
and may, apart from providing pathophysiologic understanding
of the disease, also create a base to predict biomarkers and
identify subnetworks as drug targets. This information could
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lead to more accurate CVD risk scores as well as more effective
drugs/interventions.

In conclusion, it is important for each patient to understand
his/her own risk of CVD as well as likely benefit of treatment
to weigh against any potential side effects, thus there is a
need for accurate personalized risk scores in conjunction with
personalized prediction of treatment benefit. As illustrated,
current risk-estimating algorithms can in this setting be
improved upon. Accurate risk scores, more effective drugs
and personalized estimation of benefit from treatment are
three much needed tools in the area of CVD prevention. A
systems medicine approach can hopefully provide value in all
these areas.
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Tumor cells alter their metabolism to maintain unregulated cellular proliferation and

survival, but this transformation leaves them reliant on constant supply of nutrients

and energy. In addition to the widely studied dysregulated glucose metabolism to

fuel tumor cell growth, accumulating evidences suggest that utilization of amino acids

and lipids contributes significantly to cancer cell metabolism. Also recent progresses

in our understanding of carcinogenesis have revealed that cancer is a complex

disease and cannot be understood through simple investigation of genetic mutations

of cancerous cells. Cancer cells present in complex tumor tissues communicate with

the surrounding microenvironment and develop traits which promote their growth,

survival, and metastasis. Decoding the full scope and targeting dysregulated metabolic

pathways that support neoplastic transformations and their preservation requires both

the advancement of experimental technologies for more comprehensive measurement

of omics as well as the advancement of robust computational methods for accurate

analysis of the generated data. Here, we review cancer-associated reprogramming of

metabolism and highlight the capability of genome-scalemetabolic modeling approaches

in perceiving a system-level perspective of cancer metabolism and in detecting novel

selective drug targets.

Keywords: cancer metabolism, metabolic modeling, systems biology, systemsmedicine, genome scale metabolic

reconstruction, metabolic networks and pathways, tumor metabolism

INTRODUCTION

The past decades has seen a dramatic expansion in investigations on mechanism of cancer related
metabolic adaptations, and this has resulted in accumulated evidences suggesting considerable
association between several pathways in humanmetabolism andmalignant transformation (Vander
Heiden et al., 2009; Cairns et al., 2011; Schulze and Harris, 2012). Recently, the state of “deregulated
cellular metabolism” was added by Hanahan and Weinberg as one of the hallmarks of cancer
(Hanahan and Weinberg, 2000), reflecting the overall consensus around the idea of altered cellular
metabolism through neoplastic progression (Hanahan and Weinberg, 2011). Consistent with this
approach, investigation of cancer-associated metabolic alterations attracted considerable effort and
resulted in successful identification of several selectivemetabolic targets that started to enter clinical
trials (Vander Heiden, 2011; Galluzzi et al., 2013). Activation of oncogenes and deactivation of
tumor suppressor genes, have been linked to cancer-associated metabolic reprogramming (Levine
and Puzio-Kuter, 2010). Also, accumulation of metabolites such as 2-hydroxyglutarate, fumarate,
and succinate has been proposed to drive oncogenesis, due to disruption in enzymatic activity of
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isocitrate dehydrogenase (IDH), fumarate hydratase (FH), and
succinate dehydrogenase (SDH), respectively (Isaacs et al., 2005;
Selak et al., 2005; Dang et al., 2010). Additionally, some agents
that conventionally have been used in cancer treatment–such
as gemcitabine, 5-fluourouracil and methotrexate—are in fact
metabolic enzyme inhibitors (Chabner and Roberts, 2005). In
line with these findings, accumulated evidences from recent
epidemiological studies supported influence of whole-body
metabolism on tumor progression and drug response (Vander
Heiden et al., 2009; Vander Heiden, 2011; Galluzzi et al., 2013).

High-throughput omics technologies experienced a dramatic
breakthrough during the last decade enabling simultaneous
measurement of interacting molecular components in context of
complex cellular structure and characterization of transformed
cellular processes at genome-scale. Accumulation of DNA,
microRNA and protein expression measurements, along with
more detailed metabolomics data, has revealed a broader view
on cancer-associated metabolic shifts. The more advanced
understanding of molecular and genetic events underlying
neoplastic transformation acquired, the more complex portrait
of tumor metabolism has emerged. Today, analyzing multi-
layer data generated via high-throughput technologies and
integrating them into a descriptive unified model is a nontrivial
challenge. Computational methods, capable of processing and
integrating multi-dimensional data, have been employed in
investigation of metabolic states in health and disease, and in
identification of new selective targets and biomarkers. Here, we
will review current knowledge in cancer metabolism, underlining
capabilities of genome-wide metabolic models in opening new
therapeutic windows.

FUELS FOR CANCER CELLS

One of the best known features of most tumor cells is utilizing
high amounts of glucose and metabolizing it differently from
normal cells, converting pyruvate derived from glucose to lactate
in the cytosol and secreting it rather than oxidizing pyruvate
in mitochondria. Normal cells principally elevate conversion of
glucose to lactate in hypoxic conditions, whereas this phenotype
is common in transformed cancer cells even when oxygen is
abundant, a phenotype first described by Otto Warburg more
than fifty years ago and referred to as “The Warburg effect”
or aerobic glycolysis (Warburg, 1956). Glycolysis can produce
ATP faster but far less efficient than oxidative phosphorylation.
This shift makes tumor cells to be dependent on high rate of
glucose consumption to meet their biosynthesis, energy, and
redox requirements (Semenza et al., 2001; Cairns et al., 2011).
This metabolic phenotype of cancer cells, dramatic increase in
glucose uptake, has been studied extensively and used clinically in
cancer diagnosis to visualize tumors by 2-deoxy-2-[fluorine-18]
fluoro-D-glucose positron emission tomography (18F-FDG PET;
Som et al., 1980; Kelloff et al., 2005).

Elevated glycolytic flux promotes shunting of compounds
into branched metabolic pathways to synthesis macromolecules
needed for proliferation (Cairns et al., 2011). Downstream flux
of glycolysis intermediates into oxidative and non-oxidative
arms of the pentose phosphate pathway (PPP) produces

ribose-5-phosphate and NADPH, two essential components
for tumor cell growth. Ribose-5-phosphate is a precursor for
nucleotide synthesis and NADPH is required to handle redox
stress (Lunt and Vander Heiden, 2011; Dang, 2012). Another
branched pathway from glycolysis is serine biosynthesis, which
is important for nucleotide, amino acid, and lipid biosynthesis
(Lunt and Vander Heiden, 2011). Sustained proliferation of
some melanoma and breast cancer cells has been associated to
amplification of phosphoglycerate dehydrogenase (PHGDH), the
enzyme catalyzing the first step of serine biosynthesis (Locasale
et al., 2011; Possemato et al., 2011). Furthermore, the metastasis
of breast cancer cell has been associated with the up-regulation
of the serine biosynthesis pathway (Possemato et al., 2011;
Figure 1).

Glutamine plays a key role in sustaining rapid cell
proliferation (Jain et al., 2012). Glutamine is the most abundant
amino acid in culture media (Eagle et al., 1956) and plasma
(Stein and Moore, 1954) and seems to be in excess relative
to required amounts for protein and nucleotide synthesis
(DeBerardinis et al., 2007). Tumor cells experiencing aerobic
glycolysis need glutamine carbon to replenish TCA cycle
intermediates and sustain enhanced biosynthetic metabolism
to support cell proliferation (DeBerardinis et al., 2007; Lunt
and Vander Heiden, 2011; Mullen et al., 2012). Glutamine is
also a primary source of nitrogen for the cell (DeBerardinis
et al., 2007). Under hypoxic conditions, glutamine can undergo
reductive deamination to generate alpha-ketoglutrate and
consequently oxaloacetate, pyruvate, and acetyl-CoA to sustain
anabolic metabolism (Mullen et al., 2012). Although most cell
culture-based studies of cancer metabolism have focused on the
utilization and fate of glucose and glutamine, tumor cells in vivo
have access to other sources of nutrients, like amino acids, to
sustain the elevated proliferation rate. Measuring consumption
and release profiles of metabolites from the NCI-60 panel of cell
lines identified high correlation between glycine consumption
and cancer cells proliferation rates (Jain et al., 2012). Exogenous
serine uptake rate increases dramatically in tumor cells and
deprivation of serine acts as a trigger to activate serine synthesis
pathway and rapid inhibition of aerobic glycolysis, which
results in an increased flux to the TCA cycle (Maddocks et al.,
2012). Glycine and serine can be inter-converted by serine
hydroxymethyltransferase (SHMT) and be used for one-carbon
metabolism and nucleotide synthesis (Labuschagne et al., 2014;
Boroughs and DeBerardinis, 2015). The directionality of this
inter-conversion has critical effect on cancer cell proliferation.
Exogenous serine can be used both for protein biosynthesis and
it can be converted to glycine and one-carbon units needed for de
novo nucleotide biosynthesis, whereas exogenous glycine cannot
compensate for nucleotide synthesis (Labuschagne et al., 2014).
These findings may reflect the fact that tumor cell proliferation
is supported by serine rather than glycine. Glycolysis also plays
an essential role for nucleotide biosynthesis (Lunt et al., 2015)
and understanding relative consumption rate of exogenous
amino acids compared to glucose-derived serine and glycine in
transformed cells will be important.

In addition to glutamine, serine and glycine, other amino acids
may also contribute to cancer cell proliferation. Branched-chain
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FIGURE 1 | Overview of cancer-associated metabolic pathways. The main metabolic pathways that contributes to malignancy and offer potential drug targets

are illustrated. Metabolic enzymes that have been associated with tumor initiation and growth are marked in red. GLUT1, glucose transporter; HK, hexokinase; 6PGD,

6-Phosphogluconate dehydrogenase; PFKFB3, 6-phosphofructo-2-kinase; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; PHGDH, phosphoglycerate

dehydrogenase; PGAM1, Phosphoglycerate mutase 1; PKM, Pyruvate kinase; LDHA, lactate dehydrogenase A; MCT, Monocarboxylate transporter; PDH, Pyruvate

dehydrogenase; CPT1, Carnitine palmitoyltransferase I; FASN, fatty acid synthase; RNR, ribonucleotide reductase; FH, fumarate hydratase; SDH, succinate

dehydrogenase; IDH, isocitrate dehydrogenase; GLUD, glutamate dehydrogenase; GLS1, glutaminase 1; ASCT2, Amino-acid transporter 2; ACLY, ATP citrate lyase;

ACC, acetyl-CoA carboxylase; ACSS2, Acetyl CoA synthetase2; DHFR, DHF reductase; TYMS, thymidylate synthase; HMGCR, HMG-CoA reductase; CK, choline

kinase; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; PRPP, 5-phospho-alpha-D-ribose 1-diphosphate; IMP, inosine monophosphate; UMP, uridine

monophosphate; dNTP, deoxynucleotide triphosphate; G3P, glyceraldehyde 3-phosphate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP,

phosphoenolpyruvate; OAA, Oxaloacetate; AKG, α-ketoglutarate; HMG-CoA, 3-hydroxy-3-methyl-glutaryl coenzyme A; THF, tetrahydrofolate; 5,10 mTHF,

5,10-methylene tetrahydrofolate; DHF, dihydrofolate.

amino acids (BCAAs) are abundant amino acids in plasma (Stein
and Moore, 1954; Meister, 1965), and growth of wild type IDH
glioma, subgroup of brain tumors with poorest clinical treatment,
is highly associated with expression of branched-chain amino
acid transaminase 1 (BCAT1; Yan et al., 2009; Tönjes et al.,
2013). Metabolomics profiling of patient-derived glioma samples
also suggested correlation between increasing tumor grade and
cysteine catabolism (Prabhu et al., 2014). Although, the current
state of investigations suggest that amino acids primarily are
used for protein synthesis in proliferating cells (Dolfi et al., 2013;
Zhang et al., 2014), whereas catabolism of amino acids might
be more important to generate ATP and maintain cellular redox
state in nutrients limited condition.

In addition to the metabolism of carbohydrates and amino
acids, lipids can also be used as an important fuel to supplement
cancer cells proliferation requirements. Uptake of lipoproteins
and free fatty acids (FFAs) from the bloodstream is the main
source of satisfying lipid requirement in adult mammalian
tissues. Although, fatty acids biosynthesis is limited to a subgroup
of tissues, including adipose, liver and breast, reactivation of
lipid synthesis is commonly observed in tumor cells with
different sites of origin (Menendez and Lupu, 2007; Abramson,
2011). In vitro, glucose supplies significant amount of carbon
needed for the de novo synthesis of lipids, however, in hypoxic
condition or expression of oncogenic Ras, phospholipids uptake
can contribute to lipid pools, compensating decreased flux of
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glycolytic carbon through pyruvate dehydrogenase (Kamphorst
et al., 2013). Hypoxia may also change the fate of glutamine
entering mitochondria by preferring reductive carboxylation to
support tumor cell growth by activating fatty acid biosynthesis
(Metallo et al., 2012; Mullen et al., 2012). Recently, regardless
of relatively low levels in serum and culture media, acetate
was proposed as an important carbon source for fatty acid
biosynthesis and mitochondrial metabolism in hypoxic or
highly glycolytic tumors. Acetyl-CoA synthetase enzyme (ACSS1;
Björnson et al., 2015) and (ACSS2; Comerford et al., 2014; Schug
et al., 2015) plays a key role in cancer cell proliferation, by
capturing acetate and converting it to acetyl-CoA.

GENOME-SCALE MODELING OF CANCER
METABOLISM

Biological systems are complex interactive networks with
interconnected set of components (e.g., metabolites, proteins,
nucleic acids) and the function of the many different pathways
connecting these components is highly regulated. Mutations
may cause dysfunction of some of these regulatory or
functional pathways, and this may lead to the emergence of
dysfunctional phenotypes. Uncovering how these biological
systems orchestrate their activities to support specific phenotypic
transformation, e.g., normal to cancer, is a major challenge
in medical science, and gaining insight into the mechanisms
underlying these transformation may enable improved disease
diagnostic, prognostic, and treatment strategies (Hyduke et al.,
2013; Resendis-Antonio et al., 2015). Recent technological
breakthroughs in high-throughput omics techniques and
next generation sequencing (NGS) methods has transformed
biomedicine into a data-rich discipline capable of providing
deeper insights into phenotypic states of cells by simultaneous
measurement of a large number of cellular components.
However, analyzing very large sets of omics data with the
objective to extract new biological knowledge is not a trivial
effort. Despite this significant technological progress, we can
still only measure fluxes in eukaryote cells for a limited number
of reactions in central metabolism (Niklas et al., 2010). Systems
biology approach in general, and genome scale metabolic models
(GEMs) in particular, can facilitate this hurdle and bridge this
gap by allowing multi-layer integration of omics data in the
context of whole biological system (Mardinoglu and Nielsen,
2012; Mardinoglu et al., 2015; Yizhak et al., 2015). Furthermore,
GEMs enable simulation of multi-species relationships in
different metabolic states under dynamic environmental and
genetic perturbations (Oberhardt et al., 2009; Shoaie et al.,
2015; Zhang et al., 2015). In this context, GEMs are a powerful
framework to analyze omics data in health and disease states and
to investigate fundamental cellular mechanisms (Mardinoglu
and Nielsen, 2015).

Reconstruction of a GEM is performed by assembling
biochemical transformations, occurring within a specific cell
or tissue into the metabolic network (Thiele and Palsson,
2010; Mardinoglu and Nielsen, 2015). In GEMs the constructed
stoichiometry matrix of the network covers stoichiometric

coefficients of the metabolic reactions supplemented by detailed
mapping of the protein coding genes to their corresponding
reactions. In general, the metabolic networks are assumed to
be modeled in quasi-steady state, and reconstructed GEMs
are analyzed with constraint-based modeling (CBM) techniques
(Figure 2). CBM shapes feasible solution space by imposing
physico-chemical constraints, including thermodynamics, mass
balance, and minimum/maximum flux capacity boundaries.
The generated models usually remain under-determined, with
possible alternative flux distributions satisfying the constraints.
Flux balance analysis (FBA) method is used to formulate the
problem and select an optimal flux distribution by optimizing for
an objective function such as maximum biomass yield or ATP
production (Thiele and Palsson, 2010; Mardinoglu et al., 2013b;
Simeonidis and Price, 2015; Yizhak et al., 2015).

To date, a number of generic GEMs of human metabolism
including Recon1 (Duarte et al., 2007), Recon2 (Thiele et al.,
2013), HMR (Mardinoglu et al., 2013a), and HMR2 (Mardinoglu
et al., 2014) have been reconstructed (Duarte et al., 2007;
Thiele et al., 2013; Mardinoglu et al., 2013a, 2014). These
models represent an assembly of all reactions documented to
take place in metabolism of human cells/tissues integrated with
known genes catalyzing each reaction, and have been used to
generate context based GEMs of healthy human cells/tissues as
well as transformed cells. In recent years, availability of cancer
related high-throughput omics data made it possible to map
this data into the generic human GEMs and to reconstruct
cancer-specific genome-scale models. Several methods aiming
to acquire tissue-specific or condition-specific active metabolic
networks from a generic model have been developed. One
of the first attempts in this context was the Gene Inactivity
Moderated by Metabolism and Expression (GIMME) algorithm,
which uses mRNA expression data as input together with
presumed metabolic objectives to develop the context-specific
reconstructed models (Becker and Palsson, 2008). Shlomi et al.
(2008) proposed a computational method to generate tissue-
specific metabolic networks by integrating tissue-specific gene
and protein expression data with generic human genome-scale
metabolic network. Same authors developed another method
to reconstruct tissue-specific genome-scale metabolic models
by integrating transcriptomics, proteomics, metabolomics, and
phenotypic data. They use their method to reconstruct a
functional metabolic model of human hepatocytes (Jerby et al.,
2010).

Folger et al. (2011) has used a core set of 197 highly expressed
enzymes common to at least 90% of the cells in NCI-60 cell
lines database to generate a generic genome-scale metabolic
model of cancer. This model has been used to capture core
metabolic functions shared by cancer cell lines and to identify
potential anti-cancer drug targets (Folger et al., 2011). Moving
forward, Agren et al. (2012) reconstructed active metabolic
networks in genome-scale for 69 healthy and 16 cancer cell
types based on protein abundance data. A comparative analysis
of generated models allowed prediction of cancer-associated
metabolic features with potential to be used in identification
of novel drug targets (Agren et al., 2012). Similarly, Wang
et al. (2012) reconstructed GEMs for 26 human cancer and
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FIGURE 2 | Constraint-based modeling (CBM) and flux balance analysis (FBA). Genome-scale metabolic models have been constructed through

constraint-based modeling approach and analyzed following FBA method to find feasible flux distribution. (A) Conceptual illustration of simple metabolic network by

defining system boundaries, external/internal metabolites, exchange reactions, and internal reactions. (B) The stoichiometric matrix of the network is reconstructed to

formulate FBA model under steady-state condition. (C) Models is formulated by defining a biologically/context relevant objective function and introducing

physico-chemical constraints. (D) FBA provides an optimum feasible flux distribution relevant to defined objective function and compatible with enforced constraints.

counterpart normal tissues, inferring tissue-specific metabolic
models based on network topology and gene expression data.
Pathway-level analysis of GEMs revealed eicosanoid metabolic
pathway as a potential selective drug target (Wang et al., 2012).
Jerby et al. developed a method to infer metabolic phenotypes
by integrating transcriptomics and proteomics data derived
from breast cancer patients into the GEMs. They identified
a tradeoff linking decrease in tumor cells proliferation rate
to evolved metastatic ability, as well as, to increased need
for ROS detoxification (Jerby et al., 2012). Later, Goldstein
et al. in an attempt to identify the role of p53 in regulating
metabolic pathways, employed constraint-based modeling to
characterize metabolic changes imposed by varying p53 status
in human liver-derived tumor cells. Their results suggested that
p53 may regulate glucose metabolism by preventing it to be
shunted to growth promoting pathways such as glycolysis and
the pentose phosphate pathway (PPP) and therefore inhibiting
tumorigenesis (Goldstein et al., 2013). Feizi et al. used GEMs
generated based on NCI-60 cell lines database to identify growth-
associated metabolic sub-networks. They suggested critical role
of concurrent synthesis and degradation of lipids in supplying
energy for cell growth, and negative correlation of growth-
associated sub-networks with colon cancer patients’ survival
(Feizi and Bordel, 2013). In addition to the cancer specific
GEMs, Agren et al. (2014) reconstructed personalized cancer
GEMs for 27 hepatocellular carcinoma (HCC) patients and used
these models to predict 101 common and 46 patient-specific
potential antimetabolites that could inhibit tumor growth in
HCC patients. Recently, cell line-specific GEMs (CL-GEMs)
were developed and successfully employed to identify cell-level
metabolic phenotypes and selective drug targets (Yizhak et al.,
2014; Ghaffari et al., 2015). We recently generated CL-GEMs
for 11 human cancer cell lines with different site of origin
and used them to investigated expressional heterogeneity of
metabolic pathways across cancer cells. Furthermore, we used
CL-GEMs to identify antimetabolites aiming to simultaneous

inhibition ofmultiple growth supporting enzymes in proliferative
cells. We predicted 60 common and 15 cell/cell group-specific
potential antimetabolites and experimentally validated one of the
identified anti-growth factors.

These studies demonstrate the successful employment of
GEMs in deciphering metabolic foundations of neoplastic
phenotypes and identification of new selective biomarkers
and drug targets. Next generation of GEMs that integrate the
cell metabolism with regulation and signaling are crucial but
nontrivial challenge ahead, to tackle complexity of cancer
cell metabolism. Up to now, a couple of methods have been
developed to integrate the dynamic behavior of regulatory,
signaling and metabolic networks in prokaryotes, and single-cell
eukaryotes. The integrated FBA (iFBA) approach was used to
generate an integrated model of central carbon metabolism in
Escherichia coli by introducing ordinary differential equations
(ODEs) and regulatory Boolean logic into FBA (Covert et al.,
2008). Integrated dynamic FBA (idFBA) method proposed a
FBA-based framework by incorporating metabolic, regulatory,
and signaling processes through an integrated stoichiometric
formalism, assuming fast reactions in quasi-steady state
condition and introducing slow reactions in a time-delay
manner (Lee et al., 2008). idFBA was applied to evaluate the
phenotypic effects of environmental cues on Saccharomyces
cerevisiae. However, large number of parameters required to
be considered and accurate prediction of all the rate constants
for the regulatory and signaling pathways is a long-standing
challenge for this kind of approaches.

CANCER METABOLIC HETEROGENEITY,
TUMOR MICROENVIRONMENT, AND
SITE-OF-ORIGIN

The progressive accumulation of knowledge of cancer biology
has demonstrated that cancer is an extraordinarily heterogeneous
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and complex disease. Tumors evolve through a reiterative process
of clonal extension, genetic diversification and selection within
the highly dynamic and adaptive ecosystem of target tissue
(Greaves and Maley, 2012). Cancer cells rewire their metabolism
to satisfy demands of cell proliferation and survival within the
constantly changing tumor microenvironment (Hanahan and
Weinberg, 2011). Despite common tendency of cancer cells
toward uniformity of metabolism to support growth stimulating
adaptations, variable patterns of clonal architecture, genetic
diversity, and environmental effects results in a heterogeneous
metabolic signature of tumors (Greaves and Maley, 2012;
Meacham and Morrison, 2013). Apparently, a single model of
cancer metabolism cannot describe the diversity of metabolic
alterations happening during tumor progression. Differences
in tumor micro-environmental conditions and also nutrients
availability may constrain the potential metabolic repertoire
of the cancer cells. In vivo, nutrient availability varies for
different cell types, inside and across tissues/organs. For example,
the structure of liver enforces gradients of nutrients and
oxygen accessibility through hepatocyte zones (Puchowicz et al.,
1999). Considerable expressional variation has been observed
in cell cycle markers, together with association between oxygen
gradients and hypoxia-related gene expression in glioblastoma
cancer cells (Patel et al., 2014). Differences in active state of
pyruvate kinase have been associated with proliferating and non-
proliferating cell populations within breast cancer, revealing an
influence of glucose metabolism on tumor formation and growth
(Israelsen et al., 2013; Iqbal et al., 2014; Wong et al., 2015).
Comparing expressional patterns of metabolic genes from 22
different human tumor types demonstrated overall similarity of
gene expression program between tumors and corresponding
normal tissue (Hu et al., 2013). Reconstructed CL-GEMs for
11 human cancer cell lines have been employed to investigate
different mRNA expression pattern of metabolic pathways, and
this revealed expressional heterogeneity of metabolic pathways
across cancer types which can be exploited to identify generic
or cancer-specific metabolic targets (Ghaffari et al., 2015). Site-
of-origin may define the effect of oncogenic drivers in different
tissues, as Myc-driven lung and liver tumors display dissimilar
phenotypes related to glutamine metabolism (Yuneva et al.,
2012).

Tumor-host metabolic interactions also have strong effect
on the cancer cell metabolic reprogramming. Cancer cells
may attempt to induce growth favoring conditions by actively
manipulating the tumor microenvironment which can directly
influence tumor progression, metastasis, and redox status
(Guillaumond et al., 2013; Shukla et al., 2014). Metabolic
cooperation between intra-tumor cell populations can help
cancer cells to handle spatial heterogeneity of environmental
conditions and nutrients availabilities. It has been shown that
lactate out-flux by hypoxic pancreatic ductal adenocarcinoma
cells can fuel the growth of neighboring normoxic cancer
cells (Sonveaux et al., 2008; Guillaumond et al., 2013).
Better understanding of tumor metabolic heterogeneity and
tumor-host interactions has a high potential to optimize
therapeutic strategies for selectively targeting cancer. Moreover,
identification of the secreted proteins or peptides from cancer

cells which remodel the tumor microenvironment may allow
for discovery of novel cancer biomarkers and therapeutic targets
(Feizi et al., 2015).

CONCLUDING REMARKS

Cancer cells are shown to experience characteristic changes
in their metabolic programs, including increased uptake of
glucose, enhanced rates of glutaminolysis and fatty acids
synthesis, suggesting that metabolic shifts supports tumor cells
growth and survival. Similarity some cancer-associatedmetabolic
alterations are similar to the metabolic response of normal
cells to growth-promoting signals, and this makes it difficult
to separate neoplastic alterations clearly from the ones just
reflecting increased cellular proliferation. However, different
metabolic components target distinct oncogenic signaling
pathways, and it is therefore important to elucidate the complex
interaction between cellular metabolic network and oncogenic
signaling network. Obviously, transformation from oxidative
phosphorylation to aerobic glycolysis cannot simply explain the
complete metabolic reprogramming event of tumor cells, and
fairly little is known about different metabolic activities of cancer
cells with diverse genetic and mutational background. Moreover,
variances in metabolic profiles of tumors with same genetic
lesion but different tissues of origin, suggests an open therapeutic
window through investigation of complex metabolic interplay
between tumor cells and stroma. It is becomingmore evident that
metabolic reprogramming in cancer cells is closely connected to
hypoxia and ROS metabolism. Disrupting the balance between
anti-oxidant production and increased biosynthetic activities in
tumor cells seems to be a therapeutic opportunity.

Recent advances in high throughput omics technologies
along with continuous progress in our understanding of cancer
cell biology have portrayed a more complex and heterogeneous
picture of tumor metabolism. Increased understanding of genetic
and metabolic heterogeneity of cancer cells may open a new road
toward development of new selective personalized diagnostic
and therapeutic methods. GEMs, providing a mechanistic
description of relationships between genes, metabolites and
reactions within an interconnected functional metabolic
network, have potential to integrate large-scale experimental
datasets and extract knowledge out of their multi-dimensional
complexity. Despite recent leap forward in employing GEMs
to study cancer metabolism, more technical, and translational
challenges are laying ahead. To date, the majority of models
have been developed based on in vitro data that were produced
under experimentally controlled conditions, but utilization of
richer in vivo and clinical datasets, together with integration
of cellular regulatory and signaling mechanism is critical for
advancement of the field. Introduction of more metabolomics,
fluxomics and growth related data along with other related
omics data into the reconstruction and validation process
of GEMs can help in increasing the accuracy and prediction
power of these models. Furthermore, more and more data
points toward the important role of tumor microenvironment
in promoting plasticity and supporting cancer-associated
metabolic adaptations, and modeling metabolic interaction
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between cancer and its environment can help in developing
more effective therapeutic strategies. For this it may be
necessary to integrate kinetics into stoichiometric genome-scale
models.

In conclusion, metabolic reprogramming is crucial to support
the uncontrolled proliferation, survival and migration of cancer
cells, but at the same time renders tumors more vulnerable
to metabolic perturbations. Identification of these metabolic
dependencies at the genome-scale may provide an opportunity
for optimized therapeutic intervention.
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Developments in genome scale metabolic modeling techniques and omics technologies
have enabled the reconstruction of context-specific metabolic models. In this study,
glioblastoma multiforme (GBM), one of the most common and aggressive malignant
brain tumors, is investigated by mapping GBM gene expression data on the
growth-implemented brain specific genome-scale metabolic network, and GBM-specific
models are generated. The models are used to calculate metabolic flux distributions in
the tumor cells. Metabolic phenotypes predicted by the GBM-specific metabolic models
reconstructed in this work reflect the general metabolic reprogramming of GBM, reported
both in in-vitro and in-vivo experiments. The computed flux profiles quantitatively predict
that major sources of the acetyl-CoA and oxaloacetic acid pool used in TCA cycle
are pyruvate dehydrogenase from glycolysis and anaplerotic flux from glutaminolysis,
respectively. Also, our results, in accordance with recent studies, predict a contribution
of oxidative phosphorylation to ATP pool via a slightly active TCA cycle in addition
to the major contributor aerobic glycolysis. We verified our results by using different
computational methods that incorporate transcriptome data with genome-scale models
and by using different transcriptome datasets. Correct predictions of flux distributions
in glycolysis, glutaminolysis, TCA cycle and lipid precursor metabolism validate the
reconstructed models for further use in future to simulate more specific metabolic
patterns for GBM.

Keywords: aerobic glycolysis, glutaminolysis, constraint-based models, omics data, tumor subtypes,

GBM-specific metabolic model

INTRODUCTION

Among malignant brain tumors, the most common one is glioblastoma (glioblastoma multiforme,
GBM). It is also one of themost lethal cancer types, with a 5-year survival rate of only 3%, compared
to an average of 30% for other types of brain tumors (Ostrom et al., 2013). This demands for a well-
characterization of molecular mechanisms of glioblastoma cells to develop treatment strategies.
Therefore, it is crucial to build computer models which can mimic major characteristics of the
cancerous cells (Folger et al., 2011; Hadi and Marashi, 2014; Ghaffari et al., 2015; Yizhak et al.,
2015). In glioblastoma, the most significant reprogramming occurs in the metabolic machinery of
the cells. Major alterations associated with cancer metabolism such asWarburg effect (Shlomi et al.,
2011) are also observed in glioblastoma (DeBerardinis et al., 2007; Wolf et al., 2010). Major ATP
source is via aerobic glycolysis, although TCA cycle is still slightly active according to recent reports
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(DeBerardinis et al., 2007; Wolf et al., 2010; Ru et al.,
2013). Another characteristics of metabolic remodeling of
glioblastoma is the uptake of glutamine, which contributes to the
replenishment of TCA cycle intermediates (DeBerardinis et al.,
2007). Several other metabolic alterations occur in the metabolic
flux patterns in glioblastoma, mostly due to increased flux toward
lipid and nucleotide synthesis to sustain growth.

The systems approach to biology and medicine led to a
number of computational approaches to study network-based
alterations in cells in response to perturbations. The study of
cancer metabolism via computational approaches has therefore
shown a sharp increase in the last decade (Ghaffari et al., 2015;
Yizhak et al., 2015). Genome-scale metabolic modeling is one
of the highly preferred computational methods since it allows
the investigation of the cellular flux state in genome-scale by
only incorporating few constraints (Kim et al., 2012; Mardinoglu
et al., 2013; Bordbar et al., 2014). A generic genome-scale
metabolic model includes all potential biochemical reactions to
be used by the associated organism. There are computational
methods which process generic metabolic models by integrating
with omics data such that condition specific metabolic models
are reconstructed (Blazier and Papin, 2012; Saha et al., 2014).
Such methods can be divided into two groups in terms of
their algorithmic approach. The first group uses context-specific
omics data directly to improve the prediction of metabolic
flux distributions, such as E-Flux (Colijn et al., 2009), PROM
(Chandrasekaran and Price, 2010), MADE (Jensen and Papin,
2011), tFBA (van Berlo et al., 2011), TEAM (Collins et al.,
2012), and RELATCH (Kim and Reed, 2012). The second group
processes the data to create context-specific models from generic
metabolic models, such as GIMME (Becker and Palsson, 2008),
iMAT (Shlomi et al., 2008), INIT (Agren et al., 2012), AdaM
(Töpfer et al., 2012), mCADRE (Wang et al., 2012), and EXAMO
(Rossell et al., 2013), which can later be used for flux calculation.
It was shown that the two approaches have no clear superiority
over each other (Machado and Herrgård, 2014).

There are studies which integrate omics data with the
metabolic models in order to reconstruct context-specific cancer
metabolic models. Human metabolic reconstruction Recon1
(Duarte et al., 2007) was used to reconstruct the first generic
genome-scale model of cancer, aiming to capture main metabolic
functions of many cancer types using cancer gene expression data
(Folger et al., 2011). Agren et al. reconstructed a generic genome-
scale human metabolic model, to create genome-scale active
metabolic networks for 69 different cell types including 16 cancer
types using tissue specific proteome data (Agren et al., 2012).
Recently published reviews (Ghaffari et al., 2015; Yizhak et al.,
2015) survey the studies of cancer metabolism by reconstructed
metabolic model approaches and discusses the challenges such
approaches face.

In this study, metabolic alteration of glioblastoma was
investigated using in-silico metabolic model reconstruction
approach. The genome-scale brain metabolic model (Sertbas
et al., 2014) reconstructed recently by our group was first
modified by adding biomass growth reaction to reflect the tumor
proliferation. Afterwards, the glioblastoma gene expression
data from Gene Omnibus Database (Edgar et al., 2002)

were integrated with the growth-implemented brain specific
metabolic model to obtain GBM-specific metabolic models.
The models predict major flux-level metabolic alterations and
reprogramming associated with GBM, giving consistent results
with both in-vitro and in-vivo studies.

MATERIALS AND METHODS

Genome-Scale Brain Metabolic Network
for Brain Tumors
The genome-scale brain metabolic model iMS570 (Sertbas et al.,
2014; Cakir, in press) reconstructed previously by our group
possesses 630 metabolic reactions in and between astrocyte
and neurons, which are controlled by 570 genes. iMS570
includes the fundamental pathways such as central carbon
metabolism (glycolysis, pentose phosphate pathway, TCA cycle),
lipidmetabolism, nucleotidemetabolism, amino acidmetabolism
(synthesis and catabolism), the well-known glutamate-glutamine
cycle, other coupling reactions between astrocytes and neurons,
and neurotransmitter metabolism. In total, 42 pathways are
covered by the model. iMS570 does not have a growth reaction
to simulate the proliferation of brain tumors since mammalian
brain cells do not grow in non-tumor states. Therefore, an
extended literature survey was performed to define a growth
reaction for tumor proliferation in brain (See Supplementary
File 1). The modified model which can grow in-silico thanks to
the included biomass growth reaction is called iMS570g . The
biomass composition was defined based on brain white matter
since GBM is mostly observed in this tract as the parent tissue
(Bohman et al., 2010; Omuro and DeAngelis, 2013; Cuddapah
et al., 2014). Brain white matter has a high composition of lipid
(54.9%) and protein (39.5%) (Brady et al., 2012). The percentages
of glial and neuronal cells in the white matter were reported to be
94 and 6% respectively in a recent study by using a novel method
based on tagging the DNA inside the nuclei with fluorescent
proteins (Azevedo et al., 2009). These values were used to define
the relative contributions of astrocyte and neuron cells to the
biomass reaction in the model. Free amino acid composition for
human brain reported by (Banay-Schwartz et al., 1992, 1993a,b)
was used as the amino acid composition of the protein pool
in the biomass reaction. (See Supplementary File 1 for details
on biomass composition and contribution of cell types). One
characteristic of GBM cells is the altered glutamine metabolism
which manifests itself as decreased glutamine production, high
glutamine uptake rate and glutaminolysis (Portais et al., 1993;
DeBerardinis et al., 2007). Four extra reactions denoting the
glutamine uptake and glutaminolysis metabolism were also
included in iMS570g in order to cover the tumor-caused
alterations in glutamine metabolism (See Supplementary File 1).

GBM Transcriptome Datasets
Lee et al. used several published GBM transcriptome datasets
in addition to their own study to investigate survival
differences between GBM subtypes (Lee et al., 2008). The
whole transcriptome dataset is stored in the public transcriptome
database, GEO (Edgar et al., 2002), under GSE13041. The dataset
covers gene expression data from different microarray platforms.
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We focused on a subset of the data from two different platforms
(GPL96, Affymetrix Human Genome U133A Array and GPL570,
Affymetrix Human Genome U133 Plus 2.0 Array) and analyzed
them separately to document the effect of platform type on
the results. A previous study defined three distinct subtypes of
GBM tumors based on clustering analysis of transcriptome data
(Phillips et al., 2006): Mesenchymal (Mes), ProNeural (PN),
Proliferative (Pro). Here, PN type has a better prognosis, and
has a more similar gene expression profile to normal brain and
neurogenesis. The other two types have poor prognosis, and
show resemblance to proliferative or mesenchymal-origin cells
in terms of gene expression (Phillips et al., 2006). The data from
GPL96 platform was analyzed by considering this classification,
which was already implemented by the authors (Lee et al., 2008).
Another dataset by Mangiola et al. (2013) was also used in
this study. They investigated the relation between peritumoral
tissue (brain adjacent to tumor) and GBM using gene expression
profiles. Normal white matter was used as a control group. The
transcriptome dataset is based on GPL96 platform, and it is
stored in GEO database under GSE13276. The reason behind
using another dataset was to test the effect of different datasets
on the bioinformatic algorithms used in this study.

In total, five different GBM transcriptome datasets were
formed for the purpose of this study: Three datasets of GBM
subtypes for GPL96 platform of GSE13041, a dataset of GPL570
platform for GSE13041, and a dataset from GSE13276. All GBM
samples used in our study were collected from tumor biopsies of
GBM patients.

Obtaining GBM-Specific Metabolic Models
iMS570g , the growth-implemented brain specific genome-scale
metabolic network, was integrated with the GBM gene expression
data mentioned in the previous section to generate context-
specific GBMmetabolic models and metabolic flux distributions.
Two alternative methods, GIMME (Becker and Palsson, 2008)
and MADE (Jensen and Papin, 2011), were applied to generate
GBMmetabolic models and test the effect of different algorithms
on the results (Figure 1). Friedmann-Morvinski et al. (2012)
showed that GBM can originate not only from astrocytes but
also from neurons. Therefore, GBM transcriptome data were
mapped to both astrocytic and neuronal reactions in iMS570g

in order to generate GBM metabolic models via GIMME
and MADE. While the output of MADE is a context-specific
flux distribution, the output of GIMME is a context-specific
model which needs to be further processed to obtain a flux
distribution.

GIMME
GIMME (Gene Inactivity Moderated by Metabolism and
Expression) algorithm uses binarized gene expression data and
a genome scale metabolic network to generate a context-
specific reconstruction such that the highest consistency with
the available data is ensured (Becker and Palsson, 2008). All
five transcriptome datasets were used as experimental soft-
constraints to obtain corresponding GBM-specific metabolic
models using GIMME algorithm. Transcriptome data were
first binarized based on a specified threshold to obtain highly

and lowly expressed genes. GIMME algorithm removes the
reactions which correspond to gene expression levels below
the specified threshold, and the algorithm adds a removed
reaction back if the metabolic model cannot achieve the desired
functionality. The desired functionality was used as biomass
growth reaction in iMS570g . The threshold criteria for GIMME
in this study was that the threshold must not be higher than
the levels of some genes known to be upregulated in GBM.
These genes are HK2, PKM2, GLS, ACLY, ACC, and FASN,
which take roles in glucose, glutamine or lipid metabolisms
(Wolf et al., 2010; Ru et al., 2013). Considering this criteria,
we chose 1/2, 1/1, and 1/3 of “the mean of transcriptome
data of related GBM dataset” as the thresholds in GIMME
algorithm for GSE13041 (GPL96), GSE13041 (GPL570), and
GSE13276 respectively. Five percent sensitivity analysis was
applied for the chosen thresholds, and no significant change
was observed in the calculated flux distributions (data not
shown). The genes whose expression levels are higher than the
threshold were assumed highly expressed and set to “1,” and
the genes whose expression levels are lower than the threshold
were assumed lowly expressed and set to “0,” to be used as an
input to GIMME. GIMME functionality of COBRA (COnstraint-
Based Reconstruction and Analysis; Schellenberger et al., 2011)
Toolbox was used under MATLAB (MathworksInc., Natick, MA,
USA) environment to run the algorithm. The number of the
removed reactions by GIMME from iMS570g was 57, 55, and
54 for Mes, PN and Pro subtypes. For GPL570 based data
48 reactions were removed whereas the number was 34 for
GSE13276 dataset. Finally, five different GBM-specific metabolic
models were reconstructed by GIMME. Then, flux balance
analysis (FBA) (Orth et al., 2010) for maximizing biomass growth
rate as primary objective function with subsequent minimization
of Euclidean norm of internal fluxes was applied to five different
GBMmodels obtained by GIMME algorithm. This dual objective
function framework was shown to give better results (Cakir
et al., 2007; Tarlak et al., 2014) since it ensures minimal use
of enzyme resources to achieve the primary objective. GBM
models corresponding to the five transcriptome datasets and
the growth-implemented model are available in SBML format in
Supplementary File 2.

MADE
In addition to GIMME, we used MADE algorithm to see
if there is any difference between the methods that maps
transcriptome data on metabolic models to obtain condition-
specific models. MADE (Metabolic Adjustment by Differential
Expression) algorithm uses the expression levels of significantly
changed genes or proteins to generate a functional metabolic
model that most accurately recapitulates the expression dynamics
(Jensen and Papin, 2011). MADE eliminates the probable
problems of arbitrary user-specified threshold, as employed
by GIMME, by using statistically significant changes in gene
expression measurements between two conditions to determine
highly and lowly expressed genes (Blazier and Papin, 2012).
Since MADE requires a control group for the analysis, only
transcriptome data GSE13276 was used in the MADE-based
analysis. MADE algorithm requires three inputs to generate
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FIGURE 1 | Recontruction of the GBM metabolic models. GBM gene expression data were integrated with the growth-implemented brain specific genome-scale
metabolic model (iMS570g) by GIMME and MADE algorithms to create GBM metabolic models. The algorithms are shown in paranthesis for related GBM metabolic
models. (Mes, Mesenchymal subtype of GBM; PN, ProNeural subtype of GBM; Pro, Proliferative subtype of GBM). GIMME and MADE sketches were obtained from
Figure 1 of Blazier and Papin (2012).

a context-specific flux distribution, which are a genome-scale
metabolic model, fold changes and p-values of gene expression
levels between the compared conditions (Jensen and Papin,
2011). Fold changes and p-values calculated by student’s t-test
were based on the white matter data as a control group. The
objective function used by MADE algorithm for the iMS570g was
biomass growth reaction, as used in GIMME. MADE algorithm
was used via TIGER (Toolbox for Integrating Genome-scale
Metabolism, Expression, and Regulation; Jensen et al., 2011)
toolbox under MATLAB environment. MADE uses its own flux
calculation algorithm which is based on mixed integer linear
programming. Both GIMME and MADE were run in default
settings, and GUROBI optimizer (http://www.gurobi.com) was
used as a solver in both tools.

Constraints Reflecting Physiology of
Glioblastoma Multiforme (GBM)
GIMME was run with the constraints which reflect basic
characteristics of GBM. The reactions defining glutamine
exchange from astrocyte to neuron (r95) and glutamine release
(r580) were constrained as zero due to the fact that glutamine
exchange between astrocytes and neurons in healthy brain is
perturbed within GBM (Marin-Valencia et al., 2012). Glycogen

uptake (r575) and ketone body metabolism (r608, r609), which
are used as alternative pathways in case of low activity of the
glucose metabolism (Cakir et al., 2007), were also constrained to
zero in our study. NH3 exchange reaction (r607), which is defined
only as uptake reaction in iMS570, were changed to a reversible
exchange reaction to allow NH3 release as observed in the GBM
(DeBerardinis et al., 2007). Also a ratio, not an absolute value, of
94/6 was defined as a constraint for relative glucose, glutamine,
and oxygen uptake rates of astrocytes and neurons considering
the relative amounts of the two cell types in brain white
matter (see below). GIMME generated GBM specific metabolic
networks based on these constraints. Afterwards, corresponding
flux distributions were calculated by employing more specific
additional constraints as follows: Glucose, glutamine and oxygen
uptake rates were fixed to the experimental flux values indicated
in the study of DeBerardinis et al. (2007), which are 0.852
mmol/gDW/h, 0.080 mmol/gDW/h, and 0.272 mmol/gDW/h
respectively. These uptake rates were distributed among astrocyte
and neuron as 94 and 6% respectively, according to the relative
amount of the cell types in white matter (Azevedo et al.,
2009). Furthermore, the upper bound of the uptake rates of
the amino acids other than glutamine were constrained to
one tenth of the glutamine uptake rate because Yang et al.

Frontiers in Neuroscience | www.frontiersin.org April 2016 | Volume 10 | Article 156 | 53

http://www.gurobi.com
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Özcan and Çakır Constraint-Based Modeling of Glioblastoma

(2009) observed that GBM cells consume glutamine at a rate
at least 10-fold higher than any other amino acids. Complete
list of the constraints used in the models are also given in
Supplementary File 1. All the above mentioned constraints
were directly used as input to MADE algorithm since, in
contrast to GIMME, it calculates flux distribution as a direct
output. Although the contribution of neuronal reaction rates
is usually considerably lower, this contribution was accounted
by summing up astrocytic fluxes with neuronal counterparts
to evaluate the phenotype of GBM metabolic models in the
results part.

RESULTS

The GBM metabolic models used in this study were
reconstructed by integrating GBM gene expression data
with the generic genome-scale brain metabolic model, iMS570g

(See Materials and Methods). Five GBM metabolic models
were created by GIMME, three for the comparison of Mes,
PN, and Pro subtypes of GBM, one to compare the effect of
different microarray platforms (The GBM metabolic model
obtained using a different microarray platform but from the
same dataset as GBM subtypes), one to compare the effect of
different datasets (The GBMmetabolic model obtained using the
same microarray platform as GBM subtypes but from a different
dataset). In-silico GBM phenotypes obtained via metabolic
modeling were compared with the literature based experimental
results. Metabolic fluxes calculated for healthy brain in resting
state (Sertbas et al., 2014) were also used for comparison.

GBM Subtypes
The GBM subtypes, Mesenchymal (Mes), ProNeural (PN), and
Proliferative (Pro) GBM, are classified based on the clustering of
gene expression profiling (Phillips et al., 2006; Lee et al., 2008;
Verhaak et al., 2010; Huse et al., 2013). In-silico GBM subtype
metabolic models for Mes, PN and Pro types were reconstructed
by GIMME algorithm (Becker and Palsson, 2008; see Materials
and Methods) and used in the calculation of metabolic fluxes.
Key fluxes and flux ratios are presented in Table 1. The results
in Table 1 show high qualitative and quantitative agreements
between the flux predictions and the literature results. Results
reveal subtle differences between the GBM subtypes in terms of
simulated metabolic flux phenotypes. However, all GBM subtype
metabolic models exhibit the same behavior in terms of active
flux routes. This flux routing, as shared by the three subtypes,
are summarized in Figure 2. The simulation results depicted in
the figure are in agreement with the major properties of GBM
metabolic phenotypes reported in literature. The results confirm
the study which reports similar metabolic characteristics for
different GBM types derived from independent human tumors
with different driver mutations (Marin-Valencia et al., 2012).
Detailed metabolic remodeling observed in the GBM subtype
metabolic models is discussed below.

Aerobic Glycolysis and Pyruvate Branch Point
One of the most known metabolic alterations observed in
cancer metabolism is related to aerobic glycolysis, which is
also called Warburg effect. This phenomenon is characterized
by a high rate of glucose consumption, which is mostly

TABLE 1 | GIMME-derived key fluxes and flux ratios for GBM subtype metabolic models, Mes, PN, and Pro.

Fluxes and flux ratios by GBM subtype

metabolic models

Mes PN Pro Experimental results for GBM Healthy Brain (iMS570)

(Sertbas et al., 2014)

Lactate production rate (r11 + r56) 1.678 1.691 1.676 1.336 (DeBerardinis et al., 2007) 0.011

Pyruvate carboxylase flux/glucose uptake rate
(r12)/(r596 + r597)

0 0 0 0–0.227 (Portais et al., 1993) 0.223

Oxidative PPP rate/glucose uptake rate (r17 +
r61)/(r596 + r597)

0.052 0.067 0.060 0.060 (DeBerardinis et al., 2007) 0.055

Non-oxidative PPP rate (nucleotide precursor)
(r21 + r65)

0.015 0.019 0.017 Increase compared to healthy brain (Wolf et al.,
2010)

0.001

Oxidative metabolism (TCA) flux (r25 + r69) 0.059 0.064 0.063 Decrease compared to healthy brain (Wolf
et al., 2010; Ru et al., 2013)

0.117

Acetyl-CoA flux as a lipid precursor (r28 + r72) 0.054 0.061 0.059 Increase compared to healthy brain (Wolf et al.,
2010; Boroughs and DeBerardinis, 2015)

0.003

Anaplerotic reaction through glutaminolysis
(r89 + r90 + r92 + r93)

0.072 0.071 0.072 0.039–0.078 (Portais et al., 1993) –

Anaplerotic flux relative to citrate synthase
(CS) activity. (r89+ r90+ r92+ r93)/(r25 + r69)

1.232 1.111 1.143 0.940–1.800 (Maher et al., 2012) –

Acetyl-CoA carboxylase rate as the reaction
initiating fatty acid synthesis (r289)

0.037 0.031 0.037 Increase compared to healthy brain (Wolf et al.,
2010)

0.007

NH3 release flux (r607) 0.149 0.145 0.149 0.023 (DeBerardinis et al., 2007) –

Growth rate (e46) 0.0069 0.0057 0.0069 0.0006–0.0095 (Perego et al., 1994;
Pennington et al., 2006; Wang et al., 2009;
Stensjoen et al., 2015)

–

Rate units of metabolic reaction fluxes and growth rates are in mmol/gDW/h and 1/h respectively. In-silico flux values and ratios are compared. Corresponding reactions for reaction IDs

can be found in Supplementary File 1.
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FIGURE 2 | GBM metabolic remodeling reported in literature. In TCA cycle, low-flux reactions were represented by a thinner gray arrow. Our computational
results obtained by all GBM metabolic models support this remodeling topology. All reaction IDs, shown also in the figure, and corresponding reactions can be found
in Supplementary File 1. The figure was drawn in PathVisio 3 toolbox (Kutmon et al., 2015).

metabolized in glycolysis rather than in mitochondrial oxidative
phosphorylation even in aerobic conditions, resulting in a high
rate of lactate production (Warburg, 1956; Wolf et al., 2010). All
in-silico GBM subtype metabolic phenotypes computed in this
study exhibited the Warburg effect with a high rate of lactate
production and comparatively low tricarboxylic acid (TCA) cycle
activity. Flux values of the lactate production (r11+ r56) by GBM
metabolic models were around 1.68 mmol/gDW/h for all GBM
subtypes (Table 1).

Unlike initial cancer studies which reports that the glycolytic
phenotype in cancer is due to a permanent impairment of
mitochondrial oxidative phosphorylation (Zheng, 2012), both
recent in-vitro and in-vivo studies demonstrate that oxidative
metabolism in GBM is more active than thought (Maher
et al., 2012; Marin-Valencia et al., 2012). 13C-labeled nutrient
experiments show that glucose is metabolized through pyruvate
dehydrogenase rather than pyruvate carboxylase in GBM cells.
Acetyl-CoA produced from pyruvate dehydrogenase reaction
then enters the TCA cycle (Maher et al., 2012; Marin-Valencia
et al., 2012). Our results, in agreement with the literature, show an
active flux for pyruvate dehydrogenase reaction (r13+ r57), with
flux values 0.073, 0.055, and 0.073mmol/gDW/h forMes, PN and
Pro respectively. GBM subtype metabolic models also exhibit a
much lower flux in pyruvate carboxylase reaction (r12) (Table 1)
with respect to the pyruvate dehydrogenase reaction flux, which
confirms the fact that glucose metabolism does not significantly

contribute to anaplerosis in GBM cells (DeBerardinis et al.,
2007). Acetyl-CoA produced from pyruvate dehydrogenase and
oxaloacetic acid (OAA) generate citrate via citrate synthase
reaction, which is the first reaction of the TCA cycle (Figure 2).
In all GBM subtype models, citrate synthase reaction (r25+
r69) is active but possesses a very low flux value compared
to the healthy brain metabolic model (Table 1). Furthermore,
following reactions of TCA cycle, which are conversion of citrate
to isocitrate (r26−27+ r70−71) and then alpha-ketoglutarate (α-
KG) (r30−32+ r73−75), carried much lower flux than the citrate
synthase reaction (see Supplementary File 1 for complete flux
distributions of the GBM models). One of the most known
features in malignant gliomas including GBM is the mutation
in isocitrate dehydrogenase (IDH) gene. While wild type IDH1
and IDH2 convert isocitrate to α-KG resulting in NADPH
production, mutant IDH2 and especially IDH1 convert isocitrate
to 2-hydroxyglutarate known as an oncometabolite, without
producing NADPH (Dunn et al., 2012). Although the GBM
metabolic models do not include mutant IDH genes and the
related reaction, low flux values for conversion of isocitrate to α-
KG (r31−32+ r74−75) can be explained by insufficiency in the wild
type isocitrate dehydrogenase genes.

Glutaminolysis
Glutaminolysis is one of the key pathways in GBM since it
provides glutamine as an alternative carbon source for TCA cycle

Frontiers in Neuroscience | www.frontiersin.org April 2016 | Volume 10 | Article 156 | 55

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Özcan and Çakır Constraint-Based Modeling of Glioblastoma

(Wolf et al., 2010; Ru et al., 2013). Several experimental studies
were performed to reveal the role of glutaminolysis in brain
tumors (Wise et al., 2008; Yang et al., 2009; Chinnaiyan et al.,
2012). Glutamine is not only the nitrogen source for nucleotide
synthesis or maintenance of non-essential amino acid pools,
but also the carbon and energy source which can replenish the
TCA cycle intermediates in GBM cells (DeBerardinis et al., 2007;
Maher et al., 2012; Ru et al., 2013). Glutamine is converted to
glutamate by glutaminase reaction (r96+ r97) and then to α-KG
by the anaplerotic glutamate dehydrogenase reaction (r89+ r90+
r92+ r93) in order to replenish the TCA cycle intermediates (see
Table 1 for flux values).

Glutamate derived α-KG is also produced by transamination
reactions (DeBerardinis et al., 2007; Yang et al., 2009) while non-
essential amino acids such as aspartate and alanine are produced
(see Supplementary File 1 for flux values of aspartate and alanine
metabolisms). After replenishing α-KG by glutaminolysis,
turnover of the TCA cycle is completed by converting α-KG
to succinate, fumarate, malate and OAA respectively. All GBM
subtype metabolic models exhibit active and similar flux values
for the conversion of α-KG to malate (r33−36 and r76−79, see
Supplementary File 1 for detailed flux values). Malate is both
converted to OAA (r37+ r38+ r80) to complete turnover of
the TCA cycle, and converted to pyruvate by malic enzyme
reaction (r39+ r82), resulting in NADPH production. All GBM
subtype metabolic models exhibit similar flux value (around
0.066 mmol/gDW/h) for malic enzyme reaction. In agreement
with this finding, labeled glutamine experiments showed that
labeled carbon was observed in lactate derived from glutamine
through malic enzyme reaction (DeBerardinis et al., 2007).
Ratio of the contribution of glutaminolysis and glycolysis to
pyruvate pool, (r39 + r82)/(r10 + r55), was around 1/25 for
GBM subtypes. Flux values for the conversion of the malate
to OAA by malate dehydrogenase reaction (r37 + r38 + r80)
were around 0.012 for GBM subtypes. As a result, major
sources of the acetyl-CoA and OAA pool used in TCA cycle
were respectively the pyruvate dehydrogenase from glycolysis
and anaplerotic flux from glutaminolysis, which was found
to be consistent with both in-vitro and in-vivo experiments
(DeBerardinis et al., 2007; Yang et al., 2009; Maher et al.,
2012; Marin-Valencia et al., 2012). The other source for OAA
pool, pyruvate carboxylase, was found to have very low flux
in our results, in accordance with the literature. Although,
the turnover of the TCA cycle can be completed in GBM
subtypemetabolic models, ATP production fluxes from glycolysis
were considerably higher than ATP production fluxes from
oxidative phosphorylation pathway. ATP production fluxes from
glycolysis (r7 + r10 + r52 + r55) and oxidative phosphorylation
(r45 + r88) were around 2.7 and 0.4 mmol/gDW/h respectively,
which shows the phenomena that although the turnover of
TCA cycle can be completed, major energy source is aerobic
glycolysis in GBM cells. The flux value of ATP production from
oxidative phosphorylation for GBM subtypes were calculated
to be 3-fold lower than the value calculated by the healthy
brain metabolic model (1.236 mmol/gDW/h; Sertbas et al.,
2014).

Precursors for Tumor Proliferation
In addition to energy metabolism, increased aerobic glycolysis
and glutaminolysis also provide macromolecule precursors
required for cell proliferation in tumors (Wolf et al., 2010;
Chinnaiyan et al., 2012). Ribose-5-phosphate (R5P), produced
through pentose phosphate pathway (PPP), is used as a
nucleotide precursor. R5P is also used in cancer diagnosis as
a tumor biomarker for its excess molecular level (Iqbal and
Bamezai, 2012). Flux values of the R5P isomerase reaction (r21 +
r65) producing R5P were higher for all GBM subtype metabolic
models than healthy brain metabolic model (Table 1). Fatty acid
synthesis relies on citrate exported from the mitochondria to
cytoplasm (DeBerardinis et al., 2007; Wolf et al., 2010). The
exported citrate from TCA cycle is converted to acetyl-CoA by
ATP citrate lyase reaction (r28 + r72), which is the precursor for
fatty acid, thereby lipid synthesis (Table 1). All GBM subtype
models had a higher flux value than healthy brain metabolic
model for the acetyl-CoA carboxylase reaction (r289), which is
the first committed step for the fatty acid synthesis (Table 1). In
addition to fatty acid precursors, lipid synthesis in proliferative
GBM cells requires a large amount of NADPH since it is the
electron donor for fatty acid synthesis (Wolf et al., 2010; Ru
et al., 2013). The sources of the NADPH in the GBM models
are oxidative arm of the PPP (r17 + r61), anaplerotic reaction
through glutaminolysis (r89 + r92) and malic enzyme reaction
(r39 + r82), which are all active for GBM subtype metabolic
models (see Supplementary File 1 for flux values). A high enough
NADPH supply by malic enzyme flux was reported for fatty
acid synthesis, together with a glutaminolytic flux higher than
PPP flux for NADPH generation (DeBerardinis et al., 2007). Our
results report about 50% contribution by the glutaminolysis and
25% contribution by malic enzyme and PPP, in agreement with
literature.

We found around 20% less growth rate in PN compared to
the other subtypes (Table 1), which is in perfect agreement with
the clinical observation that patients with PN subtype GBMs
have longer survival (Lee et al., 2008; Verhaak et al., 2010).
Experimental growth rates derived from doubling time (td) using
the formula ln2/td (Stensjoen et al., 2015) for GBM cells were
also used to compare with in-silico derived growth rates. Growth
rates of GBM subtype metabolic models are in the range obtained
by both in-vitro and in-vivo experimental studies (Perego et al.,
1994; Pennington et al., 2006; Wang et al., 2009; Stensjoen et al.,
2015).

Effect of Platform Difference and Dataset
Difference on Simulation Results
In order to demonstrate the robustness of the results,
transcriptome data from a different microarray platform
(GPL570) but from the same dataset (GSE13041) and from the
same platform (GPL96) but from a different dataset (GSE13276)
were additionally used to derive GBM-specific metabolic models
and calculate corresponding flux distributions (see Materials and
Methods for details). This is an important issue to be considered
to validate our results since platform or laboratory differences
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FIGURE 3 | Flux values of the in-silico GBM models by GIMME. Values indicate fluxes for “the mean of the three GBM subtypes” (top, based on
GSE13041-GPL96), “the metabolic model obtained using different microarray platform but from the same dataset as GBM subtypes” (middle, based on
GSE13041-GPL570) and “the metabolic model obtained using the same platform as GBM subtypes but from a different dataset” (down, based on
GSE13276-GPL96). Results show that constraining the model with different GBM transcriptome datasets leads to very similar flux profiles. The figure was drawn in
PathVisio 3 toolbox (Kutmon et al., 2015).

may cause serious reproducibility problems in microarray
experiments (Draghici et al., 2006). No sub-type differences
were accounted in these calculations. The calculated fluxes are
depicted in Figure 3.

When the flux ratios reported in Table 1 were calculated
for the new dataset from the same platform, a very similar
profile to PN subtype results was observed, with the same in-
silico growth rate. A classification analysis of the transcriptome
data of this dataset with the PN dataset via Fisher discriminant
analysis method revealed that the data of the new dataset had an
acceptable degree of similarity to the PN data at transcriptome
level. Based on these results, it is shown that different GBM
datasets give consistent results in terms of the calculated flux
phenotypes (Figure 3).

On the other hand, the use of data from the different
microarray platform resulted in slightly different quantitative
results, albeit not deviating from the flux rerouting behavior
depicted in Figure 2. The differences include a higher growth
rate (0.00118 1/h) and a higher flux to lipid metabolism
through Acetyl-CoA. The lactate production rate was lower
(1.51 mmol/gDW/h) then the GBM subtypes, whereas pyruvate
dehydrogenase reaction and citrate synthase reaction fluxes
were higher than the GBM subtypes, which were 0.152 and
0.070 mmol/gDW/h respectively (Figure 3). Furthermore, the
conversion rates of citrate to α-KG (r26−27 + r70−71 and r30−32 +

r73−75) and ATP production flux via oxidative phosphorylation
(r45 + r88) were higher than GBM subtypes (see Supplementary
File 1 for complete flux distributions of the GBM models). This
shows that the metabolic model obtained using the expression
data from the different platform gives TCA cycle flux more active
than other in-silicomodels (Figure 3).

Effect of Transcriptome-Based
Model-Generation Algorithms on
Simulation Results
The data of GSE13276 includes also data for a reference state,
which is required for MADE simulations. Therefore, this dataset
was also used byMADE algorithm and compared with the results
obtained by GIMME from the same dataset to enable a validation
of GIMME-based flux results (see Materials and Methods). The
comparison of resulting flux distributions allowed to check if
there is any difference between the algorithms mapping gene
expression data to the brainmetabolic network, iMS570g . Growth
rate, the objective function, was calculated to be the same (0.057
1/h) by both GIMME and MADE. Although there are some
significantly different flux values for same reactions generated by
GIMME and MADE, MADE-based metabolic model obeys the
GBM metabolic remodeling depicted in Figure 2. For instance,
citrate synthase reaction, the first reaction of the TCA cycle, is less
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active in MADE-based metabolic model. Citrate lyase reaction
(r28 + r72) producing acetyl-CoA as the precursor for fatty acid
is active for all GIMME-based metabolic models; whereas flux
value of this reaction is zero for MADE. TCA cycle behavior
differs quantitatively for GIMME and MADE-based models.
After maximizing biomass growth rate as objective function, the
minimization of Euclidean norm of internal fluxes was applied
in GIMME to narrow flux ranges of reactions due to alternate
optima (Cakir et al., 2007; Tarlak et al., 2014), which shows
more realistic results. MADE algorithm automatically generates
context-specific flux distribution andwe could not apply a second
optimization step to minimize the Euclidean norm of internal
fluxes. This can be the reason of the significantly different flux
values for same reactions generated by GIMME and MADE (for
detailed flux distributions see Supplementary File 1).

DISCUSSION

This study provides GBM-specific genome scale metabolic
models, derived from a brain-specific metabolic network. A
growth reaction for tumor proliferation is implemented based
on the lipid and protein content of white matter, where the
GBM arises. By incorporating appropriate constraints from
the literature, different GBM datasets were shown to predict
similar metabolic flux reroutings, both validating our results
and providing a proof of data consistency over transcriptome
datasets. Moreover, the effect of different computational methods
to incorporate transcriptome data with genome-scale models
was investigated, and the two different methods, GIMME and
MADE, which differ considerably in terms of dealing with the
gene expression data, give similar qualitative results. Although
there are several studies to apply genome-scale constraint-based
modeling to cancer metabolism, an analysis of brain tumors
with this approach is scarce. Only a recent study analyzed
GBM with the FBA approach, by using a metabolic model
with 147 genes and 12 pathways, without the incorporation
of gene expression data (Bhowmick et al., 2015). Our work
provides a much more comprehensive coverage of brain
tumor metabolism. Correct predictions of flux distributions
in glycolysis, glutaminolysis, TCA cycle and lipid metabolism
discussed in the paper validate the reconstructed GBM specific
models for further use of these models in future to simulate
more specific metabolic patterns for GBM, or to predict drug
targets.

When the constraints are directly applied to İMS570g

without any incorporation of transcriptome data constraint,
the calculated fluxes show some basic characteristics of GBM
such as high glycolysis rate and increased lactate production

and reduced TCA cycle activity, but missed to capture other
basic GBM remodeling patterns such as the contribution of
glutaminolysis to TCA cycle and a lower activity of oxidative
phosphorylation. This meant higher contribution of glutamate
and glutamine to growth for the purely constrained model,
leading to an almost doubled growth rate compared to GBM
subtype metabolic models. Therefore, some GBM patterns are
observed solely because of the change in experimental constraints
to GBM-specific values and change in the objective function
(increased flux toward biomass precursors), but it is the use of
measurement and gene expression constraints together that leads
to a better prediction of GBM flux remodeling. This also shows
the importance of incorporating gene expression data for flux
calculations.

Another commonly used method for constraint-based
genome-scale metabolic modeling is the sampling of solution
space. The solution space is randomly uniformly sampled for
a high number of flux vectors rather than searching the space
for an optimum flux vector (Thiele et al., 2005; Megchelenbrink
et al., 2014). The approach is especially preferred for the
analysis of mammalian metabolism. Here, we re-analyzed all
GIMME-derived GBM-specific metabolic models with the
sampling approach by constraining the growth rate between
the optimum value and 80% of the optimum. Resulting flux
values and flux reroutings were similar to the values reported
in Table 1, Figure 2 (results not shown). Interestingly, the flux
values obtained for the effect of a different microarray platform
(GPL570) were more similar to the values obtained for the GBM
subtypes (Figure 3). For example, a lower flux pentose phosphate
pathway was obtained for this platform with sampling approach.
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When considering the variation in the genome, transcriptome, proteome and

metabolome, and their interaction with the environment, every individual can be rightfully

considered as a unique biological entity. Individualized medicine promises to take this

uniqueness into account to optimize disease treatment and thereby improve health

benefits for every patient. The success of individualized medicine relies on a precise

understanding of the genotype-phenotype relationship. Although omics technologies

advance rapidly, there are several challenges that need to be overcome: Next generation

sequencing can efficiently decipher genomic sequences, epigenetic changes, and

transcriptomic variation in patients, but it does not automatically indicate how or whether

the identified variation will cause pathological changes. This is likely due to the inability

to account for (1) the consequences of gene-gene and gene-environment interactions,

and (2) (post)transcriptional as well as (post)translational processes that eventually

determine the concentration of key metabolites. The technologies to accurately measure

changes in these latter layers are still under development, and such measurements

in humans are also mainly restricted to blood and circulating cells. Despite these

challenges, it is already possible to track dynamic changes in the human interactome

in healthy and diseased states by using the integration of multi-omics data. In this

review, we evaluate the potential value of current major bioinformatics and systems

biology-based approaches, including genome wide association studies, epigenetics,

gene regulatory and protein-protein interaction networks, and genome-scale metabolic

modeling. Moreover, we address the question whether integrative analysis of personal

multi-omics data will help understanding of personal genotype-phenotype relationships.

Keywords: personalizedmedicine, interactome, gene regulatory networks (GRN), protein-protein interaction (PPI),

genome-scale metabolic models, integrative genomics, network medicine

1. INTRODUCTION

Humans share the same genes but do not have identical DNA sequences. The latest 1000
Genomes Project reported over 84,000,000 single nucleotide polymorphisms (SNPs), 3,000,000
short insertions/deletions, and 60,000 structural variants in 2504 subjects from 26 populations,
by applying whole genome sequencing as well as exome sequencing and microarray genotyping
technologies (1000 Genomes Project Consortium et al., 2015). While there are large differences
in the presence of both rare and common variants, it has been reported that every subject
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carries around 250–300 loss-of-function variants that lead
gene products to having less or no function (1000 Genomes
Project Consortium et al., 2010, 2012; UK10K Consortium
et al., 2015). Nowadays, whole genome sequencing allows the
determination of the entire DNA sequence of an individual,
and the resulting genomic information is believed to enable
prediction of disease risk and optimization of treatment outcome
(Sadee, 2011). In practice, predicting disease phenotypes from
genetic sequences is extremely challenging because the genotype-
phenotype relationship is far more complex than anticipated. A
single gene can be associated with multiple disease phenotypes
while a single disease phenotype can be caused by mutations in
multiple genes (Barabási et al., 2011). Importantly, mutations do
not have identical effects on individuals due to the individual
variation in interaction between genes, proteins, metabolites and
environmental factors (Barabási et al., 2011; Kathiresan and
Srivastava, 2012).

The complete set of (physical) interactions betweenmolecules,
such as genes, proteins and metabolites is known as the
interactome (Cusick et al., 2005). In this review, we focus
on the interactome in human cells. If we consider genome
sequences as stills and phenotypes as a movie, then there
must be a biological system which serves as a projector. It is
indeed proposed that the interactome that acts as the projector
and eventually translates the phenotypic effects determined by
both genotypes and environmental factors (Figure 1). Vidal
et al. (2011), Emmert-Streib et al. (2014) proposed that most
disease phenotypes may be caused by the perturbation of the
interactome, in which the products of disease genes were found to
interact with each other and cluster as modules (Ghiassian et al.,
2015; Menche et al., 2015). These disease modules may overlap
each other, explaining the shared associated genes and clinical
symptoms of different diseases (Ghiassian et al., 2015; Menche
et al., 2015).

FIGURE 1 | Genetic mutations and environmental effects can only lead to disease phenotypes through perturbation of the human interactome, which

is a complex network constituted by gene regulatory network, protein interaction network, and metabolism.

To understand the projector function of the interactome,
one must capture all molecular components involved in cellular
functions. With the rapid development of omics technologies,
it is now possible to readily profile up to 19,797 protein-coding
genes, 79,795 protein-coding transcripts, 30,057 proteins, and
4229 metabolites (Psychogios et al., 2011; Harrow et al., 2012;
Kim et al., 2014). Since individuality is present in the genomes,
epigenomes, transcriptomes, proteomes, and metabolomes, each
cell type in every human subject will have a different interactome
(Feinberg et al., 2010; Montgomery and Dermitzakis, 2011;
Suhre et al., 2011; Forler et al., 2014). In contrast to non-
individualized medicine, personalized medicine attempts to
address such subject-specific differences with respect to diagnosis
and treatment (Topol, 2014). This review aims to give an
overview of bioinformatic and network modeling approaches
that can be used to develop individualized medicine.

2. GENOME-WIDE ASSOCIATION
STUDIES, EPIGENETICS AND
INDIVIDUALIZED MEDICINE

Genome-wide association studies (GWAS) have identified a
great number of common single nucleotide polymorphisms
(SNPs) that are statistically associated with complex disease
phenotypes. The National Human Genome Research Institute
(NHGRI) GWAS catalog (www.genome.gov/gwastudies/)
includes 1751 curated publications of 11,912 SNPs (Welter
et al., 2014). Besides disease-associated SNPs, GWAS also
identified SNPs associated with drug efficacy and toxicity,
fueling the development of pharmacogenomics and guiding
individualized therapies (Sadee, 2011; Crews et al., 2012;
Low et al., 2014). The Pharmacogenomics Knowledgebase
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(PharmGKB, http://www.pharmgkb.org/) (Hewett et al., 2002;
Altman, 2007) is a literature-based database which provides
useful annotations on genes involved in pharmacokinetics (how
the drug is absorbed, distributed, metabolized and eliminated)
and pharmacodynamics (how the drug acts on its target and
its mechanism of action). In the current release of PharmGKB,
curated evidence for 1073 human genes involved in drug
response is present.

Epigenetics has been shown to play a key role in the
crosstalk between environment and genome, pointing toward
the notion that epigenetic marks might explain in part the
role of the environment in disease development (Bjornsson
et al., 2004; Rivera and Ren, 2013). Major epigenetic alterations
include DNA methylation, histone modification, and chromatin
remodeling (Rasool et al., 2015). A total number of 127 reference
human epigenomes are available on the website of the Roadmap
Epigenomics Project (http://www.roadmapepigenomics.org/),
including epigenetic landscapes of 111 primary cell and tissue
types as well as 16 cell lines (Roadmap Epigenomics Consortium
et al., 2015). Due to epigenetic modifications, cells can exhibit
different phenotypes in response to various environmental
factors, such as nutritional changes and oxidative stress.
Feinberg (2007) defined this ability as phenotypic plasticity,
whose abnormality is linked to diseases, such as cancers,
neurodegenerative and autoimmune disorders (Howell et al.,
2009). By integrating GWAS SNPs with epigenetic annotations,
Farh et al. (2015) identified that 90% of potentially causal
variants of autoimmune diseases are non-coding and 60% map
to enhancers of immune cells.

In general, information deriving from GWAS (Table 1) and
epigenetics provide possible etiological pathways rather than
the exact molecular mechanisms underlying diseases. Burke
and Korngiebel (2015) pointed out that although dramatic
progress has been made in genomics research, there is still
a gap between genomic knowledge and clinical application.
To fill such gap, an accurate understanding of the genotype-
phenotype relationship, which is hierarchically bridged by DNA,
RNA, protein, metabolite and flux, must be developed (Figure 2).
The integrative personal omics profile (iPOP) study (Chen
et al., 2012) was the first example of individualized medicine
attempting to overcome the gap by combining omics data sets.
Over a 14-month period which also included two viral infections
(HRV: human rhinovirus and RSV: respiratory syncytial virus),
dr. Michael Snyder not only profiled his whole genome, but also

TABLE 1 | Major SNP-trait association databases.

Name Link References

NHGRI GWAS Catalog www.genome.gov/gwastudies/ Welter et al., 2014

PharmGKB http://www.pharmgkb.org/ Hewett et al., 2002

GWASdb http://jjwanglab.org/gwasdb Li et al., 2012

GWAS Central http://www.gwascentral.org/ Beck et al., 2014

HuGE Navigator http://www.hugenavigator.net/

HuGENavigator/home.do

Yu et al., 2008

dbGaP http://www.ncbi.nlm.nih.gov/gap Tryka et al., 2014

VaDE http://bmi-tokai.jp/VaDE/ Nagai et al., 2015

the transcriptomes of his PBMCs (Peripheral BloodMononuclear
Cells) at 20 different time points, proteomes from PBMCs and
serum across 14 time points, and metabolomes of his serum
sampled 17 time points, respectively. Integration of the data sets
revealed the great potential of the individualized approach. In
particular, the genetic variant information of dr. Snyder indicated
that he is at risk for developing coronary artery disease, basal
cell carcinoma, hypertryglyceridemia, and type 2 diabetes, At the
same time, he was found carrying variants that are associated with
response to glucose lowering drugs, rosigitazone and metformin.
Interestingly, his time series measurements of transcriptome,
proteome, and metabolome across healthy states, response to
RSV infection, and recovery, enabled the authors to identify an
alteration of the insulin signaling response following the RSV
infection (Chen et al., 2012).

The iPOP study also provided us with some important
insights on omics-based individualized medicine. First of all,
as sequencing technologies vary considerably from each other
due to sensitivity, accuracy, coverage and resolution, the
measurements may contain systematic errors. Fortunately, since
the human genome is constant over time, profiling with multiple
DNA sequencing technologies is a way to improve the accuracy
of genetic variant detection in an individual genome. As shown
in the iPOP study (Chen et al., 2012), a genetic variant in the
protein-coding genes can be trusted, if it is captured by the
whole genome sequencing as well as whole exome sequencing.
Same as above, we can also trust a genetic variant in the
non protein-coding genes, if it is identified by different whole
genome sequencing platforms. In contrast to the genome which
is static, transcriptome, proteome, and metabolome are more
dynamic and changes in their patterns represent the most
valuable information for individualized medicine. To minimize
systematic errors, the personal transcriptomes, proteomes, and
metabolomes should be measured with standardized high-
throughput methods at different time points and compared
longitudinally. The longitudinal design also allows to perform
statistical analysis with a single sample through applying well-
established time-series data analysis techniques, such as Fourier
spectral analysis and autocorrelation calculations (Chen et al.,
2012). However, we have to admit that although the cost of
sequencing technologies has dramatically decreased, sequencing
with different platforms or multiple time points is unlikely to be
performed for more than economic reasons only. In addition,
the large volume of omics data sets will require substantial
investments in data storage and management.

Topol (2014) rightfully indicated that individualized medicine
needs translating large-scale omics data sets into useful
knowledge. The approaches of omics data analysis can be
roughly categorized as bioinformatics and network-based.
Bioinformatics-based approaches often use statistical techniques
to assess significant difference or association in the omics data.
Their biological interpretation mainly relies on annotations in
the community databases. Due to the chosen scope of this
review, we are not going into details of these approaches.
Network-based approaches, on the other hand, are mainly used
to integrate multi-omics simultaneously and the network itself
is subsequently used to explore biological insights. In general,
network-based approaches first reconstruct biased or unbiased
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FIGURE 2 | The genotype-phenotype relationship is hierarchically bridged by DNA, RNA, protein, metabolite and flux. These molecules are profiled in the

genomics, epigenomics, transcriptomics, proteomics, metabolomics, and fluxomics, respectively. Bioinformatics and systems biology approaches try to translate

these omics data sets into unified knowledge. In particular, from genomics and epigenomics, one attempts to identify the disease-associated genetic/epigenetic

alterations. From transcriptomics, proteomics, metabolomics, and fluxomics, one aims to identify the genes, proteins, pathways, and the flux distributions involved in

disease pathogenesis.

networks in silico, and then use the reconstructed network
to interpret the omics data. A biased network indicates that
prior biological knowledge is incorporated, whereas an unbiased
network is purely data-driven.

Network-based approaches enable us to link genotype to
phenotype, and vice versa. The constructed networks can be
viewed as maps, in which we can locate GWAS results and
improve our understanding the roles of genetic/epigenetic
alterations in disease predisposition (Califano et al., 2012;
Ghiassian et al., 2015). At the same time, these maps can
also help us tracking back molecular mechanisms of given
clinical phenotypes. Like what has been shown by Bartel et al.
(2015), the “human blood metabolome-transcriptome interface,”
a network constructed based on the correlation between serum
metabolomes and whole blood transcriptomes of 712 subjects,
can identify active pathways/modules with concentrations of
blood cholesterol and triglycerides. In the next sections, we
focus on three types of network-based approaches, namely
gene regulatory network, protein-protein interaction networks,
and genome-scale metabolic modeling and discuss them in a
schematic manner: i.e., (1) definition and generation; (2) usage
and results; (3) strength and weakness. We also discuss their
applicability for individualized medicine.

3. GENE REGULATORY NETWORKS

3.1. What are Gene Regulatory Networks?
Thousands of gene products are produced from the human
genome to support cell function and survival. The protein-coding

genes can induce protein synthesis, whereas the non protein-
coding genes encode noncoding RNAs (ncRNAs) as their gene
products. Gene regulatory networks (GRNs) ensure proper levels
of gene products present at the right time in the cell (Karlebach
and Shamir, 2008). In the GRN, nodes represent the genes and
edges indicate the interactions between gene products.

3.2. How are GRNs Generated?
Similar to gene coexpression networks, GRNs are statistically
inferred from a large number of gene expression data
sets. However, gene coexpression networks and GRNs are
fundamentally different from each other. Pearson’s correlation
coefficient is used to infer coexpression networks, meaning that
there is always a direct interaction for any pair of genes when
their expressions are statistically correlated (Stuart et al., 2003). In
contrast, GRNs are inferredmainly based onmutual information,
which explicitly specifies direct or indirect interaction for each
pair of genes. Mutual information defines howmuch information
one random variable X provides about another random variable
Y (Cover and Thomas, 2006). For GRNs, the random variables
refer to the gene expression levels. Almost all major algorithms
developed for GRN inference are mutual information-based and
include ARACNe (Algorithm for the Reconstruction of accurate
Cellular Networks) (Basso et al., 2005; Margolin et al., 2006), CLR
(Context Likelihood of Relatdeness) (Faith et al., 2007), MRNET
(Meyer et al., 2007), RN (Relevance Network) (Butte and Kohane,
2000), C3Net (Altay and Emmert-Streib, 2010a), and BC3Net
(de Matos Simoes and Emmert-Streib, 2012). Different inference
algorithms above were used to reconstruct human B cell
GRNs and found the networks contained consistent biological
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information (Altay and Emmert-Streib, 2010b; de Matos Simoes
et al., 2013). We refer readers to a recent review (Emmert-
Streib et al., 2014) for more general concepts of GRN inference
and applications. In this review, we focus on ARACNe since it
is the most widely used method. ARACNe makes use of two
steps to infer a genome-wide GRN (Basso et al., 2005). First,
ARACNe assesses all the pair of genes by calculating their mutual
information. Then, ARACNe discriminates whether the pair of
genes are directly linked or separated by any other genes through
applying a well-known property of mutual information called the
data processing inequality (Basso et al., 2005; Cover and Thomas,
2006).

3.3. What are GRNs Used for?
The rationale of the GRN lies in the idea that genetic/epigenetic
alterations contribute to disease phenotypes by inducing changes
in a finite number of regulatory bottlenecks, i.e., transcription
factors (TFs; Lefebvre et al., 2010; Califano et al., 2012).
ARACNe-inferred GRNs are used for identification of the crucial
TFs (also called master regulators) that affect the transition from
healthy to diseased states and vice versa. The identified master
regulators then serve as starting points to search for the driver
genetic/epigenetic alterations upstream.

3.4. What Has Come Out?
Lefebvre et al. (2010) applied ARACNe to infer a human B-
cell specific GRN from 254 B-cell microarray expression profiles
representing 24 distinct phenotypes. The ARACNe-inferred B-
cell GRN was subsequently used to identify MYB and FOXM1
as the master regulators of B-cell proliferation. Similarly, an
ARACNe-inferred glioblastoma GRN was created and used by
Chen et al. (2014) to identify two master regulators, C/EBPβ and
C/EBPδ that are known to be involved in mesenchymal subtype
of glioblastoma patients (Carro et al., 2010). Furthermore, by
combining the genetic variants from the same glioblastoma
patients, the authors identified that KLHL9 deletions are
upstream of the two identified master regulators and act as driver
mutations (Chen et al., 2014).

3.5. Strengths and Weaknesses
One of the major advantages of ARACNe-inferred GRNs is that
with whole genome microarray or total RNA sequencing, the
entire genome can actually be included in the ARACNe-inferred
GRNs. Moreover, since it has been shown that the interactions
inferred by the ARACNe algorithm are very likely to represent
real biophysical and biochemical interactions (Basso et al., 2005;
Lefebvre et al., 2010), ARACNe-inferred GRNs are suitable to
explore all the possible interactions related to ncRNAs. This
represents an important feature of ARACNe-inferred GRNs, as
more or less 90% of the human genome is being transcribed, but
only about 3% encodes protein. It is known that long noncoding
RNAs (lncRNAs) can interact with DNA and proteins (Quinodoz
and Guttman, 2014), and some lncRNA interactions are related
to human diseases. For example, Hirata et al. (2015) reported
that interaction between lncRNA MALAT1 and histone-lysine
N-methyltransferase EZH2 is involved in renal cell carcinoma.

The major drawback of ARACNe is that a large number
(≥100) of gene expression profile data covering a broad range
of phenotypes is required to infer the target GRNs (Basso et al.,
2005; Margolin et al., 2006). This is indeed necessary to explore a
significant range of gene expression dynamics in order to obtain
adequatemutual information for inferring GRNs (Margolin et al.,
2006). Obviously, in practice it is costly and time-consuming.

4. PROTEIN-PROTEIN INTERACTION
NETWORKS

4.1. What are Protein-protein Interaction
Networks?
Proteins exert their function through interactions with other
molecules (e.g., DNA, RNA, proteins, and metabolites).
For instance, signal transduction is mediated through
protein-protein interactions (PPIs), whereas gene expression
(transcription factor-DNA) and metabolism (enzyme-substrate
interaction) are mediated by protein-DNA and protein-
metabolite interactions, respectively (Sevimoglu and Arga,
2014). PPIs can also refer to formation of dimers, multi-protein
complexes or supramolecular assemblies (e.g., actin filaments).
Since some proteins are shared by different PPIs, individual PPIs
are interconnected. In the PPI network, nodes represent genes
whereas edges refer to physical interactions of the respective
proteins.

4.2. How are PPI Networks Generated?
There are three main resources of generic human PPI networks.
The first resource is from the literature mining. We listed
six primary databases (Table 2) that store and combine
experimentally supported PPIs from small-scale studies. The
second resource is derived from large-scale yeast-two-hybrid
(Y2H) screening. In 2005, the first generation of Y2H-based
human PPI network, HI-I-05, was introduced and included
2700 high-quality binary PPIs among 1705 proteins (Rual et al.,
2005; Stelzl et al., 2005). In 2014, the second generation of
Y2H-based human PPI network, HI-II-14, was released (Rolland
et al., 2014). This time 13,944 PPIs were identified among
4303 proteins. Both HI-I-05 and HI-II-14 can be downloaded
(http://interactome.dfci.harvard.edu/H_sapiens/). In addition to
the Y2H system, affinity-purification mass spectrometry (AP-
MS) is also developed to profile PPIs in human cells (e.g., human
HEK293T, Huttlin et al., 2015). Compared to Y2H which is

TABLE 2 | Primary sources of protein-protein interactions.

Name Link References

HPRD http://www.hprd.org/ Keshava Prasad et al.,

2009

IntAct http://www.ebi.ac.uk/intact/ Orchard et al., 2014

MINT http://mint.bio.uniroma2.it/mint/Welcome.do Licata et al., 2012

DIP http://dip.doe-mbi.ucla.edu/dip/Main.cgi Xenarios et al., 2002

BioGRID http://thebiogrid.org/ Stark et al., 2006

PDB http://www.rcsb.org/pdb/home/home.do Berman et al., 2000
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mainly used to identify binary interactions between two proteins,
AP-MS is more focusing on deciphering the composition of
protein complexes. The third resource of the human PPI
network is the computational prediction, in which machine
learning algorithms are applied to calculate the likelihood
of interactions between two proteins based on the known
interactions in the databases (Table 2). STRING (Search Tool
for the Retrieval of Interacting Genes, http://string-db.org/) (Snel
et al., 2000) is such a web-server including known and predicted
protein interactions of over 2000 organisms. In addition to
STRING, databases, such as PIPs (http://www.compbio.dundee.
ac.uk/www-pips/) (McDowall et al., 2009) and hPRINT (human
Predicted Protein Interactome) (Elefsinioti et al., 2011) also
predict PPIs without priori experimental evidence. The hPRINT
results can be retrieved in STRING as well (Franceschini et al.,
2013).

Human proteome studies have shown distinct proteome
profiles in different cell and tissue types (Kim et al., 2014;
Uhlén et al., 2015). This makes it necessary to specify PPI
networks in the target cell and tissue (Schaefer et al., 2013).
TissueNet database (http://netbio.bgu.ac.il/tissuenet/) provides
such context-specific PPI networks for 16 human tissues (Barshir
et al., 2013). A generalized way to construct such context-
specific PPI networks is introduced by Magger et al. (2012),
who developed a specific algorithm integrating context-specific
gene expression data (proteomics or transcriptomics). Gene
expression data are used to assess the probability of PPIs in the
generic PPI network. If a gene is not expressed, the algorithm can
either remove the gene from the generic PPI network or reduce
the weight of the interactions associated with the gene.

4.3. What are PPI Networks Used for?
Human PPI networks are used to identify genes, proteins and
subnetworks associated with diseases (Sevimoglu and Arga,
2014). They are also used to systematically characterize PPI
network perturbations associated with disease mutations. The
PPI network perturbations include complete loss of gene
products or alteration of PPI arrangement (Zhong et al., 2009;
Sahni et al., 2013).

4.4. What Has Come Out?
Goehler et al. (2004) generated a PPI network for Huntington’s
disease by using the Y2H. From there, they identified GIT1,
a G protein-coupled receptor kinase-interacting protein, which
directly interacts with huntingtin and turns out to enhance
huntingtin aggregation. Based on the generic human PPI network
derived from HPRD (Human Protein Reference Database;
Keshava Prasad et al., 2009), Jia and Zhao (2014) focused on
PPI subnetworks that contain multiple genes frequently mutated
in lung adenocarcinoma and melanoma patients. The results
showed that the driver mutations interrupted the PPIs that are
involved in signaling pathways (e.g., EGF receptor signaling
pathway) and biological processes (e.g., DNA repair systems; Jia
and Zhao, 2014). Based on the Y2H protein interaction assays,
Sahni et al. (2015) reported that common SNPs from healthy
subjects rarely affected PPIs, but around 60% of human disease-
associated missense mutations perturbed PPIs. Furthermore,

they also noticed that different mutations in the same gene can
influence different PPIs.

4.5. Strengths and Weaknesses
Unlike the ARACNe-inferred GRNs, in which the interactions
are statistically inferred from the gene expression levels, PPI
networks derived from the literature or Y2H screening are
experimentally supported. Therefore, perturbations in PPI
networks can be used with confidence to elucidate the molecular
basis of diseases as described in the examples given above.

A weakness of the PPI networks is incomplete coverage.
According to the up-to-date GENCODE release 23 (), there
are 19,797 protein-coding genes in the human genome. The
number of genes covered by the most comprehensive human
PPI network, HI-II-14 (Rolland et al., 2014), is only 3146 which
suggests that there is still a long way to go. In addition, PPIs
are often evaluated under unphysiological conditions, leading to
false positive and negative PPIs included in generic PPI networks
(Schaefer et al., 2013). Kuchaiev et al. (2009) reported that the
false positive and negative rate of Y2H could be as high as 64 and
71%, respectively.

5. GENOME-SCALE METABOLIC MODELS

5.1. What are Genome-scale Metabolic
Models?
Metabolites are implicated in maintenance of cellular functions
and production of building blocks (e.g., purines and pyrimidines)
for macromolecular biosynthesis. Computational biologists have
reconstructed all metabolic reactions into one large network and
name it “genome-scale metabolic model.” GEMs and GSMMs are
typically used as abbreviations in the literature.

5.2. How are GEMs Generated?
In general, GEMs are constructed by using enzyme-mediated
reactions, transporters and intermediary metabolites (Bordbar
et al., 2014). The first landmark studies in this field emerged in
2007 when Recon1 (Duarte et al., 2007) and EHMN (Edinburgh
Human Metabolic Network) (Ma et al., 2007) were manually
reconstructed based on genomic and experimental data in the
literature. These two human metabolic networks were merged
into the HMR (Human Metabolic Reaction) database (Agren
et al., 2012). In 2010, a human hepatocyte-specific metabolic
network, HepatoNet1, was reconstructed based on experimental
evidence for presence of metabolic reactions in human
hepatocytes (Gille et al., 2010). The experimental evidence was
manually curated based on information from over 1500 scientific
articles. In 2013, the continuing development of Recon1, EHMN,
and HepatoNet1 leads to the release of Recon2 (Thiele et al.,
2013). A year later, another reconstruction of human hepatocyte-
specific metabolic network, iHepatocytes2322, together with a
new release of the Human Metabolic Reaction database, HMR2,
were published (Mardinoglu et al., 2014).

Recon2 (Thiele et al., 2013) and HMR2 (Mardinoglu
et al., 2014) represents all current knowledge of global
human metabolism. Since different cell/tissue types may harbor
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synonymous enzymes to catalyze the same reaction and different
metabolic pathways may result in the same product (Uhlén et al.,
2015), it is important to reconstruct cell/tissue type specific GEMs
to characterize the metabolism of target cells and tissues. For
this purpose, algorithms, such as tINIT (task-driven Integrative
Network Inference for Tissues) (Agren et al., 2014), GIMME
(Gene Inactivity Moderated by Metabolism and Expression)
(Becker and Palsson, 2008), and mCADRE (metabolic Context-
specificity Assessed by Deterministic Reaction Evaluation)
(Wang et al., 2012) are used to generate cell/tissue type specific
GEMs from the generic GEMs (e.g., Recon2 or HMR2). These
algorithms use abundances of transcripts and proteins to estimate
the probability of presence of enzymes in the generic GEMs.
We refer readers to an excellent review (Machado and Herrgård,
2014) for more details on the differences between the various
algorithms.

5.3. What are GEMs Used for?
Human GEMs, especially cell/tissue type specific GEMs, are
mainly used as scaffolds to analyze transcriptomics data obtained
from patient samples, in order to identify the metabolic
pathways and metabolite biomarkers that are related to disease
pathogenesis.

5.4. What Has Come Out?
Using the tINIT algorithm with proteomics and transcriptomics
data of human myocytes, Väremo et al. (2015) reconstructed
a myocyte-specific GEM, iMyocytes2419, which made it
possible to reveal that type 2 diabetes patients show extensive
transcriptional changes in reactions involved in pyruvate
oxidation, branched-chain amino acid catabolism, and
tetrahydroflate metabolism. Mardinoglu et al. (2014) applied
iHepatocytes2322 and their previously developed Reporter
Metabolite algorithm (Patil and Nielsen, 2005) to analyze
transcriptomics data of patients with non-alcoholic fatty liver
disease, and identified that concentrations of chondroitin and
heparan sulfates may represent novel biomarkers for diagnosing
non-alcoholic steatohepatitis. Similar GEM-based analyses have
been performed to study diseases such as, Alzheimer’s disease
(Lewis et al., 2010), obesity (Mardinoglu et al., 2013), and cancer
(Agren et al., 2014; Yizhak et al., 2014).

5.5. Strengths and Weaknesses
In our opinion, the major advantage of GEMs is that it allows
to study global metabolic flux distributions. The rate of the
metabolic reactions in a pathway (metabolic flux) is determined
by many aspects, such as protein concentration, protein
interaction (signal transduction), enzyme kinetics andmetabolite
concentrations (Winter and Krömer, 2013). Therefore, metabolic
fluxes can be considered as the ultimate outcome of cellular
regulation at different levels (Nielsen, 2003). When listing all
the reactions as well as their corresponding flux values under
a particular condition, one can construct a metabolic flux
distribution that represents a particular cellular phenotype in
detail.

Currently, 13C stable isotope labeling is the most popular
experimental method to measure in vivo fluxes (Blank and

Ebert, 2013). By performing 13C fluxomic experiments, Murphy
et al. (2013) noticed that different levels of oncoprotein MYC
can induce distinct metabolic flux distributions in P493-6 B
cells. They showed that high MYC cells as rely more heavily
on amino acids and mitochondrial oxidative metabolism than
low MYC cells. 13C fluxomics also revealed distinct metabolic
flux distributions in different cell lines. Niklas et al. (2011)
reported that human neuronal AGE1.HN cells had lower flux
rates (around 2.3% of the glucose uptake flux) in the pentose
phosphate pathway than other cell lines, such as HEK-293 cells
(15%) and hybridoma cells (20%). These 13C fluxomic studies
illustrate that various biological conditions can induce distinct
metabolic flux distributions.

However, 13C fluxomics cannot deliver us a complete picture
of flux distributions in the metabolic network, since only a small
number of reactions can be measured. Here, GEMs provide a
means to estimate metabolic flux distributions under different
conditions relying on a limited number of exchange fluxes, i.e.,
fluxes of substrates entering the cells and the fluxes of metabolites
that are secreted from the cells. It is beyond the scope of
this review to explain the related mathematical theory, but we
recommend the article by Rossell et al. (2011), in which they
formulated how to compute complete set of fluxes from the
exchange fluxes.

Bordel et al. (2010) introduced a random sampling method
which can calculate means and standard deviations for each
flux in the GEM under different experimental conditions,
when a limited number of measurements of exchange fluxes
are given. By integrating changes in gene expression between
different conditions, metabolic reactions can be classified as
either transcriptionally regulated (significant changes in both
flux and gene expression levels), post-transcriptionally regulated
(significant changes in gene expression levels but not flux), or
metabolically regulated (significant changes in flux but not gene
expression levels). This random sampling method was applied
together with the adipocyte-specific GEM, iAdipocytes1809, and
helped identifying the fluxes of glucose uptake, fatty acids uptake,
oxidative phosphorylation, mitochondrial and peroxisomal β-
oxidation, fatty acid metabolism and tricarboxylic acid cycle as
being differentially down regulated in obese subjects (Mardinoglu
et al., 2013). Gavai et al. (2015) developed a novel algorithm
called Lsei-FBA (Lesat-squares with equalities and inequalities
Flux Balance Analysis), and identified the fluxes of glycolysis and
oxygen uptake as being decreased in brains of Alzheimer’s disease
patients (29 and 46%, respectively) compared to healthy subjects.
Similar to the random sampling method, Lsei-FBA also requires
tissue-specific GEMs, and measurements of gene expression as
well as exchange fluxes.

The second biggest advantage of GEMs is that up to now
it is currently the only platform that can integrate genomics,
transcriptomics, proteomics, metabolomics, and fluxomics data.
Yizhak et al. (2010) integrated quantitative proteomics and
metabolomics with a GEM of the human erythrocyte, and
predicted metabolic flux distributions in red blood cells. The
flux distribution predictions were found to be consistent with
the simulations made by a detailed kinetic model of human
red blood cells. Bordbar et al. (2012) analyzed transcriptomics,
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proteomics, and metabolomics data sets of LPS-stimulated RAW
264.7 cells with a GEM of the RAW 264.7 cell line, and identified
a suppressive role for de novo nucleotide synthesis inmacrophage
activation.

Last but not the least, it has been shown by Uhlén et al. (2015)
that the minimum requirement of generating a cell/tissue type
specific GEM is a single RNA sequencing profile.

Naturally, GEMs also have their limitations. First of all,
although novel metabolite biomarkers for various diseases have
been predicted by using cell/tissue type specific GEMs, few of
them have been validated in humans, because of either technical
limitation of measuring the metabolites in question or difficulty
of accessing the patient materials. Secondly, since GEMs focus on
metabolic enzyme-coding genes, reactions and pathways, GEMs
cannot be used to study signal transduction pathways. Lastly,
GEMs do not contain detailed kinetics of enzymes and produce
metabolic flux distributions only under steady state conditions.

6. THE FUTURE OF INDIVIDUALIZED
MEDICINE

6.1. Role for GRNs
Regarding individualized medicine, longitudinal transcriptomics
derived from cells/tissues of an individual including healthy
and diseased states are the ideal resources to assemble
an individualized GRN. Zoppoli et al. (2010) introduced
TimeDelay-ARACNe to infer GRNs specifically from time-
course data. Such ARACNe-inferred GRN provides a
personalized map, with which one can locate the genetic
mutations identified in the one-dimensional genome sequences
in a multi-dimensional network. By integrating gene differential
expression information between healthy and diseased states, one
can also identify the crucial transcription factors controlling the
phenotype transition. Taken together with the network location
information, one can make the most of the personal genomic
information and further prioritize the damaging effect of genetic
mutations.

6.2. Role for PPI Networks
PPI networks are proposed playing a role in buffering the impact
of genetic mutations and environmental challenges (Forler
et al., 2014; Garcia-Alonso et al., 2014). This opinion has been
investigated by Garcia-Alonso et al. (2014), who built up a
human PPI network by merging generic PPI networks derived
from three public databases (BioGRID, Stark et al., 2006, IntAct,
Orchard et al., 2014, andMINT, Licata et al., 2012). They used the
reconstructed PPI network to study the effect of genetic variants
predicted to be deleterious in the subjects participating in the
1000 Genomes Project, 252 healthy Spanish individuals, and 41
chronic lymphocytic leukemia patients. Interestingly, most of
the potentially damaging genetic variants in healthy individuals
were located in peripheral regions of the PPI network and did
not really perturb the structure of the PPI network. However,
when investigating the somatic variants that were predicted to
be deleterious in chronic lymphocytic leukemia patients, they
noticed that these mutations tended to be in internal regions of

the PPI network. The above study indicates that PPI networks can
help to identify whether genetic variants may be disrupting PPIs
and hence may be important in explaining diseases.

6.3. Role for GEMs
GEMs have already been used successfully for individualized
medicine. Agren et al. (2014) reconstructed personalized GEMs
for 6 hepatocellular carcinoma patients based on proteomics
data, and used these models to identify potential anticancer
drug targets for the individual patients. Yizhak et al. (2014)
reconstructed personalized GEMs for breast and lung cancer
patients based on gene expression measurements obtained from
biopsy samples. These personalized GEMs were used to predict
the cancer cell growth rate, which was used to infer patient
survival.

For successful individualized medicine, it should be realized
that it is important to integrate information of cell/tissue type
specific GEMs, in an attempt to capture whole-body metabolism.
Urine, plasma, and serum are the most common samples from
human subjects for diagnostic purpose (Nicholson et al., 2012).
Metabolic measurements based on these samples are the results
of the crosstalk of many organs and can be regarded as serving
the readouts of whole-body metabolism.

Bordbar et al. (2011) build a multi-tissue GEM by integrating
adipocyte, hepatocyte and myocyte-specific GEMs via a
blood compartment. The assembled multi-tissue GEM was
used to study the metabolic differences between non-type 2
diabetes obese and type 2 diabetes obese individuals. They
reported that type 2 diabetes obese individuals lack activity
in reactions catalyzed by lactate dehydrogenase, catalase
and cysteine dioxygenase, comparing to the non-type 2
diabetes obese subjects. Besides integrating metabolism of
different tissues and cells, the human gut microbiome is also
considered important for whole-body metabolism (Mardinoglu
and Nielsen, 2015). Shoaie et al. (2015) reconstructed five
GEMs for five representative bacteria in the human gut,
including Bacteroides thetaiotanmicron, Eubacterium rectale,
Bifidobacterium adolescentis, Faecalibacterium prausnitzii, and
Ruminococcus bromii. These GEMs were used to study 45
overweight and obese individuals who were subjected to an
energy-restricted, high-protein diet intervention for 6 weeks.
The authors reported that the diet intervention decreased the
gut microbiota production of short chain fatty acids (acetate,
butyrate, and propionate) and amino acids (e.g., alanine, proline
and glycine etc.).

6.4. Concluding Remarks
Due to the central role of the interactome in cellular functions,
we think that the roadmap of individualized medicine is moving
from human genomes to interactomes. However, construction of
a complete human interactome is extremely complex and it might
take at least another decade (Menche et al., 2015). This review
shows that GRNs, PPI networks, GEMs can characterize part of
the interactome in cells. Integrating different type of networks
may contribute to better understanding of the interactome, and
ultimately realizing true individualized medicine.
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INTRODUCTION

The era is approaching when each individual can be mapped to a patient avatar—not a life-sized
3D blue form of the patient filled with physical substance (as in the movie “Avatar”), but a
hologram of the patient that simulates keymedical components. Patient avatars will be composed of
computational models combined with various data types and analytics to formwhatmight be called
SuperModels (Figure 1). These SuperModels (comprehensive virtual representations of the patient,
not fashion models) will be important to help realize visionary precision medicine initiatives that
have recently been announced (Collins and Varmus, 2015; Nature Biotechnology, 2015).

Precision medicine tailors prevention, diagnosis, therapeutics, and prognosis for each patient
(Garay and Gray, 2012; Highnam and Mittelman, 2012; Mirnezami et al., 2012). Related to
precision medicine is systems medicine (Auffray et al., 2009; Capobianco, 2012; Emmert-Streib
and Dehmer, 2013; Wolkenhauer, 2013), which leverages systems biology (Noble, 2008) for clinical
application, with resulting data termed “systems medicine data” (Brown et al., 2015b). Systems
biology studies the behavior of organisms or cells as whole systems, and uses various advances
in biotechnology, including genomics, transcriptomics, proteomics, metabolomics, methylomics,
microbiomics, and elucidation of cellular interaction networks by network biology (Figure 1,
top left panel labeled X). Often, systems medicine data from these various advances can be
modeled and simulated with complementary computer science, mathematics, chemistry, physics,
and engineering concepts in computational biology.

A variety of fields have used computational models as virtual surrogates of specific portions of
patient physiology. These individual models can be considered computational avatars of a subset
of the patient’s organic identity. This is akin to cancer avatars in mice, which involve mouse models
mapped to individual patients, for example, by injection of tumor cells from a particular individual.
These cancer avatars facilitate personalized study of the pathophysiology and response to drugs
of a particular patient’s cancer cells. Similarly, biomathematical or computational cancer avatars
simulate the micro-environment of individualized cancer cells.

Beyond such in silico exemplars, a computational avatar may also be thought of as any finite
representation of a specific portion of the patient, that harnesses computing power. This includes
electronic health records (EHR), patient portals, and a variety of other precision medicine tools.
However, this paper focuses on individual biomathematical models as computational avatars that
can be incorporated into comprehensive patient avatars for use in precision and systems medicine.
The following section describes a non-exhaustive sample of biomathematical models, including
genome-scale metabolic models (GEMs) that use computational approaches to integrate omics
data (Yizhak et al., 2015). These computational avatars can serve as ingredients for SuperModels,
forming the first portion (X→Z) of a positive feedback loop in Figure 1.
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FIGURE 1 | Building SuperModels for precision and systems medicine, with incorporation of computational avatars. Input: A feedforward loop (top left
panel X connects to patient avatar Z both indirectly via bottom left panel Y and also directly, by large blue arrows) is fueled by two disparate paths. In the top left panel
labeled X, various systems medicine data types, along with network biology and emerging computational models (including genome-scale metabolic models, Agren
et al., 2014; Yizhak et al., 2015), provide input for patient representations such as the digital human construct being developed by The Discipulus Project. In the
bottom left panel labeled Y, systems medicine data are integrated into patients’ mobile health (mHealth) technologies and electronic health records (EHR) (Brown et al.,
2015b). mHealth and EHR data are coupled with external knowledge [e.g., from medical societies guidelines and Food and Drug Administration (FDA) approvals] by
cognitive machines such as Watson, and analytics are employed to process multi-omics (integrated personal omics profile; iPOP) and patient similarity algorithms. The
path labeled Y is already in progress with EHR data, independent of digital human constructs described in the path labeled X. Paths X and Y can be bridged by locally
supervised metric learning (LSML) similarity measures and similarity network fusions (SNF), for synergistic creation of SuperModels to produce results that cannot be
obtained from path X or path Y alone. Output: High-yield predictive, preventive, and personalized data indicate patients at low/high risk for disease/adverse effect
development. Individualized therapeutic plans can therefore be devised, also guided by the patient’s likelihood of being a responder or non-responder to specific
medications. Provision of personalized data should be in the context of systems medicine counseling, integrating genetic counseling with information about various
forms of systems medicine data (Brown et al., 2015b). Iteration: The curved gray arrow linking output to input represents using outcome observations to iterate and
refine SuperModels at all stages of development, to guide precision medicine. 1Hood and Flores (2012), 2Brown et al. (2015b), 3Barabási and Oltvai (2004), 4Schuyler
et al. (2011), 5Plotkin et al. (2013), 6Bikson et al. (2012a), 7Brown and Loew (2014), 8Brown et al. (2015a), 9Henderson et al. (2014), 10Tortolina et al. (2012),
11Stamatakos et al. (2010), 12El-Kareh and Secomb (2000), 13Utsler (2015), 14Agren et al. (2014), 15Yizhak et al. (2015), 16The Discipulus Project (2013), 17Kullo
et al. (2013), 18Steinhubl et al. (2015), 19Zhang et al. (2014), 20Chen et al. (2012), 21Savage (2014).

COMPUTATIONAL AVATAR EXEMPLARS

Several biomathematical models focus on understanding
mechanism and prediction of pathophysiology progression, as
well as delivery, efficacy, and adverse effects of therapeutics,
such as deep brain stimulation or chemotherapy. Many
of these computational models can replicate biomedical
and/or electrophysiological properties of brain, cancer, and
heart cells, personalized for each patient. Strategies and
predictions for survival or for safer and more efficacious
and well-timed therapy are studied and influence care of

neurological and cardiovascular disorders and cancer, among
others.

Brain
Computational models of the brain have been developed,
e.g., for amyotrophic lateral sclerosis (ALS). These
models use known familial ALS mutations to predict
functional implications or patient survival, based on
mechanical properties of the mutant proteins that would
be nearly impossible to produce experimentally (Schuyler
et al., 2011; Plotkin et al., 2013). Thus, computational
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power is harnessed to predict survival and function in
ALS.

Customized computational models of transcranial direct
current stimulation (tDCS) have also been created (Bikson
et al., 2012a,b). This non-invasive electrotherapy limits anatomic
and temporal exposure to electricity in specific brain regions,
minimizing side effects that could otherwise be experienced
from pharmacotherapy (Bikson et al., 2012b). The tDCS
computational avatars provide opportunities to individualize
therapy for stroke, Parkinson’s disease, and treatment-resistant
depression, among others (Fregni et al., 2006; Truong et al.,
2013; Tortella et al., 2015). Using these computational avatars to
customize tDCS for patients at extremes of age or those with skull
defects or brain damage could become standard tools to guide
trials and therapy (Bikson et al., 2012a).

Another example of integrating modeling with experimental
observations and clinical findings lies in spinocerebellar ataxia
(SCA). The SCA modeling suite explains, interprets, or predicts
experimental results in mouse models, post-mortem human
brains, and peripheral blood samples from living patients (Brown
and Loew, 2012, 2014). The suite is an example of the utility of
computational systems biology in translational medicine (Brown
et al., 2015a).

Cancer
A number of computational avatars have also been designed for
precision cancer care. These include models for colon cancer
that synthesizesmathematical modeling, omics, other systems
biology approaches, and pharmacologics to produce personalized
molecular imprints aimed at predicting the right diagnostics
and prescriptions (Tortolina et al., 2012; Henderson et al., 2014;
American Cancer Society, 2015). With further study, these could
be used to tailor therapy. The ContraCancrum project has moved
in this direction with clinical trials illustrating the utility of
computational models for lung carcinoma and other cancers
(Stamatakos et al., 2010). Lung cancers account annually for∼15
and∼30% of all new cancer cases and deaths, respectively; colon
cancer accounts for ∼10% of all new cancer cases and deaths
annually (American Cancer Society, 2015). Thus, computational
avatars have tremendous potential for individualizing care of
cancers that account for a great proportion of morbidity and
mortality in adult patients.

Adverse drug effects (ADE) on the heart or other organs limit
the administration of optimal pharmacologics for cancer care
(Vejpongsa and Yeh, 2014). As an example to counteract this,
mathematical models predict the optimal modes of doxorubicin
delivery (El-Kareh and Secomb, 2000) for breast cancer, which
annually accounts for 30 and 15% of all new cancer cases and
deaths, respectively (American Cancer Society, 2015). Consistent
withmodel predictions, liposomal delivery has subsequently been
studied in a number of clinical trials, which have shown superior
toxicity profiles compared to standard non-liposomal delivery
for breast cancer (Lao et al., 2013). Computational avatars can
therefore be used to predict and hopefully prevent ADE in cancer
care.

Additional avatars may focus on pancreatic and hepatocellular
cancer. Recent proteomic results implicated Glypican-1 as an

unparalleled near perfect non-invasive diagnostic and screening
tool detection of early pancreatic cancer (Melo et al., 2015).
Addition of this and other biomarkers and systemsmedicine data
to computational avatars will help guide safe, early, and effective
cancer therapy. For example, personalized computational models
based on proteomics data have predicted potential drugs to treat
hepatocellular cancer, one of which has already been validated
experimentally (Agren et al., 2014).

Heart
Computational avatars have also been composed for the heart.
The cardioid project from the International Business Machines
(IBM) Corporation uses advanced computing to compose
individualized 3D models of the heart (Utsler, 2015). The system
is devised to predict the risk of sudden cardiac death due to
Torsade de pointes or similar arrhythmic complications. These
arrhythmias are another form of cardiotoxicity, in this case
related to prolongation of the QT interval (distance between the
start of the wave labeled “Q” and the end of the wave labeled “T”
on an electrocardiogram), induced by drugs (e.g., antibiotics).
Cardioid is thought to be the world’s most detailed real-time
human heart simulation (Lawrence Livermore National Security,
2015). Cardioid complements prior human heart models, and
expands the capabilities of avatars to geometric point-of-care.
Such an achievement resulted from computational, natural,
and life sciences teamwork among computational biologists,
physicists, and mathematicians.

These examples of computational avatars for the brain,
heart, and cancer provide evidence for established units,
which can 1 day be merged (e.g., with immersive virtual
environment technology for 3D animated photorealistic virtual
representations of the self, Fox et al., 2009) to form SuperModels
for precision and systems medicine.

BUILDING SUPERMODELS

Computational avatars can be integrated with EHR or patient
portals to build SuperModels, merging with clinical information
about past medical history and diet and lifestyle habits, as
well as measurements from wearable sensors, mobile health
(mHealth) technologies (Steinhubl et al., 2015), and telemedicine
(left section of X→Y in Figure 1). Some have termed a
similar concept proposing patient mapping by integration of
computational models with EHR information, and inviting
incorporation of other biotechnological tools, as the “digital
patient,” “virtual patient,” “medical avatar,” or “patient avatar”
(The Discipulus Project, 2013). Digital patient platforms, similar
to Discipulus (The Discipulus Project, 2013), will use 3D
scanning to produce a virtual geometric and physiologic
view of the patient. MRI and CT scan results will guide
reproduction of individualized anatomy, organ structure, and
temporal blood flow. This paper proposes that all of this
information and all of these technologies can ultimately be
amalgamated with knowledge sources (such as medical society
guidelines documents) and analytics to create SuperModels as
the most advanced patient avatars. This forms the second portion
(X→Y→Z) of a positive feedforward loop in Figure 1.
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Systems medicine EHR data can provide input for
natural-language processors, such as Watson (Savage, 2014;
Figure 1, bottom panel labeled Y). Cognitive machines like
Watson assimilate patient information to tailor medical
recommendations, guidelines, and treatment options to the
individual (Savage, 2014). Watson is outfitted with virtual
advisors trained by medical experts, to assist with personalized
risk factor identification and associated recommendations.
Cognitive machines and analytics are also employed to
use machine learning and natural language processing
in patient similarity algorithms that yield a cohort of
patients similar to a target patient, stratified by medical
conditions of most concern to the engaged target patient in
participatory medicine. Integrative personal omics profile
(iPOP) longitudinal analysis can also combine the various omics
data integrated in the EHR to uncover extensive, dynamic
changes over time across healthy and diseased conditions for
the target patient (Chen and Snyder, 2013), and for similar
patients.

Bridging the two paths (labeled X and Y in Figure 1)
to create SuperModels can be achieved with implementation
of methodologies such as locally supervised metric learning
(LSML) similarity measures and similarity network fusions
(SNF). LSML and SNF facilitate personalization and prediction
for risk factor profiles and computational avatars by constructing
networks of patient samples for a variety of available data
types, and efficiently fusing data types into one representative
network that captures the full pathophysiological spectrum,
respectively, while harnessing the power of complementarity
in the data (Wang et al., 2014; Ng et al., 2015). Both LSML
and SNF substantially outperform single data type analysis,
and models created from global datasets that do not address
patient similarity, respectively, while establishing integrative
pathways (Wang et al., 2014; Ng et al., 2015). Synergistically
not additively combining EHR integration, knowledge sources,
and analytics with systems medicine data, network biology,
computational models, and digital human constructs in this
way produce a novel modeling perspective that can be
considered the advent of SuperModels. Emergent properties
of such a powerful combination are the epitome of systems
medicine.

SuperModels can be interrogated to determine whether
an individual might be at low or high risk for developing
serious side effects to certain medications, or whether a patient
is likely to respond—or not respond—to chemotherapy,
for example. SuperModels will therefore in part serve
as a clinical decision support tool for shared decision-
making, supporting patient engagement in participatory
medicine. Participatory medicine, which advocates for patient
input and education in all phases of their individualized

care, is a component of P4 (predictive, preventive,
personalized, and participatory) medicine, which has
been proposed as the clinical face of Systems Medicine
(Hood and Flores, 2012).

CHARTING A COURSE FORWARD

Development of SuperModels will require worldwide
partnerships in academia and industry, for creation, education
(e.g., https://sems.uni-rostock.de/reproducible-and-citable-data-
and-models/, implementation, and troubleshooting challenges.
Accordingly, large interdisciplinary consultation meetings
and online fora like those of the Discipulus project initiative
will become the norm, bringing together clinicians, scientists,
mathematicians, bioengineers, technologists, and patients
(The Discipulus Project, 2013), and may ultimately engage
crowd sourcing. Difficulties, such as assuring accuracy post-
data-processing (Capobianco, 2012) involving (1) merger of
multi-scale noisy biased data sets with small sample sizes
and large amounts of measured data (Wang et al., 2014),
(2) harmonization of whole-body pharmacokinetics and
pharmacodynamics with cellular network and tissue-level
models (Agren et al., 2014) and diverse systems medicine data
types to form digital human constructs (Figure 1, top left
panel labeled X), (3) robust cross-validation of highly complex
model findings including temporal features of more diversified
disease targets (Ng et al., 2015), and (4) intercalation with
analytics (Figure 1, bottom left panel labeled Y), along with
other systems medicine challenges (Capobianco, 2012) that
may be encountered when building SuperModels (Figure 1,
X→Z and Y→Z), will most effectively be addressed through
collaborative efforts. These and other principles, including ones
for efficiency and cost-effectiveness, will be needed to guide
the use of SuperModels in systems medicine (see companion
paper in Frontiers in Genetics, Brown, in review), along
with ethical and other considerations for EHR integration
(Kullo et al., 2013).
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To develop novel strategies for prevention and treatment of dyslipidemia, it is essential
to understand the pathophysiology of dyslipoproteinemia in humans. Lipoprotein
metabolism is a complex system in which abnormal concentrations of various lipoprotein
particles can result from alterations in their rates of production, conversion, and/or
catabolism. Traditional methods that measure plasma lipoprotein concentrations only
provide static estimates of lipoprotein metabolism and hence limited mechanistic
information. By contrast, the use of tracers labeled with stable isotopes andmathematical
modeling, provides us with a powerful tool for probing lipid and lipoprotein kinetics in vivo
and furthering our understanding of the pathogenesis of dyslipoproteinemia.

Keywords: very low density lipoproteins, apoB, multocomnpartmental modeling, kinetics, stable isotopes

INTRODUCTION

The most abundant lipids in plasma are: triglycerides, cholesterol, cholesterol esters, and
phospholipids. Since lipids are water-insoluble they have to be transported in lipoprotein particles.
They consist of a hydrophobic core of triglycerides and cholesterol esters, shielded from the water
by a surface monolayer of phospholipids, unesterified cholesterol, and specific proteins (Mahley
et al., 1984). The protein components of the lipoprotein are known as apolipoproteins (apo)
(Mahley et al., 1984). The amount of lipids and proteins in the lipoprotein particles affect their
density—the lower the density of a lipoprotein, the more lipids it contains relative to protein.
Depending on function and hydrated density, the lipoproteins are traditionally divided into
four major classes. These are chylomicrons, very low-density lipoproteins (VLDL), low-density
lipoproteins (LDL), and high-density lipoprotein (HDL).

Chylomicrons and VLDL particles are the major carriers of triglycerides in the circulation.
Chylomicrons are synthesized in the intestine and carry dietary lipids absorbed by the intestine.
VLDL particles are synthesized by the liver. The function of these lipoprotein particles is to
transport and deliver triglycerides to adipose tissue and muscles. Elevated triglycerides in plasma
are associated with increased risk for cardiovascular disease (CVD).

In order to prevent and treat disturbances in metabolism of triglyceride-rich lipoproteins,
it is necessary to clarify the underlying mechanism(s). The hypertriglyceridemia can either be
caused by increased secretion, conversion, or catabolism of lipoprotein particles of triglyceride-rich
lipoproteins. Although static s measurements of plasma lipids and functional assays may give some
information, in the end, it is necessary to study the true unit of function (the integrated metabolic
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pathway) to understand the complexity of lipoprotein
metabolism (Chan et al., 2004a,b; Adiels et al., 2008). Therefore,
kinetic studies with stable isotopes are critical to explore and
clarify the pathophysiology of lipid disorders in humans (Chan
et al., 2004a,b; Adiels et al., 2008). The aim of this review is to
illustrate how kinetic studies have furthered our understanding
of impaired human lipoprotein metabolism.

METABOLISM OF apoB-CONTAINING
LIPOPROTEINS

Triglyceride-rich lipoproteins in the circulation are a mixture of
chylomicrons (synthesized in the intestine) and VLDL particles
(synthesized in the liver) (Figure 1). Each of these lipoproteins
contains one molecule of apolipoprotein B (apoB). apoB is a
large hydrophobic protein that remains bound to the lipoprotein
particles (Segrest et al., 2001). This unique characteristic of apoB
makes it possible to use apoB as a tool to trace the intravascular
kinetics of the triglyceride-rich lipoproteins.

apoB is present in two different lengths; apoB100 and apoB48.
The shorter form apoB48 corresponds to the amino-terminal
48% of apoB100. It is in humans exclusively synthesized in the
intestine, and thus present on intestinal-derived chylomicrons
and their remnants. The longer form, apoB100 is synthesized in
the liver and present on VLDL, IDL, and LDL. Both apoB100
and apoB48 are coded by the same gene, but the shorter apoB48
is generated as a result of a posttranscriptional process called
“RNA editing” that converts a cytidine-to-uridine (C-to-U) that
generates a stop-codon and thus a truncated form of the full-
length protein. In humans, this posttranscriptional RNA editing
occurs in the intestine only but in certain animals such as rodents
and dogs, the process occurs also in the liver (Powell et al., 1987).

Why is apoB48 synthesized by this complex mechanism in the
Intestine? The explanation is still unclear but it has been shown
that apoB48-containing lipoproteins can carry more lipids than
apoB100-containing lipoproteins. This is important since the
chylomicrons must have capacity to rapidly and efficiently absorb
large amounts of dietary lipids and a meal (Hussain, 2014). Once
synthesized, chylomicrons are secreted into the lymphatic vessels
until they enter into the bloodstream close to the heart. Thus, they
are delivered directly to adipose tissue and muscles without first
being metabolized by the liver. In the circulation, chylomicron-
triglycerides are hydrolyzed by the enzyme lipoprotein lipase,
which is present on the endothelial cells in the heart, muscle,
and adipose tissue. The released free fatty acids are then taken up
these tissues where they are stored or used for energy production.
The regulation is LPL is controlled transcriptionally and post-
transcriptionally. On the endothelial cells, LPL is activated by
apoC-II and inhibited by apoC-III and ANGPTL4.

When the triglycerides are removed from the hydrophobic
core of the chylomicrons, they shrink in size and become
chylomicron remnants. The smaller chylomicron remnants are
cleared from the circulation by the liver (Mahley and Ji,
1999; MacArthur et al., 2007; Williams, 2008; Williams and
Chen, 2010). Recent studies have shown that chylomicron
remnants are atherogenic and directly involved in atherogenesis.
The explanation for this is that chylomicrons in addition

to triglycerides also contain some cholesterol esters. When
triglycerides are removed from the lipoprotein particle, the
cholesterol esters remain. Thus, the chylomicron remnants
become enriched in cholesteryl esters.

The liver secretes apoB100-containing VLDL particles. In fact,
the liver produces two different forms of VLDL; larger VLDL1
and smaller VLDL2 particles. The triglyceride-rich VLDL1
particles carry most of the plasma triglycerides and have been
shown to be the major determinant for the variation of plasma
triglycerides in both healthy subjects and individuals with type
2 diabetes (Hiukka et al., 2005; Boren et al., 2014; Taskinen and
Boren, 2015). The formation of VLDL1 is highly associated with
fatty liver (Adiels et al., 2008; Boren et al., 2013). Indeed, subjects
with non-alcoholic fatty live disease (NAFLD) have increased
VLDL1 production (Adiels et al., 2006b).

VLDL-triglycerides are hydrolyzed by the same LPL-
dependent mechanisms as chylomicrons, Figure 1. As
VLDL-triglycerides are hydrolyzed, the density of the lipoprotein
increases and they become intermediate density lipoproteins
(IDL) and subsequently LDL. Like chylomicrons, also VLDL
contains mainly triglycerides but also some cholesterol esters
that become enriched in the lipoprotein particle when the
triglycerides are removed. Thus, the end-product of the lipolytic
cascade, LDL contains mainly cholesterol esters and is the major
determinant of cholesterol in plasma. LDL particles are removed
from the circulation by the LDL-receptor on the hepatocytes. The
importance of the LDL-receptor for clearance of LDL particles is
illustrated by the genetic disorder, familial hypercholesterolemia
caused by mutation in the LDL-receptor. The disease is
associated with hypercholesterolemia and premature CVD.

Patients with obesity and insulin resistance have a
characteristic atherogenic dyslipidemia characterized by
increased plasma triglycerides, excessive postprandial lipemia
(i.e., rise in triglyceride-rich lipoproteins after eating)
postprandial hyperlipidemia, and low concentrations of HDL
cholesterol (Taskinen, 2003; Adiels et al., 2006a). Interestingly,
these lipid disturbances are not isolated abnormalities but
metabolically linked to each other (Taskinen, 2005), and they
appear years before type 2 diabetes is diagnosed (Taskinen, 2003).

PRINCIPLES OF TRACER METHODOLOGY

To simplest approach to study the kinetics of a molecule (i.e.,
the tracee) is to introduce the same molecule (tracer), but
labeled into the system (Chan et al., 2004a,b). This process has
many advantages but also obvious concerns, especially in human
studies. The alternative is to introduce a labeled precursor of the
molecule of interest. Ideally, the tracer should be easily detected
and quantified, and not affect the system. Usually, kinetic studies
are performed in a steady-state, where the rates of input and
output for a given unlabeled tracee substance are equal and time-
invariant. Thus, the information provided by the tracer reflects
the behavior of the tracee (Barrett et al., 2006). At various times,
the amount of tracer is quantified to provide a kinetic curve.
Then a mathematical model is constructed to extract all of the
information contained in the kinetic curve. By fitting a model
to the data, it is possible to calculate the parameters of the
model that characterize the flux of molecules between kinetically
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FIGURE 1 | Fasting and post-prandial triglyceride metabolism. In fasting, apoB100 containing lipoproteins are secreted from the liver and are hydrolyzed by
lipoprotein lipase (LpL) to form smaller and denser particles. Hence, very low density lipoprotein (VLDL)1 particles become VLDL2 particles and VLDL2 particles
become intermediate density lipoproteins (IDL). After remodeling with cholesterol ester transfer protein and hepatic lipase the end product are the low density
lipoproteins (LDL). In the post-prandial phase, the intestine secretes triglyceride rich apoB48 containing lipoproteins, the chylomicrons. After hydrolyzation by LpL,
large and small chylomicron remnants (CMR) are formed. This process likely occupies the majority of available LpL, thus resulting in slower turn-over of the apoB100
containing lipoproteins and causing an accumulation of these lipoproteins.

homogeneous pools of molecules. Historically, the radioactive
isotopes were used as tracers, but today naturally occurring
non-radioactive stable isotopes are almost exclusively used in
human studies. The technical advances in mass-spectrometry
technologies now permit accuratemeasurement of stable isotopes
in smaller samples and in low concentrations (Barrett et al., 2006;
Adiels et al., 2010).

A tracer can be introduced into the system either as a bolus
injection or as a constant infusion given immediately after a
priming dose. The bolus administration of the tracer is suitable to
study kinetics of molecules with a relatively slow rate of turnover
since the enrichment curves (the tracer/tracee ratios) after a bolus
injection corresponds to the impulse response of the system.
Furthermore, it also enables determination of newly synthesized
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particles, since the intracellular precursor enrichment is greater
at the start of the study. Primed constant infusions require a
longer time to achieve a plateau of isotopic enrichment but can be
appropriate for kinetic studies of molecules with rapid turnover.

MODELING OF LIPOPROTEIN METBOLISM

Mathematical modeling enables us to better understand
experimental observations. Predictions derived from model
predictions can subsequently be experimentally tested. Toward
this goal, known pathways are described by a set of differential
equations, thereby allowing quantitative estimates to be derived.
In multi-compartment models, molecules of interest move
among different compartments of a system. Each compartment
is assumed to be a homogeneous entity within which the entities
being modeled are equivalent. Multicompartment modeling
has proven to yield predictions which are as accurate as those
made by physiological models, and the data required can be
derived from measurements of tracer/tracee ratios of stable
isotopes. Multicompartment models differ in how complex they
are. Practically, their design is usually a compromise for what is
practically feasible. Too simplified models may not adequately
describe the kinetic heterogeneity present within the system. On
the other hand, it’s hard to generate experimental data for overly
complex models.

The power of mathematical modeling to describe the
metabolic pathways of lipid and lipoprotein metabolism was
first demonstrated by Drs. Berman and Zech (Grundy et al.,
1979; Zech et al., 1979). Since then, kinetic studies combined
with mathematical modeling have been used to clarify the
pathogenesis of impaired lipoprotein metabolism in humans
linked to accelerated CVD, obesity, and insulin resistance
(Figure 2). The methodology has also been instrumental in
testing how efficiently novel drugs improve the dyslipidemia.
However, it’s important to emphasize that all models are
based on several assumptions and simplifications. Therefore,
mathematical modeling does not determine the kinetics of lipids
directly; rather, they derive an indirect approximation.

MODELS TO STUDY VLDL KINETICS

Increased levels of apoB-containing lipoproteins are the most
important risk-factor for developing CVD. It’s therefore clinically
relevant to decipher the pathophysiology of impairedmetabolism
of apoB-containing lipoproteins. Until today most studies have
used steady-state models to elucidate VLDL kinetics in the fasting
state. However, it can be argued that these studies are not fully
physiologically designed since human are in a postprandial state
most of the time awake.

To study postprandial lipid metabolism it is necessary to
include also intestinal derived lipoproteins. The majority of
studies of intestinal lipid metabolism has been conducted in
a “constant feeding” regime where small meals are served
frequently to achieve a steady state of the intestinal lipoprotein
secretion (Lamon-Fava et al., 2007; Sun et al., 2013; Padilla et al.,
2014; Tremblay et al., 2014; Xiao et al., 2014). To date, only
a few studies have focused on apoB48 metabolism following a

FIGURE 2 | Outline of kinetic tracer studies. In vivo kinetic studies are
complex and involve both extensive phenotyping of study subjects, clinical
studies where stable isotopes are infused into the study subjects and blood
samples are taken, isolation of lipoprotein fractions by ultracentrifugation,
enrichment studies of the stable isotopes using different mass spectroscopy
techniques, and mathematical modeling of the enrichment curves to derive
indices of kinetic variables.

single meal (Wong et al., 2014a,b). No studies have yet linked
hepatic and intestinal lipid metabolism in a combined model,
and therefore it is not possible to study the interaction of
these lipoproteins as depicted in Figure 1. From fat load studies
it is obvious that there is a clear interplay between hepatic
and intestinal lipoproteins (Adiels et al., 2012). Therefore, such
models must include that apoB48- and apoB100-containing
particles are cleared from the circulation by common pathways
and therefore compete for clearance (Brunzell et al., 1973).
During the postprandial phase, other factors need also to be
considered such as insulin secretion which may affect hepatic
lipoprotein secretion (Lewis et al., 1993; Adiels et al., 2007;
Sorensen et al., 2011; Sondergaard et al., 2012).

In steady-state modeling of VLDL kinetics it has been
discussed whether VLDL-apoB and VLDL-TG should be
modeled in the same integrated model, or if they should be
modeled independently. In integrated models the equation for
the rate of change of an apoB100 compartment is linked to the
rate of change of the corresponding triglyceride compartment
size. This procedure of tying together the apoB100 and
triglyceride models enhances the precision of the model as a
whole. As each particle contains one single copy of apoB100,
the model provides an estimate of the lipolytic rates (the loss
of triglycerides per time unit), which can then be used as a
physiological readout for answering study questions related to
dyslipidemia. Drs. Ramakrishnan andGinsberg recently reported
that the VLDL-apoB and VLDL-TG pools in the delipidation
cascade have identical rate constants despite different fates
and mass distribution (Ramakrishnan and Ginsberg, 2015).
These results strongly support integrated steady-state models of
VLDL-apoB and VLDL-TG kinetics.

The major predictor of plasma triglycerides are VLDL1-TG.
We therefore developed a multicompartment model that allows
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FIGURE 3 | Compartment model of VLDL apoB and triglyceride

kinetics. The model includes separate modules for leucine and glycerol.
Plasma leucine kinetics is modeled using a four-compartment system that
drives the synthesis and secretion of apoB into VLDL1 and VLDL2. Plasma
glycerol kinetics is modeled using a two-compartment system connected to
fast and slow pathways for triglyceride (TG) synthesis. Plasma apoB and
triglyceride kinetics are modeled using a four-compartment hydrolysis chain, in
which the kinetics of apoB and triglyceride coupled. For each apoB
compartment, there is an equivalent compartment for triglyceride. Triglycerides
hydrolyzed from VLDL particles are represented by the dashed arrows, and
particles lost from the plasma space are represented by the solid arrows. See
Adiels et al. (2005) for additional model details.

the kinetics of triglycerides and apoB100 in VLDL1 andVLDL2 to
be simultaneously assessed after a bolus injection of glycerol and
leucine stable isotopes (Figure 3) (Adiels et al., 2005). Analysis
of tracer/trace curves of the stable isotopes in VLDL1 and
VLDL2 was used to derive estimates of kinetic parameters using
mathematical modeling. By integrating apoB and triglycerides in
the model, the triglyceride: apoB ratio of newly produced VLDL1
and VLDL2 particles can be estimated to follow the transfer and
removal of lipids (Adiels et al., 2005).

The model can be envisioned as a two-layer model,
connected at certain points and is based on the apoB model
as described by Packard et al. (1995). The model consists
of four parts; plasma leucine, plasma glycerol, the assembly
of lipoprotein, and lipoprotein plasma kinetics. The plasma
kinetics is modeled by a four-compartment hydrolysis chain,
where the apoB and triglyceride kinetics are coupled at the
transfer between compartments. Removal from triglyceride
compartments consists of both removal of whole particles and
removal of triglycerides.

INDIVIDUAL AND POPULATION KINETICS

Traditionally, parameters for each individual are estimated
individually and conclusions are made based on some statistical
model applied to the model output. The model complexity
ranges from one single compartment models describing
VLDL-TG-kinetics (Patterson et al., 2002), to 12 compartments
describing the combined apoB and TG kinetics in VLDL1 and

VLDL2 (Adiels et al., 2005). The majority of published studies
have used the SAAMII software (The Epsilon Group, US)
(Barrett et al., 1998).

As models are becoming more complex and includes more
unknown parameters, more data is needed to support the
estimation of the model parameters. Individual data sets are
also sensitive to loss of data and data quality, which is directly
reflected in the variability in the estimated parameters.

Modern modeling techniques combine the mechanistic model
(describing the system) with a statistical model (describing the
populations). This is an extension to non-linear mixed effects
models (NLME) where the non-linear model is the set of
ordinary differential equations describing the system. Model
parameters are described as random variables drawn from a
distribution centered round the population mean. Using data
from all individuals, population means and variances as well as
individual estimates are calculated for all parameters (Beal and
Sheiner, 1982).

The major gain using NLME approaches are that generally the
estimated variances are smaller compared to the traditional
approach, thus statistical power is greatly increased.
Furthermore, such methods have shown produce better
results also when data are sparse (Denti et al., 2009; Largajolli
et al., 2012). Using these techniques we have recently shown
that estimation of lipoprotein kinetics parameters can greatly be
improved by an NLME approach (Berglund et al., 2012) (leucine
subsystem) and (Berglund et al., 2015) (full system).

To estimate the day-to-day variability in VLDL kinetics and
other measures, Magkos et al. repeated a kinetic study in 8
obese men on two occasions 2 months apart (Magkos et al.,
2011). Using this data they calculated the sample size needed
to detect differences (15–35%) between two groups during an
intervention. For VLDL-TG secretion, n=15 was needed in each
group to detect a difference of 25% using an unpaired study
design at a study power of 80%. We compared 15 healthy
controls and 15 type 2 diabetic subjects and found that using
the traditional approach, n=9 was needed to detect the difference
in VLDL1 secretion. In contrast, using the NLME approach, a
sample size of only n=5 was needed to detect the same difference
(Berglund et al., 2015).

The limitations for these methods are so far that they are
very computational intensive and the methods are not yet
implemented in traditional software.

PATHOPHYSIOLOGY OF DYSLIPIPIDEMIA
IN OBESE SUBJECTS

To elucidate the pathophysiology of the dyslipidemia in subjects
with abdominal obesity, we recently performed lipoprotein
kinetic studies in 46 middle-aged well-phenotyped men and
women with abdominal obesity and additional cardiometabolic
risk factors to clarify determinants of plasma triglyceride
concentration (Borén et al., 2015). The results are summarized
in Figure 4. The concentration of triglycerides in plasma is
determined by the balance between synthesis and removal
of VLDL1-TG. Thus, dual metabolic defects are required to
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FIGURE 4 | The dysregulation of the VLDL1-TG and apoAI metabolism

in obese subjects. The plasma triglycerides are determined by the balance
between synthesis and removal of VLDL1-TG, illustrated by a Synthesis
pathway and a Clearance pathway. The Synthesis pathway includes liver fat
and total fat mass, the two independent predictors of VLDL1–triglyceride
secretion rate. In the Clearance pathway, plasma concentration of the LPL
inhibitor apoC-III was tightly linked with plasma TG and catabolism of
VLDL1-TG. In addition, apo-CIII was closely related to plasma TG
concentration (dotted arrow). This indirect effect of apoC-III on plasma
triglycerides is likely explained by effect(s) of apoC-III beyond LPL-independent
pathways of triglyceride metabolism (Huard et al., 2005; Sacks et al., 2011).
Increased plasma triglycerides are associated with increased HDL catabolism
(Pont et al., 2002; Ooi et al., 2005; Chan et al., 2009). Thus, increased plasma
triglycerides are closely associated with decreased HDL cholest erol (Verges
et al., 2014). Figure modified from Borén et al. (2015). **p < 0.01; ***p < 0.001.

produce hypertriglyceridemia in obese subjects (Taskinen et al.,
2011). To illustrate this, two pathways are shown; a Synthesis
pathway and a Clearance pathway. The Synthesis pathway
include liver fat and total fat mass since these remained
independent predictors of VLDL1–triglyceride secretion rate in
a stepwise multivariable regression analysis. In the Clearance
pathway, plasma concentration of the LPL inhibitor apoC-
III was tightly linked with plasma TG and catabolism of
VLDL1-TG. In addition, apo-CIII was closely related to plasma
TG concentration. This indirect effect of apoC-III on plasma
triglycerides is likely explained by effect(s) of apoC-III beyond
LPL-independent pathways of triglyceride metabolism (Huard
et al., 2005; Sacks et al., 2011).

HDL cholesterol is closely associated with diabetic
dyslipidemia and abdominal obesity (Verges et al., 2014),
and low HDL cholesterol is strongly associated with increased
cardiovascular risk (Ninomiya et al., 2004). Pharma industry
has therefore developed drugs that increase HDL cholesterol.
However, clinical studies with these agents have not been
successful, and the causative role of HDL is therefore questioned.
This indicates that low HDL cholesterol is more a marker
of an atherogenic lipoprotein profile. In vivo kinetic studies
performed in abdominally obese individuals have shown that
low plasma concentration of HDL cholesterol is the consequence
of increased HDL catabolism (Pont et al., 2002; Ooi et al., 2005;
Chan et al., 2009), and increased plasma triglycerides is closely
associated with decreased HDL cholesterol (Verges et al., 2014).

Interestingly, when comparing the Synthesis pathway and
the Clearance pathway, indices of catabolism were stronger
predictors of plasma triglycerides than parameters of secretion. In
a multivariable regression model, VLDL1-TG kinetics explained
76% of the variation in the total plasma triglycerides. Kinetic

parameters of VLDL1-TG secretion explained 19–20% only
of the variation in plasma triglyceride concentrations in the
study subjects. Thus, in subjects with abdominal obesity and
dyslipidemia, the VLDL1-triglyceride clearance is a stronger
determinant of the plasma triglyceride concentration than
increased secretion of VLDL1 particles. This finding may support
combination therapies in subjects with abdominal obesity and
dyslipidemia affecting both secretion and catabolism of VLDL1-
TG. The results further support apoC-III as a key target for
reducing residual cardiovascular risk.

LIVER FAT ACCUMULATION AND CVD

The observed associations between liver fat plasma triglycerides
are in line with earlier studies showing that liver fat content
is closely related to triglyceride secretion in different settings
and populations (Chan et al., 2010; Taskinen et al., 2011) and
a better predictor of triglyceride secretion than intra-abdominal
fat (Fabbrini et al., 2009; Magkos et al., 2010). It is also clinically
important because of the worrisome increase of non-alcoholic
fatty liver disease (NAFLD), defined as hepatic fat accumulation
that exceeds 5% of liver weight in individuals who do not
consume significant amounts of alcohol (Neuschwander-Tetri
and Caldwell, 2003; Vernon et al., 2011). Approximately 25%
of adults have NAFLD, and its prevalence increases to 70–
90% among adults with obesity or type 2 diabetes (Ray, 2013).
Even though NAFLD may progress to severe liver diseases,
the most common cause of death in patients with NAFLD
is CVD. Several epidemiological studies indicate that NAFLD
is not merely a marker of CVD, but may also be actively
involved in its pathogenesis (Targher et al., 2008). Thus, the
finding that NAFLD is closely linked to overproduction to of
VLDL1-TG that drives an atherogenic dyslipidemia characterized
with hypertriglyceridemia, HDL-cholesterol, and postprandial
hyperlipidemia provide an important explanation for this and
indicates that novel treatments reducing liver fat accumulation
might be important in preventing CVD (Boren et al., 2013).

CONCLUSION

Lipid homeostasis is essential for human health but elevated lipid
levels are a risk factor for atherosclerosis and thus can lead to
symptomatic CVD. Increased lipid levels can be caused by either
increased secretion of atherogenic lipoproteins, and/or impaired
clearance of lipoproteins from the circulation. The use of in vivo
kinetic studies using stable isotopes and mass spectrometry
in combination with the development of mathematical models
has been critical in advancing understanding of normal and
dysregulated lipidmetabolism. However, kinetic studies are time-
consuming, expensive and require a high level of expertise.
Thus, they are limited to rather few research groups. Future,
development will hopefully enable us to optimize the protocols
and increase the statistical power, in particular when data are
sparse (Denti et al., 2009; Largajolli et al., 2012).

Also, combining kinetic studies with advanced modeling,
as genome-scale metabolic modeling (Mardinoglu and Nielsen,
2015; O’Brien et al., 2015), might provide even deeper
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understanding of the metabolic changes and clarify the
underlying metabolic perturbations in the occurrence of
metabolism related disorders. Genome-scale metabolic models
(GEMs) are the collection of the biochemical reactions and
associated protein-coding genes, and provide a scaffold for
integration of the fluxomics as well as other omics data
e.g., proteomics, transcriptomics, metabolomics, and lipidomics.
Recently, a functional GEM for the hepatocytes in liver tissue has
been reconstructed (Mardinoglu et al., 2014) and its use together
with the kinetic studies may provide detailed knowledge for

understanding the relationship between the genotype-phenotype
in different clinical conditions.
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Stable isotope assisted metabolomics techniques have emerged as a valuable tool in systems
biology for metabolic flux analysis and pathway discovery (Duckwall et al., 2013; Chokkathukalam
et al., 2014; Niedenführ et al., 2015). Traditionally, stable isotope labeling analyses have been
highly targeted, meaning that isotopic enrichment of only a small set of metabolites has been
analyzed to deduce metabolic fluxes. However, in recent years, tools for the global non-targeted
detection, quantification, and computational analysis of isotopic enrichment have become available
(Hiller et al., 2010, 2013; Bueschl et al., 2012; Creek et al., 2012; Chokkathukalam et al.,
2013; Cho et al., 2014; Huang et al., 2014). In this article, we will discuss whether and how
such novel non-targeted stable isotope labeling analyses can be applied for systems-biomedical
research.

Pathological alterations of cellular processes usually manifest in altered metabolism. Therefore,
analysis of metabolism is an ideal entry-point to diagnose or analyze diseases. Metabolic fluxes are
the endpoint of cellular regulation and most likely to reflect changes on the genome, transcriptome
or proteome level, and hence, are a valuable read-out for biomedical research (Wegner et al.,
2015). Since intracellular metabolic fluxes cannot bemeasured directly, they are probed using stable
isotope labeling: An isotopically enriched substrate is applied and the metabolization of this tracer
leads to isotopic enrichment in downstream metabolites, depending on the underlying metabolic
fluxes (Buescher et al., 2015). These enrichment patterns are analyzed by mass spectrometry (MS)
or nuclear magnetic resonance (NMR) and are used to deduce metabolic fluxes (Truong et al., 2014;
Young et al., 2014).

Because isotopic labeling patterns are a direct consequence of metabolic fluxes, changes in
these patterns indicate metabolic flux changes (Sauer, 2006). Consequently, global analysis of
labeling patterns would allow for the global detection of metabolic flux changes. Because isotopic
enrichment can be deduced solely from mass spectra (Jennings and Matthews, 2005), differential
flux analysis based on differences in these isotopic labeling patterns does not require prior
compound identification or a model of the metabolic network. This way, a non-targeted stable
isotope labeling analysis can also consider unexpected or unknown compounds and reactions,
circumventing current limitations of compound identification. Such a data-driven metabolic flux
analysis is perfectly suited to pinpoint disease-specific alterations of cellular metabolism as little
information on the experimental outcome is required. However, even in cases where there are
specific hypotheses in place, a data-driven analysis may identify previously overlooked features.
As such, non-targeted stable isotope labeling analysis can function as a hypothesis generator, aiding
the design of subsequent experiments. Other than e.g., 13C metabolic flux analysis (13C-MFA) or
flux balance analysis (FBA) which completely rely on the integrity of the underlying metabolic
network and its constraints, such a non-targeted analysis does not require much biochemical
a priori information and is, therefore, not biased by the limited knowledge of the metabolic
network.
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FIGURE 1 | Different approaches for metabolic analyses. (A) Targeted

and non-targeted analysis of stable isotope labeling (SIL). Non-targeted

detection of isotopic enrichment requires the measurement of an enriched and

a non-enriched sample. Targeted approaches usually have higher sensitivity

toward target analyses, but non-targeted analyses generally yield information

on more compounds. Targeted 13C-MFA provides absolute flux estimates for

a given metabolic network model, but does not provide information on

unknown reactions or metabolites. Non-targeted stable isotope labeling

analysis can point to novel metabolic reactions and metabolites. Differential

mass isotopomer distribution (MID) analysis reveals changes in metabolic

fluxes in a data-driven manner. However, the mechanistic interpretation is

more complex and requires in-depth biochemical knowledge. (B) Comparison

of different metabolic analyses in terms of flux accuracy they provide and to

which extent they allow for the discovery of novel reactions or metabolites.

Non-targeted methods have a higher discovery potential, but fail to provide

accurate absolute flux information.

The experimental effort for a non-targeted stable isotope
labeling study is not much higher than for a conventional
targeted analysis; the main difference is that a non-enriched

sample is required as reference to determine isotopic enrichment
in the sample of interest (Figure 1A; Weindl et al., 2015). In
terms of analytical requirements, the non-targeted analysis
is similar to label-free non-targeted metabolomics: The
wide range of concentrations and chemical heterogeneity of
metabolites pose problems to the metabolome-wide analysis
of isotopic enrichment. Therefore, sensitive and robust
analytics and powerful ion-chromatographic deconvolution
and spectrum matching algorithms are required to accurately
quantify also low-intensity isotopic peaks (Wegner et al.,
2013). Yet, isotopic labeling patterns are much more robust
towards technical variation during sample workup than
metabolite levels, because the labeled and unlabeled species are
subject to the same biases, thus increasing comparability
of different measurements. In comparison to targeted
stable isotope labeling analyses, one faces the problem
of lower sensitivity because single ion (SIM) or selected
reaction monitoring (SRM) cannot be used, as the analytes
of interest are not known beforehand. Apart from that, a
non-targeted approach would yield information on the same
analytes as a targeted analysis, but also include additional
compounds.

If non-targeted stable isotope labeling analysis is that
powerful, why is not more widely applied? There is a great
potential and the experimental effort is manageable, however,
the subsequent data interpretation is much more complex.
Changes in isotopic enrichment can be detected easily and do
not require any biochemical knowledge (Huang et al., 2014).
However, interpreting these changes in terms of underlying
metabolic flux changes requires a deep understanding of cellular
metabolism and is further complicated by the usually high
number of compounds, many of which remain unidentified.
Furthermore, although algorithms for the non-targeted and
quantitative detection of isotopic enrichment in MS data have
been around for a couple of years, non-targeted analysis of stable
isotope labeling is still hampered by the lack of dedicated and
intuitive software tools. For these reasons, only a few studies
have successfully applied non-targeted stable isotope labeling
analysis to provide novel biological insights, underlining the
higher complexity of data interpretation and the need for more
advanced tools and algorithms.

In vivo application of non-targeted stable isotope labeling
analysis is technically possible, but data analysis is complicated
by the metabolic complexity of a whole organism. For that
reason, the main field of application would be in vitro setups
with e.g., cell lines or patient-derived primary cells which
are often applied in biomedical research. In such a context,
non-targeted stable isotope labeling has great potential to
reveal hitherto overlooked metabolic pathways or metabolic flux
changes. Although such non-targeted approaches are not meant
to replace targeted methods and cannot provide absolute flux
information (Figure 1B), they provide means to get closer to the
full picture.

In summary, if the aforementioned limitations can be dealt
with, non-targeted stable isotope labeling analysis is worth
the effort and a valuable addition to the systems biology
toolbox. This rather unbiased approach can help to detect
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flux changes in regions of the metabolic network which were
not expected to be affected or are not known yet, thereby
deepening the understanding of pathobiochemical mechanisms.
This understanding is the basis for the development of novel
diagnostic and therapeutic methods that will impact human
health. Further improvements in sensitivity and specificity of
current algorithms and the development of easy-to-use software
tools will help to realize the great potential of non-targeted stable
isotope labeling analysis.
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Most drugs exert their beneficial and adverse effects through their combined action on
several different molecular targets (polypharmacology). The true molecular fingerprint
of the direct action of a drug has two components: the ensemble of all the receptors
upon which a drug acts and their level of expression in organs/tissues. Conversely,
the fingerprint of the adverse effects of a drug may derive from its action in bystander
tissues. The ensemble of targets is almost always only partially known. Here we
describe an approach improving upon and integrating both components: in silico

identification of a more comprehensive ensemble of targets for any drug weighted by
the expression of those receptors in relevant tissues. Our system combines more than
300,000 experimentally determined bioactivity values from the ChEMBL database and
4.2 billion molecular docking scores. We integrated these scores with gene expression
data for human receptors across a panel of human tissues to produce drug-specific
tissue-receptor (historeceptomics) scores. A statistical model was designed to identify
significant scores, which define an improved fingerprint representing the unique activity
of any drug. These multi-dimensional historeceptomic fingerprints describe, in a novel,
intuitive, and easy to interpret style, the holistic, in vivo picture of the mechanism of
any drug’s action. Valuable applications in drug discovery and personalized medicine,
including the identification of molecular signatures for drugs with polypharmacologic
modes of action, detection of tissue-specific adverse effects of drugs, matching
molecular signatures of a disease to drugs, target identification for bioactive compounds
with unknown receptors, and hypothesis generation for drug/compound phenotypes
may be enabled by this approach. The system has been deployed at drugable.org for
access through a user-friendly web site.

Keywords: polypharmacology, molecular docking simulation, gene expression, mechanism of drug action, drug

target

INTRODUCTION

Enormous quantities of “omics” data characterizing both normal and diseased tissues continue
to accumulate, leading to the development of increasingly complex molecular biomarkers for
diseases. The majority of drugs in current clinical use were discovered by phenotypic screens,
leaving their precise mechanism of action unknown. Many if not most of these drugs likely
act polypharmacologically (on multiple receptors simultaneously). These two trends result in
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a growing knowledge gap between the efforts to mechanistically
and genomically characterize diseases on the molecular level and
the chemicals used for their treatment (Figure 1).

Polypharmacology partly addresses this gap and has gained
increasing attention in the field of drug discovery (Peters,
2011). At least some approved drugs exhibit polypharmacological
signatures by interacting with multiple targets(Ashburn and
Thor, 2004; Keiser et al., 2007, 2009; Mestres et al., 2009;
Durrant et al., 2010; Yang et al., 2011). The identification
of more of the ensemble of these targets is essential for
both understanding the mechanism of drug action and
predicting toxicity (Cereto-Massagué et al., 2015). Moreover, the
development of compounds that rationally interact with multiple
targets is appealing in the case of complex multigenic diseases,
such as cancer (Knight et al., 2010) or psychiatric disorders
(Metz and Hajduk, 2010; Allen and Roth, 2011; Brown and
Okuno, 2012). Improved polypharmacological profiles of a drug
can be identified only by a more comprehensive analysis of
drug-target interactions on a proteome-wide scale (Xie et al.,
2012).

In recent years, growing databases of compound-receptor
bioactivities have become available (Wang et al., 2009; Sharman
et al., 2011; Gaulton et al., 2012). However, the complete universe
of bioactivity scores between putative or actual drugs/compounds
and their receptors is still far from approachable. A number of
ligand-based and structure-based in silico approaches emerged to
address the off-target identification aspect of this issue (Rognan,
2013). Ligand-based approaches are based on an assumption
that chemically similar structures are more likely to have similar
pharmacological profiles. The idea behind the structure-based
off-target identification approaches is based on inverse docking
(Chen and Zhi, 2001), where a single compound is docked to
multiple targets and the potential biological targets are ranked
based on the docking (Chen and Zhi, 2001; Paul et al., 2004; Gao
et al., 2008; Yang et al., 2009; Durrant et al., 2010; Li et al., 2010a,b;
Grinter et al., 2011).

FIGURE 1 | Knowledge gap in the spectrum of public health information. While the majority of drugs in clinical use were discovered empirically, high throughput
omics technologies generate the basis for inferring targets for rational drug design. However, it remains unclear how to integrate large sets of omics data on potential
drug targets with chemicals that may interact with these targets.

The combination of in silico target identification methods
and growing databases of experimental bioactivity scores
improves the feasibility of using these methods to identify
a significant subset of the complete ensemble of receptors
for known drugs and drug-like compounds by computational
approaches. However, a gap would still remain between the
polypharmacology of a drug and its pharmacodynamics, i.e., the
distribution of its receptor targets in the human body. In order
for the affinity of a drug for a given receptor in a given tissue
to be a significant factor, the receptor has to be expressed in
this tissue. For example, no matter how high the affinity of LSD
is for the serotonin 5-HT2a receptor (HTR2A), this drug-target
interaction is not physiologically significant in uterine tissue as
HTR2A is not expressed there. The true fingerprint of drug
action is the totality (“omics”) of receptors for which a drug has
affinity, weighted by the expression levels of these receptors in the
tissues (“histos”) across human body. Hence we introduced the
term “historeceptomic fingerprint” for the holistic signature of
drug action. Thus, here, we aim to develop a novel approach for
the identification of historeceptomic fingerprints for any given
drug/compound.

METHODS

Chemical Library
Chemical structures in Drugable were obtained from three
sources: DrugBank, PubChem, and ChEMBL. 1423 approved
and 4752 experimental drugs were imported from DrugBank
2.5 via the XML format release. An additional 1,138,288
compounds were imported from the SDF format release of
ChEMBL 14. Additionally, PubChem compound identifiers
from the SDF release were assigned to 1,006,895 DrugBank or
ChEMBL compounds in Drugable on the basis of equal canonical
SMILES strings as computed from RDKit (Landrum, 2008).
Overall 1,141,434 unique chemical structures are represented in
Drugable.
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Compound-Compound Associations
Compound-compound associations were evaluated as a chemical
similarity measure between two compounds and derived as
Tanimoto distance between their molecular fingerprints as
implemented in the RDKit PostgreSQL extension. Briefly, given
a molecule, all linear and non-linear fragments of different size
were enumerated and hashed into a bit string called a fingerprint.
The Tanimoto coefficient, T, for two fingerprints was calculated
as the number of bits in which they differ divided by the number
of non-zero bits they have in common. The Tanimoto distance
was defined as 1—T. Compounds are shown in the “Similar
Compounds” section of a compound page if their Tanimoto
distance is less than 0.5.

Protein Library
20,266 Human proteins were imported from the XML release of
UniProt into drugable.org.

Structure Library
3D Structures for the human proteins imported as above
were obtained from two sources, the Pocketome (Abagyan
and Kufareva, 2009) and ModBase (Pieper et al., 2006). 6857
experimental structures come from the Pocketome and 64,801
homology models are available from ModBase.

Consideration of receptor flexibility is crucial for structure-
based drug design and the conformational ensembles of protein
receptors derived from Pocketome are a practical alternative
to mimic receptor flexibility. However, blindly adding certain
conformations to an ensemble may be counterproductive (Rueda
et al., 2010). To ensure the high quality of selected conformers, we
performed retrospective virtual screening experiments and only
structures with high separation power of known ligand binders
from decoys were selected. Initially, for a benchmark screen,
pockets on Pocketome human proteins (Table 1) were screened
against a custom chemical library consisting of compounds
solved crystallographically with several proteins and 100 random
chemical decoys in order to measure the docking quality of
the pockets. Having established that only the highest quality
pockets could produce accurate docking scores, a subset of 6857
high quality X-ray conformations of 570 human protein targets
from Pocketome was imported into the data warehouse. The
4.2 billion scores generated for Pubchem Bioassay, ChEMBL,
and DrugBank compounds against these 6857 high quality
pockets on 570 protein targets from the Pocketome have been

TABLE 1 | Assessment of docking performance.

Data set No. of pockets Mean AUC

All 7553 0.57

All TP ≥ 5 and TN ≥ 5 6017 0.569

Homology only and TP ≥ 5 and TN ≥ 5 2128 0.528

Pocketome only and TP ≥ 5 and TN ≥ 5 3889 0.591

TP and TN are the numbers of positive and negative bioactivity values available for a

given pocket on a protein. Since estimation of AUC for pockets with a very small number

of bioactivity values may not be fair, we also provide estimates obtained on pockets with

at least 5 positive and 5 negative bioactivity values.

integrated into the drugable.org historeceptomics system. Where
there are multiple conformations for a pocket, the best score
was retained. An additional complete matrix of docking scores
of 4313 unique chemotypes from drugbank against ModBase
homology model database is available in raw form from the
authors. As a complete matrix, this data can be used for routine
mathematical transformations to study symmetries and trends in
the data that relate to polypharmacology. In all, docking to the
largest possible set of pockets representing the druggable human
genome was evaluated in this study.

Pharmareceptomic (Bioactivity or Docking)
Scores
In order to score the probability of interaction of compounds to a
comprehensive set of protein targets, we used the largest available
set of experimentally obtained bioactivities and in silico predicted
compound-protein docking associations.

Source of In vitro Binding Data
1,062,908 experimental compound-protein binding affinity
measurements were downloaded from ChEMBL 14 PostgreSQL
release. We used only binding measurements annotated with
a confidence score ≥7, “assay type” field of “B,” or direct
protein-ligand binding, and “standard_type” field of “Kd,” “Ki,”
or “Potency.” All compound-protein associations obtained from
ChEMBL are linked to their original scientific publications in
PubMed where data was available from ChEMBL.

Source of In silico Docking Data
More than four billion compound-protein associations were
derived from in silico docking experiments. The AutoDock
docking program was used for the docking calculations and all
the parameters were set to default values. AutoDock addresses
the docking issue as a global optimization problem of an energy
function, implementing an iterated local search global optimizer,
using the Broyden-Fletcher-Goldfarb-Shanno criterion for local
search (Trott and Olson, 2010).

Target Structure Preparation: The approach is intended to
be proteome wide. Therefore, many targets with unknown
biological function are expected to be available from structural
genomics efforts for this approach. In order to simulate the
realistic situation wherein the specific functional site on a
new crystallographically resolved target receptor with unknown
biological function is unknown, we rendered pockets on all
receptors blindly based only on the structure coordinates and
randomly selected one pocket per receptor. This pocket was then
defined as the binding site for docking. Receptors were then set-
up by deleting the chains, heteroatoms, and prosthetic groups
not involved in the binding site definition using ICM Browser
(Molsoft LLC, La Jolla CA). Protein atom types were assigned,
and hydrogen atoms and missing heavy atoms were added. The
added or zero occupancy side chains and polar hydrogen atoms
were optimized and assigned the lowest energy. Tautomeric states
of histidines and the rotations of asparagine and glutamine side
chain amidic groups were optimized to improve the hydrogen-
bonding patterns. The cognate ligands were deleted from the
complexes only after hydrogen optimization. Following this
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receptor preparation, we used the prepare_receptor4.py script (a
part of the AutoDock Tools distribution) with default settings to
convert the PDB models produced by ICM to the native PDBQT
format of AutoDock.

Ligand Structure Preparation: For each compound, bond
orders, tautomeric forms, stereochemistry, hydrogen atoms,
and protonation states were assigned automatically by the
AutoDock chemical conversion procedure. Each ligand was
assigned the modified X-Score force field atom types and
charges implemented in Arg. Canonical SMILES of each ligand
to be screened were matched to the appropriate PubChem
3D structure (Bolton et al., 2011) to be used as a starting
conformation for AutoDock docking.

After each docking simulation a stack of diverse binding poses
was generated, and their respective docking scores were evaluated
using the AutoDock scoring function (Trott and Olson, 2010).
Three docking runs were performed for each compound-pocket
pair; all binding poses accumulated after each run weremerged in
a single conformational stack and ranked based on their binding
scores; finally, the conformation with the best docking score was
retained.

Predicted Pharmareceptomics Score
(Probability) of Compound-Target
Interaction
In our approach, the pharmareceptomics score is equivalent
to the estimated probability that the compound will interact
with the target at a physiologically significant level. For
experimental bioactivities, the pharmareceptomics score is set
equal to experimental affinity. For docking scores, we used
the relationship between binding affinity and docking score
published in Husby et al. (2015) to estimate a pharmareceptomics
score from a docking score.

Protein Target–Gene Expression
Associations
Gene expression patterns of protein targets from a diverse set of
tissues and cell types were derived from the “GeneAtlas U133A,
gcrma” dataset (Su et al., 2004) via the BioGPS web-tool (http://
biogps.org/, accessed on 5/7/2013; Wu et al., 2009, 2013). If
for a given gene, data from multiple probes/experiments were
available, the mean of those values was used. For each target
protein, the level of expression in each tissue was normalized with
regard to its level of expression in all tissues of the dataset and
projected into the Z-score.

Data Access
The system (“Drugable”) is accessible via user-friendly interface
at http://drugable.org/. A flexible free-text search index is
available for common names of compounds and targets, medical
conditions, etc. Chemical drawer allows user to search by
chemical similarity or substructure.

For example when searchingDrugable by compound common
name, the user is presented with compound chemical structure,
compound information (Number of Hydrogen BondDonors and
Hydrogen BondAcceptors, Number of Rotatable Bonds, Number

of Rings, Walden-Crippen LogP, Indication, Pharmacology,
Mechanism of Action etc.), and a table of compound-protein
associations (experimentally derived and/or predicted by in silico
docking experiments) available for this specific compound. The
resulting table gives a list of protein targets of the compound
of interest with reported or predicted affinity, including protein
target UniProt accession ID, the measured activity value and
type or docking score. Note that all the experimentally obtained
activities are displayed in nM. In addition, a list of compounds
that are chemically similar to the compound of interest is also
presented. Furthermore, tissue-specific levels of expression for
all genes, correspond to the protein targets of the compound of
interest, are presented as a heat map.

Alternatively, a user may want to search for a particular
protein of interest. In this case, the user is presented with details
of the protein target, such as X-ray structure (if available), protein
name synonyms, gene names, organism this protein belongs to,
and UniProt accession ID.

Furthermore, users may search for a medical condition of
interest. In this case user is presented with a list of drugs/drug-
like compounds as well as protein targets associated with this
medical condition.

RESULTS

Generation of Bioactivity Scores
First, we generated bioactivity probability scores for the
compound-receptor pairs by executing the largest computational
molecular docking reported to date (see Section Methods). A
benchmark docking screen was performed against 3D structural
models of human proteins (Table 1). The mean area under the
receiver operating curve (AUC) for benchmark docking was
0.59 (with about 23% of structures having separation power
above 0.7) when performed on 3D structural models from
Pocketome (Kufareva et al., 2012), but only 0.53 (with 8.5% of
structures above AUC of 0.7) on ModBase (Pieper et al., 2006)
homology models proteins (Table 2 and Supplementary Table 1).

TABLE 2 | Number of receptors from the benchmark study with AUC

above a certain threshold.

AUC threshold Source No. of receptors % of receptors

0.9 All 77 1.3

Homology 20 0.9

Pocketome 57 1.5

0.8 All 389 6.5

Homology 55 2.6

Pocketome 334 8.6

0.7 All 1090 18.1

Homology 180 8.5

Pocketome 910 23.4

0.6 All 2575 42.8

Homology 551 25.9

Pocketome 2024 52.0
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FIGURE 2 | Pharmareceptomics: a tool for connecting proteome with the chemical universe. Pharmareceptomic or bioactivity “score,” a measure of
compound-target interaction, was derived from either compound-protein bioactivity data or binding energy data estimated by in silico docking.

This result suggests that only the docking scores achieved with
the highest quality Pocketome pockets should be included in
our “omics” set of compound-receptor scores, which are used
to predict mechanistic signatures solely from chemotype. The
Pocketome currently includes 6857 pockets derived from high
quality crystallographic structures of 570 target human proteins.
Therefore, for our “omics” set we docked over 600,000 unique
non-overlapping chemical structures from PubChem Bioassay,
ChEMBL, and DrugBank against these 6857 pockets for a
total of 4.2 billion pairwise docking scores between compounds
and targets. These “omics” in silico docking scores together
with the compound–receptor affinities obtained experimentally,
constitute the bioactivity scores data set (Figure 2), which
comprise a significant fraction of the druggable targets encoded
in the human genome, by one estimate to be around 4000 targets
(Reardon, 2013).

Generation of Historeceptomic Scores
To address the issue of physiological significance of drug
targets detected in the first step, we endeavored to calculate
a tissue-specific (historeceptomic) compound-receptor score
(Figure 3A). Tissue-specific gene expression data on protein
targets were obtained from the BioGPS database. The level of
expression of each receptor in every tissue was normalized with
regard to its expression level in all tissues of the dataset by
calculating its standard score (Z-score, see Section Methods).
Each compound-receptor association in each tissue was scored
by integrating their bioactivity with the receptor expression in a
given tissue as follows:

Hs = −log10 Ps× Z,

where Hs is a historeceptomic score, Ps is a bioactivity score, and
Z is the gene-expression Z-score.

By this method, for any given drug/compound, thousands of
historeceptomic scores can be generated, but only a tiny fraction
of these, which measure the probability that the compound
will affect the receptor in a physiologically significant way, are
important. The average drug may have hundreds of low affinity
receptors, resulting in a set of scores numbering in the tens
of thousands across all tissues in the human body. To identify
the physiologically significant compound-receptor interactions
out of the large number of all on-/off-target interactions of a
given compound, we used the generalized extreme Studentized
deviate test as a statistical novelty detection approach using
the α = 0.0001 level of significance (Figure 3B). Statistically
significant historeceptomic scores of a given drug/compound
form its historeceptomic fingerprint.

Fingerprints were pre-calculated for all known drugs into
an integrated system suitable for searching with any chemical
structure to find its historeceptomic fingerprint. The system
includes the 4.2 billion docking scores with experimental affinity
scores in a graph linking drugs/compounds to protein targets in
order to maximize the sensitivity of target detection for any drug.

Illustrative Use Case
Historeceptomics fingerprints may specifically localize in vivo
significant mechanisms of action of a polypharmacologic drug,
translating purely molecular data into a clinically interpretable
profile. An example is shown in Figure 3A. Lysergic acid
diethylamide (LSD) is a hallucinogenic drug in humans,
which makes it difficult to study in animal models, as many
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FIGURE 3 | Generation of historeceptomic profile of a drug/compound. (A) Calculation of historeceptomic scores. The arrow thickness represents the strength
of affinity between a drug/compound and the protein targets. Left heatmap displays gene expression data of protein targets. Right heatmap represents
historeceptomic scores calculated using the formula shown, where Ps—pharmareceptomic scores and Z—normalized gene expression level. (B) Historeceptomic
profile of a drug/compound. The majority of the tissue-specific drug: receptor interactions are physiologically insignificant and their combined scores are normally
distributed, while a few outlier interactions with significantly larger scores constitute the true historeceptomic profile of the drug/compound. These tissue-specific
interactions are characterized by both high compound-target affinity and high target expression in that specific tissue.

hallucinations are only represented internally and can only
be communicated verbally. We calculated the historeceptomics
profile for LSD. In this case, the inputs into our system were only
molecular in nature: the affinity scores and the expression data.
We did not use docking in this example. Our historeceptomics
approach identified the 5HT2A receptor in the prefrontal
cortex (PFC) as the most significant of tissue-target pair
associated with the phenotype induced by LSD. Independently,
we analyzed the preclinical and clinical literature on LSD
targets, which is exclusively non-molecular data. The textbook
and literature consensus from animal neuroperturbation studies,
pharmacologic studies and clinical neuroimaging is that 5HT2A
is the primary molecular target of LSD, and that, specifically,
its activity in the PFC is responsible for its effects. Thus, there
are many non-molecular clinical and translational papers in
the literature, none of which were input to our system, that
clearly establish 5HT2A specifically in the PFC not only as a
key pathway for LSD psychosis, but also as the epicenter of the
very similar psychoses seen in human schizophrenia (Arvanov
et al., 1999; Vollenweider and Geyer, 2001; Muschamp et al.,
2004; Nichols, 2004). The historeceptomics approach predicts
this finding independently of animal or clinical studies.

DISCUSSION

This report takes on the two major challenges of precisely
describing the holistic pharmacodynamics of drugs. First,
we expanded the graph of experimental scores linking
drugs/compounds to protein targets, which has been used
in prior methods such as SEA (Keiser et al., 2007), to include
the data from the largest computational molecular docking of
compounds to protein pockets yet reported. This should increase
the sensitivity of target detection. Second, we addressed, for
the first time, the systematic integration of bioactivity/docking
scores between drugs/compounds and proteins with the
expression patterns of those proteins in human tissues, thus
mapping the pharmacology of drugs into human physiologic
space.

The integration of bioactivity/docking scores of compound-
receptors with the expression patterns of those receptors
in human tissues increases the specificity of the results
by eliminating noise and selecting only physiologically
significant drug-target interactions. Thus, although for many
models/pockets the docking scores correlate only moderately
with affinity due to the limited ability to take induced fit into
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account, this lack of specificity is abrogated by our integration of
the gene expression such that many false positives are likely to be
culled. While sensitivity is low, it can be steadily improved from
our pioneering prototype by (1) improved binding site (pocket)
selection methods and (2) natural growth and improved curation
of the crystallographic and bioactivity databases.

There are 20,198 reviewed human proteins in UniProt,
of which 4300 have human crystal structures in the PDB
(21.3% of total). An additional 20–30% of these can likely
be modeled reliably by homology. Thus, up to 50% of the
“proteome” might already be surveyed by docking. Estimates
of the druggable genome range from 8 to 12 thousand targets.
The existing structures are probably highly enriched in these
targets so, one can speculate that 40–50% of the druggable
genome is already accessible by docking. These are highly
speculative estimates, but since the number of crystal structures
and the power of computation is growing rapidly, it is not
unreasonable to speculate that a low resolution representation
of the majority of the druggable genome could be available for
docking soon.

The system has been deployed for access through a user-
friendly web site: drugable.org. For compounds resulting from
phenotype screens, where their mechanism of action is not
known, searching the site can identify possible mechanisms
of action. Similarly, where the tissue pattern of a disease is
known, drug activity detected by our approach in tissues not
included in the pattern could be suggestive of the mechanism
of the adverse effects of a drug. Since the historeceptomic
fingerprints contain both a specific pattern of targets and a
specific pattern of tissues, they could potentially be matched
to complex biomarkers of disease derived from exhaustive
molecular profiling, which can have a similar gene-tissue
signature. Our novel approach thus potentially fills a currently

existing gap between burgeoning “omics” data and drugs/drug-
like compounds (Figure 1).
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