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Ecosystems are the stage on which the play of evolution is acted, and ecosys-
tems are complex, spatially structured and temporally varying. The purpose of this 
Research Topic is to explore critical challenges and opportunities for the transition 
from landscape genetics to landscape genomics. Landscape genetics has focused 
on the spatial analysis of small genetic datasets, typically comprised of less than 20 
microsatellite markers, taken from clusters of individuals in putative populations 
or distributed individuals across landscapes. The recent emergence of large scale 
genomic datasets produced by next generation sequencing methods poses tre-
mendous challenge and opportunity to the field. Perhaps the greatest is to produce, 
process, curate, archive and analyze spatially referenced genomic datasets in a way 
such that research is led by a priori hypotheses regarding how environmental het-
erogeneity and temporal dynamics interact to affect gene flow and selection. The 
papers in the Research Topic cover a broad range of topics under this area of focus, 
from reviews of the emergence of landscape genetics, to best practices in spatial 
analysis of genetic data. The compilation, like the emerging field itself, is eclectic and 
illustrates the scope of both the challenges and opportunities of this emerging field.
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The Editorial on the Research Topic

The Least Cost Path From Landscape Genetics to Landscape Genomics: Challenges and

Opportunities to Explore NGS Data in a Spatially Explicit Context

Ecosystems are the stage on which the play of evolution is acted. Inferring evolutionary
processes from the spatial and temporal genetic patterns they produce in populations is
challenging because ecosystems are highly complex, spatially structured, and temporally varying.
The field of landscape genetics has offered a means of navigating these challenges to make
eco-evolutionary insights for many species. The emerging field of landscape genomics offers
great promise to expand the potential of landscape genetic analysis even further. The purpose
of this Research Topic for Evolutionary and Population Genetics is to explore a number of
critical challenges and opportunities for the transition from landscape genetics to landscape
genomics. To-date, landscape genetics has generally focused on spatial analyses of small
genetic datasets, typically comprised of <20 microsatellite markers, taken from clusters of
individuals in putative “populations” or distributed individuals across landscapes. The recent
emergence of large-scale genomic datasets containing thousands of markers produced by
next generation sequencing (NGS) methods poses tremendous opportunity and challenge to
the field. Perhaps the greatest is to produce, process, curate, archive, and analyze spatially
referenced genomic datasets in a way such that research is led by a priori hypotheses
about how environmental heterogeneity and temporal dynamics interact to influence gene
flow and selection. Effective progress in this transition to a robust field of landscape
genomics will likely depend on integrating vast genomic datasets with powerful modeling
and replicated and controlled experiments to test putative relationships between population
processes and evolutionary and population genetic responses (Cushman, 2014). The recent
availability of whole genome sequence (WGS) data offers incredible molecular resolution,
but comes at great expense. This limits the spatial and temporal sample sizes for economic
reasons, making it challenging to achieve spatial representativeness and temporal robustness.
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No single person has the expertise or the time to effectively
bring these components together. More than ever, success in
advancing our field will depend on collaborations across large
multi-disciplinary groups (Cushman, 2014). Experts in the
development of genomic, epigenomic, and transcriptomic
data from high throughput technologies are needed to
produce the genome-wide raw data for subsequent analysis.
Bioinformatics specialists are needed to provide programming
and computer science expertise to efficiently handle and analyze
vast genomic datasets, and to effectively utilize high performance
computing resources. Modelers will be needed to work with the
bioinformaticians to explore the implications of hypotheses a
priori, to refine hypotheses by optimizing fit to observed data,
and predict how observed pattern-process relationships may
propagate across scale through space and time. Experimenters
should work closely with modelers to rigorously test hypotheses
in controlled and replicated experiments. To be successful,
this entire integration should be led by theoreticians who have
a coherent vision for how each of these parts will synergize
to address focused and falsifiable questions of importance in
advancing the field.

In this research topic we recruited a number of leading experts
in genomics, epigenetics, landscape genetics, and simulation
modeling to explore the challenges and opportunities presented
by the intersection of NGS data, spatial modeling, and replicated
and controlled experimentation. Overall, this effort produced a
series of 10 papers, not including this editorial. These papers
covered a wide range of topics including (1) two reviews of
recent developments and current status of landscape genomics,
(2) one review of theory and mechanisms of epigenetics and
their applications in a landscape genomic context, (3) two papers
illustrating the cutting edge in individual-based, spatially-explicit
simulation modeling applied to eco-evolutionary problems in
landscape genomics, (4) one paper about using genetic rare
variants, or singletons, to infer past demographic events over
a species’ history, (5) three empirical papers describing a range
of analytical methods to explore the spatial and environmental
drivers of selection and genetic differentiation in plants and
animals, and (6) one paper focused on the landscape side of
“landscape genomics” which provides a review and evaluation
of best practices of using geographical information systems to
compile, display and analyze environmental data in the most
appropriate way for landscape genomic research.

Landscape genomics is at the exciting cutting edge of the
recent spatial revolution that has led to the emergence of the field
of landscape genetics. Given the recency of landscape genomics
as a field of study, there are relatively few established research
frameworks, analytical approaches or even conceptual models
for what is meant by landscape genomics and how it is best
conducted (see Balkenhol et al., 2017). The two reviews of recent
landscape genomics literature in this Research Topic attempt to
summarize the field as it stands now and identify its strengths,
weaknesses and opportunities. In the first of these two review
papers, Li et al. define landscape genomics as a new discipline that
aims to reveal relationships between adaptive genetic variation
and environmental heterogeneity, and note that there have been
few formal landscape genomics papers published to date. Their

review outlines the sampling strategies, molecular marker types
and research categories in 37 articles published during the
first 10 years of this field, and identifies major challenges and
future directions for landscape genomics. The second review,
by Storfer et al., emphasizes the role of emerging genomic
technology in driving the emergence of landscape genomics as
a field of study. In particular, they note that widely available
next-generation sequencing data have resulted in immensely
improved ability to detect candidate genes under selection and
identify the environmental factors that drive that selection.
However, they note that the transition between landscape
genetics and landscape genomics is extremely challenging due to
the difficulty of handling and interpreting vast genomic datasets.
They also note the rapid emergence of a wide range of analysis
methods and provide detailed discussion of outlier differentiation
methods and genetic-environment association tests. They note
that the key to choosing appropriate genome scan methods is
an understanding of the underlying demographic structure of
study populations, and such data can be obtained using neutral
loci from the generated genome-wide data or prior knowledge
of a species’ phylogeographic history and summarize recent
simulation studies that test the power and accuracy of genome
scan methods under a variety of demographic scenarios and
sampling designs. They conclude with a discussion of additional
considerations for future method development, and a summary
of methods that show promise for landscape genomics studies
but are not yet widely used. These two reviews provide what is
probably the most complete snap-shot of the field of landscape
genomics produced to-date, and propose an excellent foundation
for the more theoretical papers in the Research Topic as well as
context for the papers that present empirical examples of current
landscape genomic research.

Epigenetics has recently emerged as a topic of immense
interest in evolutionary biology. Up to this time, landscape
genetics and landscape genomics research has focused on
sequence genetic variation in relation to natural gene flow
and adaptive variation. However, it is appearing increasingly
likely that a large portion of the variance in evolutionary
responses is related not to variation in genomic sequences but
to epigenetic regulation of the expression of those sequences.
Fitness-related traits can be affected by heritable variation in
epigenetic marks, resulting in transgenerational plasticity. Given
the importance of epigenetics in evolutionary biology, it is critical
to begin the integration of epigenetics with landscape genetics
and landscape genomics (e.g., Paun et al., 2010). Whipple and
Holeski take an exciting first step in this effort with their review
of epigenetic theory and mechanisms and their relationships
with landscape genomics and landscape genetics. In their paper
they summarize the relevance of epigenetic inheritance to
ecological and evolutionary processes, and review the literature
on landscape-level patterns of epigenetic variation. They argue
that landscape-level patterns of epigenomic variation in plants
generally show greater levels of isolation by distance and isolation
by environment than is found for the genome, suggesting a
perhaps elevated role in the spatial population processes that
are the focus of landscape genetics and genomics. They note
that demonstrating transgenerational inheritance requires more
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complex breeding and/or experimental designs, and argue that
multi-generation common garden experiments conducted across
multiple environments are required to understand epigenome
inheritance and to separate the relative contributions of heritable
epigenetic variation to the phenotype.

The two papers in the Research Topic that focus on individual-
based, spatially-explicit simulation modeling of eco-evolutionary
processes offer a tantalizing glimpse into the exciting emerging
field of landscape genomic simulation modeling. In the first
of these papers, Landguth et al. present the first application
to a real-world ecological system of a new individual-based
simulation model that incorporates spatially complex gene flow
and spatially heterogeneous environmentally driven selection.
They use the recent population declines to the high elevation
western North America foundation species whitebark pine
as a case study to illustrate the power of this modeling
framework. Specifically, they present a simulation modeling
framework to improve understanding of the long-term genetic
consequences of the blister rust pathogen, the evolution of rust
resistance, and scenarios of planting rust resistant genotypes
of whitebark pine. By combining climatic niche modeling and
eco-evolutionary landscape genetics modeling, they evaluate
the effects of different scenarios of planting rust-resistant
genotypes and impacts of wind field direction on patterns
of gene flow. As such, Landguth et al. is the first paper
to combine empirical data, experimentation, and large-scale
population-wide simulation modeling of adaptive evolution
in spatially-complex landscapes. The second simulation paper,
by Cushman and Landguth uses the same individual-based,
spatially-explicit modeling approach to explore the interactions
of heterogeneous environmental selection with speciation driven
by hybrid incompatibility. Within-species hybrid incompatibility
arises when combinations of alleles at more than one locus
have low fitness but where possession of one of those alleles
has little or no fitness consequence for the carriers. In this
paper, Cushman and Landguthuse simulation modeling to
explore the effects of heterogeneous natural selection on the
frequency, size and duration of reproductively isolated clusters
of individuals in continuously distributed populations. They
found that spatially heterogeneous selection produced clusters of
reproductively isolated individuals that were much larger, longer
lasting and spatially proximal. This pattern was strong across
levels of gene flow and strength of selection, suggesting that
even relatively weak selection acting in the context of strong
gene flow may produce reproductively isolated clusters that are
large and persistent, enabling incipient speciation in a continuous
population without geographic isolation.

Another important topic in evolutionary theory and spatial
genetics relates to the effects of past demographic events in
species history on current patterns of genetic structure and
differentiation. To address this issue, Cubry et al. argue that
rare variants are important for drawing inference about past
demographic events in a species’ history, and specifically that
singletons, which are variants for which genetic variation
is carried by a unique chromosome in a sample, provide
a particularly powerful lens to explore deep demographic
history and its impacts on current population structure. They

define the empirical distribution of singletons and then use
computer simulations to evaluate the potential for the empirical
distribution of singletons to provide a description of genetic
diversity across geographic space. Using a Bayesian framework,
they then show that this measure leads to accurate estimates of
the geographic origin of range expansions and use this approach
to estimate the origin of a cultivated plant species. Ultimately, this
paper demonstrates that the empirical distribution of singletons
is a useful measure to analyze results of sequencing projects based
on large scale sampling of individuals across geographic space.

The three empirical case studies address two crop plants and
one wild mammal species. In the first plant-based empirical
example, Egea et al. explore the genomics of garlic. They
use high-throughput genotyping-by-sequencing approaches to
assess genetic diversity and structure of a large garlic-
germplasm bank, relate genotypes to agronomical history and
develop a cost-effective method to manage genetic diversity in
germplasm banks. They identified three main garlic-groups and
demonstrated that DArTseq is a cost-effective method to analyze
species with large and expected complex genomes, like garlic. In
the second plant-based empirical study, Abebe et al. focused on
detecting adaptive loci in barley. They also used a genotyping by
sequencing approach on a diverse population of barley landraces
and compared genomic structure to climatic data. Partitioning
the variance between climate variables and geographic distance
indicated that climate variables accounted for most of the
explainable genetic variation, and analysis of the associated SNPs
revealed putative candidate genes for plant adaptation. This
study highlights the utility of landscape genomic approaches
to detect the presence of putative adaptive loci among barley
landraces. The final empirical case study Zero et al.) focuses
on how the persistence of small populations is influenced by
genetic structure and functional connectivity. The authors used
two network-based approaches to understand the persistence of
the northern Idaho ground squirrel (Urocitellus brunneus) and
the southern Idaho ground squirrel (U. endemicus), two rare
species. They found that population graph analyses revealed that
local extinction rapidly reduced connectivity for the southern
species, while connectivity for the northern species could be
maintained following local extinction. Results from gravity
models complemented those of population graph analyses and
indicated that potential productivity and large-scale topographic
features drove connectivity in the northern species. The paper
is one of the very first examples of using scenario analysis in
landscape genetics to inform conservation strategies of other
species exhibiting patchy distributions.

The final paper in the Research Topic addresses spatial
analysis itself. There are two components of landscape genomics:
landscape analysis and genetic data. However, a large majority
of work has focused primarily on the genetic data component of
the field, and much less on methods, theory and best practices in
spatial analysis. Obtaining reliable knowledge about the pattern-
process relationships that govern population demographics and
evolution in complex environments requires rigorous approaches
to link genetic, genomic, and epigenetic data to environmental
and spatial drivers. To begin to address this critical need,
Leempoel et al. explore the use of Geographic Information
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Systems (GIS) in landscape genetics and landscape genomics.
They note that GIS is a tool that is uniquely suited to
overlaying genetic information with environmental data, which
is the prerequisite to locate and analyze genetic boundaries of
various plant and animal species or to study gene-environment
associations (GEA). Their paper focuses on the power of free and
open-source GIS approaches and provide essential information
for their successful application in molecular ecology. The paper
provides a useful introduction to the key concepts related
to GIS and then presents an overview of open-source GIS-
related software, file formats, major environmental databases.
Then the authors focus on GIS applications in landscape
genetics, such as sampling strategies for Next Generation
Sequencing, data exploration and spatial statistics suited for
the analysis of large genetic datasets, and provide suggestions
to properly edit maps and to make them as comprehensive as
possible.

The overall goal for this Research Topic was to produce a
concentrated compilation of the current thinking, methods, and
perspectives in the emerging field of landscape genomics. In
that regard, the mixture of review papers, simulation modeling
advances, empirical examples and methodological approaches,
we hope, will serve the reader well as a broad, current overview
of this field. We truly feel there are few subjects that can
claim to have an equal degree of synergy and rapidity of
development as landscape genomics. The collision of explosive
advances in genomic data generation with powerful individual-
based simulation modeling approaches, and their integration
with experimental genetics studies, provides an incredibly
powerful synergy that is transforming entire fields of genetics,
ecology and conservation. We hope this Research Topic will
serve in some small way to advance this exciting growth of
knowledge.

Looking forward, we believe that advancing landscape
genomics will depend on formally linking genomic datasets
with modeling and experimentation (Cushman, 2014). The
papers in this Research Topic provide some initial insight
into the challenges of this integration and the current state of
development in its several parts. Given that no single person
has the expertise to effectively bring these components together,
success in advancing our field will depend on collaborations
across large multi-disciplinary groups. The broad range of topics
and expertise represented in this Research Topic may be seen
as the nucleus of such a cross-disciplinary effort at integration,
but clearly there is a tremendous amount to be done and this
initial step has, more than anything, revealed that. Experts
genomic, epigenomic, and transcriptomic data must work with
bioinformatics specialists to efficiently handle and analyze vast
genomic datasets, and to effectively utilize high performance
computing resources. Modelers and experimental geneticist
must work collaboratively with the bioinformaticians and
genomics experts to test hypotheses in controlled and replicated
experiments and project the relationships identified into broad
and complex landscaps in a rapidly changing world. Accelerating
global change presents a tremendous threat to the biosphere
and challenge to human civilization. Landscape genomics will
provide extremely valuable tools and approaches to understand,

predict and mitigate the negative effects of global change on
biodiversity, but only if it progresses rapidly to integrate genomic
data, spatial modeling and experimental genetics.
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Navigating the Interface Between
Landscape Genetics and Landscape
Genomics
Andrew Storfer*, Austin Patton and Alexandra K. Fraik
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As next-generation sequencing data become increasingly available for non-model

organisms, a shift has occurred in the focus of studies of the geographic distribution

of genetic variation. Whereas landscape genetics studies primarily focus on testing the

effects of landscape variables on gene flow and genetic population structure, landscape

genomics studies focus on detecting candidate genes under selection that indicate

possible local adaptation. Navigating the transition between landscape genomics and

landscape genetics can be challenging. The number of molecular markers analyzed has

shifted from what used to be a few dozen loci to thousands of loci and even full genomes.

Although genome scale data can be separated into sets of neutral loci for analyses of

gene flow and population structure and putative loci under selection for inference of local

adaptation, there are inherent differences in the questions that are addressed in the two

study frameworks. We discuss these differences and their implications for study design,

marker choice and downstream analysis methods. Similar to the rapid proliferation

of analysis methods in the early development of landscape genetics, new analytical

methods for detection of selection in landscape genomics studies are burgeoning. We

focus on genome scan methods for detection of selection, and in particular, outlier

differentiation methods and genetic-environment association tests because they are the

most widely used. Use of genome scan methods requires an understanding of the

potential mismatches between the biology of a species and assumptions inherent in

analytical methods used, which can lead to high false positive rates of detected loci

under selection. Key to choosing appropriate genome scanmethods is an understanding

of the underlying demographic structure of study populations, and such data can be

obtained using neutral loci from the generated genome-wide data or prior knowledge

of a species’ phylogeographic history. To this end, we summarize recent simulation

studies that test the power and accuracy of genome scan methods under a variety

of demographic scenarios and sampling designs. We conclude with a discussion of

additional considerations for future method development, and a summary of methods

that show promise for landscape genomics studies but are not yet widely used.

Keywords: landscape genomics, landscape genetics, local adaptation, selection, spatial analyses
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INTRODUCTION

Understanding the spatial distribution of adaptive genetic
variation is at the very core of evolutionary biology and
population genetics. Recent advances in next-generation
sequencing make studies of the genomic basis of local adaptation
now possible for virtually any organism. Simultaneously, spatial
data for nearly every corner of the Earth are available due to
dramatic increases in GIS and mapping technologies. These
technological developments have led to the rapid proliferation
of studies that integrate geographic and genomic data to test
for spatial patterns of genes under selection, collectively termed
“landscape genomics” (Joost et al., 2007; Lowry, 2010; Manel
et al., 2010).

Landscape genomics stems from landscape genetics, an

explicitly spatial suite of analysis methods that focus on testing
the influence of landscape features on genetic population

structure (Manel et al., 2003; Storfer et al., 2007; Manel and
Holderegger, 2013). The transition from landscape genetics to
landscape genomics has come with the shift from utilizing a
dozen or so loci (often microsatellites) to thousands and even
millions of loci (often single nucleotide polymorphisms-SNPs)—
and even complete transcriptomes or genomes—in studies of
spatial genetic variation.

Is landscape genomics just landscape genetics with more loci?
In the original article that coined the term “landscape genetics,”
Manel et al. (2003) state that, “Dozens of markers are available

for numerous taxa” and that “identification of loci under selection
can help us understand the genetic basis of local adaptation. . . ”
(p. 190). However, except for candidate gene approaches, where

a priori information about the function of specific genes is
known, dozens of markers are generally insufficient for tests
of selection; such tests commonly rely on orders of magnitude
more loci to have appropriate statistical power to conduct outlier
analyses (Luikart et al., 2003; Pritchard and Di Rienzo, 2010)
or genotype-environment associations (i.e., GEAs, Rellstab et al.,
2015). As a result, the literature commonly refers to landscape
genomics studies as those that (have the power to) focus on
describing spatial patterns of selection and adaptation, whereas
landscape genetics studies primarily focus on the influence of
landscape variables on gene flow (Rellstab et al., 2015; Haasl and
Payseur, 2016).

Semantics aside, scientists are now awash with data, and
analytical methods have lagged behind our ability to generate
massive data sets. The shift from analyzing dozens to thousands
to millions of markers (and even whole genomes) brings about
new computational challenges. Whereas landscape genetics relies
upon a rich history of spatial statistics dating back to the 1950s
and 1960s, genome-wide selection analyses have primarily been
developed in the last decade. New methods are rapidly being
developed, and embarking on a landscape genomics study may
seem like a daunting task for some researchers. Here, we aim
to disentangle some of the complexity involved in conducting a
landscape genomics study and associated downstream analyses,
and we hope to offer some perspective for novice and experienced
researcher alike. We focus primarily on marker-based studies of
non-model organisms, as it is in these systems that landscape

genomics studies are most rapidly expanding. Additionally,
inference in non-model organisms is particularly challenging
as they lack the genomic tools such as reference genomes and
transcriptomes, which are typically available for model systems
(Manel et al., 2010; Storfer, 2015). We emphasize that this piece
is not meant to be an exhaustive review of the subject, as many
substantial articles have already been published to this effect
(e.g., Haasl and Payseur, 2016; Hoban et al., 2016; Rellstab et al.,
2016). Rather, we provide a brief guide to navigate this new and
rapidly changing field and in the following sections, we focus on:
(1) study design; (2) data generation; (3) analysis methods and
associated challenges; (4) methods at the interface of landscape
genetics and landscape genomics; and, (5) future directions.

STUDY DESIGN

Early work in landscape genetics went through an exploratory
phase, where sampling was geographically widespread and
involved testing the effects of various landscape variables on
gene flow and population genetic structure (Storfer et al., 2007,
2010). Similarly, early landscape genomics studies lacked specific
hypotheses and were designed to take an unbiased approach
to search for candidate loci across populations that differed in
key environmental variables (e.g., altitude; Haasl and Payseur,
2016). Instead of using candidate gene or QTL approaches
(Stinchcombe and Hoekstra, 2008), tests for selection were
conducted across a suite of loci spread throughout the genome
without a priori information about putative function. High
false positive rates are perhaps the most significant problem
with landscape genomics studies that rely on genome scans
(Lotterhos and Whitlock, 2014, 2015; Rellstab et al., 2015; Haasl
and Payseur, 2016), and this is further exacerbated without
a priori hypotheses. Studies that lack specific hypotheses are
prone to choose candidate loci with the strongest associations
with environmental variables, with a reasonable chance of
detecting spurious result(s). One way to identify false positives
is that loci in close proximity do not show a signature of
selection. Even if loci detected in such analyses are “true”
positives, the function of the candidate loci remains unknown,
particularly when lacking a reference genome and thus the ability
to map a candidate locus (Pavlidis et al., 2012). Even when a
candidate is in linkage disequilibrium with a gene of known
function, downstream functional verification may be necessary.
Thus, landscape genomics studies should aim to be hypothesis-
driven, because inference is stronger when there is documented
variation in phenotypes or other specific information that
provides evidence of spatial variation in local adaptation among
populations.

It is also important to note that landscape genomics studies
can test for candidate genes underlying local adaptation, as well
as the effects of landscape variables on gene flow. That is, the large
number of loci generated for landscape genomics studies can be
partitioned into sets of loci that are putatively neutral and those
that are putatively under selection, with the former being used to
test spatial patterns of gene flow and population structure. Note,
however, that sampling designs for assessing population genetic
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structure and testing for loci under selection have important
similarities and differences (Table 1).

For both landscape genetics and landscape genomics studies,
choosing an appropriate spatial scale for a proposed study area is
extremely important. In general, the extent of the study area and
spacing of demes within that study area should match the spatial
scale of dispersal and thereby the likely scale of environmentally-
mediated selection for the study species (Anderson et al., 2010;
Richardson et al., 2014; Rellstab et al., 2015; Hoban et al., 2016).
Additionally, the resolution of the environmental data should
be appropriate for the study species (e.g., sampling at a 2.5 km
scale would be inappropriate for a slug species; Anderson et al.,
2010). Also, GIS layers chosen for each study should be those
deemed to be those most reasonable based on the ecology of
the study species and what is known regarding habitat use.
However, researchers should be aware that many environmental
layers available for analysis in a GIS tend to be multicollinear
(e.g., various temperature measures, such as seasonality and
maximum temperature). Without some reduction of the number
of variables (e.g., via ordination such as PCA), significant
relationships between detected between environmental variables
and allele frequencies may be spurious and/ or correlated with
the true variables. Alternatively, problems with multicollinearity
can be avoided by selecting one environmental variable as a
representative of each correlated set (e.g., Trumbo et al., 2013).

An overview of the use of GIS in landscape genomics studies is
provided in Leempoel et al. (2017).

A key difference between landscape studies of gene flow
and those designed to detect selection is regarding design of
spatial sampling (Table 1). For example, in landscape genetics,
when testing hypotheses about effects of a specific environmental
variable such as precipitation on population genetic structure, a
stratified random design is often preferred (Storfer et al., 2010).
In contrast, landscape genomics simulations have repeatedly
emphasized that replicated sampling of environmental extremes
hypothesized to drive selection (e.g., high and low altitude)
results in higher power to detect candidate loci under selection
than random sampling or transect designs (De Mita et al.,
2013; Lotterhos and Whitlock, 2014, 2015; Rellstab et al., 2015;
Stucki et al., 2016; see also Table 2). Nonetheless, transect
sampling can be appropriate when populations are expected to
be maladapted to extremes, but locally adapted to intermediate
conditions (Lotterhos and Whitlock, 2015). Sampling transects
can also be useful when sampling across a zone of introgression
or when geographic clinal analyses are to be employed (see
Section Clinal Analyses). Thus, an important distinction to note
between landscape genetics and landscape genomics studies is
that the former involves study designs that tend to focus on
sampling across environmental variation that should influence
gene flow, whereas the latter should most often be designed

TABLE 1 | General differences between landscape genetics and landscape genomics studies.

Questions Scale of study Sampling design Analysis methods

Landscape

genetics

Influence of landscape

on gene flow

Among populations Stratified random, opportunistic,

clumped, individual-level

Mantel tests, Assignment tests (spatial and aspatial; e.g.,

Structure, Tess, Geneland), Ordination (dbRDA, sPCA. MDS),
Least cost paths (multiple regression, MLPE), Spatial

autocorrelation, Spatial regression, EEMS*

Influences of landscape

on at-site variation

Within populations Across ecological gradients,

stratified

Graph models (e.g, Popgraph), GDMs, Structural equation

models

Barriers Among populations Across hypothesized barrier(s) Wombling, Monmonier’s maximum difference algorithm,

spatial assignment tests (e.g., Geneland)

Species’ ecology Within and among

populations

Across ecological gradients

(stratified)

Ordination, Least cost paths, Spatial autocorrelation, Spatial

regression

Source-sink dynamics Among populations Across populations of different

sizes or fragmentation levels

Mantel tests, genetic diversity estimates (e.g., F-statistics,

bottleneck tests)

Landscape

genomics

Spatial patterns of

selection

Among populations Paired sampling, transect sampling Outlier differentiation methods (eg., Bayescan, FLK, XTX);

Genotype-environment associations (e.g., Bayenv2, PC

Adapt, LFMM, sGLMM, Samβada), Ordination, Assignment
tests (e.g., FASTSTRUCTURE, Admixture, Tess3)

Influence of landscape

on local adaptation

Among populations Transect sampling, paired sampling,

stratified sampling

Outlier differentiation methods; Genotype-environment

associations, Ordination, Assignment tests, Genomic cline

analysis*, GDM*, EEMS*

Note that, when conducting a landscape genomics study, that when loci under selection are removed and putatively neutral loci remain, that landscape genetics questions and analyses
can then be conducted. Nonetheless, sampling designs generally differ between landscape genetics and landscape genomics studies, so some landscape genetics questions may not
be addressable in studies with landscape genetics goals. Bolded sampling designs indicate preferred designs for that particular question. Not all analysis methods under each study type
are listed, just those that are most commonly used or best suited to address the goals of the study. Note also that assignment test methods generally differ between landscape genetics
and landscape genomics studies. Italicized words under analysis type indicate those commonly used in both landscape genetics studies of gene flow and landscape genomics studies
of loci involved in adaptation. dbRDA, distance-based redundancy analyses; sPCA, spatial principal components analysis; MDS, multidimensional scaling; MLPE, maximum likelihood
of population effects (Clarke et al., 2002); LFMM, latent factor mixed models; sGLMM, spatial generalized linear mixed models; EEMS, Estimated Effective Migration Surface (Petkova
et al., 2016). Software names include: Geneland (Guillot et al., 2005), Structure (Pritchard et al., 2000), Tess (Durand et al., 2009), Popgraph (Dyer and Nason, 2004); Bayescan Foll
and Gaggiotti, 2008, FLK (Bonhomme et al., 2010), Bayenv2 (Günther and Coop, 2013), PCadapt (Duforet-Frebourg et al., 2014) Faststructure (Raj et al., 2014), Admixture (Alexander
et al., 2009), Tess3 (Caye et al., 2016). * indicates methods not yet widely used but show promise–see Sections Generalized Dissimilarity Modeling (GDM)–Clinal Analyses.
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to sample replicated pairs of populations that experience the
same environmental extremes. Replication also helps reduce the
chance that candidate loci under selection are false positives; loci
detected repeatedly across different environments are less likely
to result from confounding effects of population structure or
environmental covariances (Rellstab et al., 2015).

With limited resources, researchers generally face a tradeoff
between the total number of samples and the total number
of localities that can be sampled in genetics studies of natural
populations. Landscape genetics study designs often focus on
maximizing the number of individuals per location to obtain
accurate allele frequency estimates (Storfer et al., 2010;Manel and
Holderegger, 2013). Most landscape genetics analyses are genetic
distance-based, and inaccurate estimates of allele frequencies
can bias gene flow estimates (Storfer et al., 2007, 2010). While
replication of sites or transects is favored for reasons above in
landscape genomics studies, the balance between sample size and
number of sites depends on downstream analysis type. Power
is generally limited by the total number of samples collected
in landscape genomics studies (Lotterhos and Whitlock, 2015).
Indeed, it is important to sample a sufficient number (e.g.,
> 10) of individuals per locality to generate accurate allele
frequency estimates for analyses that rely on estimates of genetic
differentiation among populations (i.e., differentiation outlier
analyses below). However, optimizing the number of population
pairs sampled (with smaller sample sizes per location) can be
robust for detecting selection when sampling locations represent
a range of environmental variable values across the study area (De
Mita et al., 2013; Table 2).

DATA GENERATION

Initially, landscape genomics studies expanded from
microsatellites commonly employed in landscape genetics
studies to a few hundred AFLPs (amplified fragment-length
polymorphisms; Joost et al., 2007). Currently, landscape
genomics studies typically rely on genome-wide SNP marker
sets generated using short-read next generation sequencing
technologies (e.g., Illumina). Perhaps the most widely used of
such reduced-representation approaches in the last few years
is RAD-seq (restriction-associated digest DNA sequencing;
Andrews et al., 2016; Lowry et al., 2017). RAD-seq is particularly
appealing because it does not rely on availability of a reference
genome. In short, whole genomic DNA is cut into fragments
using a restriction enzyme, sequencing bar codes are ligated to
restriction sites, individuals are bar-coded and fragments are
sequenced using next-generation technology (Andrews et al.,
2016). Homologous fragments among individuals are aligned
(e.g., using Stacks Catchen et al., 2013 or other software), and
thousands to millions of SNPs are identified. RAD-seq has
been extremely beneficial for studies of population genetic
structure, as well as pedigree and other analyses (Andrews
et al., 2016; Catchen et al., 2017). Therefore, RAD-seq can be a
powerful approach for landscape genetics studies. As with other
genotyping-by-sequencing methods, RAD-seq, while beneficial
for genotyping large numbers of individuals, suffers frommarker

attrition. That is, the more individuals sequenced, the fewer loci
become available for robust analyses due to genotyping errors
due low coverage or missing data. Additionally, a shortcoming
of RAD-seq for landscape genomics studies is that generally only
a small fraction of a genome is sampled, and thus loci involved
in adaptation are often missed (Lowry et al., 2017). Further,
without a reference genome, identified SNPs are anonymous,
and downstream work is necessary to determine their function
(Lowry et al., 2017).

As a potential solution, transcriptome sequencing and exome
capture are reduced representation approaches that focus on
genic (i.e., coding) regions. Genes will contain much of the
functional genetic variation that underlies adaptation, and such
regions are also in linkage with promoter regions also under
selection (Hoekstra and Coyne, 2007; Stern and Orgogozo,
2008). RNA-seq is an approach to sequence total RNA or
the mRNA transcriptome, which can be used to evaluate
gene expression levels (in different environments) and, when
multiple transcriptomes are sequenced, SNPs can be identified.
A series of capture probes can then be designed to sequence
the flanking region around identified SNPs in cDNA. Assembled
transcriptomes, can then be used to annotate functional
information for candidate SNPs since they are all found in
coding DNA. Further, when SNP codon positions are identified,
traditional sequence-based population genetic tests for selection
can be applied (e.g., MK test; McDonald and Kreitman, 1991
or dN/dS ratios). Transcriptome sequencing, however, will only
capture a subset of all coding genes, as gene expression is tissue-
specific (Bishop et al., 1974). Exome capture sequencing will
increase the number of coding loci (Jones and Good, 2016).

Another method used for genome-wide marker generation in
non-model species is Pool-seq (reviewed Schlötterer et al., 2014),
whereby a large number of individuals (dozens to hundreds)
are pooled and sequenced together. Advantages include reduced
cost, and genome-wide data generation that facilitates SNP
identification and allele frequency generation for population
genetic analyses. Disadvantages include lack of ability to identify
individual samples, difficulties identifying rare variants, and
potential alignment issues owing to non-homologous sequences
(i.e., paralogs), and lower confidence in SNP assignment than
other methods (Schlötterer et al., 2014). Software such as
PoPoolation (Kofler et al., 2011) can help account for some of the
bias introduced by pooling and sequencing errors. Nonetheless,
pool-seq works much better when a reference genome is available
and short-read sequences can be aligned and mapped to reduce
alignment errors among pools. Even with a reference genome,
structural variation (e.g., inversions, indels) between pooled
resequenced samples and the reference can generate falsely
identified SNPs (Tiffin and Ross-Ibarra, 2014).

ANALYSIS CONSIDERATIONS

Similar to landscape genetic studies, there is a wide array of
analysis methods for landscape genomics analyses and new
methods are continuously being developed (Hoban et al., 2016).
The key difference between the two analytical frameworks is

Frontiers in Genetics | www.frontiersin.org March 2018 | Volume 9 | Article 6811

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Storfer et al. The Transition to Landscape Genomics

T
A
B
L
E
2
|
S
im

u
la
tio

n
st
u
d
ie
s
o
f
g
e
n
o
m
e
sc
a
n
m
e
th
o
d
s
in

la
n
d
sc
a
p
e
g
e
n
o
m
ic
s.

S
im

u
la
ti
o
n

s
tu
d
y

S
tu
d
y
a
im

s
M
e
th
o
d
s
te
s
te
d

D
e
m
o
g
ra
p
h
ic

m
o
d
e
ls

S
im

u
la
te
d
s
a
m
p
li
n
g
s
tr
a
te
g
ie
s

S
e
le
c
ti
o
n

p
a
tt
e
rn
s

M
a
jo
r
fi
n
d
in
g
s

D
e
M
ita

e
t
a
l.,

2
0
1
3

1
.
C
o
m
p
a
re

m
e
th
o
d
s
e
va
lu
a
tin

g

d
iff
e
re
n
c
e
s
in

ty
p
e
I/
II
e
rr
o
r
ra
te
s
a
n
d

p
o
w
e
r

2
.
E
va
lu
a
te

im
p
a
c
t
o
f
d
iff
e
re
n
c
e
s
in

se
le
c
tio

n
,
d
e
m
o
g
ra
p
h
y,
a
n
d
sa
m
p
lin
g

st
ra
te
g
y
o
n
in
fe
re
n
c
e
s
m
a
d
e
b
y

g
e
n
o
m
e
sc
a
n
s

L
o
g
is
tic

R
e
g
re
ss
io
n
(L
R
;
Jo

o
st

e
t
a
l.,

2
0
0
7
)

G
e
n
e
ra
liz
e
d
E
st
im

a
te
d
E
q
u
a
tio

n

(G
E
E
;
P
o
n
c
e
t
e
t
a
l.,

2
0
1
0
)

C
o
o
p
,
W
ito

n
sk
y,
D
iR

ie
n
zo

a
n
d

P
rit
c
h
a
rd

(C
W
D
R
P
;
C
o
o
p
e
t
a
l.,

2
0
1
0
)

B
e
a
u
m
o
n
t
a
n
d
N
ic
h
o
ls
te
st

(F
D
IS
T
2
;

B
e
a
u
m
o
n
t
a
n
d
N
ic
h
o
ls
,
1
9
9
6
)

F
o
ll
a
n
d
G
a
g
g
io
tt
i(
F
G
;
F
o
ll
a
n
d

G
a
g
g
io
tt
i,
2
0
0
8
)

E
xt
e
n
d
e
d
L
e
w
o
n
tin

a
n
d
K
ra
ka

u
e
r

(F
L
K
;
B
o
n
h
o
m
m
e
e
t
a
l.,

2
0
1
0
)

E
xc
o
ffi
e
r,
H
o
fe
r
a
n
d
F
o
ll
(E
H
F
;

E
xc
o
ffi
e
r
e
t
a
l.,

2
0
0
9
)

V
ita
lis
,
D
a
w
so

n
a
n
d
B
o
u
rs
o
t
(V
D
B
;

V
ita
lis

e
t
a
l.,

2
0
0
1
)

Is
la
n
d
M
o
d
e
l

(IM
)

S
te
p
p
in
g

S
to
n
e
M
o
d
e
l

(S
S
M
)

H
ie
ra
rc
h
ic
a
l

M
o
d
e
l(
H
M
)

S
e
lfi
n
g
+

IM
/S
S
M
/H

M

A
llo
g
a
m
y

S
1
-1

in
d
iv
id
u
a
l/
p
o
p
u
la
tio

n

S
2
–4

in
d
iv
id
u
a
ls
/p
o
p
u
la
tio

n
in

4
8

re
g
u
la
rly

sa
m
p
le
d
p
o
p
u
la
tio

n
s

S
3
-6

ra
n
d
o
m

in
d
iv
id
u
a
ls
/p
o
p
u
la
tio

n
in

1
2
p
o
p
u
la
tio

n
s

S
4
-4

ra
n
d
o
m

in
d
iv
id
u
a
ls
/p
o
p
u
la
tio

n
in

8
p
o
p
u
la
tio

n
s
a
s
tw

o
tr
a
n
se
c
ts

p
a
ra
lle
lt
o
e
n
vi
ro
n
m
e
n
ta
lg

ra
d
ie
n
t

S
5
-
4
ra
n
d
o
m

in
d
iv
id
u
a
ls
/p
o
p
u
la
tio

n

in
4
p
o
p
u
la
tio

n
s
sa
m
p
le
d
a
t
e
xt
re
m
e
s

o
f
g
ra
d
ie
n
t

N
o
n
e
te
st
e
d

L
R
a
n
d
G
E
E
h
a
ve

h
ig
h
F
P
R
(fa

ls
e
-p
o
st
iv
e

ra
te
s)
,
b
u
t
fa
st

ru
n
tim

e

D
iff
e
re
n
tia
tio

n
-b
a
se
d
m
e
th
o
d
s
h
a
ve

lo
w

F
P
R
,

b
u
t
sl
o
w

ru
n
tim

e

S
a
m
p
lin
g
fe
w
e
r
in
d
iv
id
u
a
ls
in

m
a
n
y
p
o
p
u
la
tio

n
s

(1
0
/p
o
p
u
la
tio

n
fo
r
m
o
st

m
e
th
o
d
s)

in
c
re
a
se
s

p
o
w
e
r

U
n
d
e
r
a
llo
g
a
m
y
a
n
d
IM

,
a
ll
m
e
th
o
d
s
a
re

c
o
m
p
a
ra
b
le

U
n
d
e
r
a
llo
g
a
m
y
a
n
d
H
M

o
r
S
S
M
,
d
iff
e
re
n
tia
tio

n

b
a
se
d
m
e
th
o
d
s
h
a
ve

lo
w
e
r
F
P
R

U
n
d
e
r
se
lfi
n
g
a
n
d
IM

,
L
R
sa
m
p
lin
g
u
si
n
g
S
1
is

o
p
tim

a
l.

U
n
d
e
r
se
lfi
n
g
S
S
M

o
r
H
M
,
L
R
w
ith

S
1
,
B
N
w
ith

S
3
,
a
n
d
F
G

w
ith

S
2
p
e
rf
o
rm

b
e
st

w
ith

re
sp

e
c
tiv
e
sa
m
p
lin
g
st
ra
te
g
ie
s

F
ric

h
o
t
e
t
a
l.,

2
0
1
3

1
.
Id
e
n
tif
y
si
g
n
a
tu
re
s
o
f
se
le
c
tio

n

c
o
n
tr
o
lli
n
g
fo
r
p
o
p
u
la
tio

n
st
ru
c
tu
re

2
.
In
tr
o
d
u
c
e
L
a
te
n
t
F
a
c
to
r
M
ix
e
d

M
o
d
e
ls
(L
F
M
M
)
a
s
a
m
e
a
n
s
to

te
st

fo
r

g
e
n
e
tic
-e
n
vi
ro
n
m
e
n
t
a
ss
o
c
ia
tio

n
s

3
.
C
o
m
p
a
re

F
P
R
a
n
d
F
D
R
b
e
tw

e
e
n

m
e
th
o
d
s
u
si
n
g
sp

a
tia
lly

e
xp

lic
it

n
e
u
tr
a
lc
o
a
le
sc
e
n
t
si
m
u
la
tio

n
s

L
F
M
M

(F
ric

h
o
t
e
t
a
l.,

2
0
1
3
)

L
R
M

( S
to
re
y
a
n
d
T
ib
sh

ira
n
i,
2
0
0
3
)

P
rin

c
ip
le
C
o
m
p
o
n
e
n
t
R
e
g
re
ss
io
n

(P
C
R
M
;
Jo

o
st

e
t
a
l.,

2
0
0
7
)

G
e
n
e
ra
liz
e
d
L
in
e
a
r
M
o
d
e
ls
(G
L
M
s;

Jo
o
st

e
t
a
l.,

2
0
0
7
)

S
ta
n
d
a
rd

L
in
e
a
r
M
ix
e
d
M
o
d
e
ls

(G
E
M
M
A
;
Z
h
o
u
a
n
d
S
te
p
h
e
n
s,

2
0
1
2
)

P
a
rt
ia
lM

a
n
te
lT
e
st

(P
M
T;
F
u
m
a
g
a
lli

e
t
a
l.,

2
0
1
1
)

B
a
yE

n
v
(C
o
o
p
e
t
a
l.,

2
0
1
0
)

Is
o
la
tio

n
b
y

D
is
ta
n
c
e
(IB

D
)

N
o
n
e
te
st
e
d

P
1
-
C
o
rr
e
la
te
d

w
ith

d
e
m
o
g
ra
p
h
ic

h
is
to
ry

P
2
-
A
lo
n
g

e
n
vi
ro
n
m
e
n
ta
l

g
ra
d
ie
n
t

P
3
-

L
o
w
-i
n
te
n
si
ty

se
le
c
tio

n

L
F
M
M

h
a
s
lo
w

F
P
R
u
n
d
e
r
IB
D

P
M
Ts
,
L
R
M
s
a
n
d
P
C
R
M
s
h
a
ve

lo
w

p
o
w
e
r
a
n
d

h
ig
h
F
P
R
s
u
n
d
e
r
IB
D

P
M
T,

P
C
R
M

a
n
d
G
E
M
M
A
h
a
ve

h
ig
h
F
N
R
w
h
e
n

e
n
vi
o
rn
e
m
e
n
t
is
st
ro
n
g
ly
c
o
rr
e
la
te
d
w
ith

d
e
m
o
g
ra
p
h
y

L
F
M
M

ru
n
s
fa
st
e
r
th
a
n
B
a
yE

n
v
w
h
e
n
a
n
a
ly
zi
n
g

la
rg
e
d
a
ta

se
ts

L
F
M
M

p
e
rf
o
rm

s
b
e
tt
e
r
th
e
n
B
a
yE

n
v
w
h
e
n

g
e
n
e
tic

st
ru
c
tu
re

w
e
ll
c
h
a
ra
c
te
riz
e
d
F
D
R

(fa
ls
e
-d
is
c
o
ve
ry

ra
te
)
a
n
d
F
P
R
h
ig
h
ly
c
o
rr
e
la
te
d

d
e
V
ill
e
m
e
re
u
il

e
t
a
l.,

2
0
1
4

1
.
In
d
iv
id
u
a
l-
b
a
se
d
si
m
u
la
tio

n

c
o
m
p
a
rin

g
p
o
w
e
r
a
n
d
e
rr
o
r
ra
te
s
o
f

g
e
n
o
m
e
sc
a
n
m
e
th
o
d
s

2
.
C
h
a
ra
c
te
riz
e
ro
le
o
f
p
o
p
u
la
tio

n

st
ru
c
tu
re

a
n
d
m
o
d
e
o
f
se
le
c
tio

n
o
n

o
u
tli
e
r
d
e
te
c
tio

n

A
lle
le
fr
e
n
q
u
e
n
c
y-
e
n
vi
ro
n
m
e
n
ta
ll
in
e
a
r

re
g
re
ss
io
n
(L
R
M
;
S
to
re
y
a
n
d

T
ib
sh

ira
n
i,
2
0
0
3
)

B
a
ye
sc
a
n
(F
o
ll
a
n
d
G
a
g
g
io
tt
i,
2
0
0
8
)

B
a
yE

n
v
(C
o
o
p
e
t
a
l.,

2
0
1
0
)

L
a
te
n
t
F
a
c
to
r
M
ix
e
d
M
o
d
e
l(
L
F
M
M
;

F
ric

h
o
t
e
t
a
l.,

2
0
1
3
)

H
ie
ra
rc
h
ic
a
l

M
o
d
e
l(
H
M
)

Is
la
n
d
M
o
d
e
l

(IM
)

S
te
p
p
in
g

S
to
n
e
M
o
d
e
l

(S
S
M
)

N
o
n
e
te
st
e
d

P
1
-
C
o
rr
e
la
te
d

w
ith

d
e
m
o
g
ra
p
h
ic

h
is
to
ry

P
2
-
A
lo
n
g

e
n
vi
ro
n
m
e
n
ta
l

g
ra
d
ie
n
t

P
3
-
M
o
n
o
g
e
n
ic

P
4
-
P
o
ly
g
e
n
ic

D
e
c
re
a
se

in
p
o
w
e
r
in

m
e
th
o
d
s
u
n
d
e
r
p
o
ly
g
e
n
ic

vs
.
m
o
n
o
g
e
n
ic
se
le
c
tio

n

U
n
d
e
r
p
o
ly
g
e
n
ic
se
le
c
tio

n
L
R
M

m
o
st

p
o
w
e
rf
u
l

b
u
t
h
a
s
h
ig
h
e
st

F
D
R

B
a
yE

n
v
h
a
s
lo
w

F
D
R
u
n
d
e
r
S
S
M
,
h
ig
h
u
n
d
e
r

H
M

A
ll
m
e
th
o
d
s
h
a
ve

lo
w

p
o
w
e
r
u
n
d
e
r
P
1

B
a
yE

n
v
a
n
d
L
R
M

h
a
ve

h
ig
h
e
st

F
P
R
,
L
F
M
M

h
a
d
th
e
m
o
st

tr
u
e
-p
o
si
tiv
e
s
u
n
d
e
r
P
1 (C
on
tin
ue
d
)

Frontiers in Genetics | www.frontiersin.org March 2018 | Volume 9 | Article 6812

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Storfer et al. The Transition to Landscape Genomics

T
A
B
L
E
2
|
C
o
n
tin

u
e
d

S
im

u
la
ti
o
n

s
tu
d
y

S
tu
d
y
a
im

s
M
e
th
o
d
s
te
s
te
d

D
e
m
o
g
ra
p
h
ic

m
o
d
e
ls

S
im

u
la
te
d
s
a
m
p
li
n
g
s
tr
a
te
g
ie
s

S
e
le
c
ti
o
n

p
a
tt
e
rn
s

M
a
jo
r
fi
n
d
in
g
s

L
o
tt
e
rh
o
s
a
n
d

W
h
itl
o
c
k,

2
0
1
4

1
.
Te
st

e
ffe

c
ts

o
f
IB
D
a
n
d
ra
n
g
e

e
xp

a
n
si
o
n
to

d
e
te
c
t
sp

a
tia
lly

d
iv
e
rg
e
n
t
se
le
c
tio

n
a
m
o
n
g
m
e
th
o
d
s

2
.
C
o
m
p
a
re

e
ffe

c
ts

o
f
d
iff
e
re
n
t

p
a
ra
m
e
te
riz
a
tio

n
a
n
d
o
u
tli
e
r

d
iff
e
re
n
tia
tio

n
/G

E
A
s

B
e
a
u
m
o
n
t
&
N
ic
h
o
ls
te
st

(F
D
IS
T
2
;

B
e
a
u
m
o
n
t
a
n
d
N
ic
h
o
ls
,
1
9
9
6
)

B
a
ye
sc
a
n
( F
o
ll
a
n
d
G
a
g
g
io
tt
i,
2
0
0
8
)

E
xt
e
n
d
e
d
L
e
w
o
n
tin

&
K
ra
ka

u
e
r
(F
L
K
;

B
o
n
h
o
m
m
e
e
t
a
l.,

2
0
1
0
)

X
T
X
(G
ü
n
th
e
r
a
n
d
C
o
o
p
,
2
0
1
3
)

Is
la
n
d
M
o
d
e
l

(IM
)

Is
o
la
tio

n
b
y

D
is
ta
n
c
e
(IB

D
)

Tw
o
R
e
fu
g
ia

(2
R
)

O
n
e
R
e
fu
g
iu
m

(1
R
)

N
o
n
e
te
st
e
d

S
o
ft
se
le
c
tio

n
U
n
d
e
r
IB
D
,
F
D
IS
T
2
a
n
d
B
a
ye
S
c
a
n
h
a
ve

lo
w

p
o
w
e
r
a
n
d
h
ig
h
F
P
R

F
D
IS
T
2
a
n
d
B
a
ye
S
c
a
n
h
a
ve

lo
w

F
D
R
w
h
e
n

a
ss
u
m
p
tio

n
s
o
f
e
q
u
ili
b
riu

m
a
re

m
e
t

F
L
K
p
e
rf
o
rm

s
b
e
st

w
h
e
n
n
o
n
e
u
tr
a
ll
o
c
io

r
n
u
ll

m
o
d
e
li
s
a
va
ila
b
le

B
a
yE

n
v2

h
a
s
h
ig
h
e
st

p
o
w
e
r
u
n
d
e
r
IB
D
a
n
d

n
o
n
-e
q
d
e
m
o
g
ra
p
h
ic
sc
e
n
a
rio

s

F
o
re
st
e
r

e
t
a
l.,

2
0
1
5

1
.
D
e
sc
rib

e
h
o
w

va
ria

tio
n
in

e
n
vi
ro
n
m
e
n
t,
st
re
n
g
th

o
f
se
le
c
tio

n

a
n
d
d
is
p
e
rs
a
la
ffe

c
t
st
re
n
g
th

o
f
lo
c
a
l

a
d
a
p
ta
tio

n

2
.
D
e
te
rm

in
e
w
h
ic
h
G
E
A
s
h
a
ve

th
e

g
re
a
te
st

p
o
w
e
r
in

c
o
m
p
e
tin

g

sc
e
n
a
rio

s

P
rin

c
ip
ia
lc
o
m
p
o
n
e
n
ts

a
n
a
ly
si
s
(P
C
A
)

P
rin

c
ip
ia
lc
o
o
rd
in
a
te

a
n
a
ly
si
s
(P
C
o
A
;

B
ra
y
a
n
d
C
u
rt
is
,
1
9
5
7
)

R
e
d
u
n
d
a
n
c
y
A
n
a
ly
si
s
(R
D
A
)

D
is
ta
n
c
e
-b
a
se
d
re
d
u
n
d
a
n
c
y
a
n
a
ly
si
s

(d
b
R
D
A
)

L
a
te
n
t
F
a
c
to
r
M
ix
e
d
M
o
d
e
l(
L
F
M
M
;

F
ric

h
o
t
e
t
a
l.,

2
0
1
3
)

IB
D
w
ith

va
ry
in
g

d
is
p
e
rs
a
l

d
is
ta
n
c
e
s:

5
%

1
0
%

1
5
%

2
5
%

5
0
%

N
o
n
e
te
st
e
d

P
1
-
C
o
n
tin

u
o
u
s

(c
lin
a
l)
g
ra
d
ie
n
t

P
2
-
D
is
c
re
te

sp
a
tia
ls
e
le
c
tio

n

w
ith

h
a
b
ita
t

a
g
g
re
g
a
tio

n

(1
0
%
)

P
3
-
D
is
c
re
te

sp
a
tia
ls
e
le
c
tio

n

w
ith

h
a
b
ita
t

a
g
g
re
g
a
tio

n

(5
0
%
)

P
4
-
D
is
c
re
te

sp
a
tia
ls
e
le
c
tio

n

w
ith

h
a
b
ita
t

a
g
g
re
g
a
tio

n

(9
0
%
)

R
D
A
a
n
d
d
b
R
D
A
h
a
ve

h
ig
h
e
st

p
o
w
e
r,
lo
w
F
P
R
s

a
n
d
st
ro
n
g
e
st

G
E
A
in
d
ic
e
s
u
n
d
e
r
a
ll
sc
e
n
a
rio

s

P
C
A
,
P
C
o
A
&
L
F
M
M

sh
o
w

st
ro
n
g
e
r
G
E
A

in
d
ic
e
s
a
t
in
te
rm

e
d
ia
te

d
is
p
e
rs
a
ll
e
ve
ls

O
rd
in
a
tio

n
m
e
th
o
d
s
b
ro
a
d
ly
c
o
n
tr
o
lf
o
r

p
o
p
u
la
tio

n
st
ru
c
tu
re

d
u
e
to

IB
D
b
e
tt
e
r
th
e
n

o
th
e
r
te
c
h
n
iq
u
e
s

C
h
a
n
g
e
s
in

h
a
b
ita
t
a
g
g
re
g
a
tio

n
a
n
d
se
le
c
tio

n

h
a
ve

sm
a
ll
e
ffe

c
ts

o
n
sp

a
tia
ls
tr
u
c
tu
re

a
t
n
e
u
tr
a
l

si
te
s

L
o
tt
e
rh
o
s
a
n
d

W
h
itl
o
c
k,

2
0
1
5

1
.
C
o
m
p
a
re

p
o
w
e
r
o
f
G
E
A
s
a
n
d

o
u
tli
e
r
d
iff
e
re
n
tia
tio

n
m
e
th
o
d
s
to

d
e
te
c
t
lo
c
ii
n
vo

lv
e
d
in
lo
c
a
la
d
a
p
ta
tio

n

b
a
se
d
o
n
:

S
a
m
p
lin
g
d
e
si
g
n
a
n
d

2
.
D
e
m
o
g
ra
p
h
y

X
T
X
(G
ü
n
th
e
r
a
n
d
C
o
o
p
,
2
0
1
3
)

P
C
A
d
a
p
t
(D
u
fo
re
t-
F
re
b
o
u
rg

e
t
a
l.,

2
0
1
4
)

B
a
yE

n
v2

(G
ü
n
th
e
r
a
n
d
C
o
o
p
,
2
0
1
3
)

L
a
te
n
t
F
a
c
to
r
M
ix
e
d
M
o
d
e
l(
L
F
M
M
;

F
ric

h
o
t
e
t
a
l.,

2
0
1
3
)

Is
la
n
d
M
o
d
e
l

(IM
)

Is
o
la
tio

n
b
y
D

is
ta
n
c
e
(IB

D
)

Tw
o
R
e
fu
g
ia

(2
R
)

O
n
e
R
e
fu
g
iu
m

(1
R
)

S
1
-
Tr
a
n
se
c
t

S
2
-
P
a
ire

d
sa
m
p
lin
g

S
3
-
R
a
n
d
o
m

W
e
a
k
c
lin
a
l

se
le
c
tio

n

P
a
irw

is
e
sa
m
p
lin
g
h
a
ve

h
ig
h
p
o
w
e
r
fo
r

d
e
te
c
tin

g
g
e
n
e
s
u
n
d
e
r
w
e
a
k
se
le
c
tio

n
,

tr
a
n
se
c
ts

b
e
tt
e
r
a
t
d
e
te
c
tin

g
c
lin
e
s

To
ta
ls
a
m
p
le
si
ze

in
flu
e
n
c
e
d
p
o
w
e
r
m
o
re

th
a
n

d
is
tr
ib
u
tio

n
o
f
p
o
p
u
la
tio

n
s

L
F
M
M

h
a
s
h
ig
h
e
r
p
o
w
e
r
th
e
n
B
a
ye
n
v2

w
ith

m
o
re

sa
m
p
le
s,

b
u
t
h
ig
h
e
r
F
P
R

L
F
M
M

a
n
d
B
a
ye
n
v2

h
a
ve

h
ig
h
p
o
w
e
r
b
e
c
a
u
se

th
e
y
e
xp

lic
tly

a
c
c
o
u
n
t
fo
r
re
la
te
d
n
e
ss

a
n
d

e
n
vi
ro
n
m
e
n
t

S
um

m
ar
iz
ed

ar
e
q
ue
st
io
ns
,
sa
m
p
lin
g
m
et
ho
d
s,
an
al
ys
is
m
et
ho
d
s
an
d
co
nc
lu
si
on
s
as

to
w
hi
ch

m
et
ho
d
s
le
ad

to
lo
w
fa
ls
e
p
os
iti
ve

ra
te
s
an
d
hi
gh

p
ow

er
to
d
et
ec
t
lo
ci
un
d
er
se
le
ct
io
n.

Frontiers in Genetics | www.frontiersin.org March 2018 | Volume 9 | Article 6813

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Storfer et al. The Transition to Landscape Genomics

that landscape genetics studies rely on use of putatively neutral
markers to generate estimates of genetic population structure,
whereas tests of selection in landscape genomic studies generally
require the need to control for population structure (see Table 1).
As above, note that genome-wide marker sets generated for
landscape genomics tests of selection can also be parsed into
neutral data and landscape genetics analyses can be employed
(see Storfer et al., 2007, 2010; Guillot et al., 2009; Shirk
et al., 2017). Landscape genomics studies employ tests for loci
under selection using genome scans, candidate gene approaches,
quantitative trait locus mapping and genome-wide association
studies (see Stinchcombe and Hoekstra, 2008; Storfer, 2015).
However, genome scans are the most widely used, as the latter
analysis types tend to be used for model systems. It is important
to note that numerous excellent reviews (e.g., Rellstab et al.,
2015; Haasl and Payseur, 2016; Hoban et al., 2016) discuss in
detail the benefits and limitations of the various genome scan
methodologies and associated software. As such, we summarize
the main considerations here.

Genome scans generally use two approaches to detect loci
under selection: (1) differentiation outlier methods (which
were previously called FST-outlier tests, but now include other
methods of genetic differentiation among populations; Hoban
et al., 2016); and, (2) genetic-environment association (GEA)
tests (Schoville et al., 2012; Pardo-Diaz et al., 2015; Rellstab et al.,
2015; Hoban et al., 2016). Differentiation outlier methods rely on
the demonstration that, at migration-drift equilibrium under a
neutral island model with spatially uniform migration and gene
flow, population differentiation of allele frequencies (e.g., FST)
across a large number of loci can be used to infer the process
of selection acting on a subset of loci (Lewontin and Krakauer,
1973). Statistical outlier loci with significantly greater FST (or
other genetic distance) values than the distribution of genome-
wide FST values are presumed to be under diversifying or local
selection or linked to those under selection (Black et al., 2001;
Luikart et al., 2003). Similarly, loci with significantly lower FST
values are inferred to be under stabilizing or purifying selection
(Black et al., 2001; Luikart et al., 2003). Thus, unlike landscape
genetics studies which generate genetic distance estimates among
a small number of loci to elucidate effects of landscape variables
on gene flow, landscape genomics studies rely on a very large
number of loci to generate a frequency distribution of genetic
distance values as a null against which to test for outliers under
selection.

Early methods to conduct such outlier tests include FDIST
(Beaumont and Nichols, 1996; implemented in LOSISTAN) to
identify strong differences from the null distribution of FST
values across loci. Later, the widely used BayeScan (Foll and
Gaggiotti, 2008) was developed, which uses a Bayesian method
to estimate the relative probability that each locus is under
selection. PCAdapt is a recently developed popular method
that uses a principal components analysis framework to detect
candidate loci under local adaptation (Duforet-Frebourg et al.,
2014). Methods that use genetic distance measures other than
FST include FLK (Bonhomme et al., 2010), which uses a modified
version of the Lewontin and Krakauer (1973) test for selection
by comparing allele frequencies of different populations in a

neighbor-joining tree constructed using a matrix of Reynold’s
genetic distance (Reynolds et al., 1983), and XTX, which employs
a Bayesian method to test individual SNPs against a null
model generated by the covariance in allele frequencies between
populations from the entire set of SNPs (utilized in Bayenv2;
Coop et al., 2010; Günther and Coop, 2013). Summaries of
differentiation outlier methods can be found in Hoban et al.
(2016; Appendix 1). Notably, differentiation outlier methods are
aspatial in nature.

GEAs (also referred to as EAAs or environmental association
analyses; Rellstab et al., 2015) are spatial because they are
designed to test for significant correlations between allele
frequencies at particular loci with variation in environmental
variable(s) (Joost et al., 2007; Hancock et al., 2011; Rellstab
et al., 2015). Thus, unlike differentiation outlier approaches,
GEAs require availability of environmental data from sources
such as WorldClim data (http://www.worldclim.org, Hijmans
et al., 2005). Widely used methods include Bayenv2, which
tests for GEAs in addition to differentiation outliers, and latent
factor mixed models (LFMM; Frichot et al., 2013). Bayenv2,
tests for large allele frequency differences across environmental
gradients by comparing observed allele frequency differences
to transformed normal distribution of underlying population
frequencies. Latent factor mixed models (LFMM; Frichot et al.,
2013), include population structure as latent (or hidden) variables
to limit false positive signals. Spatial generalized linear mixed
models (SGLMMs; Guillot et al., 2014) are an extension to
LFMMs and have proven to be computationally more efficient.
Ordination approaches, such as redundancy analysis, can also
be used in GEAs (Forester et al., 2015); ordination is also
widely used in landscape genetics studies (Storfer et al., 2010).
Another more recently developed GEA method is Samβada
(Stucki et al., 2016), which is a multivariate analysis framework
that accounts for underlying population structure with estimates
of spatial autocorrelation in the data. To search for loci
under selection, Samβada uses linear regressions to model the
probability of observing a particular allele given the value of
environmental variables at the location it was sampled for each
locus independently (Stucki et al., 2016). A summary of GEAs
and their assumptions can be found in Rellstab et al. (2015;
Table 1).

Analysis Concerns
Fundamentally genome scan methods operate on the assumption
that loci under selection can be differentiated from a null
distribution of allele frequencies generated by neutral processes.
Determining howmuch genetic differentiation can be expected in
populations in the absence of selection, however, remains a great
challenge (Lotterhos and Whitlock, 2014; Hoban et al., 2016).
Thus, the primary concern with employing genome scan analyses
is differentiating false positive signals from loci that are actually
under selection.

Underlying population demographic structure, when not
properly accounted for, can be a principal source of false
positives. There are several demographic scenarios that
can generate neutral allele frequency differentiation among
populations that can falsely be interpreted as signals of selection
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(Lotterhos and Whitlock, 2015; Rellstab et al., 2015; Haasl and
Payseur, 2016). A straightforward example is illustrated by the
case of allele surfing, whereby serial population bottlenecks that
occur during founder effects of small populations migrating
to new areas can result in fixed allelic differences among
populations that are solely due to genetic drift (Excoffier et al.,
2009; Waters et al., 2013). Similarly, recent population range
expansions from refugia can generate correlations between allele
frequencies and environmental variables that are not due to
selection. In general, landscape genomics studies are challenging
in small, patchy populations that are prone to genetic drift,
which can result in the appearance of spatially distributed loci
under selection. False signals of selection can also be generated
by locus-specific hybridization or introgression from related
taxa (Fraïsse et al., 2016; Hoban et al., 2016). Nonetheless, in
cases where selection gradients follow the same spatial pattern as
background genetic population structure, candidate loci under
selection can be missed due to false negative signals.

In general, demographic structure can influence the null
distribution of FST or other genetic differentiation measures and
thereby bias significance testing (Lowry, 2010; Whitlock and
Lotterhos, 2015). Each genome scan method utilizes a different
way to account for underlying population demography. For
example, FDIST assumes populations follow an island model
(Beaumont and Nichols, 1996) to generate null FST distribution.
The recently developed OutFLANK (Whitlock and Lotterhos,
2015), however, does not invoke a specific demographic model.
Rather, OutFLANK infers the distribution of FST for loci
unlikely to be strongly affected by spatially diversifying selection
(Whitlock and Lotterhos, 2015). Specifically, OutFLANK uses
a modified Lewinton-Krakauer method to infer a null FST
distribution, which approximates a χ2 distribution with adjusted
degrees of freedom. Then, differentiation outliers are identified
as those that fall outside this trimmed, putatively null FST
distribution.

Approaches that use covariance matrices or linear models
to account for population structure are also flexible because
they have no explicit underlying population demographic model.
For example, Bayenv2 is a GEA method that controls for
genetic population structure in by generating a variance-
covariance matrix of relatedness among samples; candidate
loci are determined as those for which an environmental
variable explains significantly more variation than the variance-
covariance matrix of all other loci (Günther and Coop, 2013).
Linear model approaches, such as LFMMs and SGLMMs, can
limit false positives in both GEAs and outlier tests by including
population structure as latent variables (Frichot et al., 2013;
Lotterhos and Whitlock, 2015). Samβada uses estimates of
underlying spatial autocorrelation in genetic data as a way to
control for underlying population structure (Stucki et al., 2016).

A number of informative simulation studies that explore the
power of the different methods under different demographic or
other scenarios have recently been published (De Mita et al.,
2013; Frichot et al., 2013; Jones et al., 2013; de Villemereuil
et al., 2014; Lotterhos and Whitlock, 2014, 2015; Forester et al.,
2015; See Table 2 for a summary of the study conditions and
their findings). The relative power of GEAs and differentiation

outlier tests is dependent on the underlying demographic model.
GEAs have higher power under an island model, whereas outlier
tests have higher power under an isolation-by-distance model
(Lotterhos and Whitlock, 2015). Within GEAs, the degree of
patchiness in the landscape affects the power and false positive
rates (Forester et al., 2015). With limited dispersal and strong
isolation-by-distance, univariate GEAs had high false positive
rates (FPRs; up to 55%) and constrained ordination procedures
(e.g., redundancy analyses, or RDA) performed much better
with lower FPRs (0–2%; Forester et al., 2015). Within outlier
differentiation methods, Bayenv2 and FLK outperformed FDIST
and Bayescan for systems experiencing IBD and recent range
expansions (Lotterhos and Whitlock, 2014). Of all GEAs and
outlier detection methods, LFMMs were generally found to have
relatively low false positive rates (Type I error rates) than other
methods (Jones et al., 2013; Joost et al., 2013).

Even after accounting for the underlying population structure,
however, there are other important considerations that can affect
the power of genome scan studies and their interpretation. To
date, no methods have been developed to account explicitly for
background selection (Hoban et al., 2016), which can result
in population diversification due to purifying and not positive
selection (Charlesworth et al., 1993). Background selection can
thus cause errors in estimating the null distribution and thereby
reduce power of genome scans (Tiffin and Ross-Ibarra, 2014;
Haasl and Payseur, 2016). Signatures of local adaptation can also
be incorrectly inferred as a result of spatially uniform positive
selection. That is, across landscapes with limited gene flow,
multiple beneficial mutations may arise to reach an optimal
phenotype, resulting in a patchwork of allele frequencies. This
can result in detectable genetic differentiation across the patches
that produces false signals of selection by local environment
(Hoban et al., 2016).

It is also important to note that genome scan analyses are
biased to detect large effect loci, because power to detect small
effect loci is generally low (Pritchard and Di Rienzo, 2010).
Because most phenotypic traits are likely to be polygenic, and
thus governed by many loci of small effect (Rockman, 2012),
genome scan methods are prone to miss most loci involved in
local adaptation (Stephan, 2015). Further, the polygenic nature of
phenotypic traits means candidate loci explain a small proportion
of phenotypic variation, which has been termed the “missing
heritability problem” (Hindorff et al., 2009; Visscher et al., 2010;
Yang et al., 2010, 2012). Recently, multilocus approaches have
been developed that quantify the strength of selection acting
on correlated loci using Bayesian sparse linear mixed models
(Gompert et al., 2017). However, these approaches necessitate
large sample sizes and time-series sampling, thereby limiting
their widespread applicability. In addition, for studies that
employ anonymous SNP markers when no reference genome
exists, such as RAD-seq, candidate genes are assumed to be in
linkage disequilibrium (LD) with loci under selection and are
most often not under selection themselves (Lowry et al., 2017).
With a reference genome, estimates of LD decay can be used to
determine the size of the window to search for possible genes
linked to a candidate SNP detected in a genome scan when the
SNP is not in a gene itself. However, we do not know the extent
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of LD for most species, and the size of LD blocks is not constant
throughout the genome (Tiffin and Ross-Ibarra, 2014; Lowry
et al., 2017). These factors can make mapping and annotating
candidate markers prone to error.

Combinatorics and Other Multivariate
Approaches
An important consideration in landscape genomics studies is
how to integrate data analyses across multiple genome scan
methods. One fairly standard approach is to construct Venn
diagrams and use combinatorics as a method of validation for
candidate loci. That is, the larger the number of genome scan
methods that detect a particular candidate locus under selection,
the more confident researchers tend to be that the candidate
is truly under selection. However, genome scan methods each
have different assumptions and different power to detect loci
under selection, depending on population demography, sampling
design and nature of the selective sweep (Lotterhos et al., 2017).
Thus, reliance on concordance of multiple univariate methods
to prioritize loci for further research is prone to miss loci under
weak selection (Lotterhos and Whitlock, 2015).

Recent proposed solutions have included multivariate
methods that combine P-values and control for false discovery
rates (FDR; Benjamini and Hochberg, 1995). For example,
de-correlated composite of multiple signals (DCMS) controls
for genome-wide correlations among statistics by weighting
each locus depending how correlated a particular statistic that
detected the locus is to other statistics (Ma et al., 2015). Thus,
the less a test statistic is correlated to another statistic(s), the
higher the locus is weighted. François et al. (2016) built on earlier
methods to control for FDR (e.g., Benjamini and Hochberg,
1995) using a “genomic inflation factor” to adjust the distribution
of p-values. In general, composite methods tend to perform
better than univariate methods, but their performance has only
been evaluated in a narrow set of circumstances (Lotterhos et al.,
2017).

Even newer methods include analyses to filter, visualize
and integrate multiple univariate analyses in multivariate space
(Lotterhos et al., 2017; Verity et al., 2017). For example,
MINOTAUR (Multivariate vIsualizatioN and OuTlier Analysis
Using R) is a program that uses one of four different distance
measures (Mahalanobis distance, harmonic mean distance,
nearest neighbor distance and kernel density deviance) to test
the significance of loci (Verity et al., 2017). An important future
direction is to continue to evaluate the variety of methods for
evaluating and prioritizing candidate loci for future research. As
we learnmore about the genomic architecture of different species,
we can continue to test the performance of existing methods, or
develop new methods as appropriate.

Analysis Considerations-Summary
In general, researchers should avoid the temptation to analyze
their data with as many genome scan methods as possible.
Instead, several factors that should be considered when choosing
genome scan method(s) to be employed. First, if attainable,
knowledge of underlying demographic structure can be used
to choose the most powerful methods that are least prone to

Type I errors for that specific demographic history. For example,
phylogeographic analyses can be used to assess whether there
have been recent geographic range expansions from glacial
refugia. To parameterize the number of latent factors (e.g.,
in LFMM or SGLMM), the number of genetic clusters (K)
could be determined using a Bayesian clustering algorithm
such as FastSTRUCTURE (Raj et al., 2014) or ADMIXTURE
(Alexander et al., 2009). Note that incorrect assumptions about
underlying demographic structure can increase both Type I
and Type II error (Pérez-Figueroa et al., 2010; Jones et al.,
2013; Lotterhos and Whitlock, 2014), and in such cases, model-
free approaches may be preferred. Second, given the numerous
additional concerns for which researchers have little ability to
estimate (e.g., variation in genome-wide LD) or control for
(e.g., the polygenic nature of most phenotypic traits), confidence
in candidate loci as real targets of selection comes from their
repeated detection across replicated transects or paired sampling
locations. Similarly, candidate loci detected by multiple analysis
methods also decreases the likelihood that they are false positives.
Third, as stated above, inference of candidate loci is improved
when selective agent(s) are known before embarking on a
landscape genomics study. Candidate genes identified in genic
pathways that influence particular phenotypes known to be under
selection are less likely to be false positives than randomly
detected loci or those without known function.

METHODS AT THE INTERFACE OF
LANDSCAPE GENETICS AND LANDSCAPE
GENOMICS

Generalized Dissimilarity Modeling (GDM)
Originally used to model species community turnover (Ferrier
et al., 2007), GDMs have recently been adopted for use in
landscape genetics studies. GDMs involve fitting I-splines that
are monotonic, nonlinear functions that, when rescaled between
0 and 1, represent importance of environmental variables in
explaining turnover of allele frequencies (Fitzpatrick and Keller,
2015). GDMs have been used to assess effects of at site
environmental differences on gene flow (also called “isolation by
environment”; Wang and Bradburd, 2014). I-splines can be non-
linear, providing an advantage over linear approaches because
they may be able to identify threshold values (i.e., the point
along the environmental axis where the slope of the spline
is greatest) for landscape variables. Similarly, GDMs can be
applied to landscape genomics studies by fitting I-splines to
the relationships of ecological variables on allele frequencies
at putatively adaptive loci. Related to GDMs, which employ
distance-based measures are gradient forests, an extension of
random forests, which both employmachine-learning algorithms
for model optimization (Breiman, 2001). Similar to GDM,
gradient forests fit nonlinear monotonic functions to characterize
allele-frequency turnover across environmental gradients for
each locus independently (see Fitzpatrick and Keller, 2015). As
such, both approaches can be used to identify a loci with high
degree of allelic turnover associated with specific environmental
variables, and thus yield candidate loci under selection.

Frontiers in Genetics | www.frontiersin.org March 2018 | Volume 9 | Article 6816

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Storfer et al. The Transition to Landscape Genomics

Estimated Effective Migration Rate
Another recently developed method that can be applied to
both landscape genetics and landscape genomics studies is the
Estimated Effective Migration Surface (EEMS: Petkova et al.,
2016). This method differs from other approaches that identify
underlying population demographic structure (e.g., clustering
and PCA-based approaches), because genetic differentiation is
modeled as a function of estimated migration rates. EEMS
uses a stepping stone model (Kimura and Weiss, 1964) that
allows for migrations of variable rates to occur among a set of
demes. This process is modeled by overlaying a dense regular
grid over the study area and calculating an approximation of
the expected genetic dissimilarity through the use of resistance
distance, similar to “isolation-by-resistance” (McRae, 2006).
Consequently, areas in which genetic dissimilarity decays more
slowly will be assigned a greater value of Effective Migration Rate
(EMR), than those for which genetic dissimilarity decays more
rapidly.

EEMS offers two potential applications to landscape genomics
studies. First, it can allow researchers to detect underlying
demographic population structure, which can be used to help
reduce false positive rates in genome scan methods. Second,
EEMS analyses could be run separately on data sets containing
only putatively neutral or putatively adaptive loci, and can then
be used to visualize geographic features that impede gene-flow of
neutral or adaptive loci, respectively.

Clinal Analyses
Clines have a rich history in population genetics and bridge both
at-site and between-site analyses used in landscape genetics and
genomics. To date, most clinal analyses on genome-scale data

have focused on the study of hybrid zones and the detection
of differential introgression (Gompert and Buerkle, 2010, 2011,
2012). While originally developed for use in identifying loci
involved in adaptive divergence and reproductive isolation
among hybridizing lineages, genomic cline models could be
applied to identify candidate loci for population pairs for which
a genome-wide admixture gradient (e.g., via ADMIXTURE or
another assignment-based program) has been identified. Loci
for which genomic clines possess outliers in one or both of
these cline parameters may be subject to selective forces. Outlier
loci with alleles introgressing most slowly can be interpreted
as those involved in differential adaptation among populations,
whereas loci introgressing most rapidly are likely to be uniformly
advantageous.

Geographic cline models can explicitly measure the strength
of selection on a locus, given the shape of a cline (Endler,
1977; Slatkin, 1987). Geographic cline analyses involve fitting a
sigmoidal tanh cline model to allele frequencies and quantitative
data such as environmental data or a measure of geographic
distance (Figure 1; Szymura and Barton, 1986, 1991). Then,
cline center, width and slope are estimated along a geographic
transect (requiring transect sampling). GEAs are essentially clinal
analyses but focus only on the slope of the cline between sampling
locations. However, geographic cline analyses analyze the shape
of the cline; selection tends to steepen the cline, gene flow widens
and reduces the steepness of the cline, and genetic drift narrows
the cline (Figure 1; Endler, 1977; Nagylaki, 1978). Researchers
can then compare the shapes of observed allele frequency clines
in putatively adaptive loci to the shape of clines for neutral
loci, as well as those predicted by models of pure migration or
drift (Nagylaki, 1978). Unfortunately, current implementations

FIGURE 1 | An illustration of clines. X-axes correspond to position along geographic transects (ecological gradient) or hybrid indexes (genomic gradient) in the case of

genomic cline analyses. (A) Illustration of the three parameters typically estimated in the use of geographic of genomic cline analysis. Cline slope is the estimate of the

rate of allele frequency turnover at the steepest point in the cline. In genomic cline analysis this corresponds to the rate of introgression. Cline center corresponds to

the point along the geographic transect or hybrid index at which allele frequency turnover is greatest. Cline width corresponds to the region along the gradient at

which it’s influence on allele frequency is greatest. (B) Three examples of clines. (i) A transect along which no selection appears to be acting, or the effects of gene flow

are such that changes in allele frequency are purely a function of distance. In the case of genomic cline analyses, the loci under consideration appears to be favored

equally in both parental taxa. (ii) A modest cline in which the allele favored by selection changes along the gradient. Given its shallower slope, selection may either be

weaker, gene flow stronger (in the case of geographic transects) or the ecotone separating ends of the transect greater. (iii) A steep cline, often called a step cline. In

the case of geographic clines, these are formed either by strong selection acting in favor of one allele along a sudden ecotone, or extremely limited gene flow along

said ecotone. In the case of genomic clines, this may be due to heterozygote disadvantage, as in the case of reinforcement.
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of geographic cline models (e.g.,Analyse: Barton and Baird, 1995;
hzar: Derryberry et al., 2014) are computationally burdensome,
thus limiting cline fitting to datasets with small numbers of loci.
Therefore, geographic cline analysis is currently best suited for
use with a reduced set of candidate loci as identified by genome
scans.

FUTURE DIRECTIONS

In the future, landscape genomics should integrate analyses on
two scales—the landscape of the genome, and the ecological
landscape. Specifically, the landscape of the genome refers
to overall genomic architecture, such as the arrangement of
loci on chromosomes, placement of inversions, deletions and
copy number variants. All of these, ultimately, can affect gene
expression, which is further modified by the environmental
context in which an individual exists. However, the current state
of landscape genomics studies is primarily to generate a list of
candidate loci under selection, and, when possible annotate genes
in LDwith identified SNPs or other genetic variants. Nonetheless,
scientists are increasingly aware that the genotype-phenotype
relationship is influenced by far more of the genome than just
genic sequences. For example, copy number variation and not
sequence variation that determines how much human amylase,
responsible for starch digestion, is expressed in saliva (Perry
et al., 2007). Selection has acted on copy number variation in
the amylase gene (AMY1) in the human populations; those with
high starch diets have higher numbers of copies than populations
with diets lower in starch (Perry et al., 2007). Similarly, camels
have the highest number of copies known (11) of the CYP2J
gene (related to salt homeostasis) likely due to selection for high
salt tolerance necessary in desert environments (Wang et al.,
2012). Transposable elements, which comprise over half the
genome of many eukaryotes, were once thought of as parasitic
or “junk” DNA (Federoff, 2012). However, evidence suggests
that transposable elements are maintained in eukaryotic genomes
due to their heritable role in epigenetic mechanisms, such as
gene silencing (Federoff, 2012). DNA methylation patterns also
influence gene expression and can also be heritable (Anway
et al., 2005; Skinner et al., 2012). Promoters and other regulatory
regions are also key determinants of gene expression levels
and consequently phenotypes. Further, genes are expressed
differently in different ecological environments, and selection
varies spatially across the ecological landscape. In summary,
genomic architecture plays a significant role in the genotype-
phenotype relationship, as evidenced by the fact that “large
effect SNPs” tend to explain a small fraction of phenotypic
variation in natural populations (Hindorff et al., 2009; Rockman,
2012).

Given that technological advances continue to make whole
genome sequencing more and more feasible in terms of cost
and computational speed for genome assembly, a key challenge
for the future of landscape genomics will be the development
of methods that integrate multiple data types. Difficulties will
include: (1) accounting for the effects of coding and non-coding
regions of genomes and overall genomic architecture, combined

with protein expression levels, on phenotypic variation; (2)
coding for genomic features such as copy number, chromosome
inversions or transposable element composition or location in
our population genetic models (i.e., Can they be considered in
the same way as alleles?); (3) constructing hierarchical models
to integrate sources of error from different data types. Then,
the challenge is compounded further with the necessity to
integrate these complex genomic models with multiple types
of spatial environmental data and habitat models in ways that
optimize sampling while avoiding potential biases. Mapping the
genotype-phenotype relationship has been a key challenge for
evolutionary biology for over a century, and landscape genomics
will provide the analytical framework to do so across spatially
variable ecological environments. A long road may lie ahead, but
it is certainly an exciting time for landscape genomics to unravel
the complexity of the genomic architecture that underlies local
adaptation.

CONCLUSIONS

Landscape genomics has emerged as a prominent framework
for studying the genomic basis of local adaptation. Using
large genomic data sets, researchers scan the genome for
loci that exhibit signatures of selection across heterogeneous
environments (Haasl and Payseur, 2016). These efforts have been
highly successful, for example, in identifying genes underlying
hypoxia adaptation in high-elevation human populations (Beall,
2007a,b; Simonson et al., 2010), environmental responses in Oak
populations along climatic gradients (Sork et al., 2016), and
differences in growth response amongst Salmon populations in
response to geological conditions (Vincent et al., 2013). Studies of
biotic factors, have also successfully in identified local adaptation
to life history traits (Sun et al., 2015), community composition
(Harrison et al., 2017), and disease prevalence (Leo et al., 2016;
Mackinnon et al., 2016;Wenzel et al., 2016). Landscape genomics
has already dramatically helped to further our understanding
of the genomic basis of adaptation (Funk et al., 2012; Shryock
et al., 2015). Here, we suggest the field can advance with a
careful consideration of explicit hypotheses that, in turn, guide
study design, and employment analysis methods that help control
confounding factors such as underlying demographic structure.
Future landscape genomic research will better integrate genomic
architecture in assessments of candidate loci under selection.

AUTHOR CONTRIBUTIONS

AS conceived of, and wrote most of the paper. AP and AF
contributed to the writing, as well as gathered information for,
and assembled Table 2.

ACKNOWLEDGMENTS

This work was funded by NSF grant DEB-1316549 to AS.
Additionally, we thank Mark Margres, Lauren Ricci, Matthew
Lawrence, and Elisa Lopez-Contreras for insightful comments
that helped improve the quality of the manuscript.

Frontiers in Genetics | www.frontiersin.org March 2018 | Volume 9 | Article 6818

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Storfer et al. The Transition to Landscape Genomics

REFERENCES

Alexander, D. H., Novembre, J., and Lange, K. (2009). Fast model-based

estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664.

doi: 10.1101/gr.094052.109

Anderson, C. D., Epperson, B. K., Fortin, M. J., Holdregger, R., James, P.

M. A., Rosenberg, M. S., et al. (2010). Considering spatial and temporal

scale in landscape genetic studies of gene flow. Mol. Ecol. 19, 3565–3575.

doi: 10.1111/j.1365-294X.2010.04757.x

Andrews, K. R, Good, J. M, Miller, M. R., Luikart, G., Hohenlohe, P. A. (2016).

Harnessing the power of RADseq for ecological and evolutionary genomics.

Nat. Rev. Genet. 17, 81–92. doi: 10.1038/nrg.2015.28

Anway, M. D., Cupp, A. S., Uzumcu, M., and Skinner, M. K. (2005). Epigenetic

transgenerational actions of endocrine disruptors and male fertility. Science

308, 1466–1469. doi: 10.1126/science.1108190

Barton, N. H., and Baird, S. J. E. (1995). Analyse: An Application for Analysing

Hybrid Zones. Edinburgh: Freeware.

Beall, C. M. (2007a). Two routes to functional adaptation: Tibetan and Andean

high-altitude natives. Proc. Natl. Acad. Sci. U.S.A. 104(Suppl. 1), 8655–8660.

doi: 10.1073/pnas.0701985104

Beall, C. M. (2007b). Detecting natural selection in high-altitude

human populations. Respir. Physiol. Neurobiol. 158, 161–171.

doi: 10.1016/j.resp.2007.05.013

Beaumont, M. A., and Nichols, R. A. (1996). Evaluating loci for use in the genetic

analysis of population structure. Proc. R. Soc. Lond. Ser. B Biol. Sci. Biol. Sci.

263, 1619–1626. doi: 10.1098/rspb.1996.0237

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat.

Methodol. 57, 289–300.

Bishop, J. O., Morton, J. G., Rosbash, M., and Richardson, M. (1974). Three

abundance classes in HeLa cell messenger RNA. Nature 250, 199–204.

doi: 10.1038/250199a0

Black, W. C., Baer, C. F., Antolin, M. F., and DuTeau, N. M. (2001). Population

genomics: genome-wide sampling of insect populations. Annu. Rev. Entomol.

46, 441–469. doi: 10.1146/annurev.ento.46.1.441

Bonhomme, M., Chevalet, C., Servin, B., Boitard, S., Abdallah, J., Blott, S., et al.

(2010). Detecting selection in population trees: the lewontin and krakauer test

extended. Genetics 186, 241–262. doi: 10.1534/genetics.110.117275

Bray, J. R., and Curtis, J. T. (1957). An ordination of the upland forest communities

of southern Wisconsin. Ecol. Monogr. 27, 325–349. doi: 10.2307/1942268

Breiman, L. (2001). Statistical modeling: the two cultures (with comments and a

rejoinder by the author). Stat. Sci. 16:3. doi: 10.1214/ss/1009213726

Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., and Cresko, W. A. (2013).

Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140.

doi: 10.1111/mec.12354

Catchen, J. M., Hohenlohe, P. A., Bernatchez, L., Funk, W. C., Andrews, K. R.,

and Allendorf, F. W. (2017). Unbroken: RADseq remains a powerful tool for

understanding the genetics of adaptation in natural populations. Mol. Ecol.

Resou. 22, 362–365. doi: 10.1111/1755-0998.12669

Caye, K., Deist, T. M., Martins, H., Michel, H., and François, O. (2016). TESS3: fast

inference of spatial population structure and genome scans for selection. Mol.

Ecol. Res. 16, 540–548. doi: 10.1111/1755-0998.12471

Charlesworth, B., Morgan, M. T., and Charlesworth, D. (1993). The effect of

deleteriousmutations on neutral molecular variation.Genetics. 134, 1289–1303.

Clarke, R. T., Rothery, P., and Raybould, A. F. (2002). Confidence limits for

regression relationships between distance matrices: estimating gene flow with

distance. J Agric. Biol. Environ. Stat. 7, 361–372. doi: 10.1198/108571102320

Coop, G., Witonsky, D., Di Rienzo, A., and Pritchard, J. K. (2010). Using

environmental correlations to identify loci underlying local adaptation.

Genetics 185. 1411–1423. doi: 10.1534/genetics.110.114819

Derryberry, E. P., Derryberry, G. E., Maley, J. M., and Brumfield, R. T. (2014).

HZAR: hybrid zone analysis using an R software package.Mol. Ecol. Resou. 14,

652–663. doi: 10.1111/1755-0998.12209

DeMita, S., Thuillet, A. C., Gay, L., Ahmadi, N., Manel, S., Ronfort, J., et al. (2013).

Detecting selection along environmental gradients: analysis of eight methods

and their effectiveness for outbreeding and selfing populations. Mol. Ecol. 22,

1383–1399. doi: 10.1111/mec.12182

de Villemereuil, P., Frichot, É., Bazin, É., François, O., and Gaggiotti, O. E. (2014).

Genome scan methods against more complex models: when and how much

should we trust them?.Mol. Ecol. 23, 2006–2019. doi: 10.1111/mec.12705

Duforet-Frebourg, N., Bazin, E., and Blum, M. G. B. (2014). Genome scans for

detecting footprints of local adaptation using a Bayesian factormodel.Mol. Biol.

Evol. 31, 2483–2495. doi: 10.1093/molbev/msu182

Durand, E., Jay, F., Gaggiotti, O. E., and François, O. (2009). Spatial inference

of admixture proportions and secondary contact zones. Mol. Biol. Evol. 26,

1963–197310. doi: 10.1093/molbev/msp106

Dyer, R. J., and Nason, J. D. (2004). Population graphs: the graph

theoretic shape of genetic structure. Mol. Ecol. 13, 1713–1727.

doi: 10.1111/j.1365-294x.2004.02177.x

Endler, J. A. (1977). Geographic Variation, Speciation, and Clines. Princeton, NJ:

Princeton University Press

Excoffier, L., Foll, M., and Petit, R. J. (2009). Genetic consequences

of range expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501.

doi: 10.1146/annurev.ecolsys.39.110707.173414

Federoff, N. V. (2012). Transposable elements, epigenetics, and genome evolution.

Science 338, 758–767. doi: 10.1126/science.338.6108.758

Ferrier, S., Manion, G., Elith, J., and Richardson, K. (2007). Using generalized

dissimilarity modelling to analyze and predict patterns of beta diversity

in regional biodiversity assessment. Divers. Distrib. 13, 252–264.

doi: 10.1111/j.1472-4642.2007.00341.x

Fitzpatrick, M. C., and Keller, S. R. (2015). Ecological genomics meets community-

level modelling of biodiversity: mapping the genomic landscape of current

and future environmental adaptation. Ecol. Letts. 18, 1–16. doi: 10.1111/ele.

12376

Foll, M., and Gaggiotti, O. (2008). A genome-scan method to identify selected

loci appropriate for both dominant and codominant markers: a Bayesian

perspective. Genetics 180, 977–993. doi: 10.1534/genetics.108.092221

Forester, B. R., Jones, M. R., Joost, S., Landguth, E. L., and Lasky, J. R. (2015).

Detecting spatial genetic signatures of local adaptation in heterogeneous

landscapes.Mol. Ecol. 25, 104–120. doi: 10.1111/mec.13476

Fraïsse, C., Belkhir, K., Welch, J. J., and Bierne, N. (2016). Local interspecies

introgression is the main cause of extreme levels of intraspecific differentiation

in mussels.Mol. Ecol. 25, 269–286. doi: 10.1111/mec.13299

François, O., Martins, H., Caye, K., and Schoville, S. D. (2016). Controlling

false discoveries in genome scans for selection. Mol. Ecol. 25, 454–469.

doi: 10.1111/mec.13513

Frichot, E., Schoville, S. D., Bouchard, G., and François, O. (2013). Testing for

associations between loci and environmental gradients using latent factor

mixed models.Mol. Biol. Evol. 30, 1687–1699. doi: 10.1093/molbev/mst063

Fumagalli, M., Sironi, M., Pozzoli, U., Ferrer-Admettla, A., Pattini, L., and

Nielsen, R. (2011). Signatures of environmental genetic adaptation pinpoint

pathogens as themain selective pressure through human evolution. PLoS Genet.

7:e1002355. doi: 10.1371/journal.pgen.1002355

Funk, W. C., McKay, J. K., Hohenlohe, P. A., and Allendorf, F. W. (2012).

Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27,

489–496. doi: 10.1016/j.tree.2012.05.012

Gompert, Z., and Alex Buerkle, C. (2010). INTROGRESS: a software package for

mapping components of isolation in hybrids. Mol. Ecol. Resou. 10, 378–384.

doi: 10.1111/j.1755-0998.2009.02733.x

Gompert, Z., and Buerkle, C. (2011). Bayesian estimation of genomic clines. Mol.

Ecol. 20, 2111–2127. doi: 10.1111/j.1365-294X.2011.05074.x

Gompert, Z., and Buerkle, C. A. (2012). bgc: software for Bayesian

estimation of genomic clines. Mol. Ecol. Resou. 12, 1168–1176.

doi: 10.1111/1755-0998.12009.x

Gompert, Z., Egan, S. P., Barrett, R. D., Feder, J. L., and Nosil, P. (2017). Multilocus

approaches for the measurement of selection on correlated genetic loci. Mol.

Ecol. 26, 365–382. doi: 10.1111/mec.13867

Guillot, G., Leblois, R., Coulon, A., and Frantz, A. C. (2009).

Statistical methods in spatial genetics. Mol. Ecol. 18, 4734–4756.

doi: 10.1111/j.1365-294X.2009.04410.x

Guillot, G., Mortier, F., and Estoup, A. (2005). Geneland: a program for landscape

genetics.Mol. Ecol. Notes 5, 712–715. doi: 10.1111/j.1471-8286.2005.01031.x

Guillot, G., Vitalis, R., le Rouzic, A., and Gautier, M. (2014). Detecting correlation

between allele frequencies and environmental variables as a signature of

Frontiers in Genetics | www.frontiersin.org March 2018 | Volume 9 | Article 6819

https://doi.org/10.1101/gr.094052.109
https://doi.org/10.1111/j.1365-294X.2010.04757.x
https://doi.org/10.1038/nrg.2015.28
https://doi.org/10.1126/science.1108190
https://doi.org/10.1073/pnas.0701985104
https://doi.org/10.1016/j.resp.2007.05.013
https://doi.org/10.1098/rspb.1996.0237
https://doi.org/10.1038/250199a0
https://doi.org/10.1146/annurev.ento.46.1.441
https://doi.org/10.1534/genetics.110.117275
https://doi.org/10.2307/1942268
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.1111/mec.12354
https://doi.org/10.1111/1755-0998.12669
https://doi.org/10.1111/1755-0998.12471
https://doi.org/10.1198/108571102320
https://doi.org/10.1534/genetics.110.114819
https://doi.org/10.1111/1755-0998.12209
https://doi.org/10.1111/mec.12182
https://doi.org/10.1111/mec.12705
https://doi.org/10.1093/molbev/msu182
https://doi.org/10.1093/molbev/msp106
https://doi.org/10.1111/j.1365-294x.2004.02177.x
https://doi.org/10.1146/annurev.ecolsys.39.110707.173414
https://doi.org/10.1126/science.338.6108.758
https://doi.org/10.1111/j.1472-4642.2007.00341.x
https://doi.org/10.1111/ele.12376
https://doi.org/10.1534/genetics.108.092221
https://doi.org/10.1111/mec.13476
https://doi.org/10.1111/mec.13299
https://doi.org/10.1111/mec.13513
https://doi.org/10.1093/molbev/mst063
https://doi.org/10.1371/journal.pgen.1002355
https://doi.org/10.1016/j.tree.2012.05.012
https://doi.org/10.1111/j.1755-0998.2009.02733.x
https://doi.org/10.1111/j.1365-294X.2011.05074.x
https://doi.org/10.1111/1755-0998.12009.x
https://doi.org/10.1111/mec.13867
https://doi.org/10.1111/j.1365-294X.2009.04410.x
https://doi.org/10.1111/j.1471-8286.2005.01031.x
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Storfer et al. The Transition to Landscape Genomics

selection. A fast computational approach for genome-wide studies. Spat. Stat.

8, 145–155. doi: 10.1016/j.spasta.2013.08.001

Günther, T., and Coop, G. (2013). Robust identification of local adaptation from

allele frequencies. Genetics 195, 205–220. doi: 10.1534/genetics.113.152462

Haasl, R. J., and Payseur, B. A. (2016). Fifteen years of genomewide scans for

selection: trends, lessons and unaddressed genetic sources of complication.Mol.

Ecol. 25, 5–23. doi: 10.1111/mec.13339

Hancock, A. M., Brachi, B., Faure, N., Horton, M. W., Jarymowycz, L. B., Sperone,

F. G., et al. (2011). Adaptation to climate across the Arabidopsis thaliana

genome. Science 334, 83–86. doi: 10.1126/science.1209244

Harrison, T. L., Wood, C. W., Borges, I. L., and Stinchcombe, J. R. (2017). No

evidence for adaptation to local rhizobial mutualists in the legume Medicago

lupulina. Ecol. Evol. 7, 4367–4376. doi: 10.1002/ece3.3012

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A. (2005).

Very high resolution interpolated climate surfaces for global land areas. Int.

J. Climatol. 25, 1965–1978. doi: 10.1002/joc.1276

Hindorff, L. A., Sethupathy, P., Junkins, H. A., Ramos, E. M., Mehta, J. P., Collins,

F. S., et al. (2009). Potential etiologic and functional implications of genome-

wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. U.S.A.

106, 9362–9367 doi: 10.1073/pnas.0903103106

Hoban, S., Kelley, J. L., Lotterhos, K. E., Antolin, M. F., Bradburd, G., Lowry, D.

B., et al. (2016). Finding the genomic basis of local adaptation: pitfalls, practical

solutions, and future directions. Am. Nat. 188, 379–397. doi: 10.1086/688018

Hoekstra, H. E., and Coyne, J. A. (2007). The locus of evolution:

evo devo and the genetics of adaptation. Evolution 61, 995–1016.

doi: 10.1111/j.1558-5646.2007.00105.x

Jones, M. R., Forester, B. R., Teufel, A. I., Adams, R. V., Anstett, D. N., Goodrich, B.

A., et al. (2013). Integrating landscape genomics and spatially explicit explicit

approaches to detect loci under selection in clinal populations. Evolution 67,

3455–3468. doi: 10.1111/evo.12237

Jones, M. R., and Good, J. M. (2016). Targeted capture in evolutionary and

ecological genomics.Mol. Ecol. 25, 185–202. doi: 10.1111/mec.13304

Joost, S., Bonin, A., Bruford, M. W., Després, L., Conord, C., Erhardt, G.,

et al. (2007). A spatial analysis method (SAM) to detect candidate loci for

selection: towards a landscape genomics approach to adaptation.Mol. Ecol. 16,

3955–3969. doi: 10.1111/j.1365-294X.2007.03442.x

Joost, S., Vuilleumier, S., Jensen, J. D., Schoville, S., Leempoel, K., Stucki, S., et al.

(2013). Uncovering the genetic basis of adaptive change: on the intersection

of landscape genomics and theoretical population genetics. Mol. Ecol. 22,

3659–3665. doi: 10.1111/mec.12352

Kimura, M., and Weiss, G. H. (1964). The stepping stone model of population

structure and the decrease of genetic correlation with distance. Genetics 49,

561–576.

Kofler, R., Orozco-terWengel, P., De Maio, N., Pandey, R. V., Nolte, V., Futschik,

A., et al. (2011). PoPoolation: a toolbox for population genetic analysis of

next generation sequencing data from pooled individuals. PLoS ONE 6:e15925.

doi: 10.1371/journal.pone.0015925

Leempoel, K., Duruz, S., Rochat, E., Widmer, I., Orozco-terWengel, P., and Joost,

S. (2017). Simple rules for an efficient use of geographic information systems in

molecular ecology. Front. Ecol. Evol. 5:33. doi: 10.3389/fevo.2017.00033

Leo, S. S., Gonzalez, A., and Millien, V. (2016). Multi-taxa integrated landscape

genetics for zoonotic infectious diseases: deciphering variables influencing

disease emergence. Genome 59, 349–361. doi: 10.1139/gen-2016-0039

Lewontin, R. C., and Krakauer, J. (1973). Distribution of gene frequency as a test of

the theory of the selective neutrality of polymorphisms. Genetics 74, 175–195.

Lotterhos, K. E., Card, D. C., Schaal, S. M., Wang, L., Collins, C., and

Verity, B. (2017). Composite measures of selection can improve the signal-

to-noise ratio in genome scans. Methods Ecol. and Evol. 8, 717–727.

doi: 10.1111/2041-210X.12774

Lotterhos, K. E., and Whitlock, M. C. (2014). Evaluation of demographic history

and neutral parameterization on the performance of FST outlier tests.Mol. Ecol.

23, 2178–2192. doi: 10.1111/mec.12725

Lotterhos, K. E., and Whitlock, M. C. (2015). The relative power of genome scans

to detect local adaptation depends on sampling design and statistical method.

Mol. Ecol. 24, 1031–1046. doi: 10.1111/mec.13100

Lowry, D. B., Hoban, S., Kelley, J. L., Lotterhos, K. E., Reed, L. K., Antolin,

M. F., et al. (2017). Responsible RAD: striving for best practices in

population genomic studies of adaptation. Mol. Ecol. Res. 17, 366–369.

doi: 10.1111/1755-0998.12677

Lowry, D. B. (2010). Landscape evolutionary genomics. Biol. Lett. 6, 502–504.

Luikart, G., England, P. R., Tallmon, D., Jordan, S., and Taberlet, P. (2003).

The power and promise of population genomics: from genotyping to genome

typing. Nat. Rev. Genet. 4, 981–994. doi: 10.1038/nrg1226

Ma, Y., Ding, X., Qanbari, S., Weigend, S., Zhang, Q., and Simianer, H. (2015).

Properties of different selection signature statistics and a new strategy for

combining them. Heredity 115:5. doi: 10.1038/hdy.2015.42

Mackinnon, M. J., Ndila, C., Uyoga, S., Macharia, A., Snow, R. W., Band, G.,

et al. (2016). Environmental correlation analysis for genes associated with

protection against malaria. Mol. Biol. Evol. 33, 1188–1204. doi: 10.1093/molbev/

msw004

Manel, S., andHolderegger, R. (2013). Ten years of landscape genetics. Trends Ecol.

Evol. 28, 614–621. doi: 10.1016/j.tree.2013.05.012

Manel, S., Joost, S., Epperson, B. K., Holderegger, R., Storfer, A., Rosenberg,

M. S.,et al. (2010). Perspectives on the use of landscape genetics to

detect genetic adaptive variation in the field. Mol. Ecol. 19, 3760–3772.

doi: 10.1111/j.1365-294X.2010.04717.x

Manel, S., Schwartz, M. K., Luikart, G., and Taberlet, P. (2003). Landscape genetics:

combining landscape ecology and population genetics. Trends Ecol. Evol. 18,

189–197. doi: 10.1016/S0169-5347(03)00008-9

McDonald, J. H., and Kreitman, M. (1991). Adaptive protein evolution at the Adh

locus in Drosophila. Nature 351, 652–654. doi: 10.1038/351652a0

McRae, B. H. (2006). Isolation by resistance. Evolution 60, 1551–1561.

doi: 10.1111/j.0014-3820.2006.tb00500.x

Nagylaki, T. (1978). A diffusion model for geographically structured populations.

J. Math. Biol. 64, 375–382. doi: 10.1007/BF02463002

Pardo-Diaz, C., Salazar, C., and Jiggins, C. D. (2015). Towards the identification

of the loci of adaptive evolution. Methods Ecol. Evol. 6, 445–464.

doi: 10.1111/2041-210X.12324

Pavlidis, P., Jensen, J. D., Stephan, W., and Stamatakis, A. (2012). A

critical assessment of storytelling: gene ontology categories and the

importance of validating genomic scans. Mol. Biol. Evol. 29, 3237–3248.

doi: 10.1093/molbev/mss136

Pérez-Figueroa, A., García-Pereira, M. J., Saura, M., Rolán-Alvarez, E.,

and Caballero, A. (2010). Comparing three different methods to detect

selective loci using dominant markers. J. Evol. Biol. 23, 2267–2276.

doi: 10.1111/j.1420-9101.2010.02093.x

Perry, L., Dickau, R., Zarrillo, S., Holst, I., Pearsall, D. M., Piperno, D.

R., et al. (2007). Starch fossils and the domestication and dispersal of

chili peppers (Capsicum spp. L.) in the Americas. Science 315, 986–988.

doi: 10.1126/science.1136914

Petkova, D., Novembre, J., and Stephens, M. (2016). Visualizing spatial population

structure with estimated effective migration surfaces. Nat. Genet. 48:94.

doi: 10.1038/ng.3464

Poncet, B. N., Herrmann, D., Gugerli, F., Taberlet, P., Holderegger, R., Gielly, L.,

et al. (2010). Tracking genes of ecological relevance using a genome scan in

two independent regional population samples of Arabis alpina. Mol. Ecol. 19,

2896–2907. doi: 10.1111/j.1365-294x.2010.04696.x

Pritchard, J. K., and Di Rienzo, A. (2010). Adaptation–not by sweeps alone. Nat.

Rev. Gen. 11:665. doi: 10.1038/nrg2880

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population

structure using multilocus genotype data. Genetics 155, 945–959.

Raj, A., Stephens, M., and Pritchard, J. K. (2014). fastSTRUCTURE: variational

inference of population structure in large SNP datasets. Genetics 114:164350.

doi: 10.1534/genetics.114.164350

Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M., and Holderegger, R. (2015).

A practical guide to environmental association analysis in landscape genomics.

Mol. Ecol. 24, 4348–4370. doi: 10.1111/mec.13322

Rellstab, C., Zoller, S., Walthert, L., Lesur, I., Pluess, A. R., Graf, R., et al. (2016).

Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with

respect to present and future climatic conditions. Mol. Ecol. 25, 5907–5924.

doi: 10.1111/mec.13889

Reynolds, J., Weir, B. S., and Cockerham, C. C. (1983). Estimation of the

coancestry coefficient: basis for a short-term genetic distance. Genetics 105,

767–779.

Frontiers in Genetics | www.frontiersin.org March 2018 | Volume 9 | Article 6820

https://doi.org/10.1016/j.spasta.2013.08.001
https://doi.org/10.1534/genetics.113.152462
https://doi.org/10.1111/mec.13339
https://doi.org/10.1126/science.1209244
https://doi.org/10.1002/ece3.3012
https://doi.org/10.1002/joc.1276
https://doi.org/10.1073/pnas.0903103106
https://doi.org/10.1086/688018
https://doi.org/10.1111/j.1558-5646.2007.00105.x
https://doi.org/10.1111/evo.12237
https://doi.org/10.1111/mec.13304
https://doi.org/10.1111/j.1365-294X.2007.03442.x
https://doi.org/10.1111/mec.12352
https://doi.org/10.1371/journal.pone.0015925
https://doi.org/10.3389/fevo.2017.00033
https://doi.org/10.1139/gen-2016-0039
https://doi.org/10.1111/2041-210X.12774
https://doi.org/10.1111/mec.12725
https://doi.org/10.1111/mec.13100
https://doi.org/10.1111/1755-0998.12677
https://doi.org/10.1038/nrg1226
https://doi.org/10.1038/hdy.2015.42
https://doi.org/10.1093/molbev/msw004
https://doi.org/10.1016/j.tree.2013.05.012
https://doi.org/10.1111/j.1365-294X.2010.04717.x
https://doi.org/10.1016/S0169-5347(03)00008-9
https://doi.org/10.1038/351652a0
https://doi.org/10.1111/j.0014-3820.2006.tb00500.x
https://doi.org/10.1007/BF02463002
https://doi.org/10.1111/2041-210X.12324
https://doi.org/10.1093/molbev/mss136
https://doi.org/10.1111/j.1420-9101.2010.02093.x
https://doi.org/10.1126/science.1136914
https://doi.org/10.1038/ng.3464
https://doi.org/10.1111/j.1365-294x.2010.04696.x
https://doi.org/10.1038/nrg2880
https://doi.org/10.1534/genetics.114.164350
https://doi.org/10.1111/mec.13322
https://doi.org/10.1111/mec.13889
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Storfer et al. The Transition to Landscape Genomics

Richardson, J. L., Urban, M. C., Bolnick, D. I., and Skelly, D. K. (2014).

Microgeographic adaptation and the spatial scale of evolution. Trends Ecol.

Evol. 29, 165–176. doi: 10.1016/j.tree.2014.01.002

Rockman, M. V. (2012). The QTN program and the alleles that matter for

evolution: all that’s gold does not glitter. Evol. Int. J. Orgn. Evol. 66, 1–17.

doi: 10.1111/j.1558-5646.2011.01486.x

Schlötterer, C., Tobler, R., Kofler, R., and Nolte, V. (2014). Sequencing pools of

individuals - mining genome-wide polymorphism data without big funding.

Nat. Rev. Genet. 15, 749–763. doi: 10.1038/nrg3803

Schoville, S. D., Bonin, A., François, O., Lobreaux, S., Melodelima, C., and Manel,

S. (2012). Adaptive genetic variation on the landscape: methods and cases.

Annu. Rev. Ecol. Evol. Syst. 43, 23–43. doi: 10.1146/annurev-ecolsys-110411-

160248

Shirk, A. J., Landguth, E. L., and Cushman, S. A. (2017). A comparison of

regression methods for model selection in individual-based landscape genetic

analysis.Mol. Ecol. Res. 8, 55–67. doi: 10.1111/1755-0998.12709

Shryock, D. F., Havrilla, C. A., DeFalco, L. A., Esque, T. C., Custer, N.

A., and Wood, T. E. (2015). Landscape genomics of Sphaeralcea ambigua

in the Mojave Desert: a multivariate, spatially-explicit approach to guide

ecological restoration.Conserv. Genet. 16, 1303–1317. doi: 10.1007/s10592-015-

0741-1

Simonson, T. S., Yang, Y., Huff, C. D., Yun, H., Qin, G., Witherspoon, D. J., Bai,

Z., et al. (2010). Genetic evidence for high-altitude adaptation in Tibet. Science

329, 72–75. doi: 10.1126/science.1189406

Skinner, M. K., Mohan, M., Haque, M. M., Zhang, B., and Savenkova,

M. I. (2012). Epigenetic transgenerational inheritance of somatic

transcriptomes and epigenetic control regions. Genome Biol. 13:R91.

doi: 10.1186/gb-2012-13-10-r91

Slatkin, M. (1987). Gene flow and the geographical structure of natural

populations. Science 236, 787–792. doi: 10.1126/science.3576198

Sork, V. L., Squire, K., Gugger, P. F., Steele, S. E., Levy, E. D., and Eckert,

A. J. (2016). Landscape genomic analysis of candidate genes for climate

adaptation in a California endemic oak, Quercus lobata. Am. J. Bot. 103, 33–46.

doi: 10.3732/ajb.1500162

Stephan, W. (2015). Signatures of positive selection: from selective sweeps at

individual loci to subtle allele frequency changes in polygenic adaptation.Mol.

Evol. 25, 76–88. doi: 10.1111/mec.13288

Stern, D. L., and Orgogozo, V. (2008). The loci of evolution:

how predictable is genetic evolution? Evolution 62, 2155–2177.

doi: 10.1111/j.1558-5646.2008.00450.x

Stinchcombe, J. R., and Hoekstra, H. E. (2008). Combining population genomics

and quantitative genetics: finding the genes underlying ecologically important

traits. Heredity 100, 158–170. doi: 10.1038/sj.hdy.6800937

Storey, J. D., and Tibshirani, R. (2003). Statistical significance for

genomewide studies. Proc. Natl. Acad. Sci. U.S.A. 100, 9440–9445.

doi: 10.1073/pnas.1530509100

Storfer, A. (2015). Landscape Genetics. Oxford Bibliographies in Evolutionary

Biology. Oxford, UK: Oxford University Press.

Storfer, A., Murphy, M. A., Spear, S. F., Holderegger, R., and Waits, L. P.

(2010). Landscape genetics: where are we now?. Mol. Ecol. 19, 3496–3514.

doi: 10.1111/j.1365-294X.2010.04691.x

Storfer, A., Murphy, M. A., Evans, J. S., Goldberg, C. S., Robinson, S., Spear, S.

F., et al. (2007). Putting the ‘landscape’ in landscape genetics. Heredity. 98:128.

doi: 10.1038/sj.hdy.6800917

Stucki, S., Orozco-terWengel, P., Forester, B. R., Duruz, D., Colli, L., et al.

(2016). High performance computation of landscape genomic models

including local indicators of spatial simulation. Mol. Ecol. Res. 17, 1072–1089.

doi: 10.1111/1755-0998.12629

Sun, Z. X., Zhai, Y. F., Zhang, J. Q., Kang, K., Cai, J. H., Fu, Y.,

et al. (2015). The genetic basis of population fecundity prediction across

multiple field populations of Nilaparvata lugens. Mol. Ecol. 24, 771–784.

doi: 10.1111/mec.13069

Szymura, J. M., and Barton, N. H. (1986). Genetic analysis of a hybrid zone between

the fire-bellied toads, Bombina bombina and B. variegata, near Cracow in

southern Poland. Evolution 40, 1141–1159.

Szymura, J. M., and Barton, N. H. (1991). The genetic structure of the hybrid

zone between the fire-bellied toads Bombina bombina and B. variegata:

comparisons between transects and between loci. Evolution 45, 237–261.

doi: 10.1111/j.1558-5646.1991.tb04400.x

Tiffin, P., and Ross-Ibarra, J. (2014). Advances and limits of using population

genetics to understand local adaptation. Trends Ecol. Evol. 29, 673–680.

doi: 10.1016/j.tree.2014.10.004

Trumbo, D. R., Spear, S. F., Baumsteiger, J., and Storfer, A. (2013). Rangewide

landscape genetics of an endemic Pacific northwestern salamander. Mol. Ecol.

22, 1250–1266. doi: 10.1111/mec.12168

Verity, R., Collins, C., Card, D. C., Schaal, S. M., Wang, L., and Lotterhos,

K. E. (2017). minotaur: a platform for the analysis and visualization of

multivariate results from genome scans with R Shiny.Mol. Ecol. Res. 17, 33–43.

doi: 10.1111/1755-0998.12579

Vincent, B., Dionne, M., Kent, M. P., Lien, S., and Bernatchez, L. (2013).

Landscape genomics in Atlantic salmon (Salmo salar): searching for gene–

environment interactions driving local adaptation. Evolution 67, 3469–3487.

doi: 10.1111/evo.12139

Visscher, P. M., Yang, J., and Goddard, M. E. (2010). A commentary on ‘common

SNPs explain a large proportion of the heritability for human height’ by Yang

et al. (2010). Twin Res. Hum. Genet. 13, 517–524. doi: 10.1375/twin.13.6.517

Vitalis, R., Dawson, K., and Boursot, P. (2001). Interpretation of variation across

marker loci as evidence of selection. Genetics 158, 1811–1823.

Wang, I. J., and Bradburd, G. S. (2014). Isolation by environment. Mol. Ecol. 23,

5649–5662. doi: 10.1016/s0160-4120(97)00049-4

Wang, Z., Ding, G., Chen, G., Sun, Y., Sun, Z., Zhang, H., et al. (2012).

Genome sequences of wild and domestic bactrian camels. Nat. Comm. 3:1202.

doi: 10.1038/ncomms2192

Waters, J. M., Fraser, C. I., and Hewitt, G. M. (2013). Founder takes all: density-

dependent processes structure biodiversity. Trends. Ecol. Evol. 28, 78–85.

doi: 10.1016/j.tree.2012.08.024

Wenzel, M. A., Douglas, A., James, M. C., Redpath, S. M., and Piertney, S. B.

(2016). The role of parasite-driven selection in shaping landscape genomic

structure in red grouse (Lagopus lagopus scotica). Mol. Ecol. 25, 324–341.

doi: 10.1111/mec.13473

Whitlock, M. C., and Lotterhos, K. E. (2015). Reliable detection of loci responsible

for local adaptation: inference of a null model through trimming the

distribution of FST. Am. Nat. 186, S24–S36. doi: 10.1086/682949

Yang, J., Ferreira, T., Morris, A. P., Medland, S. E., Madden, P. A., Heath, A. C.,

et al. (2012). Conditional and joint multiple-SNP analysis of GWAS summary

statistics identifies additional variants influencing complex traits. Nat. Genet.

44, 369–375. doi: 10.1038/ng.2213

Yang, T. P., Beazley, C., Montgomery, S. B., Dimas, A. S., Gutierrez-Arcelus,

M., Stranger, B. E., et al. (2010). Genevar: a database and Java application

for the analysis and visualization of SNP-gene associations in eQTL studies.

Bioinformatics. 26, 2474–2476. doi: 10.1093/bioinformatics/btq452

Zhou, X., and Stephens, M. (2012). Genome-wide efficient mixed-model analysis

for association studies. Nat. Genet. 44, 821–824. doi: 10.1038/ng.2310

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Storfer, Patton and Fraik. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org March 2018 | Volume 9 | Article 6821

https://doi.org/10.1016/j.tree.2014.01.002
https://doi.org/10.1111/j.1558-5646.2011.01486.x
https://doi.org/10.1038/nrg3803
https://doi.org/10.1146/annurev-ecolsys-110411-160248
https://doi.org/10.1111/1755-0998.12709
https://doi.org/10.1007/s10592-015-0741-1
https://doi.org/10.1126/science.1189406
https://doi.org/10.1186/gb-2012-13-10-r91
https://doi.org/10.1126/science.3576198
https://doi.org/10.3732/ajb.1500162
https://doi.org/10.1111/mec.13288
https://doi.org/10.1111/j.1558-5646.2008.00450.x
https://doi.org/10.1038/sj.hdy.6800937
https://doi.org/10.1073/pnas.1530509100
https://doi.org/10.1111/j.1365-294X.2010.04691.x
https://doi.org/10.1038/sj.hdy.6800917
https://doi.org/10.1111/1755-0998.12629
https://doi.org/10.1111/mec.13069
https://doi.org/10.1111/j.1558-5646.1991.tb04400.x
https://doi.org/10.1016/j.tree.2014.10.004
https://doi.org/10.1111/mec.12168
https://doi.org/10.1111/1755-0998.12579
https://doi.org/10.1111/evo.12139
https://doi.org/10.1375/twin.13.6.517
https://doi.org/10.1016/s0160-4120(97)00049-4
https://doi.org/10.1038/ncomms2192
https://doi.org/10.1016/j.tree.2012.08.024
https://doi.org/10.1111/mec.13473
https://doi.org/10.1086/682949
https://doi.org/10.1038/ng.2213
https://doi.org/10.1093/bioinformatics/btq452
https://doi.org/10.1038/ng.2310
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


fpls-08-02136 December 10, 2017 Time: 16:5 # 1

MINI REVIEW
published: 12 December 2017
doi: 10.3389/fpls.2017.02136

Edited by:
Renchao Zhou,

Sun Yat-sen University, China

Reviewed by:
Charles Masembe,

Makerere University, Uganda
Yanjun Zhang,

Wuhan Botanical Garden (CAS),
China

Michael Benjamin Kantar,
Hawaii University, United States

*Correspondence:
Ying-Xiong Qiu

qyxhero@zju.edu.cn

Specialty section:
This article was submitted to

Evolutionary and Population Genetics,
a section of the journal

Frontiers in Plant Science

Received: 14 June 2017
Accepted: 01 December 2017
Published: 12 December 2017

Citation:
Li Y, Zhang X-X, Mao R-L, Yang J,
Miao C-Y, Li Z and Qiu Y-X (2017)
Ten Years of Landscape Genomics:

Challenges and Opportunities.
Front. Plant Sci. 8:2136.

doi: 10.3389/fpls.2017.02136

Ten Years of Landscape Genomics:
Challenges and Opportunities
Yong Li1, Xue-Xia Zhang1, Run-Li Mao1, Jie Yang1, Cai-Yun Miao1, Zhuo Li1 and
Ying-Xiong Qiu2*

1 College of Forestry, Henan Agricultural University, Zhengzhou, China, 2 Key Laboratory of Conservation Biology for
Endangered Wildlife of the Ministry of Education and Laboratory of Systematic and Evolutionary Botany and Biodiversity,
College of Life Sciences, Zhejiang University, Hangzhou, China

Landscape genomics is a relatively new discipline that aims to reveal the relationship
between adaptive genetic imprints in genomes and environmental heterogeneity among
natural populations. Although the interest in landscape genomics has increased since
this term was coined, studies on this topic remain scarce. Landscape genomics has
become a powerful method to scan and determine the genes responsible for the
complex adaptive evolution of species at population (mostly) and individual (more rarely)
level. This review outlines the sampling strategies, molecular marker types and research
categories in 37 articles published during the first 10 years of this field (i.e., 2007–2016).
We also address major challenges and future directions for landscape genomics. This
review aims to promote interest in conducting additional studies in landscape genomics.

Keywords: adaptive evolution, genetic structure, landscape genomics, molecular ecology, population genetics

INTRODUCTION

Rapid global climate change is an important factor that affects biodiversity (Hoffmann and Sgrò,
2011). Adjusting their distribution range or local adaptation is the usual coping strategy of species
toward rapid climate change (Aitken et al., 2008). Local adaptation requires the species to face
long-term spatial environmental heterogeneity and eventually leads to adaptive differentiation of
phenotypes. These changes might be due to phenotypic plasticity or heritable phenotypic variation.
Exploring the adaptive evolution of species in response to spatial environmental heterogeneity will
be useful in understanding initial adaptive divergence and evolutionary potential of a target species
(Pluess et al., 2016). Landscape genomics is a powerful research field for investigating the adaptive
evolution of species in response to spatial environmental heterogeneity (Vincent et al., 2013).

Joost et al. (2007) proposed landscape genomics as a relatively new discipline that aims to
reveal the relationship between the adaptive genetic imprints in genomes and the environmental
heterogeneity. Different from landscape genetics, landscape genomics requires a sufficient
number of molecular markers to cover the entire genome. Emphasis is placed on adaptive
evolution at the genome level (Miao et al., 2017). Landscape genetics, however, is biased
toward using a relatively small number of molecular markers to reveal the relationship
between environmental factors and the spatial genetic structure of populations (Dionne
et al., 2008; Poelchau and Hamrick, 2012; Manel and Holderegger, 2013). Landscape genomic
studies on many plant and animal species have been recently conducted (Berg et al., 2015;
Manthey and Moyle, 2015; Leamy et al., 2016; Vangestel et al., 2016). These studies have
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achieved considerable progress on understanding of the relative
roles of adaptive and non-adaptive processes in shaping patterns
of genomic variation and the effects of environmental variables
on adaptive differentiation at the genomic level. Although
landscape genomics has been pursued for a decade, the studies,
basic theoretical frameworks, and universal hypotheses in this
field are still scarce. Thus, additional landscape genomic studies
are needed to assist the construction of basic theoretical
frameworks and formulation of universal hypotheses. This review
summarizes the progress of landscape genomic studies such as
conceptual and methodological developments as well as applied
contributions during the previous decade. We then outline
expected future directions in the field and encourage researchers
to participate in this field.

METHODS

By searching the theme “landscape genomics” in the database of
web of science1, and further looking through the related papers
carefully, 37 articles focused on adaptive genetic imprints in
genomes driven by environmental factors were finally selected.
Supplementary Table S1 lists the molecular markers, sampling
strategies, statistical methods, and research categories addressed
in these articles.

SAMPLING STRATEGIES IN LANDSCAPE
GENOMICS

Sampling strategies in landscape genomics are divided into two
major categories: random and stratified. The random sampling
design includes scattered and clustered sampling. In the scattered
sampling design, samples are randomly collected from across the
species distribution range, while in the clustered sampling design,
populations are divided into clusters according to environmental
or genetic factors and samples are randomly taken from each
cluster. A stratified sampling design can be performed to capture
the range of variability across landscape variable(s) of interest.
Thus, this sampling design requires a large amount of biological
and environmental information of a target species. The optimal
sampling scheme will be obtained by model calculation (Manel
et al., 2012). The two sampling strategies mentioned above
can be implemented at the individual or population level. The
advantage of population sampling is more conducive to detect
variation in gene frequency among populations than individual
sampling. The most controversial topic in population sampling
is multiple samples in fewer populations versus fewer samples in
multiple populations. The former strategy is more representative
in landscape genomic studies, but its accuracy in estimating
genetic parameters is often questioned. In population genetics
studies, the minimum sample size of a population should not
be less than 20 individuals, 25–30 individuals are considered to
be more reasonable (Hale et al., 2012). Therefore, it is necessary
to ensure a minimum population sample size in the landscape

1http://www.isiknowledge.com/

genomic studies. Compared to population-based sampling, the
application of individual sampling in landscape genomic studies
is relatively scarce, but nonetheless suitable for clinal populations
or those with unclear population structure (Jones et al., 2013).

MOLECULAR MARKERS IN LANDSCAPE
GENOMICS

Landscape genomic studies require molecular markers that are
sufficiently spread throughout the genome (Balkenhol et al.,
2009). However, most non-model species do not have established
genomic information to appropriately place sufficient markers
across the genome. Therefore, two characteristics, i.e., no
requirement for a priori genome knowledge and a high covering
density in genomes, are indispensable for the use of these
molecular markers in landscape genomics (Yang et al., 2017).

Two types of molecular markers are suitable for landscape
genomic studies. Type-I markers have no DNA sequence
information, such as amplified fragment length polymorphisms,
inter-simple sequence repeats, and start codon targeted
polymorphisms. Type-II markers contain DNA sequence
information, such as single-nucleotide polymorphisms (SNPs).
Type-I markers require low generation cost but have few
defects. Although these type-I markers may allow detecting
loci potentially responsible for adaptation using outlier locus
detection and environmental association analysis (EAA), the
gene function of those loci cannot be easily validated, and thus
might be false-positives. Type-II markers usually display high
scanning density but have higher generation cost than type-I
markers. However, type-II markers exhibit several advantages
because these markers contain DNA sequence information.
This information can help us annotate and map these markers
on the genome. Based on the landscape genomic studies
that we have selected (see Supplementary Table S1), SNP
genotyping was mainly achieved through DNA microarrays.
However, the use of DNA microarrays requires a large amount
of prior gene information (Teng and Xiao, 2009). The recently
developed reduced-representation genome sequencing (RRGS)
is based on next-generation sequencing (NGS), which includes
genotyping by sequencing (Elshire et al., 2011), restricted site
associated DNA (Miller et al., 2007), and specific-locus amplified
fragment sequencing (Sun et al., 2013). RRGS reduces the cost
of sequencing, maintains high coverage of the genome, and
does not require a priori genomic information. Thus, the use
of RRGS is beneficial in landscape genomic research (Brauer
et al., 2016). Most of the RRGS methods are currently based
on Illumina sequencing platforms, which have an advantage
of high accuracy and throughput and a disadvantage of short
reading lengths. Third generation sequencing (TGS), such as
MinION device by Oxford Nanopores and PacBio Sequel by
Pacific BioSciences, has been recently developed to compensate
for the short reading length of NGS. Although TGS maintains
the speed and flux advantages of NGS, this method still exhibits
some problems, such as high cost and error rate, which must
be addressed (Mikheyev and Tin, 2014). In summary, the use
of type-II markers to conduct landscape genomic studies can
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facilitate the indirect validation of loci potentially responsible for
adaptation.

MAJOR RESEARCH CATEGORIES IN
LANDSCAPE GENOMICS

There are a wide variety of questions in ecology and evolution
that can be addressed using a landscape genomic approach.
We group these questions under two major research categories:
(1) quantifying influence of spatial environmental variables on
genomic divergence; (2) uncovering the environmental factors
that shape adaptive genetic variation and the genetic basis of
adaptive change.

QUANTIFYING INFLUENCE OF SPATIAL
ENVIRONMENTAL VARIABLES ON
GENOMIC DIVERGENCE

Isolation by distance (IBD) describes the local accumulation
of genetic differences when dispersal between populations is
geographically restricted (Slatkin, 1993). For IBD, gene flow path
is assumed to be in a linear geographic distance. However, in
natural landscapes, the paths of gene flow between populations
are often non-linear and complex. In fact, populations that have
identical habitats or small distances may also diverge when
intervening landscape features inhibit dispersal between them
(Isolation by Resistance, IBR; McRae, 2006; Ruiz-Gonzalez et al.,
2015). Nevertheless, local genetic adaptation can also reduce gene
flow among natural populations. This adaptive reduction in the
effective rate of gene flow can contribute to a pattern of “isolation
by environment” (IBE; Wang and Summers, 2010; Wang and
Bradburd, 2014; Mosca et al., 2016). A strong pattern of IBE
indicates that divergent selection is maintaining population
differentiation in the face of possible dispersal (Schluter, 1998;
Kawecki and Ebert, 2004). IBE can also arise from divergent
habitat choice or other forms of biased dispersal (Armsworth
and Roughgarden, 2008; Bolnick and Otto, 2013). Therefore,
these different processes affect the spatial distribution of genetic
variation and landscape genetic structure. Recently developed
analytical methods can partition the often confounded patterns
of IBD, IBE, and IBR when explaining genetic divergence across
a landscape (Supplementary Table S1). The basic strategy is to
use IBD as a null hypothesis against which IBE (or IBR) can be
tested. Partial Mantel tests have been widely used in landscape
genomics studies to evaluate the relative influence of different
ecological and evolutionary factors on genetic differentiation.
However, such tests have low statistical power and are prone to
false positives (Guillot and Rousset, 2013). Recently, structural
equation modelling (SEM) (Wang et al., 2013) and multiple
matrix regression with randomization (MMRR) (Wang, 2013)
have been used to quantitatively compare how much genetic
divergence depends on IBD versus IBE (Zhang et al., 2016). In
addition, the BEDASSLE package (Bradburd et al., 2013) is also
used to estimate the relative contributions of IBD and IBE to
genetic differentiation This Bayesian method models the allele

frequencies in a set of populations at a set of unlinked loci as
spatially correlated Gaussian processes, in which the covariance
structure is a decreasing function of both geographic and
ecological distance (Bradburd et al., 2013). In landscape genomic
studies, multivariate statistical models are more appropriate
when multidimensional niches are analyzed to identify ecological
drivers of population genetic variation (Orsini et al., 2013).
Redundancy analysis (RDA) (Legendre and Legendre, 2012)
and canonical correlation analysis (CCA) (Parisod and Christin,
2008; Hecht et al., 2015) are commonly used to estimate the
relative contribution of spatial and environmental variables. The
CCA method can control for demographic effects if spatial
autocorrelation is included in the model design, while RDA and
partial RDA analyses are alternative and robust approaches that
can control for spatial effects while analyzing others (Sork et al.,
2013).

UNCOVERING THE ENVIRONMENTAL
FACTORS THAT SHAPE ADAPTIVE
GENETIC VARIATION AND THE GENETIC
BASIS OF ADAPTIVE CHANGE

Polymorphic sites across species genomes will establish their
adaptive differentiation to acclimatize to the heterogeneous
environment. Landscape genomics attempts to detect these
adaptive loci under selection and reveal potential environmental
drivers of selection by using correlative methods. The detection
of loci responsible for adaptation usually involves two steps.
One is to detect the outlier loci; and the other is to associate
the outlier loci with environment variables, referred to as EAA.
The commonly used methods for detecting the outlier loci
are ARLEQUIN (Excoffier et al., 2009), BAYESCAN (Foll and
Gaggiotti, 2008), FLK (Bonhomme et al., 2010), and spatial
ancestry analysis (SPA) (Yang et al., 2012). ARLEQUIN is applied
to simulate a null distribution of FST values under a hierarchical
island model, which is insensitive to the hierarchically subdivided
population samples or those with a recently shared history.
BAYESCAN is an FST-based model to identify outlier loci
according to Bayesian posterior probability. FLK deals with
variation in effective population size and historical branching
of populations by incorporating a population kinship matrix
into the Lewontin and Krakauer (LK) statistic (Lewontin and
Krakauer, 1973). SPA is a probabilistic model for the spatial
structure of genetic variation that is used to identify loci showing
extreme patterns of spatial differentiation. Compared with the
two FST-based approaches, SPA is particularly sensitive to strong
spatial patterns in allele frequency and works at the individual
level rather than at the population level. These methods are
usually combined to distinguish the selected loci from the neutral
loci and thus effectively reduce the false-positive rate (Wang
et al., 2016). EAA, followed by outlier analysis, will be conducted
to test whether these outlier loci are associated with particular
environmental factors and under adaptive evolution.

The methods for conducting EAA can be divided into
five broadly defined categories, including categorical tests,
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logistic regressions, matrix correlations, general linear models,
and mixed effects models (Rellstab et al., 2015). A first
category contains categorical tests, which compares allele
frequencies of individuals or populations from different types
of environments. The different types of environment are
introduced as categorical variables in parametric or non-
parametric tests. A second category comprises the statistical
methods of logistic regressions, such as SAM, Samβada. The
spatial analysis method (SAM; Joost et al., 2007) is the first
implementation of logistic regression in EAA. SAM can compute
multiple simultaneous univariate logistic regressions to test
for association between allelic frequencies and environmental
variables. However, this approach ignores neutral genetic
structure, possibly leading to high false-positive rates under
various demographic scenarios (De Mita et al., 2013; Frichot
et al., 2013). Nevertheless, an extended version of SAM,
Samβada (Joost et al., 2007) improves the performance of this
method by adding neutral genetic structure as an additional
factor (Rellstab et al., 2015). A third category contains a
linear approach, matrix correlations, in which the effects of
environmental factors and neutral genetic structure on allele
frequencies are simultaneously estimated. The most widely
used methods include a simple Mantel test and the partial
Mantel test (Mantel, 1967). However, variations of the (partial)
Mantel test may circumvent certain bias and autocorrelation
problems (Legendre, 1993; Legendre et al., 2002). A fourth
important category of statistical methods is general linear
models in which a response variable is modeled as a linear
function of some set of explanatory variables. The general
linear model framework can be extended to models with
multivariate response variables to account for the polygenic
architecture of adaptive traits (Rellstab et al., 2015). The
statistical methods include multiple linear regressions and
univariate general linear models (Carl and Kuhn, 2007; Eckert
et al., 2009) and canonical correlations and multivariate linear
regressions, e.g., CCA (ter Braak and Smilauer, 2002; Legendre
and Legendre, 2012) and RDA (Legendre and Legendre, 2012;
Hecht et al., 2015). A fifth important category of statistical
methods comprises the mixed effects models, such as BAYENV
(Coop et al., 2010), LFMMs (Frichot et al., 2013), TASSEL
(Bradbury et al., 2007), and EMMA (Kang et al., 2008).
These approaches provide a unified statistical framework for
controlling for the effects of neutral genetic structure (Rellstab
et al., 2015). For example, BAYENV, based on a Bayesian
generalized linear mixed model, is applied to test the correlation
between allelic frequencies and environmental variables after
correcting for population structure and size (Günther and Coop,
2013). Latent factor mixed models (LFMMs) implemented fast
algorithms using a hierarchical Bayesian mixed model based
on a variant of principal component analysis (PCA), in which
the residual population structure is introduced via unobserved
or latent factors (Frichot et al., 2013; Caye et al., 2016).
In addition, a linear mixed-model method implemented in
TASSEL (Bradbury et al., 2007) is used to identify candidate
loci responsible for adaptation according to the association
between the genotypes and climate variables (Yoder et al., 2014).
Based on linear mixed models, Kang et al. (2008) developed

an efficient mixed-model association (EMMA) method. As
previously mentioned, in order to reduce the false-positive
rate, it is desirable to combine more than two statistical
methods to identify the environment-associated loci (Yang et al.,
2017).

MAJOR CHALLENGES

Although great progress in landscape genomics has been achieved
in the past decade, two major challenges remain to be solved
in the future. One is the presence of false positives, which have
been a major problem in landscape genomics because of the
lack of validation for adaptive loci. Three solutions will help
solve this major challenge. First, robust detection methods must
be developed, and multiple detection methods must be used
to reduce the false-positive rates. Second, type-II markers that
contain DNA sequence information must be selected. Although
type-I markers may allow detecting loci potentially responsible
for adaptation, the gene function of these detected loci are
difficult to be validated. Type-II markers have DNA sequence
information, which can be indirectly validated through the
annotation of gene function. Third, a part of the loci responsible
for adaptation must be validated using gene transfer and
gene knockout technologies. Since most of previous landscape
genomics studies have focused on non-model species, the
detected loci responsible for adaptation do not have functional
verification. Thus, in future, more experiments are needed to
validate the function and adaptive generality of the detecting loci
responsible for adaptation. In addition, most previous studies
have showed great concern on gene differentiation rather than
phenotypic differentiation (Manthey and Moyle, 2015; Di Pierro
et al., 2016). The acquisition of adaptive phenotypic data has
been conducted in a few recent landscape genomic studies (De
Kort et al., 2014; Roschanski et al., 2016). Thus, obtaining
the phenotypic data through common garden experiments
and reciprocal transplant experiments should be considered in
future.

RECOMMENDATIONS FOR FUTURE
RESEARCH

The present landscape genomics mainly addresses two issues,
i.e., influence of spatial environmental variables on genomic
divergence and effects of the environmental factors on adaptive
genetic variation. The following concerns need to be addressed in
landscape genomic studies. (1) Previous studies have determined
the specific genes that undergo adaptive changes and the
environmental factors that contribute to these changes. However,
the specific reason why these particular genes or environmental
variables exhibit these functions remains unknown. (2) Type-II
markers can help us reveal these specific genes. However,
the metabolic pathways of the involved genes and the
adaptive phenotypes controlled by these genes need to be
identified. (3) Regional species in extreme environments usually
establish some convergent adaptive changes in their genes or
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phenotypes. However, most regional species not living in extreme
environments have various adaptive differentiations. Thus, the
commonalities behind these diverse adaptive differentiations
must be determined. (4) The distribution range of species
and their ability to respond to climate change largely depend
on their landscape adaptability, which is usually determined
by the potential adaptive differentiation of the genome and
the gene dispersal ability of the species. Thus, a landscape
adaptation index must be established to measure the adaptability
of species. In summary, landscape genomics is an efficient
method to study the adaptive evolution of species. We hope
that this review of studies on landscape genomics over the
past 10 years will assist in promoting future research in this
field.
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Geographic Information Systems (GIS) are becoming increasingly popular in the context

of molecular ecology and conservation biology thanks to their display options efficiency,

flexibility and management of geodata. Indeed, spatial data for wildlife and livestock

species is becoming a trend with many researchers publishing genomic data that is

specifically suitable for landscape studies. GIS uniquely reveal the possibility to overlay

genetic information with environmental data and, as such, allow us to locate and analyze

genetic boundaries of various plant and animal species or to study gene-environment

associations (GEA). This means that, using GIS, we can potentially identify the genetic

bases of species adaptation to particular geographic conditions or to climate change.

However, many biologists are not familiar with the use of GIS and underlying concepts

and thus experience difficulties in finding relevant information and instructions on how to

use them. In this paper, we illustrate the power of free and open source GIS approaches

and provide essential information for their successful application in molecular ecology.

First, we introduce key concepts related to GIS that are too often overlooked in the

literature, for example coordinate systems, GPS accuracy and scale. We then provide an

overview of the most employed open-source GIS-related software, file formats and refer

to major environmental databases. We also reconsider sampling strategies as high costs

of Next Generation Sequencing (NGS) data currently diminish the number of samples

that can be sequenced per location. Thereafter, we detail methods of data exploration

and spatial statistics suited for the analysis of large genetic datasets. Finally, we provide

suggestions to properly edit maps and to make them as comprehensive as possible,

either manually or trough programming languages.

Keywords: Geographic Information Systems, spatial analysis, landscape genetics, gene-environment

associations, open-source software, geographic map

INTRODUCTION

Geographic Information Systems (GIS) are powerful tools to be used in the context of
evolutionary studies. They are designed to store, handle, display, and analyze any kind of data
representing objects (individuals, populations, areas, etc.) characterized by geographic coordinates
(X = longitude and Y = latitude). With the help of GIS, geographic information can be
combined with for example phenotype, genotype, or environmental data to display the spatial
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distribution of genetic variants and to visualize factors
influencing spatial evolutionary processes. The main advantage
of GIS in evolutionary biology is to easily explore and display
genetic information (neutral and adaptive genetic variation, gene
flow) at multiple scales, and to overlay this information with
physical barriers, land cover or topographic maps in order to
generate subsequent analyses regarding the location and causes
of genetic boundaries (Epperson, 2003; Manel and Holderegger,
2013). GIS have also proven useful in adaptive landscape
genomics or gene-environment associations (GEA) studies, in
the context of which they enable the retrieval of environmental
variables at sampling locations. The integration of GIS with
approaches from landscape ecology and population genetics,
defined as landscape genetics by Manel et al. (2003), also has
important implications for conservation biology (Petren, 2013).

However, we faced a paradigm change a few years ago with
the advent of Next Generation Sequencing (NGS) data, whose
use requires rethinking study pipelines. First, NGS currently
presents an economic constraint as it is costly compared with
genetic markers produced so far (e.g., microsatellites and AFLP).
Consequently, we are unable to fully sequence several hundreds
of individuals, requiring a careful selection of the samples to
analyze. Appropriate sampling is thus key to achieve a precise
and continuous evaluation of environment-driven selection on
the genome (see Box 1; Manel et al., 2012; Hand et al., 2015;
Rellstab et al., 2015). In addition, NGS datasets are large and
must be treated differently to be efficient and to avoid computer
memory overload. Finally, NGS data require new tools to display
and analyze spatial patterns that are more computationally
demanding.

The successful application of GIS tools is not intuitive for
many biologists who are not familiar with the concepts relating
GIS and the use of GIS software. Indeed, a large diversity
of GIS tools is available and the difficulty of finding relevant
information and instructions is an obstacle for non-expert
users. To date, few scientific articles have defined the role of
GIS in molecular ecology. For instance, Kozak et al. (2008)
review the fast development of GIS-based environmental data
and advocate for their usage as an alternative to unprecise
proxies such as latitude of distance between populations. Another
review by Joost et al. (2010) provided guidelines for GIS use in
livestock genetics and enumerate the advantages of integrating
data in a GIS environment. More recently, Rogers and Staub
(2013) outlined spatial analyses and GIS methods in honey bees
research. Their review is not specific to bees but instead aim to
intensify the exploration of the spatial component of studies in
ecology and related disciplines. Lastly, Balkenhol et al. (2015)
published a book detailing the concepts and analytical steps
of landscape genetics studies, such as sampling design, spatial
analysis and environmental datasets. Also, GIS are exploited in
many unrelated domains and it is thus difficult to find resources
specifically targeted at biologists. The bases of GIS practices are
readily found in freely available Massive Open Online Courses
(MOOCs), such as the Coursera platform (Coursera, 2012)
currently offering six courses on GIS. Yet, these reviews do not
tackle the challenges brought by large genetic and environmental
datasets, and fail to review the recurrent caveats related to spatial

research. In this paper, we highlight the usefulness of GIS in
population and landscape genomics and provide key information
for their successful application to these fields.

GEOGRAPHIC COORDINATES

Geographic coordinates of samples constitute an invaluable
source of information, ranging from the display of their
spatial distribution to the retrieval of environmental variables.
Whenever doing fieldwork, using a GPS is the best way to record
the coordinates of samples. As such, we strongly recommend
recording the location of each sample, instead of the location
of the centroid of a population for instance. Firstly, it allows
for a more precise retrieval of environmental values. Secondly,
attributing the same location to several samples invokes pseudo-
replication, a statistical bias that must be addressed in further
analysis. Thirdly, coordinates of nearby individuals allow for a
proper measurement of dispersal, using for example pairwise
genetic relationship with distance. Regarding GPS devices,
standard GPS, and to a lesser extent smartphones, are accurate
enough in most cases. However, more precise devices, such
as DGPS (differential GPS), are recommended for local scale
studies in which samples are located less than a couple of meters
apart: the precision of the location has to stay within the spatial
resolution of the grain.

When GPS coordinates are not recorded, it is still possible to
approximate sample locations with the help of satellite images
or by encoding the address of the location (georeferencing
or geocoding), although with a lower accuracy. In the former
case, creating a new vector layer overlaid on a satellite image
or an online map (see next Section) allows the recovering of
samples coordinates from an approximately known location (e.g.,
a crossroad, a tree, a river; Docs.QGIS, 2014). For the latter case,
plugins have been developed to read text delimited file containing
addresses (e.g., your own house address) that you want to locate
(for example the MMQGIS plugin in QGIS, Mangomap, 2012;
MMQGIS Plugin, 2012). It must be noted that each line must
contain the address, city, state and country.

Another essential consideration is choosing the relevant
coordinate reference system. Indeed, GPS devices display the
coordinates of a point in latitude and longitude values, usually in
the World Geodetic System (WGS84). This is a global reference
system in which the Earth is represented by an ellipsoid, and
every position on the surface is defined by two angles at the center
of the Earth: the latitude and longitude. However, projected
systems for which a geographical location is converted from
the ellipsoid (distances expressed in degrees) to a corresponding
location on a two-dimensional surface (x and y expressed in
meters) are preferred for analyses. It is important to note
that, although global systems covering the whole planet exist,
each country or region has its own coordinate system that is
locally more accurate than the global system. Where no national
projected system exists, it is still possible to use the Universal
Transverse Mercator (UTM) coordinate system, a projected
coordinate system covering the entire globe and dividing it into
sixty 6◦-wide longitudinal zones (Dmap, 1993). Even though
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GIS software usually deal with different projection systems, the
manual reprojection of all layers into the same local projection
system is recommended to avoid potential incompatibilities (see
next section). However, different GIS may not exactly use the
same name for a coordinate system. Therefore, to facilitate
the identification of coordinate systems across the diversity of
GIS software, the EPSG (European Petroleum Survey Group)
database (EPSG, 1985) is a widely used database referencing all
projected coordinate systems, implemented in every GIS and
providing themwith a unique ID (Maling, 1992), e.g., EPSG: 4326
correspond to the WGS84 reference system.

SOFTWARE

There are many GIS software, with different functions and aimed
at various audiences. Universal GIS software do not exist and,
therefore, the choice is difficult for a beginner. Today, one of
the most user-friendly GIS is QGIS (QGIS Development Team,
2015). It is ideal to explore geodata, able to read and convert
a wide variety of input formats and suitable to produce high-
quality maps. Note that QGIS, and all other GIS mentioned
in this paper, is free and open source. Open source GIS can
indeed perform the same tasks as their commercial counterparts,
and include the opportunity to understand and improve GIS
algorithms or enable a better collaboration as there is no problem
related to license access (Ertz et al., 2014). In addition, a large
community exists to support development efforts of open source
GIS, and regularly creates extensions to add functions and
improvements to the software. Forums and tutorial websites are
also flourishing for newcomers (http://gis.stackexchange.com/,
http://www.qgistutorials.com/, Sutton et al., 2009).

On the other hand, most analysis in GIS are not easily
replicable and, therefore, programming languages such as R
can be more efficient. R has been successfully used as a GIS
for a long time and several packages and reviews have been
published (Rodriguez-Sanchez, 2013; Brunsdon and Comber,
2015). Among them, we can mention rgdal for the importation of
geodata (Bivand et al., 2016),GISTools for general GIS operations
(Brunsdon and Chen, 2014), rasters for their display (Hijmans
and van Etten, 2015), spdep, and spatstat for spatial statistics and
analysis (Baddeley and Turner, 2005; Bivand and Piras, 2015).
While these packages are relatively efficient to import, display
large rasters and vectors, customization options are more limited
than in dedicated GIS.

MAIN DATASET

The first step in a GIS project is usually to import a vector
file containing samples coordinates. QGIS has a plugin to easily
import GPS coordinates, either directly from a GPS device or
through vector files, such as .kml or .gpx (Docs.QGIS, 2013).
These formats are usually converted to shapefiles (.shp) due to
the easier management of their attributes and projection system
associated with vector units. Delimited text files (e.g., tabulator—
tab—or space delimited) can be easily opened in QGIS as well
and then be transformed into shapefiles. When opening a text

file using “Add delimited text layer,” QGIS should recognize
automatically the delimiter used and the columns of coordinates
(X Y, Latitude Longitude) (QGIStutorials, 2014). However, such
delimited text files cannot be transformed to polygons or lines.
In this case, one should already have a shapefile incorporating
lines or polygons to which the text table can be joined. To do
so, the shapefile and the text table should have the same column
of unique IDs. When clicking on the properties of the shapefile,
an option is proposed to join additional tables of attributes
(QGIStutorial, 2014). As mentioned in the previous section, it
is recommended to project all layers in the same coordinate
system. In QGIS, this is done by right-clicking on the layer and by
changing the coordinate system in the “save as” option. The newly
projected layer will then be automatically loaded to the project.
See Rogers and Staub (2013) for a more extensive review of the
basic tasks in QGIS.

BACKGROUND DATASET

The second step is to add one or more background layer(s) to
constitute the geographic context, either from raster data (see
next section) or from an online map (Google, Bing, Open Street
Map). The OpenLayer plugin in QGIS allows the addition of a
background base-map to the QGIS interface (QGIS workshop,
2013). When using raster layers such as Elevation data or climatic
variables, adding a semi-transparent shaded relief will enhance
the contrast and reveal the topography. To this end, QGIS has
a Terrain analysis module in which a hill-shade layer can be
computed from a Digital Elevation Model (DEM, i.e., a matrix
of elevation data). Then, the transparency of the layer can be
adjusted in its properties. In addition, it is advisable to cut rasters
and vectors to the size of the study area using the clipper tool to
facilitate their display and reduce computation time. Note that
the succession of layers in the main frame depends on the order
of layers shown on the left panel of the application.

ENVIRONMENTAL AND LANDSCAPE
VARIABLES

Environmental datasets have considerably evolved and represent
new opportunities for the identification of environmental drivers
of adaptation. One of the main applications of GIS software
in landscape genomics is to extract values of environmental
variables at the exact location where samples have been collected,
or from the surrounding area by means of polygons representing
a buffer, a forest, or a specific land cover class for instance. As
databases containing georeferenced environmental variables are
numerous, we propose a list of the 10 most important publicly
accessible databases in Table 1 (A more extensive list is proposed
in Appendix 1, Supplementary Material). Raster environmental
data are often delivered in geotiff (.tif) or Band Interleaved by
Line (.bil) formats, similar to satellite images but containing
only one layer of information (i.e., Temperature, Precipitation
etc.). Regarding climate datasets, many studies rely on variables
interpolated at large geographical scales on the basis of data
provided by weather stations and distributed across territories,
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TABLE 1 | Ten main public sources of environmental data (URLs: consulted on June 10, 2016).

Name URL Format Observation

USGS Earth Explorer http://earthexplorer.usgs.gov/ Raster Remote sensing data (Aerial images, DEMs, infrared images)

WorldClim http://www.worldclim.org/ Raster Climate data (past, current and future)

Diva GIS http://www.diva-gis.org/Data Raster, Vector Global climate data, biodiversity and crop collection data

Sentinel Satellite Data https://scihub.copernicus.eu/dhus Raster 10-m resolution satellite data Sentinel 2 data with 11 spectral bands,

Synthetic aperture radar

Open Street Map https://www.openstreetmap.org Vector Crowd sourced vector data. (Road network, land use, buildings etc.)

Global Biodiversity

Information Facility

http://www.gbif.org/ Vector Information on biodiversity of 1.6 million species, collected over three

centuries

Map of Life http://mol.org/ Vector Species range map

UNEP http://geodata.grid.unep.ch/ Vector Data on environment, climate, emissions

FAO http://www.fao.org/geonetwork/srv/en/main.home Vector Database containing inter-disciplinary information about biodiversity

Worldwide Global

Forest Change

https://earthenginepartners.appspot.com/science-

2013-global-forest

Raster Time-series analysis of Landsat images characterizing forest extent

and change

FIGURE 1 | Example of spatial statistic measurement in GeoDa. Results from global and local spatial autocorrelation (SA) were computed on Annual

Precipitation at sampling locations of Ugandan cattle (Stucki, 2014). Annual Precipitation was extracted from the WorldClim dataset. In GeoDa, a weight file was

created using the 10 nearest neighbors before computing spatial autocorrelation. Nine hundred ninety-nine permutations were performed to assess the significance of

both SA measurements. The scatter plot of Global SA (A), measured by the slope of the regression (0.57) displays the standardized precipitation values of each point

on the X axis and standardized mean precipitation values of their 10 nearest neighbors on the Y axis. The scatterplot shows a positive correlation between most

individuals and their neighbors. In other words, when precipitation is high (low) at a given location, close surrounding locations are more likely to experience high (low)

precipitation as well. This positive correlation between neighboring locations is the translation of a clustering of values. On the other hand, significant local SA

coefficients (B) are categorized (C) according to the 4 quadrants of the Moran’s I plot (A). In contrary to global SA, local SA indicates the location of positive SA or

clustering (High-High–A2, Low-Low–A3), and negative SA or spatial outliers (High-Low–A1, Low-High–A4). Non-significant local SA coefficients are displayed in white.

such as the WorldClim dataset (Hijmans et al., 2005). These
data are often delivered as continuous grids and their spatial
resolution (i.e., area covered by a pixel) typically varies between
1 and 10 km2. For more local or regional databases, however,
national agencies are the most valuable sources (Box 1).

Alternatively or additionally, environmental variables can be
computed from DEMs, and used as proxies to relevant ecological
features (Kozak et al., 2008; Manel et al., 2010; Leempoel et al.,
2015). DEMs are available on Earth Explorer (Earth Explorer,
2016) and come in formats such as geotiff or SAGA Grids
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BOX 1 | Sampling design and scale.

Sampling design must be carefully chosen depending on the ecological scale of study, i.e., the spatial resolution and the extent of the area under study, and economic

constraints. One important way of evaluating sampling strategies is to design them in a GIS environment to guarantee spatial randomness, representativeness or a

constrained stratification of the sampling along environmental gradients among others.

Various optimized sampling strategies have been proposed and reviewed in the literature (Schwartz et al., 2009; Manel et al., 2012; Balkenhol et al., 2015; Rellstab

et al., 2015). However, and regardless of the design chosen, one must consider sampling density and decide how many individuals will be sampled and then

sequenced per location (or population). Indeed, the recent availability of NGS data implies to consider sub-sampling strategies for economic reasons. For example,

a sub-sampling procedure using a hierarchical clustering can be applied in order to ensure a regular cover of both environmental and physical spaces (Stucki, 2014).

For the former, stratified sampling techniques should be used over a range of climatic variables, previously filtered using a PCA. For the latter, a clustering index is

minimized to ensure spatial spread. To ensure the representativeness of the entire area, the sampling can also be achieved using grid cells (see Figure 2). On the

other hand, it is important to understand that landscape and population genomic sampling designs are difficult to reconcile (Joost et al., 2013). Indeed, sampling a

small number of populations does not necessarily allow estimating changes in frequency along an environmental gradient. Conversely, sampling regularly along an

environmental gradient may turn the assignment of individuals to populations more difficult. However, as pointed out by De Mita et al. (2013), for population genetics

studies it is preferable to sample a high number of populations with few samples rather than a small number of populations with many samples. In addition, it is better

to concentrate the sampling in a smaller area in order to obtain a greater density and higher statistical power (Joost et al., 2010).

Defining a scale of study also raises important questions regarding the relevance of environmental variables used. Indeed, when integrating different datasets (e.g.,

environmental, topographic, genetic), one must be aware that the spatial resolution of the raster data has to match the sampling density, and this is often not the

case. Recently developed satellite imagery or DEMs show a fine resolution and a high accuracy, but the advantage of using high resolution data compared to data

at coarser resolution remains under-studied (Levin, 1992; Marceau and Hay, 1999; Wilson and Gallant, 2000; Cavazzi et al., 2013). For example, while intuitively a

fine resolution may be ideal, it may hold an excess of details and generate too much noise. Contrastingly, a too coarse resolution only shows generalized properties

of the landscape and can have little explanatory power (Cavazzi et al., 2013). On the other hand, when the spatial resolution of the variable is too coarse, nearby

samples will retrieve their environmental values from the same pixels (i.e., pseudo-replicates), thus inflating autocorrelation. One solution to this problem is to compute

variables at multiple resolutions (Pradervand et al., 2014; Leempoel et al., 2015).

(.sgrd). We recommend not using text formats for grids (such as
.asc or .xyz) since DEMs resolution has dramatically increased
over the years, making these formats slow and heavy. The
most common use of DEMs in ecology consists in retrieving
altitude or computing primary terrain attributes (i.e., slope,
orientation and curvature; Guisan and Zimmermann, 2000;
Wilson and Gallant, 2000; Kozak et al., 2008; Manel et al., 2010).
However, we recommend going beyond the traditional use of
DEMs as a diversity of variables can be computed, like e.g.,
solar radiation, morphometric indices or hydrological variables
(Leempoel et al., 2015). The treatment of DEMs and the
production of topographic variables can be processed in software
like SAGA GIS (SAGA GIS, 2004; Conrad et al., 2015) or GRASS
GIS, now included in QGIS. SAGA GIS is the most DEM-
oriented GIS to date and can compute a large panel of derived
variables. It is also easily scriptable both using the command line
or the R package RSAGA (Brenning, 2008), although the former
is faster.

Satellite images covering the whole surface of the globe are also
available through Earth Explorer and can be used e.g., to produce
land cover maps. Most satellite sensors provide images with more
than the 3 visible “colors,” or bands, and it is thus the choice of the
user to decide which bands to attribute to color channels (Red,
Green and Blue). For example, by assigning the infrared band
to the red channel and green and blue bands to their respective
channels, one can easily identify trees or forests against water,
fields or naked soils because plants reflect infrared wavelengths
more than other land cover types. This process, the supervised
classification of remote sensing data (satellite and aerial images,
radar, etc.), can be operated in Opticks (Opticks, 2001) or in
SAGA GIS.

Finally, vector databases, such as Openstreetmap (OSM)
(OpenStreetMap, 2004), are precious to recover road networks,
rivers, watershed boundaries, or landuse. OSM data can also

be easily accessed through GeoFabrik (GeoFabrik, 2011) where
cities or countries are already extracted. Note however that OSM
data and most tiled web-maps are provided in Pseudo-Mercator
projection (EPSG: 3857).

It is worth mentioning that in GEA studies, using a wide range
of environmental variables often implies redundancy between
these variables. However, statistical analyses require independent
variables and, for this reason, it is important to perform multi-
collinearity analysis (e.g.,) on the set of environmental variables,
to understand which variables are highly correlated (Dobson
and Barnett, 2008; Fischer et al., 2013). Such collinearity can be
detected by performing a PCA, by using Variance Inflation Factor
(VIF) or calculating pairwise correlation coefficients between
pairs of variables, and then removing randomly one of the two
variables from a pair that shows high correlation. See Rellstab
et al. (2015) for a review of these methods. However, bear in
mind that environmental variables, in particular DEM-derived
ones, may not have a normal distribution. Variables should thus
be transformed or non-parametric tests should be used to test
for correlations (for example Spearman ranks instead of Pearson
correlation coefficients).

SPATIAL ANALYSIS

Numerous spatial analysis techniques have been developed to
address issues related to spatial data (Fortin and Dale, 2005).
Here, we focus on exploratory spatial data analysis (ESDA) and
spatial statistics given their central role in molecular ecology. For
other spatial analysis methods, we suggest to have a look at the
Geospatial analysis guide (Smith et al., 2005) and at the spatial
analysis guide for ecologists (Fortin and Dale, 2005).

Evolutionary biology can benefit from ESDA (Joost, 2006), an
interactive approach allowing the user to explore and analyze
a dataset dynamically and in real-time through a combination
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of various tools for data representation (Anselin, 1994). For
example, maps can be used to display the position of samples,
histograms and boxplots to evaluate the distribution of attribute
values and Moran’s scatter plot or conditional plots to analyze
the relationship between the various variables. ESDA can also be
useful for example to localize samples in areas showing extreme
climatic conditions (outliers), to highlight regions where samples
are highly correlated (clusters), or pinpoint populations with a
low genetic diversity. A powerful ESDA tool is the open-source
software GeoDa (GeoDa, 2005) that allows the exploration and
spatial analysis of vector data (Anselin et al., 2006). GeoDa
notably offers the possibility to create various maps (quantile,
equal intervals, etc.) and to simultaneously analyze attributes
with the help of other graphs.

Spatial autocorrelation (i.e., the degree of dependence among
observations in a geographic space; SA) is often overlooked
in ecological and evolutionary studies despite the fact that
many environmental or biological characteristics show spatial
dependence among observations, due to intrinsic process of
dispersal and mating (Anselin, 1998; Hall and Beissinger, 2014).
It is measured by comparing individual values of a defined
variable with themean of that variable in a defined neighborhood.
By doing so for each sample, SA measures the degree of values
similarities with location similarity. It is thus essential to measure
SA in studies involving spatial data, not only because it is a
natural phenomenon but also because it violates the assumption
of independence required by standard statistical tests, such as
student tests or regressions (Legendre, 1993; Wagner and Fortin,
2005). For example, Moran’s I, a classic spatial autocorrelation
statistic, can be used to estimate the scale/distance of gene
flow in the landscape (Hall and Beissinger, 2014). In addition,
Local Indicators of Spatial Association (LISA; Anselin, 1995)
allows to identify and localize spatial autocorrelation patterns
and study the spatial relationship between genetic markers and
environmental features (Colli et al., 2014; Stucki, 2014). See
Figure 1 for an example. While GeoDa is better to visualize the
SA of one variable, it cannot be automated to calculate it for
many. For a fast computation of both global and local SA on
genetic data, Sambada is handful (Stucki et al., 2016). It can be
easily programmed to compute SA onmillions of genetic markers
and so with different neighborhood sizes and weighting schemes.
The decrease of SA with distance can thus be measured using
different lags and comparisons can be made between neutral and
selected loci. The R package spdep can perform similar analyses
(Bivand and Piras, 2015).

SPATIAL DATA REPRESENTATION

Maps illustrating the results of an analysis are often more
powerful than tables to transmit a result or an idea. However,
the creation of efficient maps requires a reflection phase about
the graphical representation of the results. Indeed, maps can be
too complex to read when too detailed or may be uninformative
when too simple. Creating a map first requires choosing
an appropriate display type. Traditional choropleth map, in
which the entities are colored according to a scale based on
the value of the attribute of interest, can be used in many
situations. For example, to represent the membership coefficient

of individuals to two populations distributed over a landscape
(e.g., as frequently done for population genetic analyses of
admixture), one can use a gradient passing through a neutral hue
to contrast the two parts of the distribution (i.e., the membership
of each individual to one or the other population) (Figure 2).
Although most GIS provide colored gradients, it can be useful
to understand how to obtain an appropriate color scheme using
Color Brewer (Color Brewer 2, 2001). Alternatively, if individuals
are grouped into more than two populations, bar charts can
be more appropriate. Proportional circles can also be used, for
example to indicate absolute numbers of individuals sampled in
each population.

Background layers can then be added to provide more
information on the geographic context, such as an aerial image or
a DEM to situate the samples. This can potentially be combined
with contour lines to compare the elevation from one location to
another. One can also highlight the study area by darkening or
de-saturating the rest of the map. Regarding points representing
individuals or populations, simple shapes should be preferred.
Labels should be readable and discarded if not.

Each map must then be edited before being published. Some
elements must go along with a map: a legend (to identify the
geographical units, or the different statistical classes used) and
a scale. In the legend, the message should be simplified by
regrouping categories, reducing the number of decimal places
and removing unnecessary layers. Furthermore, a frame in
a corner of the map, representing the region at a broader
geographic scale (zoom out), is useful to situate the study area.
Maps should be exported preferentially in .pdf format to keep
the vector properties for potential future editions. We provide an
example in Figure 2.

Lastly, GIS software are not particularly easy to use when
it comes to producing maps iteratively. For example, creating
maps of genetic markers under selection used to be feasible
manually when the number of genetic markers tested was small.
On the contrary, most GEA studies today use hundreds to
millions of markers deriving from genomic analyses, and with
many of them showing signatures of selection. In such cases,
manually producing maps is neither smart nor informative.
Computing software such as R should thus be favored with
packages such as Rgdal and Rasters being very useful and
sufficient to import genetic and geodata and to produce
basic maps (Hijmans and van Etten, 2015; Bivand et al.,
2016).

PERSPECTIVE

GIS are powerful tools for molecular ecologists but remain
too often underexploited and misused, mainly because of the
multitude of GIS software and databases available. We have
presented in this paper useful guidelines making it possible
for any GIS beginner to appropriate basic functions, to find
specific learning resources for biologists, and we proposed a
brief state of the art for the use of GIS in biology. However,
it is intriguing that, in the big data era, geodatabases are not
more frequently used to store and access genetic datasets. They
would also speed up queries and reduce disk usage. There are
in fact few examples of transformation of NGS data in spatial
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FIGURE 2 | Coefficient of membership to a genetic group of Ugandan Cattles (Stucki, 2014). Using the software admixture (Alexander et al., 2009), the most

likely number of populations was found to be 2. In this case, it is possible to display the membership coefficient of each individual to one of the two populations. To do

so, a gradient obtained from http://colorbrewer2.org is passing through a neutral hue to contrast the two populations. The order of layers in the legend is the same as

in the map. In the background, a grid layer of probability of presence of a parasite is shown. A semi-transparent shaded relief is also displayed to reveal the

topography. Lakes and international boundaries are overlaid on these raster layers. Ugandan boundaries are highlighted by darkening surrounding countries.

databases because of the high technicality of such task (Holl and
Plum, 2009; Joost and Kalbermatten, 2010; Paila et al., 2013;
Nandal et al., 2016; Piry et al., 2016). So far, the most compelling
tool is the recently developed open source system TheSNPpit
(Groeneveld and Lichtenberg, 2016). It allows for an integration
of large genetic datasets in a PostgreSQL environment, which
is also the backend of most GIS databases. Interestingly, this
tool was mainly developed for breeding programs that already
deal with thousands of individuals and millions of SNPs. A
game changer that will most likely hit molecular biology in the
future.
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LIST OF TERMS

Raster: Regular grids of pixels that describe continuous
phenomena, retaining information such as color (for aerial
images), elevation, temperature.

Vector: Points, lines or polygons whose nodes are defined by
geographical coordinates and describe discrete phenomenon
such as borders, rivers, catchment areas. Vectors are usually
stored in Shapefiles (.shp and associated files).

Datum: The datum defines the 3-dimensional sphere used
to approximate the earth. It provides a frame of reference
to measure coordinates in both geographic and projected
coordinate systems.

Geographic Coordinate System: A GCS gives the coordinates
(i.e., latitude and longitude) of a point as measured from the
angles to the center of a defined sphere and meridian.

Projected Coordinate system: A PCS is a projection of the
sphere on a flat, two-dimensional surface. Its coordinates (X
and Y) are thus consistent and equally spaced.

DEM: Digital Elevation Models are grids of elevation data. Each
pixel of that grid is spaced at regular horizontal intervals and
contains one value of elevation.

Grain: The grain is the size of a pixel, the smallest unit on a grid.
A small grain corresponds to a high spatial resolution.

Extent: The extent is the size of the study area.
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The study of epigenomic variation at the landscape-level in plants may add important
insight to studies of adaptive variation. A major goal of landscape genomic studies is
to identify genomic regions contributing to adaptive variation across the landscape.
Heritable variation in epigenetic marks, resulting in transgenerational plasticity, can
influence fitness-related traits. Epigenetic marks are influenced by the genome, the
environment, and their interaction, and can be inherited independently of the genome.
Thus, epigenomic variation likely influences the heritability of many adaptive traits,
but the extent of this influence remains largely unknown. Here, we summarize the
relevance of epigenetic inheritance to ecological and evolutionary processes, and
review the literature on landscape-level patterns of epigenetic variation. Landscape-
level patterns of epigenomic variation in plants generally show greater levels of
isolation by distance and isolation by environment then is found for the genome, but
the causes of these patterns are not yet clear. Linkage between the environment
and epigenomic variation has been clearly shown within a single generation, but
demonstrating transgenerational inheritance requires more complex breeding and/or
experimental designs. Transgenerational epigenetic variation may alter the interpretation
of landscape genomic studies that rely upon phenotypic analyses, but should have
less influence on landscape genomic approaches that rely upon outlier analyses
or genome–environment associations. We suggest that multi-generation common
garden experiments conducted across multiple environments will allow researchers to
understand which parts of the epigenome are inherited, as well as to parse out the
relative contribution of heritable epigenetic variation to the phenotype.

Keywords: epigenetics, transgenerational plasticity, landscape genomics, adaptation, epigenome, phenotype

INTRODUCTION

Understanding the ecological and evolutionary processes governing landscape patterns of genetic
diversity and adaptive variation is important to predicting and managing the impacts of climate
change on plant species distributions and function (Sork et al., 2013). Genomic, phenotypic, and
environmental data are used to disentangle genetic and environmental influences on the phenotype
and understand the distribution of adaptive variation among natural populations (Barrett and
Hoekstra, 2011; Korte and Farlow, 2013; Lepais and Bacles, 2014; Rellstab et al., 2015). Evidence
of adaptive differences across environmental gradients is common, but not universal (Sexton et al.,
2014). There is increasing recognition that the inclusion of epigenetic-based transgenerational
plasticity is likely to improve our understanding of adaptive phenotypic variation across the
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landscape (e.g., Cushman, 2014; Verhoeven et al., 2016).
Here, we summarize the relevance of epigenetic inheritance to
ecological and evolutionary processes, and review the literature
on landscape-level patterns of epigenetic variation (both
transgenerational and not). Then, we discuss the implications of
transgenerational epigenetic variation for various approaches to
landscape genomics. Finally, we discuss designs that can partition
the landscape distribution of adaptive genetic and epigenetic
variation.

Epigenetic modifications are changes in phenotype that are
mediated by the regulation of gene expression rather than
alterations in the DNA sequence. Epigenetic modifications
may be reset within an organism’s lifespan or during meiosis,
or they may be passed to offspring (Richards, 2006). These
modifications can be inherited both maternally and paternally,
via mechanisms such as DNA methylation, histone modification,
and RNAi (Rapp and Wendel, 2005). The evolutionary relevance
of transgenerational plasticity rests upon whether responses are
adaptive and whether there is heritable genetic or epigenetic
variation for the epigenetic modification (Day and Bonduriansky,
2011; Herman et al., 2014).

Approaches in Landscape-level
Investigations of Genomic Variation
Landscape-level investigations of patterns of genomic variation
in plants have examined both adaptive and neutral loci
and have employed a wide variety of methods. Genomic
regions influencing adaptive traits are routinely discovered
via genome–phenotype associations, phenotype-free approaches,
and common gardens (Sork et al., 2013; Rellstab et al., 2015).
Genome-wide association studies (GWAS) identify genotype–
phenotype associations and can be done using plants grown in
common gardens or from natural populations (e.g., Ingvarsson
and Street, 2011). Phenotype-free approaches use genomic
information to detect signatures of selection. Examples of these
include outlier and environmental association analyses (EAA)
(Rellstab et al., 2015). Outlier analyses detect loci that show
evidence of strong selection, relative to the bulk of assayed loci
that show effects of only population structure and drift. EAA
refers to a number of statistical methods for detecting association
between environmental variables and particular loci (Rellstab
et al., 2015). Finally, growing multiple genotypes within the
same common garden environment allows the genetic basis of
a phenotype to be identified. When the same genotype is grown
in multiple common gardens, the approach can also be used to
examine the effect of environment on phenotype (Clausen et al.,
1948).

Landscape Genomic Patterns and
Missing Heritability in Plants
Examination of gene flow within a species, based on neutral
markers, typically shows isolation by distance (IBD) and/or
isolation by environment (IBE). Genetic drift is the primary
driver of IBD, where genetic differentiation increases with
spatial distance (Wright, 1943; Charlesworth et al., 2003).
IBE is influenced more by selection than is IBD, with

genetic differentiation increasing with environmental distance
(Bradburd et al., 2013; Wang and Bradburd, 2014). A review by
Sexton et al. (2014) found both IBD and IBE were drivers of
molecular genetic variation in natural plant populations, with
IBD being more common than IBE.

Experiments combining an assessment of adaptive traits,
molecular genetic loci underlying traits, genetic correlations,
and gene flow barriers (distance, timing, and selection against
immigrants) have thus far provided the most mechanistic
understanding of landscape-level patterns of genetic variation
(Lepais and Bacles, 2014). Often the realized heritability of
populations detected in common garden and/or quantitative
genetic designs cannot be fully explained by the loci detected
in genomic approaches. The missing heritability problem
can potentially be explained by a failure to detect loci of
small effect or epistatic interactions among loci, but inherited
(transgenerational) epigenetic variation is likely to be another
source of the so-called missing heritability (Goldstein, 2009;
Furrow et al., 2011). Epigenetic variation thus has potential
implications for landscape-level adaptation.

Ecological and Evolutionary Relevance
of Epigenetic Inheritance
Initial population-level work studying epigenetic inheritance
has demonstrated the substantial impacts of epigenetic factors
on phenotypic variation in traits such as floral symmetry
and defense against herbivores and pathogens (Cubas et al.,
1999; reviews in Kalisz and Purugganan, 2004; Herman and
Sultan, 2011; Holeski et al., 2012). Most investigations of the
adaptive role of epigenetic modification have focused on DNA
methylation patterns (Cervera et al., 2002; Verhoeven et al.,
2016). Use of epiRILs, recombinant inbred lines that differ
primarily in epigenetic status, in Arabidopsis thaliana, revealed
epigenetic quantitative trait loci that account for 60–90% of
the heritability in two ecologically relevant traits, flowering
time and primary root length (Cortijo et al., 2014). These
lines of research have led to the suggestion that heritable
epigenetic variation could be the source of “missing heritability”
not identified by QTL and GWAS studies (Bonduriansky,
2012).

Epigenetic-based transgenerational inheritance is predicted to
have particular relevance for evolution in scenarios in which
genetic variation alone may not provide sufficient trait variation
to result in a robust response to selection (Jablonka and
Raz, 2009). These scenarios might include: rapidly changing
environments, such as those predicted by climate change models;
species with low genetic variation due to asexual reproduction
or founder effects; and organisms with long generation times
(Bossdorf et al., 2008; Bonduriansky and Day, 2009; Nicotra
et al., 2010; Castonguay and Angers, 2012). Despite potentially
greater importance in the evolution of long-lived and asexual
species, most empirical work so far has been done in sexually
reproducing annuals (but see Richards et al., 2012; Zas et al.,
2013; Yakovlev et al., 2014; Preite et al., 2015). Thus, not
only may epigenetic-based transgenerational inheritance be a
source of adaptive variation across a variety of species, it may
be particularly important to organisms such as clonal grasses
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and long-lived trees, many of which are ecologically important
foundation species.

EPIGENETIC PATTERNS ACROSS THE
LANDSCAPE

The potential adaptive significance of the epigenome suggests its
relevance to studies of adaptation across the landscape. A number
of very recent landscape-level studies have investigated the role
of epigenetics in intra-specific trait variation and adaptation
(Medrano et al., 2014; Dubin et al., 2015; Preite et al., 2015; Foust
et al., 2016; Gugger et al., 2016; Herrera et al., 2016; Keller et al.,
2016). These studies focus on at least one of the following: (i)
the relationship between genetic and epigenetic variation at the
landscape level, (ii) correlations between environmental variables
and epigenetic status, and (iii) correlations between epigenetic
status and plant functional traits.

Genetic and epigenetic variations are spatially structured
across a landscape. A positive relationship between geographic
distance and epigenetic differences across eight studies was
identified by Herrera et al. (2016). This pattern is compatible with
IBD patterns that are often found for genetic differences among
populations, which are the main determinant of spatial genetic
structure in plants (Sexton et al., 2014). Herrera et al. (2016)
also found evidence in their case study that nearby individuals
were more similar in their epigenome than in their genome,
especially at small spatial scales. This suggests the potential
for environmental influences on the epigenome, rather than
a direct genome–epigenome relationship. Epigenomic patterns
due to the environment may change through a lifespan, be
regenerated each generation, or be inherited across generations.
The results of several additional landscape-level surveys of
epigenetic variation suggest that environmental factors are more
important than spatial distance or the genome in shaping
epigenetic structure (Schulz et al., 2014; Huang et al., 2015;
Herrera et al., 2016). While this may suggest IBE in the genomic
context (Sexton et al., 2014), the interpretation in the case of
the epigenome is more complicated. Greater epigenomic than
genomic differentiation suggests additional factors other than
simple genomic determination are involved, such as adaptation
via a heritable epigenome or direct effects of the environment on
the epigenome.

Numerous studies have found correlations between epigenetic
variation and environmental factors across a landscape (Dubin
et al., 2015; Foust et al., 2016; Gugger et al., 2016; Keller
et al., 2016). This supports the prediction that epigenetic-based
transgenerational inheritance might be particularly relevant for
evolution in rapidly changing environments, as well as the
relevance of IBE to epigenetic diversity. Both genome-wide
genetic and epigenetic variation in Arabidopsis were correlated
with climate and spatial variables across Sweden and Eurasia
(Keller et al., 2016). However, such correlations are not always
found, as was the case for in dandelion (Taraxacum officinale)
across a north–south transect from Luxembourg to central
Sweden, where no gradient in DNA methylation was found
(Preite et al., 2015). Correlations between epigenetic variation

and the environment may be inconsistent between species
in the same environments. In a study of five populations
(including four overlapping sites), of two perennial salt marsh
species (Spartina alterniflora and Borrichia frutescens), significant
correlations were found between epigenetic variation and habitat
in S. alterniflora, but not B. frutescens (Foust et al., 2016).

While a number of studies have investigated correlations
between epigenetic patterns and the environment, far fewer
have identified fitness-relevant phenotypes that are putatively
altered via epigenetic mechanisms. We know of only two
studies, both of the perennial herb Helleborus foetidus, that
have investigated the influence of epigenetic variation on plant
functional traits (Alonso et al., 2014; Medrano et al., 2014).
One study was done at a landscape level, and found that 8% of
functional trait variation was explained by methylation sensitive
amplified polymorphisms. Multivariate functional trait diversity
was correlated with epigenetic diversity after genetic diversity was
taken into account. The authors suggest that epigenetic influence
on functional traits allows H. foetidus to adapt to or survive in
an array of environmental conditions (Medrano et al., 2014).
The second study was done at a small-scale landscape level.
Using plants from three sites within the same region in Spain,
Alonso et al. (2014) found a negative correlation between global
methylation and plant reproductive output.

Research to date demonstrates linkage between the
environment and epigenomic variation within a generation,
but demonstrating transgenerational inheritance requires more
complex breeding and/or experimental designs. In many cases,
regeneration of the epigenotype by environmental exposure
in the current generation is a strong alternative interpretation.
The development of labor-intensive tools such as epiRILs, from
crosses between plants containing epigenetic changes induced
by natural levels of biotic or abiotic stress are one mechanistic
way to determine the heritability of stress-related epigenomic
variation (Johannes et al., 2009; Holeski et al., 2012). Rearing
individuals for generations in alternate environments would
also give additional insights into the number of generations
environmental signals persist in the epigenome.

LANDSCAPE GENOMICS AND THE
EPIGENOME

A critical next step is to determine the evolutionary relevance
of the observed epigenetic patterns. Methods for detecting
epigenetic variation at the landscape level are not designed to
allow the researcher to differentiate between epigenetic variation
that is reset within a generation and that which is inherited.
In contrast to genetic or genomic patterns, the strength, and
occurrence of transgenerational epigenetic inheritance at a
landscape level, and thus its evolutionary implications, is poorly
understood.

The evolutionary potential of transgenerational epigenetic
variation is related to the degree to which it is inherited, as
well as the extent to which it deviates from genetic variation.
If genetic and epigenetic variations are strongly positively
correlated, then the evolutionary trajectory of a population is not
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FIGURE 1 | Common garden design for distinguishing among genetic
and epigenetic inheritance mechanisms for adaptive traits in a clonal
plant species. The reciprocal environmental exposure (Environments A and
B) in the parental (P) generation is the primary treatment for the question of
whether the environment induces heritable epigenetic changes. A comparison
of trait values of clonal replicates or full siblings planted in Environment A and
B and derived from parent(s) in either environment A or B will expose
within-generation phenotypic plasticity. In the F2 generation, a comparison of
trait values in offspring derived from the same parental genotypes grown in
parental environments A versus B should expose phenotypic variation due to
epigenetic inheritance. These offspring will share inherited genetic influences,
and growth in the same environment eliminates the effects of
within-generation plasticity. Additional generations or epigenomic assays may
be needed to fully ascribe variation to epigenetic versus resource-based
explanations. Dashed lines indicate optional reciprocal planting in the F2

generation to further understand the time scale and reversibility of
environmentally induced inheritance effects.

likely to deviate from that predicted by Mendelian patterns of
inheritance (Day and Bonduriansky, 2011). In fact, in this case,
the epigenome could be reset every generation and regenerated
again from the genome with no influence of inheritance or
current environment. In contrast, if genetic and epigenetic
variation are weakly or not correlated, as has been demonstrated
in Arabidopsis (Schmitz et al., 2013), then phenotypic change
following selection could be decoupled from the genotype (Day
and Bonduriansky, 2011; Liu, 2013). Evidence for both within-
generation and transgenerational environmental influence on the
epigenome (e.g., Saez-Laguna et al., 2014; Avramidou et al., 2015)
suggests that complete correspondence between the genome
and epigenome is unlikely. Thus, another expectation might
be patterns of greater similarity of epigenomes in similar
environments. This similarity could be further enhanced by
inheritance of the epigenome.

Assessing the evolutionary relevance of epigenetic patterns
across the landscape is a critical component in advancing

the field of landscape-level studies of adaptation. How then,
can this be done? Many of the methods currently used
to detect adaptive genomic variation across the landscape
(genome–phenotype associations, phenotype-free approaches,
and/or common gardens) are not able to disentangle the effects
of transgenerational epigenetic inheritance, relative to Mendelian
genetic inheritance, on the phenotype.

Genome–phenotype association methods such as quantitative
trait loci mapping and GWAS studies detect relationships
between adaptive traits and genomic variation through the
association of phenotypic and genomic data in individuals
from crosses or natural populations (Rellstab et al., 2015). The
inclusion of the phenotype in these analyses may complicate
the interpretation of results because the influence of epigenetic
effects on the phenotype remains unaccounted for. The
results of phenotype-free approaches are relatively unaffected
by the potential for transgenerational epigenetic inheritance
because these analyses do not hinge on phenotypes that may
integrate epigenetic influences. For example, outlier analyses
use population genetic principles to detect loci that are likely
to have experienced selection. Loci must be under sustained
or strong selection to be detected, so this is a conservative
technique that will miss many loci of small or fluctuating effect
but will not be distorted by the occurrence of epigenetic variation.
A second phenotype-free method, EAA, is based on genetic and
environmental data and thus will also be unchanged by the
occurrence of epigenetic variation. Environmental association
analyses are being extended to analyze the association between
the epigenome and the environment (Verhoeven et al., 2016), but
the interpretation should include the possibilities of the genome
and/or environment creating the epigenomic state without the
involvement of transgenerational epigenetic inheritance.

CRITICAL NEED FOR COMMON
GARDEN APPROACHES

Common garden studies are crucial for disentangling
environmental and genetic influences on adaptive traits.
Common garden and quantitative genetic designs rarely cover a
landscape in as much detail as methods such as GWAS. However,
in combination with genomic data, these studies can be used
to more fully understand patterns of adaptive variation across
the landscape (Sork et al., 2013; De Kort et al., 2014; Lepais and
Bacles, 2014).

Multi-generation common garden experiments conducted
across multiple environments will allow researchers to
understand adaptive epigenomic inheritance (Robertson
and Richards, 2015). In plants, transgenerational effects not
explained by differences in seed size or mass (the primary visible
indications of offspring provisioning) and persisting for multiple
generations are hypothesized to occur via epigenetic mechanisms
(Zas et al., 2013). Demonstrating that neither genetic loci nor
the environment of the individual is the sole source of epigenetic
expression, and that epigenomic variation influences adaptive
traits, would provide strong evidence for the evolutionary
relevance of epigenetic inheritance.
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Controlling for genetic sources among environments, and
especially the use of clones, would give insight into the extent
of genetic determination of the epigenome. Use of multiple
environments and of plant sources that span a landscape
will allow testing of adaptive hypotheses. Figure 1 shows
a design for distinguishing between genetic and non-genetic
inheritance mechanisms for adaptive traits. In this design,
natural populations with contrasting environments are used
in a reciprocal transplant context to test the adaptive nature
of variation. The use of a clonal plant species allows for
greater control of genetic background across treatments, and
clonal replicates can help researchers minimize the effects of
somatic mutation during the experiment. Multiple generations
and reciprocal crosses between environments and sources in the
parental generation enable separation of the various inheritance
patterns (i.e., Day and Bonduriansky, 2011). Assays of the
epigenome or additional generations of testing would strengthen
an inference of epigenetic inheritance as a contributing
causal agent in adaptation to the environment. Inclusion of
environments spanning a species range, and modeling to
interpolate across the landscape, could create a bridge between
traditional common garden and landscape genomic scales
(Cushman, 2014).

Thus far, only a few studies have taken advantage of common
garden approaches for studying epigenetic inheritance. In two
examples, clonal systems also helped narrow down potential
sources of phenotypic variation. Studies in Pinus pinaster
(Cendán et al., 2013; Zas et al., 2013) used seed orchards with
cloned genotypes in contrasting common garden environments
to assay for effects of maternal environment on offspring
traits. They demonstrated effects of maternal environment on
offspring traits that could be explained by resources (seed
mass) and additional effects that could not be attributed to
seed mass. Wilschut et al. (2016) made use of an unusual
landscape genetic structure in the dandelion (T. officinale)
where the same clone is distributed across a wide geographic
area. The clonal identity controlled for genetic variation
(excluding mutation in these clonal lines since divergence).
Generations in different environments resulted in epigenetic
differentiation among locations. When plants were grown in a
common environment, traits of clonal replicates from different

environments remained distinct, showing differentiation was
not caused by the environmental exposure in the current
generation.

CONCLUSION

Strong evidence exists for epigenetic inheritance and its
potential to influence adaptive traits in plants. At the landscape
level, studies have identified genomic variation that affects
adaptation, but the genetic basis of additional phenotypic
variation remains unaccounted for. A number of recent
investigations of epigenetic variation across the landscape show
patterns consistent with epigenetic inheritance contributing
to adaptation. However, carefully designed common garden
studies are needed to partition the contributions of genetic
variation, phenotypic plasticity, and transgenerational epigenetic
inheritance to adaptive phenotypes.
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Within-species hybrid incompatibility can arise when combinations of alleles at more than

one locus have low fitness but where possession of one of those alleles has little or

no fitness consequence for the carriers. Limited dispersal with small numbers of mate

potentials alone can lead to the evolution of clusters of reproductively isolated genotypes

despite the absence of any geographical barriers or heterogeneous selection. In this

paper, we explore how adding heterogeneous natural selection on the genotypes (e.g.,

gene environment associations) that are involved in reproductive incompatibility affects

the frequency, size and duration of evolution of reproductively isolated clusters. We

conducted a simulation experiment that varied landscape heterogeneity, dispersal ability,

and strength of selection in a continuously distributed population. In our simulations

involving spatially heterogeneous selection, strong patterns of adjacency of mutually

incompatible genotypes emerged such that these clusters were truly reproductively

isolated from each other, with no reproductively compatible “bridge” individuals in the

intervening landscape to allow gene flow between the clusters. This pattern was strong

across levels of gene flow and strength of selection, suggesting that even relatively weak

selection acting in the context of strong gene flow may produce reproductively isolated

clusters that are large and persistent, enabling incipient speciation in a continuous

population without geographic isolation.

Keywords: CDPOP, computer simulations, genotype-environment associations, hybrid-incompatability,

landscape genomics

INTRODUCTION

Hybrid incompatibility refers to when hybrids between species exhibit reduced viability, lower
fertility, and/or phenotypic abnormalities, and is a form of postzygotic reproductive isolation.
A number of researchers have argued that hybrid incompatibility is important to the speciation
process (Coyne and Orr, 2004). Dobzhansky (1937) and Muller (1942) presented models arguing
that hybrid incompatibility usually evolves due to changes in at least two different genetic loci.
Genetic studies strongly support the Dobzhansky–Muller model (Coyne and Orr, 2004; Seehausen
et al., 2014), and a growing number of these hybrid incompatibility genes have been identified
(reviewed in Johnson, 2010; Presgraves, 2010a,b).
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Hybrid incompatibility can also occur between different
populations of the same species (e.g., in flour beetles, Demuth
andWade, 2007; in flies, Lachance and True, 2010; in nematodes,
Seidel et al., 2008, 2011). Within-species hybrid incompatibility
can arise given synthetic deleterious loci, sets of loci wherein
individuals with combinations of alleles at more than one locus
have low fitness but where possession of one of those alleles
has little or no fitness consequence for the carriers (Phillips
and Johnson, 1998). Analytical studies (Phillips and Johnson,
1998; Lachance et al., 2011) showed that these synthetic alleles
could reach considerably high frequencies (roughly the quartic
root of the mutation rate divided by the selection coefficient)
in panmictic populations under mutation-selection balance (see
also, Lachance et al., 2011). Indeed, synthetic lethality and
sterility has been found at appreciable frequencies in populations
of Drosophila melanogaster (e.g., Lachance and True, 2010).

Eppstein et al. (2009) showed that limited dispersal with small
numbers of mate potentials alone can lead to the evolution
of clusters of reproductively isolated genotypes despite the
absence of any geographical barriers or heterogeneous selection.
Such clusters evolved when several loci were underdominant
(heterozygotes less fit than either homozygote). Non-additive
fitness effects across loci (epistasis) enhanced the likelihood of
clustering. Landguth et al. (2015) extended the work of Eppstein
et al. (2009) to show that underdominance is not required for
clustering of reproductively isolated genotypes. Landguth et al.
(2015) simulated fitness determined by epistatic interactions, in
form of the well-known Dobzhansky–Muller model, and unlike
past simulation studies, which consider migration of individuals
between demes (e.g., Gavrilets and Vose, 2007; Gavrilets et al.,
2007), they modeled genetic divergence in an individual-based
framework where gene flow, genetic drift, mutation, and selection
were functions of individual-based movement and spatially-
explicit interactions with environment (Landguth et al., 2012).

Landguth et al. (2015) showed that hybrid incompatibility
can evolve within the same population when gene flow is
strongly restricted in an isolation-by-distance model. They
showed that under isolation-by-distance reproductively isolated
clusters could arise and persist for many generations. Most
of the models of sympatric speciation wherein reproductive
isolation arises in the face of moderate or strong gene flow
involve the counterbalancing force of relatively strong and
heterogeneous natural selection. In these models, selection
enables nascent species to evolve genetic differences that are
incompatible with the evolved differences in the other nascent
species (Gavrilets and Vose, 2007; Gavrilets et al., 2007; Nosil
and Feder, 2012). In this paper, we expand upon the Landguth
et al. (2015) work and explore how adding heterogeneous natural
selection on the genotypes that are involved in reproductive
incompatibility affects the frequency, size and duration of
evolution of reproductively isolated clusters.

MATERIALS AND METHODS

Simulation Program
We used CDPOP v1.0 (Landguth et al., 2012), a landscape
genetics tool for simulating the emergence of spatial genetic

structure in populations resulting from specified landscape
processes governing organism movement behavior. CDPOP
models genetic exchange among spatially located individuals as a
function of individual-based movement through mate selection
and dispersal, incorporating vital dynamics (birth and death
rates), and all the factors that affect the frequency of an allele in
a population (mutation, gene flow, genetic drift, and selection).
The landscape genetics framework of this program is such that
individuals move as a probabilistic function of their environment
(e.g., as habitat fragmentation increases, ability to disperse across
gaps is reduced). These movement functions are scaled to a
user-specified maximum dispersal and mate selection distance.
This maximum movement value allows a user to control for
short- and long-range movement of an organism by constraining
all mate choices and dispersal distances to be within that
limit, with probability specified by the user-defined movement
function (e.g., inverse-square). The order of simulated events
follow mate selection with given movement functions, birth
and resulting Mendalian inheritance, mortality of adults, and
offspring dispersal with given movement functions.

CDPOP v1.0 incorporates multi-locus selection, which is
controlled via spatially-explicit fitness surfaces for each genotype
under selection (Wright, 1932; Gavrilets, 2000). For example, in
the case of a single two-allele locus, three relative fitness surfaces
would be specified for the three genotypes (AA, Aa, and aa)
from the two alleles, A and a. Selection is then implemented
through differential survival of offspring as a function of the
relative fitness of the offspring’s genotype at the location on that
surface where the dispersing individual settles (Landguth et al.,
2012). CDPOP yields genetic patterns consistent with Wright–
Fisher expectations when parameterized to matchWright–Fisher
assumptions in simulations (Landguth and Cushman, 2010), as
well as producing theoretical changes in allele frequency under
selection for single and double diallelic locus (Landguth et al.,
2012). For more details, see Landguth et al. (2012).

Our simulations consisted of 5000 diploid individuals with
100 biallelic loci; two of these loci were subject to selection. We
initialized the 100 loci with a uniformly distributed random allele
assignment (maximum allelic diversity). All loci experienced
a 0.0005 mutation rate per generation (on the lower range
of mammalian microsatellite rates) using the K allele model,
a commonly used mutation model (Balloux, 2001; Haasl and
Payseur, 2010), free recombination, and no physical linkage.
Simulation parameters, other than for selection (described
below), matched those in Landguth et al. (2015). Mating
parameters represented a population of dioecious individuals
with females and males mating with replacement. The number
of offspring produced from mating was determined from a
Poisson distribution (mean = 4), which produced an excess of
individuals each generation to maintain a constant population
size of 5000 individuals at every generation. Carrying capacity of
the simulation surface was 5000 individuals. Excess individuals
were discarded once all 5000 locations became occupied, which
is equivalent to forcing out emigrants once all available home
ranges are occupied (Balloux, 2001; Landguth and Cushman,
2010). We ran 10 Monte Carlo replicates of each simulation
for 1250 generations, discarding the first 250 generations as

Frontiers in Genetics | www.frontiersin.org November 2016 | Volume 7 | Article 20946

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Cushman and Landguth Reproductive Isolation in Heterogeneous Landscapes

burn-in (no selection imposed) to establish a spatial genetic
pattern prior to initiating the heterogeneous landscape selection
configurations.

Simulation Scenarios
Our simulations combined dispersal in an isolation-by-distance
(IBD) framework with heterogeneous natural selection for
genotypes involved in reproductive incompatibility. The
simulation modeling experiment involved all combinations of
three factors (dispersal, landscape heterogeneity, and strength of
selection; Figure 1).

The first factor is the degree of dispersal and we simulated
six movement distances: 3, 5, 10, 15, 25, and 50% of the
maximum extent of the landscape. These dispersal distances
correspond to a broad range of possible dispersal destinations for
a given offspring, as well as available mating partners for a given
individual. Mating pairs of individuals and dispersal locations
of offspring were chosen based on a random draw from the
inverse-square probability function of distance, truncated with
the specified maximum distance.

The second factor is the pattern of landscape heterogeneity
of two habitat types providing differential selection for the
genotypes involved in heterogeneous selection. Specifically, we
used the neutral landscape model, QRULE (Gardner, 1999), to
simulate binary landscape maps (1024 × 1024 pixels). Habitat
fragmentation was controlled with the H parameter, which affects
the aggregation of habitat pixels; higher values of H lead to higher
levels of aggregation. The binary landscapes consisted of 50% of
each of two habitat types and aggregation levels of H= 0.1 (“H1,”
Figure 1A), 0.5 (“H5,” Figure 1B), and 0.9 (“H9,” Figure 1C).
Heterogeneous selection acted in a discrete fashion in which
different homozygous genotypes (i.e.,AABB and aabb; see below)
were each favored by selection in one of the two habitat types.
We produced 10 replicate landscapes for each H-value to assess
stochastic variation among simulated landscapes.

Across these different heterogeneous landscapes and dispersal
distances, we tested the third factor: strength of selection, defined
as the difference of relative fitness of genotypes involved in
hybrid incompatibility in the two habitat types and mediated in
the simulations through density-independent (i.e., environment-
driven) mortality (s) determined by genotypes at the selected
loci. Selection strengths included s = 0.02 or “2%,” s = 0.04
or “4%,” s = 0.08 or “8%,” s = 0.16 or “16%,” s = 0.32
or “32%,” and s = 0.64 or “64%” (see Table 1). Following
the Dobzhansky–Muller model and the Landguth et al. (2015)
simulations, we considered the two-locus (A and B), two-allele
selection model (i.e., nine possible genotypes exist in the two-
locus, two-allele selection model). We assumed that alleles a
and B are incompatible and individuals that have these two
alleles simultaneously have zero viability. This was implemented
through relative fitness surfaces of 0.0 across the landscape for
the genotypes AaBB, AaBb, aaBB, and aaBb as in Landguth et al.
(2015). In thismodel, all offspring ofmatings between individuals
AABB and aabb will have heterozygous genotype AaBb which
will be inviable or sterile. The heterogeneous selection acting on
the five remaining viable genotypes occurred relatively around

FIGURE 1 | Examples of landscape selection configurations used for

simulations from least to most aggregated. (A) H1, (B) H5, and (C) H9.

Dark areas represent AABB habitat and light areas represent aabb habitat.
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TABLE 1 | The proportion of survival for each genotype in AABB habitat.

Selection scenario (%) AABB AABb AAbb AaBB AaBb Aabb aaBB aaBb aabb

2 0.51 0.50 0.50 0.00 0.00 0.50 0.00 0.00 0.49

4 0.52 0.50 0.50 0.00 0.00 0.50 0.00 0.00 0.48

8 0.54 0.50 0.50 0.00 0.00 0.50 0.00 0.00 0.46

16 0.58 0.50 0.50 0.00 0.00 0.50 0.00 0.00 0.42

32 0.66 0.50 0.50 0.00 0.00 0.50 0.00 0.00 0.34

64 0.82 0.50 0.50 0.00 0.00 0.50 0.00 0.00 0.18

s = 0.5 or 50% mortality. AABB individuals had mortality less
than 50% in “AABB” habitat patches and experienced high
mortality (>50%) if they occurred in “aabb” habitat patches.
AABb individuals had mortality less than 50% but greater than
the favored AABB individuals. Individuals with aabb and Aabb
genotypes experienced the opposite selection gradient from those
of AABB and AABb, respectively. For example, in the s = 0.02
scenarios there would be a net 2% difference in fitness between
aabb and AABB genotypes in the two habitat types, with AABB
having 51% survival in its favored habitat type, and 49% survival
in its disfavored type, while aabb would have 51% survival in its
favored type and 49% survival in its disfavored type. The AAbb
genotypes experienced a uniform selection of s = 0.5 or 50%
mortality across the entire surface. Table 1 lists the proportion
of survival for each genotype corresponding to each relative
selection strength scenario.

Evaluating Clusters of Reproductive
Isolation
Following Landguth et al. (2015), we defined the occurrence of
reproductive isolation in a continuously distributed population
as the combination of two criteria: (1) an occurrence of a
spatial cluster of individuals with genotype AABB that emerges
simultaneously with another spatial cluster of individuals with
genotype aabb (RI event) and (2) a RI event persisting in
consecutive generations. To define an RI event, we used the
density-based spatial clustering algorithm (DBSCAN; Ester et al.,
1996), which finds spatial clusters if they contain sufficiently
many points (k = 4) within a neighborhood (ε = 2000µ; see
Ester et al., 1996; Landguth et al., 2015). Then, the number of
generations at which two separate clusters (AABB and aabb,
respectively) emerged with the above criteria (RI events) was
reported and averaged across the 10 Monte Carlo runs for each
dispersal scenario. To assess persistence of RI events, we simply
recorded the duration (in generations) of each RI event and
reported the average time duration across each replicate and for
each dispersal strategy. We also recorded the size of each RI
event in terms of the number of individuals in the reproductively
isolated cluster.

RESULTS

Mean Cluster Duration
Factorial analysis of variance found highly significant main
effects for landscape heterogeneity, strength of environmental

selection, and dispersal ability on the mean duration that
reproductively isolated clusters of individuals persisted in
the simulations (Table 2). The F-value was more than four
times higher for selection and dispersal than for landscape
heterogeneity, suggesting larger differences in cluster duration
across levels of selection and dispersal than levels of habitat
heterogeneity. There were significant interactions between
landscape heterogeneity and selection and dispersal, and
weaker interaction between landscape heterogeneity and
selection.

To explore the main effects and the predominant interaction
between landscape heterogeneity and dispersal we produced
histograms in a dispersal × selection space, across the
three levels of landscape heterogeneity (Figures 2A–C;
Supplementary Video S1 duration.avi). These charts illustrate
two main patterns. First, reproductively isolated clusters
persist for the entire simulation time when dispersal is
low and environmental selection is high. Second, the
duration of reproductively isolated clusters increases across
levels of dispersal and selection as landscapes become less
heterogeneous. For example, at H1, the most heterogeneous
configuration, reproductively isolated clusters persist for the
full simulation time at combinations of dispersal between
3 and 5% and selection levels of 32 or 64 (Figure 2A;
Supplementary Video S1 duration.avi). At the H5 level of
heterogeneity, reproductively isolated clusters persist for the
full simulation time for dispersal 3% when selection is 8 or
above, at dispersal 5% when selection is 16 or above, at 10%
dispersal when selection is 32 or above, and at dispersal 25%
when selection is 64. The pattern continues at the highest
level of aggregation, H9, when clusters have duration across
the full extent of the simulation time or nearly the full extent
for all combinations of dispersal and selection producing
clusters (diagonal across dispersal-selection space from D3
to S64).

Mean Cluster Number
Factorial analysis of variance found highly significant main
effects for landscape heterogeneity, strength of environmental
selection, and dispersal ability on the mean number of
reproductively isolated clusters of individuals (Table 3).
The F-value was nearly ten times higher selection and
dispersal than for landscape heterogeneity, suggesting
larger differences in number of isolated clusters across
levels of selection and dispersal than across levels of habitat
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TABLE 2 | Analysis of variance table for factorial ANOVA of mean duration

of reproductively isolated clusters (in generations) as function of dispersal

ability (D: 3, 5, 10, 15, 25, 50% of breadth of landscape), selection (S: 2, 4,

8, 16, 32, 64% difference in relative fitness of genotypes AABB and aabb

in habitat types 1 and 2 respectively), and landscape heterogeneity (Qrule

H: 0.1, 0.5, 0.9) specifying the pattern of habitat types 1 and 2 in the

landscape.

DF SS Mean square F-value Pr > F DF

Heterogeneity 2 168,815 84,407 10.145 0.0002

Selection 5 1,832,356 366,471 44.045 2.00 × 10−16

Dispersal 5 2,139,692 427,938 51.433 2.00 × 10−16

Heterogeneity:

Selection

10 282,283 28,228 3.393 0.00191

Heterogeneity:

Dispersal

10 87,559 8756 1.052 0.41559

Selection:Dispersal 25 1,867,592 74,704 8.978 3.79 × 10−11

Residuals 50 416,016 8320

heterogeneity. There were significant interactions between
landscape heterogeneity and selection and dispersal, and
weaker interaction between landscape heterogeneity and
selection.

The histograms (Figures 2D–F; Supplementary Video S2

number.avi) illustrate three main patterns. First, as in the case of
cluster duration, the number of reproductively isolated clusters
is highest when dispersal is low and environmental selection
is high. Second, and contrary to cluster duration, the number
of clusters shows a wave pattern moving across the dispersal
× selection space toward high dispersal and low selection
as the landscape becomes less heterogeneous (e.g., from H1
to H5 to H9). For example, at H1 (the most heterogeneous
scenario) there is a clear peak with the largest number of
reproductively isolated clusters in scenarios with the shortest
dispersal (3%) and strongest selection (64), with roughly linear
decay along both selection and dispersal axes (Figure 2D).
However, at H5, which is an intermediate level of landscape
heterogeneity, the peak of number of isolated clusters turns into
a ridge running diagonally across intermediate combinations
of dispersal ability and selection (Figure 2E; e.g., D3S8, D4S16,
D10S16, D15S32, D25S64). The pattern continues at the
highest level of landscape aggregation (lowest heterogeneity; H9)
with the ridge moving diagonally toward the foreground in
(Figure 2F).

Mean Cluster Size
As with the other response variables (cluster duration and
cluster number), factorial analysis of variance found highly
significant main effects for landscape heterogeneity, strength
of environmental selection, and dispersal ability on the size
of reproductively isolated clusters of individuals (Table 4).
The F-value was more twice as high for selection as for
dispersal and four times higher than for landscape heterogeneity,
suggesting larger differences in the size of isolated clusters
across levels of selection, then dispersal, and weakest effect
due to habitat heterogeneity. There were significant interactions
between landscape heterogeneity and selection and dispersal,

and weaker interaction between landscape heterogeneity and
selection.

The histograms displaying size of reproductively
isolated clusters across combinations of dispersal ability
and strength of environmental selection (Figures 2G–I;
Supplementary Video S3 size.avi) show a pattern similar to
those for cluster duration, except that in the case of cluster
size selection seems to have a substantially larger effect than
dispersal ability. Specifically, at all levels of habitat heterogeneity
(H) the size of clusters of reproductively isolated individuals is
highest at when selection is strong and dispersal is limited, but
large clusters can persist at high levels of selection even when
dispersal is relatively broad-scale (e.g., S32–S64 when D10–D15),
while the converse is not true; clusters remain small when
selection is weak even when dispersal is limited (e.g., S2–S8 when
D3–D10). Second, there is a large effect of changing patterns of
heterogeneity of the landscape features driving environmental
selection of the genotypes involved in reproductive isolation
(Figures 2E–G; Supplementary Video S3 size.avi). For example,
when H is 1 (highest level of heterogeneity) the largest cluster
sizes are around 220 individuals (at D3S32). At H5 (intermediate
heterogeneity) clusters of this size are found at levels of D3–D25
× S32–S64, and the largest cluster sizes exceed 450 individuals at
combinations of dispersal and selection D3–D5 × S32–S64, and
the largest clusters of over 500 individuals emerge at dispersal
levels of between D5–D10 and selection level S64. The pattern
continues at H9 (highest habitat aggregation) where clusters
of over 630 reproductively isolated individuals emerge and
clusters larger than 500 individuals are found at combinations
of dispersal D3–D15 across selection levels of S32–S64
(Figure 2G).

DISCUSSION

Landguth et al. (2015) found that short-range dispersal
strategies lead to the evolution of clusters of reproductively
isolated genotypes despite the absence of any geographic
barriers or heterogeneous selection. In addition, they found
that clusters of genotypes that are reproductively isolated
from other clusters can persist when migration distances
are restricted such that the number of mating partners is
below about 350 individuals. From these results they argued
that under strong selection clusters of incompatible genotypes
will readily evolve within continuously distributed populations
when dispersal distances and potential mating choices are
small relative to entire landscape extents and population size,
respectively. Short mating distances reduce the rate at which
genes moved through the population and reduce local effective
population sizes such that local genetic structure would be
maintained and not swamped by the homogenizing effects
of high rates of gene flow. When mating and dispersal are
very limited, reproductive isolation frequently evolves and
reproductively isolated clusters may be highly persistent over
time.

In this paper, we show that adding heterogeneous selection for
the genotypes involved in reproductive isolation led to dramatic

Frontiers in Genetics | www.frontiersin.org November 2016 | Volume 7 | Article 20949

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Cushman and Landguth Reproductive Isolation in Heterogeneous Landscapes

FIGURE 2 | Three-dimensional histograms of changes in the mean duration of reproductively isolated clusters of individuals (in generations; row 1,

A–C) , mean number of reproductively isolated clusters (row 2, D–F), and mean size of reproductively isolated clusters (individuals; row 3, G–I). Columns in the figure

represent different levels of landscape aggregation of the two habitat types involved in environmental section of the genotypes contributing to reproductive isolation

(column 1, A,D,G is H1, highly heterogeneous; column 2, B,E,H is H5, intermediate heterogeneity; column 3, C,F,I is H9, high aggregated patterns of the two habitat

types). The 6 × 6 parameter space in each subfigure shows the combinations of six levels of dispersal (D3—3% of landscape extent, D5—5% of landscape extent,

D10—10% of landscape extent, D15—15% of landscape extent, D25—25% of landscape extent, D50—50% of landscape extent) across six levels of selection

(S2—2% difference in relative fitness of genotypes aabb and AABB in each of the two habitats, S4—4% difference in relative fitness, S8—8% difference in relative

fitness, S16—16% difference in relative fitness, S32—32% difference in relative fitness, S64—64% difference in relative fitness). See Supplementary Videos for

these histograms as they change through time.

increases in the duration, number, and size of reproductively
isolated patches. Landguth et al. (2015) found that reproductively
isolated clusters do not evolve when dispersal is >10% of the
extent of the population, and that few clusters evolve and these
only persist a short time when dispersal is >5% of the extent
of the population. In strong contrast, we found that when there
is spatially heterogeneous selection on genotypes involved in
reproductive isolation, reproductively isolated clusters can evolve
even at very high levels of dispersal, and these clusters can achieve
very large size and very long duration, with number, size and
duration increasing with the strength of selection.

We also found that strength of selection and dispersal
ability affect the size, duration, and number of isolated
clusters in roughly the same degree, and much more so than
does the heterogeneity of the landscape. However, landscape
heterogeneity does have substantial effects, such that when
there is extremely high heterogeneity reproductively isolated
clusters are less likely to emerge since there is a highly
mixed pattern of selection that inhibits formation of large,
aggregated clusters. This suggests that in evolutionary landscape
genetics, as well as neutral differentiation (e.g., Cushman
et al., 2012, 2013), there may be threshold effects where
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TABLE 3 | Analysis of variance table for factorial ANOVA of mean number

of reproductively isolated clusters as function of dispersal ability (D: 3, 5,

10, 15, 25, 50% of breadth of landscape), selection (S: 2, 4, 8, 16, 32, 64%

difference in relative fitness of genotypes AABB and aabb in habitat types

1 and 2 respectively), and landscape heterogeneity (QRULE H: 0.1, 0.5, 0.9)

specifying the pattern of habitat types 1 and 2 in the landscape.

DF SS Mean square F-value Pr > F

Heterogeneity 2 35,035,209 17,517,605 9.759 0.000264

Selection 5 9.75 × 108 1.95 × 108 108.618 <2 × 10−16

Dispersal 5 6.38 × 108 1.28 × 108 71.09 <2 × 10−16

Heterogeneity:

Selection

10 19,371,333 1,937,133 1.079 0.395622

Heterogeneity:

Dispersal

10 6,113,877 611,388 0.341 0.965294

Selection:Dispersal 25 3.38 × 108 13,537,693 7.542 8.71 × 10−10

Residuals 50 89,751,644 1,795,033

TABLE 4 | Analysis of variance table for factorial ANOVA of size

reproductively isolated clusters (individuals) as function of dispersal

ability (D: 3, 5, 10, 15, 25, 50% of breadth of landscape), selection (S: 2, 4,

8, 16, 32, 64% difference in relative fitness of genotypes AABB and aabb

in habitat types 1 and 2 respectively), and landscape heterogeneity

(QRULE H: 0.1, 0.5, 0.9) specifying the pattern of habitat types 1 and 2 in

the landscape.

DF SS Mean square F-value Pr > F

Heterogeneity 2 46.7 23.33 22.998 8.28 × 10−08

Selection 5 445.7 89.14 87.877 2.00 × 10−16

Dispersal 5 217.6 43.53 42.91 2.00 × 10−16

Heterogeneity:

Selection

10 20.7 2.07 2.036 0.0489

Heterogeneity:

Dispersal

10 2.8 0.28 0.272 0.9846

Selectoin:Dispersal 25 135.3 5.41 5.336 2.53 × 10−07

Residuals 50 50.7 1.01

landscape fragmentation limits emergence of reproductively
isolated clusters. However, in contrast to the effect of habitat
fragmentation on emergence of neutral genetic structure, in
which genetic differentiation only occurs at high levels of
landscape heterogeneity, evolution of reproductive isolation
is facilitated by highly blocky landscapes with relatively low
fragmentation.

In addition to themuch larger total number, size, and duration
of reproductively isolated patches when there is environmental
selection, the pattern of cluster adjacency changes in critical ways
that enable persistence of reproductively isolated clusters and
therefore the potential for incipient speciation. Specifically in the
Landguth et al. (2015) simulation, reproductively isolated clusters
evolved only as a function of reproductive isolation and gene
flow restriction by isolation-by-distance. This resulted in patterns
of clusters in the landscape where putatively “reproductively
isolated” clusters were rarely adjacent to clusters of individuals
that were actually incompatible with them (Figure 3). They were
most often adjacent to individuals that were not reproductively
isolated from them, and clusters that were reproductively

incompatible with them typically existed in other parts of the
landscape with non-incompatible individuals in between. These
non-incompatible individuals form a genetic “bridge” allowing
gene flow between the putatively isolated clusters. While based
on the criteria used by Landguth et al. (2015) this qualifies
as evolution of reproductively isolated clusters, these clusters
they were not isolated in the sense that individuals in these
clusters could breed with the individuals that were adjacent
to them, and could transfer genes between “isolated” clusters
through the “bridge” of these compatible intervening individuals
(Figure 3).

In contrast, when we added environmental selection on
the genotypes involved in hybrid incompatibility very strong
patterns of adjacency of mutually incompatible genotypes
emerged such that these clusters were truly reproductively
isolated from each other as there were no other reproductively
compatible “bridge” individuals in the intervening landscape to
allow gene flow between the clusters. This pattern was very
strong across levels of gene flow and strength of selection,
suggesting that even relatively weak selection acting in the
context of strong gene flow may produce reproductively
isolated clusters that are large and persistent, enabling incipient
speciation in a continuous population without geographic
isolation.

There are several lines of future work which should be
explored to extend the scope of what was found in this
paper. First, this paper used a simple two-locus model of
hybrid incompatibility. While this is a model that is widely
used in theoretical evolutionary ecology (Dobzhansky, 1937;
Muller, 1942; Coyne and Orr, 2004) and applies to some
real-world populations (Demuth and Wade, 2007, in flies,
Lachance and True, 2010; in nematodes, Seidel et al., 2008,
2011), the majority of microevolutionary processes are likely
mediated through polygenic selection in which many loci each
contribute relatively small fitness effects. This paper serves as
an initial analysis of a simple, classical model of two locus
selection which provides clear theoretical insight. However,
future work should explore how landscape heterogeneity,
strength of selection, and dispersal ability interact within the
context of multiple loci/allele selection (e.g., de Villemereuil
et al., 2014) and how these factors influence the detection
of local adaptation (e.g., genotype-environment associations;
Bierne et al., 2011; Forester et al., 2016). In addition,
future work should explore how underdominance, epistasis,
and synonymous vs. nonsynonymous mutations interact in
their influence on evolution of reproductively isolated clusters
in continuous populations in heterogeneous landscapes. In
addition, it will be important to combine simulation experiments
with empirical studies and experiments (e.g., Cushman, 2014) to
develop robust understanding of how landscape heterogeneity,
patterns of gene flow and selection, and dispersal ability
affect population differentiation and evolution. Simulation
experiments such as presented here can describe the processes
affecting populations and identify the conditions under which
they have important influences. However, models without
data are not compelling (Cushman, 2014). It is essential to
confront these models with empirical data on the actual
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FIGURE 3 | Generation 1250 for 5% maximum dispersal scenarios of (A) uniform selection (i.e., Landguth et al., 2015) and (B) heterogeneous selection of H =

0.9 and S = 64. Orange dots indicate genotype AABB, yellow dots indicate genotype aabb, and all other genotypes as green dots. (A) Shows the pattern of

genotypes (red and blue mutually reproductively isolated and yellow compatible with both) in the pure isolation-by-distance framework of Landguth et al. (2015)

without heterogeneous selection. (B) Shows the pattern of genotypes for a heterogeneous selection scenario with dispersal limited to 5% of the extent of the

population and selection set at 64. In (A) there are few and small reproductively isolated clusters and these are not truly isolated as the yellow genotypes provide a

genetic bridge for gene flow between red and blue. In contrast in (B) there is nearly complete elimination of the yellow “bridge” genotypes, and extensive, large and

immediately adjacent patches of mutually isolated genotypes (red next to blue).

patterns of genetic differentiation in complex landscapes, and
to confirm the fitness relationships underlying these patterns in
experimental studies such as common gardens (Cushman, 2014).
Thus, we suggest future research that will combine simulation,
experimentation, and large-scale population-wide empirical
modeling of the influences of landscape heterogeneity, gene flow
and strength of selection on the emergence of reproductive
isolation.
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Recent population declines to the high elevation western North America foundation

species whitebark pine, have been driven by the synergistic effects of the invasive blister

rust pathogen, mountain pine beetle (MPB), fire exclusion, and climate change. This

has led to consideration for listing whitebark pine (WBP) as a threatened or endangered

species under the Endangered Species Act, which has intensified interest in developing

management strategies for maintaining and restoring the species. An important, but

poorly studied, aspect of WBP restoration is the spatial variation in adaptive genetic

variation and the potential of blister rust resistant strains to maintain viable populations in

the future. Here, we present a simulation modeling framework to improve understanding

of the long-term genetic consequences of the blister rust pathogen, the evolution of

rust resistance, and scenarios of planting rust resistant genotypes of whitebark pine.

We combine climate niche modeling and eco-evolutionary landscape genetics modeling

to evaluate the effects of different scenarios of planting rust-resistant genotypes and

impacts of wind field direction on patterns of gene flow. Planting scenarios showed

different levels for local extirpation of WBP and increased population-wide blister rust

resistance, suggesting that the spatial arrangement and choice of planting locations

can greatly affect survival rates of whitebark pine. This study presents a preliminary, but

potentially important, framework for facilitating the conservation of whitebark pine.

Keywords: assisted migration, CDMetaPOP, computer simulations, ecological niche modeling,

genotype-environment associations, landscape genomics, wind resistance

INTRODUCTION

Whitebark pine (WBP; Pinus albicaulis) is one of the most intensively studied North American
conifers, in part due to its unique relationship with the grizzly bear (Ursus arctos horribilis), Clark’s
nutcracker (Nucifraga columbiana), and over 20 other wildlife species (Lorenz et al., 2008), which
depend on its seeds for food; thus it is considered a keystone and foundation species in high
elevation forests within its range. Thus, recent declines associated with the spread of mountain
pine beetle (MPB; Dendroctonus ponderosae), and the introduced invasive fungal pathogen white
pine blister rust (WPBR; Cronartium ribicola) have led to consideration for listing the species
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as threatened under the Endagered Species Act in 2010 (Federal
Register 2010), intensifying interest in developing strategies for
its conservation and management (see recent reviews by Keane
et al., 2012, 2016).

One of the primary threats associated with WBP decline is
WPBR-an invasive fungal pathogen introduced to the Pacific
Northwest of North America around 1910 (Brar et al., 2015).
WPBR affects the productivity and distribution of WBP by
forming cankers, which girdle branches and boles, resulting in
reduced cone production and increased tree mortality. It has
since spread to five-needle pine species across the United States.

Genetic blister rust resistance was first identified in small
samples of open-pollinated families by Bingham (1972) and
Hoff et al. (1980). A larger trial of 110-seed sources later
established the efficacy of identifying, propagating, and deploying
blister rust resistant seedlings (Mahalovich et al., 2006). While
major gene resistance has not been found in WBP, three
resistance mechanisms exhibit as single-gene recessives. The
no-spot and needle shed resistance mechanisms are present in
very low frequencies (<1%), while the short shoot resistance
mechanism is present in low frequency (5.2 percent, Mahalovich
in prep). In the US Northern Rockies, offspring of over 1300
phenotypic selections are under evaluation in support of active
restoration by planting proven, rust-resistant seedlings which
have a combination of no-spot, needle-shed, bark reaction and
shoot resistance mechanisms (Mahalovich and Dickerson, 2004;
Greater Yellowstone Coordinating Committee whitebark pine
Subcommittee, 2011; Keane et al., 2012, 2016).

Advances in landscape genetics and population genomics
provide a robust means to predict the effects of landscape
structure and climatic gradients on genetic structure, population
connectivity, and adaptive genetic variation (Manel and
Holderegger, 2013; e.g., Shryock et al., 2015). Recently developed
simulation modeling tools provide effective means to link
landscape patterns to gene flow and adaptive evolutionary
processes to predict genetic characteristics of the population
across its range under current and potential future conditions
(Scribner et al., 2016). Simulation models offers several
important benefits for landscape genomic research (Landguth
et al., 2015). For example, simulation modeling can be used
to predict how a system or its behavior will change if certain
processes or parameters are altered. This is particularly relevant
for predicting the effects of environmental change on a system,
or for evaluating the likely outcomes of various management
scenarios.

Our primary objective for this study was to develop a
simulation modeling framework for assessing the connectivity of
WBP across the US Northern Rocky Mountains and to assess the
potential adaptive significance of genetic blister rust resistance.
Specifically, we first developed climate nichemodels forWBP and
WPBR distributions. Then, we used these models with an eco-
evolutionary landscape genetics model to simulate demographic
and genetic (i.e., demogenetic; Frank et al., 2011) responses with
and without the presence of white pine blister rust.We conducted
simulations that introduced a resistant gene for WPBR and
simulated potential planting strategies with this genotype. We
also tested the influence of wind field directionality on the ability

of pollen to disperse rust-resistant genes through the landscape.
Finally, future WBP landscape genetics studies are discussed,
including planting strategies with WPBR resistant individuals in
conjunction with adaptive simulation modeling experiments.

MATERIALS AND METHODS

Whitebark Pine Regeneration and White
Pine Blister Rust Suitability Model
We developed correlative niche models (CNM; aka species
distribution or habitat suitability models; Thuiller et al., 2005;
Elith and Leathwick, 2009) forWBP andWPBR using occurrence
records (presence and absence) to develop a probabilistic model
of occurrence based on statistical relationships with climatic,
topographic and biophysical variables. One criticism of CNM’s
applied to long-lived tree species is that they typically correlate
adult occurrence records with climate data from relatively short
time periods (i.e., 30–50 years). This means that at some
locations, an adult tree >300 years old may have established
under a very different climate than the one being used to
represent its climatic suitability. Recent studies have suggested
using juvenile rather than adult occurrences to provide a more
realistic characterization of the relationship between a species
and a suitable climatic period (Lenoir et al., 2009; Zhu et al.,
2011; Bell et al., 2014; Dobrowski et al., 2015). In this study,
we used juvenile (<130 mm diameter) occurrence records from
Forest Inventory and Analysis (FIA) plot data on all public
lands occurring within US Forest Service Northern Region.
As predictors we developed a suite of high resolution (240
m) temperature, climatic water balance, and snow distribution
models. Gridded data were extracted using the raster library in
the R software environment using bilinear interpolation of the
four nearest neighbor cells at each FIA plot location. Additional
details on the development of the climatic water balance data are
provided in Appendix 1. Details about the CNM for WBP and
WPBR occurrence are provided in Appendixs 2, 3, respectively.

Whitebark Pine Simulation Model
We used CDMetaPOP (Landguth et al., 2016) to simulate how
the presence of WPBR and individuals with resistance to WPBR
influence WBP demogenetics. CDMetaPOP is a landscape-level,
spatially-explicit, and individual-based eco-genetic model of
meta-population processes. CDMetaPOP simulates demogenetic
processes as interactions between individuals located across
a number of “patches” (hereafter, stands) containing meta-
populations. Individuals within a stand are assumed to share
a common environment (e.g., carrying capacity, temperature).
Within each stand, a class (age/stage/size) structure is used
to simulate complex stochastic demographic processes, while
movement of individuals (i.e., seeds and pollen) between
stands is controlled as a function of spatially-explicit landscape
resistance or permeability surfaces (e.g., directional wind
resistance to movement). More simply stated, a landscape
is populated with stands, which in turn are populated with
individual trees. At the stand level, individuals undergo
growth, reproduction, migration, and mortality, and the
resulting genetic processes are simulated over time at the
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individual-tree level. For more detailed information on the
processes simulated in CDMetaPOP, see the user manual
(https://github.com/ComputationalEcologyLab/CDMetaPOP).

Our WBP model required parameterization of a number
of species-specific processes (see Appendix 4, Figure A4.1 and
Table A4.1). After initialization of the model (e.g., stands,
stage structure, and genetics), pollen dispersal (age 0) occurs
during the summer. Then, cones from the current year’s
pollination/fertilization event emerged on each tree and seeds
dispersed in the fall (age 1). Over winter, stage-structured density
dependent mortality was implemented as a function of each
stand’s carrying capacity (K). Growth of all individuals and
establishment of new mature individuals (age 20+) occurred by
spring and the additional WPBRmortality on mature individuals
was implemented at this time. More detailed methods with data
sources used to parameterize the model are outlined below and
in Appendix 4, Table A4.1.

Stands, Carrying Capacity, Age, and Size Classes
The WBP simulations were constrained to an extent in the US
Northern Rockies that was delineated a priori by four zones
(i.e., “seed zones”; Mahalovich and Hipkins, 2011; Figure 1). The
extent contained 1059 initial spatially-delineated stand locations

FIGURE 1 | Study area defined by the northern Rockies seed zones

(Mahalovich and Hipkins, 2011) with initial 1059 simulated stand

locations. WPBR relative spatial selection mortality shown for each stand.

separated by at least 5 km. These WBP stands were designated
by selecting all cells with >0.5 probability of WBP suitability, as
predicted by the CNM described above (see Section Whitebark
Pine Regeneration and White Pine Blister Rust Suitability Model
and Appendix 2). For simplicity, we assumed a carrying capacity
of 100 trees at each stand location.

We initialized the model at time = 0 with a random
distribution of 500 age classes (Burns and Barbara, 1990). We
ran the model without genetic exchange for an initial 25 years
to allow the age distribution to stabilize, and then began genetic
exchange (see next section). We defined age 0 “individuals” as
fertilization events, which 12 months later emerged as age 1
cones producing seeds for dispersal. An annual increment of
0.2 cm diameter at breast height (DBH) (Keane et al., 2007)
was used to grow each individual tree. As trees progressed
through each size class, size-linked parameters (e.g., probability
of mortality, probability of maturation, and fecundity) varied
(Appendix 4).

Neutral and Adaptive Genetics
We initialized each individual’s neutral genotypes with allele
frequency files that match the frequency observed in each
seed zone (Mahalovich and Hipkins, 2011), comprised of 16
loci with at most nine polymorphic alleles per locus. We
did not consider mutation, which is reasonable considering
the short simulation time period. In addition, we added a
bi-allelic adaptive locus and assumed that only one gene
confers resistance to WPBR (e.g., Kinloch et al., 1999; Lui
et al., 2016). We initialized this selection-driven locus at
time = 25 years with 0.01 and 0.99 frequency for the first
and second allele, respectively. Any individual homozygous at
the first allele (i.e., AA) in this selection-driven locus was
assumed to have a selective advantage against blister rust
infection.

This simple single-locus selection model was chosen because
major gene resistance between the host species and pathogen
has not been found in WBP (Bingham, 1983; Kinloch and
Dupper, 2002), and much of our understanding of blister
rust gene resistance comes from interior western white pine
(Pinus monticola; Kinloch et al., 1999) and recently, Rocky
Mountain white pine (Pinus flexilis; Lui et al., 2016). Thus,
we assumed the blister rust resistance mechanisms acting in
WBP are comparable to these species. Furthermore, the interior
western white pine (Pinus monticola) blister rust screening
program (Bingham, 1983; Mahalovich, 2010) serves as the
basis for WBP blister rust screening trials (Bingham, 1983;
McDonald and Hoff, 2001; Mahalovich et al., 2006). While
there are other presumed single-gene recessive traits present
in low frequency in blister rust screening trials (Mahalovich
et al., 2006), the blister rust resistance trait chosen for modeling
was the short shoot fungicidal reaction (Hoff and McDonald,
1971) due to the higher frequency of these genotypes in
blister rust screening trials from 1999 to 2015 (Mahalovich,
unpublished data). This resistance mechanism involves necrosis
at the base of an infected needle fascicle bundle; thus, normal
canker growth is halted and the branch and tree stem remains
disease-free.
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White Pine Blister Rust Resistance and Mortality
CDMetaPOP implements natural selection analogously to
the adaptive-, or fitness-landscape of allele frequencies as
originally envisioned by Wright (1932). This functionality
enables extension of landscape genetic analyses to explicitly
investigate the links between gene flow and selection in complex
landscapes at the level of the individual (see Landguth et al.,
2012a). We used WPBR occurrence (see Section Whitebark Pine
Regeneration and White Pine Blister Rust Suitability Model)
values at each stand as a proxy for differential mortality
applied to mature trees only (e.g., WPBR occurrence of 0.5
would produce a 50% mortality at that stand; Figure 1). WPBR
mortality rates in each stand were implemented based on the
genotype of each individual and increased survival was associated
with individuals that had AA in the selection-driven locus,
which varied depending on the simulation scenario (see section
Simulation Scenarios and Analysis). This allowed us to model
evolution of WPBR resistance based on a single locus under
selection with a single genotype being selected for.

Maturation and Fecundity
Mature individuals were defined as those of age 20 and greater.
AlthoughWBPmay typically take longer to reach maturity when
growing on poorer sites or at higher elevations (e.g., Krugman
and Jenkinson, 1974; Mahalovich unpublished data), we used
a lower bound of 20 years to allow for more generations in
the model (Fire Effects Information System; http://www.fs.fed.
us/database/feis/plants/tree/pinalb/all.html accessed September,
2015). We implemented a size-based fecundity model to
determine the number of seeds produced at a given basal area per
stand following the individual tree DBH conversion to basal area:
Basal Area = 0.00007854 ∗ DBH2. To obtain a size-based seed
production per individual tree, we used the value of 500 cones per
1 basal area (m2/ha; Barringer et al., 2012) multiplied by 20 seeds
per cone. Although cone and seed production varies spatially and
temporally in our study area (Owens et al., 2008), no masting was
considered and we assumed lower bound estimates (e.g., as low
as 10 seeds per cone; Pigott, 2012) to reduce computational time.

Mortality
In order to isolate the effects of WPBR mortality, we only
considered density-independent mortality based on class-based
mortality probabilities.We applied a 99% probability of mortality
to age 0 class to mimic 1% seed survival (DeMastus, 2013). We
implemented a cumulative 35% probability of survival for age
classes 1–15 (Izlar, 2002). Trees age 500 and older were assigned
25% probability of survival, which allowed for occasional long-
lived trees (i.e., >500 years) given the length of the simulation
time. If a stand reached K, then a random removal of excess
individuals was conducted (e.g., Balloux, 2001).

Reproduction, Pollen Dispersal, and Wind

Directionality
Reproduction within and across stands was monecious with
selfing allowed. We considered two hypotheses for pollen
movement in the summer months. Our first hypothesis assumed
pollen moved according to a null model of isolation-by-distance:

probability of pollen dispersal to a respective female cone
locations was a function of the inverse-square Euclidean distance
(Landguth and Cushman, 2010) with a 50%maximum study area
distance threshold (450 km). Because pollen dispersal is governed
by wind patterns, we also considered a second hypothesis
that included directional movement with respect to prevailing
wind direction (i.e., isolation-by-distance and wind). Thirty-year
average (1979–2010) mean annual average wind direction was
calculated from theNorth American Regional Reanalysis (NARR;
Mesinger et al., 2006). Using the landscape connectivity program,
UNICOR (Landguth et al., 2012b), we created asymmetrical costs
for traversing with and against wind direction for all pairwise
stand-to-stand locations. UNICOR creates a graph of a given
resistance surface, which allows start and end node locations
to find shortest paths on the resistance surface (i.e., Dykstra’s
algorithm). Given a wind direction map (and ignoring vector
magnitude), a resultant vector was created in the 8-Moore
neighborhood to weight direction in the graph creation. This
produced an added cost resulting from the resultant vector
calculation and when a path was traversing from a point and
against wind direction, producing an asymmetrical cost distance
matrix.

Cone/Seed Dispersal
Age 1 cones from the previous year were dispersed from
individual trees (e.g., Clark’s nutcracker, a bird which disperses
and caches WBP seeds) following an isolation-by-distance
movement pattern similar to pollen dispersal: probability of cone
dispersal to a new stand location was a function of the inverse-
square Euclidean distance with a 30 km maximum distance
threshold (Lorenz et al., 2011). This produced the majority of
cones staying in the same stand or nearest neighbor stands
(i.e., dropping near parent tree) with occasional longer distance
cone dispersal (e.g., Clark’s Nutcracker). In addition to 1% seed
survival (DeMastus, 2013), the ability for a seed to establish in a
new stand location was determined based on resource availability
(i.e., carrying capacity not exceeded in the destination stand).

Simulation Scenarios and Analysis
We conducted two blocks of simulation scenarios. The first
block of simulations was used to help understand the added
influence of WPBR mortality with and without an introduced
gene that was resistant to WPBR. The second block of
simulations was used to look at different spatial patterns
for planting individuals with a resistance to WPBR. The
spatially planting strategies we explored included planting in
two regions (seed zones), as well as a broader distribution
of planting across the entire extent outside of wilderness
areas (Figures 2A–C). Each block compared pollen dispersal
simulations for isolation-by-distance and directional pollen
dispersal via wind. Table 1 lists each block and respective
scenario.

We ran simulations for 130 years, with the first 25
years considered “burn-in” for the population dynamics and
age distributions to stabilize. We plotted mean population
abundance, allelic diversity, and heterozygosity for all stands and
for each block scenario. We used 10 replicate simulation runs
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FIGURE 2 | Study area considered using the northern Rockies seed zones (Mahalovich and Hipkins, 2011) with initial 1059 stand locations. (A) WPBR

resistant gene introduced in INLA zone stands (yellow dots). (B) WPBR resistant gene introduced in CLMT zone stands (yellow dots). (C) WPBR resistant gene

introduced in stands (yellow dots) outside of wilderness areas (brown dots).

TABLE 1 | Simulation scenarios (WPBR–white pine blister rust).

Block Name Scenario Name Description

Block 1: WPBR mortality and

resistance

No mortality The null model in which no WPBR mortality considered

All mortality All stand locations applied the added WPBR mortality (Figure 1) regardless

of genetic makeup.

Resistant gene in all zones All stand locations applied the added WPBR mortality (Figure 1). One

genotype assumed to confer resistance to WPBR.

Block 2: WPBR resistance by planting

strategy

Resistant gene in INLA zone All stand locations applied the added WPBR mortality. One genotype

assumed to confer resistance to WPBR only in the most northern zone

(INLA; Figure 2A).

Resistant gene in CLMT zone All stand locations applied the added WPBR mortality. One genotype

assumed to confer resistance to WPBR only in a central zone (CLMT;

Figure 2B).

Resistant gene in non-wilderness All stand locations applied the added WPBR morality. One genotype

assumed to confer resistance to WPBR only outside of wilderness areas

(Figure 2C).

to assess variation in each metric. For a spatial representation
of genetic differentiation, we calculated an overall pairwise
genetic differentiation (GST) across all loci using the method
of Nei (1973) and for each pair of zones at specified year
t= 100.

RESULTS

Whitebark Pine and White Pine Blister Rust
Maps
Results from the CNM for the presence or absence of juvenile
WBP and WPBR within US Forest Service Northern Region

are shown in Figure 3. See Appendix 2, 3 for supporting
documentation on models. The distribution of juvenile WBP
was reasonably well predicted by biophysical predictors, and
presence or absences of juveniles was correctly classified at 92%
of the forest inventory plots (Table A2.1). Mean maximum
daytime temperature, followed by mean annual water balance
deficit (unit of measure), were the strongest predictors in the
WBP model. The model predicts that WBP occurs with highest
probability at high elevation, cold sites with moderate to low
water balance deficit. The distribution of WPBR was moderately
well explained by climatic and biophysical predictors, with an
overall classification accuracy of 81%.
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FIGURE 3 | Probability of occurrence maps for (A) whitebark pine and (B) white pine blister rust.

FIGURE 4 | Population abundance through time for each scenario in (A) Block 1 and (B) Block 2.

White Bark Pine Landscape Demogenetic
Simulations
Overall population mean abundances (i.e., all stands) for each
block of scenarios are shown in Figure 4 for the simplest model of
isolation-by-distance with no wind resistance included for pollen
dispersal. Block 1 “No mortality” (Figure 4A black dashed line)
shows stable population dynamics, while in the “All mortality”
scenario the population declined smoothly to close to 0 by time
100 (Figure 4A red dash-dotted line). The introduction of a
WPBR resistant gene for all individuals at every stand while still
applying WPBR differential mortality led to stable population
sizes of approximately 1/4th of the “No mortality” scenario
(Figure 4A blue solid line).

Block 2 scenarios are shown in Figure 4B. Planting of
individuals with resistance in the two different zones resulted in
near extirpation of WBP (central CLMT zone; Figure 4B yellow
dash-dotted line, and northern INLA zone; Figure 4B green

line). Figure 4B also shows the scenario for the more widely
distributed planting outside of Wilderness areas (Figure 4B cyan
dotted line), which produced a stable population abundance at

approximately 1
/

2 of the “Resistant gene in all zones” (Figure 4B
blue solid line). Similar results for mean stand growth rate are

shown in Appendix 4 (Figures A4.2a,b).
Overall population mean allelic diversity is shown in

Figure 5 for the model of isolation-by-distance with no wind

resistance included for pollen dispersal. The decline in allelic
diversity revealed patterns similar to those of the population

abundance graphs. The allelic diversity in the null model of
no spatial differential mortality remained relatively constant at

0.39 (Figure 5A black dashed line). In the extreme scenario

where WPBR was applied to every stand, allelic diversity steeply
declined to 0.2 (Figure 5A red dashed-dotted line) and in the
scenario in which WPBR resistant genotypes were planted in
every stand, allelic diversity remained close to the null model
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FIGURE 5 | Allelic diversity through time for each scenario in (A) Block 1 and (B) Block 2.

(0.38; Figure 5A blue solid line). However, there was a greater
loss in allelic diversity with the central (CLMT) zone planting
scenario (0.2; yellow dash-dotted line; Figure 5B) compared to
the northern (INLA) zone planting scenario (0.3; green dashed
line), despite equivalent population abundance, showing how
genetic diversity may be more sensitive to spatial planting than
overall abundance. Furthermore, planting of resistant WPBR
individuals in a continuous distribution across the analysis extent
produced higher allelic diversity numbers than the zone-specific
planting (Figure 5B cyan dotted line). Similar results are shown
for heterozygosity in Appendix 4 (Figures A4.3a,b).

Genetic differentiation for each zone is shown in Figure 6

for time 100 for the model of isolation-by-distance with no
wind resistance. The “No mortality” scenario (Figure 6A) shows
little difference in genetic differentiation through time. However,
as WPBR mortality is applied, genetic differentiation increases,
with the largest differentiation in the “All mortality” scenario
(Figure 6C). In fact, with the “All mortality” scenario, the CLMT
zone becomes extirpated. The uniform introduction of a resistant
WPBR gene produced patterns of genetic differentiation among
zones similar to the “No mortality” scenario, with the exception
of the INLA zone showing slightly higher differentiation
(Figure 6D). The right panel in Figures 6C–F shows the Block 2
scenarios that varied spatial planting strategies for resistant genes
to WPBR. Genetic differentiation increased under all planting
strategies, with local extirpation occurring with the CLMT zone-
specific scenario (Figure 6E). Genetic differentiation for non-
Wilderness area planting of resistant genes only slightly increased
(Figure 6F) from the null model of “No mortality” (Figure 6A).

When we included the effects of directional wind resistance
on pollen dispersal we see an overall increase in genetic
differentiation across all scenarios (Figure 7) with the exception
of the “No mortality” scenario (Figure 7A), which remained at
the same level of genetic differentiation as with the model of
just isolation-by-distance. We also see more local extirpation,
in particular in the scenario in which individuals with WPBR
resistance are only planted in non-Wilderness areas (Figure 7F).

These simulations show that incorporating more realistic effects
of spatial processes, such as wind resistance, reduces pollen
dispersal capability, thus reducing the ability of resistance genes
to propagate through the landscape.

DISCUSSION

The goal of this paper is to provide an example of integrating
species distribution modeling with landscape genetic simulation
of neutral gene flow and adaptive evolution. Our specific focus
was on exploring the effects of different levels of pathogen
lethality and gene flow on the evolution of blister rust resistance
in WBP and the effectiveness of several scenarios of planting rust
resistant genotypes of WBP in different spatial configurations.
This is the first simulation experiment to examine local and
regional demogenetic patterns to the placement of resistant
individuals, and the first to quantify differences in adaptive
evolutionary processes as a function of directional and isotropic
resistance to dispersal.

We first presented climate niche models for WBP and
WPBR distributions. We used the climate niche models with
a new eco-evolutionary landscape genetics model to simulate
demogenetic responses with and without the presence of the
disease agent, white pine blister rust. These models allowed us to
produce baseline null models of a ”healthy” disease-free system
(e.g., Figure 4A black dashed line) with stable demographics
and genetics and an extreme case of complete disease-ridden
system (e.g., Figure 4A red dash-dotted line) with crashing
demographics and genetics.

We then introduced individuals with a genotype that
conferred resistance to WPBR and simulated potential planting
strategies with this genotype in example zone-specific locations
and across more broadly distributed areas across the study extent
(i.e., outside of wilderness areas). This allowed us to quantify
how much the introduction of disease resistant genotypes might
mitigate the effects of WPBR and to evaluate this model systems
sensitivity to the extent and pattern of introduction of disease
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FIGURE 6 | Isolation-by-distance: G’ST values for each seed zone at year 100 for Block 1 scenarios: (A) the null scenario “No mortality,” (B) the scenario in

which a resistant gene was introduced, (C) the scenario in which all stands receive WPBR mortality (“All mortality”) and for Block 2 scenarios: (D) the scenario in which

a resistant gene was introduced in only the INLA zone, (E) the scenario in which a resistant gene was introduced in the CLMT zone only, (F) the scenario in which a

resistant gene was introduced outside of wilderness areas only.

resistant genotypes. Our results demonstrate that different
patterns of planting resistant genotypes can influence genetic
outcomes, and that genetic diversity and differentiation are more
sensitive than population dynamics (Figure 5B compared to
Figure 4B). Furthermore, planting of resistantWPBR individuals
in a systematic distribution across the study area extent

produced much higher allelic diversity numbers than more
localized “clusters” (Figure 5B). A growing body of research has
suggested that the loss of genetic diversity with increased disease
may be a crucial mechanism driving population extinction
risk (Whiteman et al., 2006). Thus, this finding could have
additional important implications for management planning and
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FIGURE 7 | Isolation-by-distance with directional wind resistance: G’ST values for each seed zone at year 100 for Block 1 scenarios (left panel): (A) “No

mortality,” (B) “blister rust resistance in all zones,” (C) “All mortality” and Block 2 scenarios (right panel): (D) “Resistance in INLA zone,” (E) “Resistance in CLMT zone,”

(F) “Resistance in non-wilderness.”

suggests that strategies should focus on implementing broad-
scale, spatially continuous introductions rather than focusing
on concentrating planting of disease resistant genotypes in
particular nodal populations (e.g., Oyler-McCance et al., 2013).
However, this also implies potential logistical limitations to
effective management of WBPR through introduction of disease
resistant genes across broad regions. Specifically, for rust

resistance to spread in a local population it must be introduced
with sufficiently high frequency to not be rapidly lost through
drift before it can spread through selection. This is more
easily achieved through concentrated introductions in patches or
zones. However, our results show that broad-scale, continuous
introductions are needed to effectively mitigate population and
genetic effects of WPBR. It is not clear whether resources could
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be sufficiently invested to implement such widely distributed
planting at sufficient density to produce a lasting effect on the
population.

Our results also show that large differences in predicted
genetic differentiation are produced when models use simple
isolation-by-distance assumptions as compared to when they
implement more realistic spatial processes, such as isolation by
resistance. Specifically, scenarios that incorporated the influence
of wind resistance on the ability of pollen to disperse resistant
genes through the landscape produced much higher rates of local
extirpation along with higher genetic differentiation (Figure 7).
These simulations showed that incorporating more realistic
landscapes that control for movement, such as wind resistance,
reduces pollen dispersal capability, thus reducing the ability of
resistance genes to propagate through the landscape. This has
important implications for spatial genomic and evolutionary
modeling, most of which has to date utilized simple models
of isolation-by-distance controlling gene flow (but see Forester
et al., 2015). Our results show that it is essential to move this
work into an explicitly landscape genomic framework in which
gene flow is realistically driven by spatial patterns of landscape
features that influence dispersal (such as wind fields in this
case).

To produce reliable inferences about implications of adaptive
variation, researchers must unambiguously determine whether
markers for key adaptive traits, such as blister rust resistance,
are under selection and identify the factors in the environment
that drive that selection (Joost et al., 2013; Rellstab et al., 2015).
This, however, remains a challenging task (see Vitalis et al., 2001;
Luikart et al., 2003; Angeloni et al., 2011). For example, outlier
detectionmethods will often detect signals of selection inmarkers
that are not themselves under selection, but instead just linked to
a gene that is (e.g., Jones et al., 2014). Moreover, when numerous
regions of the genome are under divergent selection, outlier
analyses can miss many regions that clearly are under selection
(Michel et al., 2010). Further complications arise for the ability
to detect adaptive loci when landscape configuration, dispersal
ability, and selection strength intertwine (Forester et al., 2015),
as well as the effects of sampling through design, replication,
and resolution of markers (e.g., number of SNPs) (e.g., De Mita
et al., 2013; Lotterhos and Whitlock, 2015). Developing methods
for reliably identifying markers under selection is a major
ongoing theme in landscape genomics research. Common garden
experiments with reciprocal transplant of genotypes is a robust
way to assess environmental selection (e.g., Whitham et al.,
2006; Cushman, 2014) and can be readily extended to evaluate
the interactions between environmental selection and pathogen
resistance. For the simulation framework identified here to be
truly useful to understand the potential of genetically mediated
blister rust resistance to mitigate impacts onWBP populations, it
will be important to identify the genetic mechanisms controlling
resistance and how they may be linked to selection on other
factors, such as drought and cold tolerance.

There are several lines of addition future work which should
be explored to extend the scope of what we have presented
here on the spatial dynamics of adaptation to the blister rust

pathogen and the potential effectiveness of different strategies of

planting resistant genotypes. First, this paper used a simple one-
locus model of genotype-environment association. While this is
a model that is widely used in theoretical evolutionary ecology
(Coyne and Orr, 2004) and genotype-environment association
testing (e.g., Jones et al., 2014; Forester et al., 2015) and applies
to some proposed blister rust mechanisms (Kinloch et al., 1999),
the majority of micro-evolutionary processes are likely mediated
through polygenetic selection in whichmany loci each contribute
relatively small fitness effects. This paper serves as an initial
analysis of a simple classical model of one locus selection
which provides insight. However, future modeling work should
explore how the blister rust distribution and planting of resistant
genotypes interacts within the context of multiple loci/allele
selection, pleiotropy, and epistasis.

In addition, while this paper is the first to combine
empirical data, experimentation, and large-scale population-wide
simulation modeling, WBP and WPBR are complex systems that
are still imperfectly understood and simulation models are a
simplified representation of reality. Future studies should invest
in improving how WBP and WPBR biology are represented in
simulations (e.g., more realistic growth models or disease spread
dynamics) and assess sensitivity and uncertainty in these systems.
For example, simulations could explore the effects of habitat
quality and density-dependent processes (Pfluger and Balkenhol,
2014) on the interaction between rust resistance and white bark
pine population dynamics. In addition, simulation experiments,
such as presented here can describe the processes affecting
population and identify the conditions under which they have
important influences. However, models without data are not
compelling. It is essential to confront thesemodels with empirical
data on the actual patterns of genetic differentiation in complex
landscapes, and to confirm the fitness relationships underlying
these patterns in experimental studies, such as common gardens
(Cushman, 2014).
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Rare variants are important for drawing inference about past demographic events in

a species history. A singleton is a rare variant for which genetic variation is carried by

a unique chromosome in a sample. How singletons are distributed across geographic

space provides a local measure of genetic diversity that can bemeasured at the individual

level. Here, we define the empirical distribution of singletons in a sample of chromosomes

as the proportion of the total number of singletons that each chromosome carries, and

we present a theoretical background for studying this distribution. Next, we use computer

simulations to evaluate the potential for the empirical distribution of singletons to provide

a description of genetic diversity across geographic space. In a Bayesian framework,

we show that the empirical distribution of singletons leads to accurate estimates of the

geographic origin of range expansions. We apply the Bayesian approach to estimating

the origin of the cultivated plant species Pennisetum glaucum [L.] R. Br. (pearl millet) in

Africa, and find support for range expansion having started from Northern Mali. Overall,

we report that the empirical distribution of singletons is a useful measure to analyze results

of sequencing projects based on large scale sampling of individuals across geographic

space.

Keywords: genetic diversity, singletons, geographic origin, range expansion, pearl millet

1. INTRODUCTION

High-throughput sequencing technologies have enabled studies of genomic diversity in model and
non-model species at a dramatically increasing rate. Conducted at population and at individual
levels, those studies have provided comprehensive surveys of common and rare variation in
model species genomes (Weigel and Mott, 2009; 1000 Genomes Project Consortium et al.,
2010; International HapMap 3 Consortium, 2010; 1000 Genomes Project Consortium, 2015). For
example, the 1000 Genomes Project Consortium (2015) reported that the majority of variants
in human genomes are rare. During the last decade, the role that rare variants play in shaping
complex traits has been hotly debated (Pritchard, 2001; Schork et al., 2009; Tennessen et al., 2012),
and accurately determining their distribution has become important for medical applications and
association studies (Lee et al., 2014; Auer and Lettre, 2015). Beyond humans, rare variation has
attracted considerable interest from genome sequencing projects for model organisms, including
plants (Zhu et al., 2011; Weigel, 2012; Memon et al., 2016).

Rare variants are also important for drawing inference about past demographic events in a
species history (Schraiber and Akey, 2015). Studies of human populations have shown that our
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species has experienced a complex demographic history, and that
a recent period of explosive growth has resulted in an excess of
those variants (Coventry et al., 2010; Keinan and Clark, 2012).
The analysis of private and rare variation has been used to reveal
signals of differential demographic history among populations,
and to refine models of human evolution (Marth et al., 2004;
Gravel et al., 2011; Mathieson and McVean, 2014). In addition,
estimating rare allele frequencies has enabled estimates of gene
flow between populations, and has facilitated inference of fine-
scale population structure (Slatkin, 1985; Novembre and Slatkin,
2009; O’Connor et al., 2015).

In this study, we define the empirical distribution of singletons
in a sample of chromosomes as the proportion of the total
number of singletons that each chromosome carries, where a
singleton is a uniquely represented allele in the sample (Fu and
Li, 1993). We provide theoretical and empirical analyses of the
distribution of singletons in a sample of chromosomes, and we
evaluate the potential for this distribution to provide an accurate
description of genetic diversity at the individual level. Using
spatial data, we use the distribution of singletons as an individual-
based estimate of genetic diversity in geographic space.

The theoretical background for the analysis of the empirical
distribution of singletons rely on the distribution of external
branch lengths for coalescent genealogies (Blum and François,
2005; Caliebe et al., 2007). First, we use coalescent and spatially
explicit simulations to evaluate individual contributions to
genetic diversity in the sample based on singletons. Then
we evaluate the use of the distribution of singletons in
an approximate Bayesian Computation (ABC) framework to
estimate the geographic origin of range expansions (Beaumont,
2010; Csilléry et al., 2010). We eventually provide an illustration
of our theory by applying the ABC approach to the plant species
Pennisetum glaucum [L.] R. Br. (pearl millet). Pearl millet is a
cereal cultivated in semi-arid regions of Africa and the Indian
subcontinent, and it is known to originate in Africa (Clotault
et al., 2012). We evaluate the geographic origin of its range
expansion by using 146 inbred lines from the whole African
range.

2. THEORY

We consider a sample of n chromosomes from a population of N
haploid organisms. We assume that there are L polymorphic loci,
and that for each locus, 0 represents the ancestral or reference
allele and 1 is the derived allele. A singleton is defined as a
derived allele carried by a single chromosome in the sample.
The total number of singletons, ξ1, is the number of uniquely
represented derived alleles in the sample, and it corresponds to
the first component of the site frequency spectrum. We assume
that the singletons are distributed over the n chromosomes in the
sample. More specifically, the number of singletons decomposes
as follows

ξ1 =

n
∑

i= 1

ξ
(i)
1 ,

where ξ
(i)
1 is the number of singletons carried by chromosome

i. For each i, we denote by pi the conditional probability that a
singleton is carried by i. The n values p1, . . . , pn sum up to one,
and those values define the empirical distribution of singletons in
the sample (see below).

Next, we assume that the sample genealogies can be described
by coalescent trees (Tavaré, 2004). For a particular locus, a
tree is described by n tips and n − 1 ancestral nodes. An
external branch of the tree connects a tip to an ancestral node.
For a given tree, we denote by τ (i) the length of the external
branch connecting chromosome i to its first ancestor node.
The L coalescent trees exhibit complex patterns of statistical
dependency along the chromosomes due to recombination
among loci (Hudson, 1990). Measuring lengths in units of twice
the total population size (N), and assuming a molecular clock
model for mutations, the number of mutations falling on a
particular branch of the tree has a Poisson distribution of rate
θ/2, where θ = 2µN and µ is the per generation mutation rate
(Tavaré, 2004). Let ℓ be an arbitrary singleton locus. For all i, we
write

ξ
(i)
1 =

ξ1
∑

k= 1

Xiℓ,

where Xiℓ = 1 if singleton ℓ is carried by chromosome i,
0 otherwise. In the above formula, the summation runs over
all singletons in the sample. Using mathematical properties of
conditional distributions for the Poisson process, we have

pi = P(Xiℓ = 1) = E

[

τ
(i)
1

τ1

]

,

where τ1 =

∑n
i= 1 τ (i). In this formula, the conditional

probability that chromosome i carries a singleton at locus ℓ

is given by the ratio of its external branch length to the total
length of external branches in the sample genealogy at this locus.
The distribution of singletons can be estimated by counting
the number of singletons carried by each chromosome and
normalizing as follows

p̂i = ξ
(i)
1 /ξ1, i = 1, . . . , n,

and the estimate is unbiased

E
[

p̂i
]

= pi .

In addition, the number of singletons carried by chromosome

i, ξ
(i)
1 , estimates the proportion of genetic diversity carried by

chromosome i

E[ξ
(i)
1 ] ≈ θpi, i = 1, . . . , n.

As a consequence of the theory presented in this section, the
individual-based estimates of genetic diversity are unbiased
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quantities regardless of demographic history, deviations from
Hardy-Weinberg equilibrium and linkage disequilibrium.
Limitations of the theory include the presence of closely related
individuals, which should be removed from the sample prior to
analysis. The approach is appropriate for modern sequencing
data as soon as a few hundreds of DNA sequences are generated.

The rest of this study will evaluate the use of the empirical
distribution of singletons in mapping genetic diversity in
geographic space. To provide an elementary example, let us
consider a sample of n chromosomes from a random mating
population of size N. Using mathematical results for the neutral
coalescent in a random mating population, the expected value of
the number of singletons is an unbiased estimator of the genetic
diversity in the sample (Fu and Li, 1993)

E[ξ1] = θ .

For the lengths of external branch lengths, we have

E[τ (i)] = 2/n, i = 1, . . . , n,

and E[τ1] = 2 (Blum and François, 2005). Here, we expect that
each chromosome contributes to genetic diversity equally. The
above calculations show that, in a sample of size n from a random
mating population, the distribution of singletons is uniform over
the n chromosomes

pi = 1/n, i = 1, . . . , n,

and we have

E[ξ
(i)
1 ] = E[ξ1]P(Xik = 1) = θ/n.

In other words, each individual contributes the same amount of
genetic variation to the total sample diversity.

3. SIMULATION METHODS AND DATA
SETS

3.1. Coalescent Simulations of Splitting
Populations
We used the computer program ms to perform coalescent
simulations for a two-population model (Hudson, 2002). In
our simulations, we considered a population split model, in
which two populations of sizes N1 = 50, 000 and N2 = sN1

(s ∈ (0.01; 0.5), shrink rate) diverged t generations ago (t ∈

(1, 000; 10, 000), split time). Population 1 expanded from an
ancestral population of size NA = 5, 000, and the expansion
started 10,000 generations ago. Samples of size n = 100 were
considered and subdivided into subsamples of size 50 from each
population. We simulated L = 1, 000 unlinked haplotypes using
the infinite-site model and an effective mutation rate θ ∈ (5; 10).
The ms command line was written as follows: ./ms 100 1,000
-t theta -I 2 50 50 -g 1 46.05 -n 2 shrink.rate -eg 0.2 1 0.0
-ej split.time 2 1. The simulated data sets were processed by
using the “.geno” format in the R package LEA (Frichot and

François, 2015).We summarized the distribution of singletons by
computing mean values and standard errors for each subsample.
For all simulated samples, we used the R package ape to extract
the coalescent trees generated byms, and analyze the distribution
of their external branch lengths (Paradis et al., 2004). We used
the external branch length distribution to build a theoretical
prediction for the distribution of singletons from each tree
(see section 2), and summarized the theoretical distributions by
computing mean values and standard errors for each subsample.
The L coalescent simulations were replicated 200 times.

3.2. Range Expansions in Africa
Simulations of range expansions were performed by using the
computer program SPLATCHE2 based on an array of 87 by 83
demes modeling the African continent (Currat et al., 2004). The
demographic scenarios corresponded to range expansions from a
single origin, simulated for a total duration of 1, 600 generations.
For each deme, the migration rate was equal tom = 0.07, and the
growth rate was equal to r = 0.1. Additional parameters included
an ancestral effective population size of 200 individuals, 200
generations before onset of expansion, and an effective mutation
rate of 10−5 per base pair per generation.

Four types of demographic scenarios were considered. Two
scenarios considered a “homogeneous” environment, for which
the deme carrying capacities were set to a constant value C =

100 everywhere in Africa. Two other scenarios considered a
heterogeneous environment linked to vegetation. In tropical
semi-desert areas, the carrying capacities were set to C = 60,
and in tropical extreme deserts and rain forests, the carrying
capacities were set toC = 30. Demographic histories also differed
by their geographic source of expansion. Range expansions were
started either from an origin in West Africa (Mali,−4◦ E, 13◦ N)
or from an origin in the Sahel area (Chad, 22◦ E, 20◦ N).

Ten haploid chromosomes were simulated for 30 population
samples through the geographic range considered (300
chromosomes). Genetic variation was surveyed at 30,000 loci,
and filtered out for monomorphic loci. From the resulting data
sets, we computed the empirical distribution of singletons in
each population sample, and compared this measure to expected
heterozygosity for each population sample. Data files for running
the SPLATCHE2 simulations are provided in Supplementary
File 1. We reproduced the four scenarios by using individual
sampling instead of population sampling. Here, individual
genotypes were recorded at 300 distinct geographic sites, each
obtained from a Gaussian perturbation of population centers
with standard error of 2◦. The Kriging method was used to
interpolate the values of the expected heterozygosity and the
empirical distribution of singletons on a geographic map of
Africa (Cressie, 2015).

3.3. Pearl Millet Data
Whole genome sequencing data were obtained for 146 cultivated
accessions of pearl millet (Pennisetum glaucum [L.] R. Br.)
from the species range in Africa (International Pearl Millet
Genome Sequencing Consortium, Varshney et al., 2017). A total
of 169,095 SNPs were sampled after filtering out low quality
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variants, and were used to estimate the distribution of singletons
(Supplementary Material 1).

3.4. Approximate Bayesian Computation
We used Approximate Bayesian Computation (ABC) to evaluate
the ability of the distribution of singletons to correctly estimate
the onset of expansion in a range expanding species, and to
estimate a posterior distribution for the location of this origin
for cultivated pearl millet. We performed 20,000 range expansion
simulations by considering a heterogeneous environment using
the computer program SPLATCHE2. The deme carrying
capacities were equal to C = 100 for tropical semi-desert areas,
C = 20 for tropical extreme deserts and C = 10 for rain
forests. Additional parameters included an ancestral effective
population size of 200 individuals, 200 generations before onset
of expansion, and an effective mutation rate of 10−5 per base pair
per generation.

Prior distributions allowed the geographic coordinates of the
origin of expansion to vary over the Sahel region. Longitude
ranged between −16◦E and 40◦E, and latitude ranged between
5◦N and 30◦N. Lower prior probabilities were given to
extreme latitudes and longitudes as a consequence of unsuitable
habitats (water regions). Uninformative prior distributions were
considered for the migration rate, the growth rate, the total
duration of the demographic phase, the ancestral population size
and the time before onset of expansion (Supplementary Table 1).
In simulations, genetic variation was surveyed at 146 geographic
sites corresponding to the exact sampling locations of pearl

millet accessions. Ten thousands SNPs were simulated for each
genotype.When evaluating summary statistics, a fraction of SNPs
were removed from the simulated data in order to match with the
amount of missing values observed in the original data set.

To define the summary statistics for ABC, we used a
histogram for the distribution of singletons in the sample. The
146 accessions were grouped into spatial clusters according to
a k-means algorithm and individual geographic information
(Hartigan and Wong, 1979). The k-means algorithm resulted in
14 groups with more than 6 accessions in each group (Figure 1).
To obtain a histogram, we computed the mean number of
singletons in each group, and divided this value by the total
number of singletons in the sample (Supplementary Table 2).
Then ABC analysis was performed with the R package abc

(Blum and François, 2010; Csilléry et al., 2012). Neural network
models were used to estimate posterior distributions for the
latitude and longitude of the geographic onset of expansion
whereas the other parameters were considered as nuisance
parameters without any interpretable unit. The tolerance rate
was set to 0.05 and 250 neural networks were used in the abc
function.

We first tested the accuracy of our estimates by using
simulated data sets as inputs to the inference method.
The sampling procedure and the ABC estimation were
replicated 100 times, and we evaluated the correlation between
coordinates of true origins and their estimated values. Then we
considered the pearl millet data, and represented the prior and
posterior densities of the geographic onset parameters by using

FIGURE 1 | Geographic distribution of 146 cultivated accessions of pearl millet. Fourteen geographic classes were defined as a result of a k-means procedure.
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two-dimensional kernel density estimation with 100 grid points
in each direction.

4. RESULTS

4.1. Coalescent Simulations of Splitting
Populations
To evaluate statistical bias in the estimation of the distribution
of singletons, we performed coalescent simulations of samples
from two populations with unequal genetic diversity. The two
populations diverged from an ancestral population t generations
ago (split time), and at split time, the size of population 2 shrinked
to s times the size of population 1 (shrink rate).

For each simulation, the number of polymorphic loci ranged
between 7,883 and 39,761 (average value: 25,265 loci). For a
value of the shrink rate s ≈ 1/3, the average proportion of
singletons in population 1 was about π1 = 0.0122, and the
average proportion of singletons in population 2 was about
π2 = 0.0078 (π1 + π2 = 2/n). This result reflected
that genetic diversity in population 1 was higher than in
population 2. The ratio was about π1/π2 = 1.55 (Figure 2A).
The individual proportions were concentrated around theirmean

values with relatively small standard deviations (SD1 = 0.0010,
SD2 = 0.0008).

The results from 200 replicates provided clear evidence that
the empirical distribution of singletons is an unbiased estimate of
its theoretical distribution based on coalescent trees (Figure 2B).
The split time parameter had a weak influence on the distribution
of singletons (Pearson correlation test, P = 0.64). The ratio
π1/π2 reached values between 10 and 40 when the shrink rate
was below 10%, and this parameter had a strong influence on the
empirical distribution of singletons (Figure S1).

4.2. Range Expansions in Africa
For data sets generated under range expansion scenarios, the
number of polymorphic loci ranged between 25,453 and 29,321
loci. The number of singletons ranged between 8,835 and
12,653, and the site frequency spectrum showed an excess of
rare alleles as expected under explosive population growth.
When the onset of expansion was set in Western Africa (cross
in Figure 3), the maps of the empirical distribution of singletons
and expected heterozygosity exhibited similar large-scale
geographic patterns (Figure 3, Pearson’s correlation coefficient
0.78). Because the computation of expected heterozygosities

FIGURE 2 | Coalescent simulations of two splitting populations (100 chromosomes). (A) Empirical distribution of singletons for a value of the shrink rate s = 0.33. The

dashed lines represent the averaged values for population 1 (expanding) and population 2 (skrinking). (B) Predicted and observed (empirical) values of the distribution

of singletons for population 1 (left) and population 2 (right).
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FIGURE 3 | Individual vs. population sampling after a range expansion simulation scenario (Western origin). (A,B) Homogeneous environment. Maps of the empirical

distribution of singletons (individual sampling) and expected heterozygosity (true population sampling). (C,D) Inhomogeneous environment.

was based on a perfect assignment of samples to their true
populations of origin, the interpolated maps corresponding
to this measure (Figures 3B,D) contained less uncertainty
than the maps of singletons (Figures 3A,C) that were based
on random individual sampling. Considering environmental
heterogeneity increased the variability of spatial estimates
(Figures 3C,D).

Next, we compared estimates of heterozygosity for
populations to the distribution of singletons in the same
populations (Figure 4). Differences between maps produced
with the empirical distribution of singletons and with expected
heterozygosity decreased when the sampled chromosomes were
perfectly assigned to their population of origin. The individual
and population-based measures provided concordant estimates
of genetic diversity in geographic space (Pearson’s correlation
coefficient 0.51). Similar results were observed when the onset
of expansion was set in the Sahel area (20◦ E, 22◦ N) and were
reported in Figures S2, S3.

4.3. Estimates of Expansion Onsets and
Application to Pearl Millet
First, we used the distribution of singletons in ABC to infer
origins of range expansion in 100 simulated data sets (Figure 5).
The results provided evidence of the usefulness of the statistics
to identify origins of range expansions. Estimated values for the
longitude and latitude of the onset of expansion were highly
correlated to the true values for these parameters. Pearson’s
squared correlation coefficients were equal to R2 = 0.950 for the
longitude and R2 = 0.948 for the latitude (p-values < 0.01).

Next, we used the ABC approach to provide insights on the
origin of range expansion of cultivated pearl millet in Africa. A
total number of 41,032 singletons were found for 146 individuals,
representing 24.27% of all variants. The posterior density for
the longitude exhibited a mode around −7.52◦E (CI:-11.26◦E,
0.84◦E) (Figure 6). For the latitude of origin, the posterior
density exhibited a mode around 24.2◦N and a large credible
interval (CI: 11.03◦N , 29.06◦N) (Figure 6). The most probable

Frontiers in Genetics | www.frontiersin.org September 2017 | Volume 8 | Article 13971

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Cubry et al. Distribution of Singletons for Geographic Samples

FIGURE 4 | Population sampling after a range expansion simulation scenario (Western origin). (A,B) Homogeneous environment. Maps of the empirical distribution of

singletons (true population sampling) and expected heterozygosity (true population sampling). (C,D) Inhomogeneous environment.

FIGURE 5 | Estimated coordinates of origin against their true values for 100 simulated data sets used as targets for ABC analysis. Pearson’s correlation coefficients

are reported.
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location for the origin of expansion of pearl millet in Africa was
found near the Mali-Mauritania border (Figure 7).

5. DISCUSSION

How singletons are distributed across geographic space provides
a local measure of genetic diversity that can be measured at
the individual level. In this study, we developed a theoretical
background for the empirical distribution of singletons in
a sample of chromosomes. We used simulations to provide
evidence that the empirical distribution of singletons measures
individual contributions to genetic diversity in the sample. The
main advantage of this approach is to provide individual-based
(local) estimates of genetic diversity that do not require the
definition of populations.

Incorporated in an ABC framework, the empirical
distribution of singletons led to accurate estimates of the
geographic origin of range expansions in simulations. In ABC,
the distribution of singletons was estimated by histograms
obtained from clustering algorithms, and the histograms were
used as summary statistics for Bayesian inference. Those statistics

are appropriate to analyze the results of sequencing projects
based on large scale sampling of individuals across geographic
space. The method can be viewed as an interesting alternative to
phylogenetic approaches when genomic sequences are used.

Potential factors that could bias our estimates of local
genetic diversity includes missing data, genotyping errors, related
individuals, and the use of a folded site frequency spectrum.
Missing values or genotyping errors impacts individual data
regardless of geography. By sharing genomic variation locally,
related individuals reduce the number of unique variants
drastically, and generate bias in global estimates of genetic
diversity. Though those errors increase uncertainty in estimates,
the biases on geographic estimates remain at small levels.
Our ABC analysis took the potential biases into account by
simulating the missing data, genotyping errors and the other
issues. Alternative methods that could remove the biases would
be based on genotype imputation and on the availability of
genomic data from a closely related species.

We provided an illustration of the potential of singletons
to inform demographic history by studying range expansion
of pearl millet in Africa. Pearl millet is a widely grown staple

FIGURE 6 | Prior and posterior density estimates for the longitude and latitude of the expansion onset for cultivated pearl millet in Africa.

FIGURE 7 | Geographic origin of cultivated pearl millet expansion using kernel density estimation.
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crop in Africa and India, but its precise origin is currently
unknown (Tostain, 1992; Oumar et al., 2008; Clotault et al.,
2012). When we applied an ABC approach to cultivated
pearl millet genomes, we obtained a result supporting the
Northern Mali region as the most probable geographic origin
of expansion. Although the accuracy of the ABC approach
was validated with extensive computer simulations of range
expansion, the empirical results pointed out some limitations
of our model for the data. The uncertainty around 18◦

reported for the latitude of origin was high, and improving
our estimate would require supplementary information on
past environmental conditions, carrying capacities and gene
flow between pearl millet and related species. Interestingly,
our results rejected an eastern origin for the expansion of
the domesticated cereal. This result is consistent with recent
archeological studies using both wild and cultivated samples,
that pinpointed the Mali-Niger region as the most likely origin
of domestication of pearl millet (Manning et al., 2011; Ozainne
et al., 2014).

To conclude, singletons are a major component of the site
frequency spectrum for manymodel and non-model species. The
density of singletons in genomes has recently proven useful to
detect selection in human genomes (Field et al., 2016). Here we
showed that the density of singletons in geographic space is useful
for providing local estimates of genetic diversity and key insights
on the demographic history of a species.
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Garlic (Allium sativum) is used worldwide in cooking and industry, including
pharmacology/medicine and cosmetics, for its interesting properties. Identifying
redundancies in germplasm blanks to generate core collections is a major concern,
mostly in large stocks, in order to reduce space and maintenance costs. Yet, similar
appearance and phenotypic plasticity of garlic varieties hinder their morphological
classification. Molecular studies are challenging, due to the large and expected complex
genome of this species, with asexual reproduction. Classical molecular markers,
like isozymes, RAPD, SSR, or AFLP, are not convenient to generate germplasm
core-collections for this species. The recent emergence of high-throughput genotyping-
by-sequencing (GBS) approaches, like DArTseq, allow to overcome such limitations to
characterize and protect genetic diversity. Therefore, such technology was used in this
work to: (i) assess genetic diversity and structure of a large garlic-germplasm bank (417
accessions); (ii) create a core collection; (iii) relate genotype to agronomical features; and
(iv) describe a cost-effective method to manage genetic diversity in garlic-germplasm
banks. Hierarchical-cluster analysis, principal-coordinates analysis and STRUCTURE
showed general consistency, generating three main garlic-groups, mostly determined
by variety and geographical origin. In addition, high-resolution genotyping identified
286 unique and 131 redundant accessions, used to select a reduced size germplasm-
bank core collection. This demonstrates that DArTseq is a cost-effective method to
analyze species with large and expected complex genomes, like garlic. To the best
of our knowledge, this is the first report of high-throughput genotyping of a large garlic
germplasm. This is particularly interesting for garlic adaptation and improvement, to fight
biotic and abiotic stresses, in the current context of climate change and global warming.

Keywords: DNA fingerprinting, breeding, phenotype, somatic mutation, second-generation sequencing (SGS),
third-generation sequencing (TGS), next-generation sequencing (NGS)
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INTRODUCTION

Garlic (Allium sativum) is a plant producing an edible bulb, made
of storage leaves known as cloves. It is of Asian origin, being
Allium longicuspis considered its wild ancestor. It belongs to
genus Allium, which includes almost 1,000 species, such as chive
(Allium schoenoprasum), leek (Allium ampeloprasum), onion and
shallot (Allium cepa) (Maab and Klaas, 1995; Kamenetsky et al.,
2004; Meredith, 2008; Cardelle-Cobas et al., 2010; Pacurar and
Krejci, 2010). Garlic has a large diploid genome (2n = 2x = 16),
of an estimated haploid (1C) size of 15.9 gigabase pairs (Gbp);
that is, 32 times larger than rice (Oryza sativa). Garlic is sterile
(does not produce fertile botanical seeds by sexual reproduction),
asexually propagating by its cloves, despite some progress in
recent years to restore garlic fertility (Shemesh-Mayer et al.,
2015). Besides, cloves must be reproduced every year, since they
cannot be stored for longer periods and then germinated, as
happens with standard botanical seeds. Such peculiarity adds
extra cost and inconvenience to its maintenance, mainly for large
germplasm collections. The peculiar garlic reproduction could
lead to low genome diversity, since meiosis is not involved in
its clonal reproduction by vegetative propagation (Kamenetsky
et al., 2015). Yet, garlic shows a surprisingly high biodiversity,
as well as environmental-adaptation capacity and phenotypic
plasticity (Volk et al., 2004). All that leads to the large number
of garlic varieties or cultivars available (traditionally classified
by agromorphological characteristics). The reason for that is not
fully understood, suggesting a complex genome (Green, 2001),
due to its extremely large size containing many multicopy genes
and other duplications, including non-coding sequences and
tandem repeats (Arumuganathan and Earle, 1991; Jones et al.,
2004; Ovesna et al., 2015), which should be better understood
once sequenced. So far, partial and total genome duplications
have been described (Supplementary Table S1). Additionally,
somatic mutations have been also reported for this species, as
well as somaclonal variation, differential gene-expression and
alternative splicing (Al-Zahim et al., 1999; Rotem et al., 2007;
Kamenetsky et al., 2015; Shemesh-Mayer et al., 2015). Probably,
transposable elements are also involved in the evolution of this
species.

Besides being appreciated in cooking as common seasoning
for thousands of years (Cardelle-Cobas et al., 2010), garlic
is also used in pharmacology and cosmetics. Indeed, it is
known to have medical properties, protecting against different
diseases, like, for instance, hypercholesterolemia, hypertension,
atherosclerosis, and thrombosis, reducing the risk of developing
cardiovascular disease (CVD). Other recognized bioactivities are
antimicrobial (albeit being probiotic), antiasthmatic, antioxidant,
anticarcinogenic, etc. (Corzo-Martínez et al., 2007; Pacurar and
Krejci, 2010; Rana et al., 2011). Indeed, garlic contains bioactive
compounds, including, among others: (i) lectins, which have
wide applications in biomedicine and biotechnology (Smeets
et al., 1997); (ii) peptides with angiotensin I-converting enzyme
(ACE) inhibitory activity, being related to its antihypertensive
activity (Suetsuna, 1998); and (iii) N-feruloyltyramine, which
protects against CVD by suppressing platelet activation (Park,
2009). Besides, this species is rich in enzymes with industrial

interest; for instance: (i) nucleases (DNase and RNase), with
application in molecular biology (Carlsson and Frick, 1964);
(ii) cellulases for biotechnological applications, like conversion
of biomass into biofuel (Kim et al., 2010); (iii) superoxide
dismutases (SOD), which represent a main defense against
oxidative stress, being widely used in pharmacology/medicine,
cosmetics, food, agriculture, and chemical industries (He et al.,
2008; Liu et al., 2011); (iv) proteases/hemagglutinases, with
application in medical tests (Parisi et al., 2008); and (v) alliinases
(also known as alliinases), that catalyze conversion of alliin to
allicin, which is the main therapeutic agent of garlic (Corzo-
Martínez et al., 2007; Kim et al., 2010; Rathnasamy et al., 2014).

On the other hand, agricultural practices usually involve
cultivation of a reduced number of species and varieties, which
may lead to genetic erosion. That is especially relevant for
monocultures, which on the other hand are required to feed
an exponentially growing human population. It is therefore
important to maintain germplasm banks as reservoirs of
genetic variability for crop breeding. Thus, such collections
may harbor genetic potential to improve productivity and
adaptation/resistance to abiotic (drought, salinity, etc.) and biotic
(diseases and plagues) stresses (Tanksley and McCouch, 1997).
That is particularly relevant in the current frame of climatic
change and global warming. Understanding this potential is
critical for identification of biodiversity in biological resources
and its efficient management, including conservation and
selection of genetically divergent accessions to optimize breeding
programs (Olukolu et al., 2012).

Yet, germplasm banks may be generated as mere raw
collections of varieties over many years, being classified by
criteria based on phenotypic/agronomic traits (passport data).
That could lead to both homonymy (same name for genetically
different cultivars) and duplications or synonymy (same cultivars
with different names). That is especially problematic for species
with similar appearance and significant phenotypic plasticity,
like garlic. Thus, efficient identification of biodiversity is of
paramount importance to manage and maintain such genetic-
resources (Govindaraj et al., 2015). That is relevant not only
to identify genuine variability for breeding purposes, but also
to reduce space and maintenance costs, especially for large
germplasm banks, generating reduced, albeit representative, core
collections (Zhao et al., 2010).

The role of molecular markers as a tool for genetic analyses
and crop improvement has gained importance through the years,
as we have reviewed (Dorado et al., 2015c). Their use has become
common in model species and important crops. Indeed, genetic
diversity and polymorphism assessments are major priorities in
plant and crop-breeding studies (Nybom and Bartish, 2000).
Large-scale identification of molecular markers like single-
nucleotide polymorphism (SNP) on genome and transcriptome
represent interesting approaches (Ipek et al., 2016; Akpinar et al.,
2017). Classical molecular-markers to assess genetic diversity
and polymorphism in garlic have been described (Ovesná et al.,
2014; Ipek et al., 2015). Among others, they include isozymes,
random-amplified polymorphic DNA (RAPD) (Maab and Klaas,
1995), simple-sequence repeats (SSR) (DaCunha et al., 2014),
amplified-fragment length polymorphism (AFLP) (Ipek et al.,
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2005) and insertions-deletions (InDel) (Wang et al., 2016). Yet,
such analyses of genetic diversity in this species are challenging
(Kim et al., 2009).

Fortunately, recent technological developments overcome
previous limitations. They include second-generation sequencing
(SGS) and third-generation sequencing (TGS) approaches,
sometimes known by the ambiguous next-generation sequencing
(NGS) terminology, as we have reviewed (Dorado et al., 2015b).
Thus, a high-throughput genotyping-by-sequencing (GBS)
technology (DArTseq) has been developed. It combines diversity
arrays technology (DArT) complexity reduction methods
with SGS/TGS (Kilian et al., 2012; Courtois et al., 2013; Cruz
et al., 2013; Raman et al., 2014), allowing to identify SNP.
DArT markers are polymorphic segments of DNA that are
found at specific genome sites, after complexity reduction,
being detected by hybridization. Those markers may show
dominant or codominant inheritance (Gupta et al., 2008). DArT
markers exploit DNA-microarray platforms to analyze DNA
polymorphisms, without requiring previous DNA-sequence
knowledge. Their applications include genetic fingerprinting,
like whole-genome profiling for molecular breeding, germplasm
characterization and genetic mapping, among others (Jaccoud
et al., 2001). DArTseq can be optimized for each organism
and application, by selecting the most appropriate complexity-
reduction method (both size of representation and fraction
of selected genome for assays). This is particularly relevant
for garlic, which has a large and expected complex genome,
as previously described. Therefore, DArTseq has been used
in the present work as a proof-of-concept, to analyze a large
garlic-germplasm bank.

The main goals of this study are: (i) assess genetic diversity
and structure of a large garlic-germplasm bank; (ii) create a core
collection to reduce the number of original accessions, without
losing genetic diversity; (iii) relate genotype to agronomical
features; and (iv) describe a cost-effective method to manage
genetic diversity that could be applied to germplasm banks and
breeding projects of garlic and other species.

MATERIALS AND METHODS

Plant Material and DNA Isolation
A total of 417 a priori different garlic entries collected in Spain
(some of them being originally derived from other countries)
were used for DArTseq analyses: 408 from the main Garlic-
Germplasm Bank at “Instituto Andaluz de Investigación y
Formación Agraria, Pesquera, Alimentaria y de la Producción
Ecológica” (IFAPA) of “Junta de Andalucía” in Cordoba; five from
Cordoba University (C1 to C5); and four (G, K, L, and M) from
“Centro de Ensayos de Evaluación de Variedades” at “Instituto
Nacional de Investigación y Tecnología Agraria y Alimentaria”
(INIA) in Madrid (Supplementary Table S1). Garlic leaves were
frozen in liquid nitrogen and stored at−80◦C until needed.

DNA was isolated using cetyl trimethylammonium bromide
(CTAB) protocol (Murray and Thompson, 1980), as we have
optimized (Hernandez et al., 2001). It was dissolved in Tris-
Na2EDTA (TE; pH 8) and stored at 4◦C. Isolated DNA

was quantified by NanoDrop 2000c (Thermo Fisher Scientific,
Waltham, MA, United States) and segregated by 1% (w/v)
agarose [from United States Biological (Salem, MA, United
States)] gel electrophoresis (AGE). Then it was stained with
ethidium bromide from Sigma–Aldrich (St. Louis, MO, United
States). Resulting DNA was visualized under ultraviolet (UV)
light for quality evaluation, using a Molecular Imager VersaDoc
MP 4000 System from Bio-Rad (Hercules, CA, United States).
Additionally, DNA digestions with the frequent-cutter Tru1I
restriction enzyme (RE; cutting at T| TA| A) from Thermo Fisher
Scientific were performed, in order to check DNA quality and
absence of contaminating nucleases.

DArTseq
DArTseq method from Diversity Arrays Technology (Canberra,
ACT, Australia) is described elsewhere1. In short, the following
steps were carried out: (i) complexity reduction, in which
genomic DNA was digested with a combination of restriction
enzymes. Then, adapters were ligated and only polymorphic
fragments were selected. In this way, this technique allowed
to exclusively focus in those sections of the genome which
are interesting for genetic-diversity analyses, due to their
polymorphism; (ii) polymorphic fragments were cloned into
Escherichia coli bacteria to create a library. Each E. coli colony
should contain one of those fragments; (iii) the generated library
was amplified by polymerase chain-reaction (PCR), as we have
reviewed (Dorado et al., 2015a); (iv) amplicons were cleaned
and evaluated by capillary electrophoresis sizing; (v) fragments
were sequenced; (vi) A FASTQ file was created with generated
sequencing reads, including sequences from 30 to 60 base pairs
(bp) of polymorphic fragments; (vii) an internal alignment was
performed, using other reads from the library (this step is carried
out in case of incomplete or absent reference genome, like in the
present work); (viii) SNP and SilicoDArT markers were searched
and filtered using algorithms; and (ix) resulting data were two
presence/absence (1 and 0, respectively) matrices. One contained
SNP and the other SilicoDArT markers, where each column
represented an individual and each row a marker (Kilian et al.,
2012).

In our case, four methods of complexity reduction were
tested in garlic (data not shown), selecting the PstI-NspI
restriction enzymes (cutting at G| TGCA| G and R| CATG|
Y, respectively). Briefly, DNA samples were processed in
digestion/ligation reactions as previously described (Kilian et al.,
2012), but replacing a single PstI-compatible adaptor with two
different adaptors, corresponding to two different RE overhangs.
The PstI-compatible adapter was designed to include flowcell-
attachment sequence from Illumina (San Diego, CA, United
States), sequencing-primer sequence and “staggered” barcode
(varying-length region), similar to previously reported (Elshire
et al., 2011). Reverse adapter contained flowcell-attachment
region and NspI-compatible overhang sequence. Interestingly,
an overrepresented sequence from cytoplasmic (chloroplastic)
DNA, corresponding to >10% of total sequences, was identified
(after initial optimization) in many PstI-NspI garlic-library

1http://www.diversityarrays.com/dart-application-dartseq
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samples. A cut site for AlwI (cutting at GGATCNNNN| N|) was
identified within this overrepresented sequence, and thus such
restriction enzyme was included in the digestion-ligation step of
library construction. Only “mixed fragments” (PstI-NspI) which
did not have AlwI site were effectively amplified in 30 rounds
of PCR, using the following reaction profile: (i) denaturation at
94◦C for 1 min; (ii) 30 cycles [94◦C for 20 s (denaturation),
58◦C for 30 s (primer annealing) and 72◦C for 45 s (primer
extension)]; and (iii) final polymerization at 72◦C for 7 min.
Equimolar amounts of PCR amplicons from each sample reaction
of 96-well microtiter plates were bulked and applied to c-Bot
(Illumina) bridge PCR, followed by sequencing on HiSeq 2000
sequencing system from the same manufacturer. Single-read
sequencing reactions were run for 77 cycles.

Sequences generated from each lane were processed using
DArT analytical-pipelines. In the primary one, Fast-Alignment
Sequence Tools Q (FASTQ) files were first processed. Thus, poor-
quality sequences were filtered-away, applying more stringent
selection criteria to the barcode region, as compared to the rest of
the sequence. Assignments of sequences to specific samples in the
“barcode split” step were very reliable. This way, approximately
2,000,000 sequences per barcode/sample were identified and used
in marker calling. Finally, identical sequences were collapsed into
“fastqcoll” files. These were “groomed” using the DArT PL’s C++
algorithm, which corrects low-quality bases from singleton-tags
into correct bases, using collapsed tags with multiple members as
template.

Groomed fastqcoll files were used in the secondary pipeline
(presence/absence of restriction fragments in representation), by
DArT, PL, SNP, and SilicoDArT calling algorithms (DArTsoft
version 14). In total, 33,423 presence/absence markers were
generated. All tags from all libraries included in the DArTsoft
analyses were clustered using the DArT PL’s C++ algorithm
(threshold distance of 3), for SNP calling. That was followed by
cluster parsing into separate SNP loci, using a range of technical
parameters; especially the balance of read counts for allelic
pairs. Additional selection criteria were added to the algorithm,
based on previous experience with analyses of approximately
1,000-controlled cross populations (data not shown). Testing for
Mendelian distribution of alleles in these previous populations
facilitated selection of technical parameters, discriminating well-
true allelic variants from paralogous sequences. In addition,
multiple samples were processed from DNA to allelic calls, as
technical replicates and scoring consistency was used as the
main selection criteria for high-quality/low error-rate markers.
Calling quality was assured by high average-read-depth per locus
(average across all markers was over 10 reads/locus).

Genetic Diversity and Structure
Assessments
Three different analyses were performed, in order to study
genetic diversity and structure of germplasm-bank accessions.
After creating the SNP and SilicoDArT marker scoring
matrices, a Gower’s distance matrix was generated. Gower’s
distance is a coefficient that measures similarity between
two samples, based on logical (absence/presence) information

differing for several variables (Gower, 1971). These data were
used to determine genetically redundant samples. Secondly,
a hierarchical cluster-analysis was done with the “pvclust” R
package (Suzuki and Shimodaira, 2015). The phylogenetic tree
(dendrogram) was computed with a complete-linkage method.
By doing complete-linkage clustering (agglomerative hierarchical
clustering method), each element of a distance matrix was first
individually clustered. Then, each sample was combined into a
new cluster, according to the shortest distance (Defays, 1977).
Besides previous tests, a principal-coordinates analysis (PCoA;
also known as classical multidimensional scaling, Torgerson
Scaling or Torgerson-Gower scaling) was also carried out, using
R software version 3.2.2 (R-Development-Core-Team, 2015).
Additionally, STRUCTURE software version 2.3.4 (Pritchard
et al., 2000) was used to study genetic structure. The chosen
parameters were five iterations, K ranging from 1 to 3, with a
burnin length of 10,000 and 20,000 Markov Chain Monte Carlo
(MCMC) repetitions after burnin.

RESULTS

DArTseq Analyses
A total of 417 garlic samples were analyzed using SilicoDArT
markers (representing presence/absence of restriction fragments
in DArT genomic representations) and SNP data. A total of
14,392 SNP were used for the analyses. DArTseq markers
allowed identifying 286 unique (Supplementary Table S2) and
131 redundant samples. The latter were divided into 19
groups, showing a variable amount of individuals (two to 53;
Supplementary Table S3). For instance, in group 1, samples 717
and 718 were from the same province (Jaen, Spain). Spanish
White varieties were mainly associated in groups 2 and 3 (samples
238, 452, and 461, all from northern Spain). Additionally,
for group 2, there was an internal structure between regions.
Samples 335, 424, 433, 434, 457, 464, and 467 were from
northern Spanish provinces; samples 360 and 368 came from
Caceres (Spain) and samples 127, 130, and 553 from southern
Spanish provinces. Groups 4 and 7 to 10 included Spanish
Purple varieties. Particularly, samples in group 4 were all from
Castilla-Leon (Spain). Group 7 was the most numerous, with
a total amount of 53 redundant samples. Interestingly, some
associations by province were found in this group. Thus, samples
2, 59, 486, and 489 were all from northern regions; samples 21,
37, and 366 from central provinces; and samples 3, 85, 107, 110,
125, 131, 139, 150, 171, 225, 344, 356, 715, and 720 were from
southern provinces. Two samples (14 and 280) from Taiwan, were
also included in group 7. On the other hand, no associations were
found for groups 5, 6, and 11 to 19.

Germplasm-Diversity Assessments
The 417 garlic samples were further analyzed, in order
to assess their genetic diversity and structure, to eliminate
redundant accessions, and thus generate the germplasm-
bank core collection. Two different analyses were performed:
hierarchical cluster computed by complete-linkage method and
PCoA. The dendrogram (Supplementary Figure S1) showed
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three main clusters (I to III), besides a few samples diverging
from them (A and B). Main branches were supported by high-
bootstrap values (>90). Moreover, bootstrap values were mainly
high as well inside the main three clusters. Only some final
subgroups had statistically non-significant bootstrap values. The
separation in the dendrogram of some well-characterized samples
(C1 to C5) is of special interest. Thus, Spanish varieties (Purple
C3 and White C4; highlighted in purple and pink, respectively,
in Supplementary Figure S1) were more related between them
than to Chinese varieties (White C1 and Purple C2; highlighted
in brown in Supplementary Figure S1), which were closely
related. Sample C5 is a Brazilian garlic (thought to be an old
Spanish Purple variety exported to America during colonialism)
brought back to Spain 5 years ago. Interestingly, it was nearer to
Spanish samples (closer to C3 than to C4) than to other accessions
(C1 and C2), being highlighted in purple (Supplementary
Figure S1).

Agro-morphological information (Supplementary Table S1)
showed data in agreement with the generated dendrogram.
For instance, cluster A contained samples 167, 239, and 459,
being hexaploid or giant varieties (Supplementary Figure S1;
highlighted with orange dots). There was a fourth hexaploid
individual (379), being located in cluster III. Another interesting
case was made of samples grouped together and with similar
geographical origins. Thus, accessions 511, 513, and 514 came
from Egypt (Supplementary Figure S1; highlighted with brown
dots). Additionally, there were clusters with samples from
Castilla-Leon region like: (i) 380, 389, and 432; (ii) 376, 424,
425, and 431; and (iii) 54, 423, 434, and 438 in the case
of cluster II (highlighted with pink dots). Samples 32, 123,
125, 136, 225, and 1390 in cluster III were from Andalusia
region (Spain; highlighted with purple dots). Samples 265, 270,
272 to 274, 276, 300, and 373 from cluster B came from
Japan.

In addition, most accessions were also grouped by garlic-
variety color in the phylogenetic tree. Thus, samples 20, 54,
238, 335, 360, 368, 424, 452, and 467 were Spanish White

varieties (cluster II, pink). Likewise, samples 2, 3, 16, 17, 19,
21, 27, 29, 30, 32, 33, 37, 38, 77, 85, 87, 110, 117, 120, 123
to 125, 131, 132, 136, 138 to 141, 149, 150, 158, 161, 166, 171
to 173, 296, 297, 342, 343, 349, 356, 366, 454, 489, 542, 543,
560, 566, 570, 572, 574, 577, 578, 694, 752, 774, 779, G and
K were Spanish Purple, Red, Brown, or “Colorado” varieties
(cluster III, purple). Conversely, some samples did not group
as expected. Thus, accessions 176 and 353 (Brown and Spanish
Purple, respectively) would belong to cluster III, in accordance to
their available agro-morphological data, yet they were in cluster
A. Likewise, samples 36, 43, 88, and 109 (being considered Red
or Purple varieties) did not group in cluster III, but in cluster II
instead. Additionally, sample 44 is described as Chinese and thus
expected in cluster I, but showed in cluster II instead. Samples
28, 79, 101, 137, 268, 526, 753, 776, and L (described as White
varieties) were expected in cluster II, but were in cluster III.
Sample 51 (described as Spanish White) was conversely located
in cluster I instead of II. Likewise for some Spanish Purple
samples (7, 348, 363, 369, and 775). Finally, samples 263 and
300 (described as White varieties) were included in cluster B
instead of II. All samples that were not assigned consistently
with agro-morphological data were highlighted with red dots in
Supplementary Figure S1.

Principal-coordinates analysis was performed to further
evaluate dendrogram clusters (Figure 1). Variance (genetic
diversity) explained by principal components (PC) (accounting
for 0.99 of cumulative variance) was 0.93 for PC1, 0.04 for PC2,
and 0.02 for PC3. The relationships for samples C1 to C5 were
similar to the ones in the dendrogram. As expected, samples C1
and C2 were nearer among them (Chinese), as well as samples
C3 to C5 (Spanish origin). In addition, samples C3 and C5
were also closer compared to C4, as displayed in dendrogram
(Supplementary Table S4).

Germplasm Genetic-Structure
Genetic structure of the garlic germplasm-bank collection was
evaluated with STRUCTURE software. Three groups were

FIGURE 1 | Garlic principal-component plot. PCoA analysis was carried out to further analyze the garlic germplasm diversity. Upper-left represents principal
coordinate (PC1; x-axis) with PC2 (y-axis); lower-left compares PC1 (x-axis) to PC3 (z-axis); and upper-right shows PC2 (z-axis) versus PC3 (y-axis). The lower-right
graph corresponds to the Proportion of Analysis of Variance Explained (PAVE).
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found, based on maximum likelihood and delta K (1K) values
(Supplementary Figure S2a). As described above, this result
is in agreement with cluster analysis and PCoA. Bar plot for
K = 3 was also shown (Supplementary Figure S2b). In relation
to the probability of membership of samples to clusters, Cluster
I showed a score of 44.8%, being the group with the highest
percentage. Clusters 2 and 3 had similar values (26.4 and 28.8%,
respectively). When the probability of belonging to a group was
high (≤0.8 to 0.9), such individuals showed the same association
found in hierarchical cluster-analysis. Well-known varieties (C1
to C5), also maintained the same relationships (Supplementary
Table S5).

DISCUSSION

Garlic is known for multiple alimentary, medical and cosmetic
uses worldwide. Yet, its classification and conservation in
germplasm banks is challenging, due to homonymy and
synonymy, being further complicated by its asexual life-cycle
(Ipek et al., 2005). Previous information available allowed
classifying the studied germplasm samples in this work by
agro-morphological traits. Yet, such approach may be non-
effective identifying true biodiversity, increasing redundancies
and thus space and preservation costs in germplasm banks. In
fact, it is known that the same garlic genotypes in different
environmental conditions could exhibit diverse phenotypes
(Volk et al., 2004). This is due to the high phenotypic plasticity
of garlic, probably linked to its huge and expected complex
genome, which somehow should compensate its lack of sexual
reproduction.

Molecular markers have become an essential tool to identify,
manage, and protect genetic diversity. Yet, developing them
may be complicated, time-consuming and expensive for species
like garlic, without sequenced reference genome, in which only
scarce genomic-information is available (Ovesná et al., 2014).
Additionally, classical molecular markers like isozymes, RAPD,
SSR, or AFLP are not well suited to genotype garlic germplasm
banks, due to its lack of resolution for such a peculiar genome in
asexually reproducing accessions. Fortunately, technologies like
DArT –and more recently, DArTseq– allow to reduce complexity
and thus resolve complex genomic samples (Jaccoud et al.,
2001).

Therefore, DArTseq was used in the present work to
evaluate the genetic diversity and structure of 417 garlic
samples (408 accessions from a garlic-germplasm bank). Data
were analyzed by hierarchical-cluster computed by complete-
linkage method, PCoA and genetic-structure approaches. Results
showed a general consistency between accessions, geographic
origins and groupings for expected/known garlic identities.
All tests showed that individuals could be divided into three
main groups (I, II, and III). Moreover, when the statistical
probability of belonging to a group was high, the same
association pattern of individuals was found in hierarchical-
cluster analysis. Specifically, patterns for samples C1 to
C5 (according to the previously known information) were
maintained. Hence, DArTseq markers proved to be an effective

and consistent genotyping approach to assess genetic diversity
and structure.

Samples grouped by variety or geographical proximity were
also found in non-redundant accessions, as described in the
“Results” section. As expected, garlic samples of the same or
near geographical regions grouped together. Indeed, cultivated
varieties are usually selected by growers for several reasons,
including being adapted to the climate in a specific region.
In addition, the asexual garlic reproduction could lead to
less genetic diversity and differentiation among varieties with
similar geographical origins or different variants of the same
variety. On the other hand, some samples were not grouped
as expected, according to their agro-morphological information.
Yet, such data is generated de visu, being therefore less
accurate than molecular studies. In fact, it is known that
morphological data are not always reliable to classify and
detect genetic variation in germplasm collections (Jansky et al.,
2015).

On the other hand, STRUCTURE assumes that markers
are not in linkage disequilibrium (LD) within subpopulations.
Yet, there are redundant lines in the data set, which could
be against such assumption. But, there was a high consistency
when comparing dendrogram clusters with those generated
by STRUCTURE software. Thus, individuals assigned to the
same cluster in the former, usually had higher probabilities to
belong to the same group in the latter. Only three individuals
were assigned differently in such analyses (4, 43, and 430)
(Supplementary Table S5 and Supplementary Figure S2). This
could be due to several reasons. In fact, criteria and calculations
could lead to different results in each analysis. In the case
of samples 4 and 430, they were located in an initial branch
of cluster III, which indicates that they were genetically
more different that the rest of assigned samples. Additionally,
agro-morphological information was missing for samples 4
and 430.

The redundancy analysis showed that about one third
of studied samples (131) could be considered as genetically
redundant vs. 286 non-redundant (unique). This shows the
higher resolution power and value of genomic analyses over
agro-morphological ones. Thus, DArTseq results allowed to
significantly reduce the analyzed garlic germplasm-bank size
by 31.41%, generating a core collection, which was the main
purpose of this research. Redundant accessions were divided
into 19 groups (Supplementary Table S3). Samples included
in each of them were in general related by variety (White,
Purple, etc.) or location (same or near provinces). Interestingly,
White varieties were more differentiated by location, whereas
Purple ones were mainly associated in only one group. Samples
79 (Chinese White variety) and 526 (Spanish White variety)
showed in group 7, in which Spanish Purple individuals were
included. Curiously, this same lack of correlation was found in
the hierarchical-cluster analysis, suggesting identities/differences
not yet well understood. Further research is required to properly
assess such results, including analyses of full genome sequences,
once available in the future. That is now a possibility for
large genomes like the garlic one, thanks to the throughput
increase and cost reduction of TGS, which is expected to
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become a mature technology in the next years (Dorado et al.,
2015b).

As we have found, DArTseq is a cost-effective genotyping
tool for creating and maintaining germplasm banks, allowing to
properly ascertain, manage and maintain available biodiversity.
Such technology has generated high-quality whole-genome
profiles and genetic patterns, with dramatically increased
resolution in relation to previous methodologies. Additionally,
the high number of samples analyzed in this work, together
with the large amount of marker data generated on lines
with phenotypic information, should be useful for both
genetic dissection of important traits and to help breeders
improve this crop. Moreover, results obtained by DArTseq
in any species can help to perform further analyses in
germplasm collections without previous genetic information,
even with high phenotypic-plasticity, complex genomes and
asexual reproductive-systems that may hamper diversity analyses
(Gebhardt, 2013). DArTseq sequences can be used to develop
DArTseq markers and other molecular markers, such as SSR
or SNP, which can be transferable to other germplasm banks
(Belaj et al., 2011; Atienza et al., 2013). These tools can be
associated to traits of interest, and thus used for marker-assisted
breeding.

CONCLUSION

We have significantly reduced the analyzed garlic germplasm-
bank size, identifying redundant accessions and thus generating
a unique (non-redundant) core collection, with the consequent
reduction in space and maintenance expenses. To our
knowledge, this is the first work of high-throughput garlic
genotyping. The obtained results show that DArTseq is a cost-
effective method to perform genotyping-by-sequencing and
genetic diversity analyses of such species with huge, expected
complex and mostly unknown (without reference) genome,
with clear applications for biodiversity conservation. This
supports previous studies for characterizing and managing
germplasm banks of other species. DArTseq has generated
consistent results, in accordance with variety and geographical
origin. They remark the relevance of genetic versus agro-
morphological data, especially in the context of peculiar
garlic-plasticity for environmental adaptation. Additionally,
the high number of samples analyzed in this work and the
amount of data generated should be useful for plant breeders
in general, as well as for garlic adaptation and improvement in
particular. This, along with other molecular markers and agro-
morphological information represent useful tools to improve
management strategies in germplasm-banks. In fact, having
a core collection of characterized genotypes and phenotypes
could help breeders to select plants with better adaptability.
This is important for productivity and to face biotic and
abiotic stresses, to fight the current climate change and global
warming.
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FIGURE S1 | Garlic dendrogram. Phylogenetic tree, with approximately unbiased
(AU; red)/Bootstrap Probability (BP; green) percentage values and Euclidean
distances, generated by complete-linkage method, to ascertain germplasm
diversity. Cluster I includes C1 and C2 (Chinese varieties); Cluster II has C4
(Spanish White variety); and Cluster III shows C3 to C5 (Spanish Purple and
Brazilian varieties). Samples C1 to C5, and others described in the text, are
highlighted with colored dots. I corresponds to cluster II in STRUCTURE analysis,
whereas II and III are equivalent to cluster I; and A and B correspond to cluster III
using such software analysis.

FIGURE S2 | Garlic genetic structure. STRUCTURE software was used to analyze
the studied garlic germplasm. (a) Diagram showing the three calculated clusters
(K = 3); and (b) 1K values.
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The persistence of small populations is influenced by genetic structure and functional

connectivity. We used two network-based approaches to understand the persistence

of the northern Idaho ground squirrel (Urocitellus brunneus) and the southern Idaho

ground squirrel (U. endemicus), two congeners of conservation concern. These graph

theoretic approaches are conventionally applied to social or transportation networks,

but here are used to study population persistence and connectivity. Population graph

analyses revealed that local extinction rapidly reduced connectivity for the southern

species, while connectivity for the northern species could be maintained following

local extinction. Results from gravity models complemented those of population graph

analyses, and indicated that potential vegetation productivity and topography drove

connectivity in the northern species. For the southern species, development (roads)

and small-scale topography reduced connectivity, while greater potential vegetation

productivity increased connectivity. Taken together, the results of the two network-based

methods (population graph analyses and gravity models) suggest the need for increased

conservation action for the southern species, and that management efforts have been

effective at maintaining habitat quality throughout the current range of the northern

species. To prevent further declines, we encourage the continuation of management

efforts for the northern species, whereas conservation of the southern species requires

active management and additional measures to curtail habitat fragmentation. Our

combination of population graph analyses and gravity models can inform conservation

strategies of other species exhibiting patchy distributions.

Keywords: functional connectivity, gene flow, graph theory, gravity model, landscape genetics, Sciuridae,

Urocitellus [Spermophilus]
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INTRODUCTION

Habitat loss and fragmentation are threats to many species
of conservation concern (Wilcox et al., 1985; Groombridge,
1992). These agents of landscape change decrease the size and
structural connectivity of habitat patches, with consequences
for long-term population viability and species distributions
(Kareiva andWennergren, 1995; Fahrig, 2002). Decreased animal
movement, and subsequent reduction in gene flow, can lead to
isolated populations and constricted species ranges (Andrews,
1990; Yahner and Mahan, 1997; Fahrig, 2002). Over time,
reduced gene flow can decrease population size, alter population
dynamics, and lower persistence probability (Meffe and Carroll,
1997; Ovaskainen and Hanski, 2003). Isolated populations
typically have low levels of genetic variation (Frankham, 1997)
that inhibit adaptation in the face of environmental change
(Lande, 1988) and increase vulnerability to inbreeding depression
(Frankham, 1995; Hedrick, 2005) and local extinction (Burkey,
1995; Frankham et al., 2002).

As the long-term persistence of populations in fragmented
landscapes depends on functional connectivity, or how
individuals respond to landscape composition (Tischendorf
and Fahrig, 2000; Stevens et al., 2006), research that assesses
the effects of landscape and ecological features on gene flow
serves as a valuable conservation tool (McRae et al., 2008). The
spatial context and composition of habitat patches generally have
profound influences on animal movement beyond the effect of
geographical distance alone (Ricketts, 2001). Landscape genetic
methods are particularly suited to test how environmental
context influences patterns of genetic variation and gene
flow across temporal and spatial scales (Manel et al., 2003;
Storfer et al., 2007; Holderegger and Wagner, 2008), and have
recently been strengthened by the integration of graph theoretic
approaches (Garroway et al., 2008; Murphy et al., 2016).
These approaches provide a mathematical framework in which
researchers can represent populations or sites as “nodes” and
connections between them as “edges,” and then evaluate patterns
of connectivity to identify environmental factors underlying
gene flow (Dyer and Nason, 2004; Garroway et al., 2008; McRae
et al., 2008; Dyer et al., 2010; Murphy et al., 2010).

Graph theory can be used to assess functional connectivity,
and may therefore provide important information for
conservation planning. Network metrics such as degree
centrality and betweenness (Everett and Borgatti, 2005)
measure the relative contribution of sampled sites to overall

population connectivity, and thus can pinpoint the best locations

for conservation or management actions. Gravity models

(Fotheringham and O’Kelly, 1989) can simultaneously evaluate

the relative influence of geographic distance, local attributes
of sampling locations (at-site characteristics), and the features
that separate them (between-site characteristics) on gene flow
(Murphy et al., 2010). Typical landscape genetic network models
do not include the influence of local attributes. By including
at-site characteristics in these models, we can incorporate
additional factors contributing to gene flow by quantifying how
habitat patches differ in quality (Ovaskainen and Hanski, 2003).
Patches of higher quality habitat may produce more offspring

and thereby contribute disproportionately to gene flow. Gravity
models can help determine how landscapes should be managed
to maintain connectivity and improve patch quality, and network
metrics can identify where managers should focus conservation
efforts.

The northern Idaho ground squirrel (Urocetillus brunneus;
NIDGS) and the southern Idaho ground squirrel (U. endemicus;
SIDGS) are two congeners of conservation concern. NIDGS and
SIDGS are endemic to west-central Idaho and were originally
classified as two subspecies (Yensen, 1991) but were recently
elevated to distinct species based on genetic differences (U.S.
Fish and Wildlife Service, 2015), morphology, behavior, and
distinct geographic and ecological niches (Hoisington-Lopez
et al., 2012). These species occur in small, discrete populations
within a fragmented landscape (Van Horne et al., 2007; Yensen
et al., 2008). Consequently, population graph analysis and gravity
models can lend insight into factors affecting their population
connectivity.

Their ranges are restricted and fragmented; both species have
experienced population declines and reductions in the number
and total area of sites occupied (Sherman and Runge, 2002; U.S.
Fish and Wildlife Service, 2003; Yensen et al., 2008; Lohr et al.,
2013). In recent years, the number of occupied locations and
subpopulations has remained relatively stable, while the number
of mature individuals appears to fluctuate according to several-
year cycles (EvansMack, personal communication). For example,
between 2011 and 2016, overall population size ranged between
just under 1,000 and over 2,500 individuals. Consequently,
the United States Fish and Wildlife Service listed NIDGS as
threatened in 2000 (Clark, 2000), while SIDGS was a candidate
for listing until just recently (Federal Register, November 22,
2013 Vol. 68, No. 226:77 70103-7016). Primary threats to
NIDGS include the loss of preferred habitat to ponderosa
pine (Pinus ponderosa) encroachment due to fire suppression
(Yensen and Sherman, 1997; Gavin et al., 1999; Sherman and
Runge, 2002), and competition with the Columbian ground
squirrel (Urocitellus columbianus; Dyni and Yensen, 1996).
The latter species occurs throughout central Idaho, potentially
overlapping populations of both Idaho ground squirrels. Declines
in SIDGS are attributed to the invasion of non-native annual
plants, including cheatgrass (Bromus tectorum) and medusahead
(Taeniatherum asperum), which have increased fire frequency
and intensity with subsequent shifts in vegetation composition
(Yensen, 1991; Lohr et al., 2013).

The loss and degradation of preferred habitat have
consequences for the long-term persistence of remaining
NIDGS and SIDGS populations. Population divergence has been
detected for NIDGS using allozymes (Gavin et al., 1999), and for
both species using mitochondrial DNA (Yensen and Sherman,
1997; Garner et al., 2005; Hoisington-Lopez et al., 2012) and
microsatellite data (NIDGS: 0.03 < FST < 0.46; SIDGS: 0.04
< FST <0.43; Garner et al., 2005; Hoisington-Lopez et al.,
2012). In addition, both species have low to moderate levels of
genetic diversity (allelic richness, expected heterozygosity, and
haplotype diversity; Garner et al., 2005; Hoisington-Lopez et al.,
2012) that are likely a consequence of isolation and bottleneck
events. The effects of landscape and environmental variables
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on genetic diversity and connectivity of NIDGS and SIDGS
have not been evaluated in depth. Understanding the ecological
drivers underlying site productivity and factors facilitating
gene flow among habitat patches is a critical conservation need
for both species. Identifying sites that contribute the most to
functional connectivity is also essential for making conservation
and management decisions.

Our primary goal was to quantify functional connectivity
among NIDGS and SIDGS populations and identify sites
contributing the most to gene flow to help inform conservation
and management efforts. We aimed to evaluate functional
connectivity for each species using genetic patterns and identify
at-site and between-site variables influencing gene flow. We
hypothesized that the production of potential migrants from
a site would be affected by forage availability as indicated by
local climate measures. For NIDGS, availability of meadow
(i.e., grassland) should be an important factor in population
connectivity since this preferred habitat has been reduced
by forest encroachment. For SIDGS, highly developed areas
(measured by impervious surfaces) should reduce functional
connectivity due to potential movement barriers and the
likely increased incidence of non-native plants species. We
also examined topographic complexity, waterways, soils, and
competition from Columbian ground squirrels (U. columbianus)
as potential drivers of functional connectivity.

MATERIALS AND METHODS

Study Area and Species
We examined the functional connectivity of northern and
southern Idaho ground squirrel populations from 23 sites within
5 counties located in west-central Idaho (Figure 1, Table S1).
No new field or genetic data were collected for this study.
All procedures for initial data collection were approved by the
University of Idaho Animal Care and Use Committee (2006-35),
Idaho Fish and Game state permit (060308), and federal permit
for U. brunneus (subpermit FWSSRBO-5). Extant, sampled
NIDGS and SIDGS populations were previously determined by
methods described by Yensen (1991). Mean sampling location
area (±SE) was 0.44 ± 0.21 km2 for NIDGS and 0.42 ± 0.11
km2 for SIDGS. The study area includes the geographically
discrete ranges of both species, extending between the Salmon
and Payette Rivers. NIDGS inhabit mid to high elevations
(1,150–2,300 m) in xeric, montane meadows, and grasslands
surrounded by coniferous forests (Yensen, 1991; Yensen and
Sherman, 1997). SIDGS occur at lower elevations (670–975
m) in sagebrush and bitterbrush habitats with interspersed
perennial bunchgrasses and forbs (Hafner et al., 1998; IDFG
unpublished data). The majority of habitat is under public
ownership, with private land primarily at lower elevations (U.S.
Fish and Wildlife Service, 2013). Land use includes logging,
agriculture, grazing, and suburban developments (Yensen et al.,
2008).

Genetic Data
We obtained multilocus, microsatellite genotypes from previous
studies that, cumulatively, sampled most IDGS populations

FIGURE 1 | Sampling locations of genetic data for northern Idaho ground

squirrel (Urocetillus brunneus; NIDGS) and southern Idaho ground squirrel

(U.endemicus; SIDGS). Also shown are the NIDGS probable historic

distribution (U.S. Fish and Wildlife Service, 2003) and the current known range

for SIDGS (Idaho Game and Fish Department). Individuals were sampled from

2002 to 2006 (Hoisington-Lopez et al., 2012). Background hillshade map was

produced from the National Elevation Dataset (http://ned.usgs.gov). Full site

names and sample sizes can be found in Table S1.

comprised of more than 10 individuals (Figure 1; Supplementary
Data Sheet 1, Garner et al., 2005; Hoisington-Lopez et al., 2012).
NIDGS sampling occurred in 2002 and 2006, and included
316 individuals from 13 locales (Table S1; Hoisington-Lopez
et al., 2012). We excluded one NIDGS population from this
study (Round Valley), as previous results indicate that it is both
geographically and genetically isolated from all other NIDGS
populations, and thus could lead to spurious correlations with
landscape variables (Cushman and Landguth, 2010). SIDGS
sampling consisted of 263 individuals in 2002 and 2006 from 11
locations (Table S1). When samples were collected at the location
in multiple years, we tested for differences in allele frequency
distributions before combining data (Hoisington, 2007). We
used data from previously published microsatellite loci (n =

8) in Hardy–Weinberg equilibrium that showed no linkage
disequilibrium (Hoisington-Lopez et al., 2012).

For each species, we calculated three measures of genetic
distance between populations to serve as response variables
in network models: (1) the proportion of shared alleles (DPS;
Bowcock et al., 1994), calculated using Microsatellite Analyzer
4.05 (Dieringer and Schlötterer, 2003); (2) conditional genetic
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distance (cGD; Dyer et al., 2010), using Genetic Studio (Dyer,
2009) in R (gstudio 0.8, R Core Development Team, 2012);
and (3) the fixation index (FST), a commonly used measure
of population structure, calculated using Fstat (Goudet, 1995).
DPS is not subject to the equilibrium assumptions inherent in
divergence (FST) measures, and thus may be more appropriate
for measuring genetic connectivity among populations subject to
recent disturbance, and cGD has been shown to outperform FST
in some situations. Furthermore, cGD focuses only on population
pairs that exhibit conditional dependence with one another and
thus are likely to be directly exchanging migrants, and ignores
population pairs that are conditionally independent and likely
not directly exchanging migrants (Dyer et al., 2010). For each
species, we additionally performed a Mantel test (Smouse et al.,
1986) to examine the correlation of geographic distance with the
two relevant metrics of genetic distance, DPS and FST (Table S2).

Population Graph Analysis
To conduct the population graph analyses, we used cGD (Dyer
et al., 2010), a metric that calculates the distance between each
pair of nodes, thereby accounting for the genetic covariance in
the whole network. The method examines pairwise correlations
in inverted cGD values among sampling locations and draws an
edge between two nodes if the partial correlation between them
is significantly higher than expected by chance. The subsequent
pruned graph contains the minimal number of edges which
will sufficiently describe the total covariance structure among
populations (Dyer et al., 2010). Because pruned networks are
more information than saturated networks (Dyer and Nason,
2004), we kept them for subsequent analyses.

To help guide conservation actions, we determined the
number of significant genetic units (genetic clusters) using two
community detection methods, which identify “communities” of
more highly connected nodes (Girvan and Newman, 2002). The
first, Girvan-Newman uses an optimization procedure based on
eigenvalues to calculate the support for different cluster numbers
in terms of modularity (Q; the existence of non-overlapping
groups of nodes in the network). The best-supported model
of community division receives the highest modularity value
(Newman, 2006). The second, the Walktrap algorithm, finds
subgraphs of more densely connected nodes based on random
walks and also calculates overall modularity (Pons and Latapy,
2006). To perform these analyses, we built a binary network for
each species.

To determine the relative contribution of each sampling
location to overall gene flow, we investigated the network
topologies of both species by calculating four network metrics
for each node: (1) degree centrality—the number of connections
that each node has in the network (Everett and Borgatti,
2005), (2) strength centrality—the sum of all association indices
(i.e., weighted connections among nodes) that each node has
in the network (Garroway et al., 2008), (3) betweenness—the
number of shortest paths that a particular node or edge lies
on, which can identify bottlenecks (Everett and Borgatti, 2005),
and (4) coreness—an algorithm that tests for the existence of
a core/periphery structure in the network and calculates the
location of each node in relation to the core. Based on the number

of core nodes, we additionally calculated a concentration score
(ranging from 0 to 1) which quantifies how close the network is
to an idealized core-periphery model, in which all nodes in the
core are connected within the core and to the periphery nodes
and all nodes in the periphery are not connected (Borgatti and
Everett, 1999). In the context of genetic networks, the coreness of
a node can be interpreted as the extent to which it acts as a source
for dispersing individuals. Sampling location abbreviations are
presented in Table S1.

To examine the vulnerability of each species to local
extinction, we assessed network sensitivity to node removal
(Figure 2). Node removal simulates local patch extinction, a
recurrent event in species that exhibit metapopulation structure
(Hanski, 1998). We sequentially removed random nodes to
generate up to 100 population graphs for each scenario (e.g.,
1, 2, 3 nodes removed). For each of the simulated graphs, we
assessed overall gene flow using two metrics: (1) Proportion
of fully connected graphs, quantifying the extent to which the
population graph will become fragmented as a result of node
removal; (2) Size of the largest graph component, measuring
the maximal number of nodes that retained connectivity among
them.We calculated this metric proportional to the total network
size.We built 95% confidence intervals, based on standard errors,
around the proportional size of the largest component for each
node removal scenario.

Gravity Models
We used gravity models (Fotheringham and O’Kelly, 1989;
Murphy et al., 2010) to analyze the effects of abiotic and
biotic variables on population connectivity. We modeled gene
flow [1-genetic distance (DPS)] as a function of geographic
(Euclidean) distance (w), attributes of nodes (v), and landscape
resistance factors (c) that limit or facilitate movement of
individuals between nodes (Murphy et al., 2010). We developed
a set of a priori hypotheses to describe ecologically relevant
processes affecting at-site production of migrants and between-
site landscape resistance for both species (Table 1).

We used 30m landcover data from the LANDFIRE Existing
Vegetation Type dataset, and used our between-site calculations
to assess habitat permeability (http://landfire.cr.usgs.gov/
viewer). We extracted the landcover data for grassland,
shrubland, agriculture, and impervious surfaces (i.e., roads
and developed areas). We then calculated percent cover for
each cover type within a 90 × 90 pixel moving window. We
calculated surface relief ratio (srr; Evans, 1972) from 10m
Shuttle Radar Topography Mission digital elevation models
using two neighborhood sizes (3 × 3 and 27 × 27 pixels),
to assess topographic resistance to gene flow. We used the
Geomorphometry and Gradient Metrics Toolbox (http://
evansmurphy.wix.com/evansspatial#!arcgis-gradient-metrics-
toolbox/crro) in ArcMap 10.2. We tested 6 biotic and abiotic
variables hypothesized to affect at-site production/attraction (v)
of IDGSmigrants, such as climate, soil type, vegetation cover, and
inter-specific competition. For landscape resistance between sites
(c), we developed a set of 6 abiotic and biotic variables that relate
to habitat permeability, topography, hydrologic complexity,
and road density. For between-site variables, we calculated the
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FIGURE 2 | Illustration of the node removal procedure used to simulate population extinction events in NIDGS (top) and SIDGS (bottom). In each step, a randomly

selected node (in red), representing a sampling location, is removed from the network along with the edges connecting it to additional nodes. Network mean

betweenness values are given on top. Following the removal of 2 nodes, the SIDGS network fails to create a single component, becoming fragmented.

average or variance along each edge (30m width) connecting
populations in the network. We also tested for the effect of spatial
scale of each variable by building buffers along edges of 30, 150,
and 300m widths, and then calculating between-site values
within each buffer (Murphy et al., 2010). Since each of these
metrics was highly correlated with the along-line calculations (R2

> 0.8), we used straight-line, 30m width edge results for these
metrics.

In spatially explicit genetic networks, incomplete sampling of
nodes can lead to bias when using a pruned graph (Naujokaitis-
Lewis et al., 2013). Given the small number of locations sampled
for each species, we retained the fully connected networks
for the gravity modeling procedure. Gravity models were run
in R using the GeNetIt package. We used a hierarchical
modeling approach to compare models that included one or
more landscape variables with a distance-only (null) model.
We used singly constrained models as they account for non-
independence of pairwise comparisons. Gravity models were

solved in mixed effects linear models using maximum likelihood
(Zuur et al., 2009).We specified at-site and between-site variables
as fixed effects and the identities of nodes as random effects
(Murphy et al., 2010). We initially ran a null (distance) model
and subsequently modeled at-site variables and between-site
variables separately. We then built combined gravity models that
included both classes of variables, via the inclusion of the best-
supported, at-site and between-site variables identified during the
first procedure. To avoid co-linearity, models did not include
pairs of candidate variables correlated at 0.7 or higher (Table
S5). We used Akaike information criterion scores adjusted for
small sample size (AICc) to identify the best-supported models
(Akaike, 1973; Burnham and Anderson, 2002). We additionally
calculated conditional (including both fixed and random factors)
R2 values for each model (Nakagawa and Schielzeth, 2013).
We plotted network flow against each variable identified as
significant in the best-supported models to assess the direction
of the effects of candidate variables. We subsequently calculated
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cumulative AIC weight for each variable by summing the weights
of each model in which this variable was included (Burnham and
Anderson, 2002).

RESULTS

Population Graph Analysis
In the cGD pruning procedure, population graphs retained a
total of 24 (31% of saturated network) edges connecting 13
nodes for NIDGS and 16 (36% of saturated network) edges
connecting 10 nodes for SIDGS (Figure 3).We identified support
for 2 and 3 genetic clusters via Girvan–Newman and Walktrap
[modularity scores: Q(2)Girvan−Newman = 0.33; Q(2)Walktrap =

0.34, Q(3) = 0.33] for NIDGS. The 2-cluster model included
1 cluster in the northwestern portion of NIDGS range and
a second cluster in the southeastern portion. Both algorithms
agreed on all sampling location cluster assignments except
study site LCL. For SIDGS, the model with 3 clusters received
the highest modularity score [modularity scores: Q(2) = 0.26,
Q(3)Girvan−Newman = 0.29; Q(3)Walktrap = 0.30]. Modularity,
reflecting compartmentalization within each network, was
slightly lower in SIDGS compared to NIDGS. The 3-cluster
model included a cluster in the northwestern portion of the
species’ distribution, separated by the Weiser River and the
agricultural area surrounding it from 2 discrete clusters, located
in the southern and central area of the range. There was no
evident spatial segregation between the southern and central
clusters.

In NIDGS, the node strength centrality and betweenness
metrics suggested higher connectivity for the western
populations (Table S3). The coreness analysis provided the
best support for a model with 5 nodes at the core and 8 at
the periphery. For the 5-node core model, the concentration
score was 0.91. The 5 core nodes, corresponding to the CW
(betweenness = 15.08), HU (13.08), SG (2.25), SM (9.41), and
HW (11.08) populations were located in the western portion
of the range, confirming the patterns suggested by the other
network metrics (Table S3). Spatial patterns were less evident in
the network topology analysis of SIDGS. Sampling locations RH-
HC (17.50), HG (29.44), SB (10.32), and CP (14.17), representing
distinct areas of the species’ range and all 3 genetic clusters, had
the highest betweenness (Table S3). The core/periphery model
results revealed that the optimal model included 3 nodes at the
core (corresponding to HG, SB, and Sk) with a concentration
score of 0.84.

The node removal simulation analysis indicated that in the
range of 2–5 removed nodes, SIDGS networks had higher
probability of fragmentation by not creating a fully connected
component (e.g., 3 nodes removed: NIDGS—97%, SIDGS—66%
fully connected networks; Figure 4A). This larger fragmentation
probability resulted in the largest components in SIDGS
proportionally consisting of fewer nodes compared to NIDGS
(e.g., 3 nodes removed: NIDGS—0.99, 95% CI = 0.98–1.0;
SIDGS—92%, 95% CI = 0.9–0.94; Figure 4B). Taken together,
both network connectivity metrics indicated higher resilience of
the NIDGS network to node removal.
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FIGURE 3 | Network diagrams representing the genetic relationships between

northern (a) and southern (b) Idaho ground squirrel sampling locations.

Networks are pruned using conditional genetic distance (cGD; Dyer and

Nason, 2004). Individuals were sampled during 2002–2006. Node colors differ

by cluster assignment with the Girvan-Newman algorithm. Nodes are placed

according to geographic location and scaled to reflect coreness, a network

metric that quantifies proximity to the core in a core/periphery model (Table

S3). Edge width is proportional to the genetic flow between sampling locations.

Gravity Models
The mean geographic distance between sampled locations for
NIDGS and SIDGS was 16.1 and 28.9 km, respectively. For
NIDGS subpopulations, the pairwise genetic distance (DPS)
averaged (±SE) 0.41 ± 0.01, ranging from 0.23 to 0.56. SIDGS
subpopulations had an average DPS of 0.34 ± 0.02, ranging from
0.17 to 0.53. FST values were more similar among species, with
means ±SE 0.19 ± 0.01 in NIDGS (range: 0.03–0.48) and 0.18
± 0.01 for SIDGS (range: 0.04–0.41). For both species, pairwise
genetic distance metrics were highly correlated (NIDGS r = 0.89;
SIDGS r = 0.96). Mantel test results indicated a significant
correlation between geographic distance and both metrics of
genetic distance for NIDGS (DPS: r = 0.39, P = 0.001; FST:
r = 0.38, P = 0.002), and a stronger pattern in SIDGS (DPS:
r = 0.64, P < 0.001; FST: r = 0.57, P < 0.001).

The top variables for the NIDGS saturated network included
those associated with potential site productivity (v: hli, gsp)
and topography (c: srr27, srr3; Table 2, Figure 5). For NIDGS,
geographic distance (w) was the sixth-ranked model, with a
1AICc of 4.4. Heat load index (hli) positively correlated with

FIGURE 4 | The effects of random sequential removal of nodes on proportion

of connected graphs (A) and the largest remaining network component (B) for

northern Idaho ground squirrels (solid line) and southern Idaho ground

squirrels (dashed line). Proportions, means and 95% confidence intervals were

calculated for up to 100 simulated networks in each scenario. Idaho ground

squirrels were sampled from 23 locations during 2002–2006 and genotyped

using 8 microsatellite loci (Hoisington-Lopez et al., 2012).

gene flow and had the greatest support among at-site variables
(variable weight: 0.63), while growing season precipitation had
a weight of 0.06. One additional at-site variable, frost-free
period (ffp: 0.04), received some variable weight but did not
appear in those models that improved on the distance-only
model. Measures of large-scale (srr27: 0.54) and small-scale (srr3:
0.08) topographic complexity negatively correlated to gene flow,
and were the between-site variables with the greatest weights.
Variables describing land cover, interspecific competition, and
human disturbance received negligible support (Table S3). For
individual parameter estimates, see Table S6.
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TABLE 2 | Gravity model results of the best-supported models for northern and southern Idaho ground squirrels.

Species Full model description Type 1AICc AIC weight Conditional R2

northern Idaho ground squirrel w + hli − srr27 at + between 0.0 0.33 0.40

w − srr27 between 1.3 0.17 0.41

w + hli at 2.5 0.09 0.36

w + hli − srr3 at + between 3.9 0.05 0.37

w + gsp + hli − srr27 at + between 4.2 0.04 0.39

w distance 4.4 0.04 0.38

southern Idaho ground squirrel w + ffp + hli − imperv − srr3 at + between 0 0.42 0.47

w + gsp + hli − imperv − srr3 at + between between 0.5 0.33 0.47

w + gsp − imperv − srr3 at + between between 3.6 0.07 0.46

w + hli − imperv − srr3 at + between 3.9 0.06 0.44

w + ffp − imperv − srr3 at + between 5.3 0.03 0.46

w + ffp + hli − agri − srr3 at + between 6.7 0.01 0.44

w − imperv − srr3 between 6.9 0.01 0.44

w + gsp + hli − agri − srr3 at + between 7.3 0.01 0.44

w distance 15 0.00 0.37

Type indicates whether the model includes at-site, between-site, or both categories of predictors. A full list of models in available in Tables S3, S4.

For SIDGS, gene flow was positively correlated with at-site
productivity and negatively correlated with between-site factors
associated with reduced landscape permeability including
human disturbance (imperv, agri) and small-scale topographic
complexity (srr3; Table 2). For SIDGS, heat load index (hli) at
sites was positively correlated with gene flow (variable weight:
0.83). Growing season precipitation (gsp: 0.42) and frost-free
period (ffp: 0.46) also positively related to gene flow. Small-
scale topographic complexity (srr3: 0.95) appeared in all top
models and negatively correlated with gene flow. Impervious
surfaces appeared in six of eight top models, contributing 92%
AIC weight, and was negatively correlated with gene flow.
Agricultural areas impeded gene flow, but this land cover type
received minimal weight (agri: 0.02). Variables describing land
cover classes and stream densities received negligible support
(Table S4).

DISCUSSION

We combined two graph theoretic approaches to enhance our
understanding of the functional connectivity of two Idaho
ground squirrel species and to inform conservation efforts.
Population graph analysis revealed that the pattern and strength
of network connectedness differed by species. Node removal
simulations suggested that in the event of local patch extinction,
SIDGS would likely lose connectivity rapidly, while NIDGS
would maintain gene flow despite the removal of several patches
or nodes. Gravity models revealed the influence of at-site
productivity variables in both species, a finding that would not
have been detected in traditional network approaches. These
models also revealed effects of topographic complexity at two
different spatial scales: fine-scale variation for SIDGS and broad-
scale and fine-scale variation for NIDGS. Development, as

measured by impervious surfaces, was a major hindrance to
SIDGS gene flow.

Patterns of Genetic Structure
We found support for 2 or 3 genetic clusters in NIDGS
and similar support for 3 genetic clusters in SIDGS using
network community detection (Newman, 2006). Functional
connectivity among habitat patches in NIDGS appears to be
limited by a mountain ridge, with subpopulations clustered in
the northwestern and southeastern portions of the range, and
this result is similar to that obtained via STRUCTURE (Pritchard
et al., 2000; Hoisington, 2007). However, one site (CW) located
in the southwestern portion of the species’ range (Figure 3),
deviated from this pattern. Interestingly, the population graph
links CW to 3 populations in the northwestern cluster, and the
2 populations spatially adjacent to CW (ChS and HW) in the
southeastern genetic cluster. This pattern, which is consistent
with mitochondrial DNA analyses (Hoisington, 2007), could be
explained by repeated translocations of individuals from SM
and surrounding sites into CW (Gavin et al., 1999) as well as
natural recolonization from HW. For SIDGS, our population
graph detected a unique genetic cluster in the northern portion
of its range, composed of 3 populations. This suggests that the
Weiser River acts as a barrier to gene flow as suggested in
previous analyses (Garner et al., 2005; Hoisington, 2007). The
optimal model for SIDGS had a modularity score lower than
0.3. Our results reveal genetic connectivity across the southern
portion of the SIDGS range despite considerable fragmentation
due to agriculture. In general, there was congruence between the
community detection results and previous Bayesian clustering
analyses (Hoisington, 2007). Population graph community
detection algorithms base their calculations on genetic distances
among nodes and thus have the advantage of including the
contribution of ancestries from other genetic clusters. The
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FIGURE 5 | Cumulative AICc weights of several factors examined with gravity

models as candidates for driving NIDGS (red circles) and SIDGS (blue circles)

gene flow. Panels include cumulative AICc weights for each factor in all

examined models (A) and only the top-ranked model for each factor (B).

Positive and negative values represent the direction and magnitude of relative

support for each factor’s influence.

similarity in results suggests that these methods are well suited
for our study system and applicable in additional systems where
genetic data can be represented as population graphs.

Network topology metrics, calculated at the sampling location
level, were consistent with these patterns. NIDGS nodes with the
highest strength and betweenness were the ones that belonged to
the core according to the core-periphery model. One exception
was PV, which is spatially central and highly connected, but did
not constitute a core node. All NIDGS core nodes were found in
the western portion of the species’ range. In addition, themajority
of edges among these nodes were retained in the pruned network
(Figure 3A). This may indicate that the western portion of the
range is a source for dispersing individuals. With the exception
of the CW population, the NIDGS population graph topology
indicates a west-to-east gradient of connectivity. In SIDGS, nodes
with high overall connectivity according to degree, strength, and

betweenness, such as CP and PFS, were not included in the core
and had relatively lower coreness (Figure 3B; Table S3). Core
nodes (HG, SB, and Sk) all belonged to the same genetic cluster
and were located in the southeastern part of the species’ range.
Interestingly, the most spatially central locations (PFS and MC)
were not the most connected ones, suggesting that there are
additional factors driving SIDGS gene flow beyond geographic
distance.

The correlation of network structure to the idealized
core/periphery model was slightly higher for NIDGS (0.91)
compared to SIDGS (0.84), as was the proportion of core nodes.
This slight difference may be explained by the lack of spatial
organization in the SIDGS network (Figure 3). Overall, our
population graph analyses indicate that gene flow among NIDGS
locations is higher compared to SIDGS, which is consistent with
the relatively large geographic distances found among SIDGS
populations. Our use of core/periphery models to assess genetic
data is a novel application of amethodology previously developed
for social networks (Borgatti and Everett, 1999), and provides
an additional metric to quantify node contribution, which may
reflect the degree to which discrete sites are sources or sinks for
dispersers.

Simulated node removals indicated an immediate decline
in overall connectivity among SIDGS nodes, compared to the
relative robustness to node removal in NIDGS (Figure 4),
suggesting that the few connections retained in the SIDGS
population graph have an increased conservation value for this
species. In addition, these results imply that local extinction
of 2 current subpopulations would drive a substantial decline
in functional connectivity. SIDGS occur in areas prone to
intense human activity and subpopulations are separated by large
geographic distances. Our results highlight the susceptibility of
this species to future habitat loss and fragmentation, and raise
concern over further isolation of the remaining subpopulations.
In contrast, simulated node removal in the NIDGS population
graph suggests that this species is relatively robust to localized
extinctions. The pruned population graph retained a similar
proportion of edges, comprised of shorter distances, among
subpopulations compared to the SIDGS graph. These results, in
conjunction with lower levels of human disturbance across the
NIDGS range, suggest that in the event of local extinctions the
species may be better able to maintain population connectivity
(Fahrig, 2002; Driscoll, 2004).

Functional Connectivity
The variables that were important in gravity models differed
between species. We predicted that at-site variables associated
with potential productivity would be positively correlated with
functional connectivity for both species. Population size at each
site would likely be an important predictor of gene flow, but
these data were not available. However, population estimates are
relevant to the conservation of both species and should be a
priority for data collection. We also hypothesized that between-
site variables indicative of high habitat quality would facilitate
gene flow, while variables reflecting human activity would inhibit
gene flow.
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Model fit, as measured by conditional R2, was moderate for
both species (R2 ∼ 0.4). These results could be an artifact of our
limited power to detect variation in habitat variables across the
study areas (Short Bull et al., 2011), especially in light of the small
number of extant populations occurring over restricted ranges
(Figure 1).

Nevertheless, a number of at-site variables were identified as
predictors of gene flow. Heat load index (hli), a surrogate for
vegetation productivity, was one at-site variable that contributed
to gene flow in both species. This metric had substantial
cumulative AIC weight across models of NIDGS (w = 0.63)
and SIDGS (w = 0.83) connectivity. Sites with a higher hli
may yield a larger number of squirrels with improved body
conditions due to increased forage availability and quality. The
finding that NIDGS are primarily structured, apart from isolation
by distance, by at-site productivity, would have been difficult
to detect with other landscape genetic statistical approaches.
Additionally, two other at-site variables associated with potential
productivity facilitated gene flow for both species. Longer frost-
free periods and increased growing-season precipitation were
associated with higher connectivity. Lohr et al. (2013) reported
that the greatest densities of SIDGS were associated with higher
cover of perennial grasses, native perennial forbs, and higher
plant species diversity. The combination of solar intercept (hli),
long growing season (ffp), and greater rainfall (gsp) may result in
high forage quality and quantity for ground squirrels. Therefore,
at-site vegetation production is likely an important characteristic
in maintaining viable populations for both species.

Landscape features that restricted gene flow differed for the
two species. The population graph results for NIDGS revealed a
division between the western and eastern sampling areas that are
geographically separated by a mountain ridge. This is mirrored
in the gravity model results, for which large-scale topographic
complexity (srr27) received 54% weight across models. At this
broad scale, srr is likely detecting ridges as a filter to movement,
and this pattern is visually apparent when the graph of population
structure is overlaid on topography (Figure 3A). Three landscape
features were identified as barriers to gene flow for SIDGS:
impervious surfaces, small-scale topographic complexity, and,
to a minor extent, agriculture. Populations were less connected
in highly developed areas as measured by imperviousness of
surfaces along edges connecting nodes. Impervious surfaces
primarily reflect the presence of roads. Gene flow could be
disrupted across roads due to avoidance of high traffic areas
or altered roadside habitat, increased mortality from vehicle
collisions, or a combination of these factors. Although roads
are often considered an important source of mortality for many
wildlife species (Forman, 1998), small mammals may select these
areas (Oxley et al., 1974), and the effects on small mammal
behavior and movement may be contingent on road type and
traffic volume (Brock and Kelt, 2004). Previous results indicate
that dispersing Idaho ground squirrels repeatedly use dirt roads
as corridors (Panek, 2005). The absence of support for road
effects on NIDGS could be attributed to lower densities of high-
volume traffic (paved) roads surrounding the sampling sites for
this species. The negative impact of agricultural areas on gene

flowmay imply an avoidance of these areas, although the variable
weight for this metric was small.

Restriction of gene flow in both species due to small-scale
topographic complexity (srr3) likely reflects a preference for
low-elevation, flat grasslands characteristic of the meadows.
Gravity models failed to show any support for either ephemeral
or perennial streams as drivers of gene flow (Tables S3, S4).
However, our population graph analysis identified the Weiser
River as a likely barrier to gene flow. Thus, our inability to
detect an important barrier to gene flow with gravity models was
supplemented by the results from our population graph analysis.
These complementary results highlight the benefits of using
multiple analytical methods for detecting patterns in genetic data.

Conservation Implications
Our findings of differences in functional connectivity and
its drivers highlight the need for different conservation and
management strategies for each species of Idaho ground squirrel.
Results from the node removal analysis suggest that NIDGS
populations are more connected and relatively resistant to
metapopulation collapse from local population extinctions.
Although, SIDGS are no longer a candidate for federal listing,
their subpopulations may be more susceptible to future habitat
loss and fragmentation than NIDGS (Hoisington-Lopez et al.,
2012). Connectivity in NIDGS was driven mainly by potential
site productivity and topographic characteristics, and not a lack
of suitable habitat. These combined lines of evidence suggest
that recent conservation efforts for NIDGS have been effective
at maintaining this species’ gene flow and diversity, and should
therefore be continued.

Our results for southern Idaho ground squirrels suggest this
species is extremely vulnerable. SIDGS sites are geographically
distant from one another and highly sensitive to node removal
(i.e., local extinction). Sites that are poorly connected, and
thus unlikely to be recolonized following an extirpation event,
may be good candidates for reintroduction. Additionally, sites
that are highly connected might be examined for landscape
characteristics that could be used as part of novel site
reintroduction selection criteria. Translocations have been
attempted with apparent success for SIDGS (Yensen and Tarifa,
2012), and these efforts, combined with supplementation from
captive breeding, may become important for maintaining genetic
connectivity and diversity in SIDGS populations (Hoisington-
Lopez et al., 2012). Given the distances that separate SIDGS sites,
we support the recommendation of Garner et al. (2005) that
managers consider establishing additional populations to serve
as stepping stones for connectivity. Our gravity model results
suggest that factors relating to at-site vegetation productivity
affect SIDGS genetic structure. A large amount of SIDGS habitat
is located either in agricultural areas or sites dominated by
invasive cheatgrass, both of which may be difficult to restore.
While it appears that NIDGS have responded positively to habitat
restoration, this strategy is less likely to successfully improve
SIDGS habitat and functional connectivity due to the pervasive
invasion of exotic weeds in their range (Yensen, 1991).
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CONCLUSIONS

When working with species of conservation concern, it is
important not only to assess genetic structure, but also to
identify the factors that influence genetic connectivity. Here, we
illustrate the value of using recently developed network-based
approaches to examine functional connectivity for two vulnerable
species of Idaho ground squirrels. Population graphs enhanced
our understanding of each species’ resistance to potential
future loss of habitat patches or populations. Gravity models
provided new insights into landscape-related processes that drive
genetic structure of these imperiled species, particularly by
identifying at-site influences on gene flow. We conclude that the
combination of these methodologies allows stronger inference
and a more complete assessment of genetic structure. Network
models are especially advantageous for representing gene
flow in species exhibiting patchy distributions. We encourage
further exploration of these methodologies as a framework for
hypothesis testing in future landscape genetics studies.

AUTHOR CONTRIBUTIONS

MM and LW conceived the research. JH collected data. VZ, AB,
DJ, AP, XG, DT, RP, and JH analyzed data. All authors contributed
to the writing of the manuscript.

FUNDING

Funding agencies included the American Genetics Association,
the Idaho Department of Fish and Game, the US Fish and
Wildlife Service, the University of Idaho Center for Research
on Invasive Species and Small Populations, and Wyoming
NASA Space Grant Consortium (NASA Grant #NNX10
AO95H).

ACKNOWLEDGMENTS

This project was conducted as part of the Landscape Genetics
Distributed Graduate Course. We would like to thank HH.
Wagner for her contributions to the course and synthesis
meeting, the students and faculty that participated in the meeting
for their constructive comments, and advisors and lab mates who
contributed support and insightful discussion while working on
the manuscript. In addition, we would like to thank M. Gould
and K. Lohr for their collaboration on early stages of the project.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fgene.
2017.00081/full#supplementary-material

REFERENCES

Akaike, H. (1973). “Information theory as an extension of the maximum likelihood

principle,” in Second International Symposium Information Theory, eds B. N.

Petrov and F. Csaki (New York, NY: Springer), 267–281.

Andrews, A. (1990). Fragmentation of habitat by roads and utility corridors: a

review. Aust. Zool. 26, 130–141. doi: 10.7882/AZ.1990.005

Borgatti, S. P., and Everett, M. G. (1999). Models of core/periphery structures. Soc.

Netw. 21, 375–395. doi: 10.1016/S0378-8733(99)00019-2

Bowcock, A. M., Ruiz-Linares, A., Tomfohrde, J., Minch, E., Kidd, J. R., and

Cavalli-Sforza, L. L. (1994). High-resolution of human evolutionary trees with

polymorphic microsatellites. Nature 368, 455–457. doi: 10.1038/368455a0

Brock, R. E., and Kelt, D. A. (2004). Influence of roads on the endangered Stephens’

kangaroo rat (Dipodomys stephensi): are dirt and gravel roads different? Biol.

Conserv. 118, 633–640. doi: 10.1016/j.biocon.2003.10.012

Burkey, T. V. (1995). Extinction rates in archipelagoes: implications

for populations in fragmented habitats. Conserv. Biol. 9, 527–541.

doi: 10.1046/j.1523-1739.1995.09030527.x

Burnham, K., and Anderson, A. (2002).Model Selection and Multimodel Inference:

a Practical Information-Theoretic Approach. New York, NY: Springer-Verlag.

Clark, J. R. (2000). Endangered and threatened wildlife and plants; determination

of threatened status for the northern Idaho ground squirrel. Fed. Regist. 65,

17779–17786.

Cushman, S. A., and Landguth, E. L. (2010). Scale dependent inference in

landscape genetics. Landsc. Ecol. 25, 967–979. doi: 10.1007/s10980-010-

9467-0

Dieringer, D., and Schlötterer, C. (2003). Microsatellite analyser (MSA): a platform

independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3,

167–169. doi: 10.1046/j.1471-8286

Driscoll, D. A. (2004). Extinction and outbreaks accompany fragmentation of a

reptile community. Ecol. Appl. 14, 220–240. doi: 10.1890/02-5248

Dyer, R. J. (2009). GeneticStudio: a suite of programs for spatial

analysis of genetic-marker data. Mol. Ecol. Resour. 9, 110–113.

doi: 10.1111/j.1755-0998.2008.02384.x

Dyer, R. J., and Nason, J. D. (2004). Population Graphs: the graph

theoretic shape of genetic structure. Mol. Ecol. 13, 1713–1727.

doi: 10.1111/j.1365-294X.2004.02177.x

Dyer, R. J., Nason, J. D., and Garrick, R. C. (2010). Landscape modelling

of gene flow: improved power using conditional genetic distance derived

from the topology of population networks. Mol. Ecol. 19, 3746–3759.

doi: 10.1111/j.1365-294X.2010.04748.x

Dyni, E. J., and Yensen, E. (1996). Dietary similarity in sympatric Idaho and

Columbian ground squirrels (Spermophilus brunneus and S. columbianus).

Northwest Sci. 70, 99–108.

Evans, I. S. (1972). “General geomorphometry, derivatives of altitude, and

descriptive statistics,” in Spatial Analysis in Geomorphology, ed R. Chorley (New

York, NY: Harper & Row), 17–90.

Everett, M. G., and Borgatti, S. P. (2005). “Extending centrality,” in Models and

Methods in Social Network Analysis, eds P. J. Carrington, J. Scott, and S.

Wasserman (New York, NY: Cambridge University Press), 57–76.

Fahrig, L. (2002). Effects of habitat fragmentation on the extinction threshold : a

synthesis. Ecol. Appl. 12, 346–353. doi: 10.2307/3060946

Forman, R. T. T. (1998). Road ecology: a solution for the giant embracing us.

Landsc. Ecol. 13, 3–5. doi: 10.1023/A:1008036602639

Fotheringham, A., and O’Kelly, M. (1989). Spatial Interaction Models: Formulation

and Applications. Dordrecht: Kluwer Academic.

Frankham, R. (1995). Inbreeding and extinction: a threshold effect. Conserv. Biol.

9, 792–799. doi: 10.1046/j.1523-1739.1995.09040792.x

Frankham, R. (1997). Do island populations have less genetic variation than

mainland populations? Heredity 78, 311–327. doi: 10.1038/hdy.1997.46

Frankham, R., Ballou, J., and Briscoe, D. (2002). Introduction to Conservation

Genetics. Cambridge: Cambridge University Press.

Garner, A., Rachlow, J. L., andWaits, L. P. (2005). Genetic diversity and population

divergence in fragmented habitats: conservation of Idaho ground squirrels.

Conserv. Genet. 6, 759–774. doi: 10.1007/s10592-005-9035-3

Garroway, C. J., Bowman, J., Carr, D., and Wilson, P. J. (2008). Applications

of graph theory to landscape genetics. Evol. Appl. 1, 620–630.

doi: 10.1111/j.1752-4571.2008.00047.x

Gavin, T. A., Sherman, P.W., Yensen, E., May, B., and Gavin, A. (1999). Population

genetic structure of the northern Idaho ground squirrel (Spermophilus

brunneus brunneus). J. Mammal. 80, 156–168. doi: 10.2307/1383216

Girvan, M., and Newman, M. E. J. (2002). Community structure in social

and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99, 7821–7826.

doi: 10.1073/pnas.122653799

Frontiers in Genetics | www.frontiersin.org June 2017 | Volume 8 | Article 8196

http://journal.frontiersin.org/article/10.3389/fgene.2017.00081/full#supplementary-material
https://doi.org/10.7882/AZ.1990.005
https://doi.org/10.1016/S0378-8733(99)00019-2
https://doi.org/10.1038/368455a0
https://doi.org/10.1016/j.biocon.2003.10.012
https://doi.org/10.1046/j.1523-1739.1995.09030527.x
https://doi.org/10.1007/s10980-010-9467-0
https://doi.org/10.1046/j.1471-8286
https://doi.org/10.1890/02-5248
https://doi.org/10.1111/j.1755-0998.2008.02384.x
https://doi.org/10.1111/j.1365-294X.2004.02177.x
https://doi.org/10.1111/j.1365-294X.2010.04748.x
https://doi.org/10.2307/3060946
https://doi.org/10.1023/A:1008036602639
https://doi.org/10.1046/j.1523-1739.1995.09040792.x
https://doi.org/10.1038/hdy.1997.46
https://doi.org/10.1007/s10592-005-9035-3
https://doi.org/10.1111/j.1752-4571.2008.00047.x
https://doi.org/10.2307/1383216
https://doi.org/10.1073/pnas.122653799
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Zero et al. Landscape Genetics of Idaho Ground Squirrels

Goudet, J. (1995). FSTAT (Version 1.2): a computer program to calculate F-

statistics. J. Hered. 86, 485–486. doi: 10.1093/oxfordjournals.jhered.a111627

Groombridge, B. (1992). Global Biodiversity: State of the Earth’s Living Resources.

New York, NY: Chapman and Hall.

Hafner, D., Yensen, E., and Kirkland, G. (1998). North American Rodents: Status

Survey and Conservation Action Plan. Gland; Cambridge: IUCN/SSC Rodent

Specialist Group.

Hanski, I. (1998). Metapopulation dynamics. Nature 396, 41–49.

Hedrick, P. (2005). Genetics of Populations. London: Jones and Bartlett.

Hoisington, J. (2007). Conservation Genetics, Landscape Genetics and Systematics

of the Two Subspecies of the Endemic Idaho Groud Squirrel (Spermophilus

brunneus).Master’s thesis, University of Idaho, Moscow, ID.

Hoisington-Lopez, J. L., Waits, L. P., and Sullivan, J. (2012). Species

limits and integrated taxonomy of the Idaho ground squirrel (Urocitellus

brunneus): genetic and ecological differentiation. J. Mammal. 93, 589–604.

doi: 10.1644/11-MAMM-A-021.1

Holderegger, R., and Wagner, H. H. (2008). Landscape genetics. Bioscience 58:199.

doi: 10.1641/B580306

Kareiva, P., and Wennergren, U. (1995). Connecting landscape patterns

to ecosystem and population processes. Nature 373, 299–302.

doi: 10.1038/373299a0

Lande, R. (1988). Genetics and demography in biological conservation. Science

241, 1455–1460. doi: 10.1126/science.3420403

Lohr, K., Yensen, E., Munger, J. C., and Novak, S. J. (2013). Relationship between

habitat characteristics and densities of southern Idaho ground squirrels. J.

Wildl. Manage. 77, 983–993. doi: 10.1002/jwmg.541

Manel, S., Schwartz, M. K., Luikart, G., and Taberlet, P. (2003). Landscape genetics:

combining landscape ecology and population genetics. Trends Ecol. Evol. 18,

189–197. doi: 10.1016/S0169-5347(03)00008-9

McCune, B., and Keon, D. (2002). Equations for potential annual

direct incident radiation and heat load. J. Veg. Sci. 13, 603–606.

doi: 10.1111/j.1654-1103.2002.tb02087.x

McRae, B. H., Dickson, B. G., Keitt, T. H., and Shah, V. B. (2008). Using circuit

theory to model connectivity in ecology, evolution, and conservation. Ecology

89, 2712–2724. doi: 10.1890/07-1861.1

Meffe, G., and Carroll, C. (1997). Principles of Conservation Biology. Sunderland,

MA: S. A. Inc.

Murphy, M., Dezzani, R., Pilliod, D., and Storfer, A. (2010). Landscape

genetics of high mountain frog metapopulations. Mol. Ecol. 19, 3634–3649.

doi: 10.1111/j.1365-294X.2010.04723.x

Murphy, M., Dyer, R. J., and Cushman, S. A. (2016). “Graph theory and network

models in landscape genetics,” in Landscape Genetics: Concepts, Methods,

Applications, eds N. Balkenhol, S. A. Cushman, A. Storfer, and L. P.Waits (West

Sussex: John Wiley & Sons, Ltd.), 165–180.

Nakagawa, S., and Schielzeth, H. (2013). A general and simple method for

obtaining R2 from generalized linear mixed-effects models.Methods Ecol. Evol.

4, 133–142. doi: 10.1111/j.2041-210x.2012.00261.x

Naujokaitis-Lewis, I. R., Rico, Y., Lovell, J., Fortin, M. J., and Murphy, M. A.

(2013). Implications of incomplete networks on estimation of landscape genetic

connectivity. Conserv. Genet. 14, 287–298. doi: 10.1007/s10592-012-0385-3

Newman, M. E. J. (2006). Modularity and community structure in networks. Proc.

Natl. Acad. Sci. U.S.A. 103, 8577–8582. doi: 10.1073/pnas.0601602103

Ovaskainen, O., and Hanski, I. (2003). Extinction threshold in metapopulation

models. Ann. Zool. Fennici 40, 81–97.

Oxley, D. J., Fenton, M. B., and Carmody, G. R. (1974). The effects of roads on

populations of small mammals. J. Appl. Ecol. 11, 51–59. doi: 10.2307/2402004

Panek, K. (2005). Dispersal, Translocation and Population Connectivity in

Fragmented Populations of Southern Idaho Ground Squirrels. Master’s thesis,

Boise State University, Boise, ID.

Pons, P., and Latapy, M. (2006). Computing communities in large networks

using random walks. J. Graph Algorithms Appl. 10, 191–218. doi: 10.7155/jgaa.

00124

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population

structure using multilocus genotype data. Genetics 155, 945–959.

R Core Development Team (2012). R: A Language and Environment for Statistical

Computing. Vienna: R Foundation for Statistical Computing. Available online

at: http://www.R-project.org

Rehfeldt, G. L. (2006).A Spline Model of Climate for theWestern United States. Fort

Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain

Research Station.

Ricketts, T. H. (2001). The matrix matters: effective isolation in fragmented

landscapes. Am. Nat. 158, 87–99. doi: 10.1086/320863

Roach, J. L., Stapp, P., Van Horne, B., and Antolin, M. F. (2001). Genetic structure

of a metapopulation of black-tailed prairie dogs. J. Mammal. 82, 946–959.

doi: 10.1644/1545-1542(2001)082<0946:GSOAMO>2.0.CO;2

Sherman, P. W., and Runge, M. C. (2002). Demography of a population collapse:

the northern Idaho ground squirrel (Spermophilus brunneus brunneus). Ecology

83, 2816–2831. doi: 10.1890/0012-9658(2002)083[2816:DOAPCT]2.0.CO;2

Short Bull, R. A., Cushman, S. A., Mace, R., Chilton, T., Kendall, K. C., Landguth,

E. L., et al. (2011). Why replication is important in landscape genetics:

American black bear in the Rocky Mountains. Mol. Ecol. 20, 1092–1107.

doi: 10.1111/j.1365-294X.2010.04944.x

Smouse, P. E., Long, J. C., and Sokal, R. R. (1986). Multiple regression and

correlation extensions of the Mantel test of matrix correspondence. Syst. Zool.

35, 627–632. doi: 10.2307/2413122

Stevens, V.M., Verkenne, C., Vandewoestinjne, S.,Wesselingh, R. A., and Baguette,

M. (2006). Gene flow and functional connectivity in the natterjack toad. Mol.

Ecol. 15, 2333–2344. doi: 10.1111/j.1365-294X.2006.02936.x

Storfer, A., Murphy, M. A., Evans, J. S., Goldberg, C. S., Robinson, S., Spear, S.

F., et al. (2007). Putting the “landscape” in landscape genetics. Heredity 98,

128–142. doi: 10.1038/sj.hdy.6800917

Tischendorf, L., and Fahrig, L. (2000). On the usage andmeasurement of landscape

connectivity. Oikos 90, 7–19. doi: 10.1034/j.1600-0706.2000.900102.x

U.S. Fish and Wildlife Service (2003). Recovery Plan for the Northern Idaho Grund

Squirrel. Region 1, U.S. Fish and Wildlife Service. Portland, OR.

U.S. Fish and Wildlife Service (2013). Review of Native Species that are Candidates

for Listing as Endangered or Threatened; Annual Notice of Findings on

Resubmitted Petitions; Annual Description of Progress on Listing Actions 77 FR

70103 70162, Vol. 78, No. 226.

U.S. Fish and Wildlife Service (2015). Federal Register, Vol. 80, No. 120. Rules and

Regulations.

Van Horne, B., Wolf, J. O., and Sherman, P. W. (2007). “Conservation of ground

squirrels,” in Rodent Societies: An Ecological and Evolutionary Perspective, eds

J. O. Wolff and P. W. Sherman (Chicago, IL: University of Chicago Press),

463–471.

Wilcox, B. A., Murphy, D. D., and Jun, N. (1985). Conservation strategy : the effects

of fragmentation on extinction. Am. Nat. 125, 879–887. doi: 10.1086/284386

Yahner, R. H., and Mahan, C. G. (1997). Behavioral considerations in fragmented

landscapes. Conserv. Biol. 11, 569–570. doi: 10.1046/j.1523-1739.1997.96322.x

Yensen, E. (1991). Taxonomy and distribution of the Idaho ground squirrel,

Spermophilus brunneus. J. Mammal. 72, 583–600. doi: 10.2307/1382142

Yensen, E., Hammerson, G., Jefferson, J., and Cannings, S. (2008). “Spermophilus

brunneus,” in IUCN Red List of Threatened Species. Version 2013.2 (IUCN).

Available online at: www.iucnredlist.org

Yensen, E., and Sherman, P. W. (1997). Spermophilus brunneus. Mamm. Species

560, 1–5. doi: 10.2307/3504405

Yensen, E., and Tarifa, T. (2012). Can Southern Idaho Ground Squirrels be

Translocated Successfully? Annual Report Zoo Boise Conserv. Fund, 1–37.

Zuur, A. F., Ieno, E. N.,Walker, N., Savelieve, A. A., and Smith, G.M. (2009).Mixed

Effects Models and Extensions in Ecology with R. New York, NY: Spring Science

and Business Media.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Zero, Barocas, Jochimsen, Pelletier, Giroux-Bougard, Trumbo,

Castillo, Evans Mack, Linnell, Pigg, Hoisington-Lopez, Spear, Murphy and Waits.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Genetics | www.frontiersin.org June 2017 | Volume 8 | Article 8197

https://doi.org/10.1093/oxfordjournals.jhered.a111627
https://doi.org/10.1644/11-MAMM-A-021.1
https://doi.org/10.1641/B580306
https://doi.org/10.1038/373299a0
https://doi.org/10.1126/science.3420403
https://doi.org/10.1002/jwmg.541
https://doi.org/10.1016/S0169-5347(03)00008-9
https://doi.org/10.1111/j.1654-1103.2002.tb02087.x
https://doi.org/10.1890/07-1861.1
https://doi.org/10.1111/j.1365-294X.2010.04723.x
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1007/s10592-012-0385-3
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.2307/2402004
https://doi.org/10.7155/jgaa.00124
http://www.R-project.org
https://doi.org/10.1086/320863
https://doi.org/10.1644/1545-1542(2001)082<0946:GSOAMO>2.0.CO;2
https://doi.org/10.1890/0012-9658(2002)083[2816:DOAPCT]2.0.CO;2
https://doi.org/10.1111/j.1365-294X.2010.04944.x
https://doi.org/10.2307/2413122
https://doi.org/10.1111/j.1365-294X.2006.02936.x
https://doi.org/10.1038/sj.hdy.6800917
https://doi.org/10.1034/j.1600-0706.2000.900102.x
https://doi.org/10.1086/284386
https://doi.org/10.1046/j.1523-1739.1997.96322.x
https://doi.org/10.2307/1382142
http://www.iucnredlist.org
https://doi.org/10.2307/3504405
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


ORIGINAL RESEARCH
published: 02 October 2015

doi: 10.3389/fpls.2015.00813

Frontiers in Plant Science | www.frontiersin.org October 2015 | Volume 6 | Article 813

Edited by:

Stéphane Joost,

Ecole Polytechnique Fédérale de

Lausanne, Switzerland

Reviewed by:

Jacob A. Tennessen,

Oregon State University, USA

Sevan Suni,

Harvard University, USA

Torsten Günther,

Uppsala University, Sweden

*Correspondence:

Ali A. Naz,

Department of Crop Genetics and

Biotechnology, Institute of Crop

Science and Resource Conservation,

Rhenish Friedrich-Wilhelm University

of Bonn, Katzenburgweg 5, D-53115

Bonn, Germany

a.naz@uni-bonn.de

Specialty section:

This article was submitted to

Evolutionary and Population Genetics,

a section of the journal

Frontiers in Plant Science

Received: 29 June 2015

Accepted: 17 September 2015

Published: 02 October 2015

Citation:

Abebe TD, Naz AA and Léon J (2015)

Landscape genomics reveal

signatures of local adaptation in barley

(Hordeum vulgare L.).

Front. Plant Sci. 6:813.

doi: 10.3389/fpls.2015.00813

Landscape genomics reveal
signatures of local adaptation in
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Friedrich-Wilhelm University of Bonn, Bonn, Germany

Land plants are sessile organisms that cannot escape the adverse climatic conditions

of a given environment. Hence, adaptation is one of the solutions to surviving in a

challenging environment. This study was aimed at detecting adaptive loci in barley

landraces that are affected by selection. To that end, a diverse population of barley

landraces was analyzed using the genotyping by sequencing approach. Climatic data for

altitude, rainfall and temperature were collected from 61 weather sites near the origin of

selected landraces across Ethiopia. Population structure analysis revealed three groups

whereas spatial analysis accounted significant similarities at shorter geographic distances

(<40Km) among barley landraces. Partitioning the variance between climate variables

and geographic distances indicated that climate variables accounted for most of the

explainable genetic variation. Markers by climatic variables association analysis resulted

in altogether 18 and 62 putative adaptive loci using Bayenv and latent factor mixed model

(LFMM), respectively. Subsequent analysis of the associated SNPs revealed putative

candidate genes for plant adaptation. This study highlights the presence of putative

adaptive loci among barley landraces representing original gene pool of the farming

communities.

Keywords: landscape genomics, local adaptation, Hordeum vulgare, genotyping by sequencing, spatial genetic

structure, adaptive loci

Introduction

Natural selection is the key evolutionary process that generates the adaptation of plants
to their environments (Andrews, 2010). During this, the best fitted alleles to the specific
environment become prevalent through positive selection, which is the major driving force behind
adaptive evolution in plants (Schaffner and Sabeti, 2008; Bose and Bartholomew, 2013). Genetic
identification of those beneficial alleles is essential for answering fundamental questions concerning
plant adaptive evolution as well as to utilize them in crop improvement.

Genome-wide scan has been proven to be an effective approach for studying adaptive genetic
variation (Nosil et al., 2009). Classically, this approach uses different genotyping protocols to
assay a large number of DNA marker polymorphisms across the genome to associate them
with different traits and environmental factors (Bonin et al., 2006; Eckert et al., 2010a,b; Brachi
et al., 2011; Wang et al., 2012; Westengen et al., 2012). Recently, advances in next generation
sequencing technologies have resulted in the development of newer methods of high-throughput
genotyping such as genotyping by sequencing (GBS). This method brought out clear advantages
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to genotype highly diversified and complex genomes in lesser
time and at a low cost per sample (Elshire et al., 2011). GBS
generates thousands of sequence tags and single nucleotide
polymorphisms (SNPs) across the genome. It has been used
successfully in a number of plant species like barley, maize
(Elshire et al., 2011; Poland et al., 2012; Larsson et al., 2013),
sorghum (Morris et al., 2013), soybean (Sonah et al., 2013), and
Brachypodium (Dell’Acqua et al., 2014).

Genome-wide scan generally rely on the assumption that
the loci involved in adaptation exhibit stronger differentiation
among populations and lower diversity within a population when
compared with selectively neutral regions of genome (Storz,
2005). Such loci are considered outlier loci and can be detected
among populations using molecular marker data by calculating
the population differentiation coefficient (FST) (Excoffier et al.,
2009). Therefore, FST analysis has the ability to determine the
signatures of divergent selection evolving under the pressure
of ecological factors. This selection is the fundamental process
in adaptive differentiation and speciation among the natural
populations of plants (Schluter, 2001, 2009; Funk et al., 2006).

Landscape genomics is a relatively new approach that
combines landscape factors and genomics to scan for the
presence of a signature of selection (Allendorf et al., 2010;
Schoville et al., 2012). This approach attempts to detect the
loci that underlie observed adaptive genetic variation and hence
called adaptive loci. Currently, there is a growing body of
literature demonstrating the feasibility of landscape genomics in
detecting loci related to adaptation. For instance,Westengen et al.
(2012) detected adaptive loci that respond to the precipitation
and maximum temperature of a given habitat by analyzing
African maize landrace populations using association analysis.
Eckert et al. (2010b) found significant correlations between
genetics and climatic variables indicating the evidence of natural
selection in loblolly pine (Pinus taeda L.). Similarly, Poncet et al.
(2010) identified ecological relevant genes linked to minimum
temperatures in Arabis alpina. Recently, De Kort et al. (2014)
reported a clear association among outlier loci, temperature
and latitude in the tree species Alnus glutinous across Europe.
These reports clearly advocate the utility of the landscape
genomics in detecting and understanding the adaptive biology
of plants. Dell’Acqua et al. (2014) studied local adaptation
in Brachypodium and found genes related to environmental
adaptation in natural populations. However, until now, the
utilization of landscape genomics to dissect the fundamental
components of adaptation in crops like wheat and barley has not
been studied well.

Ethiopia, with its diverse agro-ecological and climatic features,
is known for being one of the 12Vavilovian centers of diversity
(Vavilov, 1951; Harlan, 1969). It contains a tremendous range
of altitudes spanning from 110m below sea level in areas of
the Kobar Sink to 4620 meter above sea level (m.a.s.l.) at
Ras Dashen. In addition, Ethiopian regions experience huge
temperature and rainfall differences, which are coupled with
highly variable edaphic factors. This diverse topography and
environmental heterogeneity may be the major reasons behind
the highly diversified plant species across Ethiopia. These diverse
climatic conditions and rich biodiversity make Ethiopia a model

environment to dissect the genetic basis of ecological adaptations
in plants.

Barley (Hordeum vulgare L.) is an important cereal for
subsistence farmers in Ethiopia. These farmers typically grow
barley without any application of inputs such as fertilizers,
pesticides, and insecticides (Lakew et al., 1997). They usually sow
their own harvested grain as seeds each year. Sowing their own
seeds from year to year, these farmers have established farmer
varieties (landraces) that are adapted to different ecological
environments across Ethiopia. It is not possible to neglect the
role of farmer-driven artificial selection to fit these landraces
to a particular ecological condition. However, the prevalence
and diverse adaptive differentiation of barley landraces across
Ethiopia clearly suggests that these genetic resources have
successfully undergone natural selection (Zeven, 1998).

The present study was aimed at detecting the signatures
of local adaptation in a state of the art barley population
using the landscape genomics approach. Here, we report the
first insight into the identification of putative adaptive loci by
combining molecular data of diverse barley landraces with highly
divergent climatic variables. The detection of these signatures
of local adaptation in a long-lasting native barley gene pool
of the farming communities, will help in understanding the
mechanisms of plant adaptation in barley and beyond in major
crops like wheat.

Materials and Methods

Plant Material and Genotyping
In the present study, we selected 130 diverse barley landraces
originating from 10 major barley-growing regions of Ethiopia
(Figure 1). These landraces are not only described with altitude
and geographic coordinates but also with the vernacular name
given by the local community. This germplasm and its detailed
information were provided by the Institute of Biodiversity
Conservation (IBC) in Ethiopia. We genotyped two samples
from each landrace resulting in 260 total samples (Table S2),
which were analyzed using the genotyping by sequencing (GBS)
approach. In addition, a German spring barley cultivar Barke
was included in two replications as an internal control for the
GBS analysis and data control. Initially, all samples were planted
in a glass house, and after 2 weeks, the leaves were harvested
for DNA extraction using the Qiagen DNeasy plant mini kit
(Qiagen, Hilden, Germany) to ensure high-quality DNA, which
was required for the GBS analysis. After DNA extraction, GBS
libraries were prepared and analyzed at the Institute for Genomic
Diversity (IGD), Cornell, USA, according to Elshire et al. (2011)
using the enzyme PstI for digestion and creating a library with
96 unique barcodes. These libraries were sequenced using the
Illumina HiSeq2000 platform. GBS analysis pipeline ver. 3.0.139,
an extension to the Java program TASSEL (Bradbury et al., 2007),
was used to call SNPs from the sequenced GBS library with the
following options. Tags were aligned with the barley reference
genome of cv. Morex (International Barley Genome Sequencing
Consortium, 2012). VCF tools ver. 0.1.8 (Danecek et al., 2011)
was used to summarize and filter data as well as to generate
input files for PLINK (Purcell et al., 2007), which were used
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FIGURE 1 | Distribution of barley landraces and weather sites across Ethiopia on an altitudinal map.

for MDS (multidimensional scaling). The output was visualized
using basic plotting functions in R ver. 2.15.0 (R Development
Core Team, 2008). Before using these SNP markers for analysis,
the original SNP data were filtered by applying different criteria.
The first criterion was the SNP call rate for which SNP markers
showing less than 10% missing values were passed to the next
step. Among these, SNPs with a minor allele frequency (MAF)
of less than 5% and monomorphic SNPs were excluded from the
data. However, two barley samples (1%) were excluded in the final
analyses because of missing genotypic data.

Climatic Data
The climate data from 61 weather sites were provided by
the Ethiopian Meteorological Agency (Figure 1). The weather
data were collected over multiple years, for an average of 21
years. The weather sites supplied monthly rainfall (lm−2) and
maximum and minimum temperature (◦C) data. The three main
seasons of Ethiopia, Kiremt (June–September), Bega (October–
January), and Belg (February–May) were the basis for the
grouping of the annual climatic data (USDA, 2002). Kiremt
is the main rainy season all over Ethiopia, whereas Bega is
the dry season, and Belg is considered the short rainy season.
The altitude data were obtained from the passport data of
the barley samples procured from the Institute of Biodiversity
Conservation of Ethiopia (IBC). The altitudes of the sampling
sites were grouped into four classes according to the traditional
agro-ecological classification of Ethiopia. These classes are cold
temperate, cool sub-humid highlands (Classes I and II, 1500–
2500 m.a.s.l.), cool humid highlands (Class III, 2500–3000
m.a.s.l.) and highlands (Class IV, over 3000 m.a.s.l.) (USDA,
2002). The temperate, cool sub-humid highland was further

divided into two classes because it covers a wide range of altitudes
(Table S1).

Inference of Population Structure
Correction of the confounding effect of population structure
in association studies plays a major role in reducing false
positives (Pritchard et al., 2000a; Yu et al., 2006; Kang et al.,
2008). Similarly, detecting adaptive loci without considering the
impact of population structure will lead to false positive loci.
Therefore, the analysis of hierarchical population structure was
computed using the Bayesian-based program STRUCTURE ver.
2.3.5 (Pritchard et al., 2000b). For the analysis, an admixture
model with correlated allele frequencies was chosen (Falush
et al., 2003). The analysis was performed for a number of
subpopulations varying from K = 2 to K = 20. For each
value of K 20 independent runs were performed. For each
run a burn-in of 10,000 and 50,000 iterations was specified.
Finally, the Evanno et al. (2005) method was applied to
determine the number of K. For this function, a web-based
program, STRUCTURE HARVESTER ver. 0.9.93 (Earl and
Vonholdt, 2012) was employed to infer the level of population
structure. Ultimately, CLUMPP (Jakobsson and Rosenberg, 2007)
was used to combine and average the individual’s assignment
across 20 runs for the determined number of K. To identify
barley landraces that were admixed, each individual sample
was assigned to its respective group based on a membership
coefficient. The samples with a membership coefficient of ≥90%
were assigned to a single group, whereas those that were smaller
than the threshold were considered admixed. The membership
coefficients (Q) were calculated using administrative regions
instead of considering LOCPRIOR option during structure
analysis. Eventually, altitude classes were used as basis of
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grouping to test if the detected sub-populations were influenced
by altitude. This was determined by, assigning each barley
accession to its origin of altitude class and plot the structure graph
using the membership coefficient.

Principal Component Analysis
A principal component analysis (PCA) was conducted using
SNP markers data to reduce the number of variables into
fewer components that explain the maximum variance. These
components were then plotted in a two-dimensional plot for
ease of viewing the existing genetic pattern. Before computing
the PCA, the missed marker data were replaced with the mean
values calculated over the markers. Subsequently, the analysis
was carried out with the Proc princomp procedure using SAS
software ver. 9.3 (SAS, 2011). A parallel analysis (PA) (Franklin
et al., 1995) was then carried out to decide the number of
principal components to retain for further analysis. PA is a
method based on the generation of random eigenvalues to
determine the number of components to retain. The eigenvalues
are computed from the permutations of the observed data
rather than from simulated data. This is an advantage not to
keep the assumption of multivariate normality since the null
reference set is conditioned on the observed data (Ledesma and
Valero-Mora, 2007). In this analysis the covariance matrix was
decomposed in which the parallel analysis restricted random
matrices to have variable means and standard deviation of
the real data (Franklin et al., 1995). Hence, a permutation test
of 100 replications was used to run covariance matrices to
calculate the eigenvalues. Afterwards, principal components
which showed higher observed eigenvalues than their
randomly generated associated values were retained for further
analysis.

Spatial Genetic Structure
Isolation by distance (IBD) was computed using the “Spatial”
option implemented in GenAlEx ver. 6.41 (Peakall and Smouse,
2006). The autocorrelation coefficient (r) obtained was similar
to Moran’s I (Moran, 1950), which ranges from -1 to 1. The
spatial autocorrelation analysis was computed based on the
pairwise comparison of the genetic distances derived from
the genetic markers and geographic distance (km). Prior
to performing the correlation analysis, the coordinates were
converted into the Universal Transverse Mercator (UTM)
system, and autocorrelation was computed first for all accessions
from all regions followed by another analysis excluding
accessions collected from Tigray. Accessions collected from
Tigray region were excluded because of the geographic distance
of the region and the sole grouping of the accessions during
structure analysis. The significance of the spatial autocorrelation
value was tested by constructing a two-tailed 95% confidence
interval around the null hypothesis of no spatial genetic structure,
which is r = 0. The analysis was performed with an option of
an even distance class of 20 km based on a study that reported
the distances traveled by Ethiopian farmers to obtain seeds
(Bishaw, 2004). Permutations of 9.999 and a bootstrap of 1000
were used to compute the confidence interval around the null
hypothesis.

Partitioning of Genomic Variation due to Climate
Variables and Geographic Distance
Partial redundancy analysis (RDA), a constrained ordination
technique, attempts to explain differences in species composition
by combining a regression analysis with a principal component
analysis (Borcard et al., 2011). It is based on genetic and
environmental matrices (climate and geography). Partial
constrained ordinations determine relationship between desired
environmental and biological variables by removing the effect
of known and uninteresting factors. Whereas unconstrained
partial RDA considers the residual variance (Peres-Neto et al.,
2006). In the present study, RDA was computed using XLSTAT
ver. 2014.05.1 and vegan function in R package to disentangle
the relative contribution of climate variables and geographic
coordinates in driving genetic structure (Legendre and Fortin,
2010). For this, Hellinger transformed SNP allele frequencies
were used as the response variable, and climate and coordinates
as explanatory variables (Liu et al., 2011; De Kort et al., 2014).
Before running the analysis the climate data were standardized
using the Proc Stand procedure in the SAS software. The
geographic variables were also normalized using a square root
transformation of the geographic coordinates (Borcard et al.,
2011). To examine how much of the genetic variation in barley
landraces explained by climate variables, geographic coordinates
and the combination of both, the variance components of the
RDA were partitioned by running three different models. The
first model considered all climate and geographic variables as
explanatory variables (Model 1); the second model was a partial
model in which the climate variables explained the genetic data
conditioned on geographic coordinates (Model 2); and the third
model was a partial model in which geographic coordinates
explained the genetic data conditioned on climate variables
(Model 3). For all models redundancy analysis was followed by
significance test using Monte Carlo permutations test with 500
runs. For determination of best model forward selection with
permutation of 999 and α = 0.01 were computed. This process
of model determination was improved by the introduction
of adjusted R2 by Peres-Neto et al. (2006), and the analysis
was conducted using ordistep function of vegan in R package
(Oksanen et al., 2010). Subsequently, the variation partitioning
was followed when more than one significant explanatory
variables were found (Legendre and Legendre, 1998).

Association Analysis of Climatic Variables
At present, a number of statistical tools are available for detection
of outlier loci that are possibly affected by selection (Pérez-
Figueroa et al., 2010; Narum and Hess, 2011). In the present
study, we used two different software for the associations,
between the environments and SNPs, and one for detection of
the outlier loci. Bayenv2 and latent factor mixed model (LFMM)
were used to identify association of climate factors with genetic
markers whereas outlier loci were detected using BayeScan
software. A detailed description of each statistical method is
presented below.

The detection of loci correlated with different climatic
variables was carried out using Bayenv2 (Coop et al., 2010) and
LFMM (Frichot et al., 2013). Bayenv is a Bayesian method that
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estimates the empirical pattern of covariance in allele frequencies
between populations from a set of markers and then uses this
as a null model for testing individual SNPs. Genome scans
for SNPs with allelic correlations with climate variables were
performed using Bayenv2 (Coop et al., 2010; Günther and
Coop, 2013). This program runs in two steps. First, it creates a
covariance matrix of relatedness between populations. Then, in
the second step, it runs the correlation between the covariance
matrix and the environmental variables generating a Bayes factor
(BF) and non-parametric Spearman’s rank correlation coefficient
[ρ (Rho)]. The null model assumes that allele frequencies
in a population are determined by the covariance matrix of
relatedness alone against the alternative model, where allele
frequencies are determined by a combination of the covariance
matrix and an environmental variable, producing a posterior
probability (Coop et al., 2010). Before running a null model
estimation, the exclusion of outlier loci and loci which are in
linkage disequilibrium, is recommended to ensure independence
between SNPs on a chromosome (Bayenv2 Manual). Hence,
we excluded outlier loci which were detected using BayeScan
and LFMM program followed by loci which were in linkage
disequilibrium (r2 > 0.2) within each linkage group. The rest (801
neutral SNPs) were used to estimate the covariance matrix with
50,000 iterations. To control the variation across the covariance
matrix, the average was calculated for the outputs of 10 matrices.
Covariance matrices were compared after three independent
runs with different seed numbers to ensure that the matrix was
well-estimated. According to the recommendation of Blair et al.
(2014) the BF of each SNP was calculated by averaging five
independent runs of Bayenv2 at 50,000 Markov chain Monte
Carlo (MCMC) for both the covariance matrix and Bayes factor
analysis. For detection of outlier loci, Günther and Coop (2013)
recommended considering the Spearman correlation coefficient,
which measures the correlation between ranks of SNP allele
frequencies and environmental factors, in addition to BF. BF is
considered to have a slightly higher power, and SNPs, which fall
in the top x% of BF and y% (where x < y; Bayenv2 Manual) of
absolute values of spearman rank correlation coefficient ρ, are
suggested to be robust candidate loci. Thus, we considered loci
which were commonly detected in the top 1% of the BF-values
(BF > 3) and top 5% of the absolute correlation values as a
significant putative adaptive loci.

The other correlative method used for adaptive loci detection
was LFMM, a software package that is a newly developed
statistical model (Frichot et al., 2013). According to the study
conducted by de Villemereuil et al. (2014), LFMM provided the
best compromise between power and error rate across different
scenarios. LFMM tests the association between environmental
and genetic markers while estimating the hidden effect of
population structure. The LFMM implemented fast algorithms
using a hierarchical Bayesian mixed model based on a variant of
PCA, in which the residual population structure is introduced
via unobserved or latent factors. All SNP markers (1370)
and the original climate variables were used for association
analysis. The principal components of environmental variables
are recommended when the summary of the variables is required
because of their numbers (personal communication with Dr.

Eric Frichot). The first three principal components generated
for genetic markers were used as latent factors to estimate
the population structure effect. The SNPs, which showed an
association with environment, were determined based on the
z-score. To estimate the z-scores for the environmental effect,
the Gibbs sampler algorithm was run for 50,000 sweeps after a
burn-in period of 10,000 sweeps. The threshold for the z-scores
was determined after applying the Bonferroni correction for type
I error α = 0.01. Loci exhibiting z-scores above the absolute
value of four and corresponding to P < 10−5 were retained as
significant loci.

Outlier Loci Detection
BayeScan is the tool that we used to detect outlier loci. It is a
Bayesian based method that depends on a highly differentiated
locus (Foll and Gaggiotti, 2008). It is the most conservative
method with the least type I error compared to other outlier
loci detection methods (Narum and Hess, 2011). However, it
may detect high false positive loci if demographic history is
not included in the analysis (Lotterhos and Whitlock, 2014).
BayeScan identifies loci that are characterized by higher or lower
levels of population divergence than neutral loci, suggesting a
diversifying or purifying selection. It estimates the probability
that a given SNP is under selection by calculating the posterior
odds (PO). The PO are the ratio of the posterior probabilities
of the two models (selection/neutral) for each locus based on
the allele frequency. Before running the outlier loci analysis,
the barley landraces were assigned to their respective K groups,
thus supporting the comparison of the discrete groups in the
process of candidate loci detection. To compare the result of
outlier analysis, the individuals were assigned twice based on
admixture Q coefficients of ≥70 and ≥90. Outlier loci detection
was conducted by setting the prior probability of the model with
a selection of 1/10, assuming a priori that the neutral model
is 10 times more likely than the model including selection.
During this run, all of the default values of 10 pilot runs of 5000
iterations with 50,000 additional burn-in steps were retained.
We used false discovery rate (FDR = 0.05) as significance level
for detection of the outlier loci. The FDR was controlled using
the q-value which is the FDR analog of the p-value (Storey,
2002).

Detection of Candidate Genes
Candidate genes were found using the BLASTn function of
DNA sequence analysis where the DNA sequences of SNP
markers showing significant association were searched against
the barley genome sequence using the NCBI and IPK databases.
Genomic contigs showing the best hits were selected based
on highly significant and maximum similarity percentages
(>95%) and an E-value cut-off of 1E-15. The putative candidate
genes across the contigs and relative distance of the associated
SNP marker and candidate genes were found using BARLEX
database and alignment package of Lasergene core suit of
DNASTAR program. The gene ontology (GO) terms of the
putative candidate genes were assigned using the Uniprot
database.
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Results

Genotyping by Sequencing and SNP Detection
The genotyping by sequencing (GBS) pipeline resulted
in a total of 2,028,787 sequence tags, of which 1,548,708
(76.3%) were aligned with unique positions across the barley
chromosomes. The sequence reads aligned with unique
positions were subjected to SNP calling across the genotypes,
founding 67,508 (unfiltered) Hapmap SNPs. After applying
the filtering criteria as described in material and methods, a
total of 1370 polymorphic SNPs were retained and utilized in
further analyses. These SNP were distributed across all seven
barley chromosomes. The highest number of SNP (214) were
found on chromosome 7H and the lowest on chromosome
4H (108). The details of these SNPs, their corresponding
chromosomes and contigs information are summarized in
Figure S1.

Population Structure
The population structure analysis grouped barley landraces
into three subpopulations (Figures S2A–C). The membership
coefficient assignment (≥90%) indicated that most of the
individuals were grouped in the first two groups, whereas the
third inferred cluster contained few individuals. Themembership
coefficient assignment also revealed that most of the landraces
from different geographic regions were clustered in group 1 (30
accessions) and group 2 (63 accessions). However, all landraces
that were assigned to group 3 (18) originated from Tigray,
but one accession from this region was assigned to group two.
Bale (89%), Arsi (83%), Sidamo (79%), Harerge (68%), and
Welo (63%) were the regions that contained highly admixed
individuals. In contrast, less than half of the accessions collected
from Shewa, Tigray, Gonder, and Gojam contained less than
10% admixtures within each individual, which was derived from
historical ancestors. This percentage value indicated that more
than half of the barley individuals from these regions have
a membership coefficient that assigned these accessions to a
distinct group. After the membership coefficient was assigned
to each individual, we also tested whether altitude classes (Class
I: below 2000; Class II: 2001–2500; Class III: 2501–3000; Class
IV: above 3000 m.a.s.l) were the basis for the detection of the
three sub-populations. All but one of the barley accessions in
group 3 and 80% of the accessions in group 1 were collected
from altitude classes I and II; the rest (20%) were collected
from altitude class III (Figure S2D). Unlike other groups, barley
landraces in group 2 were collected from altitude class II (13%)
and class III (68%), and all accessions collected from altitude class
IV (19%).

To visualize the geographic distribution of the population
structure, we plotted the pie chart of the membership coefficient
on an Ethiopian map (Figure 2A). The distribution of the barley
landraces based on their area of origin was associated with
their groupings. Most of the landraces from the eastern part of
Ethiopia (Harerge), Gojam, Sidamo, and Welo were clustered
in group 1, whereas the landraces collected from the rest of
the regions were assigned to group 2, except Tigray, which was
assigned to group 3.

FIGURE 2 | Distribution of barley landraces and assignment of

population membership coefficient along Ethiopian map (A). Each

barley landrace was assigned to its respective inferred cluster based on the

membership coefficient obtained from population structure analysis carried out

using the model based software STRUCTURE. The scatter plot of principal

components represented by the first and second principal components

depicting the groupings of the barley individuals based on the

subpopulations (B).

Principal Component Analysis
Principal component analysis (PCA) reduced the variables into
fewer components to explain most of the variation. Despite
many eigenvalues, which were greater than one, we retained
the first three principal components with variance of 15.03,
13.29, and 10.83. The proportions of variance explained by
the respective principal components were 6.8, 5.9, and 4.9%.
According to parallel analysis, the first three eigenvalues were
sufficient for describing the grouping of the population. In
order to visualize the pattern of the population grouping
the first two principal components were plotted in 2-D. An
assignment of individuals to their respective groups based
on a ≥90% membership coefficient from population structure
analysis resulted in approximately 57% of the individuals
being categorized as admixtures (Figure 2B). Consequently,
we assigned each barley individual to its respective group
by considering its membership coefficient from the structure
analysis and plotted the individuals based on the principal
component values. In general, the first principal component
separated groups one and three from group two, whereas the
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second principal component separated group one from the rest
of the groups.

Spatial Population Structure
A spatial analysis was computed using the entire data and
excluding the accessions collected from Tigray. First, the analysis
was performed for the accessions from all regions, and it showed
a significant spatial autocorrelation (Figure 3A). Further, this
analysis revealed a significant and positive spatial autocorrelation
for the closest accessions and a negative correlation for the
accessions collected from a wide distance. The positive and weak
correlation between genetic similarity and geographic distance
in the first dataset was observed for the genotypes collected in a
range of 180 km (r = 0.017, p = 0.001). The presence of negative
correlation for accessions collected in a geographic distance range
of 780 km (r = −0.013) to 960 km (r = − 0.037) was
observed. However, after the accessions collected from Tigray
were removed, the positive correlation was detected at short
distances ranging from 20 km (r = 0.095, p = 0.001) to 40
km (r = 0.006, p = 0.1) (Figure 3B). Although most of the
distance classes showed no spatial autocorrelation, the overall
result of the spatial analysis revealed the presence of weak spatial
population structure at the shortest distances, thus indicating
genetic similarity.

Partitioning of Genomic Variation due to Climate
Variables and Geographic Distance
A partial redundancy analysis (RDA) was performed to partition
the variations accounted by climatic and geographic variables.
The RDA analysis for model 1, which used climate and
geographic variables as explanatory variables, indicated that the
variation due to climate and geographic variables (constrained)
explained most of the variation compared with the residual
variance (unconstrained) (Figure 4A). Partitioning of the total
variance indicated that the climatic variables accounted for 40%
of the explainable total variance after removing the effect due
to geographic variables, whereas geographic variables explained
29% of the total variance after the effect of climatic variables
was controlled. The combination of climate and geographic
effects explained 61% of the total explainable variation. The
variance partitioning indicated that in Model 1 (F1 = 38.4%,
F2 = 34.64%, F3 = 26.71%) and Model 2 (F1 = 69.64%, F2
= 22.62%, F3 = 7.74%) the first three eigenvalues contributed
100% to the variation, in contrast to Model 3, where two of the
eigenvalues contributed to the total explainable variation (F1 =

81.83%, F2 = 18.17%; Figures S3A–C). The RDA result obtained
after excluding Tigray indicated the importance of the region in
shaping the genetic diversity pattern of the entire population.
Executing the RDA analysis without conditioning on any of the

FIGURE 3 | Spatial autocorrelation correlogram plots. The plot depicts results obtained from all geographic regions (A), and after accessions collected from

Tigray region were removed and isolation by distance was calculated for accessions from the rest of the regions (B). The analysis considered geographic distances

with even distance class of 20 km. Dashed lines encompass the 95% confidence interval of the null hypothesis, and each point represents the autocorrelation

coefficient (r).
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FIGURE 4 | The partial RDA variance partitioning was computed for

entire dataset (A) and after accessions from Tigray region were

excluded (B). The variance explained due to all variables (Model 1), the

variance explained after controlling the effect introduced due to geographic

distance (Model 2), and variance explained by geographic coordinates after

the variance due to climate variables controlled (Model 3).

variables gave a close cumulative variance both with and without
the Tigray region (60.6%; 57.2%) in the dataset (Figure 4B).
A partial RDA analysis test for the full dataset yielded 40
and 29% for conditioning on geographic and climate variables,
respectively. However, excluding Tigray from the dataset gave
a value of 14.1 and 4.7% when conditioned on geographic and
climate variables, respectively. The relative variances contributed
by the presence of Tigray in the entire dataset conditioning
on climate and geography were 35.3 and 16.5%, respectively.
Furthermore, the eigenvalue results indicated low value and
most of the variation was explained by residual variance
(Figures S3D–F). We have also computed the partitioning
among the climate variables while considering their major
proportion in the total variance. It revealed that the variables
altitude, Rf_Kiremt (rainfall in Kiremt) and Rf_annual explained
most of the variation across the climatic variables (Figure 5,
Table S3).

Association Analysis of Climatic Variables
The association analysis of SNP markers and climatic variables
was performed using the Bayenv program. This analysis detected
a total of 18 loci showing significant association with one
or more climatic variables (Table 1). Among these, three loci
were associated with variable altitude. Similar number of
loci were associated with rainfall variables; Rf_Bega (1) and
Rf_Kiremt (2). The highest number of loci were associated
with minimum temperature variables; Mintemp_Bega (2),
Mintemp_Belg (3), Mintemp_Kiremt (1), and Mintemp_aver (2)
followed by maximum temperature variables; Maxtemp_Bega
(2), Maxtemp_Kiremt (1), and Maxtemp_aver (1).

The association of SNP markers and climatic variables was
also analyzed using a LFMM analysis. This analysis revealed

the detection of 62 loci associated with the 13 selected climatic
variables (Table 2). The highest number of loci (35) were
associated with rainfall variables; Rf_Bega (10) and Rf_Belg (10),
Rf_Kiremt (8) and Rf_annual (7). The second most number
of loci were associated with variable altitude (9). In contrast,
Mintemp_Belg and Mintemp_Kiremt were the only two climate
variables that had one significant locus with z = 5.20 and
z = 5.57, respectively. The highest number of common putative
adaptive loci (6) were found for Rf_Bega and Rf_Belg followed by
altitude and Rf_Kiremt (4). Among the loci commonly detected
for altitude and Rf_Kiremt, we have selected the SNP locus
Hv_SNP27845 with the highest significance level (z = 6.71).
This locus was further illustrated to examine the allele frequency
distribution along the altitude classes (Figure 6A) and rainfall
as well as allele distribution over the country (Figure 6A). It
showed that the most prevalent major allele at lowland was
gradually decreased with an increase in the altitude and rainfall
(Figures 6B,C). A complete summary of the LFMM analysis is
presented in Table S4.

Outlier Loci Detection
The BayeScan method detected 12 and nine outlier loci (FDR =

0.05, prior 10:1) using a threshold of ≥70 and ≥90% ancestry
coefficient of admixture for each barley individual, respectively
(Figure S4, for the first approach). Of the nine loci detected
using the second approach, six loci were also detected using the
first approach. Three of the loci (Hv_SNP23336, Hv_SNP66136,
and Hv_SNP27872) that were also detected with 100: one prior
were considered for further analysis (Figure 7). The detected
outlier loci showed a positive alpha value, which indicated
directional selection. FST-values ranged between 0.69 and 0.66
for Hv_SNP53122 and Hv_SNP23336, respectively. Notably, the
three detected SNPs were mapped on the same position (70.68
cM) on chromosome 7H.

Altogether, none of the software shared common
significant loci among them but one locus (Hv_SNP4131)
was commonly detected between LFMM and Bayenv software
(Figure S5).

Detection of Candidate Genes
We have made an in silico analysis of the associated genomic
regions to detect underlying putative candidate genes (Table 3).
It revealed that all three SNP marker associated to altitude were
found in single genomic contig (contig_46879) on chromosome
4H. These SNPs were found in the coding region (+1108 base
pairs (bp) from ATG) of the sulfate transporter (ST3.1) gene.
The SNPmarkers associated with altitude and Rf_Kiremt (rainfall
in Kiremt) appear to underlie the L-lactate dehydrogenase
(LDH) gene. These markers were around at +357 bp from
ATG. The SNP locus (Hv_SNP4131) associated with maximum
temperature (Kiremt, Bega and average) was found in the region
of the cation\H+ exchanger (CAX) gene, +465 bp from ATG.
Additionally, SNP loci on chromosome 2H associated with
Maxtemp_Bega, were found next to each other in the putative
promoter region (−2749 bp from ATG) of the universal stress
responsive protein (USP1).
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FIGURE 5 | Partial RDA analysis was performed to determine the relative contribution of climate and geographic variables shaping the genetic

structure. The biplot depicts the eigenvalues and lengths of eigenvectors for the RDA conditioned on geographic distance.

Discussion

Population Structure
The population structure analysis was computed using the
STRUCTURE program and supported by the principal
component analysis approach. The detected clusters did not
completely reveal a geographically based population structure.
Though accessions from 10 geographic regions were analyzed,
the population structure analysis detected that three sub-
populations contained different regions as one group. Hence,
this result suggests the weak impact of geographic boundaries
on the genetic structure of the barley population. A weak effect
of political regions was reported for the morphological and
genetic differences between major barley-growing areas of
Ethiopia (Abebe et al., 2010; Abebe and Léon, 2013a). However,
the pattern of clustering in the present study, was different
compared with previous studies because of the difference in
the number of barley genotypes, number of genetic markers
and sampling strategy to genotype landraces. In the present
study, we also replicated each landrace twice for genotyping
to ensure high-quality genotyping data and to determine the
genetic purity of the landraces that farmers have selected and
established for barley cultivation. Among the inferred groups,
the third cluster was aligned with one of the geographic regions.
This region was Tigray, which is located in the northern part
of Ethiopia and is frequently affected by drought because of a
degraded environment and erratic rainfall (Abay et al., 2009).
Farmers in this region have selected drought-resistant landraces
to grow under water-limited conditions (Meze-Hausken, 2004).
In addition, a decrease in rainfall northwards and eastwards
from the high rainfall pocket area in the southwest has been
reported (USDA, 2002). In the present study, Tigray was one of
the regions having low percentage of admixed barley landraces
(39%) and over 90% of the accessions from other regions were

assigned to group 3. However, more than three quarters of
the accessions from Arsi, Bale and Sidamo were considered
admixed and were thus not assigned to a single cluster. These
regions are known as the cereal belt of Ethiopia, which implies
that a considerable amount of cereal production and marketing
occurs in these areas. This leads to high genetic diversity in
the region and gene flow between farmers’ fields, resulting
in admixed landraces (Negassa, 1985; Abebe et al., 2013b).
The population structure coefficient sorted by altitude classes
indicated that the accessions grouped in the first and second
sub-populations originated in altitudes less than 2500 m.a.s.l.
Except for a few accessions, the third sub-population contained
accessions collected from the highlands (above 3000 m.a.s.l) of
Ethiopia. In general, geographic regions and altitude classes were
associated with different groups; however, the spatial distance
was presumably not considered as the basis for the inferred
clustering.

Spatial Genetic Structure
Isolation by geographic distance occurs when the gene flow
between organisms is restricted because of spatial isolation. The
detection of a correlation between the genetic and geographic
distance was described as isolation by distance (Wright, 1946).
We also detected significant but weak isolation by distance for the
dataset consisting of all the barley accessions and in the dataset
where the accessions from the Tigray region were removed.
The correlogram from the first dataset showed correlation with
the geographic distance covering a wide range, whereas after
excluding Tigray, a significant correlation was observed over a
shorter distance. In this case, the accessions in a 40 km range
were considered to be genetically similar and positively associated
with geographic distance but the correlation was not different
from zero. The population structure analysis grouped most of the
accessions from this region in one group, indicating the presence
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TABLE 1 | A summary of putative adaptive loci showing association with different climate variables identified using Bayenv analysis.

SNP ID Chr cM BF Rho (ρ) Climatic variables

A B C D E F G H I J K L M

Hv_SNP785 2H 65.59 3.05 0.52 *

Hv_SNP4131 2H 123.94 3.26 0.60 *

Hv_SNP8058 4H 77.48 8.22 0.37 *

Hv_SNP51899 4H 78.61 3.97 0.44 *

Hv_SNP51899 4H 78.61 4.21 0.44 *

Hv_SNP594 4H 79.87 4.06 0.43 *

Hv_SNP594 4H 79.87 3.00 0.49 *

Hv_SNP594 4H 79.87 4.27 0.43 *

Hv_SNP4616 5H 40.07 4.88 0.60 *

Hv_SNP4616 5H 40.07 5.51 0.51 *

Hv_SNP15799 5H 129.65 5.00 0.45 *

Hv_SNP56701 5H 169.38 3.68 0.51 *

Hv_SNP31344 6H 100.42 3.05 0.46 *

Hv_SNP30323 7H 55.74 4.55 0.47 *

Hv_SNP23710 7H 109.92 5.44 0.54 *

Hv_SNP23253 7H 124.58 3.14 0.45 *

Hv_SNP58 U U 3.20 0.44 *

Hv_SNP32903 U U 4.25 0.54 *

Total loci 3 1 – 2 – 2 3 1 2 2 – 1 1

Where: A, Altitude; B, Rf_Bega; C, Rf _Belg; D, Rf_Kiremt; E, Rf_annual; F, Mintemp_Bega; G, Mintemp_Belg; H, Mintemp_Kiremt; I, Mintemp_aver; J, Maxtemp_Bega; K, Maxtemp_Belg;

L, Maxtemp_Kiremt; M, Maxtemp_aver; U, Unknown.

*Indicates that the particular SNP showed correlation with that specific climate variable. BF (Bayes factor), Rho (ρ) (Spearman’s rank correlation coefficient).

of less shared ancestors among the accessions. Furthermore,
the autocorrelation result revealed that the other regions are
spatially isolated from Tigray because of its geographic location.
Hence, the location of Tigray influenced the pattern of the spatial
genetic structure in the studied population. The low percentage of
admixture among the accessions was presumably associated with
the low gene flow from the neighbor regions. This is attributed
to the location, landscape, social and economic activity of the
region. In general, the accessions from Tigray region affected the
pattern of isolation by distance when all regions were considered
for analysis. But the detected spatial correlation was weak and
limited to a short distance to infer the presence of isolation by
distance.

Partitioning of Genomic Variation due to Climate
Variables and Geographic Distance
The partial RDA was computed to estimate the proportion
of variation explained by the environmental variables or by
geographic distance alone or as the fraction of the variation
shared by both variables. The variance partitioning for partial
RDA models indicated that the variation contributed by climate
variables were higher than the variation introduced due to
geographic variables in both datasets (datasets are explained
in material and methods). However, all the models showed
significant association between the environmental variables
and the genetic variation. The positive association of the
climate variables with the genetic markers while controlling

the variations due to geographic variables, thus suggests an
important influence of climate diversity in shaping genetic
variation (Temunovic et al., 2012). Similar findings were reported
by Lasky et al. (2012) where they found a significant contribution
of climate variables after controlling the spatial structure in
Arabidopsis thaliana. They propose these variables as the selective
gradients related to local adaptation across the species range.
Unlike the climate variables the geographic coordinates showed
low linear association with the genetic data indicating the
influence of the spatial structure on the genetic variation of
barley. Previously, Liu (1997) also found that climate factors
accounted for 13% of the explained variation, whereas the
geographic position was considered less important for algae
colony thickness and colonization which are in agreement with
the present study. Similar outcome was reported byMcGaughran
et al. (2014) who suggested the association between geography
and genetic distance as an important determinant of genetic
structure beyond genetic drift in isolated population. Moreover,
comparing the results of both datasets revealed that accessions
collected from Tigray region contributed more than a unit
variance considering the contribution of the remaining regions
to the environmental variation.

Further partitioning of variance explained due to the
climate variables revealed altitude, total rainfall and rainfall
of the main growing season as the main contributors of
the detected genetic variation. Besides, the forward selection
process retained altitude twice (in both datasets) as the
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TABLE 2 | A summary of putative adaptive loci showing association with different climate variables identified using LFMM analysis.

SNP_ID Chr cM Zscore -log10 (p-value) Climatic variables

A B C D E F G H I J K L M

Hv_SNP57960 1H 7.22 4.26 4.68 *

Hv_SNP57963 1H 7.22 4.43 5.03 *

Hv_SNP9160 1H 42.71 5.55 7.53 * * *

Hv_SNP28572 1H 48.51 4.86 5.92 * *

Hv_SNP28218 1H 49.75 5.6 7.66 * *

Hv_SNP6094 1H 70.25 5.13 6.55 *

Hv_SNP53255 1H 103.82 4.06 4.31 *

Hv_SNP54198 1H 132.51 5.75 8.06 *

Hv_SNP3374 2H 18.8 4.2 4.58 *

Hv_SNP27845 2H 18.91 6.71 10.71 * *

Hv_SNP13837 2H 39.66 4.19 4.55 *

Hv_SNP4499 2H 55.56 5.57 7.59 * * * * * *

Hv_SNP55036 2H 92.21 5.21 6.72 *

Hv_SNP4131 2H 123.94 4.67 5.52 * * *

Hv_SNP25024 2H 138.6 4.32 4.8 *

Hv_SNP51311 3H 83.59 4.37 4.91 * *

Hv_SNP7771 4H 18.48 5.89 8.41 * *

Hv_SNP54437 4H 19.9 4.17 4.52 *

Hv_SNP15569 4H 35.13 5.96 8.6 *

Hv_SNP19635 4H 60.55 4.48 5.12 * *

Hv_SNP25404 4H 91.18 4.18 4.53 *

Hv_SNP5505 4H 105.49 4.68 5.55 * *

Hv_SNP34901 5H 13.77 4.68 5.54 *

Hv_SNP34783 5H 77.08 6.27 9.44 * *

Hv_SNP37305 5H 79.13 4.23 4.64 *

Hv_SNP30681 5H 80.35 4.06 4.31 *

Hv_SNP13299 5H 95.9 5.01 6.27 * *

Hv_SNP27374 5H 161.08 4.42 5.00 *

Hv_SNP64267 5H 164.72 5.88 8.39 *

Hv_SNP8419 5H 164.72 4.57 5.31 * *

Hv_SNP36036 5H 169.38 5.23 6.76 * * *

Hv_SNP65888 5H 169.38 6.14 9.09 * * *

Hv_SNP28364 6H 15.72 4.04 4.27 *

Hv_SNP23365 6H 52.2 5.44 7.28 *

Hv_SNP64219 6H 94.62 5.12 6.51 *

Hv_SNP8527 7H 12.75 4.33 4.82 *

Hv_SNP8936 7H 67.37 8.39 16.32 *

Hv_SNP29190 7H 85.98 4.06 4.31 *

Hv_SNP8273 7H 109.92 4.28 4.73 *

Total loci 9 10 10 8 7 5 1 1 2 3 1 2 3

Where: A, Altitude; B, Rf_Bega; C, Rf _Belg; D, Rf_Kiremt; E, Rf_annual; F, Mintemp_Bega; G, Mintemp_Belg; H, Mintemp_Kiremt; I, Mintemp_aver; J, Maxtemp_Bega; K, Maxtemp_Belg;

L, Maxtemp_Kiremt; M, Maxtemp_aver.

*Indicates that the particular SNP showed correlation with that specific climate variable. The underlined loci showed association with two climate variables whereas the underlined and

bold loci are associated with three or more climate variables.

first significant explanatory variable. This result indicated the
importance of altitude in affecting the existing genetic variation
in barley population. The importance of altitude in shaping
and determining the climate variables and thus the genetic
diversity in barley has been reported by Abebe et al. (2010)

and Demissie and Bjornstad (1996). Similarly, Pyhäjärvi et al.
(2013) controlled population structures using partial mantel
analysis and found a significant effect of altitude in teosinte,
the wild ancestor of maize. Besides, rainfall, which mostly
depends on altitude, is one of the determinant factor in
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FIGURE 6 | Allele frequency of putative adaptive loci correlated with altitude classes and Rainfall in Kiremt as detected by LFMM. The major and minor

alleles of putative adaptive loci Hv_SNP27845 showed frequency pattern along the altitude classes (A). The allele distribution depicting on the Ethiopian map (B) and

the rainfall pattern along the coordinates of Ethiopia displayed in scatter plot (C).

FIGURE 7 | A Bayesian based BayScan program were employed to

scan for the presence of putative outlier loci affected by selection. This

plot presents FST against log 10(q-value), which is the FDR analog of the

p-value. The line represents the threshold FDR = 0.05 and the red dots

indicate the outlier loci which are potentially affected by directional selection.

the genetic variation. Zhao et al. (2013) proposed annual
rainfall as a major factor behind the genetic divergence
and adaptation of Chinese wild rice (Oryza rufipogon).
Hence, the variance partitioning of the significant climate
variables emphasized the importance of altitude in shaping
the ecological diversity and evolutionary aspect of different
plants.

Climatic Adaptations
Natural selection plays a major role in shaping the available
genetic variation of a population and thereby determines local
adaptation (Kawecki and Ebert, 2004). It also changes the allele
frequency when individuals with the same fitness trait survive
and increase in number. In this study, we observed a similar
situation in allele distribution of the detected putative adaptive
loci in response to different climate variables. The association
of climate variables with SNP markers using Bayenv and LFMM
returned several significant loci in relation to all climate variables,
indicating that the variables were the important climate factors
that affect selection pressure. Most of the loci detected using
LFMM software were associated with rainfall variables followed
by altitude, indicating the importance of these variables in
determining local adaptation. In Bayenv analysis most loci
were correlated with temperature variables followed by altitude
and rainfall. Partial RDA analysis also indicated that altitude,
Rf_Kiremt and Rf_annual were the most important climate
variables; most of the variation originated from these variables.
De Kort et al. (2014) reported strong associations between outlier
loci and temperature using LFMM in the tree species Alnus
glutinosa. LFMM detected a locus (Hv_SNP27845) showing
correlation with altitude and rainfall variables which explained
most of the variation in partial RDA. The pattern of decreasing
frequency of the major alleles as a function of increasing altitude
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presumes the presence of directional selection, which leads to
local adaptation. The minor alleles were observed in highland
areas with high rainfall, indicating the importance of altitude
in determining other climate factors. The prevalence of the
major allele among the genotypes that were collected below 2500
m.a.s.l. in low rainfall areas was presumably due to local selection
(Figure 6A). In this case, because of directional selection, the
advantageous alleles increased in frequency relative to others and
eventually became fixed (Bose and Bartholomew, 2013). Altitude
affects phenology, the distribution and type of disease and the
prevalence of frost in different crops of Ethiopia. In the highlands,
barley matures quite late, and it takes as long as seven to 8
months to mature (Tanto and Demissie, 2001), whereas in the
lowlands and in the Belg season, barley matures early, within 3–
4 months (Mulatu and Grando, 2011). The special adaptation of
barley to highlands makes the crop the most valuable cereal for
the survival of the farmers living in the highlands as it is the
only crop cultivated across those regions (Lakew et al., 1997).
The highlands of Ethiopia are described as sunny during the day
and cold at night with occurrences of frost, particularly during
the Bega season (USDA, 2002). In general, altitude plays a major
role in the determination of morphological novelties of different
crops in Ethiopia (Engels, 1994; Abebe et al., 2010), and it affects
the ecological variables and, thus, local adaptation. Kiremt (main
rainy season) rains occur during June-September, accounting
for 50–80% of the annual rainfall over the Ethiopian regions.
The most severe droughts are usually related to a failure of the
Kiremt rainfall to meet Ethiopia’s agricultural water demands
(Korecha and Barnston, 2007). In general, directional selection
occurs when natural selection favors a single phenotype, and the
allele frequency thus shifts in one direction. The loci that were
identified as adaptive loci presumably underlie the phenotypic
variation that affect fitness in different environments (Nunes
et al., 2011).

Detection of candidate genes
Although genes and phenotypes are in a causal relationship,
dissecting the genetic components of a phenotype is not
simple. Through the advent of genome-wide DNA markers
and sequenced genomes, it has become feasible to uncover this
relationship precisely and dissect the hidden genetic regulations
in the expression of a phenotype at the gene level. In the
present study, we utilize genome-wide SNP markers to dissect
those footprints associated with barley adaptation to landscape
and climatic variables. The associated SNP markers loci were
then searched in the database for the putative genes. To this
end, we are proposing four putative candidate genes due to
their tight linkage with the associated SNP markers as well
as due to likelihood of their functional linkage with a given
climatic variable. For instance, the significant loci associated with
altitude and rainfall variables underlie putative sulfate and L-
lactate dehydrogenase genes. A number of studies suggested the
role of sulfate genes in nutrient transport for plant growth as
well as for environmental adaptation like drought and salinity
stress (Hawkesford and Buchner, 2001; Gallardo et al., 2014).
In Arabidopsis, lactate dehydrogenase genes are involved in

adaptation to hypoxic stress (reduced oxygen because of water
logging or higher altitudes) by switching plants from aerobic
respiration to anaerobic fermentation (Dolferus et al., 2008).
These results, seems to be in line with the present study where
we found a putative association of L-lactate dehydrogenase gene
with altitude and rainfall. Similarly, cation\H+ exchanger (CAX)
and universal stress protein (HvUSP1) appeared as candidates for
adaptation to higher temperature. Plants trigger the expression
of a specialized protein called the heat shock or stress protein
against climatic conditions such as higher temperature (Vierling,
1991; Parsell and Lindquist, 1993; Gupta et al., 2010). These
proteins are then involved in the maintenance of cell membrane
stability, capturing the reactive oxygen species (ROS), synthesis
of antioxidants, accumulation and osmoregulation of osmoticum
(Wahid et al., 2007). We believe that these data reveal a primary
insight into the identification of primary evolutionary candidate
genes mediating adaptation to important landscape and climatic
variables across Ethiopia. However, further experiments are
needed to confirm the precise role of these candidate genes in
the process of local adaptation in barley.

Taken together, the present study has successfully analyzed
the association between genetic markers and environmental
factors to determine their effect on the explainable genetic
variation. We identified climate and geographic variables as
important explanatory aspects of genetic variation followed by
altitude and rainfall as underlying cause of climatic variation.
Hence, the detected correlation between environmental variables
and genetic markers can help to understand the phenomenon
of natural selection, yet, conducting the common garden
experiment to verify the result will provide the strong evidence
for the underlying phenotypic traits. In general, this study has
successfully demonstrated how landscape genomics contribute
to uncover the genetic components (genes) and evolutionary
processes affecting adaptation. In conclusion, we assume that the
detected candidate loci were associated with local adaptation that
showed selective responses to important climatic variables.
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