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Multi-depth evolution
characteristics of soil moisture
over the Tibetan Plateau in the
past 70years using reanalysis
products

Yangxiaoyue Liu1,2* and Yaping Yang1,2

1State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographic
Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China, 2Jiangsu
Center for Collaborative Innovation in Geographical Information Resource Development and
Application, Nanjing, China

Soil moisture (SM) is a crucial component of the hydrological cycle. Both the

spatial–temporal distribution and the variation characteristics of SM are

effective indicators of regional land surface water resource homogeneity

and heterogeneity. With consideration of the crucial role of the Tibetan

Plateau (TP) in the hydrological process in Asia, this study investigated the

fluctuation of multi-depth soil moisture across the TP during 1950–2020 on a

monthly scale against the background of global warming by using

ERA5 reanalysis datasets. The correlation and potential causality between

soil moisture and associated driving factors were explored. Our research

revealed that the soil moisture across the TP shows a slight wetting trend at

0–100 cm depth for the past 70 years against the background of climate

warming and increasing precipitation. Additionally, the wetting region

(variation trend ≥ 0.005 m3/m3 per decade) had sufficient water

supplementation from precipitation and a mild soil temperature increase. By

comparison, there is a noteworthy warming tendency and falling precipitation

in the sparsely distributed drying region (variation trend ≤ −0.005 m3/m3 per

decade). In terms of vertical variation features, the temporal dynamic

fluctuation of soil moisture and soil temperature evidently decreases as the

depth increases, suggesting high sensitivity of the surface layer soil to

atmospheric conditions. Precipitation and snowmelt preliminarily proved to

be the dominant drivers causing spatial and temporal variations in soil moisture

(occupying over 70% of the TP region), and bidirectional causality (ranging

between 15.52% and 50.56%) was found between soil moisture and these two

parameters. In summary, this study explored the spatial–temporal fluctuation in

the evolutionary characteristics of SM, which is expected to advance our

understanding of soil moisture dynamics under the conditions of climate

change across the TP.
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1 Introduction

Soil moisture is an important form of surface water storage

and is widely recognized as an indispensable climate variable

across the globe (Dorigo and De Jeu, 2016; Gruber et al., 2019;

Deng et al., 2020a). The soil moisture layer is a pivotal area where

atmospheric water, surface water, groundwater, and vegetation

water are connected and exchanged (Koster et al., 2004; Swenson

et al., 2008; Chen et al., 2014). Soil moisture is also a critical

vehicle for storing and exchanging carbon, nitrogen, phosphorus,

and other nutrients, which could have far-reaching effects on the

growth of vegetation and microorganisms in ecosystems (Xu

et al., 2004; Flanagan and Johnson, 2005). The spatial–temporal

distribution of and variations in soil moisture directly affect

geochemical, climatic, ecological, and hydrological processes and

their interactions on the Earth’s surface (Verrot and Destouni,

2016; Dorigo et al., 2017). Thus, it is important to investigate how

soil moisture fluctuates both temporally and spatially across

different depths and what the potential climate drivers could be.

Because it is essential to acquire sufficient soil moisture

records before variation analysis, great efforts have been

devoted to the monitoring of soil moisture since the 1930s

(Robock et al., 2000). First, in situ measurements emerged as

an effective and efficient method to detect and record accurate

soil moisture levels at exact locations and depths (Dorigo et al.,

2011). Nevertheless, as the requirements gradually changed from

regional to large-scale observations, it was barely possible for

point-scale-based measurements to provide a plausible spatial-

continuous dataset.With the development of satellite technology,

remotely sensed soil moisture observations have brought

unprecedented opportunities for the availability of products

with global coverage (Attema et al., 1998; Njoku et al., 2003;

Bartalis et al., 2007; Spencer et al., 2010). Numerous satellite-

retrieved soil moisture products have been utilized in various

hydrological studies (Lakshmi et al., 2004; Seneviratne et al.,

2010; Dorigo et al., 2017). However, owing to the limited

penetration capacity of microwave signals and radio frequency

interference, widespread gap regions exist in remotely sensed soil

moisture retrievals, and microwave signals can merely depict the

surface (> 5 cm) soil water content (Wang and Qu, 2009; Bradley

et al., 2010). Comparatively speaking, the root-zone soil humidity

conditions are certainly equally important in indicating

agricultural drought levels, especially in analyzing the effects

of water stress on the growth and yield of crops. Therefore, it is

important to acquire multi-depth soil humidity information to

gain a comprehensive understanding of the integral state of

multi-depth soil moisture.

The accessibility of multi-depth soil moisture data is made

possible by the emergence of data assimilation algorithms. The

data assimilation approach integrates multi-source

heterogeneous data to drive land surface models to retrieve

long time-series surface parameter estimations. Moreover, it

simultaneously overcomes the limitations of spatial

representation of in situ measurements, improves the

restricted penetration depth of spaceborne microwave signals,

and realizes the multi-depth spatial–temporal seamless coverage

of soil moisture (Spennemann et al., 2015). Reanalysis data are

derived by using a state-of-the-art data assimilation system to

combine and optimally integrate various types of observation

data with short-term weather forecast products (Hersbach et al.,

2020). ERA5, the fifth generation of the European Centre for

Medium-Range Weather Forecasts reanalysis, continuously

provides soil moisture information for 0–289 cm depth and

numerous climate variables across the globe since 1950

(Mahto and Mishra, 2019). Great attention has been paid to

evaluation of the ERA5 soil moisture products since its inception.

Li et al. (2020) validated soil moisture data originating from five

reanalyses, namely the Japanese 55-year reanalysis (JRA-55)

(Kobayashi et al., 2015), the National Centers for

Environmental Prediction Climate Forecast System Reanalysis

(CFSR) (Ek et al., 2003), the Modern-Era Retrospective analysis

for Research and Applications version 2 (MERRA-2) (Gelaro

et al., 2017), ERA-Interim (Dee et al., 2011), and ERA5.

ERA5 showed better performance than the other four

retrievals, as indicated by a high correlation coefficient and

favorable annual cycles. Mahto and Mishra (2019) evaluated

the quality of ERA5 soil moisture data in India, and they found

that ERA5 can be either better than or comparable to other

products retrieved from JRA-55, CFSR, MERRA-2, and ERA-

Interim. Additionally, the applicability of ERA5 and ERA-

Interim in describing soil moisture conditions across the

Tibetan Plateau (TP) was acknowledged in previous studies

(Zeng et al., 2015; Cheng et al., 2019). Many other climate

variables of ERA5 (i.e., precipitation, temperature,

evaporation) were also thoroughly assessed and found to be

valuable for hydrological and climate change applications

(Olauson, 2018; Mahto and Mishra, 2019; Xin et al., 2021).

The TP, known as the “third pole” and the roof of the world,

is the highest plateau in the world, with an average altitude of

approximately 4,000–5,000 m (Yang et al., 2013). Given the

climate particularity and ecological fragility caused by its

unique terrain and location, the TP acts as an initiator and

regulator of climate variation in the Northern Hemisphere. The

climate evolution of the TP not only remarkably influences the

corresponding climate change in Asia but also has a

considerable impact on the Northern Hemisphere.

Additionally, the TP can reveal notable sensitivity,

advancement, and regulation of global climate change.

Climate warming accelerates global hydrological circulation

and strengthens the process of soil water evaporation (Li

et al., 2022). Soil moisture, a critical component of the water

cycle, is regarded as an effective indicator of climate change

(Deng et al., 2020b). It is of great significance to systematically

explore the evolutionary trend of soil moisture to promote the

understanding of surface water circulation characteristics in the

context of global warming. However, little is known about the
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FIGURE 1
(A) Elevation distribution of the TP. This dataset is acquired from the Shuttle Radar Topography Mission (SRTM). For more details about the
SRTM, readers are kindly referred to Farr et al. (2007). Moreover, the boundary of the TP is accessed from the National Tibetan Plateau Data Center,
China (http://data.tpdc.ac.cn/). (B) Land cover types of the TP in 2017. The land cover data is retrieved from the European Space Agency Climate
Change Initiatives Land Cover Project (https://www.esa-landcover-cci.org/). For more information about this dataset, readers are kindly
referred to Bontemps et al. (2013).
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trend of soil moisture across the TP, and previous studies have

mainly focused on the accuracy evaluation of multi-source

soil moisture products derived from in situ measurements

(Bai et al., 2017; Chen et al., 2017; Xie et al., 2017; Li et al.,

2018; Cheng et al., 2019; Xing et al., 2021).

In this study, the multi-depth soil moisture variation trend

across the TP was disclosed by using ERA5 products with the

long-term perspective of 1950–2020. Closely related climate

variables, including soil temperature, precipitation, snowmelt,

and evaporation, were used to investigate potential causal links

that may trigger variations in soil moisture. The main purpose of

this study was to clarify the spatial and temporal fluctuation rules

of multi-depth soil moisture and to investigate the dominant

climatic factors that trigger the evolution of soil moisture. This

FIGURE 2
Spatial (A–D) and temporal (E–H) boxplot distribution pattern of average soil moisture at the TP during 1950–2020.
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paper is organized as follows. Section 2 introduces the basic

properties of the TP, including location, terrain, climate, and

land cover. The ERA5 soil moisture and ancillary climate

variable datasets utilized in this study are also briefly

introduced. In addition, the employed spatiotemporal trend

analysis and causality investigation approaches are presented.

Section 3 describes the investigation results for

temporal–spatial soil moisture and soil temperature

variation trends across the TP, which reflect the

evolutionary characteristics of the synthetic climate regime

in the past 70 years. Moreover, the potential causal links

between soil moisture and climatic parameters are

investigated. In the final section, apart from the

abovementioned climate variables, we discuss the other

possible inherent mechanisms that may induce the

fluctuations in soil moisture and explore the uncertain

factors that may influence the results. Finally, conclusions

are drawn from this study to summarize the findings and

demonstrate future research directions.

2 Study region, data resources, and
methodology

2.1 Study region

As shown in Figure 1A, the TP is the highest plateau in the

world and is situated in Inner Asia (Gasse et al., 1991;Wang et al.,

2021). Specifically, the TP, with a gross area of approximately

2.5 × 106 km2, is located between 26°00′–39°47′ N (spanning

300–1,500 km from north to south) and 73°19′–104°47′ E

(spanning 2,800 km from east to west). The steep and

complex terrain fluctuates greatly, ranging from 84 to

8,848 m. Generally, the terrain is relatively high in the west

and low in the east. As presented in Figure 2B, the southeast

margin is dominated by a tropical humid/semi-humid climate,

and the remaining vast region contains semi-humid, semi-arid,

and arid zones. Correspondingly, the southeastern margin is

mainly covered by forests and humid soils. In comparison, alpine

meadows, alpine scrubs, and desert meadows dominate the

plateau climate region, along with relatively moderate soil

moisture content. Moreover, there is a vast area of desert in

the north of the TP, which is an important sensitive heat source

in the Earth system, accompanied by high albedo, small soil heat

capacity, and low water content.

2.2 Dataset

ERA5, the successor of ERA-Interim, provides a host of

atmospheric, land, and oceanic climate variables (Hersbach

et al., 2020). As a vital member of ERA5, ERA5-Land is

focused on the consistent evolution of land variables from

1950 onwards (Muñoz-Sabater et al., 2021). It continually

provides a description of past global climate features with

high precision and favorable spatiotemporal integrity by

utilizing the law of physics. These variables were designed and

generated to depict the characteristics of hydrology and energy

circulation quantifiably at the land surface from a long-term

perspective.

In this study, we used ERA5-Land monthly averaged data to

investigate the trend of soil moisture at the TP. As shown in

Table 1, both soil moisture and ancillary climatic variable

datasets were accessed from the Copernicus Climate Change

Service Climate Data Store (https://cds.climate.copernicus.eu/)

to systematically analyze the variation trends and possible

driving forces. In addition to gravity, the land surface

thermodynamic process originating from solar radiation can

be the most crucial driver for the soil water cycle (Li et al.,

2020); therefore, soil temperature estimation at a corresponding

depth is selected as an essential supplement to understand soil

moisture fluctuation tendencies. Precipitation is recognized as

the dominant replenishment source of soil water at the TP, where

there is barely any artificial interference, such as irrigation. Apart

from the widely acknowledged promotion of precipitation to soil

moisture content, non-negligible soil moisture–precipitation

feedback has been observed. Soil moisture can promote or

suppress precipitation based on different underlying surface

properties (Hohenegger et al., 2009; Tuttle and Salvucci, 2016;

Yang et al., 2018). Additionally, in the frozen season,

precipitation in the form of snow hardly nourishes the soil.

However, as the temperature rises, snowmelt is expected to

significantly boost the soil water content. Therefore, it is

assumed that using precipitation and snowmelt data together

would be more beneficial for exploring soil moisture variation

mechanisms than using only one of them. Evaporation records

the accumulated amount of water evaporated from the Earth’s

surface, which is tightly linked to soil water deficits (Martens et al.

, 2017). Specifically, for the ERA5 evaporation product, negative

values indicate evaporation, and positive values indicate

condensation.

2.3 Methodology

2.3.1 Anomaly calculation
With the consideration that this study is mainly dedicated to

investigating the long-term variation trend of soil moisture,

anomalies in the employed datasets were calculated to

simultaneously remove strong seasonality and explicitly

magnify fluctuation regularity. Thus, the anomaly of each

variable was calculated by deducting the multi-year average of

a corresponding month, as in Xie et al. (2019). The specific

equation is as follows:

Anomaly(i, j) � X(i, j) − 1
/n∑

n

i�1X(i, j) (1)
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where X(i, j) is the value of parameter X in month of i and the

year of j, and n is the total number of years.

2.3.2 Rolling mean calculation
Several abnormal peak and valley values occasionally

appeared in the anomaly results, which may be induced by

unexpected extreme weather events during certain monthly

scale periods. Because this study was focused on trend

analysis over several decades rather than short-period extreme

weather events, the rolling means of the soil moisture and the

other variables were calculated to allow clear observation of

temporal evolutionary tendencies. The rolling mean was

obtained by subtracting the moving average of the anterior

months (Zivot and Wang, 2003) as follows:

Rollingmean(t) � X(t − 11: t) (2)

where X(t − 11: t) is the moving average value of the variables

utilized in the period from a time of t − 121 to t. In this case, time

was calculated on a monthly basis.

2.3.3 Granger causality exploration
According to previous findings (Hohenegger et al., 2009;

Martens et al., 2017; Li et al., 2020), soil moisture has tight

bidirectional links to soil temperature, precipitation, snowmelt,

and evaporation. Thus, in addition to exploring the soil

moisture evolution law, it is crucial to demonstrate the

causality between the soil moisture and these closely related

variables, which could be beneficial for understanding the

inherent driving mechanism of the evolution phenomenon.

Moreover, it could be conducive to preliminarily determine

the feedback of the soil moisture to these variables across the

TP. The Granger causality, proposed by Nobel Economics

Laureate Clive W. J. Granger in 1969, is a simple but

effective statistical hypothesis test for determining whether

the time series of a certain variable is useful in forecasting

another one (Granger, 1969). Since its inception, Granger

causality analysis has been predominantly used in the field

of economics (Hiemstra and Jones, 1994; Dutta, 2001; Kónya,

2006). Recently, Granger causality analysis has become

increasingly popular in investigating the interactions of

Earth system processes, resulting in stable and reliable

findings (Jiang et al., 2015; Papagiannopoulou et al., 2017;

Runge et al., 2019). The equations for the Granger causality

test are as follows:

Xt � ∑
n

i�1aiXt−i +∑
n

i�1biYt−i + εt (3)
Yt � ∑

n

i�1ciYt−i +∑
n

i�1diXt−i + ηt (4)

where Xt and Yt are time series of two variables; n is the sample

capacity; ai, bi, ci, and di are regression coefficients; and εt and
ηt are white noise. Both the time-series interrelationship and

autocorrelation of the two target variables were tested by using

Granger causality analysis. In addition, an F-test was used to

check whether the Granger causality hypothesis was tenable

(usually set F ≤ 0.05 or 0.1). If the estimation of Yt can be

remarkably improved by taking Xt into consideration rather

than merely using past Yt values, it means that past values ofXt

have a significant effect on the current value of Yt, and vice

versa.

2.3.4 Spatial–temporal perspective analysis
Soil moisture dynamics results from the combined non-

linear effects of climate, soil properties, terrain, and

vegetation. In addition, changing climate and artificial

interference further exacerbate its uncertainty, randomness,

and unpredictability. Consequently, soil moisture patterns

exhibit a high degree of complexity. Therefore, it is

necessary to comprehensively and systematically investigate

the dynamics of soil moisture from the perspectives of time,

depth, latitude, and longitude. It is thought that

spatial–temporal perspective analysis could be helpful in

gaining a clear and synthetic outlook of soil moisture

TABLE 1 Basic properties of the employed soil moisture and ancillary climatic variable datasets.

Variable Unit Depth Temporal resolution Spatial resolution Time range

Soil moisture m3/m3 0–7 cm (layer 1) Monthly 0.1° × 0.1° 1950.01–2020.12

7–28 cm (layer 2)

Soil temperature °C 28–100 cm (layer 3)

100–289 cm (layer 4)

Precipitation mm —

Snowmelt mm —

Evaporation mm —
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dynamic patterns across the TP (Zhang et al., 2015). The

arithmetic mean of each pixel per month was calculated to

express the average spatial/temporal distribution pattern of

soil moisture. Similarly, the spatial/temporal variation trends

were presented by calculating the pixel/month-scale

rolling mean.

Additionally, a significance test with a 95% confidence level

was used throughout the study to ensure the reliability and

stability of our findings.

3 Results

3.1 Spatial–temporal perspective dynamic
pattern analysis

As shown in Figure 2, the dry region is mainly distributed

to the north and west of the TP. The northern drought area is

located in the Qaidam Basin and is predominantly occupied

by deserts. The western region is characterized by a severely

FIGURE 3
Spatial (A–D) and temporal (E–H) distribution pattern of average soil temperature at the TP during 1950–2020.
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cold continental alpine climate and sparse precipitation. The

soil moisture deficit was gradually alleviated when the depth

increased. Comparatively, the southern and eastern parts of

the TP remain relatively humid owing to the monsoon

climate. In terms of the temporal sequence, as shown in

the boxplot series (Mirzargar et al., 2014), soil moisture

displays a mild seasonal rhythm cycle. Moreover, it is

noteworthy that as the depth increases, the month for the

maximum value emergence is delayed from June to August

because it is not susceptible to surface atmospheric

conditions. Similarly, the soil temperature also exhibited a

delay. The corresponding soil temperature displayed evident

evolution characteristics of a time series and favorably

matched the climate cycle (Figures 3E–H). The spatial

distribution of soil temperature was in accordance with

climatic features. In general, temperature is a critical

indicator for characterizing the hydrothermal exchange

intensity of the underlying surface. Nevertheless, it is

difficult for temperature to play a decisive role in soil

water content. For example, the average soil temperature

in the north could reach 10–15°C and in the western area

could reach as low as −15 to −20°C, whereas the soil moisture

showed similar drought levels despite the large temperature

difference. In comparison, the soil maintains moderate

humidity on the southern side of the TP, where the annual

average temperature remains stable at 10–20°C.

FIGURE 4
(A–D) Spatial distribution of the soil moisture variation trend in different layers. The unit is m3/m3 per decade. A significance test is applied here
as a mask to filter out regions that do not attain 95% confidence level. (E–H) Corresponding value percent of (A–D). Pixel values greater than
0.005 m3/m3 per decade are considered as an increase (rendered in blue), whereas those less than −0.005 m3/m3 per decade are considered as a
decrease (rendered in orange); other values are regarded as stability (rendered in green).
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Figure 4 displays the spatial pattern of the soil moisture

evolution trend at increasing depths from January 1950 to

December 2020. Correspondingly, the evolution trend of the

soil temperature was also examined (Figure 5) for attribution

analysis. More than 80% of the TP shows stable soil moisture

conditions, which are mainly distributed in the central and

eastern regions. The proportion with a stable tendency was

observed to rise slowly as depth increased, implying the

insusceptibility of the deep soil layer. In addition, the

fluctuation degree of the soil moisture series becomes notably

mild from layers 1 to 4 (Figure 6), further illustrating the stability

of the deep soil layer. The wetting area, accounting for 5.33%–

12.93% as the soil depth decreases, is situated on the northwest

border, which belongs to the west side of the Kunlun Mountains,

with an average altitude of above 5,500 m. This region, with

glacier coverage exceeding 3,000 km2, is one of the largest glacier

areas in China (Yang et al., 1996). Glacial melt water is the source

of several major rivers, including the Yangtze, Yellow, and

Mekong Rivers. The drying region is sparsely distributed in

the southwest, and the degree of drying is alleviated from

layers 1 to 3. Overall, the soil moisture across the TP revealed

a slight wetting trend from 0 to 100 cm depth during the past

70 years. However, the 100–289 cm depth soil showed an

inapparent drying trend.

Under the background of global warming, the soil

temperature generally rises throughout the TP at different

FIGURE 5
(A–D) Spatial distribution of the soil temperature variation trend in different layers. The unit is °C per decade. A significance test is applied here as
a mask to filter out regions that do not attain 95% confidence level. (E–H) Corresponding value percent of (A–D). Pixel values greater than 0.1°C per
decade are considered significant as an increase (rendered in orange), whereas those less than 0°C per decade are considered as a decrease
(rendered in blue); other values are regarded as a slight increase (rendered in green).
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depths. The warming trend appears in more than 95% of the

whole region, among which nearly half displays a significant

increase of greater than 0.1°C per decade. The degree of

fluctuation displayed a similar weakening trend with

increasing soil depth (Figure 7). In particular, it is observed

that the northwest border of the TP, namely the Karakoram,

experiences a steady cooling process, which is probably induced

by the declining average temperature in summer (Cogley, 2011;

Gardelle et al., 2012; Azam et al., 2018). This unexpected

phenomenon reflects the low sensitivity of the Karakoram to

climate change. Because the overall soil moisture shows a stable

or even wetting trend under warming conditions, there must be

considerable water replenishment to effectively nourish soil

layers. Therefore, it is meaningful that we go a step further

and learn the evolution characteristics of the soil-moisture-

related climate parameters in the significantly drying and

wetting regions, respectively.

3.2 Time-series analysis at wetting and
drying regions

The features of temporal dynamics in regions with evident

soil moisture increasing/decreasing tendencies were investigated

to further advance our understanding of the variation

mechanism. Water stress resulting from a soil moisture deficit

directly affects vegetation growth and crop yield. However,

excessive soil water can cause hypoxia, which can trigger root

FIGURE 6
The temporal anomaly trend of soil moisture at increasing depth as presented by different layers (A–D) during 1950–2020 across the TP.
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rot or even death. The wetting (pixel trend greater than 0.005 m3/

m3 per decade) and drying (pixel trend less than −0.005 m3/m3

per decade) regions were extracted and are plotted in Figures 8, 9,

respectively, for analysis.

Similar to the overall pattern in the vertical dimension, both

wetting and drying regions expressed gradually attenuated

variation levels as the depth increased. However, in terms of

soil temperature, the weakened variation trend in the vertical

dimension was relatively imperceptible. It can be easily

observed that the surface layer soil moisture (Figures 8A,

9A) and precipitation (Figures 8C, 9C) express homologous

temporal dynamics, suggesting that the predominant driving

force of precipitation is the variation in soil moisture. In

comparison, snowmelt, although originating from frozen

precipitation, does not reveal dynamics analogous to

precipitation.

It can be observed in Figure 8 that, accompanied by rising

precipitation and snowmelt, the vertical soil moisture presents a

decreasing wetting trend (from 0.0092 m3/m3 per decade to

0.004 m3/m3 per decade) as the depth increases. The

decreasing wetting trend could provide indirect evidence to

suggest that the supplied water is from the atmosphere and

falls on the Earth’s surface. It then migrates down through the

soil pores layer by layer to recharge the water content of each soil

layer under the combined effects of the soil molecular forces,

gravity, and capillary forces with some conduction loss (Sokol

et al., 2009). In terms of the drying region, as shown in Figure 9,

there appears to be a significant heating up trend of

FIGURE 7
The temporal anomaly trend of soil temperature at increasing depth as presented by different layers (A–D) during 1950–2020 across the TP.
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approximately 0.12°C per decade. Furthermore, precipitation and

snowmelt displayed an almost identical declining trend

of −0.017 mm per decade. Therefore, the soil becomes dry

because of the deficiency in water nourishment and rising

temperatures.

3.3 Causality investigation

Given the seemingly related temporal evolution series among

soil moisture and climatic parameters across the TP, it is

imperative to further explore the potential causality links,

which would be of great significance in advancing our

understanding of soil moisture variation mechanisms. First,

density scatterplots were drawn to express the distribution

correlation features across the TP in the past decades in a

convenient way. As shown in Figure 10, regardless of

increasing depth, the different layers of soil moisture

responded consistently to climatic variables. Surprisingly, it

appears that there is little correlation between temperature

and soil moisture, implying that temperature could hardly be

the immediate driving force in triggering soil moisture change. In

terms of water supplementation, both precipitation and

snowmelt contributed remarkably to the promotion of soil

moisture. Furthermore, according to the density distribution,

there appears to be a threshold of approximately 0.35–0.40 m3/

m3, and the steadily increasing precipitation or snowmelt barely

enriches the content of soil water when it attains this threshold.

Moreover, although there is an obvious positive correlation

between evaporation and soil moisture, the fluctuation in

evaporation hardly has a material impact on soil moisture

when the threshold is met. This threshold is called the

saturated water content, which refers to the water content

when both capillary and non-capillary pores are filled with

water, and it represents the maximum water holding capacity

of the soil (Vauclin et al., 1979; Schmugge et al., 1980).

Additionally, the saturated moisture presents a visible vertical

distribution characteristic of increasing trend from 0.35 to

0.40 m3/m3 as the soil depth increases from 0 to 289 cm.

Apart from intuitive scatter correlation analysis, Granger

analysis was employed to detect potential causality links between

the soil moisture and climatic variables. As indicated in Figures

11A–D, there is an inconspicuous interaction between the soil

moisture and temperature, as demonstrated by the extensively

FIGURE 8
Time series of the evolutionary anomaly trends of soil moisture (A,D,G,J), soil temperature (B,E,H,K), precipitation (C), snowmelt (F), and
evaporation (I) at the wetting region with confidence ranges and regression lines.
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distributed regions across the TP lacking a significant causal

relationship. In addition, areas that are thought to have a causal

link change unreasonably among different layers. However, it

should be noted that the proportion of soil temperature

recognized as the unidirectional cause of soil moisture

experiences a noticeable increase from 15.68% to 44.80% as

the depth gradually increases. This phenomenon signifies a

more pronounced influence of temperature on the variation in

soil moisture than on the relative surface moisture. Previous

research has discovered the effectiveness of increasing the soil

moisture in shrinking the soil temperature gap between daytime

and nighttime, along with increasing heat storage capacity (Al-

Kayssi et al., 1990). Nevertheless, it seems that the soil moisture

had very limited effect on the soil temperature on a monthly

scale, regardless of depth.

In terms of precipitation, as shown in Figures 11E–H,

unidirectional causality relationships prevalently exist at the

TP among all layers, proving the significant promotion effect

of precipitation on soil moisture. Additionally, mutual

correlations were observed across different layers despite a

certain degree of fluctuation, providing substantial evidence

for the feedback of soil moisture to precipitation on a

monthly scale. This feedback is mainly expressed by the

0–100 cm depth soil moisture and becomes weak for the

fourth layer at 100–289 cm depth. Owing to the temperature

features of the dominant plateau climate across the TP, there

could be a lengthy freezing season throughout the year.

Precipitation in the form of snow barely nourished the soil

when the temperature remained below freezing point

throughout the day. However, snow is a non-ignorable water

supplement that has great potential for nourishing the soil. Few

studies have systematically explored its positive effect on soil

moisture; thus, preliminarily causality analysis is necessary for

disclosing the probable correlation. Snowmelt, derived from the

combined action of accumulated snow and the temperature

climbing above freezing point, is thought to be effective in

elevating soil moisture. Figures 11I–L explicitly show that

snowmelt plays an increasingly vital role in nourishing the

soil as the depth increases. Snowmelt is recognized to have a

statistically significant effect on the current value of soil moisture

and is thought to be the Granger cause of soil moisture.

Accordingly, the significant proportion, including both the

yellow and red regions, consistently increased from 70.02% to

84.80% as the soil depth increased. Evaporation, which is a

FIGURE 9
Time series of the anomaly evolutionary trends of soil moisture (A,D,G,J), soil temperature (B,I,H,K), precipitation (C), snowmelt (F), and
evaporation (I) at the drying region with confidence ranges and regression lines.
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crucial method of soil water loss, is found to have bidirectional

causality relationships with soil moisture across different layers,

indicating tight mutual interaction, which is in accordance with

previous studies (Krakauer et al., 2010; Vargas Zeppetello et al.,

2019). The bidirectional causality gradually turns to

unidirectional causality as the depth increases, signifying that

evaporation is capable of affecting soil moisture regardless of

depth, whereas the influence of soil moisture on evaporation

decreases with the deepening of the soil layer from 0 to 289 cm.

4 Discussion

Soil moisture, as a fundamental surface hydrological variable,

is both an active participant and sensitive responder in various

hydrological processes (Dobriyal et al., 2012; Peng et al., 2017;

Deng et al., 2020a). The distribution and dynamics of soil

moisture can be an effective indicator of regional climate

evolution characteristics (Seneviratne et al., 2010; Zhang et al.,

2019; Deng et al., 2020b). The TP plays a crucial role in climate

change in the Northern Hemisphere. Exploring the variability

features of soil moisture across the TP is important to advancing

our understanding of climate change. Thus, this study

systematically and comprehensively investigated the variation

trend of the soil moisture across the TP from a four-dimensional

perspective (time, longitude, latitude, and depth) on a monthly

scale during 1950–2020. The soil moisture and related climate

variable information was retrieved from the ERA5-Land

products, which have been widely evaluated and applied since

inception (Hersbach et al., 2020; Muñoz-Sabater et al., 2021; Wu

et al., 2021; Xu et al., 2022).

4.1 Driving mechanism of soil moisture
variability

Our investigation revealed that the spatial–temporal series of the

soil moisture remained roughly stable in the context of a prevalent

FIGURE 10
Scatter density map between soil temperature, precipitation, snowmelt, evaporation, and soil moisture in layer 1 (A,E,I,M), layer 2 (B,F,J,N), layer
3 (C,G,K,O), and layer 4 (D,H,L,P).
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warming trend, implying sufficient water supplementation to

consistently nourish the soil. Previous findings show a positive

correlation between the trends of soil moisture and precipitation

across the TP, which means that the wetting of the soil is mainly

caused by increasing precipitation. Deng et al. (2020b) investigated

the responses of soil moisture to regional climate change over three

river source regions at the TP. They discovered a significant positive

correlation between the soil moisture and precipitation inmost case-

study regions. Liu et al. (2013) analyzed the spatial distribution and

dynamic variation of remotely sensed surface soil moisture across

the TP and found a favorable correlation between the

spatial–temporal evolution pattern of the soil moisture and

precipitation. In addition, the fluctuation patterns of both

moisture and temperature obviously declined as the soil depth

increased, demonstrating the insensitivity of deep-layer soil to

momentary atmospheric dynamics. Increased soil depth resulted

in lower variability, which is in accordance with the findings of

previous studies on the characteristics of surface and root-zone soil.

Through a case study in France, Albergel et al. (2008) disclosed that

the soil water indices derived from the surface layer agreed well with

those from the root-zone layer. Paris Anguela et al. (2008)

investigated the dynamics of surface and root-zone soil moisture

in France and shed light on the high variability of surface soil

moisture resulting from atmospheric conditions and the stability of

root-zone moisture. Meng et al. (2022) also discovered decreasing

interannual fluctuations in deep-layer soil moisture by assessing the

spatiotemporal variability of soil moisture across the Mongolian

Plateau from 1982 to 2019.

Through spatial statistical distribution, it was observed that the

significantly wetted regionwasmainly concentrated at the northwest

border, whereas the drying regionwas sparsely distributed across the

TP. It was observed that the wetting region was accompanied by a

notable increase in precipitation, snowmelt, temperature, and

evaporation. The drying region is characterized by evident

warming, as well as slightly reduced precipitation, snowmelt, and

evaporation. Moreover, we noticed that the wetting region belongs

to the Karakoram, where the glacier experiences a slight mass gain

and the temperature is steadily cooling (Cogley, 2011; Gardelle et al.,

2012; Azam et al., 2018). According to Pascolini-Campbell et al.

(2021), global land evapotranspiration increased by 10% during

2003–2019, mainly driven by increasing temperatures, and

precipitation was increasingly partitioned into evapotranspiration

rather than runoff. Jung et al. (2010) suggested that soil moisture

limitation is the primary driver that restricts the rate of land

FIGURE 11
Spatial distribution of Granger causality between soil temperature, precipitation, snowmelt, evaporation, and soil moisture in layer 1 (A,E,I,M),
layer 2 (B,F,J,N), layer 3 (C,G,K,O), and layer 4 (D,H,L,P). The red areas indicate bidirectional causality relationships between the soil moisture and
related climate parameters; yellow indicates that the related climate parameters are the unidirectional cause of the soil moisture; green indicates that
the soil moisture is the unidirectional cause of the related climate parameters. Areas without significant causal links are shown in blue.
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evapotranspiration. Deng et al. (2020a) analyzed the variation trend

of global surface soil moisture from 1979 to 2017. Temperature and

precipitation are the two predominant factors that lead to variation

in the soil moisture across the TP. Additionally, a reasonably good

agreement between the surface soil moisture and precipitation has

been observed in tropical and temperate climate zones (Wagner

et al., 2003). However, Dorigo et al. (2012) revealed that even though

precipitation is the main driver of variations in soil moisture, its

impact could be quite different owing to the combined influences of

evaporation, soil type, irradiation, vegetation, and topography. In

addition to land climate parameters, the sea can also transmit a far-

reaching influence on soil moisture. Sheffield and Wood (2008)

demonstrated that the leading modes of soil moisture variability are

closely associated with sea surface temperatures.

The causality between multi-layer soil moisture and

climate variables was investigated through correlation and

Granger analysis. Instead of soil temperature, precipitation

and snowmelt have been proven to be the main drivers in the

variation trend of soil moisture, and the soil moisture also

provides notable feedback to these supplements. Under the

global warming scenario, precipitation across the TP

continuously increases and is driven by the South Asian

monsoon (Wang et al., 2021). A previous study illustrated

the predominant positive feedback of the surface soil moisture

to precipitation and the non-negligible negative feedback in

wet and dry regions across the globe (Yang et al., 2018).

According to an investigation of soil moisture–precipitation

feedback across the United States, positive feedback generally

appears in arid regions, whereas relatively humid regions tend

to display negative feedback (Tuttle and Salvucci, 2016). In

addition to the significant differences resulting from different

case-study areas, feedback also varies in terms of different

resolutions. The 25-km grid Consortium for Small-Scale

Modeling Model in Climate Mode (CCLM) simulations

basically maintain strong positive soil

moisture–precipitation feedback, whereas the 2.2-km

resolution expresses dominantly negative feedback over the

alpine regions (Hohenegger et al., 2009). In general, the

specific feedback of soil moisture to precipitation varies

unpredictably based on hydrothermal conditions, regions,

and scales. Additionally, through Granger analysis, we

found that, although the feedback of soil moisture to

evaporation gradually decreased, the impact of evaporation

on soil moisture continuously increased as the depth

increased. The soil moisture interacts with the atmosphere

primarily through dynamic surface water and energy balances

(Delworth and Manabe, 1988). It is widely acknowledged that

evaporation is limited by the available soil moisture in dry

regions and the temperature in humid regions (Vargas

Zeppetello et al., 2019). The mutual feedback mechanism

between evaporation and multi-layer soil moisture has been

used to estimate global land evaporation and root-zone soil

moisture (Martens et al., 2017).

4.2 Uncertainty factors

Apart from the abovementioned factors, surface hydrological

evolution phenomena such as glacier melt, permafrost thaw, and

lake expansion, induced by a warming climate, could all boost the

increase in soil water content. Many other factors (i.e., soil

texture, groundwater depth, and vegetation) could also affect

the spatial and temporal distribution patterns of the soil

moisture. This study is expected to advance the understanding

of the effect of climate change across the TP during

1950–2020 from the perspective of soil moisture. Although we

obtained some significant discoveries through the investigation,

it is necessary to discuss the possible existence of uncertainty in

order to maintain rigor.

Notably, human activities could play a non-negligible role in

triggering variations in soil moisture. The ever-increasing human

water withdrawal significantly causes stress on the sustainable

water resource supply, which potentially affects the pattern of soil

moisture. The population density of the TP is quite low because

the plateau climate is not suitable for human living. However, it is

still critical to quantitatively explore the influence of human

water consumption on the soil moisture variability across the TP

in future studies.

The analysis results were mainly derived by using ERA5-

Land products, which could inevitably have both spatially and

temporally varied biases in terms of the complex land surface

properties. Numerous studies have evaluated the accuracy of

ERA5-Land products and demonstrated their good performance

in fitting the dynamics of ground observations (Li et al., 2020;

Muñoz-Sabater et al., 2021; Xu et al., 2022). However, errors

occasionally occur in plateau mountain climate zones.

Additionally, because the multi-depth soil moisture and

climatic parameters used in this study are all from ERA5-

Land products, inherent uniformity inevitably exists among

these datasets. Future work with diverse data sources that are

independent of each other is needed to investigate the correlation

between soil moisture and climatic factors with more objectivity.

As a classical measurement method, the Granger causality

test has been widely accepted and used in Earth system science

studies. However, this method may not be sufficiently rigorous to

define a temporally related phenomenon as a causality.

Therefore, this study merely conducted a causality analysis to

attempt to explain the reason for the variations in soil moisture.

5 Conclusion

In summary, this study systematically and comprehensively

investigated the evolutionary characteristics of soil moisture from a

four-dimensional (time, longitude, latitude, and depth) perspective

across the TP during 1950–2020. It was found that, based on the

interaction of climate warming and increasing precipitation, soil

moisture across the TP had a slight wetting trend at a depth of
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0–100 cmover the past 70 years.Moreover, there is sufficient water

supply from precipitation and a mild soil temperature increase in

the wetting region (variation trend greater than 0.005 m3/m3 per

decade). In comparison, the drying region (variation trend of less

than −0.005 m3/m3 per decade) is accompanied by a noteworthy

warming tendency and falling precipitation. In terms of vertical

variation features, the temporal dynamic fluctuation of the soil

moisture evidently decreases as the depth increases, suggesting

high sensitivity of near-surface-layer soil moisture to atmospheric

conditions. Through correlation and Granger causality analysis,

precipitation and snowmelt were preliminarily proved to be the

dominant drivers causing the spatial and temporal variations in the

soil moisture. Bidirectional causality relationships were

found between soil moisture and these two parameters.

Evaporation changes then occurred owing to the joint efforts of

rising temperature and water supplementation. This study

explored the spatial–temporal fluctuation of the evolutionary

characteristics of soil moisture, which is expected to boost

our understanding of soil moisture dynamics under the

conditions of climate change across the TP. With consideration

of the intrinsic inhomogeneity of soil moisture, more work is

needed to further clarify the mechanism underlying soil moisture

variations.
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Satellite observations reveal
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Knowledge regarding the soil erosion change patterns in Northeast Inner

Mongolia (NIM) is essential for ecological security and sustainable

development. Multisource satellite remote sensing with auxiliary data,

including meteorology, land use, vegetation coverage, and digital elevation,

was collected to establish a distributed soil erosion model to quantify the soil

erosion intensity in Northeast Inner Mongolia. The results showed that soil

erosion in Northeast Inner Mongolia, China, decreased by 100,654 km2 from

1978 to 2018. The area change rates of themild,moderate, strong, intensive and

severe soil erosion intensities were −48.91%, −41.41%, 32.63%, −91.15%,

and −91.14%, respectively. The decrease in soil erosion was mainly located in

the Hulunbuir and Tongliao regions. Our findings from satellite observations

provide information about the soil erosion intensity and spatial distribution

required for policy-making and the management of soil erosion prevention in

Northeast Inner Mongolia.

KEYWORDS

soil erosion, long time series, remote sensing, change pattern, northeast inner
Mongolia

Introduction

Soil erosion leads to land degradation, sedimentation and ecological deterioration,

which inevitably threaten ecological security and food production (Borrelli et al., 2021;

Lyu et al., 2021). With the impact of climate change and human activities, soil erosion has

become a widespread environmental problem (Li et al., 2013; Liu et al., 2020). Long-term

series soil erosion investigations are helpful for improving our scientific understanding of

the evolution pattern of soil erosion, objectively evaluating the control effects of soil and

water conservation measures and promoting the sustainable development of the natural-

economic-environment (Duan et al., 2012; Jiang et al., 2016; Lyu et al., 2021; Xie et al.,

2022).
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Currently, remote sensing technology is a unique means used

to investigate long time series dynamic changes in soil erosion at

the regional scale (Zhou et al., 2016; Alexakis et al., 2019; Long

et al., 2019; Wang and Zhao, 2020). Various soil erosion

parameters, including digital elevation models, vegetation

cover and land use, can be extracted from multisource satellite

imagery to calculate the soil erosion intensity using a soil erosion

model (Jiang et al., 2016; Xiao et al., 2021; Lin and Zhao, 2022).

(Liu et al., 2020) completed the national soil erosion survey of

China in 2011 and employed a multistage, unequal probability,

systematic area sampling method. Based on a geographic

information system and remote sensing approach, (Jiang

et al., 2016), applied the revised wind erosion equation

(RWEQ) model to simulate the wind erosion intensity of

Inner Mongolia between 2001 and 2010. (Zhou et al., 2016).

further investigated the dynamic monitoring of soil wind erosion

in Inner Mongolia, China, during 1985–2011 at a 1-km scale.

Since the Landsat series satellites can be extended from 1972 to

the present day, the information required for soil erosion models,

such as land cover and vegetation cover, can be obtained from

Landsat images (El Jazouli et al., 2019).

The soil erosion in Northeast Inner Mongolia (NIM), an

important grain production base with black soil in China, was

very severe in the last century and has been effectively curbed

through ecological restoration by afforestation (Lyu et al., 2021).

However, comprehensive exploration based on longer time series

soil erosion change patterns in Northeast Inner Mongolia at a 30-

m spatial resolution is still lacking. The motivation of this study

was to determine the soil erosion dynamic change patterns in

Northeast Inner Mongolia over the past four decades. To achieve

this goal, two issues were addressed through the following

actions: 1) multisource satellite imageries at five key time

nodes (1978, 1985, 1995, 2005, and 2018) with the distributed

model of soil erosion were employed to calculate the soil erosion

intensity; 2) the dynamic patterns of soil erosion intensity were

determined, and the driving factors of the changing patterns were

explored. The main contribution of this paper is that it presents

new knowledge regarding soil erosion change in Northeast Inner

Mongolia, China.

Study area

Northeast Inner Mongolia is situated in Northeast China

and includes 30 banners (counties, cities, districts) in four

leagues (cities) of Hulunbuir, Hinggan League, Tongliao and

Chifeng, with a total land area of 387,488 km2. The location of

the study area is shown in Figure 1A, and it is one of the three

largest black soil belts in the world, namely, the northeast

black soil area. The study area involves the Erguna River, the

Nenjiang River and the Liaohe River, which belong to the cold

temperate zone and the mid-temperate zone continental

climate zone, with an annual precipitation of

242.5–566.9 mm. The soil erosion type is mainly wind

erosion with intermittent water erosion and freeze-thaw

erosion in the north.

FIGURE 1
The location of the study area. (A) The boundary of Northeast Inner Mongolia. (B,C) Field survey photos after soil erosion control.
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Due to the coupling of its unique climate and soil conditions

with highly intensive human activities, soil erosion, especially

wind erosion, has become a major threat to food security and

healthy living. Over the past decades, afforestation has had an

important effect on the control of soil erosion in Northeast Inner

Mongolia, and vegetation cover has been successfully restored in

desert (Figure 1B) and grassland areas (Figure 1C). Therefore, the

use of various satellite remote sensing can better explain the

evolution of soil erosion in Northeast Inner Mongolia.

Methods

According to the Regional Soil Erosion Dynamic Monitoring

Technology Regulation (RSEDMTR), the technical flow of the

soil erosion model was revised (Supplementary Figure S1).

Considering the lack of long time series freeze–thaw

observations in the study area, the soil erosion types were

defined as wind erosion and water erosion. The soil erosion

intensity was calculated and analyzed using the following three

steps:

In the first step, to overcome the challenge of the spatial and

temporal inconsistencies of multisource remote sensing and

monitoring station data, the land use and land cover (LULC),

vegetation coverage (VC), meteorological data and topographical

data were collected from existing remote sensing products and

station data, which are summarized in Supplementary Table S1.

The LULC data were acquired from China’s Land-Use/Cover

Datasets (CLUDs) (Liu et al., 2002; Liu et al., 2014). The CLUD

dataset is a national-scale multiperiod land use/land cover

thematic database constructed by manual visual interpretation

using Landsat remote sensing imagery from the 1970s to 2020.

The data were classified into six classes and 25 subclasses of land

use with a mapping accuracy over 91%. Moderate Resolution

Imaging Spectroradiometer (MODIS) normalized difference

vegetation index (NDVI) products were from 2000 to

2018 with 250 m, and Global Inventory Monitoring and

Modeling System (GIMMS) NDVI products are from 1981 to

2018 with 8 km. To generate the long time series vegetation

coverage (VC) data, the spatiotemporal fusion algorithm was

used to produce the normalized difference vegetation index

(NDVI) from 1981 to 2018 with 250 m based MODIS NDVI

and GIMMS NDVI (Guo et al., 2020). The slope and slope length

of the terrain were obtained from digital elevation model (DEM)

data with 30 m, which were acquired from the United States

Geological Survey (USGS). The rainfall and wind speed of site

observations acquired from the China Meteorological

Administration (CMA) were converted into raster data by

Kriging interpolation. The LULC, VC, meteorological data

and topographical data were preprocessed at a 30 m spatial

resolution.

In the second step, based on the Regional Soil Erosion

Dynamic Monitoring Technology Regulation (RSEDMTR), the

slope, slope length, vegetation coverage and rainfall were used to

calculate the water erosion modulus by referring to the Chinese

Soil Loss Equation (CSLE) (Liu et al., 2020; Liu and Liu, 2020).

The land use, wind speed and vegetation coverage were employed

to calculate the wind erosion modulus. According to the soil

erosion classification and grading standards (Supplementary

Tables S2, S3), the water and wind erosion moduli were

reclassified into six intensities (slight, mild, moderate, strong,

intensive and severe). The soil erosion intensity (S) for each pixel

was calculated using the following formula:

S � Max(Swater , Swind)
where Swater represents the intensity of water erosion and Swind
represents the intensity of wind erosion. If Swater � Swind, then the

erosion type of the pixel is wind erosion.

In the third step, based on the soil erosion intensity, the

spatial, temporal and intensity change patterns in

Northeast Inner Mongolia from 1978 to 2018 were

analyzed, and the driving factors of the change patterns

were discussed.

Results

Spatial patterns of soil erosion dynamic
change

Based on the flow of soil erosion dynamic monitoring,

the results of the intensity distribution of water soil erosion

and wind soil erosion in Northeast Inner Mongolia from

1978 to 2018 are shown in Figure 2. In terms of the

distribution pattern of soil erosion in Northeast Inner

Mongolia, the dominant soil erosion type in the study

area was wind erosion, and soil erosion was located in

western Hulunbuir, southern Hinggan League, Tongliao,

and Chifeng. The east-central region of Hulunbuir is

Greater Khingan, an important forestry base in China,

with high altitudes and high forest cover. Thus, the

intensity of soil erosion calculated by our method is slight

in Greater Khingan. Over the past 4 decades, the wind

erosion area showed a remarkable decline in the

Hulunbuir and Tongliao regions, while the water erosion

area remained stable. From the change area of soil erosion

decline, it can be seen that wind erosion declined sharply

from 2005 to 2018, which was related to afforestation

ecological restoration. The intensity of soil erosion in

Northeast Inner Mongolia has changed significantly over

the past 40 years. The remarkable intensity change in soil

erosion over the past four decades occurred in the shift from

mild soil erosion to slight erosion; the area of high-intensity

soil erosion has decreased significantly, especially in the

farmland areas of Chifeng and Tongliao, which suggests

that windbreak forests constructed around farmland
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effectively curb the migration of farmland soil due to wind

erosion.

Temporal patterns of soil erosion dynamic
monitoring

The area changes in soil erosion in Northeast Inner

Mongolia from 1978 to 2018 are shown in Figure 3. The soil

erosion in Northeast Inner Mongolia has decreased remarkably

over the past four decades. In 1978, the area of soil erosion was

203,538 km2, while in 2018, the area of soil erosion was

102,884 km2, a decrease of 100,654 km2 over the four

decades. In the process of decreasing the soil erosion area,

the wind erosion area decreased most significantly, with an area

of 100,517 km2.

According to the Inner Mongolia soil erosion census, the

areas of soil erosion in 1995 and 2018 were 143,620 km2 and

104,564 km2, respectively. Compared with the area calculated in

this study, the relative errors were −3.52 and 1.63%, respectively,

which indicates that the results calculated by this method are

more credible.

Based on the soil erosion classification and grading

standards, the mild, moderate, strong, intensive and severe

intensities were categorized as soil erosion. The intensity area

and change in soil erosion in different periods are summarized in

Supplementary Table S3. From 1978 to 2018, mild soil erosion

accounted for the largest proportion in each period, and the

change rate of mild soil erosion was −48.91%. Moreover, the area

of intensive and severe soil erosion decreased by more than 91%,

followed by the area of mild and moderate soil erosion, while the

area of strong soil erosion increased by 268 km2. The results

showed that the rate of decrease of high-intensity soil erosion was

sharp, and the decrease in the area of low-intensity soil erosion

was large, which suggested that the high-intensity soil erosion

had been converted to low-intensity soil erosion. Thus, soil and

water conservation measures, such as restoring vegetation,

controlling slope (channel) erosion and preventing grassland

degradation, have performed well over the past four decades.

Furthermore, the area changes in water erosion intensity and

wind erosion intensity over the past four decades are shown in

Figure 4 Mild and moderate erosion were the main types of water

erosion, with the area of mild erosion increasing by 28.47% and the

area of moderate erosion decreasing by 32.57%. Regarding wind

FIGURE 2
Soil erosion spatial pattern dynamic change in Northeast Inner Mongolia. (A) 1978, (B) 1985, (C) 1995, (D) 2005, (E) 2018.
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erosion, mild erosion accounted for the most intensity, and the

area of decreasing mild erosion was 93,704 km2. Moreover, the

areas of moderate, intensive and severe wind erosion decreased

by 68.07, 91.73 and 91.22%, respectively. Thus, the decline in

low-intensity wind erosion contributed to regional soil erosion

improvement.

Discussion

Long time series of soil erosion survey data are important for

the assessment of the effectiveness of soil erosion management

(Liu et al., 2020). Although long time series and high-resolution

remote sensing data provide new opportunities to conduct soil

erosion assessments, there are also some challenges, such as

remote sensing data consistency and seasonal differences,

which can lead to uncertainty in soil erosion assessments at

the regional scale. Compared with previous studies (Wang et al.,

2018; Zhang et al., 2018), this study collected various satellite

remote sensing data and products and adopted data processing

methods, such as vegetation coverage data generated using a

spatiotemporal fusion algorithm, LULC data with a consistent

classification system, and the soil erosion calculations referring to

the Regional Soil Erosion Dynamic Monitoring Technology

Regulation (RSEDMTR), to reduce the uncertainty of the data

on the results. Compared to the Inner Mongolia soil erosion

census, the relative error in the area of soil erosion calculated

was −3.52 and 1.63% in 1995 and 2018, respectively, which

indicates that the results of the soil erosion calculations are

scientifically reliable. Moreover, recent studies have shown

that wind erosion in Inner Mongolia has declined

significantly, which is generally consistent with the findings of

this study (Zhang et al., 2018).

Land use, meteorological factors, and vegetation cover are the

key drivers of soil erosion pattern change (Zhu et al., 2021). In the

past four decades, the slower wind speeds (Fang et al., 2022) and

increased vegetation cover (Zhang et al., 2018) have collectively

led to a decrease in wind erosion area. Although agricultural

FIGURE 3
(A) Soil erosion area and validation in Northeast Inner Mongolia from 1978 to 2018. The area change of water erosion (B) and wind erosion (C) in
Northeast Inner Mongolia from 1978 to 2018.
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development may pose a risk of soil erosion, the intensity of soil

erosion can be effectively reduced by planting trees around

agricultural land, as shown in Figure 4 (a2). Moreover, the

afforestation measures implemented in China have had a

significant effect on increasing the vegetation cover in the

desert area (Li et al., 2018; Wang et al., 2020). The

comparison of vegetation cover is shown in Figure 4 (b1),

(b2), (c1), and (c2), indicating that vegetation cover change is

the main driving factor for the decline in soil erosion intensity

(Yin et al., 2018).

Conclusion

Long-term series soil erosion investigations with remote

sensing data are helpful for improving our scientific

understanding of soil and water conservation management

effectiveness assessments and planning. This study introduced

multisource remote sensing technology and station data to

explore the soil erosion change patterns in Northeast Inner

Mongolia from 1978 to 2018. The results showed that the

dominant soil erosion type was wind erosion, and the area of

soil erosion decreased by 100,654 km2. The wind erosion area

showed a remarkable decline in the Hulunbuir and Tongliao

regions, while the water erosion area remained stable. The

remarkable intensity change in soil erosion over the past four

decades occurred in the shift from mild soil erosion to slight

erosion; the area of high-intensity soil erosion has decreased

significantly. The area change rates of the mild, moderate, strong,

intensive and severe soil erosion intensities

were −48.91%, −41.41%, 32.63%, −91.15%, and −91.14%,

respectively. The slower wind speeds and increased vegetation

cover have collectively led to a decrease in wind erosion area, and

the vegetation cover change derived by afforestation measures is

the main driving factor for the decline in soil erosion intensity.

The present study objectively reveals the changes in soil erosion

in Northeast Inner Mongolia under the joint action of human

activity and the natural environment and can provide support for

safeguarding food security and ecologically sustainable

development.

FIGURE 4
Comparison of vegetation cover by implementing afforestation measures (a1 and a2 are farmland, b1, b2, c1, and c2 are forest).
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With the deterioration of environmental pollution, resource security and climate

crisis, transforming the mode of economic development and developing a

green economy have turned into an international consensus. However,

environmental regulations (ERs) can help facilitate technological innovation.

As an important financial support for the green innovation transformation of

China’s manufacturing industry, it is crucial to exploit the policy synergy

between green credit (GC) and ERs at the regional level to stimulate

technological innovation effects. GC, as a financial instrument, can play a

unique role in ERs; therefore, the relationship between ERs and the level of

green technology innovation (GTI) based on the GC perspective deserves an in-

depth study. Using a spatial Durbin model (SDM) for the panel data of

30 Chinese provinces from 2006 to 2016, this paper explores the spatial

effects of ERs and GC on GTI in manufacturing and the moderating effects

of GC policies on ERs affecting GTI. The research finds that ERs exert a negative

impact on local manufacturing GTIs and undermine the innovation effect in

neighboring locations through spatial spillover effects. The development of GC

helps stimulate the transformation of GTI in local manufacturing industries with

further attention on the effects of policy instruments and their combinations.

The moderating effect of GC suggests that its development can weaken the

inhibiting effect of ERs on GTI in local and neighboring areas and is particularly

significant in coastal areas. Our study provides a theoretical basis and policy

insights for coordinating government external intervention and market

operation laws at the regional level to bring into play the incentive effect of

technological innovation.
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1 Introduction

China’s industrial supply capacity has grown to the point of

being able to support economic development (Bressanelli et al.,

2019; Bressanelli et al., 2022). However, the development model

at the expense of the ecological environment at the expense of the

ills of increasingly prominent institutional barriers, technical

factor shortcomings, and phase conversion resistance is still

accumulating and has become a real obstacle to the process of

green and sustainable development (Geng et al., 2022;

Jayachandran, 2022). The new situation of a tight time

window for achieving carbon peaking and carbon neutrality

presents high requirements for China’s industrial low-carbon

transformation and green development, and realizing the

coordinated development of industrial transformation and

ecological civilization has become a major strategic issue

(Kolkiş et al., 2020; Zhao et al., 2021; Zhao et al., 2022). The

19th National Congress report of the Communist Party of China

proposed the building of a market-oriented green technology

innovation (GTI) system, focusing on the change from factor

inputs to green system change and technology innovation-

driven, from the scale advantage to innovation development

advantage of the development path, has become an important

support to achieve industrial green transformation (de Oliveira

et al., 2018; Li and Gao, 2022). It can be observed that green

technology progress has become the optimal means to achieve a

“win-win” for environmental pollution control and regional

economic growth.

As the core driving force and important support for green

development transformation, GTI combines the concepts of

“green” and “innovation,” updating product processes and

market services through technological innovation to reduce

pollution emissions, improve resource utilization efficiency (Lv

et al., 2021; Suki et al., 2022), and directly optimize the green

industrial structure to promote regional green development

transformation (Behera and Sethi, 2022). Environmental

regulation (ERs) policy is a common way to stimulate

enterprises to engage in GTI, and it plays a significant role in

the pollution treatment cost expenditure of the front-end support

of enterprises and the pollution emission of the end-end

regulation of enterprises (Hassan et al., 2022). Green credit

(GC) is an important instrument of green finance and a

market-based instrument included in the broad ERs. GC

accounts for over 90% of the existing green financial

instruments in China and effectively promotes GTI by

enterprises (Zhang et al., 2022).

Compared with traditional non-clean technology areas, the

profit advantage of GTI is relatively weak (Shen et al., 2021);

relying on only market forces is insufficient to support the

transformation of China’s industrial economy into green

technology-oriented innovation (Wei et al., 2020). There is an

urgent need for the government to effectively implement

ecological, green, and scientific environmental economic

policies and regulatory instruments. According to the “Porter

hypothesis”, the role of ERs in promoting innovation is

constrained by the financial status of the enterprises (Liu

et al., 2021). The micro-subjects of regional green technology

innovation are enterprises, and enterprises require continuous

and stable financial support to conduct GTI. If ERs are strong in a

certain region, it leads to an increase in the demand for funds for

pollution control and innovation investment, which may cause

polluting enterprises to adopt the avoidance strategy of relocating

nearby. This leads to a significant difference in the technological

innovation effect of ERs between local and neighboring regions

(Mbanyele and Wang, 2022), resulting in the phenomenon of

“ERs failure” at the regional level (Zhong and Peng, 2022).

Therefore, green financial support is the key for the

government to fully play its role in ERs.

ERs are implemented by the state and targeted at individual

or organizational enterprises. It has been widely used as a

traditional tool for environmental protection and is a key

external driver of GTI, but its incentive effect on micro-

individual technology innovation remains controversial

(Böcher, 2012; Karmaker et al., 2021; Zhao et al., 2022).

Relevant studies have shown that green finance, with

economic and environmental benefits, has become an

emerging environmental governance tool for achieving

market-oriented GTI (Liu et al., 2017; Irfan et al., 2022; Sharif

et al., 2022). However, under the constraints of ERs, the potential

for green finance to provide financial support for enterprises to

engage in GTI activities to alleviate the contradiction between

environmental protection and economic development requires

in-depth exploration. First, the relationship between ERs and

technological innovation exhibits an inverted “U" curve; when

the intensity of ERs is weak, it promotes technological innovation

activities. When the intensity of ERs exceeds a certain threshold,

ERs restrict technological innovation, i.e., it is difficult for

innovation compensation to cover the cost of compliance

(Zhang and Wei, 2014). The interregional gradient in the

intensity of the enforcement of ERs in China has led to

regions with more lenient environmental policies, thereby

providing opportunities for neighboring firms to circumvent

the high-cost business practices of pollution abatement and

technological innovation (Zhang et al., 2022). Second, as a

new environmental economic policy, the essence of GC policy

is that commercial banks provide differentiated loan pricing and

credit lines for energy-saving, clean production, and

environmental enterprises with high energy consumption and

high pollution (Soundarrajan and Vivek, 2016; Su et al., 2022;

Wang et al., 2022), which can effectively alleviate the financial

dilemma of GTI in regional manufacturing industries (Nabeeh

et al., 2021). On the one hand, green credit compresses the

financing space of highly polluting enterprises and increases the

financing cost, forcing enterprises to carry out methods of

technological innovation and transformation of production.

On the other hand, green credit provides a wider range of
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external financing channels for polluting enterprises to achieve

green innovation and transformation, which can effectively

relieve the financial difficulties of green technology innovation

in regional manufacturing industries. However, it is difficult to

rationally allocate the limited credit funds among different

regions based on the principle of parity. This results in a large

difference in the level of GC development on the impact of GTI in

local and neighboring regions. Third, in the field of

environmental policy, government mechanisms have long

dominated ecological and environmental governance, while

the constraints of financial scarcity and government failure

have hindered government mechanisms from matching the

demand for ecological and environmental improvement.

However, as the ecological environment is a quasi-public

good, green finance, as a new market-based instrument for

ecological governance, can exert a multiplier effect in a more

effective, equitable, and sustainable manner when coordinated

with the traditional environmental regulatory system (Falcone,

2020). Finally, geographically, there are differences between

coastal and inland regions in terms of economic development

level, government control, regional ecological environment,

and financial market development, which leads to

interregional differences in ERs and GC for GTI in

manufacturing. On the one hand, it lies in the fact that ERs

instruments in coastal areas are more effective in generating

“innovation compensation” than those in inland areas (Ren

et al., 2018; Nie et al., 2022). On the other hand, the incentive-

matching effect of GC and ERs is more pronounced in coastal

areas than that in inland areas, which exerts a positive

moderating effect on GTI (He and Yan, 2020).

There is spatial variability in the impact of ERs intensity on

GC. When ERs are weak, the implementation of GC can

effectively guide enterprises to develop GTI by limiting

financing to “three high” enterprises. When ERs are strong,

i.e., when the cost of green technology research and

development and the difficulty of financing seriously hinders

the green transformation of enterprises, more capital supply in

GC is used to solve part of the financing loan problem, thereby

effectively promoting the GTI of enterprises. However, existing

studies on GTI are mostly from a single perspective of ERs and

GC, and fail to analyze their synergistic effects and spatial

spillover effects. To fill this gap, this paper expands the spatial

analysis framework of GTI by verifying the synergistic effect of

GC and ERs on GTI and its regional differences. In terms of

research content, this paper explores the synergies between green

credit as a new environmental governance tool and traditional

environmental regulation instruments on GTI in manufacturing.

In terms of study dimensions, heterogeneity analysis is enriched

by grouping by region.

Based on this, the key questions that our study addresses are: 1)

Is there a local effect or spatial spillover effect of GC on the GTI of

enterprises? 2) In terms of interregional equity, is there a

crowding-out effect on GTI in neighboring regions due to a

shortage of financial resources and competition from local

governments? 3) As a new type of environmental governance

tool, how will the integration of GC into an integrated framework

of ERs and GTI create synergies with traditional ERs instruments?

Therefore, our study examined 30 provinces (including

municipalities and autonomous regions) in China (excluding

Hong Kong, Macao, Taiwan, and the Tibet Autonomous

Region) as the research sample, employed a spatial econometric

model to explore the effects of ERs and GC on the role of GTI in

manufacturing, and used a moderating effect model to test the role

of GC in the process of ERs affecting manufacturing technology

innovation (Figure 1). Based on the aforementioned theoretical

analysis, this paper proposes the following hypotheses:

Hypothesis 1: A nonlinear relationship exists between ERs and

regional manufacturing green technology innovation, and this

effect is characterized by “spatial spillover."

Hypothesis 2: Green credit has a positive promotion effect on

green technology innovation in the local manufacturing industry,

but there is a resource crowding-out effect on neighboring areas.

Hypothesis 3: An incentive-matching effect exists between

local GC and ERs on GTI in manufacturing. When green

credit is invested at a certain level, it is conducive to

alleviating the crowding-out of funds for technological

innovation by ERs and stimulating the “innovation

compensation effect” of ERs for green technological innovation.

Hypothesis 4: Heterogeneity exists between coastal and inland

regions in terms of the impact of green credit and ERs on green

technology innovation in manufacturing.

2 Materials and methods

2.1 Methods

2.1.1 Spatial econometric model setting
To investigate the spatial spillover effects of ERs and GC, we

employed spatial econometric empirical analysis. The spatial

Durbin model (SDM) based on panel data can effectively

solve the possible endogeneity problem of interregional ERs

variables. Drawing on the existing scholarly works (Ni et al.,

2020), the model is constructed as shown in Model (1).

GTIit � α + ρWGTIit + β1ERSit + β2GCit + θ1WERSit

+ θ2WGCit + zXit + εit (1)

To test the moderating effect of GC on ERs and GTI in

manufacturing in Hypothesis 3, we constructed spatial econometric

models withmoderating effects for the extended analysis in this paper.

The model is constructed as shown in Model (2).
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GTIit � α + ρWGTIit + β1ERSit + β2GCit + β3ERSit pGCit

+ θ1WERSit + θ2WGCit + θ3WERSit pGCit + zXit + εit

(2)
where i is a province (i = 1, 2, ... 30); t is the year (t = 2006, 2007, ...

2016); GTIit is the GTI intensity; ERsit is the ERs intensity; GCit is

GC; ERsit*GCit is the cross term of GC and ERs; Xit is a control

variable, including urbanization level (URB), innovation human

resource input (HRI), and fiscal decentralization (FE); and εit is

an unpredictable error term.

2.1.2 Spatial weight matrix setting
The spatial econometric model reflects the spatial

relationship between economic variables by setting a spatial

weight matrix, and different spatial weight matrices represent

different forms of spatial distances between variables, reflecting

the different ways of influencing regional spatial effects (Zhang

et al., 2020). Here, we selected the spatial adjacency matrix and

the economic distance spatial weight matrix.

1) Spatial adjacency matrix. The most commonly used spatial

weight matrix is the spatial adjacency matrix. According to

Ansenlin and Griffith (Anselin and Griffith, 2010), a

0–1 weight matrix was constructed for the spatial adjacency of

30 provinces (autonomous regions and municipalities directly

under the central government) in China as follows, where the

matrix was assigned the value of one when two regions are

adjacent and 0 when two regions were not adjacent. The

calculation formula is shown in Model (3).

ωij � 1
0

{ i ≠ j
i � j

andwhen two regions are adjacent
or when two regions are not adjacent

(3)

2) Economic distance matrix. In addition to considering the

influence of geographical distance on economic variables,

economic distance is an important factor in portraying

regional economic differences. The weight calculation formula

is shown below. GDPi and GDPj represent the economic

development level of two regions, expressed as the gross

domestic production (GDP) per capita. Usually, the smaller

the income gap between regions, the greater the weight, and

the larger the gap, the smaller the weight. Here, we chose the

inverse of the absolute value of the difference in economic

distance to represent. The economic distance matrix reflects

the economic gap between two regions and is an important

factor that affects regional economic differences. Drawing on the

existing scholarly works (Shao et al., 2016), the formula shown in

Model 4) is set to express the economic distance between

provinces (autonomous regions and municipalities directly

under the central government) in terms of the economic

distance matrix.

ωij � 1

GDPi − GDPj

∣∣∣∣
∣∣∣∣

(4)

where GDPi � 1
T∑

T
t�1GDPit denotes the average GDP value in

region i at time T.

2.2 Variable selection and data sources

The sample interval was 2006–2016, and the paper covered

30 provinces (including municipalities directly under the Central

Government and autonomous regions) (excluding data from

FIGURE 1
Framework flow chart.
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Hong Kong, Macao, Taiwan, and Tibet Autonomous Region).

Definition of Main Variables and their data sources were related

to the statistical yearbooks of previous years (Table 1).

(1)GTI. Since the number of green invention patent

applications (GIPA) can be time-sensitive to directly

examine green technology innovation activities of

enterprises, GIPA was adopted as the main characterization

indicator of GTI (Bai et al., 2019). Specifically, according to

the “Green List of International Patent Classifications”

launched in 2010, we used patent classification numbers to

search for GIPAs and calculate the total number of green

patent applications per year by region.

(2)GC. Considering that interest expense can reflect the

size of credit, the interest expense ratio of non-six energy-

consuming industries was chosen to indirectly measure the

degree of GC development according to the research

method of Guo et al. (2019) and Jiang et al. (2020),

where the amount of green credit is the interest

expenses of industrial industries in each province total

interest expenditure minus the six major energy-

consuming industries interest expenditure.

(3)ERs. Most previous studies measured the intensity of ERs

from two perspectives: environmental inputs (pollution

control investment, government environmental fiscal

expenditure, and abatement costs) and environmental

performance (sewage charges, sewage taxes, and disposal

rates of pollutants). Considering that economic ERs are

more likely to internalize external environmental costs, our

study focused on economic ERs and measured the intensity of

ERs using a composite index of expenditure and regulatory

indicators (Michael, 2012; Chen et al., 2022).

①Expenditure indicators focus on governance inputs, using

the ratio of industrial investment in pollution control to

industrial value added to measure.

②Regulatory indicators are based on the regulatory strength

of governmental departments in implementing ERs system

policies. Based on the previous research method (Yang

et al., 2008; Guo et al., 2017; Huang et al., 2020), the amount

of unit emission fee revenue was used as a regulatory-type

index.

Drawing from the research of Peng and Yuan (2018), this

study employed the min-max standardization method to calculate

the composite index of ERs and set Model 5) for calculation.

ERsij � ERSMij −min(ERSMi)
max(ERSMi) −min(ERSMi)
+ ERRIij −min(ERRIi)
max(ERRIi) −min(ERRIi), i

� 1, 2, . . . , 11; j � 1, 2, . . . 3 (5)

where ERsij is the composite index of ERs in the jth province in

year i; ERSMij and ERRIij are the proportion of ERs investment

amount and the average income of ERs in the jth province in year

i, respectively. max(ERSMi) and min(ERSMi) denote the

maximum and minimum values of the proportion of ERs

investment amount in each province of the country in year i,

respectively; max(ERRIi) and min(ERRIi) denote the maximum

and minimum values of the average ERs income of each province

in the country in year i, respectively.

TABLE 1 Variable settings.

Variables Definition Description Data sources

Explained
variables

Green technology innovation (GTI) Number of green
invention patent applications
(GIPA)

The website of
the State Intellectual
Property Office (According
to the International
Patent Classification launched
by the WIPO
in 2010)

Explanatory
variables

Environmental
regulations (ERs)

Expenditure
indicators

Total investment in industrial pollution control/Total
industrial output (ERSM)

China Industrial Statistics Yearbook,
China Environment Yearbook

Regulatory
indicators

Total emission fee revenue/Emission fee paying units number
of units (ERRI)

China Environment Yearbook

Green credit (GC) Interest expense ratio of non-six high-energy-consuming
industries

China Industrial Statistics Yearbook

Control variables Urbanization level (URB) Urban population/Resident population China Statistical Yearbook

Human resource inputs (HRI) The proportion of personnel engaged in scientific and
technological activities in enterprises above the scale

China Science and Technology Statistical
Yearbook

Fiscal decentralization (FE) Local government budgetary expenditure as a percentage
of GDP

China Statistical Yearbook
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3 Results

3.1 Nonlinear effects of ERs and GTI

Here, the SDM is selected as the optimal choice by combining

the Lagrange Multiplier (LM) and Wald tests, and the results of

the Hausman test are used to select the fixed effects estimation

results and set the time fixed model. As shown in Table 2, Models

(1)–3) are the results of the maximum likelihood estimation of

the SDM with the inclusion of the cross terms of GC, ERs, and

GC in turn.

As can be seen from Table 2, ERs hinder GTI in China’s

manufacturing industry. The analysis of the coefficient

estimates for the explanatory variables shows that the

regression coefficient of ERs is significantly negative under

the three models, indicating that there is a significant negative

relationship between the intensity of ERs and GTI in

manufacturing in the region. This implies that all provinces

in the country are in the primary stage of cost saving, with

weak innovation support, such as technological improvement

and optimization of management models. Innovation

compensation can hardly compensate for the high

production costs caused by ERs, and supporting funds and

policies also lead to the effect of industrial GTI transformation

being difficult to show. Thus, it is difficult to offset the

negative impact of ERs on the crowding-out effect of

innovation input.

Second, Table 2 shows that GC policy could play the “Porter

effect” and positively promote GTI in China’s manufacturing

industry. From the estimated coefficients of the variables in

Model (2), the incentive effect of GC for technological

innovation can be effectively brought into play in the policy

context of green finance booming. The reason may be that, by the

type of enterprise, high energy-consuming enterprises such as

“two high and one leftover” face financing constraints, which

need to be eliminated, or they are prompted to improve the

efficiency of GTI and adjust their industrial structure to reduce

undesirable output (Hsu et al., 2014). Simultaneously, enterprises

in the clean industry or promoting green projects are the first to

develop environmentally friendly technologies and products with

the financial support of GC and achieve value-added business

benefits with the “first-mover advantage” achieved in market

competition, thereby generating an “innovation compensation

effect.”

TABLE 2 Baseline regression results.

Variables (1) (2) (3)

Explanatory
variables

Spatial lag
term

Explanatory
variables

Spatial lag
term

Explanatory
variables

Spatial lag
term

ERs −52.6977*** 517.1359*** −49.8707*** 776.212*** −193.1733** 742.2429***

(18.1920) (177.0373) (18.2888) (218.1744) (79.49742) (141.7734)

GC 0.4108 −9.4125** 2.985739** −0.6212095

(0.7356) (4.2752) (1.223334) (1.881881)

ERs*GC −5.780011*** −20.44289***

(1.940179) (3.667265)

URB −3.7699*** −21.1647*** −3.6609*** −20.7201*** 2.918633**** 8.830221***

(0.8756) (3.3705) (0.8931) (3.3723) (0.9607014) (2.161529)

FE −1.2693 93.2869*** −0.9218 108.4958*** −1.032939 −12.95635***

(0.8126) (10.0703) (1.0184) (12.0243) (1.252515) (2.453519)

HRI 349.1797*** 595.2315 340.8392*** 707.2458* 135.8331** −303.9127***

(46.358) (385.2307) (46.1967) (388.6115) (56.50001) (109.2929)

ρ −0.5631*** −0.5337*** −0.5894***

(0.0773) (0.0815) (0.0666)

sigma2_e 12895.7*** 12700.25*** 17866.64***

(1011.242) (992.5672) (1472.002)

N 330 330 330

R2 0.7646 0.7653 0.7313

Time fixed effects Yes Yes Yes

Regional fixed
effects

No No No

Note: Standard errors are in parentheses; *, **, and *** indicate significance at 10%, 5%, and 1% significance levels, respectively.
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3.2 Interaction of GC, ERs, and GTI

We have verified the role of ERs and GC for GTI in

manufacturing based on independent perspectives. Next, this

paper explores the role of the combination of GC and ERs on GTI

from the perspective of coordination and cooperation. Table 2

shows the regression results of ERs and GC. Among them, model

3) contains the regression results of the interaction term with the

inclusion of GC and ERs. The main effect and spatial lag

coefficients of the interaction term, ERs*GC, are negative,

indicating that the combination of GC development and ERs

inhibits GTI behavior inmanufacturing. These results suggest the

negative GC effect as a new type of environmental governance

instrument in combination with traditional ERs instruments in

terms of driving effects on technological innovation. The reason

may be that, after a certain level of ERs intensity, the combination

of GC and ERs exerts a greater negative effect on GTI. High-

intensity ERs contributed to a rapid increase in production costs

for companies in a short time, leading to great social and

economic pressure on these companies and hindering the

development of GTI. Although GC provides financial support

to green enterprises and projects, the interaction term between

GC and ERs is negative because GTI is characterized by high risks

and long-term lags, and the economic benefits to enterprises are

highly uncertain. Therefore, GC does not significantly moderate

this negative effect.

3.3 Spatial effect decomposition of ERs
and GC on GTI

The previous section outlines the verification of the

applicability of the empirical analysis using time-fixed effects

SDM, but we consider possible errors in the spillover effects using

point estimation tests, and this section highlights our use of

partial differential methods to estimate the direct, indirect, and

total effects of ERs and GC on technological innovation (Table 3).

First, from the spatial decomposition term, the effect of ERs on

local and neighboring GTI is significantly positive, and the

technology innovation due to the strengthening of ERs may

have had the same promotion effect on other regions (Qu, 2018).

As can be seen from Table 3, there is a positive spillover effect

of ERs on GTI in manufacturing in surrounding areas. First,

according to the “pollution refuge hypothesis”, if the intensity of

ERs in the region increases, polluters will choose to move out of

the region because of the rising cost. However, for other regions,

the relaxed regulatory policies afford the region a comparative

cost advantage, and polluting industries move in. Under the

effect of the transfer of polluting industries, the industrial

structure of the transferred areas gradually tends toward a

lower level. Under the “race to the bottom” effect of local

governments, there are ERs policy games and GDP

competition in each region. When a certain location

implements a more stringent environmental access policy,

other regional governments adopt the “race to the bottom”

strategy of ERs to achieve GDP growth and attract the inflow

of resources by not raising or lowering environmental standards,

thereby inhibiting industrial restructuring (Wheeler, 2001). In

addition, certain studies have pointed out that in the context of

high-quality economic development, the central environmental

protection inspectors require the upgrading of ERs policies in

each region, and the current competition model between

governments is more of a “race to the top” model, where

there is a demonstration learning effect when a certain

location upgrades their ERs intensity (Holzinger and

Sommerer, 2011). However, recently, the central government

TABLE 3 Results of spatial effect decomposition.

Variables Local effects Neighborhood effects Total effect

ERs 360.7769*** 1881.845*** 2242.622***

(104.9865) (470.0905) (549.2083)

GC 3.9215*** −0.9533* 2.9681***

(1.0305) (0.4980) (0.9923)

ERs*GC −10.3576*** −52.0130*** −62.3707***

(2.5218) (11.8762) (13.7590)

URB 5.1159*** 23.8607*** 28.9766***

(1.1665) (6.7586) (7.5480)

FE −3.7377*** −30.3266*** −34.0643***

(1.3863) (7.1541) (7.8939)

HRI 86.0695*** −513.1767* 322.5305***

(15.2457) (277.3744) (45.3532)

Note: “*, **, and ***” indicate significance at the 10%, 5%, and 1% significance levels, respectively.
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has abandoned the past “GDP-only” performance appraisal

system and fully incorporated green development indicators,

which, to an extent, has promoted the GTI process.

Recently, driven by policies such as ecological civilization

construction and high-quality urban development,

intergovernmental competition in pursuit of mobility elements

has gradually weakened, and the concept of green development

has increasingly become an important part of the assessment.

Technology-intensive industries have become the driving force of

regional development and exert a pivotal impact on economic

development, government financial growth, the attraction of

investment, raising the share of green innovation inputs, and

evolving the industrial structure toward cleanliness to an extent.

Our model results may provide theoretical implications for

designing effective environmental regulatory policies and

avoiding inefficiency losses from government intervention.

Second, Table 3 shows that GC exerted significant positive

direct effects and negative spillover effects on manufacturing

technology innovation. GC development improves the mismatch

between the cost and benefit of GTI through the transmission

mechanisms of the “financial support effect,” “capital allocation

effect,” and “risk diversification effect” and promotes the

transformation of the local manufacturing industry into green

and clean innovation by achieving technological progress. A

significant negative spillover relationship exists between GC

and GTI in neighboring regions, mainly because the scarcity

property of GC, as a financial resource, leads to an increase in

credit funds in the region accompanied by a decrease in credit

funds in other regions, which reinforces the status quo of

interregional competition for resource elements.

3.4 Spatial heterogeneity analysis of GC,
ERs, and GTI

China is a vast country, and there are significant differences in

resource endowments, economic development levels, and historical

and cultural factors between coastal and inland regions. To further

investigate regional ERs, GC, and their heterogeneous effects on

technological innovation, we divide the sample into the two

aforementioned regions and conduct an empirical analysis based

on the geographical adjacency matrix (Tables 4, and 5).

The study shows that the local and spatial spillover effects of

ERs on GTI in coastal areas are significantly negative, which in

turn undermines the GTI process in neighboring areas. If there is

no reasonable environmental compensation mechanism among

TABLE 4 Regression results for coastal areas.

Variables (1) (2) (3)

Explanatory
variables

Spatial
lag
term

Explanatory
variables

Spatial
lag
term

Explanatory
variables

Spatial
lag
term

ERs −242.0669** −68.4763 −279.2151** −210.6165 −1608.857*** −2179.927*

(114.5396) (139.5423) (114.9229) (190.6699) (540.879) (841.2198)

GC 4.3889* 0.2689 −2.3887 −11.5965**

(2.5289) (3.1312) (3.9406) (6.1234)

ERs*GC 24.3053** 42.3713**

(10.1908) (18.1917)

URB 7.5687*** −14.7501*** 8.3830*** −14.0579*** 4.9414* −5.9774

(2.6582) (3.2878) (2.6901 (4.1655) (2.7597) (6.0476)

FE −7.6293 9.9746 −6.4774 9.2361 −0.9915 14.1393*

(4.7230) (7.7643) (4.7546) (7.7973 (4.8866) (7.7702)

HRI −9.9422 1571.359*** −96.3301 1610.91*** 44.1174 1546.101***

(137.1479) (191.6342) (146.0242) (197.4466) (145.311) (211.1206)

rho −0.3244*** −0.3051*** −0.3205***

(0.1101) (0.1158) (0.1162)

sigma2_e 35693.2*** 34680.27*** 31585.64***

(4764.796) (4619.154) (5225.005)

N 121 121 121

R2 0.6973 0.6926 0.7691

Time fixed effects Yes Yes Yes

Spatial fixed
effects

No No No
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local governments, it is difficult to bridge the benefit gap caused

by the governance costs and opportunity costs paid by each

region for green transformation, which in turn restricts the equity

of regional manufacturing innovation development. The impact

of ERs in inland areas on GTI is significantly negative, and the

impact on GTI in surrounding areas is insignificant, which is

mainly constrained by resource endowment, industrial structure,

and institutional culture, thereby hindering the stimulation of the

dynamics of regional GTI activities.

GC in coastal areas exerts a positive effect on green

technologies in the region and a negative effect on GTI in

neighboring regions. At the firm level, this can be explained

by the fact that the strict credit granting policy of GC, by setting

environmental access thresholds, induces heavily polluting firms

to focus on investment in production factors at the end of

pollution reduction, which in turn inhibits local GTI activities.

As GC resources become the focus of competition between

regions, the abundance of local GC resources further

exacerbates the innovation financing dilemma of neighboring

regions, thereby inhibiting the GTI level in neighboring regions

(Zhou et al., 2021). The local effect of GC on GTI in inland

regions is significantly positive, while the spatial spillover effect

does not pass the significance test, indicating that the

competition for GC resources in inland regions does not

intensify. The reason for this phenomenon is that coastal

regions have advantages in terms of economic conditions,

market system formations, and technological innovation

resource reserves. In particular, the pace of economic green

transformation has always been at the forefront for China,

with more complete ERs policy measures and mature

pollution control experience. Therefore, GC can be combined

with traditional ERs instruments to create a gaining effect of

regional technological innovation activities. However, the impact

of the cross-sectional term of ERs and GC on local technological

innovation in inland regions is insignificant, indicating that GC

policies and traditional ERs instruments in inland regions have

not yet produced incentive-matching effects.

3.5 Robustness tests

To better verify the mechanism of action between ERs, GC,

and GTI, we use the following methods to test the robustness of

the empirical results and the results are reported in Table 6.

TABLE 5 Regression results for inland areas.

Variables (1) (2) (3)

Explanatory
variables

Spatial
lag
term

Explanatory
variables

Spatial
lag
term

Explanatory
variables

Spatial
lag
term

ERs −16.6524*** 1.2836 −5.3412 22.1422*** −8.1045 −15.9790

(3.8199) (8.4041) (4.3867) (9.4931) (14.2953) (31.7198)

GC 0.9492*** 1.3644*** 1.0068*** 1.0165*

(0.2025) (0.5099) (0.2387) (0.5742)

ERs*GC 0.0695 1.0406

(0.3713) (0.8335)

URB −2.2397*** −2.5611** −2.2343*** −2.2807* −2.2550*** −2.5038**

(0.3749) (1.2228) (0.3546 (1.2046) (0.3538) (1.2135)

FE −0.3863** −0.9990*** 0.1217 −0.4840 0.1448 −0.3505

(0.1806) (0.2766) (0.2102) (0.3970) (0.2235) (0.4125)

HRI 213.1057*** 122.4469** 211.819*** 163.2779*** 208.8026*** 164.8343***

(23.9985) (49.7956) (22.8401) (47.9725) (23.0490) (48.0144)

rho −0.3728*** −0.4740*** −0.4632***

(0.1002) (0.1013) (0.1016)

sigma2_e 371.9718*** 33.2568*** 328.1741***

(36.9780) (33.1742) (32.9261)

N 209 209 209

R2 0.7377 0.7996 0.7998

Time fixed effects Yes Yes Yes

Spatial fixed
effects

No No No
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(1) Considering the inteslrraction of ERs strategies and the spillover

effects of GTI levels occurring in neighboring regions, as well as

multiple factors, geographical and cognitive proximity also exert

an impact. Therefore, here, the economic spatial weight matrix

is used instead of the 0–1 geographical neighborhood weight

matrix, and the results of the study do not show a significant

change in the sign and significance of the regression coefficients

of the core variables, confirming that our findings are extremely

robust.

(2) The combined index of GIPAs and green utility patent

applications is chosen as the measure of GTI, based on

which GTI was calculated. Through the model analysis, we

observe that the regression results are very robust for the green

innovation variables and the replacement of the weight matrix,

which further validates the scientific nature of our findings.

4 Conclusion and policy implications

4.1 Conclusion and discussion

By incorporating both environmental regulation and green

credit policies into the analytical framework of GTI, this paper

empirically tests the joint effect of GC and ERs on GTI. Based on

inter-regional interaction strategies and differences, this paper

also explores the local effects and spatial spillover effects of

environmental regulation and green credit at the regional

level, and empirically examines the uneven locational

characteristics of the technological innovation effects of ERs

and GC. The main findings of this paper include the

following: 1) the local impact and spatial spillover effect of

ERs on GTI in manufacturing industries at the national level

is mainly reflected in the inhibitory effect. The negative effect of

“following cost” is greater than the “compensation effect” of

technological innovation; that is, environmental regulation

policies that raise firms’ production costs and lack economic

incentives are ineffective in promoting innovation. GC policies

can stimulate the transformational development of GTI in local

manufacturing industries, but the scarcity of resources weakens

the innovation level of green technology in manufacturing

industries in neighboring provinces through spatial spillover

effects. 2) The combination of GC development and ERs can

produce synergistic and complementary incentive-coordinated

technology innovation driving effects. The complementary

effects of GC fund supply and product, process, and emission

reduction are significant, making the economic performance of

ERs for technology innovation prominent. Considering the

ecological environment has quasi-public goods characteristics,

GTI is a complex systemic project, and green finance, as a new

TABLE 6 Results of the robustness test.

Variables Change variables Matrix replacement

Explanatory variables Spatial lag term Explanatory variables Spatial lag term

ERs −0.0002247* 0.0021512*** 215.6618*** (63.9564) 1049.1520* (801.2933)

(0.0000586) (0.0006652)

GC −0.0000447*** −0.000613*** 3.4224*** (1.0000) −8.2127* (4.3694)

(0.0000118) (0.0000195)

ERs*GC 9.26e-06* −0.0000719*** −6.6493*** (1.5378) −6.5004 (16.0011)

(1.95e-06) (0.0000191)

URB 0.0001161*** 0.0001309*** −3.4978**** (0.8891) −20.1427*** (3.3156)

(0.0000114) (0.0000261)

FE −0.0000403*** −0.0001596*** −1.6417* 1.0126) 105.0759*** (12.7486)

(0.0000149) (0.000026)

HRI −0.0031841*** −0.0026401** 306.9133*** (36.0654) 617.9172* (384.3012)

(0.0006714) (0.0013354)

rho 0.1502739*** −0.4982*** (0.1116)

(0.0024763)

sigma2_e 2.58e-06*** 12151.94*** (962.5566)

(2.00e-07)

N 330 330

R2 0.5306 0.7930

Time fixed effects Yes Yes

Spatial fixed effects No No
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market-based instrument for ecological and environmental

governance, can play a complementary role with traditional

environmental regulatory systems in a more effective,

equitable and sustainable manner. However, it is difficult to

promote green innovation transformation by purely relying on

the regulation means of GC. The traditional ERs means are

fundamental in stimulating technology innovation despite the

hard constraint of commercial banks and emission enterprises

(Feng and Liang, 2022). 3) The eastern coastal regions with

strong innovation vitality and endogenous dynamics. For inland

regions with little experience in environmental governance and a

weak innovation base, a “circular-coordination” mechanism for

GC resources should be constructed. By region, there are regional

differences in the technological innovation effects of ERs and GC.

The local effect of ERs on GTI in coastal areas is significantly

positive; that is, strong innovation vitality and endogenous

dynamics of coastal regions enable environmental regulation

measures and green financial development produces incentive-

matching effects. Although environmental regulation measures

for inland areas with little experience in environmental

governance and a weak innovation base are significantly

negative for local GTI and insignificant for neighboring GTI,

GC effectively stimulates the dynamic role of local GTI activities

and exerts a significant marginal effect on the financial dilemma

of local manufacturing investment in research and development

(R&D) green technology.

The following shortcomings exist for this study: 1) It is

appropriate to use prefecture-level city data to explore the

spatial effects of ERs, GC, and GTI in manufacturing based

on regional scales. Given the availability of GC-related data,

provincial panel data, and the large error in measuring GC

variables by indirect methods, there are limitations in the

generalizability of the study findings. 2) The “Porter

hypothesis” and the regulatory role of GC are closely related

to the type of ERs, which include formal ERs instruments

(command and control and market incentives) and informal

ERs instruments (information disclosure, public participation,

and voluntary regulation) (Zhou et al., 2022). However, the

influence factors considered in this study are relatively single,

and different types of ERs tools can be included in the same

model in future studies to examine their differential impacts on

GTI in manufacturing. 3) Considering that the spatial spillover

effect follows the law of distance decay, there is a certain bias in

the empirical test based on the entire domain only, and the local

spatial matrix of different distance ranges should be set in the

future to explore the GTI effect.

4.2 Policy implications

Based on the empirical findings of our study, the following

policy implications about the integration of ERs and green

finance policies are proposed accordingly.

First, based on the spatial dependence of interprovincial

manufacturing GTI, local governments should establish a

good competitive relationship with each other, strengthen

strategic interoperability and positive interaction with

neighboring regions, and stimulate local green development

with the implementation of green innovation and

transformation strategies by regional industries holistically.

Second, the central government should abandon the

traditional approach in the design of policies, systems, and

processes for environmental and social risk management, and

coordinate a regionally differentiated GC system instead. GC

policies should be made on a “person-by-person” basis; that is

the eastern coastal should leverage the role of commercial banks

and other financial sectors in promoting the supply of GC funds to

meet the financial needs of high-level technological innovation. It

is necessary to improve the green policy system, such as the

environmental information disclosure of enterprises,

information sharing between environmental protection

departments and banks, and strengthen the prescreening and

post-supervision mechanism to weaken the influence of

information asymmetry. For inland regions, local governments

can create an innovative atmosphere through financial support,

construction of innovative subjects, and strengthening intellectual

property protection, so as to construct a cooperative mechanism

and innovation-supportive for interregional credit policies (Liu

and Nie, 2022) in the place of the interregional competition for

resources with a cooperative mechanism for interregional credit

resources to support GTI (Liu and Nie, 2022).

Third, as GTI is a complex systemic project, it is difficult to

promote green innovation transformation by purely relying on the

regulationmeans of GC. The traditional ERsmeans are fundamental

in stimulating technology innovation despite the hard constraint of

commercial banks and emission enterprises (Feng and Liang, 2022).

The ERs system can be planned in a unifiedmanner by establishing a

coordinating management institution for GTI, GC, and ERs to

coordinate green development data, such as scientific and

technological innovation, capital loans, and pollution emissions,

and make joint efforts from the market investment and financing

and government supervision levels (Chen et al., 2022).

Fourth, considering that GTI activities are characterized by

high risks, economies of scale, and innovation spillovers (Wicki

and Hansen, 2019), the institutional environment for technology

innovation is the key to the “Porter effect.” Local governments

can create an innovative atmosphere through financial support,

construction of innovative subjects, strengthening intellectual

property protection, and other basic systems, which in turn

attract the gathering of high-end production factors, such as

capital, talents, and knowledge. Concomitantly, the GC policy

can also be dovetailed with the science and technology policy,

incorporate the green R&D investment and performance of

enterprises into the environmental policy assessment, and

make joint efforts from the market investment and financing

and government supervision levels (Chen et al., 2022).
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As a primary concern in the ecosystem, understanding the impact of spatial
heterogeneity of ecological networks on the development of environmental
sustainability has overarching significance. The Tibetan Plateau’s edge is a vital
contribution to the study of the plateau’s ecological network. However, there are
few studies and explorations on the county-level ecological network in the arid
region. This study aimed to evaluate ecological network spatial patterns in Tianzhu
County and establish an ecological security evaluation index system. We used the
minimum cumulative resistance (MCR) model and built an ecological resistance
surface model from the exploratory spatial data analysis (ESDA) method. Then, by
identifying ecological corridors and ecological nodes from the gravity model, we
analyzed the ecological security pattern and proposed specific plans for optimizing
the situation. The results showed that 1) county ecological security overall has been
lower, and its values showed spatial heterogeneity in each direction, and 2) the
Z-Score of the ecological security evaluation index was 70.1893, which shows
ecological vulnerability in the arid region has significant spatial autocorrelation.
The study identified 156 ecological corridors and 112 ecological nodes, which
formed an ecological spatial pattern of “one belt and three zones.” Our analytical
framework offers a valuable tool for constructing ecological security patterns in
Tianzhu County and selecting “sources” at the regional scale, which can be applied to
landscapes and geographical contexts for sustainable development in arid regions.

KEYWORDS

land use, ecological security, spatial pattern, MCR, arid region

1 Introduction

The ecosystem is an essential basis for human survival and development, which is also a
support system of human life. It is the primary part of the regional ecological pattern, which
connects isolated landscape patches by ecological corridors (Jiao et al., 2021; Peng et al., 2022).
This system combines with point, line, and surface to improve the self-discipline of the
landscape and maintain regional ecological surrounding stability (Fan and Myint, 2014; Liang
et al., 2022). However, the ecological network is a special and complex network of landscape
ecology, which is a complex network that is composed of three pattern elements—ecological
sources, ecological corridors, and ecological nodes (Luo et al., 2022). Therefore, the structure,
function, and interrelationship of the ecological network have been important research points
in network and science and landscape ecology research (Jiang et al., 2022; Shen et al., 2022). The
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integrity of the ecological network structure and its advantages and
disadvantages will determine whether the ecological network’s
function can work properly.

According to integrated landscape ecology and land planning
theory, in recent years, scholars built ecological networks,
including Nature 2000 Network, Emerald Network, Dutch
National Ecological Network, and European Ecological Network
(Möckel, 2017). Aiming at different objects, the research of
ecological network construction mainly focuses on the forest
ecological network, wetland ecological network, urban green
space ecological network, and desert ecological network
protection (Raji et al., 2022). Ecological network construction
had been formed on the basis of a research paradigm, including
ecological source identification and ecological corridor
identification. It mainly identifies ecological sources by assessing
the suitability of ecological habitats and the importance of
ecological connectivity (Wan et al., 2019; Streib et al., 2020).
Among them, the importance of environmental assessment is
the most used method. The method of identifying ecological
corridors by constructing resistance surfaces is usually based on
the value distribution of land cover. The lowest cost path analysis is
usually used to extract ecological corridors. However, this study
considers the obstacles of landscape heterogeneity to ecological
flow, although they ignore the mutual attraction of ecological
resources and do not consider the interaction of ecological
resources (Fan et al., 2017; Cunha and Magalhães, 2019). The
application of the gravity model in space interaction provides a way
to study the interaction between ecological sources. The gravity
model was first used to study the inter-city spatial structure and
later widely used in regional economic research, urban group
interaction, and inter-city trade research. At present, gravity
models have been widely used in the study of regional economic
connections or spatial interactions. Based on the interaction force
theory, using the improved MCR model and gravity model, the
ecological network of the study area is extracted by comparing the
minimum cumulative ecological resistance and the maximum
ecological gravity between different ecological sources (Hu et al.,
2019; Dai et al., 2021). In China, the types of Tianzhu landforms are
more special, including alpine mountains on the Qinghai–Tibet
Plateau, an oasis in arid areas, and monsoon valleys. Complex
climatic types and terrain and geomorphology together affect the
formation of ecological networks with great ecological value and
vulnerability (Huang et al., 2022; Wang et al., 2022). To this
purpose, ecological networks are even more needed to connect
broken habitats through ecological corridors and ecological nodes
to form a complete landscape network to ensure regional ecological
security (Yang et al., 2022a; Dai et al., 2022). This abstracts the
actual regional ecological network into an ecological topology
network.

The stability and balance of the ecosystem will determine human
life directly. However, the utilization and development scale of land
has increased dramatically over the past century. Especially in
northwestern China, this tendency, therefore, caused serious
damage to the structure and function of the ecosystem and
produced a series of problems, such as a sharp decline in
biodiversity, degeneration of grassland, and soil erosion and
desertification (Zhou et al., 2020; Geng et al., 2022). This
phenomenon is more obvious in Tibet and China. In addition, the
major climate type of Tianzhu is alpine on the Tibetan Plateau and the

climate of the local area is arid desert and monsoon type (Gu et al.,
2018; Zhang et al., 2020). So, the diversity and complexity of climate
are especially prominent here, which have a significant impact on the
ecosystem. The security of the ecosystem and sustainable development
in this region have been the focus of research in our study for a long
time (Wang and Pan, 2019; Wen and Hou, 2021). We used the gravity
model and minimum cumulative resistance model to extract the
ecological network. Through the ecosystem, importance assessment
identifies ecological sources. The improved ecological resistance
model will be used to calculate the minimum cumulative ecological
resistance between ecological sources, and the improved ecological
gravity model will be used to calculate the ecological gravity between
ecological sources. According to the interaction force theory, the
ecological corridor is determined by comparing the combined
forces between different ecological sources. Finally, it provides new
methods and new research perspectives for regional ecological
planning and also provides reference and guidance for the
formulation of environmental protection and sustainable
development policies in the alpine mountainous regions of the arid
region.

2 Data sources and methods

2.1 Study area

Tianzhu is situated in the arid region of Northwest China. It is
situated at the intersection of the Qinghai–Tibet plateau, the loess
plateau, the Inner Mongolia plateau, and the northeast edge of the
Qinghai–Tibet plateau (Figure 1A). Its altitude is between 2,040 m and
4,874 m, with an average altitude of 3,075.86 m. The landform is a
priority in the mountainous area, mountain range crisscross, ravine
crisscross, and more mountains. Situated in the middle of the county,
whistling lies between east and west. It is the throat of the ancient Silk
Road and the gateway of the Hexi Corridor (Figure 1B). Furthermore,
it is the watershed between the inland river and the outflow river.
Rivers are widely disseminated, rich in water resources, and divided
into two major water systems: the Shiyang river system and the Yellow
River system (Figure 1C). The annual runoff of surface water is
1.024 billion m3, and the recharge of groundwater is
420 million m3. With whistling as the boundary, the south of
Wushaoling has a continental plateau monsoon climate, while
the north has a temperate continental semi-arid climate, with an
average yearly temperature of −8°C to 4°C. The vertical distribution
of the climatic zone is very obvious, and the weather in small
regions is complex and changeable, with droughts, hail, floods,
frost, snow, and other natural disasters. Tianzhu has jurisdiction
over 17 townships.

2.2 Data sources

In this study, land use data were obtained from the GlobeLand30
(GLC30) dataset (https://www.globallandcover.com/) for the year
2020. The study area covers seven types of land use: cropland,
forest, grassland, shrubland, wetland, water, impervious surface
(IS), and bare land. The average overall accuracy of the data is 84.
61%, and the average Kappa coefficient is .80 (Bouslihim et al., 2022).
The DEM datasets with 30 m spatial resolution were obtained from the
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Shuttle Radar Topography Mission (SRTM). The slope was derived
from the SRTM DEM dataset. The basic geographic data, NDVI, and
soil erosion datasets were obtained from the Resource and
Environment Science Data Centre of the Chinese Academy of
Sciences (https://www.resdc.cn). ArcMap10.4 was mainly used for
data processing and calculation. Distance analysis, reclassification, and
raster calculation of raw data are shown in Table 1. Ecological security
assessment uses zonal tools for statistical analysis. In the analysis of
spatial heterogeneity, a 1 km × 1 km grid was created based on the
fishnet tool, and hot spot analysis (Geti’s-Ord Gi *) was used in spatial
statistics tools to evaluate the cold and hot spot patterns of ecological

resistance values, and then cluster and outlier analysis (Anselin Local
Moran’s I) was used to compute local spatial autocorrelation features.
The ecological network construction process uses the cost distance
tool in the spatial analyst tools to obtain the ecological security spatial
distribution map and uses the cost path to extract the “ridgeline” on
the surface of the ecological security pattern. These processes will be
specifically introduced in the research methodology.

Ecological source patches mainly select objects with good habitat
quality and high value of ecological services as targets, such as
ecological wetland parks, forest reserves, nature reserves, scenic
spots, and other green patches (Zhang et al., 2022). Elevation and
slope affect the spatial distribution and utilization of land resources
(Wang et al., 2019; Tang et al., 2022). Land use type will affect the
material energy and information exchange within and between
ecological source nodes. Vegetation coverage can improve local
microclimate and play a positive role in the effective recovery and
protection of biodiversity. Rivers can purify harmful substances and
improve the ecological function of the environment. The closer the
river is, the better the expansion of the ecological source. On the
contrary, the influence of traffic roads and other indicators on the
surrounding land use, the change of production land use structure,
and landscape patterns are mainly considered. Generally speaking, if
the distance from the road is closed, the gravitation of urban
construction expansion will be greater, which is more
unfavorable to the spatial expansion of ecological sources. The
level of ecological security is divided into one to four levels from

FIGURE 1
Location of the study area.

TABLE 1 List of the in this study.

Category Data Year Spatial resolution

Land use Land use 2020 30 m

Terrain factors DEM/slope 2010 30 m

Basic data Boundaries/rivers 2017 Vector

Ecological factors NDVI 2019 1 km

Soil erosion 2010 1 km

Road networks Distance to main roads 2020 30 m

Distance to railways 2020 30 m
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high to low (Table 2), and the corresponding weight is assigned to
each ecological evaluation resistance factor.

2.3 Methods

2.3.1 Minimum cumulative resistance model
The least cumulative resistance model can calculate the resistance

of spatial dimensions in heterogeneous space to obstacles to biological
migration and species diffusion. The channel with the least cumulative
resistance is the channel with the lowest cost of consumption and the
highest possibility of expansion (Wang et al., 2021). The formula is
given as follows:

VMCR � f min ∑
i�m
j�n DijRi, (1)

where VMCR is the value of the minimum cumulative resistance
surface; f is a function of the positive correlation that reflects the
relation of the least resistance for any point in space to the distance
from any point to any source and the characteristics of the landscape
base surface; min denotes the minimum value of cumulative resistance
produced in different processes of landscape unit i transforming into a
different source unit j; Dij is the spatial distance between landscape
unit i and source unit j; and Ri denotes the resistance coefficient that
exists in transition from landscape unit i to source unit j.

The ecological source patches in the model in this study mainly
choose objects with good habitat quality and high ecological service

TABLE 2 Value system for ecological resistance factors.

Ecological land expansion resistance 1 2 3 4

Elevation (m) <2600 2600–2800 2800–3000 >3000

Slope (°) <7 7–15 15–25 >25

Landscape type Forest grass Water Cultivated Construction

NDVI >75% 75%–50% 50%–30% <30%

Soil erosion (t·km−2·a−1) <1000 1000–2500 2500–5000 >5000

Distance from tourist attractions (m) <1000 — 1000–5000 >5000

Distance from industrial land (m) >1500 1000–1500 500–1000 <500

Distance from water bodies (m) <100 100–500 500–1000 >1000

Distance from roads (m) >2000 1000–2000 500–1000 <500

Distance from settlements (m) >1500 1000–1500 500–1000 <500

FIGURE 2
Location of the ecological source patches.

Frontiers in Environmental Science frontiersin.org04

Chen et al. 10.3389/fenvs.2022.1106379

47

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.1106379


value as targets, such as ecological wetland parks, forest reserves,
nature reserves, scenic spots, and other green space patches. The
determination of the drag factor is a key step in the establishment of
the drag surface model. Based on the combination of natural factors
and socioeconomic factors and following the principles of accessibility
and easy quantification, the study selected 13 indicators of natural
factors and socioeconomic factors as resistance evaluation factors in
the resistance surface model to form the ecological security evaluation
index system (Figure 2). The resistance factor is divided into four
levels, and the resistance coefficient is expressed as 1, 2, 3, and 4
(Table 2). The larger the value is, the greater the resistance is and the
higher the cost is. ArcGIS 10.4 was used to establish the ecological
security resistance surface model, and the cost-distance module was
used to calculate the cumulative cost resistance surface of ecological
sources. Based on MCR, the cost-path tool is used to identify the
minimum cumulative cost path between ecological sources as the basis
for potential ecological corridors.

2.3.2 Gravity method
The intensity of interactions between the source and the target can

be used to characterize the effectiveness of the potential ecological
corridor and the importance of connection plaques When the cost
distance between plaques is larger, the interaction is smaller, and the
importance ecological corridors connecting become strong (Su et al.,
2019). Based on the gravity model to quantify the ecological source of
the MCR model to extract the potential between the importance of
ecological corridors and calculate the interaction between the
ecological source matrix, quantitative evaluation is used to select
the intensity of the interaction between source plaques, judging
from the strength size of the corridor in the area of relative
important degree, to identify potentially important ecological
corridor, and form an ecological security network. The effectiveness
of potential ecological corridors and the importance of connecting
ecological patches are mainly expressed by the strength of the
interaction between the source and the target. The calculation
formula of the gravity model is given as follows:

Gab � Na · Nb

D2
ab

�
1
Pa
× ln Sa( ) 1

Pb
× ln Sb( )

Lab
L max
( )

� L 2
max ln SaSb( )
L2
abPaPb

, (2)

whereGab is the interaction force between patches a and b of ecological
origin.Na andNb are the weights of patches a and b, respectively.Dab is
the standardized value of the potential ecological corridor resistance
between patches a and b of the ecological origin. p is the resistance
value of patches. S is the area of patches. Lab is the cumulative
resistance value of the ecological corridor between patches a and b.
Lmax is the maximum value of the ecological corridor resistance value
in the study area. The landscape resistance of potential ecological
corridors will affect species migration. A small resistance is conducive
to the migration and dispersal of species, and vice versa, it hinders the
connection between species.

2.3.3 Exploratory spatial data analysis
Exploratory spatial data analysis explores the distribution

characteristics of spatial objects based on the correlation and
degree analysis of sample values in the space. Global spatial
autocorrelation reflects the overall trend of spatial correlation of
observed variables in the whole research area (Rong et al., 2022).
At a given significance level, if Moran’s I is significantly positive, it

means that the area with high (or low) ecological security resistance
has a significant spatial agglomeration. The closer the value is to 1, the
smaller the overall spatial difference is. On the contrary, whenMoran’s
I is significantly negative, it indicates that there is a significant spatial
difference in the level of economic development between the region
and the surrounding areas. The closer the value is to -1, the larger the
overall spatial difference is. WhenMoran’s I is 0, the space is irrelevant
(Liu et al., 2022). The formulas are as follows:

I � N
S0

· ∑
N
i�1∑

N
j�1wij Xi− �X( ) Xj − �X( )
∑∞

n�1 Xi − �X( )2
, (3)

S0 � ∑
N

i�1∑
N

j�1wij, (4)

where i ≠j;N is the number of research objects; X is the observed value;
�X is the mean value of Xi,wij is the space weight matrix between i and j
of the research object; the value of space adjacent is 1 and that of non-
adjacent is 0. Moran’s I results were statistically tested by the Z-test.

Z I( ) � I − E I( )( )/ 						
Var I( )√

, (5)
where Z(I) is the mathematical expectation, with a value of -1/(n-1).
Var(I) is the variance of I. If the Z value of the positive statistic of
Moran’s I is larger than the function of normal distribution, the critical
value of 1.96 is at the level of .05. This shows that there is a significant
positive correlation in spatial distribution. Although global spatial
autocorrelation analysis can reveal the dependence of things as a
whole, it ignores the possibility of local instability. We need to
introduce the local spatial autocorrelation (LISA) method to reveal
the autocorrelation of local regional units in adjacent space. We used
Local Moran’s I index to measure the heterogeneity of spatial elements
between regional units i and j, and the calculation formula is given as
follows:

Ii � Zi∑
n

i�1wijZj, (6)

where Z is the standardized result of observed values on space
elements i and j; wij is the space weight matrix. Getis-Ord Gi* can
further measure the characteristics of the local spatial autocorrelation.
It is used to identify high-value clusters and low-value clusters in
different spatial regions, that is, the spatial distribution of hot spots
and cold spots. The calculation formula is given as follows:

G*
i d( ) � ∑

n

j�1wij d( )Xj/∑
n

j�1Xj. (7)

To facilitate comparison and analysis, Gi*d) is standardized in this
study.

Z G*
i( ) � G*

i − E G*
i( )( )/

								
Var G*

i( )
√

, (8)

where E(Gi*) and Var(Gi*) are, respectively, the mathematical
expectation and coefficient of variation of Gi* and Wij(d) is the
spatial weight. If Z(Gi*) is positive and significant, it indicates that
the value around position i is relatively high (above the mean), which
belongs to a high-value spatial cluster (hot spot). On the contrary, if it
is negative and significant, it means that the value around position i is
lower than the mean and it belongs to the low-value spatial clustering
(cold spot area). In this study, a grid is created using ArcGIS 10.4, and
zonal statistics are performed on the ecological resistance surface with
a grid width of 1000 m × 1000 m. Then, the generated point data were
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extracted to associate with the grid. The ecologically safe global
Moran’s I index calculation is performed in GeoDa 1.14 software.
Hot spot analysis was used in ArcGIS 10.4 to analyze the hot and
cold features of the ecological security pattern and its significance
(Nie et al., 2021). Eventually, cluster and outlier analysis was used
to obtain the spatial clustering results of the ecological security
pattern.

3 Results

3.1 Ecological security assessment

According to the current situation of the county’s tourism
resources and the background of the ecological and tourism
industries as poverty alleviation projects, large landscape
patches with good habitat conditions and natural reserves are
selected as ecological source nodes, and 13 large habitat patches
are selected as regional organisms. The total area of diverse source
patches was 328.49 km2. These patches are the main activity range
and important habitat of biological species in the study area and
provide important guarantees for the survival and reproduction of
species. They have extremely important ecosystem functions and
ecological values. According to the combination of natural factors
and socioeconomic factors, and following the principles of
accessibility and quantification, 10 indicators of natural factors
and socioeconomic factors were selected as the resistance
evaluation factors in the resistance surface model. The
ecological resistance surface was established. According to the
ecological resistance value factors in Table 3, we used the grid
data processing method to establish the comprehensive resistance
surface of ecological factors and obtained the spatial distribution
map of the ecological security evaluation level (Lin et al., 2022; Wei
et al., 2022). The spatial distribution of the ecological resistance
comprehensive resistance surface shows that the minimum
ecological resistance is 1.0150, the maximum ecological
resistance is 3.6150, and the average ecological resistance is

2.5489. To make the classification of the ecological security
pattern at the township level more reasonable, first, we use the
average value of ecological resistance as a limit and binarize the
ecological security resistance surface. Then, we used the zonal tool
of ArcGIS 10.4 to make statistics on the grid surface of ecological
security resistance (Figure 3A). In this process, we classified the
ecological security resistance values of 17 towns based on the ratio
of the ecological resistance values “grid area below average” and
“grid area above average.” Finally, we used the Natural Breaks
(Jenks) method to compare the values for classification. The ratio
of the ecological security classification is .4834–2.5616. Among
them, the lowest security level is .4834–.5647, the lower security
level is .5648–.7716, the medium-security level is .7717–1.0076, the
higher-security level is 1.0077–1.3577, and the highest security
level is 1.3578–2.5616.

In the spatial characteristics of ecological security, Figure 3B
shows that the ecological security pattern of the county is
characterized by high east and low west. The highest security
level area mainly includes Songshan and Dongdatan, and their
area accounts for 14.76% of the total area. The higher-security
level areas are Huazangsi, Xidatan, and Dahonggou, and their area
accounts for 14.20% of the total area. The medium-security level
area is distributed in Qilian, Danma, Tiantang, Duoshi, and
Saishisi, and their area accounts for 28.37% of the total area.
The lower-security level area is mainly distributed in Shimen and
Dachaigou, and their area accounts for 9.01% of the total area. The
lowest security level areas are mainly distributed in Haxi,
Maozang, Anyuan, Tanshanling, and Zhuaxixiulong, and their
area accounts for 33.66% of the total area. The ecological security
evaluation results show that the ratio of the area of the highest
security level and the higher-security level to the total area is
28.96%. The area of the lower-security level and the lowest security
level accounted for 42.67%. It shows that the ecological security
level of Tianzhu is generally low. At the same time, areas above the
medium-security level are mainly closely related to the
distribution of river systems. The terrain in these areas is
relatively flat. The lower-security level areas are mainly

FIGURE 3
(A) Grid map of ecological resistance and (B) classification of ecological security.
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mountainous areas with high altitudes and large slopes. These areas are
vulnerable to ecological conditions due to natural conditions and
human activities.

3.2 Spatial heterogeneity analysis of
ecological security

Analysis of the spatial distribution and agglomeration spatial
heterogeneity of the ecological security level in Tianzhu was
carried out. The results show that the global Moran’s I index
for ecological security is .4469. This indicates that there is a spatial
autocorrelation in the ecological security resistance value.
Moran’s I generally uses the Z method for significance testing.
The significance of Moran’s I index and Z-Score test is that when
Moran’s I > 0, Z-Score > 1.96 (p-value < .05), Moran‘s I value can
indicate the significance of its spatial positive correlation. The
Z-Score of the ecological security evaluation index is equal to
70.1893 (p-value = .0000), which is much greater than 1.96,
indicating that the spatial distribution of ecological security
levels of a county shows a strong positive spatial correlation.
Figure 4A shows that hot spots and cold spots have significant
spatial differences. The cold spot is mainly distributed in the east.
The hot spot is mainly distributed in the west. Hot spots and cold
spots have a larger proportion of 99% and 95% confidence
intervals. In addition, not significant grid cells are regions
where the ecological security resistance index is not highly
spatial. The value of the local autocorrelation Moran’s I index
divides The geographic space is divided into four parts based
on the value of the local autocorrelation Moran’s I index:
“high–high (HH), low–low (LL), high–low (HL), and low–high
(LH)." Among them, the high–high cluster indicates that the
central area with a high ecological security resistance index has
a high ecological security resistance index in the surrounding
area, and it is reflected in the spatial correlation as a diffusion
effect (Peng et al., 2018). The low–low cluster indicates that the
ecological security resistance indexes of the central area and

adjacent areas are low, and they belong to a low level of
ecological security.

At the same time, there is a significant positive spatial
correlation between the high–high and low–low ecological
security resistance indexes in the geographic space. High–low
indicates that the high-adjacent value of the ecological security
resistance index in the central area is low, and it exhibits a
polarization effect in spatial correlation. Low–high indicates that
the resistance index of ecological security in the central area is low
and that of the adjacent is high. It belongs to the transition zone in
spatial correlation. According to Figure 4B, the ecological security
resistance index of the county is mainly based on two types of
high–high and low–low agglomerations, which have obvious
spatial distribution characteristics of flakes, while the high–low
and low–high types in space. The effect of aggregation is not
obvious. For the high–high distribution area, its ecosystem is
relatively fragile, and geological hazards and soil erosion are
highly sensitive (Kang et al., 2021; Liu et al., 2022). Biodiversity
protection should be strengthened, and biological measures and
engineering should be combined to control soil erosion,
moderately develop ecological tourism, and develop tourism
agriculture. For the low–low area, under the guidance of land
space planning and ecological planning, stricter use controls
should be implemented to ensure the rational use of land,
coordinate the orderly expansion of urban land use, and
strengthen the protection of cultivated land and ecological
conservation.

3.3 Ecological corridor identification and
optimization

3.3.1 Identification of potential ecological corridors
Construction of the Tianzhu ecological security network based

on the MCR model. The results show that the lowest resistance
value of the ecological cumulative consumption resistance surface
is 0, and the highest value is 108,564.9. High resistance values are

FIGURE 4
(A) Hot spot and (B) LISA detection of the ecological security evaluation index.
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mainly distributed in the southeast and northwest regions. The
southeast region is mainly densely distributed in towns and
villages. The northwest direction is concentrated on the snow-
covered mountains above 4,000 m. The area of the low resistance
value is widely distributed. It is mainly in the periphery of the
northwest alpine region of the county, and it is an area with high
habitat quality. Then, we calculated the minimum cumulative
consumption path between each ecological source patch and other
ecological source patches. The potential ecological corridors are
established, and the cumulative resistance value of each potential
ecological corridor is calculated (Figure 5A). The results showed
that a total of 156 potential ecological corridors were generated
in the study area. We calculated and identified 33 important
corridors through the gravity model. Among them, there
are 12 secondary potential corridors with an importance value
between 50 and 100. There are 21 first-level potential corridors
with importance values greater than 100. There are 123 general
corridors with importance values less than 50. It can be
known from the table of ecological gravitation between
ecological source nodes that the importance values of the
interaction intensity between the ecological patches selected in
the study area are significantly different. The minimum value is
7.8182, which indicates that the interaction between ecological
source patches 3 and 13 is the weakest, and the landscape
resistance between ecological source patches is very large.
The maximum value is 1090.7625, which indicates that the
interaction between ecological source patches 3 and 7 is the
strongest. The ecological resistance between the ecological
corridors is relatively small, and the quality of habitat
conditions is high. As ecological corridors play an important
role in the richness, migration, and diffusion of biological
species, it is necessary to strictly control and protect important
ecological corridors during the construction of an ecological
security network (Padró et al., 2020; Liu et al., 2021). At the
same time, the ecological pattern of general corridors should also
be improved and optimized in planning such as green space

system planning to improve the habitat suitability of this type
of ecological corridor.

3.4 Optimization of the spatial layout of the
ecological network

Ecological nodes are generally located at the weakest point of the
ecological function in ecological corridors. They are mainly composed
of the intersections of the smallest path and the largest path or the
intersection of the smallest path. It is beneficial to reduce the cost of
ecological corridors and improve the ecological service function of the
regional ecological network (Huang et al., 2021; Nie et al., 2021).
Therefore, according to the ecological source areas, corridors, and
ecological nodes, ecological planning and layout are carried out to
build a “point–line–surface” ecological service function network
system that blends. It is of great significance to strengthen
functional health and service sustainability. In the end, we
extracted 156 potential ecological corridors in the county, with a
total length of about 1248.00 km2, of which the length of the first and
second corridors accounted for 53.50% of the total length. In addition,
based on the generated potential ecological corridors and the
minimum cumulative resistance surface, the spatial analysis
function of ArcGIS was used to extract 112 ecological nodes
between the potential ecological corridors in the study area. We
refer to the actual spatial distribution of ecological source patches,
important potential ecological corridors, and ecological nodes in the
county and “Tianzhu Urban and Rural Overall Planning (2018–2035)"
issued by the local government. In the end, we proposed the ecological
network framework layout model of the “One Belt and Three Zones”
(Figure 5B). Among them, the “Belt” is mainly the Jinqiang river urban
agglomeration and development zone. The “Three zones” refer to the
ecological function areas sensitive to wind erosion and sand, the
ecological function areas for hydrological storage and soil
conservation, and the ecological function areas for water
conservation and biodiversity maintenance in the Qilian

FIGURE 5
(A) Spatial distribution of eco-nodes and potential ecocorridors, (B) Optimization scheme of ecological security.
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Mountains. Among them, the hydrological storage and soil
conservation ecological function areas are based on the Jinqiang
river, connecting Huazangsi, Shimen, Dachaigou, Anyuan, and
Zhuaxixiulong. The ecological function areas of water conservation
and biodiversity maintenance of the Qilian Mountains include
Tanshanling, Saishisi, Tiantang, Haxi, Danma, Qilian, Maozang,
and Dahonggou. Wind erosion and desertification-sensitive
ecological functional areas cover Songshan, Duoshi, Xidatan, and
Dongdatan.

4 Discussions

We aimed at the layout pattern of the ecological network
framework and protected the integrity of important ecological
source patches such as various types of scenic areas and nature
reserves in the region through land space planning and related
ecological function zone planning. We increased the patch area
through green space planning, improved the habitat quality of
ecological source patches in the ecological network framework,
enhanced the habitat suitability of biological species to patches, and
strengthened the protection and construction of ecological source sites
in the ecological network framework. We combined existing tourism
routes and green space networks to rationally plan corridors such as
roads, river systems, and shelterbelts in the area and further improve
the ecological network structure (Su et al., 2016; Yang et al., 2022b).
Since outward traffic roads mainly radiate outward from the center of
Huazangsi Town, we should strengthen the protection of ecologically
sensitive points where ecological corridors and roads intersect and
strengthen the coupling analysis of regional ecological sensitivity and
socioeconomic and industrial layout (Galli et al., 2020). We must
closely integrate ecological security construction with the development
of regional environmental governance projects, ecological industries,
and tourism poverty alleviation projects, which will help us carry out
the overall layout and planning of the ecological compensation
mechanism. The research methods and results also have certain
theoretical and practical significance for future research on
ecological security construction in the alpine region of the
Qinghai–Tibet Plateau.

Meanwhile, China’s natural zone transition zone is an important
regional ecological system. At different spatial scales and geographic
locations, there are obvious transitional characteristics of the terrain,
climate, hydrology, soil, vegetation, and other factors (He et al., 2019).
Wind erosion and desertification-sensitive ecological function areas
are generated based on the environmental characteristics of the arid
regions in the northwest. The Qilian Mountains’ water conservation
and biodiversity conservation ecological function zones are
determined based on the climatic characteristics and topographic
features of the Qinghai–Tibet Alpine Region (Zhou et al., 2021).
The hydrological storage and soil conservation ecological function
zones are formed by the unique environmental characteristics of the
eastern monsoon region in the northwest, where the Loess Plateau,
Inner Mongolia Plateau, and Qinghai–Tibet Plateau meet. The Yellow
River and its tributaries form a spatial distribution pattern. As well as
the layout of regional transportation arteries. These three typical
characteristics have important impacts on regional ecosystem security.

The ecological security pattern method based on the MCR model
is widely used in the research of urban planning, land use, and
ecological evaluation. It has certain advantages in the expression of

ecological processes and spatial visualization of influencing factors.
This study mainly uses raster data based on the minimum cumulative
resistance model method to evaluate ecological security, extract
ecological corridors, and construct an ecological network
framework for Tianzhu (Guo et al., 2020). Overall, the research
results are more in line with the actual situation of the county. In
the currently implemented “Tianzhu Urban and Rural Overall
Planning (2018–2035)" and " The 14th Five-Year Plan for
Economic and Social Development and Long-Range Objectives
through the Year 2035 of Tianzhu County”, the importance of
ecological network construction in ecological security construction
was emphasized. This study uses the quantitative method based on
the MCR model. The layers of potential ecological corridors
extracted at different levels are richer, and the spatial
positioning of the corridors is clearer. The study of ecological
security patterns is a long-term and complex process, and the
research focus of this study does not consider the supporting
effect of the study area on the Hexi Corridor and the Qilian
Mountain area. Therefore, the research on the influence of the
ecological security pattern of the small-scale study area on the
larger spatial scale still needs to be further strengthened. In
addition, the ecological corridor in this study is a linear
element, which lacks the exploration of the width of the
ecological corridor and radiation channel. Corridors with
different widths can directly affect the function of the regional
ecosystem, and the utilization and demand width of corridors are
different for various biological species. How to determine the
optimal width of the ecological corridor in the study area?
Making it produce the maximum ecological benefits is a key
direction for subsequent research.

5 Conclusion

This study takes Tianzhu as the research area, establishes the
ecological resistance surface according to the ecological resistance
factor index, analyzes the spatial distribution characteristics of
ecological security level, selects large scenic areas and nature
reserves as ecological source nodes, and constructs ecological
source nodes of ecological accumulation and resistance surface.
Finally, the MCR model and gravity model are used to extract
potential ecological corridors and identify important potential
ecological corridors. The main conclusions are as follows. 1) The
level of ecological security is relatively low. Ecological security presents
the spatial characteristics of low north and high south. It has higher
ecological security and high-level areas occupying 32.79% of the total
county area, while lower and low-level areas account for 51.89%. The
ESDA analysis of the spatial distribution of ecological security shows
that the global Moran’s I index is .4469, and the results of the hot spot
analysis show that the ecological security level of the county is mainly
high–high (HH) and low–low (LL). It has obvious flake-shaped
agglomeration and distribution characteristics. 2) Based on the
ecological network pattern characteristics of Tianzhu, we proposed
a layout model of the “One Belt, Three Zones” ecological network
framework for the construction and protection of ecological economic
development and tourism economic development. This model can
serve as an important supplement to the spatial layout of the ecological
industry and provide a decision-making basis for ecological security
planning.
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The Lancang River Basin (LCRB) is the largest international river in Southeast

Asia, and any change in its streamflow, i.e., due to the ecological environment

and runo�, may lead to disputes between countries to a certain extent.

However, the impact of vegetation change on streamflow in the LCRB needs

to be clarified. To assess the impact of vegetation change on streamflow

in the LCRB, the functional relationship between Budyko parameter (ω)

and Normalized Di�erence Vegetation Index (NDVI) was first computed for

constructing a modified Budyko formula. Finally, we quantitatively estimated

the influence of di�erent factors on streamflow variation in the LCRB

using the modified Budyko formula and the elastic coe�cient method.

The conclusions were as follows: (1) A sudden change in streamflow

at the Yunjinghong hydrological station appeared in 2005; (2) Budyko

parameter (ω) has a good linear functional relationship with NDVI in the

LCRB (p < 0.01); ND (3) vegetation variation played the largest driving

force behind streamflow variation in the LCRB, accounting for 34.47%. The

contribution rates of precipitation, potential evaporation, and anthropogenic

activities on streamflow variation from 1982 to 2015 were 16.83, 17.61, and

31.09%, respectively.

KEYWORDS

streamflow variation, vegetation variation, attribution analysis, adjusted Budyko

equation, Lancang River

1. Introduction

Since the Industrial Revolution, the global temperature rise has been confirmed by

a large number of climate observation data (Allen et al., 2009; Yin et al., 2021). The

rise in global temperature affects the changes in different events such as precipitation,

terrestrial water storage, runoff, and vegetation (Zhu et al., 2016; Chen et al., 2019;

Jing et al., 2020a,b; Yin et al., 2022a), leading to frequent occurrences of extreme

meteorological and hydrological disasters (Yin et al., 2018, 2022b; Gu et al., 2022; Ji

et al., 2022a), which in turn have a series of huge and far-reaching impacts on human

health, industrial and agricultural production, and social economy (Moore and Diaz,

2015). Climate warming has also become a major global social problem of common
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concern to all mankind (Tilley, 2015). In recent decades, many

vegetation restoration projects have been undertaken across

China, and the vegetation coverage has increased rapidly (Wei

et al., 2008; Lü et al., 2015). Vegetation plays a vital role in

terrestrial ecosystems and is involved in the process of radiation

balance and hydrological cycle, which effectively regulates the

ecological environment (Ji et al., 2021a). Vegetation change

affects the streamflow to a large extent by changing hydrological

processes (vegetation transpiration and interception) and then

affects the availability of water resources in the river basin

(Bi et al., 2020; Ji et al., 2022b). Runoff is a vital part of

the hydrological cycle. Streamflow variation directly affects

human activity and life, and its sustainable development

in the river basin. Previous studies found that, under the

comprehensive influence of various factors, the streamflow of

many rivers in the world shows a significantly decreasing trend

(Vörösmarty, 2000; Ji et al., 2021b). Therefore, calculation of

the impact of vegetation changes on streamflow quantitatively

helps to evaluate the hydrological effects of ecological restoration

measures and provide scientific guidance for water resource

management and ecological environmental protection in the

river basin.

To assess the impact of vegetation change on the water cycle,

many scholars carried out relevant research works. Liang et al.

(2015) found that Budyko parameter was positively correlated

with the area of ecological restoration in most river basins of

the Loess Plateau and ecological restoration measures are the

leading factor for the decline in runoff in most watersheds.

Li S. et al. (2016) found that the Normalized Difference

Vegetation Index (NDVI) in the Kuye River basin showed

a significant increase in the trends after 2000, while the

runoff coefficient showed a significant decline in the trends,

mainly because the vegetation change led to a reduction

in surface albedo and a significant increase in vegetation

evapotranspiration eventually led to a decline in runoff. Li Y.

et al. (2016) analyzed the impact of climate change and human

activities on the runoff in the middle and the lower reaches

of the Yellow River using the Budyko formula and the elastic

coefficient method. They arrived at the conclusion that the

change in the underlying surface caused by the conversion-of-

farmland-to-forest project has been the main factor for causing

this decline in runoff in the Kuye River basin since 2000.

Wang et al. (2020) discovered that a 1% increase of vegetation

coverage would increase by 3∼4mm evapotranspiration, while

ecological restoration plays an important role in the decline in

runoff in the middle reaches of the Yellow River. Most of the

studies calculated the contribution of underlying surface change

to runoff through the change in Budyko parameter, but the

functional relationship between vegetation change and Budyko

parameter was not clearly given because of which we cannot

directly quantify the contribution of vegetation change to runoff.

The Lancang River Basin (LCRB) is the largest international

river in Southeast Asia (Jing et al., 2020c). For transboundary

watersheds, changes in its streamflow, i.e., the ecological

environment and runoff, may lead to disputes between countries

to a certain extent. In recent years, due to the combined action

of human activities and climate change, the vegetation and

streamflow of the LCRB have undergone significant changes.

Therefore, many scholars have analyzed the characteristics

and influencing factors of vegetation changes and streamflow

changes in the LCRB. Li and Liu (2012) investigated the change

characteristics of vegetation coverage in the LCRB and its

relationship with climate factors. Their results illustrated that

the vegetation coverage in the LCRB had a fluctuating and

increasing tendency during the period from 2000 to 2009 and

that each year’s average annual NDVI was >0.45, indicating

that its ecological environment showed a trend in improvement.

Fan et al. (2012) analyzed the dynamic changes in vegetation

coverage in the LCRB from 2001 to 2010, and the results

showed that, from 2001 to 2010, the vegetation coverage in

the LCRB showed an upward trend as a whole. There were

regional differences in the change rate of NDVI, and most of

the regions showed an increasing trend in the change rate of

NDVI. Tang et al. (2014) found that the impact of human

activities on streamflow variation in the LCRB is slightly greater

than that of climate change (54.6 and 45.4%, respectively). Han

et al. (2019) assessed the impact of climate factors and human

activities on streamflow variation in the Lancang River Basin.

Compared to the base period (1980–1986), the contribution

rates of human activities to streamflow variation were 43 (1987–

2007) and 95% (2008–2014), respectively. Liu et al. (2020)

found that the annual average precipitation (Pr) of the LCRB

did not decrease significantly, the annual potential evaporation

(ET0) increased significantly, and the runoff depth (R) decreased

significantly. Compared with the base period (1961–2004), the

reduction in Pr is the main reason for the decline in runoff

depth during the 2005–2015 period, with a contribution rate

of 45.64%. The contribution rates of ET0 and human activities

to streamflow variation were 13.91 and 40.45%, respectively.

However, a few studies have computed the quantitative

contribution of vegetation variation to streamflow variation in

the LCRB.

Therefore, this study assesses the impact of vegetation

variation on the streamflow variation in the Lancang River

Basin (LCRB) by the following three steps: (1) Analyzing

the change characteristics of meteorological and hydrological

elements; (2) calculating the functional relationship between

the underlying surface parameters (ω) and NDVI, and

constructing a modified Budyko formula; and (3) estimating

quantitatively the influence of human activities, climate factors,

and vegetation on streamflow variation in the Lancang

River Basin using the modified Budyko formula. This study

is conducive to understanding the impact of ecological

restoration project on water cycle and is beneficial to the

management and rational utilization of water resources in

the LCRB.
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2. Study region

The Lancang River Basin (LCRB) originates from Jifu

Mountain in the Qinghai Province and flows through Qinghai,

Tibet, and Yunnan provinces, between 94.39◦∼103.66◦E and

20.87◦∼33.36◦N (Figure 1). After flowing out of China, the river

is called the Mekong River. The terrain in the LCRB is high

and fluctuates greatly. Therefore, the climate in the river basin

varies greatly. The temperature and precipitation increase from

the north to the south. The higher the altitude, the lower the

temperature and the lesser the precipitation. The runoff of the

river basin mainly comes from precipitation, groundwater, and

snowmelt. Dry and wet seasons in the LRCB are distinct. The wet

season lasts from May to October, and the dry season lasts from

November to April. The precipitation in the wet season accounts

for ∼85%, and heavy rains are mostly concentrated during the

period from June to August. Few torrential rains are witnessed in

the upper reaches, while main torrential rain areas are witnessed

in the middle reaches of the basin. Due to the changeable climate

type and geographical environment, the vegetation distribution

in the river basin shows latitude zonality and vertical zonality.

The vegetation types include alpine vegetation, meadow, shrub,

coniferous forest, mixed coniferous and broad-leaved forest, and

broad-leaved forest. TheNDVI value of the river basin rises from

northwest to southeast with strong spatial heterogeneity. The

low NDVI values are mostly distributed in the Naqu, Yushu, the

west of Chengdu, and the north of Diqing, with an altitude above

4,000m. The vegetation types are mainly alpine, alpine meadow,

and shrub. The high NDVI values are mainly distributed in

Pu’er and Xishuangbanna with rich vegetation types, mainly

subtropical and tropical vegetation (Zhang et al., 2020).

3. Data and methods

3.1. Data

The NDVI data from 1982 to 2015 were obtained from

NOAA Climate Data Record Advanced Very High Resolution

Radiometer (NOAA CDR AVHRR) data (https://www.

ncei.noaa.gov/products/climate-data-records/normalized-differ

ence-vegetation-index). First, data format conversion and

projection conversion were carried out on the NDVI data. Then,

the average value composite method eliminated the influence

of some random factors and was applied for calculating the

average of the grid. Finally, the NDVI data set of the Lancang

River Basin was obtained.

The data of meteorological stations in and around the

Lancang River Basin from 1982 to 2015 were gathered from

China Meteorological Data Service Center’s science data sharing

service network (https://www.cma.gov.cn/), mainly including

precipitation, temperature, wind speed, and relative humidity.

The runoff data of the Yunjinghong hydrological station

from 1982 to 2015 were obtained from the Hydrological

Yearbook and the National Earth System Science Data

Center (http://www.geodata.cn/).

3.2. Methods

3.2.1. Bernaola-Galvan segmentation algorithm

The Bernaola-Galvan segmentation algorithm (BG

segmentation algorithm) is a heuristic mutation detection

method for non-stationary time series data (Bernaola-Galvan

and Ch Ivanov, 2001). BG segmentation algorithm divides non-

stationary sequence data into multiple stationary sequences.

Each subsequence datum has different average values and

represents different physical backgrounds. After decomposition,

each subsequence datum has the variability of average periodic

scale. Therefore, BG segmentation algorithm is a new method

to effectively detect mutation years. Its calculation steps are as

follows (Feng et al., 2005; Wang et al., 2018):

(1) Taking the ith point as the dividing point, calculate the

average value and standard deviation of the left and right

segments around the ith point, which are recorded as µL(i),

µR(i), SL(i), and SR(i) (I = 1, 2, 3. . . , N – 1), respectively.

(2) Use the t-test to measure the significance of the difference

between UL and UR and is rescored as T(i):

T(i) =| [µL(i)− µR(i)]/SD| (1)

SD = [(S 2
L (i)+ S 2

R (i))/NL + NR − 2]1/2

× (1/NL + 1/NR)
1/2 (2)

SD is the joint variance; NL and NR are the numbers

of samples in the left and right segments around the ith

point, respectively.

(3) Calculate the significance probability P(Tmax) corresponding

to the maximum value (Tm) of t-test statistics by the Monte

Carlo simulation.

P (Tmax) = Prob (T ≤ Tm) (3)

P (Tmax) ≈

[(

1− Iv/(V+T2
m) (δv, δ)

)]γ
(4)

γ = 4.19InN – 11.54, δ = 0.40,N is the sample of the time

series x(t), v = N – 2, IX(a, b) is the incomplete β function.

P0 is a threshold set in this study, and its value range is [0.5,

0.95]. If P(Tmax) ≥ P0, X(t) is divided into two sequences;

otherwise, it is not divided.

(4) Repeating Steps (1)–(3), respectively, for the two newly

sequences to detect all mutation points. In addition, to ensure

the effectiveness of statistics, if the length of the subsequence

is ≤l0, the subsequence will not be segmented. Furthermore,

l0 ≥ 25.
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FIGURE 1

The location of hydro-meteorological stations in and around the study region.

3.2.2. Budyko hypothesis

The Budyko hypothesis represents the fact that actual

evapotranspiration is limited by water supply conditions

(mainly precipitation) and energy supply conditions (mainly

potential evaporation). It is an effective method to decompose

quantitatively the impact of different factors on streamflow

variation, which has been used widely (Wu et al., 2017; Ji et al.,

2021c).

The water balance equation in a basin is given as follows:

R = Pr − ET (5)

In the formula, R is the runoff depth, Pr is the precipitation,

and ET is the actual evaporation, which can be calculated

according to the Choudhury-Yang formula (Choudhury, 1999;

Yang et al., 2008).

ET =
Pr × ET0

(

Prω + ET0
ω
)1/ω

(6)

ω is the characteristic parameter of the underlying

surface, and its value reflects the change of human activity

intensity. Human activities can affect runoff variation in

the Lancang River Basin from many aspects, including

vegetation restoration projects, construction of water

conservancy engineering facilities, urban residents’ domestic

water, and agricultural irrigation water. ET0 represents the

potential evaporation (mm), which can be calculated by the
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Penman-Monteith formula.

ET0 =
0.4081 (Rn − G) + γ 900

T+273U2
(

ea − ed
)

1 + γ (1+ 0.34U2)
(7)

Combining Equations 5 and 6, we

converted the water balance equation to the

following equation:

R = Pr −
Pr × ET0

(

Prω + ET0
ω
)1/ω

(8)

Li et al. (2013) studied the relationship between NDVI

and Budyko parameter (ω) in 26 rivers and found that

there is a good univariate linear function relationship

between them.

ω = a× NDVI + b (9)

R = Pr −
Pr × ET0

(

Pra×NDVI+b + ET0
a×NDVI+b

)1/(a×NDVI+b)

(10)

3.2.3. Elastic coe�cient method

The elasticity coefficient is equal to the ratio of the

dependent variable change rate to the independent variable

change rate, which analyzes the sensitivity of dependent variable

to independent variable (Liu et al., 2012). The greater the

absolute value of elasticity coefficient, the stronger the sensitivity

of streamflow to various influencing factors. The elasticity

coefficient of streamflow to other factors can be expressed

as follows:

εx =
αR

αx
×

x

R
(11)

εx is the elastic coefficient; R is the runoff depth (mm);

and x refers to specific factors, such as precipitation, potential

evaporation, and vegetation. If εx > 0, it indicates that runoff

increases with the increase in variable x and vice versa. The

greater the absolute value of εx, the stronger the sensitivity of

runoff to variable x.

The elastic coefficients of runoff on precipitation

(εPr), potential evaporation (εET0 ), underlying

surface characteristic parameters (εω), and NDVI

(εNDVI) can be calculated by Equations 12–15

(Xu et al., 2014; Ji et al., 2022b).

εPr =

(

1+
(

ET0
Pr

)ω)1/ω+1
−

(

ET0
Pr

)ω+1

(

1+
(

ET0
Pr

)ω)

[

(

1+
(

ET0
Pr

)ω)1/ω
−

(

ET0
Pr

)

] (12)

εET0 =
1

(

1+
(

ET0
Pr

)ω)

[

1−

(

1+
(

ET0
Pr

)−ω
)1/ω

] (13)

εω =

ln
(

1+
(

ET0
Pr

)ω)

+
(

ET0
Pr

)ω
ln

(

1+
(

ET0
Pr

)-ω)

ω
(

1+
(

ET0
Pr

)ω)

[

1−
(

1+
(

ET0
Pr

)-ω)1/ω
] (14)

εNDVI = εw
a× NDVI

a× NDVI + b
(15)

The runoff time series data are divided into two periods: the

base period (T1) and the change period (T2). The average annual

precipitation rates in the T1 and T2 periods are marked as Pr1

and Pr2. The change in annual precipitation (1Pr) from T1 to

T2 period is expressed as follows:

1Pr = Pr2 − Pr1 (16)

Similarly, the change in potential evaporation (1ET0),

characteristic parameters of underlying surface (1ω) and NDVI

(1NDVI) from T1 to T2 all are calculated.

1ET0 = ET02 − ET01 (17)

1ω = ω2 − ω1 (18)

1NDVI = NDVI2 − NDVI1 (19)

1RPr , 1RE0, 1Rw, 1RNDVI , and 1RH , respectively,

represent the runoff depth change values caused by the change in

precipitation, potential evaporation, underlying surface feature

parameters, NDVI, and anthropogenic factors from the T1 to

T2 period.

1RPr= = εPr
R

Pr
× 1Pr (20)

1RET0 = εET0
R

ET0
× 1ET0 (21)

1Rω = εω
R

ω
× 1ω (22)

1RNDVI = εNDVI
R

NDVI
× 1NDVI (23)

1RH = 1Rω − 1RNDVI (24)

1R = 1RPr + 1RE0 + 1RNDVI + 1RH (25)

ηRPr = 1RPr/1R× 100% (26)

ηRE0 = 1RE0/1R× 100% (27)

ηRNDVI = 1RNDVI/1R× 100% (28)

ηRH = 1RH/1R× 100% (29)
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FIGURE 2

Interannual variation of runo� depth (A), precipitation (B), and potential evaporation (C) in the Lancang River Basin (LCRB) from 1982 to 2015.

ηRPr , ηRET0
, ηRNDVI , and ηRH , respectively,

represent the contribution rates of precipitation,

potential evaporation, NDVI, and human factors on

runoff variation.

4. Results and analysis

4.1. Trend analysis of meteorological and
hydrological data

The linear regressionmethod was used to analyze the change

trends of runoff depth, precipitation, and potential evaporation

in the LCRB from 1982 to 2015, and the results are shown in

Figure 2.

From 1982 to 2015, the runoff depth of the

LCRB showed a fluctuation and significant reduction

trend (p < 0.05), with a slope of −2.5492 mm/a

(Figure 2A). During the period of 1982–2015, the runoff

depth of the river basin in 2,000 was the maximum

(492.05mm), and the runoff depth in 2012 was the

lowest (230.91 mm).

During the period of 1982–2015, the precipitation

showed a non-significant decreasing trend (p > 0.05),

with a slope of −0.3858 mm/a (Figure 2B). From

1982 to 2015, the precipitation in 2001 was the

maximum (1,003.63mm) and that in 1992 was the

lowest (767.51 mm).

There was a significant fluctuating growth trend

in potential evaporation (p < 0.05), with a slope of

1.865 mm/a (Figure 2C). During the period of 1982–

2015, the potential evaporation was the maximum

in 2014 (1,036.25mm) and was the minimum in

1991 (920.77 mm).
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4.2. BG segmentation result of runo�
depth

In this study, the BG segmentation algorithm is used to

distinguish the abrupt years of the annual runoff data from 1982

to 2015 in the LCRB (Figure 3). P0 is set to 0.68 and l0 is set

to 25. From Figure 3, we found that t-test statistics takes the

largest value in 2005 and it is ∼3.75, which showed that the

annual runoff of the Yunjinghong hydrological station changed

dramatically in 2005 and its mutation year may be fixed as

2005. According to formula (4), we calculated the significance

probability P(Tmax), corresponding to the maximum value

FIGURE 3

The Bernaola-Galvan (BG) segmentation result of runo� depth

in the Lancang River Basin (LCRB) from 1982 to 2015.

(Tm) of t-test statistics, by the Monte Carlo simulation. If

P(Tmax) > P0, we believe that the sudden change in runoff is

significant. The result showed that the significance probability

P(Tmax), corresponding to the maximum value (Tm) of t-test

statistics (2005), is 0.688 > 0.68. This result further proves the

reliability of the result that the annual runoff series data of the

Yunjinghong hydrological station mutated in 2005.

4.3. Attribution analysis of streamflow
variation

For the Choudhury-Yang formula, if the values of

precipitation and potential evaporation in each year during the

period of 1982–2015 can be obtained, we calculated the Budyko

parameter (ω) in each year. The changing trend of NDVI and

Budyko parameter (ω) in the LCRB is shown in Figure 4. From

1982 to 2015, the NDVI of the Lancang River Basin displayed

a significant fluctuation increasing trend (p < 0.05), and its

average annual growth rate was 0.0023/a (Figure 4A). The

Budyko parameter (ω) displayed a significant growth trend (p <

0.05), with a slope of 0.094/10a (Figure 4B).

In the Budyko formula, precipitation (Pr), potential

evaporation (ET0), and underlying surface parameters (ω) are

the three driving factors affecting streamflow change. ω denotes

the characteristic parameters of the underlying surface and is

applied to characterize the influence of human factors. Previous

studies showed that vegetation changes have a significant impact

on Budyko parameter (ω) (Zeng and Cai, 2016; Zhang et al.,

2016; Abatzoglou and Ficklin, 2017). Li et al. (2013) studied the

relationship between NDVI and Budyko parameter (ω) in 26

FIGURE 4

(A, B) Change trend of Normalized Di�erence Vegetation Index (NDVI) and Budyko parameter (ω) in the Lancang River Basin (LCRB) from 1982

to 2015.
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FIGURE 5

The functional relationship between Normalized Di�erence

Vegetation Index (NDVI) and Budyko parameter (ω).

rivers and found that there is a good univariate linear function

relationship between them.

To reveal the quantitative relationship between vegetation

and Budyko parameters and identify the impact of vegetation

change on streamflow, this study established a linear functional

equation between NDVI and Budyko parameter (ω) by the

following two steps: (1) calculating the 10-year moving average

value of NDVI and ω, respectively, and (2) calculating the

coefficients (a and b) of the univariate linear regression equation

by the least square method. Finally, a linear regression equation

was obtained (Figure 5), a = 3.1418, b = −0.0928, and its R2 is

0.5105 and adjusted R2 is 0.4892 (p < 0.01).

According to the BG segmentation result of runoff data from

1982 to 2015, we divided the entire study period into two phases:

T1 (1982–2004) and T2 (2005–2015). Table 1 displays the values

of different variables in T1 (1982–2004) and T2 (2005–2015)

periods. The average runoff depths in the T1 (1982–2004) period

were ∼375.905 and 304.147mm in the T2 (2005–2015) period.

The average annual runoff depth decreased by 71.758mm from

T1 to T2, and the relative change rate was −19.09%. The

precipitation decreased by 18.336mm from 903.475mm in the

T1 period to 885.139mm in the T2 period, with a relative change

rate of −2.03%. The potential evaporation, Budyko parameter

(ω), and NDVI all increased from the T1 period to the T2

period, and their relative change rates were 5.15, 17.39, and

8.18%, respectively.

In this study, Budyko equation and the elastic coefficient

method were used to calculate the influence of various factors

on the streamflow variation in the LCRB (Table 2). The elastic

coefficient of runoff on precipitation (εPr) is 1.73, indicating

that a 10% increase in precipitation causes a 17.3% increase

of streamflow. The elastic coefficients of potential evaporation

(εET0 ), underlying surface characteristic parameters (εω) and

NDVI (εNDVI), are−0.73,−0.83, and−0.89, respectively. These

values indicated that a 10% increase of potential evaporation,

ω, and NDVI decreases by 7.3, 8.3, and 8.9% of streamflow.

Overall, the streamflow change in the LRCB is the most sensitive

to precipitation and the least sensitive to potential evaporation.

Compared to the period during 1982–2004, the contribution

rate of climatic factors to runoff depth variation during the

period from 1982 to 2015 is 34.47%. Among them, precipitation

and potential evaporation contributed 16.83 and 17.61%,

respectively. Moreover, the contribution rates of vegetation

variation and anthropogenic activities to runoff depth variation

during the period from 1982 to 2015 are 34.47 and 31.09%,

respectively. Overall, vegetation variation played the largest

driving force for streamflow variation in the LCRB.

The change in river runoff is caused by many factors,

such as human activities, climate change, and vegetation

change. The ecological and hydrological effects of vegetation

change serves as the research focus of hydrology and ecology.

Many studies assumed that the increase in afforestation

or vegetation reduces the runoff (Zhang et al., 2021; Ji

et al., 2022b), and the results of this study are consistent

with the conclusion (Table 2). With further restoration of

vegetation, the NDVI increases significantly. Although the

precipitation in this period increased by 2.03% and the potential

evapotranspiration increased by 5.15%, the runoff decreased

by 19.19%, indicating that vegetation gradually became the

dominant factor in controlling the runoff changes (Tables 1, 2).

Vegetation changes can affect runoff changes in many ways

as per the following points: (1) the increase in vegetation leaf

area increases evapotranspiration from plant leaves, leading

to a decrease in soil water content, which in turn affects the

surface runoff and (2) the increase in vegetation coverage

effectively increases the interception capacity of rainfall, thus

influencing the variability of runoff. However, vegetation

restoration cannot lead to an unlimited increase of NDVI;

therefore, with the vegetation restoration and stabilization,

the vegetation change will not have a great impact on the

runoff change.

5. Conclusions and discussions

5.1. Discussions

The implementation of a series of water and soil

conservation and ecological restoration measures in the

LCRB has significantly changed the underlying surface

parameters (ω). The value of ω in the Budyko equation

is closely related to soil, terrain, and vegetation coverage

types. The soil and terrain do not change in a short time,

while vegetation factors become the main factors affecting ω.

NDVI and ω showed a strong synergistic trend (Figure 5).
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TABLE 1 The eigenvalues of climate, hydrology, and Normalized Di�erence Vegetation Index (NDVI) variables in the Lancang River Basin (LCRB).

Periods R/mm Pr/mm ET0/mm ω NDVI

T1 375.905 903.475 961.336 1.219 0.428

T2 304.147 885.139 1,010.832 1.431 0.463

1 −71.758 −18.336 49.496 0.212 0.035

TABLE 2 Attribution analysis of streamflow variation in the Lancang River Basin (LCRB).

εPr εET0 εω εNDVI 1RPr 1RET0 1RNDVI 1RH ηRPr ηRET0 ηRNDVI ηRH

1.73 −0.73 −0.83 −0.89 −12.47 −13.04 −25.54 −23.04 16.83% 17.61% 34.47% 31.09%

The contribution analysis of vegetation restoration to runoff

changes verifies further the fact that the increase in vegetation

coverage causes the attenuation of runoff in the LCRB

(Table 2).

The situation that improper vegetation reconstruction

reduces water resources should be highly concerning. The

government should reasonably plan vegetation restoration

according to the actual conditions prevalent at the river basin.

Yang et al. (2019) analyzed the impact of different vertical

structures on water yield conducting a simulated rainfall

experiment in the field, and recorded that the vertical structure

of vegetation is an important factor influencing water yield.

Therefore, according to the vegetation coverage conditions, the

area can be divided into two: vegetation restoration period

and key protected areas. The key protection areas can be

optimized and the vegetation structure adjusted to increase

the runoff as much as possible while keeping the ecological

environment less changed. Moreover, the vegetation restoration

area should be based on artificial vegetation restoration, and

the restoration structure of vegetation should be planned

scientifically in the restoration process to control the reduction

of runoff flow as much as possible, and, these works need to be

studied further.

Although this study has analyzed in depth the sensitivity

of streamflow variation in vegetation variation in the LCRB,

there are still some indefiniteness as given in the following

points: (1) There are a few meteorological stations in the study

area. To increase the number of meteorological stations, some

meteorological station data outside the study area are added

to the study, but there are only 29 meteorological stations.

Obtaining the mean value of meteorological elements’ data in

the LCRB through the Kriging interpolation method would

lead to some indefiniteness. (2) The attribution analysis of

streamflow variation assumes that the precipitation, potential

evaporation, and underlying surface parameter are independent.

However, in fact, the three variables are interrelated. Climate

change affects the growth of vegetation (Liu et al., 2016).

The underlying surface change also provides feedback on

atmospheric movement and affects regional and even global

climate change. (3) The water conservancy project built by

humans directly affects the temporal and spatial changes of

monthly and annual runoff. However, this study considers only

the impact of ecological restoration on runoff, neglecting the

impact of water and soil conservation engineering measures on

runoff leads to some indefiniteness.

In the follow-up study, the water heat coupling model

(Leuning et al., 2008; Zhang et al., 2018) reflecting the

information on vegetation change should be used for accurately

simulating the hydrological process of streamflow variation

affected by climate factors, vegetation variation, and reservoir

operation. In addition, most of the studies ignored the influence

of climate change on the vegetation in the river basin and did not

distinguish the contribution rate of human activities and climate

factors to vegetation change. Subsequently, we will calculate the

contribution of vegetation restoration caused by climate change

to runoff change.

5.2. Conclusions

Based on the meteorological, hydrological, and NDVI data

of the Lancang River Basin from 1982 to 2015, this study

analyzed first the change characteristics of meteorological

and hydrological elements. Then, the functional relationship

between Budyko parameter (ω) and NDVI was calculated

for constructing a modified Budyko formula. Finally, we

estimated quantitatively the influence of vegetation variation on

streamflow variation in the LCRB using the modified Budyko

formula and the elastic coefficient method.

The conclusions showed that (1) the sudden change in

streamflow at the Yunjinghong hydrological station appeared

in 2005, (2) Budyko parameter (ω) has a good linear functional

relation with NDVI in the LCRB (p < 0.01), and (3) vegetation

variation played the largest driving force for streamflow

variation in the LCRB, accounting for 34.47%. The contribution

rates of precipitation, potential evaporation, and anthropogenic

activities on streamflow variation from 1982 to 2015 are 16.83,

17.61, and 31.09%, respectively.
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Promoting animal husbandry industry is important to help strengthen the

agricultural sector. This study starts from both socio-economic and natural

factors perspectives. Based on an exploratory spatial analysis, spatial

econometric model, and geographically weighted regression (GWR) model,

selecting the 13 Provinces of North China as the study area, this study analyzes

the spatio-temporal differences and the driving factors. This study found: 1)

Between 2006 and 2017, the spatial and temporal differences of GDP in the

13 provinces were statistically significant, with increased total production values

and a slowed growth of the industry. In addition, the study area showed an east-

west dichotomy in husbandry industry. 2) GDP had shown obvious spatial

agglomeration, of which areas with the high production value were in east

of Beijing, and areas with low production value were in western Inner Mongolia,

Xinjiang and Gansu. 3) Population, animal husbandry output values, numbers of

large livestock, and cultivated areas had greatly influenced the GDP of

13 provinces in north China. 4) The three influencing factors on GDP in the

13 provinces were found to be population, animal husbandry output values, and

the sizes of cultivated areas. We should synthesize these influencing factors,

supplemented with public policy concessions and compensatory measures to

develop policies for improving the level of local economic development. Based

on this, this study aims to provide a reference for decision making to promote

the coordinated development of livestock husbandry and economic growth in

China, and even provide a scientific reference for the management of similar

pastoral areas in the world.

KEYWORDS

animal husbandry, GDP growth, spatio-temporal differentiation, spatial econometric
model, North China

1 Introduction

Animal husbandry, an important component of agriculture, is also a pillar industry

that supports the survival and development of farmers and herdsmen (Weindl et al., 2017;

Aleshina et al., 2020; Maryunani, 2021; Dai et al., 2022), especially in north China. The

animal husbandry industry accounts for about half of the global agricultural economy and
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makes important contributions to global food security (Foley

et al., 2011; Wang G. et al., 2016; Maryunani, 2021). However,

global food demands are expected to continue to increase in the

coming decades (Tilman et al., 2002; Tilman et al., 2011; Mueller

et al., 2012). This is particularly the case in developing countries,

where the consumption of meat, eggs, and milk is expected to

increase significantly due to increased population and rising

income levels (Godfray et al., 2010; Thornton, 2010; Kastner

et al., 2012; Gerber et al., 2013; Ethier et al., 2017; Valenzuela-

Lamas and Albarella, 2017; Parlato et al., 2022).

China has 393 million hectares of grasslands, accounting for

42% of the country’s total land area. With the continuing

economic development in China and the living standards of

herresidents continue to rise, along with the trend that the animal

husbandry industry is shifting from traditional household

production (self-consumption and local market allocation) to

intensive industrial production (Wang X. et al., 2016; Tan et al.,

2017; Cheng et al., 2022), demands for livestock output in China

are projected to continue to increase in the near future. This

growing demand for animal products, such as meat, eggs, and

milk (Shimokawa, 2015; Makkar, 2016; Zhao X et al., 2017), has

stimulated further development of the animal husbandry

economy. As a result, the share of animal husbandry

promoted from 14.98% during the early implementation of

the Reform and Opening Up Policy in early 1980s to 28.28%

in 2016 (Fu et al., 2012; Qu et al., 2021). However, compared to

developed countries, this proportion is still relatively low when

considering conditions in other developed countries. For

example, the outputs of animal products in the United States,

United Kingdom, and France account for 48%, 70%, and 80% of

total agricultural output, respectively. Since animal husbandry in

China relies mainly on natural and cultivated forage resources

(Thornton and Gerber, 2010; Godber andWall, 2014) and 90% of

grasslands has suffered different some degrees of degradation due

to overgrazing (Li et al., 2021), it is essential to explore the driving

factors that influence the development of animal husbandry and

their effects on the animal husbandry economy in order to adapt

to and mitigate the impact of global changes in economic

development.

Developing the animal husbandry economy to drive up GDP

growth without sacrificing the ecological environment has

become a focus of international research. Jayaraman and

Nyachoti (2016) approached the subject from the perspective

of livestock breeding and proposed that the effectiveness in

breeding could be the key to a healthy livestock development.

Liu et al. (2022a) and Yu et al. (2021) considered that the

development of animal husbandry was, to some extent,

affected by demographic factors. Influenced by global

warming, climate in many regions had changed greatly, which

could directly affect vegetation dynamics and biomass.

Furthermore, climate changes would also influence the

structure and a region’s carrying capacity of livestock

(Bernués et al., 2011; Middleton et al., 2015; Yao et al., 2017).

Morgan-Davies et al. (2012) studied animal husbandry in the

hilly areas of northwestern Europe and found that climate

changes and production barriers were the primary factors that

hindered the production of animal husbandry and economic

development in their study areas. Xie et al. (2022) assessed the

vulnerability of animal husbandry toward global climate changes

from a macro perspective. Similarly, the Qinghai-Tibet Plateau,

an important pastoral area in China, was considered byWei et al.

(2017) and Liu et al. (2014) that global warming and the shortage

of forage are the main reasons for the high vulnerability of the

local animal husbandry. At the same time, the rapid growth in

animal husbandry has led to further increases in the

concentration of global greenhouse gases (GHG) in many

regions (Hyland et al., 2016; Pardo et al., 2016; Sakadevan and

Nguyen, 2017). To that end, Wang et al. (2021) and Zhuang and

Li (2017) suggested that GHG emissions were influenced by

animal husbandry industry in China. Scholars have also

investigated the effects of grazing on the concentration of soil

organic carbon (Hewins et al., 2018; Windirsch et al., 2022),

phosphorus in grasslands (Sattari et al., 2016), and carbon

emissions (Fischer et al., 2022).

In the aforementioned studies, although scholars have

made certain achievements in research on the animal

husbandry economy, the main regions of focus in those

studies have been the United States and European

countries, both are developed economies. But studies about

China, on the other hand, have tended to adopt the

perspective of environmental protection. Since China

joined the World Trade Organization (WTO) in 2001, the

proportion of animal products in exported agricultural

products in its total economy has increased. Animal

husbandry has gradually become a primary industry of the

nation’s economy. There is insufficient research on the spatial

spillover effects of factors that could affect the animal

husbandry economy and their comprehensive impacts from

both anthropogenic and natural environmental factors. In

addition, the majority of the studies have approached the

subject from a provincial and municipal level. However,

studies that targeted larger, more generalized regions are

few and limited. Moreover, existing research mostly utilized

time-series analyses rather than a geospatial perspective to

examine the spatial dependency of animal husbandry

development at a regional level. Such approaches tend to

assume one model fits all regions in a study area,

i.e., spatial stationarity, which of course, is usually not the

case in reality. Therefore, in light of the gaps in existing

research and limitations of animal husbandry development

in China, it is necessary to conduct a comprehensive study to

uncover the driving factors of the development of animal

husbandry and its contributions to China’s GDP. This study

selected 13 provinces, including provincial municipalities and

autonomous regions in north China, as the focus of research

and 2006 to 2017 as the research period in order to
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comprehensively investigate the impact of regional animal

husbandry on GDP. A spatio-temporal evolutionary

perspective was adopted and a spatial analytical method

was employed to explore influencing factors; an exploratory

analysis method was introduced to measure the spatial

differentiation of GDP of the 13 investigated provinces; an

econometric model was constructed to verify the existence of a

spatial spillover effect; and finally, GWR model was used to

quantitatively analyze the different levels of influence by

factors that affect the spatial distribution of GDP.

The purpose of the study is to provide a theoretical basis as a

reference for decision-making and policies by concerned

stakeholders, to facilitate the transformation of traditional

animal husbandry to modern animal husbandry, to assist in

the alleviation of the imbalance in the forage–animal

relationship, and to explore new development models for

animal husbandry that are in accordance with the

characteristics of pasture areas. And in order to maintain a

healthy development in animal husbandry and to create a

solid foundation for a sustainable development of the

agricultural economy in China.

2 Methods and data sources

2.1 Study area

The 13 provinces of north China (31°-54°N, 73°-136°E) in this

study, consisting of 124 prefecture-level cities that span over

three “steps” in China’s topographic “staircase” and four climate

zones (wet/semi-wet and arid/semi-arid), accounts for about 57%

of the total area of China (see Figure 1). The area has four zones

four areas crossing wet, semi -humid, semi -drought and

drought. The regional differences and transitionability of the

climate are obvious, and the types of vegetation on the surface are

diverse and the ecological environment is relatively fragile. The

main grasslands, the agro-pastoral zone, and most of China’s

desert areas are all located in the study area.With abundant water

and forage resources, the region’s animal husbandry was the

most widespread in the country. The 13 provinces are a

representative area for research on animal husbandry

development in China as well as serving as a model region for

other developing countries with a similar scale of animal

husbandry (Zhen et al., 2020; Yang et al., 2022).

FIGURE 1
Map of study area. Note: A represents the western part of the study area, B represents the central part of the study area, C represents the eastern
part of the study area.
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2.2 Data sources

The data employed in this study were mainly included the

following three types, which are shown in Table 1:

(1) Vector data of administrative regions: The vector data were

created with maps at a scale of 1:250,000.

(2) Socio-economic data: The socioeconomic data used in this

study include GDP, population, output values of animal

husbandry, numbers of large livestock, numbers of cattle,

numbers of sheep, and area sizes of arable land of all

geographic units in the study area.

(3) Raster data: The raster data used in the study include

classified images of grassland areas, surface temperature,

and precipitation. The spatial resolution of the data was

1 km, which was sufficient to meet the research needs,

considering the extent of the study area.

2.3 Methods

2.3.1 ESDA model
Exploratory spatial data analysis (ESDA) examines the

spatial dependency (spatial autocorrelation) of attribute values

of the 124 cities through data aggregation and spatial interaction

to reveal the regional structure of spatial variables, including

levels of global and local spatial autocorrelation (Rong et al.,

2022; Shi et al., 2022). This study used the Global Moran’s I to

examine if there existed statistically significant spatial

autocorrelation among data values of the spatial units.

Global spatial autocorrelation describes only the level of

spatial dependency among attribute values of the spatial units

being examines. It does not consider any local spatial

heterogeneity that may lead to the identification of the

locations of the clusters and types of spatial associations.

Therefore, this study used local spatial autocorrelation

coefficients to describe the levels of spatial dependence and

their different levels among the attribute values of the local

area units. A local indicators of spatial association (LISA) map

was constructed to identify the patterns of their local spatial

differentiation.

2.3.2 Spatial econometric model
Spatial autocorrelation analysis helps to reveal the patterns

and the levels of spatial clustering of GDP of the studied

provinces from a spatial perspective; however, the method is

unable to reveal the factors that influence the corresponding

spatial effects. To explore the potential effect of a set of carefully

selected indicators on the levels and patterns of spatial

agglomeration of GDP under the spatial spillover effect, this

study used the Lagrange multiplier (LM) test, which is the most

commonly used test in ordinary least square (OLS) models, to

construct a spatial lag model (SLM) and a spatial error model

(SEM) (Zhao Y et al., 2017).

2.3.2.1 Variable selection

Economic development is the product of human activities

and is influenced by factors from various dimensions. Most

studies have approached the subject from the perspectives of

physical geography, transportation advantages, human activities,

and economic policies (Amarasinghe et al., 2005; Liu et al.,

2022b). There exists only limited research on the impact of

animal husbandry on economic development in China if

compared to what had been done in other countries. In recent

years, human activities, climate changes, and grassland

management policies and management levels have been

considered as the main drivers of grasslands in north China

(Cheng et al., 2022). Therefore, based on past research and real-

life factors in the investigated area, and considering the scientific

nature, completeness, and availability of data, this study analyzed

the influencing factors of GDP of the 13 provinces using both

socio-economic and physical attributes of the cities in

13 provinces (Table 2). With GDP as the dependent variable,

husbandry output, population, number of livestock, arable land,

TABLE 1 Data sources.

Type of
data

Years Content Sourses (address)

Vector data — The digital boundary of administrative regions The Data Center for Resources and Environmental Sciences of the
Chinese Academy of Sciences (https://www.resdc.cn/)

Socio-
economic data

(2003–2018) GDP, population, output values of animal husbandry, numbers of
large livestock, numbers of cattle, numbers of sheep, area sizes of

arable land

Beijing Statistical Yearbook, Tianjin Statistical Yearbook, Hebei
Economic Yearbook, Shanxi Statistical Yearbook, Inner Mongolia
Statistical Yearbook, Jilin Statistical Yearbook, Liaoning Statistical
Yearbook, Heilongjiang Statistical Yearbook, Shaanxi Statistical

Yearbook, Gansu Statistical Yearbook, Ningxia Statistical
Yearbook, Qinghai Statistical Yearbook, Xinjiang Statistical

Yearbook, Other Data (http://www.stats.gov.cn/)

Raster data — classified images of grassland areas, surface temperature,
precipitation

The Data Center for Resources and Environmental Sciences of the
Chinese Academy of Sciences (https://www.resdc.cn/)
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grassland, temperature and precipitation level were selected as

the independent variables to explain the variation in GDP among

the cities of the 13 provinces.

2.3.2.2 Econometric model

The SLM model mainly examines whether the spatial

dependency between variables leads to spatial autocorrelation

and whether adjacent regions have a diffusion (spillover) effect in

the study area. The SEM model is mainly used to measure the

influence of error in the dependent variable of adjacent regions

on local observed values (Zhang et al., 2020a). The models can be

presented by the following formula:

SLM: y � ρWy +Xβ + ε (1)
SEM: y � Xβ + ε, where, ε � λWε + μ (2)

where, y is the dependent variable; ρ is the regression

coefficients; W is the weight matrix; β is the correlation

coefficients of the independent variables X; ε is the random

error term; λ is the spatial error coefficient; and μ is the random

error vector.

2.3.3 Geographically weighted regression (GWR)
The traditional OLS model is a non-spatial model that

assumes spatial stationarity of the association between

dependent and independent variables. It does not consider the

spatial heterogeneity of model parameters and cannot reflect the

differences in the impact of animal husbandry development on

GDP when the geographic environment is not constant

(i.e., spatial non-stationarity). This problem can be addressed

by using the GWR model. Extended from the OLS model, GWR

model embeds spatial factors and integrates the spatial

dependency and spatial heterogeneity in the model (Zhang

et al., 2020b; Chen et al., 2022). For that reason, this study

introduced the GWR model as part of the analysis.

The GWR model can be used to quantitatively evaluate

spatial instability, or what is often referred to as spatial non-

stationarity, of data values. It has been applied widely in different

fields (Cohen et al., 2015; Huang et al., 2015). The model can be

represented by the following formula:

yi � β0 ui, vi( ) +∑
k
βk ui, vi( )xik + εi (3)

where, (ui, vi) signifies the spatial position of region i; β0 (ui, vi) is

a constant term; k indicates the number of independent variables;

βk (ui, vi) is the value of the continuous function β (u, v) at point

(ui, vi); xik is the value of the kth independent variable of i; and εi
is the error term.

3 Results

3.1 Characteristics of the spatio-temporal
evolution of animal husbandry

GDP is perhaps the best indicator that can reflect the

economic level for a country/region comprehensively. The

contribution of animal husbandry to GDP is of particular

importance for the analysis in this study. Given that the

development of animal husbandry is mainly manifested by its

output value, this study used the output values of animal

husbandry to support the analysis of the contribution of

animal husbandry development on GDP.

Figure 2 shows that between 2006 and 2017, the GDP of the

investigated provinces continued to grow with decreasing

fluctuations in the growth rates over time. Specifically, GDP

TABLE 2 Index evaluation system.

Variable type Variable Indicator

Dependent variable Y GDP (1,000 million yuan)

A B

Independent variable Socio-economic factors X1 Output of animal husbandry (100 billion Yuan)

X2 Population (× 104)

X3 Large Livestock (× 104)

X4 # Cattle (× 104)

X5 # Sheep (× 104)

Natural factors X6 Arable Land (km2)

X7 Grassland (km2)

X8 Surface Temperature (°F)

X9 Precipitation (cm)
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increased from 3.073 trillion yuan (RMB) in 2006 to

16.907 trillion yuan in 2017. Animal husbandry has long been

the main driving force for economic development in the study

area. Owing to the implementation of key region-wide projects,

such as animal protection, improvement in the breeding system

of livestock and poultry, and restoring grazing lands to

grasslands, the increases of GDP reached a peak value in

2004. Thereafter, affected by the global financial crisis and

livestock and poultry diseases in 2012 and 2013, the growth

began to slow down. Thus, this study selected 2006 (the first year

of the study period), 2009, 2012 (both years with noticeable

changes in the growth of GDP), and 2017 (the last year of the

study period) to further explore the spatial differences in GDP

growth and output values of animal husbandry in the study area

(Figure 3). The results showed that GDP were higher in the

eastern regions but lower in the western regions of the study area.

This agglomerated trend became more apparent as time went on.

Moreover, the outputs of animal husbandry were positively

FIGURE 2
Evolutional Trends of GDP and Growth in the 13 Provinces of North China (2006–2017). Note: Sum (Total GDP); Growth (Growth of GDP).

FIGURE 3
Spatial Patterns of GDP and Livestock Production Values in the 13 Provinces of North China (2006, 2009, 2012, and 2017).
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correlated with changes in GDP. These trends could be related to

the characteristics of different climate zones and land types of the

region. Specifically, western areas of the study areas mostly

suffered from desertification and grassland desertification.

Owing to environmental factors (e.g., land desertification and

reduced biodiversity), GDP and output of animal husbandry in

the western areas of the study areas were lower than that of the

eastern areas in the study areas.

3.2 Verification of spatial dependency

3.2.1 Verification of global spatial
autocorrelation of GDP

To explore the spatial relationship of the adjacent areas, this

study calculated the Moran’s I values of GDP in the 13 Provinces

of North China between 2006 and 2017. Table 3 shows, as for

GDP, the values of Global Moran’s I were calculated (Table 3)

based on Eq. 1. The values of Moran’s I were all positive and were

statistically significant. They indicate a spatially agglomerated

distribution of the variable. The Z-scores of the calculated index

values were greater than 2.58 (p < 0.01), indicating that the GDP

of the provinces had significant and positive spatial

autocorrelation, which means provinces with high GDP

tended to cluster together as did among those with and low

GDP. In addition, as shown in Table 2, GDP in 2009 and

2012 showed a trend of recovery following a declining trend

before 2004. This trend is consistent with the overall growth

trend. These results further verify that 2006, 2009, and 2012 are

critical years during the study period.

3.2.2 LISA map of animal husbandry
development

The global spatial autocorrelation analysis shows the overall

spatial agglomeration pattern of GDP. Results assist the selection

of explanatory variables when constructing the research model;

however, they do not indicate the trend of aggregation of high

and low values between regions in the study area. Thus, a series of

LISA maps were created to visualize the spatial patterns of GDP

over time to explore the spatial agglomeration of the GDP

between neighboring cities in the 13 provinces of north China

(Figure 4).

Figure 4 shows, cities with high GDP, such as Beijing,

Baoding, Langfang, Tianjin, Zhangzhou, and Tangshan in the

eastern area, were found to be aggregated spatially (high–high

agglomeration, H–H). Zhangjiakou and Chengde, two cities to

the north of the H–H zone, appeared to be agglomerated towards

the H–H zone. Cities with low GDP, such as Inner Mongolia,

Xinjiang, and Gansu in the western part of the study areas, were

also found to be spatially agglomerated (low–low agglomeration).

The local spatial agglomerations among other provinces and

cities were not significant. Moreover, during the study period, no

apparent changes were observed in the statistically spatial

agglomeration pattern of GDP among the investigated

provinces. The results showed fewer H–H agglomerations in

the eastern parts of the study area. A possible explanation is that,

although the climate changes and land use types in the eastern

areas are more suitable for animal husbandry development, the

economic development and livestock and poultry farming

techniques of the investigated cities were different. As a result,

the overall GDP of cities in the eastern areas were higher than

TABLE 3 Spatial autocorrelation index of GDP in the 13 provinces of North China between 2006 and 2017.

Year Moran’s I E(I) Variance Z-score p-value

2006 0.262 −0.008 0.003 5.398 0.000

2007 0.242 −0.008 0.002 5.188 0.000

2008 0.240 −0.008 0.002 5.192 0.000

2009 0.244 −0.008 0.002 5.270 0.000

2010 0.244 −0.008 0.002 5.279 0.000

2011 0.242 −0.008 0.002 5.234 0.000

2012 0.244 −0.008 0.002 5.211 0.000

2013 0.246 −0.008 0.002 5.195 0.000

2014 0.251 −0.008 0.002 5.235 0.000

2015 0.255 −0.008 0.003 5.260 0.000

2016 0.257 −0.008 0.003 5.272 0.000

2017 0.281 −0.008 0.003 5.421 0.000

Note: E(I) represents the mathematical expectation; “Variance” is the variance of the variables; “Z-score” shows the normalized difference; “p-value” shows the level of significance.
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that in the west; however, local agglomeration was not

prominent.

3.3 Verification with spatial econometric
model

Moran’s I and LISA maps above revealed that the pattern of

spatial autocorrelation of the GDP among 13 provinces were

statistically significant. To further uncover the quantitative

relationship between animal husbandry development and

GDP, this study carried out a spatial econometric analysis,

using the factors that had significant associations with animal

husbandry.

3.3.1 Influencing factors of animal husbandry
development

Referring to the determining criteria proposed by Anselin

(1995), when the results of the LM tests for the missing spatially

lagged dependent variable (LM-lag) and error dependence (LM-

err) are both insignificant, the estimation results of the OLS

model are considered better to explain the spatial autocorrelation

among cities; however, if only one of the test results is significant,

the OLS estimation results can be seen as biased and require

further analysis with a more appropriate spatial econometric

model (Lin and Long, 2014; Zhu et al., 2017). In other words, the

basic principle is that, when the results of the LM-lag test are

statistically more significant than those of the LM-err test, and

the robust LM-lag is significant while the robust LM-err is

insignificant, an SLM should be adopted; otherwise, the SEM

ought to be adopted (Anselin, 1988; Geng et al., 2022). These

results can be seen in Table 4.

Table 3 shows that the LM-err test of GDP in 2006, 2009,

2012, and 2017 were more prominent than those of the LM-lag

test, indicating that the SEM is more suitable for analyzing GDP

of the investigated years, as the spatial effect of GDP in the region

depended on the influence of adjacent cities, rather than solely on

itself. For that reason, it was necessary to further verify and

analyze the SEM of GDP in the corresponding years.

3.3.2 Testing the spatial econometric model
According to the Table 4, the R2 values of the SEM of GDP

in the years of 2006, 2009, 2012, and 2017 were 0.829, 0.813,

0.796, and 0.792, respectively. These levels were higher than

those of the fit of the OLS models. Hence, the SEM was more

suitable than OLS estimation. Moreover, population was found

to be the most influential factor in promoting GDP growth

throughout the 4-year period (p < 0.01), followed by the output

values of animal husbandry (p < 0.01). However, the area of

arable land and the number of large livestock units appeared to

inhibit GDP growth.

3.4 Results of the GWR model

GWR model was constructed to address the issue of spatial

non-stationarity that may exist among attribute data of the cities

in the study area. GDP, Y, for each city in 2006, 2009, 2012, and

FIGURE 4
LISA Aggregation Map of GDP in the 13 Provinces of North China (2006–2017). Note: H–H, L–L, L–H, and H–L represent high–high, low–low,
low–high, and high–low aggregation, respectively.
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2017 were introduced as the dependent variable of the model,

and X1, X2, X3, X4, X5, X6, X7, X8, and X9 in Table 1 were the

independent variables. The OLS test was performed several times

and the variables with multi-collinearity problem were

eliminated according to significance levels and variance

inflation factor (VIF). In order to eliminate the dimensional

difference between metrics, the logarithm of each indicator was

used for the analysis (Table 5).Since the estimated parameters

vary with the independent variables, to further explore the spatial

differences in the effects of the variables on GDP, the estimated

coefficients of the cities were spatially visualized in Figures 5–8.

Table 6 shows that, the impacts of X1, X2, and X3 on GDP

were spatially different in 2006. Specifically, X1 and X2 had a

positive effect on GDP, indicating that the output values of

animal husbandry remained the primary income of the

region. In addition, population, as the main influencing factor

of economic development, played an irreplaceable role. The effect

of X3 on GDP was negative, which is consistent with the results

obtained from the spatial econometric models, confirming that

the models’ goodness of fit was satisfactory.

The distribution of the regression coefficients (Figure 5)

reveals that, apart from the coefficients of X2 of 11 cities (e.g.,

Kashgar Prefecture, Kizilsu Kirghiz Autonomous Prefecture,

and Aksu City region), the coefficients of X1, X2, and X3 of the

eastern regions were higher than those of the western regions.

The reason that the coefficient distribution of the 11 cities did

not follow the overall distribution pattern could be that the

11 cities are locations of military bases; hence, the coefficients

of population were higher than those of other regions. In

2009, affected by animal diseases, only the influences of X2

(positive effect) and X3 (negative effect) on GDP were found

to be spatially different. Apart from a few cities that showed

spatial fluctuations of the regression coefficients, the pattern

of changes was statistically significant (Figures 5, 6,

respectively). In 2012 and 2017, the influences of X1, X2,

and X6 showed spatial differences. In addition, no apparent

TABLE 4 OLS Estimates of GDP in the 13 provinces of North China (2006, 2009, 2012, and 2017).

LM text 2006 2009 2012 2017

R2 0.816 0.799 0.766 0.760

LM-LAG 0.556 0.468 4.950** 2.409

Robust LM-LAG 0.182 0.267 0.209 0.391

LM-ERR 3.818* 3.750* 9.450** 10.557***

Robust LM-ERR 3.444* 3.548* 4.709** 8.539***

LM-SARMA 0.135 4.017 9.659*** 10.948***

Notes: 1) ***: p < 0.01; **: p < 0.5; and *: p < 0.1. 2) For analysis purposes, the logarithm of the data was used.

TABLE 5 Descriptive statistics of the regression coefficients in the GWR model (2006, 2009, 2012, and 2017).

Variable Average Maximum Minimum Upper quartile Median Lower qurartile

2006 X1 0.602 0.628 0.486 0.622 0.615 0.599

X2 0.674 0.716 0.651 0.687 0.669 0.658

X3 −0.495 −0.481 −0.524 −0.486 −0.493 −0.500

2009 X2 1.265 1.546 0.914 1.444 1.266 1.118

X3 −0.316 −0.258 −0.601 −0.272 −0.286 −0.327

2012 X1 0.303 0.351 0.041 0.348 0.330 0.292

X2 1.062 1.127 0.857 1.103 1.077 1.047

X6 −0.313 −0.058 −0.387 −0.289 −0.332 −0.367

2017 X1 0.270 0.328 0.004 0.324 0.297 0.252

X2 0.960 1.008 0.734 0.991 0.980 0.957

X6 −0.250 0.051 −0.340 −0.222 −0.273 −0.315

Note: The range of the local standardized residuals of the models in 2006, 2009, 2012, and 2017 were [−3.512, 3.993], [−3.599, 2.811], [−3.100, 3.89], and [−2.715, 3.355], respectively. The

residual values of 96.774%, 98.387%, 97.581%, and 98.387%, respectively, were within the range of [−2.58, 2.58].
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changes were observed in the spatial distribution of the

regression coefficients of the three variables (Figures 5, 7,

8, respectively). The coefficients of X1 and X2 were higher in

the east than those in the west, while that of X6 was higher in

the west than that in the east. This phenomenon is mainly

associated with the physical conditions in the region

(distribution of land type and topography), in addition to

the influence of human activities. Specifically, forest

resources in northeast China accounted for one-third of

the country’s resources; while the level of influence on

husbandry by arable land resources in Xinjiang was the

highest in the country. Therefore, the regression

coefficients of arable land in the western regions were

higher than those in the eastern regions.

In summary, during 2006–2017, the factors that have a

significant impact on the GDP of the 13 provinces in north

China were the output values of animal husbandry, population,

numbers of large livestock units, and areas of arable land. Apart

from the areas of arable land, the regression coefficients of the

influencing factors were higher in the east and lower in the west.

These findings suggest that, in order to promote the economic

development in the study area, it is necessary to stimulate the

growth of animal husbandry and increase investment in animal

husbandry based on the local conditions. In addition, the

imbalance in the forage-animal relationship should be

addressed and new methods that suit the pasture area should

be designed both to promote animal husbandry development and

to ensure the protection of local ecology.

FIGURE 5
Spatial Distribution of Regression Coefficien ts of the GWR Model (2006).

FIGURE 6
Spatial Distribution of Regression Coefficient s of the GWR Model (2009).
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FIGURE 7
Spatial Distribution of Regression Coefficients of the GWR Model (2012).

FIGURE 8
Spatial Distribution of Regression Coefficients of the GWR Model (2017).
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4 Discussion

China has a large animal husbandry industry. Targeting the

main region of animal husbandry production, this study

investigated the spatial characteristics of GDP of the provinces

and applied GWRmodel to reveal the spatial heterogeneity of the

corresponding drivers.

4.1 Spatiotemporal heterogeneity analysis

According to the spatial differences in GDP growth and output

values of animal husbandry, the results showed thatGDPwere higher

in the eastern regions but lower in the west of the study area. This

agglomerated trend became more apparent as time went on.

Moreover, the outputs of animal husbandry were positively

correlated with changes in GDP. These trends could be related to

the characteristics of different climate zones and land types of the

region. Wei et al. (2022) study found that the accelerated expansion

of cities in the middle of the study area, and the habitat quality has

also declined. Yu et al. (2021) found that regional heterogeneity of

water resources severely limits the development of animal husbandry.

Specifically, western areas of the study areas mostly suffered from

desertification and grassland desertification. Owing to environmental

factors (e.g., land desertification and reduced biodiversity), GDP and

output of animal husbandry in the western areas of the study areas

were lower than that of the eastern areas.

4.2 Exploring localized development

The spatial errormodel results (Table 4) shows that promotion

of agricultural and animal husbandry development should suit

local conditions, such as climate and land use type. Rapid

urbanization causes large urban conversions of natural and

agricultural land to non-agricultural use (Zhou et al., 2021).

This result will inevitably affect the animal husbandry industry.

Moreover, the results show that GDP growth was not necessarily

linked to the number of livestock and poultry units, but rather, it

may be associated with the production, processing, and marketing

methods for animal products. Thus, the results suggest that

concerned parties should control the total number of livestock

in each city based on the local conditions of the cities, accelerate the

transition from traditional to modern animal husbandry, increase

the industrialization of animal husbandry, and improve the

protection of livestock against diseases. These practices would

help to promote an animal husbandry industry geared towards

standardization, scalability, and industrialization. From 2006 to

2017, the factors that have a significant impact on the GDP of the

13 northern provinces of China are the output value of animal

husbandry, population, the number of livestock, and the area of

arable land. Except for the area of arable land, the regression

coefficients of other factors are all east high in spatial distribution.

The low west situation indicates that to improve the regional

economic development level, it is necessary to promote the growth

of animal husbandry output according to local conditions, increase

investment in animal husbandry, alleviate the imbalance of grass-

livestock relationship, and explore the new model of ecological

protection and animal husbandry development suitable for the

characteristics of pastoral areas.

4.3 Limitations and future directions

This study still has uncertainties. This study explores the

spatio-temporal differences and the spatial heterogeneity of

TABLE 6 Spatial regression results of GDP of the 13 province’s in North China (2006, 2009, 2012, and 2017).

Variable SEM-2006 SEM-2009 SEM-2012 SEM-2017

Dep Var 2.789** 2.888** 2.680* 2.918**

Indep Var

X1 0.587*** 0.558*** 0.595*** 0.524***

X2 0.916*** 0.935*** 0.929*** 0.878***

X3 −0.392*** −0.464*** −0.308** −0.127

X4 −0.068 −0.013 −0.179 −0.210

X5 −0.017 0.013 0.006 −0.021

X6 −0.210** −0.212*** −0.195** −0.178**

X7 −0.063 −0.047 −0.0338 −0.045

X8 −0.155 −0.172 −0.066 −0.101

X9 −0.031 6.98813e-005 −0.066 0.038

R2 0.829 0.813 0.796 0.792

AIC 196.223 205.754 220.976 210.965

SC 224.426 233.956 249.179 239.168

Notes: 1) ***: p < 0.01; **: p < 0.5; and *: p < 0.1.
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factors influencing the varying animal husbandry development of

the 13 provinces in the northern China. Animal husbandry is a

major component of agriculture. The development of animal

husbandry could help alleviate the poverty of farmers and

herders significantly and promote effective social supply

(Wang and Tan, 2022). The modernization of agriculture

through the modernization of animal husbandry would help

promote the goal of constructing a strong agricultural sector

(Ministry of Agriculture and rural affairs of the people’s republic

of China, 2018). The influence of human and factors of physical

environment on the development of animal husbandry has

become increasingly complex. Therefore, concerned parties

may want to consider additional influencing factors, make use

of relevant favorable policies and government subsidies, and

explore new developmental models to facilitate the

development of the local economy.

It is noteworthy that, since this study focused on the effect of

animal husbandry on GDP, the direct influences of some

indicators on GDP were not explored in detail. To further

investigate the impact of animal husbandry development on

the national economy, we suggest that future studies use the

size of the agricultural sector as an independent variable.

5 Conclusion

Exploring the development of animal husbandry is of great

significance to stabilizing the people’s living standards. This

study found, the spatio-temporal differences of GDP were

prominent, presenting an increasing trend from west to east.

Owing to regional differences in economic development and

techniques of livestock and poultry farming, cities with higher

GDP tended to concentrate in the east. The impact of the

factors (excluding numbers of large livestock units) on GDP,

from the largest to the smallest were population, output values

of animal husbandry, and areas of arable land. At the early

stage of the study period, controlling population (human

activities), stimulating the output of animal husbandry, and

controlling the numbers of large livestock units (improving

techniques for livestock and poultry farming) had a great

impact on GDP. At the latter stage of the study period, besides

population and animal husbandry output, controlling the

areas of arable land gradually became an important driving

factor of GDP growth. These results can serve as a scientific

reference for accelerating the transformation of animal

husbandry in the 13 provinces of north China and for

exploring new ways suitable for promoting local animal

husbandry development.
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The wide application of the evapotranspiration (ET) products has deepened our
understanding of thewater, energy and carbon cycles, driving increased interest in
regional and global assessments of their performance. However, evaluating ET
products at a global scale with varying levels of dryness and vegetation greenness
poses challenges due to a relative lack of reference data and potential water
imbalance. Here, we evaluated the performance of eight state-of-the-art ET
products derived from remote sensing, Land Surface Models, and machine
learning methods. Specifically, we assessed their ability to capture ET
magnitude, variability, and trend, using 1,381 global watershed water balance
ET as a baseline. Furthermore, we created aridity and vegetation categories to
investigate performance differences among products under varying
environmental conditions. Our results demonstrate that the spatial and
temporal performances of the ET products were strongly affected by aridity
and vegetation greenness. The poorer performances, such as underestimation
of interannual variability and misjudged trend, tend to occur in abundant humidity
and vegetation. Our findings emphasize the significance of considering aridity and
vegetation greenness into ET product generation, especially in the context of
ongoing global warming and greening. Which hopefully will contribute to the
directional optimizations and effective applications of ET simulations.

KEYWORDS

evapotranspiration, evapotranspiration products, aridity, vegetation greenness, KGE

1 Introduction

Terrestrial evapotranspiration (ET), as a pivotal element of such land-atmosphere
interaction processes as what happens to water, carbon, and energy cycle, is constituted
of soil evaporation, vegetation transpiration and water surface evaporation (Gao et al., 2016;
Tramontana et al., 2016; Zhang et al., 2016; Liu et al., 2021). On the land surface, 60% of
precipitation (Pre) is returned to the atmosphere through ET, consuming half of the solar
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energy reaching at the surface (Pan et al., 2020). Consequently, ET
draws significant interest from hydrology to climate disciplines.
Researchers aim to understand the allocation of energy and water at
the land and its feedbacks (Zhang et al., 2017), identify dominant
control factors of ET variation across regions (She et al., 2017; Zhang
et al., 2021), and investigate the impact of ET on the hydrological
cycle under climate change (Gu et al., 2020; Weerasinghe et al.,
2020). Hence, accurate estimation of ET is crucial for various
scientific communities such as hydrology, ecology, climatology,
and agriculture.

There is no denying that existing ET products have considerable
potential to facilitate the estimation of hydrological and energetic
components and their inherent hydroclimatic variability. For
instance, global ET estimates at arbitrary spatial and temporal
scales can be compiled by the conventional flux formula (or
Land Surface Model (LSM)) and the remote sensing observations
about surface temperature, soil moisture and vegetation cover ratio
(Wang et al., 2016; Miao and Wang, 2020). Recently, the boom in
machine learning methods has also facilitated the acquisition of
global ET datasets (Jimenez et al., 2011; Alemohammad et al., 2017;
Jung et al., 2017), such as model tree, random forest, or artificial
neural networks combining observed flux data as inputs. However,
these products simultaneously involve some uncertainties derived
from the model structural flaws, input-datasets errors (e.g.,
meteorological forcing, land surface, and parameters related to
vegetation), model-parameter errors and scale-scaling issues
(Badgley et al., 2015; Michel et al., 2016; Miralles et al., 2016).

However, the existing terrestrial ET products widely vary in
performance and even oppose long-term trends, indicating the non-
negligible uncertainties. For instance, it has been reported that while
potential evapotranspiration (PET) trends have declined over the
last 50 years, ET has shown an increasing trend according to the
evapotranspiration paradox (Mao et al., 2015; Zhang et al., 2015;
Zeng et al., 2018). However, Jung et al. (2010) added that the increase
in global terrestrial ET has ceased or even reversed from 1998 to
2008. Therefore, a comprehensive evaluation of ET products is a
prerequisite for model optimizations and global climate-change
research, especially, on a regional scale.

ET measurements from the Eddy Current Covariance (EC) site
have become typical reference data to validate ET products at the point
scale. Nevertheless, EC systems generally suffer from energy imbalance,
which resulting in ETmeasurement errors. And themismatch in spatial
scale between EC observations and ET estimates (points and grid cells)
is another limitation. Furthermore, EC sites sparsely spread over spaces,
which challenges the evaluation of ET products on a regional scale (Pan
et al., 2020; Xie et al., 2022). An alternative approach is terrestrial water
balance method, i.e., ET calculated from the terrestrial water balance
(observed Pre minus the sum of runoff (Q) and total water storage
change (TWSC)) is applied as the truth value to validate ET products at
the basin scale (Liu et al., 2016). Over the last 2 decades, considerable
attention has focused on the regional scale (US, African, and Qinghai-
Tibetan Plateau), while less on the global scale. For example, Vinukollu
et al. (2011) conducted a global evaluation on the ET estimates derived
from three process-based models (Surface Energy Balance System (Su,
2002), Penman–Monteith–Mu algorithm (Penman, 1948; Mu et al.,
2007), and Priestly–Taylor–Fisher of Jet Propulsion Laboratory
algorithm (Priestley and Taylor, 1972; Fisher et al., 2008) based on
26 basins worldwide, and suggested a root mean squared difference

(RMSD) of 118–194 mm/yr and a deviation of −132 to 53 mm/yr
between the water balance ET and the estimated annual ET.

However, the total water storage change (TWSC) at the annual
scale has often been disregarded in previous studies (Pre directly minus
Q), yet the water budget is unbalanced due to human abstraction, glacial
snowmelt, and other activities affecting water storage (Liu et al., 2016;
Zhong et al., 2020). For example, Zeng et al. (2012) found that the
TWSC cannot be ignored in estimating ET at an annual scale, especially
in regions with relatively low ET values. As a result, the annual reference
ETmust take into account TWSC. Although the Gravity Recovery and
Climate Experiment (GRACE) satellite launched in 2002 offers a
promising future to the TWSC, the limited GRACE satellite data
right now makes it problematic to assess ET products with long-
time data, especially the pre-2002 data, and subsequently difficult to
exploreET trends. Recently, the reconstruction ofGRACE facilitates the
evaluation on long-time series of ET products. More importantly, the
deficiencies exist in the simultaneous evaluation of ET products at the
global scale with various levels of dryness and vegetation greenness. The
ET variation in different regions is closely related to local conditions: ET
is limited by water in dry conditions and by energy in wet conditions;
ET is higher in highly-vegetated areas and lower in sparsely-vegetated
areas.We postulate that these conditions may affect the performance of
ET products. For example, Majozi et al. (2017) assessed the accuracy
and precision of four ET products in two South African ecoregions and
showed that no one ET product performed best in both zones; Ershadi
et al. (2014) found that the performance of European and North
American ET models varied among zones and the models with
relatively high accuracy differed across zones; Kim et al. (2012)
concluded that the Moderate Resolution Imaging Spectrometer
(MODIS) MOD16 ET for Asian woodland cover was more accurate
than for other biomes. Consequently, there is a need to fully understand
the simulation capacity of ET products under heterogeneous conditions
(areas with different levels of aridity and vegetation greenness), which
will be favorable to developing strategies for adapting to the climate
change.

Here, the current study is not to compare the variousmodels, but to
investigate how the performances of eight global ET products vary with
water and energy conditions or vegetation greenness over 1981–2010.
In doing so, the globally distributed 1,381 basins were taken into
consideration and segmented according to their aridity and vegetation
conditions. Then, we illustrated differences in the performance of the
products changing with aridity and vegetation based on the terrestrial
water balance ET. The model performance of the ET product was
evaluated using newly popular metric–Kling-Gupta efficiency (KGE),
considering the magnitude, variability of the ET and its coefficient to
the product. Additionally, the 1981–2010 period was selected, for the
knowledge about this period is relatively lacking and the reconstructed
the total water storage anomaly (TWSA) products are reliable before
2002. Finally, we discussed the potential reasons for our results.

2 Datasets and methods

2.1 Datasets

2.1.1 Runoff (Q) datasets
To comprehensively assess the ET products, the daily Q

observed at 31,133 hydrological stations across the globe were
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collected from 11 databases, as listed in Table 1 (Holmes
et al., 2013; Arsenault et al., 2016; Awange et al., 2019;
Arsenault et al., 2020; Chagas et al., 2020; Coxon et al.,
2020; Almagro et al., 2021; Fowler et al., 2021; Klingler et al.,
2021).

Considering that the Q dataset is derived from different sources;
several criteria were implemented to control the dataset quality with
reference to some well–established data processing methods (Beck
et al., 2015). The details related to the criteria used in this study are as
follows:

1 The final database retains a hydrological station only once, based
on the latitude and longitude information of hydrological station;
2 If a station has missing data for more than 15% per day from
1981 to 2010, the station was removed;
3 The basin area controlled by the hydrological station must be
able to cover two or more 0.5° grids.

Finally, 1,381 stations met these criteria. The global distribution
of 1,381 hydrological stations is shown in Figure 1.

2.1.2 Precipitation and GRACE datasets
To reduce the uncertainties in precipitation data, we selected

three global gridded precipitation datasets (GPCC, CPC-Unified,
and CRU TS4.05) at 0.5° resolution based on precipitation gauges.
GPCC precipitation dataset, was selected, for it is widely considered
as the precipitation reference dataset (Becker et al., 2013). More
importantly, CPC-Unified gauge-based analysis of global daily
precipitation at 0.5° resolution (1979-present) was interpolated
from the QC station reports, which incorporates the effects of
topography (Chen et al., 2008).

Total water storage anomalies (TWSA), monitored by NASA’s
GRACE satellites via satellite gravimetry, are currently used for
retrieving the exclusive data of TWSC in hydrological and climatic
applications (Landerer and Swenson, 2012; Long et al., 2014; Jing
et al., 2020a). Notably, the GRACE TWSA observation data only
covers the period 2002–2017 (Jing et al., 2020b). Consequently, the
two constructed TWSA datasets (i.e., GRACE-REC and GRID-CSR-
GRACE-REC) were chosen, covering the data from 1981–2010 at a
spatial resolution of 0.5°. GRACE-REC datasets were generated,
using a statistical model trained with GRACE observations,
consisting of six reconstructed TWSA datasets derived from two
different GRACE observation products and three different
meteorological forcing datasets (Humphrey and Gudmundsson,
2019). As for GRID-CSR-GRACE-REC, Li et al. (2021)
reconstructed the GRACE observations by developing a
methodological framework to compare three methods, including

TABLE 1 Summary of Q observation sources for 11 databases of Q observation sources.

Number Source Website or reference

222 stations Australian edition of the catchment attributes and meteorology for large-sample studies
(CAMELS-AUS)

https://doi.org/10.1594/PANGAEA.921850

1,529 stations Australian bureau of meteorology (Bom) https://portal.wsapi.cloud.bom.gov.au

735 stations catchments attributes for brazil (CABRA) https://thecabradataset.shinyapps.io/CABra/

3,679 stations Brazil edition of the catchment attributes and meteorology for large-sample studies (CAMELS-BR) https://doi.org/10.5281/

698 stations Canadian model parameter experiment database (CANOPEX) http://canopex.etsmtl.net

14,425 stations Hydrometeorological Sandbox—École de technologie supérieure (HYSETS) https://doi.org/10.6084/m9.figshare.12600281

859 stations Large-sample data for hydrology: big data für die hydrologie und umweltwissenschaften (LAMAH) https://doi.org/10.5281/

671 stations Great britain edition of the catchment attributes and meteorology for large-sample studies
(CAMELS-GB)

https://catalogue.ceh.ac.uk

140 stations Ministry of water resources of china and national hydrology almanac of china http://mwr.gov.cn/

15 stations Arctic great rivers observatory https://arcticgreatrivers.org/

8,160 stations Global runoff data centre https://www.bafg.de/GRDC/

FIGURE 1
Spatial patterns of AI and LAI (A, B) of global 1,381 basins from
1981–2010. The histograms in (A, B) present AI and LAI at different
levels corresponding to the color bars.
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the multiple linear regression (MLR), autoregressive exogenous
(ARX) approaches, and artificial neural network (ANN), using as
inputs Pre, sea and land surface temperature, surface and subsurface
runoff, soil moisture, evaporation, and several climate indices. Please
note that the Pre- TWSC for each basin was derived from the
arithmetic mean value of six datasets-combination: GPCC minus
GRACE-REC, CPC-Unified minus GRACE-REC, CRU
TS4.05 minus GRACE-REC, GPCC minus GRID-CSR-GRACE-
REC, CPC-Unified minus GRID-CSR-GRACE-REC, and CRU
TS4.05 minus GRID-CSR-GRACE-REC. The basic information of
the Pre and TWSA products is shown in Table 2.

2.1.3 ET products
Eight ET products using different methods were collected in this

study: one remote sensing product (GLASS), two reanalysis products
(ERA5-Land and MERRA-2), four LSM-based products (GLEAM-
3.5a, E2O-En, PML and GLDAS2.0-Noah), and one machine
learning-based product (MTE). The basic information of the ET
products is shown in Table 2.

To estimate terrestrial ET, Global LAnd Surface Satellite
(GLASS) ET products used the Bayesian model averaging
(BMA) method to ensemble five process-based ET algorithms
(Yao et al., 2014; Xie et al., 2022), i.e., MODIS ET product
algorithm (Penman, 1948; Mu et al., 2007; Mu et al., 2011),
revised remote-sensing-based Penman-Monteith ET algorithm
(Yuan et al., 2010), Priestly–Taylor–Fisher of Jet Propulsion
Laboratory ET algorithm (Fisher et al., 2008), modified
Satellite-Based Priestley-Taylor ET algorithm (Yao et al.,
2013), and semi–empirical Penman ET algorithm of the
University of Maryland (Wang et al., 2010). It outperforms the
five algorithms by using ground-based data of
2000–2009 collected from 240 EC gauges worldwide on all
continents except for Antarctica. The ensemble algorithms,
integrating multiple algorithms to generate the product,
reduces the uncertainties of a single algorithm and ensures the

accuracy of the product. The dataset used in this study is the
product with the longest time series and the finest grid, spanning
from 1982 to 2018 at a grid of 0.05°.

ERA5-Land (Muñoz-Sabater et al., 2021), an enhanced
global dataset for the land component of the fifth generation
of European ReAnalysis (ERA5), was published by the European
Centre for Medium-Range Weather Forecasts (ECMWF)
in 2021. The core of ERA5-Land is the ECMWF surface
model: the Carbon Hydrology-Tiled ECMWF Scheme for
Surface Exchanges over Land (CHTESSEL). Four
meteorological state fields (i.e., temperature, humidity, wind
speed, and pressure at the surface) are available in the ERA5,
from the lowest level of the model (level 137), which is 10 m
above the surface. Surface fluxes involve downward shortwave,
longwave radiation and total liquid, and solid precipitation.
Compared with latent heat data from 65 EC gauges
worldwide, ERA5-Land ET performs better than previous
versions such as ERA5 and ERA-Interim (Albergel et al.,
2018), benefiting from the enhancements on the ECMWF
surface model. The dataset used in this study spans the
period from 1979 to 2021 and has a grid of 0.1°.

The second Modern Era Retrospective-Analysis for Research
and Applications (MERRA-2) reanalysis (Rodell et al., 2011), a
widely used atmospheric reanalysis dataset, is provided by Global
Modeling and Assimilation Office (GMAO) in NASA. It is
produced by the upgraded Goddard Earth Observing System
model Version 5 (GEOS-5), along with its associated data
assimilation system (DAS) Version 5.12.4, which replaced the
original MERRA and MERRA-Land reanalysis. MERRA-2
alleviates some of the deficiencies of the MERRA and MERRA-
Land product, such as certain biases and imbalances in the water
cycle as well as the false trends and jumps in precipitation
associated with changes in the observing system. The dataset
used in this study spans from 1980 to 2021 and has a grid of
0.58° × 0.625°.

TABLE 2 Hydrological-component information of used products.

Variables Products Methods Time span/Resolution Website

Pre GPCC Gauge-based interpolation 1901–2010 0.5°/Monthly https://climatedataguide.ucar.edu/

CPC-Unified 1979-present 0.5°/Daily https://climatedataguide.ucar.edu/

CRU TS4.05 1901–2020 0.5°/Monthly https://data.ceda.ac.uk/badc/cru/data/

TWSA GRACE-REC Machine learning 1901–2019 0.5°/Monthly https://doi.org/10.6084/m9.figshare.7670849

GRID-CSR-GRACE-REC 1979–2020 0.5°/Monthly https://doi.org/10.5061/dryad.z612jm6bt

ET GLASS BMA 1982–2018 0.05°/8 Day http://www.glass.umd.edu/

ERA5-Land ECMWF 1979–2021 0.1°/Daily https://cds.climate.copernicus.eu/

MERRA-2 GEOS-5 (Penman-Monteith) 1980–2021 0.58° × 0.625°/Hourly https://disc.gsfc.nasa.gov/

GLEAM-3.5a Priestley-Taylor equation 1980–2020 0.25°/Daily https://www.gleam.eu/

E2O-En GHMs (LSMs、WBM) 1979–2012 0.5°/Monthly http://www.earth2observe.eu/

PML Penman-Monteith-Leuning 1981–2012 0.5°/Monthly https://data.csiro.au/collection

GLDAS2.0-Noah Noah (Penman-Monteith) 1948–2014 1.0°/Monthly https://ldas.gsfc.nasa.gov/gldas/

MTE Upscaling 1982–2011 0.5°/Monthly https://www.bgc-jena.mpg.de/
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The Global Land Evaporation Amsterdam Model (GLEAM), a
set of algorithms, including a potential evaporation module, stress
module, and rainfall interception module, dedicates to estimating
the terrestrial evaporation and root-zone soil moisture from the
satellite data, which consists of soil evaporation, canopy
transpiration, interception loss, snow sublimation, and open-
water evaporation (Martens et al., 2017). Among these modules,
the potential evaporation module uses the Priestley–Taylor
equation, and the stress module is represented by the semi-
empirical relationship between vegetation optical depth and root-
zone soil moisture. A vital feature of this product is that the Gash
analytical model is used to estimate interception loss.

To develop the global water reanalysis on the multi-scale water
resource assessment and related research projects, the
EartH2Observe (E2O) project also used the reanalysis-based
forcing data to drive ten models: five global hydrological models
(GHMs), four Land Surface Models (LSMs) with extended
hydrological scenarios, and one simple water balance model
(WBM) (Schellekens et al., 2017). The forcing dataset is an
adjustment of the ERA reanalysis dataset combining the
terrestrial meteorological element observations and Climate
Research Unit (CRU) datasets. The E2O-En product has proven
to be an accurate reanalysis data and been widely used for the multi-
scale water resource applications (Schellekens et al., 2017). The
generated data from ten models were arithmetically averaged to
alleviate the potential errors and uncertainties of the individual
model.

The GLDAS is a global assimilation and modeling system
developed jointly by NASA, Goddard Space Flight Center
(GSFC), and NOAA (Rodell et al., 2004; Rodell et al., 2011). The
system provides the near real-time land-surface information from
ground and satellite observations, by driving four LSMs. Here, the
ET product derived from GLDAS2.0-Noah is adopted in our study.

The Model Tree Ensemble (MTE) product, a data-driven
estimate (Jung et al., 2009), was compiled using a global
monitoring network (the database of the FLUXNET), the
meteorological and remote-sensing observations, and a machine-
learning algorithm. Its forcing data include a harmonized the
Fraction of Absorbed Photosynthetically Active Radiation
(FAPAR) product from three sensors (AVHRR (Tucker et al.,
2005), SeaWiFS (Gobron et al., 2006), MERIS (Gobron et al.,
2008), a remote-sensing-based global land-use, and products of
climate variables based on observations. However, the lack of
measurements makes it impossible to calculate ET in cold and
dry deserts; this may result in a slight underestimation of global ET.

2.1.4 AI and LAI data
Another monthly Pre and potential ET dataset (1901–2020) was

chosen from CRU TS4.05, to calculate the aridity index (AI): the
ratio of Pre and potential ET. GLASS LAI product was compiled by
AVHRR from 1981–2000 and by MODIS from 2001 to 2018 (Xiao
et al., 2013). To generate continuous and smooth data, GLASS LAI
used a temporal-spatial filtering algorithm to remove cloud
contamination from the reflectance data. The vital component of
this product is the algorithm to train a general regression neural
networks (GRNNs), using fused LAI from MODIS and CYCLOPES
products and reprocessed MODIS reflectance for each vegetation
type on observation sites (Xu et al., 2018). The dataset spans the

period from 1981 to 2018 and has a grid of 0.05°. Please note that all
gridded datasets were aggregated to an annual temporal resolution
and a spatial resolution of 0.5°. The spatial patterns of AI and LAI of
global 1,381 basins are shown in Figure 1.

2.2 Methods

2.2.1 Water balance ET
Eight ET products were assessed, using water balance equations.

The water-balance- based ET is often considered a reference for
validating ET products on the annual scale. ET can be calculated
based on precipitation (Pre), runoff (Q) and total water storage
change (TWSC) in the basin, using the following equation:

water balance ET � Pre − Q − TWSC (1)
Due to high correlations with static gravity fields, GRACE does

not provide the estimates of total continental water content. In this
aspect, TWSA is defined as the residual water content at a given
time, which is relative to the water content at a reference epoch. The
reference storage corresponds to the average water storage during
the early phases of the GRACEmission (Han et al., 2005; Yang et al.,
2020). Hence, yearly TWSC is the difference between the December
anomaly observation of the current year and that of the previous
year, i.e., the yearly TWSC equation is as follows:

TWSCi � TWSAi,Dec − TWSAi−1,Dec (2)
where i and Dec denote the year (ranging from 1981–2010) and the
December, respectively.

2.2.2 Evaluation metrics
Kling-Gupta efficiency (KGE) and its three components are used

to further evaluate the eight ET products (Kling et al., 2012). KGE is
an objective performance metric, which comprehensively combines
the components of the key performance statistics (correlation, bias
and variability). The KGE formulation is defined as follows:

KGE � 1–
������������������������
R − 1( )2 + β − 1( )2 + γ − 1( )2

√
(3)

where R is Pearson’s correlation coefficient, β is the bias (the ratio of
the estimates and observation means), γ is the variability [the ratio of
the coefficients of variation (CV)].

β � μe
μo

(4)

γ � σe/μe
σo/μo

(5)

where μ and σ denote the mean and the standard deviation,
respectively; e and o denote the estimate and the observation.
Note that the ranges of KGE, R, β and γ with the optimum value
of 1.0 are −∞–1.0, −1.0–1.0, −∞–+∞ and −∞–+∞, respectively. A
comprehensive diagnosis was carried out on the performance of ET
products in capturing ET characteristics at the temporal and spatial
scale. Please note that the hit of ET trend directions for each product
was also evaluated, using the ratio of truly captured ET trend
directions including positive and negative trends. For example,
TPR (FPR, TNR, FNR) denotes the ratio between the number of
basins that the ET products truly (falsely, truly, falsely) identify the
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observed positive (positive, negative, negative) ET trend as positive
(negative, negative, positive) ET trend and the number of all basins.
The sum of TPR, FPR, TNP, and FNR is equal to 100%. To
systematically assess the spatial and temporal capture
performance of the ET products, we assessed both the spatial
dynamic of ET climatological value, temporal variability and
trends, and the temporal dynamic of ET for each basin.

2.2.3 Aridity and vegetation categories
If global basins are diagnosed in overall terms, the information

about the performance of ET products under given conditions will
be lost. Meanwhile, it is important to examine how ET products vary
with water and energy conditions or vegetation greenness, since the
ET process is affected by the complex mechanisms of energy, water
cycle and vegetation and the strong variability in both space and
time. Therefore, the aridity and vegetation categories were created
without considering their changes during the evaluation period, for
the sake of simplicity. Specifically, the aridity index (AI) is
characterized by the long -term climatic aridity condition of a
region, for example, the higher AI value indicates the drier
condition. The threshold of multiyear-average AI was set at 1.5,
based on the conventional definition, i.e., basins with AI>1.5 are
classified as the dry basins and those with AI≤1.5 are classified as the
wet basins (Liu et al., 2016). As for vegetation, the LAI is widely
applied as the proxy of vegetation greenness, with high values
suggesting high greenness. Based on the LAI value for each basin
at the evaluation period, the evaluation metrics were re-classified in
three categories, i.e., LAI<1, 1 ≤ LAI<2 and LAI≥2, which were
defined as the LAI-I, LAI-II, and LAI-III, respectively (Jimenez et al.,
2011; McCabe et al., 2016), with regard to the intensity of greenness
(from brown to green).

3 Results

3.1 Overall assessment of ET products

Figure 2A shows the spatial pattern of the mean annual value of
ET during 1981–2010. The high values (>1,000 mm) mainly existed
in the Brazilian coast, the GulfofMexico and Atlantic coasts in
America, the African coast, and the Oceania East coast.
Specifically, the ET decreased from east (west) to west (east)
across the North (South) America, and from southeast to
northwest across China. By contrast, the spatial variability of ET
CV was not line with the ET value: the high ET occurred in the
Amazonian Plain and Brazilian plateau, whereas high ET CV
occurred in South China (Figure 2B). Additionally, the ET
tended to increase in the Eurasia and Brazilian plateau, while
decreasing in the Amazonian Plain (Figure 2C). Overall, about
20% of basins showed the significant trends, and the significant
increases were mainly in the Northwest China, Europe, and the
midwest U.S, while the significant decreases were mainly in the
Congo Basin and Amazonian Plain) (Figure 2D). In conclusion, ET
regarding magnitude, temporal variability and trend showed the
high spatio-temporal heterogeneity.

All ET products could reproduce the spatial distribution for
climatological values of ET with high spatial R values ≥ 0.90
(Table 3). Among these products, the PML performed slightly
better than the other products with the highest and R value of
0.96, though not with optimal β and γ. The β values for most ET
products were consistently around the optimal value of 1.0, except
for GLASS (1.27 for β) and MERRA-2 (1.22 for β), suggesting that
the magnitudes of climatological values were well captured by most
ET products. However, the spatial variabilities of ET tended to be

FIGURE 2
Spatial patterns of water balance ET at global 1,381 basins during 1981–2010. Small letters (A–D) represent the mean annual value, CV, trend, and
significance level (p < 0.05) of trend, respectively. The histograms in (A–D) present the ET of different levels corresponding to the color bars.
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underestimated by most ET products with 0.7< γ <1.0, especially for
ERA5-Land with a γ of 0.74. The values of R, β and γ for capturing
the ET by the products converged to the optimum value of 1.0,
resulting in KGE values of integrative performances that outweighed
0.71. Notably, the model-based products had higher overall
performance (KGE ≥ 0.81) in reproducing the climatological ET,
compared to the reanalysis products (0.71 ≤ KGE < 0.81).
Regarding the temporal variability, all ET products generally
underestimated the CV (0.34≤ β ≤0.89), but evidently
overestimated its spatial variability (1.21≤ γ ≤2.39). Moreover,
the spatial distribution of ET CV were poorly captured be most
ET products, with GLEAM-3.5a having the maximum R value of
0.25 among the eight ET products. Overall, the KGE values were
mostly negative, ranging from −0.80 (MTE) to 0.04 (MERRA-2),
indicating that most ET products had limited KGE-based ability
to simulate ET temporal variability. In the view of the ET trend,
the directions (i.e., upward and downward) could be hit by most
products, with 59.29% for PML ≤ TPR + TNR≤65.66% for
MERRA-2. However, the FPR, near to and even larger than
the TNR, suggested that the negative trends would be
misidentified as positive trends, especially for GLASS (39.68%
versus 3.04%). The R values ranged from 0.09 (MTE) to 0.36
(MERRA-2) indicating that GLASS and MERRA-2 with values
above 0.30 could capture the ET trends in space. Except for
reanalysis products underestimating the ET trend, all others
overestimated the ET trend, with β larger than 1.0. By
contrast, all products underestimated the spatial variability of
the ET trend, with −0.19 (MERRA-2)≤ γ ≤0.18 (GLEAM-3.5a).
All KGE values were negative, indicating that these poor overall
performance of these ET products in capturing the ET trend.

Figure 3 shows the metrics of β, γ, R, and KGE for 1,381 basins.
The majority of ET products overestimated ET at more than 50% of
basins, especially GLASS and MERRA-2 which overestimated ET at
above 92% of basins (Figure 3A). However, PML, GLDAS2.0-Noah
and MTE underestimated the ET at more than 50% of basins.
Spatially, the β values displayed evident spatial differences, with
most of ET products greatly overestimated the ET in China, Europe,
and North America. Considering the metric of γ (Figure 3B), all ET
products tended to underestimate the ET temporal variabilities at
over 70% of basins. When γ <0.2, ET products, especially MTE and
GLASS, underestimated the ET temporal variabilities at around 30%
of basins worldwide. Additionally, the overestimates of ET temporal
variabilities tended to be at American Midwest. About the spatial
patterns of β and γ, it is worth noting that the higher ET magnitude
estimates were accompanied by lower ET variability estimates, since
the ratio of basins having β >1.0 outweighed the ratio of basins
having γ <1.0 for most ET products except PML, GLDAS2.0-Noah,
and MTE (Figures 3A,B). Regarding temporal fluctuation
(Figure 3C), positive R values were observed for 59.30%
(MERRA-2) to 84.50% (ERA5-Land) of basins, especially
MERRA-2 with R > 0.6 at nearly 20% of basins, indicating that
ET products had a broad R-based ability to simulate ET temporal
fluctuation. High R values (around 0.8) mainly appeared in the
Midwest United States, South Africa, Western Australia. However,
the average R values for all ET products were slightly low, ranging
from 0.06 for GLDAS2.0-Noah–0.24 for ERA5-Land. Based on KGE
(Figure 3D), negative KGE values were found in 47.65% (E2O-En) to
71.76% (MTE) of basins, with general negative basin-averaged KGE
values (−0.14 (GLASS) to 0.03 (E2O-En)), indicating that all ET
products had the limited overall performance for temporal scale.

TABLE 3 The evaluation results of eight ET products against water balance ET during 1981–2010 from global 1,381 basins. Bold numbers in the table represent the
optimal results corresponding to each metric.

Characteristics Metrics GLASS ERA5-land MERRA-2 GLEAM-3.5a E2O-En PML GLDAS2.0-Noah MTE

Mean annual value β 1.27 1.09 1.22 1.00 1.03 0.94 0.98 0.97

γ 1.01 0.74 0.95 0.86 0.82 1.08 0.83 0.88

R 0.89 0.92 0.92 0.92 0.95 0.96 0.92 0.94

KGE 0.71 0.71 0.76 0.83 0.81 0.89 0.81 0.86

CV β 0.34 0.57 0.89 0.61 0.62 0.62 0.64 0.26

γ 1.21 2.13 1.57 2.09 1.77 1.66 1.65 2.39

R 0.05 0.23 0.23 0.25 0.18 0.01 0.14 0.13

KGE −0.17 −0.43 0.04 −0.38 −0.18 −0.24 −0.14 −0.80

Trend β 21.01 −5.25 −5.14 3.20 5.72 7.03 10.07 4.66

γ 0.04 −0.13 −0.19 0.18 0.09 0.08 0.06 0.05

R 0.31 0.25 0.36 0.24 0.19 0.21 0.23 0.09

KGE −19.05 −5.04 −5.29 −1.47 −3.87 −5.15 −8.15 −2.88

TPR (%) 55.11 28.53 36.41 41.27 40.77 41.85 44.46 48.22

FPR (%) 39.68 13.32 13.47 23.03 27.37 26.29 31.79 29.62

TNR (%) 3.04 29.40 29.25 19.70 15.35 16.44 10.93 13.11

FNR (%) 2.17 28.75 22.67 16.00 16.51 15.42 12.82 9.05
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Relatively, the KGE > 0.2 mainly existed at Australia and Midwest
America.

3.2 Validation by aridity regimes

In terms of the climatological values of ET under dry and wet
conditions (Figure 4), except GLASS under all conditions and
MERRA-2 under wet condition, the ET products could reproduce
the magnitudes of ET with 0.86 for PML≤ β ≤1.17 for ERA5-Land
under dry condition and with 0.96 for MTE≤ β ≤1.07 for ERA5-
Land under wet condition, which was consistent with the results

presented in Section 3.1 (Table 3). In particular, most of the ET
products underestimated the water balance ET above 1,200 mm
(Figure 4), whichmainly occurred in Amazonian Plain and Brazilian
Plateau (Figure 2). As for γ, most of the ET products could generally
detect the spatial variability for the climatological values of ET under
dry and wet conditions, corresponding to a range of 0.69 (ERA5-
Land)≤ γ ≤1.32 (GLASS) and 0.72 (ERA5-Land)≤ γ ≤1.07 (GLASS),
respectively. Broadly, the spatial variability estimates of ET under
dry condition tended to be higher than those under wet condition
(represented as γ dry > γ wet) except ERA5-Land and MTE.
Regarding R, the ET products had a high R-based ability to
simulate spatial distribution of ET with R > 0.8 under dry and

FIGURE 3
Spatial patterns of validation metrics at global 1,381 basins. The histograms in (A–D) present the values of KGE and its components R, β and γ at
different levels corresponding to the color bars.
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FIGURE 4
Scatterplots of water balance ET versus ET simulated by ET products for wet and dry basins, accompanied by various validation criteria (KGE and its
components R, β and γ) at the bottomof each panel. (A–H) represent theGLASS, ERA5-Land, MERRA-2, GLEAM-3.5a, E2O-En, PML, GLDAS2.0-Noah and
MTE, respectively. The blue and red represent wet and dry basins, respectively.

FIGURE 5
Scatterplots of water balance ET CV versus ET CV simulated by ET products for wet and dry basins, accompanied by various validation criteria (KGE
and its components R, β and γ) at the top of each panel. (A–H) represent the GLASS, ERA5-Land, MERRA-2, GLEAM-3.5a, E2O-En, PML, GLDAS2.0-Noah
and MTE, respectively. The blue and red represent wet and dry basins, respectively.
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wet conditions. Meanwhile, the ET products could better represent
the spatial distribution of climatological ET (except for GLASS,
ERA5-Land, and MTE) under dry basins than wet basins
(represented as R_dry > R_wet). As for KGE, ET products
exhibited the high overall performance on climatological ET
conditioned by aridity, especially generating the highest KGE
values for GLDAS2.0-Noah (0.89) under dry condition and PML
(0.94) under wet condition.

With β at ~ 1.0, the magnitude of temporal variability of ET
tended to be more easily simulated under dry condition, compared
with wet condition (Figure 5). As for γ, the spatial variability of ET
temporal variability was generally overestimated by ET products
under all aridity conditions, with 0.87 for GLDAS2.0-Noah≤
γ ≤1.47 for ERA5-Land under dry condition, and 0.79 for
GLASS≤ γ ≤1.95 for PML under wet condition. As for R, the ET
products could detect the spatial distribution of ET CV under dry
basins, of which the highest R value was 0.76 forMERRA-2, followed
by 0.69 for E2O-En. However, under wet condition, the ET products
presented a contrasting performance, compared with dry condition,
with R values ranging from −0.07 to 0.12. Considering KGE, similar
to R, the ET products could not simulate the ET CV under wet
condition, whereas, under dry condition, ERA5-land, MERRA-2,
GLEAM3.5a, E2O-En and GLDAS2.0-Noah showed better overall
performances, generating a KGE above 0.40.

Taking the ET trend into consideration (Figure 6), more than 50%
of the total number of basins were located in the first and third
quadrants, with 46.89% for ERA5-Land ≤ TPR + TNR≤78.00% for
MERRA-2 under dry condition and 54.20% for GLASS ≤ TPR +
TNR≤63.26% for ERA5-Land under wet condition. This indicates that

most of the ET products can capture the ET trend directions. Despite
that, it is worth noting that FPRs outweighed the TNRs under wet
condition. This suggested that under the wet condition, these products
tended to change the negative ET trends to the positive ET trends.
Based on β, under wet condition, most of the ET products (except
ERA5-Land and MERRA-2) tended to underestimate the magnitude
of ET trend, with −19.63 for GLASS≤ β ≤-4.93 for GLEAM-3.5a. By
contrast, under dry condition, the underestimations of the ET trend
got relieved, with −2.06 for ERA5-Land≤ β ≤4.76 for GLASS, except
that general underestimations still existed in dry condition. In
addition, ET products underestimated the extreme ET trends over
the wet basins (<−5 and >5 mm yr−1), which mainly occurred in the
Amazonian Plain and Brazilian Plateau (Figure 2). As for the spatial
variability of ET trend, the γ values were around zero for all ET
products under wet condition, ranging from −0.09 (GLEAM-3.5a) to
0.18 (ERA5-Land), while the γ values were more deviated from
optimal value (1.0) for most ET products under dry condition,
ranging from −23.21 for GLEAM-3.5a to 23.53 for E2O-En.
Overall, all ET products exhibited limited R-based ability to
simulate spatial distribution of the ET trend, with 0.09 for
GLASS ≤ R ≤ 0.65 for MERRA-2 under dry condition and
0.05 for MTE ≤ R ≤ 0.33 for GLASS under wet condition.
Furthermore, the overall performance for each ET product under
all aridity conditions was poor with −23.25 (GLEAM-3.5a)≤KGE ≤
0.44 (MERRA-2) under dry condition and −19.66
(GLASS)≤KGE ≤ −1.05 (ERA5-Land) under wet condition.
Notably, the overall performances were generally worse for the latter.

Temporally, as shown in Figure 7A, regarding β, except PML,
GLDAS2.0-Noah, and MTE, the magnitudes of ET were

FIGURE 6
Scatterplots of water balance ET trend versus ET trend simulated by ET products for wet and dry basins, accompanied by various validation criteria
(KGE and its components R, β and γ) at the top of each panel. (A–H) represent the GLASS, ERA5-Land, MERRA-2, GLEAM-3.5a, E2O-En, PML, GLDAS2.0-
Noah andMTE, respectively. The blue and red represent wet and dry basins, respectively. The percentages in the first-fourth quadrants represent the TPR,
FPR, TNP, and FNR, respectively. The sum of the percentage values in four quadrants is equal to 100 (%).
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FiGURE 7
Box plots of evaluation metrics for ET products under wet and dry basins. (A–D) represent the KGE and its components R, β and γ, respectively. The
blue and red represent wet and dry basins, respectively. The dashed lines represent the average value.

FIGURE 8
Scatterplots of water balance ET CV versus ET CV simulated by ET products under LAI-I, LAI-II, and LAI-III conditions, accompanied by various
validation criteria (KGE and its components R, β and γ) at the top of each panel. (A–H) represent the GLASS, ERA5-Land, MERRA-2, GLEAM-3.5a, E2O-En,
PML, GLDAS2.0-Noah andMTE, respectively. The red, blue and green represent the vegetation greenness levels of LAI-I (LAI<1), LAI-II (1 ≤ LAI<2) and LAI-
III (LAI≥2) respectively.
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overestimated at 51.33% for GLEAM-3.5a to 98.89% for GLASS of
dry basins, and at 51.66% for GLEAM-3.5a to 96.46% for MERRA-2
of wet basins. The basin-averaged β values for the ET products
(except GLASS and MERRA-2) were both near to 1.0 under dry and
wet conditions (Figure 7B). The basin-averaged γ values under dry
condition were also close to 1.0 for most products, while under wet
condition the values were overwhelmingly low, ranging from
0.17 for MTE to 0.72 for MERRA-2. As for R (Figure 7C), more
than 50% of basins exhibited a value over zero for most products
under all conditions. Despite that, each ET product showed a higher
R-based ability to simulate ET temporal fluctuation under dry
condition than wet condition, with average R values ranging
from 0.15 for GLDAS2.0-Noah to 0.46 for MERRA-2 under dry
condition and −0.03 forMERRA-2 to 0.17 for ERA5-Land under wet
condition. As for KGE (Figure 7D), compared with the R-based
ability, the overall performance of ET products under wet conditions
worsened. For example, 64.12% (ERA5-Land) to 93.88% (MTE) of
basins showed negative KGE values under wet conditions, whereas
63.11% (GLDAS2.0-Noah) to 87.33% (E2O-En) of basins exhibited
positive KGE values under dry conditions. Furthermore, all ET
products showed a negative average KGE value under wet
conditions, while most products, except for GLASS, showed a
positive average KGE value under dry conditions.

3.3 Validation by vegetation conditions

From perspective of climatological ET, the magnitude and
spatial variability of ET could be represented by most of the ET

products across all vegetation conditions (Figure 8), with both β and
γ around 1.0. However, most of the ET products (excluding GLASS)
also underestimated the ET values above 1,200 mm under LAI-III
condition, which mainly exist in Amazonian Plain and Brazilian
Plateau (Figure 2). Concerning R, the capacity to simulate the spatial
distribution of climatological ET increased first, and then decreased
as vegetation became greener for most ET products except
GLDAS2.0-Noah, In terms of KGE, most ET products show good
KGE-based performance. In addition, GLASS, ERA5-Land,
MERRA-2, E2O-En, PML, and MTE showed that the KGE-based
performance was the best under LAI-II condition.

In terms of the ET CV (Figure 9), most ET products (except
GLASS and MTE) reasonably estimated ET magnitude under LAI-I
condition, with 0.86 for PML≤ β ≤1.34 for ERA5-Land. However,
the β values were limited for other vegetation conditions, with
0.22 for MTE≤ β ≤0.62 for PML under LAI-II condition and
0.14 for PML≤ β ≤0.67 for MERRA-2 under LAI-III condition.
The β values for the ET temporal variability decreased as the
vegetation turned green for each ET product. And the γ values
for the spatial variability of ET temporal variability tended to be
overestimated under all vegetation conditions. For R, all the ET
products (except PML) had the limited R-based ability to simulate
the spatial distribution of ET temporal variability, with vegetation
greening. For example, the R values under LAI-I, LAI-II, LAI-III
conditions ranged from 0.24 to 0.69, 0.24 to 0.38, and −0.09 to 0.13,
respectively. Similar trends were occurred to KGE, except that the
overall performance of KGE was even worse than that of R-capacity.

In the view of ET trend (Figure 10), its condition is similar to the
aridity condition. The ET products could hit the ET trend directions,

FIGURE 9
Scatterplots of water balance ET CV versus ET CV simulated by ET products under LAI-I, LAI-II, and LAI-III conditions, accompanied by various
validation criteria (KGE and its components R, β and γ) at the top of each panel. (A–H) represent the GLASS, ERA5-Land, MERRA-2, GLEAM-3.5a, E2O-En,
PML, GLDAS2.0-Noah andMTE, respectively. The red, blue and green represent the vegetation greenness levels of LAI-I (LAI<1), LAI-II (1 ≤ LAI<2) and LAI-
III (LAI≥2), respectively.
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FIGURE 10
Scatterplots of water balance ET trend versus ET trend simulated by ET products under LAI-I, LAI-II, and LAI-III conditions, accompanied by various
validation criteria (KGE and its components R, β and γ) at the top of each panel. (A–H) represent the GLASS, ERA5-Land, MERRA-2, GLEAM-3.5a, E2O-En,
PML, GLDAS2.0-Noah andMTE, respectively. The red, blue and green represent the vegetation greenness levels of LAI-I (LAI<1), LAI-II (1 ≤ LAI<2) and LAI-
III (LAI≥2), respectively. The percentages in the first-fourth quadrants represent the TPR, FPR, TNP, and FNR, respectively. The sumof the percentage
values in four quadrants is equal to 100 (%).

FIGURE 11
Box plots of evaluation metrics for ET products under LAI-I, LAI-II, and LAI-III conditions. (A–D) represent the KGE and its components R, β and γ,
respectively. The blue, red and green represent LAI-I, LAI-II, and LAI-III conditions, respectively. The dashed lines represent the basin-averaged value.
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with 50.73% for PML ≤ TPR + TNR79.88% for MERRA-2 under
LAI-I condition, 52.58% for GLASS ≤ TPR + TNR≤66.39% for PML
under LAI-II condition, and 52.09% for PML ≤ TPR + TNR≤66.85%
for ERA5-Land under LAI-III condition. Additionally, FPRs
outweighed the TNRs for ET products (except ERA5-Land and
MERRA-2) under LAI-II and LAI-III conditions, for example, for
GLDAS2.0-Noah, FPR versus TNR was 39.27% versus 8.82% under
LAI-II condition, and 40.96% versus 7.32% under LAI-III condition,
indicating that the ET products tended to misidentify the negative
ET trends as positive ET trends. Based on β, except ERA5-Land and
MERRA-2, the ET products tended to seriously underestimate the
magnitudes of ET under LAI-III condition, with −8.21 for GLASS≤ β

≤-3.15 for MTE. And the values of β were much larger than
1.0 under LAI-II condition (excluding ERA5-Land and MERRA-
2), suggesting that the overestimation occurred in LAI-II condition.
As for γ, all the ET products underestimated the spatial variability of
the trends (excluding MERRA-2, GLEAM-3.5a, E2O-En and MTE
for LAI-I condition). As for R values, the ET products (except
GLASS, MTE and PML) showed lower correlations with the
greening of vegetation. Interestingly, the ET trends were
remarkably overestimated by most products in LAI-II condition,
and slightly underestimated under LAI-I and LAI-III conditions. As
for KGE, most of the ET products had bad performance with
negative values under all conditions. Especially under LAI-II and
LAI-III conditions, they had almost no simulability.

Temporally, the basin-averaged β values were around the 1.0 for
all vegetation conditions (Figure 11A), though the temporal
magnitudes of ET were either overestimated or underestimated
by the ET products. Considering γ (Figure 11B), the basin-
averaged values for all the ET products significantly decreased
with the vegetation turning green, and were overestimated under
LAI-I condition, but underestimated under the other vegetation
conditions. It is worth noting that as vegetation was getting greener,
the R-based ability for all the ET products was significantly
constrained (Figure 11C). Specifically, all the ET products
consistently performed, and the average R value and the basin
percentages of the R values over zero decreased with vegetation
greening. Figure 11D clearly shows that, like R-based ability, the
basin-averaged overall performances of all the ET products
decreased, as the vegetation was getting greener, except that the
KGE values were lower than R values.

4 Discussion

4.1 Validation by dynamic aridity or
vegetation conditions

In this study, the simulations of ET derived from the eight
methods were evaluated by the water balance ET of global
1,381 basins under various water, energy, and vegetation
conditions. Since water, energy, and vegetation are crucial for
accurately simulating ET, the lack of sufficient their information,
caused by the lack of ET algorithm, forcing data and calibration
methods, affects the performance of ET simulation (Xu et al., 2019;
Elnashar et al., 2021; Li et al., 2022; Yu et al., 2022). As is shown, the
comprehensive performance of ET products (Figures 7, 11) and the
capture of ET variance (Figures 5, 9) regularly decrease, with the

humidity and vegetation greenness increasing. These phenomena
imply that the accuracy of the ET simulations may decrease, when
the regional climate is wetting and the global vegetation is greening
(Mankin et al., 2017; Lian et al., 2021; Zhang et al., 2022).
Additionally, the ET products tend to misidentify the negative
trends as the positive trends, especially under wet and LAI-III
conditions, implying that the estimates of ET trends may be
overestimated across the globe or in wet and LAI-III conditions
(Figures 6, 10). These issues will be further discussed in the
following.

In terms of the impact of water and energy denoted by AI, ET
process in dry or wet regions can be conceptualized as a water- or
energy-limited process, respectively: ET under dry conditions is
water-limited, in that it is constrained by the soil moisture available
for ET, while ET under wet conditions is energy limited, since there
is sufficient soil moisture available for ET. Therefore, the maximum
rate and temporal variations of ET proceeds are determined by
atmospheric water demand (potential evapotranspiration) rather
than soil moisture (Draper et al., 2018). All the ET products could
better capture the mean annual value of all aridity conditions.
However, the ET CV in wet basins tend to be more remarkably
underestimated than in dry basins, by the ET products except
GLASS and PML (Figures 5, 7). Indeed, wet zones have more
active land-atmosphere coupling than dry zones, in that the
inevitable ET algorithm errors or data forcing errors magnify the
uncertainties under wet zones. For instance, Penman-Monteith
method (GLDAS2.0-Noah, MERRA-2 and PML) is primarily
driven by net radiation (Rn) under wet zones using a linearized
approximate solution (Gao, 1988; Grignon, 1992; Leca et al., 2011),
which is sensitive to low vapor pressure deficit (VPD) and may
induce considerable problems in the extreme conditions (such as the
water balance ET higher 1,200 mm (Figure 4) and extreme ET trends
(Figure 6) and the soil evaporative term (Bai and Liu, 2018;
Blatchford et al., 2020). More importantly, the presence or
absence of ET products TWSC components in simulating ET
under dry and wet areas cannot be ignored. However, most ET
methods do not have an aquifer storage component, and LSMs lack a
good representation of groundwater withdrawal for agricultural
depletion, such as irrigation (Liu et al., 2016; Zeng and Cai,
2018). Additionally, the errors in the ET estimates and
differences among the ET products are also mainly dependent on
various inputs (Li et al., 2018).

The surface variables also control the ET process, especially
vegetation (Wang et al., 2022; Zheng et al., 2022). Similarly, the
response of ET products to vegetation was investigated. Regarding
the mean annual value, we found that the simulability of datasets
first increased and then decreased, with the increase of vegetation
density (Figure 8), in line with the Lu et al. (2021). In addition, we
also confirmed that the comprehensive performance (KGE) of ET
products decreases as the vegetation is getting greener (Figures 8,
10). The first reason for this is that whether ET algorithms take the
LAI or vegetation dynamics into consideration. For example,
GLEAM-3.5a model lacks vegetation-related information, though
it considers the vegetation optical depth, which may result in lower
accuracy in high vegetation regions (Martens et al., 2017; Xu et al.,
2019; Qiu et al., 2022). Another reason is that the ET algorithm do
not comprehensively consider the vegetation process in hydrology
or energy cycle. MERRA-2 overestimates the interception loss
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fraction defined as the fraction of rainfall, i.e., rainfall intercepted by
the canopy and reevaporating back into the atmosphere without
infiltrating into the soil or causing surface runoff (Reichle et al.,
2011; Bosilovich et al., 2017; Gelaro et al., 2017; Reichle et al., 2017;
Hinkelman, 2019), which could explain why the MERRA-2
generally has the highest β under various LAI conditions among
the eight ET products (Figures 8, 11, and Lv et al. (2020)). The last
easily neglected issue is related to the model forcing data. One aspect
of the issue is the forcing data errors. The accuracy of LAI dataset is
impacted by the leaf shadowing (Mehrez et al., 1992), especially tall
and dense vegetations. Besides, shaded leaves are not light-saturated,
leading to diffuse sunlight conditions and then having a higher
fraction of FAPAR (the fraction of photosynthetically active
radiation absorbed by the canopy) (Jimenez et al., 2011; He et al.,
2013; Xu et al., 2019). Another aspect of the issue is the forcing data
settings, for instance, MTE ET product was generated frommachine
learning method by compiling the 253 globally distributed flux
towers data and remote sensing data, including vegetation
information (FAPAR). We speculated that the varying
performance of MTE product with various LAI conditions was
probably driven by data settings. For example, the vegetation was
used to do split not regression, which results in inadequate
vegetation information (Jung et al., 2010). Or ERA5-Land was
used to generate land elements data including ET, by using a
static monthly climatology of a fixed land use and leaf area index
(LAI) (Muñoz-Sabater et al., 2021). And GLDAS2.0-Noah also uses
a static land use, though with high spatial resolution (Rodell et al.,
2004). Therefore, they ignored the change of land cover and cities,
and lost more frequent LAI anomalies during the reanalysis period
(Muñoz-Sabater et al., 2021).

The model calibration methods also have a significant impact on
the performance of ET simulation. One problem concerning the
methods is that the ET simulations are often calibrated with the
mean annual value not the variance and trend of actual ET, though
considering multiple calibration metrics. Another problem is that
the data used for calibration are often EC site data that are not
representative of the regional scale (Bai and Liu, 2018; Xu et al.,
2019). In addition, as far as we know, the ET products except GLASS
and MTE are accompanied by component data such as soil

evaporation, vegetation evapotranspiration and water surface
evaporation, but these data are not calibrated with sufficient
actual measurements (Swanson, 1994; Brunel et al., 1997; Chen
et al., 2014).

4.2 Uncertainties

The uncertainties in Pre and TWSA products are the largest
source of uncertainties in assessing the ET products (Liu et al., 2016).
According to the water balance budget, the assessment of global-
scale ET products needs to rely on grid-scale Pre and TWSA
products, although the global-scale observatory data is difficult to
collect. As for the three Pre products selected in this study (GPCC,
CPC-Unified, and CRU TS4.05), the uncertainties derive from the
number of stations used, the time homogeneity and the quality
control procedures (Trenberth et al., 2014; Sun et al., 2018).
However, these products are interpolated from an unprecedented
number of station data and are the most reliable precipitation
products currently available (Sun et al., 2018). Regarding the
TWSA data (GRACE-REC and GRID-CSR-GRACE-REC), the
uncertainties arise mainly from the models used for the
reconstruction (pre-2002) and the driving data (Gyawali et al.,
2022). However, the correlation of GRACE-REC with yearly
streamflow anomalies have median value of around 0.60 over
1981–2010 (Humphrey and Gudmundsson, 2019); the GRID-
CSR-GRACE-REC has high correlation with Global Mean Sea
level with R of 0.91 (Li et al., 2021). We further investigated the
uncertainties in water balance evapotranspiration defined as the CV
of the six Pre-TWSC-Q combinations, and found that most of the
basins with uncertainties of <0.10 and uncertainties above 0.10 were
located mainly in the Midwest USA and Southwest China (rainfall
gauges are more sparsely distributed in high mountain areas) and
the Arctic (Figure 12). In addition,Q data may be affected by human
harvesting of deep groundwater and inter-basin water transfers (Liu
et al., 2016). However, TWSC can reasonably take into account the
impact of human activities on Q. Moreover, in validating the model,
only the terrestrial water balance (not the atmospheric water
balance) is considered, and the measured evapotranspiration

FIGURE 12
Spatial pattern of uncertainties of water balance ET at global 1,381 basins. The histogram presents uncertainty values at different levels
corresponding to the color bars.
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values lack the cross-validation to further reduce the error with the
true values (Li et al., 2019). The generalizability of our results to
other regions of the world may be subject to additional uncertainty,
as the basins included in this study do not cover the entire globe.
However, it is important to note that the performance of
evapotranspiration products varies with dryness and vegetation
greenness, and it is necessary to ensure that all types of dryness
and vegetation greenness are covered (Figure 1). To minimize errors
caused by different spatial resolutions, all ET products were re-
interpolated linearly to 0.5° before evaluation. Furthermore, our
analysis is based on observed ET using the water balance method,
which represents the average ET of watersheds controlled by
hydrological stations, reducing the uncertainty caused by a single
grid point to some extent. The scale effect on ET product
performance related to aridity and vegetation greenness response
needs further exploration in future research.

5 Conclusion

This study conducted a comprehensive assessment of terrestrial
ET products to improve ET products. In this study, drawing on the
data of water balance ET from 1981–2010 collected from
1,381 basins, we examined eight ET products: one remote sensing
product (GLASS), two reanalysis products (ERA5-Land and
MERRA-2), four LSM-based products (GLEAM-3.5a, E2O-En,
PML and GLDAS2.0-Noah), and one machine learning-based
product (MTE). Besides, to gain a deeper insight into the eight
ET estimates under various conditions, the potential impact of
aridity and vegetation greenness were taken in consideration. The
evaluation results are summarized below:

(1) In view of the performance at the global scale, the ET products
had advantages in capturing the mean annual value of ET, with
relatively high KGE values, among which the PML performed
the best with 0.89 for KGE. Despite that, the ET products had
limited KGE-ability to simulate the ET variability with highest
KGE of 0.04 for MERRA-2 and the trend with highest KGE
of −1.47 for GLEAM-3.5a. In addition, the ET products tended
to underestimate the ET temporal variability and overestimate
its spatial dynamics, while they tended to overestimate the ET
trend and underestimate its spatial dynamics. It is worth noting
that the ET products tended to misidentify the negative ET trend
as positive trend.

(2) For each basin, the ET products always overestimated the ET
values and underestimated the ET temporal variability at more
than 50% of basins. And the ET products had a wide R-based
ability to simulate the ET temporal fluctuation, for the ET
products had positive R values at 59.30% (MERRA-2)—
84.50% (ERA5-Land) of basins. The high R values mainly
appeared in the Midwest United States, South Africa,
Western Australia. However, all ET products showed the
limited KGE-ability at the temporal scale.

(3) As for different aridity regimes, the performances of ET
products were completely opposite in dry and wet areas.
Spatially, the ET products showed lower ability to capture
the temporal variability and the trend of ET under wet
condition than dry condition. And overall, the ET products

tended to misidentify the negative ET trend as positive trend,
which only existed in wet condition. Temporally, the overall
performances of ET products were limited under wet condition,
for the ET products performed the negative KGE values under
wet condition, and the positive KGE values under dry condition
at more than 60% of basins.

(4) Considering the dynamic performances with varying vegetation,
the spatial and temporal performances of ET products were
strongly affected by vegetation greenness, which is similar to the
situation with aridity regimes. Spatially, as vegetation became
greener, the performance of simulated climatological ET
increased first and then decreased, and gradually limited the
ability to simulate the spatial distribution of ET temporal
variability. Meanwhile, the ET products tended to misidentify
the negative ET trend as positive trend under lush vegetation
condition. Temporally, the basin-averaged overall performances of
all the ET products decreased, as the vegetation was getting greener.

Overall, the performances of ET products were poor in wet or
vegetated areas, suggesting that the accuracy of ET products may
decline in the future when the climate becomes wetter and the
vegetation becomes greener. Therefore, this work is hopefully to
improve our understanding about the spatio-temporal performance
of the ET products, and contribute to the directional optimizations
and effective applications of ET products.
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The rapid expansion of aquaculture in coastal areas is typically associated with
ecological negligence and low water quality owing to the economic exploitation
of these areas. However, evaluation of these water bodies tends to be laborious,
time-consuming, and costly. Therefore, to overcome the limitations of field
surveys, in this study, we evaluated the water quality of the cultured water in
the Beibu Gulf of Guangxi, obtained spectral reflectance by unmanned aerial
vehicle with multispectral sensors, and constructed inverse models of 11 water
quality parameters, namely, ammonia nitrogen (NH3-N), chemical oxygen
demand (COD), active phosphate (PO4

−), dissolved oxygen, nitrate nitrogen
(NO3-N), nitrite nitrogen (NO2-N), inorganic nitrogen, total nitrogen, total
phosphorus, suspended solids (SS), and chlorophyll a (chl-a), based on the
partial least squares method to invert the water quality distribution of regional
aquaculture. Furthermore, we compared the retrieval accuracy of different water
quality parameters. The following results were obtained: 1) the constructed
model’s results showed that the retrieval models for COD, NO3-N, SS, and chl-
a had better accuracy compared with those of other parameters; 2) application of
the model to the validation set data yielded a correlation coefficient of
0.93 between the measured and predicted SS values, with a mean absolute
error of prediction of 4.65 mg L−1; this parameter constructed the best
prediction model. According to the validation set results, the correlation
coefficients of chl-a, COD and NO3-N are all greater than 0.8, which had
better performance effects compared with the remaining models, which are
0.87, 0.86, and 0.81 respectively. This study provides a reference for remote
sensing monitoring of water quality in mariculture in cloudy and rainy areas.

KEYWORDS

UAV multispectral image, mariculture, water quality retrieval, Qinzhou Bay, partial least
squares
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1 Introduction

Total global production from fisheries and aquaculture reached
a record 214 million tons in 2020, including 178 million tons of
aquatic animals and 36 million tons of algae. This increase in
production was mostly due to growth in the aquaculture
industry, with the greatest increase in Asia, particularly China
(FAO, 2022). Since the late 1980s, the rapid expansion of
aquaculture in coastal areas has made China the world’s largest
aquaculture producer (Ren et al., 2019). Economic interests drive the
rapid development of mariculture in these areas, often leading to
high inputs (e.g., in sea farming, large amounts of bait are input) to
achieve high income while neglecting the ecological balance of
aquaculture waters and the protection of the aquatic
environment, which in turn has impacted the regional ecological
environment (Ren et al., 2019). The deterioration of the ecological
environment will not only affect the yield of products but also
seriously threaten the quality and yield of products and even the
income of farmers (Carter et al., 2017; Yuan et al., 2021). Therefore,
the monitoring of mariculture water quality is particularly
important, not only to ensure the quality of seafood but also to
generally protect the environment.

The impact of mariculture on the environment is mainly caused
by two aspects, firstly, the bait invested in the mariculture process,
and secondly, the metabolites produced during the growth of
seafood. In the mariculture process, a large amount of bait is
provided, but only a portion of this bait is effectively used, and
the rest is discharged into the water column in the form of residual
bait and excreta, including feces, forming endogenous pollutants in
the water column (Li et al., 2021). Discharging pollutants into the
ocean leads to increased nutrient levels in the marine ecosystem,
posing a threat to the surrounding ecological environment (Wang
et al., 2020; Yuan et al., 2020; Liu et al., 2021).

The traditional water quality monitoring method uses field
sampling for laboratory analysis to obtain water quality
information or automatic in-situ measurements. Although the
accuracy is high, the increased labor cost, sampling time
consumption, and other multi-factor constraints pose certain
limitations (Liang et al., 2021; Liu et al., 2021). In contrast,
remote sensing technology offers an effective approach for
water quality monitoring owing to advantages such as low
cost, high speed, effective synchronization, and large area of
observation (Bean et al., 2017; Sagan et al., 2020). Remote water
quality monitoring refers to the establishment of water quality
retrieval models by studying the relationship between the spectral
reflection characteristics of water bodies and each water quality
parameter by combining the retrieval models with remote
monitoring image data to inverse the water quality condition
of the entire region, which is suitable for the regional monitoring
of water bodies (Liang et al., 2021). Moreover, with the
development of satellite remote sensing technology, water
quality remote sensing technology is becoming increasingly
advanced, and researchers worldwide have achieved great
results regarding the retrieval of water quality parameters. For
optically water quality parameters such as CDOM and chl-a,
there have been very mature studies, while for non-optically
water quality parameters such as TN and TP, machine learning
methods have been used for estimate in recent years. (Lobo et al.,

2015; Peterson et al., 2020; Liang et al., 2021; Zhao et al., 2021;
Guo et al., 2020; Chen et al., 2021). However, the low spatial
resolution of satellite remote sensing imagery has limited the
ability to obtain the spatial distribution of water quality in small
and micro waters, such as aquaculture ponds. As noted by Liu
et al. (2019), high-resolution images are required to overcome
this limitation. The novelty of this study lies in its focus on
remote sensing of water color in small water bodies, which has
received relatively limited attention. Moreover, remote sensing of
water color in small water bodies presents challenges, including
the low signal level due to limited water volume and the potential
influence of bottom reflectance. Thus, our study aims to address
these challenges and provide a comprehensive analysis of water
quality parameters using remote sensing in small water bodies
(Zehra et al., 2019). In addition, optical satellite images are
susceptible to different weather conditions (e.g., clouds and
rain), and the image acquisition period is long, making it
difficult to obtain efficient images over the water bodies (Rui
et al., 2021). So that we have to find another sate source to
supplement, while, unmanned aerial vehicles (UAVs) are highly
mobile, have low operating costs, result in high image resolution,
and require short operation cycles (Liu et al., 2021), making them
suitable for water quality monitoring through remote sensing.

Recently, UAV remote sensing technology has been widely
applied to aerial land surveys, agriculture and forestry plant
protection, atmospheric detection, disaster mitigation, and
national defense security (Rui et al., 2021; Liu, 2022). Some
researchers have studied the application of UAV remote sensing
technology in water quality monitoring. Cheng et al. (2020)
demonstrated for the first time the use of UAVs to quantitatively
map the Chl-a distribution of surface water in coastal waters from
low altitude. Liu et al. (2019) constructed an inverse model based on
UAV multispectral images for three water quality parameters,
namely, total phosphorus (TP), suspended solids (SS), and
turbidity. McEliece et al. (2020) used UAV multispectral imagery
to inverse chlorophyll-a (chl-a) and turbidity in nearshore water
bodies. Moreover, Matsui et al. (2021) used UAV remote sensing
imagery combined with neural networks to compensate for the lack
of resolution of satellite remote sensing imagery to achieve high-
resolution monitoring of suspended sediment concentrations. Chen
et al. (2021) have made some achievements in the study of UAV
inversion of non-optically active water quality parameters, they
found GA_XGBoost inversion model has high accuracy and
strong generalization on inverse Chl-a, TP, TN and NH3-N.
However, research on water quality monitoring by UAV remote
sensing is still in the exploratory stage, and thus, further
investigation is required to improve our understanding.

In the present study, to evaluate water bodies in the Beibu Gulf,
we first obtained the spectral reflectance by UAV with multispectral
sensors; then, we constructed retrieval models for 11 water quality
parameters, namely, ammonia nitrogen (NH3-N), chemical oxygen
demand (COD), active phosphate (PO4

−), dissolved oxygen (DO),
nitrate nitrogen (NO3-N), nitrite nitrogen (NO2-N), inorganic
nitrogen (DIN), TN, TP, SS, and chl-a, based on a partial least
squares method. Finally, we compared the retrieval accuracy of
different water quality parameters. This study will serve as a
reference for future studies on monitoring and investigating
aquaculture water quality in offshore areas using UAVs.
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2 Data and methodology

2.1 Study area and sampling locations

The aquaculture industry in China is widely distributed in
coastal areas. Low-lying coastal areas are the most favorable areas
for aquaculture (Primavera, 2006). The present study considered the
Qinzhou Bay area located in the northern part of the Beibu Gulf of
Guangxi, China. Qinzhou Bay consists of inner and outer bays. The
inner bay, which lies at the confluence of the Maoling River, Qin
River, and Dalan River, is a typical estuarine semi-enclosed tropical
bay with a well-developed aquaculture industry and is an essential
artificial culture base in China (Lao et al., 2021). The study area is
located in an estuary section of the Beibu Gulf, Guangxi and
surrounding area, with a total area of approximately 30.3 km2.
The culture types were mainly South American white shrimp,
tilapia, fork-tailed catfish, and fish–shrimp mixed culture. UAV
multispectral image acquisition and water quality sampling of the
study area were conducted from April 8 to 10, 2021, with a total of
33 sampling points, including 10 sampling points for the
fish–shrimp mixed culture, 2 sampling points for fishponds,
13 sampling points for shrimp ponds, and 8 sampling points for
non-cultured water bodies, and a density of approximately 1.09 km2;
the latitude and longitude were recorded separately during
sampling. The collected water samples reflected different types of
aquaculture types, and the distribution of sampling points is shown
in Figure 1.

A water quality analyzer (AMT-YB101, Shenzhen Yunchuan
IOT Technology Co., Shenzhen, China) was used to determine the
water temperature and pH on site; moreover, 500 mL water samples
were collected and placed in a sealed container to transport back to
the laboratory. Eleven parameters, namely, NH3-N, COD, DO,
NO3-N, NO2-N, DIN, TN, TP, SS, and chl-a, were evaluated.

Sampling points were located at 0.5 m below the water surface;
all samples were collected, pretreated, stored and detection in strict
accordance with the Marine Monitoring Code (GB 17378.4-2007,
China).

2.2 UAV multispectral data

In this study, a DJI Elf 4 multispectral version UAV (SZ DJI
Technology Co., Shenzhen, China) carrying an integrated
multispectral camera with one visible light camera and five
multispectral cameras (blue light, green light, red light, red edge,
and near-infrared), that were responsible for visible light imaging
and multispectral imaging, respectively. Each visible and
multispectral camera had 2 megapixels and a ground resolution
of 5 cm when flying at 100 m. The flight time of the drone was from
9:00 to 16:00 on April 8 to 10, 2021. The flight height was set to
100 m, and a total of 45 sorties were flown; a single flight took
approximately 25 min in an area of approximately 0.6 km2.

The acquired single images were processed using Pix4D™
(V4.4.12) software for multispectral images taken at nearshore
locations. We also completed the mosaicking of each band and
the radiometric correction and calibration of them using
Pix4Dmapper. To analyze and process these images, we
performed four steps using Pix4Dmapper software. First, we
preprocessed the original images with this software and
generated an interior orientation element file (.cal). This file
contained parameters such as focal length, principal point
coordinates, radial distortion coefficients and tangential distortion
coefficients of the camera. These parameters corrected camera
distortion of images in each band. Next, we recorded the attitude
angles (pitch angle, roll angle and yaw angle) during flight with the
inertial measurement unit (IMU) that came with DJI. We used these
angles as one of the parameters in the exterior orientation element
file (.ori). These parameters corrected flight attitude of images in
each band. Then, we performed feature point matching and three-
dimensional reconstruction on the original images with this
software and generated a digital elevation model (DEM). This
model reflected the elevation distribution of the ground. It
corrected terrain relief of images in each band. Finally, we
calibrated ground control point (GCP) and set coordinate system
on the original images with this software and generated a projection
coordinate system file (*.prj). This file contained information such as
projection method, ellipsoid parameters and datum parameters used
by the image. It transformed images in each band from spatial
position to geographic coordinates or projection coordinates. Using
image stitching technology based on junction recognition, we
corrected the image according to changes in camera angle and
distance from the ground and finally read it into ENVI (V5.3)
software. The pixel data of each band corresponding to the sampling
point was used as the independent variable (Table 1).

2.3 Retrieval method

Water quality remote sensing retrieval methods are generally
divided into empirical models based on statistics, machine learning
models, and physical semi-analytical models based on the

FIGURE 1
Sampling point distribution.
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interaction of light and water bodies. Common water quality
retrieval methods include methods such as multiple linear
regression, partial least squares regression (PLSR), and support
vector machine regression. Among them, PLSR combines
multiple linear regression analysis, principal component analysis,
and typical correlation analysis to establish a relationship with the
dependent variable by extracting several mutually independent
principal components from the set of independent variables (Liu
et al., 2011), thus minimizing the impact of potential
multicollinearity problems.

PLSR requires a strong correlation between the eigenvectors
selected from the independent and dependent variables.
Theoretically, multiple variables can be used to model the
prediction of components, but in practice, the standard
prediction model uses only a few variables. The independent and
dependent variables are initially subjected to Pearson correlation
analysis to screen out the appropriate independent variables for
modeling and then further crossed checked by the leave-one-out
method. Furthermore, the best modeling factors are retained by the

leave-one-out experiment to eliminate unnecessary variables. The
details of the modeling process of PLSR were previously described
(Wang, 2006). In the present study, the spectral reflectance
corresponding to five bands was set as the independent variable,
and the feasibility of the water quality retrieval model constructed by
UAV multispectral images applied to the monitoring of key water
quality parameters in aquaculture ponds was discussed.

After the UAV multispectral images were preprocessed, the
reflectance value of each band of the multispectral image data
corresponding to the location of the sampling point was
extracted using ENVI software, and the spectral reflectance of the
single band and band combination pixel was correlated with the
measured concentration of each parameter. In summary, analysis
was performed; the band with the best correlation was selected as the
sensitive band, the measured concentration of each parameter and
sensitive band were taken as dependent and independent variables,
respectively, and the PLSR model was constructed and verified via
the verification dataset. Finally, the accuracy and validity of the
model were evaluated according to the verification results.

TABLE 1 Pixel data of each band corresponding to the sampling point.

Band Band name Center wavelength/nm Wavelength/nm

B1 Blue 450 32

B2 Green 560 32

B3 Red 650 32

B4 Red Edge 730 32

B5 NIR 840 52

FIGURE 2
Scatterplots of partial least squares inversion model accuracy evaluation: (A) NH3-N, (B) COD, (C) PO4−, (D) DO, (E) NO3-N, (F) NO2-N, (G) DIN, (H)
TN, (I) TP, (J) SS, (K) chl-a.
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TABLE 2 Results of the 11 measured parameters per collection site.

Parameter (mg·L−1) Fish and shrimp mixed farming Shrimp farming Fish farming Non-farmed water body

Max Min Mean Std. Max Min Mean Std. Max Min Mean Std. Max Min Mean Std.

NH3-N 5.09 0.06 1.41 1.59 2.73 0.37 1.29 0.85 1.59 0.32 0.95 0.64 0.93 0.24 0.54 0.23

COD 18.70 9.35 12.84 2.71 18.65 7.81 11.42 3.06 21.60 12.10 16.85 4.75 13.15 1.80 5.11 4.22

PO4− 1.34 0.04 0.45 0.41 1.79 0.06 0.59 0.55 0.08 0.08 0.08 0.03 0.89 0.04 0.18 0.28

DO 8.81 4.90 7.20 1.44 9.85 4.90 6.81 1.34 8.16 7.00 7.58 0.58 9.60 4.51 6.17 1.41

NO3-N 0.27 0.01 0.10 0.08 0.30 0.01 0.09 0.09 1.95 0.52 1.23 0.72 1.36 0.01 0.79 0.50

NO2-N 0.64 0.01 0.18 0.19 0.75 0.01 0.18 0.21 1.23 0.12 0.67 0.56 0.09 0.01 0.06 0.03

DIN 5.49 0.07 1.69 1.66 3.11 0.38 1.55 0.87 4.77 0.95 2.86 1.91 2.14 0.91 1.39 0.45

TN 5.70 1.11 2.52 1.48 4.26 0.98 2.51 1.18 9.15 1.85 5.50 3.65 2.83 1.07 1.92 0.58

TP 3.73 0.18 1.11 1.18 3.07 0.27 1.01 0.82 0.56 0.45 0.51 0.06 1.23 0.07 0.30 0.37

SS 64.00 13.00 25.10 14.78 36.00 7.00 19.00 6.67 88.00 58.00 73.00 15.00 29.00 6.00 12.25 7.07

chl-a (μg·L−1) 65.50 2.80 26.30 18.46 75.40 2.60 27.00 19.49 120.00 111.00 115.50 4.50 52.30 1.50 17.51 19.53

Note: Standard deviation (Std.).
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2.4 Model evaluation

The accuracy evaluation indicators of the PLSR model are the
root mean square error (RMSE), mean absolute error (MAE), and
coefficient of determination (R2) of the model interpretation
evaluation index. The smaller the values of RMSE and MAE, the
better the accuracy of the prediction model at describing the
experimental data, and the closer the R2 value is to 1, the better
the model fit. Additionally, it is generally considered that when the
model fit exceeds 0.8, the superiority of the model is relatively high.
The evaluation indicators were calculated as follows:

RMSE �
������������
1
N

∑
N

i�1
yi − ŷi( )2,

√√

(1)

MAE � 1
N

∑
N

i�1
yi − ŷi

∣∣∣∣
∣∣∣∣, (2)

R2 � ∑N
i�1 ŷi − �y( )2

∑N
i�1 yi − �y( )2

, (3)

where i is the i-th sample, yi and ŷi denote the measured and
predicted values, respectively, and N is the number of samples.

3 Results

3.1 Model construction

Collected samples were mostly shrimp and fish–shrimp mixed
culture water bodies. The results of the 11 determined parameters

(Table 2) indicate that the concentration of each water quality
parameter in the water bodies where culture activities were performed
was significantly higher than that in the water bodies where non-culture
activities were performed, and the water quality of the rivers was
significantly better than that of the farming areas on both banks.

Combined with the reflectivity of the five bands of the UAV
multispectral images from April 8 to 10, 2021 and the concentration
of each parameter, the Pearson correlation analysis was performed
(Table 3). In general, we observed a positive correlation between the
reflectivity of every single waveband of the UAV and concentration
of each parameter, and the correlation coefficient r ranged
between −0.391 and 0.761. Among the 11 parameters, the single-
band correlation coefficient r value of SS concentration and B4 and
B3 bands ranked first and second in the calculation results at 0.761 and
0.721, respectively. A comprehensive analysis comparing the correlation
calculation results between other water quality parameters and
reflectance of the bands showed that the concentration values of
seven parameters, namely, NH3-N, COD, NO3-N, DIN, TN, SS, and
chl-a, were significantly correlated with some single-band reflectance; in
contrast, the concentration values of four parameters, namely, PO4−,
DO, NO2-N, and TP, were not significantly correlated with all single-
band reflectance. Further correlation analysis of each single-band
reflectance showed that the correlation coefficients among the five
bands were high, ranging from 0.666 to 0.908, and it can be assumed
that there is multicollinearity among the five bands (Table 4).
Furthermore, we found that compared to the accuracy of sensitive
band modeling, that of all-band modeling was better. Therefore, this
study proposes the use five bands, B1, B2, B3, B4, and B5, as
independent variables and the concentration values of each
parameter as dependent variables to establish the PLSR
concentration retrieval model.

A total of 33 water quality samples were collected fromApril 8 to
10, 2021, and because some areas were not covered by the UAV
images, 26 sample points were finally used for inverse modeling,
which was cross-validated by the leave-one-out method. A
standardized partial least squares regression model was finally
constructed (Table 5).

3.2 Model validation

3.2.1 Modeling accuracy
The PLSR concentration retrieval models were constructed

for each parameter and applied to the spectral reflectance of the

TABLE 3 Pearson correlation analysis of the 11 determined parameters with the single-band reflectance.

Band NH3-N COD PO4− DO NO3-N NO2-N DIN TN TP SS Chl-a

B1 0.591** −0.115 −0.051 −0.027 0.226 0.144 0.638** 0.397* 0.224 0.381 0.099

B2 0.380 −0.330 −0.311 −0.025 0.475* 0.228 0.562** 0.361 −0.053 0.329 0.022

B3 0.598** 0.239 −0.003 0.064 0.225 0.321 0.681** 0.567** 0.287 0.721** 0.479*

B4 0.458* 0.234 −0.069 0.158 0.289 0.360 0.589** 0.519** 0.250 0.761** 0.525**

B5 0.338 −0.391* −0.261 −0.059 0.445* 0.189 0.505** 0.305 −0.041 0.218 −0.071

**At the 0.01 level (two-tailed), the correlation is significant.

*At the 0.05 level (two-tailed), the correlation is significant.

TABLE 4 Correlation analysis of each single-band reflectance.

Band B1 B2 B3 B4 B5

B1 1 0.908** 0.878** 0.837** 0.877**

B2 0.908** 1 0.974** 0.778** 0.741**

B3 0.878** 0.974** 1 0.718** 0.666**

B4 0.837** 0.778** 0.718** 1 0.959**

B5 0.877** 0.741** 0.666** 0.959** 1

**At the 0.01 level (two-tailed), the correlation is significant.

* At the 0.05 level (two-tailed), the correlation is significant.
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image elements in each wavelength band; further, the predicted
values of each parameter were calculated, and the optimum
concentration retrieval model for each parameter was obtained
by cross-validation using the leave-one-out method (Figures 2, 3).
The RMSE, MAE, and R2 were calculated to evaluate the model
effectiveness. Among the PLSR retrieval models constructed, the
best fit model was the SS retrieval model, with R2 = 0.87, followed
by the COD retrieval model, with R2 = 0.75; and chl-a retrieval
model, with R2 = 0.74. The R2 values of the four retrieval models,
NH3-N, NO3-N, DIN, and TP, were all greater than those of other
water quality parameters that were modeled with R2 between
0.26 and 0.48 (Table 6).

3.2.2 Validation accuracy
The constructed PLSR concentration retrieval model was

applied to the spectral reflectance of each image pixel in all
sampling points to validate the model (Figures 2, 3). The
predicted values of each parameter concentration were
calculated and compared with the true values. The accuracy of
the models was evaluated by calculating the RMSE, MAE, and
Pearson’s correlation coefficient r between the predicted and true
values. The most considerable correlation among the retrieval
results of all models was the prediction result of the SS retrieval
model, with a correlation coefficient r = 0.93, followed by that of
chl-a, with a correlation coefficient r = 0.87. A comprehensive
comparative analysis of R2 and r for all parameter retrieval
models showed that the models for the four parameters COD,
NO3-N, SS, and chl-a had better retrieval results than those for
the remaining seven parameters. RMSE and MAE of the inverse
model with four parameters, COD, NO3-N, SS, and chl-a, can

only be used as a reference because the concentration criteria
differ between parameters. The RMSE of the four models was
2.24, 0.32, 6.83, and 15.45 μg L−1, respectively, and the MAE was
1.86, 0.25, 4.65, and 12.62 μg L−1, respectively. In summary, the
PLSR retrieval models of COD, NO3-N, SS, and chl-a constructed
in this study can be used to predict the concentrations of these
four parameters in culture ponds.

3.3 Multi-optical image retrieval results in
water quality parameters

First, the data for water bodies in the study area were extracted from
the multispectral images by the normalized difference water index
(McFeeters, 1996), and the established PLSR model was applied to the
acquired multispectral images to estimate each image element. The
concentration of water quality parameters corresponding to each image
element in the area was calculated. Finally, the retrieval results were
displayed to visualize the spatial distribution pattern of the
concentrations of COD, NO3-N, SS, and chl-a in the study area
(Figure 4). This visualization aids in better understanding the spatial
distribution of each parameter and provides useful information for
water resource management and pollution control.

Inverse results of COD showed that the lowest and highest
COD concentrations of water bodies in the study area were
0.69 and 31.76 mg L−1, respectively, with the average value at
10.14 mg L−1, as shown in Figure 4. Generally, culture pond COD
concentrations ranged from approximately 2.41–31.76 mg L−1, in
contrast to river areas where the concentrations were significantly
lower, ranging between 0.69 and 12.48 mg L−1. From the retrieval
results of NO3-N, the average concentration of the entire study
area was 0.32 mg L−1, with a few culture ponds with high NO3-N
concentrations reaching approximately 2 mg L−1. The NO3-N
concentration in the river area was higher than that in most of
the culture ponds, and that in the upstream water was
approximately 1 mg L−1. The retrieval results were the same as
those reflected by the sampling results in this study. SS retrieval
showed that the average concentration in the study area was
15.93 mg L−1, and the SS concentration in a few ponds was as high
as 180 mg L−1. From the retrieval result graph (Figure 4C), most of
the blue-greenish areas in the graph were cultured ponds, which
implies that the SS concentration in cultured pond water bodies
was low. The retrieval results of chl-a concentration showed that
the range of chl-a concentration in the water bodies in the study
area was wide, ranging from 0 to 289 μg L−1 with a mean value of
24.66 μg L−1, which is an overall low concentration level, except
for a few ponds with unusually high chl-a concentration.

As shown in the retrieval results, the concentrations of COD, SS,
and chl-a in the study area were significantly higher than those in the
river area, possibly due to the impact of nutrients, organic pollutants,
microorganisms, and anthropogenic activities in the surrounding area
of the water body during the mariculture process degrading the water
quality in the aquaculture area. In contrast, the distribution of NO3-N
concentrations showed that the concentration in the river area was
higher than that in the aquaculture water body. However, the
concentration in the upstream water was significantly higher than
that in the downstream water, which is likely influenced by the
upstream domestic sewage discharge; however, further verification is

TABLE 5 Established standardized partial least squared regression model.

Parameter Model

NH3-N y = 0.73 × B1 − 0.71 × B2+ 0.29 × B3 − 1.41 ×
B4 + 1.76 × B5

COD y = 2.55 × B1 − 3.27 × B2 − 3.96 × B3 + 7.29 ×
B4 − 3.01 × B5

PO4− y = 0.89 × B1 − 1.42 × B2 + 0.46 × B3 + 0.33 ×
B4 − 0.36 × B5

DO y = 1.60 × B1 + 0.73 × B2 − 2.27 × B3 + 3.59 ×
B4 − 3.79 × B5

NO3-N y = −1.30 × B1 + 0.92 × B2 + 0.25 × B3 −
0.63 × B4 + 1.00 × B5

NO2-N y = −0.58 × B1 + 0.12 × B2 + 0.21 × B3 −
0.16 × B4 + 0.52 × B5

DIN y = −1.14 × B1 + 0.31 × B2 + 0.75 × B3 −
2.20 × B4 + 3.29 × B5

TN y = −2.99 × B1 + 0.23 × B2 + 1.48 × B3 −
2.42 × B4 + 4.81 × B5

TP y = 2.45 × B1 − 2.17 × B2 − 0.08 × B3 + 1.71 ×
B4 − 1.84 × B5

SS y = −18.81 × B1 + 13.97 × B2 − 13.86 × B3 +
17.64 × B4 + 12.31 × B5

chl-a y = −24.37 × B1 + 5.08 × B2 − 19.38 × B3 +
38.88 × B4 + 8.17 × B5
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required. Comparing the graphs of the retrieval results of SS and chl-a,
the concentration distributions for the two parameters were found to be
similar. Moreover, according to the Pearson correlation analysis, the
correlation coefficient r of SS and chl-a was 0.84, indicating a high
correlation, which is consistent with the final retrieval results of this
study. Overall, the concentration levels of all parameters in all culture
ponds were relatively uniform, and some ponds showed poor water
quality. The inverse results of this study can accurately identify the
culture ponds with poor water quality, provide a solid basis for scientific
culture, and further provide relevant measures to control water quality.

3.4 Differences in water quality between
different types of water bodies

UAV aerial photography covers a large scale, and the study area
contains different types of water bodies. To explore the differences in
water quality retrieval results between different water bodies, two areas
were selected for preliminary quantitative analysis for each of the four
types of water bodies: fish and shrimp, fish culture, shrimp culture, and
non-culture water bodies. Some of the details are shown in Table 7.

The two ponds with mixed fish and shrimp appeared grayish-
green from the UAV red-green-blue (RGB) images on the left pond
and darker green on the right pond, with significant differences in
COD and NO3-N concentrations; however, no significant
differences were observed between SS and chl-a concentrations.
Each pond had a relatively uniform concentration distribution. The
fish culture from the UAV RGB image of the left pond appeared
grayish-green, whereas the right pond appeared dark curry brown,
which indicates that the retrieval results of the four water quality
parameters of the two ponds were not very different, and the water
quality of the two ponds is thus similar. Two ponds for shrimp
culture appeared dark blue on the left pond and grayish-curry on the
right pond from the RGB images of the UAV. The concentrations of
COD, SS, and chl-a in the two ponds were not much different.
Moreover, the NO3-N concentration in the left pond was
significantly lower than that in the right pond, and the inverse
concentration of each parameter on the north bank of the right pond
was higher than that on the south bank from the inverse results of
the four parameters. The non-culture water bodies of the two areas
are the water bodies around the near-shore mangroves and the river
water bodies. The water around the mangroves in the UAV RGB
image appeared yellow-green. Results of all four parameters showed
that the concentration of the water body in the narrow area of the

FIGURE 3
Histograms comparing the predicted andmeasured values of each parameter: (A)NH3-N, (B)COD, (C) PO4−, (D)DO, (E)NO3-N, (F)NO2-N, (G)DIN,
(H) TN, (I) TP, (J) SS, (K) chl-a.

TABLE 6 Statistical determination of the effectiveness of the model.

Parameter Training dataset Validation dataset

R2 RMSE MAE r RMSE MAE

NH3-N 0.56 1.06 0.83 0.43 0.78 0.60

COD 0.75 7.34 3.78 0.86 2.24 1.86

PO4− 0.48 0.46 0.37 0.72 0.36 0.29

DO 0.26 2.43 1.72 0.51 1.27 1.05

NO3− 0.59 0.74 0.45 0.81 0.32 0.25

NO2− 0.33 0.52 0.32 0.57 0.23 0.18

DIN 0.57 1.87 1.17 0.76 0.85 0.66

TN 0.45 3.66 1.96 0.68 1.28 0.99

TP 0.56 1.01 0.77 0.67 0.66 0.52

SS 0.87 13.37 7.93 0.93 6.83 4.65

chl-a 0.74 35.38 21.51 0.87 15.45 12.62
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river was higher than that in the open water, with a higher
concentration near the shore. The river water bodies appeared
greenish-yellow from the UAV RGB images, and the
concentrations of COD, NO3-N, SS, and chl-a were low.

Comprehensive comparison of the different types of water
bodies intercepted and removed revealed no direct link between
the color of the UAV RGB images of water bodies and their
retrieval results. Therefore, the water quality cannot be
determined merely by the color of the true color images. In
this study, the concentrations of COD, NO3-N, SS, and chl-a
from PLSR retrieval models can indicate the water quality of the
ponds more intuitively, as the concentration levels in individual
farming ponds did not vary significantly. COD indicates the
amount of oxygen required to oxidize 1 L of organic matter in
sewage by potassium dichromate under strongly acidic
conditions, which can roughly represent the amount of organic
matter in the sewage, and NO3-N and chl-a reflect the nutrient
status of the water body; the concentrations of these three
parameters are related to the bait fed during aquaculture and
metabolites produced during animal growth. SS is a physical
indicator of the solids suspended in water, including inorganic
and organic matter insoluble in water, such as mud, sand, clay,

and microorganisms. Hence, the concentration of SS is generally
high in culture ponds that are less fluid and closed. For the river
with better fluidity and unconfined water bodies, the water quality
condition is significantly better than that of the aquaculture water
bodies, and the concentration of each parameter decreases with
the increase in offshore distance; poorer water quality near the
shore may be influenced by the effect of poor hydrodynamics and
human life.

4 Discussion

In this study, we showed that it is feasible to use UAVmultispectral
images for retrieval studies of COD and SS in water bodies. After
correlation and significance analyses between 11 water quality
parameters and spectral reflectance of the cultured water bodies,
PLSR was performed by selecting the reflectance of all bands as
independent variables. The results obtained from the PLSR models
suggest that they hold great potential for accurately estimating water
quality parameters from remote sensing data, contributing to our
understanding of aquatic ecosystems and their environmental status.
We found that among all the obtained models, the accuracy of the

FIGURE 4
Retrieval results visualizing the spatial distribution pattern of the concentrations of COD (A), NO3-N (B), SS (C), and chl-a (D) in the study area. The
legend indicates the heat map scale corresponding to decreasing concentrations. The reddish-yellow-green areas in (A) are generally culture ponds.
NH3-N: ammonia nitrogen, COD: chemical oxygen demand, PO4

−: active phosphate, DO: dissolved oxygen, NO3-N: nitrate nitrogen, NO2-N: nitrite
nitrogen, DIN: inorganic nitrogen, TN: total nitrogen, TP: total phosphorus, SS: suspended solids, and chl-a: chlorophyll-a.
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retrieval models of COD and SS in the final obtained models were high.
The models of other water quality parameters were challenging to meet
the estimation requirements.

The inverse results of COD, NO3-N, SS, and chl-a were obtained by
applying the constructed partial least squares regression model to the
UAV multispectral images, which showed that the water quality of the
farmedwater bodies in the study area was poor, whichwas related to the
bait input to the aquaculture process and the animal growth and
metabolism. For different types of aquaculture area, only using the
inversion results of the four parameters cannot determine the
differences in water quality. This is because, on the one hand, the
background information collected in this study is limited, so only part of
the sampling points can determine the type of aquaculture, and there
were too few samples for comparison. On the other hand, using only the
four water quality parameters for water quality analysis does not allow
the observation of more subtle differences between different water
bodies. Although the collected water body samples were analyzed for
11 water quality parameters, the model established could not meet the
requirements of prediction. Future research will focus on solving the
problem of inverse model accuracy of other water quality parameters.

Our study has certain limitations that should be
acknowledged. First, because the background information
collected in this study was limited, we could only investigate
certain parts of the sampling points to determine the type of
aquaculture present. This could lead to biases in the
interpretation of the results. Second, the small number of
samples available for comparison may limit the generalizability
of the results to other small water bodies. Hence, the results of the

experiment should be interpreted with caution. Third, the four
water quality parameters used to determine water quality may not
be representative enough to capture the subtle differences
between different water bodies. To address this limitation,
future studies should focus on establishing an inverse model
that accurately predicts other water quality parameters.
Fourth, due to the power limit of the UAV, each operation
time was approximately 25 min, which limits the water quality
monitoring capacity for a large area of rivers, such as open water
bodies. Additionally, the UAV field sampling is operated in
multiple airspaces over water, which can have high tide
dynamics that cause spatial and temporal changes in water
quality. Because of this, the water flow may not be
synchronized with the UAV collection, leading to differences
between the quasi-synchronous water body spectral data and the
actual river water quality distribution data. As a result, the final
retrieval results may exhibit noticeable stripes in some areas. In
summary, while our study provides important insights into the
use of UAV technology for water quality monitoring, the
limitations mentioned above highlight the need for caution in
interpreting the results and emphasize the importance of
conducting future studies to improve the accuracy and
reliability of UAV-based water quality monitoring in small
water bodies.

Overall, the retrieval results provided insights into the spatial
distribution patterns of water quality parameters in the study area’s
water bodies. The map generated in Figure 4 can serve as a helpful tool
for water resourcemanagers and decision-makers who need tomonitor

TABLE 7 Unmanned aerial vehicle (UAV) aerial photography of different water bodies in the study area.

Fish and shrimp mixed
farming

Shrimp farming Fish farming Non-farmed water body

RGB Image

COD

NO3-N

SS

Chl-a

The first row represents UAVRGB, image, followed by COD,NO3-N, SS, and chl-a retrieval results. Every two columns represent the same type of water bodies; the rightmost scale bar from blue

to red indicates increasing concentration.
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and manage the water quality of various water bodies in the study area.
Additionally, the findings can serve as a baseline for future studies that
aim to compare and evaluate changes in water quality over time or after
implementation of water pollution mitigation measures.

It is important to note that remote sensing techniques can
provide valuable information about water quality parameters over
a large area at a low cost, making it a promising technique for water
quality monitoring. However, these techniques have limitations, and
it is necessary to verify the retrieval results through field
measurements and laboratory analysis.

In conclusion, the study demonstrated the potential of remote
sensing techniques combined with PLSR models to estimate and
map water quality parameters in the study area. The retrieval results
for COD, NO3-N, SS, and chl-a were consistent with the actual water
quality conditions in the study area, indicating that this approach
can provide reliable information for decision-making to manage
water resources and prevent water pollution. Currently, research on
low-altitude UAV water quality remote sensing is in the exploration
stage, and further study is required for improved rigorous
multispectral image acquisition and processing.

5 Conclusion

In this study, we discussed the application of unmanned aerial
vehicle (UAV) technology for water quality monitoring in small
water bodies, with a focus on aquaculture ponds in the Beibu Gulf of
Guangxi. We collected water samples and analyzed them for various
water quality parameters, including ammonia nitrogen, chemical
oxygen demand, active phosphate, dissolved oxygen, nitrate
nitrogen, nitrite nitrogen, inorganic nitrogen, total nitrogen, total
phosphorus, suspended solids, and chlorophyll a. We then obtained
spectral reflectance data using UAVs equipped with multispectral
sensors and constructed inverse models of 11 water quality
parameters using the partial least squares method.

Our results showed that the retrieval models for COD, NO3-
N, SS, and chl-a performed better compared to other parameters.
The validation set results demonstrated that the correlation
coefficients of chl-a, COD, and NO3-N all exceeded 0.8, with
chl-a producing the best prediction model. However, we also
acknowledged certain limitations of our study, including the
limited background information collected, the small number of
samples available for comparison, and the restricted monitoring
capacity of UAVs due to power limitations and spatial and
temporal changes in water quality.

Overall, our study provides important insights into the
potential of UAV technology for water quality monitoring in
small water bodies, especially in aquaculture ponds where
traditional monitoring methods may be challenging to
implement. The results suggest that the use of UAVs with
multispectral sensors and the construction of inverse models
can offer more efficient and cost-effective methods for
monitoring water quality parameters in small water bodies.
Despite the study’s limitations, future research in this area
should continue to address these challenges and further refine
the methods for UAV-based water quality monitoring to ensure
more accurate and reliable results.
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Hawaiian coastal wetlands provide important habitat for federally endangered
waterbirds and socio-cultural resources for Native Hawaiians. Currently, Hawaiian
coastal wetlands are degraded by development, sedimentation, and invasive species
and, thus, require restoration. Little is known about their original structure and function
due to the large-scale alteration of the lowland landscape since European contact.
Here, we used 1) rapid field assessments of hydrology, vegetation, soils, and birds, 2) a
comprehensive analysis of endangered bird habitat value, 3) site spatial characteristics,
4) sea-level rise projections for 2050 and 2100 and wetland migration potential, and 5)
preferences of the Native Hawaiian community in a GIS site suitability analysis to
prioritize restoration of coastal wetlands on the island of Molokaʻi. The site suitability
analysis is the first, to our knowledge, to incorporate community preferences, habitat
criteria for endangered waterbirds, and sea-level rise into prioritizing wetland sites for
restoration. The rapid assessments showed that groundwater is a ubiquitous water
source for coastal wetlands. A groundwater-fed, freshwater herbaceous peatland or
“coastal fen” not previously described inHawai i̒ was found adjacent to the coastline at a
site being used to grow taro, a staple crop for Native Hawaiians. In traditional ecological
knowledge, such a groundwater-fed, agro-ecological system is referred to as a
lo i̒pūnāwai (spring pond). Overall, 39 plant species were found at the 12 sites; 26 of
thesewerewetland species and 11were native. Soil texture in thewetlands ranged from
loamy sands to silt and silty clays and themean%organic carbon contentwas 10.93%±
12.24 (sd). In total, 79 federally endangeredwaterbirds, 13Hawaiian coots (‘alae keʻokeʻo;
Fulica alai) and 66 Hawaiian stilts (aeʻo; Himantopus mexicanus knudseni), were
counted during the rapid field assessments. The site suitability analysis consistently
ranked three sites the highest, Kaupapalo i̒ o Kaʻamola, Kakahaiʻa National Wildlife
Refuge, and ʻŌhiʻapilo Pond, under three different weighting approaches. Site
prioritization represents both an actionable plan for coastal wetland restoration and
an alternative protocol for restoration decision-making in places such as Hawai i̒ where
no pristine “reference” sites exist for comparison.
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coastal fen, GIS site suitability analysis, Hawaiian islands, indigenous community, sea-
level rise, traditional ecological knowledge, wetland restoration, Native Hawaiians
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1 Introduction

In many places around the world, there are no pristine
wetland “reference” sites to stand as guideposts for restoration
targets (Otte et al., 2021). This is the case in the Hawaiian
Islands due to the nearly complete alteration of lowland
habitats after European contact and before botanical
descriptions were documented. To date, 44% of the coastal
wetland area in Hawaiʻi has been lost to other land uses (Van
Rees and Reed, 2013). The remaining coastal wetlands provide
crucial habitat for native invertebrates and plants, migratory
birds, and federally endangered waterbirds including the
Hawaiian stilt (ae‘o; Himantopus mexicanus knudseni),
Hawaiian coot (‘alae ke‘oke‘o; Fulica alai), Hawaiian duck
(koloa maoli; Anas wyvilliana), and Hawaiian common
gallinule (‘alae ‘ula, Gallinula galeata sandvicensis; currently
extirpated from Molokaʻi) (State of Hawai‘i, 1996; Pacific Coast
Joint Venture, 2006; US Fish and Wildlife Service, 2011a;
VanderWerf, 2012).

Historically, Hawaiian coastal wetlands were widely used to
grow taro, a vital subsistence crop for Native Hawaiians. Taro
(Colocasia esculenta) patches (loʻi kalo) were built inland from
fish ponds (loko iʻa) along the coast, creating habitat mosaics
that expanded the natural wetland habitat for shorebird
populations (Burney et al., 2001; Harmon et al., 2021).
Hawaiian coastal wetlands continue to have important socio-
cultural uses as food sources and producers of native sedges
(makaloa, Cyperus laevigatus) for weaving (Krauss, 2001;
Erickson and Puttock, 2006). In addition, coastal wetlands in
Hawaiʻi, as well as elsewhere around the world, have long
provided essential ecosystem services such as carbon
sequestration, trapping of sediments and nutrients,
abatement of storm impacts, and protection from flooding
(Roman and Burdick, 2012; Craft, 2016; Kroeger et al., 2017).

Land-use change along Hawaiʻi’s coastline started with the loʻi
kalo and loko iʻa of the early Polynesians and culminated in rice
and sugar plantations in the years following European contact
(Athens et al., 1992; Burney et al., 2001; Gon and Winter, 2019).
Mauka (toward the mountains, upland) of the lowlands, ranching,
invasive ungulates, and pineapple cultivation have caused massive
erosion, which has impacted the entire continuum from ridge to
reef (Stock et al., 2011; Jacobi and Stock, 2017). The widespread
anthropogenic transformation of coastal areas and the
introduction of invasive plant species have resulted in the loss
of most lowland native flora (Kirch, 1982; Cuddihy and Stone,
1990; Athens et al., 1992; Burney et al., 1997). Currently, most
coastal wetlands in Hawaiʻi continue to be degraded by
sedimentation, non-native ungulates, invasive plants (mainly
mangrove (Rhizophora mangle), kiawe (Prosopis pallida),
pickleweed (Batis maritima), and Indian fleabane (Pluchea
indica)), development, and/or hydrologic changes from stream
diversion, drought, and/or climate change (US Fish and Wildlife
Service, 2011a; Van Rees and Reed, 2013).

Hawaiian coastal wetlands have received scant attention in the
scientific literature. The most comprehensive classification of coastal
wetlands (Erickson and Puttock, 2006) describes them as saline or
brackish in salinity and consisting either of “coastal flats” or
“estuarine wetlands.” Coastal flats are defined as groundwater

driven, occurring in a floodplain, and containing mineral
substrate. This definition differs somewhat from other definitions
in the literature in which coastal flats are described as tidal
ecosystems dominated by sediments and/or sand and found
along coasts with low slope and energy (Jackson, 2013; Murray
et al., 2019). Estuarine wetlands are defined by Erickson and Puttock
(2006) as surface-water driven, occurring at river mouths or adjacent
to tidal rivers, and containing organic or mineral substrates. Due to
the complex hydrogeology, varied geomorphology, and novel plant
communities on Molokaʻi, we hypothesized that these two main
classifications may not encompass the full spectrum of coastal
wetlands on the island. In particular, we surmised that there may
be freshwater wetlands in areas receiving high rates of groundwater
discharge along the coastline of the island (Oki et al., 2019).

Although few data exist in Western science to support this
hypothesis, it is well supported by traditional ecological knowledge
(TEK) in the Native Hawaiian culture, which speaks not only of the
great socio-cultural significance of coastal wetlands but also of their
ecohydrological function. The final verse of the mele (chant) “He
Mele no Kāne” (The Waters of Kāne) (Figure 1) details various
locations and the hydrologic connectivity of the waters of Kāne—the
Hawaiian god of life and freshwater (Emerson, 1909). Specifically,
the third line of the last verse states that the waters of Kāne can be
found deep in the earth and in the gushing springs. This line is a
clear reference to coastal aquifers and groundwater discharge at
springs. The fourth line alludes to these locales as being coastal
wetlands by stating that the waters are in the ducts of Kāne and
Kanaloa–the Hawaiian god of salt water. While the translation by
Emerson (1909) translates the term “kau” as a duct, “kau” also
means to suspend. This line, therefore, references the suspension of
Kāne (freshwater) above Kanaloa (saltwater) emphasizing not only
the relationship between the two gods but also recognizing that the
freshwater lens floats above the denser saltwater lens in coastal
aquifers. The fifth to seventh lines of the verse state that these special
locales are recognized and reserved for human consumption of their
resources, for religious and spiritual functions, and most
importantly, for procuring life. The final line of the mele
emphasizes the Hawaiian word “ola,” which means livelihood,
health, and “to thrive” (Pukui and Elbert, 1986). In short, this
mele describes the fundamental importance of coastal wetlands
to Native Hawaiians and demonstrates how the understanding of

FIGURE 1
Sixth and final verse of “He Mele no Kāne,” a traditional Hawaiian
mele (chant).
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their function is inextricably intertwined with their socio-cultural
value, a prime example of the Hawaiian socio-ecological system in
which humans are perceived as part of and not separate from nature
(Berkes and Folke, 1998; Winter et al., 2018; Gon III et al., 2021).

Because of their current degraded state, much work is needed for
Hawaiian coastal wetlands to once again be thriving places for native
flora and fauna. Fortunately, a renewed interest in traditional lowland
agriculture by the Native Hawaiian community, as well as a need for

FIGURE 2
(A)Mapof the islandofMoloka’i, Hawaiʻi, showing the location of the 12 coastalwetland study sites and (B) imagery showing the site boundaries, soil pits, and
streams at each of the study sites. Base imagery modified from the following sources: Esri, Maxar, Earthstar Geographics, and the GIS User Community.
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improved habitat for endangered species, has recently catalyzed a strong
interest in wetland restoration. Although opportunities for landscape-
scale restoration are limited on the main, highly developed Hawaiian
islands, the island of Molokaʻi stands apart. This island, with a
population of more than half Native Hawaiians (Maui County,
2020), has resisted large-scale development. There are numerous
coastal lowland areas that could potentially be restored, including
former loʻi kalo, shrimp ponds, an extensive network of loko iʻa, and
lowland floodplains and wetlands. Of particular interest are a series of
relatively isolated coastal wetlands along the south shore, which are
strategically proximal to one another (Henry, 2016). Yet, in Hawaiʻi, just
like elsewhere, coastal wetlands are increasingly threatened by sea-level
rise (van Rees and Reed, 2013; Kane et al., 2014; Harmon et al., 2021), so
any restoration efforts need to incorporate future sea-level rise
projections in order to have the best chance for long-term success.

Given the need for coastal wetland restoration in Hawaiʻi and the
rare opportunity on Molokaʻi, we conducted a study to prioritize the
restoration of 12 coastal wetlands on the island. In particular, we used a
GIS site suitability analysis that incorporated 1) rapidfield assessments of
hydrology, vegetation, soils, and birds, 2) a comprehensive analysis of
endangered bird habitat value, 3) spatial characteristics of the sites, 4)
sea-level rise projections for 2050 and 2100 and wetland migration
potential, and 5) preferences of the Native Hawaiian community. Our
main objectives were to develop a protocol to prioritize coastal wetlands

for restoration without the need for reference sites and to use the new
protocol to rank each of the 12 sites, thereby creating an actionable
blueprint for restoration. Although designed for Molokaʻi, our approach
could be adapted for use in any place with few or no reference sites and/
or strong indigenous community needs. The restoration endpoints we
envision for Molokaʻi wetlands are driven more by re-establishing
functionality and cultural resources rather than by trying to restore
their original state, which may not be attainable at this point.

2 Materials and methods

2.1 Study site description

Molokaʻi, the fifth largest island in the Hawaiian chain, is
situated between 21°00’–21°15’ N and 157°20’–156°40’ W with an
area of 673 km2 (Figure 2) (Stearns and Macdonald, 1947). The
population in 2020 was 6,253 (County of Maui, 2020). The island is
largely composed of the 423 m-high, West Molokaʻi volcano and the
younger, 1,512 m-high, East Molokaʻi volcano (Stearns and
Macdonald, 1947). Molokaʻi has a mean annual temperature of
23.91°C (1978—2007; Giambelluca et al., 2014). The rainy season
typically extends from October through April and the dry summer
season extends from May through September (Sanderson, 1994).

TABLE 1 Basic characteristics of the 12 wetland study sites on Molokaʻi assessed in April 2022. Abbreviations for land ownership are the Hawaiʻi Department of
Land and Natural Resource, Division of Forestry and Wildlife (DoFAW), Department of Hawaiian Home Lands (DHHL), U.S. Fish and Wildlife Service (FWS), and
National Park Service (NPS).

Wetland name
(abbreviation)

Date of rapid
assessment

Coordinates Ownership Size
(ha)

Dominant vegetation: native species (N),
species introduced by Polynesians (PI), or
exotic species introduced since European
contact (E)

Ipukaʻiole Pond (IPUKA) 4/14/2022 N 21° 05.2714’; W156°

46.2791’
private 0.31 Thespesia populnea (N), Rhizophora mangle (E)

Kakahaiʻa NWR (KNWR) 4/13/2022 N 21° 03.8760’; W 156°

56.5217’
FWS 5.34 Schoenoplectus californicus (E), Pluchea indica (E)

Kalaupapa airport wetland
(KAIR)

4/20/2022 N 21° 12.3284’, W 156°

58.660’
NPS 2.10 Bolboschoenus maritimus (E), Cyperus javanicus (N),

Prosopis pallida (E)

Kamahuʻehuʻe Pond (KAMA) 4/18/2022 N 21° 03.1155’; W 156°

53.4447’
DHHL 33.03 Batis maritima (E), R. mangle (E)

Kaunakakai wastewater
treatment plant (KAUN)

4/19/2022 N 21° 05.4446’; W 157°

01.7279’
private 4.99 B. maritima (E), R. mangle (E)

Kaupapaloʻi o Kaʻamola (KOK) 4/15/2022 N 21° 03.3784’; W 156°

51.4571’
private 0.05 B. maritima (E), R. mangle (E), S. californicus (E),

Colocasia esculenta (PI)

Moku Pond (MOKU) 4/13/2022 N21° 04.076’; W156°

57.443’
private 0.13 P. pallida (E)

ʻŌhiʻapilo Pond Bird
Sanctuary (OHI)

4/19/2022 N 21° 06.1406’; W 157°

03.1210’
DHHL 9.76 B. maritima (E)

Pahuauwai aquaculture site
(PAHU)

4/19/2022 N 21° 06.2023’; W 157°

05.3066’
private 36.04 B. maritima (E), R. mangle (E)

Paialoa Pond (PAIA) 4/14/2022 N 21° 03.2877’; W 156°

51.7337’
DoFAW 6.82 R. mangle (E), Pluchea indica (E)

Pohoele Pond (POHO) 4/21/2022 N 21° 04.8789’; W 157°

00.2378’
DoFAW 53.74 B. maritima (E)

Punalau Pond 1 4/15/2021 N 21° 06.4852’; W 157°

04.5558’
private 18.04 B. maritima (E), R. mangle (E)
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The mean rainfall is usually much higher in the northeastern or
windward part of Molokaʻi, exceeding 406.4 cm, while the West
Molokaʻi volcano receives less than 63.5 cm (1978–2007;
Giambelluca et al., 2013). Most recently (from spring
2019–2022), Molokaʻi has experienced a drought throughout the
western part of the island and the southcentral coast (NOAA
National Integrated Drought Information System NIDIS, 2022a).
Along the southcentral coast, drought severity has been extreme
(D3) near the main Molokaʻi town of Kaunakakai and moderate
(D1) along the eastern trajectory to the Kawela Gulch area (NOAA
NIDIS, 2022a). The tides in Molokaʻi are mixed semidiurnal. The
great diurnal tidal range (mean lower low water to mean higher high
water) on Molokaʻi is 0.651 m (Kaunakakai Habor, NOAA, 2022b),
placing coastal wetlands in the microtidal range. Twelve coastal
wetland sites (site abbreviations used hereafter) were chosen for the
study based on background data, accessibility, and the ability to gain
lawful entry from landowners (Figure 2, Supplementary Figure S1;
Table 1).

2.2 GIS database

We created a GIS database of the environmental attributes of
Molokaʻi, including soil types, hydrology, vegetation, land
ownership, and rainfall/moisture zones, to select sites for the
study and inform our prioritization process (Supplementary
Table S1). The boundaries of each wetland were determined
using Pictometry high-resolution aerial imagery (EagleView
International, 2021) and Hawaiʻi State tax map parcels (Hawaiʻi
Statewide GIS Program, 2021). The delineations for each site are
approximate and were only created for the purposes of this study.

2.3 Site assessments

Rapid field assessments were conducted in April 2022 of the
vegetation, soils, hydrology, and birds at each of the 12 sites. The
purpose of the field assessments was to determine the current
condition of sites for which little to no data were available.

For the hydrologic component of the rapid assessment, water
sources (surface water, precipitation, groundwater, and/or seawater)
were determined by examining high-resolution digital imagery
(EagleView Technologies, Inc., 2008), site geomorphology, and
walking the site periphery to identify springs, seeps, and
intermittent streams. In addition, the depth from the wetland
surface to the water table was determined in soil pits (see below)
and the specific conductance of the groundwater was measured
using a Fisherbrand™ Traceable™ expanded range conductivity
meter (Fisher Scientific, Waltham, MA) calibrated to the salinity
range of each site.

The soil component was focused on determining whether soil
textures at the wetland sites followed their mapped classifications
(mainly Kealia silt loam; Soil Survey Staff, 2021) and whether there
was any within-site variability. Soil pits were dug to the depth of the
water table or a maximum of 80 cm in two distinct areas of each site
such as mauka (toward the mountains) and makai (toward the sea)
in contrasting vegetation types or at different sides of a road or
railroad grade that bisected the site. Soil samples at each pit were

collected from 0–2 cm, 24–26 cm, and 48–50 cm depth from the
surface, refrigerated, and transported within 5 days to the USGS
Coastal and Marine Science Center in Santa Cruz, CA, for soil
texture analysis and the USGS California Water Science Center in
Sacramento, CA, for the analysis of % organic carbon by weight.

The structure and species composition of the plant communities
found within each wetland site were characterized using a rapid field
assessment procedure. Vegetation data were collected in survey
plots, approximately 5 × 5 m in size, that were located in
different plant communities found at each site. In each plot,
vegetation cover and bare ground were visually estimated to the
nearest 5%, and plant species were recorded in lifeform groups
(trees, shrubs, ferns, vines, rushes, sedges, grasses, herbs, and
submerged aquatic vegetation). Additional species found outside
the plots, within or immediately adjacent to the wetland, were
recorded with photographs and added to the site species list.
Plant communities were identified both in the field and using the
high-resolution digital imagery (EagleView Technologies, Inc.,
2008). Taxonomic nomenclature follows the work of Wagner
et al. (2005).

The rapid assessment for birds was carried out with a point
count. Point counts were carried out for 10 min even if no birds were
present. Birds were recorded following the State Waterbird Count
methodology (Hawaiʻi Department of Land and Natural Resources,
2017). The short fieldwork period and extreme drought conditions
present on the island at the time resulted in few native birds being
present during the rapid assessment. Therefore, to ensure that avian
diversity was adequately represented, the rapid assessment was
supplemented with an avian dataset for Molokaʻi from Arleone
Dibben-Young of the non-profit Hawaiian Islands Conservation
Collective for the period from 2010 to 2020 (Supplementary Table
S2). These data were collected twice per year during the annual State
Waterbird Surveys or during bird monitoring trips and ad hoc
sightings. Only native and migratory birds were included.

2.4 Laboratory analyses

Soil texture was determined using standard USGS
methodologies described in Drexler et al. (2021). The percentage
of organic carbon by weight (% OC) was determined for the top two
samples in the soil pits (0–2 cm and 24–26 cm) using a Costech ECS
4010 CHNS/O elemental analyzer (Costech Analytical
Technologies, Inc., Valencia, CA, U.S.A.) according to a modified
version of U.S. Environmental Protection Agency Method 440.0
(Zimmerman et al., 2007). Blanks, replicates, and standards were
analyzed every 10 samples to assess instrument stability. Replicate
samples were reanalyzed if the relative percentage difference
between the two replicates was greater than 20%. The detection
limit was 0.01%.

2.5 Sea-level rise projections

In this study, we used the SLR projections by Sweet et al. (2022),
which incorporate the latest science from the Intergovernmental
Panel on the Climate Change Sixth Assessment Report for updated
temporal trajectories and exceedance probabilities based on different
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levels of global warming (Fox-Kemper et al., 2021; Garner et al.,
2021). Multiple methods of projecting future ice-sheet changes from
Antarctica (Levermann et al., 2020; Edwards et al., 2021) and
Greenland (Bamber et al., 2019; Edwards et al., 2021) are
integrated into the projections. Specifically, we used the relative
sea-level rise projections for Molokaʻi, which are a part of the 1 x 1-
degree grids for the Hawaiian Islands along the coastline relative to
the baseline year of 2000. For some parts of Hawaiʻi, downscaled
projections are available near NOAA-tide-gauges, but no such
gauges are located on Molokaʻi, so the gridded projections
were used.

Sweet et al. (2022) provide two kinds of projections: 1)
observation-based projections to 2050 and 2) decadal scenario-
based (modeled) projections to 2150. The scenario-based
projections are combined to generate five sea-level scenarios
ranging from low, intermediate-low, intermediate, intermediate-
high, and high. On Molokaʻi, the observation-based projections
to 2050 and the intermediate-low projections for 2050 are almost
the same. This would ordinarily point toward using these
projections for 2050. However, because the uncertainty of these
projections was high at our wetland sites (<0.80 probability across
the board), we opted instead to use the intermediate scenarios of SLR
for both the 2050 and 2100 timeframes (Table 2).

It is important to note that the SLR projections used here are for
passive flooding from SLR only and do not include wave-induced
flooding, yearly variability of sea-level from natural processes such
as the El Niño–Southern Oscillation, or any additional impacts due
to coastal erosion (Anderson et al., 2018; Sweet et al., 2022), which
can exacerbate SLR and increase erosive impacts along the coastline
(Drexler and Ewel, 2001; Anderson et al., 2018; Goodman et al.,
2018).

2.6 GIS site suitability analysis

2.6.1 Sub-models
The site suitability analysis consisted of 1) ranking the coastal

wetlands based on specific sub-models or categories consisting of
hydrology, resilience to sea-level rise, soils, vegetation, bird habitat
value, and community support and 2) carrying out the actual
suitability analysis in ArcGISPro based on the sub-models in step
1). Rankings (1 (lowest)–5 (highest)) were based on the best
available data from the rapid assessment, the literature, and
database sources. Site data were very limited, so we relied on
both professional judgement as well as the available data to

develop criteria that best encapsulated the functions and values
of the sites. Following are descriptions of the ranking criteria for
each of the sub-models and the suitability analysis procedure that
was used.

Hydrologic parameters were ranked in three ways and then
averaged for an overall score. Depth to groundwater from the land
surface was used to assess the availability of water in the rooting zone
of common wetland macrophytes (approximately 0–30 cm in depth;
Moffett and Gorelick, 2016). The ranking was as follows: <30 cm
from land surface to groundwater = 5; 31–50 cm = 3; >50 cm = 1.
The second measure was the range of estimated groundwater (gw)
discharge at the coastline (Oki et al., 2019) and/or the number of
springs mauka of the site (Stearns and Macdonald, 1947). The gw
discharge/spring ranking was as follows: >500,000 gallons gw
discharge/day and the presence of springs/seeps mauka of site =
5; 100,000–500,000 gallons of gw discharge/day and springs on site =
3 or high gw discharge at the coast but no springs on site = 3; low gw
discharge (<500,000 gallons/day) and no springs on site = 1. The
third hydrologic category was salinity stress, which was ranked as
follows: <35 part per thousand (ppt) in gw = 5, 35–50 ppt in gw = 3,
and >50 ppt in gw or extensive salt pan = 1. If groundwater was not
accessible at the site, then the condition of the vegetation during the
rapid field assessment was used as an indication of the hydrologic
status because good condition during drought is indicative of good
hydrological status.

The resilience of each wetland to future SLR was ranked in the
following way. First, we determined the surface elevation of each site
using the Molokaʻi digital elevation model provided by Sweet et al.
(2022). For 2050, the median elevation of each wetland was then
estimated by subtracting 0.29 m (the projected SLR, Table 2) and
adding a conservative estimate for vertical accretion over the
ensuing years (3 mm/yr * 28 years). The median elevation of
each wetland in 2100 was estimated by subtracting 1.1 m (the
projected SLR, Table 2) and adding vertical accretion at the same
rate but over 78 years. Data were not available for the elevation range
of dominant wetland vegetation, which is required to determine the
elevation of marsh drowning (Morris et al., 2022). For this reason,
we used the elevation capital of each wetland (sensu Cahoon et al.,
2020) to rank its relative resilience to inundation. Rankings for both
2050 and 2100 were <0 m elevation relative to the mean sea level
(MSL) = 1; 0–0.3 m = 2, 0.31–0.6 m = 3, 0.61–0.9 m = 4,
and >0.9 m = 5. Wetland migration potential was then
determined by the availability of flat land (which was available
for all wetlands, so no ranking was needed) and the distance to the
nearest mauka road. The rankings for the distance to the nearest

TABLE 2 Median values in meters (likely ranges) for observation-based extrapolations and modeled sea-level rise (SLR) scenarios for the Hawaiian Islands for
2050 and modeled SLR scenarios (no range provided) for 2100 from the work of Sweet et al. (2022). The tidal benchmark is mean higher water and the baseline
date is 2000 for all extrapolations and scenarios. The intermediate scenario (bold) was chosen for the study due to the high uncertainty of projections
(<0.8 probability) along the Molokaʻi coastline.

Modeled scenarios

Observation-based extrapolations Low Intermediate-Low Intermediate Intermediate-High High

2050:

0.24 (0.20–0.28) 0.19 (0.13–0.24) 0.24 (0.18–0.31) 0.29 (0.22–0.39) 0.38 (0.27–0.53) 0.46 (0.31—0.64)

2,100:

NA 0.4 0.6 1.1 1.7 2.3
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mauka road were <100 m = 1; 100–250 m = 2, 251–400 m = 3,
401–550 m = 4, and >551 m = 5. Because the coastal lowland zone of
Molokaʻi is very flat and migration space is limited, we weighted
resilience to inundation to be twice as important as migration space
in the overall ranking of resilience to SLR. Finally, because the
overall resilience to SLR is of critical importance to wetland
sustainability, we weighted this sub-model to be three times more
important than all the other sub-models except community support,
which also received the same weighting.

The soil ranking was based on two parameters, soil texture and
% of organic carbon (OC) content. Soil texture is a key measure of
water holding capacity and water availability, which are both
essential for successful plant colonization (Sprecher, 2001). The
percentage of OC (or organic matter content, which is ~2*OC) is

typically at least 5% in wetland soils and is essential for
biogeochemical cycling of nutrients and adequate friability for
plant growth (Mitsch and Gosselink, 2007, Ch. 13; Munkholm,
2011). For soil texture, the ranking criteria were as follows: silty
clay loam and silt loam = 5; silty clay and loam = 3; and sandy
loam and loamy sand = 1. For % OC, the ranking was
simply >2.5% OC (~5% OM) = 5 and <2.5% OC = 1. Both of
these ranking criteria were averaged to obtain the final soil
rankings for each of the sites.

Vegetation at each of the sites was ranked based on two main
criteria: 1) the proportion of native vs. non-native wetland plant
species and 2) the species richness of native wetland species. In
Hawaiʻi, the high prevalence of invasive species has largely
transformed lowland areas (Staples and Cowie, 2001; Erickson

TABLE 3 Criteria used to rank habitat quality for threatened and endangered waterbirds (T&E), migratory shorebirds, and migratory waterfowl at each wetland
site.

Criteria Ranking Ranking details

1. Area of site 1–5 (1) 0–3.64 ha, (2) 4.04—7.68 ha, (3) 8.09—11.74 ha, (4) 12.14—15.78 ha, and
(5) 16.19+ ha

2. Freshwater availability 1, 3, and 5 1- little/none, 3- good, and 5- abundant

3. Proximity to other wetlands (managed and unmanaged) 1–5 (1) 9 km+, (2) 7–8 km, (3) 5–6 km, (4) 3–4 km, and (5) 1–2 km

4. Hazards (unfenced roads, powerlines, and/or contamination from
heavy metals and coliform bacteria)

1, 3, and 5
(ranked 3x)

1- multiple, 3- some, and 5- few to none

5. Predator control management activities 1–5 1- none in place

2- none in place, potential capacity to start

3- none in place, good capacity to start

4- predator control in place

5- constant predator control in place with effectiveness monitoring

6. Botulism control measures 1–5 1- none in place, little capacity to start; no qualified person checks site for dead
birds or fish and no response mechanism in place, little/no capacity to start

2- none in place, potential capacity to start; potential management
infrastructure, and/or personnel available to be trained and paid if funds were
provided

3- none in place, good capacity to start, and no qualified person checks the site
for dead birds and fish but available infrastructure and personnel

4- a qualified person checks the site for dead birds and fish and could
potentially respond rapidly

5- a qualified person regularly checks for dead birds, there is regular removal of
dead fish, and there is ability to respond rapidly to an outbreak

7. Human disturbance managed 1, 3, and 5 1- site is open access, no on-site management, 3- partially, site either has
natural or physical barriers (fence), people are discouraged from entering, and
an organization or individual has oversight, and 5- site is closed to disturbance
or steps are taken to reduce impacts and active management is in place

8. Restoration status 1, 3, and 5
(ranked 2x)

1- no restoration and none is planned, 3- site is not restored but planning
underway, and 5- restoration underway or completed, site is functional

9. Breeding on site for each threatened and endangered (T&E) species 1 and 5 1- no and 5- yes

10. Average T&E bird count in 10-year data set 1–5 (1) 0–14, (2) 15–29, (3) 30–44, (4) 45–59, and (5) 60–75

11. Species richness of all T&E species, migratory shorebirds, and
migratory waterfowl

1–5 (1) 0–9, (2) 10–19, (3) 20–29, (4) 30–39, and (5) 40–49

12. Potential suitability for each T&E species, for migratory shorebirds,
and for migratory waterfowl after restoration

1–5 Criteria specific for each T&E, migratory shorebirds, and migratory waterfowl
(Supplementary Table S11) based on site characteristics including water depth,
foraging areas, vegetation, and nesting areas
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and Puttock, 2006), so the presence of native wetland species is a
strong indicator of vegetation status and is key to the successful
restoration of wetland function. The ranking for native vs. non-
native species was as follows: the site contains intact native-
dominated wetland plant communities = 5, a small area of the
site contains native-dominated wetland plant communities = 4, the
site is mostly dominated by non-native alien wetland plant species
but with some natives = 3, the site is dominated by non-native
wetland plants but no invasive mangroves (Rhizophora mangle L.) =
2, and the site has no native wetland plants and high cover of
mangrove, pickleweed (Batis maritima L.), and other non-native
wetland species = 1. For species richness, ranking was as follows: ≥
five native wetland species = 5, four native wetlands species = 4, three
native wetland species = 3, one or two native wetland species = 2, and
no native wetland species = 1. The two criteria were averaged to
obtain the overall vegetation ranking for each of the sites.

The current and potential (restored) habitat value of each
wetland for threatened and endangered (T&E) wetland birds and
migratory birds was ranked using data from the scientific literature,
wetland management plans, the rapid assessments, the National
Wetland Inventory (NWI), the 10-year database (2010–2020) of
bird observations on Molokaʻi by the Hawaiian Islands
Conservation Collective (Supplementary Table S2), GIS
databases, and expert opinions from managers and landowners
on Molokaʻi (Pacific Coast Joint Venture, 2006; US Fish and
Wildlife Service (USFWS), 2011a, 2011b; Chutz, 2014;
Malachowski and Dugger, 2018; Malachowski et al., 2018;
Sustainable Resource Group International, 2018; Henry and
Fredrickson, 2019; Henry and Fredrickson, 2022; USFWS, 2022).
Sites were scored using the 12 criteria in Table 3. A multiplier of two
was applied to the ‘suitability for T&E and migratory birds after
restoration’ expert scores, as this criterion was evaluated at all sites
and provides a more important indication of potential future habitat
value than past bird observations, which were not available at all the
sites. To ensure that sites with severe hazards for avian species were
distinctly noted, a multiplier of three was applied to this category.
The rankings used for each criterion and the details on how ranks
were determined are provided in Table 3.

The sixth sub-model was community support. This component is
of key importance as without broad-scale support from the largely
Native Hawaiian community on Molokaʻi, wetland restoration is
unlikely to come to fruition or be successful in the long term.
Community support was carried out in several steps. First, the
project community liaison, Pūlama Lima of Ka Ipu Makani, held
one-on-one meetings with key Molokaʻi community members. This
was followed by a larger community meeting during the rapid
assessment work in which the project was explained and there was
an open discussion about the 12 sites chosen for prioritization. Next, a
score sheet for community support regarding the sites was sent out by
the community liaison to each member of the Molokaʻi Wetland
Partnership (MWP), a coalition of local NGOs and state and federal
agencies with extensive knowledge of the natural resources and socio-
cultural landscape of Molokaʻi. A follow-up meeting was then held to
discuss any scores, which were in dispute or not well understood. In this
way, each site was ranked as follows: likely community opposition (1),
possible community opposition (2), community neutral (3),
community supportive (4), and community highly supportive (5).
Due to the overarching importance of this sub-model, it received a

weight three times that of all the other sub-models except for sea-level
rise, which also received the same weight.

2.6.2 Site suitability analysis
All six sub-models were used to carry out the site suitability

analysis in ArcGISPro version 3.0.2. Site suitability analyses have
been used in a broad range of applications including wind farm
placement, refugee camp establishment, and wetland restoration
(White and Fennessy, 2005; Darwiche-Criado et al., 2017; Nasery
et al., 2021; Younes et al., 2022) to identify locations with desired
characteristics by using weighted criteria defined by the analyst to
rank and score potential sites based on how closely they match an
ideal set of criteria. In order to prepare the data for the analysis,
several steps first needed to be followed. Study area boundaries were
manually delineated using high-resolution digital imagery
(EagleView Technologies, Inc., 2008) and converted to polygons
in the GIS using the NAD 1983 UTM Zone 4N projected coordinate
system. Feature classes were created in the GIS for each of the
datasets collected in the rapid field assessment. For datasets that
contained null values, a proxy was assigned to prevent ArcGIS Pro
from excluding the site from the analysis. Each dataset was then
spatially joined to the wetland site polygons. Each data attribute was
then converted to a raster (cell size of 3 m) with the Polygon to
Raster tool. Due to the soil data being collected at two pits within
each study area boundary, single rankings for each site had to be
calculated for use in the final model scenarios to match the study
area boundaries of the other sub-models. After the soil sub-model
was run at the pit level, the ranks for each site were determined by
averaging the soil pit ranks. The new ranks were then assigned to
their respective study area boundary polygons and then converted to
a raster (cell size of 3 m) with the Polygon to Raster tool. All the
raster data were then uploaded to the ArcGIS Pro (version 3.0.2) Site
Suitability Modeler tool.

Because some criteria had higher importance than others,
the multiplier weighting method was used (White and
Fennessy, 2005) in the site suitability analysis to weight the
criteria relative to one another within each sub-model and in
the overall suitability model. Any weighting within the
individual sub-models was already described above.
Weighting among the sub-models for the overall site
suitability analysis was carried out in three ways: 1) equal
weighting for each sub-model, 2) SLR and community
support weighted 2x as high as all the other sub-models, and
3) SLR and community support weighted 3x as high as all the
other sub-models. All other parts of the suitability analysis
remained the same for the three different runs.

3 Results

3.1 Rapid field assessments and sub-model
rankings

3.1.1 Hydrology
During rapid assessments, we determined that all the

wetland sites receive at least some groundwater inflow.
Because many of the springs are located outside of the
wetland boundaries of our sites, we relied on the spring
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survey by Stearns and MacDonald (1947), which is the most
recent to date, to identify springs mauka from our sites.
Additional springs/seeps were noted by us at the upland edge
of MOKU (Table 1 for site names and their abbreviations). For
mauka of KOK, there must be springs or seeps as the
groundwater discharge was the strongest of all the sites.
However, none were found by Stearns and MacDonald
(1947), suggesting either an oversight or a new flow path.
Streamflow is intermittent at all sites except PUNA, MOKU,
KOK, IPUKA, and KAIR, which have no streams (US Geological
Survey, 2019). The measurements of depth to groundwater and
salinity illustrate the impact of the ongoing drought on the
lowland coastal zone of Molokaʻi (Figure 3). Although the
water table is usually near the surface in coastal wetlands, the
mean depth to groundwater at the sites was 36.36 cm ± 25.00 (sd).
At three soil pits, PAIA1, POHO1, and POHO2, the bottom was
dry at 80 cm (Supplementary Table S3). The mean groundwater
salinity at all the sites was 30.35 psu ±34.25 (sd) and at soil pits
KAMA1, KAUN, OHI2, and PAHUA2 salinities were in the

hypersaline range (>40 psu) (Figure 3B). In contrast, the low
salinities and shallow depths to groundwater at KOK1, KOK2,
KNWR1, OHI1, and IPUKA demonstrate a high discharge of
fresh groundwater at several places along the southern coastline
(Supplementary Table S3, Figure 3C). The wetland sites that
ranked the highest overall (5) for hydrology were IPUKA,
KNWR, KOK, KAIR, and MOKU (Figure 3C, Supplementary
Table S3).

3.1.2 Sea-level rise
In the analysis of wetland resilience to future sea-level rise, there

were major differences in the migration space and elevation capital
among the sites. Themean distance to the nearest upland road (167m±
173 (sd)) ranged from 9 m at KOK to almost 600 m at PAHU
(Figure 4A). The resilience of the wetland sites to sea-level rise was
strong in 2050, as almost all the sites maintained their elevation above
MSL except for KAIR (Figure 4B). In 2100, resilience waned with 10 out
of 12 sites having projected surface elevations belowMSL, which is likely
near the lower end of the vegetation elevation range (Figure 4B).

FIGURE 3
(A)Depth to groundwater (the water table) at soil pits at each wetland site during April 2022. Site abbreviations are shown in Table 1. *Thewater table
was at the ground surface at IPUKA. **At KAIR, there was no water table because the site was on lithified sand. For PAIA1, POHO1, and POHO2, the depth
to groundwater was below the depth of the pit (80 cm); (B) salinity of groundwater in soil pits in April 2022. Sites without salinity measurements had no
water in soil pits; and (C) rankings for salinity, coastal groundwater discharge rate, depth to groundwater, and overall mean hydrology for each of the
12 wetland sites. For sites without available data for one of the three categories, the remaining two categories were averaged instead of all three.
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Overall, the highest overall sea-level rise rankings (3 or higher) were
found for KNWR, KOK, and PAHU (Supplementary Table S4;
Figure 4C).

3.1.3 Soils
Basic soil characteristics varied broadly across the sites. Soil

texture ranged from loamy sands to silt and silty clays
(Supplementary Table S5). The mean % OC across the wetland
sites was 10.93% ± 12.24 (sd) (Figure 5A). IPUKA, which had no soil
per se, had a floating mat of vegetation estimated to contain ~44%
OC (Byrd et al., 2018). Most sites contained mineral soil except KOK
and PUNA, which have organic soils due to their high %OC content
(Figure 5A) (USDA-NRCS, 2014). All of the sites except for KOK
and IPUKA are situated under reddish brown steep slopes described
by gSSURGO as “very stony land-eroded” (Soil Survey Staff, 2021).
Reddish brown material was seen in the top layers of many soil pits
and the coastal waters, demonstrating chronic erosion and transport
of materials from the uplands to the sea. Six sites had overall soil
rankings above 4 (Figure 5B).

3.1.4 Vegetation
The vegetation survey demonstrated that the coastal flora on

Molokaʻi contains a high proportion of non-native species
dominated by mangroves, pickleweed, and Indian fleabane

(Supplementary Tables S6–S10). There were 39 plant species
found overall at the wetland sites. Of this total, 22% or 13 were
not wetland species. Of the 26 wetland plant species, 11 were native,
one was introduced by Polynesians, and 14 were non-native
(Supplementary Table S7). The most diverse plant life form was
trees. However, seven of the nine tree species were exotic (non-
native) in origin (Supplementary Table S7). Sedges were the next
most numerous plant form (seven species), with three native species.
Overall, the non-native wetland plant species richness (mean =
3.33 ± 1.92 (sd)) at the wetland sites was slightly greater than the
native wetland plant species richness (mean = 2.08 ± 2.02 (sd))
(Figure 6A, Supplementary Table S8), but the difference was not
statistically significant (Student’s t-test, p > 0.05). The number of
native species and/or the proportion of native to non-native
wetland species resulted in KAIR, KOK, and OHI ranking the
highest overall for vegetation (all >4; Figure 6B, Supplementary
Table S9).

3.1.5 Birds
The assessment of bird habitat value, which consisted of

12 separate criteria (Table 3), ranged from a total score of 55 at
POHO to 105 at OHI (Table 4, Supplementary Table S11). It is
important to note that PAIA was not included in the rankings due to
strong community opposition to restoration of the site (see below).

FIGURE 4
(A) Distance to the nearest upland road from the upland border of each of the 12 wetland sites, (B) estimated surface elevation relative to mean sea
level (MSL) (0.0 m) for each wetland assuming 3 mm/yr of vertical accretion and incorporating sea-level rise (SLR) projections for 2050 and 2100 from
Table 3, and (C) overall mean SLR rankings based on migration potential (weighted 1x) and mean elevation relative to MSL for 2050 and 2100
(weighted 2x).
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The criteria with the highest consistent rankings among the sites
were potential suitability for T&E birds (mean = 3.5) and managed
human disturbance and hazards (means of both = 3.4). The criteria
with the lowest scores across the sites were restoration status
(mean = 1.9) and adequate predator control (mean = 2.1)
(Table 4, Supplementary Table S11). Four sites (KNWR, KAMA,
PAHU, and PUNA) ranked above “4” in “potential suitability after
restoration for all threatened and endangered waterbirds, migratory
shorebirds, and migratory waterfowl” (Table 4). The top ranking
sites based on suitability for birds were OHI (5), PUNA (5), KAMA
(4), PAHU (4), and KNWR (4) (Table 4).

3.1.6 Community support
The local community expressed support for coastal wetland

restoration at eight of the 12 wetland sites (Figure 7). The site
rankings were particularly high (rank of 5) for KNWR, KAMA,
and KOK. This high level of support was indicative of a broad,
shared community vision of restoration at these sites. In contrast,

for PAIA, there was no shared vision for restoration and, thus, no
discussion of support due to past trauma from island development
efforts, issues around maintaining access for hunting and fishing,
and a lack of trust regarding state and federal agencies (Figure 7;
Supplementary Table S12). The main concerns raised about
wetland restoration included maintaining access for hunting
and fishing, protecting sites with iwi kupuna (ancestral bones),
the need to include the community in the planning and restoration
process, and a desire to see indigenous agro-ecology (loʻi kalo and
loko iʻa) included in wetland restoration planning (Supplementary
Table S12).

3.2 Site suitability analysis results

The overall rankings of the 12 wetland sites for restoration
suitability were quite similar across the three different weighting
approaches (Table 5). The top three sites were KOK, KNWR, and
OHI. KOK scored 5’s in hydrology, soils, vegetation, and community
support and 3’s in birds and SLR. KNWR scored 5’s in hydrology and
community support, 3.75 in soil, 2 in vegetation, 4 in birds, and 3.67 in
SLR. OHI scored a 5 in birds, 3.33 in hydrology, 3.75 in soils, 4.5 in
vegetation, 2.0 in SLR, and 4 in community support. The bottom three
sites, KAUN, PAIA, and POHO, held steady across the three
approaches. All three of these sites scored particularly low in SLR
and community support and should not be considered further for
restoration. The top six sites across all six sub-models, KOK, KNWR,
OHI, PUNA, KAMA, and MOKU, constitute an actionable blueprint
for restoration actions on Molokaʻi.

4 Discussion

We conducted a comprehensive analysis to prioritize the
restoration of 12 coastal wetlands on the island of Molokaʻi using
available spatial data, rapid field assessments of site hydrology, soils,
birds, and vegetation, a comprehensive bird habitat assessment, sea-
level rise projections for 2050 and 2100, and a GIS site suitability
analysis using all assembled data (Table 5). In the rapid field
assessment, we found a high level of wetland degradation across
the 12 sites, which is not surprising as coastal wetlands across
Hawaiʻi, the Pacific region, and elsewhere have long been altered
from their original condition or lost completely due to development,
conversion to agriculture, and other forms of land use change
(Erickson and Puttock, 2006; McGlone, 2009; Murray et al.,
2022). Overall, our study reveals a great potential to restore
coastal wetlands into ecosystems “thriving with life” as described
long ago in the waters of Kāne mele (Figure 2). The following
sections describe what we learned about these understudied systems
and how our site suitability analysis provides the first step in
actualizing a vision for wetland restoration across the island.

4.1 Classification of Hawaiian coastal
wetlands

We found a range of Hawaiian coastal wetlands in our rapid field
assessments with diverse hydrology, salinity, geomorphology,

FIGURE 5
(A)Mean % OC in soil samples from 0–2 and 24–26 cm in depth
from each site. The “O”s signify organic soils with the rest of the sites
having mineral soils (USDA Natural Resources Conservation Service,
2014). *Although IPUKA had very high %OC, it contains a floating
mat, which is not classified as soil. (B) Rankings for soil texture, %OC,
and the mean soil rank for each of the sites.
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vegetation, and soils (Figures 3–6, Supplementary Table S3,
Supplementary Tables S5–S10). Because of this, our results
expand upon the previous “tidal flat” classification of coastal
wetlands by Erickson and Puttock (2006), which were all
described as groundwater driven, saline or brackish, situated in a
floodplain, and containing mineral soils (Figure 8). Our study
demonstrates that the characteristics of Hawaiian coastal
wetlands are much broader: 1) hydrology is typically either
groundwater and tidally driven or precipitation and groundwater
driven, 2) salinity ranges from fresh to saline, (3) geomorphology
includes coastal lowlands (flats) and coastal depressions, and (4)
substrate can consist of organic soil, mineral soil, or lithified sand.
The most common types of wetlands are mudflats, coastal shrub
wetlands, non-native mangrove swamps, and herbaceous marshes
(Figure 8).

In addition to these common wetland types, we found two
unusual kinds of wetlands. The first is a groundwater-fed, coastal
freshwater herbaceous marsh containing organic “peat” soil (KOK),
otherwise known as a coastal fen. Peatlands have long been known to
occur on summits and relatively flat montane areas in the Hawaiian
Islands, but these wetlands are supported by precipitation, causing
them to fall into the category of bogs (MacCaughey, 1916; Vogl and
Henrickson, 1971). Although groundwater is known to support
coastal wetlands in Hawaiʻi (Hill, 1996), coastal fens, which are
common in temperate, boreal, and some tropical climates
(Dommain et al., 2014; Toro et al., 2022), have yet to be noted in
the Hawaiian Islands. The success of the loʻi kalo (taro patch) at
KOK demonstrates that such Hawaiian coastal fens are highly
complementary for producing this staple food source. This is no
surprise to Native Hawaiians, who have traditionally used such
ecosystems to grow taro and refer to them as loʻipūnāwai (spring
ponds; Pukui and Elbert, 1986). Coastal groundwater-fed wetlands,
both fens and marshes with mineral soils, were likely numerous
across the Hawaiian Islands before conversion to other uses, but now
only few remain at reserves such as the James Campbell National
Wildlife Refuge on Oahu and the Waiheʻe Coastal Dunes and

Wetlands Refuge on Maui (Henry and Frederickson, 2013;
Hawaiian Islands Land Trust, 2023).

The second unusual wetland type from our assessment is a novel
coastal depressional wetland containing herbaceous vegetation,
shrubs, and trees, which lies on a very thin veneer (a few cm) of
soil over rock hard, lithified sand. The wetland (KAIR) is supported
by precipitation and brackish groundwater. It was thought to have
been an ancient fish pond and was rebuilt as one in the 1920s but fell
out of operation by 1928 (Wyban, 1993; Fung Associates Inc. and
SWCAEnvironmental Consultants, 2010). It is unclear exactly when
the sand hardened into an impenetrable surface, but it could have
formed during or after the construction of the newer pond. These
days, KAIR floods after major rain storms and stays inundated for
many months a time (Wyban, 1993; Supplementary Figure S1).

The presence of two highly unusual wetlands among just 12 sites
strongly suggests that more study may be needed to describe the full
diversity of coastal wetlands in Hawaiʻi.

4.2 Site assessments and sub-model
rankings

4.2.1 Hydrology and soils
All of the sites receive at least some groundwater inflow.

However, erosion from the uplands has resulted in some springs
and seeps being at least partially buried under deposited materials
(e.g., MOKU and KNWR) and fine silts being carried across the
wetlands to nearshore environments (Stock et al., 2011). At some of
the sites, the restoration process will need to include the excavation
of springs and regrading of the wetland surface so that the site can sit
closer to the water table. The degradation of springs from
sedimentation and drought has caused salinity levels to climb to
the hypersaline range in four of the sites (KAMA, KAUN, OHI, and
PAHU; Figure 3B). This situation will need to be remedied in order
to create conditions conducive for native plant recruitment (Zedler,
1982; Alexander and Dunton, 2002). Half the sites had % cover of

FIGURE 6
(A)Numbers of native and non-native wetland plant species at each site and (B) ranks for the proportion of native: non-native wetland plant species,
species richness of native wetland plants, and the overall vegetation rank for each of the sites.
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TABLE 4 Ranks for bird habitat value for threatened and endangered waterbirds (T&E).

Wetland Site
area
rank

Current
freshwater
availability

Proximity
to other
wetlands

Hazards—(unfenced
roads, powerlines,
and other unsafe
conditions)

Adequate
predator
control or
likely
capacity to
implement

Botulism
control or
likely
capacity to
implement

Human
disturbance
managed

Restoration
status
ranking

Breeding
recorded
on site
from
2010 to
2020

Average
T&E bird
count
from
2010 to
2020

Species
richness of
all T&E,
migratory
shorebirds,
and
migratory
waterfowl

Mean
potential
suitability
after
restoration
for T&E,
migratory
shorebirds,
and
migratory
waterfowl

Final
ranking:
<64 points
(1), 65–74
(2), 75–84
(3), 85–94
(4),
and >95 (5)

IPUKA 1 5 1 3 1 1 5 1 No data No data No data 2.7 1

KNWR 5 1 4 3 3 3 3 4 0 1 1 4.5 4

KAIR 1 2 1 5 2 3 5 1 No data No data No data 2.5 2

KAMA 5 3 4 3 1 2 3 2 5 1 2 4.7 4

KAUN 3 5 4 1 4 4 5 1 15 5 5 2.3 3

KOK 1 5 1 3 4 4 5 5 No data No data No data 3.3 3

MOKU 1 1 5 3 2 1 1 1 5 1 1 3.0 2

OHI 3 3 4 3 2 1 3 3 10 3 4 3.0 5

PAHU 5 3 3 3 2 2 5 1 5 2 3 5.0 4

PAIA -- -- -- -- -- -- -- -- -- -- -- -- 1

POHO 5 1 2 5 1 1 1 1 No data No data No data 2.3 1

PUNA 5 3 3 5 1 2 1 1 5 1 2 4.8 5

Overall mean
of sites

3.2 2.9 2.9 3.4 2.1 2.2 3.4 1.9 -- -- -- 3.5 2.8
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bare ground greater than 10% (Supplementary Table S7) and in
most of these sites, there was precipitated salt on the soil surface
(Supplementary Figure S1). Despite these impacts, however, half the
sites had soil texture and % OC highly suitable for restoration (a
ranking of “4” or above, Figure 5B).

At several sites, the water quality was fresh due to high
groundwater discharge along the coastline (Figure 3). Previous
work on Molokaʻi has shown that a great volume of groundwater
travels along flow paths from the ridge to the reef (Oki et al., 2019).
As a case in point, groundwater salinity at the KOK soil pits,
practically adjacent to the sea, were both 0.5 psu, which is
indicative of a freshwater ecosystem (Cowardin et al., 1979). The
ubiquitous presence of groundwater resulted in half the sites scoring
a “4” or higher in their overall hydrologic ranking (Figure 3C).

4.2.2 Sea-level rise
The results of the sea-level rise analysis showed that the

elevation capital of the microtidal coastal wetlands on Molokaʻi
appears to be modest. Most sites are likely resilient to SLR until 2050,
but after that, resilience will likely wane dramatically (Figure 4,
Supplementary Table S4). It is important to note that these
projections for sustainability under sea-level rise have large
uncertainties. Due to a major deficit in wetland data such as the
vertical accretion rates of sediments and peat, elevation ranges in the
tidal frame suitable for dominant vegetation, and primary
productivity of coastal wetlands, no marsh sustainability
modeling could be performed. Furthermore, the sea-level rise
estimates used were for passive flooding only and, thus, did not
include wave-induced flooding, yearly variability of sea-level from
natural processes including the El Niño–Southern Oscillation, or
any additional impacts due to coastal erosion, which can all increase
the extent and depth of flooding (Drexler and Ewel, 2001; Anderson
et al., 2018; Goodman et al., 2018).

Despite these limitations, the SLR analysis raises some important
points about the state of knowledge concerning coastal wetlands on
Molokaʻi. First, there are some key opportunities (e.g., KAMA and
PAHU) for marsh migration (Figure 4) on the island. Second, there is a
great need to improve the process-level understanding of coastal
wetlands of Hawaiʻi. In particular, greater knowledge of the two
components of vertical accretion, organic matter accumulation and
inorganic sedimentation rates, is needed as the first step toward
improving projections of coastal wetland resilience.

4.2.3 Vegetation
Non-native, invasive plant species were ubiquitous at the sites,

particularly mangroves and pickleweed (Table 1). Mangrove cover
was ≥36% at KAMA, KAUN, PAHU, PAIA, and PUNA. Monotypic
cover of pickleweed was ≥26% at KAMA, KAUN, OHI, PAHU,
POHO, and PUNA (Supplementary Table S6). Invasive vegetation

FIGURE 7
Community support rankings for each of the wetland sites.

TABLE 5 Overall site scores and ranks from the site suitability analysis using three different weighting approaches.

Site
names

Equal
weighting

Ranks with
equal
weighting

Site
names

SLR and
community
support
weighted 2x

Ranks with SLR
and community
support
weighted 2x

Site
names

SLR and
community
support
weighted 3x

Ranks with SLR
and community
support
weighted 3x

KOK 26.00 1 KOK 34.00 1 KOK 42.00 1

KNWR 23.08 2 KNWR 31.75 2 KNWR 40.42 2

OHI 22.58 3 OHI 28.58 3 OHI 34.58 4

PUNA 20.17 4 KAMA 27.17 4 KAMA 34.17 3

KAMA 20.17 5 PUNA 25.17 5 PUNA 30.17 5

MOKU 19.42 6 MOKU 24.08 6 MOKU 28.75 6

KAIR 19.00 7 IPUKA 23.33 7 PAHU 28.67 7

IPUKA 18.67 8 PAHU 22.67 8 IPUKA 28.00 8

PAHU 16.67 9 KAIR 21.00 9 KAIR 23.00 9

KAUN 13.00 10 KAUN 16.67 10 KAUN 20.33 10

PAIA 12.42 11 PAIA 15.42 11 PAIA 18.42 11

POHO 9.42 12 POHO 13.08 12 POHO 16.75 12
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will need to be controlled and native species will need to be planted
in order to regain some of original plant diversity. Only three sites
(OHI, KAIR, and KOK) scored “4” or higher in the vegetation
rankings, demonstrating that even having a handful of native
wetland species is a high bar (Supplementary Table S7). Overall,
plant species richness across all the sites was low (39 species), with
only 11 native wetland plants (Figure 6; Supplementary Tables S7–S9).
This may be due to competition from invasive plants, or similar to
native Hawaiian forests, low plant diversity may have always been the
case due to the extreme isolation of the Hawaiian archipelago (Barton
et al., 2021).

4.2.4 Bird habitat value
Although proper hydrology, vegetation, soils, and resilience to SLR

are critical for restoring tidal wetlands, these basic wetland components
are insufficient to adequately support sensitive wildlife. Endangered
species, such as the Hawaiian stilt, Hawaiian coot, and Hawaiian duck,
are conservation reliant (Harmon et al., 2022), requiring special
protections against predators, avian botulism, the encroachment of
invasive plant species, and human disturbance (Greer, 2005; US Fish
andWildlife Service, 2011a; Underwood et al., 2014; Malachowski et al.,
2022). Predator control, in particular, is of critical importance to protect
endangered waterbirds from a suite of non-native species including cats
(Felis catus), dogs (Canis familiaris), pigs (Sus scrofa), mongooses
(Herpestus javanicus), Black, Norwegian, and Polynesian rats (Rattus
rattus, Rattus norvegicus, and Rattus exulans), bullfrogs (Rana
catesbeiana), introduced barn owls (Tyto alba), cattle egrets
(Bubulcus ibis), and the common myna (Acridotheres tristis) (Greer,
2005; US Fish andWildlife Service, 2011a; Underwood et al., 2014). Our
analysis showed that breeding and bird counts were low for endangered
waterbirds across the sites (Table 4). Furthermore, several of the top

rated sites for bird habitat (OHI, PUNA, KNWR, KAMA, and PAHU)
had low ratings for predator and botulism control due to a lack of
management (Table 4). Although even simple ponds can provide
habitat for endangered waterbirds (including wastewater
treatment ponds containing raw sewage (KAUN)), unmanaged
sites can act as ‘sinks’ with high mortality, especially for chicks,
due to the abovementioned threats (Christensen et al., 2021;
Harmon et al., 2021). The recovery of endangered waterbirds in
Hawaiian wetlands depends on restoring and expanding high-
quality habitat combined with strong protections from predators,
hazards, and diseases.

4.2.5 Community support
Public support and local stakeholder involvement have been shown

to be critical for conservation efforts, restoration projects, and
sustainable resource management (Lee, 2011; Doyle-Capitman et al.,
2018; Wilkins et al., 2018). We engaged with the Molokaʻi community
at multiple times in our study in order to achieve coproduction of
knowledge (Meadow et al., 2015). This process relied strongly on our
community liaison and the Molokaʻi Wetland Partnership to effectively
engage with residents. This effort allowed us to gain valuable insights
about community support regarding our sites. For example, in the
beginning of our work, we considered PAIA to be a strong contender
for restoration, but as mentioned above, the failed development efforts
at this site caused deep trauma for local residents, causing them to omit
PAIA from consideration. Ultimately, PAIA received very low scores
overall (Table 5). Knowledge of site history and perspectives on
“landscape frame,” the environmental vision for the landscape of a
person or community, are essential for truly understanding community
preferences for restoration (Aggestrom, 2014). Furthermore, there must
be strong consideration of local community needs (Doyle-Capitman

FIGURE 8
(A) Classification of Hawaiian coastal flats by Erickson and Puttock (2006) and (B) revised classification for Hawaiian coastal wetlands based on this
study.

Frontiers in Environmental Science frontiersin.org15

Drexler et al. 10.3389/fenvs.2023.1212206

126

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1212206


et al., 2018), which for Molokaʻi include hunting, fishing, and socio-
cultural resources.

4.3 Site prioritization

The three different weighting approaches used in the site
suitability analysis resulted in KOK, KNWR, OHI, PUNA,
KAMA, and MOKU being ranked as the top six sites and
KAUN, PAIA, and POHO as the lowest, effectively removing
them from further consideration (Table 5). The specific sub-
models we used to arrive at this prioritization of sites differ in
important ways from most previous studies, which have ranked
wetlands for restoration based solely on watershed attributes and
specific wetland properties (White and Fennessey, 2005; Ouyang
et al., 2011; Horvath et al., 2017; Qu et al., 2018; Medland et al.,
2020). In our study, we incorporated community support in
addition to wetland attributes and did so before any new
restoration activities. The few studies we found that incorporated
public opinion did so after wetland restoration was completed,
which is useful for improving future actions, but may result in
lost opportunities to build trust and community support during the
process (Aggestrom, 2014; Sun et al., 2015; Doyle-Capitman et al.,
2018). Our approach was the first, to our knowledge, to incorporate
projected sea-level rise, which is critical for estimating future coastal
wetland resilience. In the future, when more coastal wetland data
become available for Molokaʻi and neighboring islands, our
suitability “tool” could be improved by directly incorporating
projections from marsh sustainability models and migration
models into the analysis (e.g., Fagherazzi et al., 2020; Morris
et al., 2022). Finally, although some studies prioritizing sites for
wetland restoration have included bird habitat suitability (Hua et al.,
2016; Maleki et al., 2018), our extensive analysis, particularly for
endangered waterbirds, outlines specific habitat requirements
needed to set the stage for recovery of these endemic Hawaiian
species (Table 4; Supplementary Table S11).

The suitability analysis created in this study can be used to rank
any additional coastal wetlands on Molokaʻi. It can also be applied
elsewhere in Hawaiʻi, but it would need to be adapted to the
more developed landscape and the particular needs of the local
communities and stakeholders. Beyond application in other places,
there is also the option to use this approach for prioritizing the
cultural value of sites or various management actions such as
increasing carbon sequestration on the landscape or employing
nature-based solutions to reduce flooding, nutrient loading, and/
or sedimentation. Clearly, one of the main strengths of the suitability
analysis approach is that it can be expanded and adapted to
accommodate particular uses depending on user needs (Lovette
et al., 2018).

4.4 A vision for wetland restoration on
Molokaʻi

Although wetland restoration has been conducted in Hawaiʻi since
at least the early 1980s (Tummons, 2011), we are not aware of any
landscape-scale restoration efforts. The top six sites in this study
represent over 66 ha (163 acres) of coastal wetlands along the south

shore, and all of them are within a few kms from at least one other site
(Figure 2). Three of the six highly ranked sites are already owned by the
state or federal government (Table 1; Figure 2), which could facilitate
restoration actions because land purchase would not be needed. There
are other potential sites in this area that have yet to be assessed for
restoration. The opportunity to restore multiple sites along the south
shore of Molokaʻi is a rare chance to enact a landscape-scale recovery of
wetland habitat in the Hawaiian Islands (Henry, 2016).

The top ranked sites offer an opportunity to restore essential habitat
for endangered waterbirds, invertebrates, and native plants as well as re-
ignite the socio-ecological ties of the largely Native Hawaiian
community to coastal wetlands. Historically, managed wetlands or
loʻi kalo were “keystone” components of the Native Hawaiian socio-
ecological system because they constituted the major source of complex
carbohydrates in the diet and dominated the lowland landscape in all
areas wet enough to sustain them (Gon III et al., 2018; Winter et al.,
2018). Recently, there has been renewed interest in traditional agro-
ecology as a way to reduce dependence on imported food, regain island
sustainability, and reach biodiversity goals (Gon III and Winter, 2019;
Harmon et al., 2021). The restoration of coastal wetlands on Molokaʻi
could be a major component of this renaissance. In particular, the
restoration of wetlandmosaics containing loʻipūnāwai, loko iʻa, and tidal
marshes could provide food and cultural resources for local
communities and a range of habitat types for flora and fauna.

Much of the lost wetland area across Hawaiian Islands has
already been developed (Van Rees and Reed, 2013). Furthermore,
sea-level rise threatens urbanized wetland complexes across the state
(Henry, 2016). The wetland restoration opportunities available on
Molokaʻi could reverse some of the degradation and habitat loss
resulting from previous land uses and inspire further restoration
along the ridge to reef continuum (Stock et al., 2011; Jacobi and
Stock, 2017). The restoration of tidal wetlands is preferable sooner
than later due to the need to procure migration space and establish
wetland functions before the anticipated acceleration in SLR later in
the century (Morris et al., 2022; Sweet et al., 2022). Our site rankings
are just the first steps in a long process, but hopefully they will serve
as a catalyst for revitalization of coastal wetlands on Molokaʻi for the
benefit of the Native Hawaiian community and a wide range of
native wetland species.
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Changes in the water retention of
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Interactions of humans with the environment are strongly related to land use and
land cover changes (LULCCs). In the last decades, these changes have led to a
degradation of ecosystem services, including water regulation and flood control.
In the Alpine areas of Austria, land cover changes have increased flood risk since
themiddle of the 19th century. In this paper, we assess the influence of these long-
term land use changes on the landscape’s ability to retain water using the
qualitative Water Retention Index (WRI). The changes are thereby evaluated on
the basis of the historical (1826–1859) and present (2016) land cover situation,
which is to our knowledge the first high-resolution and regional application of the
WRI. The results show that the water retention potential mimics the mountainous
characteristic and features. Except for areas strongly dominated by settlement
areas, the highest retention potentials are found in valley floors and the lowest
values are depicted along the main Alpine complex. In low-lying areas, the
retention decreased by over 10%. It was found that this decrease can be
mostly attributed to settlement expansion. Above 1,250m, land use
transformations led to slightly increasing water retention values owing to the
transformation of wasteland or glaciers to stagnant waters and to the expansion of
forest and grassland in high elevations. This examination allows for a holistic and
spatially distributed LULCC impact assessment on the landscape’s water
regulation capacities and offers valuable high-resolution information for future
land use planning and sustainable land development.

KEYWORDS

water retention, land use, land cover change, flood control, ecosystem service, Alpine
regions

1 Introduction

Anthropogenic interactions with the environment through land use and land cover
change (LULCC) are strongly connected to ecosystem functions and the provision of
ecosystem services (ESS) (Hasan et al., 2020). Ecosystem services benefit society and are
obtained either directly or indirectly from ecosystems (e.g., Gómez-Baggethun & Barton,
2013; Silvestri et al., 2013). These benefits comprise a variety of services and can be
categorized into four types including, (i) supporting services (e.g., soil formation,
nutrient supply), (ii) provisioning services (e.g., raw materials, water, food), (iii)
regulating services (e.g., climate regulation, water purification), and (iv) cultural services
(e.g., ecotourism, recreational uses) (MEA, 2005; Hasan et al., 2020). Multiple authors
reported a decline of ESSs due to LULCC (e.g., Haines-Young et al., 2012; Kindu et al., 2016;
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Rai et al., 2018), while long-term LULCC (1960–2019) are four times
greater than estimated before and affect almost one-third of the
global land area (Winkler et al., 2021). LULCC negatively affect
hydrological provisioning and regulating ecosystem services as well
as the supporting services of natural flows to sustain ecosystems (Jin
et al., 2015) and also leads to the alterations of hydrological processes
and their functions (Maitima et al., 2009; Guzha et al., 2018). The
dependence of hydrological ecosystem services on specific land uses
subsequently leads to effects on regulating services such as water
conservation, water availability, and flood control due to LULCC
(Hasan et al., 2020).

Land use changes, such as deforestation, urbanization, and
wetland drainage, as well as agricultural utilization of land, affect
various hydrological processes including evapotranspiration,
infiltration, and surface and subsurface water storage (e.g.,
Andréassian, 2004; Oudin et al., 2008; Hall et al., 2014;
Wesemann et al., 2018). LULCC and associated agriculturally
modified hillslopes can influence flow paths, flow velocity, water
storage, and concentration times. Vertical soil infiltration and water
retention can also be reduced due to the intensification of
agricultural practices (Rogger et al., 2017). Similarly, numerical
simulations showed that flood peaks in small headwater
catchments can increase by up to 75% due to the construction of
forest roads (Wesemann, 2021; Herrnegger et al., 2022). These
examples show that human landscape interventions and
intensification in land use can adversely affect regulating
ecosystem services such as water retention. LULCCs also
influence flood generation processes by altering the infiltration
capacity of the landscape (Hall et al., 2014). Among climate
change and river channelization, land use change is therefore
another potential main driver of flood regime changes (Merz
et al., 2012). However, the impact on flood regimes is stronger in
smaller headwater catchments (e.g., Wesemann, 2021). In larger
catchments, other factors such as river straightening, loss of
floodplains, and changes in atmospheric conditions, such as
changes in regional precipitation based on different atmospheric
circulation patterns, are more dominant (Viglione et al., 2016). If
managed properly, LULCC can be beneficial for water regulation in
urban areas but also in upstream runoff-generating areas
(Vandecasteele et al., 2017). Thus, flood risk management plans
might also include the encouragement of sustainable land use as well
as the improvement of water retention and the controlled flooding of
certain areas in case of a flood event as defined in the EU Floods
Directive 2007/60/EC (EU, 2007). The integrated flood risk
management (IFRM) approach thus aims to reduce the severity
and vulnerability to flooding based on a portfolio of approaches that
include structural and non-structural measures (Van Herk et al.,
2015).

In the Alpine areas of Austria, LULCC has increased flood risk
since the mid-19th century, especially in valley corridors as shown
by Hohensinner et al. (2021). In their study, digitalized historical
maps from 1826 to 1859 were compiled and compared with a
detailed land cover dataset approximating the land cover of 2016.
During this period, arable land was reduced by 69%, forests
increased by 23%, and various agricultural areas declined by 27%.
At the same time, settlement areas have expanded by over 6 times
(Hohensinner et al., 2021). The expansion of settlements in flood-
prone areas by 28% has resulted in increased flood damage potential

(Junger et al., 2022). Although agricultural areas have declined since
the mid-19th century, over 12% of highly valuable agricultural areas
are currently located in flood-prone areas (Junger et al., 2022). In
mountainous areas, where areas for agriculture are topographically
limited, over 30% of agricultural land important for food security is
located in flood-risk areas (Grüneis et al., 2021). At the same time,
the construction of hydropower reservoirs in Alpine valleys since the
middle of the 20th century led to large flood retention potentials and
to a strong decrease of flood peaks and flood risk (Stecher &
Herrnegger, 2022).

Currently, 41 km2 of productive soils are commanded for land
development in Austria annually. Thereof 15–21 km2 are permanently
sealed and their associated ESS, including water retention, are eternally
lost (UBA, 2022). The Austrian government, therefore, aims to reduce
land consumption to 9 km2 annually by 2030 (Gov., 2020). Future land
use changes (2030) might increase flood-affected residential areas by
159% in an Austrian Alpine valley (Cammerer et al., 2013). At the same
time, flood risk could be reduced by the introduction of non-structural
flood protection measures. The enhancement of private precaution and
stricter land use regulations reduces flood risk by approximately 30%.
Regardless of future changes in flood risk due to climate and land use
change, non-structural measures always reduce flood risk (Thieken
et al., 2016). In Austria, flood policies should prefer non-structural
measures, flood retention, and natural retention over structural
measures (linear structures, technical/controlled retention)
(BMLFUW, 2015; Nordbeck et al., 2019; Nordbeck et al., 2023).
Therefore, land use and land development management are crucial
tools for maintaining hydrological ecosystem services including water
retention and flood control.

Grüneis et al. (2021), Hohensinner et al. (2021), and Junger et al.
(2022) investigated flood risk changes due to LULCC, thereby
analyzing flood exposure focusing on Alpine valley corridors. In
contrast, the present contribution examines how LULCCs since the
mid-19th century (Hohensinner et al., 2021) have affected the
hydrological ecosystem services of water regulation and flood
control based on the Water Retention Index (WRI). The qualitative
Water Retention Index was developed by Vandecasteele et al. (2017) to
assess the water regulation of landscapes on a European scale. Here, we
apply the index on a regional scale to assess the impact of LULCCon the
ecosystem services of water retention and flood control. The objectives
of this study are i) the application of the WRI for a spatially high-
resolution regional evaluation of the landscape’s water retention
potential, ii) to derive spatially distributed water retention index
(WRI) maps for the present and past land cover situation and iii) to
quantify the water retention changes for individual land use
transformations but also elevation bands.

The findings complement the studies on flood risk in the Alpine
regions and additionally quantify the effect of LULCC on water
retention. These results might assist policymakers responsible for
land management and spatial planning who are also concerned with
integrated flood risk management.

2 Materials and methods

The study area is 19,307 km2 large and covers the Austrian
catchments of the rivers Rhine (provincial state Vorarlberg), Salzach
(Salzburg), and Drava (Carinthia and Eastern Tyrol). The extent of
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the study area is determined by the data availability of the land cover
dataset provided by Hohensinner et al. (2021). The land cover
datasets of the past (1826–1859) and present (2016) are shown in
the Supplementary Appendix Figure SA1. The altitude ranges from
338 to 3,798 m.a.s.l. and the topography is largely dominated by the
Alpine main ridge. The study area is strongly characterized by high
mountain ranges, steep slopes, and glacially formed valleys. Towards
the southeast, it also includes parts of the Alpine forelands
(Figure 1). Thus, space for land development is restricted by
these natural features and only approximately 21% of the area of
the Austrian Alps is suitable for permanent settlements (Alpine
Convention, 2015; Löschner et al., 2017).

To determine how LULCC from themid-19th century to the present
affected the natural water retention of the alpine landscape of Austria, the
Water Retention Index (WRI) is calculated based on the historical and
current land use and land cover. The WRI is a qualitative composite
indicator showing the relative water retention potential on a scale from
0 to 10 (Vandecasteele et al., 2017). The index canbe used to represent the
landscape’s ability to regulate water, thereby reducing the risk of floods
and also droughts. The WRI aims to represent the physical processes of
interception, infiltration, and retention in soil, percolation to
groundwater and water storage in surface water bodies by using
proxy datasets. Water retention is also influenced by the slope angle
and sealed surface areas of the landscape. Therefore, these parameters are
also considered in the calculation of theWRI (Vandecasteele et al., 2017).

In the current study, the WRI was derived at a resolution of
100*100 m to capture the heterogeneity of the Alpine topography
and was calculated as a weighted average (with the weights wi) of
6 input parameters (Eq. 1):

WRI � Rgw*wgw + Rs*ws + Rv*wv + Rsl*wsl + Rwb*wwb( )* 1 − Rss

100
( )

(1)

Figure 2 shows the schematic workflow of the computation and
analysis of the WRI for the present study. The input parameters
represented by proxy datasets used to characterize the factors
influencing the water retention capacity are given at the top of
Figure 2. Compared to the study of Vandecasteele et al. (2017), the
input parameters were derived from different data sources, because
they were either released only recently or are available only on the
regional Austrian level. The input layers represent similar proxy
data, mostly at a higher spatial resolution.

The input parameter Rgw represents groundwater storage and was
derived from the GLHYMPS 2.0 dataset (Huscroft et al., 2018). This
dataset represents global permeability data of the unconsolidated and
consolidated Earth in a vector format. Permeability represents the
ability of porous media to transmit fluids and is therefore a suitable
parameter to derive the potential of infiltration and percolation to
groundwater. The soil storage component (Rs) represents the infiltration
and retention capacity in the soil matrix. This parameter is derived from
a soil water storage dataset, which was estimated using a spatial
predicting XGBoost model for Austria at a 1*1 km2 grid (Zeitfogel
et al., 2022). The potential retention in vegetation is represented by the
input parameter Rv. Following Vandecasteele et al. (2017), it is assumed
that the capacity of vegetation to intercept water is linearly related to the
Leaf Area Index (LAI). Therefore, the globally available Copernicus
Global Land Service LAI dataset (VITO, 2018) was used to calculate the
average LAI per land cover class and catchments of the LamaH dataset
(Klingler et al., 2021) for the period 2014 to 2020. The input parameter
Rsl describes the slope of the landscape and is derived from an Austrian
digital elevation model, which is available at a 10*10 m resolution at
https://www.data.gv.at/ (BMF, 2022). Rsl is assumed to have a negative
linear relationship with water retention (Vandecasteele et al., 2017). The
input parameter Rwb represents the retention in water bodies and is
calculated as the areal share of water bodies within each spatial unit of
100*100 m. In contrast to Vandecasteele et al.(2017), we did not only

FIGURE 1
Location of the study area covering the provincial states of Vorarlberg (Rhine catchment), Salzburg (Salzach) and Eastern Tyrol/Carinthia (Drava) in
the context of Austria.
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consider surface water bodies but also wetlands in this input parameter,
assuming a similar retention behavior of wetlands and surface water
bodies on the water retention capacity. The input parameter Rss
represents the share of settlement area per spatial unit (100*100 m).
Rwb and Rss are derived from the high-resolution land use and land
cover dataset provided by Hohensinner et al. (2021). A summary of all
original data obtained to derive the 6 input parameters is given in the
Supplementary Appendix Table SA1. All input parameter datasets were
rescaled or converted to a consistent raster with a resolution of
100*100 m. Except for the parameter of sealed surface (Rss), all
parameters were rescaled from 0 to 10 using a linear function. The
minimum and maximum values for the linear function are represented
by theminimumandmaximumvalues of each original input layer. This
assures a uniform scale for all input parameters. In order to assign steep
slopes with low and flat areas with high values, the slope parameter Rsl
was inversely rescaled.

For the calculation of the historical Water Retention Index
(WRIhis) the input parameters Rv, Rwb, and Rss had to be
adjusted with respect to the historical land cover dataset. The
input parameters Rss and Rwb were derived from the historical
land cover dataset. The vegetation parameter Rv representing the
historical land cover state was estimated by transferring the average
Rv values per land cover class and catchment of the current state
onto the historical land cover classes in each catchment. This
approach considers the spatial characteristics, dependencies, and
shifts of land use and land cover (LULC) transformation within each
catchment. The parameters Rgw, Rs, and Rsl and their impact on
water retention were assumed to be constant over time.

The next step consists of the aggregation of the composite
indicator by assigning individual weights to each input
parameter, except for Rss (see Eq. 1). The soil sealing parameter

is considered a multiplying factor, which linearly affects the WRI.
The applied weights reflect the importance of each input parameter
with regard to the composite indicator. The importance of each
parameter is often a source of contention and can significantly
influence the composite indicator (OECD, 2008). Therefore, we used
the same methodological approach as Vandecasteele et al. (2017).
This method uses a weight optimization approach which is based on
the calculation of the first-order sensitivity index Si (Sobol, 1993) for
each input parameter with respect to the overall indicator (WRI). It
incorporates penalized splines as a method of nonlinear regression
(Paruolo et al., 2013) and an adopted optimization scheme
developed by Becker et al. (2017). The general objective of the
optimization is that each input parameter contributes equally to the
(spatial) variance of the composite indicator.

The optimization of the individual weights was carried out using the
Composite Indicator Analysis and Optimization (CIAO) Tool v.2
(Lindén et al., 2021), which incorporates the optimization procedure
as described above. Due to the computationally intensive approach, all
input parameters were aggregated to the LamaH catchment level
(Klingler et al., 2021) and are listed in the (Supplementary
Appendix Table SA2). This decreased the input data drastically from
1.9 million pixels to 201 catchment values. The optimization process
was started by assigning equal weights to all input parameters and with
the condition that the sum of all weights must be one. Using these
weights, the associated normalized Si values were unsatisfying and
showed large differences between the input parameters. The parameters
Rv and Rgw exhibited strong nonlinearities (Supplementary Appendix
Figure SA2). After running the optimization routine, the normalized
sensitivity indices of all input parameters showed equal values. The
algorithm searched for the individual weights of each parameter to
diminish the differences between the Si values between all parameters.

FIGURE 2
Schematic workflowdiagram of the calculation and analysis of theWater Retention Index adjusted fromVandecasteele et al. (2017) and extended for
the present study.
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This means that the individual contribution to the (spatial) variance of
the overall composite indicator was equally distributed between all
input parameters. The optimized Si values and the associated weights
are listed in Table 1. These weights were subsequently used for the
calculation of the WRI of both periods.

3 Results

3.1 Input parameter layers

The resulting input parameter layers for the calculation of the
current Water Retention Index (WRIcur) are plotted in Figure 3. The
high resolution of all input parameters revealed a spatial pattern
following the topographic features. Large valleys and high mountain
ranges can be strongly recognized in several parameters, including Rgw,
Rs, and Rv. The parameter Rs revealed that areas with sealed surfaces
occurmostly on valley floors. All input parameters for the calculation of
theWRIhis are represented in the Supplementary Appendix Figure SA1.

3.2 Spatial distributed WRI characteristics

In Figure 4, the current WRI (2016) and the historical WRI
(1826–1859) are plotted in the top and middle panels, respectively.
The difference in WRI between the current and historical state is
shown in the bottom panels. The numbers on each map indicate
different regions of the study area. Vorarlberg (1) includes the area

TABLE 1 Weights and sensitivity indices (Si) before and after the optimization
for the individual layer of the WRI Rgw (groundwater storage), Rs (soil water
storage), Rv (Interception), Rwb (share of water bodies), Rsl (slope), Rss (share of
sealed surface).

before optimization after optimization

weights Si norm weights Si norm

Rgw 0.20 0.15 0.24 0.2

Rs 0.20 0.28 0.01 0.2

Rsl 0.20 0.20 0.38 0.2

Rv 0.20 0.26 0.16 0.2

Rwb 0.20 0.12 0.21 0.2

FIGURE 3
Overview WRI input parameters layers for 2016; Rgw (groundwater storage), Rs (soil water storage), Rv (Interception), Rwb (share of water bodies), Rsl

(slope), Rss (share of sealed surface).
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of the Austrian Rhine catchment. Two and three represent the
Upper and Lower Salzach catchments, respectively, and thus
compose the Austrian Salzach catchment. Eastern Tyrol (4) is in
the upper part of the Drava catchment and together with the Upper
(5) and Lower Drava (6) regions defines the Drava catchment.

The WRI shows a comparable and distinct spatial pattern for
both calculated time periods. In general, values are higher in valley
floors and rather flat areas, such as in the Rhine Valley, along the
Drava River, or in the eastern part of the analyzed area, compared to
areas characterized by steep topography and Alpine features. This is
the result of the combination of low vegetation cover, shallow soil
water storage, and low permeability in mountainous areas, e.g.,

along the main Alpine complex. This shows that water retention is
more pronounced in valley areas than in steep headwater
catchments. The results also indicate that the general spatial WRI
patterns did not change significantly due to LULCC but are strongly
influenced by the topographic features.

The WRI difference plot, shown in the bottom panel of Figure 4,
however, depicts a moderate (−0.1 to −2) to high (<−2) reduction of
the retention potential, especially in the Alpine valleys at low
elevations and along watercourses. This can largely be explained
by the expansion and development of settlement areas. In addition,
the loss of river landscapes, the draining of wetlands, and the
clearing of forested areas at lower elevations reduced water

FIGURE 4
On the left side the resulting current WRI (top), historical WRI (middle), and the differences between the current and historical WRI (bottom) are
shown. On the right-hand side, panels a) show the Salzach Valley with Zell am See and panels b) show the area around the city of Klagenfurt in detail for all
three representations.
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retention. River channelization, which can significantly limit the
retention effect of rivers and their formerly available fluvial corridors
also adversely affected the regulation potential. In contrast, there are
large areas that showed a moderate increase (0.1–2) in the WRI.
These are attributed to the increase in forest and to the
transformation of wasteland to grassland in these areas. In
addition, new artificial water areas have been added due to the
construction of Alpine storage reservoirs, which positively affect the
retention potential.

The areas of the Salzach Valley (panel a) and Klagenfurt area
(panel b) illustrate the current and historical WRI values exemplary
for a more rural (a) and urban (b) land development setting. The
bottom panel a) shows that water retention has decreased in large
parts of the Salzach Valley. Moderate reduction rates (−0.1 to −2)
were observed inmost parts, but some areas also showed strongWRI
reductions (≤−2), due to increased settlement density. At the same
time, it can be seen that the retention potential moderately improved
(>0.1–2) along the valley flanks at higher altitudes. In panel b) a
strong reduction of the retention potential was detected due to the
expansion of built-up surfaces in the Klagenfurt area. Areas with
very high WRI values in the north of Klagenfurt transformed into
areas with significantly less retention potential. Similar
developments can also be seen in the east of Klagenfurt. The
WRI change characteristics between the historical and current
state for these two examples are somewhat representative of
other regions in the study area. High WRI reductions due to
intense settlement development are also visible in the Rhine
Valley in Vorarlberg or around the city of Salzburg in the North.
Moderate reductions are depicted in almost all valley floors due to
river channelization, loss of wetlands, or the reduction of forest
cover.

3.3 Aggregated WRI results

For further analysis, the continuousWRI values were aggregated
into 5 categories, namely, very low (0–2), low (2–4), moderate (4–6),
high (6–8), and very high (8–10). This allows for categorical analysis
of the WRI changes. In Table 2, the relative changes between
1826–1859 and 2016 are shown for each region of the study area.
The table reveals that large areas of each region did not show any
class changes (highlighted in grey). The sum of the constant areas
per region (highlighted in blue) ranged from 97.2% in Eastern Tyrol
to 92.5% in the Lower Salzach region, respectively. This indicates
that regions with lower changes in WRI exhibited lower land
development compared to other regions. Overall, these results
suggest that only minor areas show class changes. The total
relative sum of negative and positive areas, in which class shifts
occurred are highlighted with orange (−) and green (+) colors,
respectively. Generally, the negative effects on the WRI based on
LULCC exceed the positive impacts in all regions.

Figure 5 shows theWRI class shifts for the overall study area in a
Sankey diagram. Sankey diagrams illustrating Table 2 and the results
for each region are shown in the Supplementary Appendix Figure
SA3. Large areas (94.9%) of the study area (19,307 km2) did not
exhibit any categorical shifts. Accordingly, Figure 5 only represents
5.1% of the study area, which experienced class changes between the
historical and current WRI situation. In addition, the absolute areas

and the relative proportions of the total area are shown. The results
suggest that there has been an over 9-fold increase in areas with very
low WRI (0–2; red). The largest contribution to the very low WRI
class can be assigned to historically high WRI values (6–8). In
contrast, large areas with historically low WRI values (2–4; yellow)
have improved and shifted to moderate WRI values (4–6; green).
Areas with moderate WRI values have increased by approximately
50%. LULCCs have also led to a large reduction in areas with high
and very high WRI (6–10; light and dark blue). A comparison of
historical and current conditions shows a 13-fold decrease in very
high WRI values (8–10; dark blue).

The individual WRI classes can be related to different land cover
classes. The lowest class (WRI 0–2) is strongly dominated by
settlements and wasteland. Low WRI values (2–4) relate mostly
to a combination of forest, wasteland, and grasslands. Forest and
grassland define moderate WRI ranges (4–6). High WRI values are
frequently attributed to grassland and forest, but also arable land is
dominant in this class. The highest WRI class (8–10) is represented
by stagnant and running water in the current WRI. Interestingly, the
historic very high WRI (8–10) class is related to various land cover
types, including grassland, arable land, stagnant water, or forest. The
relative contributions to eachWRI class described here only focus on
the major land cover class contributions. The detailed relative
contributions of each land cover class to the WRI classes
(1826–1859 and 2016) are given in the Supplementary Appendix
Table SA4 and Supplementary Appendix Figure SA5.

3.4 Altitudinal gradients of the historical and
present WRI

The study area is dominated by strong topographic gradients.
These are also present in the resulting WRI values in both time
periods and are shown in the spatially distributed difference plot
(Figure 4; bottom panel). Figure 6 shows the relative WRI
differences for elevation bands of 250 m. Additionally, the natural
Water Retention Index (WRInat) is plotted. WRInat is calculated as
the WRI but does not consider the soil sealing parameter Rss (see Eq.
1) which is the linear scaling factor considering artificially
introduced surfaces. The comparison of these two indicators
allows us to distinguish between the WRI with and without the
soil sealing factor (Vandecasteele et al., 2017). Based on this
differentiation, the impact of soil sealing due to the construction
of infrastructure and settlement areas is illustrated. At the bottom of
the plot, the area per elevation band is given in km2 and % as
additional information.

Generally, Figure 6 confirms the similar WRI-change pattern as
shown in the spatially distributed WRI plots (Figure 4). WRI values
strongly decreased in lower elevations. In areas with an elevation
lower than 500 m (i.e., valley floors), the water retention capabilities
of the landscape decreased by over −10% on average due to LULCC.
WRI values in slightly higher areas up to 1,000 m, also show
decreasing values, however only with a mean of around −3%.
The WRInat shows comparable changes to the WRI for areas
above 1,000–1,250 m. In contrast, especially in elevations
covering valley floors, a strong difference can be detected. In
these regions (<500 m), the WRInat exhibits an over 5-fold
smaller decrease in the water retention potential. At altitudes
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TABLE 2 Change matrix WRIhis (1826–1859) andWRIcur (2016) for each region and river catchment [%]. The values are calculated based on the WRI categories very
low (0–2), low (2–4), moderate (4–6), high (6–8), and very high (8–10); orange cells show the relative sum of areas, where theWRI deteriorated; green cells show the
relative sum of areas, where the WRI improved; blue cells show the sum of area, where no change occurred.

Water Retention Index 2016

W
at
er

R
et
en
ti
on

In
de
x
18
26
–1
85
9

Rhine (Vorarlberg) very low low moderate high very high Ʃ positive Δ

very low 0.1 0.0 0.0 0.0 0.0 0.0

low 0.1 27.6 1.2 0.0 0.0 1.2

moderate 0.4 0.7 46.4 0.7 0.0 0.7

high 1.0 0.9 0.8 19.8 0.1 0.1

very high 0.0 0.0 0.0 0.1 0.0 2.1

Ʃ negative Δ 1.5 1.6 0.8 0.1 4.1 93.8

Drava (Eastern Tyrol) very low low moderate high very high Ʃ positive Δ

very low 0.6 0.1 0.0 0.0 0.0 0.1

low 0.0 71.3 1.0 0.0 0.0 1.0

moderate 0.0 1.0 21.1 0.1 0.0 0.1

high 0.1 0.1 0.3 4.2 0.0 0.0

very high 0.0 0.0 0.0 0.0 0.0 1.2

Ʃ negative Δ 0.2 1.1 0.3 0.0 1.6 97.2

Upper Salzach(Salzburg) very low low moderate high very high Ʃ positive Δ

very low 0.4 0.2 0.0 0.0 0.0 0.2

low 0.0 43.6 1.5 0.0 0.0 1.5

moderate 0.0 0.8 39.9 0.6 0.0 0.6

high 0.2 0.2 0.7 11.1 0.0 0.0

very high 0.0 0.0 0.0 0.6 0.0 2.3

Ʃ negative Δ 0.2 1.1 0.8 0.6 2.7 95.0

Lower Salzach (Salzburg) very low low moderate high very high Ʃ positive Δ

very low 0.1 0.0 0.0 0.0 0.0 0.0

low 0.1 22.4 2.3 0.0 0.0 2.3

moderate 0.1 0.8 48.4 1.1 0.0 1.1

high 1.1 0.8 1.0 21.5 0.0 0.0

very high 0.0 0.0 0.0 0.2 0.0 3.5

Ʃ negative Δ 1.3 1.6 1.0 0.2 4.1 92.5

Upper Drava (Carinthia) very low low moderate high very high Ʃ positive Δ

very low 0.3 0.1 0.0 0.0 0.0 0.1

low 0.0 47.1 1.5 0.0 0.0 1.5

moderate 0.1 1.3 39.7 0.3 0.0 0.3

high 0.3 0.3 0.5 8.3 0.0 0.0

very high 0.0 0.0 0.0 0.3 0.1 1.9

Ʃ negative Δ 0.4 1.5 0.5 0.3 2.7 95.4

Lower Drava (Carinthia) very low low moderate high very high Ʃ positive Δ

very low 0.6 0.0 0.0 0.0 0.0 0.0

low 0.1 9.3 1.1 0.0 0.0 1.1

moderate 0.1 0.6 66.9 0.3 0.0 0.3

high 0.3 0.4 0.9 18.4 0.1 0.1

very high 0.0 0.0 0.0 0.9 0.1 1.4

Ʃ negative Δ 0.6 1.0 0.9 0.9 3.3 95.2
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below 1,250 m, a smaller decrease of the WRInat can be detected
compared to the WRI. Interestingly, almost no difference between
the two indices can be seen at higher altitudes. In comparison to
lower elevations, WRI values show an increase above 1,250 m. The
settlement area development (Rss) since the mid-19th century
reveals likewise altitudinal features. In areas lower than 500 m,
these areas have increased by 107%. In areas between 500–750 m
and 750–1,000 m, settlement areas and associated soil sealing have
expanded by 54% and 16% respectively. This reveals that large areas
of degrading water retention values are associated mostly with
settlement expansion but also loss of wetlands and deforestation,
especially in low-lying regions (e.g., valley floors) as reported by
Hohensinner et al. (2021). On the other hand, an increase in water
retention capabilities is detected in higher altitudes, due to the
LULCCs since the mid-19th century. A similar altitudinal signal
can also be observed for the development of the input parameter Rv.
Rv values have generally increased at all elevations, except in areas
lower than 500 m. At altitudes between 2000 and 2,750 m, the
highest increases of Rv by approximately 2.3%–3.1% can be
detected. This shows that the increase in vegetation at
higher elevations is also related to increasing WRI values to some
degree.

3.5 Impact of LULC changes on the water
retention

As a further step, the relative WRI changes associated with the
specific LULCC are investigated. Here we relate the past and present
LULC classification to the changes in the WRI since land
development and certain land cover changes can be related to
changes in water retention. Table 3 gives the relative change of

the WRI for each possible land cover transformation. The numbers
given in the table represent the relative spatial mean changes
between the historical and current LULC situations. Additionally,
the 5th and 95th quantiles are given to represent the spatial variability
of WRI value changes per land cover transformation.

The vector-based land cover datasets were spatially aggregated
to a 100*100 m raster based on the major LULC class within the
resulting grid consistently with the WRI maps. Some land use and
land cover class might therefore be under or over-estimated by the
aggregation from a vector to a raster dataset and might be afflicted
with some degree of inaccuracy. Table 3 shows that settlement areas
have not been transformed into any other land use and land cover
class in the current LULC situation. Interestingly, results indicate
that current settlement areas reduced the WRI by −17% on average,
compared to historical settlement areas. According to the results,
wetlands also show a slight decrease of −4% in the water retention
capability compared to the historical land cover situation. These
inaccuracies might result from the spatial aggregation to a raster
dataset by using the major LULC class per raster pixel. Both input
parameters (Rv, Rss) are derived based on the areal coverage per pixel
(100*100 m). Therefore, the change of the areal share per pixel
linearly influences the resulting input parameters. So, the results
indicate that settlement areas have increased by 17% at pixels
classified as such in the past and present. Likewise, wetlands have
decreased by 4% at pixels constantly classified as wetlands on
average.

Transformations from historical wetland areas to any other land
cover class result in decreasing WRI values. On average former
wetland areas experienced a drop of 22% in their water regulation
abilities. Similar results can be obtained for areas classified as
stagnant water in the historical land cover dataset. These areas
show a mean reduction of 20% considering all land cover class

FIGURE 5
Shifts in water retention index between historical (1826–1859; left) and current (2016; right) conditions. For this purpose, the WRI was divided into
5 classes with the categories very low (0–2), low (2–4), moderate (4–6), high (6–8), and very high (8–10). The changes shown are for 5.1% (1,861 km2) of
the total area, where class shifts have occurred.
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transformations. The strongest reduction can be detected for areas,
which were transformed from wetlands to settlement areas. These
areas show a spatial mean drop in water retention of 66%. On
average, areas transformed into settlement areas experienced the
largest reduction rates of 44%. Former glacier and wasteland areas
increased their water retention ability by 20% and 9%, on average.
On the other hand, most areas that were transformed into wetlands
and stagnant water from any LULC increased the water retention
potential by 10% and 22%, respectively. The transformations from
glacier to forest and from grassland to stagnant water resulted in
increases of 26% and 27%, respectively. The largest increase in WRI
values was detected for areas that have changed from wasteland or
glaciers to stagnant water. These LULCCs resulted in over 40%
increases in water retention.

4 Discussion

4.1 Input data and weight estimation

Although the concept of the Water Retention Index was
developed and proposed to assess the landscape’s water
regulation potential on a macroscale (Vandecasteele et al., 2017)
our results show that the methodological framework of the WRI is
also suitable for a regional high-resolution analysis of the
landscape’s potential of water retention and regulation.
Compared to the methodology and input data of Vandecasteele
et al. (2017) slight changes have been applied in our study due to the

availability of more recent and more regionally differentiating
datasets. The input parameters representing the infiltration and
retention in soil (Rs) and the retention in groundwater (Rgw) were
derived differently. Rs was retrieved from a recently released dataset
representing the soil water storage for Austria (Zeitfogel et al., 2022).
Additionally, no temporal change of the input parameter Rs

depending on the changes in organic carbon content and soil
bulk density over time was incorporated. The parameter
representing groundwater retention was derived from the
GLHMPS 2.0 dataset (Huscroft et al., 2018) already incorporating
the permeability of the consolidated and unconsolidated Earth.
Therefore we did not consider a reduction of the bedrock
permeability factor based on hydrological categories of the
overlying soil as Vandecasteele et al. (2017). Compared to the
original WRI approach, in the presented study the input layer
Rwb not only considers stagnant water but also wetland areas,
suggesting that these land cover classes have similar water
retention abilities. The high-resolution LULC datasets used to
derive Rss and Rwb for the historical and current state are
additionally subject to some degree of uncertainty due to
potential inaccuracies and misinterpretations. Especially,
settlement areas might be underestimated in the historical dataset
(Hohensinner et al., 2021).

The applied weighting scheme yielded large differences between the
individual input layers. The slope input parameter (Rsl) was assigned the
highest weight (0.38), which could be explained by the strong
topographic gradients of the study area and emphasizes the
importance of the slope factor for water retention. On the other

FIGURE 6
MeanWRI changes for different elevation bands, including the absolute areas and relative share compared to the overall study area (19,307 km2). The
natural WRI does not consider soil sealing and is thus an indicator of the water retention without settlement or infrastructure development.
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TABLE 3 Spatial mean relative WRI change matrix [%] for land cover class changes, also including 5% (q5) and 95% (q95) quantile values. For example, the transformation category of all wetlands (1826–1859) to the current
sparsely wooded land cover (2016) led to a spatial mean reduction of the WRI by 23% in this transformation category. There were, however, single cases where the reduction was stronger (q5 of −29%) or less pronounced
(q95 of −12%).

Land cover 2016

Sparsely wooded Arable land Wetlands Running water Glacier Grassland Wasteland Settlement area Stagnant water Forest Vineyards

q5 mean q95 q5 Mean q95 q5 mean q95 q5 mean q95 q5 mean q95 q5 mean q95 q5 mean q95 q5 mean q95 q5 mean q95 q5 mean q95 q5 mean q95
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hand, the optimization yielded the lowest weight of 0.01 for the soil
retention parameter. The correlation matrix between all input
parameters (n = 201) for the weight optimization showed strong
correlations of 0.77 (p < 0.001) and 0.84 (p < 0.001) between Rs and
bothRsl andRv, respectively (Supplementary Appendix Table SA3). The
strong correlations might explain the very low weight of Rs and it
suggests that the importance of soil retentionmight already be captured
in Rsl and Rv to some degree. The optimized weights of 0.21 (Rwb) and
0.24 (Rgw) suggest that the retention in surface water bodies and
wetlands is comparably important as groundwater retention for the
resulting WRI. These weights are close to those applied by
Vandecasteele et al. (2017). Additionally, the relative contribution of
each input parameter (except Rss) and the associated weights with
regard to the resultingWRIcur have been calculated and ranked from 1st

to 5th and are presented in the (Supplementary Appendix Figure SA4).
The spatially distributed contribution of each input parameter and their
respective weights yield additional information on the importance of
each retention process represented by the proxy input datasets. The
results suggest that Rsl is the most important input parameter for large
areas of the study region. Rv and Rgw are the second and third most
important input parameters. Thus, it is clear that the weights, which
define the importance of the input parameters, have a strong impact on
the results. The weights in this work were estimated based on a
frequently applied method from the literature (Becker et al., 2017;
Vandecasteele et al., 2017; Lindén et al., 2021) and the applied
optimization framework guarantees objectivity, transparency, and
reproducibility, and some degree of comparability between different
estimations of the WRI. Advances in the estimation of spatially
distributed parameters in hydrological models, also using Machine
Learning (e.g., Klotz et al., 2017; Feigl et al., 2020; Feigl et al., 2022) may
be used in the future for calculating the weights of the WRI. For
example, runoff data could be used for weight optimization.

4.2 Spatial and altitudinal patterns between
LULCC and the WRI

The resulting WRI changes per region echoes the spatially
different LULCC in these regions. Since the mid-19th century,
Eastern Tyrol (region 4) experienced the lowest settlement area
development of all six regions (Kofler, 2021) and accordingly
showed the lowest negative WRI changes. Here settlements have
increased slightly over two times, while, to put this into context,
Hohensinner et al. (2021) reported a 6-fold increase for the whole
study area. On the contrary, the Vorarlberg region and the Lower
Salzach region showed the highest reductions in water retention
(Table 2) due to LULCC. In Vorarlberg and the Lower Salzach,
settlement areas have increased by over 9 and 6 times, respectively.
At the same time, wetlands have decreased dramatically by 7 times in
Vorarlberg. In the Lower Salzach region, wetlands have almost
vanished completely (Rapottnig, 2021; Bozzetta, 2022).

The spatial distribution of the WRI changes suggests that large
decreases did occur in the Alpine valley corridors and at locations
where major settlement developments took place (Figure 4). At the
same time, slight retention capacity increases along the valley slopes can
be depicted. The decrease ofWRI in the valleyfloors is strongly associated
with the development of settlement areas and the reduction of wetland
areas by 95%. The strong settlement development led to an increase in

settlement areas located within flood-prone areas. This also increased
flood exposure and therefore flood risk (Junger et al., 2022). Accordingly,
large-scale losses of fluvial corridors led to decreasing flood retention
capacity (Hohensinner et al., 2021), somehow a lose-lose situation. The
LULCC-induced vertical separation of Alpine landscape features reported
by Hohensinner et al. (2021) also transitioned into a comparable
separation of increasing and decreasing WRI areas. Strong decreasing
WRI values are obtained for low-elevation areas. The natural water
retention index (WRInat), which does not consider sealed surface areas,
shows a significantly lower decrease in the water retention capacities of
low-elevation areas. The changes in WRInat in low-lying areas can
therefore be attributed to the loss and transformation of wetlands to
agricultural land and forests. The altitudinal investigation shows that the
WRI and WRInat values increased accordingly in areas above 1,250m.
The general increase of the water retention potential in higher altitudes
suggests that the water regulation potential has increased. This reflects the
increase of forest areas and the large areal transformation fromwasteland
and glaciated areas to Alpine grassland, by 16% and 4.2%, respectively
(Hohensinner et al., 2021).

4.3 WRI changes due to specific land use
class changes

The specific WRI changes with regard to certain LULC
transformations (Table 3) represent spatial mean values over the
whole study area. To address the variability of the WRI change per
LULCC the 5th and the 95th quantile were additionally presented.
The results indicate, e.g., that current settlement areas reduced the
WRI by 17% on average, for areas already classified as settlement
areas in the past. The 5th quantile suggests even a reduction of 98%.
This might be due to the introduced uncertainty in the aggregation
but could also suggest that today’s settlement areas are constructed
with a higher building and soil sealing density. In addition, the input
land cover dataset might already be subject to some degree of
uncertainty due to inaccuracies and potential misinterpretations
during the digitalization of the historical datasets. Therefore,
settlement areas might be underrepresented (Hohensinner et al.,
2021). The transformation from a glacier to a settlement area would
indicate a slight positive change in the water retention potential.
This explicit result is highly uncertain and might represent another
limiting factor of the spatial aggregation and the representation of
spatial mean values. Generally, transformations from any LULC
class to wetlands resulted mostly in an increase in the WRI. At the
same time, areas that are constantly classified as wetlands over time
show a minor reduction of −4% (q5 = −16%, Q95 = 4%). This slight
reductionmight have also been introduced due to the reclassification
based on the majority and is therefore afflicted with some degree of
uncertainty. In addition, wetlands and stagnant water land cover
classes are both presented within the input parameter Rgw, assuming
a similar retention behavior. This might also lead to an overestimation
of the retention potential of wetlands, which strongly depends on the
saturation status and therefore on the maximum available retention
potential. Especially during extreme events, such as floods, wetlands
can either contribute to amplification or mitigation (Bullock &
Acreman, 2003; Acreman & Holden, 2013). Accordingly, the
results presented for each specific land use change category might
show some inaccuracies and are certainly subject to some degree of
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uncertainty. However, the given relative WRI values assist in the
qualitative interpretation and allow for comparison between certain
land use transformations. Additionally, other accompanying LULCC
effects on the water retention potential processes such as soil storage
reduction due to soil compaction with heavy machinery on arable
land were not considered (Rogger et al., 2017) in our investigation.
Therefore, it can be assumed that the presented impacts of land use
transformations with regard to water regulation might be somewhat
underestimated.

5 Summary and conclusion

Regulating ecosystem services, such as water purification, flood
control, and water regulation are strongly affected by LULCC (Hasan
et al., 2020). Various studies have linked LULCCs to declining ecosystem
services (e.g., Haines-Young et al., 2012; Kindu et al., 2016; Rai et al.,
2018). Human-induced land use change not only affects hydrological
ecosystem services but also affects hydrological processes (e.g., Rogger
et al., 2017; Wesemann, 2021) and can therefore also affect flood-
generating processes and consequently flood risk (Hall et al., 2014).
Alpine areas of Austria have experienced strong LULCC since the mid-
19th century. Recent studies showed that these LULCCs have resulted in
increased flood exposure and flood risk, especially in Alpine valley
corridors (Hohensinner et al., 2021; Junger et al., 2022). However,
sustainable land use and properly managed LULCC can be beneficial
for water regulation (Vandecasteele et al., 2017). Accordingly, the present
study aimed to investigate the effects of these LULCCs on the water
retention of the landscape in the Alpine areas of Austria. We calculated
the Water Retention Index (WRI) developed by Vandecasteele et al.
(2017) for the past (1826–1859) and present (2016) land cover situation
for the Austrian catchment of the Rhine, Salzach, and Drava rivers.

The resultingWRImaps show a clear spatial patternmimicking the
characteristic Alpine topography, the difference between the historical
and present WRI maps reveals that LULCC negatively affected the
water retention potential primarily in valley floors. This links the
significant settlement expansion in Alpine valleys, leading to
increased flood exposure (Hohensinner et al., 2021; Junger et al.,
2022), with a decreasing capacity for water regulation. The
altitudinal comparison of the WRI with the natural WRI, which
does not consider the settlement area parameter in the calculation,
shows that the reduction of the water retention capacity is significantly
lower without settlements. Without settlement areas, the water
retention reduction would be 77% lower in areas lower than
1,000 m.a.s.l. At elevations higher than 1,250 m.a.s.l., almost equally
increasing values of the WRI and the natural WRI are present. The
strongest WRI reduction of 66% is attributed to the land use changes
from wetlands to settlement areas. The highest intensifications of the
landscape’s potential to regulate water could be observed by the
transformation from wasteland or glacier to stagnant water. In these
areas, WRI values increased by over 40%. The results indicate a large
variability of WRI changes depending on the specific LULC
transformation within the investigated time period.

The results presented in this study showed that a high-resolution
utilization of the Water Retention Index can be very supportive to
investigate the impacts of LULCC on water regulation on a regional
scale. The land cover changes are verywell reflected in the calculatedWRI
maps and the spatial distributed WRI value maps yielded new insights

about the impact of LULCC on flood control and water regulation. The
results also highlight that soil sealing through settlement developments
shows the strongest adverse effects and leads to a decline in regulating
ecosystem services including flood control. In an already very limited area
for permanent settlements, such as the Austrian Alps, these adverse
impacts might lead to further pressures on ecosystem services and
conflicts between different land uses. Therefore, sustainable land use
and land cover change management would enhance the landscape’s
ability to retain water and support flood risk mitigation measures.
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