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Editorial on the Research Topic

Advances in haptic feedback for neurorobotics applications

Neuro-robots and neural-machine interfaces have shown to offer a set of solutions

and benefits on a variety of disciplines, including assistive and rehabilitative devices

for individuals with motor dysfunction, telerobotics, and good Human robot interaction

with prosthetics.

Typically, the interaction between these systems and the end-user is performed by

detecting the human intention through the acquisition of physiological parameters or action,

such as, for example, the ElectroEncephaloGram (EEG), the ElectroCardioGram (ECG), the

ElectroMyoGram (EMG), ElectroOculoGram (EOG), or the movement of a limb.

In this context we have launched this novel Research Topic on “Advances in haptic

feedback for neurorobotics applications” where, in particular, we want to focus on the

human-machine interaction from a haptics viewpoint.

The reason why we have introduced Haptic feedback is twofold: first, we believe that is

crucial to have robotics-designs which are human-centered, i.e., they are defined, developed,

and improved around the subject and the end-user. Secondly, but not less important,

we also strongly believe that Haptic Feedback is at present still under-estimated and not

sufficiently investigated as a real-time and intuitive mean between the robotic device and

the human being.

Accordingly, our call has received a nice set of answers and the Research Topic has

collected the interest of more than 60 authors around the word, presenting an intriguing

set of human-centered original researches.

Novel motion intention decoding methods and
algorithms

Introducing novel motion intention decoding methods and exploring novel algorithms

with good robustness and the reliability is a very important aspect of this Research

Topic. Li et al. presented “A novel EEG decoding method for a facial-expression-based BCI

system using the combined convolutional neural network and genetic algorithm” where they

showed that their Facial-Expression-based BCI system provides superior performance vs.

traditional methods.

Frontiers inNeuroscience 01 frontiersin.org4

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1189749
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1189749&domain=pdf&date_stamp=2023-04-11
mailto:min.li@mail.xjtu.edu.cn
mailto:seccoe@hope.ac.uk
mailto:yzheng@mail.xjtu.edu.cn
https://doi.org/10.3389/fnins.2023.1189749
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1189749/full
https://www.frontiersin.org/research-topics/37610/advances-in-haptic-feedback-for-neurorobotics-applications
https://doi.org/10.3389/fnins.2022.988535
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2023.1189749

Gesture recognition can also be used for motion intention

decoding. Ruan et al. looked at how PhotoPlethysmoGraphy signals

may improve gesture recognition vs. human-computer interaction

performed by means of wearable devices and they presented

wrist- and finger-related gesture recognition based on “Principal

component analysis of photoplethysmography signals for improved

gesture recognition”.

Zhang et al. looked at motion intention decoding in human-

robot interaction from a further perspective and they presented

a Personalized Speed Adaptation method where EEG and EOG

capture operator’s mental state, and then regulate robot’s speed

according to this mental state. To the best of our knowledge, this

paper is the first “Feasibility study of personalized speed adaptation

method based on mental state for teleoperated robots”.

Haptic feedback modalities

Haptic feedback modalities are another important direction of

this Research Topic. Electro-tactile feedback is a common haptic

feedback modality for prosthesis. The dexterous movements of the

upper limbs are inseparable from proprioceptive feedback. Han

et al. showed how prosthetic sensory feedback could benefit of

the “Substitutive proprioception feedback of a prosthetic wrist by

electro-tactile stimulation” in experiments with five able-bodied

subjects and two amputee subjects. Vibrotactile feedback is another

common haptic feedback modality for prosthesis.

How to choose the location of tactile feedback in amputee users

is an important question to be answered. Morand et al. proposed

a “FeetBack–Redirecting touch sensation from a prosthetic hand to

the human foot” where a vibrotactile insole was set up in order to

vibrate according to the sensed force of prosthetic fingers while

subjects manipulate fragile and heavy objects, providing a novel

approach vs. tactile sensation in myoelectric prosthetics.

In a similar context, Pardo et al. investigated vibrotactile

sensation of the arm-shoulder region in “Vibrotactile mapping

of the upper extremity: absolute perceived intensity is location-

dependent; perception of relative changes is not,” providing an

overview of the sensory bandwidth that can be achieved with

vibrotactile stimulation of the human arm. The result may help

in the design of vibrotactile feedback interfaces (displays) for

the hand/arm/shoulder-region.

Evaluating other possible haptic feedback modalities rather

than commonly-used ones is another research direction. Mayer

et al. looked at the “Temporal and spatial characteristics of bone

conduction as non-invasive haptic sensory feedback for upper-limb

prosthesis”, highlighting this approach’s potential as a non-invasive

feedback modality for upper-limb prostheses.

Control strategies

In order to improve the utility and user experience of neuro-

robots, robust closed-loop control with respect to disturbance is

needed. On the “EMG feedback outperforms force feedback in the

presence of prosthesis control disturbance”, Tchimino et al. showed

that EMG feedback may provide better performance vs. force

feedback in human-prosthesis interaction.

Another interesting contribution for this direction was coming

from Bruni et al., where the authors validate an “Object stiffness

recognition and vibratory feedback without ad-hoc sensing on the

Hannes prosthesis by means of a machine learning approach.” The

experimental results proved that the proposed strategy allowed

able-bodied subjects and amputees to recognize the objects’ stiffness

accurately and quickly.

To sum up, this Research Topic aims to highlight the

most advanced achievements in motion intention decoding,

haptic sensing, and haptic feedback for Neural-Machine Interface

(NMI)-based neurorobotics research, which can be applied for

teleoperation, human robot interaction with prosthetics, assistive

and rehabilitative robots, and other relevant circumstances. The

novel neural decoding methods, novel haptic feedback modalities,

and new control strategies reported in this Research Topic should

inspire and guide the future direction of this field.
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Feasibility study of personalized
speed adaptation method based
on mental state for teleoperated
robots
Teng Zhang1, Xiaodong Zhang1,2*, Zhufeng Lu1, Yi Zhang1,
Zhiming Jiang1 and Yingjie Zhang1

1School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China, 2Shaanxi Key Laboratory
of Intelligent Robot, Xi’an Jiaotong University, Xi’an, China

The teleoperated robotic system can support humans to complete tasks in

high-risk, high-precision and difficult special environments. Because this kind

of special working environment is easy to cause stress, high mental workload,

fatigue and other mental states of the operator, which will reduce the quality

of operation and even cause safety accidents, so the mental state of the

people in this system has received extensive attention. However, the existence

of individual differences and mental state diversity is often ignored, so that

most of the existing adjustment strategy is out of a match between mental

state and adaptive decision, which cannot effectively improve operational

quality and safety. Therefore, a personalized speed adaptation (PSA) method

based on policy gradient reinforcement learning was proposed in this paper. It

can use electroencephalogram and electro-oculogram to accurately perceive

the operator’s mental state, and adjust the speed of the robot individually

according to the mental state of different operators, in order to perform

teleoperation tasks efficiently and safely. The experimental results showed

that the PSA method learns the mapping between the mental state and the

robot’s speed regulation action by means of rewards and punishments, and

can adjust the speed of the robot individually according to the mental state

of different operators, thereby improving the operating quality of the system.

And the feasibility and superiority of this method were proved. It is worth

noting that the PSA method was validated on 6 real subjects rather than

a simulation model. To the best of our knowledge, the PSA method is the

first implementation of online reinforcement learning control of teleoperated

robots involving human subjects.

KEYWORDS

personalized, teleoperated robots, biosignals, reinforcement learning, mental state,
EEG and EOG
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Introduction

As a branch of the field of robotics, teleoperated robotic
systems have received extensive attention from academia and
industry due to their advantages such as remote operation
and operation in hazardous environments. In this system, the
operator guides the robot movement to perform the task. In
the process of the robot performing a task, the operator, as a
part of the system, can learn the task execution status through
information perception or feedback, and can also control the
robot by sending commands. Teleoperated robotic systems are
mostly used in special operations such as deep-sea exploration,
space operations, detoxification and detonation and precision
surgery (Nuño et al., 2011; Zhai and Xia, 2016). Due to the
characteristics of high risk, high precision and high difficulty
in this field, the amount of information that operators need to
process has increased dramatically, resulting in higher mental
workload and mental pressure. Studies have shown that higher
mental workload and mental pressure will cause rapid mental
fatigue, decreased vigilance, stress reaction, and increase people’s
errors and frustration (Zhang T. et al., 2019). On the contrary,
too low mental workload and mental pressure will cause a waste
of human resources or cause disgust. These adverse mental
states will lead to errors in information acquisition, analysis, and
decision-making, which will further lead to the decline of job
performance and even lead to safety problems caused by human
accidents (Wilson, 2005; Catelani et al., 2021).

To overcome this problem, various adjustment methods
have been proposed. As early as in the 1990s, an adaptive
automation method was first proposed. Parasuraman (1993),
Scerbo et al. (2003), Kaber et al. (2016) scholars published
a series of papers to discuss adaptive automation concept
and theoretical issues. It is defined as an automated human-
computer interaction system design method that can change
the level of automation by users and systems. This method
can dynamically adjust the automation level or working mode
at any time according to the operator’s mental state to match
the operator’s needs and mental state (such as the mental
workload state, fatigue state, etc.), thus achieving the purpose
of improving the operation performance and reducing human
errors (Parasuraman, 1993; Scerbo et al., 2003; Kaber et al.,
2016).

In recent years, adjustment methods based on physiological
signal detection has been widely accepted with its unique
advantages. Firstly, neurophysiological measures could
be obtained continuously and online. Secondly, the
neurophysiological ones may be recorded continuously without
using overt responses (i.e., additional tasks) and may provide
a direct measure of the operator’s mental (covert) activities.
Also, neurophysiological measures have good resolution and
form a good complementarity with performance measures (Di
Flumeri et al., 2015). Finally, neurophysiological measures can
be used not only to trigger the adjustment system but also to

highlight why adjustment method is important for enhancing
safety in high-risk and high-demanding tasks (Arico et al.,
2016). From the late 1990s to the recent years, most of the
studies have proved the positive effect of adjustment method
in improving the system performance and subjective feeling
using electroencephalogram (EEG), functional near-infrared
spectroscopy (fNIRS), electro-oculogram (EOG), and heart rate
variability (HRV) physiological parameters (Freeman et al.,
1999; Di Flumeri et al., 2019; Li et al., 2019; Zhang X. et al.,
2019; Wu E. Q. et al., 2021).

Among all these studies, EEG-based adjustment method
is getting much attention. Parasuraman and Wilson (2008)
proposed an adjustment system based on EEG detection, which
can realize real-time detection of the operator’s mental state and
dynamically assign task attributes and levels between machine
and human according to mental state, thus effectively improving
task performance. Jia et al. (2014) proposed an adjustment
system for teleoperated robot tasks, which can detect the mental
state according to the EEG of the operator and adjust the
running parameters of the robot in real-time according to the
mental state. The robot’s speed is increased and the response
time is decreased when the operator is in an excellent mental
state; on the contrary, when the operator is in a bad mental state,
the robot’s speed is reduced and the response time is improved.
Therefore, the adjustment system effectively improves control
accuracy and security (Jia et al., 2014). Yang and Zhang (2013)
used the fuzzy modeling method to establish an operator mental
state estimation and prediction model based on EEG. Once the
operator is found to be in a high-risk mental state, the model
will immediately adjust its task load or remind the operator
to take some measures to make the operator’s task match
with its current mental state (Yang and Zhang, 2013). Pietro
Arico used the passive brain-computer interface technology to
detect the operator’s mental workload in the realistic air traffic
control environment and took it as the indicator to trigger the
adjustment system. Meanwhile, the technology’s effectiveness
was verified in the realistic air traffic management system (Arico
et al., 2016).

Although adjustment technology, especially EEG detection-
based adjustment method, has achieved remarkable results, it is
undeniable that there are still challenges to be solved. Firstly,
due to the existence of individual differences, the relationship
between mental state and operational quality is also different
(Jia et al., 2012), and as the user’s operational skills improve, the
relationship between mental state and operational quality will
also change. This puts the conventional method based on static
and fixed adjustment strategies into a predicament, because it
does not have the ability of individual adjustment, and at the
same time, it cannot change the adjustment strategy with the
improvement of the operator’s skills. Secondly, most studies
predetermine the “good or bad” characteristics of mental states,
therefore, the task becomes more complicated when the “good”
mental state is detected and less complicated when the “bad”
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mental state is detected. What makes this subjectivity wrong is
the ignorance of mental states’ diversity, which is particularly
strong across individuals and across time. Also, because the
brain is in a highly dynamic and non-linear environment,
mental states and behaviors are not one-to-one correspondence,
but many-to-one, one-to-many or mixed cross correspondence
(Abbass et al., 2014). As a result, most of the existing adjustment
strategy is out of a match between mental state and adaptive
decision, which cannot effectively improve operational quality
and safety. Thirdly, the stability and robustness of adjustment
systems based on EEG detection alone need to be improved,
and adjustment systems for the fusion of multiple bioelectrical
signals are the trend of development (Laurent et al., 2013;
Wu W. et al., 2021).

To address these three problems, by introducing the
idea of policy gradient reinforcement learning (Mnih et al.,
2015) and combining the advantages of EEG and EOG, a
personalized speed adaptation (PSA) method was proposed.
Then, its feasibility was verified by designing a teleoperation
experiment. Prominently, The PSA method belongs to a
“human-in-the-loop” reinforcement learning framework, it is
an interactive learning technology, which uses the interaction
between the agent and the environment, and records each
reward and punishment as personalized feedback to update
the adjustment strategy. Compared with the methods based
on static and fixed adjustment strategies, it has better dynamic
adaptability. Secondly, reinforcement learning problems are
usually normalized as Markov decision process (MDP), so
this makes the PSA model have the natural characteristics of
modeling mapping sequences (Arulkumaran et al., 2017), which
can fully characterize the sequence features and capture the
individual characteristics of operators. Moreover, the setting
of the exploration mechanism can make the agent more fully
explore the state and action space, which improves the diversity
of results to a certain extent. Thirdly, since this type of
model often aims to maximize the cumulative reward of the
system, that is, the long-term feedback of the user’s operational
quality is the optimization goal to update the adjustment
strategy, so it can adapt to the development trend of the
operator’s personalization. Finally, for a “human-in-the-loop”
reinforcement learning training process, it’s arguably better for
the algorithm to learn certain repetitive subsequences of actions
(or patterns of actions) and store them in a rule-based fashion.
Once an action pattern has been shown to be successful in
multiple instances of a task context, it can be applied in similar
other task contexts. This reinforcement learning convergence
strategy can cope well with dynamic task environments (Wen
et al., 2020; van Zoelen et al., 2021). It is worth noting that
the mental state in this article does not refer to a specific
discrete state, but a continuous state, which is mainly evaluated
by the two indicators of arousal and valence in the dimension
theory of psychology (Russell, 2003). The arousal represents the
neurophysiological activation level of the subject, and the lower

the degree of arousal, the stronger the degree of fatigue in the
mental state, and vice versa. The valence indicates the positive or
negative of the subject’s emotional state, and the lower the degree
of valence, the stronger the negative degree in the mental state,
and vice versa. Changes in the operator’s mental state in these
two dimensions (indicators) will lead to changes in the quality
of the operation. For example, as the degree of arousal decreases,
that is, the degree of fatigue of the operator increases, the quality
of the operation will be degraded or even human error will
occur (Chuang et al., 2018). As the valence decreases, that is,
the degree of negative mental state of the operator increases, the
quality of the operation decreases (Jin et al., 2017). Moreover,
the advantage of this setting using continuous indicators to
evaluate mental state is that the influence of the diversity of
mental states on operational quality can be fully considered. In
addition, the PSA method has the following three advantages:
(1) The PSA method is an end-to-end learning method that
learns the mapping between mental states and robot speed
regulation instructions through rewards and punishments, and
does not need to explicitly identify which specific mental state it
is, thus overcoming the above challenge 2. (2) The PSA method
is individually trained for each operator, and with the increase of
usage time, each operator’s personalized interaction habits, skill
growth, etc., will optimize the PSA model parameters, thereby
overcoming the above challenges 1. (3) The PSA method utilizes
multimodal bioelectrical signals combining EEG and EOG in
mental state perception, and fuses them on the feature layer,
thereby overcoming the above challenges 3.

The major contributions of the paper can be summarized
in three aspects. Firstly, according to the characteristics of the
tele-robot system and the advantages of human and computer,
a dual-loop human- machine information solution interaction
mechanism was designed. By introducing the idea of policy
gradient reinforcement learning, a mental state-based PSA
model was constructed. Secondly, the PSA algorithm was
developed which includes three steps, which are multimodal
bioelectrical signal data preprocessing, mental state feature
extraction and model efficient training. Finally, due to the high
cost of data acquisition and labor-intensive problems in the
“human-in-the-loop” reinforcement learning method (Nielsen
et al., 2015; Alamdari et al., 2020), this paper collects a large
number of experimental data with real human participation
by designing two experimental paradigms of teleoperation
robots with engineering value. The data not only proves the
effectiveness of the PSA method, but also provides valuable
knowledge and experience for future adjustment system design.
The remaining of this paper is organized as follows. Section
“Methodologies” describes PSA models and methods. Section
“Materials and experiments” presents experimental materials,
experimental paradigms, and data processing procedures. The
results are presented in Section “Results.” Remarks and
discussions are presented in Section “Discussion,” followed by
the conclusion in Section “Conclusion.”
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Methodologies

We first designed a dual-loop human-computer information
interaction mechanism according to the characteristics of the
teleoperated robot system and the respective advantages of
humans and computers. Secondly, by introducing the idea of
policy gradient reinforcement learning, the PSA framework that
could individually adjust the speed of the robot according to the
mental state of different operators was constructed. Thirdly, the
PSA problem was formulated and analyzed, and a mathematical
model was established. Finally, the convergence criteria of the
PSA model were defined.

Personalized speed adaptation
framework

The PSA method proposes a dual-loop human machine
information interaction mechanism composed of the active
control loop and the personalized regulation loop, as shown
in Figure 1. In the active control loop, the operator sent
control instruction to the robot through the control device,
and supervised the running state of the robot through visual
and auditory information, thus adjusting control instruction
in real-time, and correcting sudden errors. In order to solve
the problem that the operator’s mental state leaded to poor
operational quality or even danger, a personalized regulation
loop was designed on the basis of the active control loop. By
introducing the idea of policy gradient reinforcement learning,
the operator’s brain was innovatively used as the environmental
element, the control algorithm (CA) as the agent element,
the mental state as the state element, the speed adjustment
instruction as the action element, and the operational quality
as the reward element. Then, an end-to-end PSA model was
established, which took as input the multimodal bioelectrical
signals composed of EEG and EOG that reflect the operator’s
mental state, and used the robot’s personalized speed adjustment
instructions as the output. This model had been trained for
many times to establish a mapping relationship between the
operator’s mental state and the speed of the robot. It could adjust
the speed of the robot individually according to different mental
states, in order to improve the operational quality and system
safety.

Personalized speed adaptation
problem formulation

Markov decision process
In the personalized regulation loop, the idea of policy

gradient reinforcement learning was introduced, and a
reinforcement learning model composed of five elements: brain
environment, mental state, action indicating the robot speed

Active control loop

Personalized regulation loop

Control Algorithm 
(Agent)

Robot operating 
environmentOperational quality

(Reward)

Mental state
(State)

Robot speed adjustment
(Action)

Brain 
(Environment)

EEG&EOG

Operator Control 
device Telerobot

Visual/auditory 
information

Control
instruction

Speed adjustment 
instruction

FIGURE 1

The figure shows the overall framework of the personalized
speed adaptation (PSA) method.

adjustment command, reward indicating operational quality
and CA was built. More specifically, the study found that the
mental state of the operator can be changed by the task and the
behavior of the robot. For example, when a teleoperated robot
performs a difficult task or when the robot makes a mistake,
it will trigger the human brain alert (McIntire et al., 2013).
When teleoperation tasks are complex and take a long time to
perform, brain fatigue can occur due to high mental workload
(Warm et al., 2008). When the teleoperation task is too single
and simple, it will lead to a decrease in the concentration of the
brain (Daly et al., 2017). Therefore, we assumed that the process
conforms to a MDP (Chanel et al., 2020). The MDP framework
is a convenient choice for planning under uncertainty. This
famous stochastic control process is an elegant way to model
and solve probabilistic planning problems. Once the possible
actions and mental states have been identified, the goal of the
problem is defined using a reward function that evaluates the
utility of a state-action pair. This makes possible to define the
utility of an action sequence as the expected sum of the rewards
obtained over time given an initial state. The optimal sequence
of actions is the one that maximizes such an expected sum of
rewards.

Monte Carlo sampling
Unlike reinforcement learning models that know the reward

by performing a single-step operation, the PSA model needs
to perform a multi-step operation task before getting the
reward. At the same time, since the state transition probability
and reward function of the model are unknown, the model
belongs to the category of multi-step, model-free reinforcement
learning. Therefore, we started from Monte Carlo sampling
(Speagle, 2020) to design the PSA model. In the case of model-
free reinforcement learning, the first problem encountered by
the policy iteration algorithm is that the policy cannot be
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evaluated. This is due to the fact that the model is unknown
and cannot do full probability expansion. At this point, the
state of the transition and the reward obtained can only be
observed by performing the selected action in the environment.
Inspired by the K-armed bandit, a straightforward alternative to
policy evaluation is to “sample” multiple times and then find the
average cumulative reward as an approximation of the expected
cumulative reward. This is called Monte Carlo reinforcement
learning and is also a key point in designing the PSA model
(Andrieu et al., 2003).

Policy gradient
The policy gradient method is to directly simulate the policy

with a neural network. The input of the neural network is
the current corresponding state of the agent, and the output
is the corresponding action (or action selection probability).
The training of the model is actually a process of continuous
exploration directly in the policy space to find the optimal policy
(neural network parameters). This method works by modeling
the policy function and then using gradient descent to update
the parameters of the network. It does not have an actual
loss function in reinforcement learning, and its purpose is to
maximize the expected value of the cumulative reward, so the
expected value of the cumulative reward is used as the loss
function. The formula is as follows:

∇J(θ) =Eτ∼pθ(τ)[R (τ)∇ ln pθ (τ)] (1)

where R(τ) represents the reward for sampling trajectory τ.
pθ(τ) refers to the probability of sampling trajectory τ in the case
of given neural network parameters θ. For those cases of high-
dimensional or continuous state space, after obtaining the value
function through the learning based on the value function, when
formulating the strategy, it is necessary to compare the value
corresponding to various actions. In this way, if the dimension
of the action space is high or continuous, it is necessary to
compare an action with the maximum value function from
it, and this process becomes impractical. However, the policy
gradient method can be directly applied to reinforcement
learning scenarios in high-dimensional or continuous action
spaces. Therefore, this paper chose to design the PSA model
based on the policy gradient framework.

Formally, the MDP model of PSA was defined as a tuple (S,
A, P, R), where:

• S is the set of states, this paper represents the set of mental
states s;
• A is the set of actions, this paper represents the set of robot

speed adjustment instructions a;
• P is the transition function, which defines the policy p of

reaching the state si ∈ S given that the action a ∈ A is
performed in state si−1 ∈ S;
• R is the reward function that values any state-action pair,

this paper represents the operational quality function;

Personalized speed adaptation method

According to the framework of policy gradient
reinforcement learning, starting from the principle of Monte
Carlo sampling, the PSA model was designed. Among them,
the multi-step sampling process is shown in Figure 2. Starting
from any initial mental state s1, a certain policy p is used for
sampling, and the policy is executed for i steps and the trajectory
τ is obtained. This process can be represented by the following
formula (Zhang et al., 2021):

pθ(τ) = p (s1) pθ (c1|s1) p (s2|s1, c1) pθ (c2|s2)

p (s3|s2, c2) · · · pθ (ct|st) p (st+1|st, ct)

= p (s1)
∏T

t=1 pθ (ct|st) p (st+1|st, ct)

 (2)

where si (i = 1,. . .. . .,k) represents the mental state at the
moment i (hereinafter referred to as the state). ai (i = 1,. . .. . .,k)
represents the robot’s speed adjustment action at the moment
i (hereinafter referred to as the action). pθ(τ) refers to the
probability of sampling trajectory τ in the case of given neural
network parameters θ. p (s1) is the probability of the initial
state s1. pθ (ai|si) is the probability of taking action ai given
the current state si. p (si+1|si, ai) refers to the probability
of returning the next state si+1 based on the conditional
probability after taking the current state si and action ai. For
a certain sampling trajectory τ, the corresponding reward can
be obtained. Different rewards can be obtained by optimizing
the PSA model. The actions taken by the PSA model and the
appearance of a certain state are random. The ultimate goal is
to find a policy neural network with the maximum cumulative
expected reward Rθ, and according to Formula (1), the objective
function is shown as follows:

R̄θ =

∑
τ

R(τ)pθ(τ) (3)

where R(τ) represents the reward for sampling trajectory τ. To
calculate the maximum value of the objective function and the
corresponding neural network parameter θ, the gradient descent
method was adopted. The formula of the gradient ∇R̄θ of the
objective function is shown as follows:

∇R̄θ ≈
1
N

N∑
n=1

R
(
τ(n)

)
∇ ln pθ

(
τ(n)

)
(4)

where n is the number of sampling. N is the total number of
samples. From Formulas (2), (4), the following formula can be
obtained:

∇R̄θ ≈
1
N

N∑
n=1

k∑
i=1

R
(
τ(n)

)
∇ ln pθ

(
a(n)i |s

(n)
i

)
(5)

To make the reward value R(τ) not affected by the randomness
of sampling, a baseline b was introduced in this paper.
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FIGURE 2

Schematic diagram of Monte Carlo sampling in the PSA model.

Therefore, the gradient formula is optimized as follows:

∇R̄θ ≈
1
N
∑N

n=1
∑k

i=1(R
(
τ(n)

)
− b)∇ ln pθ

(
a(n)i |s

(n)
i

)
b ≈ E[R(τ)]

}
(6)

In Formula (6), the mental state si was represented by the
feature vector of the collected bioelectric signals, and see Section
“Mental state feature extractor” for the detailed formula. The
action ai representing the robot speed regulation command
was obtained from the output value of the neural network.
The reward R represented the operational quality, which was
obtained according to the task quality score, and see Section
“Personalized speed adaptation model trainer” for the detailed
formula. Finally, the gradient descent method was used to
update the parameter of the neural network θ. The detailed
update process is shown in Figure 3.

θ=θ+∇Rθ (7)

Personalized speed adaptation model
training convergence criteria

The PSA approach is a “human-in-the-loop” reinforcement
learning architecture that often exists in a dynamic task
environment with no fixed optimal solution, where
unpredictable events may require policy changes. In such
an environment, conventional convergence rules are not a good
criterion for performance evaluation because the agent needs
to continuously learn and adapt. For a “human-in-the-loop”
reinforcement learning training process, it’s arguably better
for the algorithm to learn certain repetitive subsequences of
actions (or patterns of actions) and store them in a rule-based
fashion. Once an action pattern has been shown to be successful
in multiple instances of a task context, it can be applied in
similar other task contexts (Wen et al., 2020; van Zoelen et al.,
2021). Therefore, we believed that research on reinforcement
learning of “human-in-the-loop” should not use conventional
convergence criteria as a criterion for whether a model is
valid, but should focus on whether a successful action pattern

emerges, and its sustainability. Therefore, we updated the PSA
model convergence evaluation method, which was evaluated
by two indicators: reward and operator’s subjective evaluation.
When the fluctuation of the reward is maintained in a relatively
small range, and the action level at this time is consistent with
the action level expected by the operator’s subjective evaluation.
That is to say, the operator is neither strenuous (it will not
consume too much mental workload because the difficulty is
too high), nor boring (it will not lose the sense of participation
or reduce the attention because the task is too easy), we believe
that the model training has reached convergence at this time.

Materials and experiments

Participants and experimental setup

Six healthy participants took part in this study (the age
range was 23−32, 1 female). All participants reported normal or
corrected-to-normal vision and had no previous experience with
the PSA system. Written informed consent was obtained from
each participant before the experiment. The Institutional Review
Board of Xi’an Jiaotong University approved the proposed
experiment, and all experiments were conducted following the
Declaration of Helsinki.

The PSA experimental system mainly included three
subsystems: the bioelectrical signals acquisition subsystem,
computer subsystem, and interactive subsystem. The
bioelectrical signals acquisition subsystem was mainly
responsible for acquiring, amplifying, and transmitting
EEG and EOG signals to the computer subsystem. EEG&EOG-
W32 model device manufactured by Neuracle Technology Co.,
Ltd., was used, the sampling frequency was 1000 Hz, and the
communication method was WiFi. The device consisted of
30 EEG measuring electrodes, 2 EOG measuring electrodes,
1 reference electrode (REF) and 1 ground electrode (GND).
The impedance level of all measuring electrodes were kept
below 10 k� in each experiment. The electrodes’ distribution
conformed to international 10−20 standards (Figure 4). The
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The figure shows the update process of the PSA model.

computer subsystem included two modules, the first one
was the PSA module, which was responsible for real-time
processing of bioelectrical signals (EEG and EOG), detecting
the operator’s mental state, and generating speed adjustment
instructions for the robot. This module used MATLAB 2019b
and PYTHON3.6. The second was the task simulator module,
which was responsible for generating the task environment.
This module uses PYTHON3.6. TCP/IP communication was
used between the two modules. A microprocessor with Intel
(R) Core (TM) i5-5600 CPU was employed in the computer.
The interactive subsystem (this refers to the mouse) was used to
realize the human-computer interaction function. An overview
of the system is illustrated in Figure 5. When the operator
controlled the robot through the mouse to perform tasks, the
EEG and EOG were collected and transmitted to the computer
in real-time. Then, the computer detected the operator’s mental
state and sent the speed adjustment instruction adaptively.
Specifically, the EEG and EOG cap worn by the operator
collected EEG and EOG data in real time while performing the
task and sent it to the computer. The computer sequentially
performed preprocessing (see section “Multimodal bioelectrical
signal preprocessor” for details), feature extraction (see section
“Mental state feature extractor”) and PSA model processing
(see section “Personalized speed adaptation model trainer”)
on these data. Then generated a speed adjustment instruction
and sent it to the robot. MATLAB 2019b was used in the data
preprocessing and feature extraction steps, and PYTHON 3.6
was used in the PSA model processing steps.

Experimental task

By analyzing the common characteristics of the telerobot
tasks, we abstracted two virtual tasks, namely trajectory tracking

and target positioning. Trajectory tracking could simulate tele-
operated EOD robots to perform explosive transfer tasks, tele-
operated detection robots to perform submarine inspection
tasks, and tele-operated AGV robots to perform cargo transfer
tasks, etc. Target positioning could simulate the remote-
operated weapon system to perform targeting tasks, and the
remote-operated aircraft to perform rendezvous and docking
tasks with the space station. The specific contents of these two
experimental tasks are as follows.

Figure 6A shows the screen of the trajectory tracking
task, in which the blue block represents the mobile robot,
and the red dotted line represents the preset trajectory. The
operator could control the robot to perform the trajectory
tracking task through the mouse. Specifically, the operator only
needed to move the mouse (without clicking any button), and
dragged the robot to move along the preset trajectory. The
robot’s position was coupled to the mouse coordinate system.
The trajectory of the robot’s movement in each round was
recorded by the computer, and the deviation between it and
the preset trajectory was calculated. When the robot moved
from the starting point to the endpoint, it was regarded as
having completed a round of trajectory tracking task. The
trajectory deviation and task completion time were recorded
to evaluate the trajectory tracking task’s operational quality
(the calculation formula is as shown in section “Personalized
speed adaptation model trainer”). To increase the diversity of
experimental trajectories, three difficulty levels of horizontal
straight, slope, and curve were designed; Figure 6B shows
the screen of the target positioning task, in which the red
center is the bullseye, and the white rectangle is the sight (it
can also be considered a robot). The operator could control
the sight to perform the target positioning task through the
mouse. Specifically, the operator only needed to move the mouse
(without clicking any button), and dragged the sight to track the
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FIGURE 4

The figure shows the distribution of EEG and EOG electrodes and how the participant wore them.
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The figure shows the overview of the PSA experimental system.

target. When the rectangular frame of the sight fully enclosed the
target’s ring and was locked for a while, the target positioning
mission was considered successful. The task completion time
was recorded to evaluate the operational quality (the calculation
formula is as shown in section “Personalized speed adaptation
model trainer”) of the target positioning task. The bullseye
moved randomly to the next position after each round. The
control instructions of the robot were controlled by the operator

through the mouse, and the speed adjustment instructions
were continuously adjusted by the CA in the PSA model
according to the changes in the operator’s mental state. The
robot combined the two instructions to perform the tasks. In the
task, the operator continuously adjusted the control instruction
by observing the robot’s running state. Meanwhile, the CA
adjusts the robot’s speed adjustment instruction in real-time by
detecting the mental state of the human brain.
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(A) The trajectory tracking task requires the operator to control the robot to move from the starting point to the finishing point. The higher the
fitting degree of the trajectory and the robot’s preset trajectory, and the shorter the task completion time, the higher the operational quality will
be. Besides, three stimulation conditions were set in the experimental task, namely positive mental state stimulation, negative mental state
stimulation, and nervous state stimulation. These stimulation conditions were also set in the target positioning task. (B) The target positioning
task requires the operator to control the sight to track the bullseye. The shorter the time to complete the task, the higher the operational quality
will be.

Experimental scenarios and
procedures

In the experimental task of controlling the robot, the
participants were asked to sit quietly in front of the computer
screen and control the robot or the sight on the screen to
perform trajectory tracking or target positioning tasks by mouse,
and the experimental scenarios are shown in Figure 7. The
experimental tasks were divided into three sessions, namely
training session, testing session and control session, and the
experimental procedures are shown in Figure 8. Firstly, the
training session was used to train PSA model parameters. In the
training session, the experiment was performed for 18 rounds.
The first 3 rounds were used to practice trajectory tracking
and target positioning tasks to prevent different operational
proficiency from affecting the experimental results. The last 15
rounds were formal experiments, with 1 min rest time in the
middle of every 5 rounds. Secondly, the testing session was
used to test the effect of the PSA method. And the trained
PSA model parameters were imported into the PSA model
in the testing session. In the testing session, the experiment
was performed for 15 rounds. Thirdly, the control session was
used to provide reference. The conventional method was used
in the control session (i.e., this method relies on a warning
threshold to trigger an adjustment strategy (Stanney et al., 2009).
A warning threshold for whether to enable the adjustment
strategy was preset. Then, if the output value of the mental
state detector was greater than the warning threshold, the
adjustment strategy will be initiated to adjust the speed of the
robot; otherwise, the adjustment strategy was not activated.
More specifically, when the output value of the mental state

FIGURE 7

The figure shows the experimental scenario.

detector was higher than the warning threshold, the speed of
the robot was reduced. Conversely, when the output value of
the mental state detector returned to normal, that is, when
it was lower than the warning threshold, the speed of the
robot was restored. It is a fixed, non-personalized method
of adjustment). In the control session, the experiment was
performed for 15 rounds. The effectiveness and superiority
of the PSA method were analyzed through the comparison
between the testing session and the control session. At the
end of each experimental session, the subjects were asked
to answer several subjective questionnaire questions. It took
about 2 h for each subject to complete the experiment of 3
sessions in total, and the whole experiment lasted 6 days to
complete.
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The figure shows the experimental procedure.

Moreover, to increase the diversity of mental states in
sampled data, two main measures were adopted. Firstly, three
kinds of stimulation conditions were set in the experimental
task, namely positive mental state stimulation: a positive text
prompt of “Performance is very good” would appear randomly
on the screen; negative mental state stimulation: a negative text
prompt “Performance is very bad” would appear randomly on
the screen; nervous state stimulation: a text prompt of “The
Key round” would appear randomly on the display screen,
accompanied by the audio prompt of a countdown. Secondly,
by setting up the rest time of the experiment, the mental state
of fatigue and non-fatigued could be increased. By analyzing
the questionnaires of the participants, the settings of these two
measures increased the diversity of mental states during the
experiment to a certain extent (see section “Changes in mental
state during teleoperation experiments” for details).

Data processing

Data processing mainly includes three steps of multimodal
bioelectrical signal (EEG and EOG) preprocessing, mental state
feature extraction, and efficient model training. The detailed
processing flow is shown in Figure 9.

Multimodal bioelectrical signal preprocessor
To feed real-time EEG and EOG into the PSA model, the

last 1 min long signal in the computer memory was extracted
at each round. A time window of 2000 ms duration was
designed for sliding sampling, and 50 sets of raw data were
generated. Then, the data was preprocessed, which mainly
includes three steps. Firstly, baseline drift in raw EEG and
EOG signals was eliminated by the fitted baseline method.
The purpose was to eliminate the effects of baseline drift in
technical artifacts. The detailed operation method was to fit the
trend term by the least squares method, and then subtracted

the trend term from the original data. Secondly, the 4th order
Butterworth bandpass filter was used to process the two original
signals, retaining the EEG of 0.5−45.0 Hz and the EOG of
0.1−30 Hz, respectively. Since EOG also contained mental state
information, it was an effective signal in this study, so no artifact
processing operation was required for it. Finally, the sampling
frequencies of EEG and EOG were down-sampled to 256 Hz and
128 Hz, respectively, thereby reducing the amount of data and
improving the calculation speed.

Mental state feature extractor
We first introduced the feature extraction method of EEG,

which mainly included three steps: (1) Obtained rhythm waves
in different frequency bands through wavelet transform. (2)
Calculated the four features of sample entropy (SE), differential
entropy (DE), band power (BP) and band energy (BE) for
rhythmic waves of various frequency bands. (3) Calculated
the mutual information (MI) value between each feature and
arousal (or valence) to judge the validity of the feature (it should
be noted that the third step was to compare the pros and cons of
the four features, which was not required in the actual algorithm
running). The following is a detailed introduction. Firstly, the
EEG was decomposed and reconstructed using the wavelet basis
function of fifth-order vanishing interval Daubechies, and five
kinds of rhythmic waves were generated. Their frequency bands
are δ (0.5−3 Hz), θ (4−7 Hz), α (8−15 Hz), β (16−31 Hz), and γ

(>32 Hz), respectively (Hipp et al., 2011; Dimitrakopoulos et al.,
2018). The wavelet transform formula is as follows:

xj = ACj +

L∑
j=1

DCj (8)

where xj represents EEG of the jth frequency band; L
represents the number of decomposition layers; ACj represents
the approximate component of the jth frequency band; DCj

represents the detailed components of different scales of the jth
frequency band. Secondly, SE features, DE features, BP features,
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FIGURE 9

Flow chart of data preprocessing steps.

and BE features of 5 rhythmic waves from 30 EEG channels were
calculated. Studies had found that as the mental state changes,
the information complexity of EEG was also changing (García-
Martínez et al., 2016; Xu et al., 2019; Ahammed and Ahmed,
2020). For example, when the degree of fatigue increases, the
ability of the central nervous system to inhibit brain neural
activity may increase, resulting in a decrease in the disordered
degree of thinking in the cerebral cortex, thereby reducing
the information complexity of EEG (Wang et al., 2011). For
another example, Deli and Fry studied positive and negative
mental states from the perspective of thermodynamics, and
believed that the positive state is in an endothermic cycle
(Reversed Carnot cycle), which is a process of absorbing energy
from the environment and increasing entropy; In contrast,
the negative state is in an exothermic cycle (Carnot cycle), a
process that releases energy into the environment and reduces
entropy (Deli and Kisvarday, 2020). This also leads to changes
in the information complexity of EEG. Therefore, this paper
selected representative SE and DE features for analysis. The SE
is defined as the negative natural logarithm of the conditional
probability that the two subsequences are similar when the pair
of subsequences of length m are similar after adding one sample
point in each order. It can be used to describe the self-similarity
and complexity of a sequence (Cuesta-Frau et al., 2017). The
lower the SE value, the higher the self-similarity of the sequence
and the lower the complexity, and the calculation formula of SE
is as follows (Li et al., 2018):

SE(U, v,η) = − ln
Bv+1(η)

Bv(η)
(9)

where U is the sequence length. v is the length of continuous
subsequence. η is the distance error threshold to judge the
similarity of two subsequences. Bv(η) represents the logarithm
of the continuous subsequence with length m satisfies the
similarity condition r in the sequence. The parameters m and
r can be determined by cross-validation results on the training
set. In this paper, m = 2, r = 0.2∗std, where std is the data’s
standard deviation. Besides, DE could also be used to measure
the complexity of temporal sequence signals (García-Martínez

et al., 2016). For a fixed-length EEG sequence, the calculation
formula of DE can be approximated as (Shi et al., 2013):

DE(x) = −
∫

x f (x) ln(f (x))dx ≈

−
∫
∞

−∞

{
1

√
2πσ2 exp

[
−
(x−µ)2

2σ2

]
ln(

1
√

2πσ2 exp
[
−
(x−µ)2

2σ2

])}
dx =

1
2 ln

(
2πσ2)

+
1
2

σ2
=

1
L
∑L

j=1 x2
j


(10)

where f (x) is the probability density function of time series.
µ and σ represent the mean and standard deviation of the
Gaussian, respectively. In addition, the study found that the
frequency domain characteristics of EEG could also characterize
mental state. Therefore, this paper selected two features, BP (Liu
F. et al., 2021) and BE (Matei and Matei, 2021), respectively.
Finally, MI was used to analyze the amount of mental state
information contained in the four EEG features, so as to
select the optimal feature. MI between these four features (SE,
DE, BP, and BE) and the valence (or arousal) in dimension
theory were calculated separately. In probability theory and
information theory, MI of two random variables is a measure
of the interdependence of variables (Peng et al., 2005). In this
paper, the MI of XF and YL, two random variables representing
features and valence (or arousal), respectively, is defined as:

MI(XF;YL) =
∑

yL∈YL

∑
xF∈XF

p(xF, yL) log(
p(xF, yL)

p(xF)p(yL)
) (11)

where p(xF, yL) is the joint probability distribution function
of XF and YL. p(xF) and p(yL) are the marginal probability
distribution functions of XF and YL, respectively. Study found
DE could effectively characterize mental state (Zheng and Lu,
2015; Zheng et al., 2019; Liu S. et al., 2021) (see section “Analysis
of mental state features” for details), hence, it was selected as
an EEG feature to represent mental state in the following study.
There were 30 EEG channels, and the EEG of each channel was
decomposed into 5 rhythmic waves, so the features data of EEG
had a total of 150 dimensions.
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Then, we introduced the feature extraction method of
EOG. It was found that the low-frequency components of
EOG increased while the high-frequency components decreased
when the arousal level was low (Ma et al., 2014). Therefore,
the power ratios (PR) of low-frequency components and high-
frequency components in the signals were selected as the EOG
features representing mental states. The calculation formula is
as follows:

PR =
pl(x)
ph(x)

(12)

where pl(x) and ph(x) represent the power of low-frequency
component (0−1.5 Hz) and high-frequency component
(1.5−30 Hz), respectively (Magosso et al., 2007; Gao et al.,
2012). There were 2 EOG channels, so the features data of
EOG had a total of 2 dimensions. In summary, the EEG and
EOG features data were combined and normalized to form
152-dimensional characteristic data representing the operator’s
mental state.

Personalized speed adaptation model trainer
To consider the algorithm accuracy and response speed,

a three-layer fully connected state-to-action mapping neural
network (SAMNN) was established in the PSA model. The input
of the network was mental state si and the output was robot
speed adjustment instruction ai. There were 152 neurons in
the input layer, 80 neurons in the hidden layer, and 4 neurons
in the output layer, representing 4 dimensionless speed levels.
Tanh activation function (LeCun et al., 2012) was adopted in the
hidden layer. The reason was that (1) the network had only one
hidden layer, and under the premise of enjoying the advantages
of the Tanh activation function, there was no need to worry
about the hidden danger of gradient vanishing (Wang et al.,
2019). At the same time, (2) the problem of permanent neuron
death by using the ReLU activation function was avoided (Nair
and Hinton, 2010). Softmax function (Liang et al., 2017) was
used for the output layer. The higher the value of the output
neuron, the higher the probability of the corresponding action
being selected, and vice versa. Then, s, a, and R was input to the
objective function [Formula (6)], and the SAMNN parameters
were updated according to the adaptive moment estimation
method (ADAM) (Kingma and Ba, 2014), Among them, the
exponential decay rate for the 1st moment estimates was set
to 0.9, and the exponential decay rate for the 2nd moment
estimates was set to 0.999. The learning rate was set to 0.001.
Each round was an episode, each episode would generate 50 sets
of data pairs, and the batch size was 50. The SAMNN parameter
was updated once every episode until the model converged.

It is important to note that the reinforcement learning
model’s performance is directly affected by the convergence
property (Mnih et al., 2015). Therefore, to enhance the
convergence performance of the PSA model, shorten the
convergence process and improve data utilization, before the
online training of the PSA model, the DEAP (Koelstra et al.,

2012) dataset was first used to pre-train the SAMNN. The
input was feature data representing the mental state, which
was from the DEAP dataset. The output was 4 categories
representing High valence and High arousal, High valence and
Low arousal, Low valence and High arousal, and Low valence
and Low arousal, respectively. After 10,000 epoch training, the
loss function value was 0.001. It should be noted that before the
main model training starts, the pre-trained model parameters
need to be imported into the main training model.

In addition, it should be noted that the reward R in the PSA
model [that is, the R in Formula (6)] needed to be calculated
according to the specific task, which represented the operational
quality. The trajectory tracking reward Rt was evaluated by two
indicators of robot trajectory quality and task completion time.
The target positioning task reward Rp was evaluated by the
indicator of task completion time. The calculation formula is as
follows:

Rt =
1∑M

m=1|Ym−Om|
+

g
t

Rp =
g
t if t ≥ T

 (13)

where Y represents the trajectory of the robot. O represents the
target trajectory. t is the time to complete each round. g is the
time gain coefficient. M represents the total number of steps of
the whole trajectory, and T represents the time threshold of the
sight continuously aiming at the bullseye.

Results

Analysis of mental state features

In order to find EEG features that can stably and effectively
represent mental state, we used the DEAP dataset to calculate
the average of the four EEG features (SE, DE, BP, and BE)
described above, and the MI between these four averages and
valence. The higher the MI, the more mental state information
was contained in the feature data, and vice versa. For a more
intuitive display, for each feature, the MI of each rhythmic
wave in 30 EEG channels was calculated separately, and the
brain topographic map was drawn according to the MI value.
Figure 10A shows the MI brain topography between SE and
valence for the five rhythmic waves. By contrast, it was found
that MI decreased with increasing rhythmic wave frequency.
Figure 10B shows the MI brain topography between DE and
valence for the five rhythmic waves. By comparison, it was
found that the MI not only did not show an obvious decreasing
trend, but also all channels remained at a relatively high level
(the average was 0.85), which indicated that the DE features
contained more information of mental state and had a high
stability. Figures 10C,D show MI brain topography between
BP, BE, and valence for the five rhythmic waves, respectively.
Both MI values showed a low level (average values were 0.4,
0.3, respectively), and the volatility between each rhythm wave
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was large, and the volatility between each channel was also large.
Comprehensive comparison found that the MI value of the DE
feature data was the highest and the stability was strong. At
the same time, the study found that the MI between these four
features and arousal also had the same regularity. To sum up,
the DE feature contained the most mental state information, and
the PSA method achieved the expected effect in the experiment,
which also proved the reliability of this phenomenon. Therefore,
DE features were selected as EEG features to represent mental
states.

Changes in mental state during
teleoperation experiments

In order to analyze the change characteristics of the subjects’
mental state during the experiment, we integrated the data
recorded by the subjective evaluation scale to generate Table 1.
The fatigue level of all subjects changed during the experiment.
All subjects except subject 2 experienced changes in their stress
level. Except for subjects 4 and 6, the positive and negative
mental states of the other subjects changed. It showed that by
setting the task difficulty and auxiliary stimulation conditions,
the subjects could be induced to induce different mental state.
Comprehensive analysis found that subject 1, subject 3, and
subject 5 had changes in the degree of fatigue, stress and
positive/negative states. Compared with other subjects, these
three subjects were more likely to have mental state fluctuations,
which was also a manifestation of individual differences.

Taking subject 3 to perform the trajectory tracking task as
an example, we recorded his EEG in three states of normal,
fatigue and stress during the experiment, and calculated the DE
feature of the EEG in 30 channels, and then drawn the brain
topography according to DE value. Firstly, by comparing the
brain topographic maps of the fatigue (Figure 11B) and normal
state (Figure 11A), it was found that the DE value decreased
when the subject moved from the normal state to the fatigue
state, indicating that the complexity of the EEG was reduced.
This is in line with previous studies, where one explanation is
that fatigue induces the inhibition of cerebral cortical activity
by the central nervous system, resulting in a reduced degree
of disorder in the EEG of the cerebral cortex (Liu et al., 2010;
Wang et al., 2011; Xu et al., 2019). In addition, in the fatigue
state, the DE values of the occipital lobe, part of the parietal
lobe and the prefrontal lobe region decreased to a greater extent
(the regions indicated by the arrows in Figure 11B), indicating
that these regions are closely related to the processing of the
fatigue state. And this phenomenon had also been confirmed
in previous studies (Chuang et al., 2018; Ma et al., 2019; Liu
et al., 2020). Secondly, by comparing the brain topographic
maps in the stress state (Figure 11C) and the normal state
(Figure 11A), it was found that the DE values in both temporal
lobes increased in the stress state (the regions indicated by the

arrows in Figure 11C). This phenomenon is consistent with
previous studies, and one explanation is that the temporal lobe
is involved in the processing of stress states, which are closely
related to stress states (Hosseini and Naghibi-Sistani, 2011;
Lucassen et al., 2014; Choi et al., 2015; Katmah et al., 2021).

Without loss of generality, the average properties of all
subjects’ mental states while performing the trajectory tracking
task were analyzed. Taking the fatigue state as an example, the
reason is that in the experiment, each subject reported that
the fatigue state appeared. We recorded the EEG when all
subjects reported fatigue during the experiment, calculated the
DE characteristics of the EEG in 30 channels separately, and
plotted a line graph based on their mean and standard deviation.
Figure 12 shows that, relative to the normal state, the DE value
of the fatigue state is reduced, especially in the occipital region,
part of the parietal region and the prefrontal region, which is also
consistent with the phenomenon in Figure 11B. The generality
of EEG features in the fatigue state was demonstrated. To sum
up, by analyzing the EEG characteristics of the subjects when
they appeared in various mental states during the experiment,
and it was found that the same phenomenon existed in previous
studies, which proved that the subjects would produce different
mental states during the experiment.

Feasibility analysis of personalized
speed adaptation

To demonstrate the feasibility of the PSA method, we
recorded the operational quality of each subject at the early
(the first 3 rounds) and late (the last 3 rounds) training stages,
normalized the data, and plotted it into boxplots (Figure 13).
In the two experimental tasks, the operational quality of each
subject in the late training stage was significantly improved
compared with the early training stage. A total of 36 data pairs
were formed by recording the operational quality data of all
subjects at the early and late stages of training. Statistical analysis
using two-sample T-test found that there was a significant
difference in the operational quality between the two periods, as
shown in Figure 14A. It showed that in the training process of
the PSA model, CA gradually learned the mapping relationship
between each subject’s mental state and the robot’s speed
adjustment instructions, and could adjust the robot’s speed in
real time according to the mental state, thereby improving
the operational quality. In addition, in the trajectory tracking
task, the interquartile range (IQR) value of each subject (except
subject 5) at the later stage of training was lower than that at the
early stage of training. In the target positioning task, the IQR
value of each subject (except subject 3) was lower in the late
training period compared to the early training period. At the
same time, Figure 14A shows that in both experimental tasks,
the standard deviation of the operational quality data in the later
stage of training is smaller than that in the early stage of training.
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FIGURE 10

(A) Brain topography based on MI between SE and valence. (B) Brain topography based on MI between DE and valence. (C) Brain topography
based on MI between BP and valence. (D) Brain topography based on MI between BE and valence.

TABLE 1 Subjective evaluation results of mental state during the experiment.

Has fatigue level changed? Has the stress level changed? Have positive and negative mental states changed?

Subject1 Yes Yes Yes

Subject2 Yes No Yes

Subject3 Yes Yes Yes

Subject4 Yes Yes No

Subject5 Yes Yes Yes

Subject6 Yes Yes No
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FIGURE 11

(A) Brain topography in normal state. (B) Brain topography in fatigue state. (C) Brain topography during stress state.
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FIGURE 12

Line graph of the average DE characteristics of all subjects in normal and fatigue states, respectively.

Both phenomena illustrated that after training, the PSA model
gradually converges and the stability gradually improves. Taken
together, the feasibility of the PSA method was demonstrated by
these phenomena.

Superiority analysis of personalized
speed adaptation

In order to demonstrate the superiority of the PSA method,
we choose the current conventional adjustment method based
on mental state and the PSA method for comparison, that is,
the comparison between the control session and testing session
experiments. In the control and test groups of each experimental
task, the operational quality data of 6 subjects who performed
15 rounds of the task were recorded, forming a total of 90
data pairs. The mean and standard deviation of these data
were calculated, respectively, and then a contrast histogram was
drawn. Figure 14B shows that the average operational quality of

the PSA method is better than that of the conventional method
in both experimental tasks. And the statistical analysis by the
two-sample T-test found that there was a significant difference
in the mean between the two. In conclusion, the validation of
6 subjects in two independent experimental tasks showed that
the PSA method was superior to conventional mental state-
based adjustment methods. Furthermore, since the feasibility
and superiority of the PSA method could be verified on two
experimental tasks with different levels of difficulty and task
modes, it was proved that the PSA method has good universality.

Personalized analysis of personalized
speed adaptation

Through the analysis of the robot speed adjustment
instructions (actions) output by the trained PSA model for each
subject, it was found that the PSA method had been individually
adjusted according to the mental state of different subjects.
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FIGURE 13

Boxplots were drawn based on the operational quality of all subjects in the early (the first 3 rounds) and late (the last 3 rounds) stages of PSA
model training. The dots in the figure represent the mean value, and the horizontal line represents the median. (A) Trajectory tracking task.
(B) Target positioning task.
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(A) The comparison histogram of operational quality between early and late training. (B) The comparison histogram of operational quality
between the conventional method and the PSA method. ∗∗Represents p < 0.01, and ∗∗∗ represents p < 0.001.

Referring to previous studies on the classification of operators
(or drivers) style (Sadrpour et al., 2014; Gilman et al., 2015;
Wang et al., 2020), we divided the subjects into aggressive
and conservative types according to the speed of the robot
controlled. Subject 1 and 5 belonged to the aggressive style,
and the other 4 subjects belonged to the conservative style.
Taking the trajectory tracking task as an example, we plotted the
distribution histogram and fitting curve of the robot speed data
controlled by the aggressive and conservative subjects during the
task (Figure 15). Figure 15A shows that the robot controlled
by the aggressive subjects has a wide range of X-axis velocity

distribution (0∼9.0), the mean value of the velocity distribution
is 1.22, and the standard deviation is 1.17; and the Y-axis velocity
distribution range is also wide (−5.0∼4.0), the mean value of
the velocity distribution is 0.09, and the standard deviation is
1.28. It showed that the aggressive subjects paid more attention
to the sense of control when manipulating the robot, and there
would be more rapid acceleration and deceleration. However,
Figure 15B shows that the robot controlled by conservative
subjects has a narrow range of X-axis velocity distribution
(−0.3∼2.7), the mean value of velocity distribution is 0.38,
and the standard deviation is 0.32; and the Y-axis velocity
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distribution range is also narrow (−2.1∼1.8), with a mean
value of 0.03 and a standard deviation of 0.41. It showed
that conservative subjects paid more attention to the stability
when manipulating the robot and avoid rapid acceleration and
deceleration. Through this phenomenon, it was fully proved that
the PSA method can perceive the differences between operators
and make individual adjustments to the robot speed according
to the mental state.

Visual analysis of personalized speed
adaptation

In order to observe the effectiveness and superiority of the
PSA method in the two experimental tasks more intuitively, the
trajectories of subject 1 when controlling the robot (and sight)
to perform the task in the testing session and the control session
were recorded 5 times, respectively, as shown in Figures 16, 17.
In the trajectory tracking task, it can be seen from the relatively
fluctuating trajectories of the control session that the mobile
robot frequently loses the trajectory target (Figure 16A), so the
operator needs to constantly adjust the control instructions. Not
only does this lead to longer time spent on the entire task, but
it also increases mental workload and negative emotions. For
the testing session using the PSA method, the fit of the mobile
robot’s motion trajectory and the target trajectory is better than
that of the control session, and the phenomenon of missing
targets is reduced (Figure 16B). From the relatively smooth
motion trajectories, it could be seen that the operator could
control the mobile robot’s travel trajectory compliantly, and did
not need to adjust the control commands frequently, and the
operation was more accurate and efficient. This phenomenon
also exists in the target positioning task, especially when the
sight is getting closer and closer to the bullseye, the trajectories
of the control session shows that the sighting frequently loses
the position of the bullseye. The trajectories at the 5 bullseye
positions are like a mess of ropes, as indicated by the arrows in
Figure 17A. This not only results in longer time spent on the
entire task, but also increases the operator’s mental workload
and negative emotions. For the testing session using the PSA
method, the trajectories show that the sight can quickly locate
and lock the bullseye, no matter whether it is close to the
trajectories of the bullseye stage, or the trajectories of the locking
stage of the bullseye has been improved (Figure 17B). This
showed that the operator could accurately control the sight, and
did not need to adjust the control commands frequently for
repeated positioning, and the operation was more accurate and
efficient.

Without loss of generality, we listed the performance of
all subjects in the test and control sessions. In the trajectory
tracking task, Table 2 shows that the operational quality of each
subject (except subject 6) under the PSA method is better than
that of the conventional method, and in the target positioning

task, the operational quality of each subject under the PSA
method is also better than that of the conventional method.
Moreover, in both experimental tasks, the mean operational
quality of the PSA method was also superior to that of the
conventional method, thus proving the general applicability of
the PSA method.

Discussion

This paper aims to study the feasibility of the PSA
method based on mental state for teleoperated robots. The
PSA model based on policy gradient reinforcement learning
was established, and related algorithms were developed and
verified by experiments on real subjects instead of simulation
models. The following sections focus on personalization, rapid
reinforcement learning, and the scalability of the method in
application areas. Then, the existing limitations and future
work are prospected.

Personalization

Due to the huge number of teleoperators involved in various
fields of operation, different operators have obvious differences
in age, personality, psychological state, and proficiency, as
well as the inherent complexity of the operator’s mental state
and behavior. As a result, the differential representation of
the operating habits and qualities of different operators has
become a difficult problem. In the adjustment strategy design
of the conventional teleoperated robot system, the method
of adapting to the operator’s behavior through parameter
calibration is difficult to meet the individual needs of a large
number of operators. Different from the conventional subjective
(i.e., biased by developer experience) and fixed adjustment
methods, the PSA method is objective and flexible (Sogaard
et al., 2019; Tang et al., 2019; Wen et al., 2020). The first reason
is that the PSA method is designed based on a reinforcement
learning architecture, which can obtain feedback rewarded with
operational quality through the interaction between the CA
and the brain environment, to capture the mapping between
various mental states and robot speed regulation commands
in real time. Then, the mapping between the various mental
states and the robot’s speed-regulating commands is captured
in real time. In this way, a personalized “human-in-the-loop”
teleoperated robot system model is dynamically established. It
can better solve the problems that are difficult to overcome
by conventional methods. For example, Figure 15 shows that
under the adjustment of the PSA method, the distribution of
the speed (action) data of the robot controlled by the subjects
has changed, indicating that the method has established a
personalized adjustment strategy for each subject. Not only that,
as the operating time increases, the operator’s cognitive level and
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FIGURE 15

Histograms and fitting curves of the speed distributions of the robots controlled by aggressive style and conservative style subjects.
(A) Aggressive style subject. (B) Conservative style subject.

operation skills of the system are also continuously improved,
and the operation habits are also changed. The second reason
is that the CA (agent) in the PSA model collects more
and more personalized, comprehensive information about the
operator. Based on this data, model parameters are continuously
optimized and adjusted, allowing each teleoperated robotic
system to evolve toward a personalized direction. Therefore, the
teleoperated robot system equipped with the PSA method also
has the ability of lifelong learning and continuous evolution.

Rapid reinforcement learning

Personalized speed adaptation is a reinforcement learning
method based on “human-in-the-loop,” which includes a

typical online interactive learning process and has unique
advantages, such as personalization, evolution, and better
dynamic adaptability. However, due to the difficulty in ensuring
the convergence and training efficiency of the “human-in-
the-loop” reinforcement learning model, most of the current
research is mostly carried out on simulated human models. For
example, Wu et al. (2022) established a robot knee tracking
control method based on “human-in-the-loop” reinforcement
learning, which was verified in a so-called realistic human-
robot system simulator. To the best of our knowledge, there is
little research and experimental validation on human models,
and even less in the field of teleoperated robotics. One reason
is that the human brain is an element in the model, which
increases the model’s complexity and uncertainty. As Xuesen
Qian pointed out, the living system, especially people with
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FIGURE 16

The figure shows the trajectories of the mobile robot in the trajectory tracking task. (A) Robot trajectories in the control session. (B) Robot
trajectories in the testing session.
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FIGURE 17

The figure shows the trajectories of the sight in the target positioning task. The position indicated by the arrow in the figure is the bullseye
position. (A) The trajectories of the sight in the control session. (B) The trajectories of the sights in the testing session.

advanced psychological activities, is an open and complex giant
system. In this case, the control actions are essentially infinitely
flexible (Sheridan, 2011). Another reason is that such methods
have high data acquisition costs and labor-intensive problems.
In this paper, the following efforts are made to solve the problem
of rapid learning of the “human-in-the-loop” reinforcement
learning model: In terms of algorithms, (1) by setting pre-
training, the existing data sets were used to accelerate the
learning process of online tasks. (2) By reducing the dimensional
space of state and action, the network structure of SAMNN was
simplified and the difficulty of network training was reduced. In

terms of experimental paradigm, (1) the diversity of samples was
increased by setting stimulation conditions in the experiment.
(2) A reasonable number of experimental rounds was designed
after many attempts. The study found that too many experiment
times will reduce the experimental experience of the subjects,
but too few experiment times often cannot achieve convergence.
It has to be admitted that there are some subjects who can
achieve convergence after several attempts. To sum up, after
various efforts, the PSA model achieved rapid learning with the
participation of real people. However, this work still needs to
be further improved, and the next step will be to explore the
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TABLE 2 Operational quality of all subjects.

Trajectory tracking task Target positioning task

Operational quality under
conventional method

Operational quality
under PSAmethod

Operational quality under
conventional method

Operational quality
under PSAmethod

Subject1 0.18 0.26 1.14 1.41

Subject2 0.23 0.31 1.19 1.23

Subject3 0.18 0.29 0.72 1.05

Subject4 0.31 0.32 0.98 1.20

Subject5 0.25 0.36 1.14 1.26

Subject6 0.25 0.24 1.13 1.21

Average 0.23± 0.05 0.30± 0.04 1.03± 0.18 1.23± 0.10

Bold text indicates better values.

following aspects: (1) Introduce a meta-learning strategy, meta-
learning is to use past knowledge and experience to guide the
learning of new tasks, so that the network has the ability to
learn to learn, and it is one of the commonly used methods to
solve the few-shot learning problem. Theoretically, the meta-
reinforcement learning algorithm can enable the agent to learn
new skills from a small amount of experience. Although there
are some drawbacks, it is a way to try (Rakelly et al., 2019). (2)
Introduce the bootstrapped policy gradient rapid reinforcement
learning strategy. The bootstrapped policy gradient method can
introduce prior knowledge into the policy gradient to improve
sample efficiency. Its core idea is to update the sum probability
of a series of related actions in the gradient estimation sample,
rather than the sum probability of a single action (Zhang and
Goh, 2021; Zhang et al., 2021).

Implications of the results

In this paper, only the speed parameter of the robot
was selected as the adjustment variable for research, and
exciting results were obtained. The research shows that on the
basis of the PSA method, other parameters can be selected
as adjustment variables according to the characteristics of
the specific teleoperating system and the robot. Furthermore,
the PSA method can realize not only the adjustment of a
single parameter, but also the coupled adjustment of multiple
parameters. It should be noted that when a single parameter
is adjusted, the complexity of the teleoperated robot system
is relatively easy to determine, but when multiple parameters
are adjusted in coupling, the complexity of the system
will increase dramatically due to the coupling relationship
between the parameters.

The PSA method has been verified in the two tasks of
trajectory tracking and target positioning. These two tasks
are abstracted according to the common characteristics of the
tasks of the teleoperated robot system, and do not depend
on any specific teleoperated robot system. Therefore, the PSA

method can be well extended to a variety of teleoperated
robotic systems. For example, in the field of manipulating
special operation robots, such as remote-operated fire-fighting
robots, maintenance robots, surgical robots, and space station
maintenance robots (Bucolo et al., 2022). The set adjustment
parameters can be the response time of the robot system,
the speed and acceleration of the moving parts of the robot,
and the coupling parameters between them, etc. At the same
time, it also has application prospects in other fields, such
as information matching and recommendation fields, such as
education and training, web page information recommendation
(Lan and Baraniuk, 2016; Mizgajski and Morzy, 2019). The set
adjustment parameter can be the difficulty level of the task (or
event).

Limitations and future work

The core of the PSA method based on the reinforcement
learning framework is to learn the mapping from the mental
state (state) to the robot speed regulation instruction (action),
which is an end-to-end learning method. Its advantage is that
it has the learning ability of non-linear mapping, and it does
not need to abstract the rules of the teleoperated robot process,
nor to establish a mathematical model between EEG indicators
and behavioral performance, thus avoiding the cumulative bias
introduced by oversimplifying the study subjects. However, it
has to be admitted that its learning process is “black box” and has
poor interpretability (special research in this area can be carried
out in the next step). Even so, this still cannot hide the unique
advantages of the PSA method.

The mental states in this study can be defined in many
ways, with different meanings in different disciplines. This
paper draws on the definition method of dimension theory in
psychology, because it evaluates mental state on a continuous
dimension through indicators such as design valence and
arousal. The evaluation criteria can fully take into account
the characteristics of the diversity of mental states. In the
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future, the mental state detector in the PSA method can be
specially designed and improved for specific fields. A specific,
single mental state can be selected for more targeted research.
For example, to study the influence of mental fatigue on the
teleoperation robot system, it is only necessary to replace the
feature extraction method in the mental state detector. The PSA
method can realize the function of special customization and
rapid transplantation, so as to adapt to the teleoperated robot
system with special requirements.

In related fields such as teleoperated robots and car driving,
the driving styles of operators (or drivers) are mostly divided
into conservative and aggressive types according to driving
habits and the speed of the robot (or car) being driven
(Sadrpour et al., 2014; Gilman et al., 2015; Wang et al., 2020).
Referring to research findings in related fields, we divided
the subjects into aggressive and conservative types according
to the speed of the robot controlled. However, it has to be
admitted that there are still some limitations. Firstly, the existing
research on driving style has not formed a unified conceptual
framework, and there is no general scheme for the classification
of driving style (Sagberg et al., 2015). Secondly, in the field
of teleoperation, the theoretical basis for the classification of
driving styles and objective group differentiation methods need
further exploration.

In this paper, there was no special method for removing
electromyogenic artifacts in signal processing, but filtering
(retaining the maximum frequency of EEG to 45 Hz) was used
to reduce the influence of electromyogenic artifacts as much as
possible (Hipp and Siegel, 2013). At the same time, it can ensure
the efficient running of the algorithm to meet the requirements
of online training for the speed of the algorithm. However, it
has to be admitted that when the frequency band of EEG is
less than 45 Hz, it is still unable to remove all electromyogenic
artifacts. After balancing the advantages and disadvantages of
various aspects, we designed this processing method suitable
for the working conditions of this paper. In the future, we
need to deepen research from two perspectives: (1) Develop
a more efficient electromyogenic artifact removal method that
is suitable for our online training. (2) Further quantitatively
evaluate the advantages and disadvantages between the
developed electromyogenic artifact removal method and the
low-frequency EEG preservation method, such as the degree
of electromyogenic artifact elimination, the degree of effective
signal mis injury, and the algorithm running rate.

This paper selects 6 subjects to participate in the online
experiment, the main reasons are as follows: Different
from other methods that need to verify cross-individual
characteristics, they use a large number of subjects to verify their
cross-individual accuracy, robustness and stability, however, the
focus of the PSA method is on the study of individualized
adjustment for the mental state of different operators,
not only does not involve cross-individual verification, but
instead focuses on the differences between individuals. In

the experimental validation involving 6 subjects, it has been
observed that the PSA method has carried out personalized
regulation for aggressive style and conservative style subjects.
And at the same time, it also avoids the drawback that the overall
sample is too large to blur the characteristics of the data. In
addition, the effect of the PSA method in a single subject is
robust and has significant differences. Therefore, this paper used
6 subjects for experimental verification (Fischer and Whitney,
2014).

Conclusion

Aiming at the problem that the poor mental state of the
teleoperator causes the quality of the operation to decline,
or even dangerous, the PSA model based on policy gradient
reinforcement learning was established in this paper. This model
had a dual-loop human-computer information interaction
mechanism, which could give full play to the advantages of
humans and computers. At the same time, the PSA algorithm
was developed, which could extract the DE feature of EEG and
the PR feature of EOG, and performed feature-level fusion to
obtain a data matrix that effectively characterizes the mental
state. In addition, by fusing the perceptron based on artificial
neural network and the decision maker based on reinforcement
learning, the function of individually adjusting the speed of
the robot according to the mental state of different users was
realized. Experiments were carried out on 6 real subjects instead
of simulation models. The results showed that the method
could accurately perceive the mental state of the operator
when performing the task, and the speed of the robot was
individually adjusted according to the mental state of different
operators, which effectively improved the operational quality
and realized the efficient and safe execution of teleoperation
tasks. Aiming at the problem of performance degradation of
teleoperated robotic systems caused by human factors, this
research result may inspire a new control framework. Compared
with the conventional methods based on user behavior model
mining, a series of methods based on this framework have better
personalization and dynamic adaptability.
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Multiple types of brain-control systems have been applied in the field of

rehabilitation. As an alternative scheme for balancing user fatigue and the

classification accuracy of brain–computer interface (BCI) systems, facial-

expression-based brain control technologies have been proposed in the form

of novel BCI systems. Unfortunately, existing machine learning algorithms

fail to identify the most relevant features of electroencephalogram signals,

which further limits the performance of the classifiers. To address this problem,

an improved classification method is proposed for facial-expression-based

BCI (FE-BCI) systems, using a convolutional neural network (CNN) combined

with a genetic algorithm (GA). The CNN was applied to extract features and

classify them. The GA was used for hyperparameter selection to extract the

most relevant parameters for classification. To validate the superiority of the

proposed algorithm used in this study, various experimental performance

results were systematically evaluated, and a trained CNN-GA model was

constructed to control an intelligent car in real time. The average accuracy

across all subjects was 89.21 ± 3.79%, and the highest accuracy was 97.71 ±

2.07%. The superior performance of the proposed algorithmwas demonstrated

through o	ine and online experiments. The experimental results demonstrate

that our improved FE-BCI system outperforms the traditional methods.

KEYWORDS

brain computer interface, convolutional neural network (CNN), genetic algorithm,

EEG, facial expression

Introduction

Brain–computer interface (BCI) systems serve as a communication link between

humans and peripheral equipment. This technology has been shown to improve the

lives of numerous patients suffering from various neurological disorders, including

amyotrophic lateral sclerosis and spinal cord injuries (Abiri et al., 2019; Edelman et al.,

2019). Over the past few decades, the development of signal acquisition and decoding

Frontiers inNeuroscience 01 frontiersin.org

30

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.988535
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.988535&domain=pdf&date_stamp=2022-09-13
mailto:liruizixing@163.com
mailto:liuwp@fmmu.edu.cn
https://doi.org/10.3389/fnins.2022.988535
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.988535/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2022.988535

technology has led to the development of various rehabilitation

applications, including neuro-prosthesis (Li et al., 2018a),

wheelchairs (Pinheiro et al., 2018), quadcopters (Yan et al.,

2020), and robotic arms (Cao et al., 2021).

Several types of brain-controlled systems have been studied;

these can be classified into spontaneous and evoked BCI systems

(Zhang et al., 2020a). Motor imagery (MI)-based BCI is an

important spontaneous BCI system that has been extensively

investigated. Reust and his colleagues employed an MI-BCI

system corresponding to human hand movement to control

two robotic hands; this approach achieved a 95% classification

accuracy overall (Reust et al., 2018). Another novel mental

imagery system developed by the University of Montreal

employed a multimodal BCI system to control the single-step

and forward walking status using an immersive virtual reality

avatar (Alchalabi et al., 2021).

Numerous BCI studies have focused on evoked BCI systems,

such as steady-state visually evoked potentials (SSVEP)- and

P300-based BCI systems (Zhang et al., 2021). Zhao et al.

demonstrated the feasibility of a new stimulation paradigm that

makes full use of peripheral vision, and they used the Manhattan

distance for final detection in their research (Zhao et al., 2021).

A modified SSVEP-BCI speller with dual-frequency and phase-

modulation paradigms was designed at Tsinghua University. It

obtained an accuracy of 96% via multivariate synchronization

index analysis (Yan et al., 2021). P300 BCIs have also been

used in a variety of applications for disabled people (Allison

et al., 2020; Shukla et al., 2021). A reliable authentication system

(based on the P300-BCI system) for protecting against online

fraud was designed by Rathi’s group. In their study, the optimal

performance was observed when using a quadratic discriminant

analysis algorithm (Rathi et al., 2021).

To summarize, themerit of spontaneous BCI systems is their

stable and rapid responses. However, the long training time and

inter-user variability limit further study. Evoked BCI systems

achieve high recognition accuracies with low training times;

however, this type of BCI system relies entirely upon stimulator

design. To solve these obstacles, numerous efforts have been

made to develop a novel BCI system in the past few years.

Recently, another type of BCI system based on affective

computing was developed. Prof. Lu was the first to report

on an emotion-based BCI system; this used a stable

electroencephalogram (EEG) decoding algorithm to recognize

different emotions (Zheng et al., 2019). Prof. Pan and his

colleagues reported a novel facial expression detection

method based upon two-decision-level fusion using a sum

rule combined production rule (Huang et al., 2017). They

subsequently developed a Mindlink-Eumpy software toolbox

to classify facial expression information by integrating the

EEG signals; this was feasible and efficient (Li et al., 2021).

Another representative study was reported by the East China

University of Science and Technology, which demonstrated

that the presentation of different facial images to subjects

could successfully evoke event-related potentials (Jin et al.,

2012). In 2018, the present authors used real facial expressions

instead of flashing facial images to elicit EEG signals. The

experimental results demonstrate the validity of the proposed

facial-expression-based BCI (FE-BCI) system (Li et al., 2018b).

Considering all the above, the major challenge in improving

the performance of existing BCI systems is the EEG classification

accuracy. Most BCI studies have used traditional machine

learning or pattern recognition methods to identify relevant

information for EEG classification (Zhang et al., 2020b).

For example, independent component analysis (ICA) and

multivariate empirical mode decomposition (MEMD) are

typically used for artifact removal. The wavelet transform

(WT) is commonly used for feature extraction and linear

discriminant analysis. Back propagation neural network

(BPNN)-based classifiers are frequently employed to identify

different EEG signals. The EEG decoding method based on

spatial information is also widely used in BCI systems to

ensure recognition performance. Zhao et al. used combined

space–time–frequency features to decode EEG signals. In this

study, a deep ConvNet model that combined time-frequency

transformations, spatial filtering, and classification was used

(Zhao et al., 2019). The University of Glasgow developed

a novel space-by-time decomposition method based upon

non-negative matrix factorization, to decode single-trial EEG

signals (Delis et al., 2016). Nanyang Technological University

proposed another space-based EEG decoding method. The

time-frequency common spatial pattern method was used

to solve the problem of poor classification and robustness

in MI-BCI systems (Mishuhina and Jiang, 2021). Jia et al.

published one of the most recent studies based on the spatial

EEG decoding method, and they employed time-contained

spatial filtering to extract spatial and temporal information for

EEG multi-classification tasks (Jia et al., 2021).

Unfortunately, these methods are limited by their reliance

upon prior experimental knowledge and their low processing

capacities for large EEG datasets. These drawbacks also reduce

the reliability of BCI systems and further degrade their

performance. Following innovations in algorithm development,

novel neural network architectures for deep learning have

offered the benefits of a smaller reliance upon prior expert

knowledge, and automatic feature optimization has recently

been employed for decoding EEG signals (Craik et al., 2020).

Tang et al. employed a traditional convolutional neural network

(CNN) to classify EEG signals from left- and right-hand

movements (Tang et al., 2017). Xu et al. used topographically

represented energy calculations alongside a novel CNNmodel to

extract time–frequency features from four types ofMI tasks. This

method improves classification accuracy (Xu et al., 2020). Kwak

et al. explored an improved CNN model to distinguish the band

power features from different SSVEPs using only two channels

(Kwak et al., 2017). Xie et al. combined long short-termmemory

(LSTM) generative adversarial networks and a multi-output
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convolutional neural network for MI classification, and their

experimental results indicated its favorable performance (Xie

et al., 2021). Yu et al. reported a novel adaptive skeleton-based

neural network that combined an attentional LSTM network

with a 3D convolution, to identify human actions or interactions

(Yu et al., 2021b). Moreover, they proposed an LSTM-based

network-integrated temporal attention mechanism for spatial

human-robot interactions (Yu et al., 2021a). Although these

methods can effectively improve the classification accuracy in

most MI-BCI systems, the parameters of the CNN model still

depend on the researcher’s empirical understanding, which leads

to poor robustness across different scenarios.Many existing deep

learning methods manually set arbitration coefficients or fusion

rules according to specific tasks and the researcher’s experience.

While GA algorithms have been widely used for CNN

parameter optimization in image classification (Sun et al.,

2020) or text processing (Liu et al., 2021), the response of

EEG signals is entirely different from the 2D image or text

information. EEG signals have their unique time-frequency

characteristics, and their response from different paradigms is

entirely different. So decoding of EEG signals needs a specific

architecture of the CNNmodel and parameter setting guidelines.

In particular, although the CNN model-based EEG decoding

methods have been studied, only a few works have focused on

the FE-BCI system, especially for decoding EEG signals under

different expressions.

Despite the number of successful methods available

for developing an emotion-based BCI system, it remains

challenging to address the dependence of BCI upon the

performance of stimulus sources, to thereby ensuring its

recognition accuracy. Thus, there remains a need to develop a

novel paradigm and expert algorithm that can efficiently identify

EEG signals for FE-BCI systems.

The primary objective of this study was to address the

dependence of FE-BCI upon the stimulus source and overcome

the limitations of long training times and inter-user variability.

In this study, an FE-BCI system with four facial expressions (left

smirking, right smirking, furrowing brow, and raising brow) was

constructed and then used to control an intelligent car. The EEG

signals of the proposed FE-BCI system were recorded from the

prefrontal and motor cortices. To further optimize the FE-BCI

performance, the EEG decoding algorithm constructed using the

CNN model combined GA was applied to select the optimal

hyperparameter value for the constructed neural network. From

our experimental verifications, the main contributions of this

work can be summarized as follows:

First, to balance between user fatigue and the classification

accuracy of traditional BCI systems, an FE-BCI system

identifying four different facial expressions is proposed. It

provides an additional option to solve the obstacle between

BCI performance and its stimulus reliance. The selected

EEG signals from the four different facial expressions are

accurately recognized.

Second, to address the issues of the EEG recognition

accuracy for different facial expressions, a novel EEG decoding

algorithm based upon the CNN model is designed to

automatically extract the discriminative features of expression-

based EEG signals.

Third, in view of the disadvantages of traditional

enumeration methods for hyperparameter value selection,

a hyperparameter optimization method based upon the GA

algorithm is embedded into the CNN model by setting this

model as a fitness function. The CNN model combined with

GA is an effective way to optimize the decoding results of

EEG signals, further enhancing the overall capabilities of the

FE-BCI system.

The remainder of this paper is organized as follows. In

Section Materials and methods, the relevant studies and details

of the proposed method are presented. The experimental results

are analyzed and discussed in Sections Result analysis and

Discussion, respectively. The final section concludes this paper.

Materials and methods

Related work

With the rapid development of affective computing, emotion

recognition has gradually become an important factor when

designing natural and friendly human–machine interactions

(Svetla and Dimitar, 2015). The mechanisms of emotion states

have attracted considerable interest in different research fields

(e.g., the physiology, representation, recognition of emotions

according to different physiological signals, and their application

to affective BCI systems) (Mühl et al., 2014). However, it remains

a challenge to distinguish brain responses to different emotional

states, owing to spontaneous brain activity (Olderbak et al.,

2014). Recent studies have discovered that numerous activities

can express emotional states, such as facial expressions, speech,

and gestures (Schuller et al., 2005; D’Mello and Graesser, 2009).

Among these factors, facial expressions serve as an effective

external feature for depicting emotional states; this has inspired

considerable discussion (Wood et al., 2016). Earl et al. reported

that brain activity in the prefrontal cortex is related to

emotion processing. Friedman and Thayer also demonstrated

that changes in facial expressions could produce corresponding

brain activity in the prefrontal cortex (Friedman and Thayer,

1991). Moreover, facial expressions are also body movements;

thus, they respond to brain activity in the motor cortex

(Ross et al., 2016). To summarize, brain activity arising from

the prefrontal and motor cortices and attributable to facial

expressions can enhance differences when estimating emotion

states. Our previous study (Li et al., 2018b) analyzed the

mechanisms of facial expressions and further demonstrated that

EEG signals from the prefrontal and motor cortices can be

discriminated to represent stable emotions. One of the aims
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of affective neuroscience is to include human emotions in BCI

systems. Therefore, facial expressions that represent human

emotions can be used in BCI systems. Our previous study

also constructed a recognition model based on a traditional

machine learning algorithm to distinguish EEG signals arising

from different facial expressions; however, the performance of

the established FE-BCI system can be further improved. Hence,

a new calculation model is proposed in this study. More details

regarding the experimental setting and algorithm construction

can be found in the following section.

Subjects and data acquisition

In this study, 16 healthy subjects from 22 to 30 years old

(two females and 14 males) participated in the experiment.

None of the patients had a history of neurological diseases or

any previous experience with the proposed facial expression

experiment. Before the experiment, each participant signed a

written informed consent form. The Institutional Review Board

of the Xi’an University of Technology approved the proposed

experiment, and all experiments were conducted in accordance

with the Declaration of Helsinki. More details of sample size

estimation can be found in Section Statistical analysis.

A NeuSen-W64 (Figure 1A) with 64 channels was used to

record the EEG signal, and all channel distributions adopted

the International Standard 10-20 Electrode Location System.

Eight electrodes (FC5, FC6, F7, F8, FZ, C3, C4, and CPz) from

the prefrontal and motor cortices were selected to record EEG

data. AFz and CPz electrodes were the reference and grounding

electrodes, respectively. The electrode distribution and the

locations of the selected channels are shown in Figure 1B.

During EEG data acquisition, the impedances of all electrodes

were maintained below 5 K�.

Experimental procedure

According to the facial expression mechanisms, the EEG

signals from four facial expressions were collected: furrowing

brow, left smirking, right smirking, and raising brow. The

subjects were required to keep their bodies stable to prevent

noise interference in the EEG signals. The experiment was

performed in two steps. The purpose of the offline experiment

was to evaluate the efficiency of the proposed CNN-GA and

verify the distinguishability of EEG signals under different

expressions. The online experiment was to investigate the

feasibility of an improved FE-BCI system. For the offline

experiment, each facial expression experiment consisted of ten

sessions, and each session included six trials. In each trial,

the subjects were asked to maintain one of the four selected

expressions for 4 s. To avoidmental fatigue, each trial began with

a 2 s preparation time and a 2 s rest time when each trial finished.

Subjects were allowed a 10-min break when they completed

one session. The offline experimental time series is shown in

Figure 2A, and the structure of the FE-BCI system is shown in

Figure 2B.

The online experiment consisted of six sessions. In each

session, the subject was asked to perform one of the four selected

facial expressions of their own volition, to control an intelligent

car return to the starting position after tracking three targets on

four laps: Round 1–4. For the sake of sample balance and its

practicality, the start position is distributed in Round 1, Target

1 in Round 4, Target 2 in Round 3, and Target 3 in Round 2. In

each session, it contained “change lane to the left” three times,

“change lane to the right” three times, “accelerate” five times,

and “decelerate” four times. The online experimental process

was divided into four stages.

STEP 1: Move the intelligent car from the start position to

Target 1. This step includes right-hand lane changes to Rounds

2 and 3, acceleration, deceleration, and another right-hand lane

changes to Round 4.

STEP 2: Move the intelligent car from Target 1 to Target

2; this involves acceleration, deceleration, and a left-hand lane

change to Round 3.

STEP 3: Move the intelligent car from Target 2 to Target

3; this includes acceleration, deceleration, and a left-hand lane

change to Round 2.

STEP 4: Move the intelligent car from Target 3 to the start

position; this involves acceleration, deceleration, a left-hand lane

change to Round 1, and acceleration to the start position.

The time series for the online experiment matched that

of the offline experiment. During the online experiment, left

smirking (LS) and right smirking (RS) were used to move the

intelligent car 30◦ to the left and right, respectively. Furrowing

brow (FB) and raising brow (RB) were used to produce 0.05 m/s

acceleration and deceleration, respectively.

In this study, we used offline EEG data as a training

database to construct the improved CNN model, and the

online data were used to investigate the generalizability of the

proposed method.

Data analysis

Artifact removal algorithm

Brain activity from the scalp is fairly weak: its magnitude

is usually in the range of 10–50 µV. Hence, artifacts from the

surroundings can easily damage the performance of the BCI

system. Depending on the mechanism of signal generation,

the artifacts can be classified into power-frequency noise and

physiological noise (Mowla et al., 2015).

The Butterworth filter can be applied as an effective linear

filter to remove power-frequency noise. Hence, a five-order

Butterworth filter with a frequency band of 0.5–45Hz was

initially applied. Subsequently, a noise-assisted MEMD method
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FIGURE 1

NeuSen-W64 EEG recording system and channel locations. (A) NeuSen-W64 EEG recording system. (B) Selected eight-channel configuration in

NeuSen-W64.

with highly localized time-frequency representations and self-

adaptation was implemented to remove electromyogram (EMG)

and electrooculogram (EOG) artifacts (Chen et al., 2018). In this

method, the noise-assisted MEMD was employed to decompose

the raw EEG signal; then, the sample entropy value of each

intrinsic mode function was estimated to detect and remove

physiological artifacts. Further details regarding the artifact

removal algorithm have been presented in our previous study

(Li et al., 2018b).

Convolutional neural network algorithm

Deep learning was first introduced by Hinton and

Salakhutdinov (2006); it consists of a sequence of convolutions

and subsampling layers, in contrast to traditional artificial

neural network methods (Craik et al., 2020). CNNs are a

representative deep learning algorithm; they offer faster network

training, superior conservation of information throughout

the hierarchical process, and prevention of overfitting in the

built network. These benefits allow the CNN classifier to

automatically learn the appropriate features from the EEG data

while maintaining its translation invariance and data hierarchy

(Xiao and Fang, 2021).

The CNNmodel in this study consists of several layers, such

as convolutional, pooling, dropout, and batch normalization, as

well as a fully connected layer. When designing the CNN, the

size of the input data and its output results should be taken into

consideration. In our study, the input matrix fed into the CNN

was 8 × 4,000, where the row corresponds to the eight selected

EEG channels and the column indicates the sampling point of

4 s. Because the CNN was used to discriminate the EEG data

from four different facial expression tasks, the output layer was

designed to have four outputs.

The second component of CNNs is the convolutional layer,

which is crucial in facilitating automatic feature learning. In this

study, three 2D convolutional layers were designed to perform

advanced EEG feature extraction. In each convolutional layer,

a convolutional filter whose width matched the dimensions of

the input data and whose kernel size of 3 × 3 was applied, to

extract the correlation of EEG signals in the adjacent channel

and preserve its spatial information. Via the convolution of each

layer, a two-dimensional feature mapping (combining enhanced

information regarding the original EEG data from different

facial expression tasks) was acquired.

An important hyperparameter in the convolution layer is

the number of kernels, which can sizably reduce the number of

weight parameters. To solve the problem of under-fitting (i.e.,

a small number of convolution kernels) and over-fitting (i.e.,

a redundancy of convolution kernels), the number of kernel

convolutions was adaptively optimized using a GA. More details

on the GA can be found in Section Genetic algorithm for

hyperparameter optimization.

The pooling layer was inserted after the convolutional

layer, to receive the compression feature map matrix from all

selected channels and temporal values (Kwon and Im, 2021).

The objective of the pooling layer is to improve the statistical

efficiency of the network and improve its invariance (and

subsequently its robustness). To further reduce the size of the

feature map and the number of network parameters, a max

pooling layer was used to downsample the feature map and

store important information, using a receptive field window size

of 2× 2.

Frontiers inNeuroscience 05 frontiersin.org

34

https://doi.org/10.3389/fnins.2022.988535
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2022.988535

FIGURE 2

FE-BCI system and its experimental protocol. (A) Experimental protocol for the o	ine experiment. (B) Scheme of FE-BCI system for an

intelligent car.

Subsequently, three fully connected layers followed by

pooling layers were used to connect all advanced features and

then classify them. The first fully connected layer receives a one-

dimensional feature vector and outputs the weighted sum of

the features to the second fully connected layer. The number of

output neurons in the third layer matched the number of facial

expression categories to be classified.

Considering the calculation speed, risk of overfitting,

and unsaturated and sparse datasets, the drop-out technique

was applied to the fully connected layer, and rectilinear

linear unit (ReLU) and Softmax activation functions were

applied to each layer, to improve the performance of

the proposed CNN models (Stieger et al., 2021). The

architecture of the proposed CNN model is illustrated

in Figure 3.

As in traditional CNN models, the hyperparameter

settings (e.g., the learning rate, batch size, and number of

neurons) significantly influences the CNN model performance.

Appropriate hyperparameter selections can optimize the

performance of the neural network model and further

resolve the overfitting problem. Hence, in this study, the GA

optimization method was implemented in the constructed

CNN model. Two hyper-parameters describing the number of

convolution kernels and neurons in the fully connected layer

were dynamically optimized via the GA evolutionary process.

The remaining value of hyperparameters for CNN was the batch
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FIGURE 3

Architecture of the proposed CNN model.

size of 16, the learning rate of 0.001, the number of iterations of

100, and the loss function was a cross-entropy loss function.

Genetic algorithm for hyperparameter
optimization

The hyperparameter optimization of neural networks is a

persistent issue. When a neural network is constructed, the

key to achieving an efficient model performance is adjusting

the hyperparameters, because the performance is highly

sensitive to these parameters. When the model complexity

increases, the number of hyperparameters increases, and

the combination of hyperparameters increases accordingly.

It is difficult to determine the exact optimal values of

the neural network hyperparameters. At present, mainstream

hyperparameter optimization methods include grid search,

Bayesian optimization, evolutionary computation, and neural

architecture search.

The main advantage of GA is its excellent global search

ability, which can quickly search out the whole solution in

the solution space without any prior knowledge of the system.

Moreover, its characteristic of paralleling process conducts a

variety of routes to find optimal results that avoid falling into the

fast-falling trap of the optimal local solution. Most important,

the superior performance of the GA method is its social ability,

which makes it easier to link with other algorithms (Chang and

Yang, 2019).

In this study, a neural network hyperparameter optimization

method based on a GA was proposed. GA was first introduced

by Holland (2000). It was inspired by the Darwinian theory

of survival and the fitness mechanism in nature (Rui et al.,

2019). A GA method is a population-based search algorithm

whereby each individual in a population represents a set of

hyperparameter solutions. Each individual is a set of genes,

where each gene represents a hyperparameter. Different gene

combinations determine the fitness value of the neural network

(i.e., the classification accuracy of the CNN model). The fitness

value also determines which individual can transmit its genes

to their offspring (i.e., the value of the hyperparameter). A

schematic of the GA is shown in Figure 4.

After the initial population is generated, the fitness of

each individual is calculated, and the relationship between the

fitness and hyperparameters is established. In this study, the

hyperparameters describing the number of convolution kernels

and neurons in the fully connected layer were encoded via a

binary code. The encoding precision δ can be calculated as

δ =
umax − umin

2l − 1
(1)

where l is the encoding length, and umax and umin are the

upper and lower limits of the set hyperparameters, respectively.

The fitness of individuals indicates the applicability of

the hyperparameter solutions to the model performance, and

superior individuals can be obtained by selecting, crossing, and

mutating three genetic operators. In the present study, the

roulette method was used to select individuals. The probability

P(xi) of each individual is represented as

P(xi) =
f (xi)

N∑

j=1
f (xj)

(2)

where N is the population size, xi is the ith individual, and

f(xi) is the fitness of the ith individual.

Crossover operators are generated by two new individuals

that exchange gene components between two chromosomes in

a certain way. In this study, a multipoint crossover operator

was used to pair individuals in the population. The mutation

operator is an auxiliary method for generating new individuals;

it determines the local search ability of the GA and maintains

population diversity.

The entire process of the combined CNN–GA method is

shown in Figure 5. The EEG signals were recorded from eight

channels in the prefrontal and motor regions; hence, the input

data for the CNN model were 8 × 4,000, where the rows denote

channels and the columns are sampling points. The CNNmodel

employed in our study consisted of three convolutional layers,
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FIGURE 4

Architecture of the proposed GA.

FIGURE 5

Scheme of the proposed CNN–GA algorithm.

one pooling layer, and three fully connected layers. Two batch

normalization (BN) and one dropout were also used in the

proposed CNN–GA model. Because the third fully connected

layer is used to output the discrimination result from the

four expression-based EEG signals, the number of neurons in

this layer was four, and its activation function was selected as

Softmax. The initial values for the CNN model parameters were

a batch size of 16, a learning rate of 0.001, 100 iterations, and a

cross-entropy loss function. The numbers of convolution kernels

(in the three convolutional layers) and neurons (in the two fully

connected layers) were set via GA optimization.

In this study, we designed the proposed CNN model

as the fitness function. The numbers of convolution kernels

and neurons in the fully connected layer were set as the

hyperparameters to be optimized, and the classification accuracy

was set as the fitness value in the GA. For the GA algorithm, an

excessively large population will increase the time cost. However,

too small a population will mean that the algorithm is likely

to fall into a locally optimal solution. Based on the relevant

literature (Katoch et al., 2020) and experimental analysis, the

population size was set as 20 in this study. Because the accuracy

of the EEG signals tended to stabilize after 20 iterations, the
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number of GA iterations was set to 20. The ranges of the

five hyperparameters were umin = {1, 1, 1, 1, 1} to umax =

{20, 20, 20, 512, 512}. Because the hyperparameters in this

study were integers, the precision of their values was defined

as {1, 1, 1, 1, 1}. The initial values of the hyperparameters

were chosen automatically within these ranges. Due to the

individual variability, each subject had its own hyperparameter

value after optimation.

After optimizing the CNN hyperparameters via training

data, the testing data were applied to evaluate the model

performance using the subject’s own classifier. To evaluate the

performance of the proposed CNN–GA algorithm, five-fold

cross-validation was used to estimate its recognition accuracy.

This cross-validation was repeated four times. In each validation,

four data subsets were used for training and one was used for

testing. Five-fold cross-validationmeans that 240 offline samples

are randomly divided into five equally sized subsets. Four subsets

(240/5× 4= 192 samples) were used for training the CNN–GA

model, and the remaining subset (240/5= 48 samples) was used

to verify the performance of the trained model.

To further evaluate the feasibility of the proposed CNN–

GA method, the traditional combined WT–BPNN method and

a traditional CNN model were used as comparison algorithms.

The WT decomposition level was set to 5, and the db-3 wavelet

served as the WT basis function. The energy and variances of

the wavelet coefficients were employed as the feature sets of

expression-based EEG signals. The three-layer BPNN model

(with one hidden layer) was constructed in a previous study.

Because the BPNN inputted two WT coefficients from eight

channels of each trial, the corresponding input layer of the

BPNN had 16 nodes. The output layer had two nodes (to flag

the results), and the hidden layer had 20 nodes. Apart from the

hyperparameters (that needed to be optimized), the structure of

the comparison CNNmodel and its remaining parameter values

were consistent with those of the CNN–GA model. That is, the

batch size was 16, the learning rate was 0.001, the number of

iterations was 100, and the loss function was a cross-entropy loss

function. According to previous studies regarding parameters

selection (Craik et al., 2020), the number of convolution kernels

in the three convolutional layers was set as 3, and the numbers

of neurons in the two fully connected layers were 64 and

32, respectively.

Furthermore, the kappa value serves as a well-known

evaluation index for investigating the performance of EEG

classification algorithms; it expresses the agreement between

the classification accuracy of p0 and the expected consistency

rate pe for the same categories (Chicco et al., 2021). The kappa

coefficient can be interpreted as an agreement measure to

determine whether different categories are consistent with their

prediction results. The kappa coefficient ranges between 0 and 1,

where 0 is consistent (owing to randomness) and 1 is perfectly

consistent. The coefficient is defined as

K =
p0 − pe

1− pe
(3)

where p0 is the classification accuracy and pe indicates the

expected consistency rate.

The formula for calculating the classification accuracy p0 is

defined as

p0 =
TP + TN

TP + TN + FP + FN
(4)

where TP is a true positive, FN is a false negative, FP is a false

positive, and TN is a true negative.

Pe is the expected agreement rate, which is the consistency

rate attributable to chance. Pe is the accuracy under statistically

independent observers, which can be computed via

pe =
(TP + FN)× (TN + FN)+ (TN + FP)× (TP + FP)

N2

(5)

where N is the number of samples in the dataset.

Statistical analysis

In this study, the difference in classification accuracies

between the three EEG decoding methods (CNN, CNN–GA,

and combinedWT–BPNN) was assessed using a Student’s paired

t-test and one-way analysis of variance (ANOVA), respectively.

Based on the statistical theory, three parameters of significance

level α, the expected effect size f, and the desired statistical power

(1-β) determined the choice of the sample size and verified

the significant differences among different methods (Desu and

Raghavarao, 1990). The desired effect size was 0.9 (f = 0.9),

significance threshold was set as 0.05 (a = 0.05) and desired

statistical power (1-β) was 0.8. Furthermore, the Greenhouse–

Geisser correction was applied for p-value adjustment. Using

the statistical software G∗Power of the given parameters setting

and referring to some existing studies (Zheng et al., 2019; Shajil

et al., 2020; Cao et al., 2021), the sample size is 16 subjects in

this study.

Student’s paired t-test is primarily used to test whether

the same group of subjects differs significantly under two

different conditions. We investigated the variability (for the

same subjects) between the CNN and CNN–GA algorithms

and between the CNN–GA and WT–BPNN methods. Because

the t-test is only suitable for testing the variability between

two conditions, ANOVA was used to investigate the significant

differences when more than two conditions differed. Therefore,

this method verifies the variability between the CNN, CNN–GA,

and WT–BPNN algorithms.
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Result analysis

In this section, the offline and online experimental results

are presented. The main purpose of the offline experiment was

to evaluate the efficiency of the proposed CNN–GA, whereas the

online experiment was performed to investigate the feasibility of

the improved FE–BCI system.

O	ine experimental results

Before verifying the effectiveness of the CNN–GA method

for all subjects, data from one representative subject, S2, were

thoroughly analyzed. Other participants reported similar results.

Figure 6A depicts the decoding trends of the CNN–GA classifier

and CNN for S2. The two algorithms exhibited similar trends

after 20 epochs. However, several differences were observed

during the training and testing stages. Figure 6B compares

the stability and model loss between the CNN and CNN–GA

classifiers. The improved CNN–GA model outperformed the

traditional CNN algorithm, and its predicted targets varied

slightly in both the training and testing stages, with CNN–GA

loss values (after 20 epochs) of 1.024 and 1.456, respectively. The

loss values of the CNN model were comparatively higher (at

1.683 and 2.457, respectively) under the same conditions. The

analyzed results indicated that the hyperparameter optimization

strategy could significantly improve the CNN performance.

To further analyze the performance of the CNN–GA

algorithm in the FE-BCI system, the GA optimization process

(with genetic offspring of size 20) and confusion matrices

for CNN and CNN–GA were evaluated. Figure 7 shows the

results for S2. Figure 7A depicts the process of hyperparameter

optimization, where the x-axis indicates the population size, the

y-axis indicates the generation size, and the z-axis indicates the

accuracy across the different iterations. It is not difficult to find

that the classification accuracy was gradually improved. After 15

iterations, the accuracy improved slightly, though the difference

was not significant. This confirmed our previous hypothesis that

it was feasible to improve the accuracy of the FE-BCI system

using the GA optimization algorithm. The best hyperparameter

optimization result for S2 is {15, 13, 6, 286, 68}. The first three

numbers are the number of convolutional kernels, and the last

two are the number of fully connected layer neurons.

As shown in Figure 7B, a confusion matrix was applied to

demonstrate the superiority of the CNN–GA algorithm. The x-

and y-axes denote the true and predicted values, respectively.

Comparing the confusion matrices from the two methods, the

overall accuracy was seen to be improved by 4%, which further

demonstrates that the CNN–GAmodel can easily and accurately

predict positive samples.

FIGURE 6

Performance from the CNN and CNN–GA algorithms. (A) The accuracy result from CNN model and CNN combined GA model. (B) The loss

value from CNN model and CNN combined GA model.
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FIGURE 7

Hyperparameter optimization performance from the CNN combined GA. (A) The process of hyperparameter optimization by GA. (B) The

confusion matrix from CNN and CNN combined GA.

The performances obtained from the spatiotemporal

analysis showed that the CNN–GA model efficiently

distinguished the EEG signals from different facial expressions.

Table 1 further analyzes the testing classification for S2. The

average accuracy for S2 in the two-round five-fold cross-

validation was 97.71 ± 2.07%. The highest accuracy was 100%

and the lowest was 93.75%.

To compare the optimization performances of the

hyperparameters, the averaged classification accuracy and its

standard deviation with and without GA optimization are

listed in Table 2. The average accuracies achieved by CNN and

CNN–GA for all subjects were 85.94 ± 6.51 and 89.21 ± 3.79%,

respectively. The averaged kappa value increased from 0.816

to 0.856. The highest recognition accuracy was obtained for S2

(up to 97.71 ± 2.07%); the lowest accuracy was obtained for S4

(76.43± 7.13%). The proposed algorithm improved the average

accuracy by 3.27%, and the standard deviation was reduced by

2.72% for all subjects. The recognition accuracy for S11 was

significantly increased from 89.27 ± 6.53% to 94.79 ± 3.54%;

this increased the accuracy by 5.52% and decreased its standard

deviation by 2.99%. The average classification accuracy across

eight subjects exceeded 91.25%.

To statistically compare the performances of the two

classifiers, a paired t-test was conducted. The results showed a

considerable difference between the two algorithms (p < 0.05).

This also suggests that the hyperparameter optimization method

can effectively optimize the classifier performance. Despite

these general experimental results, inter-subject variability still

occurred. This phenomenon may have been caused by attention

attenuation or mental fatigue during repetitive facial tasks.

To determine the efficiency of the selected parameter-

optimization method in the FE-BCI system, the classification

accuracies of the traditional method and our proposed

method are also compared in Table 3. The average accuracy

under the CNN–GA method was 89.21 ± 3.79%; meanwhile,

the overall average accuracy of the traditional WT-BPNN

method was 81.60 ± 7.36%. The average accuracy increased

by 7.61%, while its standard deviation decreased by 3.57%.

The recognition accuracy for S7 increased significantly

from 79.17 ± 9.17 to 91.25 ± 2.75%; this increased the
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TABLE 1 O	ine accuracies of the CNN–GA for S2.

1 2 3 4 5 6 7 8 9 10 Mean

Acc (%) 97.92 100 97.92 95.83 93.75 95.83 97.92 100 100 97.92 97.71± 2.07

accuracy by 12.08% and reduced the standard deviation

by 6.42%.

Furthermore, a statistical analysis was conducted using a

paired t-test, to investigate whether the two algorithms had

any significant differences. The results indicated a significant

difference between the two methods, and the accuracy of CNN–

GA outperformed that of the combined WT–BPNN (P < 0.05).

The experimental results showed that the proposed optimization

algorithm achieved a higher classification rate and superior

robustness for all subjects.

To further investigate the performance of the proposed

method, the classification results achieved by the three different

methods are compared in Figure 8. The results verified that

the performance of the CNN–GA surpassed that of the

other two methods. One-way ANOVA was used to assess

the performances under the three conditions, and significant

differences were observed among the three conditions (P <

0.05). The experimental results further validated the efficiency

of the proposed method for detecting the characteristics of EEG

signals produced by different facial expressions.

The above results demonstrate that the optimizationmethod

proposed in this study is effective for decoding EEG signals for

FE-BCI systems.

Online experimental results

The offline experimental results demonstrated the feasibility

of the FE-BCI system, and the online experiment was designed

to verify the practicality of the optimized FE-BCI system

used for vehicle control. To preliminarily evaluate the online

performance of the FE-BCI system for controlling an intelligent

car, the success rate was calculated. During the online

experiment, all subjects could cross Targets 1 to 3 and then

return to the start position. Each session included three left-hand

lane changes, three right-hand lane changes, five accelerations,

and four decelerations. In the control stage, subjects were

required to maintain the same facial expression for 1.5 s to

generate a car movement decision; for the online task, this

time window was set to 0.25 s. The intelligent car remained

in the previous state until the new control commands had

been generated three times in the same. Figure 9 shows the

experimental scenario and a representative decision procedure

from S2.

The task success rates for each subject are listed in Table 4.

The average success rate across six sessions was 86.61 ± 6.06%,

TABLE 2 Averaged accuracies for each subject under the CNN and

CNN–GA methods.

Subject CNN CNN–GA

Test (%) Kappa Test (%) Kappa

S1 84.90± 5.77 0.80 87.06± 4.51 0.83

S2 94.48± 3.90 0.93 97.71± 2.07 0.96

S3 80.52± 4.74 0.74 85.21± 4.92 0.80

S4 72.80± 6.22 0.61 76.43± 7.13 0.69

S5 88.75± 7.13 0.85 91.46± 5.27 0.89

S6 92.29± 6.93 0.90 96.88± 2.75 0.96

S7 86.77± 6.56 0.82 91.25± 2.75 0.88

S8 82.55± 6.22 0.77 86.09± 3.96 0.81

S9 83.13± 3.29 0.78 84.90± 2.27 0.80

S10 92.81± 16.29 0.92 95.83± 3.38 0.94

S11 89.27± 6.53 0.91 94.79± 3.54 0.93

S12 95.63± 6.34 0.94 96.77± 2.19 0.96

S13 78.54± 5.97 0.71 81.88± 3.39 0.76

S14 81.46± 6.08 0.75 83.52± 3.02 0.78

S15 81.15± 6.06 0.75 85.21± 4.87 0.80

S16 90.00± 6.07 0.87 93.02± 3.90 0.91

Avg± Std 85.94± 6.51 0.816 89.21± 3.79 0.856

and the highest was 96.31 ± 2.71% from S10. The mean

standard deviation during the online experiment was 6.06%,

which further suggests the robustness of the proposed GA–CNN

in applications.

Discussion

Existing disparities between the selectivity of BCI systems

and their performance mean that there is plenty of room

for improvement in current BCI systems. In this study,

a novel FE-BCI system with an improved EEG decoding

method combining a CNN with GA was proposed. The

offline experimental results demonstrated that the improved

deep learning method was able to significantly improve the

model performance compared to the traditional method.

The online experimental results verified the feasibility of the

proposed FE-BCI system for practical applications. Notably,

the improved FE-BCI system outperformed the conventional

BCI system.
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TABLE 3 Averaged accuracies of each subject under WT–BPNN and

CNN–GA methods.

Accuracy (%)

Subjects WT–BPNN CNN–GA

Kappa Test (%) Kappa Test (%)

S1 0.754 81.56± 6.77 0.828 87.06± 4.51

S2 0.874 90.42± 6.57 0.970 97.19± 2.81

S3 0.683 76.25± 8.18 0.803 85.21± 4.92

S4 0.613 70.94± 7.60 0.686 76.43± 7.13

S5 0.774 83.02± 8.64 0.886 91.46± 5.27

S6 0.879 90.94± 4.07 0.958 96.88± 2.75

S7 0.722 79.17± 9.17 0.883 91.25± 2.75

S8 0.739 80.42± 6.25 0.815 86.09± 3.96

S9 0.742 80.63± 6.04 0.799 84.90± 2.27

S10 0.803 85.21± 6.48 0.944 95.83± 3.38

S11 0.828 87.08± 8.78 0.931 94.79± 3.54

S12 0.833 87.50± 10.71 0.957 96.77± 2.19

S13 0.667 75.00± 7.34 0.758 81.88± 3.39

S14 0.690 76.77± 7.26 0.780 83.52± 3.02

S15 0.701 77.60± 7.26 0.803 85.21± 4.87

S16 0.776 83.23± 6.63 0.907 93.02± 3.90

Mean accuracy 0.755± 0.076 81.60± 7.36 0.857± 0.084 89.21± 3.79

Significance of the FE-BCI system

Emotion computation plays an important role in human

communication and real-world applications. Although effective

computation has attracted considerable interest in the past few

years, the use of emotions in brain-controlled systems remains

problematic. Research in the affective BCI field has focused on

perception; numerous specific stimuli have been used to detect

different emotions (e.g., emotional videos, images, and music).

According to Jiang et al. different emotions can be evoked by a

video’s affective content and further applied in an emotion-based

BCI system (Jiang et al., 2019).

Jin and his colleagues reported on a new emotion-detecting

BCI system that employs a face-based image-induced paradigm

(Cheng et al., 2017). In another study, Thammasan et al.

studied a continuous music-emotion-recognition approach for

the construction of affective BCI (Thammasan et al., 2016).

However, it is difficult to detect the ground truth of human

emotional states using these methods. Most importantly, these

paradigms rely upon extra stimuli, which limits their real-

world applications.

In contrast to traditional emotion discrimination

techniques, it is more straightforward to recognize the

emotional stage using different facial expressions. Facial

expressions are the most common features of emotions and

the most direct mechanism of emotional representation.

Unfortunately, the inconsistency of emotion and expression

still has been the main challenge for this type of emotion-based

BCI system. Since the facial expression is a kind of body

movement, the combination of EEG signals from the prefrontal

and motor cortices could improve the robustness and credibility

of techniques that exploit these signals. This way could also

reduce the impact on the decoding accuracy of FE-BCI signals

when expressions are inconsistent with emotions.

In our approach, EEG signals from the prefrontal and motor

cortices were used to distinguish between different emotional

states. Furthermore, a highly robust EEG recognition model

was obtained by combining a CNN with a GA. To prove the

effectiveness of the proposed FE-BCI system, Table 5 shows

the results of representative EEG decoding algorithms for

expression-based brain-computer interfaces system in the past

few years. It can be seen that the decoding accuracy of the P300-

based visually evoked BCI systemwas still relatively high (Cheng

et al., 2017; Tian et al., 2018). The performance of this type

of the FE-BCI system depends entirely on the design of the

stimulator, which includes the size of the face picture, the space

between two pictures, and the number of target appearances.

In contrast, the method proposed in this study shows the

superiority in the film video elicitation with WT- MLPNN and

STFT combined Graph Regularized Extreme Learning Machine

(Ozerdem and Polat, 2017; Zheng et al., 2019), music elicitation

with Higuchi algorithm combined SVM (Thammasan et al.,

2016), the pictures of facial expression elicitation (Huang et al.,

2017) with mixed features and corresponding algorithms, and

the previously proposed actual facial expression-based WT-

BPNN decoding method (Toth and Arvaneh, 2017; Li et al.,

2018b). This improvement will further extend the broader

range of human-computer interaction. In contrast to previous

studies, we used only eight-channel EEG signals, and the average

accuracy was as high as 89.21 ± 3.79%. This will further extend

the possibilities of human–computer interaction.

E�cacy of CNN–GA

Owing to the inherent signal quality limitations of non-

invasive EEG signals, there remains a need to develop a novel

EEG decoding algorithm that improves the precision of facial-

expression-based BCI systems. Most conventional machine

learning algorithms set these features manually; thus, they

are highly dependent upon the experience of the researcher.

However, irrelevant features reduce the classifier performance.

Hence, selecting features relevant to the task will improve

the classification performance. One advantage of CNN is the

automatic extraction of discriminative features (Shajil et al.,

2020; Kwon and Im, 2021). Learning hidden features and

eliminating redundant information from the EEG signals will

enhance the overall capability of BCI systems. Using the

classification accuracy metric, Tables 3, 5 present a comparison
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FIGURE 8

O	ine classification accuracies and standard deviations under the three methods.

FIGURE 9

Online scenario and optimal recognition performance within a single session for S2. (A) The online scene. (B) One representative decision

procedure from S2.

of the improved CNN and traditional methods. The proposed

scheme outperformed other traditional feature extraction and

classification methods. Hence, automatic learning of relevant

features and eliminating redundant information from EEG

signals could effectively improve the recognition accuracy of

EEG signals under different expressing.

It is well-known that the performance of a neural network

model is highly dependent upon its hyperparameters (Ali et al.,

2019). However, most hyperparameter optimizations use the

enumeration method to solve this problem. Unfortunately,

the selection of inappropriate hyperparameters may result

in a poor classification performance. In contrast to selecting

hyperparameters using research experience, the proposed

scheme sets important hyperparameters using the GA

algorithm. GA has an excellent global search ability, which

can quickly search out the best solution in the solution space

without any prior knowledge. The GA’s paralleling process uses

numerous routes to find the optimal results. This characteristics

ensures that the best solution was found while avoiding fast-

falling trap of the optimal local solution (Rui et al., 2019).

Most important, the superior performance of the GA method

is its social ability, which makes it easier to link with other

algorithms (Chang and Yang, 2019). Therefore, embedding the

GA algorithm into the CNN model by setting this model as a

fitness function is an effective way to optimize the decoding

results of EEG signals. Table 2 presents a systematic comparison

and qualitative evaluation of the proposed model with and

without hyperparameter optimization. Superior accuracy was
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TABLE 4 Averaged accuracies of each subject in the online task.

Subjects Acc. (%)

Change left Acceleration Change right Deceleration Mean

S1 79.41 83.33 73.33 88.89 81.24± 6.55

S2 97.06 88.89 96.67 100 95.65± 4.75

S3 70.59 77.78 100 94.44 85.70± 13.81

S4 76.47 77.78 83.33 77.78 78.84± 3.06

S5 91.18 83.33 93.33 94.44 90.57± 5.01

S6 94.12 100 96.67 94.44 96.31± 2.71

S7 94.17 88.89 90.00 77.78 85.56± 6.76

S8 97.06 88.89 93.33 94.44 93.43± 3.41

S9 85.29 83.33 83.33 72.22 81.04± 5.95

S10 94.12 100 96.67 94.44 96.31± 2.71

S11 91.17 83.33 76.67 88.89 85.01± 6.46

S12 97.06 88.89 93.33 88.89 92.04± 3.95

S13 79.41 88.89 83.33 83.33 83.74± 3.90

S14 85.29 77.78 83.33 77.78 81.05± 3.85

S15 82.35 83.33 90.00 77.78 83.36± 5.04

S16 85.29 77.78 80.00 72.22 78.82± 5.41

Mean± Std 87.50± 8.22 85.41± 6.37 88.33± 7.98 85.76± 8.83 86.61± 6.06

achieved compared to the CNNmodel. This experimental result

verified that the GA-optimized hyperparameters improved

the classification performance and further resolved the time-

consumption problem of redundant information. These analytic

results demonstrate that the CNN–GA EEG decoding model

can produce a more interpretable model for exploring the

information hidden in EEG signals. This should promote the

development of a high-quality EEG decoding model.

Comparison with existing BCI systems

The practical performance of BCI systems is worth

discussing. Existing challenges to the practical implementation

of BCI systems include their accuracy, portability, and

robustness. The MI-based BCI system is a representative BCI

system used to improve the quality of life of disabled people. For

example, Miao reported an MI-BCI system that helped stroke

patients toward rehabilitation (Miao et al., 2021). However, this

type of BCI system does not readily facilitate daily activities,

owing to its low accuracy and limited commands. Recently,

a great surge in SSVEP-based BCI systems has been observed

in daily life applications. For example, Chen et al. produced a

robotic arm control mechanism using an SSVEP system (Chen

et al., 2021). Unfortunately, the performances of most existing

strategies are highly dependent upon extra stimuli. This partially

limits the mobility of the SSVEP–BCI system.

The development of the FE-BCI system provides an

additional option for solving the tradeoff between BCI

performance and stimulus reliance. Compared with the

traditional BCI system, the EEG signals from real facial

expressions can increase the portability of the FE-BCI system.

EEG decoding algorithms also play a vital role in BCI systems.

In this study, the combined CNN–GA model also ensured the

accuracy of the FE-BCI system. Hence, the improved FE-BCI

system is cost-effective, user-convenient, and more suitable for

practical tasks.

Limitations and future work

Despite the superior performance of the improved FE-BCI

system, certain aspects still need to be improved. One limitation

of this study is that only healthy subjects were considered, and

a relatively small number of subjects participated. In future

studies, clinical applications involving certain patient groups

and more subjects should be included. Moreover, enhancing the

generalizability of the classifier and studying the asynchronous

FE-BCI system should produce a better solution and provide

a more flexible and realistic BCI system. There remains the

motivation for finding more computationally and friendly

metrics to investigate the consistency between emotions and

expressions. Exploring a more advanced algorithm and effective

criteria to reduce inter-subject variability will remain a challenge

to be addressed in the future.
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TABLE 5 Performance comparison of previous work based on the FE-BCI.

References Modality Stimulus Method Parameters Acc (%)

Cheng et al. (2017) EEG (P300) P 300 evoked Features extracted by calculating the

percentiles of EEG; Classified by

Bayesian linear discriminant

analysis

Referring

previous study

91.9

Tian et al. (2018) EEG(N170) N170 extracted by dimensionality

reduction and normalization;

Classified by L1-Regularized

Logistic Regression

86.4

Thammasan et al.

(2016)

EEG Music Features extracted by Higuchi

algorithm; Classified by SVM

By experience 85.0

Ozerdem and Polat

(2017)

EEG Film chips Features extracted by wavelet

transform; classified by MLPNN

Referring

previous study

77.14

Zheng et al. (2019) Features extracted by STFT;

classified by Graph Regularized

Extreme Learning Machine

69.67

Huang et al. (2017) Picture

information

EEG

Face pictures

Facial

expression

Picture feature extracted by

AdaBoost and classified by neural

network classifier

EEG feature extracted by STFT and

classified by SVM

Burte-Force

Searching

82.75

Toth and Arvaneh

(2017)

EEG

Gyroscope

Facial

expression

Feature extracted by FFT; classified

by SVM-LDA-Bayesian

By experience 70.3

Li et al. (2018b) EEG Features extracted by wavelet

transform; classified by BPNN

81.28

The proposed study Features extracted and classified by

CNN

By GA 89.21

Conclusion

This paper proposed a novel deep-learning-based EEG

decoding method for an FE-BCI system, and the performance

of the proposed CNN–GA model was evaluated systematically.

The proposed method employed a CNN algorithm to decode

EEG signals and a GA to select the optimal hyperparameters

for the CNN model. To verify the model effectiveness, offline

and online experiments were conducted. When using the CNN–

GA algorithm in offline experiments, the averaged accuracies

were increased from 85.94 ± 6.51 to 81.60 ± 7.36% (for

the conventional CNN algorithm and traditional BPNN-based

method, respectively) to 89.21 ± 3.79%. Moreover, the online

experiment results demonstrated the practical applicability of

the method, and the average accuracy was increased up to

86.61 ± 6.06%. Both the offline and online experimental results

demonstrated the superiority of the proposed EEG decoding

method in the FE-BCI system. In summary, the CNN–GA

method is a significant achievement in the development of FE-

BCI systems. Future work will aim to develop an asynchronous

FE-BCI system using the CNN–GA model; this will further

improve paralyzed patients’ access to the real world.
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EMG feedback outperforms
force feedback in the presence
of prosthesis control
disturbance
Jack Tchimino*, Jakob Lund Dideriksen and
Strahinja Dosen*
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Aalborg, Denmark

Closing the prosthesis control loop by providing artificial somatosensory

feedback can improve utility and user experience. Additionally, closed-

loop control should be more robust with respect to disturbance, but this

might depend on the type of feedback provided. Thus, the present study

investigates and compares the performance of EMG and force feedback in

the presence of control disturbances. Twenty able-bodied subjects and one

transradial amputee performed delicate and power grasps with a prosthesis

in a functional task, while the control signal gain was temporarily increased

(high-gain disturbance) or decreased (low-gain disturbance) without their

knowledge. Three outcome measures were considered: the percentage of

trials successful in the first attempt (reaction to disturbance), the average

number of attempts in trials where the wrong force was initially applied

(adaptation to disturbance), and the average completion time of the last

attempt in every trial. EMG feedback was shown to offer significantly better

performance compared to force feedback during power grasping in terms

of reaction to disturbance and completion time. During power grasping with

high-gain disturbance, the median first-attempt success rate was significantly

higher with EMG feedback (73.3%) compared to that achieved with force

feedback (60%). Moreover, the median completion time for power grasps

with low-gain disturbance was significantly longer with force feedback than

with EMG feedback (3.64 against 2.48 s, an increase of 32%). Contrary

to our expectations, there was no significant difference between feedback

types with regards to adaptation to disturbances and the two feedback

types performed similarly in delicate grasps. The results indicated that EMG

feedback displayed better performance than force feedback in the presence

of control disturbances, further demonstrating the potential of this approach

to provide a reliable prosthesis-user interaction.

KEYWORDS

closed-loop control, somatosensory feedback, EMG feedback, vibrotactile
stimulation, prosthetic hand, grasping force control, disturbance
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Introduction

Upper limb loss has profound and lasting effects on the
quality of life of those affected (Shahsavari et al., 2020).
Amputees face significant challenges regarding the execution
of daily tasks (Antfolk et al., 2013), returning to the workplace
after their injury (Pomares et al., 2020; Shahsavari et al., 2020)
and participating in social activities (Kristjansdottir et al., 2020;
Shahsavari et al., 2020), while also potentially suffering from
phantom limb pain (Esquenazi, 2002). Nowadays, myoelectric
prostheses offer substantial restoration of lost hand functions;
however, despite the ever-growing sophistication of these
devices, users often find their control cumbersome and have
difficulty accepting them as an integral part of their anatomy,
resulting in high abandonment rates (Salminger et al., 2020).

Most commercial myoelectric prostheses are controlled
using a direct proportional approach (Peerdeman et al., 2011;
Roche et al., 2014), wherein the myoelectric signal is directly
mapped to the velocity of prosthesis movement. It has been
shown in the literature that closing the control loop by means
of artificial somatosensory feedback enhances the performance
and user experience of such control schemes, offering more
precise control and sense of embodiment (Antfolk et al., 2013;
Markovic et al., 2018a; Wilke et al., 2019; Bensmaia et al., 2020).
Normally, somatosensory feedback is implemented by reading
data from sensors embedded in prosthesis and conveying this
information to the user by stimulating their residual limb
mechanically or electrically (Jabban et al., 2022). Mechanical
stimulation is delivered to the skin using vibration motors,
rotational and linear actuators (Fu et al., 2019; Thomas et al.,
2019; Abd et al., 2022). Alternatively, electrical stimulation
can be delivered to the skin via non-invasive (Isakovic et al.,
2019; Vargas et al., 2022) or invasive means, through peripheral
nerve or even brain interfaces (Pasluosta et al., 2018). Different
feedback variables have been used in the past to provide artificial
exteroceptive and proprioceptive feedback, the most common
of which was the grasping force (Brown et al., 2015; Fu and
Santello, 2018; Fu et al., 2019; Vargas et al., 2022). More recently,
electromyography (EMG) feedback, where the user is informed
of the level of their muscle contraction (Dosen et al., 2015b;
Schweisfurth et al., 2016; Engels et al., 2019; Tchimino et al.,
2021) has been tested, demonstrating that this approach can
facilitate predictive control of prosthesis grasping.

However, it is well known that the efficiency of such control
strategies in clinical settings can be substantially impaired by
the various sources of disturbance that perturb the control
signals, which are largely absent from the rigorously controlled
laboratory environment (Yang et al., 2019). A disturbance in the
control signal will manifest itself as a different motor behavior
in the prosthesis, posing a risk of damage to grasped objects
(e.g., unintentional slipping or breaking). While the impact
of such disturbances and the users’ capability to adapt and
compensate for them has been tested (Hahne et al., 2017), such

an assessment has been seldomly performed regarding differing
feedback approaches. In general, despite many feedback
methods having been presented so far, using different feedback
variables, stimulation techniques, and encoding methods, such
approaches are rarely compared (Engels et al., 2019; Marasco
et al., 2021). Such a comparison, however, is important,
as it could be used to critically inform the selection and
implementation of feedback interfaces.

An intrinsic characteristic of closed-loop control is that
it should be more robust regarding disturbances and noise
injected into the system. However, in the context of prosthesis
control, the users’ ability to react and compensate for the
disturbance is likely affected by the specific type of feedback
they receive. For example, EMG and force feedback are
fundamentally different, therefore, it is reasonable to assume
that the effectiveness of disturbance mitigation will also differ
between them. In the case of EMG feedback, the user receives
online information about their muscle contraction (prosthesis
control input), even while the hand is in motion and not in
contact with an object. This allows predictive force control, since
the user can modulate or correct the generated EMG level even
before the prosthesis grasps an object. Conversely, in the case
of force feedback, the user must wait until the prosthesis makes
contact with an object to assess the generated force and correct if
necessary. Hence, it can be expected that EMG feedback would
facilitate the compensation of control disturbances. In this case,
the feedback would provide information on the control signal,
thereby allowing the user to notice if the signal is disturbed and
then modulate their muscle contraction in time, before the hand
closes around the object and an erroneous force is applied.

The aim of this study was, therefore, to assess and compare
the performance of prosthesis control when using EMG versus
force feedback in the presence of control disturbances. The
subjects were asked to perform a force matching task using a
sensorized myoelectric prosthesis over a number of trials. In
some of these trials, the myoelectric signal was amplified or
attenuated, unbeknownst to the subjects.

We hypothesized that the subjects would perform better
when using EMG feedback. More specifically, we assumed that
they would be able better compensate for the disturbances
as soon as they appeared; and that they would need fewer
attempts to adapt to the disturbance in case they failed to
compensate immediately. Lastly, a shorter completion time was
expected when EMG feedback was used thanks to the real-
time feedback flow.

Materials and methods

Subjects

Twenty healthy able-bodied subjects (28.5 ± 4.4 years),
with no prior experience in myoelectric control, participated
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in this study. The subjects were divided into two groups one
of which performed the experiment using EMG feedback and
the other using force feedback. In addition, one subject with
left transradial amputation performed the experiment in both
feedback conditions in two separate sessions. The amputee was
49 years old, had lost their arm 10 years prior and had been using
a simple myoelectric prosthesis for 8 years. Prior to the present
experiment, the amputee did not use a prosthesis equipped
with artificial somatosensory feedback. The subjects signed an
informed consent form before commencing the experiment,
which was approved by the Research Ethics Committee of the
Nordjylland Region (approval number N-20190036).

Experimental setup

The experimental setup for able-bodied subjects comprised
the following components: (1) a multifunctional myoelectric
prosthetic hand (Michelangelo hand, Otto Bock, Duderstadt,
Germany), with proprietary controller, two dry EMG electrodes
with embedded amplifiers (13E200, Otto Bock, Duderstadt,
Germany) and a USB Bluetooth dongle, (2) four C3 vibrotactors
and a control unit (Engineering Acoustics Inc., Casselberry,
FL, United States), (3) a standardized box-and-blocks test,
(4) a standard laptop (Lenovo ThinkPad P52, Intel Core i7
@2.60 GHz, 32 GB RAM), running Windows 10 Professional
and an 18′′ computer monitor. The able-bodied subjects carried
the prosthesis on their right forearm using a specially made 3D
printed mount (Figure 1A) and their wrist was immobilized
with a thermoplastic orthopedic splint (ORLIMAN), to enforce
isometric muscle contractions. The prosthesis was connected
to the laptop via Bluetooth, using the USB dongle, while the
tactor control unit was connected to the laptop via USB.
The program that controlled the prosthesis and generated
vibrotactile feedback was implemented in MATLAB Simulink
9.3, using the toolbox for closed-loop human-manual control
(Dosen et al., 2015a).

The prosthesis controller sampled the EMG, computed the
root mean square (RMS) in 100-ms windows, and sent the
data to the laptop at a sampling frequency of 100 Hz. The
electrodes were placed on the skin above the flexor carpi radialis
and extensor carpi ulnaris muscles (Figure 1A), identified by
palpation. The electrodes were attached to the skin with medical
adhesive tape and an elastic band was placed around the forearm
to ensure good electrode-skin contact and avoid electrode shift.
If the EMG signal quality was poor, the electrodes were removed,
a small amount of conductive gel was applied onto the skin
to improve the electrode-skin interface and the electrodes were
replaced.

The amputee subject was fitted with a custom-made socket,
to which the Michelangelo hand was connected (Figure 1B).
The socket was designed so that the electrodes were placed in the
same position as in the socket normally used by the amputee.

The C3 tactors produce vibrations perpendicular to the
skin, with adjustable gain and frequency. In this experiment,
the frequency was set at 230 Hz, which corresponds to the
maximum sensitivity of the Pacinian corpuscles (Gilman, 2002).
The four tactors were placed equidistantly around the upper arm
(Figure 1), approximately 5 cm proximal to the elbow, and were
held in place with an elastic band. The biceps brachii was used
as an anatomical landmark for the placement of the tactors. The
tactors’ gains were adjusted based on the sensation threshold
(ST), determined for each subject (see section “Experimental
protocol”). The tactors were placed around the upper arm of
the amputee in the same configuration as in the able-bodied
subjects.

The subjects stood in front of a desk, wearing the setup on
their arm (Figure 1). The height of the desk was adjusted so
that the subjects could execute the task comfortably, without
fatiguing by lifting their arm too high. The box and blocks setup
was placed on the desk in front of them and the computer
monitor was positioned approximately 50 cm away from them.

The Michelangelo prosthesis supports velocity control over
two degrees of freedom, namely hand opening/closing using
two grasp types (palmar and lateral) and wrist rotation. In this
experiment, the hand was configured to only open and close
in palmar grasp. The command input to the prosthesis was
a normalized myoelectric signal (ranging from 0 to 1). While
the hand was in motion, this signal was proportional to the
closing velocity and the grasping force generated upon contact
(i.e., stronger contraction, faster closing, and higher force). After
contact, a further increase in the prosthesis command input
proportionally increased the force. The force was measured
using sensors embedded in the hand, transmitted to the laptop
at 100 Hz and normalized to the maximum force produced by
the hand when it closed at the highest velocity. Importantly, the
prosthesis was non-backdrivable and after contact responded
only to an increase in the command input, while the grasping
force remained unchanged if the myoelectric signal decreased.
For instance, the subjects could relax their muscles and the
prosthesis would still maintain the generated grasping force.

Closed-loop prosthesis control

The closed-loop control scheme implemented in this study
is shown in Figure 2. The EMG RMS was normalized to 40%
of the maximum voluntary contraction (MVC) and then low
pass filtered using a second-order Butterworth filter with a cutoff
frequency of 1 Hz. These parameter values were selected based
on the results of our previous study (Tchimino et al., 2021),
investigating the optimal calibration of EMG feedback. The
normalized flexor signal was then mapped to the normalized
closing velocity, where 0 indicated no movement and 1
corresponded to the maximum closing speed of the prosthesis.
Hand opening was controlled using a simpler scheme, as it was
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FIGURE 1

(A) The able-bodied subject wearing C3 tactors, EMG electrodes and the mount with the Michelangelo hand attached. The drawings on the left
and right display the placement of the electrodes and tactors around the subject’s arm, respectively. (B) The amputee subject wearing the
custom-made socket, with the EMG electrodes embedded in the socket, and C3 tactors placed on their left upper arm. The box and blocks
setup is placed on the table in front of the subject.

not relevant for the task (see section “Experimental protocol”).
Specifically, when the normalized extensor signal surpassed a
threshold of 0.4, the hand opened to its full aperture. The
grasping force measured by the embedded force sensors was also
normalized (0 – no force, 1 – maximum force).

Two feedback types were implemented: EMG and force
feedback. Each subject received one of the two feedback types,
depending on the experimental group to which they were
assigned. For the feedback generation, the myoelectric and
force signals were divided into five intervals and the feedback
conveyed to the subject the discrete level of the signal, i.e., the
interval in which the EMG/force lay at any moment (Figure 2).
The threshold values for the intervals were {0.1, 0.2, 0.4, 0.65,
and 0.95}. The thresholds were selected so that levels 1 to 4
were of increasing size to mitigate the larger variability of EMG
arising from stronger muscle contractions (Ninu et al., 2014;
Dosen et al., 2015b; Schweisfurth et al., 2016; Tchimino et al.,
2021).

The feedback encoding scheme is shown in Figure 2. When
the feedback signal (EMG or force) was in the dead zone (<0.1),
no tactors were active. Each subsequent level was indicated
by activating the corresponding tactor, while level 5 activated
all four tactors simultaneously. Hence, the subject received
vibrations that moved from the dorsal aspect of their upper arm
to the lateral, volar, and medial aspects and finally all around the
upper arm, as the level of the feedback signal increased. Discrete
feedback in combination with spatial encoding has been shown
to be an easy to understand, effective approach for closed-loop
myoelectric control (Witteveen et al., 2012; Schweisfurth et al.,
2016; De Nunzio et al., 2017; Markovic et al., 2018a,b; Tchimino
et al., 2021).

The control of the Michelangelo hand using EMG and force
feedback is illustrated in Figures 3A,B, respectively. In the
case of EMG feedback, the subject received vibration as soon
as they activated their muscles, and the hand started moving
(Figure 3A). This allowed them to adjust their contraction level
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FIGURE 2

The closed-loop prosthesis control scheme. The electrodes outputted the RMS of the EMG, which was low-pass filtered and normalized to 40%
of the MVC, resulting in the myoelectric (ME) control signal. The ME signal was sent to the prosthesis as a closing velocity or opening command.
If EMG feedback was used, the ME signal was discretized into levels and conveyed back to the subject through the tactors. If force feedback was
used, the force was discretized and fed back to the subject using the same encoding. The position and numbering of the tactors in this diagram
is consistent with the one shown in Figure 1.

while the prosthesis was still in motion. Due to the proportional
relation between the myoelectric signal, prosthesis closing
velocity and grasping force, the subjects knew that the grasping
force level produced by the prosthesis would correspond to
the EMG feedback level that they received. Conversely, force
feedback was only activated after the prosthesis had closed and
applied force onto the object.

Disturbance scheme

The effect of control perturbations in myoelectric systems
has been investigated in the past. Examples include the
introduction of delays in the feedback delivery (Cipriani et al.,
2014), injecting additive noise in the myoelectric signal (Hahne
et al., 2017), artificial errors in visual feedback (Johnson et al.,
2017), and electrode shift (Prahm et al., 2019). In the present
study, the control disturbance was implemented by multiplying
the prosthesis control signal by a gain, unbeknownst to the
subjects (Figure 2, “disturbance gain selection” block) (Cipriani
et al., 2014). Similarly to an approach implemented in Earley
et al. (2017) and Earley et al. (2021), the gain of the myoelectric
signal was doubled or reduced by 33% at the beginning of
a disturbed trial. When the gain was doubled (high-gain
disturbance), the system became more sensitive with respect to
the nominal condition and the same muscle contraction now
generated a stronger myoelectric signal. This, in turn, produced
a faster closing of the prosthesis and a higher grasping force.
Reducing the gain (low-gain disturbance) had the inverse effect,

i.e., slower closing and lower force, with a larger contraction
required to reach a specific EMG and force level. The subjects
were not informed beforehand that any of the trials would be
disturbed, as explained in the next section.

Experimental protocol

The subjects were first asked to rest their arm for 10 s
while the baseline recording was performed. The mean value
of the recorded signal (EMG RMS) was then subtracted from
subsequent measurements. Afterward, the MVC was recorded
for both flexors and extensors. The subject contracted each
muscle maximally in three intervals of 5 s. The mean value of
the recorded signal was computed in each interval and the MVC
for each muscle was defined as the average of these three values.

Next, the sensation thresholds (ST) for the four C3 tactors
were determined. Each tactor was activated in sequence and its
gain, which corresponded to the vibration intensity, was slowly
increased in steps of 2%. The gain at which the subject reported
that they started feeling a vibration was defined as the ST. The
gain of each tactor was subsequently set to ST + 0.4 × (MAX-
ST), where MAX is the maximum gain (Tchimino et al.,
2021). This value was selected as it elicited clear and localized
vibrations, which were not intrusive.

The feedback training was then conducted, wherein the five
levels of vibrotactile feedback were presented sequentially to the
subjects, while the experimenter verbally indicated which tactors
were active. A short session of reinforced learning followed,

Frontiers in Neuroscience 05 frontiersin.org

52

https://doi.org/10.3389/fnins.2022.952288
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-952288 September 14, 2022 Time: 16:37 # 6

Tchimino et al. 10.3389/fnins.2022.952288

FIGURE 3

The illustration of EMG (A) and force (B) feedback. The EMG and force traces in both panels A, B are denoted with blue and red, respectively.
The black dotted line in both plots indicates the feedback level. The alternating color bands are the EMG and force ranges. The touch onset and
the moment that the open command was sent to the hand are denoted with vertical black lines. Note that levels 1–4 are of progressively larger
size, to account for the higher EMG variability in stronger contractions.

where the stimulation patterns for levels 1–4 were delivered in
a pseudorandom order and the subject was asked to identify
each pattern. If the subject reported the wrong pattern, the
experimenter provided the correct answer. Each pattern was
presented 10 times in total. In the validation phase, the test was
repeated, without the experimenter providing verbal feedback. If
the identification rate was above 90%, the feedback training was
deemed successful and if not, the procedure was repeated. Most
subjects achieved a success rate of above 90% immediately after
the first run, indicating that the feedback encoding was indeed
simple to learn and interpret (Tchimino et al., 2021).

The subjects then performed the main experimental task.
They used the prosthesis equipped with the vibrotactile feedback
to perform a functional task inspired by the commonly used box
and blocks test (Hebert and Lewicke, 2012; Raveh et al., 2018).
The task included grasping wooden blocks with the prosthesis
and transporting them from one compartment to the other (e.g.,

from the left to the right compartment). Once ten blocks were
moved, the direction was changed (e.g., from the right to the
left compartment). However, in this “sensorized” version of the
test, the subjects were asked to grasp each block by exerting a
specific grasping force level, indicated on the computer screen.
The desired force levels were 2 and 4, which denoted delicate
and power grasping, respectively. If the generated force level in
a specific trial did not correspond to the target level, the subject
repeated the trial. The experimenter also clarified that the forces
could only be corrected upwards but not downwards (as the
prosthesis was non-backdrivable).

When a trial was successful, a high-frequency beeping
sound was generated by the computer. A lower-frequency sound
indicated that the subject had failed, and the trial had to be
repeated. The subjects were allowed a maximum of 10 attempts
to successfully complete each trial. If they were successful in a
smaller number of attempts or if they were still unsuccessful in
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their 10th attempt, they proceeded to the next trial. All subjects
managed to complete all the trials within the 10-attempt limit.

The subjects first performed a 100-trial training session (50
trials for each of force levels 2 and 4), to familiarize themselves
with the setup and the task. At this stage, they could see their
EMG signals on the monitor, as well as their current target
force level, generated force, EMG level and remaining number
of attempts. Before commencing, the experimenter verbally
explained the setup, the prosthesis control and feedback scheme,
and the task to be performed. Initially, the subjects were asked to
perform the task while seated and with the prosthesis placed on
the desk, so that they could focus on familiarizing themselves
with the feedback. After approximately 25 successful trials,
the prosthesis was mounted onto the subjects’ arm and the
subjects were asked to stand in front of the desk, facing the
box and blocks kit and the monitor. They then performed the
experimental task until they reached a total of 100 training trials.

After that, the subjects performed the main experiment,
comprising three sets of 100 trials. Each set was performed in
batches of 2 min, until a total of 100 trials was completed. There
was a pause of approx. 30 s between the batches and a longer
break between the sets. During the trials, the subjects could only
see their target force, remaining attempts and a timer counting
to zero from 120 s on the monitor. They were also instructed to
complete as many successful trials as possible within a 2-minute
batch. The time constraint was introduced to promote natural
and intuitive control, while generating consistent movement
profiles (Earley et al., 2017).

The first 100-trial run always included only non-disturbed
trials to ensure that the subject was well trained in using the
feedback and accomplishing the task in the nominal condition.
The second and third runs included 30 disturbed trials (15
in each of the target levels) at a single disturbance gain
(random order across the two sets). The order of the trials
was pseudorandomized, with a constraint that two consecutive
disturbed trials were separated by at least one non-disturbed
trial. The sequence of the two disturbance gains was randomized
among subjects, to minimize any training effects.

The able-bodied subjects performed the task with one of
the feedback types (EMG or force), depending on the group
to which they were allocated, while the amputee performed
the experiment using both types. The amputee performed the
two experimental sessions two days apart, first with force,
then with EMG feedback. The experimental sessions lasted
between 2 and 2.5 h.

Data analysis

The outcome measures were: (1) the first attempt success
rate (SR) defined as the percentage of trials successful in the
first attempt, (2) the average number of attempts in the trials
that were unsuccessful in the first attempt, and (3) the average

completion time of the successful (last) attempt in each trial. The
latter was defined as the time from the moment the myoelectric
control signal crossed the dead zone until the moment the
maximum force was applied. The outcome measures were
computed separately for the two types of disturbed trials
(high- and low-gain disturbance), as well as for the non-
disturbed trials.

The SR was deemed the most important measure, since an
erroneous force potentially results in slippage or breakage of
an object. In disturbed trials, this metric can be regarded as a
measure of the subjects’ reaction to the disturbance, i.e., their
ability to compensate the disturbance as soon as it appears (in
the first attempt).

The average number of attempts in trials that were
unsuccessful in the first attempt is an indication of how
effectively the feedback assisted the subjects in adjusting their
control input (muscle contraction) across attempts. In disturbed
trials, therefore, this can be regarded as a measure of adaptation
to the control disturbance.

The metrics used in the analysis were computed for each
subject and each gain using 30 disturbed trials at that gain.
The baseline metrics were also computed, using 100 initial,
non-disturbed trials. The results of the amputee subject were
interpreted independently and were not considered in the
statistical analysis.

Outliers were defined as values above or below 1.5 times the
upper and lower quartiles, respectively. The data was tested for
normality using the Lilliefors test. The outcome measures were
compared between the two feedback types, using an unpaired
t-test or a Mann-Whitney test, depending on the outcome of the
normality test. The statistical toolbox of MathWorks MATLAB
2021a and IBM SPSS 27 were used for the statistical analysis. The
results are reported in the text as “median {interquartile range}”
and the threshold for significance was set at p < 0.05.

Results

Figure 4 displays the EMG and force traces in normal
and disturbed trials with EMG and force feedback. In normal
trials (plots A and D), the subjects produced an appropriate
muscle contraction (level 2), which generated the desired force
(also level 2) once the prosthesis closed around the object,
accomplishing the task in a single attempt.

In the high-gain disturbed trials with force feedback (plot
E, delicate grasping and plot F, power grasping), the subjects
needed multiple attempts to adapt to the disturbance and
complete the trial. With respect to the nominal case, the high
gain increased the amplitude of the myoelectric signal generated
in response to the same muscle contraction. Therefore, the
myoelectric signals (gray lines) generated by the subjects were
initially too high, in fact saturated, for both delicate (plot E)
and power grasping (plot F). Consequently, the generated force
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FIGURE 4

Example myoelectric (ME) and force traces recorded during normal (A,D) and high-gain disturbed (B,C,E,F) trials when using EMG feedback
(A–C) and force feedback (D–F). The green and blue lines correspond to the ME signal and the force applied in the last (successful) attempt in a
trial, respectively. The purple lines are the ME signals produced by the subjects before the signal is multiplied by the disturbance gain. The gray
lines are the ME signals generated in previous attempts of the same trial. The ME signals of all attempts are aligned on their respective contact
points (when the prosthesis contacts the object), denoted by the vertical red lines. The target levels in each trial are highlighted with blue (A–C)
and red (D–F) colored bands.

overshot the target (object “broken”). In subsequent attempts,
the subjects gradually reduced their contraction levels, finally
generating the appropriate contraction (green line), to reach the
target force in the third attempt.

Conversely, with EMG feedback (Figures 4B,C) the subjects
received online information about the generated control signal.
Therefore, they immediately compensated for the overshoots
caused by the high-gain disturbance by decreasing the muscle
contraction with respect to that used in the nominal trials.
Hence, they performed the task successfully already in the first
attempt.

Figures 5A,B illustrate the power grasping trials with a low
gain disturbance using EMG and force feedback respectively.
In both cases, the subjects were successful in the first attempt.
With reduced gain, the prosthesis closes more slowly for a
given muscle contraction, creating a smaller grasp force. When
using force feedback, therefore, the subjects initially undershot
the force. After the hand made contact with the object, the
subject received the feedback, realized that the force was too
low and increased the muscle contraction until the desired
force was achieved, resulting in a prolonged task duration
(completion time of 3.85 s). With EMG feedback, on the
contrary, the subject reacted similarly as in the high-gain

case. They could immediately “feel” (via feedback) that the
nominal contraction was not enough and then increased their
contraction to level 4, effectively compensating for the decrease
in gain. The task was, therefore, accomplished without force
corrections and, hence, in a shorter time (completion time of
1.68 s).

Regarding the results in non-disturbed trials, EMG feedback
outperformed force feedback slightly but significantly in terms
of SR in power grasping (median {IQR} of 76% {10} against 71%
{2.6}, p = 0.035) and number of attempts in delicate grasping
(2.16 attempts {0.25} against 2.5 attempts {0.13}, p = 1.9e-
6). However, force feedback resulted in significantly shorter
completion time in delicate grasping (1.95 s {0.44} for force,
against 2.37 s {0.46} for EMG feedback, p = 0.04). In all other
cases, the difference in performance between the two feedback
types was not significant.

The summary results for the SR in disturbed trials are
displayed in Figure 6. The performance for EMG and force
feedback were similarly high in both delicate and power
grasping when a low-gain disturbance was introduced in the
control signal. In the case of high-gain disturbance, however,
the subjects performed significantly better (p = 0.044) in power
grasping with EMG feedback (73.3% {26.7}) than with force
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FIGURE 5

Example EMG and force traces recorded during low gain disturbed trials from subjects using EMG (A) and force feedback (B). The green and
blue lines correspond to the myoelectric (ME) signal and the force applied in the last (successful) attempt in a trial, respectively. The purple lines
are the ME signals produced by the subjects before the signal is multiplied by the disturbance gain. The contact points (when the prosthesis
contacts the object) are denoted by the vertical red lines. The target levels in each trial are highlighted with blue and red colored bands.

FIGURE 6

The percentage of trials successful in the first attempt (first-attempt SR), for both force targets. Boxplots (A,B) correspond to delicate and power
grasps, respectively. The blue and red boxplots represent the summary performance with EMG and force feedback, respectively. The orange
asterisks denote the performance of the amputee subject. The boxplots indicate the median (horizontal line), interquartile range (boxes),
min/max values (whiskers), and outliers (circles). Statistically significant pairs are marked with horizontal bars (∗p < 0.05). “High Gain” and “Low
Gain” denote the disturbance conditions.

feedback (60% {20}). In delicate grasping, the median percentage
for force feedback (33.3%) was also lower compared to EMG
feedback (46.6%) but the difference was not significant.

The median number of repeated attempts ranged between 2
and 3 in all disturbed conditions, with no significant difference
between the feedback types.
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The results regarding the completion time of the last attempt
in disturbed trials are shown in Figure 7. The completion time in
delicate grasping was similar across all conditions (Figure 7A),
with a median ranging between 1.9 and 2.5 s. In power grasping
(Figure 7B), the results were similar for the two feedback types
in the case of high-gain disturbance. However, in the low-gain
disturbed trials the subjects using force feedback (3.64 s {0.73})
needed a significantly (p = 0.046) longer time to reach the target
compared to those who used EMG feedback (2.48 s {1.66}).

The results regarding the amputee subject are denoted with
asterisks in Figures 6, 7. Regarding the SR (Figure 6), the
subject performed better with EMG feedback in three out of
four conditions, with the largest difference in performance
for delicate grasping and low-gain disturbance (93.3 against
73.3%). The SR for power grasping and high-gain disturbance
was higher when EMG feedback was used (66.6 against 60%,
Figure 6B) and the subject performed markedly faster in low-
gain disturbed power grasp trials with EMG feedback (3.14
against 5.4 s, Figure 7B).

Discussion

This study compared the performance of prosthesis grasping
in a force-matching task with EMG and force feedback when
the prosthesis control signal was disturbed. The disturbed
trials, which appeared unbeknownst to the subjects and
were interspersed with normal trials, were characterized by a
gain that amplified or attenuated the control signal, thereby
substantially altering the response of the prosthesis to the
subjects’ muscle activity. Overall, the results imply the advantage
of EMG over force feedback, albeit in fewer conditions than
initially hypothesized.

We assumed that the prolonged training would allow the
subjects to develop internal models for the control of the
prosthesis and establish the mapping between the desired
grasping force and the contraction required to achieve that force
(Dosen et al., 2015c; Shehata et al., 2018). However, the internal
models acquired during the training would not be valid for the
disturbed trials. Since the force feedback only becomes available
after the hand has grasped the object and produced force, the
altered system dynamics would not be immediately obvious
to the subjects and, consequently, the execution of the task
would be compromised. Therefore, our assumption was that the
subjects using force feedback would achieve lower performance
in the disturbed trials, compared to those using EMG feedback.
Specifically, the high gain disturbance was expected to lead to
overshooting of the target force in the first trial and longer
adaptation, while the low gain disturbance would prolong the
completion time of the task in disturbed trials with force
feedback.

Indeed, EMG feedback enabled the subjects to better react to
the high-gain disturbance and achieve higher success in the first

attempt. The ability to generate the correct force level despite the
disturbance reduces the likelihood of accidents, such as slippage
or breakage. However, the performance was significantly better
only in the case of power grasping (Figure 6B). The slightly
better baseline (non-disturbed) performance of EMG feedback
in power grasping became, therefore, even more expressed in the
presence of high-gain disturbances. Surprisingly, the subjects
could not exploit the EMG feedback as effectively during delicate
grasping, where we, in fact, expected the largest advantage. This
is likely due to a combination of factors, including the narrower
EMG range corresponding to level 2 (compared to level 4), high
level of disturbance (doubled gain) and a limited amount of time
available (until object contact) to correct the EMG based on
the online feedback. And indeed, the subjects reported that they
often became aware of the overshoot, but the hand had already
closed around the block and applied a higher-than-desired force,
at which point the subjects had to repeat the task.

In the case of low-gain disturbance, the two feedback types
achieved similar SR for both grasp types. This can be attributed
to the smoother myoelectric signal due to lower sensitivity and
higher stability of the system resulting from the reduced gain.
However, and following our initial assumption, the subjects
indeed required a significantly longer time to complete a
power grasp with force feedback than with EMG feedback
(Figure 7B). Presumably, the subjects initially attempted to
generate a contraction that they believed will be close to the
target, based on their training. EMG feedback then allowed the
subjects to immediately react to a lower myoelectric signal level
and modulate upwards, even before the prosthesis contacted
the object, thus increasing the prosthesis closing speed. On the
other hand, when using force feedback, the subjects had to
wait until the force was applied on the object to realize that
their contraction was too low, at which point they used the
feedback to gradually increase the force step by step, through
the levels. Although slow, this strategy still allowed for good
force control and disturbance compensation already in the first
attempt (hence similar success rates as EMG feedback).

The similarity in the numbers of repeated attempts when
using either feedback type in both grasp types was another
surprising result. As mentioned before, force feedback was
expected to underperform compared to EMG feedback, with the
subjects adapting to the disturbances over a larger number of
attempts per trial. There was, however, no significant difference
in the performance of the two feedback types in disturbed trials.
Given that the subjects needed only 1-2 additional attempts to
adapt to the disturbance, the adaptation appeared not to have
been difficult overall. This point, in combination with intrinsic
feedback from the prosthesis, might be the reason for the lack
of difference between the feedback types. Namely, even though
the subjects did not have explicit information about the change
in the control signal gain with force feedback (unlike with EMG
feedback), they could estimate this indirectly, for instance, by
observing the prosthesis motion (e.g., the prosthesis responding
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FIGURE 7

The last attempt completion time for both force targets. Boxplots (A,B) correspond to delicate and power grasps, respectively. The blue and red
boxplots represent the summary performance with EMG and force feedback, respectively. The orange asterisks denote the performance of the
amputee subject. The boxplots indicate the median (horizontal line), interquartile range (boxes), min/max values (whiskers), and outliers (circles).
Statistically significant pairs are marked with horizontal bars (∗p < 0.05). “High Gain” and “Low Gain” denote the disturbance conditions.

slower/faster than normal). Such incidental information might
have been enough to drive the adaptation across repeated
attempts. The use of incidental cues in prosthesis control has
been reported in the past (Mann and Reimers, 1970; Prior et al.,
1976) and investigated in more recent studies (Markovic et al.,
2018b; Wilke et al., 2019; Gonzalez et al., 2021). These studies
indeed showed that the subjects could accurately estimate the
prosthesis closing velocity from visual observation of prosthesis
motion (Wilke et al., 2019) and use this information together
with natural muscle proprioception to control the grasping force
(Markovic et al., 2018b).

Importantly, not only did the performance of the amputee
subject follow the trends defined by the able-bodied subjects,
but the EMG feedback seems to have been particularly beneficial
in the case of the amputee. This is a promising result for the
prospective clinical application of this approach. Moreover, the
placement of the tactors on the upper arm did not have an
impact on the quality of the feedback, since it remained intuitive
and easily interpretable.

The gain disturbances used in the present study intend
to simulate the changes in the amplitude of EMG signal that
can arise during clinical applications (e.g., electrode shift or
sweating) (Hahne et al., 2017; Yang et al., 2019). These factors
can lead to either decreases or increases in the myoelectric
signal amplitude (e.g., an electrode moving away from or
closer to the signal source), and this corresponds to low and
high gain disturbances of the present experiment, respectively.
Nevertheless, the aim of this study was not to exhaustively

investigate different types of signal changes but to demonstrate
a fundamental insight, i.e., that different feedback types enable
different disturbance compensation strategies. Other types of
signal artifacts (e.g., transient changes), as well as disturbances
during real-life uses, remain to be tested.

With EMG feedback, the subjects are likely to receive
stimulation for a longer time (before and after contact)
compared to force feedback (after contact only). However,
the potential desensitization of the subjects due to prolonged
constant stimulation was not assessed in the present study.
Nevertheless, habituation is most pronounced when a prolonged
stimulation is delivered to the same area on the skin (Buma et al.,
2007). Considering that the EMG feedback is characterized by
dynamic stimulation profiles (shift of active tactors) as well as
the fact that the subjects can relax their muscles (no stimulation)
after an object has been grasped (non-backdrivable prosthesis),
we assume that desensitization will not be a serious limitation,
even after prolonged use of a prosthesis equipped with EMG
feedback. Indeed, none of the subjects reported difficulty in
perceiving the feedback in the present experiment, despite the
completion of many trials. Future studies could also be devoted
to the systematic assessment of the subjective experience when
using different feedback types.

Although the present study assessed the short-term
adaptation to disturbance across successive trials, the potential
learning over a longer time scale was not investigated.
Nevertheless, it would be interesting to assess the evolution
of disturbance compensation strategies as the user becomes
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increasingly familiar with closed-loop myoelectric control. Such
assessment could elucidate if and how the type of feedback
affects the learning over extended use.

The present study explored how the performance in a
functional task with a myoelectric hand prosthesis integrated
with EMG and force feedback differed in terms of response
to disturbances in the prosthesis control signal. Overall, the
results of this study indicate that, when a disturbance gain is
introduced, the two feedback types perform similarly during the
execution of delicate grasping, but EMG feedback provides a
significant advantage in power grasps. A control scheme that
displays better performance in the presence of a disturbed
control signal is an important step toward a more reliable
prosthesis-user interface.
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Introduction: Adding sensory feedback to myoelectric prosthetic hands was

shown to enhance the user experience in terms of controllability and device

embodiment. Often this is realized non-invasively by adding devices, such

as actuators or electrodes, within the prosthetic shaft to deliver the desired

feedback. However, adding a feedback system in the socket adds more

weight, steals valuable space, and may interfere with myoelectric signals. To

circumvent said drawbacks we tested for the first time if force feedback from

a prosthetic hand could be redirected to another similarly sensitive part of the

body: the foot.

Methods: We developed a vibrotactile insole that vibrates depending on the

sensed force on the prosthetic fingers. This self-controlled clinical pilot trial

included four experienced users of myoelectric prostheses. The participants

solved two types of tasks with the artificial hands: 1) sorting objects depending

on their plasticity with the feedback insole but without audio-visual feedback,

and 2) manipulating fragile, heavy, and delicate objects with and without

the feedback insole. The sorting task was evaluated with Goodman-Kruskal’s

gamma for ranked correlation. The manipulation tasks were assessed by the

success rate.

Results: The results from the sorting task with vibrotactile feedback showed

a substantial positive e�ect. The success rates for manipulation tasks with

fragile and heavy objects were high under both conditions (feedback on or

o�, respectively). The manipulation task with delicate objects revealed inferior

success with feedback in three of four participants.

Conclusion: We introduced a novel approach to touch sensation in

myoelectric prostheses. The results for the sorting task and the manipulation

tasks diverged. This is likely linked to the availability of various feedback

sources. Our results for redirected feedback to the feet fall in line with previous

similar studies that applied feedback to the residual arm.

Clinical trial registration: Name: Sensor Glove and Non-Invasive Vibrotactile

Feedback Insole to Improve Hand Prostheses Functions and Embodiment

(FeetBack). Date of registration: 23 April 2019. Date the first participant was

enrolled: 3 September 2021. ClinicalTrials.gov Identifier: NCT03924310.

KEYWORDS

upper limb prosthesis, sensory feedback, touch sensation, grip force, vibrotactile

insole, discrete feedback
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1. Introduction

The human hand allows us to explore the environment

by touch sensation such that we feel the temperature, texture,

and applied force. Myoelectric control for prosthetic hands

advanced in terms of dexterity and allows for complex grip

patterns. However, there is no commercially available system

with sophisticated touch sensation1. There are only a few

commercially available hands that provide information about

initial contact and object release. Even less devices provide

information about the grip force via vibrations within the socket

of the prosthesis. Yet, adding touch sensation to prosthetic

hands has been an ongoing topic in research in the past

decades (Antfolk et al., 2013; Sensinger and Dosen, 2020). The

motivation behind adding touch sensation lies in improving

the system control and strengthening the user’s feeling of

agency and body ownership. Furthermore, the lack of sensory

feedback in prostheses is a leading cause of device abandonment

among other functional issues (difficult to control, slow response

speed, poor dexterity) and comfort issues (temperature, weight,

poor fit) (Smail et al., 2021; Jabban et al., 2022). The information

from touch sensation that is commonly fed back are the grip

force (or individual finger force), proprioception of the hand

aperture, initial contact and object release, and grip selection (for

hands with multiple degrees of freedom). Various approaches

have been tried which can be divided into two categories:

invasive and non-invasive methods. Invasive methods feed

back the touch information through implanted electrodes that

directly stimulate the nerves. Such methods achieve remarkable

results with respect to user acceptance and improvement of

control (Graczyk et al., 2018; Schiefer et al., 2018; D’Anna et al.,

2019). However, improvements come with risks associated with

surgery. Alternatively, information from touch sensation can be

delivered with non-invasive methods. Commonly used channels

are of mechanotactile, vibrotactile or electrotactile nature

(Stephens-Fripp et al., 2018; Masteller et al., 2021). Vibrotactile

systems employ vibrational motors and are perceived by

receptors in the skin. They can be used to transmit information

by varying the stimulation amplitude, frequency, duration,

and shape. Vibration is used substitutionary when the source

of the feedback is pressure, e.g., on the fingers of the

prosthetic hand. Vibrotactile systems were shown to allow

for simple to interpret signals (Stephens-Fripp et al., 2018).

However, they introduce a short delay due to the ramp-

up time and are limited in the bandwidth which in turn

limits the capacity to transmit information. Electrotactile

systems stimulate cutaneous fibers. This allows transmitting the

sensations of vibration and pressure (Kaczmarek, 2000). Recent

advances in electrotactile feedback showed promising results

for intuitive non-invasive feedback. Gholinezhad et al. (2021)

1 https://bionicsforeveryone.com/current-options-for-bionic-hands

reported that the participants’ central nervous system could

adopt the feedback subconsciously within a training time of

less than 5 min. However, the perception depends heavily

on the user it is applied to and the minute conditions of

the skin (e.g., sweat). Thus, frequent readjustment of the

stimulation parameters is required (Stephens-Fripp et al., 2018).

Mechanotactile systems employ tactors to deliver modality

matched sensations of pressure. However, the used tactors are

often too bulky and energy demanding for portable systems

(Antfolk et al., 2013). Many sources state the obvious benefits

of touch feedback (Sensinger and Dosen, 2020). Furthermore,

users rank the addition of touch feedback to myoelectric

hand prostheses as a top priority (Wijk and Carlsson, 2015).

Nevertheless, there is no consensus on the actual benefit of

non-invasive feedback in clinical applications outside the lab

(Markovic and Schweisfurth, 2018; Wijk et al., 2020). The

benefits were often shown under limitations such as obstruction

of incidental feedback (vision, hearing, motor vibrations of

the prostheses) or experimental tasks of routine grasping that

could be executed by feedforward control alone (Sensinger and

Dosen, 2020). Feedforward control is a crucial aspect of human

motor control and it is governed by the individual’s internal

model and understanding of cause to effect (Engels et al.,

2019; Sensinger and Dosen, 2020). The Feedforward control is

subject to noise. Therefore, feedback sources are necessary to

detect and correct mismatches between the outcome and the

expectation. However, the internal model can be trained with

feedback, e.g., learning how to use a prosthetic device under

known circumstances as demonstrated with EMG biofeedback

(Dosen et al., 2015; Schweisfurth et al., 2016). Another example

was shown by Markovic and Schweisfurth (2018) where the

participants learned the necessary feedforward control during

routine tasks. Eventually, the participants performed equally

well with and without feedback in the given tasks. However,

inappropriate feedback strategies were found to degrade the

internal model (Engels et al., 2019) and incidental feedback

such as vision alone may also just outperform other strategies

depending on the task (Wilke et al., 2019).

In our previous research, we tested various feedback

strategies such as tactor based feedback, vibration with coin

vibration motors, and combinations of both (Li et al., 2016;

Huang et al., 2017). Furthermore, we tested different sites to

redirect the feedback, i.e., the residual limb, the upper arm, or

the contralateral hand. The focus lies in redirecting the feedback

to the phantom map of amputees (Huang et al., 2018), where

applicable. However, we found two main limitations to these

approaches:

1. Only a few people have a phantom map which limits the

application.

2. If present, phantom maps are often found on the residual

limb. Redirecting the feedback to that region results in

adding more devices to the already burdened limb, steals
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valuable space within the socket, and may interfere with

surface electromyographic signals (sEMG) for myoelectric

control.

Therefore, we searched for a different body part to which

to apply the feedback. We settled for the sole of the feet

because it is among the most sensitive parts of the human body

(Kennedy and Inglis, 2002). Moreover, this answers the user

need of reducing the weight and the complexity of the prosthetic

socket (Jabban et al., 2022). To favor miniaturization, we chose

to rely on vibrotactile information from coin vibration motors

without additional tactors. These motors can be embedded

within an insole which can be worn within a shoe. This

adds a design benefit by hiding the device inside the shoe

as opposed to wearing it openly, e.g., as a vibrational cuff

around the upper arm or the shanks. The viability of such

feedback was already shown in mobile robot control (Jones

et al., 2020) and in supported navigation while walking

(Velázquez et al., 2012; Meier et al., 2015). Importantly,

neither research reported burdening of the participants by

e.g., additional weight or induced gait disturbances. A similar

approach (Sasaki et al., 2018) introduced body-worn robotic

arms. These arms are piloted with the feet and the hands’

touch sensation is fed back to the sole of the feet. However,

the authors did not comment on the effect of the feedback

and stated that they intended to improve it in a future

step.

In a preliminary trial, we tested three feedback settings:

1. Continuous feedback for each finger applied to the toes.

2. Continuous feedback from the grasp force applied to the

pinkie toe.

3. Discrete feedback from the grasp force applied as a spatially

coded ramp along the foot.

We observed fair results with the discrete feedback

which was likely the easiest to interpret (Aboseria

et al., 2018). Therefore, we settled for a spatially coded

discrete feedback device with a continuous sensing

device for FeetBack. The sensed modality is the grip

force. Users ranked it the top priority for sensory

feedback in surveys with over hundred participants

(Lewis et al., 2012; Smither et al., In Press).

The goal of this pilot study was to test the applicability

of discrete tactile feedback applied to the feet to partially

emulate touch sensation, i.e., grip force, of a prosthetic

hand. We did not test to emulate proprioception, although

the presented device should allow for it (similarly to

Štrbac et al., 2016). Thus, we first describe the FeetBack

system followed by the study participants and the

experimental tasks. Eventually, the results are presented

and discussed.

2. Methods

2.1. FeetBack system

2.1.1. System overview

The FeetBack system consists of a sensing glove and a

feedback insole (Figure 1). The glove is equipped with one

pressure sensor on the index finger and one on the thumb.

The sensed force is sent wirelessly (Adafruit M0 RFM69 Packet

Radio) to the insole, where the value is converted to a distinct

force level. Depending on the force level, either none or one of

five embedded vibration motors starts buzzing. The conversion

from force to the motor is exponential to allow for a finer

distinction at low forces. The force is updated at a frequency of

20 Hz. The transmission latency from the glove to the insole is

44 ± 3 ms which is sufficiently low for the intended application

(Ismail and Shimada, 2016).

2.1.2. Subunits of the system

2.1.2.1. Glove

The glove was modeled especially for the iLimb quantum

(Össur hf, Iceland) and can be donned on the index finger

and thumb. It is made of silicone (Sili-Sil RTV-33 translucent,

shore hardness A 33) and has embedded sensors (SingleTact

10 N, 8 mm) on the fingertips. The wires from the sensors

to the microcontroller board are bent in waves to allow the

silicone to stretch when the prosthesis is moving. Both sensor

measure simultaneously. Only the higher value of the two

sensors is taken as the grip force and sent from the glove to the

insole.

2.1.2.2. Insole

The insole is made of medical grade silicone (Silbione

RTV 4428, shore hardness A 28) and can be slipped into

a common house shoe. It has five embedded eccentric

rotating mass motors (JinLong Machinery, diameter 10 mm,

thickness 2.7 mm) that vibrate at a buzz (250 ms at

100 Hz). The motors are positioned along the foot in

regions of a high density of fast adapting mechanoreceptors.

There are two types of fast adapting mechanoreceptors.

They are predominant on the sole of the feet with a

low detection threshold at vibrations from 50 to 100 Hz

(Kennedy and Inglis, 2002).

Additionally, they have small receptive fields. The insole

was produced in three sizes (small, medium, large) to

provide the participants with adequate systems. We defined

encoding small forces at the toes and increasing force

toward the heel. The microcontroller board with motor

driver is placed above the fastener of the house shoe

(Figure 1).
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FIGURE 1

FeetBack glove and insole. The glove senses the pressure on the fingertips of the index finger and the thumb. The higher force at either finger is

defined to represent the grip force and is sent wirelessly to the insole. Depending on the force one of the five embedded coin vibration motors

starts vibrating. The lower the force, the lower the number of the running motor (or no motor at all when the force is below a minimal

threshold). The distribution of the motors was chosen accordingly to the distribution of fast adapting mechanoreceptors on the sole of the foot.

2.1.2.3. Monitoring

Additionally to the sensing and feedback device, the

FeetBack system may include a monitoring unit. It connects

to a computer via USB and wirelessly to the insole. It allows

surveying the sensed force with the corresponding vibrating

motor on the screen.

2.2. Participants

Four participants (Table 1) with unilateral congenital below

elbow limb absence took part in the study. All were experienced

users of myoeletric prosthesis with several years of experience.

Especially, all participants were familiar with the same multi-

articulating prosthesis and conducted the experiments with

their personal device (iLimb quantum, Össur hf, Iceland). The

prosthesis was merely modified by adding the sensor glove on

top of the regular cover. This setup allowed the participants to

experience the feedback with a virtually unaltered internal model

of the feedforward control.

The participants were asked to answer a pre-study (Table 2)

and a post-study (Table 3) questionnaire. The pre-study

questionnaire focused on the participant’s use of the prosthesis

and the expectations of sensory feedback. The post-study

questionnaire focused on their impressions of the used sensory

feedback.

The first participant was enrolled in September 2021 and the

last participant visit was in November 2021. The recruitment

took place in August 2021 within the population of patients

of the Balgrist University Hospital (Zürich, Switzerland).

Inclusion criteria: healthy people, 18–55 years old, with basic

knowledge of and trust in modern technology, and unilaterally

experienced users of the iLimb quantummulti-articulating hand

(independently of the cause, e.g., dysmelia or amputation).

Exclusion criteria: skin incompatibilities with silicone or

cognitive impairment.

2.3. Experiments

Four different tasks were conducted to test the applicability

of force feedback from the hand to the feet. The tests varied

in the availability of other feedback channels, i.e., audio-visual

feedback, and in task complexity. All four tasks were conducted

in two sessions of which the second followed 3–4 weeks after

the first session. The participants remained seated throughout

the experiments to maintain a stable sensation of the actuators

(Figure 2). They were allowed to use only the thumb to index

finger pinch grip for all tasks. The only exception was the object

manipulation task with heavy objects. There, the participants

were allowed to use the power grip due to the larger size of the

object.

2.3.1. Calibration and training

Prior to the tasks, the FeetBack system was explained to

the participants. They were told that the force at the fingers

represented the grasp force. Small forces are felt at the toes,
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TABLE 1 Demographic and clinical overview of the trial participants.

ID Gender Age Reason for prosth. Mostly used type of prosth. Daily use of prosth.

1 M 43 Dysmelia Myoelectric Sometimes

2 F 41 Dysmelia Myoelectric Always

3 F 20 Dysmelia Myoelectric Sometimes

4 M 52 Dysmelia Cosmetic When working

TABLE 2 The participants’ answers to the pre-study questionnaire.

ID When do you use the prosth.? When do you not use the prosth.? When could feedback be beneficial?

1 Sports, presentations When water is involved Handshake

2 Almost everything When water is involved Unsure

3 Kitchen, chores, opening purses Fine-motor tasks When quick actions are required

4 Working, gardening, shopping Sports, free time Cooking, crafting

The questionnaire included open questions about the participants’ personal use of the prosthetic hand and their expectations of sensory feedback.

TABLE 3 The participants’ answers to the post-study questionnaire.

ID Benefit What did you like about FeetBack? Comments and suggestions

1 Yes N/A N/A

2 No To experience force feedback Unsure about the benefit while other sensations, e.g.,

vision and audio, are available. The benefit was clear

without other sensations.

3 Yes To experience force feedback and to explore some of

the fine-motoric capabilities and limits of the high-end

prosthesis

N/A

4 No Nothing in particular Feedback at the feet seems unpractical - feedback in the

socket may be a better idea. Suggestions for

enhancements of the prosthesis: 1) add push buttons on

the socket to quick select grasps, 2) reduce the weight of

the prosthesis, 3) reduce the noise of the prosthesis, and

4) make thinner and more long living skin for the hand.

The questionnaire included open questions about their subjective impressions of the FeetBack system.

and increasing forces are felt toward the heel, respectively. Each

participant was provided the insole that had the best fit in

size. The participants were asked to adjust the position of their

foot on the insole such that they could perceive every actuator.

Thereafter, the system was calibrated to the prosthesis of the

participants. The participants were asked to squeeze the softest

and hardest cube halfway three times. The force was recorded at

every squeeze and the minimum and maximum force were set

by the respective average.

Then, the participants were given time to learn the force

feedback provided by the FeetBack system. The participants

were first given 2 min to freely handle a variety of soft cubic

sponges and were allowed to compare the sensation with both

hands. Then, they cracked two 3D printed egg shells with the

prosthetic hand to feel the allowed threshold in a later task

(fragile objects). Finally, they were given two more minutes to

freely handle a heavy cylinder to determine the minimum grasp

force needed to lift it (although all participants noticed that they

might as well just apply the full force without losing much time).

After the training was completed, the tasks were conducted

directly. The participants were allowed to take breaks between

tasks but none made use of the offer.

2.3.2. Object sorting

In one task, the participants had to sort five equal sized cubes

of individual plasticity from softest to hardest without audio-

visual feedback (Figure 2A). The final arrangement of the cubes

was recorded as measurement. The side length of each cube was

50 mm. Four cubes were made of miscellaneous foamed plastic
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FIGURE 2

Setup of the experiments. The FeetBack glove was donned on the cover of the prosthetic hand and the FeetBack insole was worn on the right

foot. The participants remained seated throughout the tests. (A) In the object sorting task, the participants were blindfolded and were wearing

ear mu�s. They rested the arm with the prosthesis on the table with the open hand upward. The investigator put the objects between the index

finger and thumb. The participants had to answer if the current object was harder or softer than the previous object. (B) In the pick and place

tasks, the participants started in a resting position as shown. After an oral start signal by the investigator, the participants moved the hand from

the starting position to the clock and started said clock with the prosthesis in step 1. In step 2, the participants moved the prosthesis from the

clock to the object and pinched it. In step 3, they lifted the pinched object from the side of the prosthesis to the contra-lateral target and

released the object. In step 4, they stopped the clock with the prosthesis.

(weight: < 6 g) with compression load deflections of 3.0 kPa,

4.1 kPa, 5.5 kPa, 11.0 kPa, respectively. The fifth cube was made

of wood (weight: 45 g).

The participants were blindfolded and wore earmuffs to

eliminate audio-visual feedback. They rested their arm on a

table with the open hand upside. They were given one cube

at a time by the investigator. The participants were allowed to

close and open the artificial hand at their chosen pace. After

each cube, they had to answer if the current cube was harder

or softer than the previous cube. This procedure was repeated

for five runs, where one run means that all cubes were handed

to the participants once. The initial order in the first round was

predefined random (same order for all participants). From the

second to the last round, the first given cube was always the

presumably softest.

To accomplish this task, the participants had to rely on

the rate of change of the force feedback and their intended

sEMG signal to close the hand. This task was only performed

with the feedback switched on. A comparative measurement

without feedback was omitted since previous comparative tests

showed that the answers were close to random guesses (Huang,

2018).

2.3.3. Object manipulations

In three tasks, the participants had to manipulate fragile,

heavy, and delicate objects. The success rate and time needed to

accomplish a task were recorded as measurements. The success

criterion depended on the specific task and will be addressed in

the following paragraphs. The time was measured with a stop

watch that the participants had to start before and stop after

every manipulation (Figure 2B).

All object manipulation tasks were repeated 10 times with

feedback and 10 times without feedback. In the first session,

all tasks were conducted with feedback followed by repetitions

without feedback. In the second session, the order of conduction

was reversed to reduce the bias due to the learning of specific

tasks through repetitions.
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2.3.3.1. Fragile objects

The participants had to pick and relocate an egg shell (made

of 3D printed PLA, break point: 9.2 N ± 0.8 N, height: 48 mm,

width: 40 mm, wall thickness 0.4 mm). The distance was 30 cm

with a precision of ±1 cm. The relocation was measured as

successful when the egg was placed within the fixed boundary

without being cracked or dropped on the way. This task is

judged to be of moderate difficulty compared to the other two

manipulation tasks. The reason, therefore, is that only one hand

is needed, allowing the skilled participants to rely heavily on

feedforward control.

2.3.3.2. Heavy objects

The participants had to pick and relocate a heavy cylinder

(made of aluminum, weight: 462 g, diameter: 60 mm, height:

105 mm). The distance was 30 cm with a precision of ±1 cm.

The relocation was measured as successful when the cylinder

was placed within the fixed boundary without being dropped

along the way. This task is judged to be the easiest of the three

manipulation tasks since only one hand is needed and full force

can be applied.

2.3.3.3. Delicate objects

The participants had to pick a cherry and remove the stem

from the body (made of modeling clay and toothpick, diameter:

16 mm, height: 24 mm, depth of toothpick: 18 mm, weight:

7.5 g). The manipulation was measured as successful when

the stem was removed from the body and if the body of the

cherry was not squashed [similar to Tan et al. (2014)]. This task

is judged to be the most complex of the three manipulation tasks

since both hands are needed. Furthermore, the right amount of

grasp force must be applied to securely hold the cherry without

squashing it.

2.4. Data analysis

The primary and secondary outcomes are defined as follows:

Primary outcome: Success rate to detect the contact

force levels to differentiate between different objects and

to manipulate various objects, using a hand prosthesis

with/without tactile feedback.

Secondary outcome: Time needed to finish a set of

manipulation tasks, using a hand prosthesis with/without tactile

feedback.

2.4.1. Primary outcomes

The primary outcome of the object sorting task was

assessed with a measure of the ranked correlation between the

participants’ order and the true order from softest to hardest.

We used Goodmann-Kruskal’s gamma

G =
Ns − Nd

Ns + Nd
, (1)

where Ns is the number of concordant pairs and Nd is the

number of reversed pairs. A value of G = 1 represents

perfect order, whereas G = −1 represents perfect inverse order

(Goodman and Kruskal, 1954).

For the object manipulation tasks, the primary outcomes

were compared qualitatively within individual participants. The

reason for that is that the sample size in this pilot study is too

small to use quantitative methods.

2.4.2. Secondary outcomes

The time needed for the manipulation tasks was modeled

with linear mixed effects models. They are an extension of

ordinary linear models that allow modeling fixed and random

effects. The intervention (feedback turned on or off) is the fixed

effect and the individual participants are random effects. This

allows us to model the baseline time needed to manipulate

an object depending on the participant. We used the fitlme

method from the Statistics and Machine Learning Toolbox in

MATLAB (version R2021a). The manipulation tasks with fragile

and delicate objects were modeled as “time∼feedback+(1|ID)”.

This formulation corresponds to an individual offset per

participant and a fixed slope for the fixed effect over all

participants. The manipulation task with heavy objects was

modeled as “time∼feedback+(feedback|ID)”. This corresponds

to an individual slope for the fixed effect per participant, since

the residuals were not normally distributed with the former

formulation.

3. Results

All participants conducted all tasks and all data was

considered for the evaluation.

3.1. Pre-study and post-study
questionnaires

The questionnaires (pre-study: Table 2; post-study:

Table 3) give subjective impressions about the individual

participant’s expectations and impressions of force feedback.

The expectations before the trials show that three out of four

participants see potential situational benefits of adding force

feedback to prosthetic hands. However, ID 2 who reportedly

uses her prosthesis the most (“always,” “[for] almost

everything”), was unsure about the benefits. The impressions

after the trials changed the point of view for ID 4 and remained

the same for the other participants. Participants ID 1 and ID 3
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FIGURE 3

Confusion matrix of the object sorting task with feedback. In the ideal case, all answers would lie in the diagonal of the confusion matrix. Since

the grading is ordinal, errors become more severe the farther they are from the diagonal. (left) Cumulative matrix with observations from all

participants; (right) Individual observations per participant.

were believed to experience a benefit from FeetBack, although

with limited excitement. Participant ID 2 repeated her prior

opinion and observed a few advantages of force feedback under

the presence of visual-audio feedback. Participant ID 4 saw no

benefit in force feedback specifically at the feet. Furthermore,

ID 4 suggested several improvements on the multi-articulating

prosthetic hand as it is before adding force feedback.

3.2. Experiments

3.2.1. Object sorting task

Goodmann-Kruskal’s gamma was G = 0.639, suggesting

that feedback has a substantial positive effect. Three out of four

participants merely confused two objects (Figure 3), meaning

they all had one perfect sorting session out of two. Participant

ID 2 confused two objects in one session (’softest’ and ’medium’)

and multiple objects in the other session.

3.2.2. Object manipulation tasks

3.2.2.1. Success rates

In the single-handed tasks with fragile and heavy objects,

the success rates were high (SR ≥ 80%, Figure 4) for all

participants regardless of the intervention (feedback switched on

or off, respectively). In the two-handed task with delicate objects,

however, the success rates were generally lower and varied

between participants. Three participants performed worse when

force feedback was provided.

3.2.2.2. Time needed to perform task

There is a positive effect (Table 4) in the tasks with fragile

objects (4.209 s+ 0.326 s, baseline intercept+ feedback) and the

delicate objects (3.900 s+0.406 s, baseline intercept+ feedback).

The 95 % CI does not encompass 0.0 s in both cases. This

suggests that there was a significant increase in time needed to

complete these two manipulation tasks with feedback. There is

no significant effect of the feedback in the task with heavy objects

as the 95 % CI clearly encompasses 0.0 s (Table 4). Residuals of

the models were normally distributed.

4. Discussion

Initially, the limitations of the study are discussed to put

the results into context. The results are discussed according to

the small number of research participants in this pilot study.

Furthermore, the study design only allowed us to explore the

immediate effect of vibrotactile feedback at the feet since the

participants merely used the system twice for a couple of hours.

Finally, we deliberately chose to simulate the user case scenarios

that incorporate the internal model of the user in the interaction

with their prosthesis. Although our approach allows for a

holistic scenario with human-machine interaction, it is more

challenging to isolate confounding factors; namely the accuracy
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FIGURE 4

Success rates of the object manipulation tasks. All participants performed n=20 manipulations per task under each condition FB-on (feedback

switched on) and FB-o� (feedback switched o�).

TABLE 4 Linear mixed e�ect model of the time needed for manipulation tasks.

Manipulation Fixed effect β 95 % CI Participant (SD) Corr

Fragile obj.
Intercept 4.209 [3.514, 4.904] 0.677

N/A
Feedback 0.326 [0.058, 0.593] N/A

Heavy obj.
Intercept 4.242 [3.310, 5.173] 0.932

0.031
Feedback –0.019 [–0.551, 0.513] 0.499

Delicate obj.
Intercept 3.900 [3.017, 4.783] 0.860

N/A
Feedback 0.406 [0.087, 0.725] N/A

The estimated fixed effects (intercept, feedback) and random effect (participant ID) with the corresponding 95% confidence interval (CI) and standard deviation (SD) of the random effect

are presented for every experiment individually. Since the experiment with heavy objects was modeled with an individual slope per participant, the correlation between the fixed effects is

given, too.

of the feedforward control of the prosthesis and the incidental

feedback. In fact, recent research (Gholinezhad et al., 2021)

proposed a method to first assess the effects of the feedback

on the natural hand against natural feedback. The benefit of

the feedback may then be tested with active users of prosthetic

devices once the effects are estimated. Nevertheless, we believe

that this pilot trial toward a novel feedback approach resulted in

valuable insights for future investigations.

The information of the vibrating insole was interpreted

successfully when audio-visual feedback was prevented, as

demonstrated in the sorting task. This shows that discrete

vibrotactile feedback at the feet can indeed be used to translate

information about the grasp force. However, participants

ID 2 and ID 3 reported feeling rather unsure about their

answers. At this stage, it is not possible to pin the exact

causes. Although, the likely reasons can be the short time

the participants had to learn to interpret the feedback and

inadequate implementation of the feedback device in terms of

resolution and perceptibility.

The success rates during manipulation tasks were overall

equivalent or even lower when vibrotactile feedback at the

feet was provided. The outcomes from the pick and place
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tasks (fragile and heavy objects) were not altered noticeably

by the intervention. In the task with heavy objects, this was

anticipated, since the participants could merely use full force.

However, the equivalent success rate for the task with fragile

objects was unexpected. An exhaustive review on feedback

strategies for prosthetic hands by Sensinger and Dosen (2020)

provides possible reasons when feedback would not improve

the success rate; namely, an already efficient internal model,

sufficient incidental feedback, a task that is too simple, or a

weak feedback method. We believe that the most dominant

causes are the efficient internal models coupled with a rather

simple task in which the experienced users did not rely on

additional feedback (other than audio-visual and incidental

feedback). The review by Jabban et al. (2022) supports the

notion that object manipulation tasks with fragile objects may

underestimate the benefit of sensory feedback. The reason for

this is that such tasks can be solved by feedforward control

alone.

In the most complex manipulation task with delicate objects,

the success rate was considerably lower when feedback was

provided. Unlike Tan et al. (2014), our approach to the cherry

stem removal task resulted in overall inferior success. The tests

are not directly comparable since one uses actual cherries and

the other uses replica made of modeling clay and toothpicks.

Nevertheless, we assume that our approach reached inferior

success rates due to an insufficient resolution of the discrete

spatial coding. In the case of participant ID 4 who reportedly

tried to incorporate the feedback for fine-tuning, the interaction

of human, prosthesis, and FeetBack resulted in fluttering pinches

that squashed most of the fake cherries. Thus, the presented

system does not allow for fine-tuning the grip for sophisticated

closed-loop control. However, it serves to notify the user about

initial contact and may help engage the user. This was likely the

case for participant ID 1 who reportedly perceived a subjective

benefit.

The increase of time needed for manipulation tasks with

fragile and delicate objects could be explained by the new

sensation of vibrotactile feedback, cognitive burdening, or a

poorly chosen location to apply the feedback. According to

participant ID 4, the feet may be a bad site which potentially

distracts the user. Although, the remaining three participants

did not comment on that notion. Wells et al. (2022) reported

similar findings, where the mechanotactile feedback resulted in

an increased time to finish a task. The respective authors believe

this effect to be due to the added focus on the task with feedback.

Such an increase in time was not observed in comparable studies

that applied discrete feedback to the residual limb (Aboseria

et al., 2018; Raveh et al., 2018). However, Clemente et al. (2016)

who investigated the effect of feedback for object contact and

release did not observe a speed boost with feedback in a long at

home trial, either. Nevertheless, their success rate to manipulate

fragile objects increased. Therefore, they reason that feedback

may be costlier from a cognitive perspective but allows for more

confidence. In our case, participant ID 1 appears to have had this

experience, too.

No participant reported an adverse effect due to the

feedback method. Nevertheless, a potential adverse effect

of feedback applied to the feet could be sensory steering

(Zehr et al., 2014). In that case, electrotactile stimulation at the

sole of the feet provoked potentially unwanted muscle activities.

Velázquez et al. (2012) also applied vibrotactile feedback in a

walking navigation task and they did not encounter any such

undesired effect. We did not investigate the effect of FeetBack

in standing or walking tasks. However, we expect that our

system would behave similarly to the system presented by

Meier et al. (2015) where an increasing walking speed affects

the perceptibility negatively. The reason therefore is that the

foot may momentarily loose contact to the insole or exert

too much pressure on the motors. However, such mechanical

issues would need to be addressed in the next iteration

of FeetBack. Also, according to a survey with 142 unique

responses (Smither et al., In Press) the most anticipated benefits

were reported in stationary tasks such as zipping jackets, tying

shoes, buttoning shirts, and using a cup.

In summary, we observed that the proposed feedback

method causes various effects depending on the tasks. Without

audio-visual feedback, the gain was evident as the participants

were generally able to distinguish between objects of distinct

plasticity. However, in the more realistic setting with vision

and hearing the anticipated benefit was not achieved. Similar

observations were made by Markovic and Schweisfurth (2018)

where an advanced feedback method was only helpful in

complex tasks for regular users of hand prostheses. The easier

tasks could be learned accurately by feedforward control after

repeated executions. Thus, we further support the notion that

the study design for experienced users of upper limb prostheses

must be more complex in order to assess the feedback method’s

capacity and impact on the users (Sensinger and Dosen, 2020;

Jabban et al., 2022).

5. Conclusion

The viability of vibrotactile feedback in (mobile) robot

control and navigation tasks had already been shown. We

anticipated investigating its potential within the field of hand

prostheses. We showed for the first time that information from

the prosthetic hand can be interpreted at the feet with beneficial

effects when sight and vision are prevented. The results suggest

that the immediate effect of discrete spatially coded vibrotactile

feedback at the feet allows distinguishing between plastic objects

without the help of vision and hearing. However, the interaction

of human, myoelectric hand, and FeetBack does not allow the

grasp force to be qualitatively fine-tuned under pressure of time.

Moreover, there appears to be little benefit from FeetBack under

the presence of audio-visual feedback for experienced users of

myoelectric hands. These findings are in line with findings of

similar studies with tactile feedback provided on the arm or

within the prosthetic socket. Hence, we provide a rationale to

further investigate the clinical benefit of feedback redirected
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to the feet in a large-scale clinical trial. Ultimately, we suggest

testing the clinical benefit of such feedback not only under

laboratory conditions alone but also in an at-home trial over a

longer period of time.
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Vibrotactile mapping of the
upper extremity: Absolute
perceived intensity is
location-dependent; perception
of relative changes is not

Luis A. Pardo Jr.1*, Marko Markovic1, Arndt F. Schilling1,

Meike Annika Wilke2 and Jennifer Ernst1,3

1Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center

Göttingen, Göttingen, Germany, 2Faculty of Life Sciences, Hamburg University of Applied Sciences

(HAW), Hamburg, Germany, 3Department of Trauma Surgery, Medical School Hannover, Hanover,
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Vibrotactile sensation is an essential part of the sense of touch. In this

study, the localized vibrotactile sensation of the arm-shoulder region was

quantified in 10 able-bodied subjects. For this analysis, the six relevant

dermatomes (C3-T2) and three segments—the lower arm, the upper arm,

and the shoulder region were studied. For psychometric evaluation, tasks

resulting in the quantification of sensation threshold, just noticeable di�erence,

Weber fraction, and perception of dynamically changing vibrotactile stimuli

were performed. We found that healthy subjects could reliably detect vibration

in all tested regions at low amplitude (2–6% of the maximal amplitude of

commonly used vibrotactors). The detection threshold was significantly lower

in the lower arm than that in the shoulder, as well as ventral in comparison

with the dorsal. There were no significant di�erences in Weber fraction

(20%) detectable between the studied locations. A compensatory tracking task

resulted in a significantly higher average rectified error in the shoulder than

that in the upper arm, while delay and correlation coe�cient showed no

di�erence between the regions. Here, we presented a conclusive map of the

vibrotactile sense of the healthy upper limb. These data give an overview of

the sensory bandwidth that can be achieved with vibrotactile stimulation at the

arm andmay help in the design of vibrotactile feedback interfaces (displays) for

the hand/arm/shoulder-region.

KEYWORDS

vibrotactile sensation, dermatomes, able-bodies, feedback, psychometric

Introduction

The sense of touch allows us to continuously monitor the boundaries of the whole

body. This not only enables safe interaction with our environment even in the absence

of the other four main senses but also has a social function when the boundaries of two

bodies meet. Consequently, the study of how we perceive the world through somatic
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sensation has fascinated us for hundreds of years and a lot of

data have been generated on this topic (Weber, 1834a, 1851;

Weinstein, 1968).

Perception of tactile sensations originates from the receptors

located in the skin. These can be divided into four distinct

categories: two fast adapting types (FA I and FA II) and two

slowly adapting types (SA I and SA II). Type I afferents have

small, sharp-bordered receptive fields; type II afferents are

larger and have more diffuse borders (Darian-Smith, 2011). The

adaption type (slow or fast) indicates the ability to adapt to

sustained indentation (Vallbo and Johansson, 1984). The fast-

adapting units mainly fulfill vibration sensations. These have

two types of end organs: the Meissner corpuscles (FA I), which

possess an optimal sensitivity to frequencies of around 50Hz,

and the Pacini corpuscles (FA II), with a peak sensitivity at

about 200–300 Hz (Saddik et al., 2011). The Meissner corpuscles

are the primary receptors of hands and feet. In contrast, the

Pacini corpuscles are mostly found on hairy skin present on

the appendages, the trunk, and the head. Various neural roots

give rise to the cutaneous nerves that innervate these receptors

depending on their site (Johnson, 2001). In the case of the

upper limbs and shoulder/ neck region, these roots, located

in longitudinal bands around the arm and neck, give rise to

seven different dermatomes: Cervical 3 (C3) to Cervical 8 (C8),

Thoracic 1 (T1), and Thoracic 2 (T2).

Throughout the upper limbs, the receptor density varies

depending on the skin type and the distance from the trunk.

Mancini et al. (2014) measured two-point discrimination on

the limbs of able-bodied subjects. Their results showed that the

minimal distance between the two tips that can be perceived

increased from ca. 0.25 cm at the fingertips, to 0.75 cm (the

palm), 1.5 cm (the hand dorsum), 2.5 cm (the ventral forearm),

and 3 cm (the dorsal shoulder). These results correlate with

the findings of Corniani and her group, who estimated an

innervation density (in units
cm2 ) of 241 in the fingertips, 58 in

the palm, and 13 in the arm (Corniani and Saal, 2020). Koo

et al. (2016) studied two-point discrimination on the arm

of young Koreans, differentiating between the anterior and

posterior parts of the arm. The anterior part of the upper

arm is defined as the biceps region and the posterior part

as the triceps region. A limitation of this study is that the

biceps region is divided between the dermatomes T2 and

C5, and the fact that the size of the cortical representation

of the dermatomes on the sensory cortex and the number

of neurons responsible for interpreting the stimulus differs

between dermatomes (Penfield and Boldrey, 1937). Fewer

studies address the problem of detecting continuous variation

of vibrotactile stimulation. Dideriksen et al. (2021) performed

a psychometric evaluation by comparing electro stimulation

versus vibrotactile stimulation on the lower arm by varying

amplitude and frequency. He showed similar performance of

both interfaces at frequencies of 200Hz, though users are faster

at responding to changes in the stimulation parameters during

the vibrotactile conditions.

Pathological conditions, such as stroke, brachial plexus

injury, cerebral palsy, Parkinson’s disease, and amputation,

lead to distinct somatosensory dysfunctions. Schneider et al.

observed that patients suffering from Parkinson’s disease

show a significantly higher minimal distances of two-point

discrimination than a healthy counterpart on the index finger,

but not on the lower arm (Schneider et al., 1987). Tyson

described that tactile impairment is more common than

proprioceptive impairment after a stroke (Tyson et al., 2008).

Similar to amputations in brachial plexus injuries, tactile

impairment depends on the level of the injury (Tung and

Mackinnon, 2003). Sensory dysfunctions can lead to additional

difficulties. For example, Auld et al. showed that spatial tactile

deficits account for ∼30% of the variance in upper-limb motor

function in children with unilateral cerebral palsy (Auld et al.,

2012). Furthermore, tactile sensibility plays an essential role in

body image and is necessary for experiencing body ownership

and pain (Botvinick and Cohen, 1998; Ehrsson et al., 2008;

Dietrich et al., 2012).

So far, the analysis of touch mainly focused on its most

rudimentary form: short mechanical stimulation. State-of-the-

art prosthetics and orthotics, however, often use vibration

feedback to communicate several functions, such as switching

modalities and velocity among others (Stephens-Fripp et al.,

2018a), and the studies including these concentrate on single

regions of the arm (Dideriksen et al., 2021). Additionally, little

is known about the functionality of named modalities or the

requirements for feedback devices at different levels of injury.

The necessary size and strength of a vibration device might

highly depend on how well the patient perceives vibration on

the intended stimulation site. Furthermore, vibrotactile displays

are commonly used in a wide array of applications, not only

for the upper-limb rehabilitation but also in everyday appliances

such as smartwatches and VR headsets (Da-Silva et al., 2018;

Orand et al., 2019; Tanaka et al., 2021). Therefore, a proper

understanding of how humans perceive vibration is a key

to improving these technologies. Most studies investigating

vibration so far either focused on the lower arm and hand

(Marasco et al., 2018; Stephens-Fripp et al., 2018b; Wilke et al.,

2019), on localized spots on some of themain dermatomes (Shah

et al., 2019) or predefined arrays on one of the arm regions

(Guemann et al., 2019).

A comprehensive mapping of the vibratory tactile

sensations in the upper limbs is lacking. To close this

knowledge gap, we systematically evaluated the vibrotactile

sensations in the lower arm, upper arm, and shoulder region

of 10 able-bodied subjects. These included the sensation

threshold, the just noticeable difference, and the sensation

of dynamically changing stimulation on 12 locations on

the arm.
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FIGURE 1

Experimental setup. (A) The experimental setup consisted of a PC for data recording, visual instructions, and tactile stimulation; a stimulator to

control the tactors; and a joystick as the user interface. The subject was wearing noise-canceling headphones on which white noise was played

whenever the tactors were on, to drown the noise generated by the vibration. (B). A total of 12 tactors were placed on the arm and shoulder/

neck, stimulating the dermatomes innervated by the cervical spinal nerves C6, C5 proximally and distally, the thoracic spinal nerves T1 and T2

proximally and distally, and the cervical spinal nerves C3 and C4 ventrally and dorsally, making it possible to map the tactile sensation to

vibration over the whole arm. We divided the limb into three segments and evaluated each of them separately. These segments were defined as

the lower arm (mainly innervated by T1 and C6), the upper arm (mainly innervated by T2 and C5), and the shoulder (mainly innervated by C3 and

C4). (C) Additionally, we ensured that two tactors were always separated by at least a tactor-diameter, such that the minimum distance between

the vibration centers was at least 61mm.

Methods

Experimental setup

Ten healthy able-bodied subjects (three females and seven

males, all right-handed) participated in the study. All subjects

signed an informed consent form approved by the Ethics

Committee of the University Medical Center Göttingen (Ethics

Number: 26/6/20).

We investigated the vibrotactile sensation capacity for each

of the six dermatomes of the arm-shoulder region, namely

C3, C4, C5, C6, T1, and T2. The tactile sensations were

elicited using vibro-tactors placed in pairs of two on each

of the dermatomes (Figure 1B). Three types of psychometric

evaluations (see sections Experimental tasks and protocol

1–3) were used to quantify the subject’s response to the

vibrotactile stimulation.

The subjects were seated comfortably in front of a desk with

a computer screen during all experimental tasks. They wore

active noise-canceling headphones on which white noise was

played whenever the tactors were on to prevent the subjects from

hearing the vibration of the tactor and ensure that the subject’s

decision was based solely on tactile sensation (Figure 1A). As

a control interface, a modified joystick was connected to a

PC via a USB port. Its spring was removed to achieve an

optimal motion translation with only slight finger movement

(HT Series, CH Products, USA). The PC controlled the output

of the stimulation channels, which were attached to high-end

vibration motors based on voice-coil technology that generate

vibrations perpendicular to the skin (C2-tactor, Engineering

Acoustics, Inc., USA; diameter: 30.5mm). These tactors allow, to

some extent, separated modulation of frequency and intensity,

although the two parameters are coupled through a resonance

effect (modulation of the amplitude did not affect the frequency,

however, modulation of the frequency will, at some point,

affect the amplitude). We controlled the amplitude with a

precision of of 0.38% (arbitrary values between 0 and 255,

from now on expressed in percentage of the maximal amplitude

for easier reference) at their optimal operating frequency of

230Hz (Engineering Acoustics Inc). We divided the limb into

three segments and evaluated each of them separately. These

segments were defined as the lower arm (mainly innervated
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by T1 and C6), the upper arm (mainly innervated by T2 and

C5), and the shoulder (mainly innervated by C3 and C4). On

each dermatome of these segments, the tactors were positioned

using the relevant anatomical features. We measured the length

between the Processus styloideus ulnae and the armpit (PSU-

AP), between the armpit and the Articulatio acromioclavicularis

(APAAC), and between the shoulders (SH). We then placed the

tactors as follows (Figure 1B):

1. Distal and Proximal T1, C6: 13 (PSU−AP) and 2
3 (PSU−AP)

from the Processus styloideus ulnae, respectively.

2. Distal and proximal T2, C5: 13 (AP−ACC) and 2
3 (AP−ACC)

from the armpit, respectively.

3. Dorsal C4 and C3: 1
3 ( 12 (SH)) and 2

3 ( 12 (SH)) from the

Articulatio acromioclavicularis, respectively.

- In the ventral part of C4 and C3, the placement had to

be slightly adapted, avoiding the clavicle.

Additionally, we ensured that two tactors were always separated

by at least a tactor-diameter, such that the minimum distance

between the vibration centers was at least 61mm (Figure 1C).

On the lower arm, the tactors were proximal on C6 and T1

because the anatomical distance between distal points (for some

subjects) could be lower than the minimally required distance

for the simultaneous application of stimuli (i.e., lower than

61mm). On the upper arm, the distal positions on C5 and

T2 were selected to avoid unpleasant sensations induced by

a constant vibration near the axilla, where the nervus ulnaris

passes superficially. On the shoulder, the ventral locations on

C3 and C4 were used because the sensation threshold there was

significantly lower than on the dorsal part.

Experimental tasks and protocol

We performed three experimental tasks to evaluate the

vibrotactile sensation capabilities of the lower arm, upper arm,

and shoulder. The experimental tasks were carried out in three

sessions, one per limb-shoulder region, lasting 1–2 h each with

a break of at least 1 hour between the sessions (or the sessions

were performed on three separate days). The order of the tested

region was pseudo-randomized using all possible combinations

(3! = 6). This means, that given the three regions (l – u – s), the

list of possible combinations is l – u – s, l – s – u, u – l – s, u –

s – l, s – l – u, and s – u – l. In our case, having more than six

participants, we simply started the list all over again.

The tasks are summarized here and described below in

more detail:

1. We measured the tactile sensation threshold by gradually

increasing the amplitude of each of the 12 vibro-tactors

individually, i.e., quantifying the sensation threshold in four

points of each of the arm-regions mentioned above.

2. We calculated theWeber fraction, which describes the needed

percentual change of the amplitude to be noticeably different

for the participant, and the number of distinct intervals

that the subject could perceive. This was performed by

measuring the just noticeable difference in amplitude between

two different vibrotactile stimulations delivered on the same

spot, one after the other (again in four points per arm region).

3. Finally, we used a compensatory tracking task to study the

subject’s ability to distinguish continuous stimulation on the

twomain dermatomes of each arm segment. Here, we used an

approach called frequency identification of human operators

based on the control theory by McRuer and Weir (1969)

already used by Dosen et al. (2014) for similar purposes.

The human transfer functions obtained in this block allowed

us to estimate the human operator’s magnitude and phase

delay for dynamically changing stimulation signals. This was

performed only once per arm region, thus yielding a total of

three data points per subject.

Sensation threshold

The sensation threshold (ST) was determined using the

method of limits on each stimulation side (Botvinick and Cohen,

1998). The experimental task started by selecting one out of

four tactors in the selected region from a randomly permutated

list that was previously generated with MATLAB’s randperm()

function. This tactor was turned on while the others were kept

off. Starting from 0% amplitude, the stimulation intensity of

this tactor was increased in steps of 0.78% with a break of 0.5 s

between consecutive stimuli. The duration of the stimuli was set

to last for 1.25 s. The subject was asked to verbally report the

first time (s)he was sure that (s)he perceived the stimulation.

After the subject reported that (s)he perceived the stimuli, the

stimulation was stopped, and one additional stimulus of 1.25 s

duration at the maximum amplitude was applied. The subject

was then asked to identify the location on her arm where she

perceived the stimulation.

Hereafter, the next tactor in the same region was randomly

selected as the active one, and the process was repeated until each

of the four tactors was tested three times in each of the three arm-

shoulder regions. The overall procedure lasted for about 1 h, and

it was performed in one session. Herewith, we obtained the ST

for each of the 12 measuring points.

Since the vibro-tactors did not produce painful sensations

at the maximum intensity, the upper limit of the intensity

range was defined as themaximal stimulation amplitude (100%).

Therefore, for each stimulation site i, the testable intensity range

was defined as [STi, 100%], i=1, . . . , 12.

Just noticeable di�erence

During the second task, we measured the just noticeable

difference (JND), which described the minimal difference in
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FIGURE 2

(A) Experimental Protocol. If the first stimulus is the test stimulus

or the baseline stimulus is decided randomly. Each stimulus is

0.5 s long, and between the stimuli is a break of 1 s. After the

second stimulus, the participant must decide (and select via the

joystick) if the first or second stimulus had a higher amplitude

(was stronger). (B) Exemplary sequence of trials. A wrong

decision increases the amplitude of the test stimulus by 3.53%, a

correct decision decreases it by 1.18%. (C) Exemplary Staircase

sequence. The amplitude of the stimulation is reduced after

each correct decision and increased after an incorrect decision.

A reversal point is the last correctly recognized amplitude before

an incorrect decision. The oscillation point is the average

amplitude of 10 reversal points.

amplitude between two subsequent stimulations that the subject

can perceive. The order of the evaluation of arm-shoulder

regions was determined randomly. Once the region was selected,

four tactors were placed on the proximal and distal (or ventral

and dorsal, in case of the shoulder) sides of the corresponding

dermatomes. Like in the previous experimental task, one tactor

(i.e., one dermatome) was randomly selected as active. The

task continued by stimulating the selected dermatome with

two consecutive stimuli of different intensities— a base (lower

and constant) and a test (higher and variable) stimulation. The

duration of the stimuli was 0.5 s, followed by a break of 1 s

before the second stimulus (Figure 2A). The order of the two

stimuli was randomized. After each pair of stimuli, the subject

was asked to select the stimuli with the higher intensity by

turning the joystick left (indicating the first stimulus had higher

intensity) or right (meaning the second stimulus had higher

intensity). Put differently, the subject was asked to identify which

of the two stimuli was the test stimulus. Afterward, the subject

was stimulated again, and this process was repeated until a

total of 10 reversal points were reached (see below). Within

the selected stimulation site, the baseline stimulus always had

the same intensity, whereas the intensity of the test stimulus

was varied according to the staircase method. Namely, the

baseline intensity was fixed to STi + 0.15∗(100% − STi), while

the test stimulus was initially set to STi + 0.9∗(100% − STi).

Increasing the baseline stimuli by 15% of the perceivable range

was performed because we expected that applying stimulation

continuously on the same spot would slightly shift the ST

upward (due to the adaptation effect), thus rendering the

baseline stimuli unperceivable. Likewise, decreasing the first

test stimulus to 90% of the testable range was done to prevent

overstimulation and thus slow down the overall adaptation to

the stimuli. If the subject correctly identified the stimulus with

the higher intensity (i.e., the test stimulus), the intensity of the

following test stimulus was decreased by 1.18% of the maximum

amplitude; if, on the other hand, the subject made a mistake, the

intensity of the following test stimulus was increased by 3.53%

(Figure 2B).

The oscillation point was identified as the average intensity

preceding all stimuli with incorrect identifications across all

trials, i.e., as the average of 10 reversal points (Figure 2C).

Finally, the JND of the selected stimulation site was obtained

as the difference between the oscillation point (OP) and the

baseline intensity expressed as a percentage of the maximum

amplitude JNDi = OP − (STi + 0.15∗(100%− STi). The overall

process was repeated for each stimulation site (i) in each arm-

shoulder region, thus yielding 12 distinct measurements of the

JNDi, i=1, . . . , 12.

Closed loop compensatory tracking

In order to investigate the subject’s ability to differentiate

between dynamically changing stimulations, we used a

compensatory tracking task, in which the subject received

two-dimensional information about her performance. More

specifically, the subject performed compensatory tracking

of a 90 s long reference signal in a real-time control loop by

using a joystick as an input interface (Figure 3). The reference

signal consisted of a pseudorandom multi-sine wave with nine

components between 0.1 and 2Hz, where the five sine waves

with the higher frequencies (>0.4Hz) had half the power as all

other components combined. The signal was in the range of

[−1, 1]. The tracking error was defined as the difference between

the user input (i.e., the joystick position) and the reference

signal. This error was conveyed either via two tactile units

placed on two different dermatomes on one of the previously

selected arm-shoulder regions or via the computer screen. To

train the task, the subject first performed it using only visual

feedback. In this condition, the error was indicated as a red

circle on the computer screen, moving along a horizontal

axis. In the middle, a green vertical line marked zero error.

Therefore, the subject was instructed to move the joystick to

keep the red circle on the green vertical line. In the vibrotactile

feedback condition, the sign of the error was spatially encoded

by the two stimulation units. The stimulation amplitude was
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proportional to the error magnitude in the range from ST plus

15% of the intensity range (indicating a minimal error of just

above zero) to ST plus 90% of the intensity range (indicating

the maximum error of one unit; errors higher than one were

capped to this value). The sign of error was thereby mapped

to a spatial sensation while the intensity of the stimulation was

proportional to the magnitude of the error. In the vibrotactile

feedback condition, the task for the subject was to minimize the

stimulation intensity (zero tracking error = no stimulation). To

achieve this, the subject had to move the joystick proportionally

to the perceived stimulation intensity and in a direction that is

opposite from the active stimulation site. Importantly, although

the task was repeated for each arm-shoulder region only one

tactor per dermatome was used in the vibrotactile condition.

The subjects performed as many trials as needed in the

visual condition to become familiarized with the task (usually

one or two attempts). When the subjects reported that they

were confident with the task, they were instructed to perform

10 additional trials using visual feedback only. After these 10

trials had been completed, vibrotactile feedback was added to the

visual one, and the subject was asked to perform the task three

additional times. While performing the task in this visual-tactile

condition, the subject was asked to focus on the correlation

between the movement of the red circle on the computer screen

and the stimulation sensation. Therefore, while performing the

task in this condition, the subject could associate the tactile

sensation with the visual representation of the tracking error.

Finally, the subject proceeded with training to use the tactile

feedback only for at least three trials (or more, until (s)he was

able to reach a tracking correlation coefficient of 0.6 or above–see

data analysis). Afterwards, the actual evaluation started and

consisted of 10 additional trials. A break of 1–2min was

introduced after each trial to avoid mental and physical fatigue.

As in previous tasks, the order of the evaluated arm-shoulder

regions was randomly selected. The overall process resulted in

a total of 30 data points for the vibrotactile condition (10 per

arm-shoulder region) and the additional 10 data points for the

visual condition.

Data analysis

The following outcomes were used to interpret the acquired

data: (1) the sensation threshold at which the participant was

able to feel the stimulation, (2) the success rate of identifying

the stimulation location (3) the number of distinct intervals

(NDI), which refers to the number of intervals separated by the

magnitude of the JND within the dynamic range, (4) the Weber

fraction, as the needed percentual difference between two stimuli

to be successfully identified as different, and (5) the tracking

performance interpreted from the delay, the average rectified

error, and the correlation coefficient during the tracking task.

For every individual subject, the ST of any of the 12 locations

in the arm-shoulder region was estimated by averaging the data

obtained from the three ST measurements (trials) that were

performed for that location. Then, these values were additionally

averaged and compared (1) the three different segments (the

lower arm, upper arm, and shoulder) and (2) the two different

sides of the arm-shoulder region (the ventral and dorsal).

Similarly, the subject’s JND was calculated across individual

locations, arm-shoulder segments, and ventral and dorsal sides.

In addition, the JNDwas used to compute the number of distinct

intervals (NDI) that a subject could perceive. Since the JND is

expressed as a percentage of the maximal stimulation intensity,

the NDI was calculated iteratively according to the equation:

Ik+1 = Ik′ + JND∗Ik, where I indicates the stimulation intensity

and k counts the intervals. Initially, k was assigned the value

of one and was increased in steps of one until Ik+1 passed the

upper limit of the dynamic range (maximum intensity). Once

this happened, the NDI was set to the value of k. For instance, in

a range from 1 to 100 arbitrary units with a JND of 5, there are 20

NDIs. Finally, theWeber fraction (WF) was also calculated from

the JND by applying the following formula: WFi =
JND i
bi

∗100

(Weber, 1834b), where b indicates the baseline intensity defined

in Just noticeable difference.

The outcome measurement of the third experimental task

was the trial tracking performance assessed by comparing the

shape similarity, average deviation, and time delay between

the generated and reference trajectories for each of the three

arm-shoulder segments. The correlation between the reference

and the generated trajectory was identified as the peak of the

cross-correlation function. Furthermore, the time delay between

the target and the generated trajectory was estimated from the

temporal location of the peak in the cross-correlation. After

compensating for this delay, the average rectified error was

calculated. Finally, the mean values of these three parameters

(shape similarity, average deviation, and delay) were calculated

for each subject (and the arm-shoulder segment) by averaging

the outcomes of the 10 compensatory tracking trials.

For all outcome measures separately, we performed one-

sample Kolmogorov-Smirnov tests and found that none of

the outcome parameters was normally distributed. Therefore,

we utilized Friedman tests in combination with post-hoc

Wilcoxon signed-rank tests to detect statistical differences

between different locations, segments, and sides of the arm-

shoulder region. More precisely, when all 12 locations in the

arm-shoulder region were compared, a Friedman test with 12

levels was used. When comparing the three different segments

(the lower arm, upper arm, and shoulder), a Friedman test

with three levels and hence three post-hoc Wilcoxon signed-

rank tests were conducted. For the two different sides of the

arm-shoulder region (the ventral and dorsal), a single Wilcoxon

signed-rank test was sufficient. As none of the outcomemeasures

was normally distributed, only non-parametric statistics and

hence one-factor tests could be used.
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FIGURE 3

Schematic illustration of the real-time control loop. The participant (human operator) is a part of a dynamic system. The goal is to generate a

signal with the joystick that minimizes the tracking error with respect to a predefined reference trajectory. The tracking error is communicated

to the participant through tactile/visual feedback. In the visual feedback, the onscreen circle communicates the sign and the magnitude of the

error. In the tactile conditions, the active stimulator codes for the sign and the amplitude for the magnitude of the error.

All statistical tests were corrected for multiple comparisons

using the Bonferroni-Holm correction. The statistical difference

threshold was set to 0.05. All results are presented as “median

(interquartile range (IQR))”.

Results

To achieve a comprehensive mapping of the tactile

sensations in response to vibrotactile stimulation across the

whole arm-shoulder region of 10 able-bodied participants, we

performed three psychometric evaluations.

Sensation threshold

All participants were able to correctly identify the active

tactor in all 36 trials (100% success rate; results not depicted).

No statistical differences were detected between sensation

thresholds (STs) of any of the 12 individual locations in the arm-

shoulder region (Figure 4A). However, when the mean ST of the

respective four locations on the lower arm, the upper arm, and

the shoulder were compared, the shoulder segment exhibited

a significantly higher ST than the lower arm (Figure 4B; 3.1

vs. 2.3% (p = 0.0039) of the maximal stimulation amplitude).

Furthermore, the average ST of the six locations on the dorsal

side of the arm was significantly larger than the mean of ST of

the locations on its ventral side (Figure 4C; 2.88% in comparison

with 2.27% (p= 0.0078) of the maximal amplitude).

Taking a closer look at the single segments, we found no

significant differences between the distal and proximal parts

of any segment (Figure 5A). Applying the same analysis to the

ventral and dorsal area of each segment we identified significant

differences in the lower arm and the shoulder (Figure 5B).

In both locations, the threshold amplitude on the dorsal side

needed to be significantly higher than on the ventral side to

detect vibrotactile stimulation (p = 0.0391 on the lower arm; p

= 0.0313 on the shoulder).

Just noticeable di�erence

During the second task, the participant had to differentiate

between two sequential stimuli and select the one she perceived

as having a higher amplitude. Differences between baseline

and test stimuli above 20 [7%] were reliably detected across

all arm-shoulder regions, without any significant differences

between them [neither between single locations (Figure 6A) nor

between the defined regions (Figure 6B) or sides (Figure 6C)].

Likewise, the number of discrete steps that could be provided

using the obtained tactile sensation range 11 [3%] did not show

any significant difference between the arm-shoulder segments

(again, neither between single locations (Figure 7A) nor between

the defined regions (Figure 7B) or sides (Figure 7C)). Again, a

closer look at the single segments exposed neither significant

differences between distal and proximal sides nor ventral and

dorsal sides of any segment regarding the Weber fraction, and

the number of distinct intervals (Figures 8, 9).

Closed loop compensatory tracking

In the compensatory tracking task, the participant acted

as the controller in a closed-loop system, compensating for

the error between a generated and a reference signal. (S)he
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FIGURE 4

Task 1–Sensation thresholds (in percent of the maximum

stimulation amplitude) for (A) all 12 locations in the

arm-shoulder region, (B) the three arm-shoulder segments, and

(C) the ventral and dorsal side of the arm-shoulder region. The

box plots depict the median value (horizontal line) and the IQR

(rectangle) of mean ST data collected from 10 subjects. Red

crosses indicate statistical outliers within a single box plot

(n = 10). An asterisk indicates that there is a statistical di�erence

(p < 0.05, corrected).

FIGURE 5

Task 1-Sensation thresholds. A closer look (in percent of the

maximum stimulation amplitude) for (A) the distal and proximal

parts of the three segments of the arm, (B) the ventral and dorsal

parts of the three segments of the arm. The box plots depict the

median value (horizontal line) and the IQR (rectangle) of mean

ST data collected from 10 subjects. Red crosses indicate

statistical outliers within a single box plot (n = 10). An asterisk

indicates a significant statistical di�erence (p < 0.05).

FIGURE 6

Task 2 -Weber Fraction (in percent) for all 12 locations in the

arm-shoulder region (A) on the tested parts of the arm, as a

combination of the results of the dermatomes in each region

(the lower arm, the upper arm, and the shoulder), (B) and in

each side (the ventral and dorsal), (C) (n = 10). The red points

show outliers.

FIGURE 7

Task 2 -Number of Distinct Intervals for all 12 locations in the

arm-shoulder region (A) on the tested parts of the arm, as a

combination of the results of the dermatomes in each region

(the lower arm, the upper arm, and the shoulder), (B) and in

each side (the ventral and dorsal) (C), (n = 10). The red points

show outliers.
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FIGURE 8

Task 2 -Weber Fraction. A closer look. in percent, for (A) the

distal and proximal parts of the three segments of the arm, (B)

the ventral and dorsal parts of the three segments of the arm.

The box plots depict the median value (horizontal line) and the

IQR (rectangle) of mean ST data collected from 10 subjects. Red

crosses indicate statistical outliers within a single box plot (n =

10).

FIGURE 9

Task 2 -Number of Distinct Intervals. A closer look for (A) the

distal and proximal parts of the three segments of the arm, (B)

the ventral and dorsal parts of the three segments of the arm.

The box plots depict the median value (horizontal line) and the

IQR (rectangle) of mean ST data collected from ten subjects.

Red crosses indicate statistical outliers within a single box plot (n

= 10).

used a joystick as an input interface and received either

visual or tactile feedback about her performance. To ensure

the subjects understood and adequately performed the task,

we used the session in which the subject performed the

task receiving visual feedback on the monitor, as a baseline

with optimal feedback. The subjects in this condition showed

a significantly better performance in all aspects (results

not shown).

FIGURE 10

Task 3 -Average performance in the compensatory tracking task

for all subjects and conditions. Here, time delay (A), average

rectified error (B), and correlation coe�cient (C) between the

target and cursor is shown (n = 10). An asterisk indicates that

there is a statistical di�erence (p < 0.05).

In the tactile feedback condition, neither the delay nor

the correlation coefficient was significantly different between

any segments (Figure 10). The delay was consistently below

48.5ms [11.65ms] and the correlation coefficient was in the

range of 64.4–72.2% [13.6%], for the three evaluated segments.

The only detected significant difference was between the

shoulder and the upper arm where the average rectified error

was significantly higher in the latter case (0.33 [0.06] vs.

0.28 [0.08] (p= 0.0039)).

Discussion

In this study, a map of the vibrotactile sense of the

healthy upper limb was generated, seven males and three

females. Neely and Burström (2006) reported, that no gender-

specific differences are found during vibrotactile threshold

measurements to the arm region, thus, we will not make any

distinction between the gender of participants in the further

discussion. The arm-shoulder region was divided into six

dermatomes and three segments–the lower arm, the upper

arm, and the shoulder region, each stimulated proximally and

distally. For psychometric evaluation, tasks resulting in the

quantification of sensation threshold, just noticeable difference,

and perception of dynamically changing vibrotactile stimuli

were used.

In our study, we decided to vary the amplitude of the

stimulation, keeping the frequency fixed at 230Hz. Due to the

coupling effect between frequency and amplitude, while the

frequency remains unaffected when the amplitude is modulated,

the amplitude will change when the tactor operates outside the

optimal frequency range, which is between 200–250Hz for the

C2 tactors (Engineering Acoustics Inc). Indeed, Dideriksen et al.

(2021) shows that electrotactile stimulation performs better than

C2 tactors at frequencies lower than 200Hz. However, once the
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frequency of the vibrotactile approaches the optimal range, both

stimulation modalities perform similarly.

The sensation threshold

To be perceived, the stimulation applied to the shoulder

segment needed to have a significantly higher vibration

amplitude than the stimulation applied to the lower arm.

The selected vibrotactile stimulation frequency (230Hz) mainly

targets the Pacini corpuscles in the skin (Saddik et al., 2011). The

fact that the Pacini receptor density in the upper limb increases

in the direction from the shoulder to the hand (Montagna, 1965;

Johansson and Vallbo, 1979; Vallbo and Johansson, 1984), might

explain our findings. As previously mentioned, we are not able

to find any literature regarding differences in receptor density

between the ventral and dorsal sides of the arm-shoulder region,

as most of the studies investigate this only in the hand in which

the dorsal side is covered in hairy skin and the ventral side in

glabrous skin with their respective differences in innervation

(Liu et al., 2007; Li et al., 2011). Since the arm is completely

covered in hairy skin (Zimmerman et al., 2014) one would not

expect such differences here. Interestingly, we find differences

between the ST on the ventral and dorsal sides of the arm

segments. These are significant only for the lower arm and

the shoulder. In both segments, the ST is significantly lower

ventrally. This might possibly be explained by the differential

innervation of these locations. Another possible reason could be

the thicker muscular tissue covering the bone on the dorsal parts

of the lower arm and the shoulder, compared with their ventral

counterparts. This proximity of the vibrotactile stimulation to

the bone and the missing dampening of the soft tissue might

lead to a better perception of the vibration. Indeed, Jacobs et al.

(2000) performed an experiment in which they vibrotactilely

stimulated the thumb/foot sole of the prosthetic and normal

limb of amputees. They reported that upon vibratory stimulation

of the residual limb, bone-anchored prostheses yielded better

perception than socket prostheses, which are based on soft tissue

support. Comparing the sensation threshold between the healthy

hand and the socket prosthesis exposed an average increment

of 20% for the affected side. When comparing the sensation

threshold between healthy hands and bone-anchored prostheses,

the affected side is similar to the control limb. This would also be

consistent with the lack of significant differences in the upper

arm in our study, where the ventral and dorsal muscle cover

is similar.

Finally, all participants are able to correctly spatially

identify the active vibrotactile unit. Given the spatial layout

of tactile stimulation that is used in our experimental setup

(see Figure 1B), it follows that vibrotactors can be successfully

distinguished at a distance of 61mm. This result is comparable

with the reported ability of discrimination between two points

(two-point discrimination) ranging from 30.7 to 42.4mm (mid-

posterior lower arm and lateral upper arm, respectively) (Nolan,

1982), suggesting that the perception of vibrotactile localization

is in the same order of magnitude as two-point discrimination.

Obviously, the lack of measurements at smaller distances leaves

the possibility open that the subjects could correctly perceive

distances between tactors below 61 mm.

The Weber fraction and NDI

In contrast to the ST, we found no significant difference

in any segment regarding either the Weber fraction (WF) or

the number of discrete intervals (NDI). The same applies when

comparing these outcomes ventrally vs. dorsally or observing

the single segments (Figures 8, 9). These results are somewhat

expected since the WF defines a relative change of amplitude

between two stimuli, not an absolute one. In this case, it is

the activation threshold of a single receptor (and to some

extent, its signal to noise ratio) and not the density of receptors

that determines the result. Therefore, assuming that we are

activating the same family of receptors over the whole arm-

shoulder region, the WF, and consequently, the NDI too, are

expected to be similar in every location. In this light, our results

suggest that we activated the same types of receptors at different

sites of the investigated regions. Overall, previous studies on

the perception of vibration on the lower arm show that the

Weber fraction is in the range of 17% (at 200Hz) to 30% (at

300Hz) (Rothenberg et al., 1977; Mahns et al., 2006), which is

consistent with our findings of a WF value of 20% across all

locations in the arm-shoulder region at a 230Hz stimulation

frequency. Interestingly, the WF obtained on the fingertips

using a similar setup and a frequency of 200Hz was only ca.

18% lower than that of the lower arm, although the ST of the

fingertip was ca. 63% below the value obtained on the lower arm

(Mahns et al., 2006). This further supports the claim that the

sensation threshold indeed decreases substantially more from

the proximal to distal on the whole limb and that this is not the

case for the Weber fraction.

Whereas, the sensation threshold represents a minimum

absolute value of stimulation intensity that one can perceive,

the Weber fraction measures, in contrast, a minimal relative

change of stimulation intensity that an individual can detect.

Therefore, while the ST can give some information about the

receptor density this is not true for the WF, which reflects the

receptors’ overall physiological functioning and their interaction

with the surrounding tissue. In the applied case of feedback

reproduction in the healthy arm, it is possible to calculate the

required difference between two stimuli at all points based on the

measurement of the sensation threshold at the desired points, as

well as the measurement of the Weber fraction at one of these

points. This is possible if all regions have the same skin and

similar structures. In fact, we tested this assumption by taking

Frontiers inNeuroscience 10 frontiersin.org

82

https://doi.org/10.3389/fnins.2022.958415
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Pardo et al. 10.3389/fnins.2022.958415

the ST at all measuring points and computing WF using the

measuredWF at one of these points. We repeated the procedure

for all WFs and calculated a standard deviation of 0.31% with

an absolute mean error of 0.44%. This error is about 2.2% of the

mean measuredWeber fraction and is therefore acceptable. This

might help in the implementation of feedback, as the calibration

would need to be performed once if the used frequency and

amplitude are targeting one kind of receptor. The stimulation

could then be provided over the whole arm with the same

relative signal.

The compensatory tracking task

There were no significant differences between the arm

regions in the time delay that the subject exhibited in following

the reference trajectory. This outcome could be potentially

explained by the fact that the delay of the sensory pathway

was relatively small in comparison with the other delays

that were present in the control loop (e.g., the motor delay

and cognitive processing delay), thus failing to account for a

substantial difference across different arm-regions. Indeed, the

mean distance from the stimulation site on the lower arm to

the spinal cord was 63 cm, from the upper arm 43 cm, and from

the shoulder 13 cm for our participants. The Pacinian corpuscles

are innervated by Aβ (large, myelinated) fibers with conduction

velocities up to 70 m/s (Montaño et al., 2010); this implies a

travel time of 8.96 ms from the stimulation site of the lower

arm, 6.15 ms from the upper arm, and 1.8 ms from the shoulder.

These times lie in the interquartile range of the delay observed

for each site and therefore do not account for differences in the

time delay, thus correlating with our results. Therefore, the travel

time of the stimuli, which is a consequence of nerve conduction

velocity, do not significantly contribute to the measured time

delay. This likewise suggests that the cognitive processing of the

stimuli and themotor command execution delay are invariant to

the alterations between the stimulation regions. Stepp et al. came

to a similar conclusion investigating the importance of training

compared with the importance of the vibration site. They found

out that participants experienced a strong learning effect within

a single session. The effects of the vibration site, however, are less

dramatic (Stepp and Matsuoka, 2011).

Looking at the average rectified error, we found a difference

between stimulated regions. In contrast to the the time delay,

the rectified error is not dependent on the physiological reaction

time but on the user’s ability to correctly classify the provided

feedback and properly react to it (see Figure 10B). Similar to the

experimental task in which we calculated the WF, the subject

could have been just differentiating between two consecutive

stimuli and deciding which one was stronger. Consequently, a

rectified error of zero would imply that the user would have been

able to distinguish between infinite NDIs. As all regions possess

the same NDIs, one might expect that no significant differences

will be seen between the regions. However, the shoulder showed

a significantly higher tracking error when compared with the

upper arm. An explanation for this might be that the subject was

using the aforementioned mechanism of comparing subsequent

stimulations to determine the sign of the trend of the error (i.e.,

to determine if the error is increasing/decreasing), but here,

(s)he also needed to know if the error is large or small (in

absolute terms) in order to react accordingly. Therefore, the

compensatory tracking task requires a combination of skills,

that is, the ability of differentiating between relative changes

and appropriately identifying the overall magnitude of the

stimulation (i.e., its absolute value). This second aspect might

contribute, just as it happens in the sensation threshold, to a

deterioration of performance as one moves proximally. Indeed,

the correlation coefficient indicates at least a statistical trend

(corrected p< 0.1) of worsening performance between the lower

arm and the shoulder.

Practical implications for design of
vibrotactile displays

Some of the results obtained during our experiment might

have a significant impact on the design and evaluation of devices

for vibrotactile stimulation of the upper limbs. For instance, we

obtained significant differences between the sensation threshold

of proximal and distal segments (Figures 4, 5). However, the

perception of the relative changes in the stimulation intensity

is invariant to the arm region (Figure 6). Moreover, the STs,

although significantly different, are still very small with respect

to the overall amplitude range–none of the measured locations

exhibited an ST >6% of the maximal amplitude. One practical

implication of these results is that the vibrotactors applied to

the arm could be of similar size and power, independent of

their location, facilitating their optimized mechanical design.

This observation is further supported by the delays measured

during the compensatory tracking task. Here, we discussed that

the cognitive processing of the stimuli and the execution delay of

motor commands are not significantly affected by the distance

of the stimulation site to the spinal cord or its origin on the

arm. Therefore, individuals are capable to use the feedback

devices efficiently and with similar cognitive effort across all

arm-shoulder dermatomes.

A specific application scenario could be vibrotactile feedback

for upper-limb prostheses that communicates the prosthesis’

grip force (or a similar variable) by modulating the vibration

intensity (e.g., the higher the intensity the higher the grip

force (Stephens-Fripp et al., 2018a)). In this context, our

results are promising for amputees since the arm location

on which feedback is delivered can significantly vary. This

allows supplying individuals with different amputation levels

with feedback (for transradial amputees on the lower arm, for
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transhumeral amputates on the upper arm or the shoulder).

Given that the overall implementations of the feedback and

prosthetic systems are similar, our results suggest that both

transhumeral and transradial prosthetic users may have a

similar level of proficiency in perceiving and interpreting the

feedback (i.e., the prosthesis grip force). More specifically, since

the WF was largely invariant between the upper and lower

arm, both groups of individuals should be able to perceive

and quantify the (relative) changes in grip force with similar

performance (i.e., its relative increase or decrease from arbitrary

nominal value). However, the lower ST of the lower arm also

suggests that individuals suffering from transradial amputation

could have advantages over their transhumeral counterparts in

quantifying the actual amplitude of the prosthesis’ grip force,

i.e., in classifying the vibration intensity in absolute terms (e.g.,

as high, medium, or low). Nonetheless, the difference in the

overall performance of the two subject groups is still unlikely

to be functionally relevant: The tracking task has demonstrated

remarkable similarity in the real-time interpretation of feedback

across different arm-regions and every feedback interface is a

part of an overarching sensory-motor integration framework.

This framework consists of several intertwined layers, namely,

the feedforward motor control, the control system, and the

end-effector that, in combination with feedback, ultimately

determine the outcome of the user’s actions (Sensinger and

Dosen, 2020).

Our data suggest that the receptors show a similar response

to relative changes of the vibration stimuli, i.e., to those

changes that are normalized to the perceivable range of

stimulation—Weber fraction and number of distinct intervals

are the same across all segments of the arm-shoulder region.

However, different arm segments have different perceivable

ranges of stimulation—the sensation threshold is significantly

increasing from the distal to proximal regions. The higher

tracking error in the tracking task in the shoulder compared

with the arm region might have resulted from the smaller

perceivable stimulation range in the shoulder region (i.e., the

higher sensation threshold), leading to a decreased ability to

properly assess the magnitude of the error in the tracking task.

Nonetheless, even if some variations exist, the healthy arm and

shoulder region can perceive vibrations at 230Hz at relatively

low amplitudes (in the range of 2–6%) and differentiate between

two sequential stimulations if their amplitudes differ by 20%. As

two of three outcome measures in the compensatory tracking

task are invariant to a change in arm location, the ability of

the subject to perceive dynamically changing stimuli is only

marginally dependent on where it is applied.

Our discussion assumes that we are targeting the Pacini

corpuscles. Even if the design of our study does not allow us

to establish if there are differences between receptors since we

do not correlate our results with histological studies, our data

suggest that the receptors activated by the vibration stimuli show

the same behavior across all locations, independent of their

structural entity.

In summary, our experiments provide elementary insights

regarding the vibrotactile sensation capacity of the healthy upper

extremity. Since vibrotactile displays are the state-of-art in a

wide array of applications, these results might contribute to an

increased effectiveness of their use.
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Principal component analysis of
photoplethysmography signals
for improved gesture
recognition
Yuwen Ruan, Xiang Chen*, Xu Zhang and Xun Chen

School of Information Science and Technology, University of Science and Technology of China,
Hefei, Anhui, China

In recent years, researchers have begun to introduce photoplethysmography

(PPG) signal into the field of gesture recognition to achieve human-computer

interaction on wearable device. Unlike the signals used for traditional neural

interface such as electromyography (EMG) and electroencephalograph (EEG),

PPG signals are readily available in current commercial wearable devices,

which makes it possible to realize practical gesture-based human-computer

interaction applications. In the process of gesture execution, the signal

collected by PPG sensor usually contains a lot of noise irrelevant to gesture

pattern and not conducive to gesture recognition. Toward improving gesture

recognition performance based on PPG signals, the main contribution of this

study is that it explores the feasibility of using principal component analysis

(PCA) decomposition algorithm to separate gesture pattern-related signals

from noise, and then proposes a PPG signal processing scheme based on

normalization and reconstruction of principal components. For 14 wrist and

finger-related gestures, PPG data of three wavelengths of light (green, red, and

infrared) are collected from 14 subjects in four motion states (sitting, walking,

jogging, and running). The gesture recognition is carried out with Support

Vector Machine (SVM) classifier and K-Nearest Neighbor (KNN) classifier. The

experimental results verify that PCA decomposition can effectively separate

gesture-pattern-related signals from irrelevant noise, and the proposed PCA-

based PPG processing scheme can improve the average accuracies of gesture

recognition by 2.35∼9.19%. In particular, the improvement is found to be

more evident for finger-related (improved by 6.25∼12.13%) than wrist-related

gestures (improved by 1.93∼5.25%). This study provides a novel idea for

implementing high-precision PPG gesture recognition technology.
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gesture recognition, KNN, PCA, PPG, SVM
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Introduction

Photoplethysmography (PPG) sensors embedded in
wearable devices currently on the market are often used for
health detection (Raj et al., 2021; Dhar et al., 2022; Loh et al.,
2022), identity verification (Alotaiby et al., 2021; Dae et al.,
2021), and emotion recognition (Lee et al., 2019; Goshvarpour
and Goshvarpour, 2020). In recent years, researchers have
begun to explore the feasibility of using PPG signal for gesture
recognition to achieve human-computer interaction. Taking
advantage of PPG signals, Zhao et al. (2021) recognized 9
gestures with the average accuracy of 88%, and Yu et al. (2018)
recognized 10 gestures with the average accuracy of 90.55%.
Based on these studies, there is a growing consensus that PPG
has the potential to replace EMG, accelerometer and other
inertial sensors in the field of gesture recognition. Subramanian
et al. (2020) conducted a comparative gesture recognition study
on PPG and surface electromyography (EMG), and verified that
the performance of these two types of signals was at the same
level. Ling et al. (2021) proved that PPG signal is more suitable
than acceleration signal for gesture interactions in wearable
devices from three perspectives: (1) PPG is less affected by
background motion noise; (2) PPG has better recognition
performance of finger-related gestures; (3) PPG is more robust
in reducing training burden. However, although PPG gesture
recognition technology has made some progress, it is still in
early research stage. The recognition accuracy and robustness
have not met the needs of commercial use yet.

The main principle of using PPG signals for gesture
recognition is that hand movement can cause deformation of
blood vessels or tissues, resulting in PPG signal change with
different movement patterns. In occasions such as heart rate
estimation or blood oxygen detection, it is necessary to reduce
motion artifacts to prevent their influence on measurement
performance. However, for human-computer interaction, the
motion information contained in the PPG signal is the key to
realize gesture recognition, on the contrary, the vital sign-related
information is regarded as noise. Consequently, the traditional
PPG signal motion artifacts elimination methods are no longer
applicable in this case.

When gesture actions are used for human-computer
interaction, the signals collected by PPG sensors contain
components related to multiple factors such as heart rate,
gesture relevant motion and gesture irrelevant motion. In
terms of signal sources, the components can be regarded
as independent of each other, and the component irrelevant
to gesture motion is not conducive to gesture recognition.
Meanwhile, the energy levels of PPG signals caused by different
factors may vary greatly. When there exist high-energy noise
components, gesture recognition accuracy is bound to suffer
significantly. Based on above analysis, we believe that if the PPG
signals can be decomposed into components corresponding to

different factors, it is expected to improve the accuracy of PPG-
based gesture recognition through effective noise reduction.

In aspect of signal decomposition algorithms, principal
component analysis (PCA), independent component analysis
(ICA), and empirical mode decomposition (EMD), etc., can
realize the effective decomposition of multi-channel or single-
channel signals, and have been widely used in processing
of biomedical signals such as electroencephalograph (EEG)
(Turnip and Junaidi, 2014; Agarwal and Zubair, 2021; Farsi
et al., 2021) and EMG (Masri et al., 2021; Xiong et al., 2021)
etc. In PPG-based measurement of heart rate and other vital
sign parameters, PCA, ICA, and EMD also have been adopted
to remove motion artifacts, and the ability of these signal
decomposition algorithms in separating the components related
to vital signs and motion artifacts have been confirmed. For
instance, Lee et al. (2020) proposed an ICA-based motion
artifact reduction algorithm for PPG heart rate measurement.
Liu et al. (2021) presented a PCA-based scheme to remove
motion artifacts in PPG signals for blood pressure measurement.
Adopting a method based on ensemble EMD and PCA, Motin
et al. (2018) realized the estimation of heart rate, respiratory
rate, and respiratory activity from PPG signals. For pulse rate
detection, Wang et al. (2010) proposed an approach based on
EMD and Hilbert transform to reduce the artifacts in PPG
signals.

Inspired by the research progress of motion artifacts
elimination based on signal decomposition algorithms,
this study tried to explore the feasibility of using signal
decomposition technology for separating gesture-related
signals from physiological noise and gesture irrelevant
motion noise, and subsequently developed effective PPG
processing scheme for improving the accuracy of PPG gesture
recognition. Its main innovation and contribution lie in that:
(1) PCA algorithm was applied to decompose multi-channel
PPG signals associated with 14 kinds of gestures, and the
characteristic analysis of different principal components was
carried out to explore the feasibility of separating gesture
pattern related signal from irrelevant noise; (2) An effective
gesture PPG signal processing method based on normalization
and reconstruction of principal components was accordingly
developed and carried out.

Materials and methods

Gesture set and data acquisition

In this study, the target PPG gesture dataset is the same
as that in our previous work (Ling et al., 2021). As shown in
Figure 1, the target gesture set consists of 14 kinds of wrist and
finger joint related actions. Gestures G1–G6 mainly focus on
wrist movements, gestures G7–G13 focus on finger movements,
and gesture G14 is a baseline gesture, which requires the hand
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FIGURE 1

Fourteen gestures in the target gesture set.

FIGURE 2

Schematic diagram of (A) the acquisition device and (B) the
wearing example.

in a natural relaxed state. The execution process of each gesture
starts from the resting state that the arm is naturally drooping
and relaxed. When performing the gestures, subject raises the
arm in front of the chest, completes the action, and finally
returns to the relaxed state.

Fourteen healthy subjects (8 males and 6 females)
participated in the data acquisition. The subjects were between
22 and 24 years old. All of them are right-handed and have
no known history of any neural or musculoskeletal disease.
All of the subjects were informed about the experiments and

signed an informed consent form (No. PJ 2014-08-04) approved
by the Ethics Review Committee of First Affiliated Hospital
of Anhui Medical University. Each subject was asked to finish
a set of experiments in four exercise states, namely: Sitting,
Walking (speed of 3 km/h), Jogging (speed of 5 km/h), and
Running (speed of 8 km/h). Except Sitting, the experiments in
the other three exercise states were carried out on a treadmill
(Sole F63) to make sure that the subjects exercise at a constant
speed. In the states of Sitting and Walking, the subjects were
asked to repeat each gesture about 50 times, while in the
states of Jogging and Running, each gesture was repeated about
25 times. There was a 2-s interval between repetitions, and
subjects were asked to rest about 5 min between gestures to
avoid muscle fatigue.

A wristband-type multi-channel PPG acquisition device
(Figure 2A) developed and manufactured by the research team
was used for data collection. The device was equipped with four
PPG sensors (MAX30105, Maxim Integrated Inc., San Jose, CA,
USA). As shown in Figure 2B, the device was worn on the
right forearm at distance of about one finger from the wrist and
were placed near radial artery, ulnar artery, cephalic vein and
guillotine vein, respectively, to obtain PPG signals from the four
major blood vessels. Each PPG sensor alternately emitted the red
light, infrared light and green light, and the 4-channel signals
of the same light from the four PPG sensors were collected
synchronously. The sampling frequency of each channel was set
to 100 Hz.

Principal component characteristic
analysis of gesture
photoplethysmography signals

The PCA algorithm is adopted to decompose multi-
dimensional data into a series of linearly uncorrelated elements
called principal components using orthogonal transformation
(Bro and Smilde, 2014; Lever et al., 2017). As depicted in
Equation 1, the gesture PPG signal matrix X (4-channel, N data
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points) is transformed into principal component matrix PC and
the corresponding weight vector matrixW using PCA algorithm
according to the specific steps as follows:

PC4×N
= W4×4X4×N

X = [X1,X2,X3,X4]T,W = [W1,W2,W3,W4]T (1)

PC = [PC1,PC2,PC3,PC4]T

(1). Perform de-averaging operation on each row of X, which is
also called zero-averaging;

(2). Calculate the 4 × 4 covariance matrix according to
Equation 2;

σ =
1

N−1
XXT (2)

(3). Perform eigenvalue decomposition on the covariance
matrix to find the eigenvalues and corresponding
eigenvectors, and arrange the eigenvectors in descending
order of eigenvalues to get the eigenvector matrix W;

(4). Calculate the principal components according to
Equation 3.

PCi = ωi
TX (3)

Then the characteristic analysis of different principal
components is carried out to explore the feasibility of separating
gesture pattern related signal from irrelevant noise. Principal
component characteristic analysis is carried out in time domain
and frequency domain, respectively. In the time domain, the
envelope, energy, and variance levels of each channel of the raw
PPG signals and each principal component are analyzed. In the
frequency domain, Fast Fourier Transform (FFT) is performed
on the raw PPG signals and principal components, respectively,
to obtain the corresponding frequency domain signals. The
frequency distributions of each channel of the raw PPG signals
and each principal component are analyzed through mean
frequency (MNF) and median frequency (MDF) calculated
by Equations 4, 5, respectively, where M is the number of the
frequency points, fj is the frequency of pointj and Pj is its power
spectrum.

MNF =

∑M
j = 1 fjPj∑M
j = 1 Pj

(4)

∑MDF

j = 1
Pj =

∑M

j=MDF
Pj =

1
2

M∑
j = 1

Pj (5)

In order to depict the relationship between the principal
components and the raw PPG signals, Pearson correlation
coefficient (Ly et al., 2018) is used to measure the correlation
between the signal sequences.

The photoplethysmography gesture
recognition scheme based on principal
component analysis processing

Figure 3 shows the PPG gesture recognition scheme based
on the proposed PCA processing method, including: collecting
4-channel gesture PPG signals, PCA processing of the 4-channel
PPG gesture signals, segmentation of gesture action activity;
and gesture recognition with SVM classifier and KNN classifier.
Gesture PPG signal collection is the same as described above,
and details of the other steps are described below.

The purpose of PCA processing is to reduce the negative
impact of high-energy noise components on gesture recognition
by normalizing different principal components to the same level,
so as to achieve the effect of denoising. For the 4-channel gesture
PPG signals, the detailed procedure of the PCA processing is as
follows:

(1). Decompose the 4-channel PPG signals into four
principal components by means of PCA algorithm as
described above.

(2). Normalize the four principal components with unequal
energy to the same level. In particular, for each PC, to find
the maximum and minimum values firstly, then normalize
the data points greater than zero to [0 1] by the maximum
value, and normalize the data points less than zero to [−1
0] by the absolute value of the minimum;

(3). Obtain the processed PPG signals by reconstructing the
normalized principal components according to Equation 6.

Xprocessed = W · PCnormalized (6)

The goal of gesture segmentation is to extract gesture repetition
samples from continuous signals. A motion background noise-
based segmentation strategy proposed in our previous work
(Ling et al., 2021) is adopted in this study. In this strategy,
considering that the waveform and amplitude of gesture signals
are far greater than the motion background signal, the starting
and ending positions of a gesture repetition is determined by
setting suitable thresholds. The details of the motion noise-based
strategy can be found in Ling et al. (2021). In addition, the
lengths of the gesture repetitions are not always consistent in
different exercise states in this study. In the states of Sitting
and Walking, the completion time of a gesture is about 1 s.
As the movement speed increasing, the time to complete a
gesture will get shorter, and the gesture completion time in
the Running state is about 0.5 s. According to the sampling
rate of 100 Hz, the signal length of a gesture repetition is
about 40–120 data points. To normalize the length of gesture
samples, the down-sampling method is used to extract a 32-
point envelope of each gesture repetition as gesture feature
sample in further classification. Thus, each PPG gesture sample
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FIGURE 3

The PPG gesture recognition scheme based on PCA processing.

is in the form of a matrix of size 4 (channels) ×32 (data
points).

Considering the limited number of samples in the target
database, two classical and traditional machine learning
classifiers, namely Support Vector Machine (SVM) classifier
and K-Nearest Neighbor (KNN) classifier are adopted for
gesture classification in this study. SVM is considered as one
of the most successful machine learning algorithms in recent
years (Cortes and Vapnik, 1995). The basic idea is to solve a
separation hyperplane that can correctly classify the training
data set, and the hyperplane needs to satisfy the maximum
geometric interval between dissimilar data. SVM can solve the
nonlinear case by choosing a suitable kernel function, using
nonlinear processing to map the samples to a high-dimensional
space, and then finding the best classification hyperplane in
the high-dimensional space. In our previous work (Ling et al.,
2021), the SVM classifier achieve the best performance in
PPG gesture recognition compared to Convolutional Neural
Network (CNN) and Long Short-Term Memory (LSTM). KNN
algorithm originally proposed by Cover and Hart (1967). Since
it is easy to realize and needs less training time, KNN classifier
is commonly used in the field of pattern recognition. After
the analysis of the distribution characteristics of gesture PPG
samples and the experimental verification, for SVM classifier, a
linear kernel function is used, and the penalty factor is set to 1.
And for KNN classifier, the Euclidean distance is selected, and K
is set to 1.

In view of the large individual differences in PPG signals, as
a primary study, PPG gesture recognition in this study is carried
out in a subject-specific way. In the meanwhile, considering
that it is difficult to obtain large-scale gesture training data in
practical human-computer interaction applications, this study
focuses on gesture recognition with small training size. In
particular, for each gesture, all samples of each subject are
randomly divided into 10 parts, one part of samples is used
for training data, and the remaining nine parts testing data.
That is, 10% data is used for training the classifier and 90%
for testing. The result of the recognition task is obtained by
cross-validation method.

Two denoising schemes for
comparison

In order to evaluate the effectiveness and superiority of the
proposed PCA processing method, gesture recognition adopting
two common signal denoising methods, namely Butterworth
low-pass filter (Li, 2007; Liao et al., 2014) and wavelet threshold
denoising (Pan et al., 2007; Cheng and Zhang, 2014; Wang et al.,
2019), have also been conducted in this study. Because the main
spectrum of PPG gesture signals is concentrated in 0∼5 Hz, a
5-order Butterworth low-pass filter with a cut-off frequency of
5 Hz is adopted.

The wavelet threshold denoising is carried out as follows:
(1) Calculate the orthogonal wavelet transform of the noisy
PPG signal, decompose the signal into 4 layers and get the
corresponding wavelet decomposition coefficient. The wavelet
used is “sym6”; (2) Threshold the wavelet coefficients to obtain
the estimate of the wavelet coefficients of the real signal.
In specific, the soft threshold function shown in Equation 7
is adopted, where th is the threshold and γ is the wavelet
coefficient. The minimax thresholding, which is defined as
Equations 8, 9, is used to determine the threshold, where N is
the sum of the total number of wavelet coefficients of the noisy
signal on scales 1 4, J is the binary scale, and W1,k is the wavelet
coefficients of scale 1; (3) Do the inverse wavelet transform, and
regard the reconstructed signal as the de-noised signal.

T
(
γ, th

)
=

{
sgn (γ)

(
|γ| −th

)
, |γ|≥th

0, |γ| < th
(7)

th =

{
σ
(
0.3936+0.1892log2N

)
, N > 32

0, N < 32
(8)

σ = middle
(∣∣W1,k

∣∣ , 0 ≤ k ≤ 2J−1
−1
)
/0.6745 (9)

Statistical analysis

Considering the data in this study do not strictly satisfy
the conditions of normal distribution and homogeneity of
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FIGURE 4

Raw signals and PCA decomposition results of a green light PPG sample (PC, principal component; E, energy; Var, variance; MNF, mean
frequency; MDF, median frequency). (A) The raw signals. (B) The principal components.

variance, non-parametric tests (Kruskal–Wallis test) were
performed to explore the impacts of the independent variables
(wavelength, motion state, denoising method, and classifier) on

the dependent variable (recognition accuracy). The statistical
analysis was carried out on IBM SPSS Statistics (Version 25),
and the significance level is 5%.
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Results and analyses

Principal component characteristics
analysis of multi-channel gestural
photoplethysmography signals

Figure 4 shows the raw signals and PCA decomposition
results of one PPG sample of gesture G5 from a representative
subject (Sub11) in the Running state. From Figure 4A, it
can be seen that the raw signals of different channels have
similar changing trend (average similarity coefficient of pairwise
channels ρ 0.92). The four channels are at almost the same level
in terms of energy. The MNF and MDF of the four channels only
vary slightly. In contrast, as shown in Figure 4B, the envelopes
of the 4 principal components obtained by PCA decomposition
are more distinct (average similarity coefficient of pairwise
components ρ 0.35). For example, PC1 has the highest energy
(8.68e + 06), which is more than 39 times higher than the other
three components (1.26e + 05∼2.20e + 05). At the same time,
the four components have significant frequency differences. PC1
has the lowestMNF (2.51 Hz) andMDF (2.06 Hz), while PC4 has
the largest MNF (9.48 Hz) and MDF (3.05 Hz). Above results
demonstrate that PCA can effectively decompose multi-channel
gesture PPG signals into multiple components with different
energy levels and frequency bands.

To explore which principal components are beneficial to
gesture recognition, all gesture samples of the subject in the
four motion states were analyzed. Figure 5 shows a similarity
comparison between the four channels of raw PPG signals
and the four principal components for all gesture samples, by
calculating the correlation coefficients of pairwise channels or
pairwise PC components (mean ± standard deviation). In all
the 4 motion states, the average correlation coefficients of raw
PPG are up to 0.7, while those of the principal components are
only in the range of 0.29 and 0.35. These results verify that the
four channels of raw signals have a large common component,
however, the four principal components are much independent
of each other.

Figure 6 shows the similarities between the four principal
components and the raw PPG signals for all gesture samples.
The values (mean ± standard deviation) in the figure were
obtained by calculating the correlation coefficients between
one PC component and the four channels of raw signals and
averaging them. From Figure 6 we can find that PC1 is similar
to the raw PPG (ρ 0.83∼0.92) while PC2, PC3, and PC4 are
less similar to the raw PPG (ρ 0.30∼0.54). According to the
above analysis, we believe that component PC1, which has the
largest energy level and the lowest frequency, maybe represents
the common trend of the four channels of raw PPG signal.

Figure 7 compares the correlation coefficients between
the same principal components of the samples belonging to
different gesture types. For samples belonging to different
gestures, the mean correlation coefficients of PC1 are all up

FIGURE 5

The similarities between the four channels of raw PPG signals
and between the four principal components (Subject 11).

FIGURE 6

The similarities between principal components and raw PPG
signals.

FIGURE 7

The similarities between the same principal components of the
samples belonging to different gestures.

to 0.68, while those of PC2, PC3, and PC4 are mostly lower
than 0.4. These results demonstrate further that PC1 mainly
represents a common part in all kinds of gesture samples.
This kind of trend item at a high energy level will mask the
information related to gesture pattern, which may reduce the
recognition accuracy. On the contrary, the other three principal
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components may contain more valuable gesture pattern related
details.

In summary, PCA decomposition and principal component
characteristics analysis of multi-channel gestural PPG signals
verify the feasibility of using PCA to separate gesture pattern
related signals from irrelevant motion noise.

The photoplethysmography gesture
recognition based on principal
component analysis processing

Feature distribution of gesture samples
obtained by different denoising schemes

Taking the green light PPG samples of the 14 gestures of the
2nd subject (Sub 2) in the Sitting state as example, we perform
t-SNE (van der Maaten and Hinton, 2008; Pezzotti et al., 2017)
dimensionality reduction on PPG envelopes obtained by PCA
processing, Butterworth low-pass filter and Wavelet threshold
denoising, respectively. The obtained scatter plots of feature
distribution are shown in Figure 8. In the cases of Butterworth
low-pass filter and Wavelet threshold denoising, as shown in
Figures 8B,C, respectively, there are six gestures that can be
easily distinguished from other gestures. For the remaining eight
gestures, the features are too close to meet the recognition
condition. However, when PCA processing is applied, as shown
in Figure 8A, the features of all 14 gestures can be separated
effectively from each other. Above results demonstrate, to some
extent, the possibility of improving gesture recognition accuracy
by the proposed PCA processing scheme.

Recognition results for 14 gestures
Photoplethysmography gesture recognitions of 14 gestures

are carried out in the cases of three lights and four motion states,
using SVM and KNN classifiers, respectively. For each case, the
average gesture recognition accuracies among 14 gestures and
14 subjects are shown in Table 1. In order to compare the effect
of different denoising schemes and classifiers on PPG gesture
recognition in the cases of different lights and different motion
states, nonparametric tests are performed further and the results
are shown in Table 2. Combined the Tables 1, 2, the following
phenomena can be observed (The values presented in following
parts, if not otherwise specified, are the average recognition
accuracies and standard deviations for all recognition tasks
involving the discussing factors):

(1). The wavelength of PPG signal has a significant impact on
the recognition accuracy (p = 0.000∗∗). Specifically, the
recognition accuracy of green light (86.71 ± 7.53%) is
significantly (p = 0.000∗∗) lower than those of red light
(93.25 ± 5.44%) and infrared light (93.48 ± 4.49%), and
there is no significant difference between red light and
infrared light (p = 0.975). From this result, it can be

seen that although the green PPG suitable for heart rate
detection is generally embedded in wearables, it is not the
best choice for gesture recognition.

(2). The intensity of the motion has a significant impact
on the recognition accuracy (p = 0.000∗∗). In general,
the recognition accuracy decreases with the increase of
background motion speed: 92.70 ± 5.93% for Sitting,
92.94± 6.05% for Walking, 90.35± 7.01% for Jogging and
88.60± 6.92% for Running. However, there is no significant
difference between Sitting and Walking (p = 0.501). This
result shows that the low-intensity background motion has
little influence on the recognition effect. Only movement
that reaches a certain intensity makes the recognition
accuracy decrease.

(3). The performance of the PCA processing is significantly
(p = 0.000∗∗) better than the other two denoising schemes.
For the four motion states, three lights of PPG and two
classifiers, the average recognition accuracies obtained by
the three different denoising schemes are respectively:
94.61± 5.24% for PCA, 89.22± 6.87% for Butterworth and
89.61± 6.58% for Wavelet. Furthermore, the performances
of Butterworth denoising and Wavelet denoising have no
significant difference (p = 0.536). This result verifies the
superiority of the proposed PCA denoising scheme.

(4). According to the results shown in Table 1, the recognition
accuracy of SVM classifier (91.87± 6.20%) is slightly higher
than that of KNN (90.11 ± 8.91%), and the statistical
analysis result also shows that the classifier truly has some
impact on the accuracy (p = 0.002∗). However, in terms of
the accuracy requirement of human-computer interaction,
a difference of only one percent is not enough to conclude
that SVM is superior to KNN. Considering the advantage
of KNN in computing speed, it can still be considered that
both SVM and KNN classifiers are well-suited for the PPG
gesture recognition.

Recognition results for wrist-related gestures
and finger-related gestures

As mentioned above, the target gesture set contains 6
wrist-related gestures (G1–G6) and 7 finger-related gestures
(G7–G13). In order to compare the performance of the three
denoising schemes on these two types of gesture, we further
conduct recognition experiments on wrist-related gestures and
finger-related gestures, respectively. The gesture recognitions
are carried out using the red-light PPG data under the four
motion states. Figures 9A,B give the recognition results of wrist-
related gestures and finger-related gestures using SVM and KNN
classifiers, respectively. Nonparametric tests are performed to
explore the effects of denoising methods on recognition.

The recognition of finger-related gestures has always been
a difficulty in the field of gesture recognition. As shown in
Figure 9, when PPG gesture signals are denoised by general
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FIGURE 8

t-SNE dimensionality reduction feature distributions of gesture signal envelope in the cases of three denoising schemes. (A) PCA.
(B) Butterworth low-pass filter. (C) Wavelet.

TABLE 1 Hand gesture recognition accuracies (%) of 14 gestures.

Classifier SVM KNN

Motion states Lights PCA Butterworth Wavelet PCA Butterworth Wavelet

Sitting Red 99.44± 0.41 93.57± 3.18 93.86± 3.17 99.25± 0.56 91.89± 4.43 92.16± 4.30

Infrared 98.24± 1.65 94.02± 2.92 94.02± 3.16 97.70± 1.93 92.57± 3.79 92.41± 4.07

Green 93.21± 5.20 88.38± 4.34 88.51± 4.50 91.22± 6.75 84.01± 6.62 84.14± 6.62

Walking Red 98.81± 1.20 93.76± 4.12 93.96± 4.08 98.62± 1.47 92.04± 5.24 92.23± 5.11

Infrared 97.87± 1.60 95.14± 2.37 95.28± 2.39 97.55± 1.51 93.97± 2.49 93.99± 2.82

Green 92.86± 4.08 88.39± 6.35 88.55± 6.07 90.42± 5.35 84.70± 8.29 84.83± 7.97

Jogging Red 95.43± 4.20 90.69± 5.97 91.59± 5.36 94.80± 4.38 89.51± 6.50 90.28± 5.97

Infrared 95.31± 2.55 91.96± 5.60 92.96± 4.98 94.68± 2.97 91.35± 6.19 92.18± 5.66

Green 89.57± 5.51 85.08± 8.60 85.47± 8.11 88.28± 5.59 83.48± 9.05 83.75± 8.60

Running Red 97.00± 2.31 88.15± 4.22 88.74± 4.66 96.72± 2.35 87.53± 4.64 88.08± 5.14

Infrared 94.19± 3.18 88.88± 3.89 89.22± 3.65 93.61± 3.33 88.15± 4.15 88.31± 4.06

Green 88.48± 5.89 82.82± 8.51 83.82± 7.54 87.47± 6.94 81.30± 9.62 82.40± 8.25

Total 95.03± 4.86 90.07± 6.35 90.50± 6.05 94.19± 5.58 88.38± 7.28 88.73± 6.97

TABLE 2 The results of non-parametric tests for gesture recognition.

Factors Sig.
for accuracy

Multiple comparisons
(Motion state)

Sig.
for accuracy

Main Light 0.000** Running Jogging 0.001*

Motion state 0.000** Walking 0.000**

Processing
method

0.000** Sitting 0.000**

Classifier 0.002* Jogging Walking 0.000**

Sitting 0.000**

Walking Sitting 0.501

Multiple comparisons
(Light)

Sig.
for accuracy

Multiple comparisons
(Processing method)

Sig.
for accuracy

Green Red 0.000** PCA Butterworth 0.000**

Infrared 0.000** Wavelet 0.000**

Red Infrared 0.975 Butterworth Wavelet 0.536

*p < 0.05, **p < 0.001.
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FIGURE 9

The gesture recognition results for wrist-related gestures and
finger-related gestures under the four motion states,
∗p < 0.05, ∗∗p < 0.001. (A) Wrist-related gestures.
(B) Finger-related gestures.

denoising means, the recognition accuracies of finger-related
gestures are obviously lower than those of wrist-related gestures:
95.34 ± 4.23% for wrist-related and 88.95 ± 6.69% for finger-
related when performing Butterworth low-pass filter denoising;
95.88 ± 4.02% for wrist-related and 89.49 ± 6.46% for
finger-related when performing wavelet threshold denoising. In
comparison, the proposed PCA denoising scheme can effectively
improve the recognition performance of finger-related gestures.
Applying the PCA processing scheme, the recognition accuracy
of the finger-related gestures (97.91 ± 3.36%) is close to that of
the wrist-related gestures (98.68 ± 2.70%). In the meanwhile,
PCA processing improves finger-related gestured recognition
accuracy better than wrist-related gestures. Taking the state of
Running as example, for finger-related gestures, the average
accuracy of PCA denoising scheme is 11.77% higher than
Butterworth and 11.00% higher than Wavelet when using SVM
classifier, and 12.13% higher than Butterworth and 11.63%
higher than Wavelet when using KNN classifier. However, for
wrist-related gestures, the average accuracy of PCA denoising
scheme is only 5.14% higher than Butterworth and 4.21% higher
than Wavelet when using SVM classifier, and 5.25% higher than

Butterworth and 4.52% higher than Wavelet when using KNN
classifier.

Discussion

To the best of our knowledge, this is the first research
paper that specifically focuses on gestural PPG signal denoising.
Combined with the state of the art relevant to PPG gesture
recognition technology, the research results obtained in this
study can be discussed from the following aspects.

The feasibility of separating gesture
pattern related signals from irrelevant
noises using principal component
analysis algorithm

For PPG gesture recognition, how to extract gesture motion
information from irrelevant motion and physiological signals
is the key to determine the recognition performance. Inspired
by the research progress of motion artifact elimination of
PPG signal based on signal decomposition algorithm, this
study carries out multi-channel PPG signal decomposition and
principal component feature analysis using PCA algorithm
to explore the feasibility of separating gesture pattern related
signals from irrelevant noises. The experimental results
demonstrate that PCA algorithm can effectively decompose the
four-channel gesture PPG signals into four components with
different energy levels and frequency bands. The component
PC1, which has the largest energy level and the lowest frequency,
maybe represent the common trend item of the four channels
of raw PPG signal. We speculate that this kind of trend item
at a high energy level will mask the information related to
gesture pattern, thus reduce the recognition accuracy. On the
contrary, the other three principal components may contain
more valuable gesture pattern related details. The results of PCA
decomposition and principal component analysis of gesture
PPG signal provide a new way to propose effective signal
processing method.

In fact, PCA algorithm has been widely used to decompose
PPG signals to extract the needed physiological information.
Liu et al. (2021) used PCA to separate the arterial pulse,
capillary pulse and motion artifacts. Their acquisition device
contains four colors of light, namely: blue, green, yellow, and
infrared light, and one channel for each light. Because lights
of different wavelengths reach the skin at different depths, the
PPG signals of different lights can reflect different physiological
information. In their study, based on PCA decomposition
of the 4-channel PPG, PC1 was considered as arterial pulse
which should have the largest energy. However, when PCA was
applied to blue PPG and green PPG, PC1 was considered to
be capillary pulse and PC2 was motion artifact. In the study
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of Motin et al. (2018) which used PCA with ensemble empirical
mode decomposition (EEMD) to decompose PPG signals, the
PC1 and PC2 were considered to represent heart and respiratory
activity, respectively.

In summary, in related studies of physiological signal
extraction, the first and second principal components which
always have the largest energy, are often considered as the
approximation of the required signals. However, in this study,
we find that the first PC with the largest energy is likely the
noise that interferes gesture recognition, and the last three
principal components with low energy are more likely to be the
gesture-pattern-related signal.

The superiority of the proposed
principal component analysis
processing scheme in
photoplethysmography gesture
recognition

Although a number of studies have verified the feasibility
of using PPG signals for gesture recognition in recent years,
the problem of signal denoising has not attracted enough
attention. In this study, a PPG processing method based
on principal component normalization and reconstruction
is proposed and implemented. The results of gesture
recognition experiments on the data of 14 gestures, three
kinds of light (red, infrared, and green) and four motion
states (sitting, walking, jogging, and running) demonstrate
the superiority of the PCA processing scheme from the
following aspects.

First, the PCA processing method can improve the accuracy
of gesture recognition to a certain extent (as shown in
Tables 1, 2). As shown in Table 3, which summarizes
representative studies in the field of PPG gesture recognition in
recent years, most studies adopted common denoising methods
such as Discrete Wavelet Transform (DWT) (Yu et al., 2018),
Butterworth filter (Ling et al., 2021; Zhao et al., 2021), de-
averaging (Subramanian et al., 2020), etc., for PPG signal
processing. As we know, the objective of the common denoising
methods usually is to remove motion noise that is not in
the frequency band of gesture-related signals. In this study,
compared with Butterworth denoising and Wavelet denoising,
PCA denoising shows obvious superiority in improving the
accuracy of PPG gesture recognition. This result verifies that,
the simple denoising methods of removing signal in certain
frequency band cannot sufficiently remove noise and thus
improve the accuracy of gesture recognition. On the contrary,
PCA is a better choice for PPG gesture recognition. Therefore,
we should deeply explore PPG signal denoising scheme
based on PCA and other signal decomposition algorithms in
the future. T
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Second, the PCA processing scheme is of great
significance for the realization of human-computer
interaction based on finger-related gestures. From the
perspective of actual application, the finger-related gestures
are more suitable for interactive scenarios because they
usually have more clear and easy-to-understand meaning.
However, limited by factors such as small motion range
and low degree of muscle contraction, when using
electromyography or acceleration signals for gesture
recognition, the distinguishability of finger joint motion
is usually lower than that of wrist joint motion. In this
study, the experimental results indicate that, for PPG
gesture recognition technology, the distinguishability of
finger-related gestures is also lower than that of wrist-
related gestures. However, the proposed PCA processing
scheme can improve the finger-related gestures recognition
performance significantly. The PCA processing scheme
is able to increase the recognition accuracy of finger-
related gestures to a level similar to that of wrist-related
gestures. With only 10% of the samples for training,
the average recognition accuracy of seven finger-related
gestures can achieve 97.91%, which can basically meet the
commercial needs.

The advantage of the
photoplethysmography gesture
recognition framework implemented
in this study

Compared with the first three studies (Yu et al., 2018;
Subramanian et al., 2020; Zhao et al., 2021) in Table 3, a
relatively large target gesture set consisting of six wrist-related
gestures, seven finger gestures, and a baseline gesture is targeted
in this study, and the advancement of the research results is
reflected in the following aspects:

1) Gesture recognition performance of PPG signals with
different wavelengths is explored. Most current commercial
wearable products are embedded with green PPG sensors
because green light has a greater absorption rate for
oxyhemoglobin and deoxyhemoglobin, which makes it
more suitable for detection of physiological information.
However, the experimental results in this study show that
green PPG is not the best choice for gesture recognition.
Regardless of motion state and denoising method used, the
recognition performance of green PPG is obviously lower
than that of red and infrared lights;

2) The recognition performance of PPG signals in more
motion scenarios is investigated. In the works of
Subramanian et al. (2020) and Zhao et al. (2021), PPG
gesture recognition were carried out only in stationary
state and simple body-motion scenarios. The work of Yu

et al. (2018) added some motion scenarios such as walking
and jogging. In this study, the background motion is
designed more purposefully. We designed a series of tasks
with sequentially increasing background motion velocities
from 0 to 8 km/h, and strictly controlled the motion
velocity to be constant using a treadmill. The experimental
results demonstrate the low-intensity motion backgrounds
such as walking at a speed of 3 km/h have little impact on
the recognition, while the high-intensity movements have
certain influences;

3) The gesture recognition framework proposed in this study
has low training burden, which makes it valuable in the
application of human-computer interaction. As shown in
Table 3, the data for training accounts for 50∼90% of the
target dataset in the relevant works. Considering the needs
of practical application, we only use 10% of the samples to
train the classifier in this study, which means that for each
gesture, no more than 5 samples are included in the training
dataset. Although the training test ratio is as low as 1:9, it
still achieves satisfactory gesture recognition accuracy. In
sitting state, using SVM classifier, the recognition accuracy
of red PPG achieves 99.44%, and even the green PPG, which
is not good at gesture recognition, achieves 93.21%.

Compared with our previous work published in 2021
(Ling et al., 2021), this study follows the same design of the
gesture set and recognition tasks, but changes the gesture
recognition framework. The recognition accuracies obtained
in this study are significantly higher than those of our
previous study. Taking Sitting state and SVM classifier as
example, when the train test ratio is 1:9, the recognition
accuracies are improved by 16.84% for red PPG, 14.84%
for infrared PPG and 24.51% for green PPG. We believe
the main reason why this study achieves better gesture
recognition performance lies in that it adopts the proposed
PCA processing scheme, which aims to weaken the noise
component and highlight the gesture pattern related signal
that is beneficial for gesture recognition. In our previous
work, the signal preprocessing employed Butterworth low-
pass filtering with a cutoff frequency of 5 Hz and amplitude
normalization for each channel. According to the experimental
result of this study, the denoising effect of Butterworth low-
pass filtering is lower than the PCA processing method.
At the same time, amplitude normalization also does not
necessarily have a positive effect on gesture recognition.
Since the four-channel PPG signals are collected at different
locations on the wrist, each channel mainly responds to
blood flow changes in different vessels. When performing
different gestures, there should exist differences in the blood
flow at the corresponding locations of these four channels,
which helps to increase the distinguishability of the gestures.
However, the normalization process puts the amplitude of
the four channels at the same level, which means that the
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important difference information between gestures is erased.
Therefore, the normalization is not conducive to gesture
recognition.

Furthermore, SVM achieves the best performance for
PPG gesture recognition in the previous work. Therefore,
this study still uses the SVM classifier to complete the
gesture recognition task. Meanwhile, considering that it is
easier to implement and requires less training time, the KNN
classifier is also adopted in this study. The experimental
results show that, although the accuracy is slightly lower
than that of SVM, the KNN classifier also has good
recognition performance when using the proposed PCA
processing scheme.

Limitations and future work

Although this study provides a thought to improve the
performance of PPG gesture recognition, it still has some
limitations. First of all, the performance of the PCA processing
method proposed in this study is only verified offline, but
not tested online. Therefore, when the proposed method is
applied to short signal sequences in online situations, the
performance may degrade; Second, this study only takes the
PCA algorithm as an example to preliminarily prove that the
signal decomposition algorithm can effectively separate gesture
pattern related signal from irrelevant noise. Of course, signal
decomposition algorithms such as ICA, EMD, etc., may have the
same function, and may even achieve better performance than
the proposed PCA processing scheme. Third, the PPG gesture
recognition in this study only uses a single batch of data and does
not consider the effects of sensor displacement and other factors
on the recognition performance. To promote the practicality
of PPG gesture recognition technology, issues such as sensor
displacement caused by repeated wearing of the device will be
the focus of our future work.

Conclusion

In this study, PCA decomposition technique is introduced
into the noise processing of gesture PPG signals. After verifying
the feasibility of using the PCA algorithm to separate the gesture
pattern-related signals and irrelevant noises, a PCA processing
method based on normalization and reconstruction is proposed
and implemented. The superiority of the PCA processing
scheme for improving the gesture recognition accuracy is
verified in the recognition tasks of 14 gestures from 14 subjects,
three kinds of light and four motion states, using two classifiers.
In addition, the proposed PCA processing scheme is found to be
more effective in improving the recognition accuracy of finger-
related gestures. The research of this paper contributes to the
development of PPG gesture recognition technology.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed
and approved by the Ethics Review Committee of First Affiliated
Hospital of Anhui Medical University. The patients/participants
provided their written informed consent to participate in this
study.

Author contributions

YR designed the research scheme, did the data acquisition,
data analysis, and gesture recognition experiments, and wrote
the manuscript. XiC directed the research and substantially
revised the manuscript. XZ and XuC participated in the
interpretation of the research results and manuscript revision.
All authors approved the final version of the manuscript.

Funding

This work was supported by the National Nature Science
Foundation of China under grants 61871360 and 61671417.

Acknowledgments

The authors appreciate the cooperation of all the
participants during the data collection procedure.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Frontiers in Neuroscience 13 frontiersin.org

99

https://doi.org/10.3389/fnins.2022.1047070
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1047070 October 29, 2022 Time: 14:50 # 14

Ruan et al. 10.3389/fnins.2022.1047070

References

Agarwal, S., and Zubair, M. (2021). Classification of alcoholic and non-alcoholic
EEG signals based on sliding-SSA and independent component analysis. IEEE
Sens. J. 21, 26198–26206. doi: 10.1109/JSEN.2021.3081714

Alotaiby, T. N., Alshebeili, S. A., and Alotaibi, G. (2021). “Multimodal signals
subject authentication system,” in Proceedings of the 2021 18th international
conference on electrical engineering/electronics, computer, telecommunications and
information technology(ECTI-CON), Chiang Mai, TH, 846–848. doi: 10.1109/
ECTI-CON51831.2021.9454711

Bro, R., and Smilde, A. K. (2014). Principal component analysis. Anal. Methods
6, 2812–2831. doi: 10.1038/nmeth.4346

Cheng, X., and Zhang, Z. (2014). Denoising method of heart sound signals based
on self-construct heart sound wavelet. AIP Adv. 4:087108. doi: 10.1063/1.4891822

Cortes, C., and Vapnik, V. J. M. I. (1995). Support-vector networks.Mach. Learn.
20, 273–297. doi: 10.1111/stan.12111

Cover, T., and Hart, P. (1967). Nearest neighbor pattern classification. IEEE
Trans. Inf. Theory 13, 21–27. doi: 10.1109/TIT.1967.1053964

Dae, Y., Taha, B., and Hatzinakos, D. (2021). PBGAN: Learning PPG
representations from GAN for time-stable and unique verification system. IEEE
Trans. Inf. Forensics Secur. 16, 5124–5137. doi: 10.1109/TIFS.2021.3122817

Dhar, S., Chakraborty, A., Sadhukhan, D., Pal, S., and Mitra, M. (2022). Effortless
detection of premature ventricular contraction using computerized analysis of
photoplethysmography signal. Sadhana Acad. Proc. Eng. Sci. 47:28. doi: 10.1007/
s12046-021-01781-3

Farsi, L., Siuly, S., Kabir, E., and Wang, H. (2021). Classification of alcoholic
EEG signals using a deep learning method. IEEE Sens. J. 21, 3552–3560. doi:
10.1109/JSEN.2020.3026830

Goshvarpour, A., and Goshvarpour, A. (2020). Evaluation of novel entropy-
based complex wavelet sub-bands measures of PPG in an emotion recognition
system. J. Med. Biol. Eng. 40, 451–461. doi: 10.1007/s40846-020-00526-7

Lee, J., Kim, M., Park, H. K., and Kim, I. (2020). Motion artifact reduction in
wearable photoplethysmography based on multi-channel sensors with multiple
wavelengths. Sensors 20:1493. doi: 10.3390/s20051493

Lee, M., Lee, Y., Pae, D., Lim, M., Kim, D., and Kang, T. (2019). Fast emotion
recognition based on single pulse PPG signal with convolutional neural network.
Appl. Sci. 9:3355. doi: 10.3390/app9163355

Lever, J., Krzywinski, M., and Atman, N. (2017). Points of significance principal
component analysis. Nat. Methods 14, 641–642.

Li, Z. (2007). “Design and analysis of improved Butterworth low pass filter,”
in Proceedings of the 8th international conference on electronic measurement and
instruments, Xi An, CN, 729–732.

Liao, Y., Zhao, H., Liu, Y., and Yu, Q. (2014). “The design of active low pass
filter,” in Proceedings of the 5th international conference on mechanical, industrial,
and manufacturing technologies (MIMT), Singapore, 419–423. doi: 10.4028/www.
scientific.net/AMM.541-542.419

Ling, Y., Chen, X., Ruan, Y., Zhang, X., and Chen, X. (2021). Comparative study
of gesture recognition based on accelerometer and photoplethysmography sensor
for gesture interactions in wearable devices. IEEE Sens. J. 21, 17107–17117.

Liu, J., Qiu, S., Luo, N., Lau, S., Yu, H., Kwok, T., et al. (2021). PCA-based
multi-wavelength photoplethysmography algorithm for cuffless blood pressure
measurement on elderly subjects. IEEE J. Biomed. Health Inform. 25, 663–673.
doi: 10.1109/JBHI.2020.3004032

Loh, H., Xu, S., Faust, O., Ooi, C., Barua, P., Chakraborty, S., et al. (2022).
Application of photoplethysmography signals for healthcare systems: An in-depth
review. Comput. Methods Programs Biomed. 216:106677. doi: 10.1016/j.cmpb.
2022.106677

Ly, A., Marsman, M., and Wagenmakers, E. (2018). Analytic posteriors for
Pearson’s correlation coefficient. Stat. Neerl. 72, 4–13.

Masri, G., Harb, H., Diab, N., and Halabi, R. (2021). “Design and control
of a myoelectric prosthetic hand using multi-channel blind source separation
techniques,” in Proceedings of the 2021 sixth international conference on advances
in biomedical engineering (ICABME), Werdanyeh, MH, 54–58. doi: 10.1109/
ICABME53305.2021.9604876

Motin, M. A., Karmakar, C. K., and Palaniswami, M. (2018). Ensemble empirical
mode decomposition with principal component analysis: A novel approach for
extracting respiratory rate and heart rate from photoplethysmographic signal.
IEEE J. Biomed. Health Inform. 22, 766–774. doi: 10.1109/JBHI.2017.2679108

Pan, Q., Meng, J., Zhang, L., Cheng, Y., and Zhang, H. (2007). Wavelet filtering
method and its application. J. Electron. Inf. Technol. 29, 236–242.

Pezzotti, N., Lelieveldt, B. P. F., van der Maaten, L., Hollt, T., Eisemann, E., and
Vilanova, A. (2017). Approximated and user steerable tSNE for progressive visual
analytics. IEEE Trans. Vis. Comput. Graph. 23, 1739–1752. doi: 10.1109/TVCG.
2016.2570755

Raj, R., Selvakumar, J., and Maik, V. (2021). Smart automated heart health
monitoring using photoplethysmography signal classification. Biomed. Eng.
Biomed. Tech. 66, 247–256. doi: 10.1515/bmt-2020-0113

Subramanian, K., Savur, C., and Sahin, F. (2020). “Using photoplethysmography
for simple hand gesture recognition,” in Proceedinds of the 2020 IEEE 15th
international conference of system of systems engineering (SoSE 2020), Budapest,
307–312.

Turnip, A., and Junaidi, E. (2014). “Removal artifacts from EEG signal
using independent component analysis and principal component analysis,” in
Proceedinds of the 2014 2nd international conference on technology, informatics,
management, engineering and environment (TIME-E 2014), Bandung, ID, 296–
302.

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE.
J. Mach. Learn. Res. 9, 2579–2605.

Wang, Q., Yang, P., and Zhang, Y. (2010). Artifact reduction based on empirical
mode decomposition (EMD) in photoplethysmography for pulse rate detection.
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2010, 959–962. doi: 10.1109/IEMBS.
2010.5627581

Wang, Z., Zhu, J., Yan, T., and Yang, L. (2019). A new modified wavelet-based
ECG denoising. Comput. Assist. Surg. 24, 174–183. doi: 10.1080/24699322.2018.
1560088

Xiong, D., Zhang, D., Zhao, X., Chu, Y., and Zhao, Y. (2021). Synergy-based
neural interface for human gait tracking with deep learning. IEEE Trans. Neural
Syst. Rehabil. Eng. 29, 2271–2280. doi: 10.1109/TNSRE.2021.3123630

Yu, Z., Tao, G., Chu, L., Kostakos, V., and Seneviratne, A. (2018). FinDroidHR:
Smartwatch gesture input with optical heartrate monitor. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 2, 1–42. doi: 10.1145/3191788

Zhao, T., Liu, J., Wang, Y., Liu, H., and Chen, Y. (2021). Towards low-cost sign
language gesture recognition leveraging wearables. IEEE Trans. Mob. Comput. 20,
1685–1701. doi: 10.1109/TMC.2019.2962760

Frontiers in Neuroscience 14 frontiersin.org

100

https://doi.org/10.3389/fnins.2022.1047070
https://doi.org/10.1109/JSEN.2021.3081714
https://doi.org/10.1109/ECTI-CON51831.2021.9454711
https://doi.org/10.1109/ECTI-CON51831.2021.9454711
https://doi.org/10.1038/nmeth.4346
https://doi.org/10.1063/1.4891822
https://doi.org/10.1111/stan.12111
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TIFS.2021.3122817
https://doi.org/10.1007/s12046-021-01781-3
https://doi.org/10.1007/s12046-021-01781-3
https://doi.org/10.1109/JSEN.2020.3026830
https://doi.org/10.1109/JSEN.2020.3026830
https://doi.org/10.1007/s40846-020-00526-7
https://doi.org/10.3390/s20051493
https://doi.org/10.3390/app9163355
https://doi.org/10.4028/www.scientific.net/AMM.541-542.419
https://doi.org/10.4028/www.scientific.net/AMM.541-542.419
https://doi.org/10.1109/JBHI.2020.3004032
https://doi.org/10.1016/j.cmpb.2022.106677
https://doi.org/10.1016/j.cmpb.2022.106677
https://doi.org/10.1109/ICABME53305.2021.9604876
https://doi.org/10.1109/ICABME53305.2021.9604876
https://doi.org/10.1109/JBHI.2017.2679108
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1109/TVCG.2016.2570755
https://doi.org/10.1515/bmt-2020-0113
https://doi.org/10.1109/IEMBS.2010.5627581
https://doi.org/10.1109/IEMBS.2010.5627581
https://doi.org/10.1080/24699322.2018.1560088
https://doi.org/10.1080/24699322.2018.1560088
https://doi.org/10.1109/TNSRE.2021.3123630
https://doi.org/10.1145/3191788
https://doi.org/10.1109/TMC.2019.2962760
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


TYPE Original Research

PUBLISHED 16 February 2023

DOI 10.3389/fnins.2023.1078846

OPEN ACCESS

EDITED BY

Emanuele Lindo Secco,

Liverpool Hope University, United Kingdom

REVIEWED BY

Angelo Davalli,

National Institute for Insurance against

Accidents at Work (INAIL), Italy

Fernando Vidal-Verdú,

University of Malaga, Spain

*CORRESPONDENCE

Andrea Marinelli

andrea.marinelli@iit.it

†These authors have contributed equally to this

work and share first authorship

SPECIALTY SECTION

This article was submitted to

Neuroprosthetics,

a section of the journal

Frontiers in Neuroscience

RECEIVED 24 October 2022

ACCEPTED 24 January 2023

PUBLISHED 16 February 2023

CITATION

Bruni G, Marinelli A, Bucchieri A, Boccardo N,

Caserta G, Di Domenico D, Barresi G, Florio A,

Canepa M, Tessari F, La�ranchi M and De

Michieli L (2023) Object sti�ness recognition

and vibratory feedback without ad-hoc sensing

on the Hannes prosthesis: A machine learning

approach. Front. Neurosci. 17:1078846.

doi: 10.3389/fnins.2023.1078846

COPYRIGHT

© 2023 Bruni, Marinelli, Bucchieri, Boccardo,

Caserta, Di Domenico, Barresi, Florio, Canepa,

Tessari, La�ranchi and De Michieli. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Object sti�ness recognition and
vibratory feedback without
ad-hoc sensing on the Hannes
prosthesis: A machine learning
approach

Giulia Bruni1†, Andrea Marinelli1,2*†, Anna Bucchieri1,3,

Nicolò Boccardo1,4, Giulia Caserta1, Dario Di Domenico1,5,

Giacinto Barresi1, Astrid Florio1, Michele Canepa1,4,

Federico Tessari6, Matteo La�ranchi1 and Lorenzo De Michieli1

1Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy, 2Department of Informatics,

Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, Genoa, Italy, 3Department

of Electronics, Information and Bioengineering (NearLab), Politecnico of Milan, Milan, Italy, 4The Open

University A�liated Research Centre at Istituto Italiano di Tecnologia (ARC@IIT), Genoa, Italy,
5Department of Electronics and Telecommunications, Politecnico of Torino, Turin, Italy, 6Newman
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Introduction: In recent years, hand prostheses achieved relevant improvements

in term of both motor and functional recovery. However, the rate of devices

abandonment, also due to their poor embodiment, is still high. The embodiment

defines the integration of an external object – in this case a prosthetic device

– into the body scheme of an individual. One of the limiting factors causing

lack of embodiment is the absence of a direct interaction between user and

environment. Many studies focused on the extraction of tactile information via

custom electronic skin technologies coupled with dedicated haptic feedback,

though increasing the complexity of the prosthetic system. Contrary wise, this

paper stems from the authors’ preliminary works on multi-body prosthetic hand

modeling and the identification of possible intrinsic information to assess object

sti�ness during interaction.

Methods: Based on these initial findings, this work presents the design,

implementation and clinical validation of a novel real-time sti�ness detection

strategy, without ad-hoc sensing, based on a Non-linear Logistic Regression (NLR)

classifier. This exploits the minimum grasp information available from an under-

sensorized and under-actuated myoelectric prosthetic hand, Hannes. The NLR

algorithm takes as input motor-side current, encoder position, and reference

position of the hand and provides as output a classification of the grasped object

(no-object, rigid object, and soft object). This information is then transmitted to the

user via vibratory feedback to close the loop between user control and prosthesis

interaction. This implementation was validated through a user study conducted

both on able bodied subjects and amputees.

Results: The classifier achieved excellent performance in terms of F1Score

(94.93%). Further, the able-bodied subjects and amputees were able to

successfully detect the objects’ sti�ness with a F1Score of 94.08% and

86.41%, respectively, by using our proposed feedback strategy. This strategy
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allowed amputees to quickly recognize the objects’ sti�ness (response time

of 2.82 s), indicating high intuitiveness, and it was overall appreciated as

demonstrated by the questionnaire. Furthermore, an embodiment improvement

was also obtained as highlighted by the proprioceptive drift toward the prosthesis

(0.7 cm).

KEYWORDS

closed-loop control, sti�ness recognition, vibrotactile feedback, vibromotor, Hannes

prosthetic hand, non-linear logistic regression

1. Introduction

Upper limb loss is a serious impairment due to its explicit and

direct interaction with the external world. To compensate for this

loss, prostheses have been introduced to restore the functionality of

human limbs during activities of daily living (ADLs). This necessity

led to the development of high-tech devices with multiple degrees

of freedom (Medynski and Rattray, 2011; Van Der Niet and Van

Der Sluis, 2013), capable of performing a variety of gestures and

grasps. However, the embodiment of these devices into the human

body scheme and their acceptance are also essential elements

for reconnection with the outside world (Cuberovic et al., 2019;

Castellini, 2020). The term “Embodiment” means the integration

of an external object in the internal corporal scheme as if it

was part of the body itself. In this specific context, the external

object is, precisely, the prosthesis (Longo et al., 2008). Embodiment

comprises three correlated factors, namely, ownership, localization,

and agency (Stiegelmar et al., 2020), and it has been suggested

to promote intuitive control, learning, and comfort when using

new tools, thus providing the opportunity to improve the user

interface for devices such as artificial limbs. The introduction of

direct feedback modalities can prevent amputees to rely exclusively

on sight (Biddiss et al., 2007; Pylatiuk et al., 2007), reducing

the mental effort and, therefore, facilitating the communication

between user intention and prosthesis action (Markovic et al.,

2018; Valle et al., 2018; Clemente et al., 2019). In fact, it has been

demonstrated that the introduction of haptic feedback improves the

control of the prosthesis (Mayer et al., 2020; Sensinger and Dosen,

2020; Yildiz et al., 2020; Chai et al., 2022) due to its fundamental

role during human–objects interactions (Hsiao et al., 2011; Valle

et al., 2018; Pena et al., 2019; Di Pino et al., 2020; Shehata et al.,

2020; Raspopovic et al., 2021), allowing subjects to embody the

device (Antfolk et al., 2013; Svensson et al., 2017; Raspopovic

et al., 2021), hence, improving the compliance among the user, the

prosthesis, and the grasped objects (Osborn et al., 2016). In the

literature, this interaction is mainly assessed by providing grasp

force or proprioceptive information (Stephens-Fripp et al., 2018).

Contrarily, the aim of this study is to deliver information about

the grasped object’s stiffness that in normal conditions, occurs due

to the combination of visual sensory information, proprioceptive

sensations related to shape and size, and tactile sensations related to

stiffness (Garland and Miles, 1997). Therefore, the current research

activity offers an intuitive, non-invasive, and easy-to-use prosthetic

system capable of identifying simple grasped object proprieties

when visual sensory information of the user is not available or

limited (Sensinger and Dosen, 2020). For instance, when the user

is taking an object from a bag without looking at it or when the

light in the environment is off. This situation was also treated by

the Cybathlon 2020 competition, which introduced the Haptic Box

task, considering it as a common ADL (Caserta et al., 2022).

Focusing on tactile sensations, several studies tried to

reproduce the properties of human skin endowing the device with

tactile sensing technologies that typically requires cumbersome

add-on like sensing skin with different kinds of sensors such as

piezoresistive (Osborn et al., 2018), capacitive (Cannata et al.,

2008), piezoelectric (Yi and Zhang, 2016), and also optical (Zhao

et al., 2016). The measurements acquired by these tactile sensors

are often given as input to machine learning algorithms, which

extract useful information that may be conveyed to the prosthesis

users, as described by Jamali and Sammut (2011), Liarokapis et al.

(2015), Konstantinova et al. (2017), Devaraja et al. (2020), Huang

and Rosendo (2022).

Once the tactile information has been extracted, it is necessary

to effectively provide it to the subject. The sensory substitution

process can be exploited non-invasively, involving the connection

of a certain event with specific feedback that is not the natural one,

such as tactile sensory feedback (Clemente et al., 2015; Dosen et al.,

2016; Patel et al., 2016; Štrbac et al., 2016; Sensinger and Dosen,

2020). For example, the subject can be taught to associate a certain

vibratory stimulus with the contact of the prosthesis with an object

(Antfolk et al., 2012b; Clemente et al., 2015, 2019; Dosen et al.,

2016; Štrbac et al., 2016; De Nunzio et al., 2017; Nemah et al.,

2020; Mamidanna et al., 2021). In contrast, superficial stimulation

could target portions of the missing limb’s skin that are innervated

by afferent neurons after the amputation, the so-called referred

touch, to stimulate the phantom limb and improve the embodiment

(Antfolk et al., 2013; Masteller et al., 2021), such as kinesthetic

sensory feedback.

The most common feedback restoration method is through

vibration (Masteller et al., 2021), given its compatibility with

electromyography (EMG) control and better acceptance by the

subjects with respect to electrostimulation, capable of stimulating

phantom limb sensation with electric surface charge (Shannon,

1976; Kaczmarek et al., 1991; Vargas et al., 2019). It is possible to

provide different types of information acting on the amplitude and

frequency of the vibration, as exploited in the study of Witteveen

et al. (2013), in which the magnitude of the grasp force was

transmitted using different levels of amplitude. An alternative to

this feedback is the mechanotactile, as proposed using tactors by

Meek et al. (1989), producing a one-to-one correspondence of
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touch sensation to user stimulation, or with a cuff, as proposed by

Casini et al. (2015).

However, despite the high potentiality offered by these

solutions, they are mainly bulky and heavy, and difficult to

integrate, along with high-power consumption due to high

computational burden. An example is proposed by Antfolk et al.

(2012a) who designed a touch sensory feedback via air-mediated

pressure from the hand to the forearm skin. This is a no-

power solution that has neither impact on power consumption

nor on computational burden. However, the final integration

within the prosthesis does not guarantee the anthropomorphism

of the hand device. It is also important to point out that the

quick disconnection between the socket and the hand prosthesis

is lost due to the mechanical connections running from the

fingers’ hand to the on-socket actuators. Standard devices use an

electronic slip ring combined with a quick disconnect mechanism

integrated into the prono-supinator wrist to guarantee the overall

disconnection of the hand prosthesis from the socket in case

of emergency. However, in the proposed design, this feature

is compromised. Other examples are Oddo et al. (2016) and

Shehata et al. (2018) who proposed an artificial fingertip to

improve the performance of prosthetic hands by using intraneural

stimulation. That solution can be nicely integrated into a fingertip

by maintaining the anthropomorphic characteristics. However, the

on-board electronics that record, process the tactile information,

and encode the stimulation are cumbersome. Moreover, the high-

power consumption of the FPGA-based solution does not permit

the entire system to last for an entire day and to fit into a standard

socket. Similarly, Clemente et al. (2019) developed a solution whose

electronic skin offers high sensitivity ranging from light touch

to heavy touch. However, a similar integration problem of the

dedicated board occurs. In contrast, Vargas et al. (2021) finally

proposed force and position sensors on the fingers to provide object

stiffness recognition on amputees through vibrotactile feedback.

That solution can be easily integrated; however, the performances

of such a solution are limited in comparison with our results.

Due to these issues, the lack of a suitable feedback restitution

method in the prosthetic field is still far from being solved. Two

other solutions for object stiffness recognition, without dedicated

sensors, were implemented by Balasubramanian et al. (2021) and

Wang et al. (2021). Their studies demonstrated the feasibility

of these approaches in a robotic scenario using an actuated

mechanical gripper.

Considering the advantages of providing feedback to amputees

to improve the comfort between the user and the device, in this

study, we first investigated the possibility of detecting void grasp

and object grasp. Then, we identify the softness and hardness of

the objects, therefore, permitting the user to discriminate among

“void grasp,” “rigid object,” and “soft object” without visual sensory

information. In the first preliminary study (Bruni and Bucchieri,

2021), a virtual multi-body model of Hannes was developed to

offline demonstrate, with a virtual simulation, how the motor-

side current absorption and the position measurement could be

correlated with the hand grasp force and the grasped object’s

stiffness. Subsequently, in the following study (Bruni et al., 2022),

an Ensemble Bagged Trees classifier was implemented and offline

tested with simulated data to validate an approach to distinguish

two different objects’ stiffness.

Consequently, in the present article, we exploited the previously

preliminary validated approach to develop an online (real-time)

solution to perform object stiffness recognition and sensory

feedback. The performance of this solution was assessed on

end-users, both able-bodied and amputees. A non-linear logistic

regression (NLR) classifier was used to recognize rigid or soft

objects and void grasps. We excluded embedded force sensors,

whose introduction would require facing many challenges, starting

from the choice of the right sensor with basic requirements like

high resolution, high sensitivity, and robustness, to the difficulties

of managing the wiring (Kappassov et al., 2015). Instead, we

proposed a methodology that uses intrinsic sensors (sensors and

parameters already available on the prosthesis) for the normal

functionality of the prosthesis that does not increase the cost and

complexity of the device. In particular, we exploited the following

intrinsic sensors: the motor-side current, whose relationship with

the contact stiffness has been analytically demonstrated by Deng

et al. (2020); the reference position, given as input to control the

device closure; and the position effectively measured by the encoder

(encoder position). We implemented a closed-loop vibratory

feedback, using a single vibromotor embedded in the Hannes

system, closely related to the predictions made by the classifier. In

detail, we applied the strategy of strong vibration for rigid objects

and small vibration for soft objects, which was identified in this

study as “Two Feedback (2FB) condition” (Cipriani et al., 2011;

Tejeiro et al., 2012). In the first phase, the classifier performance

and the 2FB effectiveness were evaluated with 18 able-bodied

subjects by measuring the classification accuracy through F1Score.

In the second phase, a comparison between our proposed feedback

method (2FB) and three other control feedback conditions was

carried out on five amputees. This comparison was performed

both objectively by measuring F1Score, users’ response time, and

proprioceptive drift, and subjectively through the questionnaire to

investigate the users’ appreciation of the feedback strategies and

identify the most intuitive and effective one.

2. Materials and methods

2.1. Subjects

A total of 18 able-bodied subjects aged between 24 and 50

years (28.8 ± 6.2) and 5 mono-lateral amputees (right transradial

amputees and users of active prostheses) were recruited for

this study, with the definition described in Table 1. Written

informed consent was obtained from all the subjects. The

experimental protocol was approved by the Area Vasta Emilia

Centro (AVEC) Ethics Committee (Protocol Code: CP-PPRAS1/1-

03) and performed in accordance with the guidelines of the

Declaration of Helsinki.

2.2. Experimental setup

The experimental setup that used for performing the entire

experiment (Figure 1) was composed of (A) the myoelectric

prosthesis Hannes, fixed on a rigid cone; (B) a custommaster-board

to control the hand, decode the stiffness of the grasped object, and
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TABLE 1 Population of amputees.

Amputees Age Time from
amputation

Dominant limb (before
amputation)

Amputated
limb

Etiology Level of
amputation

Type of
prosthesis

A1 53 32 years Right Right Work accident Unilateral

medial

Michelangelo

hand

A2 42 18 years Right Right Car accident Unilateral

proximal

Variplus hand

A3 58 37 years Right Right Work accident Unilateral

distal

Michelangelo

hand

A4 35 12 years Right Right Work accident Unilateral

distal

Variplus hand

A5 68 53 years Right Right Work accident Unilateral

distal

Michelangelo

hand

FIGURE 1

Experimental setup used to perform the task on healthy subjects

and amputees. It consists of: (A) socket with the Hannes prosthesis;

(B) the EMGM to control the Hannes hand, recognize the grasped

object, and provide feedback; (C) EMG sensors; (D) vibromotors; (E)

power supply; (F) elastic band to attach the EMGs and vibromotors

to the forearm; (G) the objects used to perform the task; (H) laptop

with the virtual reality; (I) keyboard to choose between rigid, soft, or

void; (J) headphones to isolate the participants during the

experiment.

communicate with the PC via Bluetooth; (C) two EMG sensors

(standard Ottobock, 13E200 = 50 AC) to close or open the hand;

(D) an eccentric rotating mass (ERM) vibromotor to convey the

feedback; (E) a power supply for the prosthetic system; (F) two

wristbands to attach the EMG sensors and the vibromotor to the

subject’s forearm; (G) three rigid objects and three soft objects with

spherical, cubic, and cylindrical shape used during the Cybathlon

2020 edition (Medynski and Rattray, 2011; Caserta et al., 2022);

(H) a laptop to choose the feedback condition and to collect the

data; (I) a keyboard, placed in front of the subject, to press the left

(rigid object) and right (soft object) arrows to indicate the guessed

stiffness of the grasped object; and (J) headphones reproducing

white noise to prevent the users from hearing the prosthesis motor.

The vibromotor was inserted into a custom silicone holder

to localize and absorb the radiating stimulation and to avoid

the possible heating of the skin due to prolonged vibration. The

vibromotor was placed vertically with respect to the skin to

produce a stronger and more focused sensation. The vibration

frequency was set to 200Hz, using a supply voltage of 2.5V

(Vybronics, 2021)1, and the amplitude was varied through pulse

width modulation (PWM).

2.2.1. The Hannes hand
Hannes is an under-actuated poly-articulated prosthetic hand

characterized by a leader-follower wire configuration used to

control the movements of fingers (Laffranchi et al., 2020). The hand

powertrain consists of a single DC motor coupled with a custom

planetary gearhead, which drives the grasping movement (refer

to Supplementary material). The actuation system is controlled

by a position reference (ϑref) synthesized from the user’s EMG

signals. A magnetic encoder measures the slow shaft position (ϑout)

of the hand drive train, therefore, controlling the desired grasp

configuration. The low-level control system is based on a series

of proportional–integrative–derivative (PID) controllers. The outer

loop is position based (where only proportional and derivative

(PD) terms are deployed), while the inner loop is current based

and concerns proportional and integrative (PI) terms only. In

particular, the error (εpos) between ϑref (hand control command)

and ϑout (outer feedback) is fed to the outer PD loop. The related

output is then multiplied by a proportional gain, resulting in a

current reference (iref) which is subtracted with the measured one

(iout, inner secondary feedback which is the current absorbed by

the DCmotor during hand movement and grasp). As consequence,

the related error (εi) is then fed to the inner PI controller, hence,

generating the control command (V) to be delivered to the motor

driver. As with many under-actuated prostheses, Hannes is under-

sensorized. Indeed, the only available measurements aremotor-side

current and position.

2.2.2. Feedback conditions
The following four different feedback conditions were assessed

in this study: (i) no FB condition (NoFB); (ii) audio FB condition

(AFB); (iii) one FB condition (1FB); and (iv) two FB conditions

(2FB). The NoFB condition was characterized by the absence of any

possible feedback. The subjects were visibly (with closed eyes) and

1 Vybronics is a datasheet of a product available in the following

link: https://www.vybronics.com/wp-content/uploads/datasheet-files/

Vybronics-VC0625B001L-Jinlong-C0625B001L-datasheet.pdf.
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FIGURE 2

Scheme representing the object sti�ness classification process. The motor-side current, the reference, and the encoder positions are acquired from

Hannes and sent as input to the classifier, which gives as output the resulting sti�ness.

auditorily (headphones with white noise) blind and without any

vibratory feedback. In the AFB condition, no vibratory feedback

was supplied to the user, but the absence of the headphones

permitted accidental auditory feedback of the moving prosthesis.

In the 1FB condition, the vibratory feedback was provided, but

the same vibration intensity (30% of PWM) was associated with

both rigid and soft objects, while no vibration was given during

void closures (refer to the table in Figure 2). The 2FB condition

provided a strong vibration for rigid objects (100% of PWM)

and a light vibration for soft objects (30% of PWM, a value

found during some previous pilot tests to be perceived sufficiently

different from the 100% used for rigid objects; refer to the table in

Figure 2). As in the 1FB condition, void closures did not provide

any kind of vibration. The no FB condition was implemented as a

baseline for validation and comparison of subjects’ performance.

In fact, in the total absence of feedback, subjects’ performance

should be close to a random guess. The audio FB condition

was introduced, since it represents a reasonable scenario of the

use of the prosthetic hand by amputees, namely with no direct

vision of the prosthesis but accidental auditory information from

the prosthesis motion. Therefore, this second condition works

as a real-case scenario ground truth for the user. The other

two conditions, i.e., 1FB and 2FB, were implemented to observe,

respectively, if additional vibratory feedback could improve the

stiffness estimation performance, and if a different degree of

vibration could further help amputees in discerning between harder

and softer objects.

2.3. Non-linear logistic regression

2.3.1. Algorithm model
The algorithm chosen for the object stiffness discrimination

task is the NLR classifier. This machine learning algorithm

was selected given the good performance shown for multiclass

classification problems, and for simplicity reasons, since the NLR

is already employed for the Hannes pattern recognition control

strategy (Marinelli et al., 2020; Di Domenico et al., 2021). It is based

on the calculation of the class membership probability through the

following formulation:

P (1|x,ϑ) =

{
g
(
ϑT · x

)
=

1

1+e−(ϑT ·x+ϑ0)

1− P(y = 0|x,ϑ)

Where ϑ and ϑ0 are the internal parameters vector of the classifier

and the bias term, respectively; x is the input feature vector,

while g(·) is the sigmoid logistic function. The class prediction is

obtained from the comparison between the distribution P(y|x) with

a decision threshold (TH) as:

hϑ (x) =

{
P (1|x, ϑ ) ≥ TH → 1

P (1|x, ϑ ) ≤ TH → 0

The TH value was obtained after an optimization phase on the

validation set. Since the NLR is a binary classifier, a One-vs-All

approach was implemented to address the multiclass classification

problem for the discrimination between rigid, soft, and void

closures. This involves the use of as many binary classifiers as the

classes for prediction, and each of them is trained to recognize

the specific class. The model parameters (ϑ) are the result of

an optimization process that involves the minimization of a cost

function called cross-entropy error J:

J (ϑ ,ϑ0) = −
1

m
·

[
m∑

i=1

y (i) · ln(g(ϑT
· x+ ϑ0))

]

−
1

m
·

[
m∑

i=1

(1− y(i)) · ln(1− g(ϑT
· x+ ϑ0))

]
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FIGURE 3

Custom-made hand dynamometer mounted on test bench used for

the classifier training. The device is composed of a base where at

maximum four strings can be inserted, and a cover which can slide

along the base when compressed by the prosthesis fingers. The test

bench consists of a custom-made system composed by movable

parallel arms and a two-cu� system acting as holder. The table

represents the di�erent spring force and levels to characterize the

sti�ness of the dynamometer.

Where m is the number of samples used to train the algorithm

and y(i) is the known class membership of the ith sample (Dellacasa

Bellingegni et al., 2017; Marinelli et al., 2020).

2.3.2. Algorithm training
To adapt the model to distinguish multiple rigidities, the

classifier required a training phase involving the repetitive closure

of the prosthesis on objects of different stiffness. To simplify this

work and to create a reproducible acquisition setup, a custom-

made object was 3D printed. This device, as shown in Figure 3,

was designed to reproduce the same shape and dimension of

the Go Direct
R©

Hand Dynamometer (Vernier, 2021), used in

the previous study (Bruni and Bucchieri, 2021), which offers

the possibility to insert springs of different stiffness, simulating

the grasping of soft and rigid objects, as shown in the table

of Figure 3.

The device was mounted in an ad-hoc designed test bench.

It was composed of movable parallel arms and a two-cuff

system acting as a holder. The prosthesis was fixed at the

base of this test bench, as shown in Figure 3, in such a

way that only the distal phalanges of the four fingers had

an impact on the upper plate of the device when performing

a closure.

Hannes was controlled through a USB GUI, which allowed the

data acquisition (motor-side current and encoder position) as well.

The NLR model generation was performed offline through

MATLAB and it required training and test datasets, both

characterized by the following four-column structure: (i) the

motor-side current, (ii) the reference position sent as input, (iii)

the encoder position measured, and (iv) the labels of the objects

(rigid, soft, and void), as it is a supervised learning algorithm. All

these measurements are fed to the classifier as analog signals; thus,

they are directly used as the input dataset. Moreover, the label zero

was associated with void closures (for motor-side currents, below

300mA), one to the rigid objects and two to the soft objects. The

dataset was created using the test bench described in Figure 3.

The choice of relying on only the motor current and the

reference and measured motor encoder position was based on

the immediate and relevant available sensor information on the

prosthesis. Specifically, the motor current is proportional to the

motor torque and, thus, to the grasp force, while the encoder

position is related to the graspingmotion of the fingers. In addition,

the difference between reference and measured encoder position

provides good information regarding the distinction between a

void closure and the actual grasping of an object (this is due

to the variation between the reference encoder positions that

continues to grow due to EMG residuals, while the actual measured

encoder position stops when encountering an object during grasp).

These three quantities (current, reference, and measured positions)

represent, according to the authors, the minimum set of variables

to properly classify the different types of grasping (refer to the

“Results” section for details on the performances). Nonetheless, it

is worth mentioning that additional sensors or derived quantities

could be beneficial for a more complex classifier structure. For

example, motor speed, if not particularly noisy or delayed, could

help in more advanced classification algorithms.

To generate the variability of the data, multiple grasps with

various stiffness were performed by the prosthesis, which was

controlled by both EMG and sinusoidal references. The hand

dynamometer was used to simulate rigid objects, while four types

of springs with distinct stiffness were used to reproduce a range

of softness/soft objects, as shown in the table of Figure 3. The

springs are placed under a bar to distribute the stiffness of their

combination to the entire grasp. The chosen combination of springs

is different for each case because the total stiffness of parallel

springs varies according to their sum, thus affecting the total

grasp behavior. In particular, several closures were performed

for each case, as described in Table 2, to collect data for the

training and validation of the NLR model. The training dataset

was split into a training set (80%), used for the model generation

(selection of the best model parameters (ϑ) by minimizing

the cost function J), and a validation set (20%) to find the

best threshold (TH). Lastly, the classifier was evaluated on the

test dataset.

2.4. Experimental protocol

The subjects were seated comfortably in front of a table (refer

to Figure 4) with EMG sensors positioned on the forearm or stump
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TABLE 2 Dataset realization for training the NLR for object sti�ness

recognition algorithm.

Number
closures

Grasped
object

Sti�ness Control
signal

10 Void Void Sinusoidal

10 Hand dynam Rigid Sinusoidal

10 Hand dynam Rigid EMG

5 4xS1 Soft Sinusoidal

5 4xS1 Soft EMG

5 2xS1 Soft Sinusoidal

5 2xS1 Soft EMG

5 4xS2 Rigid Sinusoidal

5 4xS2 Rigid EMG

5 4xS3 Rigid Sinusoidal

5 4xS3 Rigid EMG

5 2xS1–2xS4 Soft Sinusoidal

5 2xS1–2xS4 Soft EMG

FIGURE 4

Example of trial involving an amputee. Two EMGs are attached to

the stump for the dual-side control of the prosthesis with an elastic

band. The vibromotor is fixed to the upper side of the stump with a

second elastic band for the feedback restitution. The objects are

placed within Hannes hand by the experimenter while the

participant has closed eyes. The keyboard, placed in front of the

participant, is used to indicate the grasped object sti�ness by the

user using the left hand.

using an elastic band. The electrodes measured the activity of the

forearm muscles involved in the opening and closing of the hand

(Flexor Carpi Ulnaris and Extensor Carpi Ulnaris, respectively),

which were selected by manual inspection. The Hannes system

was detached from the users’ bodies (except for the two EMGs)

and fixed on the table, lying between the subjects’ arms with the

palm up, to allow the experimenter place the objects to be grasped

within the prosthetic hand. Hence, subjects were only asked to close

and open their hand, not to approach or grasp the objects. The

prosthesis was commanded in proportional-speed-control mode

through the EMG signals. To convey the vibratory feedback, the

vibromotor was positioned on the pisiform bone for able-bodied

subjects and on the lateral epicondyle for the amputees by means of

a second elastic band.

First, the minimum and maximum amplitude for the

vibromotor was determined using the method of limits (Prins,

2016), to find the minimum level of perception and avoid

discomfort. To this aim, the vibration intensity was increased

in small steps (4–5% in the normalized scale of PWM). When

the subject warned, as soon as it was perceptible, the sensing

of a small and then of a strong sensation, the respective PWM

was saved. Subsequently, 30% of the PWM range was adopted

for soft objects and 100% was adopted for rigid objects. The

vibration intensity was then modulated between these two values

to generate clearly perceivable and localized vibrations that were

not intrusive to the subject but intuitive for the encoding of the

object stiffness.

Six objects (Figure 1) were randomly presented three times to

the user by the experimenter and three void closures were also

inserted along the test, to have a total number of 21 trials. Before the

test phase, a training phase was performed to let the user become

familiar with the feedback. A total of six closures were performed,

alternating between rigid and soft objects without headphones and

with open eyes, so the user could learn to associate the proper

feedback with the right stiffness. Furthermore, the involved upper

limb side was covered with a black blanket to strengthen a possible

embodiment effect.

In the first phase to evaluate the classifier performance and

the feedback effectiveness, the able-bodied subjects underwent a

single test with a single condition. They performed the test with

the 2FB condition. The participant was asked to wear headphones

with white noise and to close the eyes (avoiding the sight of the

prosthesis and the grasped object). The subject was not required

to reach out to the object. Instead, the experimenter proceeded to

insert it directly into the prosthesis, asking the subject to perform a

full closure, and then to identify the stiffness of the squeezed object.

The answer was provided by the subject’s left hand pressing the

keyboard arrows, left for rigid objects and right for soft objects. No

button needed to be pressed when the prosthesis performed a void

closure. Finally, the subject could reopen the eyes to check if the

answer was correct.

In the second phase, a comparison between the four different

feedback conditions, discussed in the “Feedback conditions”

section, was carried out by five transradial amputees. The order of

these four sessions was randomly presented to the amputees. Each

condition had the same test protocol already described in the first

phase with able-bodied subjects, in which the experimenter places

the object inside the prosthetic hand and the amputee performs a

grasp with closed eyes and gives the answer using the keyboard.

At the end of each session, the proprioceptive drift was detected

with respect to the initial arm position (refer to the “Amputees”

section) and an ad-hoc questionnaire was administered (refer to

Supplementary material).

2.5. Data analysis

All the outcomes and the evaluation methods used in this

study were tested for normality using the Shapiro–Wilk test.
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A repeated measure one-way ANOVA or Friedman test was

conducted depending on the outcome of the normality test (for

the analysis of dataset with missing data, Skilling’s Mack was

applied in substitution of the Friedman test), while the multiple

comparison test with Bonferroni correction was used for a post-hoc

analysis. Mathworks MATLAB 2020b was used for the statistical

analysis. The average of the measures used (error and efficiency)

was computed for each subject and condition and compared across

conditions. The threshold for statistical significance was set at

p < 0.05. The results in the text are reported as mean and

standard deviation.

2.5.1. Able-bodied subjects
The primary outcome measure was the F1Score of the

classifier on detecting the grasped object’s stiffness expressed as

a percentage, which takes into account the rate of false and

true positives and false negatives (Powers, 2020). This result

demonstrates that our approach to intrinsic sensor stiffness

detection works properly. In addition, the F1Score was calculated

on users’ performance in recognizing objects’ stiffness using the

2FB approach described in the “Feedback conditions” section.

This latter was used to verify the usability and clarity of our

feedback method.

2.5.2. Amputees
The second phase involving five amputees was carried out to

compare the four feedback conditions. To validate and demonstrate

that the 2FB condition was effective and the best feedback

restoration for the recognition of objects’ stiffness, our hypothesis

involving the following four evaluation methods was used: (i)

F1Score of performance; (ii) reaction time to recognize the

stiffness of the objects; (iii) proprioceptive drift; and (iv) ad-

hoc questionnaire.

The F1Score of amputees’ performance was calculated in all

feedback conditions. Furthermore, the response time of each

trial was also recorded for the four conditions. Low response

times were considered positive results. For each amputee, the

mean response time of each feedback condition was calculated to

allow comparison.

As a quantitative measure of the embodiment, the

proprioceptive drift toward the artificial limb was detected

(Tsakiris and Haggard, 2005). Before covering the involved upper

limb side with a black blanket, the initial position of the hand

was marked with white tape. Immediately, after the experiment,

the blanket was removed and the amputees were asked to close

their eyes, raise their stump, and replace it in the perceived initial

position. The lateral distance between the initial position and the

one estimated after the trials was measured by the experimenter

with a ruler in centimeters, together with the direction of the

deviation (Barresi et al., 2021). Deviations toward the prosthesis

were considered an effect of the embodiment process.

At the end of each session, amputees also had to complete

a Likert-type 5-point questionnaire, providing a subjective

evaluation. The questionnaire (refer to Supplementary material)

aimed to assess subjectively the intuitiveness and comfortability

of the feedback (seven questions), its utility for ADLs (three

questions), and the embodiment (four questions). The possible

answers ranged between 1 (strongly disagree) and 5 (strongly

agree). Since all amputees performed the test in all conditions, the

experimental design is within-subject.

3. Results

3.1. Able-bodied subjects

The classifier’s average accuracy in identifying the object

stiffness was tested on a total of 378 grasps (21 grasps × 18

subjects). Its average F1Score resulted to be 94.93% ± 3.94. The

able-bodied subjects instead, due to the 2FB condition, reached

an average F1Score of 94.08% ± 4.0 for the object’s stiffness

discrimination task.

Figure 5A shows the F1Score obtained by able-bodied subjects

during the 2FB condition compared to the F1Score of the

classifier performance. Since these data did not present a normal

distribution, the Friedman test was applied to demonstrate that

no statistical difference was detected between the two populations

(p= 0.1).

3.2. Amputees

Figure 5B shows the boxplot of F1Score obtained by amputees

for each of the four feedback conditions. It is possible to observe

an ascending trend in the scores from the NoFB condition

to the 2FB condition. In the NoFB condition, Amputee A3

data are missing because he found it impossible to accomplish

the task without any feedback, stating that it was not possible

to understand if the prosthesis was opened or closed. In

the 1FB condition, Amputee A5 data are missing due to a

recording problem.

For the NoFB condition, the F1Score among amputees is

31.41% ± 8.57, as indicated in Figure 5B with points, which is

below the random chance probability of 33%. The statistically

significant difference is indicated by “∗” (p < 0.05). Only Amputee

A1 achieved a higher F1Score with respect to random chance

(F1Score= 44.03%). The distributions resulted to be normal, so the

statistical analysis applied was the ANOVA. As shown in Figure 5B,

the 2FB condition presents a statistically significant difference with

respect to the NoFB (p < 0.001) and AFB (p < 0.001) conditions.

Furthermore, the 1FB condition is statistically different from the

NoFB condition (p= 0.0031). The average F1Score calculated from

the five amputees’ responses during the 2FB experimental session is

86.41%± 11.6.

Figure 5C shows the average response time for amputees in

each feedback condition, in which the statistically significant

difference is indicated by “∗” (p < 0.05). All amputees, except

A1, achieved the lowest response time during the 2FB condition

(2.82 s ± 1.2), which also produced the best results in terms of

F1Scores. A statistical analysis was performed between the different

conditions. The distribution resulted to be not normal and, given

the presence of some missing data, the Skillings–Mack test was

applied. As shown in Figure 5C, there is a statistically significant
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FIGURE 5

(A) F1Scores results of classifier with respect to able-bodied subjects. First, the F1Score of the classifier is calculated (blue box). Then, the F1Score of

18 able-bodied subjects is evaluated, based on the answer of classifier, in recognizing the objects’ sti�ness while receiving the 2FB condition (red

box). A comparison between classifier’s and subjects’ F1Score was assessed and no significant di�erence was found between the two populations.

(B) F1Scores results for amputees. F1Score obtained by amputees for each feedback condition. The Box chart shows the comparison between the

distributions of the F1Scores obtained in each condition. The statistically significant di�erence is indicated by “*” (p < 0.05). (C) Response time results

for amputees. Response time obtained by amputees for each experimental condition. The Box chart shows the comparison between the

distributions of the response time obtained in each condition. The statistically significant di�erence is indicated by “*” (p < 0.05). (D) Proprioceptive

drift of amputees for the di�erent feedback conditions as a quantitative embodiment measure. The barplot shows the mean and standard deviation

of the drift over amputees for each condition, the left direction is toward Hannes hand, and the right direction indicates a movement on the opposite

side of Hannes hand. Deviations toward the prosthesis were considered an e�ect of the embodiment process.

difference between AFB and 1FB conditions (p= 0.02) and between

1FB and 2FB conditions (p= 0.04).

The mean proprioceptive drift for each feedback condition was

calculated, and it is reported in Figure 5D as bar plots with standard

deviations. On average, the five amputees estimated the position

of their right arm after the experiment as 1.8 cm ± 1.17 right (in

the opposite side of the prosthesis) during the NoFB condition

while 0.4 cm ± 0.58, 0.3 cm ± 0.4, and 0.7 cm ± 1.17 toward

left and hence Hannes during AFB, 1FB, and 2FB conditions,

respectively. The only significant difference was found between

NoFB and 2FB conditions (p = 0.017) with the Nemenyi test for

a post-hoc comparison.

According to comparisons performed through the Friedman

test (because the scales are discrete and the actual data do notmatch

the assumptions for other inferential techniques), three scales of the

questionnaire showed significant effects of the feedback conditions.

The subjective evaluations collected about the sessions show that in

the 2FB condition:

- Scale 1 made it significantly easier to perceive the difference

between soft and hard objects (p= 0.027);

- Scale 2 was significantly more intuitive for soft objects (p

= 0.015);

- Scale 3 was significantly intuitive for rigid objects (p= 0.005).

According to Scale 3 scores, the post-hoc comparisons

performed through the Nemenyi test show how the proposed

feedback condition was significantly more intuitive for rigid objects

than the NoFB condition (p = 0.025) and 1FB condition (p =

0.017). Furthermore, the Friedman test showed a significant effect
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of the 2FB condition (p = 0.019), especially considering the results

of the Nemenyi test for the post-hoc comparison between 2FB and

NoFB conditions (p= 0.017).

4. Discussion

The present study explored the possibility to recognize

objects’ stiffness with an under-sensorized prosthesis. The reference

position, the encoder position, and the motor-side current available

on Hannes were used to feed a pattern recognition algorithm,

capable of generating different vibratory feedback to allow the

subject to decode the relative objects’ stiffness.

The F1Score of the classifier during the 2FB condition tested

with able-bodied subjects (Figure 5A) was very high (94.93% ±

3.94), demonstrating that the only sensors available on Hannes

(motor-side current and encoder position) provide sufficient

information for an object stiffness discrimination task using an

NLR algorithm. However, it is necessary to consider that the

classifier, during this experiment, was only tested on six objects of

different shapes but with almost the same dimensions (chosen to

replicate the objects used during the Cybathlon race, Caserta et al.,

2022). Furthermore, the F1Score obtained by able-bodied subjects

(Figure 5A) on discriminating the object stiffness was also very

good, proving the usability and efficacy of this feedback approach

on a user case.

The positive results of the first phase allowed us to evaluate the

object stiffness recognition approach on five transradial amputees.

In this second phase, we tested four approaches of the feedback

scheme (Figure 5B). In the NoFB condition, we expected a correct

identification of the right stiffness around the random chance

probability (33%). Actually, the F1Score for the NoFB condition

was even lower than this percentage (F1Score = 31.41% ± 8.57),

as amputees stated they were forced to guess since being deprived

of any possible clue. The AFB condition presents a higher average

F1Score (48.62%± 12.56) with respect to the NoFB one, indicating

that the motor noise provides less help in this kind of task.

This is true for expert users like Amputee A1, who reached the

highest score (62.78%), while it is less evident from others like

Amputees A3 (34.85%) and A5 (36.11%), who scored almost as

random chance. Differently, in the 1FB condition, almost everyone

improved their performance (F1Score = 65.67% ± 10.34) with

respect to NoFB and AFB conditions. In this condition, the users

were clearly helped in recognizing the void closures, since those

were the only ones without vibratory feedback. Moreover, most of

the amputees declared that even if the intensity of the vibration

was the same for rigid and soft objects, they were able to perceive

a difference based on the vibration onset. Since soft objects are

more compliant, the motor-side current takes more time to rise

with respect to a rigid object. Hence, the vibration is slightly

late. For this reason, the 1FB condition resulted to be statistically

better than the NoFB one, unlike the AFB condition which has

no significant difference with respect to the NoFB condition.

Overall, the 2FB condition provided the best results (F1Score

86.41%± 11.6), demonstrating to be significantlymore helpful with

respect to the other conditions and indicating that the difference

in vibration, correspondent to the rigid and soft objects, was

sufficiently distinguishable by the users, as we expected. This proves

the advantages that this type of feedback can provide to prosthesis

users as additional information to the incidental feedback (i.e.,

auditory feedback).

The reduction in the response time (Figure 5C) in the 2FB

condition (2.82 s ± 1.2) is another proof of the efficiency of the

implemented distinct vibratory feedback, meaning the amputees

needed a short time to understand object’s stiffness and enhancing

the intuitiveness of the method. This parameter is significantly

lower in 2FB (2.82 s ± 1.2) condition with respect to the NoFB

(3.52 s ± 0.8), AFB (3.7 s ± 0.83), and 1FB (4.35 s ± 1.28) ones,

suggesting that in these latter, the amputees needed to put quite an

effort in discriminating between the objects instead.

The proprioceptive drift (Figure 5D) shows an effect of

the feedback on the embodiment, especially according to the

comparison between 2FB (0.7 cm ± 1.17 toward Hannes hand)

and NoFB (1.8 cm ± 1.17 opposite to Hannes hand) conditions.

Interestingly, the results could indicate that the presence of a source

of feedback is important for summoning the embodiment process.

Precisely, the highest impact on the proprioceptive drift was found

with the 2FB condition, suggesting that this specific vibratory

feedback was the most effective one during the embodiment

process. However, a larger sample size is necessary to check

potentially higher effects caused by the 2FB condition.

Three scales in the subjective questionnaire significantly

highlight the benefits offered by the stimulations provided in the

2FB condition as intuitive feedback, especially for rigid objects. This

indicates a possible effect of the feedback on the embodiment (refer

to Figure 5D). However, a larger sample is necessary to deepen

our understanding of the potential effects of the 2FB condition

on embodiment measures in dedicated experiments. Overall, and

regardless of the statistical significance, the results seem to point

out the superiority of the 2FB condition over all aspects of user

experience considered in this study. The qualitative observations

provided by the amputees need a larger sample to extract potential

user requirements.

5. Conclusion

This study presents the implementation of an online, i.e.,

real-time, dedicated stiffness detection strategy to provide grasp-

oriented vibratory feedback using the Hannes prosthetic hand in

a closed-loop scenario. As a further progression of our previous

studies, in which we exploited a virtual simulation to find the

intrinsic variables correlated to the grasped object’s stiffness,

this study builds upon those preliminary findings and presents

a refined and improved methodology, its implementation, and

its clinical validation. The main aim was to implement an

online strategy exploiting such measurements (motor-side current,

encoder position, and reference position) to detect the stiffness of

real objects (without increasing the system complexity with ad-hoc

force sensing) and to validate such strategy with a first preliminary

study with end-users.

The classifier was tested by 18 able-bodied subjects on six

objects and resulted to be sufficiently accurate in discriminating

between void, soft, and rigid grasps. The stiffness information

was conveyed to the users through a single vibromotor, whose

intensity changed based on the grasp type, i.e., high intensity for
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rigid objects and low intensity for soft objects in our proposed

feedback condition (2FB condition). This feedback modality was

compared to three other control conditions (NoFB, AFB, and

1FB) in a user study involving five mono-lateral amputees.

Results showed a statistically significant improvement in users’

performances both in terms of F1Score and response time for

the 2FB condition. Moreover, this condition was appreciated by

the users, as demonstrated by the subjective questionnaires, which

highlighted its intuitiveness, comfortability, and usefulness. This

result was also confirmed by the analysis of the proprioceptive drift,

which showed an improvement in the prosthesis embodiment.

Hence, we can state that our proposed feedback modality was the

best among those tested.

In the future, the classifier should be tested on a higher variety

of objects with different dimensions and stiffness, especially to

investigate the influence of the dimension on the algorithm’s

performance. Reach and grasp tasks, with active usage of prosthesis,

will be implemented to provide a more realistic validation of the

usability and effectiveness of our solution within ADL and real

scenarios. A higher number of prosthesis users will be involved

to better assess the effect of the feedback on the embodiment and

its appreciation.

The present study can have a relevant impact on the application

of intrinsic sensor detection of object stiffness, as it points out

that this object recognition strategy and vibrotactile feedback

restitution on upper limb prosthesis could be effectively used as

an intuitive and effective closed-loop daily living solution. Such a

solution could facilitate the identification of a precise and delicate

grasp rather than a strong and powerful one during different

object manipulations.
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Medical University, Chongqing, China, 5Department of Rehabilitation Medicine, Ruijin Hospital, School
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Objective: Sensory feedback of upper-limb prostheses is widely desired

and studied. As important components of proprioception, position, and

movement feedback help users to control prostheses better. Among various

feedback methods, electrotactile stimulation is a potential method for coding

proprioceptive information of a prosthesis. This study was motivated by the need

for proprioception information for a prosthetic wrist. The flexion-extension (FE)

position and movement information of the prosthetic wrist are transmitted back

to the human body through multichannel electrotactile stimulation.

Approach: We developed an electrotactile scheme to encode the FE position

and movement of the prosthetic wrist and designed an integrated experimental

platform. A preliminary experiment on the sensory threshold and discomfort

threshold was performed. Then, two proprioceptive feedback experiments

were performed: a position sense experiment (Exp 1) and a movement sense

experiment (Exp 2). Each experiment included a learning session and a test

session. The success rate (SR) and discrimination reaction time (DRT) were

analyzed to evaluate the recognition effect. The acceptance of the electrotactile

scheme was evaluated by a questionnaire.

Main results: Our results showed that the average position SRs of five able-bodied

subjects, amputee 1, and amputee 2 were 83.78, 97.78, and 84.44%, respectively.

The average movement SR, and the direction and range SR of wrist movement

in five able-bodied subjects were 76.25, 96.67%, respectively. Amputee 1 and

amputee 2 had movement SRs of 87.78 and 90.00% and direction and range SRs

of 64.58 and 77.08%, respectively. The average DRT of five able-bodied subjects

was less than 1.5 s and that of amputees was less than 3.5 s.

Conclusion: The results indicate that after a short period of learning, the subjects

can sense the position and movement of wrist FE. The proposed substitutive

scheme has the potential for amputees to sense a prosthetic wrist, thus enhancing

the human-machine interaction.

KEYWORDS

proprioceptive feedback, prosthetic wrist, transradial amputee, sensory substitution,
electrotactile stimulation
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1. Introduction

Prostheses help amputees improve their quality of life (Burçak
et al., 2021). The increasing degrees of freedom (DoF) and more
exquisite structure of current prostheses importantly contribute to
the dexterity of movement (Bo et al., 2019; George et al., 2019).
Several studies have found that in addition to comfort, function,
appearance, and durability, prosthesis users also desire sensory
feedback in the upper-limb prosthesis (Farina and Amsüss, 2016;
Markovic et al., 2018; Wijk et al., 2020). Therefore, transmitting
information about grasping force (Dosen et al., 2017), hand
aperture (Witteveen et al., 2014), fingertip pressure (Wu et al.,
2020), temperature (Ueda and Ishii, 2017), etc., of the prosthesis
has been widely studied.

Proprioception of the limbs and trunk is arisen by several
proprioceptors (Proske and Gandevia, 2012), such as the muscle
spindle and Golgi tendon organ. Proprioceptive and tactile
feedback are indispensable for sensorimotor integration in daily
activities of human, especially for control of dexterous movement.
For amputees, the muscle spindle, tendon, tactile receptor, and
afferent fibers in the muscle of the residual limb are damaged
and cannot work normally (Kaya et al., 2018). So proprioceptive
substitution helps amputee sense the prosthesis, improves the
confidence (Schiefer et al., 2018), and controls the prosthesis better
(Grushko et al., 2020; Guémann et al., 2022). The senses of limb
position and movement are significant because they provide us
with one aspect of our self-awareness (Chen et al., 2021). Position
feedback ranked second in a recent survey on requirements for
feedback of prostheses (Stephens-Fripp et al., 2018). Position and
movement sense (also called kinesthetic sense) are the subtypes of
proprioception (Gilman, 2002; Proske and Gandevia, 2012). Earlier
research found better performance in a myoelectric prosthetic arm
when introducing vibration feedback to provide the user with the
position information of the prosthetic elbow (Mann and Reimers,
1970). In recent decades, D’Anna et al. (2019) transmitted the
position and tactile sense of a prosthetic finger by means of an
invasive method, which enabled participants to identify the size
of the object better when grasping. To reduce mental effort and
improve the grasping performance of prostheses, Gonzalez et al.
(2012) implemented position feedback of the prosthetic thumb,
pointer, and middle finger through auditory stimulation. Vargas
et al. (2021a) chose vibration stimulation to convey the static
position and movement of the prosthetic fingers; as a result,
the control accuracy of the joint angle was improved. Marasco
et al. (2018) endowed amputees with a kinesthetic perception
of dexterous prosthetic hands. The recent studies above have
demonstrated the effectiveness of position and movement feedback.

The prosthetic wrist is crucially important for upper-limb
prostheses (Fan et al., 2022) since it greatly contributes to
the mobility of the hand and reduces additional compensation
movements of the upper limb (Kyberd et al., 2011). The
prosthetic wrist has three DoFs: flexion-extension (FE), ulnar-
radial deviations (UR), and supination-pronation (SP) (Omarkulov
et al., 2016); of these, SP and FE are the most requested (Demofonti
et al., 2022). Therefore, there have been several approaches to
sensory feedback of the prosthetic wrist. After Erwin employed a
three-node tactor array to provide feedback information about the
FE angle of a virtual wrist, the movement control of the wrist via

electromyography was improved (Erwin and Sup, 2015). Kayhan
et al. (2018) also developed a retractable skin stretching tractor,
which provided feedback on the position of the prosthetic wrist
during three DoF movements. Zheng et al. (2022) analyzed the
effectiveness of wrist position feedback by comparing three kinds
of feedback methods and demonstrated the importance of position
feedback to the control of arm prostheses. In the above studies, it is
undoubted that an appropriate and concise feedback method helps
to promote the control and embodiment of the prosthesis (Page
et al., 2018; Tchimino et al., 2022).

Homology and somatotopy are the priority factors affecting the
acceptability of prosthetic sensory feedback methods because they
affect the training periods that patients require (Raspopovic et al.,
2021) and acceptance of the feedback device (Makin et al., 2017;
Lan et al., 2019). In the literature, there are a variety of feedback
methods, including invasive electrical stimulation (Schiefer et al.,
2016; Vu et al., 2022), skin stretching (Battaglia et al., 2019),
vibration (Vargas et al., 2021b), mechanical pressure (Godfrey et al.,
2016), audio (Gonzalez et al., 2012), and electrotactile stimulation
(Franceschi et al., 2017; Chai et al., 2022). Although the sensations
induced by electrotactile stimulation are not somatotopic, users
can learn to interpret the feedback with a few days of training
(Bensmaia et al., 2020). Moreover, the electrotactile substitution
system is easier to embed into upper-limb prostheses (Svensson
et al., 2017) due to its benefits, such as non-invasiveness, portability,
and low power consumption (Cornman et al., 2017). Therefore,
electrotactile sensory substitution is one of the most promising
bridges for connecting intelligent prosthetic fingertips and upper-
limb amputees’ brains (Chai et al., 2014).

The effect of electrotactile feedback depends on the parameters
of electrical stimulation, including intensity (Alotaibi et al., 2022),
frequency (Farina et al., 2021; Graczyk et al., 2022), pulse width
(Yang et al., 2012), spatial distribution (Rafiei et al., 2014),
and temporal distribution (Nataletti et al., 2020). For multi-DoF
intelligent prosthetics, the stimulation of multiple channels is more
suitable for spatiotemporal encoding than that of a single channel
because continuous stimulation causes skin adaptation (Buma
et al., 2007) and limits the interpretation of changes in stimulation
(Nataletti et al., 2022). Four channels electrotactile feedback
method was proved to be feasible in lower-limb prostheses. Yang
et al. (2012) provided feedback on the angles of a prosthetic knee
and pressures at three sites on the prosthetic foot for transfemoral
amputees through four electrodes, and the results showed increased
temporal gait symmetry and augmented confidence when walking
with sensory feedback compared to the no-feedback condition.
More channels were also proven feasible, such as a 16-channel
feedback scheme for transmitting four kinds of information about
the hand and wrist to amputees (Štrbac et al., 2016), and different
multichannel schemes were compared by the target-reaching task
results of thirteen able-bodied subjects (Garenfeld et al., 2020).
However, amputation results in cutaneous sensitivity changes (Koc
et al., 2008; Templeton et al., 2018), which affects the comfort
and dynamic range of electrotactile stimulation (Kaczmarek
et al., 1991). It is reasonable to expect that amputee’s ability to
use electrotactile stimulation for sensing wrist FE position and
movement of prostheses may be substantially different from able-
bodied subject. Besides, the wrist FE sensation includes not only
movement direction but also movement range.
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Therefore, this study aims to explore whether amputees
can receive proprioceptive feedback on the prosthetic wrist
through electrotactile method combined with spatial encoding and
multiple electrodes. We proposed a multiple channels electrotactile
stimulation scheme to provide wrist FE proprioception. In addition
to recruiting amputees, we also recruited able-bodied subjects for
comparison and validation. We hypothesized that the amputee’s
performance of position sense and movement sense of the
prosthetic wrist was different from that of able-bodied subjects
and the success rate of position sense was higher than that of
movement sense. To answer this question, the present study
designed three experiment and a stimulation platform to verify the
feasibility of the scheme by amputees’ recognition results, DRT, and
questionnaire responses.

2. Materials and methods

2.1. Subject recruitment

Two transradial amputees (amputee 1: a 55-year-old male
with electric shock amputation in 1989, amputee 2: a 60-year-old
male with explosion amputation in 1980) were recruited for this
research. Five able-bodied subjects (1 male, 4 females, 20∼25 years
old) were recruited. All subjects met the following requirements:
(a) not taking drugs that affect hormones or neurotransmitters
in the last 30 days, (b) no electromagnetic hypersensitivity, (c)
no psychiatric or cognitive disorder, and (d) experience using a
myoelectric prosthesis. The experimental procedure was approved
by the Chongqing University Three Gorges Hospital Ethics
Committee (2021-KY-24). All subjects signed informed consent
forms before the experiments, which includes the stimulation and
prompts they would receive and what operations they needed to
perform in the experiment.

2.2. Experimental setup

The experimental platform mainly includes a PC, a control
module, an upper-limb prosthesis and other devices, as shown in
Figure 1. We independently designed, drew, and welded the control
module and integrated the parts above to perform the following
experiment.

(a) A host PC [Intel R© Core (TM) i7-7700HQ CPU at 2.80 GHz,
8 GB RAM] was used for running a Python program. A 22′′

screen was used to provide guidance to the subjects, and the
graphical user interface (GUI) created in the tkinter library
was used for user input. The input content and discrimination
reaction time (DRT) were saved in .csv format. The program
called the pyserial library gives the prosthesis control signal
and communicates with the microcontroller.

(b) The control module is used for outputting multiple channels
electrotactile stimulation and driving the prosthesis, including
main control board and daughter board. Main control board:
(I) microcontroller minimum system (STM32F103RCT6) for
generating PWM waveforms, selecting stimulation channels
(CH1-CH8) and providing motor control signal, etc., (II)
a chip for communicating with the PC, (III) interfaces

that connect to the other device. Daughter board: (I) an
H-bridge circuit, a constant current source, 70 V DC power
supply, a quadruple high-current motor driver for executing
prosthesis control signals, (II) solid-state relays as actuators
for generating stimulation waveforms (square biphasic current
waveforms). (III) Interfaces that connect to the motor of the
prosthesis and other devices. The main control board and
daughter board are connected by male and female headers
(board to board). The shape of the boards is a rounded
rectangle (60 mm∗37 mm). The control module is connected
to the inner shell of the prosthetic limb by screws.

(c) Upper limb prosthesis (SJQ21 SJS32 left hand, Danyang
Prosthetic Factory, China) includes two DC micromotors
(FAULHABER 2224006SR with magnetoelectric encoder
IEH2-4096). The encoder feeds back the angle of the prosthetic
wrist. This prosthesis supports two DoFs: hand aperture
opening-closing and wrist FE. This strengthens the connection
between the electrotactile scheme and the prosthesis. The
inner shell of the prosthetic limb has screw holes for fixing the
control module.

(d) Other devices: (I) Round hydrogel electrodes were used as
the 1st to 8th stimulation channel (CH1∼CH8) and reference
channel (Ref) (diameter = 2 cm and 5 cm, Shenzhen Baijianda
Technology Development Co., Ltd., Shenzhen, China), (II)
a 3.5′′ TFT LCD was used to adjust the parameters of the
stimulation waveform, and (III) a chargeable 9 V lithium
battery was used as a power supply embedded in the
prosthetic limb shell.

The parameters of the biphasic current waveform are
adjustable (orange dashed rectangle in Figure 1): frequency
(reciprocal of period) = 100∼500 Hz (100 Hz increments), pulse
width = 100∼500 µs (100 µs increments), delay = 100∼500 µs
(100 µs increments), current amplitude = 0∼8 mA (0.25 mA
increments, 5 mA max for position and movement sense
experiment), and burst duration = 0.5∼1 second (100 ms
increments).

All subjects were required to sit on a chair in a comfortable
posture; the able-bodied subjects’ dominant arms were placed on
a sponge pad, and the plane of the palms was perpendicular
to the ground. Amputees placed the residual limb on a sponge
pad as well and were asked to keep the phantom palm in
a straight (ST) position. For consistency, the circumference of
10–12 cm above the styloid process of the ulna and 2–4 cm
above the amputation end were the places where able-bodied and
amputees attached stimulation electrodes, respectively. A reference
electrode was attached to the olecranon for each subject. CH1
is on the volar side, and eight channels were equally attached
and arranged along the pronation direction. The connecting
line of the centers of eight circular electrodes formed a plane
perpendicular to the connecting line of the wrist and elbow
(Figure 1).

2.3. Preliminary experiment of
stimulation range selection

First, we conducted a preliminary experiment to explore
the forearm skin sensory threshold and discomfort threshold of
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FIGURE 1

Illustration of the modules comprising the experimental platform. The control module and battery are embedded in the shell of the upper-limb
prosthesis. The control module receives the wrist position control signal from the PC to drive the prosthesis and provided feedback on the wrist
position to the PC. The square biphasic current stimulation waveforms in orange dashed line rectangle (amplitude, period, delay, and burst duration
as adjustable parameters) are generated and conveyed to the subjects through electrodes. A cross-sectional and sagittal view of eight stimulation
electrodes distribution around the forearm are shown in the enlarged blue circle. CH1 (Channel 1) is on the volar side, and eight channels are equally
attached and arranged along the pronation direction. Subjects perceive the stimulation and input the answer by a keyboard. The photograph at the
bottom shows the attachment of electrodes of an able-bodied subject.

each subject. Referring to the general experimental paradigm of
electrotactile evoked sensation (Chai et al., 2015; Zheng and Hu,
2018), we fixed the frequency of all electrical stimulation at 200 Hz,
the pulse width at 500 µs, and the delay at 100 µs. Taking the ith
channel as an example, the current amplitude was incremented
from 0 µA in steps of 500 µA. Each stimulation lasted for 1 s
and was then followed by a 10 s rest period. Once the stimulation
was perceived, it was repeated 3 times to ensure that subjects
perceived the stimulation clearly. The stimulation amplitude was
recorded as the sensory threshold Ai1−up if perceived and then
increased until the subjects felt discomfort, and the current
amplitude was recorded as the discomfort threshold Ai2. The
current value was set to 40% of the maximal current, then it
decreased in steps of 250 µA until the subjects could not perceive
the stimulation. The last current value was recorded as Ai1−down.
The maximum value between Ai1−up and Ai1−down was considered
the sensory threshold Ai1. In addition, subjects were asked to
describe the perceived sensations of stimulation, such as pressure,

vibration, numbness, and pain, during this experiment. The current
amplitude of each channel was fine-tuned by comparing the
sensory threshold in neighboring channels to achieve similar tactile
sensation across channels (Garenfeld et al., 2020).

2.4. Wrist FE static position sense
experiment (Exp 1)

The study chose spatial coding to feedback the positions of
wrist flexion and extension (FE), because spatial coding is easier for
recognition than intensity coding or temporal coding. As shown
in Figure 2, we primarily chose five angular positions of wrist FE
with 30◦ of resolution, which were named extension 60◦ (E60),
extension 30◦ (E30), ST, flexion 30◦ (F30), and flexion 60◦ (F60).
As shown as attachment of electrodes in Figure 1, active electrodes
among eight electrodes around the forearm correspond to the five
positions of wrist FE. The position of active channel corresponds
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to the direction of wrist FE movement. As the limit positions of
wrist FE movement, E60 and F60 are configured with single channel
of active electrode. For example, the CH5 on the dorsal forearm
corresponds to the limit extension direction of the prosthetic wrist,
so it is coded as E60 position. The CH1 on the volar forearm
corresponds to the limit flexion direction of the prosthetic wrist,
so it is coded as F60 position. As the initial position of wrist FE
movement, ST is configured with dual channels of active electrodes.
The dual channels are related to CH7 and CH3. As the non-limited
positions of wrist FE movement, E30 and F30 are configured with
dual channels of active electrodes. For example, the CH 6 and CH4
close to the dorsal forearm corresponds to the extension position
of the prosthetic wrist, so it is coded as E30 position. The CH 8
and CH2 close to the volar forearm corresponds to the flexion of
the prosthetic wrist, so it is coded as F30 position. The recognition
of a single channel is easier than that of dual channel (Geng et al.,
2016), so we related the single channel to the limit position of wrist
FE, informing the subject that the prosthetic wrist has moved to
the limit position. The burst duration for each stimulation mode
is fixed at 0.5 s. Before the electrical stimulation was executed, the
prosthetic wrist moved to the corresponding position.

This experiment was composed of two sessions: a learning
session and a test session. A learning session was arranged before
the test session to familiarize the subjects with the electrotactile
scheme. The stimulation modes occurred randomly. At the
same time, the stimulating channel map and the corresponding
prosthetic wrist state were displayed on the screen (Figure 3A).
After 0.5 s of stimulation, there was a 10-s rest period. The learning
session lasted approximately 10 min. After subjects passed an
evaluation of learning, the test session would be executed.

The paradigm of the experiment in the test session is shown
in Figure 3B. Each session contains 30 blocks (5 kinds of wrist
FE positions ∗6 blocks), and each wrist FE position accounts for
6 blocks. Each block consisted of three identical trials. Each trial
consisted of 2 s of preparation time during which a beep sound was
played to prompt the subjects, a 0.5 s stimulation period, time for
the participant to answer, and 5 s of rest time. Then, 30 s of rest was
used to relieve mental fatigue. There was no reminder (including
audition) in the test session. When waiting for the answer of
subjects, a dialog box popped up on the screen. The subject needed
to give the index of the prosthetic wrist FE position corresponding
to the stimulation in the dialog box as fast as possible by pressing
a single number and the enter key on the keyboard. The DRT was
counted from the end of the stimulation to the time when the enter
key was pressed. If there was no answer within 20 s, the trial was
considered to be a failed recognition.

2.5. Wrist FE movement sense
experiment (Exp 2)

Based on the static position sense experiment, the study selected
initial and end position from five wrist positions to form a
movement mode. Our study chose eight movement modes from 20
combinations (5∗4). Eight movement modes are: extension small 1
(ES1), extension small 2 (ES2), extension small 3 (ES3), extension
large (EL), flexion small 1 (FS1), flexion small 2 (FS2), flexion small
3 (FS3), and flexion large (FL) (Figure 4). The variables include

direction (F or E) and range (S:60◦ or L:120◦). When the prosthetic
wrist moved within the perception range of the five positions,
the corresponding stimulation channels were active. After the
prosthetic wrist moved in the next range of the preestablished
positions, the previous channels were inactive. For consistency with
the static position sense experiment, the burst duration on each
electrode also lasted for 0.5 s. Therefore, the total duration of
stimulation of ES1, 2, and 3 and FS1, 2, and 3 was 1.5 s, while that
of EL and FL was 2.5 s.

The movement experiment also includes learning and test
sessions. During the learning session, the subjects were provided
with three kinds of guidance: 1. the movement of the prosthetic
wrist, 2. the stimulating channel map, and 3. the dynamic
illustrations of wrist FE movements on a 22′′ screen. The
above guidance helped subjects establish the connection between
electrotactile stimulation and wrist movement to achieve a better
learning effect. The learning session lasted approximately 15 min.
The paradigm of the test session is similar to that of the static
position sense experiment. The test session consisted of 32 blocks
of random movement modes. To simplify user input, we numbered
E60∼F60 as indexes 1∼5. Similarly, the subjects were asked to
respond to the perceived movement by a keyboard. They needed
to press the first index on the keyboard to represent the initial
position, then the cursor was automatically switched to the next
dialog box in which the second index represents the end position,
and they finally pressed the enter key to submit the answer
(Figure 3C). Similarly, we recorded the input and DRTs of the
subjects. For consistency of the stimulation electrode position on
the forearm in the two experiments, we used multiple reference
positions such as the styloid process of ulna, olecranon, etc. In
addition, we took photos of each subject’s forearm and marked the
position of each electrodes with a color pen that is harmless to the
skin.

Subjects’ subjective feelings need to be considered. To evaluate
the acceptance of the electrotactile scheme in this study, after
each subject completed the movement experiment, we distributed
a questionnaire and invited the subjects to use a score from
1 to 5, where 5 represents the highest outcome, to rate the
following aspects: 1. degree of pain and numbness, 2. the resolution
of each channel, 3. the comfort of electrotactile stimulation, 4.
intuitiveness, and 5. ease of learning.

2.6. Data and statistical analysis

We analyzed the sensory and discomfort thresholds and SR
of each stimulation mode in two experiments. Specifically, in the
movement experiment, we analyzed the SR from the following two
aspects. (a) FE direction and range. Eight movements were divided
into four categories (ES, FS, EL, and FL) by FE direction and range.
For example, the given stimulation is ES2, while the answer is
ES1, ES2, or ES3. This counts as a successful recognition in this
aspect. (b) Each mode: only when both the initial position and end
position were correctly identified can it be counted as a successful
recognition. The DRT of success and wrong recognition of each
stimulation were analyzed. The non-parametric Kolmogorov-
Smirnov test (K-S test) and Bonferroni test were performed to
detect the difference in each channel of sensory threshold and
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FIGURE 2

Five wrist FE (flexion and extension) positions and corresponding stimulating channels. The colored channel represents the active (under
stimulating) channel. E60, extension 60◦; E30, extension 30◦; ST, straight 0◦; F30, flexion 30◦; F60, flexion 60◦. E60 and F60 are limit positions of
prosthetic wrist and they are coded by single channel. ST was defined as the initial position. The number after F and E was defined as the angle
deviating from the ST position. The colors of active channels are consistent with the stimulation mode.

discomfort threshold and DRT, since previous tests have shown that
all statistics failed to pass homogeneity of variance. The threshold
for statistical significance was set at p< 0.05. Statistical analysis and
graphing were performed in Prism 8.0.2 (GraphPad Software Inc,
CA, USA).

3. Results

3.1. Preliminary experiment of
stimulation range selection

3.1.1. Individual electrotactile sensitivity
The preliminary experiment examined the participants’

sensitivity to electrotactile stimulation. We analyzed the sensory
and discomfort thresholds of able-bodied subjects and amputees,
as shown in Figure 5A. Statistical analysis showed that the
sensory thresholds of the 2 amputees (3.22 ± 0.57 mA,
3.25 ± 0.61 mA) were higher than those of the able-bodied
subjects (1.64 ± 0.56 mA), but no such phenomenon was found
in the discomfort thresholds. In addition, there was no significant
difference between the sensory thresholds of the two amputees.

3.1.2. Sensory sensitivity of different locations
The sensory thresholds at eight channels on the forearm of

five able-bodied subjects are shown in Figure 5B. The sensory
thresholds of the dorsal forearm and volar forearm sides are
significantly different, which can be found in CH4 and CH8
(2.25 ± 0.79 mA and 1.35 ± 0.22 mA, p < 0.05, see the black stars
in Figure 5B). Among all channels, CH1 and CH8 (both 1.35 mA)

had the lowest mean values of sensory thresholds, and CH4 and
CH5 (2.25 mA and 1.80 mA) had the highest sensory thresholds.
The overall variability in the sensory threshold (1.64 ± 0.56 mA)
was less than that in the discomfort threshold (6.61± 1.64 mA).

Figure 5C shows the distribution of thresholds around the
forearm of all subjects. The sensory thresholds of each position
of able-bodied subjects were lower than those of two amputees.
The discomfort threshold of the CH1 channel of the amputee 1
showed an abnormal value of 5.75 mA, which was lower than that
of able-bodied subjects (5.90 mA).

3.2. Proprioceptive feedback experiment

3.2.1. Evaluation of wrist FE position sense
This experiment examined the subjects’ mastery of the position

sense after a short period of study. Figure 6A represents the
position recognition of five able-bodied subjects. The overall SR was
83.78 ± 3.69%. Able-bodied subjects had the highest SR for E60,
which reached 97.78%. The SR for F30 was the lowest, only reaching
58.89%. Among the errors, 32.22% of F30 were identified as F60,
and 8.82% of F60 were identified as F30. A total of 16.67% of those
in the ST position were identified as F30. Figures 6B, C represent
the SRs of amputee 1 and amputee 2, respectively. The total SR of
amputee 1 was 97.78%. The SRs of the ST position, F30 and F60
reached 100%. The total SR of subject 2 was 82.22%. The SRs of
E30 and E60 reached 100%, but the SR of F30 was only 50%. The
subjects’ DRT was also an important index to evaluate the mastery
of the electrotactile scheme.

The DRTs for successful recognition by able-bodied subjects,
amputee 1 and amputee 2 were 1.891 ± 1.369 s, 2.974 ± 1.715 s,
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FIGURE 3

(A) Representation of the learning session, including a dynamic stimulating channel map, in which the red channel represents the active (under
stimulating) channel, the illustrations of wrist FE, real-time status display, and the tip of the remaining blocks. (B) Depiction of the test session,
including an illustration of the wrist position index (a static picture), a dialog box, and the tip of the remaining blocks. (C) Paradigm of the
experiment, which consists of a certain number of blocks that consist of 3 of the same trials and 30 s of rest. Each trial consisted of four parts:
preparation (Pre), stimulation (Sti), answer (Ans) and rest.

and 3.384 ± 2.342 s, respectively (Figure 7A). The DRTs for
wrong recognition were 2.253 ± 1.287 s, 8.030 ± 0.568 s, and
4.861 ± 2.861 s, respectively. As shown in Figure 6, significant
differences were observed between the DRT for successful and
wrong recognition by five able-bodied subjects (p< 0.001) as well as
that by amputee 1 (p< 0.01). The DRT for successful recognition by
able-bodied subjects was significantly shorter than that of amputees
(p < 0.001).

3.2.2. Evaluation of wrist FE movement sense
First, we calculated the SR of the direction and range of

wrist FE movements. The total SR of able-bodied subjects was
96.67 ± 4.87%, in which the four categories were all over 90%, as
shown in Figure 8A. The recognition effect of EL was slightly worse,
and 10% of EL were recognized as ES. The total SR of amputee 1 was
90.00%. ES and FL were both 100%, and ES (83.3%) was the lowest,
as shown in Figure 8B. The total SR of amputee 2 was 77.08%. ES
(66.67%) had the worst SR, and 1/3 of that was recognized as FS.
One-fourth of FS was recognized as ES, as shown in Figure 8C.

Figure 8D shows the recognition of stimulation modes for
five able-bodied subjects, and the overall SR was 76.25 ± 18.97%.
The SRs of EL, FS1, and FL were over 90%. The SR of FL was
the highest, reaching 98%. Wrong recognitions mainly occurred
around diagonal elements. ES2 had the lowest SR at 55%, with 37%
wrongly answered as ES3. Figure 8E shows the SR of amputee 1.

The total SR was 90.25%. EL, FS1, FS2, and FS3 all had SRs of 100%.
The lowest SR was for ES2 (75%), and all wrong recognitions of
ES2 were identified as E4. Figure 8F shows the SR of amputee 2.
The total SR was 64.625%; the SRs for EL, FS3, and FL were higher
than 95%, but those of ES2, ES3, and FS2 were 50%. None of the
FS1 positions were identified, 75% of FS1 positions were wrongly
identified as ES3, and the rest were identified as FS2.

The DRTs for successful recognition by able-bodied subjects,
amputee 1 and amputee 2 were 2.666 ± 1.515 s, 4.238 ± 2.041 s,
and 3.869± 1.528 s, respectively. The times for wrong recognitions
were 4.207 ± 2.312 s, 4.459 ± 2.440 s, and 4.860 ± 2.771 s,
respectively. As shown in Figure 7B, significant differences were
observed between the DRT for successful and wrong recognition
by five able-bodied subjects (p < 0.001). The DRT for successful
recognition by able-bodied subjects was significantly shorter than
that of amputees (p < 0.001). The results of the questionnaire are
shown in Table 1 below.

4. Discussion

We attempted to convey the wrist FE sense of a prosthesis by
using electrotactile feedback to the amputee. Accordingly, we built
an integrated platform and designed a spatiotemporal electrotactile
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FIGURE 4

Movement modes in the movement experiment: ES (ES1, extension small 1; ES2, extension small 2; ES3, extension small 3), EL (extension large), FS
(FS1, flexion small 1; FS2, flexion small 2; FS3, flexion small 3), and FL (flexion large). The sequence of active channels and the corresponding
movement modes: ES1 (CH1→CH2, 8→CH3, 7), ES2 (CH2, 8→CH3, 7→CH4, 6), ES3 (CH3, 7→CH4, 6→CH5), EL (CH1→CH2, 8→CH3, 7→CH4,
6→CH5), FS1 (CH5→CH4, 6→CH3, 7), FS2 (CH4, 6→CH3, 7→CH2, 8), FS3 (CH3, 7→CH2, 8→CH1), FL (CH5→CH4, 6→CH3, 7→CH2, 8→CH1).
The red channel in channel maps represents the active (under stimulating) channel. Demonstration for stimulation sequence of FS1 is illustrated in
dashed line rectangle.

scheme for mapping a group of prosthetic wrist position states. The
study tested the recognition of position sense and movement sense
in five able-bodied subjects and two amputees. The results showed
that the coding could be well-recognized (average SR > 80%).
This kind of coding is a potential method for proprioceptive sense
feedback of prosthetic wrist FE in transradial amputees.

4.1. Preliminary experiment of
stimulation range selection

In the preliminary experiment, the sensitivity of eight electrode
channels was measured in all subjects. Differences in sensory
thresholds between volar forearms and dorsal forearms of able-
bodied subjects (Figure 5) may be due to anatomical structures.
The average sensory thresholds on the volar side (such as for
CH1, CH2, and CH8) of able-bodied subjects were lower than
those on the dorsal side (CH4 and CH5). Transcutaneous electrical
stimulation can not only act on skin to induce superficial sensation
but also activate afferent sensory nerves. If the nerve distribution
in this area is more superficial, the threshold is lower. The muscle
spindle in the middle of the muscle is in a relatively superficial
position under the skin, which results in the lowest mean sensory
threshold of its sensory nerve. The muscles at the CH4 position
are relatively thick, and the muscle spindles in the middle of the
muscles are deeply distributed under the skin, resulting in a higher

sensory threshold. Stimulation close to the median nerves may
induce uncomfortable numbness. Therefore, we tried to avoid this
volar forearm area or reduce the amplitude in these channels.

The difference in electrotactile sensitivity between the amputees
and the able-bodied subjects was the sensory threshold (Figures 5A,
C). The sensory thresholds in the two amputees were higher than
those of the able-bodied subjects. The higher sensory threshold
indicates that the nervous system of amputees needs to be injected
with more stimulation energy to produce a similar sensory type
to that of healthy subjects. The results reflected that amputee’s
sensitivity is decreased than healthy subjects. This may be due to
the sensory nerve impairment caused by transradial amputation.
Kosasih and Silver-Thorn (1998) showed that unilateral tibial
amputation caused superficial pain, vibration, and/or impaired
touch sensation. In addition, electrotactile sensation is also relevant
to mechanoreceptors distribution (He et al., 2016), reason and time
of amputation, the age of subjects, etc. The discomfort threshold
of CH1 was rather low in amputee 1. This might have been caused
by the amputation operation performed on this subject. The skin
sensitivity of the residual limb varies widely in space. Therefore,
it is necessary to set the amplitude current independently on each
channel.

The real current amplitude in each subject was fine-
tuned around the sensory threshold to induce similar tactile
sensation. Considering that long-term stimulation can induce
sensory adaptation and numbness, we chose a relatively small
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FIGURE 5

(A) Distribution of the sensory threshold and discomfort threshold of able-bodied subjects and two amputees. (B) Sensory threshold and discomfort
threshold of able-bodied subjects among the eight positions. Black stars show the comparison of the sensory threshold for the eight positions.
∗p < 0.05. (C) Radar chart of the sensory threshold (light red, light green, and light purple) and discomfort threshold (red, green, and purple) around
the forearm of five able-bodied subjects, amputee 1 and amputee 2. The dots in radar chart correspond to the threshold for eight electrodes around
the forearm of the subjects.

FIGURE 6

Confusion matrix quantifying the percentage of instances when comparing the perceived wrist position stimulation mode with a given stimulation
mode in Exp 1. (A) Five able-bodied subjects, (B) amputee 1, and (C) amputee 2. The number in the each rectangle represents the SR (success rate),
and the shade of the color represents the level of SR.

amplitude for each channel, but this may have decreased the
channel discrimination.

4.2. Proprioceptive feedback experiment

The study employed five kinds of stimulation modes to code
the FE position of the prosthetic wrist, and the study also employed

eight kinds of stimulation modes to code the FE movement of the
prosthetic wrist.

For position sense, the test results in all able-bodied subjects
preliminarily demonstrated the effectiveness of the electrotactile
scheme. Upon further analysis of the wrongly recognized positions,
dual-channel stimulation mode (F30, ST, E30) often reduced the
difference between two channels, such as in the F30, F60, and
ST positions. In our limited results, the SR of amputees was not
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FIGURE 7

Statistics of the DRT (discrimination reaction time) in Exp 1 and Exp 2. (A) DRT for the evaluation of wrist FE position sense by all subjects. ∗∗p < 0.01,
∗∗∗p < 0.001. (B) DRT for all subjects spent in evaluating the wrist FE movement sense. ∗∗∗p < 0.001.

FIGURE 8

Confusion matrix quantifying the percentage of instances when comparing the perceived direction and range of wrist FE movements with the given
stimulation in Exp 2. (A) Five able-bodied subjects. (B) Amputee 1. (C) Amputee 2. Confusion matrix quantifying the percentage of instances when
comparing the perceived wrist movement stimulation mode with a given stimulation mode in Exp 2. (D) Five able-bodied subjects. (E) Amputee 1.
(F) Amputee 2. The number in each rectangle represents the SR of the answer.

inferior to that of able-bodied subjects. The possible reason is that
amputation leads to different neural plasticity outcomes between
amputees and able-bodied subjects with intact proprioceptive
circuits (Di Pino et al., 2009; Terlaak et al., 2015). The overall SR
of amputee 1 was better than that of subject 2. The slightly higher
learning ability of subject 1 is a possible reason for this result, and
the influencing factors might include subject 1’s younger age, higher
education level, and higher economic level. Subject 2 did not clearly
distinguish between ST and F30 positions. The possible reason for

this result is that since the upper arm is not an ideal cylinder, CH3
and CH7 are close to CH2 and CH8. The induced sensations may
also be quite similar, making them difficult to distinguish. This
wrong recognition caused by spatial adjacency was also found for
able-bodied subjects.

For movement sense, a temporal combination of multiple
position sensations, hence the subject needs to perceive not only
spatial change but also temporal change (F direction or E direction).
Therefore, we predicted that the success rate of movement sense is
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TABLE 1 Results of the questionnaire.

Question Able-bodied
average

Amputee 1 Amputee 2

Pain, numbness 1.6 1 1

Resolution 3.6 4 5

Comfort 4.2 4 5

Intuitiveness 4.2 5 5

Ease 4.2 5 5

lower than that of position sense. The results are consistent with
the prediction. All subjects had a high SR for both the direction
and the range of movement. Amputee 2 acquired a better SR in
large-range FE movements than in small-range movements. For
the same speed of movement in the prosthetic wrist, the burst
duration of a large-range movement is longer than that of a
small-range movement. Therefore, subjects can easily distinguish
the large-angle range and the small-angle range at the time of
stimulation. From the results of each stimulation mode, ES2,
FS2, and FS3 were poorly recognized by able-bodied subjects.
We speculate that the reason for this outcome is that the three
modes all included position-F30, which was poorly recognized by
able-bodied subjects in the position sense experiment (58.89%).
The SR of amputee 1 was not lower than that of the able-bodied
subjects, which may be due to the subject’s better performance
in position learning. Different sensory threshold and recognition
results all indicated that there is difference between amputees
and able-bodied subjects. Similar interesting phenomena have also
been observed. Both the amplitude and latency of the maximum
ERP peaks for the amputee were smaller than those for the able-
bodied subjects (Wang et al., 2022). One possible explanation is
that the peripheral nerves regenerated in the stump were different
from the intact one in structure and characteristics. Perhaps
the nerve fibers in the residual stump may be fewer, and less
sensitive compared to those in the intact limb. Another possible
reason may be that the sensory neural pathways in amputee are
different. For the amputee, electrical stimulation directly actives
nerve endings of stump, arouses sensations, and transfers to
the brain. But for able-bodied subjects, the electrical signals are
transmitted to the nerves in the hand and returned back to the
brain. In addition, brain reorganization after amputation (Chai
et al., 2015; Björkman et al., 2016) may lead to different process
of the central nerve system. The SRs of ES1, ES2, and ES3 were
slightly lower than those of the remaining movement modes,
which can be explained by the slightly lower SR (94.44%) of
position sense for F60 and F30 than that for the other positions
(100%). Seventy-five percent of FS1 (E60→E30→ST) positions
were wrongly recognized as ES3 (ST→E60→E30) by amputee
2; these positions consist of two completely opposite movement
modes. Because the subject’s recognition of the ST condition
in the position sense experiment was low, the subject did not
recognize the end position. Poor recognition of ST and F30
conditions was found in position sense experiments, resulting in
poor recognition of ES2, ES3, and FS2 movements. We believe
that for this subject, the confusion of a single position in this
small-angle range movement misled the perception of the entire
movement. When encoding wrist FE movements, F30, ST, and

E30 using dual-channel stimulation may lead to confusion in the
subjects’ perception.

For movement recognition, the DRT of able-bodied subjects
was shorter than that of the two amputees, likely for the same
reason mentioned for the wrist FE position sense. The DRTs
of the two amputees did not show obvious differences in either
successful recognition or wrong recognition. Both subjects were
possibly confident that they had mastered the coding after their
learning session for position sense and movement sense. In the
learning session, all subjects were asked to watch the moving
prosthetic limb or the wrist diagram on the display when they
perceived the electrotactile stimulation. Other studies have shown
that visual and tactile sensory systems share common features
in object recognition, which proved that these systems have the
potential to promote each other in the process of learning and
cognition (Gonzalez et al., 2012; Tabrik et al., 2021). For transradial
amputees, proprioception interruption caused by a missing wrist
and hand decreased activity in their sensorimotor cortex circuit.
After amputees underwent the above multisensory substitution
training, their perceptual learning activity was induced in their
sensorimotor cortex (Proulx et al., 2014). In our experiment,
intuition guided the subjects to integrate the designed code method
and prosthetic wrist movement without causing too much of a
learning burden. The subjective responses of the two amputees
to intuitiveness and ease of learning were in line with our
expectations. Sensory feedback is important in the rehabilitation
process of amputees who lack limb sensation, and the application of
this system to somatosensory and motor training is expected to lead
to enhanced motor and sensory cortical activation. The subjective
responses of the two amputees to intuitiveness and ease of learning
were in line with our expectations. Sensory feedback is important
in the rehabilitation process of amputees who lack limb sensation,
and the application of this system to somatosensory and motor
training is expected to lead to enhanced motor and sensory cortical
activation.

The current research had some limitations. First, too few
amputees lead to the lack of universality of results and we
will increase the number of amputees in future. Second, more
evaluations, such as the time stability of the coding in combination
with the forgetting curve (D’Anna et al., 2019), control performance
of a prosthetic hand (Luo et al., 2021), and the activation of sensory
cortex and mental burden through electroencephalogram (EEG)
and functional near-infrared spectroscopy (fNIRS) (Midha et al.,
2021; Zhu et al., 2021), need to be performed and the results need
to be verified. Third, we focused on more reasonable experimental
paradigms by setting the stimulation time and rest time (Buma
et al., 2007; Marion et al., 2013).

5. Conclusion

In conclusion, this study demonstrated that our multichannel
electrotactile substitutive scheme can provide effective prosthetic
wrist FE proprioception information. The experimental results of
the position sense and movement sense of two transradial amputees
and five able-bodied subjects showed that after a short period of
learning, the subjects can quickly grasp the electrotactile scheme
to clearly identify the position and movement of the prosthesis.
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After simple improvement, the platform can be used in upper-
limb prostheses to provide wrist proprioception feedback to
transradial amputees, thereby improving subjects’ acceptance of
the prosthesis.
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Bone conduction is a promising haptic feedback modality for upper-limb

prosthesis users, however, its potential and characteristics as a non-invasive

feedback modality have not been thoroughly investigated. This study aimed to

establish the temporal and spatial characteristics of non-invasive bone conduction

as a sensory feedback interface for upper-limb prostheses. Psychometric

human-subject experiments were conducted on three bony landmarks of the

elbow, with a vibrotactile transducer a�xed to each to provide the stimulus.

The study characterized the temporal domain by testing perception threshold

and resolution in amplitude and frequency. The spatial domain was evaluated

by assessing the ability of subjects to detect the number of simultaneous active

stimulation sites. The experiment was conducted with ten able-bodied subjects

and compared to two subjects with trans-radial amputation. The psychometric

evaluation of the proposed non-invasive bone conduction feedback showed

results comparable to invasive methods. The experimental results demonstrated

similar amplitude and frequency resolution of the interface for all three stimulation

sites for both able-bodied subjects and subjects with trans-radial amputation,

highlighting its potential as a non-invasive feedback modality for upper-limb

prostheses.

KEYWORDS

neuroprosthesis, sensory feedback restoration, human-robot interaction (HRI), tactile

feedback, bone conduction (BC)

1. Introduction

Haptic sensory feedback plays an important role in effective closed-loop control of

upper-limb prostheses (Saunders and Vijayakumar, 2011; Antfolk et al., 2013; Markovic

et al., 2018; Stephens-Fripp et al., 2018; Farina et al., 2021), promoting the body ownership

of prosthetic arm users (Canzoneri et al., 2013; Shehata et al., 2020; Richard et al., 2021) and

the reduction of phantom limb pain management (Dietrich et al., 2012). This feedback is

generated through a form of stimulation that is encoded with relevant feedback information

and delivered to the user’s residual limb. The sensory feedback information can be used

in a variety of applications including upper-limb prosthesis, e.g., for grasp force control

(Childress, 1980; Westling and Johansson, 1984; Augurelle et al., 2003; Antfolk et al.,

2013), haptic applications e.g., robotic teleoperation (Dahiya et al., 2010) or virtual reality

applications (Richard et al., 2021).
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Invasive and non-invasive haptic sensory feedback approaches

have been investigated in the past (Cordella et al., 2016; Stephens-

Fripp et al., 2018). Invasive approaches, such as implanted

nerve electrodes, show great potential but limited applicability

or desirability to a subset of the people living with limb loss

due to the inherent surgical risks and potential limited lifetime

of the electrodes (Schofield et al., 2014; Cordella et al., 2016;

Farina and Amsüss, 2016; Svensson et al., 2017). Non-invasive

stimulation will therefore continue to play a strong role in

prosthetic applications (Farina and Amsüss, 2016). It is also directly

applicable in other areas such as in haptics and human robot

interaction (Goodrich and Schultz, 2007) and more generally in

human machine interfaces (HMI) (Tahir et al., 2018). The state of

the arts of non-invasive tactile feedback are conventionally applied

on the skin through electrotactile, vibrotactile and mechanotactile

modalities to varying degrees of success (Antfolk et al., 2013;

Schofield et al., 2014; Sensinger and Dosen, 2020; Farina et al.,

2021). The shortcomings of these methods were comprehensively

studied and summarized in two thorough review papers (Svensson

et al., 2017; Stephens-Fripp et al., 2018). These shortcomings

include: (1) The force dependency of perceived sensation in

vibrotactile feedback, which can affect the accuracy and consistency

of feedback information when the transducer is pressed against

the skin; (2) Changes in the perception of both electrotactile and

vibrotactile stimulation on the skin with varying locations, making

it difficult to achieve precise and reliable feedback; (3) The bulky

and high power consumption setup of themechanotactile feedback,

which can limit its practicality in real-world applications.

This paper focuses on the investigation of a non-invasive

bone conduction modality as an interface to convey information

to the human user. Bone conduction is a method of providing

vibrotactile feedback through the bone. This approach relies

on the transmission of vibrations/sound through the bone,

which stimulates the Pacinian Corpuscles located around the

bone (Clemente et al., 2017). Bone conduction is a relatively

recent and emerging modality which can potentially address the

aforementioned shortcomings.

The potential of bone conduction as a haptic feedback

interface for upper-limb prosthesis has been studied in Clemente

et al. (2017) through mechanical stimulation of a bone-anchored

(osseointegrated) prosthesis. Superior bandwidth compared to

vibrotactile feedback on the skin was found in Clemente et al.

(2017) for invasive bone conduction. This allows for richer

feedback of sensory information to the human user.

While the results of the osseoperception using bone conduction

were promising, it is only applicable for users with osseointegrated

upper-limb prostheses. There are cases that osseointegration is not

suited for people with upper-limb loss due to the lack of length

or strength in the residual limb or the inherent surgical risks of

the invasive technique (Schofield et al., 2014; Cordella et al., 2016;

Farina and Amsüss, 2016; Svensson et al., 2017). Therefore, non-

invasive options such as stump sockets are expected to continue to

play an important role in prosthesis.

In Mayer et al. (2019), the authors proposed the non-invasive

bone conduction as haptic feedback system through vibrotactile

stimulation of bony landmarks of the elbow. The preliminary

results, with limited number of psychometric parameters and

subjects, demonstrated comparable performance to the invasive

TABLE 1 Subjects were in the following results of able-bodied subjects

are indicated as (SA) and for subjects with trans-radial Amputation as (ST).

Subject group Number Age Gender

(years)

Able bodied 10 26± 3.9 2 F, 8 M

Subjects (SA)

Subjects with

trans-radial

2 29± 8.5 0 F, 2 M

Amputation (ST)

F, female; M, male.

bone conduction method (Mayer et al., 2019, 2020c). It provides

a higher sensitivity of the perception of lower frequencies, allowing

for the use of lower stimulation forces and therefore smaller and

lower power consuming transducers. In addition, it has been

observed that the non-invasive bone conduction is independent

from the force pressing the transducers against the human subject

(Mayer et al., 2018). This is an important characteristic as volume

fluctuations, present in residual limbs (Sanders et al., 2012; Paterno

et al., 2018), no longer affect the perception of the provided sensory

feedback.

The objective of this paper is to thoroughly investigate

and determine the temporal and spatial characteristics of

the non-invasive bone conduction with different user groups

including subjects with amputation. The temporal parameters

of the interface will be characterized by the lowest perceivable

stimulation threshold and the smallest perceivable resolution in

amplitude as well as frequency. The spatial parameters define the

capabilities of the interface to perceive stimulation on multiple

sites on the physiologically given bony landmarks on the elbow

when stimulation was applied one-at-a-time. This is of interest

in prosthetic grasping as combination of different types of

feedback information are required (Westling and Johansson, 1984;

Johansson and Westling, 1987; Augurelle et al., 2003; Mayer

et al., 2020b). The temporal and spatial characteristics of the bone

conduction has been conducted on both able-bodied subjects and

subjects with trans-radial amputation and compared to each other

and to the invasive bone conduction method.

2. Methodology

In this section, the measuring parameters, experimental setup,

and protocol used to obtain temporal and spatial parameters as

well as the statistical analysis are presented. The experiment was

conducted with ten able-bodied subjects (SA) and two subjects

with trans-radial amputation (ST), see Table 1. All subjects read the

plain language statement and signed the consent form approved by

the Ethics Committee of the University of Melbourne (Ethics Id

1852875.1).

2.1. Temporal and spatial parameters

The temporal domain is characterized by the perception

threshold (PT) and the minimum noticeable difference for

subjects, referred to as “just noticeable difference” (JND). The
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FIGURE 1

The experimental setup: (A) three vibrotactile transducers (VT) are

controlled via a personal computer (PC) connected via USB to a

frequency generator (FG) and an amplifier (A); (B) the transducers

are fixed onto the bony landmarks (figure shows right arm) of the

dominant hand: (L1) epicondylis medialis, (L2) ulnar olecranon and

(L3) epicondylus lateralis in 3D printed holder and medical grade

double sided sticker and mounted.

JND is obtained to quantify the perceivable resolution of the

bone conduction interface for frequency and amplitude. The

spatial domain is characterized by the ability to identify different

stimulation sites (SPLIR).

2.1.1. Perception threshold
PT is the minimum stimulation amplitude that subjects can

perceive at a certain stimulation frequency at a certain stimulation

site and can be represented as PT(f , l). For any given frequency

f and site l, the amplitude thresholds changes for each person, as

shown in Clemente et al. (2017, 2016), and Mayer et al. (2019), thus

it is necessary to be identified.

2.1.2. Just noticeable di�erence
The JND is determined for amplitude as well as frequency

describing the resolution of the interface and therefore specifying

the possible information rate of the interface. It is the minimum

difference a subject can discriminate with a pre-determined

probability. The JNDf (f , a, l) varies with stimulation amplitude a

for a given stimulation frequency f and site l. The JNDa(f , a, l)

varies with stimulation frequency f for a given stimulation

amplitude a and site l. For a non-invasive bone conduction

interface applied to the elbow (a natural location for the case

of a transradial prosthetic arm), three accessible bony landmarks

exist, namely the epicondylus (medialis and lateralis) and the

FIGURE 2

The calibration curve for the transducers T1-T3 is used to calculate

the perception threshold in Newton from the recorded Voltage

applied to the transducers. The produced force Fout was measured

for f ∈ [100, 200, 400, 750, 1,500, 3,000, and 6,000] Hz at an

amplitude of a ∈ [0.1, 0.3, 0.5] V where the figure shows the obtained

results at a = 0.5 V.

ulnar olecranon. Therefore, multiple vibrotactile transducers can

be deployed and potentially be used simultaneously. The spatial

domain is therefore characterized by the spatial parameter single-

point location identification rate (SPLIR).

2.1.3. Single-point location identification rate
SPLIR is the success rate that the subject correctly identifies the

correct stimulation site. SPLIR is different for each site l:

SPLIR(l) =
Ncorr(l)

N(l)
, (1)

where Ncorr(l) is the number of correct identified stimulations for

the number of presented stimulations N(l) at site l.

2.2. Experimental setup

The experiment was conducted using the setup shown in

Figure 1, where three Vibrotactile Transducers (VT) were driven by

the frequency generator (FG) and amplifier (A) and controlled by the

personal computer (PC). The three transducers T1-T3 were placed

onto the 3 bony landmarks of the elbow: epicondylis medialis (L1),

ulnar olecranon (L2) and epicondylus lateralis (L3), see Figure 1.

2.2.1. Vibrotactile transducers
Three B81 transducers T1-T3 from RadioEar Corporation

(USA) were utilized to provide the vibrotactile stimulus to the bony

landmarks. All three transducers were calibrated using an Artificial

Mastoid Type 4930 from Brüel & Kjære (Denmark) adjusted to

produce the same force output of 121.5 dB at f = 1 kHz. The

transducers were affixed to the bony landmarks, see Figure 1, of the
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subjects using a 3D printed holder (PLA/TPU) and medical grade

double sided sticker Type 1510 (3MTM).

2.2.2. Frequency generator
A National Instruments NI USB-6343 is used.

2.2.3. Amplifier
A 15W Public Address amplifier type A4017 from Redback Inc.

(Australia) with 4−16� output to drive the 12.5� B81 transducers

and achieve a harmonic distortion of < 3% at 1 kHz.

2.2.4. Personal computer
A Windows Surface Book 2 (Intel Core i7-8, 16GB RAM,

Windows 10TM) and a MATLAB R© GUI, guiding the user through

the experiment and controlling the stimulation parameters.

2.3. Experimental protocol

The experiment is divided into temporal and spatial

parameters. In order to reduce time effort for the subjects

with trans-radial amputation, the able-bodied subjects carried

out the whole experiment first. The longest time effort in the

experiment was in the identification of the just noticeable

difference. Therefore, this was carried out in stages: it was first

done on the able-bodied subjects. The site with the lowest

perception threshold was identified as L1. For the subjects with

transradial amputation, this experiment was done for L1 instead of

for all three sites, thus reducing the time-effort required from the

subjects with amputation. The following explains the protocol for

determining each parameter.

The temporal parameters, PT and JND, are obtained utilizing

a single interval adjustment matrix (SIAM) method in order to

reduce long trial times, requiring half the amount of repetitions

compared to a standard two-interval forced-choice (2IFC). SIAM

methods has been previously been implemented by Dosen et al.

(2016) and shown to achieve same precision as a 2IFC test in

Kaernbach (1990). In the SIAM procedure the outcome (hit, miss,

false alarm, correct rejection) is used to adjust the signal level in a

staircase manner. The response criterion is set to 0.5 which means

the obtained PTs / JNDs are recognized with a 50% probability

which is the same performance as in 2IFC tests (Kaernbach, 1990).

This was chosen according to Kaernbach (1990) where it was shown

that it results in the best threshold estimate.

A SIAMmatrix,

SIAM =

[
−1 1

2 0

]

(2)

as shown in Kaernbach (1990), achieves the best threshold estimate

via a 50% target performance, i.e., half of the presented stimuli

are blank. Blank stimulus means that it carries no stimulation for

perception threshold and no change for JND tests. The provided

stimulus Si is therefore adjusted based on the response of the subject

Si+1 = Si + SIAM(a, b)δS (3)

where δS is the step size. The index a determines if the stimulus

was a blank (a = 1) or a true stimulation (a = 0). The index

b is determined by the subject’s yes/no response, where a yes

means b = 1 and a no means b = 0. A correctly perceived

stimulation changes the stimulus by −1δS while an incorrectly

perceived stimulation increases the stimulus by+1δS. An incorrect

perception of a blank stimulation increases the stimulus by +2δS

while a correct perception of a blank keeps it at the current level

(Kaernbach, 1990; Dosen et al., 2016).

2.3.1. Perception threshold
A complete psychophysical evaluation of the perception

threshold would imply determining the PT at a step size determined

by the Just Noticeable Difference Frequency difference (JNDf ). As

the JNDf is not known a priori, the preliminary results obtained in

Mayer et al. (2018, 2019, 2020c) are used to define the frequency

range, where the three sites L1-3 are each individually perceivable

as well as dominant tactile perception is shown in a frequency range

of f ∈ [100, 400, 750] Hz. The perception threshold PT(f , l) is

obtained via SIAM (Kaernbach, 1990) method. The threshold for

each frequency f at the site l is obtained by presenting 26 repetitions

and the amplitude adjusted according to the subjects feedback via

SIAM method. The frequencies f are presented in a randomized

manner at each site l. To allow for a technical implementation and

selection of suitable transducers the Perception Threshold is given

in Newton utilizing the previously obtained calibration (Figure 2).

2.3.2. Just noticeable di�erence
Similar to PT, a complete psychophysical characterization of the

JND would imply determining a full range in amplitude/frequency

(AF). This would result in an impractically large number of

measurements, resulting in an excessively long duration of

experiments for subjects. Hence, the AF domain was divided into

discrete steps, called AF reference points, where fref ∈ [100, 400,

750] Hz and aref ∈ [0.1, 0.3, 0.5] V resulting in a combination of 9

AF points where the reference amplitudes and frequencies where

chosen according to the preliminary results obtained in Mayer

et al. (2019). At each AF reference point, the JNDf and JNDa were

obtained in increasing direction (toward the maximum value). The

JND is given in Volt, which can be used to derive the smallest

necessary step size for an implementation and selection of suitable

driver circuitry.

2.3.3. Single-point location identification rate
Spatial parameters were obtained according to Mayer et al.

(2020c). The subjects were asked to report on the site L1-L3 of

the stimulation. Therefore, the subjects were presented with the

stimuli on the three different sites without a priori knowledge of

the stimulation site. The order of stimulation sites were applied

randomly from f ∈ [100, 200, 400, 750, 1,500, 3,000, and 6,000]

Hz, a = 0.5 V and each repeated 10 times. Frequencies are choose

according to the shown bandwidth in Clemente et al. (2017) and

Mayer et al. (2019). Each stimulation was ON for 1 s. At the start of

the experiment, the subjects were provided with the opportunity to

familiarize themselves with the stimulation and therefore explore
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the association of the three stimulation sites by voluntary inducing

stimuli on each site.

2.4. Analysis

The statistical analysis in this study is utilized to investigate the

difference between the physiological sites and the different subject

groups.

2.4.1. E�ect of physiological locations
A non-parametric statistical analysis, specifically a Friedman

Test (Daniel, 1990) was applied to compare the three physiological

sites for each temporal and spatial parameter. In case of statistical

significant differences, this was followed up by a post-hoc analysis

viaWilcoxon signed rank test (Wilcoxon, 1945) to determine which

of the three physiological sites was different. The p-value results are

presented for the Friedman as well as the applied post-hocWilcoxon

signed rank test.

2.4.2. Perception threshold
The achieved results of perception threshold are visually

presented by plotting the mean and the stand deviation as an error

bar.

2.4.3. Just noticeable di�erence
A summary plot shows the JNDa and JNDf at each AF reference

point by its mean value, with the origin at the AF reference point.

More details are shown in individual plots for each AF reference

point for each site showing the obtained mean value and the stand

deviation as an error bar.

2.4.4. Single-point location identification rate
The achieved results of perception threshold is visually

presented similar as in Mayer et al. (2020c) by plotting the mean

and the stand deviation as an error bar.

2.4.5. Di�erence between subject groups
A qualitative comparison between able-bodied subjects and

subjects with trans-radial amputation (ST) was carried out to

compare the two subject groups for each temporal and spatial

parameter. The obtained mean values for the parameters are use

for such comparison.

3. Results

In this section, the temporal and spatial parameters are

presented and compared statistically for the different sites/bony

landmarks (L1-L3) at the elbow and qualitatively across different

subject groups.

FIGURE 3

Results of the psychophysical evaluation for PT of ten able-bodied

subjects (SA) and for two trans-radial amputees (ST). Means and

standard deviations of the identified PT at frequencies [100 400 750]

Hz are shown.

TABLE 2 The p-values of the Friedman for perception threshold

comparing the three di�erent physiological sites L1, L2, and L3 at all

frequencies is shown.

Frequency

100 Hz 400 Hz 750 Hz

Friedman L1 vs. L2 vs. L3 ≤ 0.001* 0.273 ≤ 0.001*

Wilcoxon

L1 vs. L2 0.002* - 0.002*

L1 vs. L3 0.002* - 0.002*

L2 vs. L3 0.059 - 0.059

Significance level is p < 0.05. The p-values of the post-hoc Wilcoxon signed rank test for

Perception Threshold comparing the three different physiological sites L1, L2 and L3 to each

other over f ∈ [100, 400, 750] Hz of the ten able-bodied subjects is shown. Significance level

is p < 0.05. *Indicates statistically significance.

3.1. Physiological sites

3.1.1. Perception threshold
The results for PT are shown in Figure 3 and Table 2.

The results of the obtained perception threshold, for the three

physiological sites of able-bodied subjects (SA) and trans-radial

amputees (ST) are shown in Figure 3. The mean perception

thresholds for SA is [0.015 0.45 0.2] N and for ST [0.015 0.21 0.25]

N for [100 400 750] Hz.

The Friedman test results, comparing the three different sites,

are shown in Table 2. The obtained results indicate a statistically

significant difference in performance for [100 750] Hz for the

perception threshold for the three different sites. No statistical

difference is observed at 400 Hz. A post-hoc test (Wilcoxon signed

rank test), is performed for [100 750] Hz and the corresponding p-

values are shown in Table 2. In the following, the obtained results

are summarized:

L1 vs. L2: A statistical significant difference for perception

threshold at [100 750] Hz is shown in Table 2 with L1 having a lower

PT.

L1 vs. L3: A statistical significant difference for perception

threshold at [100 750] Hz is shown in Table 2 with L1 having a lower

PT.
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TABLE 3 The p-values of the Friedman for JNDa comparing the three

di�erent physiological sites L1, L2, and L3 at all frequencies and

amplitudes of the ten able-bodied subjects (SA) is given.

Amplitude Frequency

100 Hz 400 Hz 750 Hz

Friedman L1 vs. L2

vs. L3

0.1 V 0.318 0.063 0.255

0.3 V 0.900 0.407 0.905

0.5 V 0.509 0.527 0.318

Significance level is taken at p < 0.05.

L2 vs. L3: No statistical significant difference was

obtained for perception threshold at [100 750] Hz shown

in Table 2.

Note that the p-values are at 0.059 for both cases,

therefore they are only slightly above significance level

of p < 0.05.

3.1.2. Just noticeable di�erence
The results for the just noticable difference in amplitude JNDa

are shown in Figure 5A and Table 3. The results for the just

noticable difference in frequency JNDf are shown in Figure 5B and

Table 4. A combined plot is shown in Figure 4, showing the mean at

each site. The details of JNDa and JNDf are shown and discussed in

the following.

3.1.2.1. JNDa

The obtained results of JNDa are shown in Figure 5A. The

obtained results of the Friedman test comparing the three sites,

as shown in Table 3, indicate no statistically significant difference

between the three physiological sites, therefore no post-hoc test

was performed.

3.1.2.2. JNDf

The obtained results of JNDf are shown in Figure 5B. The

results of the Friedman test for the three sites of JNDf , as shown

in Table 4, indicate a statistically significant difference for JNDf

at [0.1 V, 400 Hz] as well as for [0.3 V, 750 Hz]. No statistically

significant difference was found for all other discrete steps in the

AF domain. The results of the post-hoc Wilcoxon signed rank test

comparing the three different physiological sites L1, L2 and

L3 to each other for 0.1 V at 400 Hz and 0.3 V at 750

Hz, shown in Table 4. In the following, the obtained results

are summarized:

L1 vs. L2: A statistical significant difference for JNDf at 400 Hz

for 0.1 V and 0.3 V is shown in Table 4.

No statistical significant difference was obtained for 0.1 V at 400

Hz and 0.3 V at 750 Hz is shown for

L1 vs. L3 as well as L2 vs. L3 in Table 4.

3.1.3. Single-point location identification rate
The results of the obtained SPLIR are shown in Figure 6

for all three physiological sites. The Friedman results for

the three different sites, as shown in Table 5, indicate

no statistically significant difference in performance for

TABLE 4 The p-values of the Friedman for JNDf comparing the three

di�erent physiological sites L1, L2, and L3 at all frequencies and

amplitudes is given.

Amplitude Frequency

100 Hz 400 Hz 750 Hz

Friedman L1 vs. L2

vs. L3

0.1 V 0.828 0.018* 0.174

0.3 V 0.565 0.717 0.008*

0.5 V 0.140 0.143 0.500

Wilcoxon

L1vs.L2

0.1 V - 0.031* -

0.3 V - - 0.031*

L1vs.L3

0.1 V - 0.406 -

0.3 V - - 0.063

L2vs.L3

0.1 V - 0.094 -

0.3 V - - 1.0

Significance level is p < 0.05. Furthermore, the p-values of the post-hoc

Wilcoxon signed rank test for JNDf comparing the three different physiological sites

L1, L2 and L3 to each other over all frequencies and amplitudes of the ten able-bodied

subjects is shown. Significance level is p < 0.05. *Indicates statistically significance.

FIGURE 4

This plot shows the combination of JNDa (vertically) and JNDf

(horizontally) at each AF point. The JNDa showing the amplitude

resolution for 3 di�erent frequencies at 3 di�erent amplitudes and

JNDf giving the frequency resolution for 3 di�erent amplitudes at 3

di�erent frequencies in a summary plot of the obtained mean value

of JNDa (blue) and JNDf (red) at each reference stimulus (black)

giving. See Figure 5 for the detailed trends of each JNDa and JNDf .

The results are shown for all three sites L1-L3 for the able-bodied

subjects (SA) and for site L1 subjects with trans-radial amputation

(ST).

the different sites for SPLIR, hence, no post-hoc test

was performed.

3.2. Subject groups

The obtained perception threshold of the two user groups, able-

bodied subjects (SA) and subjects with trans-radial amputation

(ST), are shown in Figure 3. The results show a lower to similar
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FIGURE 5

The plot in (A) shows the detailed JNDa at the three di�erent chosen AF reference frequencies for the three di�erent AF reference amplitudes and (B)

shows the detailed JNDf for at the three di�erent chosen AF reference amplitudes for the three di�erent AF reference frequencies. Both are given for

the three sites L1-L3 for SA and ST. The mean is plotted as solid line and the standard deviation given as error bar.

perception threshold for ST compared to SA. A higher value is

obtained for L3 at 750 Hz.

The obtained JNDa of the two user groups is shown in

Figure 5A. The obtained JNDf of the two user groups is shown in

Figure 5B. The obtained SPLIR of the two user groups is shown

in Figure 6.

4. Discussion

In this section, the obtained results are discussed for: (a)

the three physiological sites; (b) the different subject groups and

compared to results obtained for invasive bone conduction in

Clemente et al. (2017).

4.1. Physiological sites

For perception threshold site L1 performed better (in

statistically significance manner) than L2 and L3 at 100 and 750

Hz, while no difference was obtained at 400 Hz. Better performance

of L1 can be explained by on the one hand allowing better contact

to the bones in a non-invasive manner due to little skin and soft

tissue in between transducer and bone. On the other hand the

ulnar nerve runs behind the medial epicondyle on the inside of the

elbow and might increase the perception by being mechanically

stimulated. The results of the study did not reveal any statistically

significant differences in PT between the three stimulation sites

at 400 Hz. While the L1 site demonstrated the lowest value, the

high variance of the results could account for the lack of statistical

significance (see Figure 3). One possible explanation for the

variability in the results is the limited number of participants in the

study. Another factor to consider is the findings of Clemente et al.

(2017), which suggest that stimulation frequencies above 400 Hz

FIGURE 6

The mean and standard deviation of the SPLIR for each site L1, L2,

and L3 is shown. The results of the ten able-bodied subjects (SA) is

plotted in solid lines and for subjects with trans-radial amputation

(ST).

can be perceived as sound. As a result, the change in sensation from

tactile-only to tactile and audio could contribute to the increased

variability observed in the results. The obtained PT achieved for

invasive bone conduction (Clemente et al., 2017) which is a mean

PT of [0.2, 0.1, 0.47] N compared to the results obtained in this

study being [0.01, 0.45, 0.20] N for SA and [0.01, 0.21, 0.25] N for

ST at f=[100, 400, 750] Hz. A smaller perception threshold at 100

Hz and 750 Hz for all three sites has been achieved for both user

groups for non-invasive bone conduction feedback. The obtained

PT at 400 Hz is higher than in Clemente et al. (2017) for all three

sites.
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TABLE 5 The p-values of the Friedman for SPLIR comparing the three di�erent physiological sites L1, L2, and L3 at all frequencies and amplitudes is

given.

Frequency

100 Hz 200 Hz 400 Hz 750 Hz 1,500 Hz 3,000 Hz 6,000 Hz

L1 vs. L2 vs. L3 0.581 0.460 0.867 0.104 0.081 0.704 0.103

Significance level is p < 0.05. *Indicates statistically significance.

Note that a lower perception threshold is the desired

performance. Performing better with respect to PT means a

lower perception threshold was obtained, allowing to use a

bigger force range and therefore a larger bandwidth for the

feedback information is available. It also allows the use of smaller

transducers, as investigated in Mayer et al. (2020a), and therefore

reduced energy consumption for battery powered prosthesis.

Furthermore, lower stimulation force reduces the resulting noise

and therefore increases the likelihood of the acceptance within the

prosthetic field.

For JNDa, no statistically significant difference between

different sites at the three different frequencies was obtained. As

a result, each of the three sites is equally sensitive.

For JNDf , a statistically significant difference between different

sites at [0.1 V, 400 Hz] as well as for [0.3 V, 750 Hz] was

found. No statistical difference was found for all other stimulation

permutations. In combination with the significantly lower PT, L1

has the biggest bandwidth for providing sensory feedback.

For SPLIR, no statistically significant difference between the

different sites at the different frequencies was obtained, meaning

each stimulation on each site can be located equally well. As

reported previously in preliminary studies in Mayer et al. (2020c),

SPLIR drops to at chance level above 1,500 Hz. Such a drop suggests

that the site identification is superior for tactile perception, which

is prevalent below 750 Hz (Mayer et al., 2019), and the stimulation

location can not be perceived auditory perception. The stimulation

in the case of auditory perception is conducted via the bones to the

auditory pathway. Stimulating on three different independent sites

on the elbow will ultimately still lead to stimulation of the same

auditory pathway and hence not allow the subject to distinguish the

stimulation site.

4.2. Subject groups

Only qualitative discussion is performed in the comparison

of subject groups, due to the small number of ST subjects

available for the study. For perception threshold, subjects with

trans-radial amputation qualitative show a lower PT than able-

bodied subjects and therefore are more sensitive to stimulation.

This allows the use of a wider force range / larger bandwidth

for the feedback information, and the use of smaller transducers

for reduced energy consumption. Furthermore, the subjects

with trans-radial amputation achieve similar performance for

PT using non invasive bone conduction compared to the

subjects with invasive bone conduction studied in Clemente

et al. (2017). For JNDa, similar to PT a slightly better

performance was obtained for ST compared to SA. A smaller

JNDa means a higher resolution of the feedback interface is

feasible and therefore more detailed sensory feedback can be

provided.

For JNDf , a slightly worse performance was obtained for ST

compared to SA. A higher JNDf means a coarser resolution of

the feedback interface necessary and therefore less detailed sensory

feedback can be provided.

For SPLIR, similar performance for ST compared to SA was

obtained. Both subject groups SPLIR drops to at chance level above

1,500Hz, suggesting that the site identification is superior for tactile

perception for both subject groups.

4.2.1. Established interface parameters
The results obtained in this study suggest a usable bandwidth

for bone conduction as a sensory feedback from 100 to 750

Hz when multiple transducers are used on multiple stimulation

sites. The perception threshold is as low as 0.01 N at 100

Hz and increases to 0.2 N at 750 Hz. This range of force

perception and frequency bandwidth suggest that commercially

available transducers used in audiology could be used for

bone conduction sensory feedback. Furthermore, the perception

threshold for non-invasive bone conduction was found to be

comparable to results obtained with invasive bone conduction

techniques (Clemente et al., 2017). The study also revealed that

frequency resolution was more distinguishable than amplitude.

This finding could have implications for the design of future bone

conduction feedback systems, as it suggests that greater attention

may need to be paid to the frequency content of the feedback

signals.

It should be mentioned that sensory feedback bone conduction

is not applicable for subjects with diseases affecting the perception

of such stimulation e.g., a potential subject in this study had to be

excluded due to the inability to perceive stimulation likely caused

by rheumatoid arthritis.

5. Conclusion

This study has evaluated the temporal and spatial parameters

of the non-invasive vibrotactile feedback on the bony landmarks

of the elbow. The parameters are investigated on three different

physiological sites over two user groups (able bodies and

subjects with transradial amputation). The paper reports the

effective operating range of frequencies and amplitudes and

the resolutions that can be perceived generally by the human

users.

The perception threshold on the ulnar olecranon (L1) is most

sensitive for able-bodied subjects compared to the medial and

lateral epicondylus. The perception threshold is lower and therefore
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more sensitive for subjects with trans-radial amputation compared

to able-bodied subjects. A qualitatively smaller, and therefore more

sensitive, perception threshold has been obtained compared to

invasive bone conduction.

Previous research (Clemente et al., 2017) showed that

osseoperception, caused by mechanical vibrations through a bone-

anchored (osseointegrated) prostheses, allows for a richer feedback

and therefore was believed to play an important role in the

sense of ownership of a prosthesis and the improvement of

quality of live of people living with limb loss. The equivalent

sensitivity achieved in non-invasive bone-conduction within this

study highlights the potential of such an interface for conventional

socket-based prostheses to not only provide richer feedback and

functionality but also to enhance the sense of ownership of

a prosthesis.

The resolution in amplitude and frequency of all three sites,

as well as for able-bodied subject vs. subjects with trans-radial

amputation, showed comparable performance. The detection of the

stimulation site was not different between different sites as well as

the two investigated user groups.
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