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Immunotherapy is widely used to treat various cancers, but patients with gastric cancer (GC), which has a high mortality rate, benefit relatively less from this therapy. Platelets are closely related to GC progression and metastasis. This study aimed to find novel potential biomarkers related to platelet function to predict GC and immunotherapy efficacy. First, based on platelet activation, signaling, and aggregation (abbreviation: function)-related genes (PFRGs), we used the least absolute shrinkage and selection operator (Lasso) regression method to construct a platelet-function-related genes prognostic score (PFRGPS). PRFGPS was verified in three independent external datasets (GSE26901, GSE15459, and GSE84437) for its robustness and strong prediction performance. Our results demonstrate that PRFGPS is an independent prognostic indicator for predicting overall survival in patients with GC. In addition, prognosis, potential pathogenesis mechanisms, and the response to immunotherapy were defined via gene set enrichment analysis, tumor mutational burden, tumor microenvironment, tumor immune dysfunction and exclusion (TIDE), microsatellite instability, and immune checkpoint inhibitors. We found that the high-PRFGPS subgroup had a cancer-friendly immune microenvironment, a high TIDE score, a low tumor mutational burden, and relatively low microsatellite instability. In the immunophenoscore model, the therapeutic effect on anti-PD-1 and anti-CTLA-4 in the high-PRFGPS subgroup was relatively low. In conclusion, PRFGPS could be used as a reference index for GC prognosis to develop more successful immunotherapy strategies.
Keywords: platelet function-related gene, gastric cancer, bioinformatics analysis, prognosis, tumor microenvironment
INTRODUCTION
Gastric cancer (GC) is a common malignancy of the digestive system with high morbidity and mortality (Sung et al., 2021). The overall survival rate of patients with GC after conventional chemotherapy is still low, especially since median survival for advanced GC is less than 1 year (Smyth et al., 2020). In recent years, the rapid rise of immunotherapy has opened new treatment prospects for patients with GC (Chivu-Economescu et al., 2018). Immunotherapy is characterized as the stimulation of specific immune responses that inhibit and kill tumor cells, thus reducing the rates of tumor recurrence and metastasis. As a new cancer treatment strategy, immunotherapy significantly improves overall survival (OS) in patients with advanced GC (Fuchs et al., 2018; Chen et al., 2020). Immune checkpoint inhibitors (ICIs) are presently the most commonly employed immunotherapy agents for cancer treatment (Galon and Bruni, 2019). However, for most cancers, only a third of patients respond to ICI treatment (Smyth et al., 2020). GC has a high degree of intratumoral heterogeneity (ITH), which is the primary cause of tumor cell resistance and survival and is thus a major obstacle to improving patient prognosis. Through multi-omics analysis, The Cancer Genome Atlas (TCGA) classified primary GC into four molecular subtypes, among which EBV-positive GC and micro satellite-instable GC have better prognosis (Cancer Genome Atlas Research Network, 2014). However, these two types are very rare in advanced GC. Patients with same tumor-node-metastasis (TNM) stratification sometimes have different prognoses; hence, patient outcomes are influenced by the chosen treatment strategy. Therefore, it is important to identify biomarkers for predicting GC and the immunotherapy outcomes.
Platelets play important roles in hemostasis and thrombosis. Platelets are considered to be “accomplices” in malignancy, as they protect circulating tumor cells from shear forces and cloak them from leukocytes by forming a thrombus around them (Mendoza-Almanza et al., 2020). Platelet-tumor-cell interactions have been identified as important factors in cancer development, progression, and metastasis (Roweth and Battinelli, 2021). Tumor cells induce platelet activation and aggregation, thereby causing thrombosis (Palacios-Acedo et al., 2019). Tumor cells also recruit platelets into the tumor microenvironment (TME), and platelets are activated by tumor cells to release the cytokines VEGF, CCL5, PDGF, TGFβ, PG, TPM3, LPA, PF4, PAF, and HGF, which promote the epithelial-mesenchymal transition of tumor cells (Mendoza-Almanza et al., 2020). VEGF and TGFβ have strong mitogenic activity, and they directly promote tumor cell growth and proliferation and enhance neovascularization, thus contributing to tumor progression and metastasis (Wojtukiewicz et al., 2017). For these reasons, platelets have now become a target for cancer therapy.
It is possible that tumor-cell-induced platelets are involved in several mechanisms of antitumor immunity, promoting an immunosuppressive TME state (Gockel et al., 2022). The platelets activated by tumor cells can directly release TGF-β and downregulate natural killer (NK) cell NKG2D receptors (Kopp et al., 2009). They can also inhibit NKG2D, NKp30, and DNAM-1 receptors in a TGFβ1-dependent manner by releasing exosomes, thereby leading to NK cell dysfunction (Sadallah et al., 2016). Tumor-cell-activated platelets modulate the immune activities of CD4+T, CD8+T, and NK cells and transform them into an immunosuppressive phenotype (Gockel et al., 2022). It has been shown that regulatory T (Treg) cells must come into contact with platelets in order to secrete the effector IL-10 (Rossaint et al., 2021). Therefore, activated platelets have been implicated as a main reason for failure of ICI treatment (Metelli et al., 2020).
Few studies have investigated the mechanisms of platelet activation, characteristics of the regulatory immune microenvironment, and the impact on immunotherapy outcome in patients with GC. This study aimed to construct a platelet-function-related genes prognostic score (PFRGPS) consisting of five platelet-function-related genes (PFRGs), using bioinformatics, and explore the relationship between the PFRGPS and TME. Furthermore, we sought to examine the relationship between PFRG expression profiles and immunotherapy. Our findings can provide an effective strategy for improving the stratification of patients with GC, ultimately promoting the development of personalized treatments.
MATERIALS AND METHODS
Data Collection and Preprocessing
The flow chart is shown in Figure 1. Platelet activation, signaling and aggregation (abbreviation: function), related genes (n = 261) were downloaded from the Gene Set Enrichment Analysis (GSEA) (http://www.gsea-msigdb.org/gsea/index.jsp). RNA-Seq data and complete clinical, survival, and somatic mutation information of patients with GC (375 tumor samples and 32 normal samples) were obtained from TCGA (https://portal.gdc.cancer.gov/). In addition, external validation cohorts GSE26901 (n = 109), GSE15459 (n = 192), and GSE84437 (n = 433) are from the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). To ensure the accuracy of the study, patients with 0 days of follow-up were excluded before the establishment of the prognostic model. The clinical features of patients who met the requirements of the model are listed in Supplementary Table S1.
[image: Figure 1]FIGURE 1 | Flowchart of this study. This figure was produced with the assistance of Servier Medical Art (https://smart.servier.com). 
Construction of Platelet-Function-Related Genes Prognostic Score and Calculation of the Prognostic Score
The filter |log2FC| > 1 was used for fold change (FC), and the false discovery rate (FDR) was set as < 0.05. Next, 261 PFRGs were crossed with differential GC genes, and 38 differentially expressed platelet-function-related genes (DEPFRGs) were obtained. The analysis used the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways with the R packages “clusterProfiler,” “org.Hs.eg.db,” and “enrichplot.” Visualization of enrichment analysis was realized with the R packages “ggplot2” and “GOplot.” Protein-protein interaction (PPI) network construction was carried out with String (https://www.string-db.org/).
Univariable Cox regression analysis was used to determine prognosis-related PFRGs (PPFRGs), and then the R package “ConsensusClusterPlus” was used to draw a waterfall plot to show PPFRG mutations. A Circos plot was drawn using the R package “Rcircos” to show similarities and differences in the microscopic characteristics of PPFRGs. Least absolute shrinkage and selection operator (Lasso) regression analyses were used to determine potential predictors of non-zero coefficients so as to select the best OS-related PPFRGs (Tibshirani, 1997). Next, a 10-fold cross-validation was performed to determine the core genes ultimately used to construct the PFRGPS system (Friedman et al., 2010). We constructed a prognostic risk score formula based on the weighted linear combination of corresponding mRNA expression levels and corresponding regression coefficients obtained via Lasso regression analysis. The formula used to calculate PFRGPS was as follows:
[image: image]
Validation of Platelet-Function-Related Genes Prognostic Score
We used data from TCGA database as a training cohort. We divided 350 patients with GC from TCGA (excluding patients with OS = 0) into two subgroups of high and low PFRGPS. Kaplan-Meier curve was used to analyze survival status between the high- and low-PFRGPS subgroups. Using the R packages “survival,” “survminer,” and “timeROC,” the receiver operating characteristic (ROC) curves for 3 and 5 years were generated, and the area under the ROC curve (AUC) was calculated to further evaluate the predictive value of PFRGPS. In addition, independent prognosis by the PFRGPS was analyzed via univariable and multivariable Cox regression analyses. In three validation cohorts, namely, three independent data sets GSE26901, GSE15459, and GSE84437 from GEO, same process was used to verify the stability of the prognostic model. The PFRGPS established for the TCGA cohort was suitable for the GEO cohort. Before establishing the model, the GEO and TCGA cohorts were processed for batch effect. R packages “survival,” “survminer,” and “timeROC,” were used in the above-mentioned analysis. The R packages used in GEO validation cohorts were consistent with those in the TCGA training cohort.
Development of a Nomogram Based on the Platelet-Function-Related Genes Prognostic Score and Clinical Factors
Using Cox regression analysis, we constructed a nomogram taking PFRGPS and clinical variables into account, using the R packages “RMS” and “regplot”. In addition, we also generated 3- and 5-year ROC curves. The AUC of the nomogram was calculated to evaluate the prognostic value of the nomogram.
Gene Set Enrichment Analysis
We performed GSEA on gene expression between the high- and low-PFRGPS subgroups to help understand the related functional differences among different groups. Genome alignment was tested 1,000 times to demonstrate its functional consistency. Phenotypic labels were used to predict adverse events. The file c5.go.v7.4.symbols.gmt was downloaded from the Molecular Signatures Database to run GSEA.
Analysis of Immune Microenvironment
In order to explore changes in the immune microenvironment in patients with GC, we used the ESTIMATE method to calculate the ImmuneScore and StromalScore of TCGA-cohort samples. ESTIMATEScore is the sum of ImmuneScore and StromalScore.
In order to better clarify the relationship between PFRGPS and immune cell status, immune cells and pathways of each patient were further explored through single-sample GSEA (ssGSEA). We further explore their correlation with PFRGPS and five PPFRGs. In addition, we also used the CIBERSORT algorithm to obtain a relative proportion of 22 kinds of immune cells in each patient so as to quantitatively analyze immune cell infiltration. For the above-mentioned analysis, we used R packages. We used the R packages “limma,” “GSVA,” “GSEABase,” “e1071,” “parallel,” and “preprocessCore” for the above analysis.
Immunotherapy Analysis
In order to evaluate the response of patients with GC to immunotherapy, we analyzed somatic mutation data using TCGA datasets. The R packages “limma,” “survival,” and “survminer” were used to analyze differences in tumor mutational burden (TMB) between the high- and low-PFRGPS subgroups. Then, TMB was combined with the corresponding survival information to evaluate the relationship between TMB and prognosis. We downloaded the tumor immune dysfunction and exclusion (TIDE), microsatellite instability (MSI), immune dysfunction, immune exclusion, and cancer-associated fibroblast (CAF) scores of patients with GC from the TIDE website (http://tide.dfci.harvard.edu/). Next, MSI status and the immunophenoscore (IPS) of patients with GC were downloaded from The Cancer Immunome Atlas (TCIA; https://tcia.at/home) database. We comprehensively analyzed the effect of immunotherapy on patients with GC and its correlation with PFRGPS using the above-mentioned measures.
Expression Analysis of PPFRGs
To verify differential expression of PPFRGs between GC and normal tissues, we used the Gene Expression Profiling Interactive Analysis (GEPIA, http://gepia.cancer-pku.cn/) database and the GSE13911 dataset. The GSE13911 dataset was downloaded from the GEO database.
Statistical Analysis
All statistical analyses in this study were performed using the R software (version 4.1.2). Wilcoxon tests were used to compare differences between two groups. Kaplan-Meier survival analysis was used for comparing OS among different subgroups. ROC curve and AUC were used to evaluate the accuracy of the predictions of the model. Cox regression analysis was used to test independent prognostic characteristics of PFRGPS. Spearman correlation tests were used for correlation analysis. All statistical values with p < 0.05 (two-tailed) were considered to be statistically significant.
RESULTS
Identification and Functional Enrichment Analysis of DEPFRGs
We found 38 DEPFRGs (22 upregulated and 16 downregulated) in GC and adjacent non-tumor tissues in TCGA cohort (Figure 2A; Supplementary Figures S1A,B). In order to explore the function of DEPFRGs in GC, we first performed GO and KEGG enrichment analyses on DEPFRGs. The GO analysis showed that DEPFRGs were enriched in platelet activation and aggregation, including “wound healing,” “regulation of body fluid levels,” and “blood coagulation” (Figure 2B). Most abundant pathways in the KEGG analysis were related to “platelet activation,” “focal adhesion,” “complement and coagulation cascades,” and “rap1 signaling pathway” (Figure 2C). These findings are related to platelet activation, aggregation, and tumor progression. In addition, we constructed a PPI network with 31 nodes and 81 edges, showing complex interactions among DEPFRGs (Figure 2D).
[image: Figure 2]FIGURE 2 | Identification and functional enrichment analysis of DEPFRGs in TCGA cohort. (A) The heatmap of 38 DEPFRGs in GC and normal tissues. (B) The GO enrichment analysis. (C) The KEGG pathway analysis. (D) The PPI network was constructed through 38 DEPFRGs. The interaction score was set to 0.4. DEPFRGs, differentially expressed platelet function-related genes; GC, Gastric cancer; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction. *p < 0.05, **p < 0.01, ***p < 0.001.
Development and Verification of the Platelet-Function-Related Genes Prognostic Score System
In order to avoid differences between the gene symbols of GEO verification cohorts and TCGA cohorts, we first considered the intersection of gene symbols of two cohorts. We first performed a univariable Cox regression analysis on the GC group in TCGA cohort and identified 10 PPFRGs (APOA1, CD36, COL1A1, COL1A2, DGKI, F2R, F5, MMRN1, SERPINE1, and SPARC) that were significantly associated with the OS in patients with GC; high expression of these genes was positively correlated with a poor prognosis (Figure 3A; Supplementary Figure S1C). Compared to that in the adjacent normal tissues, we observed low expression of ApoA1, CD36, and MMRN1 in the GC tissues from TCGA dataset. Since this observation was contrary to the results obtained with univariable analysis, we removed these three genes in order to ensure the accuracy of PFRGPS. Finally, seven PFRGs (COL1A1, COL1A2, DGKI, F2R, F5, SERPINE1, and SPARC) were selected. In order to confirm the accuracy of these PFRGs, we used the GEPIA database and GSE13911 for verification (Supplementary Figures S2A,B).
[image: Figure 3]FIGURE 3 | Development of the PFRGPS System. (A) The forest plot of 10 PPFGs markers was obtained by univariable Cox analysis. (B) The waterfall plot of seven PPFGs mutations. (C) Gain (red) or loss (green) CNVs of GC patients. (D) The location and CNVs of seven PPFGs. (E) LASSO coefficient profiles of seven PPFGs. (F) The tuning parameters were cross-validated in the LASSO model. (G) Distribution of PFRGPS in TCGA cohort. (H) Survival status in the high-PFRGPS and low-PFRGPS subgroups of the TCGA cohort. (I) Kaplan-Meier survival analysis in TCGA cohort. (J) The ROC curve analysis according to the 3- and 5-year survival of the AUC value in the TCGA cohort. PFRGPS, platelet function-related genes prognostic score; PPFGs, prognosis-related platelet function-related genes; CNVs, copy number variations; LASSO, Least Absolute Shrinkage and Selection Operator; ROC, receiver operating characteristic; AUC, area under the curve.
In addition, somatic mutation status in GC tissues was analyzed. The results showed that for these seven PFRGs, 80 of 433 GC samples had gene mutations (18.48%), of which missense mutations accounted for largest proportion (Figure 3B). Next, copy number variations (CNVs) in the seven PFRGs were analyzed, and the position of each gene was visualized. Among them, the amplification frequency of CNVs in COL1A1, COL1A2, F5, SERPINE1, and SPARC was the highest. In contrast, the CNV deletion frequency in DGKI and F2R was significantly higher than that in the other PFRGs (Figures 3C,D). Next, we performed Lasso regression analysis on the seven selected genes to select the best OS with a non-zero coefficient (Figure 3E). A 10-fold cross-validation was carried out (Figure 3F). According to the minimum standard, we finally selected five PFRGs (DGKI, F2R, F5, SERPINE1, and SPARC) as genes with independent prognostic significance for PFRGPS system construction. Construction method of PFRGPS: score = 0.034 × expression quantity of DGKI + 0.014 × expression quantity of F2R + 0.106 × expression quantity of F5 + 0.1623 × expression quantity of SERPINE1 + 0.064 × expression quantity of SPARC. Considering median PFRGPS of the TCGA cohort as a critical value, PFRGPS was divided into two subgroups: a high-PFRGPS subgroup (n = 175) and a low-PFRGPS subgroup (n = 175; Figure 3G). In TCGA cohort, patient survival began to decline as the PFRGPS increased (Figure 3H). Kaplan-Meier analysis showed that there was a significant difference in survival between the two subgroups (p < 0.001), and the OS of patients with GC in the high-PFRGPS subgroup was significantly lower than that in the low-PFRGPS subgroup (Figure 3I). To further explore the effectiveness of PFRGPS in predicting GC survival, we plotted time-dependent ROC curves for patients with GC with survival periods of 3 and 5 years with AUCs of 0.665 and 0.750, respectively (Figure 3J). In addition, we stratified the patients according to clinicopathological features and found that the PFRGPS was applicable to patients of different ages, genders, and stages (Supplementary Figure S3). These results show that the prediction by PFRGPS is highly specific and sensitive.
Three Independent GEO Datasets Validate Platelet-Function-Related Genes Prognostic Score
In order to validate the accuracy of PFRGPS in predicting GC, we used the GSE26901 (n = 109), GSE15459 (n = 191), and GSE84437 (n = 431) datasets as external validation cohorts (excluding patients with 0 days follow-up). In these three validation cohorts, patients with GC were divided into high-PFRGPS and low-PFRGPS subgroups according to the median PFRGPS generated in TCGA training cohort (Figures 4A–I). In three validation sets, PFRGPS distribution, survival state, and survival time were consistent with the PFRGPS distribution in TCGA training cohort, suggesting the accuracy of PFRGPS as a prognostic index for GC.
[image: Figure 4]FIGURE 4 | PFRGPS was validated using three independent GEO datasets. In (A–C) GSE26901, (D–F) GAE15459, and (G–I) GSE84437, distribution of PFRGPS and survival status analysis, Kaplan-Meier survival analysis, ROC curve analysis were performed in the high- and low-PFRGPS subgroups. PFRGPS, platelet function-related genes prognostic score; ROC, receiver operating characteristic.
Independent Prognostic Analysis
We performed univariable and multivariable Cox regression analysis to evaluate whether PFRGPS is an independent prognostic factor. In TCGA cohort, univariable and multivariable regression analyses of PFRGPS returned hazard ratios (HRs) of 3.203 and 3.266, respectively (p < 0.001) (Figures 5A,B). Three GEO cohorts were used for verification, and consistent results were obtained (since no stage was provided in the clinical information of the GSE84437 cohort, we used the T and N stage in clinical information instead) (Figures 5C–H). These analyses show that PFRGPS has an excellent stability and can be used as an independent prognostic factor for patients with GC.
[image: Figure 5]FIGURE 5 | Independent prognostic analyses of prognostic models were performed. The forestplot of univariable Cox regression analysis of PFRGPS and clinical characteristics in (A) TCGA, (C) GSE62901, (E) GSE15459, (G) GSE84437. The forestplot of multivariable Cox regression analysis of PFRGPS and clinical characteristics in (B) TCGA, (D) GSE62901, (F) GSE15459, (H) GSE84437. PFRGPS, platelet function-related genes prognostic score.
Nomogram Model and GSEA Analysis
In order to further individualize the prognosis of patients with GC, we established a nomogram model using TCGA cohort and predicted the 3- and 5-year OS (Figure 6A). The ROC curves showed an excellent model sensitivity, with AUC of 0.717 and 0.744 for the 3- and 5-year OS, respectively) (Figure 6B). We further studied different characteristics of biological function activation between the high- and low-PFRGPS subgroups using GSEA. We found that the biological processes enriched in the high-PFRGPS subgroup were “cell growth,” “cell substrate adhesion,” and “cell matrix adhesion” (Figure 6C). The biological processes enriched in the low-PFRGPS subgroup were “ncRNA metabolig process,” and “oxidative phosphorylation,” the enriched cellular components were “inner mitochondrial membrane protein complex,” and “mitochondrial protein containing complex,” and the enriched molecular function was “structural constituent of ribosome” (Figure 6D). These results showed that the high-PFRGPS subgroup was enriched in pathways related to tumorigenesis and progression, further suggesting that PFRGPS can accurately identify tumor progression. Poor prognosis of the high-PFRGPS subgroup was extrapolated from mechanism.
[image: Figure 6]FIGURE 6 | Nomograph Model and GSEA Analysis. (A) Nomogram of PFRGPS and clinical factors predicting survival probability of GC patients. (B) The ROC curve verifies the predictive ability of the nomogram. (C) GSEA enrichment analysis in the high-PFRGPS subgroup. (D) GSEA enrichment analysis in the low-PFRGPS subgroup. PFRGPS, platelet function-related genes prognostic score. GSEA, Gene Set Enrichment Analysis; PFRGPS, platelet function-related genes prognostic score; GC, Gastric cancer; ROC, receiver operating characteristic. *p < 0.05, **p < 0.01, ***p < 0.001.
Tumor Microenvironment Analysis
The TME and the degree of infiltration of immune and stromal cells in tumors contribute significantly to prognosis and have been proposed to be valuable for the diagnosis and prognostic evaluation of tumors. ImmuneScore is a standard test used to quantify the density of T cells and cytotoxic T cells in TMEs; it is of great value in evaluating cancer prognosis. We used the data from TCGA cohort and the ESTIMATE method. The ImmuneScore was distributed between −983.38 and 3,143.92, the StromalScore ranged from −1,730.73 to 2,151.35, and the ESTIMATEScore ranged from −2,266.61 to 4,969.30. The high-PFRGPS subgroup showed a relatively high ImmuneScore and StromalScore when compared to low-PFRGPS subgroup (Figures 7A–C). It is suggested that there are significant differences in TME between the high- and low-PFRGPS subgroups, and there is more immune cell infiltration in the high-PFRGPS subgroups. Next, we observed differences in survival among patients with different ImmuneScores, StromalScores, and ESTIMATEScores. OS decreased significantly in the high-StromalScore group and the high-ESTIMATEScore group (Supplementary Figure S4). In addition, we supplemented PFRGPS for joint analysis. We found that patients with low ImmuneScore, StromalScore, or ESTIMATEScore and who were in the low-PFRGPS subgroup had the highest survival rate, while patients with high ImmuneScore, StromalScore, or ESTIMATEScore and who were in the high-PFRGPS subgroup had the lowest survival rate (Supplementary Figure S4). In order to explore the relationship between PFRGPS and TME in the high- and low-PFRGPS subgroups, we further analyzed immune cells and pathways using ssGSEA. We found that DCs, iDCs, macrophages, mast cells, neutrophils, pDCs, T helper cells, and Treg cells were enriched in the high-PFRGPS subgroup (Figure 7D). The high-PFRGPS subgroup was also enriched in APC co inhibition, APC co-stimulation, CCR, parainflammation, type I and II IFN response pathways (Figure 7E). In addition, we also analyzed the relationship between PFRGPS and five PPFGs and immune cells and pathways. The DGKI gene is closely related to mast cells and the type-II interferon response. F2R, SERPINE1, and SPARC are positively related to immune cells and pathways, while F5 is negatively related to most immune cells and pathways. PFRGPS is closely related to immune cells such as macrophages and mast cells (Figure 7F).
[image: Figure 7]FIGURE 7 | Analysis of tumor microenvironment in TCGA cohort. (A) The boxplot of ImmuneScore differences in the low-PFRGPS and high-PFRGPS subgroups. (B) The boxplot of StromalScore differences in the low-PFRGPS and high-PFRGPS subgroups. (C) The boxplot of ESTIMATEScore differences in the low-PFRGPS and high-PFRGPS subgroups. (D) The boxplot of 16 immune cell differences in the low-PFRGPS and high-PFRGPS subgroups. (E) The boxplot of 13 immune signaling pathway differences in the low-PFRGPS and high-PFRGPS subgroups. (F) Correlation analysis of PFRGPS and five PPFGs with immune cells and signaling pathways. (G) The boxplot of 22 immune cell infiltration differences between high- and low-PFRGPS subgroups. PFRGPS, platelet function-related genes prognostic score; PPFGs, prognosis-related platelet.
We thus found that more infiltrated cells in the high-PFRGPS subgroup were related to tumor progression and immune escape. We used the CIBERPORT algorithm to confirm that relatively more M0 macrophages, M2 macrophages, eosinophils, and neutrophils related to immune escape were enriched in the high-PFRGP subgroup (Figure 7G).
Immunotherapy Response Prediction in Multiple Ways
We analyzed differences in somatic mutation distribution between the high- and low-PFRGPS subgroups in TCGA training cohort to explore the relationship between PFRGPS and TMB. We found that TMB was significantly lower in the high-PFRGPS subgroup than in the low-PFRGPS subgroup (Figure 8A). Correlation analysis showed that TMB was negatively correlated with PFRGPS (R = −0.22, p < 0.001) (Figure 8B). When compared to that of the high-TMB group, the OS of the low-TMB group was significantly low (Figure 8C). Therefore, our results show that the PFRGPS is consistent with TMB in evaluating the prognosis of patients with GC, which further demonstrates that PFRGPS has an accurate prediction performance.
[image: Figure 8]FIGURE 8 | Prediction of immunotherapy response in TCGA cohort. (A) The boxplot of TMB differences between low-PFRGPS and high-PFRGPS subgroups. (B) Correlation analysis between TMB and PFRGPS. (C) Difference in survival time between high- and low-TMB groups. (D) The boxplots of differences between TIDE, MSI, Immune Dysfunction, Immune Exclusion, and CAF scores in low- and high-PFRGPS subgroups. (E) Correlation analysis of TIDE, MSI, Immune Dysfunction, Immune Exclusion, and CAF scores with PFRGPS. (F) Distribution of patients with different MSI statuses in high- and low-PFRGPS subgroups. (G) The boxplot of PFRGPS differences between groups with different MSI. (H) The violin plots of IPS differences between low-PFRGPS and high-PFRGPS subgroups. TMB, Tumor mutation burden; PFRGPS, platelet function-related genes prognostic score; TIDE, Tumor Immune Dysfunction, and Exclusion; MSI, Microsatellite Instability; CAF, cancer-associated fibroblasts; IPS, immunophenoscore function-related genes. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant.
We used the TIDE score to evaluate the efficacy of immunotherapy. We found that the high-PFRGPS subgroup had relatively high TIDE, immune dysfunction, immune exclusion, and CAF scores and relatively a low MSI score, which suggested the presence of a rich immune escape microenvironment in the high-PFRGPS subgroup (Figure 8D). Next, we found that the TIDE, immune dysfunction, immune exclusion, and CAF scores were positively correlated with PFRGPS, while the MSI score was negatively correlated with NRGPS (Figure 8E). We also found that the high-PFRGPS subgroup had more patients with microsatellite stable (MSS) status, and the high-MSI (MSI-H) group had a lower PFRGPS than the MSS group and low-MSI (MSI-L) group (Figures 8F,G). Therefore, patients with GC in the high-PFRGPS subgroup benefitted less from immunotherapy than patients in the low-PFRGPS subgroup. Next, we used the IPS data obtained from TCIA to predict most commonly used anti-PD-1 and anti-CTLA-4 in ICI therapy. Furthermore, we analyzed potential ICI treatment responses of patients with GC in the high- and low-PFRGPS subgroups. Results showed that the therapeutic effect of anti-PD-1 or anti-CTLA-4 in the low-PFRGPS subgroup was better than that in the high-PFRGPS subgroup (Figure 8H). From these results, it appears that patients with GC in the low-PFRGPS subgroup may respond better to immunotherapy. Patients in the high-PFRGPS subgroup may have fewer exposed immunosuppressant binding sites, potentially leading to a poor prognosis. In the low-PFRGPS subgroup, anti-PD-1 or anti-CTLA-4 alone may yield better efficacy, which also shows that PFRGPS can reliably predict the effectiveness of ICI treatment.
DISCUSSION
GC is one of most common malignancies of the digestive system. There is increasing evidence that platelets can regulate the TME and promote immune escape and, thus, play an important role in tumor progression and metastasis (Obermann et al., 2021). At present, mechanisms related to PFRG regulation of the immune microenvironment are unclear. Immunotherapy is now widely accepted as a treatment for many types of cancer, including GC (Miliotis and Slack, 2021). However, not all patients can benefit from it. Therefore, there is a need to characterize PFRGs to predict the survival of patients with GC and effective populations for cancer immunotherapy.
We developed a new GC prognostic model, called PFRGPS, using TCGA dataset, and it was independently and externally validated using three GEO datasets. Our results showed that PFRGPS could effectively evaluate the prognosis and clinical status of patients with GC. Our model has higher accuracy than the previous prognostic models that have used PFRGs in tumor lung and breast cancers (Zhou et al., 2021; Xie et al., 2022). Nomograms are widely used for cancer prognosis (Balachandran et al., 2015). Therefore, to further improve the accuracy of prediction, we integrated the PFRGPS, age, gender, tumor grade, and pathological stage to construct and validate our nomogram. Visualization of PFRGPS can help to predict specific survival risk of individual patients, which is of great importance in clinical practice (Zhang et al., 2018).
The GSEA results showed that some classical tumor-associated pathways were significantly enriched in the high-PFRGPS subgroup, indicating that high-PFRGPS is closely related to tumorigenesis and progression. Subsequently, we found that the high-PFRGPS subgroup was enriched with a large number of immunosuppression-related immune cells, revealing a close association with tumor immune escape. We further confirmed the predictive ability of PFRGPS in immunotherapy efficacy by analyzing the TMB, TIDE, microsatellite instability, IPS, PD-1, and CTLA4 models. Our results demonstrate that PFRGPS has satisfactory accuracy, sensitivity, and authenticity.
PFRGPS includes five mRNAs related to platelet function, namely DGKI, F2R, F5, SERPINE1, and SPARC, all of which are expressed more in GC tissues than in paracancerous ones, and their expression levels are positively correlated with poor prognosis in patients with GC. DGKI can expressed in the cytoplasmic matrix of human platelets (Yada et al., 1990); additionally, DGKI was recently found to be overexpressed in a variety of cancers, including GC (Huang et al., 2020). Results of basic experimental studies suggest that MAPK signaling may be a key pathway associated with DGKI regulation in GC (Rigg et al., 2019). Coagulation F2R, also known as protease-activated receptor (PAR)-1, is a member of the PAR family, and F2R activation through activation of G proteins can lead to platelet activation, adhesion, and aggregation (Rigg et al., 2019). F2R activation may facilitate platelet activation, tumor cell proliferation, apoptosis, and angiogenesis (Ray and Pal, 2016; Wojtukiewicz et al., 2019; Chang et al., 2020). F2R was found to enhance GC cell invasion, proliferation, and angiogenesis via the nuclear factor kappa B and ERK1/2 signaling pathways in a study of GC (Fujimoto et al., 2010). Coagulation factor V (F5) is a circulating high-molecular-weight (330 kDa) pro-coagulation factor (Cramer and Gale, 2012). F5 was recently found to be capable of being expressed in extravascular tissues, including breast cancer cells and tumor-permeable immune cells (Tinholt et al., 2020). Many studies have reported the association of F5 polymorphisms with the risk of developing various cancers, including colon and gastric cancers (Tinholt et al., 2016). Serine protease inhibitor family E member 1 (SERPINE1) is a major inhibitor of tissue fibrinogen activator and urokinase (Huang et al., 2012) and is associated with the development and progression of a variety of tumors (Saidak et al., 2021). SERPINE1 may regulate VEGF and IL-6 expression through the VEGF signaling pathway and the JAK-STAT3 inflammatory signaling pathway, ultimately affecting GC cell invasion and migration (Chen et al., 2022). As an oncogene, it may promote the proliferation, migration, and invasion of GC tumor cells by mediating the epithelial-mesenchymal transition (Yang et al., 2019). Secreted protein acidic and rich in cysteine (SPARC) is a protein encoded by a single gene in human chromosome 5q31.1 (Termine et al., 1981). SPARC is a matricellular protein that regulates cell adhesion, extracellular matrix production, growth factor activity, and the cell cycle (Sage, 2003). SPARC is a major contributor to tumor progression, drug resistance, and metastasis (Nagaraju et al., 2014). SPARC is markedly upregulated in gastric tissue (Liao et al., 2018). In summary, the use of PFRGPS as a prognostic predictor for patients with GC has a broad research base.
TMEs have been shown to be important in anti-tumor immunity (Murciano-Goroff et al., 2020). The platelets in TMEs have the ability to regulate tumor immune escape (Rachidi et al., 2017). We used three different algorithms in this study to show that the high-PFRGPS subgroup had relatively high ImmuneScores and StromalScores. While the high-ESTIMATEScore PFRGP patients had high ImmuneScore and StromalScore, they had the lowest survival rates. In addition, there was a significant difference in the abundance of immune cell infiltration between the high-PFRGPS and low-PFRGPS subgroups.
Patients in the high-NRGPS subgroup showed a relatively high infiltration of immune cells, among which Treg, M2, and neutrophils are well known immunosuppressive cells, while the role of Tfh in TME is not yet clear. Some studies have found that a high expression of Tfh is positively correlated with the survival of patients with breast, lung, and colorectal cancers (Bindea et al., 2013; Gu-Trantien et al., 2013; Germain et al., 2014). However, in another study based on a mouse model of hepatocellular carcinoma, Tfh cells were found to be negatively associated with survival (Shalapour et al., 2017). We found that Tfh was more infiltrated in the high-PFRGPS subgroup; hence, it is clear that there are interesting complexities associated with Tfh in the context of cancer.
Thus, based on differences in the immune microenvironment between the high- and low-PFRGPS subgroups, it is reasonable to speculate that there may be differences in the effects of immunotherapy between these two subgroups. Both basic research and clinical practice have recently shown that cancer patients who respond to immunotherapy have durable efficacy and longer OS than those who do not respond (Gettinger et al., 2018). Therefore, identifying which patients could benefit from immunotherapy is an important issue.
TMB is the number of genetic mutations within a tumor. TMB is a stable predictor of immunotherapy success, and thus expression of predictive marker is consistent with TMB alterations in order to have high reliability (Chan et al., 2019). Increased TMB is found in a majority of cancer patients who benefit from immunotherapy (Zhao et al., 2019). Consistent with this, we found that the low-PFRGPS subgroup had a higher TMB. The TIDE has a higher accuracy than PD-1 expression levels and TMB in predicting immunotherapy outcomes in cancer patients. A lower TIDE score suggests that a patient may derive greater benefits from immunotherapy; our results are in agreement with this, since we found that the high-PFRGPS group did not benefit much from immunotherapy (Jiang et al., 2018). MSI is a molecular signature of cancer that usually occurs when DNA mismatch repair (dMMR) is disrupted (Boland and Goel, 2010). Evidence is mounting that MSI status affects the survival and treatment of patients with several cancers, including GC (Polom et al., 2018). It is reported that the majority of tumors in Chinese patients with GC (about 95%) are characterized by high MSS (Li et al., 2021). Patients with GC in the MSI-H group had higher survival rates than patients in the MSS or low-MSI groups (Zhang et al., 2022). In patients with colon cancer, it was found that patients in the MSI-H group benefited significantly more from immunotherapy than patients in the MSS or MSI-L groups (Cao et al., 2022). Our study found that patients with GC in the high-PRFGPS subgroup had a higher proportion of MSS and a lower proportion of MSI-H. This may suggest that the high-PRFGPS subgroup had a relatively poor prognosis and poorer immunotherapeutic outcomes. ICI has emerged as a potentially effective cancer treatment (Llovet et al., 2018). Targeting immune checkpoint molecules such as PD-1 and CTLA-4 can reinvigorate anti-tumor immunity (Choi et al., 2019). In order to predict the effect of ICI treatment in patients with GC, we analyzed the relationship between PFRGPS and both PD-1 and CTLA4 using IPS in patients with GC. We found that the IPS scores of anti-CTLA4 or anti-PD-1 were higher in the low-PFRGPS subgroup than in the high-PFRGPS subgroup, which means that immunotherapy may be more effective in the low-PFRGPS subgroup. There was no difference in IPS between the high- and low-PFRGPS subgroups during combined treatment.
Our study has some limitations. Firstly, we only used data from databases and did not perform relevant experimental validation. Secondly, the mechanism of platelet action in the TME of patients with GC is still unclear, with a view to future experimental studies.
Our results showed that, relative to the low-PFRGPS subgroup, the high-PFRGPS subgroup had a pro-cancer immune microenvironment, low TMB, high TIDE, high MSS, low MSI-H characteristics, and relatively poor anti-PD-1 and anti-CTLA-1 therapeutic effects, suggesting that the high-PFRGPS subgroup was associated with immune escape in GC. Therefore, PFRGPS could be used as a new tool to effectively evaluate the prognosis of and immunotherapeutic efficacy in patients with GC.
CONCLUSION
Our study defined a novel prognostic signal consisting of five platelet activation, signaling and aggregation-related platelet function-related genes, which was independently and externally validated using three GEO datasets GSE26901, GSE15459, and GSE84437. The signal was independently associated with OS in both the TCGA cohort and the GEO validation cohort, and further demonstrated GC prognosis and immunotherapy efficacy. It can be used as a predictive tool for the selection and outcome of clinical therapies for GC patients.
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Background: Lung adenocarcinoma (LUAD) has a significant tendency to metastasize to the bone, with severe comorbidities. Recent studies have reported that circular RNAs (circRNAs) are involved in various cancer metastasis-related physiological cellular processes. However, their role in LUAD with bone metastasis (LUAD-BM) remains unknown.
Methods: Bone metastasis (BM) circRNAs were identified using high-throughput sequencing and validated by quantitative reverse transcription-PCR (qRT-PCR). Bioinformatic analyses were used to predict the potential functions of the differentially expressed circRNAs. The effects of circ_0096442 on the growth and metastasis of A549 cells were detected in a co-culture system of A549 and bone marrow-derived cells.
Results: There were 598 (238 upregulated and 360 downregulated) 390 (187 upregulated and 203 downregulated) and 644 (336 upregulated and 308 downregulated) differentially expressed circRNAs between LUAD-BM and LUAD, LUAD-BM and healthy individuals, and LUAD and healthy individuals, respectively. These differentially expressed circRNAs play important roles in cellular components, biological processes, and molecular functions. Moreover, they map several pathways related to BM, including DNA repair, DNA damage, and osteoclast differentiation. The results validated by qRT-PCR for the five most dysregulated circRNAs are consistent with the sequencing data. Additionally, circ_0096442 was found to promote the growth and metastasis of LUAD in a bone microenvironment.
Conclusion: Our findings provide a novel and important circRNA expression profile of LUAD-BM and suggest that circ_0096442 may be a biomarker for LUAD-BM.
Keywords: lung adenocarcinoma, bone metastasis, circular RNA, biomarker, high-throughput sequencing
INTRODUCTION
Bone is the third most common target organ for advanced cancer metastasis (Coleman, 2006). In advanced lung cancer, 30%–40% of patients develop bone metastasis (BM) with severe comorbidities (Cho et al., 2019; Segaliny et al., 2019). The presence of BM has serious consequences on the quality of life of patients, and dramatically reduces the overall survival rate of affected individuals (Borghaei et al., 2015). Despite the advancements in diagnostic and therapeutic strategies, BM detection at an early stage and its poor prognosis for lung cancer remain challenging. Thus, there is an urgent need to better understand BM pathogenesis to identify specific biomarkers and develop new treatment strategies for preventing and treating BM.
Genomic studies have indicated that each step of BM is related to a series of molecular events (Liu et al., 2014). It is currently accepted that microRNAs (miRNAs) play important roles in regulating BM physiological processes and serve as potential biomarkers (Hesse and Taipaleenmaki, 2019). With the advancement of high-throughput sequencing technology, circular RNAs (circRNAs) have been discovered to be pervasively expressed in human genes (Li and Han, 2019). Compared to miRNAs, circRNAs are more stable and not easily degraded by exonucleases. CircRNAs are involved in various cancer-related physiological cellular processes and are recognized as potential biomarkers in cancer metastasis (Li and Yang, 2021; Wei et al., 2021; Yarmishyn et al., 2022).
As the leading cause of cancer morbidity and mortality, lung cancer is usually diagnosed after developing locally or systematically (Bray et al., 2018; da Silva et al., 2019), with lung adenocarcinoma (LUAD) as the most common subtype (Torre et al., 2015; Yang et al., 2018). Among BM patients, cases without a history of cancer account for 25%–30%, and the diagnostic assessment may be delayed due to difficulties in differentiating BM from orthopedic degenerative diseases (Kitagawa et al., 2019). Therefore, this study simultaneously presents high-throughput sequencing analyses showing differential circRNA expression profiles and their regulatory interaction networks from three pairs of groups, which are LUAD with bone metastasis (LUAD-BM) vs. LUAD, LUAD-BM vs. healthy individuals, and LUAD vs. healthy individuals. Moreover, the effects of circ_0096442 (a potential identified biomarker) on the growth and metastasis of A549 cells were detected in a co-culture system of A549 and bone marrow-derived cells.
MATERIALS AND METHODS
Clinical samples
The study was approved by the ethics committee of our hospital, and all participants provided consent for blood donation. All LUAD patients were diagnosed based on histopathologic tests and had no history of other tumors. The emission-computed tomography of bone scintigraphy showed multiple lesions in patients with BM. Control patients were matched in age, sex, body mass index, and region (characteristics of the patients are shown in Supplementary Table S1).
RNA extraction and high-throughput sequencing
Blood samples were collected into anticoagulant tubes, mixed with exactly three volumes of RNASafer Reagent (Magen) and stored under strict standard operating procedure conditions temporarily at −80°C before batch analysis. Hipure PX Blood RNA Kits (Magen) were used to extract total RNA. Concentrations of isolated RNA were detected using a Qubit 3.0 fluorometer (Invitrogen, Carlsbad, California). Isolated RNA integrity was detected with an Agilent 2100 bioanalyzer (Applied Biosystems, Carlsbad, CA). KAPA RNA HyperPrep Kits with RiboErase for Illumina (Kapa Biosystems, Woburn, MA) were used to prepare a high-throughput sequencing library with 2 μg of total RNA. Illumina Hiseq X ten was used to perform paired-end (PE150) sequencing.
Quantitative reverse transcription-PCR validation
Twenty-five pairs of clinical samples from patients with LUAD-BM or LUAD were used to validate five candidate circRNAs by quantitative reverse transcription-PCR (qRT-PCR). Primer sequences and back-splicing sites of the candidate circRNAs are shown in Supplementary Table S2 and Supplementary Figure S1, respectively.
Cell culture and co-culture system
The human lung adenocarcinoma (HLA) A549 and bone marrow stromal HS-5 cells were purchased from the American Type Culture Collection (ATCC; Manassas, VA, United States) and cultured in Dulbecco’s Modified Eagle’s medium (DMEM; Hyclone, United States) containing 10% fetal bovine serum (FBS; Gibco, United States) and 1% penicillin/streptomycin at 37°C in a 5% CO2 incubator under humidified conditions. The co-culture system was set up using 6-well Transwell inserts (Corning, United States) with a 0.4-µm pore size.
Dual-luciferase reporter assay
Circ96442-wt and circ96442-mut were inserted into the psiCHECK2 dual-luciferase vector (Promega, Madison, WI, United States). Hsa-miR-326 mimic and negative control miRNA (miR-NC) were synthesized by GenePharma (GenePharma, Shanghai, China). After co-transfection of the reporter vector and miR-326 mimic or negative control in A549 cells for 48 h, Renilla luciferase activity was measured using a dual-luciferase assay kit (Promega, Madison, United States) against that of Firefly luciferase.
Fluorescence in situ hybridization
A549 cells were seeded on cell slides at the bottom of a 24-well plate and fixed with 4% paraformaldehyde. The CY3-labeled probe targeted the hsa_circ_0096442 junction site, and the FITC-labeled hsa-miR-326 probes were designed and synthesized by Geneseed (Guangzhou, China). Nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI). The signals of the probes were detected using a fluorescence in situ hybridization (FISH) kit (GenePharma, Shanghai, China) according to the manufacturer’s instructions.
Statistical analysis
All values are expressed as the mean ± standard error of the mean (SEM). Statistical significance was determined using the Student’s t-test. Statistical analyses were performed using GraphPad Prism 8 (GraphPad Software, Inc., San Diego, CA, United States) and SPSS v.20.0 (SPSS Inc., Chicago, IL, United States). Differences with p < 0.05 were considered as statistically significant and were noted by asterisks (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001).
More method details (have been provided in Additional file 1).
RESULTS
Differentially expressed circular RNAs among the different groups
There were 598 (238 upregulated and 360 downregulated) 390 (187 upregulated and 203 downregulated) and 644 (336 upregulated and 308 downregulated) differentially expressed circRNAs between LUAD-BM and LUAD, LUAD-BM and healthy individuals, LUAD and healthy individuals, respectively. Notably, 54 consistently dysregulated circRNAs were identified in the LUAD-BM group than in both control groups, including 19 previously unknown circRNAs (Supplementary Table S3). Differentially expressed circRNAs among the different groups were illustrated by hierarchical clustering analyses (Figure 1) and volcano plots (Figure 2).
[image: Figure 1]FIGURE 1 | Hierarchical clustering analysis of differentially expressed circRNAs among different groups. (A) The differentially expressed circRNAs of LUAD-BM, LUAD, and control. (B) The differentially expressed circRNAs between LUAD-BM and LUAD. (C) The differentially expressed circRNAs between LUAD-BM and healthy individuals. (D) The differentially expressed circRNAs between LUAD and healthy individuals. LUAD-BM: 201, 202, 203; LUAD: 101, 102, 103; Control: 001, 002, 003. LUAD-BM, lung adenocarcinoma with bone metastasis; LUAD, lung adenocarcinoma; circRNAs, circular RNA.
[image: Figure 2]FIGURE 2 | Volcano plots of differentially expressed circRNAs in peripheral blood among different groups. (A) The differentially expressed circRNAs between LUAD-BM and LUAD. (B) The differentially expressed circRNAs between LUAD-BM and healthy individuals. (C) The differentially expressed circRNAs between LUAD and healthy individuals. Red and green dots indicate upregulated and downregulated circRNAs, respectively. LUAD-BM, lung adenocarcinoma with bone metastasis; LUAD, lung adenocarcinoma; circRNAs, circular RNA.
Functional prediction of differentially expressed circular RNAs
The most significant enrichment pathways of Gene Ontology (GO) Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome analyses of differentially expressed circRNAs between LUAD-BM and LUAD, LUAD-BM and healthy individuals, and LUAD and healthy individuals are shown in Figures 3–5, respectively. Several pathways, such as DNA repair, DNA damage, and osteoclast differentiation, were related to BM and may be significantly dysregulated in LUAD-BM. In addition, a regulatory network of circRNA-miRNA-mRNA was constructed based on 35 consistently dysregulated circRNAs (excluding 19 previously unknown circRNAs) in the LUAD-BM group compared with both control groups (Supplementary Figure S2).
[image: Figure 3]FIGURE 3 | Functional predictions of differentially expressed circRNAs between LUAD-BM and LUAD. (A) Top 10 GO analysis to demonstrate the molecular functions of dysregulated circRNAs. (B) Top 15 significant enrichment KEGG pathways of dysregulated circRNAs. (C) Top 15 significant enrichment Reactome pathways of dysregulated circRNAs. LUAD-BM, lung adenocarcinoma with bone metastasis; LUAD, lung adenocarcinoma; circRNAs, circular RNA.
[image: Figure 4]FIGURE 4 | Functional predictions of differentially expressed circRNAs between LUAD-BM and healthy individuals. (A) Top 10 GO analysis to demonstrate the molecular functions of dysregulated circRNAs. (B) Top 15 significant enrichment KEGG pathways of dysregulated circRNAs. (C) Top 15 significant enrichment Reactome pathways of dysregulated circRNAs. LUAD-BM, lung adenocarcinoma with bone metastasis.
[image: Figure 5]FIGURE 5 | Functional predictions of differentially expressed circRNAs between LUAD and healthy individuals. (A) Top 10 GO analysis to demonstrate the molecular functions of dysregulated circRNAs. (B) Top 15 significant enrichment KEGG pathways of dysregulated circRNAs. (C) Top 15 significant enrichment Reactome pathways of dysregulated circRNAs. LUAD, lung adenocarcinoma; circRNAs, circular RNA.
Validation by quantitative reverse transcription-PCR
Five candidate circRNAs were validated by qRT-PCR to verify the RNA-seq data. Expression patterns consistent with the sequencing data were found (Figure 6). Among these five circRNAs, circ_0096442 had the most significant differential expression.
[image: Figure 6]FIGURE 6 | Validation of the five-candidate circular RNAs. The relative levels of the five circRNAs is confirmed by qRT–PCR. LUAD-BM, lung adenocarcinoma with bone metastasis; LUAD, lung adenocarcinoma; circRNAs, circular RNA.
Circ_0096442 promotes proliferation and migration/invasion of A549 cells in the bone microenvironment
To further confirm the function of circ_0096442 in lung cancer, we constructed stable A549 cells overexpressing circ_0096442 and A549 cells expressing short hairpin RNA (shRNA); the efficiency of circ_0096442 overexpression and knockdown was verified by qPCR (Figure 7A). A549 cells were co-cultured with HS-5 cells, and the proliferation, migration/invasion, and apoptosis of A549 cells in the co-culture system were examined. Cell Counting Kit-8 (CCK8) and colony formation assays showed that circ_0096442 overexpression promoted cell proliferation, whereas its knockdown significantly reduced the proliferative capabilities of A549 cells (Figures 7B,C). We evaluated the migration and invasion using a Transwell assay and found that circ_0096442 overexpression promoted migration and invasion of A549 cells, whereas its knockdown inhibited this (Figure 7D). In addition, compared to the control groups, circ_0096442 overexpression suppressed the apoptosis of A549 cells, whereas its knockdown promoted it. (Figure 7E). Circ_0096442 overexpression significantly inhibited the protein expression levels of pro-apoptosis-related proteins [Caspase3 and BCL2-associated X protein (BAX)] and significantly promoted the protein expression levels of anti-apoptosis-related gene BCL2. Contrasting results were obtained from studies on circ_0096442 knockdown cells (Figure 7F). Furthermore, wound healing assays found that circ_0096442 overexpression significantly promoted the wound healing ability, whereas its knockdown significantly decreased this healingability (Figure 7G). In summary, circ_0096442 overexpression promotes the proliferation, invasion, and migration of A549 cells in the bone microenvironment.
[image: Figure 7]FIGURE 7 | Circ_0096442 promotes proliferation and migration/invasion of A549 cells in bone microenvironment. (A) RT-qPCR detection showing the expression of circ_0096442 in overexpression and knockdown stable A549 cells. (B) Cell proliferation was detected by CCK8 assays. (C) Cell proliferation was detected by colony formation assays. (D) Transwell assays were applied to discover the migration/invasion ability of A549 cells in bone microenvironment. (E) Apoptosis assay by flow cytometric analysis. (F) Western blot analysis for the detection of pro-apoptotic and anti-apoptotic proteins. (G) Impact of circ_0096442 on A549 cellular migration assessed through wound healing assays.
circ_0096442 can bind to hsa-miR-326 and act as its sponge
The binding sites between circ_0096442 and hsa-miR-326 were predicted by the miRanda algorithm. Next, we designed and generated psiCHECK2 vectors carrying wild-type and mutant miRNA-target sites in the circ_0096442 sequence, enabling validation of the direct binding of miR-326 and circ_0096442 (Figure 8A). The dual-luciferase assay demonstrated that miR-326 inhibited luciferase activity with wt-circ_0096442 co-transfection compared to mimic NC control but did not influence luciferase activity with mut-circ-0096442 (Figure 8B). Additionally, FISH results showed that circ_0096442 was co-localized with miR-326 in the cytoplasm of A549 cell lines (Figure 8C). These results revealed that circ_0096442, through its expected binding site, functions as a miR-326 sponge.
[image: Figure 8]FIGURE 8 | Circ_0096442 acted as a sponge of miR-326 in A549 cells. (A) Schematic representation of potential binding sites between circ_0096442 and miR-326. (B) The luciferase activity of the WT psicheck2-circ_0096442 or Mut psicheck2-circ_0096442 after transfection with miR-326 mimics in A549 cells. (C) FISH showed the subcellular co-localization between circ_0096442 (red) and miR-326 (green). DAPI (blue) was used to stain the nuclear.
DISCUSSION
As microarray analyses can only identify hundreds of circRNAs, this study adopted high-throughput sequencing to analyze all circRNAs attained from blood samples of patients with LUAD-BM, LUAD alone, or healthy individuals. After strict filtering of approximately 270 million reads, 40,207 circRNAs were detected, including 598 differentially expressed circRNAs between LUAD-BM and LUAD, 390 differentially expressed circRNAs between LUAD-BM and healthy individuals, and 644 differentially expressed circRNAs between LUAD and healthy individuals. These circRNAs may play important roles in regulating the pathological processes of BM.
Recently, miRNAs have become a subject of interest in lung cancer with BM, mainly presenting as osteolytic bone destruction due to enhanced osteoclast activity. For example, Valencia et al.. (2013) found serum levels of miR-326 strongly linked to bone turnover markers in lung cancer with BM. Moreover, another study found that exosome-bound miR-192 significantly aggravated BM in immunocompromised mice, suggesting that secreted factors derived from miR-192 overexpressed lung cancer cells promote osteolytic lesions and bone colonization (Valencia et al., 2014). Using human lung cancer cell lines in vivo and in vitro, Gong et al. (2014) showed that miR-355 overexpression significantly slows down osteoclast induction and tumor cell invasion. Further, Xu et al. (2018) found that miR-139-5p expression in serum from patients with LUAD-BM was significantly lower than that of patients with metastases at other sites. In a study conducted by Thomas et al. (2012), miR-33a downregulation in A549 lung cancer cells reduced osteolytic BM. Increasing evidence has demonstrated that circRNAs absorb miRNAs as competing endogenous RNAs to inhibit their function, thus indirectly promoting the downstream function of the target gene (Zheng et al., 2016; Cheng et al., 2018). Moreover, circRNA expression changes can directly influence the expression of their source gene (Memczak et al., 2013).
The molecular mechanisms underlying the interactions between circRNAs, miRNAs and mRNAs in BM are still unclear. Therefore, a circRNA-miRNA-mRNA network of BM was constructed based on 35 consistently dysregulated circRNAs in patients with LUAD-BM compared with both control groups. The results indicate that the identified circRNAs could potentially interact with the miRNAs in the aforementioned studies. For example, according to our coexpression analysis, miR-326 can potentially bind to hsa_circ_0111889,hsa_circ_0096438,hsa_circ_0000657 and hsa_circ_0058988.
Although differentially expressed circRNAs in patients with BM were identified, the underlying mechanisms remain poorly understood. Each molecular pathway contributing to BM is regulated by various factors, through closely-controlled genes expressed by cancer cells and interactions between cells within the bone microenvironment (Ell and Kang, 2012). Functional annotations of target genes can predict the biological functions of the differentially expressed circRNAs. This study found that several pathways related to BM, such as DNA repair, DNA damage, and osteoclast differentiation, may be significantly dysregulated during LUAD-BM. Recent studies have demonstrated that DNA damage and repair are closely related to BM (Iglesias-Gato et al., 2018; Isaacsson Velho et al., 2019). Moreover, tumor cells colonizing the bone can promote osteoclast differentiation and osteoclastic bone resorption (Nakai et al., 2019). These findings are in accordance with our enrichment analyses, suggesting that these circRNAs might be involved in BM development and progression.
Bone is the most common metastatic site for primary breast and lung tumors (Suva et al., 2011). However, information about circRNAs during BM is highly limited to date. In a recent study, Xu et al. (2021) screened breast cancer bone-metastatic circRNAs using deep sequencing, validated the results using in situ hybridization, and demonstrated that the circular inhibitor of nuclear factor-kappa B kinase subunit beta (circIKBKB) was upregulated significantly. They further revealed a plausible mechanism for circIKBKB-mediated nuclear factor-kappa B (NF-κB) hyperactivation in bone-metastatic breast cancer. In a transcriptome sequencing study, Han et al. (2021) explored expression profiles of the non-coding RNAs in primary LUAD and LUAD-BM and identified 706 differentially expressed circRNAs. In non-small-cell lung cancer (NSCLC) bone metastasis cell line, circ_0060937 knockdown inhibited cell proliferation and invasion (Zhang et al., 2020). To the best of our knowledge, this is the first study to investigate the circRNA expression profile of LUAD-BM using circRNA sequencing, and above results have displayed that circ_0096442 was identified as the most significant biomarker in LUAD-BM. Basing on the literature review, we found that circ_0096442 was a novel biomolecular in LUAD-BM, and the molecular mechanisms of it in regulating tumor metastasis and growth were also not reported ever before. In other words, miR-326 was firstly reported was the down-stream target of circ_0096442 in regulating tumor metastasis and growth. In fact, previous studies have reported that miR-326 was a tumor inhibitor in lung cancer, which inhibited lung cancer metastasis, growth and chemotherapy resistance by HOTAIR/miR-326/phoox2a pathway, miR-326/ZEB1 pathway and RHOT1/miR-326/FOXM1 pathway (Wang et al., 2016; Liu et al., 2021; Zhang et al., 2021).
BM is a complex, multistep process requiring tumor cells to detach from their original sites, intravasate into blood vessels, and subsequently survive and proliferate in the bone (Cheung and Ewald, 2016). Therefore, peripheral blood samples, which may better reflect the BM processes, were selected for investigation. Furthermore, for biomarker discovery, this procedure is more easily accepted by patients as it is relatively economical and minimally invasive. Circulating non-coding RNAs in the peripheral blood system were reported to be useful biomarkers for the detection of diseases (Zhang et al., 2022a; Zhang et al., 2022b; Liu et al., 2022). However, it is possible that the changes in the expression profile of the disease reflect shifts in cell populations (Keller et al., 2011). Although patients in this study were matched for age, sex, body mass index, and region, it should be considered as a potential confounding factor that peripheral blood can be affected by various factors. Moreover, this study has a limited sample size; thus, a larger clinical sample size is needed to confirm our results in future studies. Furthermore, the mechanisms and functions of the circRNAs predicted by bioinformatic analyses should be further elucidated by more rigorous molecular biology experiments.
CONCLUSION
This study is the first to systematically characterize and annotate circRNA expression in patients with LUAD-BM. Our findings provide a novel and important circRNA expression profile of LUAD-BM and suggest circ_0096442 as a possible biomarker for LUAD-BM.
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Costimulatory molecules have been found to play significant roles in anti-tumor immune responses, and are deemed to serve as promising targets for adjunctive cancer immunotherapies. However, the roles of costimulatory molecule-related genes (CMRGs) in the tumor microenvironment (TME) of acute myeloid leukemia (AML) remain unclear. In this study, we described the CMRG alterations in the genetic and transcriptional fields in AML samples chosen from two datasets. We next evaluated their expression and identified two distinct costimulatory molecule subtypes, which showed that the alterations of CMRGs related to clinical features, immune cell infiltration, and prognosis of patients with AML. Then, a costimulatory molecule-based signature for predicting the overall survival of AML patients was constructed, and the predictive capability of the proposed signature was validated in AML patients. Moreover, the constructed costimulatory molecule risk model was significantly associated with chemotherapeutic drug sensitivity of AML patients. In addition, the identified genes in the proposed prognostic signature might play roles in pediatric AML. CMRGs were found to be potentially important in the AML through our comprehensive analysis. These findings may contribute to improving our understanding of CMRGs in patients with AML, as well as provide new opportunities to assess prognosis and develop more effective immunotherapies.
Keywords: costimulatory molecule, tumor microenvironment, acute myeloid leukemia, overall survival, prognosis
1 INTRODUCTION
Acute myeloid leukemia (AML) is one of the most prevalent hematological tumors. It is defined by the increase of undifferentiated myeloid progenitor cells in the hematopoietic system (Short et al., 2018). For decades, chemotherapy with or without transplantation has been the standard treatment for AML patients (Mazzarella et al., 2014; Bose et al., 2017; Jiang et al., 2021a). Despite advances in drug extraction, therapeutic care, and early detection, the overall long-term survival of AML patients remains dismal (Zeidan et al., 2019; Jiang et al., 2021b; Jiang et al., 2021c). Therefore, identifying novel and effective biomarkers, as well as prognostic risk models, become urgent.
The tumor microenvironment (TME) plays a crucial role in AML growth, development, and therapy (Jiang et al., 2022). In TME, T cells often aid in the differentiation of cancerous cells from healthy cells. Before launching the second assault, the naïve T cells must be activated by two signals, a specific antigen that can be recognized by receptors on the T cells and nonspecific costimulatory molecule signals (Bluestone, 1995). By changing the latter, cancer cells could prevent the recognition and escape from the attack (Sanmamed and Chen, 2018). Apart from the checkpoint pathway belonging to the B7-CD28 family (Janakiram et al., 2015; Zhang et al., 2018), costimulatory molecular signals also contain molecules from the tumor necrosis factor (TNF) family (Ward-Kavanagh et al., 2016). These costimulatory molecule-related genes (CMRGs) are possible targets for the creation of new immune therapies, and they may be good supplements to current methods (Croft et al., 2013; Schildberg et al., 2016). However, the majority CMRGs’ expression and their clinical implications in AML remain unknown.
This work systematically assessed the expression patterns of CMRGs and obtained a complete picture of the intra-tumoral immunological landscape via using CIBERSORT and ESTIMATE algorithms. First of all, expression levels of CMRGs were used to divide a total of 242 AML patients into two clustered costimulatory molecule subgroups. AML patients were then classified into CMRG-related gene subtypes according to those chosen differentially expressed genes between two costimulatory molecule subtypes. In addition, we constructed a signature that accurately predicted the clinical outcomes of AML patients and characterized the AML immune landscape. Our work, in a nutshell, systematically describes the landscape of costimulatory molecules and highlights their potential applications clinically, so aiding the creation of a rationale to guide AML patient care and treatment.
2 METHODS AND MATERIALS
2.1 Acquisition of data
Gene expression and relevant clinicopathological information on AML were from databases named The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) and the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). One GEO AML cohort named GSE10358 and the TCGA-AML cohort were obtained for further relative analyses. The fragments per kilobase million (FPKM) values from the TCGA-AML set were converted to transcripts per kilobase million (TPM) and were then assumed to be the same as those from microarrays (Conesa et al., 2016; Zhao et al., 2021). The two chosen AML cohorts were combined. We removed data from individuals for whom we had no information on their overall survival; hence, 242 AML patients were included in our analysis. The clinical factors shared by the two AML groups were gender, age, duration of follow-up, and survival status. To confirm our proposed prognostic risk model, we also gathered expression data of pediatric AML samples from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database (https://ocg.cancer.gov/programs/target) as an external validation cohort. Whole blood cohorts from GTEx downloaded from the UCSC Xena database (https://xenabrowser.net/datapages/) served as control samples for the analyses on the TCGA-AML and TARGET-AML samples.
2.2 Clustering analyses of costimulatory molecule-related genes
A total of 60 CMRGs were retrieved from previous publications (Zhang et al., 2020), as shown in Supplementary Table S1. We used the package named “ConsensusClusterPlus” in R software to perform consensus clustering analysis. The criteria were as follows: Firstly, the cumulative distribution function (CDF) curve should increase gradually and smoothly. Then, the size of all groups was large enough. Finally, the intra-group correlation should increase after clustering, while the inter-group correlation decreased. Also, gene set variation analysis (GSVA) was carried out using the hallmark gene set (c2. cp.kegg.v7.2) to investigate differences in chosen CMRGs in the biological processes.
2.3 Relationship between costimulatory molecule subtypes and clinical features of acute myeloid leukemia patients
We evaluated the relationships between clustered costimulatory molecule subtypes, clinical features, and outcomes. The characteristics mainly included gender and age. In addition, Kaplan-Meier curves, which were created using the “survival” and “survminer” packages, were used to evaluate the differences in overall survival across various costimulatory molecule subtypes.
2.4 Correlations of costimulatory molecule subtypes with tumor microenvironment in patients with acute myeloid leukemia
We assessed the immune, estimate and stromal scores of each AML sample in this study by using the ESTIMATE algorithm. Using the CIBERSORT algorithm, the fractions of 22 immune cell subgroups of each AML sample were estimated (Newman et al., 2015). The immune cell infiltration in the TME of AML was also identified by using an algorithm named single-sample gene set enrichment analysis (ssGSEA) (Rooney et al., 2015).
2.5 Identification of differentially expressed genes and annotation of their functions in detail
Differentially expressed genes between the two different costimulatory molecule subtypes were identified in R software. To explore the probable activities of costimulatory molecule profile-related differentially expressed genes and determine associated functions, we used “clusterprofiler” package to carry out functional enrichment analyses on the chosen gene.
2.6 Construction and validation for the costimulatory molecule risk model
The CMRG-related risk model was generated, and the score was estimated for each AML sample to quantify the costimulatory molecule patterns. Differentially expressed genes were subjected to univariate Cox analysis. Using an unsupervised clustering technique, AML patients were divided into three distinct CMRG-related gene subtypes (gene subtypes A, B, and C) based on the findings of the univariate Cox analysis. The chosen 242 patients with AML were then randomly categorized into two sets at a ratio of 1:1, a training AML set (n = 121) and a testing AML set (n = 121). Based on CMRG-related genes with prognostic value, we carried out the Lasso Cox algorithm to minimize the over-fitting risk in the training AML set. We next analyzed each independent variable’s change and established a risk model by using 10-fold cross-validation. Candidate genes were further analyzed and chosen in the training AML set based on the using multivariate Cox regression results. The costimulatory molecule signature was calculated using the data of each gene’s coefficient and expression. Then, based on the median score of whole samples in the AML training set, samples of two sets were respectively divided into low- or high-risk groups. Survival analysis and the creation of receiver operating characteristic (ROC) curves were performed on AML patients belonging to two risk categories.
2.7 Drug susceptibility analysis
To explore differences in the chemotherapeutic drug curative effect in AML patients between two risk groups from the whole set, we calculated the values of semi-inhibitory concentration (IC50) of drugs using the “pRRophetic” package in R software.
2.8 Statistical analyses
All statistics were analyzed in R software (version 4.1.0). Statistical significance was all set at p < 0.05.
3 RESULTS
3.1 Genetic and transcriptional alterations of costimulatory molecule-related genes in patients with acute myeloid leukemia
This research contained 60 CMRGs in total. We firstly investigated the somatic copy number variations in the 60 CMRGs. Figure 1A showed the locations of the copy number variation (CNV) alterations in the CMRGs on their respective chromosomes. Among all the CMRGs, ICOSLG, TNFRSF14, TNFRSF4, TNFRSF18, TNFRSF8, TNFRSF1B, RELT, TMIGD2, CD70, TNFSF14, and TNFRSF6B had widespread CNV increases, while TNFRSF25, TNFRSF9, TNFRSF11B, VTCN1, TNFRSF10D, TNFRSF13B, CD40, TNFRSF13C, and EDA showed CNV decreases (Figure 1B). A comparison on the mRNA levels of CMRGs between AML and normal samples revealed that the majority of CMRGs were positively linked with CNV alteration. Some CMRGs with CNV gain, including TNFRSF18, TNFRSF1B, RELT, TMIGD2, and CD70, were significantly elevated in samples from the AML cohort. Meanwhile, CMRGs with CNV loss, including TNFRSF25, TNFRSF11B, VTCN1, CD40, and EDA, were expressed at lower levels in patients with AML when compared to normal samples (Figure 1C), suggesting CNV might participate in regulating the CMRGs’ expression. However, several CMRGs with a high frequency of CNV gain or loss did not vary between AML and normal samples. Thus, CNV is not the sole factor involved in CMRGs’ expression regulation. Both the genetic landscape and expression levels of CMRGs were significantly different between AML samples and controls, showing that CMRGs play a latent role in the oncogenesis of AML.
[image: Figure 1]FIGURE 1 | Genetic and transcriptional alterations of CMRGs in AML patients. (A) Locations of CNV alterations in CMRGs on 23 chromosomes. (B) Frequencies of CNV loss and CNV gain among CMRGs. (C) Expression distributions of CMRGs between normal samples from GTEx and AML samples from TCGA database.
3.2 Identification of costimulatory molecule subtypes in acute myeloid leukemia and their tumor microenvironment characteristics
A total of 455 patients from two AML cohorts (TCGA-AML and GSE10358) were integrated into our study at the beginning. Since only 242 AML samples had information on clinical results, we extracted their data of them for further analysis. The univariate Cox regression and Kaplan-Meier analyses revealed that 44 CMRGs were found might be related to the prognosis of AML (Supplementary Figure S1). A costimulatory molecule network illustrated the full picture of CMRG connections, regulator linkages, and their predictive relevance in AML patients (Figure 2A). To further investigate the expression features of CMRGs in AML, we categorized the AML samples based on the expression profiles of 60 CMRGs using a consensus clustering technique. We found that k = 2 seemed to be the ideal choice for classifying the complete cohort into two categories (Figure 2B). Next, the results of PCA analysis revealed the obvious costimulatory molecule differences between the two costimulatory molecule subtypes (Figure 2C). Kaplan-Meier curves then showed that subtype A patients had longer overall survival than subtype B patients (Figure 2D). Furthermore, we made a comparison of the clinical features between the two various subtypes of AML. As demonstrated in Figure 2E, cluster A was more strongly associated with a younger age than cluster B.
[image: Figure 2]FIGURE 2 | Identification of costimulatory molecule subtypes and related biological characteristics. (A) Interactions among 60 CMRGs in patients with AML. (B) Consensus matrix heatmap defining two costimulatory molecule clusters. (C) PCA analysis between the two costimulatory molecule subtypes. (D) Result of the univariate analysis of CMRGs. (E) Differences between the two subtypes in clinical features, as well as the CMRGs’ expression levels.
We found that subtype B was enriched in activated immune pathways, such as cytokine receptor interaction, cell adhesion molecules, graft versus host disease, antigen processing and presentation, B cell receptor signaling pathway, allograft rejection, Toll-like receptor signaling pathway, regulation of actin cytoskeleton, and chemokine signaling pathway (Figure 3A). To investigate the functional role of CMRGs in the TME of AML, we used the CIBERSORT algorithm to analyze the correlations between the costimulatory molecule subtype and the 22 immune cell subsets of each AML sample. As shown in Figure 3B, there had been significant differences in most immune cell infiltration between subtype A and subtype B. The infiltration levels of activated CD8+ T cells, activated B cells, activated CD4+ T cells, natural killer cells, immature B cells, activated dendritic cells, monocytes, macrophages, mast cells, neutrophilia, regulatory T cells, follicular helper T cells, type 1 helper T cells, type 2 helper T cells and type 17 helper T cells were higher in patients in subtype B than in those in subtype A.
[image: Figure 3]FIGURE 3 | Correlations of immune cell infiltration. (A) GSVA analysis between two costimulatory molecule subtypes. (B) The abundance of 22 infiltrating immune cells.
3.3 Gene subtypes derived from differentially expressed genes
The biological role of costimulatory molecule patterns in AML remains unknown. We used the “limma” package in R software to identify costimulatory molecule subtype-related differential expressed genes and then carried out the functional enrichment analysis based on them (Figures 4A,B). KEGG analysis indicated these identified costimulatory molecule subtype-related genes enriched in pathways related to cancers and immunology, suggesting that costimulatory molecules play vital roles in TME regulation (Figure 4A). The GO chord in Figure 4B also showed the GO mainly enriched terms and the significantly involved differential expressed genes. We then carried out the univariate Cox regression analysis on the subtype-related genes to screen out 501 genes that were closely related to overall survival time (Supplementary Table S2). To further explore potential regulation mechanisms, we performed a consensus clustering algorithm, which divided all AML patients into three subtypes named gene subtypes A-C. Kaplan-Meier curve in Figure 4C showed that patients in the subtype C group had the best favorable clinical outcome, whereas patients in subtype B showed the worst overall survival. The costimulatory molecule subtypes showed significant differences in the expression levels of CMRGs, which was consistent with the results of the costimulatory molecule patterns (Figure 4D). Moreover, costimulatory molecule gene subtype B patterns seemed more associated with elder age (Figure 4E).
[image: Figure 4]FIGURE 4 | Identification of gene subtypes. (A) Bubble plot of KEGG enrichment analyses based on differentially expressed genes between two subtypes. (B) Ring plot showing results of GO enrichment. (C) Kaplan-Meier curve analysis for overall survival of the three gene subtypes. (D) Differences in the CMRGs’ expression among the three gene subtypes. (E) Relationships between clinical features of AML patients and gene subtypes.
3.4 Construction and validation of the costimulatory molecule-related gene-based risk model
The CMRG-related prognostic signature was then established. First, we randomly divided the AML patients into two groups, including a training group (n = 121) and a testing group (n = 121) at a ratio of 1:1. Following, LASSO and multivariate Cox analyses for costimulatory molecule subtype-related differentially expressed genes were carried out to identify CMRG-related genes with prognostic value in AML patients. According to the minimum partial probability of deviance (Snyder et al., 2014), hub overall survival-related genes remained after LASSO regression analysis (Figure 5A). We then carried out a multivariate Cox analysis to finally obtain 15 ones (GPR18, LGALS1, AOAH, DNMT3B, CBR1, ANKRD55, SIRPB2, DPY19L2, IL1R2, ST8SIA4, DOC2A, SERPINI2, GZMB, TNNT1, and SORCS2), which included nine high-risk genes and six low-risk genes (Supplementary Table S3). Hence, the CMRG-related risk model was constructed as follows: Risk score = -0.4339 * GPR18 + 0.3393 * LGALS1 - 0.3897 * AOAH + 0.3038 * DNMT3B + 0.2168 * CBR1 + 0.3566 * ANKRD55–0.3112 * SIRPB2 - 0.2369 * DPY19L2 + 0.1176 * IL1R2 -0.3160 * ST8SIA4 -0.2405 * DOC2A + 0.4186 * SERPINI2 + 0.3901 * GZMB + 0.1895 * TNNT1 + 0.3065 * SORCS2. The score of each AML patient was measured according to the signature, the median of which was chosen as the cutoff to divide AML patients into two risk score groups. The distribution of AML patients in the two costimulatory molecule subtypes, three gene subtypes, two risk score groups, and clinical outcomes were shown in Figure 5B. We then analyzed the risk scores and discovered a statistically significant difference among the three CMRG-related gene subtypes. As shown in Figure 5C, risk scores in the gene subtype B group were the highest, while the risk scores in the gene subtype C group were the lowest, which indicated that lower costimulatory molecule score might be related to immune activation. It was noteworthy that gene subtype B had a higher risk score than gene subtype A. Furthermore, Figure 5D showed the distribution of scores in two costimulatory molecule subtypes, where AML patients in the costimulatory molecule subtype B group had significantly higher scores than others in the costimulatory molecule subtype A group.
[image: Figure 5]FIGURE 5 | Construction of CMRG-related signature in the training set. (A) Results of LASSO analysis. (B) Alluvial diagram illustrating the subtype distributions in the training set. (C) Differences in risk model scores among the three gene subtypes. (D) Differences in risk model scores between the two costimulatory molecule subtypes.
To validate the predictive value of the CMRG-related risk model in patients with AML, we separately divided AML patients in each set into two different risk groups according to the cutoff, which was the median value of those in the AML training set. In detail, AML patients whose scores were larger than the chosen cutoff were grouped as low risk, while others whose scores were smaller than the chosen cutoff were grouped as high risk. The survival curves revealed that AML patients in the training set with lower scores significantly had a favorable overall survival time when they were compared to those with higher scores (Figure 6A). In the training set, the 1-, 3-, and 5-year survival rates for AML patients were respectively 0.913, 0.94, and 0.978, which were represented by AUC values (Figure 6B). The heatmap showed the 15 CMRG-related genes’ expression in two risk groups in the AML training set (Figure 6C). The distribution of the costimulatory molecule risk score revealed that the overall survival time of AML patients in the training set decreased with the scores increase (Figure 6D). Patients in the AML testing set were similarly divided into two risk categories using the same algorithm and cutoff as the training set. Survival analysis revealed that the group with lower scores had considerably better clinical results (Figure 6E). While studies of 1-, 3-, and 5-year prognosis prediction efficiencies revealed that the CMRG-related risk score maintained high AUC values, this was not the case for the 5-year prognostic efficiency (Figure 6F). The heatmap and survival status of AML patients showing the variation tendencies of two risk groups from the testing set were shown in Figures 6G,H, respectively, further confirming the costimulatory molecule signature had an excellent ability to predict the clinical outcome of patients with AML.
[image: Figure 6]FIGURE 6 | Validation of the constructed CMRG-related risk model in both training and testing sets. (A) Kaplan-Meier analysis of the overall survival between groups in the AML training set. (B) ROC curve analysis predicting the 1-, 3-, and 5-year survival sensitivity and specificity in the AML training set. (C) Heatmap of the 15 identified genes’ expression in the constructed risk model in the AML training set. (D) The CMRG-related score distribution and survival status in the AML training set. (E) Kaplan-Meier analysis of overall survival between groups in AML testing set. (F) ROC curve analysis predicting the 1-, 3-, and 5-year survival sensitivity and specificity in the AML testing set. (G) Heatmap showing the expression of 15 identified genes in the constructed risk model in the AML training set. (H) The CMRG-related score distribution and survival status in the AML testing set.
3.5 Evaluation of tumor microenvironment and checkpoints
To investigate the difference in TME and expression of checkpoints between two risk groups divided by constructed signature, we divided all the 242 AML patients into two groups according to cutoff and perform the CIBERSORT algorithm, by which we could assess the correlations between risk scores and immune cell abundance. As the scatter diagrams in Figure 7A showed the constructed costimulatory molecule risk score was positively correlated with monocytes and was negatively correlated with plasma cells, resting memory CD4+ T cells, resting mast cells, memory B cells, and gamma delta T cells (Figures 7A–F). Higher risk scores were also closely linked with higher immune scores as well as higher estimate scores (Figure 7G). Figure 7H shows that a total of 25 immune checkpoints, including LAG3, IDO1, and PDCD1, were different between the two groups from the total AML set. Moreover, the majority of immune cells were linked with the genes in the proposed model (Figure 7I).
[image: Figure 7]FIGURE 7 | Evaluation of the TME and checkpoints. (A–F) Correlations between the risk model and immune cell types. (G) Correlations between the CMRG signature and immune or estimate scores. (H) Expression of immune checkpoints in groups. (I) Correlations between the 15 identified genes in the proposed risk model and immune cell abundance.
3.6 Analysis of drug susceptibility and validation in pediatric acute myeloid leukemia
We then selected chemotherapy drugs to evaluate the treatment sensitivities of patients in different risk AML groups. Interestingly, we found that the patients with higher costimulatory molecule scores had lower IC50 values for WZ-1-84, WO2009093972, SL 0101–1, S-trityl-L-cysteine, Roscovitine, Rapamycin, Parthenolide, NVP-TAE684, Kin001-135, GNF-2, Dasatinib, CGP-082996, CGP-60474, Bortezomib, and AZ628, while IC50 values of chemotherapeutics such as VX-702, Vorinostat, Thapsigargin, SB 216763, Plx4720, PF-562271, OSI-906, MK-2206, Mitomycin-C, Midostaurin, Gemcitabine, Embelin, Cytarabine, BX-795, Bosutinib, BI-D1870, AZD7762, Axitinib, AP-24534, AKT inhibitor III, AG014699 and ABT263 were significantly lower in the patients with lower costimulatory molecule scores (Supplementary Figure S2). Moreover, to validate the prognostic performance of the costimulatory molecule signature in pediatric AML, we extracted the data of samples from the TARGET database. It is obvious that most CMRG-related genes in the proposed signature were differentially expressed between pediatric AML samples and control samples (Supplementary Figure S3), suggesting these CMRG-related genes also played important roles in pediatric AML.
4 DISCUSSION
The involvement of costimulatory molecule signal in innate immunity and anticancer effects has been shown by research (Tang et al., 2018; Zhang et al., 2020). Nonetheless, the global impact mediated by the combined numerous CMRGs has not been completely understood. The current investigation indicated widespread alterations in the CMRGs at the levels of transcription and genetics (Figure 1). We next identified two unique costimulatory molecule subtypes according to the expression levels of 60 CMRGs. Patients in the subtype B group showed more advanced clinical characteristics and worse overall survival rates (Figure 2). The TME features between subtypes also varied. The costimulatory molecule subtypes were distinguished by the activation of the immune system (Figure 3). The differences in transcriptomes of mRNA between costimulatory molecule subtypes were strongly associated with immune biological pathways (Figure 4). Following, we identified three gene subtypes according to the expression of differentially expressed genes between two costimulatory molecule subtypes. We finally construct the effective prognostic costimulatory molecule signature and validated its predictive ability (Figures 5,6). Diverse costimulatory molecule scores were associated with markedly different prognosis, clinical features, immunological checkpoints, TME, and drug susceptibility among AML patients (Figure 7 and Supplementary Figure S2). Further validation revealed that the identified CMRGs in the proposed signature might also play important roles in pediatric AML (Supplementary Figure S3). The prognostic model may be used to predict the prognosis of AML patients and will aid in the comprehension of AML’s molecular process.
The clinical outcome of AML after conventional chemotherapy is still poor (Prebet et al., 2012; Boddu et al., 2017). Despite the achieved advances in immunotherapy in recent years, the outcomes of AML patients are heterogeneous (Johnson et al., 2022), which highlights the role of TME (Huang et al., 2019). Immune cells, the main components of TME, take part in various immune activities (Seager et al., 2017). Evidence has shown the effects of TME on the development, progression of tumors, as well as therapeutic resistance (Hinshaw and Shevde, 2019; Banerjee et al., 2021). In our study, the costimulatory molecule pattern which was characterized by immune inhibition was found significantly associated with higher costimulatory molecule scores. Also, the characteristics of TME in AML, as well as the 22 immune cell abundance, differed significantly between costimulatory molecule subtypes (Figure 3). More and more evidence has shown that immune cells play vital roles in AML (Ma Y et al., 2020). Macrophages could support the progression and tumor drug resistance by providing nutritional support (Vitale et al., 2019; Boutilier and Elsawa, 2021). They were also reported as pro-tumoral, as well as neutrophils, both of which promote invasion and metastasis and suppress surveillance (Powell and Huttenlocher, 2016; Hinshaw and Shevde, 2019; Wu et al., 2020). Dendritic cells are tumor-promoting (Chaput et al., 2008; Veglia and Gabrilovich, 2017; Wculek et al., 2020), while natural killer cells eliminate tumor cells. Additionally, regulatory T cells also suppress immunological responses with anti-cancer impact (De Simone et al., 2016; Elkord and Sasidharan, 2018). Gamma delta T cells may efficiently identify and eliminate tumor cells, hence they could suppress the progression of tumors (Ma R et al., 2020). Subtype B and high costimulatory molecule scores, with worse prognosis, had higher activated CD4+, CD8+, and gamma delta T cell infiltration, which suggest that they play negative roles in the development of AML.
Checkpoints in the immune system play crucial roles in the immunosuppression of most cancers (Pardoll, 2012; Ribas and Wolchok, 2018). In hematological malignancies, common immune checkpoint targets are reported mainly include PDCD1, IDO1, PD-L1, LAG3, and CTLA-4 (Ok and Young, 2017). Here, we found three common immune checkpoints, including PDCD1, LAG3, and IDO1, elevated in the group with higher costimulatory molecule scores (Figure 7), indicating the state of immunosuppression in the bone marrow microenvironment. While the immunosuppressive state of AML patients was reported might be the reason causing the immunotherapy resistance (Xu et al., 2021). In addition, tumor cells in leukemias could help create the immunosuppressive state by generating energy that is enough for escaping from antitumor immune surveillance (Xu et al., 2021). Finally, we explored the association between the signature and medication response to facilitate the development of individualized treatment plans. It is crucial to identify novel biomarkers for immunotherapy patient selection. The findings indicated that low-risk individuals may benefit from these medications. Our signature may further assist in identifying patients who may benefit from antitumor immunotherapy and aid in the formulation of a more rational and effective treatment regimen, therefore contributing to personalized therapy for individuals with varying risk profiles.
Absolutely, this study had several limitations. First of all, the analyses were all carried out on the samples obtained from the public databases with retrospective data. Large-scale prospective studies in vivo and in vitro need to be performed to confirm the findings in this study. Also, the number of clinical characteristics that both datasets in this study contained is too small. Some common and crucial clinical variables for AML patients were unavailable for further analysis, which may affect the confirmation of the prognostic value of constructed signature in the immune response in AML.
5 CONCLUSION
Our analysis based on the CMRGs revealed a potential regulatory mechanism in AML, by which they might affect the TME, clinical features, drug susceptibility, and prognosis of patients with AML. These findings highlight the applications of CMRGs in AML in clinics and provide ideas for applying personalized immunotherapy to AML patients.
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Background: Increasing evidence supports that lactate plays an important role in tumor proliferation, invasion and within the tumor microenvironment (TME). This is particularly relevant in lung adenocarcinoma (LUAD). Therefore, there is a current need to investigate lactate metabolism in LUAD patients and how lactate metabolism is affected by different therapies.
Methods: Data from LUAD patients were collected from The Cancer Genome Atlas (TCGA) and patients were divided into two subtypes according to 12 lactate metabolism-related genes to explore the effect of lactate metabolism in LUAD. We established a lactate-related prognostic indicator (LRPI) based on different gene expression profiles. Subsequently, we investigated associations between this LRPI and patient survival, molecular characteristics and response to therapy. Some analyses were conducted using the Genomics of Drug Sensitivity in Cancer (GDSC) database.
Results: The two LUAD subtypes exhibited different levels of lactate metabolism, in which patients that displayed high lactate metabolism also had a worse prognosis and a poorer immune environment. Indeed, LRPI was shown to accurately predict the prognosis of LUAD patients. Patients with a high LRPI showed a poor prognosis coupled with high sensitivity to chemotherapy using GDSC data. Meanwhile, these patients exhibited a high responsiveness to immunotherapy in TMB (Tumor mutation burden) and TIDE (Tumor Immune Dysfunction and Exclusion) analyses.
Conclusion: We validated the effect of lactate metabolism on the prognosis of LUAD patients and established a promising biomarker. LRPI can predict LUAD patient survival, molecular characteristics and response to therapy, which can aid the individualized treatment of LUAD patients.
Keywords: immune-related genes, immune checkpoint blockade therapy, lung adenocarcinoma, prognosis biomarker, immune cell infiltration
INTRODUCTION
Lung cancer is the leading cause of cancer-related deaths in the United states, with an estimated 609,360 deaths from 2019 to 2022, and 350 deaths per day (Siegel et al., 2022). Histologically, lung cancer is often divided into two types: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Lung adenocarcinoma (LUAD) is the most common subtype of NSCLC, displaying a high tumor heterogeneity, which poses a great obstacle to the elucidation of its oncogenic mechanisms (Calvayrac et al., 2017). Before the wide-scale clinical application of immunotherapy, the treatment methods available for LUAD patients included surgical resection, chemotherapy, radiotherapy and targeted therapy, with very limited efficacy (Ha et al., 2016; Hellmann et al., 2017; Chen et al., 2020). Nevertheless, the surge of novel immune checkpoint inhibitors and targeted therapy has improved the survival of LUAD patients (Herbst et al., 2018). Given the heterogeneous biology of tumor cells and the tumor microenvironment (TME) of LUAD, the response of different patients to various treatments is also variable (Marusyk et al., 2020). Therefore, it is necessary to segment this disease into different subtypes and build models to predict patient prognosis and treatment response (Tang et al., 2017).
Lactate was long regarded as an end product of cellular glycolysis. Otto Warburg was the first to propose lactate as a cancer biomarker and coined the term Warburg metabolism, thus elucidating how tumor cells produce lactate. Recent evidence suggests that lactate broadly affects different biological processes during tumor development (Ippolito et al., 2019). Lactate promotes the proliferation and invasion of LUAD by promoting the metabolic activity of tumor cells (Chen et al., 2016; Morandi et al., 2016), driving tumor drug resistance (Apicella et al., 2018), and inhibiting the cytolytic activity of immune cells (Crane et al., 2014; Brand et al., 2016). Therefore, the stratification of LUAD patients according to lactate-related genes could predict survival outcomes and guide treatment.
In this study, we constructed a lactate-related gene prognostic indicator (LRPI) for LUAD patients to predict patient prognosis, molecular characteristics, and response to treatment. We screened genes related to prognosis that were also related to lactate metabolism to classify LUAD patients into two subtypes. Next, we assessed the association between different patient subtypes and survival to construct the LRPI. We subsequently conducted an extensive study of the stratified survival characteristics of LUAD patients, analyzed patient mutational spectrum and predicted driver mutation genes to assess patient response to multiple treatments. Altogether, we show that LRPI is a good prognostic tool for LUAD patients and that it might be helpful to guide treatment.
MATERIALS AND METHODS
Data acquisition
RNA-seq data from LUAD and normal lung tissues, clinical data, LUAD simple nucleotide variation (“Masked Somatic Mutation” data preprocessed by VarScan2), and “Masked Copy Number Segment” data were downloaded from the TCGA GDC database (https://portal.gdc.cancer.gov/). Moreover, data were also downloaded from the Gene Expression Omnibus (GEO) cohort (GSE72094, https://www.ncbi.nlm.nih.gov/geo/). The list of lactate-related genes was extracted from the GOBP LACTATE METABOLIC PROCESS and HP INCREASED SERUM LACTATE gene sets, both of which were downloaded from the MsigDB database (http://www.gsea-msigdb.org). A flowchart for this design is presented in Figure 1.
[image: Figure 1]FIGURE 1 | The flowchart showed the design of the study.
Identification of lactate-related subtypes in LUAD samples
First, we constructed an expression matrix of lactate-related genes for all samples within the TCGA dataset. To screen genes associated with the prognosis of LUAD patients, we performed an univariate Cox regression on the obtained expression matrix to identify genes that were correlated with patient prognosis. We performed a consensus clustering of all tumor patients in the TCGA cohort based on the expression matrix of lactate genes related to prognosis. ConsensusClusterPlus function of ConsensusClusterPlus package of R software (Wilkerson and Hayes, 2010) is used for consensus clustering and the important parameters are set as follows: K-means was used as the clustering algorithm, the subsampling number was set to 50, k value varied between 2 and 9, and the proportion of each resampling was 80% of the total sample. Subsequently, we used the elbow method to determine the optimal k value of partition by evaluating the consensus matrix and the consensus cumulative distribution function. Within this analysis we were able to determine a suitable number of patients per cluster.
Survival and enrichment analyses of patients stratified by lactate-related genes
LUAD patients were stratified in two different subtypes according to their expression of lactate-related genes. We used the survminer package of the R software to perform the survival analysis on the two identified subtypes. Kaplan-Meier (K-M) survival curves were employed to compare the survival of LUAD patients.
Hallmark gene sets (downloaded from the MSigDB database: http://www.gsea-msigdb.org) are rich in gene signatures of abundant biological states and processes. To investigate the biological activity and process patterns of LUAD samples, we performed a single sample gene set enrichment analysis (ssGSEA) of the two subtypes based on the hallmark gene set. The clusterProfiler package of R software (Yu et al., 2012) was used to calculate the enrichment scores.
Tumor purity and immune infiltration of different subtypes
ESTIMATE is an algorithm that uses gene expression signatures to quantify the proportion of stromal and immune cells in tumor tissues. By using the estimate package of R software (Yoshihara et al., 2013), we obtained the immune score, stromal score, ESTIMATE score (the sum of immune and stromal scores), and tumor purity for each TCGA-LUAD sample in the two lactate-related subtypes.
To obtain the landscape of immune cell infiltration in LUAD tissues, we performed an ssGSEA on the expression matrix of TCGA-LUAD patients. By using the GSVA package of R software (Hanzelmann et al., 2013), we calculated the enrichment fraction of 28 immune cells in each sample.
Construction of the lactate-related prognostic index
We identified genes with a differential expression among the two lactate-related subtypes by using the limma package of R software. Differentially expressed genes (DEGs) were identified as those genes presenting a logFC >2 and p < 0.05. Using the glmnet package in R software, we performed a least absolute shrinkage and selection operator (LASSO) analysis on the expression of DEGs in the train group (TCGA-LUAD cohort) to identify genes that could predict the overall survival of LUAD patients and establish a lactate-related prognostic index (LRPI). Then we used multivariate cox regression analysis for genes included in the model to verify their association with prognosis. Using the GEO cohort as the test group, we divided the train and test groups into two subgroups, namely an LRPI-high and an LRPI-low subgroup, using the median of the risk score as a cutoff. To verify the predictive ability of the model, we used the K-M method to perform a survival analysis of the two subgroups, used the timeROC package of R software to draw receiver operating characteristic (ROC) curves for the two subgroups at 1-, 2- and 3-year and calculated their area under the curve (AUC).
Prognostic ability and stratified survival analysis of lactate-related prognostic index
To verify the independent prognostic ability of LRPI, we performed univariate and multivariate Cox regressions using the LRPI score and common clinical features in the TCGA-LUAD cohort. To improve the prognosis prediction of LUAD patients, we drew a nomogram using the rms package of R software. Finally, to obtain different survival characteristics, we stratified patients according to age, sex, and tumor stage and performed a K-M survival analysis.
Molecular characteristics of the two identified LUAD subgroups
To obtain the mutation landscape of LRPI genes in both subgroups, we analyzed the simple nucleotide variation dataset within the TCGA-LUAD cohort using the Maftools package of R software (Mayakonda et al., 2018). We calculated the tumor mutation burden (TMB) for each sample and compared it between the two subgroups. To identify mutated genes that have a direct effect on tumor progression (driver mutated genes), we used the MutSigCV software of matlab (Lawrence et al., 2013). Subsequently, we performed a correlation analysis on the amount of mutations present in driver mutant genes, and calculated the correlation of these mutations.
Drug sensitivity and immune therapy response
The Genomics of Drug Sensitivity in Cancer (GDSC) database (www.cancerrxgene.org/) was employed to assess the sensitivity of samples to different drugs by identifying biomarkers of drug sensitivity to different anti-cancer drugs.
Using GDSC, we predicted the IC50 of commonly used drugs in the treatment of LUAD patients. To assess the response of the two subgroups of patients to immune checkpoint therapy, we performed the Tumor Immune Dysfunction and Exclusion (TIDE) analysis to analyze the resistance to immunotherapy (Jiang et al., 2018).
Statistical analysis
R software (version 4.1.1) (http://www.r-project.org/) and its corresponding R packages were used for all statistical data analysis and to generate graphs. A log-rank test was used to compare K-M survival curves for survival analysis. The Wilcoxon test was used to compare gene expression, ssGSEA analysis scores, ESTIMATE analysis scores, drug sensitivity, and TIDE analysis scores between two groups of samples. The Cox regression model was used to identify associated factors of survival outcomes. p values less than 0.05 were considered statistically significant.
RESULTS
Stratification of LUAD patients according to their expression of lactate-related genes
In the univariate Cox regression of lactate-related genes we found a significant correlation between 12 genes and patient prognosis (Figure 2A). Among these genes, seven were upregulated and three were downregulated (Figure 2B). To identify different lactate-related subtypes of LUAD patients, we performed a consensus clustering of the TCGA-LUAD cohort based on the expression of these 12 identified genes (Figure 2C-E). Based on the optimal number of clusters k = 2, we divided patients into two subtypes: lactate-related subtype A (LSA, n = 258) and lactate-related subtype B (LSB, n = 218).
[image: Figure 2]FIGURE 2 | Identification of lactate-related subtypes of LUAD (A) Screening of prognostic lactate-related genes by univariate cox analysis (B) Comparison of expression values of lactate-related prognostic genes between normal samples and tumor samples (C) Consensus matrix heatmap when k = 2 (D) Delta area plot showed the relative change in area under CDF curve as the value of k changes (E) CDF plot showed the cumulative distribution function for different values of k (F) K-M survival curves showed that LSA patients have better prognosis than LSB patients (G) Different ssGSEA analysis results of two isoforms on hallmark gene sets, different colors represent the different ssGSEA scores.
Characteristics of the two identified subtypes of LUAD patients
In the survival analysis, LSA patients showed better prognostic outcomes than LSB patients (Figure 2F). In parallel, LSB patients had a higher enrichment of lactate metabolism-related pathways, cell cycle-related pathways, PI3K/AKT/mTOR signaling pathways, and multiple cancer-related pathways in the ssGSEA analysis (Figure 2G); all of which may be associated with poor prognosis. Stromal and immune cells constitute an important part of the tumor tissue as they interact with tumor cells, and play an important role in tumor development and infiltration. Therefore, we explored differences in the TME between the two subtypes. Results of the ESTIMATE analysis showed that the immune, stromal, and ESTIMATE scores were higher in LSA samples, indicating that these samples displayed abundant immune cells and intercellular substance. Meanwhile, the tumor purity of LSB samples was significantly higher than that of LSA, indicating a higher proportion of tumor cells (Figures 3A– D). Immune cell infiltration analyses were in good agreement with ESTIMATE (Figure 3E). The overall level of immune cell infiltration in LSA was much higher than that of LSB samples. We found 12 cells that were more present in LSA samples and three cells that were more prevalent in LSB samples(Figure 3F). This suggests that, compared with LSB, LSA samples had more immune cells infiltrated, increased levels of interstitial components, and an active immune microenvironment that could significantly improve patient prognosis.
[image: Figure 3]FIGURE 3 | Immune characteristics of two lactate-related subtypes (A–D) Differences in the results of the four ESTIMATE analysis scores between the two subtypes (E) Landscape of 28 types of immune cell infiltration in patients with two subtypes, different colors represent different immune infiltration fractions (F) Differences in immune cell infiltration fractions in patients of two subtypes.
Construction and validation of LRPI
To explore how gene expression affected the prognosis of patients in the two lactate-related subtypes, and to quantify differences in survival, we constructed an LRPI. First, the differential expression analysis of expression profiles of LSA and LSB patients identified 557 DEGs, which were further screened by the LASSO analysis (Figures 4A,B). Then, through multivariate Cox regressions, we found that genes DNAH12, FBN2, IGFBP1, GDPD2, UNC5D, CYP17A1, SYT10, KRT81, RTL1 and RHOV were significantly associated with prognosis (Figure 4C). Therefore, the LRPI (a hazard ratio regression model) was established based on these genes. The formula of the model is expressed as: LRPI = (−0.2361) * exprDNAH12 + (0.2201) * exprFBN2 + (0.1518) * exprIGFB1 + (0.4469) * exprGDPD2 + (0.1886) * exprUNC5D + (−0.5209) * exprCYP17A1 + (−0.5262) * exprSYT10 + (0.0738) * exprKRT81 + (0.3176) * exprRTL1 + (0.1176) * exprRHOV. Samples from the TCGA and the GEO cohorts were divided into two subgroups, namely LRPI-high and LRPI-low groups, based on their median model score (Figures 4D,E,H,I). The LRPI-low subgroup displayed a better prognosis than LRPI-high patients in both cohorts (Figures 4F,J). The AUC of the ROC curves at 1-, 3-, and 5-year in the TCGA cohort were respectively 0.749, 0.722, and 0.729 (Figure 4G), while corresponding values in the GEO cohort were 0.653, 0.650, and 0.620 (Figure 4K). Altogether, these data support that LRPI is an excellent prognostic indicator that can accurately predict the prognosis of LUAD patients.
[image: Figure 4]FIGURE 4 | Construction and validation of LRPI (A) The change trajectory of the independent variable coefficient as the log lambda value increases (B) Change in misclassification probability as log lambda value changes (C)Multivariate cox analysis to validate the independent prognostic ability of model genes (D and E) LRPI score and survival outcomes of patients in the TCGA cohort (F) K-M survival curves of two LRPI subgroups of the TCGA cohort (G) 1-year, 2-years, and 3-years ROC curves and their area under the curve of LRPI in TCGA cohort (H and I) LRPI score and survival outcomes of patients in the GEO cohort (J) K-M survival curves of two LRPI subgroups of the TCGA cohort (K) 1-year, 2-years, and 3-years ROC curves and their area under the curve of LRPI in TCGA cohort.
Independent prognostic ability and survival characteristics of LRPI
To test whether LRPI is an independent prognostic factor related to survival outcomes, we performed univariate and multivariate Cox regressions using age, LRPI, tumor stage, and gender (Figures 5A,B). Results evidenced that LRPI was an independent prognostic factor with a good prognostic ability. Subsequently, we established a prognostic nomogram for TCGA-LUAD patients. By adding points corresponding to the clinical stage and LRPI, the total score was used to predict the survival rate of patients at 1-, 3-, and 5-year (Figure 5C). Calibration plots for these time-points are shown in Figures 5D–F.
[image: Figure 5]FIGURE 5 | Survival prediction ability of LRPI and stratified survival analysis of two LRPI subgroups (A and B) Univariate and multivariate cox analysis to validate the independent prognostic power of LRPI (C) The nomogram was established by clinical stage and LRPI to predict the survival rate of patients at 1, 3, and 5 years (D–F) The calibration plot of nomogram at 1, 3, and 5 years (G and H) Age-stratified K-M survival curve analysis of two subgroups of LRPI, age was divided into two groups ≤65 and >65 (I and J) Gender-stratified K-M survival curve analysis of two subgroups of LRPI, gender is divided into female and male two groups (K and L) Stage-stratified K-M survival curve analysis of two subgroups of LRPI, clinical stage was divided into two groups, I-II and III-IV.
Next, we performed a stratified survival analysis to explore whether LRPI was an accurate predictor under different clinical factors. Survival of the LRPI-low subgroup was better than that of the LRPI-high subgroup in both cohorts of patients aged ≤65 years as well as in those aged ≥65 years (Figures 5G,H). The low LRPI subgroup also displayed an improved survival than the high LRPI subgroup in both cohorts when patients were stratified by sex (Figures 5I,J). When patients were stratified according to their clinical stage, we found that the survival of LRPI-low patients was better than that of LRPI-high ones for patients in stages I and II. However, there were no differences among subtypes in stage III or IV patients (Figures 5K,L). Altogether, results showed that LRPI could accurately predict the prognosis of patients stratified according to age and gender. With regards to clinical stage, LRPI was demonstrated to be an accurate predictor only for patients in stages I and II.
Molecular characteristics of LRPI-high and LRPI-low subgroups
We explored the overall mutational landscape of TCGA-LUAD and its distribution between the two subgroups according to their LRPI scores (Figure 6A). In the two subgroups, missense mutation, multi hit, and nonsense mutation occurred most frequently, while mutations of TP53, TTN, MUC16, and CSMD3 exceeded 30%. In this regard, TMB is an excellent biomarker to help predict the effect of immunotherapy. Interestingly, the LRPI-high subgroup showed a higher TMB (Figure 6B), suggesting that its response to immunotherapy was stronger than that of the LRPI-low subgroup. Next, we used MutSigCV to predict driver-mutated genes in LUAD patients (Figure 6C). The mutation frequency of TP53, KRAS, COL11A1, KEAP1, STK11, EGFR and other driver mutation genes was above 10%. Among driver mutant genes, COL11A1 showed a strong correlation with the mutations of CDKN2A, ZNF735, ARID1A, MGA, SMARCA4, EPHA6, KEAP1 and other genes. Therefore, COL11A1 might be a central gene that drives mutations in other genes in LUAD patients (Figure 6D).
[image: Figure 6]FIGURE 6 | Molecular characteristics of two LRPI subgroups (A) The gene mutation landscape of two LRPI subgroups (different colors represent different mutation modes) (B) Boxplots showed the differences in TMB between two subgroups (C) Mutation landscape of driver-mutated genes of two LRPI subgroups (D) Correlations of mutation frequencies among driver-muted genes mutation.
Treatment efficacy of LRPI-high and LRPI-low subgroups
In order to explore the sensitivity of the two identified patient subgroups to conventional treatment and to formulate improved treatment strategies, we performed a GDSC analysis to obtain the IC50 of different drugs (Figures 7A–F). Lower IC50 values mean better tumor responsiveness to anti-tumor drugs. Compared with the LRPI-low subgroup, the LRPI-high subgroup showed lower IC50 values for several chemotherapy drugs such as Cisplatin, paclitaxel, gemcitabine and docetaxel, indicating that these patients have an improved response to chemotherapy. Based on the results of drug sensitivity analysis, we recommend patients in LRPI-high subgroups to receive chemotherapy as adjuvant therapy. Compared with the LRPI-low subgroup, the LRPI-high subgroup displayed a lower TIDE dysfunction score (Figure 7G). Of note, the TIDE score has been correlated with lower responsiveness towards immunotherapy of hot tumors (Fu et al., 2020). Conversely, the LRPI-high group had a higher TIDE exclusion score (Figure 7H), suggesting a poorer response to immunotherapy in cold tumors (Fu et al., 2020).
[image: Figure 7]FIGURE 7 | Response of two LRPI subgroups to antitumor therapies (A–F) Comparison of IC50 for different antitumor drugs (Cisplatin, Etoposide, Paclitaxel, Gemcitabine, Docetaxel, Gefitinib) in two LRPI subgroups (G and H) Comparison of dysfunction score and exclusion score in TIDE analysis of two LRPI subgroups.
DISCUSSION
LUAD is the leading cause of cancer-related deaths worldwide. Due to its high tumor heterogeneity, its carcinogenic mechanism has not been fully elucidated (Calvayrac et al., 2017; Huang et al., 2020), hindering efforts to develop individualized treatment. Recently, the role of lactate metabolism in multiple biological processes during tumor progression was revealed. Indeed, lactate metabolism is key to immune and inflammatory responses, leading to the development of tumor resistance to a variety of conventional, targeted, and immunological therapies (Balgi et al., 2011; Xie et al., 2016; Certo et al., 2021). Lactate was originally considered a metabolic waste product of glycolysis, until Otto Warburg first identified this metabolite as a characteristic product released by tumors. Considering the multiple roles of lactate metabolism in TME on tumor progression, and the impact of antitumor therapies, we believe it is essential to build a Biomarker based on lactate metabolism patterns in lung adenocarcinoma to predict patient survival outcomes, predict disease characteristics, and guide therapy. In our study, most of the lactate-related genes related to prognosis were upregulated in tumors when compared to normal tissues, which further confirmed the high correlation between lactate metabolism and tumor development. Therefore, the investigation of the effects of lactate metabolism on LUAD patients may uncover novel targets and biomarkers useful for individualized therapy. It would also be possible to generate models to predict patient survival and responsiveness to treatment and develop more efficacious treatment strategies.
In previous studies, lactate metabolism was highly correlated with tumor cell proliferation and invasion and patient poor prognosis (Faubert et al., 2017; Hui et al., 2017). In our study, LSB patients were enriched in lactate metabolism-related pathways and had a poorer prognosis than LSA patients. This is similar to results of a previous studies, confirming that increased lactate metabolism in LUAD is associated with poorer patient prognosis. In addition to promoting the development of tumor cells, lactate metabolism also influences the TME (Ippolito et al., 2019). Indeed, lactate negatively regulates the immune microenvironment, and displays a great inhibitory effect on the normal function of immune cells (such as the cytolysis function of T cells and NK cells) (Husain et al., 2013; Crane et al., 2014; Brand et al., 2016). Therefore, we analyzed immune infiltration within LSA and LSB LUAD patients. LSB patients, which displayed higher lactate metabolism, presented higher tumor purity, lower interstitial component and decreased immune cell components. In parallel, the majority of immune cells in the LSB subtype had a significantly lower infiltrating fraction, while only a few cells that do not play a major role in tumor immunity were enriched. These data validate the negative impact of lactate metabolism in LUAD as well as on the normal biological function of immune cells within TME.
Between the two LUAD subtypes, LSA and LSB, we found prognostic differences that were significantly associated with lactate metabolism. We next constructed models to predict patient outcome, explore molecular and immunological features and assess the efficacy of different treatment regimens correlated with lactate metabolism. Therefore, according to DEGs identified in the two subtypes, we screened model genes and established a prognostic model using LASSO and Cox regression analyses, so that the model (LRPI) could fully reflect differences according to lactate metabolism levels. LRPI was validated by the GEO cohort and was also shown to be an independent prognostic factor, prompting us to draw a nomogram based on two independent prognostic factors, LRPI score and clinical stage, to more accurately predict the survival rate of LUAD patients.
According to their LRPI score, LUAD patients were divided as LRPI-high and LRPI-low subgroups, which showed distinct prognoses. Interestingly, the prognosis of both subgroups was different when patients were stratified by age and gender, but were similar in stage III-IV patients. Indeed, higher clinical stage affects the prognosis of LUAD patients (Rami-Porta et al., 2018). In the multivariate Cox analysis, the hazard ratio of stage was greater than that of LRPI, indicating that higher clinical stages display collinearity with LRPI, thus masking its impact on prognosis.
Patients in the LRPI-high subgroup had improved sensitivity to a variety of drugs such as cisplatin, paclitaxel, gemcitabine and docetaxel, revealing that these patients would benefit more from chemotherapy than LRPI-low ones. The clinical use of immune checkpoint inhibitors has brought a new perspective to the treatment of lung cancers, and has shown excellent efficacy in NSCLC (Sharma and Allison, 2015), therefore we explored the relationship between the two subgroups and their benefit with regards to immunotherapy. The LRPI-high subgroup had a significantly higher TMB, which has been shown to be an important biomarker associated with a high sensitivity to immunotherapy (Samstein et al., 2019). Meanwhile, the LRPI-high subgroup presented a lower TIDE dysfunction score. Compared with the severe T cell dysfunction present in LRPI-low patients, LRPI-high patients showed improved sensitivity to immunotherapy. Based on these results, we recommend chemotherapy and immunotherapy for LRPI-high patients to improve their prognosis.
Although we extensively analyzed the role and impact of lactate metabolism in LUAD, there are two major shortcomings in the research. First, the study was based on bioinformatics analysis and lacked validation of the basic experiments, which we will further explore in future studies. Secondly, considering the different technologies and platforms used between transcriptomic datasets and the huge batch effect between different datasets, we used only the TCGA-LUAD dataset for the major analysis, which is one of the limitations of our article.
In conclusion, we established two LUAD patient subtypes with different levels of lactate metabolism, validating the role of lactate metabolism in the prognosis and immune function of LUAD, which is similar to that of other tumors. Based on differences in gene levels, we established a prognostic model to assess patient prognosis, molecular characteristics and response to treatment. LRPI could accurately predict the prognosis of LUAD patients, and, when combined to patient clinical stage, the accuracy of LRPI increased. Finally, LRPI can be used as a novel biomarker and as a tool for the individualized treatment of LUAD patients.
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Repression of enhancer RNA PHLDA1 promotes tumorigenesis and progression of Ewing sarcoma via decreasing infiltrating T‐lymphocytes: A bioinformatic analysis
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Background: The molecular mechanisms of EWS-FLI-mediating target genes and downstream pathways may provide a new way in the targeted therapy of Ewing sarcoma. Meanwhile, enhancers transcript non-coding RNAs, known as enhancer RNAs (eRNAs), which may serve as potential diagnosis markers and therapeutic targets in Ewing sarcoma.
Materials and methods: Differentially expressed genes (DEGs) were identified between 85 Ewing sarcoma samples downloaded from the Treehouse database and 3 normal bone samples downloaded from the Sequence Read Archive database. Included in DEGs, differentially expressed eRNAs (DEeRNAs) and target genes corresponding to DEeRNAs (DETGs), as well as the differentially expressed TFs, were annotated. Then, cell type identification by estimating relative subsets of known RNA transcripts (CIBERSORT) was used to infer portions of infiltrating immune cells in Ewing sarcoma and normal bone samples. To evaluate the prognostic value of DEeRNAs and immune function, cross validation, independent prognosis analysis, and Kaplan–Meier survival analysis were implemented using sarcoma samples from the Cancer Genome Atlas database. Next, hallmarks of cancer by gene set variation analysis (GSVA) and immune gene sets by single-sample gene set enrichment analysis (ssGSEA) were identified to be significantly associated with Ewing sarcoma. After screening by co-expression analysis, most significant DEeRNAs, DETGs and DETFs, immune cells, immune gene sets, and hallmarks of cancer were merged to construct a co-expression regulatory network to eventually identify the key DEeRNAs in tumorigenesis of Ewing sarcoma. Moreover, Connectivity Map Analysis was utilized to identify small molecules targeting Ewing sarcoma. External validation based on multidimensional online databases and scRNA-seq analysis were used to verify our key findings.
Results: A six-different-dimension regulatory network was constructed based on 17 DEeRNAs, 29 DETFs, 9 DETGs, 5 immune cells, 24 immune gene sets, and 8 hallmarks of cancer. Four key DEeRNAs (CCR1, CD3D, PHLDA1, and RASD1) showed significant co-expression relationships in the network. Connectivity Map Analysis screened two candidate compounds, MS-275 and pyrvinium, that might target Ewing sarcoma. PHLDA1 (key DEeRNA) was extensively expressed in cancer stem cells of Ewing sarcoma, which might play a critical role in the tumorigenesis of Ewing sarcoma.
Conclusion: PHLDA1 is a key regulator in the tumorigenesis and progression of Ewing sarcoma. PHLDA1 is directly repressed by EWS/FLI1 protein and low expression of FOSL2, resulting in the deregulation of FOX proteins and CC chemokine receptors. The decrease of infiltrating T‐lymphocytes and TNFA signaling may promote tumorigenesis and progression of Ewing sarcoma.
Keywords: Ewing sarcoma, EWS/FLI, PHLDA1, CC chemokine receptors, infiltrating T-lymphocytes
INTRODUCTION
Ewing sarcoma is an aggressive tumor, which typically affects bones and soft tissue in children, adolescents, and young adults (Grunewald et al., 2018). With significant racial disparity, the overall incidence for Ewing sarcoma is ∼1.5 cases per million in Europe, and the peak age is 15 years old (Jawad et al., 2009). Ewing sarcoma is also the second common bone cancer (Ferguson and Turner, 2018) and it usually develops in the diaphysis of bones and metastasizes to lungs and bones. Besides, the primary tumor site varies with age, older patients (20–24 years of age) with a higher proportion of pelvic and axial primary tumors, metastatic diseases, and worse outcomes (Worch et al., 2018). Treatment of patients with Ewing sarcoma includes surgery, chemotherapy, and/or radiation therapy and so on (Grunewald et al., 2018). Currently, the 5-year overall survival is 65–75 percent for patients with localized disease. However, patients with metastatic disease have a strikingly lower 5-year overall survival of less than 30 percent, and those with isolated pulmonary metastasis have approximately 50 percent 5-year overall survival (Gaspar et al., 2015).
Ewing sarcoma is driven by a recurrent t (11; 22) (q24; q12) chromosomal translocation (Aurias et al., 1984) that results in the FET–ETS fusions. The most common fusion is EWS–FLI1 (Delattre et al., 1992), which encodes an oncogenic transcription factor (May et al., 1993), regulating different target genes (Cidre-Aranaz and Alonso, 2015) governing the initiation and progression of Ewing sarcoma (Riggi et al., 2014). Therefore, the molecular mechanisms of EWS-FLI–mediating target genes and downstream pathways may provide a new way in the targeted therapy of Ewing sarcoma.
Enhancers are discrete DNA regulatory elements with specific sequence motifs; they interact with target gene promoters and then enhance the transcription of target genes (Blackwood and Kadonaga, 1998). Meanwhile, enhancers also transcript non-coding RNAs, known as enhancer RNAs (eRNAs) (Kim et al., 2010). Recent progress have found that the transcription of active enhancer mostly initiates cell transcription and 40,000–65,000 eRNAs express in human cells (Andersson et al., 2014; Arner et al., 2015; Lee et al., 2020). Besides the direct mechanism, eRNA can also be elicited by tissue-specific transcription factors (TFs). Importantly, activation of tumorigenesis often converges to the destabilization of eRNAs (Zhang et al., 2019; Lee et al., 2020). However, the functional mechanisms of eRNAs in Ewing sarcoma are still unknown. We proposed that eRNAs may serve as potential diagnosis markers and therapeutic targets in Ewing sarcoma.
In this study, based on an integrated bioinformatics analysis, differential expressed eRNAs, transcription factors, hallmark signaling pathways, and immune cells/functions were identified between Ewing sarcoma samples and normal bone samples. Moreover, we also constructed a complete regulatory network to reveal the potential upstream and downstream mechanisms of further exploring the prognostic biomarkers and treatment targets, which provided a basis and reference for the prognostic risk of Ewing sarcoma tumorigenesis.
MATERIALS AND METHODS
Data collection
RNA-sequencing (RNA-seq) data of 85 Ewing sarcoma samples were downloaded from Treehouse database (https://treehousegenomics.soe.ucsc.edu/public-data/#datasets), an RNA database of children’s tumors. RNA-seq data of 3 normal bone samples were downloaded from SRA database (https://www.ncbi.nlm.nih.gov/sra/). For validation, we also obtained gene expression profiles of 256 sarcoma samples from TCGA database (https://tcga-data.nci.nih.gov). Also single-cell RNA sequencing (scRNA-seq) data of GSE146221 were downloaded from Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146221) to verify our results. Batch effects of these RNA-seq data were reduced using normalization and batch-effect correction methods.
Next, the eRNA expression profiles of Ewing sarcoma and the target gene list corresponding to eRNAs were downloaded from eRNA in cancer (eRic) database (https://hanlab.uth.edu/eRic/) (Zhang et al., 2019), which benefits researchers to obtain eRNA expression profile, as well as the target genes and drug response of eRNA across TCGA samples. Besides, based on the gene location in hg38 genome, ChIP seeker package was utilized to annotate the official gene symbol of each eRNA (Yu et al., 2015).
Moreover, expression profiles of 318 transcription factors (TFs) were downloaded from Cistrome database (http://cistrome.org/) (Zheng et al., 2019). 50 hallmarks of cancer and 29 immune gene sets were obtained from the Molecular Signatures Database (MSigDB) (http://software.broadinstitute.org/gsea/msigdb) (Liberzon et al., 2015). This study was approved by the Ethics Committee of Tongji University School of Medicine.
Differential expression analysis
First off, differential expression analysis was conducted to identify differentially expressed genes (DEGs) between Ewing sarcoma samples and normal bone samples by utilizing the Linear Models for Microarray Data (limma) package (Smyth, 2004). Specifically, DEGs were distinguished according to | Log2 fold-change (FC) | > 1 and false discovery rate (FDR) < 0.05. Also, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to reveal the biological function of DEGs. Likewise, differentially expressed eRNAs (DEeRNAs) and target genes (DETGs), as well as the differentially expressed TFs between Ewing sarcoma samples and normal bone samples were also identified based on the same criteria.
Construction of prognostic prediction model in sarcoma
To evaluate the prognostic value of DEeRNAs, we used sarcoma samples from TCGA database to conduct cross-validation and independent prognosis analysis. The sarcoma samples were randomly assigned into training set (156 samples) and testing set (100 samples). Training set was utilized to construct the prognostic prediction model, while testing set was utilized to evaluate the prediction model.
Before constructing the prognostic prediction model, lasso regression was applied to avoid overfitting. Then, univariate Cox regression analysis was performed to select DEeRNAs in relation to prognosis. The DEeRNAs independently associated with prognosis, screened by multivariate Cox regression once again, were eventually integrated into the prognostic prediction model. Thus, the risk score of each sarcoma sample was calculated according to the following formula:
[image: image]
Among the formula, “i” was the order number of sarcoma samples, while “j” was the quantity of DEeRNAs in this model. “β” was the regression coefficient of corresponding DEeRNAs. Each sarcoma sample was given a risk score, and based on the mean of risk scores, 256 sarcoma samples was classified as high-risk group and low-risk group. The same was true in training set and testing set. Through ranking risk score of each sarcoma sample, scatter dot plot and heatmap were delineated to display the survival time and the expression of independent prognostic factors in high-risk group and low-risk group. Additionally, receiver operator characteristic (ROC) curve was conducted to evaluate the efficiency of the prediction model. In high-risk group and low-risk group, function enrichment analysis was also conducted using GO and KEGG analysis, as well as the hallmark of cancer gene sets.
Validation of immune clustering among DEeRNAs
To infer portions of infiltrating immune cells in Ewing sarcoma and normal bone samples, expression of DEeRNAs between Ewing sarcoma samples and normal bone samples as well as the correlation in 8 immune cell types were identified using cell-type identification by estimating the relative subsets of RNA transcripts (CIBERSORT). CIBERSORT was performed with 1,000 permutations, where a threshold <0.05 was recommended. Also, correlation analysis was applied to infer the associations between different types of immune cells.
To validate the prognostic value of immune proportions, CIBERSORT was also implemented in 221 sarcoma samples in TCGA database after removing the missing data. Defined by the primary gene signature file LM22 of CIBERSORT, 22 types of immune cells were identified. Through single-sample gene set enrichment analysis (ssGSEA), the immune infiltration degrees of 29 types of immune cells were detected using 29 immune gene sets from MSigDB. Eventually, Kaplan–Meier survival analysis was utilized to display the correlation between survival and immune proportions in sarcoma samples.
Identification of differentially expressed hallmarks of cancer and immune gene sets
Gene Set Variation Analysis (GSVA) (Hanzelmann et al., 2013) was conducted to detect the expression of hallmarks of cancer in Ewing sarcoma and normal bone samples. Then, differential expression patterns of 50 hallmarks of cancer between Ewing sarcoma and normal bone samples were determined by differential expression analysis using limma R package (Smyth, 2004). The immune infiltration degrees of 29 types of immune cells in Ewing sarcoma and normal bone samples were detected using ssGSEA based on their specific surface markers (Barbie et al., 2009).
Construction of DEeRNA regulatory network for Ewing sarcoma oncogenesis
First of all, DEeRNAs and DETGs annotated by eRic database, as well as DETFs were retrieved from the above screening. Then, differentially expressed hallmarks of cancer were quantified as continuous variables by GSVA, and immune cells and gene sets were separately obtained from CIBERSORT and ssGSEA. Subsequently, co-expression analysis was conducted among the aforementioned factors, which were illustrated in different colors. Purple indicated the immune cell types by CIBERSORT, blue indicated the hallmarks of cancer by GSVA, indigo blue indicated the immune gene sets by ssGSEA, yellow indicated potential upstream DETFs of DEeRNAs, and pink indicated potential DETGs of DEeRNAs. The interaction pairs between DEeRNAs and DETFs, DETGs, immune cell types by CIBERSORT, hallmarks of cancer by GSVA, and immune gene sets by ssGSEA were utilized to construct the regulatory network for Ewing sarcoma oncogenesis. In the network, we set thresholds as cor. (correlation coefficient) > 0.85 and p < 0.05 between DEeRNAs and DETGs; cor. > 0.70 and p < 0.05 between DEeRNAs and DETFs; cor. > 0.50 and p < 0.05 between DEeRNAs and infiltrating immune cells; cor. > 0.50 and p < 0.05 between DEeRNAs and immune gene sets; cor. > 0.60 and p < 0.05 between DEeRNAs and hallmarks of cancer. Besides, the Pearson co-expression analysis was also utilized to estimate the correlation between the six components in the regulatory network.
Identification of candidate small-molecule drugs
In the Connectivity Map (CMap) database (https://portals.broadinstitute.org/cmap/) (Lamb et al., 2006), DEG maps were utilized to predict the associations between small molecule drugs and various diseases. The positive score was the same as the reference gene expression profile, whereas the negative score may be the opposite. Here, CMap was used to determine small molecule drugs that may target Ewing sarcoma based on the expression profiles. Specifically, the database was utilized to screen enrichment fractions < -0.85 and p < 0.05, and small molecule drugs with negative scores were considered as candidate therapeutic molecules.
ATAC-seq validation of key DEeRNAs
Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) data of key DEeRNAs were obtained from chromatin accessibility landscape of primary human cancers (https://gdc.cancer.gov/about-data/publications/ATACseq-AWG), which were then used to identify the chromatin accessibility in the location of these DEeRNAs (Corces et al., 2018).
External validation
To further demonstrate the reliability of our findings, multidimensional external validation was conducted based on multiple online databases. First off, the Human Protein Atlas (Uhlen et al., 2015), cBioportal (Cerami et al., 2012), and Oncomine (Rhodes et al., 2004) databases were used to compare the expression of DEeRNAs between normal and pathological tissues. Besides, Encyclopedia of Cancer Cell Lines (CCLE) (Ghandi et al., 2019) was used to show the expression of DEeRNAs across various different cancer cell lines. Also, Gene Expression Profiling Interactive Analysis (GEPIA) was a web-based tool to conduct survival analysis of single gene (Tang et al., 2017; Li et al., 2021).
Moreover, CR Cistrome database (http://cistrome.org/db/#/) (Wang Q et al., 2014)was applied to elucidate the interaction between DETFs and DEeRNAs in the chromatin level, based on chromatin-immunoprecipitation followed by sequencing (ChIP-seq) for Histone 3 Lysine 27 acetylation (H3K27ac). Furthermore, eRic database (Zhang et al., 2019) (https://hanlab.uth.edu/eRic/) was utilized to validate the expression, clinical relevance, target genes, and drug response of DEeRNAs.
Single-cell RNA sequencing transcriptome analysis
The single-cell RNA sequencing (scRNA-seq) data of GSE146221 were downloaded from Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146221), which included Ewing sarcoma cell lines CHLA9, CHLA10, and TC71 (Miller et al., 2020). All data were integrated by “IntegrateData” function and analyzed by the R toolkit Seurat (http://satijalab.org/seurat/). Those cells were extracted for the following analysis which had more than 100,000 transcripts expressing. After the top 2,000 variable genes were filtered via “vst” method, “FindConservedMarkers,” and “FindMarkers” function, the marker genes of each cell type were identified. The MKI67, CD44, CD24, and PROM1, markers of tumor stem cells, were also utilized to determine the tumor stem cells. Data dimensionality were reduced by principal component analysis (PCA) and the top 20 principal components (PCs) were extracted for the next clustering analysis and Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) analysis. “CellCycleScoring” function and markers of phases were utilized to visualize the cell cycle stage. At last, “iTALK” package (Wang et al., 2019) was used to identify the ligand and receptor pairs in different cell types, and the “edgebundleR” package (https://github.com/garthtarr/edgebundleR) was used to visualize the intercellular communication.
Statistical analysis
All statistical analyses of this study were conducted by R version 3.6.1 and two-tailed p < 0.05 was required for statistical significance.
RESULTS
Identification of DEGs and functional enrichment analysis
The analysis process of this study was presented in Supplementary Figure S1. A total of 4,941 DEGs were identified between 85 Ewing sarcoma patients and 3 normal bone samples, the expression of which was illustrated in the heatmap (Figure 1A). The volcano plot of the DEGs was illustrated in Figure 1B. GO and KEGG enrichment analyses were conducted using R’s cluster Profiler software package. The most significant GO items of biological processes (BPs), cellular components (CCs), and molecular functions (MFs) were skeletal system development, extracellular matrix, and positive regulation of cell migration, respectively (Figure 1C). Cytokine–cytokine receptor interaction, proteoglycans in cancer, and transcriptional mis-regulation in cancer were the most critical KEGG pathways, in which most DEGs were enriched (Figure 1D). Furthermore, a total of 669 eRNAs were defined as DEeRNAs between Ewing sarcoma patients and normal bone samples from 5,100 eRNAs, which were illustrated by the heatmap (Figure 1E) and volcano plot (Figure 1F). The heatmap and volcano plot of 664 DETFs identified between Ewing sarcoma patients and normal bone samples were shown in Figures 1G,H.
[image: Figure 1]FIGURE 1 | Identification of DEGs, DEeRNAs, and DETFs. (A) The DEG analysis between 85 Ewing sarcoma patients and 3 normal samples. (B) The volcano plot of a total of 4,941 DEGs identified between Ewing sarcoma samples and normal samples. (C) The GO enrichment analysis of DEGs. (D) The KEGG enrichment analysis of DEGs. (E) The heatmap of 669 DEeRNAs identified between Ewing sarcoma samples and normal bone samples. (F) The volcano plot of DEeRNAs. (G) The heatmap of 664 DETFs identified between Ewing sarcoma samples and normal bone samples. (H)The volcano plot of DETFs. 
Construction of a prognostic prediction model in sarcoma
To evaluate the prognostic value, we used 256 sarcoma samples from TCGA database to conduct cross-validation and independent prognosis analysis. The sarcoma samples were randomly assigned into training set (156 samples) and testing set (100 samples). First off, lasso regression was applied to screen DEeRNAs to avoid overfitting (Supplementary Figures S2A,B). The univariate Cox regression analysis and multivariate Cox regression analysis of training set were displayed in Figures 2B,C. Eventually, 13 DEeRNAs significantly related to prognosis were merged into the prediction model. According to the computing formula of risk score, the sarcoma samples were sorted into high-risk group and low-risk group (Supplementary Figures S2D,E). The differential expression and heatmap of 13 prognostic-related DEeRNAs were illustrated in Figure 2A and Supplementary Figure S2C. Ranking by the risk score of each sample, the scatter dot plot, and the distribution curve were shown in Supplementary Figures S2D,E. The area under the curve (AUC) of ROC curve was 0.725 in all sets, 0.728 both in training set and testing set. Also, in all sets, the AUC of ROC curve was 0.777 at 1-year, 0.733 at 2-years, and 0.768 at 3-years. These values showed a good predictability of the prognostic prediction model in sarcoma.
[image: Figure 2]FIGURE 2 | Construction of prognostic prediction model in sarcoma. (A) The differential expression of 13 DEeRNAs in the prognostic prediction model. (B) The univariate Cox regression analysis of training set. (C) The multivariate Cox regression analysis of training set. (D) The summary of clinical information of 256 sarcoma samples in TCGA database. (E) The classification of sarcoma samples based on the risk score and censor group. (F) The ROC curves of the prognostic prediction model at 1-year, 2-years and 3-years (G) The GO analysis of low-risk group and high-risk group. (H) The KEGG analysis of low-risk group and high-risk group. (I) The hallmarks of cancer identified by GSVA in low-risk group and high-risk group.
The function enrichment analysis was also conducted in both high-risk group and low-risk group. In low-risk group, B cell activation and some other adaptive immune response gene sets were enriched in Go analysis; cytokine–cytokine receptor interaction and toll-like receptor signaling pathway were enriched in KEGG analysis, representatively, inflammatory response and myogenesis were enriched in hallmarks of cancer. In high-risk group, embryonic organ development and embryonic morphogenesis gene sets were detected by Go analysis, hedgehog signaling pathway and TGF beta signaling pathway were detected in KEGG analysis as well as hallmarks of cancer (Figures 2G–I).
CIBERSORT analysis and co-expression analysis of Ewing sarcoma
We explored the relationship between DEeRNA expression and cancer-infiltrating immune cells, and depicted a summary of the cell compositions in Ewing sarcoma samples and normal bone samples by CIBERSORT algorithm. The proportions of 8 immune cells in 85 Ewing sarcoma patients and 3 normal samples were presented by the bar plot, encompassing B cells, cancer-associated fibroblasts, CD4+ T cells, CD8+ T cells, endothelial cells, macrophages, NK cells, and uncharacterized cells (Figure 3A). Compared to normal bone tissues, infiltration of endothelial cells (p < 0.01) and B cells (p < 0.01) was increased, whereas infiltration of cancer-associated fibroblasts (p < 0.05), NK cells (p < 0.05), and CD4+ T cells (p < 0.05) was decreased in Ewing sarcoma samples, which suggested that these immune cells had a significantly prognostic value for Ewing sarcoma (Figure 3B). While, the heatmap showed the co-expression patterns between CD4+ T cells and CD8+ T cells (R = 0.53); CD4+ T cells and macrophages (R = 0.51); endothelial cells and macrophages (R = 0.47); CD8+ T cells and macrophages (R = 0.72), indicating a strong correlation between these immune cells in Ewing sarcoma (Figure 3C).
[image: Figure 3]FIGURE 3 | CIBERSORT analysis and co-expression analysis. (A) The proportions of 8 immune cells in 85 Ewing sarcoma patients and 3 normal samples explored by CIBERSORT analysis. (B) The immune infiltration of Ewing sarcoma and normal bone tissues. (C) The co-expression patterns of immune cells in Ewing sarcoma.
Validation of immune clustering in sarcoma
To validate the prognostic value of immune proportions, CIBERSORT was also implemented in 221 sarcoma samples in TCGA database after removing the missing data. The 22 immune fractions of sarcoma samples were displayed in Figure 4A, classified by risk score. The immune subtypes of high-risk group and low risk group sarcoma samples were displayed in Figure 4B. Specifically, T cells CD8, T cells CD4 memory resting, and macrophages M2 comprised a large proportion of immune cells (Figure 4C). On the other hand, 29 immune gene sets were quantified by ssGSEA, which was displayed in Figure 4D. Compared to low-risk group, high-risk group had lower immune function, significant in CCR, check-point, cytolytic activity, DCs, HLA, inflammation promoting, mast cells, neutrophils, NK cells, parainflammation, pDCs, T cells, TIL, Treg, and IFN response. The Kaplan–Meier survival curves below also typically displayed good correlation between immune function and survival in sarcoma samples (Figure 4E).
[image: Figure 4]FIGURE 4 | Validation of immune clustering in sarcoma. (A) The 22 immune fractions of sarcoma samples identified by CIBERSORT. (B) The classification of 221 sarcoma samples based on the risk score and immune subtypes. (C) The 22 immune fractions of sarcoma samples classified by risk score. (D) The function score of 29 immune gene sets identified by ssGSEA. (E) The Kaplan–Meier survival curves of immune gene sets, representatively. 
Identification of DETFs, differential hallmarks of cancer, and immune gene sets
Representatively, the heatmap and volcano plot of 68 DETFs in Ewing sarcoma samples and normal bone samples were shown in Figures 5A,B. A total of 21 differential hallmarks of cancer were identified from 50 hallmark pathways between Ewing sarcoma samples and normal bone samples, which were shown in the heatmap and volcano plot (Figures 5C,D). Besides, the correlation of GSVA score of hallmark pathways and Ewing sarcoma was investigated (Figure 5E). Immune cell infiltration status was evaluated using ssGSEA to validate the associations between the Ewing sarcoma samples and normal bone samples with tumor immune characteristics. Specifically, 29 immune-related terms, or immune functions, were quantified in the heatmap to unravel the abundance of diverse immune cell types in Ewing sarcoma samples and normal bone samples (Figure 5F).
[image: Figure 5]FIGURE 5 | Identification of DETFs, differentially expressed hallmarks of cancer, and immune gene sets co-expressed with DEeRNAs. (A) The heatmap of 68 DETFs in Ewing sarcoma samples and normal bone samples. (B) The volcano plot of DETFs. (C) The heatmap of 21 differentially expressed hallmarks of cancer identified between Ewing sarcoma samples and normal bone samples. (D) The volcano plot of differentially expressed hallmarks of cancer. (E) The correlation of GSVA score of hallmark pathways and Ewing sarcoma. (F) The heatmap of 29 immune-related terms evaluated by ssGSEA between the Ewing sarcoma samples and normal bone samples.
The network construction and Connectivity Map Analysis
After the co-expressed analysis, the heatmap showed the expression of most significant DEeRNAs, DETFs, and DETGs in Figure 6A. A total of six different dimension regulatory network was constructed with 17 DEeRNAs, 29 DETFs, 9 DETGs, 5 immune cells by CIBERSORT, 24 immune gene sets by ssGSEA, and 8 hallmarks of cancer by GSVA, which showed the potential regulatory relationships across these factors (Figure 6B). Four key DEeRNAs (CCR1, CD3D, PHLDA1, and RASD1) showed significant co-expression relationships in the six different dimension regulatory network. We supposed that these DEeRNAs may play crucial roles in the tumorigenesis of Ewing sarcoma. Furthermore, the interaction coefficients among these components were illustrated by the heatmap by Pearson correlation analysis (Figure 6C).
[image: Figure 6]FIGURE 6 | The network construction and Connectivity Map Analysis. (A) The heatmap of DEeRNAs, DETFs, and DETGs. (B) The six different dimension regulatory network, encompassing 17 DEeRNAs, 29 DETFs, 9 DETGs, 5 immune cells by CIBERSORT, 24 immune gene sets by ssGSEA, and 8 hallmarks of cancer by GSVA. (C) The cor-expression heatmap of these components above. (D) The CMap analysis of Ewing sarcoma as well as other 33 cancer types.
The heatmap depicted the enrichment score of each compound analyzed by CMap in Ewing sarcoma, as well in other 33 cancer types (Malta et al., 2018). Importantly, MS-275 and pyrvinium with the highest specificity and the lowest p value were considered as the best compounds that might target Ewing sarcoma (Figure 6D).
ATAC-seq and external validation
Figure 7 depicted the accessible chromatin sites at the key DEeRNAs, including CCR1, CD3D, PHLDA1, and RASD1 (Figures 7A–D). Furthermore, we analyzed data from public databases to assess the prognostic effects of key DEeRNAs and potential regulatory mechanisms in Ewing sarcoma. Based on the human protein atlas database, we examined the expression level of CD3D, MAZ, and PHLDA1 by immunohistochemical (IHC) staining assay and observed that there was medium expression of CD3D, MAZ, and PHLDA1 in normal tissue. Representative IHC images were presented in Supplementary Figure S3. Based on Oncomine database, we identified that expression of CCR1, CD3D, MAZ, PHLDA1, and RASD1 was higher in tumor than that in normal tissue at the pan-cancer level (Supplementary Figures S4A–E). Additionally, expression of CCR1, CD3D, MAZ, PHLDA1, and RASD1 in various different tissues was determined based on CCLE database (Supplementary Figures S5A–E). Taken together, the expression of CCR1, CD3D, PHLDA1, and RASD1 in multiple databases were summarized in Supplementary Table S1. In cBioPortal database, the correlation of mutation count and overall survival of key DEeRNAs were shown in Supplementary Figures S6A–E. Also, the survival analysis of PHLDA1 in GEPIA database was displayed in Supplementary Figure S6G.
[image: Figure 7]FIGURE 7 | ATAC-seq analysis of key DEeRNAs. (A) The accessible chromatin sites of CCR1 analyzed by ATAC-seq. (B) The accessible chromatin sites of CD3D analyzed by ATAC-seq. (C) The accessible chromatin sites of PHLDA1 analyzed by ATAC-seq. (D)The accessible chromatin sites of RASD1 analyzed by ATAC-seq.
To explore the role of enhancer-specific histone in modifications of eRNA transcription, ChIP-seq data of H3K27ac were downloaded and analyzed. The UCSC Genome Browser tracks showed enrichment of H3K27ac on multiple loci in the DEeRNAs (CCR1, CD3D, PHLDA1, and RASD1) (Supplementary Figures S7–S10). Results of external validation in eRic database showed the specific chromatin localization and target genes of the four key DEeRNAs (CCR1, CD3D, PHLDA1, and RASD1), as well as potential drugs that may target these DEeRNAs in different cancers (Supplementary Table S2). We further investigated the expression of key DEeRNAs between tumor and normal samples among different cancer types and identified that the expression level of CCR1, CD3D, PHLDA1, and RASD1 was significantly up-regulated in tumor tissue, as compared with normal tissue. Additionally, prognostic effect of key DEeRNAs was displayed between high expression group and low expression group (Supplementary Figures S11–S14).
Single-cell RNA-seq transcriptome analysis
Unsupervised clustering clearly identified 12 cell clusters (Figure 8A, left). By utilizing the expression of differentially expressed marker genes, we attributed these clusters to 3 Ewing sarcoma cell lines (CHLA9, CHLA10, and TC71) based on hierarchical similarities (Figure 8A). The heatmap displayed the up- or down-regulated genes in the 12 clusters (Figure 8B). The dot plots showed the proportion of cells expressing tumor stemness-related gene markers (CD44 and MKI67) and key DEeRNAs (PHLDA1 and RASD1) and their scaled relative expression level in 12 cell clusters (Figure 8C). Specifically, MKI67 (a known nuclear marker of proliferation) was highly expressed in all cell clusters, indicating high cellular proliferative activities in these cancer cells. The cell number and proportions of 3 main cell subtypes were quite diverse among the 12 cell clusters (Figure 8D). As demonstrated in the top DEGs, specifically cancer stem lineage clusters expressed high levels of stemness feature genes (MKI67, CD44, CD24, and PROM1) and key DEeRNAs (PHLDA1 and RASD1) (Figure 9A). The cell cycle distribution of 12 cell clusters was shown in the UMAP plot (Figure 9B). Cells within cluster 5 were mainly in G2 phase while cells in cluster 3 were mainly in S phase. The ligand-receptor plot displayed ligand-receptor pairs among those clusters (Figure 9C). All these results showed that PHLDA1 and RASD1 (key DEeRNAs) were extensively expressed in cancer stem cells of Ewing sarcoma, which were potential targets for tumor treatment.
[image: Figure 8]FIGURE 8 | Single-cell transcriptomic analysis of Ewing sarcoma cell lines. (A) The distribution of 12 clusters in 3 Ewing sarcoma cell lines (CHLA9, CHLA10, and TC71). (B) Gene co-expression of top 5 genes in clusters. (C) Significantly up- or down-regulated genes in clusters. (D) Cell number and cell proportion of 12 clusters in 3 cell lines.
[image: Figure 9]FIGURE 9 | The key biomarkers extensively expressed in Ewing sarcoma stem cell. (A) The distribution of marker genes, and MKI67, PHLDA1 and RASD1 were extensively high expressed in all clusters. (B) The cell cycle distribution and the cell cycle score in 12 clusters. (C) The ligand-receptor pairs among 12 clusters.
DISCUSSION
Ewing sarcoma is the second common bone cancer, with strikingly low 5-year overall survival after metastasis (Gaspar et al., 2015). Ewing sarcoma is characteristic with a recurrent chromosomal translocation and the EWS-FLI fusion may provide a new way in the targeted therapy of Ewing sarcoma (Cidre-Aranaz and Alonso, 2015). eRNAs are generated during the transcription of active enhancer (Zhang et al., 2019). In human cancers, eRNAs are specific to tumor types (Lee et al., 2020). Various eRNAs have been demonstrated to be differentially expressed in prostate cancer (Zhao et al., 2016). In breast cancer cells, estrogen-induced transcription of eRNAs was identified to be significantly upregulated (Crudele et al., 2020). Conversely, a recent study showed that expression of eRNAs was significantly decreased in throat cancer (Zhang et al., 2019). Collectively, activation of oncogenes or oncogenic pathways was associated with aberrant generation of eRNAs in human cancers, and eRNAs may play a broad role in the pathophysiology of Ewing sarcoma.
To the best of our knowledge, this is the first study to show DEeRNAs which are potentially engaged in the cellular transition from the normal cells into malignant cells and their potential regulatory relationships in Ewing sarcoma. Herein, an integrated bioinformatics analysis was performed to determine differential eRNA and target gene expression between Ewing sarcoma and normal samples. Differentially infiltrating immune cells were detected by CIBERSORT between Ewing sarcoma samples and normal bone samples. To verify the prognostic power of DEeRNAs and immune proportions, we used sarcoma samples from TCGA database into cross-validation and independent prognosis analysis, as well as Kaplan–Meier survival analysis. In addition, we constructed a DEeRNA co-expressed regulatory network of Ewing sarcoma, encompassing 17 DEeRNAs, 29 DETFs, 9 DETGs, 5 immune cells by CIBERSORT, 24 immune gene sets by ssGSEA, and 8 hallmarks of cancer by GSVA. Importantly, four DEeRNAs (CCR1, CD3D, PHLDA1, and RASD1) were considered to have significant co-expression relationships in the six different dimension regulatory networks. Moreover, Connectivity Map Analysis was applied to pursue small molecules targeting Ewing sarcoma. ATAC-seq data were utilized to provide information on chromatin accessibility of key DEeRNAs. In the end, external validation based on multidimensional online databases and scRNA-seq analysis were used to verify our key findings, which showed that the screened DEeRNAs play a critical role in the tumorigenesis of Ewing sarcoma and could be utilized as important reference markers for future research.
The signal axes of four key eRNAs (CCR1, CD3D, PHLDA1, and RASD1) were as follows: BATF-CCR1-complemen; BATF-CD3D-allograft rejection; FOSL2-RASD1-tnfa signaling via NFKB; and FOSL2-PHLDA1-FOXC1-tnfa signaling via NFKB. Importantly, signal axis FOSL2-PHLDA1-FOXC1-TNFA signaling via NFkB was extracted for the subsequent analyses by theoretical basis and literature review, which will be explained in detail in the following sections as potential mechanism related to the tumorigenesis of Ewing sarcoma. The correlation coefficient between FOSL2 and PHLDA1 was 0.89 (p < 0.001); between PHLDA1 and FOXC1 was 0.87 (p < 0.001); between PHLDA1 and TNFA signaling via NFkB was 0.70605164 (p < 0.001). In the interaction and correlation network, PHLDA1 was also related to cancer-associated fibroblasts (R = 0.67; p < 0.001) and CCR (R = 0.53; p < 0.001).
In Ewing sarcoma, EWS-FLI fusions encode oncogenic proteins functioning as a transcription factor regulating abnormal transcription (Sanchez et al., 2008). Well, a number of studies have described target genes mediated by EWS/ETS proteins. In particular, PHLDA1 has been reported to be few target genes that are directly repressed by the binding of EWS/FLI1 through meta-analysis and experiments in vitro (Boro et al., 2012). PHLDA1 (pleckstrin homology-like domain family, member 1) gene is one of the members of the PHLDA gene family (Frank et al., 1999), which has been reported to suppress tumorigenesis (Chen et al., 2018). To be specific, PHLDA1 may repress tumorigenesis by inducing apoptosis and inhibiting cell growth (Neef et al., 2002; Chen et al., 2018). In melanoma (Neef et al., 2002), breast cancer (Nagai et al., 2007), oral cancer (Coutinho-Camillo et al., 2013), and stomach cancers (Zhao et al., 2015), the reduced expression of PHLDA1 has already been described. Moreover, PHLDA1 is not only a tumor suppressor, but also a new targeted therapy to re-sensitize drug-resistant cancer cells (Fearon et al., 2018).
FOS-like antigen 2 (FOSL2) is a member of activator protein-1 (AP-1) transcription factor family (Tulchinsky, 2000), which is involved in cell proliferation, transformation, and death (Shaulian and Karin, 2002). FOSL2 plays a key role in bone development (Bozec et al., 2013). FOSL2 is expressed in stromal cells of human chondroblastic and osteoblastic osteosarcomas, and the deficiency of FOSL2 induces a differentiation defect in osteoblasts both in vivo and in vitro experiments (Bozec et al., 2010). In addition, FOSL2 has been reported to exert a specific function of mediating TGF-β pathway in extracellular matrix (ECM) remodeling (Busnadiego et al., 2013) and in non-small cell lung cancer (Wang J et al., 2014). In adult T-cell leukemia, aberrantly expressed FOSL2 has been demonstrated to induce CCR4 expression MDM2 (Nakayama et al., 2008).
The Forkhead box C1 (FOXC1) is a member of the Forkhead box (FOX) family, a group of transcription factors and the Fox family are involved in cellular proliferation, differentiation, and death (Lehmann et al., 2003). As a consequence, the deregulation of FOX proteins is able to promote tumorigenesis and cancer progression (M yatt and Lam, 2007). Recently, FOXC1 is demonstrated to be a critical transcriptional regulator for the development and maintenance of hematopoietic stem and progenitor cells (HSPCs) in bone marrow (Omatsu and Nagasawa, 2015). FOXC1 is preferentially expressed to maintain haematopoietic stem and progenitor cells in the adipoosteogenic progenitor CAR cells of developing adult bone marrow (Omatsu et al., 2014). FOXC1 is also able to inhibit CAR cell differentiation into adipocytes, by upregulating CXCL12 and stem cell factor (SCF) (Omatsu et al., 2014). On the other hand, FOXC1 is responsible for governing quiescence by the nuclear factor of activated T-cells 1 (NFATC1) and BMP signaling in stem cells (Wang et al., 2016). Similarly, in basal-like breast cancer (BLBC), FOXC1 may increase cancer stem cell (CSC) properties by cellular mechanisms (Han et al., 2015).
Tumor necrosis factor alpha (TNF‐α) is a cytokine produced by activated macrophages, T lymphocytes, and natural killer (NK) cells, and exerts a wide function in cellular apoptosis and survival, as well as inflammation and immunity. Also, TNF-α is now used in isolated limb perfusion for treatment of soft tissue sarcoma (STS) and other large tumors (Eggermont et al., 2003). Through the activation of nuclear transcription factors, such as NFkB (nuclear factor kappa B) and AP-1, TNF-α is able to modulate the expression of a majority of different genes (Schutze et al., 1992). However, NFkB plays a critical role in preventing cell death induced by TNF-α (Beg and Baltimore, 1996). Aberrant NF-kB expression has been described in many human cancers and tips apoptosis–proliferation balance toward malignant growth (Lin and Karin, 2003).
CC chemokine receptors include CCR 1-10 and CC chemokines are ligands to CCR1-10. The movement of immune cells is driven by CC chemokine receptors and CC chemokines (Hughes and Nibbs, 2018). In cancer, the expression of CC chemokine receptors promotes metastasis and may provide new targets for cancer immunotherapy (Mollica Poeta et al., 2019). CCR7 mediates lymphocyte migration, and CCR9 is involved in rare metastases to the small intestine in melanoma (Zlotnik et al., 2011). In Ewing sarcoma, the expression of CCR5-ligand, CCL5, is positively related to the number of infiltrating CD8+ T-lymphocyte and patients with high numbers of infiltrating T-lymphocytes have an overall survival advantage (Berghuis et al., 2011).
Signal axis, FOSL2-PHLDA1-FOXC1-TNFA signaling via NFkB, is first reported to be associated with tumorigenesis and progression of Ewing sarcoma. All that being said, the limitations of bioinformatics study are easy to see and unavoidable. First, the sample size of Ewing sarcoma and normal bone samples in our study was limited. Although our results were validated by sarcoma samples, scRNA-seq analysis and multidimensional online databases, larger sample size and more comprehensive data are needed to get more reliable and more accurate results. Second, the direct regulating mechanism of FOSL2-PHLDA1-FOXC1-TNFA signaling via NFkB in Ewing sarcoma is unclear. Laboratory-based experiment and clinical study are tremendously needed to explore the direct-action mechanism of the signal axis in Ewing sarcoma. Our hypothesis may just provide a new way for the treatment of Ewing sarcoma.
CONCLUSION
In summary, we presume PHLDA1 is a key regulator in the tumorigenesis and progression of Ewing sarcoma. PHLDA1 is directly repressed by the binding of EWS/FLI1 protein and low expression of FOSL2, resulting in the deregulation of FOX proteins and CC chemokine receptors. T-lymphocytes expressing less CC chemokine receptors may not migrate to the tumor site. Inhibition of infiltrating T-lymphocytes and TNFA signaling may promote tumorigenesis and progression of Ewing sarcoma.
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Supplementary Figure S1 | The schematic diagram of analytic processing.
Supplementary Figure S2 | Cross-validation and model diagnosis of sarcoma. (A) Coefficient curves of variables in the prognostic prediction model. (B) The correlation between λ and partial likehood deviance. At the variable number of 13, the partial likehood deviance was lowest. (C) The heatmap of 13 DEeRNAs in all sets, training set, and testing set. (D) The scatter dot plot of all sets, training set, and testing set. (E) The distribution curve of risk score in all sets, training set, and testing set. (F) The area under the curve (AUC) of ROC curve was 0.725 in all sets, 0.728 both in training set and testing set.
Supplementary Figure S3 | Human protein atlas database. The medium expression of CD3D (A), MAZ (B), and PHLDA1 (C) in normal tissue by immunohistochemical staining assay.
Supplementary Figure S4 | Oncomine database. The expression of CCR1 (A), CD3D (B), MAZ (C), PHLDA1 (D), and RASD1 (E) in tumor and normal tissues at the pan-cancer level.
Supplementary Figure S5 | CCLE database. The expression of CCR1 (A), CD3D (B), MAZ (C), PHLDA1 (D), and RASD1 (E) in various different tissues.
Supplementary Figure S6 | cBioPortal database and GEPIA database. The correlation of mutation count of CCR1 (A), CD3D (B), RASD1 (C), PHLDA1 (D), and MAZ (E) and overall survival. (F) The summary of patients’ clinical information and genetic alteration of DEeRNAs. (G) The survival analysis of PHLDA1.
Supplementary Figure S7 | The ChIP-seq data of CCR1 analyzed by UCSC Genome Browser.
Supplementary Figure S8 | The ChIP-seq data of CD3D analyzed by UCSC Genome Browser.
Supplementary Figure S9 | The ChIP-seq data of PHLDA1 analyzed by UCSC Genome Browser.
Supplementary Figure S10 | The ChIP-seq data of RASD1 analyzed by UCSC Genome Browser.
Supplementary Figure S11 | The expression and prognostic effect of CCR1 between tumor and normal samples among different cancer types on eRic database.
Supplementary Figure S12 | The expression and prognostic effect of CD3D between tumor and normal samples among different cancer types on eRic database.
Supplementary Figure S13 | The expression and prognostic effect of PHLDA1 between tumor and normal samples among different cancer types on eRic database.
Supplementary Figure S14 | The expression and prognostic effect of RASD1 between tumor and normal samples among different cancer types on eRic database.
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Background: Breast cancer is the most common malignant tumor in women. RUNX family has been involved in the regulation of different carcinogenic processes and signaling pathways with cancer, which is closely related to immunity and prognosis of various tumors, and also plays an important role in the development and prognosis of breast cancer.
Methods: We discovered the expression of RUNX family through GEPIA Dataset and then evaluated the relationship between RUNX family and immune-related genes and the prognosis of breast cancer through analyzing TCGA database. A prognostic model was established and verified via cox proportional hazards regression model using R packages. We evaluated the accuracy of the prognostic model by Kaplan-Meier curves and receiver operating characteristic (ROC) curves. Additionally, we obtained the relationship between the RUNX family and immune infiltration by TIMER database. Finally, the dual luciferase reporter assay was used to verify the regulation of RUNX3 on potential target genes ULBP2 and TRDV1, and the effects of ULBP2 and TRDV1 on the growth of breast cancer cells were explored by CCK-8, colony formation and wound healing assays.
Results: We screened out RUNX family-regulated immune-related genes associated with the prognosis of breast cancer. These predictors included PSME2, ULBP2, IL-18, TSLP, NPR3, TRDV1. Then a prognosis-related risk score model was built using the independent risk factors to provide a clinically appropriate method predicting the overall survival (OS) probability of the patients with breast cancer. In addition, a further research was made on the functions of high risk immune gene ULBP2 and low risk immune gene TRDV1 which regulated by RUNX3, the results showed that down-regulation of ULBP2 suppressed breast cancer cell proliferation and TRDV1 had the opposite functions. The prognostic model we constructed could promote the development of prognostic, and was associated with lower immune infiltration.
Conclusion: The expression of RUNX family was closely related to the prognosis of breast cancer. At the same time, RUNX family could modulate the functions of immune-related genes, and affect the development and prognosis of breast cancer. These immune-related genes regulated by RUNX family could be promising prognostic biomarkers and therapeutic targets in breast cancer.
Keywords: runx, immune, TCGA, prognostic model, breast cancer
INTRODUCTION
Breast cancer is the most common malignant tumor threatening women’s health. The latest data from the World Health Organization reveals that breast cancer is the most commonly diagnosed cancer in females (11.7% of total cases), no matter in the developed city or developing countries (Sung et al., 2021). Despite the huge advancements in its early diagnosis and treatment, the prognosis of some breast cancer patients is still poor resulting of the complex nature of breast cancer. At present, although plenty of biomarkers and algorithms have been employed to predict the prognosis of patients with breast cancer, it inevitably leads to the deviation of relevant prediction methods due to the particularity of the pathogenesis, development, and metastasis of breast cancer. Therefore, it is imperative to search for highly sensitive and specific prognostic markers to explore new targets and improve the prognosis of breast cancer patients (Sun et al., 2019). At present, many gene family members have been identified as being involved in the tumor progression of various cancers. For example, members of the Arp2/3 family play an important role in predicting the prognosis of liver cancer and are associated with immune cell infiltration (Huang et al., 2021). The role of E2F transcription factors in the tumorigenesis and prognosis of several cancers has also been partially confirmed (Sun et al., 2019).
The runt-related transcription factors (RUNX) belong to a transcription factors family (Mevel et al., 2019). To date, three RUNX transcription factors (RUNX1, RUNX2, RUNX3) have been identified as master regulators of important embryonic developmental programs in mammalian cells. They could regulate cell proliferation, and differentiation in different cancers (Otalora-Otalora et al., 2019). RUNXs have been identified as being involved in the progression of various tumors. Many studies have shown that abnormal expression of RUNXs was associated with the proliferation and invasion of cancers and the role of RUNX factors has been found to be two-sided in cancer biology (Liu et al., 2018; Ashe et al., 2021). They have been found to exert either oncogenic or tumor suppressive roles in the development of hematopoietic cancer as well as solid tumors (Ito et al., 2015). In recent years, a growing number of studies have suggested a role for RUNX genes in breast cancer. RUNXs were supposed to have complex and distinct roles in human breast cancer, especially in tumor invasion and metastasis (Rooney et al., 2017; Fritz et al., 2020). RUNX1 has been identified as a critical regulator of definitive hematopoiesis in early studies (Sood et al., 2017). But Andrew J. Fritz et al. (Fritz et al., 2020) discovered that RUNXs have oncogenic potential or tumor suppressor abilities during the oncogenic process, suggesting their importance as biomarkers of breast cancer. It was reported that RUNX2 is a critical regulator that can maintain osteoblast development and osteoclast process (Komori, 2020; Qin et al., 2020). Recent studies by Selvamurugan et al (Vishal et al., 2017) established that RUNX2 is indirectly involved in the metastasis of breast cancer by regulating the genes related to metastasis and invasion. RUNX3, another member of RUNX family, which is located on human chromosome 1p36 is involved in the development of gastric cancer and hepatocellular carcinoma (Ni et al., 2020; Song et al., 2020). Some studies founded that RUNX3 is inactivated in several tumors including breast cancer and it is identified as a tumor suppressor to reduce the initiation and progression of breast cancer (Huang et al., 2012; Liu et al., 2020).
The functional role of RUNX was often closely related to influencing immune infiltration, and some studies founded the functions of RUNX proteins mainly on lymphoid lineage cells (Seo and Taniuchi, 2020). But the importance of the RUNX factors to immunity has been obscured for historic, technical, and conceptual reasons, and has rarely been reported in recent years (Voon et al., 2015). In the past years, studies founded that the RUNX factors are involved in the development of T cells in the thymus, hematopoietic cell development, and chromatin remodeling (Bowcock, 2005). For instance, RUNX1 and RUNX3 are further involved in the maturation of naive CD4+ T cells into various effector T-cell lineages. RUNX3 expression increases with a corresponding decrease in RUNX1 expression when T helper type 1 (Th1) differentiation (Ito et al., 2015). The RUNX factors could also regulate adhesion complexes to promote the migration of macrophages and monocytes to the sites of infection to perform their phagocytic functions (Puig-Kröger et al., 2003; Estecha et al., 2012). In summary, the RUNX factors are involved not only in tumor growth and spread, but also in the development, organization, and function of the mammalian immune system (Seo and Taniuchi, 2020).
However, the distinct functions of the RUNX factors and the immune-related genes is regulated in breast cancer have not been fully elucidated. And to our knowledge, the prognostic analyses of breast cancer, which are based on the expression of immune-related genes regulated by the RUNX family have not been completely studied or reported. In recent research, some researchers have found that RUNX family plays an important role in the regulation of immune cell development and function (Gao and Zhou, 2021). In this study, we further explored the respective roles of the RUNX family members in breast cancer and found that it was related to the immune invasion. Meanwhile, we established a prognostic model based on immune-related genes regulated by RUNX family to predict breast cancer survival, and may provide potential biomarkers or therapeutic targets for the diagnosis and treatment of early breast cancer.
METHODS
GEPIA dataset
The RNA sequencing expression data from The Cancer Genome Atlas and the Genotype Tissue Expression (GTEx) projects were analyzed with GEPIA (http://gepia.cancer-pku.cn/index.html), a newly developed interactive web tool, to discover the RUNX family expression in breast cancer by a standard processing pipeline (Tang et al., 2017). The survival analysis was also performed via a Kaplan-Meier curve for further verification by GEPIA. In addition, RUNX family protein levels were analyzed by the Human Protein Atlas database (HPA) (https://www.proteinatlas.org/) to verify whether the expression of the mRNA and protein levels matched (Uhlén et al., 2015).
The Kaplan-Meier plotter
The prognostic value of the RUNX family mRNA expression was analyzed through an online database, Kaplan-Meier Plotter (http://kmplot.com/analysis/), which provided gene expression data and survival information of 1,809 breast cancer patients. And the clinical relationships between gene expression of the RUNX family and survival information including recurrence-free survival (RFS) and overall survival (OS) were assessed by Kaplan-Meier Plotter. The prognostic value of the RUNX family, such as 95% confidence intervals (CIs), hazard ratio (HR), and p value could be automatically calculated based on the RNA expression (high vs low) of RUNX family genes.
The cancer genome atlas data and cBioPortal
The RUNX family mRNA expression data of breast cancer were downloaded from The Cancer Genome Atlas database (https://genome-cancer.ucsc.edu/). R package limma was used to normalize and differential expression analysis of these data from the TCGA database. P value < 0.05 was considered statistically significant. Additionally, cBioPortal (http://www.cbioportal.org), a comprehensive web resource, was used for further analyses of the RUNX family. According to The Cancer Genome Atlas (TCGA) database, co-expression and network module of the RUNX family were calculated from cBioPortal.
String and tumor immunity analyses
STRING (https://string-db.org/), a website about protein interaction, was performed to achieve a comprehensive and objective global network and then present them with a unique set of computational predictions. The PPI network analysis was performed to collect and integrate the different expressions of the RUNX family and potential interactions using STRING. p < 0.05 was considered statistically significant. The abundances of B, CD4+ T, CD8+ T, NK, and dendritic cells and macrophages were estimated through the TIMER (https://cistrome.shinyapps.io/timer/), which is a friendly web interface for the user. In addition, the correlation of the RUNX family expression with immune cell infiltration scores was revealed by TIMER. The RUNX family was conducted to input using the Gene module and generated scatterplots to visualize the correlation of their expression with immune infiltration level in breast cancer.
Prognostic model construction
Using univariate and multivariate Cox regression, six independent genes associated with RUNX were identified. Next, the risk score model was structured based on the expression levels and coefficients of the six hub Coxs. The risk score of each breast cancer patient was counted using the next formula: Risk score = β1*Exp1 + β2*Exp2 + βi*Expi, where β manifests the coefficient value of the independent prognosis-associated RUNXs, Exp manifests the expression level of the independent prognosis-associated Cox.
Validating the performance of the prognostic model
According to the median risk score, the breast cancer patients were divided into high-and low-risk groups. The difference in survival between the two groups was assessed by the Kaplan-Meier method using log-rank tests. Additionally, receiver operating characteristic (ROC) curves, were used for confirming the accuracy of the prognostic model.
Tissue samples and cell lines
Fresh breast cancer tissues and adjacent normal tissues were collected from the First Affiliated Hospital with Nanjing Medical University. Experienced pathologist immediately isolated the primary tumor area and morphologically normal surgical margin tissue after resection from each patient and stored in liquid nitrogen until use. The study was approved by the institutional ethical committee of the First Affiliated Hospital with Nanjing Medical University. Informed written consents were obtained from patients recruited in this study. The human breast cancer cell line MDA-MB-231 was cultured in DMEM supplemented with 10% fetal bovine serum (Invitrogen, Canada) at 37°C under 5% CO 2 in a humidified incubator.
Luciferase report assay
Luciferase reporter plasmids were constructed by iGeneBio (Guangzhou, China). Based on the chemiluminescence reaction between luciferase and substrate, mutant and wild-type ULBP2 and TRDV1 of the putative binding sites were cloned into a luciferase vector and co-transfected with RUNX3 mimics into breast cancer cells. After 48 h, cells were harvested for luciferase activity analysis using the Dual-Luciferase Reporter Assay System (Vazyme, China). The assay was repeated at least three times in independent experiments.
Cell transfection
Transfections were carried out using the Lipofectamine 3000 Reagent (Invitrogen, Canada) following the manufacturer’s protocol. The small interfering RNAs (siRNAs) targeting ULBP2, TRDV1, and their negative controls were purchased from RiboBio (Guangzhou, China). MDA-MB-231 cells were plated in 96-well plates, when cells reached a confluence of 80%, they were transfected with the fragments or plasmids (0.2 µg/well) by Lipo3000 reagent, according to the protocol. After incubation at 37°C for 24 h, the transfected cells were harvested for subsequent experiments.
CCK-8 assay
Cells were seeded into 96-well plates at a concentration of 2000 cells per well. According to the CCK8 (Beyotime, China) manufacturer’s instructions, cellular viability was determined by measuring the absorbance of the converted dye at 450 nm 2 h after adding CCK8. Measurements were taken every 24 h for 5 consecutive days.
EdU assay
Cell-Light EdU Apollo In Vitro Kit (Ribobio, China) for EdU assay was utilized to compare the growth ability of the transfected breast cancer cell. MDA-MB-231 cell lines were transfected with ULBP2 and TRDV1 mimics control or inhibitor, then 5 × 10 3 transfected cells were transferred into each well of the 96-well plate. EdU medium was added to each well to incubate the cells for two hours. We captured the images with a fluorescence microscope after the fixation, permeabilization, and staining.
Colony formation assay
Cells transfected with ULBP2 and TRDV1 mimics control or inhibitor were plated at a density of 500 cells/6 cm dish. After 2 weeks of culture, colonies resulting from the surviving cells were fixed with 3.7% methanol, stained with 0.1% crystal violet, and counted.
Wound healing assay
MDA-MB-231 cells were seeded in a six-well dish and incubated for 24 h; The monolayer was then scratched with pipette tips and washed with PBS. Photographs were taken at 0 and 48 h in an inverted microscope. The wound-healing rate was calculated as follows: Wound-healing rate = (Original wound area—area at detection)/original wound area × 100%.
RESULTS
The transcription levels of RUNX family in breast cancer
To explore the distinct expressions of RUNX family in breast cancer patients, we analyzed the data in the public databases GEPIA. The results revealed that the expression levels of RUNX1, RUNX2, RUNX3 were higher in tumor tissues than in normal tissues, especially the expression of RUNX2 and RUNX3 (Figure 1A). The expression level of RUNX family in tumor tissues was higher than that in normal breast tissues while there was no difference in the expression of RUNX3 in the TCGA database (Figures 1B–D). Then, we further probed the protein expression of the RUNX family in the Human Protein Profiles, the results indicated that protein expression levels of RUNX family were higher in both ductal and lobular breast cancers than in normal (Figure 1E). In addition, the GEPIA tool was used to analyze the correlation between the expression of RUNX family and the overall survival (OS) and recurrence-free survival (RFS) of breast cancer. We founded that the expression of RUNX family was associated with RFS and could affect the prognosis of breast cancer (Figure 1F).
[image: Figure 1]FIGURE 1 | Expression of RUNXs in breast cancer and normal samples (GEPIA). Scatter diagram demonstrated that the expression levels of RUNX1, RUNX2 and RUNX3 were higher in breast cancer tissues than in normal tissues (p <0.05) (A). A boxplot of the RUNXs expression profiles in breast cancer and normal samples using TCGA and other data (B–D). Validation of the expression of RUNX proteins in breast cancer and normal tissues in the Human Protein Atlas (HPA) database (E). Kaplan-Meier survival curve of OS and RFS for breast cancer in RUNXs. Kaplan-Meier analysis and log-rank test demonstrated a significant difference in RFS among the three groups (p <0.05) (F).
Interaction analyses of RUNX family in breast cancer patients
The correlations of RUNX family with each other were analyzed via the cBioPortal online tool for breast cancer according to their mRNA expressions. The results showed a noteworthy and positive relationship between RUNX1 and RUNX2 (Figure 2A). To explore the potential interactions among RUNX family, we conducted a protein-protein interaction PPI network analysis of the differentially expressed RUNX family with STRING. As the findings suggested, the neighbor genes such as MAPK1, MAPK3, BGLAP, ETS1, and CBFB had a close association with RUNX family alterations in the RUNX Family (Figure 2B).
[image: Figure 2]FIGURE 2 | Interaction analyses of RUNX family in breast cancer (A). The network for RUNX family in breast cancer and the part of most frequently altered neighbor genes (B).
RUNX family regulated immune-related genes
As shown in this study, we explored the correlation between RUNX family and immune cell infiltration by using the TIMER database. The expression of RUNX Family was in connection with the infiltration of B cells, macrophages, myeloid dendritic cells neutrophils, CD4+ T cells, and CD8+ T cells while RUNX2 was not connected with B cells (Figure 3A). We obtained 2,483 immunologically relevant genes from the ImmPort database considering that RUNX family was associated with immune infiltration. Then, we compared the expression of the difference between tumor and normal tissues via TCGA databases, and 370 differentially expressed immune-related genes were filtrated. The volcano map and heatmap were plotted to visualize these genes (Figures 3B,C). A forest map identified 17 genes connected with prognosis in breast cancer patients according to 2483 immunologically relevant genes (Figure 3D). Subsequently, the regulatory network of RUNX and immune genes were mapped to probe the association between RUNX family and these genes (Figure 3E). RUNX1 negatively regulated PSME2 and positively regulated TSLP, but they were both low-risk genes. RUNX2 positively regulated NPR3, a high-risk gene. Low-risk genes such as IL18, TNFRSF8, TSLP, IL2RG, TRDV1, TRBC2, and CXCL9 were positively regulated by RUNX3, and at the same time, RUNX3 negatively regulated high-risk genes like NPR3 and ULBP2.
[image: Figure 3]FIGURE 3 | The correlation between different RUNXs and immune cell infiltration in breast cancer (A). Heatmap (B) and volcanic maps (C) of 370 differentially expressed immune-related RUNXs genes from TCGA. The forest plot of hazard ratios demonstrated the prognostic values of immune-related genes (IRGs) (D). The dash line was used to mark the location of HR = 1. The red box represented the adverse prognostic factor; Blue box represented the favorable prognostic factor. Regulation network of the RUNXs related to immune activities (E). Genes showed positive correlation with RUNX were in solid line, and the genes showed negative correlation with the RUNX were in dotted line. High risk genes were in yellow, and low risk genes were in blue.
Construction of prognostic models
We built a prognosis-related risk score model by using the independent risk factors to provide a clinically appropriate method for predicting the OS probability of patients with breast cancer. We screened out 10 genes that might be regulated by the RUNX family by analyzing the potential relationship between 17 prognosis-related genes and the RUNX family. Then, we performed cross-validation on the expression and prognosis of genes to prevent overfitting in the prognostic model. Based on the results, we obsoleted the genes with high correlation and obtained the most suitable number of genes with the smallest error to construct the prognostic model. Finally, we obtained the predictors including PSME2, ULBP2, IL18, TSLP, NPR3, and TRDV1 to build a prognosis-related risk score model (Figure 4A). Then we performed univariate Cox to analyze the relationship between risk value and clinicopathological parameters and overall survival (Figure 4B), T stage [HR = 1.494, 95%CI (1.201-1.859)], N stage [HR = 1.677, 95%CI (1.389-2.024)], M stage [HR = 6.543, 95%CI (3.667-11.676)] and risk value [HR = 1.135, 95%CI (1.075-1.198)] were related to prognosis. Multivariate Cox regression analysis further showed (Figure 4C) that T stage, N stage, M stage, and risk score can independently predict the prognosis of breast cancer patients.
[image: Figure 4]FIGURE 4 | Univariate and multivariate analyses for breast cancer using the Cox regression model. A prognostic risk score model was established using independent risk factors (A). Forest plots of univariate and multivariate Cox regression analyses had significant prognostic significance (B,C).
Validation of the prognostic model
We divided 1013 breast cancer samples with clinical information from TCGA databases into the low-risk group (N = 507) and the high-risk group (N = 506) according to clinical risk factors. Generally, patients with higher risk scores had a bad prognosis than those with lower risk scores (Figure 5A). We figured out the value of AUC was 0.722 through the ROC analysis to assess the prognostic accuracy of the metabolic signature, indicating that this nomogram had high predictive accuracy (Figure 5B). The heatmap showing gene expression profiles in high-risk and low-risk groups were drawn to display the distribution of the gene expression differences (Figure 5C). The distribution of survival status showed that the survival time and the number of patients in the high-risk group were lower than those in the low-risk group (Figures 5D,E).
[image: Figure 5]FIGURE 5 | Characteristics of prognostic gene signatures. Survival analysis of the association between the independent risk factors and overall survival in breast cancer patients. Breast cancer patients were divided into high-risk (red line) and low-risk (blue line) groups according to their signature scores (A). ROC analysis was performed to find out the most optimal cutoff value to divide the breast cancer patients into high risk and low risk group (B). Heatmap of the expression profiles of RUNX family genes in different immune-genes, including TSLP, TRDV1, PSME2, IL18, ULBP2 and NPR3. Red represented high-expression, and blue represented low-expression (C). The risk score distribution and the survival status of breast cancer patients (D,E).
Relationship between RUNX family and immune infiltrated
To clarify whether the RUNX family is indeed associated with immune infiltration, we further explored the relationship between immune cell infiltration and the clinical outcome. The level of immune cells was closely related to the proliferation and development of cancer cells. In this study, the correlation between RUNX members and immune cell infiltration was explored by using the TIMER database. We discovered that the clinical outcomes (age, stage) of breast cancer patients were strongly correlated with immune cell infiltration. In particular, low immune infiltration of B cells and T cells often predicted a poor prognosis while macrophages have the opposite effect (Figure 6). Further, the expression of RUNX2 was associated with the infiltration of CD4 +T cells, neutrophils, B cells, CD8 + T cells, macrophages, and dendritic cells in breast cancer. RUNX1 was positively associated with the infiltration of CD4 +T cells, neutrophils, B cells, CD8 + T cells, and macrophages in breast cancer patients, but there was no significant correlation with dendritic cells. Concerning RUNX3, except for B cells, the remaining five host immune cells have a positive correlation with RUNX3 (Supplementary Figure S1). These results suggested that the RUNX family influences the prognosis of breast cancer by interacting with immune cells infiltration.
[image: Figure 6]FIGURE 6 | The relationship between the immune cell infiltration and clinical outcome of breast cancer patients.
RUNX3 could target and regulate ULBP2 and TRDV1
In those risk predictors, the level of TSLP expression was correlated with breast cancer growth and metastasis (Kuan and Ziegler, 2018; Shi et al., 2020). PSME2, IL18 and NPR3 have been reported to have a close correlation with the proliferation, invasion, and migration of various tumors including breast cancer (Li et al., 2016a; Gu et al., 2018; Ramdas et al., 2019; Wang et al., 2021). However, the expression and function of ULBP2 and TRDV1 have not been reported. Based on the correlation analysis and research status, we chose RUNX3 and the high-risk gene ULBP2 and the low-risk gene TRDV1 as the research object. We used the JASPAR database to predict the possible binding sites of the transcription factor RUNX3 in the promoter region of ULBP2 and TRDV (Figure 7A). By selecting the sequence of potential loci with the highest score, we designed the dual-luciferase reporter assay to verify the relationship between RUNX3 and the immune genes. The results showed that ULBP2 and TRDV1 were target-regulated by RUNX3 (Figure 7B).
[image: Figure 7]FIGURE 7 | Transcription factor RUNX3 target regulated ULBP2 and TRDV1. JASPER website was used to predict the binding sites of RUNX3 in ULBP2 and TRDV1 promoter region (A). Dual-Luciferase reporter assay was used to verify the binding sequence (B).
Function analysis of ULBP2 and TRDV1 in breast cancer cells
Based on the above results, to explore the relationship between RUNX family and immune genes, we made further research on the immune genes ULBP2 and TRDV1. We applied CCK-8, Edu, Colony formation and Wound healing assays to detect the functions of ULBP2 and TRDV1 in breast cancer cells.
We assessed the impact of ULBP2 and TRDV1 knockdown on breast cancer cell functions. The CCK-8 and colony formation assays revealed that down-regulation of ULBP2 significantly suppressed cell proliferation of MDA-MB-231. However, the TRDV1 knockdown promoted the proliferation of cells (Figures 8A,C). Edu assays showed that the low expression of ULBP2 formed less DNA replication level than the control group (Figure 8B). Moreover, different scratch healing rates in wound healing analysis showed that motile ability was significantly enhanced after the knockdown of TRDV1 and decreased after knocking down ULBP2 (Figure 8D).
[image: Figure 8]FIGURE 8 | ULBP2 knockdown inhibited cell proliferation, migration and invasion in vitro, TRDV1 knockdown have the opposite functions. CCK-8 assay was performed to determine the proliferation of MDA-MB-231 cells infected with ULBP2 and TRDV1 lentivirus (A). Edu assays were used to evaluate the effect of ULBP2 and TRDV1 knockdown on breast cancer cell proliferation (B). Colony formation assays were performed to evaluate the proliferation of cells with ULBP2 and TRDV1 knockdown (C). The effect of ULBP2 and TRDV1 knockdown on cell migration was examined by wound healing assay (D).
DISCUSSION
In recent years, the role RUNX family in various tumors has attracted extensive attention, and relevant studies have confirmed their functions. Although the role of RUNX family has been partially confirmed in the tumorigenesis and prognosis of several cancers (Samarakkody et al., 2020; Hass et al., 2021), the distinct roles of RUNX family members in breast cancer remain to be elucidated. More and more studies have shown that there are many kinds of immune cell infiltrates in breast cancer tissues, these immune cells affect the pathogenesis and metastasis of breast cancer through a variety of signaling pathways, which may affect the prognosis of patients. Hence, a further bioinformatics analysis of breast cancer was performed to expound on the functions of RUNX family, especially its relationship with immune regulation. Currently, the relationship between the immune system of RUNX family members in breast cancer has not been fully studied, so our study comprehensively investigated the mRNA expression, mutation, and prognostic values (OS and RFS) of different RUNXs factors in breast cancer and especially for the first time to research their relationship with immune cell infiltration. Our findings could enhance the accuracy of predicting prognosis for patients with breast cancer.
In the progression of cancers, RUNX family has been involved in the regulation of different carcinogenic processes and signaling pathways with cancer (Sweeney et al., 2020). Hong et al. founded that RUNX1 reduces breast cancer cell migration and invasion in vitro and tumor growth in vivo, and also founded that high levels of RUNX1 expression can suppress metastasis, treatment resistance, and tumor recurrence in breast cancer (Hong et al., 2018). Co-expression of RUNX1 or RUNX3 significantly suppressed modulate YAP-mediated oncogenic phenotypes, and inhibited breast cancer progression (Niu et al., 2012). RUNX2 was overexpressed in breast and prostate cancer and associated with increased metastatic capacity. In contrary to RUNX1 and RUNX3, RUNX2 promoted cancer cell recruitment and adhesion in bone and further facilitated bone colonization (Li et al., 2016b). Meanwhile, RUNX2 expression was increased by increasing the expression of vascular endothelial growth factor, matrix metalloproteases (MMP2, MMP9, and MMP13), and bone sialoprotein (BSP) in breast cancer metastatic cells (Dowdy et al., 2010). Each RUNX factor has been researched in isolation without reference to the other genes in the family because of their lineage-specific expression. However, there was an increasing realization that RUNX genes’ functions are complementary and must be studied at the same time (Ito and Miyazono, 2003; Ito et al., 2015). Experimental evidence has revealed that RUNX genes have exhibited oncogenes or tumor suppressor genes (Kilbey et al., 2008; Blyth et al., 2010).
Tumor-infiltrating immune cells (TIICs) in the tumor microenvironment (TME) are becoming an increasingly important role in affecting tumorigenesis, progression and metastasis, and immune cells level is closely associated with the proliferation and progression of the cancer cell. Studies had pointed out that RUNX family proteins are significantly involved in the development, organization, and function of the mammalian immune system (Zusso et al., 2012). Macrophages and monocytes (Edin et al., 2012; Tong et al., 2021) had been demonstrated to be related to poor prognosis while T cells (Sato et al., 2005) meant better prognosis in various cancers. RUNX family also took part in the activation of peripheral T and B cells within these tissues through mediating DC maturation for antigen presentation (Fainaru et al., 2004; Fainaru et al., 2005; Satpathy et al., 2014). Therefore, in this study, we explored the association between the expression of RUNX family and immune cell infiltration. This study founded that the expression of RUNX2 was positively related to the immune infiltration of CD4+ T cells, CD8+ T cells, B cells, neutrophils, DC cells, and macrophages in the breast cancer microenvironment. Meanwhile, we discovered that the expression of RUNX1 was significantly correlated with the biomarkers of CD4+ T cells, CD8+ T cells, B cells, neutrophils, and macrophages. In addition, RUNX3 was not significantly correlated with B cells, but also positively correlated with other immune cells. As described in our study, the risk model related to RUNX proteins was negatively correlated with immune infiltration, indicating that the RUNX family exerted a pro-cancer effect in breast cancer. In previous studies, the mRNA and protein expression of RUNX family has been confirmed to be higher in breast cancer tissues than that in adjacent tissues (Gao and Zhou, 2021), and its expression was markedly correlated with clinical prognosis in breast cancer patients. Then, both univariate and multivariate logistic regression analyses demonstrated that 6 genes regulated by the RUNX family had a significant relationship with the prognosis of breast cancer patients, including PSME2, ULBP2, IL18, TSLP, NPR3, and TRDV1. Based on these results, we used the JASPAR database to explore the relationship between RUNX3 and ULBP2 and TRDV1, the results showed that the RUNX3 target regulated the two immune genes. In addition, we made further research on the functions of immune genes ULBP2 and TRDV1, and the results showed that down-regulation of ULBP2 suppressed cell proliferation and TRDV1 has the opposite functions.
Subsequently, we used the prognostic model constructed by these genes to divide breast cancer patients into subgroups for comparative analysis, further verifying the independent predictive value in breast cancer patients. As a result, a statistically significant difference in the overall survival rate was found between the two subtypes.
In conclusion, we developed and validated a prognostic model for patients with breast cancer. The results showed that our model could promote the development of the prognostic assessment, improve the accuracy of predicting the prognosis of breast cancer patients, and is expected to become a new independent biomarker for the prognosis of breast cancer patients. In this study, though, we discussed the important role of RUNX family members in breast cancer, however, the limitations of this study should be noted. First, we analyzed and evaluated our gene family by using limited data and clinical information from the genomic commons data. In addition, it is critical to verify the functional characteristics and molecular mechanisms of RUNX family through biological experiments and clinical studies.
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Phosphoserine aminotransferase 1 (PSAT1) may be an oncogene that plays an important role in various cancer types. However, there are still many gaps in the expression of PSAT1 gene and its biological impact in different types of tumors. Here, we performed an integrated pan-cancer analysis to explore the potential molecular mechanisms of PSAT1 in cancers. We found that most human tumors express higher levels of PSAT1 than normal tissues, and that higher PSAT1 expression is associated with worse prognosis in Lung adenocarcinoma (LUAD), Pan-kidney cohort (KIPAN) and breast invasive carcinoma (BRCA), etc. In BRCA cases, the prognosis of patients with altered PSAT1 was worse than that of patients without alteration. In addition, PSAT1 hypermethylation is associated with T cell dysfunction and shortened survival time in BRCA. The Gene Set Enrichment Analysis (GSEA) analysis showed that PSAT1 can be enriched into the classic signaling pathways of cancer such as mTORC1 signaling, MYC targets and JAK STAT3. Further analysis demonstrated that PSAT1 was enriched in immune related signaling pathways in LUAD and BRCA. The results of immunoassay showed that PSAT1 was associated with immune cell infiltration in multiple cancer species. Furthermore, expression of PSAT1 was correlated with both tumor mutational burden (TMB) and microsatellite instability (MSI) in BRCA. Additionally, a remarkable correlation was found between PSAT1 expression and TMB in LUAD, and the expression of PSAT1 was negatively correlated with the Tumor Immune Dysfunction and Exclusion (TIDE) value, suggesting a good effect of immunotherapy. Together, these data suggest that PSAT1 expression is associated with the clinical prognosis, DNA methylation, gene mutations, and immune cell infiltration, contributing to clarify the role of PSAT1 in tumorigenesis from a variety of perspectives. What’s more, PSAT1 may be a new biomarker for survival and predicting the efficacy of immunotherapy for LUAD and BRCA.
Keywords: PSAT1, bioinformatics analysis, immunotherapy, cancer, prognosis
1 INTRODUCTION
The development, invasion and metastasis of malignant tumors have very complex mechanisms. With the deepening of research, people have a certain understanding of the pathogenesis of some tumors, and the immunotherapy of malignant tumors has made a certain breakthrough. However, at present, there are still many gaps in the understanding of malignant tumors. The poor efficacy of immunotherapy for some tumors has brought great challenges to clinical treatment (Remon et al., 2020). This is mainly due to the lack of specific markers for diagnosis, prognosis and immunotherapy efficacy prediction. Therefore, it is of great clinical and practical significance to analyze the pan cancer expression of genes of interest and evaluate their relationship with clinical prognosis, potential molecular mechanisms and immune efficacy prediction.
PSAT1 belongs to the family of class V aminotransferases. It is an important rate limiting enzyme in the serine-glycine synthesis pathway, and glycine is an significant nutrient for the proliferation of malignant tumor cells. To convert 3-phosphohydroxypyruvate into L-phosphoserine, PSAT1 participates in the glutamate-linked transamination reaction, which is the second step of the serine-glycine biosynthetic pathway (Basurko et al., 1999). Song Gao et al. found that PSAT1 is significantly up-regulated in ER negative breast cancer and this up-regulation was able to enhance the proliferation of ER-negative breast cancer cells in vitro via the GSK3β/β-catenin/cyclin D1 pathway (Gao et al., 2017). In addition, Jun Dai et al. found that overexpression of microRNA-195–5p reduces cisplatin resistance and angiogenesis in ovarian cancer by inhibiting the PSAT1-dependent GSK3β/β-catenin signaling pathway (Dai et al., 2019). More and more evidence showed that PSAT1 may be a biomarker of many cancers as an oncogene (Chan et al., 2020; Metcalf et al., 2020; Wang et al., 2020). However, beyond the limited information provided by these studies, the role of PSAT1 in malignant tumors is still unclear.
In this study, we used the data available in the public database to conduct a comprehensive pan cancer analysis of PSAT1 to determine the correlation between its expression and the prognosis of various malignant tumors. In addition, we also performed bioinformatics analysis to determine the relationship between the expression of PSAT1 and promoter methylation, gene mutation, as well as tumor immune microenvironment and immunotherapy efficacy prediction in a variety of human tumors.
2 MATERIALS AND METHODS
Figure 1 showed the workflow of this study.
[image: Figure 1]FIGURE 1 | Workflow plot of the study design.
2.1 Description of the PSAT1
The variant information of PSAT1 was derived from the PROTTER software tool (Omasits et al., 2014). (https://wlab.ethz.ch). A collection of Immunostaining images of PSAT1 protein localization was obtained from the Human Protein Atlas (https://www.proteinatlas.org) (Uhlén et al., 2015), We used the immunofluorescence staining images of two human cancer cell lines (A-431, U251 and U-2OS) to show the subcellular localization of PSAT1 in cancer cells. Then we collected expression profiles under physiological conditions of PSAT1 from GeneCards (http://www.genecards.org). By integrating genetic, omics, and chemical data, the OPENTARGET platform (https://www.targetvalidation.org) assists in identifying gene roles in disease and aids in the systematic identification of drug targets and prioritization (Carvalho-Silva et al., 2019).
2.2 Data processing and differential expression analysis
RNA sequencing and modification, somatic mutation, epigenetic and transcriptomic data and related clinical data were downloaded from normalized data sets: The Cancer Genome Atlas (TCGA) TARGET GTEx (PANCAN, n = 19,131, g = 60,499) using UCSC Xena (https://xena.ucsc.edu/), from which we further extracted the ENSG00000135069 gene (PSAT1). The expression of PSAT1 was evaluated in 34 normal tissues and matched standard samples in 34 cancers using the downloaded data and expression levels compared between cancer samples. Through the module of “Pathological staging map” of GEPIA2, the violin map of PSAT1 expression of TCGA tumors we obtained in different pathological stages into box violin map expression data. To assess the difference in PSAT1 expression at the protein level. A comparison of PSAT1 expression in primary tumors and normal tissues was conducted with UALCAN (http://ualcan.path.uab.edu/index.htm). From the Human Protein Atlas (HPA), images of the expression of PSAT1 protein in seven tumor tissues and the corresponding normal tissues have been downloaded and analyzed. Expression data were Log2 [TPM (PSAT1) +1] transformed and two sets of t-tests conducted on these tumor types; p < 0.05 were considered to indicate differential expression between tumor and normal tissues. Data analysis was conducted using R software (Version 4.0.2; https://www.Rproject.org).
2.3 Genetic alteration analysis
With a web browser, we went to the cBioPortal website (https://www.cbioportal.org/), selected the TCGA Pan Cancer Atlas Studies section, and used PSAT1 to search for genetic alterations (Cerami et al., 2012; Gao et al., 2013). The “Cancer Type Summary” module provides results for mutations and copy number variations (CNAs) of the PSAT1 gene. With the Mutation module, information on the mutation sites of PSAT1 can be displayed in a protein schematic or in a three-dimensional (3D) structure. In addition, in BRCA cases with and without PSAT1 mutation, we determined differences in overall survival (OS), disease-free survival (DFS) and progression-free survival (PFS) by using the “Compare” module. Meanwhile, the log-rank p-value Kaplan-Meier graph is generated.
2.4 RNA modification correlated analysis
We divided all related genes according to RNA modification types (N1-methyladenosine, 5-methylcytosine and N6-methyladenosine modifications) and the types of regulators (writer, reader and eraser) into two groups (Nombela et al., 2021). The correlation between gene expression of PSAT1 and related genes in cancer was analyzed using Spearman’s method. Different colors represent correlation coefficients in heat maps, which are divided into horizontal and vertical axes based on cancer types and gene markers.
2.5 Epigenetic methylation analysis
As part of UALCAN’s interactive web resource, using the TCGA methylation module, we compared methylation levels among normal tissues and tumor tissues. By measuring its beta value, a promoter is assessed for methylation status, which ranges from zero (unmethylated) to one (fully methylated). Different β cut-off points indicate hypermethylation (b: 0.7–0.5) and hypomethylation (b: 0.3–0.25), respectively (Shinawi et al., 2013; Men et al., 2017). Moreover, we used TIDE server to analyze the effects of methylation on the phenotype and prognosis of dysfunctional T cells.
2.6 Survival prognosis analysis
Related prognostic information, including OS time and PFS time were also downloaded from the UCSC Xena database except breast and lung cancers, which were generated using the Kaplan–Meier Plotter website. The cohorts were split according to expression levels using a 50% cutoff value for high and 50% for low. Finally, the log-rank p value of the K-M method and hazard ratio (HR) with a 95% confidence interval (95% CI) were computed, and the outcomes were summarized and presented in Supplementary Tables. The significant association of PSAT1 expression with worse or better prognosis was further validated in survival curves.
2.7 PSAT1-related gene enrichment analysis
The PPI network was created using the STRING (https://string-db.org/) website to screen 50 experimentally verified proteins binding to PSAT1. PSAT1 and selected genes were analyzed by the Correlation Analysis Module of GEPIA2. The point plot uses LOG2 TPM. p values and correlation coefficients (R) are indicated. For the correlation heatmap in Figure 5B, we used purity-adjusted Spearman rank correlation to provide partial correlation (cor) and p values for selected genes in the “Gene_Corr” module containing TIMER2. The mRNA expression levels and the subtypes of cancer are all from RNA-Seq on TCGA. Especially, TCGA BRCA subtypes, based on the PAM50 gene set including LumA, LumB, Her2, and Basal subtypes were from https://github.com. The combined gene lists are then uploaded to DAVID for analysis, using the Functional Annotation Tool. With the Cluster Profiler R package (v3.6.0), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted. GSEA was employed to investigate the potential biological process of PSAT1 in pan-cancer. GSEA was performed using R packages “cluster profiler” (Yu and He, 2016). Adjusted p values <0.05 were considered statistically significant. Gene-sets used in Figure 6E were c7 Immune Sig DB, Supplementary Figure S3 were Hallmarks v7.2 from GSEA Molecular Signatures Database.
2.8 Immune infiltration and cell type-level expression analysis
By using the TIMER2 server, we assessed the correlation of PSAT1 expression and immune cells, including CD4+ T cell clusters, CD8+ T cells, dendritic cells (DCs), macrophages, neutrophils, and B cells across all TCGA tumors. The data is visualized as heat map. p values and partial correlation coefficients (CORs) were derived by adjusting the Spearman rank correlation. Moreover, PSAT1 expression and tumor purity were investigated. To estimate the abundance of tumor infiltrating immune cells, a previously published statistical deconvolution methodology was applied [18]. Then, we selected testicular germ cell tumors (TGCT), lung squamous cell carcinoma (LUSC), BRCA, glioblastoma (GBM), low grade glioma (LGG) and bladder urothelial carcinoma (BLCA), which are highly correlated with immune cells, to make scatter plots. According to the correlation between immune cell types and cancer species, the expression of immune cell subtypes in the different types of cancer was also examined. The PSAT1 expression and cell type-level expression was analyzed using GEPIA1 (GEPIA 2021. cancer-pku. cn).
2.9 Immune modulator genes correlation analysis
We extracted from each tumor sample the expression data of 60 marker genes of two types of immune modulator genes (24 Inhibitory and 36 Stimulatory), and further we screened the samples for the following sources: Primary Solid Tumor, Primary Tumor, Primary Blood Derived Cancer-Bone Marrow, Primary Blood Derived Cancer-Peripheral Blood. We also filtered all normal samples, and furthermore, for each next, we generated a pearson correlation analysis heatmap of the marker genes of the two types of immune modulator genes and PSAT1 gene expression in various cancers. In the heat map, cancer types are displayed horizontally, immune genes are displayed vertically, and correlation coefficients are displayed as colors.
2.10 TMB, MSI and TIDE correlated analysis
In order to determine whether PSAT1 gene expression was related to TMB or MSI scores, we downloaded the simple nucleoside variation data set of level4 of all TCGA samples processed by mutect2 software (doi:10.1038/nature08822) from GDC（https://portal.gdc.cancer.gov/）. The samples with expression level of 0 and cancer species with less than 3 samples in a single cancer species were filtered. Log2 (x+0.001) transformation was carried out for each expression value. Finally, the expression data of PSAT1 of 37 cancer species were obtained. Next, the TMB function of R software package maftools (version 2.8.05) was used to calculate the TMB of each tumor. In addition, we obtained the MSI score of each tumor from the previous study (Bonneville et al., 2017). Eventually, we integrated and analyzed the expression of PSAT1, TMB and MSI. PSAT1, TMB and MSI are shown in the horizontal axis of the graph, and cancer types are shown in the vertical axis. There are different types of cancer represented by different colors of dots in the graph and the dots size represents the magnitude of the correlation coefficients, with diverse colors indicating p-values. To evaluate PSAT1 gene expression in tumor samples and the possibility of tumor immune escape, TIDE score was calculated online (http://tide.dfci.harvard.edu/). TIDE score was used to evaluate clinical efficacy in decision making of immune checkpoint inhibition therapy. TIDE score between groups was compared by the Student’s t test (Jiang et al., 2018).
3 RESULTS
3.1 Physiological characteristics of PSAT1 variants, localization, and expression profiles
The PSAT1 protein topology revealed no obvious mutation (Supplementary Figure S1A). To study the intracellular localization of PSAT1, we used indirect immunofluorescence to evaluate the distribution of PSAT1 in the endoplasmic reticulum (ER), nucleus and microtubules of A-431 (Human epidermal carcinoma), U-251MG (Human astroglioma cells) and U-2 osteosarcoma cells. Our analysis results showed that PSAT1 overlapped with ER markers in above 3 cell lines, which indicated the subcellular localization of PSAT1 in ER. In other words, there is no expression of PSAT1 in the nucleus or microtubules (Supplementary Figure S1B). We also analyzed the distribution of PSAT1 mRNA in normal tissues, the results indicated that it was distributed in immune, nervous system, secretory, muscle and reproductive tissues (Supplementary Figure S1C). In addition, by analyzing the gene and disease network interaction, we found its related diseases, including neurological diseases, nutritional or metabolic diseases, and congenital diseases (Supplementary Figure S1D).
3.2 Gene expression analysis data
First, we used TIMER2 to compare the mRNA expression profiles and the expression level of PSAT1 in each type of tumor and their corresponding normal tissue. According to Figure 2A, the expression level of PSAT1 in the tumor tissues of BLCA, Cervical squamous cell carcinoma and Endocervical adenocarcinoma (CESC), Colon adenocarcinoma (COAD), Esophageal carcinoma (ESCA), Head and neck squamous cell carcinoma (HNSC), LUAD, LUSC, Prostate adenocarcinoma (PRAD), Rectum adenocarcinoma (READ), Stomach adenocarcinoma (STAD), and Uterine Corpus Endometrial Carcinoma (UCEC) is higher than the corresponding normal control tissues. However, the expression of PSAT1 is lower in Acute Myeloid Leukemia (LAML), Cholangiocarcinoma (CHOL), Kidney renal clear cell carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP) than the corresponding normal tissues. Generally, most human tumors expressed PSAT1 at a higher level than normal.
[image: Figure 2]FIGURE 2 | PSAT1 gene expression in cancers and different pathological stages of the same tumor. (A)Increased or decreased expression of PSAT1 in different cancers or specific cancer subtypes through TIMER2. *p < 0.05; ***p < 0.001; ***p < 0.0001. (B) PSAT1 total protein expression between normal and primary tissues of breast cancer, colon cancer, ovarian cancer, clear cell RCC, UCEC, lung cancer, pancreatic cancer, head and neck cancer, GBM and liver cancer through the CPTAC dataset. **p < 0.01; ***p < 0.001. (C) Analyzing the expression level differences of PSAT1 in different pathological stages of BRCA, KICH, KIRC, KIRP, STAD, TGCT, THCA, UCEC through TCGA database.
By analyzing the CPTAC data set, we were also able to analyze the expression of PSAT1 total protein. Primary tissues from cancerous tumors such as ovarian cancer, colon cancer, UCEC, lung cancer, and head and neck cancer had higher expression levels than normal tissues. On the other hand, we also discovered that primary tissues of breast cancer, liver cancer, clear cell renal cancer, and pancreatic cancer have lower levels of PSAT1 total protein expression (Figure 2B).
Additionally, we examined differences in the expression of PSAT1 within the same cancer at different stages after analyzing PSAT1 expression in different cancer types. For this reason, the “Pathological Stage Plot” module of GEPIA2 was employed to investigate the correlation of PSAT1 expression and cancer pathological stages. PSAT1 expression differs significantly in BRCA, KIRC, Kidney Chromophobe (KICH), KIRP, STAD, TGCT, thyroid carcinoma (THCA) and UCEC in different stages, but it is particularly pronounced in KIRP (Figure 2C). This suggests that we need to dynamically observe the expression of PSAT1 in different stages of the same tumor and PSAT1 may have different roles in the progression of the tumor.
3.3 The genetic alteration and RNA modification of PSAT1 in pan-cancer datasets
Based on TCGA database, we examined the status of genetic alteration of PSAT1 in various kinds of cancers. In all types of tumors, PSAT1 mutation rates were relatively low (less than 3%). As shown in Figure 3A, PSAT1 alterations are more frequently found in UCEC patients with a mutation than in skin cutaneous melanoma patients. The “amplification” and “deep deletion” type of CNA were the main type of sarcoma cancer cases and diffuse large B-cell Lymphoma cases, with an alteration frequency of ∼1.2 and ∼2.1% respectively. Figure 3B illustrates the types, locations, and number of genetically altered PSAT1 cases. The major type of genetic alteration was a missense mutation of PSAT1, with the highest alteration frequency being R213 H/C (Figure 3B). The 3D protein structure of PSAT1 was shown in Figure 3C.
[image: Figure 3]FIGURE 3 | Mutation and RNA modified features of PSAT1 in cancers of TCGA. (A) Bar plot of PSAT1 alteration frequency with mutation type and (B) mutation site through cBioPortal tool. (C) The highest alteration frequency (R213HC) in the 3D structure of PSAT1 was displayed. (D) Analyzing the relationship between different mutation states and overall, disease-specific, disease-free and progression-free survival using the cBioPortal tool. (E) Correlation analyses of PSAT1 and three kinds of RNA modified (m1A (Carvalho-Silva et al., 2019), m5C (Nombela et al., 2021), m6A (Vié et al., 2008)) marker genes in Pan-Cancer. *p < 0.05.
Additionally, we examined whether alterations of PSAT1 genes affect different types of cancer patient’s prognosis. BRCA cases with altered PSAT1 showed a worse prognosis in DFS (p = 3.3e-09), disease-specific (p = 5.5e-06), OS (p = 2.1e-04) and PFS (p = 7.0e-11), compared with cases without PSAT1 alteration (Figure 3D).
The occurrence and development of tumors are closely related to RNA modification. Studies have shown that RNA modifying enzymes in tumor cells help to maintain cell proliferation and promote tumor progression. We analyzed the expression of PSAT1 and three kinds of RNA modified (10 m1A types, 13 m5C types, and 21 m6A types) marker genes in Pan cancer. Many cancer species, such as uveal melanoma (UVM), OC, UCEC, GBM, LUSC, etc., showed positive correlations between PSAT1 expression and RNA modification (Figure 3E).
3.4 Promoter methylation of PSAT1
We studied the promoter methylation status of PSAT1 and found that this gene is highly methylated in BRCA, ESCA, CHOL, and KIRC. While it is hypomethylated in LUSC, HNSC, UCEC, BLCA and COAD (Figure 4A). Additionally, PSAT1 methylation status was studied in various cancer types and found to have a negative relationship with dysfunctional T cell phenotypes and shorter survival times of the breast cancer. Interestingly, although the methylation status of PSAT1 is not different between glioblastoma and normal tissues, hypermethylation of PSAT1 was associated with shorter survival duration of glioma (Figure 4B). Accordingly, we studied the effect of methylation status of PSAT1 on survival prognoses in breast cancer and glioblastoma, and found that hypermethylation status was associated with better outcomes (Figure 4C). In colorectal and kidney cancers, methylation status is not significantly correlated with prognosis, consistent with the result of Figure 4B.
[image: Figure 4]FIGURE 4 | The methylation levels of PSAT1 in cancers and poor prognosis of cancer cohorts. (A) The methylation levels of PSAT1 between cancer and adjacent normal tissues through TCGA database. *p < 0.05; **p < 0.01; ***p < 0.001 (B) Heatmap showing the role of PSAT1 methylation in cytotoxic T-cell levels (CTLs), dysfunctional T-cell phenotype, and risk factors of TCGA cancer cohorts (C) Analyzing the difference in overall survival between PSAT1 hypermethylated and hypomethylated in various tumors through the TCGA database.
3.5 Survival analysis data
For the purpose of assessing whether PSAT1 expression determines patients’ prognosis, we divided TCGA, Gene Expression Omnibus database (GEO) and European Genome-Phenome Archive (EGA) datasets based on the level of expression of PSAT1. According to Figure 5A, high expression of PSAT1 was associated with a poor OS prognosis in LUAD (p = 2.9e-11), KIPAN (p = 2.9e-07), KIRC (P = 3e-06), LAML (p = 5.2e-06), KIRP (p = 6.9e-06), Mesothelioma (MESO) (p = 2.9e-05) and BRCA (p = 8.3e-03) cancers. Nevertheless, high PSAT1 expression levels were associated with an improved OS prognosis in LGG and GBM (p = 6.7e-09) cancers.
[image: Figure 5]FIGURE 5 | The relationship between PSAT1 gene expression and survival prognosis of cancers. (A) Forest map showing the relationship between the expression of PSAT1 and OS rate in Pan cancer (B) Kaplan-Meier curve showing the effect of PSAT1 gene expression on the OS in LUAD, LGG/GBM, KIPAN and BRCA (C) Forest map showing the relationship between the expression of PSAT1 and PFS rate in Pan cancer (D) Kaplan-Meier curve showing the effect of PSAT1 gene expression on the PFS in LUAD, LGG/GBM, KIPAN and BRCA.
Based on PFS analysis data (Figure 5C), high PSAT1 expression was associated with poor PFS in LUAD (p = 1.5e-06), KIPAN (p = 1.3e-08), KIRC (p = 4.5e-08), MESO (p = 3.8e-05), KICH (p = 6.8e-04), KIRP (p = 2.2e-03) and BRCA (p = 2.1e-02) cancers. However, high expression of the PSAT1 gene was related to better PFS prognosis in LGG and GBM (p = 1.0e-05). The relationship between the expression of PSAT1 in other cancer species and prognosis are shown in Supplementary Table S1.
According to the results of the above survival analysis, we found that the increased expression of PSAT1 was associated with poor prognosis of LUAD and BRCA (Figures 5B, D). Interestingly, the increased expression of PSAT1 is related to good prognosis of LGG and GBM, suggesting that PSAT1 may play different roles in different tumors.
3.6 Enrichment analysis of PSAT1 and related proteins
In order to examine the molecular mechanisms involved in tumorigenesis and development of PSAT1, we screened out related genes that target PSAT1 binding protein and PSAT1 expression. Additionally, we performed a series of pathway enrichment analysis. In total, 50 PSAT1-binding proteins were identified using the STRING program, which was supported by experiments. Figure 6A is a gene interaction network diagram, which showed 50 binding proteins related to the PSAT1 gene. To determine which genes are associated with PSAT1 expression, all TCGA tumor expression data was evaluated using GEPIA2. A positive correlation was found between PSAT1 expression levels and expression levels of A2ML1 (R = 0.62), MTHFD1L (R = 0.63), PHGDH (R = 0.66), HMGB3 (R = 0.49) and GPM6B (R = 0.72) and CCDC82 (R = 0.64) genes (all p < 0.001) (Supplementary Figure S2). According to the heat map, PSAT1 is positively correlated with the above five genes in BRCA, indicating that these five genes may interact with PSAT1 in breast cancer (Figure 6B).
[image: Figure 6]FIGURE 6 | PSAT1-related gene enrichment analysis. (A) PSAT1-binding proteins were analyzed through an online tool String (B) The heatmap data of PSAT1 related genes in the TCGA project through GEPIA2 were displayed (C) KEGG pathway analysis was performed based on the PSAT1-binding and interacting genes (D) GO analysis for the molecular function. (E) GSEA analysis showing the enrichment of immune signal pathways in BRCA and LUAD.
For the purpose of KEGG and Gene Ontology (GO) enrichment analysis, these two datasets were combined. According to Figure 6D, KEGG data indicated that PSAT1 may play a role in tumorigenesis through its effects on “carbon metabolism”, “acid secretion from the stomach”, and “adrenergic signaling in cardiomyocytes”. In GO enrichment analysis, molecular functional histogram showed that majority of these genes were associated with negative regulation of glial production, transport, glial cell differentiation and myelination sheathing (Figure 6C).
We further employed GSEA to investigate the potential biological processes of PSAT1 in pan-cancer according to the results of survival analysis. The results found that PSAT1 can be enriched into the classic signaling pathways of cancer such as mTORC1 signaling, MYC targets and JAK STAT3 signaling (Supplementary Figure S3). Further analysis showed that PSAT1 was enriched in immune related signaling pathways in LUAD and BRCA (Figure 6E).
3.7 Immune infiltration analysis data
To study the role of PSAT1 in the tumor immune microenvironment, we quantified its expression and immune infiltration levels in Pan-cancers. As seen in Figure 7A, PSAT1 expression is significantly correlated with the infiltrating of immune cells: B cells in 13 types of cancer, CD4+ T cells in 17 types of cancer, CD8+ T cells in 12 types of cancer, Neutrophil in 11 types of cancer, macrophages in 14 types of cancer and DCs in 13 types of cancer. We found the expression of PSAT1 is associated with immune cell infiltration in a number of tumor types, especially in BRCA and LUSC.
[image: Figure 7]FIGURE 7 | Correlation analysis between PSAT1 expression and immune infiltration of cancer-associated fibroblasts. (A) Heatmap showing correlation of PSAT1 expression with infiltration by six immune cell types, *p < 0.05; **p < 0.01; ***p < 0.001; ***p < 0.0001 (B) The detail relationship between the expression of PSAT1 and six immune cells infiltration in TGCT, LUSC,BRCA,GBM, LGG and BLCA.(C) The expression changes of immune cell subsets in different tumors.
Based on the results in Figure 7A, we show in detail the relationship between PSAT1 expression and the infiltration of six immune cells, TGCT, LUSC, BRCA, GBM, LGG and BLCA, which have a greater correlation with immune cell infiltration (Figure 7B). TGCT and LUSC expressed PSAT1 in a significantly negative manner with regard to the infiltration of B cells, CD4+ T cells, macrophages, neutrophils, and DCs. Furthermore, PSAT1 in LUSC correlated negatively with CD8+ T cell infiltration as well. It was found that there was a significant correlation between PSAT1 expression and B-cell, CD4+ T-cell, CD8+ T-cell, neutrophil, and granulocyte infiltration in BRCA. BLCA revealed that PSAT1 expression was negatively correlated with the infiltration of CD8+ T cells, neutrophils, macrophages, and DCs. In GBM, PSAT1 expression showed a remarkable negative correlation with infiltration of CD8+ T cells, neutrophils, and macrophages. It is interesting to note that, as in glioma, LGG showed a clear positive correlation between PSAT1 expression and infiltration of B cells, CD8+ T cells and neutrophils, but a negatively correlation with infiltration of CD4+ T cells. This indicates that GBM and LGG are formed by different mechanisms and that PSAT1 plays a different role in GBM and LGG.
We further analyzed the changes in expression of immune cell subpopulations in different tumors based on the correlation between PSAT1 and immune cells. As shown in Figure 7C, memory B cells were lower than naive B cells in BRCA, TGCT and LUSC. Resting CD4+ T cells is higher than activated CD4+ T cells and naive CD4+ T cells in COAD, TGCT, BLCA, pheochromocytoma and paraganglioma (PCPG), GBM, UVM and BRCA. M2 macrophages is higher than M1 macrophages in BRCA, TGCT, LUSC, THCA, KIRC and GBM. Activated NK cell is higher than resting NK cell in THCA, HNSC and COAD. Based on the above research results between PSAT1 and the immune cells expression in cancers, PSAT1 is an important part of the immune microenvironment of Pan-cancer.
3.8 Pan-cancer analysis of immune modulators, TMB and MSI expression in relation to PSAT1 expression
A tumor can utilize immune checkpoints to evade immune responses, including PD-1, PD-L1, and CTLA-4. Researchers need to investigate how PSAT1 expression is correlated with pan-cancer tumor microenvironment (TME), as well as examine how PSAT1 expression is correlated with two major immunomodulators. A Negative correlation between PSAT1 expression and most immunosuppressive and immunostimulatory agents was found in TGCT, Neuroblastoma (NB), KIPAN, LUSC and THCA (Figure 7A). It is worth mentioning that a positive correlation between PSAT1 expression and most immunosuppressive and immunostimulating agents has been observed in BRCA (Figure 8A).
[image: Figure 8]FIGURE 8 | Correlation analyses of the PSAT1 expression with immune checkpoint genes, TMB, MSI and TIDE score. (A) Correlation analyses of the PSAT1 expression with immune checkpoint genes in pan-cancer. *p < 0.05 (B) A bar chart showing the association between PSAT1 expression and TMB in pan-cancer (C) A bar chart showing the association between PSAT1 gene expression and MSI in pan-cancer (D) Tide score in LUAD and BRCA, ***p < 0.001 (E) Cancer species with significant correlation between PSAT1 and TMB.
Building on the correlation between PSAT1 and immune checkpoints, we took a step further to assess the therapeutic efficacy of immunotherapy for pan-cancer. TMB and MSI with PSAT1 expression was investigated, which are biomarkers of immunotherapeutic response. Moreover, TIDE score was also assessed. We found that expression of PSAT1 was correlated with both TMB and MSI in BRCA (Figures 8B, C). In addition, a remarkable correlation was found between PSAT1 expression and TMB in LUAD (Figure 8B), and the expression of PSAT1 was negatively correlated with the TIDE value (Figure 8D). Cancer species with significant correlation between PSAT1 and TMB are shown in Figure 7E. These results also together suggest that immunotherapy for LUAD and BRCA may be effective.
4 DISCUSSION
Worldwide, tumors are currently the main threaten of health for people. Targeted therapies are a rising trend in cancer researches. The function of PSAT1 in diseases, including cancer, is being studied in ever-increasing numbers of studies. In certain cancer types, PSAT1 may contribute to the tumor initiation process, but this is unclear. Therefore, we analyzed in detail the role and possible mechanism of PSAT1 in Pan cancers. This study combined gene expression, gene mutation, methylation, immune microenvironment, pathway enrichment, and survival prognosis to comprehensively detect the expression of PSAT1 gene in different cancers on account of data from the TCGA, GEO, and CPTAC databases.
In the second step of serine synthesis, PSAT1 is an important transaminase that links glycolysis and serine biosynthesis and 3-phosphate hydroxypyruvate was converted to phosphoserine. Purine nucleotides, phosphatidylcholine, phosphatidylserine and other cellular metabolites are serine dependent as a carbon source. Therefore, PSAT1 is also an important substance in the metabolic pathway of cancer cells. Former studies have illustrated that serine biosynthesis has a key role in bone metastatic breast cancer, and three enzymes, PSAT1, phosphoserine phosphatase and phosphoglycerol dehydrogenase, are in charge of the phosphorylation pathway of L-serine biosynthesis (Pollari et al., 2011). Depending on the tumor type, several reports have implicated PSAT1 in many oncogenic processes including proliferation, migration, invasion, and chemoresistance (Vié et al., 2008; Yang et al., 2015; Kottakis et al., 2016; Liu et al., 2016; De Marchi et al., 2017; Gao et al., 2017; Dai et al., 2019; Metcalf et al., 2020). Our results also suggested that PSAT1 is highly expressed in many malignant tumors and is associated with advanced stage of tumors. At the same time, high expression of PSAT1 is associated with poor prognosis in many tumors. The role of PSAT1 in some malignant tumors has been explored initially (Ojala et al., 2002; Vié et al., 2008). Based on loss of function and gain of function experiments, PSAT1 is generally shown to promote cell cycle progression, proliferation, and tumorigenesis (Yang et al., 2015). There is some evidence that PSAT1 expression is related to malignant metastasis, chemotherapy sensitivity, and poor prognoses (Vié et al., 2008). In colorectal cancers, PSAT1 is considered the most upregulated gene and its overexpression is linked to advanced tumor stage, chemo-resistance and poor prognosis with endocrine therapy (Qian et al., 2017). Our pan cancer analysis also found this result. The expression of PSAT1 was significantly increased in colorectal cancer. In non-small cell lung cancer (NSCLC), PSAT1 has been reported to be significantly increased. This gene may also be involved in proliferation and cell cycle regulation of tumor cells (Yang et al., 2015). PSAT1 potentiates G1 activity by modulating the degradation of cyclin D1 and the activity of the Rb-E2F pathway, indicating its unique intracellular signaling axis. Patients with NSCLC with elevated PSAT1 expression have a poor clinical prognosis. This is consistent with our research results that our findings also showed that the expression of PSAT1 in lung cancer tissues was higher than that in normal tissues. In addition, Stephanie Metcalf et al. demonstrated that the expression of PSAT1 in triple negative breast cancer was higher than that in normal tissues, and increased with the increase of breast cancer stage (Metcalf et al., 2020). Interestingly, our results showed that PSAT1 first increased and then decreased with the increase of breast cancer stage, and its expression in breast cancer was lower than that in normal tissues. This may be because we did not classify breast cancer for subgroup analysis. Song Gao et al. also found for the first time that the expression of PSAT1 was significantly upregulated in ER-negative breast cancers compared with ER-positive breast cancers (Gao et al., 2017). This also reflects that our research results are inconsistent with the previous results, which may be due to different mechanism of PSAT1 in different pathological types of breast cancer.
It is worth mentioning that Stanley Ching et al. found that PERK activation mediates the up regulation of PSAT1 and serine biosynthesis through the downstream transcription factor ATF-4, and PERK is the key metabolic hub of macrophage immunosuppressive function (Raines et al., 2022). Their results describe for the first time the relationship between PERK signaling and PSAT1 mediated serine metabolism, and also suggest that PSAT1 is involved in the regulation of tumor immune microenvironment. This is consistent with our research that we found PSAT1 may be an important part of the immune microenvironment of BRCA and LUAD, and it may be a potential biomarker to predict the efficacy of immunotherapy for BRCA and LUAD.
Our research found that the expression level of PSAT1 in BLCA, CESC, COAD, ESCA, HNSC, KICH, LUAD, PRAD, READ, STAD, UCEC and LUSC tumor tissues was higher than the corresponding control tissues. However, the expression is lower in BRCA, CHOL, KIRC, KIRP, liver hepatocellular carcinoma (LIHC) and THCA. This difference in expression levels may reflect the differences in the function and mechanism of PSAT1 in different tumors. Our further analysis found that for tumor patients with higher PSAT1 expression, such as ACC, KIRC, KIRP, LIHC, sarcoma (SARC) and UVM, the overexpression of PSAT1 is associated with poor OS. According to these findings, PSAT1 is a potential biomarker for cancer prognosis prediction. We noted that the increase in PSAT1 was associated with poor prognosis of survival in most tumors. However, it is rare to find PSAT1 in mesothelioma in previous studies. We may have discovered a new biomarker that predicting the survival of patients with mesothelioma.
In our analysis, several noteworthy findings were found, especially in breast cancer. The results revealed that PSAT1 expression was varied in different stages of breast cancer. Its expression increases in breast cancer stages I to II, but in stages III to X, the expression of PSAT1 gradually decreases. This suggests that elevated PSAT1 in the early stage of breast cancer may be one of the markers for metastasis. However, Further analysis revealed that patients with elevated PSAT1 expression had a better prognosis. Hence, the prognostic significance of PSAT1 needs to be dynamically evaluated at different stages of breast cancer. In addition, molecular experimental studies must be conducted in order to determine if PSAT1 expression is related to cancer development in the above tumor types. We found that BRCA cases with altered PSAT1 showed worse prognosis in DFS, OS and PFS, compared with cases without PSAT1 alteration.
Interruption, progression, and metastasis of cancer are closely linked to the actions of tumor-infiltrating immune cells, which are prominent components in the tumor microenvironment (Fridman et al., 2010; Steven and Seliger, 2018). Researchers reported that stromal fibroblasts contribute to the modulation of tumor-infiltrating immune cells by modulating the function of cancer-associated fibroblasts (Chen and Song, 2019; Kwa et al., 2019). In light of this, examining the relationship between PSAT1 expression and immune infiltration is of great importance. Among the main findings of our study is the association between PSAT1 expression and immune infiltration in a variety of cancers, especially BRCA, Luminal, and LGG. Our results have demonstrated that PSAT1 expression responded positively to the level of infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and DCs in BRCA Luminal and LGG. Interestingly, the expression level of PSAT1 in LGG has nothing to do with tumor purity, which indicates that it has the same expression in tumor cells and tumor microenvironment. The PSAT1 expression level in BRCA Luminal, however, has a significant negative correlation with tumor purity, indicating enhanced expression within the tumor microenvironment. B cells and macrophages are important antigen-presenting cells. PSAT1 expression is significantly associated with B cell and macrophage expression in BRCA Luminal, GBM, and LGG. In both TGCT and THCA, however, B cells and macrophages were negatively correlated with PSAT1. These variations suggest that tumors are somewhat heterogeneous in their recruitment of antigen-presenting cells to TME. In conclusion, these results demonstrate that PSAT1 plays a significant role in the recruitment and the modulation of tumor immune infiltrating cells and may ultimately have an impact on patients’ survival.
In our study, the prognostic value of PSAT1 in pan-cancer was confirmed. It was found that PSAT1 with high expression in KIRP, KIRC and MESO had worse OS and DFS comparing with low expression. On the contrary, high PSAT1 expression levels are associated with better OS and DFS of LGG and GBM. This indicates that PSAT1 may play a completely different role in glioma compared to other tumors, which also reflects the heterogeneity of tumor occurrence and development and the particularity of the brain tumor microenvironment. Interestingly, our results found that in STAD patients with high expression of PSAT1, the duration of DFS was longer, but there was no significant difference in OS. This may be because the tumor in STAD patients progresses quickly after recurrence, and the specific cause needs further clinical and basic research to determine.
However, although we integrated information from multiple databases and came up with some meaningful results, this study still has limitations. Firstly, the results of this study mainly come from the data analysis and bioinformatics analysis of the public database website. It is preliminarily concluded that PSAT1 may play an immune related role in lung cancer and breast cancer, and has certain predictability for the efficacy of immunotherapy. However, we have no corresponding basic research validation and clinical patient data validation, further studies on the mechanisms of PSAT1 at the cellular and molecular level will help to elucidate the role of PSAT1. Secondly, we still cannot define PSAT1 as a friend or an enemy, because from different databases, we found some conflicting results. To clarify this point requires further and more in-depth mechanism research. Thirdly, while PSAT1 expression was found to be involved in immune cell infiltration of cancer, we could not demonstrate that PSAT1 affects patient survival through immune infiltration. Further prospective clinical studies may address this question.
5 CONCLUSION
Our first pan-cancer analysis of PSAT1 has identified statistically significant correlations between the expression of PSAT1 and clinical prognosis, DNA methylation, gene mutations, cellular immunological response, etc. Facilitate the clarification of the role of PSAT1 in tumorigenesis from diverse perspectives. PSAT1 may influence pan-cancer prognosis and is associated with immune infiltration, particularly for BRCA and LUSC. PSAT1 may be a new biomarker for predicting the efficacy of immunotherapy for lung cancer and breast cancer. These findings possibly provide a mechanism for manoeuvring the energetic system of tumor cell or tumor microenvironment infiltration to counteract tumor growth.
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Background: Colorectal cancer (CRC) is a common malignant tumor that affects the large bowel or the rectum. Cuproptosis, recently discovered programmed cell death process, may play an important role in CRC tumorigenesis. Long non-coding RNAs (lncRNAs) can alter the proliferation of colorectal cancer cells through the control and activation of gene expression. To date, cuproptosis-related lncRNAs, have not been investigated as potential predictive biomarkers in colorectal cancer.
Methods: The mRNA and lncRNA expression data of colorectal cancer were gathered from The Tumor Genome Atlas (TCGA) database, and Pearson correlation analysis and univariate Cox regression analysis were used to identify the lncRNAs with differential prognosis. Colorectal cancer was classified using consistent clustering, and the clinical significance of different types, tumor heterogeneity, and immune microenvironment differences was investigated. The differential lncRNAs were further screened using LASSO regression to develop a risk scoring model, which was then paired with clinicopathological variables to create a nomogram. Finally, the copy number changes in the high-risk and low-risk groups were compared.
Results: Two clusters were formed based on the 28 prognostic cuproptosis-related lncRNAs, and the prognosis of cluster 2 was found to be significantly lower than that of cluster 1. Cluster 1 showed increased immune cell infiltration and immunological score, as well as strong enrichment of immune checkpoint genes. Next, LASSO regression was used to select 11 distinctive lncRNAs, and a risk score model was constructed using the training set to distinguish between high and low-risk groups. Patients in the high-risk group had a lower survival rate than those in the low-risk group, and both the test set and the total set produced consistent results. The AUC value of the ROC curve revealed the scoring model’s efficacy in predicting long-term OS in patients. Moreover, the model could be used as an independent predictor when combined with a multivariate analysis of clinicopathological features, and our nomogram could be used intuitively to predict prognosis.
Conclusion: Collectively, we developed a risk model using 11 differential lncRNAs and demonstrated that the model has predictive value as well as clinical and therapeutic implications for predicting prognosis in CRC patients.
Keywords: cuproptosis, lncRNA, colorectal cancer, consistent clustering, immune microenvironment, tumor mutational burden (TMB)
INTRODUCTION
Colorectal cancer (CRC) is an exceptionally frequent illness worldwide. There are roughly 408,000 new cases with colorectal cancer and 196,000 deaths per year, ranking second in terms of incidence and fourth in terms of mortality (Sung et al., 2021; Zheng, 2022). Since the early clinical indications of colorectal cancer are not apparent, the cancer is often medium and advanced stages detection. Radical removal of primary tumor and lymph node dissection are the major therapeutic strategies for colorectal malignancies. The introduction of Total Mesorectal Excision (TME) and Complete Mesocolic Excision (CME) (Heald et al., 1982; Hohenberger et al., 2009) has reduced the local recurrence rate from the original 20–40 percent to 3-8 percent, thus dramatically improving the overall survival rate of patients, which can be described as a milestone in colorectal surgery (Carlsen et al., 1998; Dattani et al., 2016). However, the prognosis of minority are still poor, massive investigations revealed that this may be connected with Copy Number Variation (CNV), tumor microenvironment and tumor heterogeneity (Sagaert et al., 2018).
Tsvetkov et al. demonstrated in human cells that copper-dependent, controlled cell death is separate from known death mechanisms and is dependent on mitochondrial respiration, which is dubbed cupropotosis. The work has proven that cupropotosis occurs by means of direct binding of copper to lipoylated components of the tricarboxylic acid (TCA) cycle (Tsvetkov et al., 2022). This results in lipoylated protein aggregation and subsequent iron-sulfur cluster protein loss, which leads to proteotoxic stress and ultimately cell death. Cupropotosis may explain the pathology associated with genetic copper overload disorders and suggest new ways to harness copper toxicity to treat cancer, which may be especially useful for cancers that are naturally resistant to apoptosis, enabling a new way to kill cancer cells by exploiting the distinct action of this metal (Kahlson and Dixon, 2022; Oliveri, 2022).
In animals, long no-coding RNAs (lncRNAs) affect roughly 70 percent genes expression by interacting with DNA replication, RNA transcription, protein translation. Increasing research suggested that abnormal expression of lncRNA impairs homeostasis in organisms and may promote or inhibit some cancers (Li et al., 2018; Chen et al., 2021). The lncRNA NEAT1 has been demonstrated to stimulate Wnt/β-catenin signaling and increases colorectal cancer progression via combining with DDX5. Another study demonstrated that circulating lncRNA SNHG11 as a new biomarker for early diagnosis and prognosis of colorectal cancer1 (Xu et al., 2020). However, the function of cupropotosis-related lncRNAs is uncertain in colorectal cancer. Therefore, it is crucial to research cupropotosis-related lncRNAs and to screen predictive biomarkers among these lncRNAs.
We found predictive biomarkers based on cupropotosis related-lncRNA and created a prognosis model for colorectal cancer by using the lncRNA expression patterns of The Cancer Genome Atlas (TCGA) colorectal cancer cohort. We also study the link between the signature lncRNA and tumor mutational burden (TMB) in colorectal cancer.
MATERIALS AND METHODS
Data gathering and preparation
The TCGA database (https://cancergenome.nih.gov/) was used to gather RNA transcriptome analysis data as well as patient clinical information. The Fragment Per Kilobase Method (FPKM) was used to gather transcriptome data, and clinical information included age, sex, grade, and survival status. After screening for patients with a survival duration of more than 1 day, 487 patients were eventually included in the study, with 446 tumor samples and 41 normal samples. We found 19 genes linked to cuprpptosis, including NFE2L2, NLRP3, ATP7B, ATP7A, SLC31A1, FDX1, LIAS, LIPT1, LIPT2, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A, DBT, GCSH, DLST, according to previously published research (Tsvetkov et al., 2022). We obtained 16,773 lncRNAs through the annotation of integrated IDs in the TCGA dataset, which we obtained from the GENCODE website (https://www.gencodegenes.org). The lncRNAs expression matrix was then extracted from the TCGA dataset using Perl. Pearson correlation analysis was carried out between these lncRNAs and 19 copper death-related genes, with Pearson R > 0, 5 and a p value of 0.001. A total of 1,305 lncRNAs related to cuproptosis were discovered. Finally, to facilitate further analysis, we combined the expression data of these lncRNAs with the survival time and survival status of patients in clinical data.
Identify prognosis-related lncRNAs and perform cluster analysis on the samples
The “survival” package in R software was used to perform univariate cox regression analysis on all cuproptosis-related lncRNAs, with p < 0.05 set as the screening condition, and 28 lncRNAs with significant differences in tumor prognosis were obtained and plotted based on the regression analysis results. The forest map is graphically shown, and the “pheatmap” software program builds a heat map to show the expression of prognosis-related lncRNAs in CRC and normal tissues. The prognostic-related lncRNA expression data was then grouped using the “ConsensusClusterPlus” software tool to classify colorectal cancer into distinct subtypes. The “pheatmap” software was used to visualize gene expression in different subtypes. Kaplan–Meier survival curves were used to compare survival outcomes between subgroups.
Tumor immune micro-environment analysis based on cluster typing
To examine the immunological milieu of colorectal cancer tissue in samples based on CIBERSORT (Newman et al., 2015), we quantified 22 immune cells in CRC samples, including B cells, The infiltrating abundance of T cells, natural killer cells, macrophages, dendritic cells, eosinophils, and neutrophils was compared between different subtypes using the “vioplot” and “ggpubr” packages in the R software. Abundant expression of immune-infiltrating cells was visualized. Then, ESTIMATE, a method that employs expression data to estimate stromal and immune cell scores in malignant tumor tissue, was utilized to predict tumor purity in the TME (Yoshihara et al., 2013). collected the immuneScore, stromalScore and ESTIMATEScore scores of colorectal cancer tissues, and did differential analysis between distinct subtypes of tissues with the “limma” software package.
Construction and evaluation of a risk model for copper death-related lncRNA prediction
To create an efficient prognostic risk model, we randomly separated colon cancer patients into training and test sets using the “caret” program. This training set is used to develop prognostic features and evaluate them in the test set. The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was performed to further screen the prognosis-related lncRNAs to minimize overfitting. Subsequently, multivariate Cox proportional hazards regression analysis was performed to uncover independent prognostic markers, while the c-index was generated using the ‘survminer’ software package to estimate the model’s best prediction. Ultimately, 11 lncRNAs linked with prognosis risk were found. The risk score formula is given as follows: Risk Score = Coe1∗Exp1+Coe2∗Exp2+Coe3∗Exp3+…+Coen∗Expn. Coe is the coefficient of multiple Cox regression analysis of 11 lncRNAs, and Exp is the associated expression value. Colorectal cancer patients were split into high-risk and low-risk groups according to the median risk score. The survival outcomes of the two groups were compared using Kaplan–Meier survival curves. Supplementary files for survival information were downloaded from the Xena database (http://xena.ucsc.edu/), and the “survival” software tool was used to evaluate disease-free progression (PFS) between the two groups. Receiver operating characteristic (ROC) curves were constructed using the “survival” and “timeROC” programs in the R software. These ROC curves were used to study the 1-, 3-, and 5-year survival rates of patients, utilizing the receiver operating characteristic curve (ROC) and its area under the curve (AUC) value to measure the specificity and sensitivity of the signature signal.
Construction of nomogram and principal component analysis
By combining independent factors found by multivariate Cox regression analysis, a nomogram model was created to examine the prediction ability of the predictive model for 1-, 3-, and 5-year OS rates. And a calibration plot was constructed to produce a concordance index to assess the accuracy of the nomogram’s prediction power. Through PCA analysis and hierarchical clustering of all samples, the distribution of all samples was shown by 3D scatter plot.
Gene set enrichment analysis
In order to explore the potential biological processes and cellular pathways related to the expression of lncRNAs related to cuproptosis, input files were prepared according to the gene expression profiles of patients in high and low risk groups obtained by risk scoring, and GSEA software was used to conduct GSEA to study enrichment projects. Simulated value = 1,000, p value <0.05 and was picked as the criteria for statistical significance.
Assessment of tumor mutational load and immune function analyses based on the copper death-related lncRNA prediction risk model
Simple nucleotide variation data relating to CRC patients were collected from the TCGA database (https://cancergenome.nih.gov//). Then, the samples were divided into high- and low-risk groups according to the prediction model risk score using Perl language, and the differences in tumor mutational burden (TMB) and somatic mutations in the samples from the high-risk group and the low-risk group were compared using “maftools” in R. According to TMB levels, patients were separated into high and low TMB groups, and Kaplan-Meier survival analysis was done. The “limma, pheatmap, ggpubr, reshape2″ software programs were used to construct boxplots and heat maps to demonstrate the variations in immune cell infiltration levels and immune function between high and low risk groups, respectively. Finally, according to the TIDE of colorectal cancer samples in the TCGA database retrieved from the online domain (http://tide.dfci.harvard.edu/login/), the “limma, ggpubr” software package was used to map the link between high and low risk groups. TIDE compares violin graphs.
Statistical analysis
All statistical analyses in this work were done with software R x64 4.1.3, and statistical significance was fixed at p < 0.05. OS rates were expressed using Kaplan-Meier curves and log-rank tests were used to determine statistically significant differences. Univariate and multivariate Cox regression analyses were utilized to validate risk scores of signature lncRNAs as independent predictive variables. The “timeROC” software package was used to generate the ROC curve and determine the area under the curve (AUC) (AUC). The “GSVA, GSEABase” software suite was utilized to undertake immune infiltration analyses.
RESULTS
Cuproptosis-related lncRNAs and their prognostic value
The RNA transcriptome data of 446 colorectal cancer patient samples acquired from the TCGA database were processed and sorted, and 16,773 lncRNAs were obtained through annotation. Then, Pearson correlation analysis was used to examine the link between 19 Cuproptosis mechanism-related genes and the acquired lncRNAs, and a total of 1,305 Cuproptosis mechanism-related lncRNAs were screened. (Figure 1A), subsequently, by combining clinical information (survival time and survival status of patients), we ran univariate cox regression analysis on these 1,305 lncRNAs one by one, with p < 0.05 as the screening criteria, a total of 28 prognostic variables were found. Finally, comparing the expression levels of these 28 lncRNAs in colorectal cancer tissues and normal tissues, we observed significant differences in the expression of these lncRNAs, among which 20 lncRNAs were up-regulated, including: AC022210.1 AC005046.1 LINC01410 AC073896.3 ZKSCAN2-DT AC090517.2 LINC01138 AL513550.1 AC007128.1 AL354993.2 AC069222.1 AL138756.1 AC064836.3 AC068205.2 ZNF775-AS1 AP001619.1 AL161729.4 AC0251.02456 AP0. Eight lncRNAs were down-regulated, including: PCED1B-AS1 LINC00861 AC008280.2 AC012313.5 AC026979.4 PRKAR1B-AS2 LINC02175 NIFK-AS1 (Figures 1B,C).
[image: Figure 1]FIGURE 1 | Screening for cuproptosis-related lncRNAs with prognostic differences. (A) Mulberry plot showing the co-expression of cuproptosis-related genes and lncRNAs. (B) 28 prognostic differential lncRNA forest maps were drawn based on the univariate Cox regression results. (C) Boxplot showing the differential expression of 28 lncRNAs with prognostic differences in tumor tissue and normal tissue.
Consistent clustering analysis based on the lncRNA linked with the prognosis of cuproptosis
Using a consistent clustering method to group 446 colorectal cancer patients according to the expression of cuproptosis prognosis-related lncRNAs in the dataset, we discovered that when the patients were separated into two subgroups, each group exhibited the best clustering stability (Figure 2A). Cumulative distribution functions, AUC increments when pooled are displayed (Figure 2B). Ultimately, we grouped all patients into cluster 1 (335 cases) and cluster 2 (111 instances) (111 cases). Then, we compared the survival data between different clusters by creating the Kaplan–Meier survival curve. It can be seen that the overall survival rate of cluster 2 was lower than that of cluster 1, and the difference was significant p = 0.002 (Figure 2C). Then we sought to analyze the tumor immune microenvironment between different groups. First, we assessed the infiltration abundance of 22 types of immune cells based on CIBERSORT, and performed differential analysis between clusters, the infiltration abundance of T cells CD4 memory activated, Macrophages M1, and Neutrophils was higher in cluster 1 (Figure 2D). The immune Score, stromal Score, ESTIMATE Score in colorectal cancer tissues from all patients in the sample were then assessed using the ESTIMATE method, and scores were compared between the different clusters. We discovered that cluster 1 all scored higher than cluster 2 with a significant difference (Figures 2E–G).
[image: Figure 2]FIGURE 2 | Consensus clustering analysis based on cuproptosis prognosis-associated lncRNAs. (A) 446 colon cancer patients were divided into two clusters (k = 2) according to a consistent clustering matrix. (B) Relative change in area under the CDF curve for k = 2–9. (C) Kaplan-Meier curve of overall survival in colon cancer patients with two clusters. (D) Infiltration of 22 immune-infiltrating cells in clusters 1 and 2 Abundance. (E–G) Comparison of immune scores, stromal scores, and assessment scores for cluster 1 and cluster 2.
At the same time, in order to investigate the relationship between type and immune checkpoints, we selected genes related to tumor immune checkpoints: PD-L1, CTLA4, LAG3, PDCD1, PDCD1LG2, and TIGIT. Through differential analysis and comparison, it can be observed that the expression of these genes in cluster 1 is dramatically elevated (Figures 3A–F). Correlation analysis between immune checkpoint genes and prognosis-related lncRNAs, we observed: PD-L1 expression was favorably connected with AL138756.1 (Figure 3G), CTLA4 expression was significantly correlated with Expression was positively linked with PCED1B−AS1, LINC00861 (Figure 3H). The expressions of LAG3,PDCD1, PDCD1LG2 and TIGIT were strongly linked with the expression of lncRNA:PCED1B-AS1 (Supplementary Figure S1).
[image: Figure 3]FIGURE 3 | Correlation between immune checkpoints and cluster typing. (A–F) Expression levels of PD-L1, CTLA4, LAG3, PDCD1, PDCD1LG2, TIGIT in clusters 1 and 2. (G–H) Correlation of PD-L1, CTLA4 and cuproptosis-related lncRNAs.
Construction of a cuproptosis-related lncRNA risk prediction model
In order to further examine the lncRNAs closely associated to the survival status of colorectal cancer patients, screen out possible prognostic indicators and validate the validity of the established prognostic risk model. First, we separated a total of 446 patients into a training set (224 cases) and a test set (222 cases) by random sampling. This training set was used to develop a prognostic risk model, which was tested in the test set. Second, we further performed LASSO regression analysis on the lncRNAs in the training set that were differentially related to the prognosis of colorectal cancer patients, selectively put lncRNAs into the model to obtain better performance parameters, and controlled the complexity of the model through a series of parameters to avoid overfitting. Finally, we integrated 11 lncRNAs into the construction of the model (Figures 4A,B). Multivariate COX regression analysis was done on these lncRNAs to derive their regression coefficients and consequently the risk scoring model for each patient in the sample: Exp AC073896.3x (-.326978990730302) + ExpLINC00861 × 0.324619815100717 + ExpAC090517.2 × 0.2 46047828207131 + ExpAC01233 .5 × (1.59222059316072) + ExpAL513550.1 × 0.344734659199596 + ExpAC026979.4x (1.88833971363086)+ExpAC064836.3 × 0.0750365708226491 + ExpPRKAR1BAS2x0.301585745373072 + ExpLINC02175 × 0.471828759105413 + ExpZNF775AS1x0.211601121547418 + ExpAL161729.4 × 0.131426560177917。 Afterwards, patients in the training set were split into high-risk and low-risk groups based on their median risk score. Kaplan-Meier survival curves showed that patients in the high-risk group had considerably lower overall survival than the low-risk group in the training set (Figure 4C). The prognosis survival rate of the patients was revealed by the ROC curve, and the AUC values at 1, 3, and 5 years were 0.751, 0.656, and 0.785, respectively (Figure 4D). Therefore, the time-dependent ROC curve validates the performance of the prediction model. In addition, by plotting the risk assessment scatterplot and heatmap of the training set, it can be seen that the survival time of patients in the high risk group was significantly lower (Figures 4E,F), and the expression of 11 prognosis-related lncRNAs had significant differences among different groups difference (Figure 4G). Finally, we ran a correlation study on the 11 lncRNAs included in the model and genes linked to Cuproptosis, and it was observed that the expression of various lncRNAs was strongly correlated with the expressions of MTF1, LIAS, GLS, GCSH, DBT, ATP7A, and ATP7B. Significant positive association, and negative correlation with the expression of PDHB, DLST (Figure 4H).
[image: Figure 4]FIGURE 4 | Construction and evaluation of OS-related cuproptosis-related lncRNA risk scoring models in the training cohort. (A) LASSO coefficient curves of 11 prognosis-related lncRNAs. (B) Ten-fold cross-validation of tuning parameter selection in the LASSO model. (C) Kaplan-Meier curves of survival outcomes for patients in the high and low risk groups. (D) 1-year, 3-year, and 5-year ROC curves and AUC values of the risk scoring model. (E) Risk score distribution. Blue dots represent risk scores for low-risk patients; red dots represent risk scores for high-risk patients. (F) Relationship between survival status and risk score. The horizontal axis represents the number of patients, and the vertical axis represents the risk score. Red dots represent dead patients and blue dots represent surviving patients. (G) Heatmap showing the expression profiles of 11 characteristic lncRNAs. (H) Heatmap of the association of 11 characteristic lncRNAs with cuproptosis-related genes.
Validation of predicted risk models
To demonstrate the robustness of the predictive risk model, we risk-scored 222 patients in the test and overall sets based on the same scoring model, and separated them into high- and low-risk groups. Similarly, in the Kaplan-Meier survival curve display, the survival rate of the high-risk group in both the test set and the total set was lower than that of the low-risk group, and there was a significant difference, p < 0.001 (Figures 5A,D). At the same time, we plotted the progression-free survival (PFS) survival curve of the complete set, and we can see that the progression-free survival rate of the high-risk group was likewise much lower than that of the low-risk group (Figure 5C). After that, the time ROC curves and their AUC values also showed that in the test set AUC: 1 year = 0.679, 3 years = 0.759, 5 years = 0.726; and in the overall set AUC: 1 year = 0.713, 3 years = 0.710, 5 years = 0.760 (Figures 5B,E). Therefore, comparing the AUC values in the training set with the whole set, it can be stated that the risk scoring model still has good performance in predicting long-term prognosis. Furthermore, in the display of risk assessment scatterplots and heatmaps, we also noticed similar outcomes as in the experimental group (Figures 5F–K).
[image: Figure 5]FIGURE 5 | Validation of the stability of the risk scoring model in the test cohort and the total cohort. (A,B) Survival curves of high- and low-risk groups in the test cohort, and ROC curves and AUC values of the model at 1, 3, and 5 years. (C) Progression-free survival curves of patients in the high and low risk groups in the total cohort. (D–E) Survival curves of high- and low-risk groups in the total cohort, and ROC curves and AUC values of the model at 1, 3, and 5 years. (F–H) Scatter plots and heatmaps of expression levels of characteristic lncRNAs for patient risk score assessment in the test cohort. (I–K) Scatter plots and heatmaps of expression of characteristic lncRNAs for patient risk score assessment in the test cohort.
The clinical value of cuproptosis-related lncRNA risk prediction model
In order to evaluate the clinical value of the Cuproptosis-related lncRNA prediction risk model, first, the clinicopathological characteristics of 446 colorectal cancer patients including age, sex, tumor stage, TNM stage and our previous clustering classification of colorectal cancer tissues were combined, and the association between the expression profiles of 11 copper-dead lncRNAs and the clinical characteristics of low- and high-risk subgroups was shown by heat map (Figure 6A). Secondly, by performing univariate Cox regression analysis and multivariate regression analysis on these characteristics respectively, we can obtain that the two p values of the age factor and risk scoring model are both <0.05 and HR values are >1, which proves that the age factor and risk scoring model can be used as Independent prognostic factors in colorectal cancer patients (Figures 6C,E). The multivariate ROC curve of the risk score based on prognostic and clinical variables showed that the AUC of the risk score was 0.713, which was greater than that of age, gender, T stage, N stage, and M stage, and was only lower than the AUC value of stage (Figure 6B). Afterwards, we evaluated the survival results of patients with high and low risk groups in different stages of tumor clinical staging, T staging, and N staging. The Kaplan-Meier survival curve showed that patients with advanced stage had high and medium risk. The survival outcomes of patients in the risk-distributed group were considerably poorer than those in the low-risk group (p < 0.001) (Figures 6F–H) (Supplementary Figure S2). Finally, in order to intuitively evaluate the prognosis of colorectal cancer patients, we included the risk scores and clinical variables associated to Cuproptosis into the design of nomograms to predict patients’ 1-year, 3-year, and 5-year OS, The calibration curve proved the reliable predictive usefulness of this nomogram (Figure 6D).
[image: Figure 6]FIGURE 6 | Prognostic clinical value and nomogram plotting of the risk model. (A) Heat map showing significant differences in pN stage, clinical stage, and clustering between high-risk and low-risk groups. (B) Multivariate ROC curves and AUC values combined with clinicopathological features. (C–D) Forest plots of univariate and multivariate Cox regression analysis of variables associated with OS. (E) Nomogram for predicting 1-, 3-, and 5-year OS in colon cancer patients. (F–H) Survival curves of high- and low-risk groups in StageIII + IV, N1+N2, and T3+T4 patients.
Principal component analysis and gene set enrichment analysis
We categorized 446 colorectal cancer patients in the TCGA data set into high and low risk groups according to the Cuprotosis-related lncRNA risk assessment model. PCA analysis was performed based on the entire transcriptome expression pattern (Figure 7A), Cuproptosis-related genes (Figure 7B), Cuproptosis-related lncRNA expression pattern (Figure 7C) and risk score model-related lncRNA expression pattern (Figure 7D), We can see both high and low risk groups had a good regional trends. In order to examine the molecular mechanism and underlying biological processes and pathways of Cuprottosis-related lncRNAs, GSEA was performed between high and low risk groups, and functional annotation was performed. The results showed that the enriched pathways in the high-risk group were predominantly focused on ribosomes, oxidative phosphorylation, RNA polymerase, histidine metabolism, tyrosine metabolism, and glycosylphosphatidylinositol GPI-anchored biosynthesis. The enriched pathways in the low-risk group were clustered in apoptosis, prostate cancer, viral myocarditis, endocytosis, JAK-STAT signaling route, B cell receptor signaling pathway, and ERBB signaling pathway (Figure 8). The detailed findings can be found in the table (Supplementary Tables S1, S2).
[image: Figure 7]FIGURE 7 | (A–D) Principal component distribution map based on the whole transcriptome expression pattern, Cuproptosis-related gene expression pattern, Cuproptosis-related lncRNA expression pattern, and risk scoring model-related lncRNA expression pattern.
[image: Figure 8]FIGURE 8 | (A–F) Pathways significantly enriched in high-risk groups in GSEA KEGG enrichment analysis.
Tumor mutational burden study based on cuproptosis-related lncRNA risk score
According to the simple nucleotide variation data downloaded from the TCGA dataset, the tumor mutation burden index of the genes of the patients in the high and low risk groups was calculated respectively, and the TMB in the high risk group was significantly higher than that in the low risk group (p = 0.016) (Figure 9C). Comparing the survival results of patients in the high and low TMB groups, the prognosis in the high TMB group was relatively bad (Figure 9D). The top 15 genes with the highest mutation frequency in the mutation spectrum of distinct risk categories are depicted in waterfall plots. In the high-risk group (Figure 9A), mutations were discovered in 197 of 209 samples; in the low-risk group (Figure 9B), mutations were detected in 199 of 205 samples. Longitudinal, mutations in genes such as APC, TP53, TTN, KRAS, PIK3CA, SYNE1, MUC16, FAT4, ZFHX4, OBSCN, RYR2, DNAH5, CSMD3, LRP1B, and PCLO co-occur between high and low groups. Horizontally, among the top 4 genes with high mutation rate, the high-risk group: APC, TP53 mutation frequency is relatively high, and the low-risk group, TTN, KRAS and other mutation frequencies are quite high.
[image: Figure 9]FIGURE 9 | Analysis of tumor mutation burden and immune function in high and low risk groups. (A) Waterfall plot of mutant genes in the high-risk group. (B) Waterfall plot of mutant genes in the low-risk group. (C) Violin plot of TMB contrast in high and low risk groups. (D) Kaplan-Meier curves of H-TMB and L-TMB. (E) TIDE violin plot between high and low risk groups (F) Boxplot comparison of immune infiltrating cells between high and low risk group. (G) Comparison of immune-related functions between high and low risk groups.
Analysis of immunological function and immune escape based on risk scoring model
Comparing the infiltration abundance and immune-related functions of immune cells between the high-risk group and the low-risk group (Figure 9F), it can be seen that the infiltration of immune cells in the low-risk group is higher, and Type II IFN Reponse, APC co stimulation, CCR, Tcell co stimulation, Check point, T ell co inhibition, HLA, APC co inhibition, Cytolytic activity, Inflammation promoting, MHC class I, Para inflammation, Type-I IFN Reponse. Expressiveness was low (Figure 9G). Interestingly for the assessment of immune escape potential, the high-risk group had lower TIDE scores than the low-risk group, suggesting that immunotherapy may be relatively more successful in the high-risk group (Figure 9E).
DISCUSSION
Colorectal cancer is a common high-grade malignant tumor with high morbidity and mortality rates, and according to recent reports, CRC is on the rise in young and middle-aged people (Siegel et al., 2020). With the development of endoscopic surgery for the treatment of precancerous polyps, novel surgical techniques, and the advancement of radiotherapy, chemotherapy and targeted therapy in recent years, the overall survival rate of patients has significantly improved (Lieberman et al., 2000; Chua et al., 2011; Zampino et al., 2016; Ruers et al., 2017). Nevertheless, advanced CRC patients with KRAS mutations and proximal CRC patients frequently have a dismal prognosis (Tsilimigras et al., 2018). Therefore, finding a reliable biomarker that can both predict the prognosis of colorectal cancer patients and identify potentially altered genes in colorectal cancer is important for developing alternative treatment strategies. Tsvetkov et al. recently uncovered cuproptosis, a copper-dependent cell death process that differs from previously reported death processes such as necrosis, apoptosis, autophagy, and ferroptosis, which is a targeted therapy for colorectal cancer. Provides direction. Previous studies have revealed that long non-coding RNA (lncRNA) could influence the growth of colorectal cancer cells via gene expression control and activation (Wang et al., 2019). The study by Yang H et al. revealed that lncRNAs could be employed as a therapeutic target for metastatic colorectal cancer (Yang et al., 2020a). However, there has been no research conducted on cuproptosis-related lncRNAs as potential colorectal cancer biomarkers to date.
In this study, we comprehensively analyzed the expression of cuproptosis-related lncRNAs in colorectal cancer, their predictive significance, and their association with tumor mutational load. First, the RNA transcriptome data of 446 colorectal cancer patients were extracted from the TCGA database, and Pearson correlation and Cox regression analysis were performed on 19 cupruptosis-related genes, and 28 prognostic cupruptosis-related lncRNAs were identified. The expression of these lncRNAs in tumor tissues was then found to be different from that in normal tissues. Next, using these differential lncRNAs, we divided colorectal cancer into two subtypes and discovered a significant difference in survival between the two groups. Moreover, the tumor immune microenvironment and potential association with immune targets were investigated in the two distinct clusters. Cluster 2 had a poorer prognosis, a higher immuneScore, stromalScore, and ESTIMATEScore than cluster 1. In addition, PD-L1, CTLA4, HAVCR2, PDCD1, PDCD1LG2, TIGIT and other immune target-related genes were strongly elevated in cluster 1. Meanwhile, correlation analysis revealed that PCED1B-AS1 expression was strongly linked to CTLA4, PDCD1, and TIGIT. These findings are consistent with previous research that suggests immune cell infiltration has a beneficial effect on prognosis (Spector et al., 2019; Wu et al., 2020). According to recent studies, immunotherapy has made comparable progress in cancer treatment (Ohaegbulam et al., 2015), and our findings also suggest that some people with higher immunological ratings may benefit from PD-L1 inhibitor therapy (Zhong et al., 2020; Liu et al., 2021).
Next, LASSO regression and multivariate Cox regression were performed on the lncRNAs with variable prognosis, 11 cuproptosis-related lncRNAs were screened, and the link between these lncRNAs and cuproptosis-related genes was validated through correlation analysis. Among these 11 lncRNAs, Wei J et al. showed that AC073896.3 was associated with autophagy-related genes and impacted the prognosis of colorectal cancer patients (Wei et al., 2020). LINC00861 was identified as a potential immunotherapy intervention target in patients with prostate cancer and was significantly correlated with CTLA4, which is consistent with the findings of our correlation study between prognosis-related lncRNAs and immunological checkpoints (Hu et al., 2021). Elsayed AM et al. demonstrated that PRKAR1B-AS2 could promote tumor growth and confer chemoresistance via the PI3K/AKT/mTOR pathway (Elsayed et al., 2021). AL161729.4 was also reported to be related to pyroptosis in bladder cancer (Lu et al., 2022). Based on these 11 lncRNAs, we developed a risk scoring model for colorectal cancer patients using the training set to differentiate between high- and low-risk groups. The survival rate of patients in the high-risk group was lower than that of the low-risk group, and the test set and total set showed consistent results. Importantly, the AUC value of the ROC curve revealed that the scoring model could effectively predict patients’ long-term survival outcomes. Furthermore, multivariate analysis in combination with clinicopathological variables suggested that the model could function as an independent predictor. Meanwhile, the prognosis of patients with different tumor stages was evaluated in the high and low risk groups, revealing that the prognosis of patients with advanced tumors was significantly different between high and low-risk groups. Besides, GSEA demonstrated that these cuproptosis-related lncRNA molecules were significantly enriched in tumor metabolism-related pathways such as histidine metabolism, tyrosine metabolism, oxidative phosphorylation, and other processes that are likely to promote copper induced tumor death mechanisms. Finally, we investigated potentially altered genes in colorectal cancer patients under the influence of cuproptosis-related lncRNAs, and TMB was found to be significantly different between high-risk and low-risk groups. The high TMB group demonstrated a decreased survival rate, while APC, TP53, TTN, and KRAS all revealed high mutation rates in distinct risk groups. Schell MJ and, Yang Y et al. previously revealed the effect of APC, TP53, and KRAS mutations on the prognosis of colorectal cancer patients (Schell et al., 2016; Yang et al., 2020b), and Cen B et al. further found that mutations in the APC gene could lead to resistance of colonic epithelial cells to CD8+ T cell cytotoxicity by promoting PD-L1 expression, hence driving tumor immune evasion (Cen et al., 2021). Although studies have shown that KRAS mutation status is unrelated to the effect of anti-PD-1 therapy (Overman et al., 2018), Liao W et al. found that KRAS mutation status in MSS CRC might still be mediated through IRF2 suppression. Furthermore, immune escape may potentially explain the higher TIDE scores in the low-risk group of our study (Liao et al., 2019).
Nonetheless, our study has certain limitations. Firstly, our research data comes from a public database, and, the sample size was small. In addition, there was a shortage of external data sets for additional verification, which could otherwise help further substantiate our data model’s effectiveness. Secondly, we could not decipher the precise mechanism between cuproptosis and immune cell infiltration as well as TMB; thus, it is important to further investigate through basic research.
CONCLUSION
In conclusion, we distinguished colorectal cancer molecular subgroups and assessed the immune microenvironment based on 28 cuproptosis-related lncRNAs detected in colorectal cancer samples. A total of 11 lncRNAs were further selected as predictive biomarkers to distinguish between high risk and low-risk groups and identify the differences in immune infiltration and TMB values. Nevertheless, an in-depth understanding of the clinical impact of cuproptosis-related lncRNAs on colorectal cancer progression would better guide treatment regimens and enhance patient outcomes.
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Cancer occurrence and progression may be facilitated by aberrant expression of ATPase H+ transporting accessory protein 1 (ATP6AP1). However, the clinical relevance of ATP6AP1 in breast cancer remains unclear. In this study, we investigated the association between ATP6AP1 and breast cancer. Data collected from patients with breast cancer from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were used in this study. To determine the relationship between ATP6AP1 and breast cancer survival rates, Kaplan-Meier analysis was used. To determine the prognostic value of ATP6AP1, a receiver operating characteristic (ROC) curve was constructed. To identify the major pathways involving ATP6AP1, we performed functional enrichment analysis using gene set enrichment analysis (GSEA). We analyzed the association between ATP6AP1 expression and tumor immunity using the ESTIMATE algorithm and single-sample GSEA (ssGSEA). A nomogram based on a Cox regression analysis was constructed to predict the impact of ATP6AP1 on prognosis. ATP6AP1 expression was significantly upregulated in breast cancer tissues. Moreover, patients with elevated ATP6AP1 expression had shorter total survival rates than those with lower expression levels (p = 0.032). The area under the receiver operating characteristic curve for ATP6AP1 was 0.939. Gene set enrichment analysis revealed that reaction iron uptake and transport, proteasome degradation, glutathione metabolism, and pyruvate metabolism were enriched in the ATP6AP1 high expression phenotype. The relationship between immune infiltration cells and ATP6AP1 expression, including macrophages, B cells, dendritic cells, cytotoxic cells, NK cells, and T cells, was found to be negative, suggesting that ATP6AP1 overexpression results in immunosuppression. Based on the Cox regression analyses, the calibration plot of the nomogram demonstrated effective performance in predicting breast cancer patients. ATP6AP1 may facilitate breast cancer progression by inhibiting antitumor immunity and promoting iron metabolism and may be a biomarker for breast cancer prognosis.
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INTRODUCTION
Breast cancer is the most common type of cancer in women and one of the main causes of cancer-related deaths globally (Sung et al., 2021). Despite the advances in diagnostics and treatments, 20%–30% of patients with primary breast cancer experience recurrence and distant metastasis (Duma, 2018). Furthermore, advanced breast cancer has a poor prognosis (Wang et al., 2017). Although research on breast cancer pathogenesis has made great strides, including the tumor microenvironment (TME) and energy metabolism, the underlying pathogenesis of breast cancer must be clarified (Zhou et al., 2019). Cancer antigen 15-3 (CA15-3) is used as a biomarker for relapse and therapeutic efficacy in patients with breast cancer (Liu et al., 2021). However, the reliability of this method is unsatisfactory (Talaat et al., 2020). Hence, it is imperative to screen novel biomarkers to predict prognosis, monitor metastasis, identify therapeutic targets, and investigate the potential mechanisms of breast cancer.
Iron is a vital element in life because it is involved in many metabolic processes (Song and Dunaief, 2013). Among its many functions, iron is required for energy metabolism, oxygen transport and storage, antioxidant activity, and DNA synthesis (Schmelz et al., 2009). Tumor cells modify their iron metabolism to maximize absorption and minimize outflow, increasing labile iron (Duan et al., 2019). The abnormal metabolism and proliferation of cancer cells require a high level of iron and, consequently, tumor tissues contain a higher amount of iron than normal tissues (Xu et al., 2020). There is also evidence that an abnormal iron metabolism may lead to tumor initiation, proliferation, and metastasis (Raggi et al., 2017). Chelators for iron, originally designed for treating iron overload, can also prevent tumor progression (Chen et al., 2019). However, there is little information on iron metabolism-associated genes and their clinical relevance in malignant tumors (Miller et al., 2011). Therefore, screening for iron metabolism-associated genes that are closely related to tumorigenesis and tumor progression is important for clinical applications.
ATPase H+ -transporting accessory protein 1 (ATP6AP1) is a member of the V-ATPase complex that functions as an accessory subunit and is related to the V-ATPase membrane domain (V0) (Yang et al., 2012). V-ATPase is believed to be mainly involved in tumor growth and metastasis via its ability to increase H+ secretion, resulting in tumor cell survival in hypoxia and an acidic tumor microenvironment (Collins and Forgac, 2020). According to a recent study, salivary autoantibodies against ATP6AP1 may serve as biomarkers for the early detection of breast cancer (Arif et al., 2015). Notably, recent research has indicated that ATP6AP1 is an iron metabolism-associated gene (Zhang et al., 2020). Nevertheless, ATP6AP1’s underlying activities and mechanisms in tumor growth and immunology remain partially characterized. To date, there are few studies on the relationship between ATP6AP1 and breast cancer (Arif et al., 2015; Wang et al., 2021).
Therefore, we aimed to establish a link between ATP6AP1 and breast cancer and investigate its prognostic value. To accomplish this goal, bioinformatics was used to analyze public datasets from TCGA and GEO. To clarify its function in breast cancer, we identified the genes and pathways related to ATP6AP1. Furthermore, we examined the association between tumor immune infiltration and ATP6AP1 expression in breast cancer. We developed a nomogram to aid in the prediction of breast cancer patient prognosis, which included ATP6AP1 expression levels and clinicopathological parameters that were significant in Cox regression analyses. Based on these findings, ATP6AP1 may be used as a biomarker for the prognosis and diagnosis of breast cancer.
MATERIALS AND METHODS
Source data
A total of 1,109 cases with RNA-seq data (HTSeq-FPKM and HTSeq-counts) and clinical information from TCGA-BRCA were obtained from the Genomic Data Commons (GDC) TCGA data portal (https://portal.gdc.cancer.gov/), and 112 paired tumor tissue and adjacent normal tissue samples were included in these data. The GEO database was used to download the GSE45827 (Gruosso et al., 2016) and GSE42568 (Clarke et al., 2013) datasets, and the platform used for both datasets was GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array. The GSE45827 dataset consisted of 11 normal samples and 130 breast cancer samples, whereas the GSE42568 dataset contained 17 normal samples and 104 breast cancer samples. Iron metabolism-associated genes were identified in Zhang’s research (Zhang et al., 2020), including 70 genes, such as NUBP1, FBXL5, TMEM199, HJV, ALAS1, ALAS2, and ISCU. Informed consent and ethics approval was not required, as all data were obtained from TCGA and GEO.
Co-expression analysis
The LinkedOmics database is an online resource that uses multi-omics to analyze data on 32 cancer types (http://www.linkedomics.org/). The database contains three analytical modules: LinkFinder, LinkInterpreter, and LinkCompare (Vasaikar et al., 2018). Volcano plots and heat maps were used to display the genes co-expressed with ATP6AP1 in breast cancer, and Spearman correlation tests were used to test correlations.
Functional enrichment analysis
Functional enrichment analyses, comprising gene ontology (GO) analysis consisting of cellular component (CC), biological process (BP), molecular function (MF), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, were performed using the clusterProfiler (Yu et al., 2012) package in R with |R| > 0.4 and FDR < 0.05. A p-value lower than 0.05 was considered statistically significant. We performed GSEA to determine if previously described functional or pathway groups of genes significantly differed between those that are negatively and positively linked with ATP6AP1. The “c2. cp.v7.2. symbols.gmt [Curated]” gene set was downloaded from the MSigDB database for GSEA analysis; a p-value < 0.05 was considered to be significantly enriched. In addition, using the R package GSVA (Hänzelmann et al., 2013), the scores of related pathways were calculated according to the gene expression matrix of each sample by ssGSEA, and the enrichment functions were differentially screened using the R package limma (Ritchie et al., 2015).
Construction of interaction networks
The Search Tool for the Retrieval of Interacting Genes (STRING) database is a global resource for predicting protein-protein interaction networks (Szklarczyk et al., 2021). We generated a protein-protein interaction (PPI) network of genes to explore the interactions among genes, including ATP6AP1, using the STRING database. The starBase database is an invaluable resource for studying non-coding RNAs such as miRNAs, circRNAs, and lncRNAs (Li et al., 2014). Potential miRNAs binding to ATP6AP1 were predicted using the starBase database, and the parameters were set as Genome (human), Clade (mammal), CLIP-Data (≥ 1), Assembly (hg19), Degradome-Data (≥ 1), pan-Cancer (≥ 1), program Num (≥ 1), and program (None).
The PROMO database was used to predict transcription factor binding sites (TFBS) (Messeguer et al., 2002; Farre et al., 2003). Using the PROMO database, we predicted the transcription factors binding to ATP6AP1, in which the maximum matrix dissimilarity rate was set to 5%. The Comparative Toxicogenomics Database (CTD) is an open resource that contains links between chemicals and diseases (Davis et al., 2021). We predicted the drugs associated with ATP6AP1 using this database. We constructed interaction networks using the R package igraph (Csardi and Nepusz, 2006).
Immune infiltration analysis
Immune infiltration of breast cancer was analyzed using the ssGSEA method with R package GSVA for a total of 24 distinct immune cell subtypes in breast cancer samples. Based on Spearman’s correlation, the link between ATP6AP1 and these immune cells was investigated. We used the R package ESTIMATE (Yoshihara et al., 2013) to evaluate the ratio of the immune-stromal component in the TME for each breast cancer sample. The displayed scores consisted of the StromalScore, ImmuneScore, and ESTIMATEScore. Three types of scores were shown to be highly related to the stromal/immune ratio as well as the sum of the two.
Clinical correlation and prognosis analysis
To appraise the efficiency of ATP6AP1 expression in discriminating breast cancer from healthy samples, ROC analysis was conducted. To assess ATP6AP1’s predictive significance in breast cancer, the Kaplan-Meier method was used. To assess the impact of prognostic factors in patients with breast cancer, Cox regression analysis was performed. Based on the Cox regression analysis findings, a nomogram was constructed to predict the survival probability at 2 years, 4 years, and 6 years. A nomogram including significant clinical characteristics and a calibration plot were generated using the R package rms (Eng et al., 2015). To evaluate the accuracy of the nomogram forecast based on the prognostic model, a calibration plot was constructed. In addition, data from the TCGA were randomly divided into training and testing sets, and the nomogram was assessed using the ROC curves and decision curve analysis (DCA) curves, respectively.
Statistical analysis
Statistical significance for normally distributed variables was determined using Student’s t-tests, and we employed the Wilcoxon rank-sum test (also known as the Mann–Whitney U-test) for data that were not typically distributed. The chi-square test or Fisher’s exact test was used to compare categorical variables between the two groups. p-values were always bilateral, and p-values less than 0.05 were deemed statistically significant.
RESULTS
Differential gene expression analysis and clinical value of ATP6AP1 in breast cancer
The TCGA-BRCA, GSE45827, and GSE42568 datasets were analyzed using R package limma to identify differentially expressed genes (DEGs), and 5,072, 4,138, and 3,364 DEGs were identified, respectively. The results are shown in the volcano plots in Figures 1A–C, respectively. Taking the intersection of the DEGs in the three datasets and iron metabolism-related genes, we identified seven genes: FLVCR1, ATP6AP1, CYBRD1, LRP1, ACO1, TF, and SCARA5 (Figure 1D). Heat maps of correlation among seven iron metabolism-related genes in the TCGA-BRCA, GSE45827, and GSE42568 datasets were shown in Figures 1E–G respectively. Among them, ATP6AP1 was significantly negatively correlated with TF and SCARA5, TF was significantly positively correlated with SCARA5, FLVCR1 was significantly negatively correlated with LRP1, and CYBRD1 was significantly positively correlated with LRP1 (p < 0.05). A PPI network of ATP6AP1 and its potential co-expression genes was constructed using the STRING database (Figure 1H). In addition, CytoHubba, a Cytoscape plug-in, was applied to detect hub genes, and the proper order of the top 10 hub genes was ATP6V1A, ATP6V0D2, ATP6V0D1, ATP6AP1, ATP6V1D, ATP6V1E1, ATP6V0A1, ATP6V1C2, ATP6V1B2, and ATP6V0C (Figure 1I).
[image: Figure 1]FIGURE 1 | DEG analyses of three datasets. (A) TCGA-BRCA dataset’s volcano map shows differentially expressed genes. (B) The GSE45827 dataset shows a volcano map of genes with differential expression. (C) The GSE42568 dataset shows a volcano map of differentially expressed genes. (D) Venn diagram of differential expressed genes in three datasets and iron metabolism-associated genes. (E–G) Heat maps of correlation among seven iron metabolism-related genes in the TCGA-BRCA, GSE45827, and GSE42568 datasets. (H) A PPI network was constructed by differentially expressed genes and iron metabolism-associated genes. (I) Top 10 hub genes extracted by CytoHubba.
As shown in Figure 2, in the TCGA-BRCA, GSE45827, and GSE42568 datasets, ATP6AP1 expression was substantially lower in normal tissues than in breast cancer tissues (p < 0.001). The area under the curve (AUC) of ATP6AP1 expression for distinguishing tumors from normal tissues was 0.939 on the ROC curve, indicating that ATP6AP1 might be a potential diagnostic marker for breast cancer. High ATP6AP1 expression was associated with a worse prognosis (p = 0.032), as revealed by the Kaplan-Meier survival analysis. Based on data from the Human Protein Atlas (HPA) database, the level of ATP6AP1 protein expression in breast cancer tissues was significantly higher than in normal breast tissues (Figure 2G). Furthermore, Figure 2H shows the top 38 tissues of whole-body tissues in terms of ATP6AP1 expression.
[image: Figure 2]FIGURE 2 | ATP6AP1 expression in patients with breast cancer. (A) Expression of ATP6AP1 in unpaired samples in the TCGA-BRCA dataset. (B) Expression of ATP6AP1 in the GSE45827 dataset. (C) Expression of ATP6AP1 in the GSE42568 dataset. (D) Evaluation of ATP6AP1 diagnostic efficiency in breast cancer by drawing ROC curve. (E) Survival analysis of DSS in the ATP6AP1 group with a greater level of expression and a group with a lower level of expression. (F) Survival analysis of OS in ATP6AP1 group with a higher expression level and a group with a lower expression level. (G) Protein expression level of ATP6AP1 in breast cancer tissues and in normal breast tissues. (H) Tissue distribution of top 38 in the expression of ATP6AP1 in systemic tissues. ns, non-significant (p ≥ 0.05); *p < 0.05; **p < 0.01; ***p < 0.001.
Co-expression analysis of ATP6AP1 in breast cancer
The functional modules of LinkedOmics were used to detect genes that were co-expressed with ATP6AP1 in breast cancer to further understand ATP6AP1’s biological functions in the disease. A total of 5,448 genes were found to be significantly positively associated with ATP6AP1, and ATP6AP1 was significantly negatively associated with 8,650 genes (FDR <0.05; Figure 3A). According to the heat maps, the top 50 genes were found to have a substantial positive correlation with ATP6AP, and the top 50 genes exhibited a significant negative correlation with ATP6AP1 (Figures 3B, C).
[image: Figure 3]FIGURE 3 | Co-expressed genes related to ATP6AP1. (A) Analysis of Spearman correlation found that co-expressed genes were strongly related to ATP6AP1 in breast cancer; red and green dots represent positively and negatively correlated genes, respectively. (B) ATP6AP1 was negatively correlated with the first 50 genes in the heat map. (C) ATP6AP1 was positively linked with the first 50 genes in the heat map.
Functional enrichment analyses of ATP6AP1 co-expressed genes in breast cancer
According to the threshold criteria (|R| > 0.4 and FDR < 0.05), 259 co-expressed genes highly correlated with ATP6AP1 were identified: 156 genes were negatively correlated, and 103 genes were significantly positively correlated. To further understand the impact of ATP6AP1 in breast cancer, we used GO and KEGG functional enrichment analyses to evaluate co-expressed genes. The GO enrichment results are presented in Figure 4A and Supplementary Table S1. Five enriched GO terms were identified in the biological process classification. These genes were enriched in epithelial cell differentiation involved in kidney development, regulation of epithelial cell differentiation involved in kidney development, nephron tubule epithelial cell differentiation, proton transmembrane transport, and regulation of nephron tubule epithelial cell differentiation. Based on the categorization by “cellular component,” three enriched GO terms were identified, which were related to the vacuolar membrane, proton-transporting two-sector ATPase complex, and proton-transporting V-type ATPase complex. Furthermore, the molecular function category revealed five enriched GO terms significantly associated with proton-transporting ATPase activity, rotational mechanism, proton-exporting ATPase activity, proton transmembrane transporter activity, lipase activity, ATPase activity coupled to transmembrane movement of ions, and rotational mechanism. The results of the KEGG enrichment analysis revealed that co-expressed genes were mostly related to oxytocin signaling pathway, rheumatoid arthritis, epithelial cell signaling in Helicobacter pylori infection, human papillomavirus infection, Vibrio cholerae infection, parathyroid hormone synthesis, secretion and action, and amoebiasis (Figure 4B; Supplementary Table S2).
[image: Figure 4]FIGURE 4 | Based on TCGA and GEO, the findings of GO terms and KEGG pathway enrichment of co-expressed genes between high and low ATP6AP1 expression are shown. (A) Results of GO enrichment analysis. (B) Results of the KEGG pathway enrichment analysis.
ATP6AP1-related signaling pathways based on gene set enrichment analysis
Based on GSEA, five pathways, namely, iron uptake and transport, proteasome degradation, glutathione metabolism, and pyruvate metabolism, were significantly enriched in positively correlated co-expressed genes, whereas seven pathways, including the RAS signaling, P53 downstream, Hippo-YAP signaling, and Hippo-Merlin signaling dysregulation pathways, as well as the mechanoregulation and pathology of YAP/TAZ via Hippo and non-Hippo mechanisms, and the E-cadherin stabilization pathways, were significantly enriched in negatively correlated co-expressed genes (Figure 5 and Supplementary Table S3).
[image: Figure 5]FIGURE 5 | GSEA enrichment plots show several pathways were differentially enriched in ATP6AP1-related breast cancer.
GSVA was used to examine the dynamics of biological pathways and processes based on hallmark gene sets. Regarding the results of GSVA, the scores of pathways, including DNA repair, glycolysis, and mTORC1 signaling, were higher in malignant tissues than in normal tissues, whereas the scores of pathways, including myogenesis, coagulation, and KRAS, were lower in malignant tissues than in normal tissues (Figure 6A). In addition, based on the correlation analysis between these pathways and the expression level of ATP6AP1, it was discovered that ATP6AP1 expression was adversely linked with the majority of these pathways but only positively correlated with the myogenesis pathway (Figure 6B).
[image: Figure 6]FIGURE 6 | GSVA results based on hallmark gene sets. (A) Heat map of differential pathways of GSVA analysis depended mainly on hallmark gene sets. (B) Correlation analysis between differential pathways and ATP6AP1 expression.
Construction of ATP6AP1-associated interaction networks in breast cancer
The STRING database was used to build a PPI network of ATP6AP1 and its potential co-expression genes (Supplementary Figure S1A). Based on the regulation of ATP6AP1 by miRNAs, we constructed the target relationship network using the starBase database (Supplementary Figure S1B). The interaction network was constructed based on transcription factors binding to ATP6AP1, as predicted by the PROMO database (Supplementary Figure S1C). The drug-gene interaction network, including ATP6AP1 and related chemical drugs, was constructed based on the CTD (Supplementary Figure S1D).
Correlation between ATP6AP1 expression and immune infiltration
We further analyzed the effect of ATP6AP1 expression on the immunological characteristics of breast cancer patients in TCGA-BRCA. StromalScore, ImmuneScore, and ESTIMATEScore were significantly lower in “high ATP6AP1 expression” breast cancer patients relative to “low ATP6AP1 expression” breast cancer patients (p < 0.001; Figure 7A). StromalScore, ImmuneScore, and ESTIMATEScore negatively correlated with the expression of ATP6AP1 (p < 0.001; Figures 7B–D). Using ssGSEA, we examined the relationships between immune cell enrichment and ATP6AP1 expression and found that ATP6AP1 expression was positively related to the abundance of eosinophils and CD56bright NK cells, and negatively associated with the abundance of macrophages, Th1 cells, B cells, central memory CD4+ T-cells, DC, immature DCs, CD56dim NK cells, cytotoxic cells, NK cells, neutrophils, T-cells, T helper cells, effector memory T-cells, Tgd, Th1 cells, and Tregs (p < 0.05; Figure 7E).
[image: Figure 7]FIGURE 7 | ATP6AP1 expression is associated with immune infiltration in TME. (A) Patients with high expression of ATP6AP1 had significantly lower StromalScore, Immune Score, and ESTIMATE Score (p < 0.001) in comparison with patients with low expression of ATP6AP1. (B–D) StromalScore, ImmuneScore, and ESTIMATES Score were negatively linked with the expression of ATP6AP1 (p < 0.001). (E) Lollipop plot illustrates the connection between the relative abundance of 24 immune cells and ATP6AP1 expression. ns, non-significant (p ≥ 0.05); *p < 0.05; **p < 0.01; ***p < 0.001.
Clinical relevance of ATP6AP1 expression and development of a nomogram based on ATP6AP1
To investigate the connection between ATP6AP1 expression and clinicopathological parameters of patients in the TCGA-BRCA cohort, based on the median value, we separated breast cancer samples into two groups: high expression and low expression (Supplementary Table S4). Therefore, the results indicate that ATP6AP1 was significantly correlated with age, ER status, and PR status, all with p-values <0.001 (Figures 8A,D,E). The expression of ATP6AP1 was not associated with pathologic stage, race, and HER2 status (Figures 8B,C,F). Univariate Cox regression analysis revealed an association between ATP6AP1 and breast cancer prognosis. Univariate and multivariate Cox regression analyses revealed that the patient’s age (p < 0.001) was an independent prognostic factor in the TCGA-BRCA cohort (Supplementary Table S5). Previously, age has been reported to be a prognostic factor for breast cancer (Garcia-Estevez et al., 2021), and metastatic breast cancer patients’ age at diagnosis was an independent prognostic factor (Chen et al., 2017). A nomogram based on ATP6AP1 and other clinicopathological parameters was constructed to help clinicians predict the prognosis of patients with breast cancer (Figure 9A) (Gittleman et al., 2020). The calibration plot of the nomogram (Figure 9B), ROC curves (Figures 9C–E), and DCA curves (Figures 9F–N) suggest that the model demonstrated a strong predictive value for breast cancer patient prognosis at 2-, 4-, and 6 years.
[image: Figure 8]FIGURE 8 | Relationship between ATP6AP1 expression and clinicopathologic characteristics in patients with breast cancer. (A) Age. (B) Pathologic stage. (C) Race. (D) ER status. (E) PR status. (F) HER2 status. ns, non-significant (p ≥ 0.05); *p < 0.05; **p < 0.01; ***p < 0.001.
[image: Figure 9]FIGURE 9 | Construction of a prognosis model. (A) Breast cancer patients’ 2-, 4-, and 6-year survival probabilities were predicted using a nomogram. (B) A nomogram calibration plot for forecasting survival probability at two, four, and 6 years. (C–E) ROC curve based on the nomogram prognostic model and ROC curves based on trainee and testee groups. (F–N) DCA curves based on the nomogram prognostic model and DCA curves are based on trainee and testee groups.
DISCUSSION
ATP6AP1 is a vacuolar (V)-ATPase proton pump accessory subunit required for luminal acidification of secretory vesicles, Golgi, and lysosomes (Kanaki et al., 2019). The ATP6AP1 protein is expressed in numerous tumors, including head and neck carcinoma, lung cancer, and leukemia (Arif et al., 2015). To survive in a hypoxic microenvironment, tumor cells utilize this ATPase system to maintain an acidic pH (Hernandez et al., 2012). Although V-ATPases have been proven to be carcinogenic in certain neoplasms, the prognostic value and underlying mechanism of ATP6AP1 in breast cancer need to be fully characterized. Our results suggest that the ATP6AP1 levels in breast cancer tissues were substantially higher than those in normal breast tissues. Based on the ROC analysis, the AUC was 0.939, suggesting that ATP6AP1 expression could have potential diagnostic value in distinguishing breast cancer from normal tissues. Moreover, the Kaplan-Meier method shows that ATP6AP1 expression levels in patients with breast cancer might predict overall survival, with higher levels suggesting a worse result. Therefore, ATP6AP1 may be used as a biomarker for the diagnosis and prognosis of breast cancer.
The association between immune cell infiltration and ATP6AP1 expression levels was assessed by ssGSEA using Spearman correlation. Previous research has demonstrated the relationship between ATP6AP1 and various immune cells resulting in a change in immunological environment may contribute to the poor outcomes (Wang et al., 2021). Our results show that ATP6AP1 expression was inversely associated with macrophages, Th1 cells, B cells, central memory CD4+ T-cells, DC, immature DCs, neutrophils, cytotoxic cells, CD56dim NK cells, NK cells, T helper cells, T-cells, effector memory T-cells, Tgd, Th1 cells, and Tregs but positively associated with eosinophils and CD56bright NK cells. M1 macrophages can destroy tumor cells, whereas M2 macrophages act as tumorigenic macrophages that facilitate tumor initiation, metastasis, and progression (Yuan et al., 2020). Several studies have demonstrated that DCs infiltrate tumors, impact the TME, and initiate immunity against cancer cells (Zhang et al., 2018). Tumor cells can be killed by innate NK cells (Filtjens et al., 2016). It has been shown that eosinophils play a role in angiogenesis and tumor metastasis and that greater numbers of eosinophils are associated with a poor prognosis (Kang et al., 2021). Thus, ATP6AP1 overexpression in breast cancer tissues may inhibit cytotoxic activity against tumor cells, leading to a poor prognosis based on immune infiltration analysis. The TME is mainly composed of recruited immune and resident stromal cells. ATP6AP1 expression was negatively correlated with the StromalScore, ImmuneScore, and ESTIMATEScore. In our study, we demonstrated that ATP6AP1 may play an important role in immunological suppression and may lead to worse outcomes in patients with breast cancer through TME regulation. Furthermore, we suggest that patients with breast cancer who have high ATP6AP1 expression may not respond well to immunotherapy.
Detecting the genes co-expressed with ATP6AP1 helped us gain a better understanding of ATP6AP1’s biological activities in breast cancer. Among the genes that exhibited a significant negative correlation with ATP6AP1, EGFR was found to be co-expressed with ATP6AP1. Aberrant EGFR is associated with aggressive clinical behavior in breast cancer; moreover, elevated EGFR levels increase the likelihood of developing ER-positive breast cancer (Li et al., 2015). ATP6V0C was found to be co-expressed with ATP6AP1 among the genes that showed a significant positive correlation. ATP6V0C encodes a component of an ATP-driven proton pump V-ATPase that regulates autolysosome production and the acidic TME (Kim et al., 2018). In addition, KEGG and GO analyses were performed for the co-expressed genes. These results show a link between ATP6AP1 expression and proton transmembrane transport. These co-expression genes are closely associated with ATPase activity. Further research is required to elucidate the underlying regulatory mechanisms.
Using GSEA, we discovered that the co-expression genes that were positively connected with ATP6AP1 participate in the response to iron absorption and transport, proteasome degradation, glutathione metabolism, and pyruvate metabolism. Therefore, high ATP6AP1 expression was closely related to iron uptake and transport. Recently, it has become increasingly apparent that iron contributes to the development of cancer. In 1959, the first report of malignant tumors induced by iron dextran injection into rats was published (Richmond, 1959). Sarcomas developed in patients injected with iron preparations later confirmed this observation (Greenberg, 1976). According to epidemiological studies from the 1980s, high body iron levels are correlated with a higher risk of cancer (Stevens et al., 1988). As a result of iron overload, the Fenton reaction creates oxidative stress, leading to a specific type of cell death called ferroptosis (Fernández-Mendívil et al., 2021). In vivo, iron metabolism and homeostasis are linked with the TME, while ferroptosis plays an important role in tumor immunity (Lu et al., 2021). In a previous study, 18 Ferroptosis-related genes (FRG) were used to divide breast cancer patients into three clusters to improve immunotherapy outcomes, and an immunomicroenvironment and therapeutic response can be prognostically predicted by the FRG signature (Xu et al., 2022). Based on the hallmark gene sets, ATP6AP1 expression was positively associated only with the myogenesis pathway. The AKT signaling pathway is important in myogenesis (Yen et al., 2010), and breast cancer is highly influenced by the AKT signaling pathway. Further research is needed to elucidate the underlying mechanisms. Therefore, our findings suggest that inhibiting APT6AP1 may provide a new and effective method for targeting and interfering with iron metabolism in tumor cells.
A PPI network, including ATP6AP1 and its co-expression genes, was constructed, and the TFs and miRNAs related to ATP6AP1 in breast cancer were identified. In breast cancer, these genes are likely to participate in the regulatory network of ATP6AP1. A solid foundation was laid for future laboratory research using these regulatory networks. Based on the CTD, a drug-gene interaction network was constructed, including ATP6AP1 and related chemical drugs. These drugs targeting ATP6AP1 may inhibit the occurrence and development of tumors by interfering with iron metabolism. Other approaches that hinder tumor growth can also target iron homeostasis. Several reports have shown the antitumor effects of iron chelators such as 3-AP and DFO (Yu et al., 2006). When combined with iron chelators, these drugs targeting ATP6AP1 may exhibit synergistic cytotoxicity against breast cancer cells.
In the present study, we discovered that ATP6AP1 was substantially related to age, ER status, and PR status. ATP6AP1 expression levels might allow us to predict outcomes better than traditional prognostic patterns. In addition, a nomogram with a comprehensive evaluation combining ATP6AP1 with other important clinicopathological parameters was constructed. According to the calibration plot, the actual and anticipated survival probabilities were quite constant. TCGA data were randomly distributed into training and testing sets, and the ROC curves and DCA curves were performed to confirm that the model is valuable for predicting the prognosis (Merath et al., 2019). With our nomogram, patients with breast cancer can obtain personalized scores. In the future, our nomogram could serve as a valuable new prognostic tool for clinicians.
In conclusion, there was a significant increase in ATP6AP1 expression in breast cancer tissues, and greater ATP6AP1 expression was associated with poor prognosis. ATP6AP1 might be an indicator of the inhibition of the immune response to cancer cells and the promotion of iron metabolism for tumor progression. Additional experimental validation is required to demonstrate the biological impact of ATP6AP1. ATP6AP1 may be a new diagnostic, therapeutic, and prognostic target for breast cancer treatment. Our study has certain limitations. First, the sample size was small, and we need an external validation dataset to confirm our conclusions. Second, we collected primary and validation cohorts from the datasets, and intervention details were not included. Third, as the number of healthy subjects in the present investigation was substantially different from that of patients with breast cancer, additional studies are necessary to balance the sample size. Finally, in vitro and in vivo studies are required to verify our findings.
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Construction of five cuproptosis-related lncRNA signature for predicting prognosis and immune activity in skin cutaneous melanoma
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Cuproptosis is a newly discovered new mechanism of programmed cell death, and its unique pathway to regulate cell death is thought to have a unique role in understanding cancer progression and guiding cancer therapy. However, this regulation has not been studied in SKCM at present. In this study, data on Skin Cutaneous Melanoma (SKCM) patients were downloaded from the TCGA database. We screened the genes related to cuproptosis from the published papers and confirmed the lncRNAs related to them. We applied Univariate/multivariate and LASSO Cox regression algorithms, and finally identified 5 cuproptosis-related lncRNAs for constructing prognosis prediction models (VIM-AS1, AC012443.2, MALINC1, AL354696.2, HSD11B1-AS1). The reliability and validity test of the model indicated that the model could well distinguish the prognosis and survival of SKCM patients. Next, immune microenvironment, immunotherapy analysis, and functional enrichment analysis were also performed. In conclusion, this study is the first analysis based on cuproptosis-related lncRNAs in SKCM and aims to open up new directions for SKCM therapy.
Keywords: skin cutaneous melanoma, lncRNA, cuproptosis, immune therapy, bioinformatics
INTRODUCTION
Skin cutaneous melanoma (SKCM) is the most aggressive skin cancer with high mortality and rapid metastatic potential (Rodriguez-Hernandez et al., 2020). Global cancer statistical analysis shows significant increases in morbidity and mortality of SKCM in recent years (Schadendorf et al., 2018; Sung et al., 2021). However, even though SKCM only accounts for 5% of all malignant tumors of the skin, it is responsible for 75% of the deaths associated with cutaneous neoplasms (Siegel et al., 2021). For localized or regional melanoma, first-line treatment remains surgical resection and 5-years survival rates are 98% and 64%. Due to chemotherapy resistance and aggressive clinical behavior of advanced melanoma, the 5-years survival rate is only 23% (Rebecca et al., 2020). Considering that traditional treatments have been the main treatment for advanced melanoma in long term, it only relieves some symptoms and reduces the tumor burden, which does not help prolong survival. Therefore, novel effective biomarkers and risk modeling of SKCM are necessary for improving early diagnosis, predicting prognosis, and guiding clinical treatment.
Recently, a study published in the journal Science first reveal that cuproptosis, as a new type of programmed cell death (PCD), differs from previous PCD such as ferroptosis, apoptosis, and autophagy in its special mechanism. Cuproptosis is mediated by a copper-sulfur protein, where copper binds to lipid acylation in the TCA cycle, resulting in the aggregation of lipid acylated proteins and subsequent loss of iron-sulfur cluster proteins, resulting in proteotoxic stress and ultimately cell death (Tsvetkov et al., 2022). Jiang et al. (2022a) have discovered that cuproptosis induces tumor cell death by activating apoptosis pathways by creating reactive oxygen species (ROS), opening a new avenue for anti-cancer research. Besides, copper was found to be accumulating in serum samples from patients with cancer, indicating copper may play a significant role in cancer progression (Ebara et al., 2000; Zabłocka-Słowińska et al., 2018; Feng et al., 2020). Besides, Chen et al. (2019) confirmed that an anti-tumor agent of copper-dependent can exert an effective anti-tumor effect on the hematopoietic system in vivo/vitro experiments. Bian et al. (2022) constructed a novel cuproptosis-related signature to predict prognosis and provide new insights into therapeutic strategies in clear cell renal cell carcinoma.
Long non-coding RNAs (lncRNAs) are non-coding transcripts with 200 nucleotides in length, which have been shown to regulate the expression of cancer-related genes (Alexander et al., 2010). In recent studies, it was determined that changes in the expression and function of lncRNA might be closely related to PCDs such as apoptosis, autophagy, and ferroptosis (Jiang et al., 2021; Qi et al., 2022a). For example, LncRNA RP11-89 was confirmed to be a novel tumorigenic modulator that inhibits ferroptosis through PROM2-activated iron export and might serve as one of the biomarkers to guide targeted therapy for bladder cancer (Luo et al., 2021). Besides, Shen et al. identified 10 N6-methyladenosine (m6A)-related lncRNAs as significantly related to the prognosis of SKCM and further constructed a risk model by using bioinformatics analysis (Shen et al., 2022). There is, however, no knowledge of the role of lncRNAs in cuproptosis of the SKCM, the latest results of Haozhen Lv et al. showed that the three Cuproptosis-related genes, LIPT1, PDHA1, and SLC31A1, have a predictive effect on the prognosis of SKCM patients, which also gave us a hint for further research to a certain extent (Lv et al., 2022). So, we decided to use bioinformatics analysis to uncover the relationship between cuproptosis, lncRNA, and SKCM.
In addition, immunotherapy has recently attracted much attention as a new tumor treatment strategy. The study of Elena Gómez-Abenza et al. in zebrafish pointed out that changes in the SKCM cellular immune microenvironment (TME) can be regulated by SPINT1 (Gómez-Abenza et al., 2019), while Min Yan 1 et al. (Yan et al., 2021), based on the results of single-cell sequencing, specifically pointed out that T cells in SKCM unique role. Therefore, in this study, we also intend to explore the immune system changes in SKCM patients.
In this study, based on the TCGA database, an accurate prognostic model for SKCM was constructed, and multiple cuproptosis-related lncRNAs were identified as potential biomarkers. Furthermore, we carry out a comprehensive analysis of the risk model including functional enrichment, drug resistance, immunotherapy, immune infiltration, and somatic mutation. Hopefully, the findings of our study will provide insight into the role of cuproptosis-related lncRNAs in SKCM.
MATERIALS AND METHODS
Data collection
From the TCGA database (http://portal.gdc.cancer.gov/), RNA sequencing data, somatic mutations, as well as the corresponding clinical information of SKCM samples were obtained. To ensure the authenticity of the analysis results as much as possible, we removed samples with no survival time and survival times less than 30 days. Ultimately, 455 patients of the SKCM were included in the analyses; they were divided randomly among training (n = 228) and testing sets (n = 227) using the R package “caret”. The Chi-square tests were applied to compare the clinical characters between the training and testing sets. Cuproptosis regulators (Supplementary Table S1) were obtained from previous literature (Tsvetkov et al., 2022).
Identification of cuproptosis-related lncRNAs
We obtained 16773 lncRNAs according to the annotation file of lncRNA obtained from the GENCODE database (https://www.gencodegenes.org/human/). Pearson correlation test was further conducted to identify cuproptosis-related lncRNAs following the filter criteria (|R| ≥ 0.4 and p-value < 0.001).
Construction of cuproptosis-related risk model
First, we identified 142 prognostic cuproptosis-related lncRNAs using Univariate Cox regression analysis. Furthermore, LASSO regression analysis (Lupton-Smith et al., 2021) was used to prevent overfitting, and 9 cuproptosis-related lncRNAs were identified to be significantly associated with overall survival (OS) in SKCM patients. Finally, to identify the powerful candidate lncRNAs and establish the risk model, we conducted a multivariate Cox regression analysis and 5 cuproptosis-related lncRNAs were considered prognostic factors. Use the formula below to calculate the risk score (It is worth noting that coef is an abbreviation for the corresponding coefficient, and Exp is an abbreviation for lncRNA’s expression):
Risk score = [image: image]
We calculated the risk score for each SKCM patient using the formula and further used the median as a cutoff to subgroup the patients (high-risk group and low-risk group).
Assessment of the prediction accuracy of risk model
We conducted Kaplan-Meier (K-M) analysis to assess the risk model prediction ability using the R package “survival”. Besides, the Receiver operating characteristics (ROC) curve of 1-, 3-, and 5-years was drawn to further verify the predictive power of the established risk prognostic model using the package “timeROC”. Performed principal component (PCA), as well as t-distributed stochastic neighbor embedding (t-SNE) analyses, were applied to lessen the dimensions and visualize the distinction between the two groups.
Independence of the risk model
We conducted univariate regression, and multivariate regression analysis to verify whether our risk model can predict the prognosis of SKCM patients independently of other clinical factors (Gender, Age, Pathological stage, and TNM stage).
Establishment of the nomogram
Studies have shown that Nomogram can accurately calculate the survival rate of tumor patients and has great value in clinical applications (Awan et al., 2021). We further applied the R package “rms” to build a nomogram, combining a variety of key clinical factors and risk models to better predict long-term survival in SKCM patients. To verify that the actual results and model predictions are in agreement, a calibration plot was drawn using the Hosmer-Lemeshow test.
Analysis of immune microenvironment and molecular variation
We utilized the ESTIMATE algorithm to calculate the immune, stromal, and estimate scores to assess the differences in tumor microenvironments (TMEs) between two groups (Yu et al., 2021). Besides, we assess the levels of immune cells of entire SKCM patients using the CIBERSORT algorithm (Guan et al., 2022). Furthermore, we applied ssGSEA and GSVA analyses to explore the discrepancy between infiltrating fractions of immune cells and immune-related functions between the two groups (Zhang et al., 2021a; Xu et al., 2022). We analyzed tumor mutation burden (TMB) using the package “maftools” and divided all SKCM patients into high- and low-TMB groups according to the median TMB score. Besides, we calculated the correlation between the risk model and TMB using Pearson correlation analysis.
The therapeutic significance of the risk model
To better apply the model to clinical treatment, we calculated the IC50 values of common anti-SKCM drugs by using the R package “pRRophetic” (Geeleher et al., 2014). Furthermore, to identify potential drugs that can treat SKCM, we identified many compounds obtained from the GDSC website (https://www.cancerrxgene.org/) with significantly different IC50 values between the two groups. To investigate the potential benefits of the risk model in immunotherapy, we also compared the expression levels of critical immune checkpoint genes (ICIs), including PD-1, PD-L1, HAVCR2, and CTLA-4, between two groups.
Functional enrichment analysis
Differentially expressed genes (DEGs) between two groups were identified by using the package “limma” following the criteria (|Log2FC| > 1.0, p-value < 0.05). We further applied GO and KEGG functional enrichment analyses to investigate the related functions and pathways on the bias of the DEGs using the package “clusterProfiler”. We further conducted a GSEA analysis to compare the potential pathways between two groups using GSEA software (http://www.gsea-msigdb.org/gsea/index.jsp). Sankey diagram was conducted to visualize the correlation between cuproptosis-related lncRNAs, mRNAs, and risk factors (protective/risk) using the R package “ggalluvival”.
Statistical analysis
All statistical analyses were conducted in the R software (Version 4.1.1). Student’s t-tests were applied to determine the difference between the two groups. For the analysis of differences between K-M curves, the log-rank test was performed. If there is no special description for the above method, statistical significance is defined as p-value < 0.05.
RESULTS
Data of patients with skin cutaneous melanoma
All analysis processes were presented in the flow chart (Figure 1). In total, 455 patients with SKCM were considered in the subsequent study. Training set including 228 SKCM patients was applied to identify cuproptosis-related lncRNAs related to prognosis and further construct the prognosis risk model, and testing set including 227 SKCM patients was applied to verify the superiority of the established risk model. It has been found that clinical characteristics such as age, gender, and TNM stage are not statistically different between the two groups (Supplementary Table S2, p > 0.05).
[image: Figure 1]FIGURE 1 | The workflow of this study.
Acquisition of cuproptosis-related lncRNA
The expression of 10 cuproptosis-associated genes and 16773 lncRNAs was identified from the TCGA database. After Pearson correlation analysis with filter criteria (|R| ≥ 0.4 and p < 0.001), we obtained 437 cuproptosis-related lncRNAs (Supplementary Table S3). The co-expression network between 10 cuproptosis-associated genes and 437 cuproptosis-related lncRNAs was presented in Figure 2A.
[image: Figure 2]FIGURE 2 | Identification of cuproptosis-related lncRNAs in TCGA-SKCM patients. (A) Co-expression network in Sankey diagram for cuproptosis-associated genes and corresponding lncRNAs. (B) The heatmap of 10 cuproptosis-associated genes and 142 cuproptosis-related lncRNAs.
Construction of the cuproptosis-related lncRNA risk model for skin cutaneous melanoma
The univariate Cox regression analysis was applied to identify cuproptosis-related lncRNAs associated with OS, and 142 lncRNAs were identified (Supplementary Table S4). The correlation heatmap between 142 candidate lncRNAs and cuproptosis-associated genes was visualized in Figure 2B. Furthermore, the LASSO regression was applied and we found that 9 cuproptosis-related lncRNAs were significantly correlated with the prognosis of SKCM patients (Figures 3A,B). Finally, 5 cuproptosis-related lncRNAs, including VIM-AS1, AC012443.2, MALINC1, AL354696.2, and HSD11B1-AS1 were identified to construct the risk model using multivariate Cox regression analysis (Figure 3C; Table 1). The risk score was calculated based on the corresponding Cox regression model coefficients and lncRNA expression levels: risk score = VIM-AS1 × -0.486200693258448 + AC012443.2 × -1.12449989484336 + MALINC1 × -0.696789508906321 + AL354696.2 × -1.17823680822397 + HSD11B1-AS1 × -0.623186481172742.
[image: Figure 3]FIGURE 3 | Construction of the cuproptosis-related lncRNA risk model. (A,B) LASSO regression analysis identified 9 cuproptosis-related lncRNAs. (C) Multivariate Cox regression analysis identified 5 cuproptosis-related lncRNAs. (D) Heatmap of the correlation between hub lncRNAs and cuproptosis mRNAs (E) The Sankey diagram shows the connection degree between cuproptosis mRNAs, cuproptosis-related lncRNAs, and risk types. (F) Distribution of risk scores, (G) survival status and survival time patterns, (H) relative expression of 5 hub lncRNAs, and (I) K-M survival based on the training set.
TABLE 1 | The 5 cuproptosis-related prognostic lncRNAs.
[image: Table 1]We applied correlation test to further explore the co-expression network between 5 cuproptosis-related lncRNAs and mRNAs (Figure 3D). Besides, the Sankey diagram revealed that 5 hub cuproptosis-related lncRNAs were protective factors (Figure 3E). We investigated the distribution of risk scores in survival time and survival status between high- and low-risk groups in the training set (Figures 3F,G). Besides, the relative expression of 5 hub cuproptosis-related lncRNAs was calculated in the training set (Figure 3H). Compared with patients in the high-risk group, patients in the low-risk group have higher expression levels of 5 cuproptosis-related lncRNAs, which was consistent with the Sankey diagram. Finally, we applied the K-M curve to verify whether there was a significant difference in OS between high- and low-risk groups. The results showed that in the low-risk groups, SKCM patients had better OS compared with the high-risk groups (Figure 3I, p <0.001).
Validation of the cuproptosis-related lncRNA risk model
Our next step was to apply the testing set as well as the entire set to test the reliability of the established risk model. Using the method mentioned before, the risk curve as well as scatters plot to visualize the survival status and survival time suggested that SKCM patients in the low-risk group had longer survival time and a lower risk score than in the high-risk group, based on the results of the testing set (Figures 4A,B) and the entire set (Figures 4C,D). Furthermore, the heatmap of expression levels based on the testing set (Figure 4E) and the entire set (Figure 4F) confirmed that 5 hub cuproptosis-related lncRNAs were protective factors. K-M analyses also presented that low-risk SKCM patients had better overall survival than high-risk patients based on the testing set (Figure 4G, p <0.001) and the entire set (Figure 4H, p <0.001). The above bioinformatics studies fully identify that our established risk model has reliable discrimination for SKCM patients.
[image: Figure 4]FIGURE 4 | Validation of the risk model. Distribution of risk scores based on the testing set (A), and entire set (B). Survival status and survival time patterns are based on the testing set (C), and the entire set (D). Relative expression of 5 hub lncRNA based on the testing set (E), and entire set (F). K-M analyses are based on the testing set (G), and the entire set (H).
PCA and t-SNE
Firstly, we applied PCA and t-SNE analyses to evaluate the accuracy of the risk model based on the 5 cuproptosis-related lncRNAs in the training set (Figure 5A), testing set (Figure 5B), and entire set (Figure 5C). All results presented fairly significant discrimination between the two subgroups. Furthermore, we applied PCA based on the entire gene sequencing data of the TCGA-SKCM cohort, 10 cuproptosis-associated genes, 437 cuproptosis-related lncRNAs, and the risk prognostic model (Figures 5D–G). The distribution of the two groups based on the risk model was significantly different and stable, which fully indicated that the risk model can accurately distinguish SKCM patients and reflected the significant differences in the cuproptosis sensitivity between the two subgroups.
[image: Figure 5]FIGURE 5 | PCA and t-SNE. PCA and t-SNE analyses between the high-risk and low-risk groups based on the training set (A), testing set (B), and entire set (C). PCA analysis between the high-risk and low-risk groups based on all entire gene expression profiles (D), cuproptosis genes (E), 437 cuproptosis-related lncRNAs (F), and risk model (G).
Independent factor test and creation of nomogram
Using univariate and multivariate Cox regression analyses to determine whether the cuproptosis-related lncRNA was an independent prognostic factor for OS in SKCM patients, we examined the potential independent effect of cuproptosis-related lncRNAs on our outcomes. The results of univariate Cox regression analysis suggested that age (HR = 1.020, p < 0.001), stage (HR = 1.520, p < 0.001), T stage (HR = 1.491, p < 0.001), N stage (HR = 1.452, p < 0.001), and risk score (HR = 1.664, p < 0.001) were significantly associated with OS (Figure 6A). After adjusting for other confounding factors, the multivariate Cox regression analysis showed that the risk score (HR = 1.476, p < 0.001) still had a significant effect on survival and prognosis (Figure 6B). Based on the above results, it is concluded that the risk prognostic model according to five cuproptosis-related lncRNAs serves as independent prognostic factors for SKCM patients. Besides, compared with other clinical indicators, the risk model showed the highest C-index (Figure 6C), and its AUC for 1-, 3-, and 5-years OS were all greater than 0.5, indicating the reliability of the model (Figure 6D). Considering the widespread use of nomogram and risk scores has an excellent ability to predict the prognosis of SKCM patients. We further constructed a nomogram by integrating multiple clinical factors and our constructed risk score to better predict 1-, 3-, and 5-years survival in SKCM patients (Figure 6E). The accuracy of the nomogram was verified in subsequent calibration curves, and we found a high degree of accuracy between the actual observed and predicted values (Figure 6F). Furthermore, the DCA curves based on the entire set also confirmed the superior predictive power of the nomogram (Figure 6G), and the nomogram even shows a higher C-index than the risk model (Figure 6H). Besides, the area under the ROC curve (AUCs) at 1, 3, 5-years were 0.812, 0.725, and 0.684, suggesting that the nomogram was reliable in predicting the OS of SKCM patients (Figure 6I).
[image: Figure 6]FIGURE 6 | Independent Prognostic Factors and Construction of Nomogram. Forrest plot of the univariate Cox regression analysis (A), and multivariate Cox regression analysis (B), based on the entire set. (C) The concordance index of risk score with clinical characteristics. (D) ROC curves for 1-, 3-, and 5-years OS in the risk model. (E) The nomogram. (F) The calibration curves of the nomogram predict the probability of the OS (The x-axis shows nomogram-predicted survival, and the y-axis shows actual survival. The grey line shows the ideal calibration line, and the color line represents the model-predicted calibration line. (G) The DCA curves of the nomogram. (H) The concordance index of nomogram, risk score and clinical characteristics. (I) ROC curves for 1-, 3-, and 5-years OS in the nomogram.
Next, we applied K-M analysis to verify whether our constructed risk model still maintains superior predictive power in different clinical traits. We found that high-risk patients of SKCM still had a lower prognosis in different groups of clinical features such as age, gender, pathological stage, such as TNM stage (Figure 7).
[image: Figure 7]FIGURE 7 | K-M analysis of OS stratified by age (≤65 or >65), gender (female or male), SKCM stage (I–II or III-IV), and TNM stage (T1–2 or T3–4) between high-risk and low-risk groups in TCGA entire set.
Analysis of immune infiltration landscape
Given the importance of TME in tumor progression and treatment, we applied multiple immune assessment algorithms to study it. First, we applied the ESTIMATE algorithm to analyze the immune, stromal, and estimate scores of SKCM patients. It was found that SKCM patients in the low-risk group had a significantly higher immune score, stromal score, and estimate score than in the high-risk group (Figures 8A–C, p <0.05). Besides, the GSVA enrichment analysis revealed that SKCM patients in the low-risk group were significantly related to immune pathways and functions such as Type_II_IFN_Reponse, HLA, APC_co_inhibition, Check−point, Cytolytic_activity, and CCR (Figure 8D). We further performed the CIBERSORT algorithm to analyze the category and proportion of 22 immune cells. The relative fraction of 22 immune cells within low- and high-risk groups were presented by a box plot (Figure 8E), and the heatmap (Figure 8F) revealed significant disparities in the distribution of immune cells based on the risk model. Besides, compared to the high-risk group, we summarized that Macrophages M0, M2, and Mast cells resting account for a small proportion in the low-risk group (p < 0.05), while T cells CD4 memory activated, T cells follicular helper, and Macrophages M1 cover a larger proportion (p < 0.05) (Figure 8G). Finally, we further applied the ssGSEA algorithm to investigate the infiltration of immune cells and immune functions in the high-risk and low-risk groups. The results presented that the immune cells subpopulations of B cells, CD8+ T cells, Neutrophils, NK cells, (plasmacytoid DCs) pDCs, T helper cells, Tfh, Th1 cells, Th2 cells, TIL, and (regulatory T cells) Tregs were significantly higher in the low-risk group (Figure 8H, p <0.001). The APC co-inhibition/stimulation, chemokine receptors (CCR), Check-point, Cytolytic activity, human leukocyte antigen (HLA), Inflammation−promoting, MHC class I, Parainflammation, T-cells co-inhibition/stimulation, and type I IFN response was significantly upregulated in the low-risk group (Figure 8I, p <0.001). Finally, to assess the correlation between the risk score and immune cell subtype infiltration, we conducted a comprehensive analysis using multiple algorithms including TIMER, CIBERSORT, xCELL, quanTIseq, MCPcounter, EPIC, and CIBERSORT-ABS (Supplementary Figure S1). The results indicated that there was a negative relationship between immune cell infiltration and risk score. As shown above, the low-risk group had a higher level of immune infiltration, which may be associated with a better prognosis.
[image: Figure 8]FIGURE 8 | Analyses of tumor immune microenvironments between two groups. The differences of the immune score (A), stromal score (B), and estimate score (C). (D) The GSVA of immune-related pathways between two groups. Expression features of 22 immune cells in the box plot (E), heatmap (F), and violin plot (G) using the CIBERSORT algorithm. The differences of the immune cells (H), and immune functions (I) using the ssGSEA algorithm.
Somatic mutation analysis
We further compared the differences in the somatic mutations between the two groups. The low-risk group had a higher mutation rate (Altered in 217 (94.35%) of 230 samples) than the low-risk group (Altered in 199 (89.64%) of 222 samples), and the top 20 driver mutation genes were displayed in Figures 9A,B. Numerous studies already exist confirming that TMB can be a valuable predictor of tumor immune response and that patients with higher TMB might more benefit from immunotherapy (Hodi et al., 2021). The TMB quantitative analysis revealed that the low-risk group patients had a significantly higher TMB score compared to the high-risk group patients, suggesting that patients in the low-risk groups might be better candidates for immunotherapy (Figure 9C, p <0.05). We also conducted a Pearson correlation analysis to determine whether the risk model correlates with the TMB. The result suggested that there was a negative correlation among them (Figure 9D, R = -0.1, p <0.05). Then we divided all SKCM patients into high-TMB and low-TMB groups according to the cut-off values (media TMB score). Subsequently, K-M analysis suggested that patients in the high-TMB group had a significantly better OS than in the low-TMB group (Figure 9E, p <0.05). Using the TMB score to predict the survival of SKCM patients or using the risk model to predict the prognosis of patients, which one had the better predictive ability? Interestingly, when we combined the TMB and risk scores for K-M analysis of SKCM patients, we found that better OS with high-TMB was eliminated by the risk score. On the contrary, the patients in the group (low-risk score and high TMB score) had a significantly OS than in the other groups, and it could be concluded that the risk model was superior to the TMB in predicting an individual’s prognosis (Figure 9F, p <0.05).
[image: Figure 9]FIGURE 9 | Landscape of mutation between two groups. The mutation distributions of patients in the high-risk group (A), and low-risk group (B). (C) The difference in TMB score between the two groups. (D) Correlations between risk score and TMB. (E) K-M analysis of the OS between high- and low-TMB groups. (F) K-M analysis of the OS between four groups stratified by both TMB and risk score.
Functional enrichment analysis
For a deeper exploration of the mechanisms that contribute to significant differences between two groups in the multidimensional analysis. We further performed the GO and KEGG analyses (Supplementary Table S5) based on the 749 DEGs (Supplementary Table S6) between two groups (|Log2FC| > 1.0, p-value < 0.05). As displayed in Figures 10A,B, According to GO analysis, DEGs were significantly enriched in immune-related biological processes (BP), including lymphocyte-mediated immunity, immune response-activating cell surface receptor signaling pathways, immune response-activating signal transduction pathways, and humoral immune responses. In regards to cellular component (CC), these DEGs were significantly enriched in immunoglobulin complex and the external side of the plasma membrane. In regards to molecular function (MF), these DEGs were significantly enriched in antigen binding and immunoglobulin receptor binding. Besides, the KEGG analysis also indicated that these DEGs were mainly enriched in immune-related pathways such as Cytokine−cytokine receptor interaction, Primary immunodeficiency, Chemokine signaling pathway, and PD−L1 expression and PD−1 checkpoint pathway in cancer (Figures 10C,D). Additionally, the GSEA analysis of KEGG indicated that pathways such as glutathione metabolism, galactose metabolism, and oxidative phosphorylation were enriched in the high-risk group (Figure 10E; Supplementary Table S7), while such as the jak stat signaling pathway, chemokine signaling pathway, and other immune-related pathways were enriched in the low-risk group (Figure 10F; Supplementary Table S7). The results indicated that cuproptosis may be closely related to metabolism and immunity.
[image: Figure 10]FIGURE 10 | Functional enrichment analyses. (A-B) GO analysis based on DEGs between high- and low-risk groups. (C-D) KEGG analysis based on DEGs between high- and low-risk groups. (E-F) GSEA enrichment analysis.
Analysis of drug and immunotherapy response
Given the significantly different prognosis of SKCM patients in two groups, we decided to further screen potential drugs to better achieve targeted therapy. We applied the R package “pRRophetic” to investigate the treatment response according to the IC50 values of samples in the GDSC database. According to the potential drugs analysis, we found that the IC50 values of 5 potential drugs (ABT.263, ABT.888, AG.014699, AICAR, ATRA) were significantly higher in the high-risk group, indicating that patients in the low-risk group may be more suitable for these drugs (Figures 11A–E, p <0.05). By contrast, the IC50 values of 3 potential drugs (A.770041, AZ628, AUY922) were significantly upregulated in the low-risk group, suggesting that patients of SKCM in the high-risk group may be more suitable for these drugs (Figures 11F–H, p <0.05). Furthermore, we calculated the IC50 values of common anti-tumor drugs among two groups and we were surprised to find that the IC50 values of these chemotherapy drugs such as cisplatin, paclitaxel, vinorelbine, and gemcitabine were significantly higher in the high-risk groups, suggesting that the risk model can well guide individualized clinical treatment and assess the patient’s immune response (Figures 11I–11L, p <0.05). As more and more ICIs have been proven to be effective in cancer treatment in recent years, we further evaluated the expression of PD-1, PD-L1, CTLA4, and HAVCR2. We found that patients of SKCM in the low-risk group had significantly higher expression of PD-1, CTLA4, HAVCR2, and PD-L1 (Figures 11M–11P, p <0.05), which indicates that the risk models can serve as promising predictors for the use of immune checkpoint inhibitors.
[image: Figure 11]FIGURE 11 | Exploration of therapeutic sensitivity. (A–H) Analysis of potential drug sensitivity in two groups. (I–L) Analysis of common chemotherapeutic sensitivity. (M–P) Expression levels of critical ICIs in the two groups. (p < 0.05 *; p < 0.01 **; p < 0.001 ***).
DISCUSSION
Although much progress has been made in the screening, diagnosis, and treatment of SKCM, the prognosis of advanced malignant melanoma is still low (Hayward et al., 2017). Considering that the main reasons for this poor prognosis and high mortality are the lack of early and effective diagnostic tools and the early metastasis properties, we decide to use bioinformatics analysis to find effective biomarkers for early detection. In recent years, PCD has been regarded as one of the most promising anti-tumor mechanisms and was found to play a crucial role in regulating the progression of various cancers (Koren and Fuchs, 2021; Qi et al., 2022b). Additionally, recent studies point to a completely new PCD: copper-dependent programmed cell death named cuproptosis (Tsvetkov et al., 2022). Copper is an essential component of many biochemical reactions and is widely involved in a variety of cellular functions, such as cell metabolism, growth, and proliferation, protein activity regulation, as well as apoptosis, autophagy, and other cellular processes (Polishchuk et al., 2019; Yang et al., 2021). Several studies over the past few years have shown that abnormal copper levels in cells or circulating blood are associated with tumor progression and prognosis in tumor patients. Fang et al. (2019) found that higher serum copper levels are associated with poorer prognosis in patients with liver cancer. Besides, Lopez et al. (2019) confirmed that antagonizing copper uptake by tumor cells, or chelating or inactivating copper in cells can effectively inhibit tumor progression which is a very promising treatment strategy for cancer. Meanwhile, A growing body of research has revealed that lncRNAs play a crucial role in the biological process of SKCM as emerging genetic and molecular biomarkers (Wang et al., 2020; Guo et al., 2021). For example, Sun et al. (2021) established a novel ferroptosis-related lncRNA signature that can be used to predict the prognosis and provide immunotherapy treatment targets for SKCM. However, no studies have been conducted regarding the relationship between cuproptosis-related lncRNAs and SKCM. Based on the above research backgrounds, we have chosen to investigate how lncRNAs that can regulate the process of cuproptosis can impact tumor progression as well as patient outcomes in SKCM.
In our study, based on univariate Cox, LASSO, and multivariate Cox regression analyses, a total of five protective cuproptosis-related lncRNAs were identified to construct the risk prognostic model. It is worth mentioning that this step-by-step dimensionality reduction method to finally screen out genes that are key to prognosis and use it to build a risk model has been reported by many excellent articles and is reliable (Jiang et al., 2022b; Guo et al., 2022). The superior prognostic ability of the risk model was confirmed in subsequent research analyses. In addition, we created an accurate nomogram to better predict 1-, 3-, and 5-years survival rates in SKCM patients. We were surprised to discover that of the five cuproptosis-related lncRNAs (VIM-AS1, AC012443.2, MALINC1, AL354696.2, HSD11B1-AS1), except for AC012443.2 and AL354696.2, which have no related studies previously published, the other three were shown to be closely associated with cancer progression, especially SKCM. The lncRNA VIM-AS1 has been shown in numerous studies to regulate the growth and metastasis of various tumor cells. In addition, Xiong et al. (2021) reported that the lncRNA VIM-AS1 is found to have significantly high expression levels in metastatic bladder cancer tissues and that the VIM-AS1/miR-655/ZEB1 axis regulates the epithelial-mesenchymal transition in bladder cancer. Zhang et al. developed a risk model using immune-related lncRNA, including VIM-AS1, which provides insight into patients with lung adenocarcinoma prognosis (Zhang et al., 2021b). Additionally, Li et al. reported that lncRNA MALINC1 is also related to the immune response as well as prognosis of SKCM, and is applied to construct the risk prognostic model of SKCM (Li and Luo, 2021). This is consistent with our study, indicating that MALINC1 plays an important role in the progression of SKCM. It is worth noting that lncRNA HSD11B1-AS1 also proved to play a crucial role in the progress of SKCM (Liu et al., 2022) and breast cancer (Xu et al., 2021). Liu et al. confirmed that lncRNA HSD11B1-AS1served as a protective factor inhibits the proliferation, migration, and invasion of SKCM by multiple functional experiments (Liu et al., 2022). Our study found that lncRNAs AL354696.2 and AC012443.2 also act as protective factors to reduce the risk of SKCM and improve prognosis, but no relevant studies have reported them, so the subsequent mechanisms need to be further explored.
In the further analyses of immune infiltration, we found that both immune cells and immune functions presented higher infiltration status in low-risk group patients of SKCM, suggesting that the better prognosis of patients in the low-risk group may be associated with a higher immune infiltration status. Interestingly, we also noticed that the immune, stromal, and estimate scores were significantly upregulated in the low-risk group. These results suggest that the risk model we have developed is largely related to the immune landscape of the SKCM microenvironment. It also indicated that cuproptosis may mediate the expression of immune cells and immune function and thus affect tumor progression. Further investigation is necessary to identify the molecular mechanisms by which cuproptosis and SKCM immunity are linked. Numerous studies have shown that TMB can be used as a biomarker to predict the effectiveness of immunotherapy (Ricciuti et al., 2019; Wong et al., 2021). From previous studies, TMB has been shown to be highly correlated with clinical outcomes after immunotherapy in advanced melanoma, further suggesting a combined approach to assess TMB and inflammatory signatures that can well differentiate the response of patients with advanced melanoma to immunotherapy (Hodi et al., 2021). Interesting to note, that in our study, scores on the TMB test and gene mutations were significantly higher in the low-risk group than in the high-risk group. Higher TMB scores, better prognosis, and higher immune infiltration status in the low-risk group fully demonstrate that the risk model based on cuproptosis has better predictive value.
Due to the development of immunotherapies targeting CTLA4, PD-1, and PD-L1, treatment outcomes for SKCM patients have improved over the past decade. Although large-scale clinical studies using immune checkpoint-related drugs in SKCM are currently lacking, more and more studies have demonstrated the undeniable role of immune checkpoint-related genes in the progression of SKCM (Selitsky et al., 2019) (Zhong et al., 2022). To better estimate the efficacy of checkpoint blockade therapy on our risk model, we investigated the expression of critical ICPs and found that low-risk patients had higher expression levels. Here, we also evaluated the sensitivity of high-risk and low-risk patients to commonly used chemotherapeutic drugs to better guide clinical medication. Some potential compounds were also screened and may provide some new directions for the treatment of SKCM. We found that the risk model is a promising predictor for antitumor drug selection and provides reliable immune markers for tumor immunotherapy.
To better investigate the potential regulatory mechanisms of CM, we further explored the possible different signaling pathways between the two groups. GO and KEGG analyses indicated that the DEGs were largely associated with immune-related pathways. Among them, we found that in the functional enrichment, there are many T helper cell-related pathways (such as Th17, 1 and 2 cell differentiation, etc.). In addition, in the analysis of immune cell infiltration, we also found that the infiltration fraction of T helper cells was significantly different between the two different risk groups. The study of Tom Hartwig et al.(2018) pointed out the important role of Th cells in inhibiting skin inflammation and pointed out that the inhibitory effect of skin inflammation played by Th cells (mainly IL-17/17A secreted by them) is involved in psoriasis, melanin It plays an important regulatory role in cancer and other diseases. In addition, other studies have observed a decrease in the percentage of peripheral and tumor-infiltrating Th17 cells in SKCM patients (He et al., 2021), and a clinical study by Kyoko Yamaguchi et al. (Yamaguchi et al., 2018). These results are consistent with the finding that the low-risk group had a higher Th cell infiltration score in the immune infiltration analysis. However, we also noticed that the mechanism of action of Th17 cells in SKCM has not been thoroughly studied. The article by Chen and Gao. (2019) pointed out that Th17 cells performed like macrophages in tumors, which also have contradictory effects of promoting tumor and inhibiting tumor. Their summary indicates that the relationship between SKCM and Th cell infiltration requires more and more rigorous experiments to verify.
Here, we must also admit that there are some limitations in this study. First, this study is based on the analysis of SKCM samples from the TCGA database, and there may be sample bias in the analysis of a single database, resulting in one-sided analysis results; Literature studies, given that cuproptosis is a recently proposed concept, there may be genes that have not been discovered that have not been included in this study; finally, we need more experiments in vivo or in vitro to examine the lncRNAs for prognostic models building.
In conclusion, this study is the first to investigate the regulation of lncRNAs on the cuproptosis process of tumor cells in SKCM. Using the relevant data of SKCM patients in TCGA, we constructed a lncRNA prognosis prediction model based on the regulation of the cuproptosis process, which can shed the hoping light on the diagnosis and treatment of SKCM.
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Hepatocellular carcinoma (HCC) is one of the most common gastrointestinal malignancies. It is not easy to be diagnosed in the early stage and is prone to relapse, with a very poor prognosis. And immune cell infiltration and tumor microenvironment play important roles in predicting therapeutic response and prognosis of HCC. Machado-Joseph domain-containing proteases (MJDs), as a gene family extensively involved in tumor progression, has pro-cancer and anti-cancer effects. However, the relationship between MJDs family members and immune cell infiltration and tumor microenvironment in HCC remains unclear. Therefore, cBio Cancer Genomics Portal (cBioPortal), The Cancer Genome Atlas (TCGA), UALCAN, Human Protein Atlas (HPA), MethSurv, and Tumor Immune Estimation Resource (TIMER) databases were performed to investigate the mRNA expression, DNA methylation, clinicopathologic features, immune cell infiltration and other related functions of MJDs family members in HCC. The results indicated that the expression of ATXN3, JOSD1, and JOSD2 was dramatically increased in HCC tissues and cell lines, and was correlated with histological grade, specimen type, TP53 mutation, lymph node metastatic, gender, and age of patients with HCC. Meanwhile, these genes also showed clinical value in improving the overall survival (OS), disease-specific survival (DSS), progression free survival (PFS), and relapse-free survival (RFS) in patients with HCC. The prognostic model indicated that the worse survival was associated with overall high expression of MJDs members. Next, the results suggested that promotor methylation levels of the MJDs family were closely related to these family mRNA expression levels, clinicopathologic features, and prognostic values in HCC. Moreover, the MJDs family were significantly correlated with CD4+ T cells, CD8+ T cells, B cells, neutrophils, macrophages, and DCs. And MJDs family members’ expression were substantially associated with the levels of several lymphocytes, immunomoinhibitors, immunomostimulators, chemokine ligands, and chemokine receptors. In addition, the expression levels of MJDs family were significantly correlated with cancer-related signaling pathways. Taken together, our results indicated that the aberrant expression of MJDs family in HCC played a critical role in clinical feature, prognosis, tumor microenvironment, immune-related molecules, mutation, gene copy number, and promoter methylation level. And MJDs family may be effective immunotherapeutic targets for patients with HCC and have the potential to be prognostic biomarkers.
Keywords: MJDs family members, hepatocellular carcinoma, methylation, immune cell infiltration, prognostic biomarker
INTRODUCTION
Hepatocellular carcinoma (HCC) is the fifth most common cancer, and is also the second causing reason for cancer-related deaths. According to National Cancer Center (NCC), HCC is the first cause of death for men aged 15–59 years in China (Zheng et al., 2022). In recent years, with the continuous improvement of diagnostic techniques and systemic treatment, the prognosis of HCC patients has been greatly improved. Unfortunately, the 5-year survival rate of HCC is still less than 19% (Feng et al., 2020). Thus, we need to further explore markers for early diagnosis and related therapeutic targets of HCC to improve the prognosis of patients.
The MJDs family, the sub-classes of deubiquitinases, consists of four members: ATXN3, ATXN3L, JOSD1, and JOSD2. The MJDs family members is of critical importance in tumorigenesis and tumor progression (Zeng et al., 2020). For example, downregulation of ATXN3 promotes sensitivity of neuroblastoma cells to Perifosine and MK-2206, but reduces sensitivity to etoposide and cisplatin in these cells (Gong et al., 2021); ATXN3 enhances breast cancer (BRCA) metastasis by deubiquitinating KLF4 (Zou et al., 2019); ATXN3 promotes mRNA expression of EIF5A2 by stabilizing EIF5A2 to decrease its ubiquitination and degradation in anaplastic thyroid carcinoma (Zhuang et al., 2021). Down-regulation of ATXN3L suppresses breast cancer cell proliferation by directly binding to KLF5 (Ge et al., 2015). Meanwhile, ATXN3L is also presented to promote the migration of NSCLC cells (Buus et al., 2009). JOSD1 suppresses mitochondrial apoptosis to induce the chemotherapy drug resistance in the gynaecological tumor by deubiquitinating and stabilizing MCL1 (Wu et al., 2020). In acute myeloid leukemia (AML) cells, JOSD1 interacts with JAK2-V617F and promotes its expression (Yang et al., 2022). JOSD2 deficiency inhibits tumor cell proliferation by reducing glycolysis, and its mRNA expression is related to the worst prognosis in NSCLC (Krassikova et al., 2021). JOSD2 directly binds to and reduces ubiquitination levels of CTNNB1, thus, augmenting Wnt pathway transduction in HCC. In addition, Over-expression of JOSD2 is positively associated with poor prognosis in HCC patients (Huang et al., 2022). However, the possible biological functions of MJDs family members in HCC and its prognostic value remain unclear.
In our study, we analyzed the mRNA expression alterations in MJDs family members, clinical characteristics, prognostic values, promoter methylation levels, MJDs members’ gene changes, their association with immune infiltration cells, and immunomodulators. The study shows the underlying biological functions and the prognostic values of MJDs family members, which will facilitate the early diagnosis, targeted therapy, and immunotherapy of HCC patients.
MATERIALS AND METHODS
UALCAN
UALCAN is a synthetically web-based database for analyzing TCGA data. In this study, HCC sample types, ages, genders, grades, tumor stages, lymph node metastasis TP53 mutations, and promotor methylation levels were from the UALCAN database.
GTEx
This database integrates multi-omics data based on various normal human tissues. According to the Genotype-Tissue Expression (GTEx) databases in normal tissues, the expression of MJDs family members were analyzed.
cBioPortal
cBioPortal is an integrated web tool to analyze the TCGA database. We used this tool to analyze the gene structure variation of MJDs family members, co-expression, correlation between methylation levels and mRNA expression levels.
MethSurv
MethSurv is a web tool to study the relationship between aggregation of methylation sites and patient survival. We used this tool to analyze the methylation levels of CpG island in members of the MJDs family and their relationship with patient survival.
Kaplan-Meier analysis
The association between the expressed level of MJDs family members and the outcome of HCC patients was analyzed with the Kaplan-Meier. In the study, we evaluated outcomes with HCC patients through means of disease-specific survival (DSS), overall survival (OS), and progression free survival (PFS) as well as relapse-free survival (RFS) curves.
Construction of prognostic signature model
Downloading the STAR-counts data and clinical details of patients with HCC from the TCGA database (https://portal.gdc.com), normalizing the data to log2 (TPM+1), and then keeping the data with samples of RNAseq data and clinical details allowed us to divide the patients into high-risk and low-risk groups for further analysis. The timeROC analysis was carried out to determine the accuracy of the prediction model, and the log rank was utilized to assess the KM survival analysis to compare the survival difference between the two groups mentioned above. The 10-fold cross-validation method and the least absolute shrinkage and selection operator (LASSO) regression algorithm were used to pick the features. R’s glmnet package was used for the analysis mentioned above. The log rank test and univariate Cox regression were used to provide p-values and hazard ratios (HR) with 95 percent confidence intervals (CI) for Kaplan-Meier curves. R software version 4.0.3 was used to carry out all of the aforementioned analysis techniques and R packages (R 4.0 Foundation for Statistical Computing, 2020). Statistics were deemed significant at p < 0.05.
GSCALite
The GSCALite is a versatile database analysis web tool that we use to analyze the signaling pathways activated or inhibited by MJDs family members.
TIMER immune score of MJDs
The TCGA database (https://portal.gdc.com), which contains RNAseq data, was used to gather the clinical data and related data for patients with liver cancer. Immunedeconv, a R software package that incorporates the TIMER algorithm, has been rigorously benchmarked and each approach has been proven to have its own distinct performance and advantages. Immunedeconv was used to reliably evaluate immunity scores. The ggplot2 and pheatmap R (v4.0.3) packages were used to produce the aforementioned findings.
TISIDB
TISIDB is an integrated database for the study of tumor-immune system interactions, allowing for the analysis and annotation of 10 types of data. The correlations between MJDs family members with lymphocytes and immunomodulators in HCC were analyzed by using the TISIDB database.
Immune checkpoints analysis
371 liver cancer patients’ RNAseq data and relative clinical data were gathered from the TCGA database (https://portal.gdc.com). Immune checkpoint genes include SIGLEC15, TIGIT, CD274, HAVCR2, PDCD1, CTLA4, LAG3, and PDCD1LG2. To track the expression of genes linked to immunological checkpoints, the expression values of these eight genes were identified. The R packages ggplot2 and pheatmap were used to produce the aforementioned findings.
Cell culture
Normal liver cell line HL-7702 and HCC cell lines (MHCC-97H, HepG2, PLC/PRF/5, Huh7, and HCCLM-3) were provided from the Department of Biliary-Pancreatic Surgery of Cell Line Resource, Tongji Hospital (Hubei, Wuhan, China). All HCC cell lines were cultured in DMEM (Meisen, Zhejiang, China) and HL-7702 was cultured in RPMI-1640 (Meisen, Zhejiang, China). Both DMEM and RPMI-1640 were added to 10% of decomplemented fetal bovine serum (Gibco,USA) and 1% of penicillin/streptomycin (BI, Israel). Moreover, the mentioned above cells were incubated at a suitable temperature (37°C) and 5% carbon dioxide (5% CO2).
RNA extraction and qRT-PCR assay
According to the protocol, total RNA was collected from HL-7702 and HCC cell lines using TRIzol reagent. The extracted total RNA was then subjected to RT-PCR using HiScript III RT SuperMix (Vazyme, Nanjing, China) and the corresponding primers to obtain complementary DNA (cDNA). Using the qPCR Master Mix (SYBR Green, Vazyme, Nanjing, China), qRT-PCR was performed in a CFX96 Real-Time PCR detection system (Bio-Rad, USA). To analyze the relative expression of genes was calculated using the 2−ΔΔCt method. The primer sequences of the genes were listed in Supplementary Table S1.
Human Protein Atlas (HPA)
The HPA database integrates transcriptomics and proteomics, which includes different profiles of normal and abnormal tissue types and various cell types. The immunohistochemical (IHC) staining images of HCC tissues and normal liver tissues of MJDs family members from the HPA database.
RESULTS
Pan-cancer analysis of MJDs family members’ expression
To explore the expression levels of MJDs family members in HCC, we used the UALCAN database to find different transcriptional levels of MJDs members in pan-cancer. We identified three genes of the MJDs family with abnormal expression in HCC tissues. ATXN3, JOSD1, and JOSD2 were upregulated, while ATXN3L was only expressed in testicular tissue and testicular carcinoma tissue (Figure 1). The expressions of MJDs family members in normal tissues was then obtained from GTEx database, ATXN3L was only expressed in testicular tissue, and the other three genes were expressed in all tissues (Supplementary Figure S1).
[image: Figure 1]FIGURE 1 | (A–D) The expression levels of MJDs family members in different types of cancers. The mRNA expression levels of ATXN3, ATXN3L, JOSD1, and JOSD2 were compared with various TCGA cancers.
Correlation between MJDs family Members’ expression
Based on UALCAN database, the correlation analysis between MJDs family members’ expression and histological grades, sample types, TP53 mutations, lymph node metastatic status, genders, and years were further shown.
As shown in Figure 2A, mRNA expression levels of ATXN3 were significantly related to histological grades, sample types, TP53 mutations, lymph node metastatic status, genders, and years. Specifically, In HCC patients, the expression of ATXN3 showed an increasing tendency in stages 1–3. The expression of ATXN3 in HCC tissues was notably higher than that in normal liver tissues. HCC specimens with non-mutant TP53 and mutant TP53 had observably higher ATXN3 expression levels than the control group. In the lymph node metastasis group, the mRNA expression levels of ATXN3 in both N0 and N1 groups were observably higher than that in the normal control. The mRNA expression level of ATXN3 in N1 was higher than that in N0 without statistical difference. In gender groups, the expression level of ATXN3 in both male and female groups was higher than that in the control group, which was statistically significant. However, without statistical difference, the expression level of ATXN3 in females was higher than that in males. Furthermore, ATXN3 transcriptional levels were related to different age groups. As age increases, ATXN3 expression also enhanced differently in HCC patients. The mRNA expression of ATXN3 was significantly associated with different HCC subclasses, with hepatocellular carcinoma having the highest levels and fibrolamellar carcinoma showing the lowest levels.
[image: Figure 2]FIGURE 2 | (A–D) The transcription level of MJDs family members in the subgroup of HCC patients, and classified by according to histological grades, sample types, TP53 mutations, lymph node metastatic status, genders, years and histological subtypes.
Similarly, the UALCAN Database was used to explore the transcriptional levels of JOSD1 and JOSD2 in HCC. We also found that JOSD1 and JOSD2 expressions remarkably difference in varied sample types, histological grades, TP53 mutations, lymph node metastatic status, genders, and years of HCC (Figures 2B,C). Therefore, the expression of ATXN3, JOSD1, and JOSD2 can be used as potential diagnostic indicators of HCC.
Promoter methylation level of MJDs family members in HCC
To explore the mechanisms for the up-regulation of mRNA expression levels, we further used UALCAN database to analyze MJDs family members’ promoter methylation levels and their correlation with HCC patients of clinical characteristics. We found that the ATXN3 methylation β value of the HCC group and the normal group was less than 0.2, which was a completely unmethylated state. The results suggested the ATXN3 methylation levels in HCC tissues were lower than in corresponding normal groups, regardless of TP53 mutations, histological grades, lymph node metastatic, genders, and years (Figure 3A). This was the same as the up-regulated ATXN3 expression in HCC patients. In addition, we found that the ATXN3L and JOSD2 promoter methylation levels were significantly lower in HCC tissues than that in normal tissues, despite histological grades, TP53 mutations, lymph node metastatic, genders, and years (Figures 3B,D). Interestingly, we found that the methylation β value of ATXN3L in various subgroups of years, genders, histological grades, lymph node metastasis and TP53 mutation was greater than 0.6, presenting a complete methylation state. In age groups, the methylation level decreased with the increasing of age, but it was still in a complete methylation state. In tumor stages, β values of G1, G2, G3, and G4 decreased, indicating the down-regulation of methylation levels. However, JOSD1 methylation levels in HCC tissues was higher than that in corresponding normal tissues without statistic difference, in spite of histological grades, TP53 mutations, lymph node metastatic, genders, and years (Figure 3C).
[image: Figure 3]FIGURE 3 | (A–D) Correlation analysis between methylation level of MJDs family members and HCC patients clinical characteristics. The MJDs methylation level in HCC patients classified by histological grades, sample types, TP53 mutations, lymph node metastatic status, genders, and years were shown.
Moreover, we evaluated the CpG sites of promoter methylation of MJDs family members in hepatocellular carcinoma. In the heat map of methylation levels at CpG sites, we found that ATXN3 had 12 CpG islands, among which cg12034871 and cg26081025 were completely methylated, and the rest were completely unmethylated (Supplementary Figure S2A). Meanwhile, we also found that ATXN3L had four CpG islands, with partial methylation and complete unmethylation in each sample (Supplementary Figure S2B). In addition, JOSD1 had 17 CpG islands among which cg03088955 was completely methylation (Supplementary Figure S2C). There were six CpG islands in JOSD2, and only cg18708810 and cg13521229 had complete and partial methylation cases, respectively (Supplementary Figure S2D).
Furthermore, we analyzed the correlations between the degree of methylation of ATXN3, JOSD1, and JOSD2 and the mRNA expression levels with the cBioPortal database. The results demonstrated that the Spearman coefficients of ATXN3, JOSD1, and JOSD2 were -0.31,-0.35, and -0.29, respectively, indicating negative association between the methylation levels and the mRNA transcriptional levels of these three genes in HCC patients (Figures 4A–C). Meanwhile, the correlations between the fraction genome alteration and the mRNA expression levels were analyzed, and we found that the Spearman coefficients of ATXN3 was -0.21, which was a negative correlation, while the Spearman coefficients of both JOSD1 and JOSD2 were 0.13 and 0.08, respectively, which were positive correlations (Figure 4 D, E, F). Thus, the results suggested that lower levels of ATXN3, JOSD1, and JOSD2 promoter methylation levels might lead to higher mRNA transcriptional levels of these genes in HCC. There may be other mechanisms of mRNA up-regulation of these three genes in HCC patients.
[image: Figure 4]FIGURE 4 | (A–C) The promoter methylation levels of MJDs family members were inversely correlated with the expression of MJDs family members (D) ATXN3 mRNA expression levels were positively associated to the fraction of the genome altered (E,F) The expressions of JOSD1 and JOSD2 were negatively related to the fraction of the genome altered.
Analysis of MJDs alterations in HCC
To explore the reasons for the upregulation of mRNA expression levels, we analyzed the structural variation of the MJDs family gene in HCC by the cBioPortal. MJDs family members have different trends in different HCC subclasses. The sub-types of with the highest proprotion of all alterations were Hepatocellular carcinoma plus Intrahepatic Cholangiocarcinoma, Hepatocellular Adenoma, and Hepatocellular carcinoma for ATXN3, ATXN3L, JOSD1, and JOSD2, respectively (Figures 5A–E). Figures 5F–I displayed the specific mutation sites in MJDs DNA sequences, in which the green dots represent missense mutations. Interestingly, Genetic alterations include missense mutation, amplification, deep deletion, and mRNA high or low (Figure 5J), among which 11% ATXN3, 2.5% ATXN3L, 6% JOSD1, and 4% JOSD2 showed structural variation. These results suggested that MJDs family members had considerable genetic stability as potential HCC patients’ diagnostic biomarkers.
[image: Figure 5]FIGURE 5 | The genetic alteration and mutation of MJDs family members in HCC (cBioPortal) (A–E) The proportions of alternations and mutations of MJDs family members were indicated in various subgroups of HCC (F–I). Schematic representation of gene mutation sites of MJDs on the coding strand (J)The genetic alternations and mutations of ATXN3, ATXN3L, JOSD1, and JOSD2 were showed in HCC patients (E).
Moreover, the frequency distribution of MJDs family members’ CNV patients in different stage and grade groups was shown. This suggested a high incidence and early event of the MJDs family members’ CNV alteration in HCC (Figures 6A–D).
[image: Figure 6]FIGURE 6 | MJDs family members genomic alterations in HCC (cBioPortal) (A–D) CNV frequencies of MJDs family members were distributed in different of stages and grades of subgroups.
Survival analysis of MJDs family members in HCC
To evaluate the prognostic effects of MJDs and MJDs family members’ DNA methylation, we used Kaplan–Meier and MethSurv to explore the correlation between MJDs family members’ mRNA expressions and prognoses in HCC patients. The main parameters of survival analysis include DSS, OS, PFS, and RFS. The data from Kaplan–Meier Plotter was displayed in Figure 7, suggesting that highly expressed ATXN3 and ATXN3L levels were a remarkable correlation with better prognosis in HCC patients. Interestingly, we found that high-expression ATXN3 and ATXN3L had better DSS, OS, PFS, and RFS in HCC patients. On the contrary, high expression levels of JOSD1 and JOSD2 implicated a worse prognosis in HCC patients. Moreover, we found that highly expressed JOSD1 showed a significant association with worse DSS, OS, PFS, and RFS in overall HCC patients. Figure 7 and Table 1 revealed the more detailed prognostic information about MJDs members in HCC.
[image: Figure 7]FIGURE 7 | (A‐G) The prognosis of MJDs expression level in HCC patients. The HCC specimens were divided into two groups according to the median expression levels of MJDs family members. The disease-specific survival (DSS, n = 362), overall survival (OS, n = 364), progression-free survival (PFS, n = 370), and relapse-free survival (RFS, n = 316) were compared between patients across high and low expression of MJDs family members. TCGA database screening results for 371 HCC patient samples, including risk score, survival time, and survival status. The middle shows the survival matching to the Risk score of various samples, while the top shows the Risk score scatter plot from low to high, with different colors denoting distinct risk categories. Time and survival status scatter plot distribution; the expression heat map of the signature’s genes is shown in the bottom figure (E) The KM survival curve distribution of the risk model in the data set, in which different groups are tested by log rank, HR (High risk) represents the risk coefficient between the high-risk group and the low-risk group samples, and HR > 1 indicates that the model is a risk model. 95% CI represents the HR confidence interval (F) The risk model’s ROC curve and AUC at various points; the greater the AUC value, the better the model’s capacity for forecasting (G).
TABLE 1 | Prognostic analysis of the MJDs in Kaplan–Meier plotter.
[image: Table 1]We used dimensionality reduction based on Lasso regression to analyze the prognosis of MJDs members gene on patients with HCC and created a predictive model to assess OS. In Figure 7E, we found that when the three genes of ATXN3, JOSD1, and JOSD2 were co-expressed, the number of patients died and the risk score increased. The Kaplan–Meier Plotter showed that high risk score group of ATXN3, JOSD1, and JOSD2 overall high expression had worse OS, compared with low risk score group (Figure 7F). According to the ROC curve of the risk model established at different times, the AUC of 1-Years, 3-Years, 5-Years was 0.651, 0.571, 0.606, which indicated that the model has strong predictive ability (Figure 7G). This prognostic model indicated that worse survival was associated with overall high expression of MJDs members.
Subsequently, the MethSurv database was used to further reveal the relationship between methylation sites of MJDs and prognosis in HCC patients (Figure 8, Supplementary Figure S3). We found that the methylation level of cg26081025 in ATXN3 (HR = 3.161, p-value = 1.6e-06), cg07186939 in ATXN3L (HR = 1.621, p-value = 0.0062), cg25697769 in JOSD1(HR = 1.828, p-value = 0.004), and cg18708810 in JOSD2(HR = 1.735, p-value = 0.012) were a risk factor on survival. However, the methylation level of cg06711259 (HR = 0.455, p-value = 3.1e-05), cg19658332 (HR = 0.612, p-value = 0.014) cg27610821 (HR = 0.665, p-value = 0.023), and cg01138530 (HR = 0.67, p-value = 0.026) in JOSD1 were a protective factor on survival. Finally, the results suggested that eight CpG sites in ATXN3, the one CpG site in ATXN3L, 10 CpG sites in JOSD1 and the one CpG site in JOSD2 were related to the prognosis in HCC patients (Figure 8, Supplementary Figure S3, and Supplementary Table S2).
[image: Figure 8]FIGURE 8 | Kaplan-Meier survival curves comparing the high or low expression of MJDs methylation sites in HCC (MethSurv). Kaplan-Meier survival analysis of (A) ATXN3 and (B) ATXN3L methylation sites were shown.
MJDs family members may regulate the development, distribution, and maturation of immune cells, but the correlation between MJDs family members’ expression levels and immune-cell infiltration in HCC remains poorly unclear.
We used the TIMER score to assess this correlation. According to the expression levels of the ATXN3, JOSD1, and JOSD2 genes, the HCC patient samples in the TCGA database were split into 186 high-expression groups and 185 low-expression groups. In Figure 9A, the high-expression ATXN3 group had higher expression of CD4+T cells, CD8+T cells, macrophages, myeloid dendritic cells, B cells, and neutrophils, compared with the low-expression ATXN3 group. Then, JOSD1 expression was positively correlated with B cells, CD8+T cells, CD4+T cells, macrophages, neutrophils, and dendritic cells (Figure 9B). In addition, the change in JOSD2 expression was positively correlated with B cells, CD8+T cells, CD4+T cells, macrophages, neutrophils, and dendritic cells (Figure 9C). Therefore, these results implicated that MJDs family members expression may predict the infiltration of various kinds of immune cells in HCC.
[image: Figure 9]FIGURE 9 | TIMER immune score of high expression group and low expression group of MJDs gene (A‐C) Different colors represent different immune cell types, the abscissa represents the group, and the ordinate represents the percentage of immune cells in a single group. This graph compares the percentage abundance of tumor-infiltrating immune cells in the high expression group (G1) and low expression group (G2) of MJDs genes. *p < 0.05, **p < 0.01, and ***p < 0.001.
In addition, correlations between the MJDs family members’ somatic copy number alterations (SCNA) and tumor immune infiltration levels in HCC patients were explored. The study showed that the SCNA of ATXN3 and JOSD1 had no significant correlations with the infiltration levels of CD4+ T cells, CD8+ T cells, B cells, neutrophils, macrophages, and DCs; the SCNA of ATXN3L had significant correlations with CD4+ T cells, CD8+ T cells, B cells, neutrophils, macrophages, and DCs; moreover, the SCNA of JOSD2 had significant correlations with CD4+ T cells (Supplementary Figure S4). These findings revealed that changes in the SCNA of the ATXN3L and JOSD2 may reflect tumor infiltration levels in HCC.
Relationship between MJDs members and immune molecules
The link between MJDs members and immune checkpoint molecules was then thoroughly investigated. The HCC patient samples in the TCGA database were divided into high and low expression groups of ATXN3, JOSD1, JOSD2, and the distribution of immune checkpoints in different gene expression samples was studied (Figure 10). The gene expression of ATXN3 was positively correlated with the expression of CD274 (p<0.001), PDCD1LG2 (p < 0.01), SIGLEC15 (p<0.01); the gene expression of JOSD1 had positive correlations with CD274 (p<0.001), CTLA4 (p < 0.001), HAVCR2(p < 0.001), LAG3 (p < 0.05), PDCD1 (p < 0.001), PDCD1LG2 (p < 0.01), TIGIT (p < 0.01); and the gene expression of JOSD2 had positive correlations with CTLA4 (p < 0.01), HAVCR2(p < 0.01), PDCD1 (p < 0.001),TIGIT (p < 0.05). These findings showed a positive correlation between the expression of immunological checkpoints and the elevation of MJDs member genes.
[image: Figure 10]FIGURE 10 | The relationship between MJDs gene expression and immune checkpoints (A‐C) The HCC patients in the TCGA database were classified into high expression group (G1) and low expression group (G2) based on the various levels of ATXN3, JOSD1 and JOSD2 gene expression, and the association between the two groups and the expression of immune checkpoints was presented, respectively. *p < 0.05, **p < 0.01, and ***p < 0.001.
We also explored relationships between MJDs expression and various immune signatures with the TISIDB database. Associations between MJDs expression and different immune markers were obtained from the TISIDB database. Figure 11 and Supplementary Figure S5 showed the correlations between MJDs and TILs which included MHC-TAP1, Act_CD4_abundance, Act_DC_abundance, and CD56bright. Immunomodulators can be divided into three groups: immunoinhibitors, immunostimulators, and MHC molecules. In Figure 11A and Table 2, HAVCR2, LGALS9, MICB, TNFRSF4, TNFRSF9, TNFSF9, MHC_TAP1, Act_CD4, and Act_DC were negatively associated with the ATXN3 expression, while KDR, IL6R, and ICOSLG positively correlated with the ATXN3 expression. In Figure 11B and Supplementary Table S3, JOSD1 negatively correlated with CD160, CD56bright, and CCL14, while CCL28 was positively related to this gene. In the Supplementary Figure S5 and Supplementary Table S4, JOSD2 significantly positively correlated with LGALS9, PVRL2, TNFRSF4, TNFRSF14, TNFRSF18, TNFRSF25, MHC_HLA-A, and MHC_HLA-DMA, while CD274, CD28, CCR4, IL6R, KDR, and TGFBR1 negatively correlated with JOSD2 expression. Thus, these results demonstrated that ATXN3, JOSD1, and JOSD2 were related to various immune molecules in HCC, which implicated a significant role in immune escape.
[image: Figure 11]FIGURE 11 | Correlation between MJDs level and lymphocytes, immunomodulators, and chemokines expression in HCC from TISIDB database. The correlation between alterations in expression levels of (A) ATXN3, and (B) JOSD1 with the expression of immune cells marker in HCC were performed.
TABLE 2 | Correlation of ATXN3 expression with immunomodulators based on TISIDB database.
[image: Table 2]Functions and pathways for MJDs family members in HCC
We used the LinkedOmics database to analyze the differentially expressed genes associated with ATXN3, JOSD1, and JOSD2 in HCC (Figure 12A, Supplementary Figures S6A,7A). LinkedOmics and the cBioPortal database were screened for the top 200 co-expressed genes to obtain crossover genes, respectively (Figure 12B, Supplementary Figure S6B,7B). The above intersecting genes were obtained and analyzed by GO and KEGG to predict functions and pathways of MJDs family members. The KEGG pathways showed that for ATXN3, ubiquitin mediated proteolysis, fanconi anemia pathway, aminoacyl-tRNA biosynthesis and RNA transport were significantly up-regulated, whereas valine, leucine and isoleucine degradation, staphylococcus aureus infection, glycine serine and threonine metabolism were significantly down-regulated (Figure 12C). For JOSD1, allograft rejection, Th17 cell differentiation, and tryptophan metabolism were significantly up-regulated, whereas DNA replication and fanconi anemia pathway were significantly down-regulated (Supplementary Figure S6C). For JOSD2, allograft rejection, Th17 cell differentiation, and ascorbate and aldarate metabolism were significantly up-regulated, whereas ribosome, oxidative phosphorylation, and protein export were significantly down-regulated (Supplementary Figure S7C). Interestingly, GO analysis showed that the co-expressed genes of MJDs family members were the same in Biological process (BP), Cellular component (CC) and Molecular Function (MF). Specifically, BP terms indicated regulation, metabolic process, and response to a stimulus. CC terms implicated the membrane, nucleus, and membrane-enclosed lumen. MF terms suggested protein binding, ion binding, and nucleic acid binding (Figure 12D, Supplementary Figure S6D,7D).
[image: Figure 12]FIGURE 12 | Different genes and pathways connected to MJDs family members expression in HCC (A) Volcano plot suggested that the differential expression of genes correlated with ATXN3 in HCC (B) The top 200 co-expressed genes were extracted from the LinkedOmics and cBioPortal, and then the above genes were intersected (C,D) The prediction of GO analysis and KEGG pathway of MJDs family members were showed.
Furthermore, we analyzed the co-expression of ATXN3, JOSD1 and JOSD2 in hepatocellular carcinoma using the GSCALite database, and analyzed the signaling pathways involved by MJDs family member respectively (Supplementary Figure S8). We found that ATXN3 inhibited apoptosis, while JOSD1 and JOSD2 promoted apoptosis, JOSD2 inhibited DNA damage response, JOSD1 and JOSD2 promoted EMT, and JOSD2 suppressed RTK and androgen pathways.
Moreover, we used the cBioPortal database to explore the co-expression (Table 3) and mutual exclusion (Table 4) between individual members of the MJDs family. Our predicted results showed that there was no co-expression and no mutual exclusion among MJDs family members, but further experiments such as immunoprecipitation or immunofluorescence were needed to verify.
TABLE 3 | Co-expression of MJDs family members
[image: Table 3]TABLE 4 | Mutual exclusivity of MJDs family members.
[image: Table 4]Validation of the expression of MJDs family members in HCC tissue and HCC cell lines
Next, we explored the MJDs family members’ expression levels between HCC samples and normal liver samples from the HPA database. The IHC staining of MJDs family members showed that the mRNA expression levels of ATXN3, ATXN3L, and JOSD1 were enhanced compared with the liver tissues (Figures 13A–C), which consistent with above results. The IHC staining of JOSD2 was pending HCC tumor tissue analysis in the HPA.
[image: Figure 13]FIGURE 13 | The expression levels of MJDs family members in HCC tissue and cell lines. The protein expression of (A) ATXN3, (B) ATXN3L, and (C) JOSD1 in HCC and normal liver tissues were obtained by immunohistochemical (IHC) data in the HPA database. The IHC image of JOSD2 was absent. The expression levels of (D) ATXN3, (E) JOSD1, and (F) JOSD2 in human immortalized HL-7702 and different HCC cell lines were conformed using RTqPCR.Ct values of ATXN3L were absent in HL-7702, MHCC-97 and HepG2 cell lines. *p < 0.05, **p < 0.01, and ***p < 0.001.
To verify above results with bioinformatics analysis, we used qRT-PCR to confirm the expression levels of MJDs in five HCC cell lines which included MHCC-97H, HepG2, PLC/PRF/5, Huh7, and HCCLM-3, respectively, compared with the HL-7702. The results suggested that, except ATXN3L, the expression levels of MJDs were elevated in multiple HCC cell lines (Figure 13 D-F), in consistent with the above results, and further experiments were needed to support it.
DISCUSSION
Accumulating evidence indicated that the abnormal expression or mutation of deubiquitinases (DUBs), with the function of promoting the occurrence and development of malignant tumors, was emerging as therapeutic targets of cancer (Lv et al., 2020; Park and Baek, 2022). MJDs family, consisting of ATXN3, ATXN3L, JOSD1, and JOSD2, was the smallest family of the DUBs (Harrigan et al., 2018). MJDs family had a common Josephin domain, containing around 180 amino acids. According to recent studies, MJDs family members were aberrant expressions in some cancer and were related to biological functions and prognoses in cancers (Zeng et al., 2020). However, the aberrant mRNA expressions of MJDs family members and their biological functions and mechanisms in HCC were poorly understood. Thus, we further explored the role of MJDs family members in HCC, particularly, including immune microenvironment and promoter methylation levels.
Recent studies reported that oral squamous cell carcinoma (OSCC) (Song et al., 2021), testicular cancer (TC) (Shi et al., 2018), colon cancer (Li et al., 2019), breast cancer (BC) (Zou et al., 2019), anaplastic thyroid carcinoma (ATC) (Zhuang et al., 2021), neuroblastoma (NB) (Gong et al., 2021), non-small cell lung cancer (NSCLC) (Sacco et al., 2014), and breast cancer stem cells (Zhu et al., 2019)were closely related to ATXN3. For example, for oral squamous cell carcinoma, it had been studied that down-regulated miR-619-5p promoted the proliferation, migration, and invasion abilities by enhancing ATXN3 expression in OSCC cisplatin-resistant cells. The miR-619-5p/ATXN3 axis provided the potential molecular mechanism of OSCC, especially for promoting drug resistance of cisplatin of OSCC. And ATXN3 may be a putative therapeutic target for OSCC patients (Song et al., 2021). In addition, ATXN3 knockdown can inhibit cell growth. Meanwhile, down-regulated ATXN3 can promote PTEN expression and inactivate the AKT/mTOR pathway (Shi et al., 2018). Previous research reported that ATXN3L was expressed at higher levels in breast cancer. ATXN3L directly interacted with KLF5, thus, reducing KLF5’s ubiquitination and degradation (Ge et al., 2015). JOSD1 was found to be up-regulated in the head and neck squamous cell carcinoma (HNSCC) (Jing et al., 2021), gynaecological cancer (GC) cells (Wu et al., 2020), and acute myeloid leukemia (AML) cells (Yang et al., 2022). Over-expressed JOSD2 was positively correlated with the worse prognosis in hepatocellular carcinoma (Huang et al., 2022), cholangiocarcinoma (CCA) (Qian et al., 2021), and NSCLC (Krassikova et al., 2021).
Our results showed that ATXN3, JOSD1, and JOSD2 were markedly up-regulated in HCC samples, while ATXN3L was expressed only in testicular and testicular tumors. We found that the higher mRNA expression levels of JOSD1 and JOSD2 in HCC patients had a significantly worse prognosis. Interestingly, we analyzed that the prognostic value of MJDs family members’ expression levels in HCC patients revealed that higher mRNA expression of AXTN3 and ATXN3L have better OS, DSS, PFS, and RFS, which was not consistent with previous studies. The prognostic model indicated that worse survival was associated with overall high expression of MJDs members. Furthermore, expression levels of ATXN3, JOSD1, and JOSD2 were significantly related to different clinicopathological parameters in HCC. Thus, the above results strongly revealed that ATXN3, JOSD1, and JOSD2 deserved further investigation of potential targets in HCC.
Many studies indicated that methylation levels were closely correlated with tumor development, cancer progression, and chemotherapy and immunotherapy sensitivity of HCC (Al-Abdulla et al., 2019; Dong et al., 2021; Zhong et al., 2021; Liu et al., 2022) Thus, to explore the mechanism for the aberrant expression of MJDs family members in HCC, we further analyzed the correlations between these genes expression levels and promoter methylation levels with the UALCAN database. In our study, the promoter methylation levels of ATXN3 and JOSD2 were lower expressed in these genes’ high mRNA expression group in TCGA HCC samples, while JOSD1 was highly expressed in the JOSD1 high expression group. Moreover, we used the cBioPortal database to analyze the correlations between promoter methylation degrees of ATXN3, JOSD1, and JOSD2 and the transcriptional levels. We found that the Spearman coefficients of ATXN3, JOSD1, and JOSD2 were -0.31,-0.35, and -0.29, respectively, suggesting significantly negative correlations, which was consistent with the above results. In addition, it was worth noting that the promoter methylation levels of ATXN3L were significantly lower in HCC tissues than in normal tissues, and the methylation β value of ATXN3L was greater than 0.6, presenting a full methylation status. Furthermore, the previous research showed that the methylation mediated inactivation of genes was common in HCC compared with normal samples and connected to clinical features and prognose (He et al., 2020; Xu et al., 2021). Consistently, our results demonstrated that promoter methylation levels of MJDs family members were up-regulated in clinical features of HCC. Meanwhile, we further analyzed relationships of 39 loci within MJDs family members’ prognosis and confirmed these genes’ DNA methylation of twenty loci located on promoter CpG islands, which connected to worst survival. The above results indicated that abnormal methylation might be one of the crucial reasons for the aberrant expression of MJDs gene family. However, other epigenetic modifications, involving gene mutations, CNV, and SNV might also play important roles in the abnormal expression of these genes.
To further elucidate the potential mechanism of the MJDs family, co-expressed genes with ATXN3, JOSD1, and JOSD2 in HCC samples from the TCGA database were extracted for GO and KEGG enrichment analysis to study the functions of the MJDs family in HCC. As expected, the biological functions of MJDs family members primarily correlated with ubiquitin mediated proteolysis, Th17 cell differentiation, valine, leucine and isoleucine degradation, glycine serine and threonine metabolism, and oxidative phosphorylation. It was reported that MJDs family members involve multiple signaling pathways, including ubiquitin pathway (Zhuang et al., 2021), apoptosis (Li et al., 2019), Hedgehog signaling pathway (Xu et al., 2021), JAK2 (Yang et al., 2022), and Akt/PI3K signaling (Sacco et al., 2014). In addition, a previous study reported that the serine-biosynthesis pathway and tyrosine-relative kinase inhibitors played important regulatory roles in tumor progression and immunotherapy in liver cancer patients (Sangro et al., 2021). These findings suggested that ATXN3, JOSD1, and JOSD2 could participate in the progression of HCC through primary regulating genes post-translational modification pathways, and the immune environment.
It was critical to investigate the relationships between MJDs family members’ expression levels and the multiple immune-cell infiltration in HCC. Based on the TIMER database, obviously, correlations were shown between MJDs family members’ expression and the infiltrating levels of B cells, CD4+ T cells, CD8+ T cells, neutrophils, dendritic cells (DCs), and macrophages. Relevant evidence had shown that the presence of tumor-infiltrating lymphocytes (TILs) might relate to the prognosis of HCC patients (Li et al., 2020; Nie et al., 2021). Immune cell based immunotherapy (Liu et al., 2021), including T Cells (Woller et al., 2021), neutrophils (Geh et al., 2022), and dendritic cells (Matsui et al., 2021), played crucial roles in the immunological therapy of HCC. In general, previous studies and our research revealed that MJDs family members might be involved in the regulation of the infiltration cell recruitment of immune cells in the immune microenvironment, which could be targeted for immunotherapy in HCC patients.
The combination of immune therapy and the classic target therapies may be the emerging trend of clinical comprehensive treatment. For our study, we revealed that the transcriptional expression of MJDs family members was correlated with lymphocytes, immunomodulators (immunomoinhibitor and immunomostimulator), and chemokines in HCC from the TISIDB database. In this research, HAVCR2, LGALS9, MICB, Act_CD4, and Act_DC were negatively associated with the ATXN3 expression, while KDR, IL6R, and ICOSLG positively correlated with the ATXN3 expression. A recent study identified the binding of HAVCR2 to LGALS9 contributes to Th1 cell death via apoptosis (Zhu et al., 2005). Meanwhile, HAVCR2 was an inducible NK cell receptor that promotes IFN-γ production in response to LGALS9 (Gleason et al., 2012). Tocilizumab, an IL6R antagonist, was approved for the management of CAR T-cell-related Cytokine Release Syndrome (Patel et al., 2021). Resistance to checkpoint blockade is mainly mediated via down-regulated expression of MHC-I in tumor cells. The MHC -I chain-related polypeptide A/B (MICA/B), expressed in many human cancers, serves as ligands to activate the NKG2D receptor on the NK cells and T cells (Raulet et al., 2013). Inhibition of proteolytic shedding of MICA/B leads NK cells mediated immunity against tumors resistant to T cells (Ferrari de Andrade et al., 2020). Similarly, JOSD1 negatively correlated with CD160 and CCL14, while CCL28 was positively related to this gene. In addition, JOSD2 positively correlated with TNFRSF18, HLA-A, and HLA-DMA, while CD274, TGFBR1, CCR4, and CD28 negatively correlated with JOSD2 expression. Emerging studies have found that chemokine ligands (CCL) and chemokine receptors (CCR) are closely connected to the immune therapy of HCC. Notably, CCL14 expression in HCC negatively correlated with PD-1, HAVCR2, and CTLA-4, suggesting its role in regulating tumor immunity (Gu et al., 2020). CCR4 could enhance anti-tumor immunity, mainly by targeting and blocking the infiltration of regulatory T cells (Tregs)into the tumor microenvironment and inhibiting the stability of the TIL-Treg pool (Gao et al., 2022). Lenvatinib showed lower CD274(PD-L1) expression and Tregs infiltration in recurrent HCC compared with primary HCC(Yi et al., 2021). It has been excitingly reported that methylation at certain CpG sites was an indicator of immune infiltration of cancer and might predict patient response to checkpoint inhibitors (Bacolod et al., 2019). Combining previous studies with our results suggested that ATXN3, JOSD1, and JOSD2 might be a scheme to improve the outcome of immunotherapy. Therefore, it was necessary to further explore more detailed mechanism of transcriptional levels/DNA methylation of MJDs family members in regulating the tumor micro-environment.
In summary, our results suggested that the MJDs family members’ aberrant expression in HCC played an important role in clinical features, prognosis, tumor micro-environment, immune-related molecules, mechanisms, and functions. Therefore, our study will give support to elucidate the clinical significance of MJDs family members’ expression levels and DNA methylation in HCC, and further explore the mechanisms of the MJDs family member’s roles in HCC, and especially provide insight into potentially therapeutic targets to improve HCC patient prognosis. In addition, we found that the online tools were based on different algorithms, leading to inconsistent analysis results. Thus, our results need to be further verified in experiments.
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Faced with the high heterogeneity and poor prognosis of colorectal cancer (CRC), this study sought to find new predictive prognostic strategies to improve the situation. Cuproptosis is a novel cell death mechanism that relies on copper regulation. However, the role of cuproptosis-related gene (CRG) in CRC remains to be elucidated. In this study, we comprehensively assessed the CRG landscape in CRC based on The Cancer Genome Atlas (TCGA). We identified differential expression and genetic alterations of CRG in CRC. CRG is highly correlated with initiation, progression, prognosis, and immune infiltration of CRC. We construct a risk score signature containing 3 CRGs based on LASSO. We explored the correlation of CRG-Score with clinicopathological features of CRC. Age, stage, and CRG-Score were integrated to construct a nomogram. The nomogram has robust predictive performance. We also understand the correlation of CRG-Score with CRC immune landscape. CRG-Score can effectively predict the immune landscape of CRC patients. Low-risk CRC patients have greater immunogenicity and higher immune checkpoint expression. Low-risk CRC patients may be better candidates for immunotherapy. At the same time, we also predicted more sensitive drugs in the high-risk CRC patients. In conclusion, the CRG risk score signature is a strong prognostic marker and may help provide new insights into the treatment of individuals with CRC.
Keywords: CRC, cuproptosis, immune status, overall survival, gene signature
INTRODUCTION
Colorectal cancer (CRC) shows a steady upward trend worldwide, and its morbidity and mortality ranks third among all malignant tumors (Siegel et al., 2022). Despite advances in treatment and diagnosis in recent years, a mass of patients still die from cancer recurrence and metastasis. The 5-years survival rate is only 14.0% (Olenius et al., 2022). This is often attributed to the high degree of tumor heterogeneity and complex dynamic evolution (Hanahan and Weinberg, 2011). Therefore, more prognostic-related factors are needed for precise risk stratification of patients. To guide a more effective and individualized treatment plan.
Copper is an indispensable nutrient in the human body as a cofactor for essential enzymes. However, dysregulation of copper homeostasis may also lead to many diseases (Oliveri, 2022). Extensive research shows that dysregulation of copper homeostasis plays a key role in cancer initiation and progression (Shanbhag et al., 2021). Currently, significant abnormalities in copper content have been found in serum and tumor tissues of different cancers (gallbladder, breast, thyroid, colorectal, lung, and oral) (Basu et al., 2013; Ding et al., 2015; Baltaci et al., 2017; Stepien et al., 2017; Zhang and Yang, 2018; Chen et al., 2019; Aubert et al., 2020). At the same time, high levels of copper are associated with higher stages of colorectal and breast cancer (Gupta et al., 1993; Denoyer et al., 2015). Copper can promote tumor progression and metastasis by activating fibroblast growth factor 1, angiopoietin, interleukin 1 and vascular endothelial growth factor (Lelièvre et al., 2020; Li, 2020). Based on the above mechanisms, copper chelators (elesclomol, disulfiram, and dithiocarbamates) and copper ion carriers (trientine, tetrathiomolybdate) have been used in carcinoma treatment and have been shown to be effective against cancer stem cells (Brady et al., 2017; Davis et al., 2020; Chen et al., 2006; O'Day et al., 2013). Recently, researchers discovered a new copper-dependent and copper-regulated cell death mechanism called Cupproptosis. Copper binds to proteins containing fatty acylated structures in the tricarboxylic acid (TCA) cycle, resulting in abnormal aggregation of the latter and loss of iron-sulfur cluster proteins, triggering proteotoxic stress and eventual cell death (Tsvetkov et al., 2022). However, cancer metastasis is highly dependent on TCA cycle reprogramming. Downregulation of the TCA cycle releases CO2, lactate, and other organic acids to benefit tumor invasion (Faubert et al., 2020). At the same time, the altered microenvironment suppresses the activation of immune cells and promotes immune escape (Cerezo and Rocchi, 2020). At present, some genes that can regulate cuproptosis have been identified. However, the clinical impact of cuproptosis-related gene (CRG) on CRC still needs to be further elucidated. This may help to accurately predict the prognosis of CRC patients.
Transcriptome data of 612 CRC samples from TCGA database were collected in this study. We collected 10 CRGs from previous studies (Tsvetkov et al., 2022). We identified differential expression and genetic alterations of CRG in CRC. CRG is highly correlated with initiation, progression, prognosis, and immune infiltration of CRC.
We successfully constructed a CRG risk score signature to quantify cuproptosis levels in individual tumors. The nomogram integrating the CRG-Score has robust predictive performance. It can help patients accurately determine survival outcomes. We found that the CRG-Score could effectively predict the immune landscape of CRC patients. And predict the sensitivity of different CRG-Score patients to immunological drugs and chemical drugs. In conclusion, the CRG risk score signature is a strong prognostic marker and may help provide new insights into the treatment of individuals with CRC.
MATERIALS AND METHODS
Data collection
TCGA database (https://portal.gdc.cancer.gov/repository) accessed: 27 May 2022. GEO database (https://www.ncbi.nlm.nih.gov/geo/) Accessed: 9 August 2022. The study consisted of 1412 CRC data from 5 cohorts (TCGA-COAD, TCGA-READ, GSE17538, GSE29623, GSE39582). The genes transcriptome expression profile of CRC patients was obtained from the above 5 cohorts. TCGA expression data were converted to fragment per kilobase million (FPKM) values prior to use. The “affy” and “simpleaffy” packages were used to normalize GEO data. The dataset was batch corrected using combat in the “sva” package. DNA mutation data of CRC patients were obtained from TCGA-COAD cohort and TCGA-READ cohort. Clinical information was obtained from the respective matched cohorts. To reduce statistical errors in the analysis, we excluded CRC patients with short overall survival (OS) values (<30 days) and missing information. According to the ratio of 1:1, TCGA CRC patients were randomly divided into train and test groups.
Construction of a cuproptosis-related gene signature
10 CRGs retrieved from previous reports (Tsvetkov et al., 2022). A detailed list of CRGs is shown in the attached file: Supplementary Table S1. We screen the CRG using iterative LASSO (Least Absolute Shrinkage and Selection Operator) with 1,000 iterations. To prevent overfitting, for each iteration, 1,000 random stimuli were set. The area under the curve (AUC) was calculated from the receiver operating characteristic curve (ROC). The inclusion was stopped when the AUC reached its peak, and the obtained CRG was used to establish the CRG risk score signature. CRG-Score=(mRNA1 expression × coefficient mRNA1) + (mRNA2 expression × coefficient mRNA2) + (mRNA3 expression × coefficient mRNA3). CRC patients were divided into low/high risk groups according to the median value of CRG-Score.
Functional enrichment and immune correlation analysis
The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis on Gene Set Enrichment Analysis (GSEA) software (version 4.2.3) was used to assess pathway activity. CIBERSORT-ABS, CIBERSORT, EPIC, MCPcounter, QUANTISEQ, TIMER, and XCELL on TIMER2.0 were used to assess immune infiltration status. Immune-related pathway activity was assessed using the Single-sample gene set enrichment analysis (ssGSEA) algorithm. Tumor mutational burden (TMB) score analysis was performed between CRG-Score risk groups. Expression levels of 47 immune checkpoint-related genes (He et al., 2022) were analyzed between CRG-Score risk groups.
Tumor Immune Dysfunction Exclusion
Data on clinical response to immune checkpoint inhibitors in CRC are lacking. We used the Tumor Immune Dysfunction Exclusion (TIDE) website to predict efficacy between CRG-Score risk groups. The resulting data can be obtained after uploading the expression profile data to the TIDE website (https://tide.dfci.harvard.edu) (Lu et al., 2019).
Drug susceptibility prediction
To help clinical patients achieve better drug outcomes. Referring to Genomics of Drug Sensitivity in Cancer (GDSC, https://www.cancerrxgene.org), sensitivity to common chemotherapeutics and targeted drugs was predicted between CRG-Score risk groups. The evaluation index is the median inhibitory concentration (IC50).
Statistical analysis
R software (version 4.1.2) was used for analysis and plotting of all data in this study. The “caret” package is used to randomize groupings. The “limma” package is used to extract the expression levels of CRGs in downloaded mRNA expression profiles. The “ggpubr” and “reshape2”packages are used to draw boxplots. The “maftools” package is used to draw waterfall charts. The “RCircos” package is used to draw circle diagrams. The “forestplot” package is used to draw forest plots. The “timeROC” package is used for ROC. The “scatterplot3d” package is used for principal components analysis (PCA). The “survival” and “survminer” packages are used to draw survival curves. The “pheatmap” package is used to plot survival status, risk heatmaps and risk curves. The “regplot” and “rms” packages are used to draw nomograms and calibration curves. The “clusterProfiler” package is used for gene ontology (GO) analysis. The “pRRophetic” package was used for drug susceptibility comparisons.
Strawberry Perl software was used for data processing. The illustrations by Figdraw. Statistical differences between the two groups were compared using the Kruskal-Wilcoxon test. The Kruskal–Wallis test was used to compare statistical differences among three or more groups. All statistical p-values are two-way outcomes. Only p < 0.05 was considered statistically significant.
RESULTS
Landscape of Cuproptosis-related Gene in colorectal cancer
Based on previous literature reports, we included a total of 10 CRGs (CDKN2A, DLAT, DLD, FDX1, GLS, LIAS, LIPT1, MTF1, PDHA1, and PDHB) (Tsvetkov et al., 2022) for study. We first explored CRG expression changes in mRNA expression profiles. The results showed that most of the CRGs (7/10, 70%) were differentially expressed between tumor tissues and adjacent non-tumor tissues (p < 0.05). CDKN2A, GLS, LIPT1, and PDHA1 were up-regulated in tumor samples, and FDX1, DLD, MTF1 were down-regulated in tumor samples (Figure 1A). Furthermore, there was a strong association between these genes (Figure 1B). Subsequently. We performed SNV and CNV analyses based on data from the TCGA-COAD cohort and the TCGA-READ cohort. The results showed that only 54 (9.98%) of 541 CRC samples had CRGs mutations (Figure 1C), and the mutation frequency was very low. CNV alterations are not prevalent in these genes. MTF1 had the most significant copy number gain, while PHDB exhibited the most significant copy number loss (Figure 1D). The chromosomal location changes of CRGs CNVs are shown in the figure (Figure 1E).
[image: Figure 1]FIGURE 1 | Landscape of Cuproptosis-related Genes (CRGs) in CRC. (A) Expression of CRGs in colorectal tumor tissues and adjacent non-tumor tissues from TCGA-COAD and TCGA-READ (612 patients: 568 tumor and 44 normal). (B) Correlation between CRGs expression. (C) Gene mutation of CRGs. (D) Copy number variation (CNV) frequency of CRGs. (E) The location on the chromosome where CRGs CNV changes. (F) Correlation between CRGs and CRC important initiation and progression mechanisms. (G) Univariate COX regression analysis of the hazard ratio between CRGs and CRC overall survival. (H) Correlation of CRGs and immune cell infiltration. *p < 0.05, **p < 0.01, ***p < 0.001.
The role of CRGs in CRC is currently unclear. We analyzed the correlation between CRGs and important initiation and progression mechanisms of CRC. CRG was strongly associated with important initiation and progression mechanisms of CRC (Figure 1F). The relationship between CRGs and prognosis of CRC patients was further explored. Univariate COX regression analysis showed that CDKN2A was a risk factor for OS (p < 0.05) and DLAT was a protective factor for OS ((p < 0.05, Figure 1G; Supplementary Table S2). Finally, there is growing evidence that the tumor immune landscape is closely related to tumor prognosis and treatment outcomes (Chen and Mellman, 2017). Therefore, we further explored the relationship between CRGs and cellular infiltration in CRC. The expression level of most CRGs strongly correlated with the level of immune cell infiltration (p < 0.05, Figure 1H).
Construction and evaluation of the Cuproptosis-related Gene risk score signature
According to the ratio of 1:1, 540 CRC patients were randomly divided into train and test groups. The detailed clinical information of the test group, train group and total group is shown in Table 1. Based on 10 CRGs described above, we used iterative LASSO to construct a CRG risk score signature for predicting CRC survival. And 3 genes were extracted when the first-order value of Log(λ) was the minimum likelihood of bias (Figures 2A,B).
TABLE 1 | Clinical information of train, test, total groups.
[image: Table 1]TABLE 2 | Clinical information of the high CRG-Score and low CRG-Score groups.
[image: Table 2][image: Figure 2]FIGURE 2 | Construction and evaluation of the CRG risk score signature. (A,B) Use iterative LASSO to construct a CRG risk score signature. (C) Time-dependent receiver operating characteristic (ROC) curve validated the prognostic performance of CRG-Score. (D) Heatmap of the expression of 3 CRGs in train group, test group and total group. (E) CRG-Score distribution in train group, test group and total group. (F) CRG-Score survival status in train group, test group and total group. (G) Survival time between CRG-Score groups in train group, test group and total group. (H) Principal component analysis (PCA).
The CRG risk score signature formula:CRG Score= (CDKN2A ×0.1649) - (DLAT ×08,399) + (GLS ×0.4064). CRC patients were divided into low/high risk groups according to the median value of CRG-Score (Table 2). AUC values were evaluated by ROC curve. The AUC values of the CRG risk score signature reached 0.616, 0.681, and 0.677 in the 1st, 3rd, and 5th years, respectively (Figure 2C). The expression of risk model genes for high-risk and low-risk patients in the train, test, and total groups is shown in a heatmap (Figure 2D). Comparison of risk score distribution, survival time and survival status among risk groups in the train, test, and total groups confirmed that high CRG-Score CRC patients had a worse prognosis (Figures 2E–G).
Among the 3 expression profiles (total gene expression profile, CRG expression profile, expression profile of 3 risk model genes), we used PCA to verify differences between CRG-Score risk groups. The 3 risk model genes had the best discriminative power, which could well distinguish high/low risk groups (Figure 2H).
In order to avoid analysis bias caused by a single database. We revalidated the CRG score signature by integrating 3 sets of CRC data from the GEO database (GSE17538, GSE29623, GSE39582). The expression of risk model genes for patients in the high-risk and low-risk groups is shown in a heat map (Supplementary Figure S1A). Risk score distribution, survival status, and survival time (Supplementary Figures S1B–D) reconfirmed that high CRG-Score CRC patients had a worse prognosis. The combination of the 3 risk model genes had the highest prediction accuracy with an AUC value of 0.633 (Supplementary Figure S1E).
Clinicopathological features and biological functions between Cuproptosis-related Gene-Score groups
To further validate the importance of CRG-Score in clinical practice, we examined its correlation with clinicopathological features. We first classified CRC into 3 subtypes: microsatellite stable (MSS), microsatellite low instability (MSI-L), and microsatellite high instability (MSI-H). The CRG-Score was significantly lower in the MSI-H subtype than in the MSS subtype (p = 0.00035) and MSI-L subtype (p = 0.0009, Figure 3A). This is consistent with current literature reports: MSI-H subtype has the best prognosis (Popat et al., 2005). In addition, the Wilcoxon test was used to compare different stages and high CRC scores were associated with high stages (Figure 3B). Interestingly, there was a stepwise increase in CRC score between clinical stages I and II, and between clinical stages III and IV, but lack of statistical significance (Figure 3B). The relationship between CRG-Score and CRC subtype and stage was visualized using a Sankey diagram (Figure 3C). These results suggest that the CRG-Score is able to characterize some clinical features and molecular subtypes of CRC patients.
[image: Figure 3]FIGURE 3 | Clinicopathological features and biological functions between CRG-Score groups. (A) Differences in CRG-Score among CRC molecular subtypes (Kruskal–Wallis test). (B) Differences in CRG-Score in clinical staging of CRC (Kruskal–Wallis test). (C) Association of CRG-Score, molecular subtypes and clinical stage in CRC. (D) GO analysis. (E) KEGG analysis on GSEA.
We further explored differences in biological function between risk groups. GO analysis showed that signaling receptor activity, growth factor activity, and serine proteases activity were significantly enriched (Figure 3D). Growth and metabolic regulation that predict differences between risk groups. KEGG analysis showed that glycolysis-related pathways (pyruvate metabolism, glycolysis/gluconeogenesis, citric acid cycle) and some tumor-related pathways were significantly enriched (Figure 3E).
Development and evaluation of nomograms
To build a CRC patient survival prediction model for clinical use, we first performed univariate and multivariate Cox regression. CRG-Score is an independent prognostic factor for OS. In univariate Cox, hazard ratio (HR) of the CRG-Score was 1.558 and 95% confidence interval (CI) of the CRG-Score was 1.280–1.898 (p < 0.001, Figure 4A; Supplementary Table S3). In multivariate COX, HR of the CRG-Score was 1.295 and 95% CI was 1.028–1.632 (p = 0.028, Figure 4B; Supplementary Table S3).
[image: Figure 4]FIGURE 4 | Development and evaluation of nomograms. (A,B) univariate and multivariate Cox analyses of CRG risk score and clinical information with overall survival. (C) nomogram. (D) The AUC value of Nomogram in the ROC curve is 0.809. (E) Calibration plots illustrate nomogram with excellent predictive power at 1st, 3rd and 5th years.
In addition, clinical tumor stage and age were also independent prognostic factors. We combined age, tumor stage and CRG-Score to graphically construct the final nomogram (Figure 4C). By calculating the score for each variable, a vertical line can be drawn to easily estimate the 1-, 3-, and 5-years survival of individual CRC patients. The ROC showed that the nomogram had excellent accuracy in terms of OS, AUC = 0.809 (Figure 4D). Meanwhile, the calibration plots illustrate that the nomogram achieves good agreement between the observed and predicted OS outcomes at 1st, 3rd and 5th years (Figure 4E).
Correlation between Cuproptosis-related Gene-Score groups and immunity
CRG-Score plays an excellent role in predicting prognosis, and we next explored differences in immune signatures between CRG-Score risk groups in CRC and their potential value in guiding individualized treatment. We first assessed immune infiltration status using several different platforms (CIBERSORT-ABS, CIBERSORT, EPIC, MCPcounter, QUANTISEQ, TIMER and XCELL) with a filter criterion of p < 0.05. Immune cell bubble plot showed: T-cells CD4+, NK cells, macrophage M1, myeloid dendritic cells were associated with the CRG-Score low risk group (Figure 5A). Hematopoietic stem cells and cancer-associated fibroblasts were associated with the CRG-Score high risk group (Figure 5A). The CRG-Score low risk group has a higher immune infiltration status and the CRG-Score high risk group has more stromal cells.
[image: Figure 5]FIGURE 5 | Correlation between CRG-Score groups and immunity. (A) Correlation between CRG-Score groups and immune infiltration status. (B) Correlation between CRG-Score groups and immune-related pathway activity. (C) Oncoplot represents the top 15 mutated genes between CRG-Score groups. (D) Tumor mutational burden (TMB) between CRG-Score groups. (E) Correlation between CRG-Score groups and expression levels of immune checkpoint-related genes. *p < 0.05, **p < 0.01, ***p < 0.001.
Next, immune-related pathway activity was assessed using ssGSEA with a filter criterion of p < 0.05. The results showed that the MHC class I, CCR, Checkpoint, Parainflammation and T cell co-stimulation scores were significantly lower in CRG-Score high risk group than in CRG-Score low risk group (Figure 5B). This is consistent with the immune infiltration results described above, suggesting a higher immunogenicity in CRG-Score low risk group. Interestingly, CRG-Score low risk group also showed higher T cell co-inhibition and APC co-inhibition scores (Figure 5B). The CRG-Score low risk group coexists with a state of immunosuppression and a potential immune escape mechanism.
Subsequently, we further analyzed the top 15 mutated genes between the CRG-Score risk groups (Figure 5C). TTN, OBSCN, MUC16, RYR2, CSMD3, and FBXW7 have higher mutation frequencies in the CRG-Score low risk group. At the same time, KRAS and TP53 have higher mutation frequencies in the CRG-Score high risk group. These mutations may be associated with hyperimmune infiltration (Hu and Sun, 2018; Li et al., 2020; Liu et al., 2021; Lu et al., 2021; Xu et al., 2021; Shen et al., 2022; Yang et al., 2022). These conclusions need further exploration and validation.
Due to significantly different mutation frequencies between CRG-Score risk groups, we further assessed TMB between CRG-Score risk groups. TMB was statistically different between different CRG-Score risk groups (p = 0.039, Figure 5D). The CRG-Score low risk group has higher TMB scores. The current literature has confirmed that TMB will bring stronger immunogenicity to tumor tissue (McGranahan et al., 2016). High TMB tumors associated with longer survival after immune checkpoint inhibitor therapy (Valero et al., 2021).
Finally, expression levels of 47 immune checkpoint-related genes were analyzed between CRG-Score risk groups (p < 0.05, Figure 5E). Except for TNFRSF25 and ADORA2A, the other 16 immune checkpoints were highly expressed in CRG-Score low risk group (Figure 5E). Taken together, CRC patients with low CRG scores may be better candidates for immunotherapy.
Drug susceptibility prediction and the illustration
Data on clinical response to immune checkpoint inhibitors in CRC are lacking. To correlate CRG-Score with guiding individual treatment practices, we used the TIDE website to predict immunotherapy efficacy between CRG-Score risk groups. The results showed that CRG-Score was positively correlated with TIDE score (p < 0.001, Figure 6A). CRC patients with low CRG scores has a higher TIDE score. They may be better candidates for immunotherapy. We also attempted to correlate the CRG-Score with the efficacy of common CRC chemotherapeutics and targeted drugs, looking for drugs that may be more sensitive to the CRG-Score high risk group. CRC patients with high CRG scores may be more sensitive to Ponatinib, Saracatinib, Dasatinib, Imatinib, and Rapamycin (Figures 6B–F).
[image: Figure 6]FIGURE 6 | Drug susceptibility prediction. (A) Tumor immune dysfunction and exclusion (TIDE) scores between CRG-Score groups (*p < 0.05, **p < 0.01, ***p < 0.001). (B) IC50 values of Ponatinib between CRG-Score groups. (C) IC50 values of Saracatinib between CRG-Score groups. (D) IC50 values of Dasatinib between CRG-Score groups. (E) IC50 values of Imatinib between CRG-Score groups. (F) IC50 values of Rapamycin between CRG-Score groups.
An illustration of this study is shown in Figure 7.
[image: Figure 7]FIGURE 7 | An illustration of this study.
DISCUSSION
In this study, we comprehensively assessed the landscape of 10 CRGs in CRC tissue based on TCGA. Differential expression and genetic alterations of CRGs in CRC were determined. CRG is highly correlated with initiation, progression, prognosis, and immune infiltration of CRC. We construct a risk score signature containing 3 CRGs. The nomogram integrating the CRG-Score has robust predictive performance. CRG-Score can effectively predict the immune landscape of CRC patients. Low-risk CRC patients have greater immunogenicity and higher immune checkpoint expression. Low-risk CRC patients may be better candidates for immunotherapy. At the same time, we also predicted more sensitive drugs in the high-risk CRC patients.
Evidence from a new study shows that CRG is a prognostic molecular marker for kidney cancer (Bian et al., 2022). But their effect in CRC remains unknown. To our surprise, most CRGs were differentially expressed between tumor tissues and adjacent non-tumor tissues. CRGs was strongly associated with important initiation and progression mechanisms of CRC. In univariate Cox regression analysis, 2 CRGs (CDKN2A, DLAT) were significantly associated with OS. The expression level of most CRGs strongly correlated with the level of immune cell infiltration. These results hint us that CRG may play a potential role in CRC and the possibility of using CRG to build a prognostic model.
The CRG risk score signature consists of 3 CRGs (CDKN2A, DLAT, GLS). CDKN2A can induce cell cycle arrest in G1 and G2 phases. It is closely related to a variety of tumors (Bartels et al., 2018; Adib et al., 2021; Luan et al., 2021). Dihydrolipoamide S-acetyltransferase (DLAT), a component of the pyruvate dehydrogenase (PDH) complex, catalyzes the overall conversion of pyruvate to CO2 and acetyl-CoA, thereby linking the glycolytic pathway to TCA cycle is linked. Copper binds to proteins containing fatty acylated structures in the TCA cycle can lead to aberrant oligomerization of DLAT (21). GLS is a glutaminase that converts glutamine to glutamate. Cells convert glutamine to glutamate. Glutamate is converted to alpha-ketoglutarate by glutamate dehydrogenase (GLUD) or a group of transaminases. The converted α-ketoglutarate enters the TCA cycle (DeBerardinis and Cheng, 2010; Michalak et al., 2015). GLS has been shown to promote tumor cell growth by modulating cell metabolism (Herranz et al., 2015; Zhang et al., 2019; Mukha et al., 2021; Tong et al., 2021).
Cuproptosis is a new cell death mechanism that relies on copper regulation. Copper binds to proteins containing fatty acylated structures in the tricarboxylic acid (TCA) cycle, resulting in abnormal aggregation of the latter and loss of iron-sulfur cluster proteins, triggering proteotoxic stress and eventual cell death (Tsvetkov et al., 2022). This may provide a new strategy for using copper toxicity to treat tumors. Based on different CRG-Score, we divided into two risk groups. It was unexpectedly found to be closely related to tumor immunity.
The CRG-Score low risk group have higher immune infiltration status and immune-related functional scores. These results suggest that it has higher immunogenicity. We further analyzed the top 15 mutated genes between the CRG-Score risk groups. TTN, OBSCN, MUC16, RYR2, CSMD3, and FBXW7 have higher mutation frequencies in the CRG-Score low risk group. At the same time, KRAS and TP53 have lower mutation frequencies in the CRG-Score low risk group. Reported so far: CRC patients with double TTN/OBSCN mutations were significantly associated with high immune infiltration and the “immune-hot” subtype (Liu et al., 2021). MUC16 mutations can enhance the infiltration of cytotoxic T lymphocytes to enhance antitumor immunity in patients with endometrial cancer (Hu and Sun, 2018). RYR2 is frequently mutated in breast cancer, and its mutations can enhance the infiltration of cytotoxic T lymphocytes, activate memory CD4+ T cells and M1 macrophages to enhance antitumor immune responses (Xu et al., 2021). CSMD3 mutations may promote the transformation of M0 macrophages to M2 macrophages, while leading to increased CD8+ T cell infiltration (Lu et al., 2021). FBXW7 mutations stimulate IFNα/β, CXCL9/10 and antigen presentation machinery by promoting EYA2 degradation, resulting in increased infiltration of cytotoxic T and NK cells (Shen et al., 2022). TP53-mutated cancers have significantly lower antitumor immune signature levels than TP53-wildtype cancers in CRC (Li et al., 2020). KRAS mutations drive immunosuppression and immunotherapy resistance in colorectal cancer through the IRF2-CXCL3-CXCR2 axis (Yang et al., 2022). The above reports suggest that these genes mutations may be associated with higher immunogenicity in the CRG-Score low risk group. However, these conclusions need further exploration and validation.
Due to significantly different mutation frequencies between CRG-Score risk groups, we further assessed TMB between CRG-Score risk groups. TMB was statistically different between different CRG-Score risk groups. TMB is currently considered to be able to predict the efficacy of immune checkpoint inhibitor drugs, and can play a predictive value as a biomarker for a variety of malignant tumors (Chan et al., 2019; Lapke et al., 2021). Malignant tumors with high TMB are usually accompanied by better immunotherapy response (Chan et al., 2019; Lapke et al., 2021). However, our results showed that the low-risk group had higher TMB scores. These suggest that our score may reflect the response to immunotherapy to a certain extent. Immune checkpoint molecules play a vital role in tumor immune escape (Schreiber et al., 2011; Noguchi et al., 2017). 16/47 immune checkpoint-related genes were differentially expressed between risk groups. We can regroup CRC patients based on CRG-Score patterns and select appropriate immune checkpoint inhibitors.
Data on clinical response to immune checkpoint inhibitors in CRC are lacking. To correlate CRG-Score with guiding individual treatment practices, we used the TIDE website to predict immunotherapy efficacy between CRG-Score risk groups. CRC patients with low CRG scores has a higher TIDE score. They may be better candidates for immunotherapy. Finally, based on IC50 values, we predicted common CRC drug sensitivities in different CRGs score groups. CRC patients with high CRG scores may be more sensitive to Ponatinib, Saracatinib, Dasatinib, Imatinib, and Rapamycin. These findings suggest that the CRG-Score has predictive value in individualizing treatment selection in CRC.
Our study has several limitations. First, our research data is based on retrospective data from public databases, lacking large-scale, prospective, real-world data for validation. Secondly, our research also lacks molecular biology support, and in-depth basic experiments are needed in the future. Finally, it should be emphasized that the low CRG scores may be more sensitive to immunotherapy in our study. However, due to the lack of cohort data on CRC immunotherapy and the strong heterogeneity among tumors, more evidence is needed to confirm our conclusions.
In conclusion, we constructed a CRG risk score signature to predict the prognosis of CRC patients. Patients with low CRG-Score lived longer. Our findings provide an immune landscape of CRC patients with different CRG-Score. The CRG-Score can be used to stratify patients and provide strategies for individual treatment.
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Background: Abnormal activation of endoplasmic reticulum (ER) stress sensors and their downstream signalling pathways is a key regulator of tumour growth, tumour metastasis and the response to chemotherapy, targeted therapy and immunotherapy. However, the study of ER stress on the immune microenvironment of bladder urothelial carcinoma (BLCA) is still insufficient.
Methods: Firstly, 23 ER stress genes were selected to analyse their expression differences and prognostic value in BLCA based on the existing BLCA genome atlas data. According to the expression level of ER stress-related genes in BLCA, two independent clusters were identified using consensus cluster analysis. Subsequently, the correlation between these two clusters in terms of the immune microenvironment and their prognostic value was analysed. Finally, we analysed the prognostic value of the key ER stress gene HSP90B1 in BLCA and its corresponding mechanism that affects the immune microenvironment.
Results: Consensus clustering showed a worse prognosis and higher expression of immunoassay site-related genes (HAVCR2, PDCD1, CTLA4, CD274, LAG3, TIGIT and PDCD1LG2) in cluster 1 compared with cluster 2. Additionally, both TIMER and CIBERSORT algorithms showed that the expression of immune infiltrating cells in cluster 1 was significantly higher than that in cluster 2. Subsequently, HSP90B1 was identified as a key ER stress gene in BLCA, and its high expression indicated poor prognosis and was closely related to PD1. We also analysed the correlation between HSP90B1 expression and immune-infiltrating cell related biomarkers, which showed positive results. Finally, we verified the prognostic value of HSP90B1 in BLCA using an immunohistochemical assay in a tissue microarray of 100 patients with BLCA, validating the potential of HSP90B1 as a prognostic biomarker in patients with BLCA.
Conclusion: Our work reveals that ER stress genes play a crucial role in the BLCA immunological milieu, and HSP90B1 is a potential prognostic biomarker and therapeutic target for cancer immunotherapy.
Keywords: BLCA, HSP90B1, immune infiltration, therapeutic target, ER stress
INTRODUCTION
Bladder urothelial carcinoma (BLCA) is a common malignant tumour of the urinary system and is the leading cause of the top ten cancer-related fatalities worldwide. In 2020, there were 81,400 new BLCA diagnoses and 17,980 BLCA-related deaths (Sung et al., 2021). Muscle-invasive BLCA and non-muscle-invasive BLCA are the two types of BLCA. More than 75% of BLCA diagnoses have a non-muscle-invasive form that can be conservatively treated locally and monitored; however, the remaining 25% have a muscle-invasive form that often necessitates cystectomy, radiation or palliative care (Chang et al., 2017). Surgical resection, chemotherapy and radiation therapy have led to considerable strides in cancer treatment, but patients’ survival times and treatment responses still vary widely. For patients with advanced BLCA and a high mutation load, immune checkpoint inhibitors (ICI) have been licensed (Zhao et al., 2019). However, the overall response rate is merely 15%–25% (Afonso et al., 2020). Thus, it is vital to develop biomarkers that can predict therapy response. The genesis and clinical and pathological symptoms of this highly heterogeneous malignant tumour vary among individuals. Furthermore, studies show that the survival and treatment of BLCA are increasingly linked to the patient’s immune system (Schneider et al., 2019). For example, cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed cell death 1 (PD1) and PD1 ligand (PD-L1) have served as essential targets for the development of new immunotherapy drugs (Qin et al., 2019). Similarly, BLCA needs to filter credible immune-related prognostic markers for better treatment responses (Kong et al., 2020).
Endoplasmic reticulum (ER) stress serves as a point of “protein quality control” in cells and facilitates several cellular functions by processing nascent membrane and secretory proteins in a Ca2+-dependent manner (Bettigole and Glimcher, 2015). ER stress has been shown to be a contributor to the development of a wide range of human malignancies as well as their progression to a malignant state. The fast multiplication of tumour cells is followed by an abrupt rise in the rate of protein synthesis, which always results in the activation of the unfolded protein response (UPR). As ER stress pathways impact every cancer hallmark, it is no surprise that UPR factors are prevalent in practically all cancer types (Pavlovic and Heindryckx, 2021). Poor prognosis and clinical outcome are linked to the overexpression of ER stress indicators in many different forms of cancer (Dalton et al., 2013; Matsuo et al., 2013; Chen et al., 2014; Shimizu et al., 2017). A recent study suggests that ER stress is responsible for the secretion of exosomal PD-L1 by oral squamous cell carcinoma cells and the upregulation of PD-L1 expression in macrophages, which in turn drives M2 macrophage polarization (Yuan et al., 2022). However, a thorough knowledge of ER stress in BLCA, including the interplay between ER stress regulators and the tumour immune microenvironment (TIME), is not yet available.
Recent studies have reported that HSP90B1 can regulate the growth and invasion of bladder cancer cells (Fang et al., 2019); however, its role as a prognostic biomarker of BLCA remains unexplored. In this study, a comprehensive investigation involving the expression profiles of ER stress regulators in BLCA and their connections with prognosis and involvement in TIME was conducted. In addition to this, we grouped the clusters according to the expression level of ER stress regulators, revealing a clear distinction between the two clusters in terms of tumour heterogeneity and TIME. This subgrouping helps with the risk classification and precision therapy of patients with BLCA. Subsequently, HSP90B1 was identified as a candidate for a stress regulator in the ER that is connected to immunological invasion. High levels of its expression were associated with a bad prognosis and showed a high association with PD1 in BLCA.
MATERIALS AND METHODS
Samples and datasets
The genomic data sharing (GDC) portal of the Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/) was used to obtain the clinical information of patients with BLCA. In the study, 406 BLCA tissues and 19 normal bladder samples were included. To further confirm the expression level of HSP90B1, datasets (GSE3167) from the Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) database were obtained and utilised. Additionally, 100 BLCA samples were used as the validation cohort. At Nantong Tumour Hospital, data from 100 patients with BLCA (including 41 matched normal bladder tissues) who underwent partial and radical cystectomy between June 2012 and March 2018 were also obtained. After surgery, the duration of the follow-up period ranged from one to 6 years for each patient, continuing until August 2019 (Zhu et al., 2020). Conventional written informed consent was obtained from all subjects. The ethics committee at the Nantong Tumour Hospital approved this investigation.
Clustering analysis
Based on the expression level of selected ER stress regulators in patients with BLCA, consistency analysis using the “ConsensusClusterPlus” R package (v1.54.0), where the maximum number of clusters is six and 80 per cent of the total sample is drawn 100 times, clusterAlg = “hc”, innerLinkage = “ward.D2”, and principal component analysis (PCA) using the “ggplot2” package were performed.
Functional analysis
Furthermore, the “Cluster Profiler” package in R was used to perform gene set enrichment analysis (GSEA), Gene Ontology (GO) and KEGG signalling pathway analyses (Wang et al., 2021).
Correlation analysis of immune infiltration
We also employed the “immuneeconv” package in R, which incorporates various algorithms, including TIMER and CIBERSORT, to further validate the findings of our immune score assessment. In order to build the aforementioned techniques, the R Foundation for Statistical Computing (2020) version 4.0.3 was used along with “ggplot2” and “pheatmap.”
Expression and prognostic analysis of HSP90B1 in bladder cancer
The human protein atlas database (https://www.proteinatlas.org/) was used to analyse the expression of HSP90B1 protein in BLCA and normal bladder tissues. The HSP90B1 survival was externally validated using the Kaplan–Meier plotter and PrognoScan database. Analyses of cox regression, both univariate and multivariate, were used to identify the most appropriate terms for use in the nomogram. The “forestplot” R program was used to identify the p value, hazard ratio (HR) and 95% confidence interval (CI) for each variable. A nomogram was constructed using the findings of a multivariate cox proportional hazards analysis to make an accurate prediction of the X-year overall recurrence. A graphical depiction of the variables that can assess the probability of recurrence for a given patient was supplied by the nomogram. This calculation was accomplished using the “rms” R package, and the points associated with each risk factor were utilized in the calculation.
Immunohistochemistry
Samples were embedded in paraffin at a thickness of 4 nm. Deparaffinization and rehydration were performed on each slide. To eliminate aldehyde linkages from antigens, they were re-extracted using a pressure cooker and 0.01 M citrate buffer (pH 6). The slides were incubated with HSP90B1 antibody (1: 2000; ab238126, Abcam) overnight. After incubating the HRP-labelled secondary antibody for 1 h, immunodetection was performed the following day using diaminobenzidine following the manufacturer’s instructions (Yuan et al., 2021). Two independent pathologists, each of whom was blinded to the other’s clinical data, evaluated the HSP90B1 staining. A semi-quantitative immune response score (IRS) system incorporating distribution regions and staining intensities was used for the HSP90B1 staining procedure. The immunological staining intensity score ranged from 0 to 3 (0, no reaction; 1, weak response; 2, moderate response; 3, robust response). The proportions were separated into 1 (0%–25%), 2 (26%–50%), 3 (51%–75%) and 4 (76%–100%) (Zhu et al., 2020). The final score was obtained by adding the intensity score and the proportional score. The results were as follows: 0–5, low; 6–7, high.
Statistical analysis
For statistical analyses, IBM SPSS Statistics 25 was employed. The relationships between HSP90B1 expression and clinicopathological characteristics were evaluated using the Chi-square test. This model was utilized for both univariate and multivariate assessments of prognosis. The survival curves were constructed using Kaplan–Meier analysis and log-rank testing. Furthermore, p values below 0.05 were regarded as significant.
RESULTS
Expression divergence of ER stress genes between bladder urothelial carcinoma and adjacent normal tissues
The Molecular Signature Database v7.0 was used to download two ER stress-related gene sets (GO RESPONSE TO ENDOPLASMIC RETICULUM STRESS and GO REGULATION OF RESPONSE TO ENDOPLASMIC RETICULUM STRESS) (MSigDB,4). After removing overlapping genes, the obtained ER stress-related gene collection had 272 genes. Among these, 256 genes were discovered in the TCGA dataset (Huang et al., 2021) (Supplementary Table S1), which were screened in this study using differential expression and univariate analysis. The analyses revealed 23 key ER-related genes in BLCA. Figure 1A shows the difference in the expressions of these 23 genes between BLCA and normal tissues. The expressions of BFAR, CALR, CDK5RAP3, HSP90B1, HSPA5, HYOU1, KLHDC3, MAN1B1, P4HB, SRPRB, TRIB3, TTC23L and YIF1A in BLCA were significantly higher than that in normal tissues whereas the expressions of other genes in BLCA was lower than that in normal tissues. In Figure 1B, the forest map shows the prognostic significance of these 23 genes in the overall survival of BLCA. The low expression of CDK5RAP3 and TTC23L was significantly associated with poor overall survival and poor prognosis in patients with BLCA while the high expression of the other 21 genes was associated with the poor prognosis of BLCA. Figure 1C shows the correlation and interaction of these 23 ER stress-related genes. The results showed that CDK5RAP3 and TTC23L were negatively correlated with the other 21 genes, while the other 21 genes were positively correlated. Figure 1D shows the related effects of the 23 genes using the STRING website (minimum required interaction score: 0.4), wherein the genes were mainly centred on HSPA5 and HSP90B1.
[image: Figure 1]FIGURE 1 | Differential expression of 23 key endoplasmic reticulum (ER) stress genes in bladder urothelial carcinoma (BLCA). (A) Expression of ER stress genes in BLCA and normal bladder tissues. (B) Overall survival forest map of 23 key ER stress genes. (C) Heat map of 23 key ER stress genes. (D) Network diagram of 23 ER stress genes.
Mutational and enrichment analysis of ER stress-related genes
We first used the cBioPortal (https://www.cbioportal.org/) tool to analyse the mutations of these 23 genes in BLCA. Figure 2A shows that these genes have different degrees of mutations in BLCA, with EXTL3 and PPP2CB having the highest mutation frequency and mainly involving deep deletion. Next, in summarising the mutation types in BLCA, the highest frequency was found to be missense mutation, followed by amplification (Figure 2B). Finally, we performed KEGG and GO enrichment analysis on these 23 ER stress-related genes. KEGG enrichment analysis revealed many signalling pathways related to immune infiltration, such as the IL17 signalling pathway, PI3K Akt signalling pathway and TGF beta signalling pathway (Figure 2C). GO enrichment analysis also showed the same results, such as the negative regulation of IL-12 production and fibroblast growth factor receiver signalling pathway (Figure 2D). All these conclusions suggest that ER stress-related genes play an important role in the immune microenvironment of BLCA.
[image: Figure 2]FIGURE 2 | Mutation and enrichment analysis of endoplasmic reticulum (ER) stress-related genes in bladder urothelial carcinoma (BLCA). (A, B) Mutation analysis of ER stress-related genes in BLCA. (C, D) Enrichment analysis of ER stress-related genes in BLCA.
Cluster model of ER stress-related genes in bladder urothelial carcinoma based on consensus clustering analysis
Consensus clustering analysis of ER stress-related genes in TCGA RNA sequencing datasets was undertaken to investigate the relationship between the level of ER stress and the clinical features and prognosis of patients with BLCA. For each k, consensus matrix (CM) plots illustrate consensus values on a white to blue colour scale. The goal of CM plots is to determine the “cleanest” cluster partition where items virtually always cluster together, providing a high consensus (dark blue colour), or don’t cluster together, giving a low consensus (white) (Wilkerson and Hayes, 2010). In Figure 3A and Supplementary Figure S1A–S1D, we can clearly find that when k = 2 is the cleanest clustering partition. Furthermore, Empirical cumulative distribution function (CDF) plots display consensus distributions for each k. The “proportion of ambiguous clustering” (PAC) measure quantifies the middle segment, it is defined as the fraction of sample pairs with consensus indices falling in the interval (u1, u2) ∈ [0, 1], where u1 is a value close to 0 and u2 is a value close to 1. In permuted clustering, a low value of PAC indicates a flat middle segment and a low incidence of discordant assignments (Șenbabaoğlu et al., 2014). In Figure 3B, we can find that the curve is the flattest when k = 2 (u1 = 0.2, u2 = 0.8). So, the ideal number of clusters (k = 2) was found using CDF curves and consensus matrices, with patients being divided into two stable clusters (Huang et al., 2021) (Figure 3B). Of the 406 BLCA samples, cluster 1 included 333 samples and cluster 2 included 73 samples. The heat map revealed that there were substantial variations between these two clusters in the expression of ER stress-related genes (Figure 3C). Consequently, disparities were also found between the two clusters regarding the clinicopathological characteristics and prognosis (Supplementary Table S2). We also identified statistically significant variations in tumour stage and malignancy grade between the two clusters (p < 0.05) but no statistical differences were observed in age or gender (p > 0.05). Additionally, the expression of immune checkpoint-related genes between the two clusters was compared, which revealed significant differences between the two clusters (p < 0.001). Immune checkpoint blockade (ICB) has completely changed the treatment of human cancer (Jiang et al., 2018). In this study, based on the expression profile data, the tumour immune dysfunction and exclusion algorithm was used to predict the responsiveness of the two clusters to immune checkpoint inhibitors. The results show that cluster 1 was significantly better than cluster 2 (Supplementary Figure S1F). Finally, the overall survival and progression-free survival of patients in cluster 2 were significantly better than those in cluster 1 (p < 0.05) (Figures 3E,F). The findings suggested that the two subgroups of patients with BLCA are significantly heterogeneous. To further corroborate the results defined by the expression of ER stress regulators, we next analysed the gene expression patterns of the two clusters using PCA (Supplementary Figure S1G), which revealed significant differences in the characteristics of the two subtypes.
[image: Figure 3]FIGURE 3 | Differential expression pattern of endoplasmic reticulum (ER) stress-related genes and survival in two bladder urothelial carcinoma (BLCA) subtypes. (A) Consistent cluster analysis was used to split the samples of patients with BLCA into two distinct clusters. (B) Curves of the cumulative distribution function with k values ranging from 2 to 6. (C) The expression patterns of genes associated with ER stress are shown using heat maps of the two BLCA clusters. (D) Differential expression of immune checkpoint-related genes in two clusters. (E, F) Overall survival of patients with BLCA (E) and disease-free survival of patients with BLCA (F) are shown using the Kaplan–Meier curves. (F) The expression of genes related to immune sites between the two clusters. *p < 0.05, **p < 0.01 and ***p < 0.001.
Relationship between ER stress-related genes and immune cell infiltration in bladder urothelial carcinoma
The expression levels of the selected ER stress-related genes were used to classify the two groups, and the results showed that there were substantial variations in the immune cell infiltration of each cluster. The TIMER algorithm was used to explore the differences of many immune cell subtypes between the two clusters in BLCA samples. As shown in Figure 4A, T cell CD8+, neutrophil, macrophage and myeloid dendritic cells in cluster 1 significantly increased in number (p < 0.001), and the proportion of numerous tumour-infiltrating immune cells in the two clusters represented by the heat map was depicted as a percentage (Figure 4C). Furthermore, no significant difference was observed in the expression of B cell between the two clusters. CIBERSORT algorithm was further used to evaluate the correlation between the two clusters and T cells (Figures 4B,D). Therefore, these results suggest that ER stress-related genes have important effects on the immune microenvironment of BLCA tumours.
[image: Figure 4]FIGURE 4 | Correlation analysis between endoplasmic reticulum (ER) stress-related genes and immune infiltrating cells in bladder urothelial carcinoma (BLCA). (A, C) The differential expression of immune infiltrating cells and the abundance percentage of immune infiltrating cells between the two clusters was evaluated using the TIMER algorithm. (B, D) The differential expression of immune infiltrating cells and the abundance percentage of immune infiltrating cells between the two clusters was evaluated using the CIBERSORT algorithm.
Key prognostic biomarkers related to immune infiltration in ER stress-related genes in bladder urothelial carcinoma
PD1 and PDL1 are the key targets of BLCA immunotherapy (Ren et al., 2022). Therefore, gene intersection analysis was used to locate key genes associated with ER stress. These genes had a significant expression level in BLCA, had a negative correlation with the prognosis of patients with BLCA in both TCGA and GSE13507 datasets (Supplementary Figure S2) and had a positive correlation with the expression of PD1 and PD-L1. Furthermore, CALR, HSP90B1, SRPRB, YIF1A and TRIB3 were found to be key prognostic genes related to the immune invasion of BLCA (Figure 5A). We also used the STRING website to analyse whether these five genes interact with each other (minimum required interaction score: 0.15). The results showed that CALR, HSP90B1, SRPRB and TRIB3 interacted with each other whereas HSP90B1 was at the centre (Figure 5B). PD1 and PD-L1 were also observed to be associated significantly with the expression levels of several ER stress-related genes (such as CALR, HSP90B1, SRPRB, YIF1A and TRIB3) but negatively associated with CDK5RAP3 and TTC23L (Figure 5C). Finally, the association between CALR, HSP90B1, SRPRB, YIF1A and TRIB3 expression and overall survival in BLCA was analysed using the Cox analysis technique; univariate analysis revealed that HSP90B1 expression (HR = 1.27608, p = 0.0301), TRIB3 expression (HR = 1.20885, p = 0.00137), YIF1A expression (HR = 1.72475, P = 1e-04), CALR expression (HR = 1.46921, p = 0.00217) and SRPRB expression (HR = 1.5969, p = 0.00114) were strongly linked with overall survival (Figures 5D–H). Additionally, multivariate analysis revealed that the expression of HSP90B1 (p = 0.04485) and TRIB3 (p = 0.00443) was an independent factor in determining the prognosis of patients with BLCA (Figures 5D–H).
[image: Figure 5]FIGURE 5 | Key prognostic markers of endoplasmic reticulum (ER) stress-related genes in bladder urothelial carcinoma (BLCA). (A) Venn mapping is positively correlated with PD1 and PDL1, which are up-regulated key prognostic genes in BLCA. (B) The interaction network diagram of CALR, HSP90B1, SRPRB, YIF1A and TRIB3 was analysed using the STRING database. (C) ER stress-related genes and PD1, PDL1 correlation heat map. (D–H): The prognostic value of CALR, HSP90B1, SRPRB, YIF1A and TRIB3 was analysed using univariate and multivariate analyses.
Clinical significance of ER stress-related key prognostic genes in bladder urothelial carcinoma
In TCGA, the pathological stages in BLCA samples were divided into four stages, including 2 samples in stage I, 130 samples in stage II, 140 samples in stage III and 134 samples in stage IV. We first analysed the differential expression of CALR, HSP90B1, SRPRB, YIF1A and TRIB3 in the various pathological stages. The results showed that there were significant differences among HSP90B1, YIF1A and SRPRB in the pathological stages (p < 0.05) but no significant difference was observed between TRIB3 and CALR (p > 0.05) (Figure 6A) Subsequently, we also analysed the differential expression of CALR, HSP90B1, SRPRB, YIF1A and TRIB3 in high-grade BLCA (n = 384) and low-grade BLCA (n = 21) samples. CALR, HSP90B1, SRPRB, YIF1A and TRIB3 were up-regulated in high-grade BLCA samples (p < 0.001). The prognostic significance of HSP90B1, SRPRB, YIF1A and TRIB3 was also confirmed in an independent BLCA cohort using Kaplan–Meier plotters (p < 0.05) however, that of CALR was not confirmed (p > 0.05). Subsequently, HSP90B1 was observed to be the only gene that could predict the prognosis of BLCA and showed significant differences in pathological stages and grades. Thus, HSP90B1 is an important ER stress-related gene associated with the prognosis and immune infiltration of BLCA.
[image: Figure 6]FIGURE 6 | Expression and prognosis of endoplasmic reticulum (ER) stress-related genes CALR, HSP90B1, SRPRB, YIF1A and TRIB3 in bladder urothelial carcinoma (BLCA). (A) Expression of CALR, HSP90B1, SRPRB, YIF1A and TRIB3 in the staging of BLCA. (B) Expression of CALR, HSP90B1, SRPRB, YIF1A and TRIB3 in the grading of BLCA. (C) Kaplan–Meier plotter was used to analyse the prognostic differences of CALR, HSP90B1, SRPRB, YIF1A and TRIB3.
High HSP90B1 expression is an independent prognostic biomarker in bladder urothelial carcinoma
Figure 1 shows that there is a significant difference in the expression of HSP90B1 between BLCA and adjacent normal tissues. In the paired BLCA samples (n = 19) in the TCGA database, there was a significant difference in the amount of HSP90B1 expression between BLCA and normal bladder tissues (p < 0.001) (Figure 7A). Additionally, we evaluated the expression data from the GEO database to provide a more in-depth illustration of the expression of HSP90B1 in BLCA. According to the findings, HSP90B1 was significantly overexpressed in BLCA compared to normal tissues in the GSE3167 datasets (Figure 7B). In addition, the prognostic significance of upregulated HSP90B1 showed a worse overall survival and progression-free survival than the downregulated group (Figures 7C,D). High HSP90B1 expression in patients with BLCA was associated with a reduced percentage of alive and dead patients, as seen by a stacked bar chart. This was in contrast to patients with BLCA who had a low level of HSP90B1 expression (p = 0.007) (Figure 7E). In Figure 5D, multivariate Cox regression analysis showed that HSP90B1 expression, age and N stage could be used as prognostic indicators for patients with BLCA. Based on this, we drew the calibration curves of the nomogram and overall survival nomogram models (Figures 7F,G). Finally, we analysed the expression level of HSP90B1 protein in four pairs of BLCA tissues and adjacent normal tissues by The Human Protein Atlas website. We found that the staining intensity of HSP90B1 protein in BLCA tissues was significantly higher than that in normal bladder tissues. We found that the staining intensity of HSP90B1 protein in BLCA tissues was significantly higher than that in normal bladder tissues.
[image: Figure 7]FIGURE 7 | Expression and prognosis of endoplasmic reticulum (ER) stress-related gene HSP90B1 in bladder urothelial carcinoma (BLCA). (A) Expression of HSP90B1 in paired BLCA samples. (B) Expression of HSP90B1 in BLCA and normal tissues in the GSE3167 dataset. C, (D) Prognostic significance of HSP90B1 expression in overall survival and progression-free survival of BLCA. (E) Comparison of death/survival ratio between high HSP90B1 expression group and low HSP90B1 expression group. (F, G) The nomogram and calibration curve were drawn based on the results of multivariate Cox regression analysis. (H) Expression of HSP90B1 protein in BLCA.
Verification of HSP90B1 expression and its prognosis in bladder urothelial carcinoma
To verify the results obtained from the TCGA and GEO databases, we detected the expression and prognosis of HSP90B1 in 100 patients with BLCA and 41 matched normal bladder tissues. Immunohistochemical results showed that the expression of HSP90B1 in BLCA was significantly higher than that in normal bladder tissues (Figure 8A). Figures 8B,C show that the expression of HSP90B1 in paired BLCA samples and unmatched BLCA samples was significantly higher than that in normal bladder tissues (p < 0.001). The survival curve and receiver operating characteristic curve were drawn according to HSP90B1 expression, survival time and survival status. The results showed that the prognosis of patients with BLCA having a high HSP90B1 expression was poor (Figure 8D). Additionally, HSP90B1 showed a strong predictive capacity, as the area under the curve values of HSP90B1 expression for predicting 2, 4 and 6-years survival were 0.69, 0.82 and 0.925, respectively (Figure 8E). A stacked bar chart and a violin plot (Figures 8F,G) demonstrated that the alive/dead ratio and survival time of patients with BLCA having a high HSP90B1 expression was lower than those with low HSP90B1 expression. Additionally, the survival time of patients with high HSP90B1 expression was shorter than those with low HSP90B1 expression (p < 0.05). Furthermore, univariate analysis revealed that tumour size (HR = 0.370, p = 0.019), tumour stage (HR = 3.738, p = 00,002), vasculature invasion (HR = 3.054, p = 0.02) and recurrence (HR = 2.455, p = 0.033) were all associated with overall survival (Figure 8H). A multivariate analysis (Figure 8J) also showed that tumour size (p = 0.013) and HSP90B1 expression (p = 0.037) were independent factors for prognosis in patients with BLCA. In Supplementary Table S3, the HSP90B1 high expression group and HSP90B1 low expression group show significant differences in BLCA stage, grade, vascular invasion and lymph node metastasis (p < 0.05). Similarly, the calibration curves of the nomogram and overall survival nomogram models were constructed (Figures 8I,K).
[image: Figure 8]FIGURE 8 | To verify the expression of HSP90B1 in bladder urothelial carcinoma (BLCA) and its prognostic significance. (A) The expression of HSP90B1 protein in BLCA was detected using immunohistochemistry. (B) HSP90B1 protein was expressed in paired samples of BLCA. (C) HSP90B1 protein was expressed in unmatched samples of BLCA. D, (E) Prognostic difference and receiver operating characteristic curve of overall survival in BLCA between the HSP90B1 high expression group and HSP90B1 low expression group. (F) Difference analysis of survival and death rate between the high and low HSP90B1 expression groups in patients with BLCA. (G) Analysis of the difference in survival time between the HSP90B1 high expression group and HSP90B1 low expression group in patients with BLCA. (H, J) Univariate and multivariate cox regression analyses of HSP90B1 and pathological parameters on the prognosis of BLCA. (I, K) Nomograms and calibration curves were drawn to predict the impact of HSP90B1 and tumour size on the 2, 4 and 6-years prognosis of patients with BLCA.
Correlation between HSP90B1 and the immune microenvironment in bladder urothelial carcinoma
GSEA was performed by grouping the HSP90B1 high expression and low expression groups. The results showed that HSP90B1 was significantly correlated with the immune microenvironment in BLCA, including “The human immune response to tuberculosis,” “T cell signal transduction,” “PD1 signalling” and “Cancer immunotherapy by PD1 blockade.” Enrichment analysis also showed that HSP90B1 was closely related to PD1, which was used as a prognostic marker for immunotherapy in BLCA. Therefore, further analysis of the correlation between HSP90B1 and PD1 in BLCA may help us better understand the potential of HSP90B1 in BLCA immunotherapy (Figure 9A). Subsequently, we found a positive correlation between HSP90B1 and PD1 through TIMER2.0 and cBioPortal website analysis (p < 0.05) (Figure 9B). Subsequently, we evaluated the expression difference of immune cell subtypes and the abundance percentage of immune infiltrating cells between the HSP90B1 high expression group and HSP90B1 low expression group through TIMER and CIBERSORT algorithm, revealing a positive correlation (Figures 9C–F). We also found a significant correlation between HSP90B1 and most of the biomarkers of immune infiltrating cells (Supplementary Table S4). Finally, we explored the correlation between HSP90B1 and immunosuppressants and immunoagonists using the TISIDB website (http://cis.hku.hk/TISIDB/index.php) (Supplementary Figure S3). Therefore, these findings suggest that HSP90B1 plays an important role in the immune microenvironment of BLCA.
[image: Figure 9]FIGURE 9 | HSP90B1 plays an important role in the immune microenvironment of bladder urothelial carcinoma (BLCA). (A) The high and low expression of HSP90B1 were grouped for gene set enrichment analysis. (B) Correlation analysis between HSP90B1 and PD1. (C, E) TIMER algorithm was used to evaluate the correlation between HSP90B1 and immune infiltrating cells. (D, F) CIBERSORT algorithm was used to evaluate the correlation between HSP90B1 and immune infiltrating cells.
DISCUSSION
BLCA, the most prevalent kind of genitourinary cancer, has a high prevalence and an extremely high incidence worldwide. The management of BLCA has been evolving not only by advancements in traditional therapies, such as surgery and chemotherapy but also by the introduction of immunotherapeutic techniques. This is in addition to the early identification via cytology, which is also a recent advancement (Abd El-Salam et al., 2022). However, identifying more precise and individualized ways to treat muscle-invasive BLCA has become a popular research topic despite recent advancements in therapies, such as local or systemic immunotherapy, chemotherapy and radiation (Nie et al., 2021). Evidence is mounting that tumour cells may create and interact with the tumour microenvironment, reprogramming and controlling tumour progression, metastasis and treatment response. Moreover, anti-cancer treatment, including immunotherapy, is speculated to be hampered by ER stress (Gao et al., 2015). However, the potential role of ER stress in the BLCA immune microenvironment remains elusive. In this study, consensus clustering of selected ER stress regulators allowed for the identification of two distinct subgroups with distinct clinical characteristics, prognoses and TIME. Among these, HSP90B1 was identified as the potential immune infiltration-related ER stress regulator. HSP90B1 is increased under a variety of stress situations that disrupt ER equilibrium (Ansa-Addo et al., 2016). HSP90B1 regulates the balance between cancer cell survival and death by maintaining ER protein folding capacity, ER stress sensors, and suppressing ER-associated pro-apoptotic machinery (Duan et al., 2021). Unfortunately, the significant role of HSP90B1 gene in BLCA has not been analysed from the perspective of ER stress. However, in our study, gene enrichment analysis showed that the ER stress gene HSP90B1 could affect apoptosis and cell cycle of bladder cancer cells. This conclusion provides a basis for further exploration of how the HSP90B1 gene affects ER stress in BLCA.
The ER is a distinctive intracellular membrane structure that is involved in various biological processes, such as biosynthesis, lipid metabolism and calcium homeostasis. Additionally, it is responsible for the folding and secretion of more than 30% of the proteins that are found within the cell. Crosstalk with other organelles, such as the mitochondria, lysosomes, Golgi apparatus and nucleus, also allows it to transduce diverse signals and stressors (Oakes, 2017; Wu et al., 2021). Multiple cellular stressors, both internal and external, alter intracellular protein homeostasis in tumour cells. ER, as the key organelle for protein quality control, is responsible for protein homeostasis via precise processes, including UPR, protein clearance via ER-associated degradation and autophagy, which contributes to tumour development, metastasis, angiogenesis and chemoradiotherapy resistance (Bi et al., 2005; Wu et al., 2015; Preston and Brodsky, 2017; Chen et al., 2021). Many studies have reported that ER stress closely regulates the proliferation of BLCA cells. For example, Derlin-1, also known as ER-related degradation protein-1, is a protein that is essential to the ER degradation pathway and can interact with a wide range of other proteins. Derlin-1 is capable of forming a protein complex with ubiquitin ligase, ubiquitin protein and p97, which contains valine, and subsequently neutralizes the ER stress by cooperating with the major histocompatibility complex I to co-regulate substrate protein and promote the destruction of unfolded or misfolded proteins (Iida et al., 2011; Christianson and Ye, 2014; Mehnert et al., 2014). Studies also report that Derlin-1 expression in BLCA tissue is higher than that in normal adjacent tissues and is associated with tumour stage, histological grade, lymph node involvement and muscle invasiveness (Wu et al., 2016). Additionally, studies also report that extracellular vesicles from BLCA cells could stimulate the UPR during ER stress and inflammation and promote BLCA proliferation, development and recurrence (Wu et al., 2019). Inhibiting protein synthesis and promoting unfolded protein breakdown are two additional ways that UPR might reduce ER stress. If the adaptive systems’ capacity for stress is exceeded, cells will undergo apoptosis through a variety of TUPR-mediated pathways (Wang et al., 2022). In conclusion, these studies indicate that ER stress plays an important role in BLCA.
Recent advances in precision medicine have had a significant impact on how human malignancies are treated, highlighting the importance of identifying more precise subtypes of various diseases using multiple biological and clinical factors (Dupont et al., 2021). Increasingly studies on the groupings of patients with tumours based on their genetic spectrum, each with distinct phenotypes, prognoses and therapeutic responses, have been reported (Tan et al., 2019). In our study, patients with BLCA were divided into two clusters based on the expression features of ER stress-related genes using consensus cluster analysis. The expression of ER stress-related genes varied considerably between the two clusters, and the prognosis of cluster 1 patients was much poorer than that of cluster 2 patients. Subsequently, further analysis showed that the expression of CD274, PDCD1, CTLA4, HAVCR2, LAG3, PDCD1LG2 and TIGIT in cluster 1 was significantly higher than that in cluster 2, whereas that of SIGLEC15 in cluster 2 was significantly higher than that in cluster 1. Moreover, the prognosis of cluster 1 was significantly worse than that of cluster 2, which could be attributed to the above differential expression. Additionally, both the TIMER and CIBERSORT algorithms showed that the immune infiltrating cells had higher expression levels in cluster 1 with poor survival prognosis. Finally, HSP90B1 was identified as a key prognostic gene of ER stress in BLCA and was associated with immune infiltration, indicating its potential as a biomarker to predict the prognosis of patients with BLCA. In the subsequent GSEA, the high and low expression of HSP90B1 was used as a grouping factor, revealing more enriched immune-related pathways. Notably, the “PD1 pathway” and “Cancer immunotherapy by PD1 blockade” were directly enriched. This indicated that there is a high correlation between HSP90B1 and PD1 and also provides a basis for the potential of HSP90B1 in BLCA immunotherapy. Unfortunately, the mechanism of HSP90B1 regulating the immune microenvironment of BLCA could not be elucidated in this study. However, the results of GSEA also include the apoptosis signalling pathway, which could be a potential mechanism of HSP90B1 regulating the immune microenvironment of BLCA; however, further experiments are required to verify this conclusion.
CONCLUSION
In conclusion, this research comprehensively examined the expression profile of ER stress-related genes in BLCA and its association with prognosis and TIME. Consensus clustering of ER stress-related genes identified two distinct subgroups of BLCA having distinct tumour heterogeneity and TIME. This subgrouping could aid in the risk classification and personalized treatment of patients with BLCA. HSP90B1 was shown to be an independent predictor of prognosis in patients with BLCA and was found to be associated with PD1 expression among the chosen ER stress-related genes. However, further studies are required to verify the important role of HSP90B1 in the immune microenvironment of BLCA.
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Background: G-protein signaling modulator 2 (GPSM2) maintains cell polarization and regulates the cell cycle. Recent studies have shown that it is highly expressed in various tumors, but its pan-cancer analysis has not been reported.
Methods: First, we analyzed the differential GPSM2 expression in normal and cancer tissues by the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) and Human Protein Atlas databases and investigated its expression effect on the survival of cancer patients by gene expression profiling interactive analysis 2 (GEPIA2). Second, we analyzed the GPSM2 phosphorylation level using the clinical proteomic tumor analysis consortium dataset. In addition, we investigated GPSM2 gene mutations in human tumor specimens and the impact of gene mutations on patient survival. Finally, we analyzed the relationship between GPSM2 expression and cellular immune infiltration through the TIMER 2.0 database. Meanwhile, the possible signaling pathway of the gene was analyzed by the Gene Ontology (GO)| Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway to explore its potential mechanism.
Results: GPSM2 is overexpressed in most cancers, which leads to reduced overall survival (OS) and disease-free survival in patients. The results of phosphorylation analysis suggest that tumor development involves a complex GPSM2 phosphorylation process. We identified GPSM2 mutation loci with the highest frequency of mutations in uterine corpus endometrial carcinoma (UCEC), and this mutation increased progression-free survival and overall survival in uterine corpus endometrial carcinoma patients. Finally, we found that the role of GPSM2 in tumors may be associated with cellular immune infiltration. Gene Ontology|KEGG pathway analysis showed that the enrichment pathways were mainly “mitotic nuclear division,” “chromosome segregation,” and “spindle.”
Conclusions: Our pan-cancer analysis provides a comprehensive overview of the oncogenic roles and potential mechanisms of GPSM2 in multiple human cancers.
Keywords: Gpsm2, prognosis, phosphorylation, gene mutation, immune infiltration, pan-cancer
INTRODUCTION
G-protein signaling modulator 2 (GPSM2)/Leu-Gly-Asn repeat-enriched protein (LGN), which regulates the activation of G proteins, receives extracellular signals and causes cellular responses (Blumer et al., 2006). GPSM2 is necessary to orient the mitotic spindle during cell division and is essential in maintaining cell polarity and participating in cell cycle regulation (Du et al., 2001; Woodard et al., 2010). It contains 10 copies of an LGN repeat in the N‐terminal portion and 4 GoLoco motifs in the C‐terminal part of the protein and is widely expressed in human tissues (Mochizuki et al., 1996). In addition, GPSM2 gene deletion or mutation is likely to cause defects in cell polarity, resulting in characteristic brain malformations and nonsyndromic hearing loss (Doherty et al., 2012).
In addition to being expressed in normal human tissues, GPSM2 is also involved in disease processes. Recent work identified aberrant GPSM2 expressions in various tumors, such as liver hepatocellular carcinoma (LIHC) (He et al., 2017) and pancreatic cancer (Dang et al., 2019). Meanwhile, many studies have reported that GPSM2 can be identified as a prognostic factor in LIHC that promotes tumor proliferation and metastasis (Yang et al., 2020). However, the role of GPSM2 in tumors and the specific mechanisms remain uncertain.
To explore the GPSM2 expression profile in pan-cancer analysis, we used a dataset from The Cancer Genome Atlas (TCGA) database. We compared GPSM2 expression in various tumors and considered survival status, protein phosphorylation, gene alteration, immune cell infiltration and related cellular pathways. This comprehensive analysis helps reveal the GPSM2 mechanism in human tumors, which is also helpful in predicting tumor prognosis and providing implications for targeted cancer therapy.
MATERIALS AND METHODS
Analysis of G-protein signaling modulator 2 expression in normal and tumor tissues
The TIMER 2.0 database (http://timer.cistrome.org/) was used to analyze GPSM2 expression between different tumors and adjacent normal tissues. Then, we used gene expression profiling interactive analysis 2 (GEPIA2) (http://gepia2.cancer-pku.cn/#analysis) to acquire box plots of the genotype-tissue expression (GTEx) database. Setting p value cutoff = 0.01, log2 fold change (FC) cutoff = 1, and “matching TCGA normal and GTEx data.” Then, GEPIA 2 was used to analyze the GPSM2 protein level in different cancers. Finally, GPSM2 expression at different pathological stages of various cancers was analyzed by GEPIA2. We used log2 [transcripts per million (TPM)+1)] for log-scale to obtain expression data to produce violin plots.
Immunohistochemical staining
To evaluate the difference in GPSM2 expression, we performed an analysis by TCGA + GTEx dataset and selected cancer types with high GPSM2 expression in tumors; downloaded from the Human Protein Atlas (HPA) (https://www.proteinatlas.org/) for GPSM2 expression IHC images in normal and seven tumor tissues, including LIHC, kidney renal clear cell carcinoma (KIRC), breast cancer (BRCA), colon adenocarcinoma (COAD), prostate adenocarcinoma (PRAD), stomach adenocarcinoma (STAD), and ovarian serous cystadenocarcinoma (OV), were downloaded from the HPA database and analyzed.
Western bolt
The tissues were fully lysed using RIPA lysis slow at 4°C; the supernatant was collected by centrifugation at 4°C at 12,000 rpm for 15 min, and the protein concentration was measured according to the Bradford method. Then, 4X protein loading buffer was added, heated by boiling in a water bath for 10 min, and stored at −80°C. Proteins (20–40 μg) were electrophoresed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels at different concentrations (8%, 10% or 12%, depending on protein molecular weight) and then transferred to polyvinylidene difluoride (PVDF) membranes for transmembrane processing. The membranes were closed in the solution for 1 h and then incubated with the corresponding primary antibody overnight at 4°C. Primary antibodies included GPSM2 (1:100) and β-actin (1:1,000). The membranes were washed three times for 10 min each in TBST solution the following day. The membranes were incubated with the corresponding secondary antibodies for 2 h at 4°C, and the TBST solution was washed three times for 10 min each. Finally, color development was performed using ECL luminescent solution exposed on a gel imaging system and images were acquired. Grayscale values of protein bands were analyzed using ImageJ software.
Survival prognosis analysis
We used GEPIA2 to obtain the overall survival (OS) and disease-free survival (DFS) significance map data and GPSM2 survival plots. The most differentially expressed cancers were selected for survival analysis, and cutoff-high (50%) and cutoff-low (50%) values were used as the expression thresholds for splitting the high- and low-expression cohorts (Tang et al., 2019). The hazard ratio was calculated based on the Cox PH model, and the 95% confidence interval was set as the selection of outcome criteria for survival curve plotting. The log-rank test was used in the hypothesis testing. The threshold was set as a Cox p value <0.05.
Prognostic analysis and clinical model prediction of G-protein signaling modulator 2 in liver hepatocellular carcinoma
By analyzing the significant degree of GPSM2 expression across cancers, we selected LIHC further to explore the impact of GPSM2 expression on cancer prognosis. Multi-factor Cox regression analysis of LIHC was performed using the R package (version 3.6.3), and factors influencing p < 0.05 were statistically analyzed using the rms R package. To personalize the prognosis of patients with LIHC, KM plots of GPSM2 on LIHC, nomogram plots of clinical characteristics and calibration plots were drawn (Liu et al., 2018).
Genetic alteration analysis
Genetic alteration analysis of GPSM2 in TCGA pan-cancer was performed by using cBio Cancer Genomics Portal (cBioPortal) (https://www.cbioportal.org/), which maps the three-dimensional structure of alteration frequency, mutation type, mutation site, copy number alteration (CNA) and protein structure. Then, the effect of GPSM2 mutations on survival was analyzed in the uterine corpus endometrial carcinoma (UCEC) single dataset, i.e., the comparison/survival module was selected in the TCGA-UCEC dataset and their OS, disease-specific survival (DSS), progression-free survival (PFS), and DFS survival curves.
Phosphorylation analysis
We extracted the GPSM2 phosphorylation data in normal and tumor tissues from the clinical proteomic tumor analysis consortium (CPTAC) dataset, annotated phosphorylation sites and plotted the corresponding box plots.
Immunoinfiltration analysis
The TIMER database analyzed the relationship between GPSM2 expression and immune infiltration in all tumors. We selected cancer-associated fibroblasts, neutrophils and endothelial cells for study. The EPIC, MCP-counter, TIDE, XCELL, CIBERSORT, CIBERSORT-ABS, QUANTISEQ and TIMER algorithms were used for immune infiltration assessment criteria to plot a heatmap of the correlation between GPSM2 expression and immune infiltration.
G-protein signaling modulator 2-related gene enrichment analysis
First, we used the STRING website (https://string-db.org/) for subsequent analysis of the protein-protein interaction (PPI) network. The following main parameters are set: the minimum interaction score required [“low confidence (0.150)”], the edge of the network meaning (“evidence”), the maximum number of interactors to be shown (“no more than 50 interactors” in the first shell) and the source of the active interaction (“experiments”).
The resulting PPI maps were then produced using Cytoscape version 3.9.1 software. The top 41 most relevant ranked genes for GPSM2 were screened by 12 algorithms, such as betweenness, bottleneck, closeness, and degree, in the cytoHubba program. Then, the GEPIA2 tool was used to screen the top 100 genes with the highest correlation to GPSM2 in all TCGA tumors.
Second, we performed intergenic Pearson correlation analysis between GPSM2 and the selected genes. Mark the p values and correlation coefficients (R), display them in the corresponding plot positions and plot the correlation heat map.
Finally, we used the Gene Ontology (GO) | Kyoto Encyclopedia of Genes and Genomes (KEGG) for functional enrichment analysis. We used the clusterProfiler (Yu et al., 2012) package for enrichment analysis and the ggplot2 package for visualization.
RESULTS
G-protein signaling modulator 2 expression analysis data
As shown in Figure 1A, the expression differences were divided into four categories: 1) GPSM2 expression in cancer tissues was higher than in adjacent normal tissues. Among them, the differences between bladder urothelial carcinoma (BLCA), BRCA, cholangiocarcinoma (CHOL), COAD, esophageal carcinoma (ESCA), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), LIHC, lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), rectum adenocarcinoma (READ), STAD and UCEC were the largest (p < 0.001). In addition, BLCA, ceramic square cell carcinoma (CESC), kidney renal papillary cell carcinoma (KIRP), pancreatic adenocarcinoma (PAAD) and thyroid carcinoma (THCA) were higher than those in normal tissues (p < 0.01). 2) A few tumors, such as glioblastoma multiform (GBM), KIRC, pheochromocytoma and paraganglioma (PCPG), and skin cutaneous melanoma (SKCM), have no differential expression with normal tissues. 3) GPSM2 expression in PRAD was significantly lower than that in normal tissues (p < 0.001). 4) The TCGA dataset cannot reflect the expression of all cancers. In adrenocortical carcinoma (ACC), lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), acute myeloid leukemia (LAML), brain lower grade glioma (LGG), mesothelioma (MESO), OV, sarcoma (SARC), testicular germ cell tumors (TGCT), thymic carcinoma (THYM), uterine carcinosarcoma (UCS) and uveal melanoma (UVM) did not differ from normal tissues.
[image: Figure 1]FIGURE 1 | GPSM2 expression in various tumors and pathological stages. (A) GPSM2 expression difference between tumor and adjacent normal tissues. (B) The GTEx dataset shows a block diagram of the TCGA dataset lacking GPSM2 expression data. (C) Differences in GPSM2 total protein levels between cancer and normal tissues. (D) Stage-specific GPSM2 expression across cancers (*p < 0.05; **p < 0.01; ***p < 0.001).
The GTEx dataset improves the expression difference data lacking in the above TCGA dataset. We found that GPSM2 was highly expressed in DLBC, LGG, OV, SARC and THYM tumor tissues (Figure 1B, p < 0.05). We found no significant differences in ACC, LAML, MESO, TGCT, UCS, or UVM. In general, the expression level of GPSM2 in most human tumors is higher than in normal tissues.
Gene expression is ultimately reflected at the protein level. Therefore, we used the GEPIA2 dataset to evaluate the total protein content of GPSM2 across cancers. We know that the GPSM2 protein level in most cancers is higher than in corresponding normal tissues. We labeled tumor types whose total protein content was more than twice that of normal tissues. CHOL, DLBC, KICH, SARA and THYM had higher protein contents (Figure 1C).
On the other hand, GEPIA 2 was used to analyze the correlation between GPSM2 expression in different pathological stages of tumors and found stage-specific changes in KIRC, THCA, PAAD, LIHC, UCS, BRCA and ACC (Figure 1D, p < 0.05).
Immunohistochemistry of G-protein signaling modulator 2 in tumor and normal tissues
Comparing the immunohistochemical results provided by the HPA dataset in the TCGA dataset, we selected seven types that had the most apparent difference between tumor tissues and normal tissues. GPSM2 expression in LIHC, KIRC, BRCA, COAD, OV and STAD was significantly increased, but GPSM2 expression in PRAD was lower than that in normal tissues (Figures 2A–G) (we selected immunohistochemical images with >75% tumor cells and moderate or vigorous staining).
[image: Figure 2]FIGURE 2 | Box diagram of GPSM2 expression between normal and tumor tissues (left), comparison of immunohistochemical staining between normal (middle) and tumor tissues (right). GPSM2 expression in (A) LIHC, (B) KIRC, (C) BRCA, (D) COAD, (E) OV and (F) STAD was significantly increased, and the expression in (G) PRAD was lower than that in normal tissues.
Expression of G-protein signaling modulator 2 in liver hepatocellular carcinoma and normal tissues
To explore the importance of GPSM2 in tumors, we extracted total proteins from normal liver and LIHC tissues in humans and verified their protein expression by Western blot. The GPSM2 expression was significantly higher than that of normal tissues (Figures 3A,B), suggesting a predictive role for GPSM2 in tumors.
[image: Figure 3]FIGURE 3 | Expression of GPSM2 in human normal and LIHC tissues. (A) Protein bands of GPSM2 expression in normal and LIHC tissues. (B) Histogram of GPSM2 expression in normal and LIHC tissues.
Survival analysis results
This chapter focused on the relationship between GPSM2 expression and prognosis. First, we divided the patients into two groups according to GPSM2 expression on the survival map and then studied the correlation between GPSM2 expression and patient prognosis. In terms of OS, high GPSM2 expression was associated with poor OS prognosis in ACC (p = 5.9e-04), LIHC (p = 1.5e-05), LUAD (P = 3e-02), PAAD (p = 2.5e-03), MESO (p = 2.2e-05), and THCA (p = 3.1e-02) (Figure 4A). In terms of DFS, high GPSM2 expression was associated with poor prognosis in ACC (p = 4.3e-03), LIHC (p = 1.3e-05), MESO (p = 4.6e-02), PAAD (p = 3.2e-03), and UVM (p = 3.8e-02) (Figure 4B).
[image: Figure 4]FIGURE 4 | Prognostic survival map and Kaplan–Meier curve of GPSM2 expression in TCGA pan-cancer patients. (A) The relationship between GPSM2 expression and OS. (B) The relationship between GPSM2 expression and DFS.
Prognostic analysis and clinical predictive model of G-protein signaling modulator 2 in liver hepatocellular carcinoma
High GPSM2 expression was associated with reduced OS, DSS and PFI, including OS [HR = 1.75, p = 0.002] (Figure 5A), DSS (HR = 2.08, p = 0.002) (Figure 5B) and PFI (HR = 1.97, p < 0.001) (Figure 5C). In addition, we investigated the correlation between GPSM2 expression and prognosis in different clinical subgroups (T stage, M stage, pathological stage, tumor status) of LIHC. OS included T stage (p = 0.001), M stage (p = 0.008), pathological stage (p = 0.003), and tumor status (p = 0.001) (Figure 5A); DSS included T stage (p = 0.001), M stage (p = 0.002), pathological stage (p = 0.002), and tumor status (p = 0.001) (Figure 5B); and PFI included stage (p < 0.001), M stage (p = 0.001), pathological stage (p < 0.001), and tumor status (p < 0.001) (Figure 5C).
[image: Figure 5]FIGURE 5 | Prognosis of GPSM2 in LIHC tumors and GPSM2 prediction model in LIHC patients. (A–C) Correlation between GPSM2 and OS, DSS, and PFI in different clinical subgroups of LIHC. (D) Colinear plots of prognostic predictors and annual survival in LIHC. (E) Colinear calibration curves.
Finally, nomogram plots were constructed to predict the 2-, 4-, and 6-year survival rates of LIHC patients. Five prognostic factors, T stage, M stage, pathologic stage, tumor status, and GPSM2 expression, were included in the model. The yearly prognostic survival probabilities of patients were obtained in the lower graphs after calculating the total scores of each variable for LIHC patients using the point scale (Figure 5D), and the results of the calibration curve prediction in the nomogram plots were found to be generally consistent with the patients’ observations (Figure 5E).
Protein phosphorylation analysis
Protein phosphorylation, the process by which the phosphate group of ATP is transferred to amino acid residues of substrate proteins by the action of protein kinases, is the most fundamental, pervasive and essential mechanism for regulating and controlling protein activity and function. It is also a key marker of tumorigenesis, development, evolution and targeted therapy (Meyer et al., 2021). Therefore, we analyzed the GPSM2 phosphorylation degree between normal and tumor tissues by the CPTAC dataset and screened five tumor tissues with meaningful differences (Figure 6A). Among them, the GPSM2 phosphorylation level at the S408 site in glioblastoma multiforme (GLMU) PAADand KIRC and the S565 site in HNSC were significantly increased (Figure 6B, Figure 6C). In contrast, the GPSM2 phosphorylation levels at the T486 and S483 sites in HNSC and the S483 site in LUAD were lower than those in normal tissues (Figures 6B,C).
[image: Figure 6]FIGURE 6 | GPSM2 protein phosphorylation diagram across cancers. (A) GPSM2 protein phosphorylation sites were detected. (B) Box diagram of GPSM2-related protein phosphorylation levels in HNSC. (C) Box diagram of GPSM2-related protein phosphorylation levels in GLMU, LUAD, PAAD, and KIRC.
Mutation status of G-protein signaling modulator 2
In the long run, this small probability event can lead to the occurrence and evolution of cancer. Therefore, studying GPSM2 gene changes in human tumor samples will help us clarify tumor pathogenesis and select therapeutic targets. We found that the tumors with the highest GPSM2 “Mutation” frequency (>6%) were UCEC. The highest incidence of “amplification” CNA was ACC (>4%) (Figure 7A). As shown in Figure 7B, the mutation sites of the GPSM2 gene are mapped. However, no dominant genetic mutation type was found, and the R17C mutation was detected in 5 cases of UCEC. To visualize the mutation location of the R17C site, we mapped the 3D structure of the GPSM2 protein and located and marked R17C (Figure 7C). In addition, we used the “cBioPortal” tool to explore the relationship between UCEC and the prognosis of clinical patients. The results showed that patients with GPSM2 mutations had a better prognosis in terms of PFS (p = 0.0412) and OS (p = 0.0163), but there was no significant difference in DFS (p = 0.566) or DSS (p = 0.0662) (Figure 7D).
[image: Figure 7]FIGURE 7 | Mutations of GPSM2 in TCGA pan-cancer. (A) The mutation type and frequency of GPSM2 in tumors; (B) The change frequency of the GPSM2 gene structure and its mutation sites; (C) The position of the most frequent mutation site (R17C) in the 3D structure of the GPSM2 protein. (D) Correlation between UCEC with GPSM2 mutation and OS, DSS, DFS, and PFS.
Immune infiltration analysis results
The TIMER algorithm was used to explore the correlation between the cancer-associated fibroblast, neutrophil, endothelial cell infiltration level and GPSM2 expression in TCGA pan-cancer. The results showed that GPSM2 expression was positively correlated with the estimated cancer-associated fibroblast infiltration value in PRAD and negatively correlated with BRCA. There was a positive correlation between GPSM2 expression and neutrophils in BLCA. In addition, GPSM2 expression in BRCA and STAD was negatively associated with endothelial cell infiltration (Figure 8).
[image: Figure 8]FIGURE 8 | Correlation between GPSM2 expression and cancer-associated fibroblast, neutrophil and endothelial cell infiltration. (A–C) Heatmap of the correlation between the infiltration levels of cancer-associated fibroblasts, neutrophils and endothelial cells and GPSM2 expression.
G-protein signaling modulator 2 similar gene enrichment analysis
Finally, we screened GPSM2-interacting proteins and GPSM2-related genes in the GEPIA dataset for pathway enrichment analysis. The first 41 species that interacted most closely with the GPSM2 protein were selected by STRING and Cytoscape tools (Figure 9A). Then, through the GPSM2 expression data in GEPIA2+TCGA pan-cancer, the top 100 genes with the strongest correlation with GPSM2 expression were screened. Among them, GPSM2 expression was positively correlated with anillin (ANLN), cytoskeleton-associated protein 2 (CKAP2), potassium channel tetramerization domain-5 (KCTD5), DNA cross-link repair 1B (DCLRE1B), CKAP2 like (CKAP2 L), kinesin family member 4A (KIF4A), and RAC GTPase activating protein 1 (RACGAP1) (Figure 9B). Heatmap data showed that GPSM2 had a strong positive correlation with the seven genes above (Figure 9C). We combined the two datasets to perform GO and KEGG enrichment analyses. The results revealed that the main pathways were “mitotic nuclear division,” “chromosome segregation” and “spindle” (Figure 9D).
[image: Figure 9]FIGURE 9 | Enrichment and pathway analysis of GPSM2-related genes. (A) Known GPSM2 binding-protein string network. (B) The GEPIA2 dataset shows the expression correlation between GPSM2 and representative genes (ANLN, CKAP2, KCTD5, DCLRE1B, CKAP2 L, KIF4A, and RACGAP1) of the top GPSM2-correlated genes. (C) In TCGA pan-cancer, GPSM2 expression and ANLN, CKAP2, KCTD5, DCLRE1B, CKAP2 L, KIF4A, and RACGAP1 were correlated with the heatmap. (D) GO|KEGG pathway analysis based on GPSM2 and its interacting genes.
DISCUSSION
Cancer has long been a worldwide clinical challenge, resulting in at least tens of millions of deaths each year. Although current treatments such as surgery, radiation therapy and medication are usually effective, they can also impose a significant financial burden and physical toll on patients. A better understanding of the molecular basis of cancer and the emergence of new diagnostic techniques will help eliminate cancer cells and improve cancer treatment. Therefore, it is clear that studying gene expression and epigenetic changes in cancer cells and the underlying pathogenesis is beneficial for early detection and diagnosis. At the same time, it appears crucial for medical professionals to intervene in treatment by using minimally invasive routes that are relatively less damaging (Zaimy et al., 2017).
The development of molecularly targeted anticancer drugs has improved clinical outcomes for many cancer patients, but the number of patients benefiting from them is relatively small. Therefore, there is an urgent need for further rapid development of new gene-targeted drugs. We analyzed the differences in GPSM2 mRNA and protein expression levels by bioinformatics. We found that the transcript and protein levels of GPSM2 were increased in most tumors compared to normal tissues (e.g., OV and THYM), suggesting a pro-cancer role for GPSM2 in most tumors. Meanwhile, we verified that the expression of GPSM2 in LIHC was higher than that in normal liver tissue by Western blot assay. In addition, GPSM2 expression differed significantly between pathological stages and appeared to be upregulated at higher pathological stages. Dang et al. (Dang et al., 2021a) reported that all GPSM family members were significantly differentially expressed in BRCA, and their expression levels were also correlated with advanced tumor stage. At the same time, they found that higher GPSM2 expression was associated with decreased survival in BRCA patients (Dang et al., 2021a).
Nevertheless, the expression and function of GPSM2 depend on different tumor types. For example, Deng et al. (Deng et al., 2020a) found that GPSM2 was downregulated in non-small cell lung cancer tissues, and knockdown of GPSM2 promoted non-small cell cancer cell metastasis in vitro and in vivo and accelerated the epithelial-mesenchymal transition (EMT) process. Meanwhile, some scholars found that silencing GPSM2 induced cell metastasis and EMT through the ERK/glycogen synthase kinase-3β/Snail pathway. Loss of GPSM2 accelerates LUAD cell proliferation through the EGFR pathway (Deng et al., 2020b). This seems inconsistent with our findings, and we speculate that this is related to individual differences resulting in different genetic samples. Nevertheless, either result needs to be validated with further expanded clinical sample sizes.
In addition, we found that GPSM2 overexpression was associated with poor prognosis in cancer patients (e.g., ACC and LIHC). In addition, GPSM2 was associated with chronic pancreatitis, T stage, TNM stage and tumor grade, presumably as an independent prognostic factor (Zhou et al., 2021). Considering the small number of identified oncogenes and poor prognosis genes, this is a supplement to poor prognosis in cancer patients in terms of genes. We demonstrated the clinical predictive role of GPSM2 in LIHC by drawing a nomogram, which showed that GPSM2 could be an independent risk factor for LIHC, that high GPSM2 expression is associated with poor prognosis in patients with LIHC, and that the calibration plot showed increased confidence in the predictive role of GPSM2.
Compared to normal cells, epigenetic alterations (altered gene expression without any alteration in the primary DNA sequence) are significant in tumor cells. Our results showed that the GPSM2 phosphorylation level at the S408 site in GLMU, PAAD, KIRC and the S565 site in HNSC was significantly increased, but at the T486 and S483 sites in HNSC and the S483 site in LUAD, it was lower. Since no GPSM2 phosphorylation site has been reported to be associated with cancer, we may be the first to report a phosphorylation site. We found that GPSM2 phosphorylation was higher in some tumors, consistent with previous reports. For example, Fukukawa et al. (Fukukawa et al., 2010) confirmed the GPSM2 upregulation in BRCA by semiquantitative RT-PCR and western-blot analysis, with the highest expression and phosphorylated form of GPSM2 protein in the G2/M phase during the mitotic phase. Treatment with small interfering RNA targeting GPSM2 resulted in incomplete cytokinesis and BRCA cells’ significant growth inhibition. Suggesting a vital role for GPSM2 in BRCA cell division, they indicate that the PBK/TOPK-GPSM2 pathway may be a promising molecular target for treating BRCA. In some other tumors, GPSM2 phosphorylation was reduced and thus may be acted as an oncogenic agent. However, due to the limited current research reports, we cannot conclude the specific mechanism, but a complex cellular molecular mechanism is undoubtedly involved.
Gene mutation has been considered an important genetic cause of cancer. Although an average number of 3-6 mutations is thought to promote tumorigenesis, in most solid tumors, the total number of nonsynonymous mutations predicted to alter gene activity ranges from 40 to 100, and in some tumors (e.g., lung cancer), the number of mutations is as high as several hundred (Vogelstein et al., 2013). We found that the tumors with the highest GPSM2 “Mutation” frequency (>6%) were UCEC. To our knowledge, no studies on GPSM2 in UCEC have been reported. Nevertheless, the mechanism of development of UCEC, the most common gynecologic malignancy in the country, is related to tumor mutation load (Zhao et al., 2021). We found that in UCEC tumors, GPSM2 mutation leads to reduced OS, PFS, DSS and DFS in patients, which may be associated with R17C mutation. This elucidates the impact of GPSM2 on tumor prognosis at the genetic level, and inhibition of the GPSM2 gene R17C mutation might be effective in suppressing UCEC disease progression, which is only speculation and hypothesis at present.
GPSM2 plays a crucial role in establishing and maintaining cell polarity by determining the direction of spindle movement during mitosis (Deng et al., 2020a). Studies have shown that GPSM2 expression decreases CD4 T+ cells in rheumatoid arthritis patients and can act as a promoter of regular T cell migration in healthy individuals (Dang et al., 2021a; Meyer et al., 2021). In addition, GPSM2 can affect the infiltration of immune cells in the tumor microenvironment and promote tumor cell migration. Zhou et al. (Zhou et al., 2021) found that GPSM2 can influence the level of immune cell infiltration and promote PAAD cell migration. Targeting GPSM2 and its downstream genes may prolong PAAD patient survival time. Therefore, we explored the relationship between GPSM2 expression and cancer-infiltrating immune cells.
Studies have found that cancer-associated fibroblasts play a role in cancer progression by contributing to extracellular matrix deposition and remodeling, EMT, invasion, metastasis, and therapy resistance (Asif et al., 2021). Many patients with advanced cancer have neutrophilia, and neutrophils recruited to tumors can acquire pro- or antitumor functions. In addition, tumor-associated neutrophils display functional plasticity (Shaul and Fridlender, 2018). In addition, tumor endothelial cells release and promote tumor progression by “vascular secretory factors.” Within the vasculature, tumor cells physically contact endothelial cells and interact with them through the juxtaposition of secretory and paracrine signals (Maishi and Hida, 2017).
We studied the relationship between GPSM2 expression and the three immune cell types above. The results showed that GPSM2 expression was positively correlated with cancer-associated fibroblast infiltration in PRAD and negatively correlated with BRCA. There was a positive correlation between GPSM2 expression and neutrophils in BLCA, and GPSM2 expression was negatively associated with endothelial cell infiltration in BRCA and STAD. The results showed that the correlation was different due to different tumor types. Immune cell infiltration is considered an essential factor in tumor development, and our findings are complementary to the report that GPSM2 affects tumor progression through resistant action.
We performed pathway GO|KEGG pathway enrichment analysis of similar genes to explore the specific mechanism of GPSM2 in cancer. The results showed that the enriched pathways were mainly “mitotic nuclear division,” “chromosome segmentation,” and “spindle,” which is consistent with previous reports. Previously, GPSM2 showed a unique subcellular localization in mitosis; it localizes at the spindle cell periphery in metaphase, moves to the midzone in anaphase and is then concentrated at the midbody in telophase and during cytokinesis (Fukukawa et al., 2010). It is well known that cell polarization (Mohapatra et al., 2021) and cell cycle regulation (Dang et al., 2021b) are important factors contributing to tumorigenesis, which further validates our speculation.
In conclusion, our findings demonstrate the important value of GPSM2 as a potential cancer marker. It is not only a potential prognostic biomarker but also a potential therapeutic target for specific types of cancer (e.g., PAAD) by affecting tumorigenesis-related pathways, but this requires substantial clinical validation.
CONCLUSION
In summary, our comprehensive pan-cancer analysis of GPSM2 revealed an association between GPSM2 expression and clinical prognosis, protein phosphorylation, immune cell infiltration, tumor mutation burden, and microsatellite instability in human cancers. However, the small sample size and the lack of basic experimental validation are the limitations of this study. The study sample should be expanded in the future to ensure its reliability and further investigate the specific mechanisms between GPSM2 and cancers by clinical samples.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
L-MH conceived the article. L-MH and X-HO wrote the manuscript. S-YS contributed to proofreading the article. All authors read and approved the final manuscript.
FUNDING
This project was supported by the Natural Science Foundation of Shaanxi Province (2021SF-241).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
REFERENCES
 Asif, P. J., Longobardi, C., Hahne, M., and Medema, J. P. (2021). The role of cancer-associated fibroblasts in cancer invasion and metastasis. Cancers (Basel) 13, 4720. doi:10.3390/cancers13184720 | | 
 Blumer, J. B., Kuriyama, R., Gettys, T. W., and Lanier, S. M. (2006). The G-protein regulatory (GPR) motif-containing Leu-Gly-Asn-enriched protein (LGN) and Gialpha3 influence cortical positioning of the mitotic spindle poles at metaphase in symmetrically dividing mammalian cells. Eur. J. Cell Biol. 85, 1233–1240. doi:10.1016/j.ejcb.2006.08.002 | | 
 Dang, F., Nie, L., and Wei, W. (2021). Ubiquitin signaling in cell cycle control and tumorigenesis. Cell Death Differ. 28, 427–438. doi:10.1038/s41418-020-00648-0 | | 
 Dang, H. H., Ta, H. D. K., Nguyen, T. T. T., Anuraga, G., Wang, C. Y., Lee, K. H., et al. (2021). Identifying GPSM family members as potential biomarkers in breast cancer: A comprehensive bioinformatics analysis. Biomedicines 9, 1144. doi:10.3390/biomedicines9091144 | | 
 Dang, S. C., Qian, X. B., Jin, W., Cui, L., Chen, J. X., and Gu, M. (2019). G-protein-signaling modulator 2 expression and role in a CD133(+) pancreatic cancer stem cell subset. Onco. Targets. Ther. 12, 785–794. doi:10.2147/OTT.S187670 | | 
 Deng, M., Liu, B., Zhang, Z., Chen, Y., Wang, Y., Wang, X., et al. (2020). Knockdown of G-protein-signaling modulator 2 promotes metastasis of non-small-cell lung cancer by inducing the expression of Snail. Cancer Sci. 111, 3210–3221. doi:10.1111/cas.14519 | | 
 Deng, M., Liu, B., Zhang, Z., Chen, Y., Wang, Y., Wang, X., et al. (2020). Loss of G-protein-signaling modulator 2 accelerates proliferation of lung adenocarcinoma via EGFR signaling pathway. Int. J. Biochem. Cell Biol. 122, 105716. doi:10.1016/j.biocel.2020.105716 | | 
 Doherty, D., Chudley, A. E., Coghlan, G., Ishak, G. E., Innes, A. M., Lemire, E. G., et al. (2012). GPSM2 mutations cause the brain malformations and hearing loss in Chudley-McCullough syndrome. Am. J. Hum. Genet. 90, 1088–1093. doi:10.1016/j.ajhg.2012.04.008 | | 
 Du, Q., Stukenberg, P. T., and Macara, I. G. (2001). A mammalian Partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nat. Cell Biol. 3, 1069–1075. doi:10.1038/ncb1201-1069 | | 
 Fukukawa, C., Ueda, K., Nishidate, T., Katagiri, T., and Nakamura, Y. (2010). Critical roles of LGN/GPSM2 phosphorylation by PBK/TOPK in cell division of breast cancer cells. Genes Chromosom. Cancer 49, 861–872. doi:10.1002/gcc.20795 | | 
 He, X. Q., Zhang, Y. F., Yu, J. J., Gan, Y. Y., Han, N. N., Zhang, M. X., et al. (2017). High expression of G-protein signaling modulator 2 in hepatocellular carcinoma facilitates tumor growth and metastasis by activating the PI3K/AKT signaling pathway. Tumour Biol. 39, 1010428317695971. doi:10.1177/1010428317695971 | | 
 Liu, J., Lichtenberg, T., Hoadley, K. A., Poisson, L. M., Lazar, A. J., Cherniack, A. D., et al. (2018). An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173, 400–416. e411. doi:10.1016/j.cell.2018.02.052 | | 
 Maishi, N., and Hida, K. (2017). Tumor endothelial cells accelerate tumor metastasis. Cancer Sci. 108, 1921–1926. doi:10.1111/cas.13336 | | 
 Meyer, A., Yan, S., Golumba-Nagy, V., Esser, R. L., Barbarino, V., Blakemore, S. J., et al. (2021). Kinase activity profiling reveals contribution of G-protein signaling modulator 2 deficiency to impaired regulatory T cell migration in rheumatoid arthritis. J. Autoimmun. 124, 102726. doi:10.1016/j.jaut.2021.102726 | | 
 Mochizuki, N., Cho, G., Wen, B., and Insel, P. A. (1996). Identification and cDNA cloning of a novel human mosaic protein, LGN, based on interaction with G alpha i2. Gene 181, 39–43. doi:10.1016/s0378-1119(96)00456-8 | | 
 Mohapatra, S., Pioppini, C., Ozpolat, B., and Calin, G. A. (2021). Non-coding RNAs regulation of macrophage polarization in cancer. Mol. Cancer 20, 24. doi:10.1186/s12943-021-01313-x | | 
 Shaul, M. E., and Fridlender, Z. G. (2018). Cancer-related circulating and tumor-associated neutrophils - subtypes, sources and function. FEBS J. 285, 4316–4342. doi:10.1111/febs.14524 | | 
 Tang, Z., Kang, B., Li, C., Chen, T., and Zhang, Z. (2019). GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47, W556–w560. doi:10.1093/nar/gkz430 | | 
 Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A., and Kinzler, K. W. (2013). Cancer genome landscapes. Science 339, 1546–1558. doi:10.1126/science.1235122 | | 
 Woodard, G. E., Huang, N. N., Cho, H., Miki, T., Tall, G. G., and Kehrl, J. H. (2010). Ric-8A and Gi alpha recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle. Mol. Cell. Biol. 30, 3519–3530. doi:10.1128/MCB.00394-10 | | 
 Yang, D., Ji, F., Li, Y., Jiao, Y., and Fang, X. (2020). GPSM2 serves as an independent prognostic biomarker for liver cancer survival. Technol. Cancer Res. Treat. 19, 1533033820945817. doi:10.1177/1533033820945817 | | 
 Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287. doi:10.1089/omi.2011.0118 | | 
 Zaimy, M. A., Saffarzadeh, N., Mohammadi, A., Pourghadamyari, H., Izadi, P., Sarli, A., et al. (2017). New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther. 24, 233–243. doi:10.1038/cgt.2017.16 | | 
 Zhao, L., Fu, X., Han, X., Yu, Y., Ye, Y., and Gao, J. (2021). Tumor mutation burden in connection with immune-related survival in uterine corpus endometrial carcinoma. Cancer Cell Int. 21, 80. doi:10.1186/s12935-021-01774-6 | | 
 Zhou, X., Dang, S., Jiang, H., and Gu, M. (2021). Identification of G-protein signaling modulator 2 as a diagnostic and prognostic biomarker of pancreatic adenocarcinoma: An exploration of its regulatory mechanisms. J. Gastrointest. Oncol. 12, 1164–1179. doi:10.21037/jgo-21-224 | | 
GLOSSARY
ACC Adrenocortical carcinoma
ANLN Anillin
BLCA Bladder urothelial carcinoma
BRCA Breast cancer
CAN Copy number alteration
cBioPortal cBio cancer genomics portal
CESC Ceramic square cell carcinoma
CHOL Cholangiocarcinoma
CKAP2 L CKAP2 like
CKAP2 Cytoskeleton-associated protein 2
COAD Colon adenocarcinoma
CPTAC Clinical proteomic tumor analysis consortium
DCLRE1B DNA cross-link repair 1B
DFS Disease-free survival
DLBC Diffuse large B-cell lymphoma
EMT Epithelial-mesenchymal transition
ESCA Esophageal carcinoma
FC Fold change
GBM Glioblastoma multiform
GEPIA2 Gene expression profiling interactive analysis 2
GO Gene Ontology
GPSM2 G-protein signaling modulator 2
GTEx Genotype-tissue expression
HNSC Head and neck squamous cell carcinoma
HPA Human protein atlas
KCTD5 Potassium channel tetramerization domain-5
KEGG Kyoto encyclopedia of genes and genomes
KICH Kidney chromophobe
KIF4A Kinesin family member 4A
KIRC Kidney renal clear cell carcinoma
KIRP Kidney renal papillary cell carcinoma
LAML Acute myeloid leukemia
LGG Brain lower grade glioma
LGN Leu-Gly-Asn repeat-enriched protein
LIHC Liver hepatocellular carcinoma
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
MESO Mesothelioma
OS Overall survival
OV Ovarian serous cystadenocarcinoma
PAAD Pancreatic adenocarcinoma
PCPG Pheochromocytoma and paraganglioma
PFS Progression-free survival
PPI Protein-protein interaction
PRAD Prostate adenocarcinoma
RACGAP1 RAC GTPase activating protein 1
READ Rectum adenocarcinoma
SARC Sarcoma
SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
SKCM Skin cutaneous melanoma
STAD Stomach adenocarcinoma
TCGA The Cancer Genome Atlas
TGCT Testicular germ cell tumors
THCA Thymic carcinoma Thyroid carcinoma
THCA Thymic carcinoma Thyroid carcinoma
TPM Transcripts per million
UCEC Uterine corpus endometrial carcinoma
UCS Uterine carcinosarcoma
UVM Uveal melanoma
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Background: Tumor cells outcompete T cells for methionine via overexpressing SLC43A2, causing T cells exhaustion. We explored the influence of SLC43A2 on tumor immune microenvironment (TIME), immune-related genes (IRGs) and the prognosis of liver hepatocellular carcinoma (LIHC) patients.
Methods: The TCGA-LIHC dataset (n = 374) and the ICGC-LIRI-JP-LIHC (n = 231) datasets were used as training and validation cohort, respectively. IRGs were obtained from ImmPort. Statistical analyses were performed using R (V 4.0.5). Online databases such as GEPIA, GSCALite, the Kaplan–Meier plotter, KEGG, TIMER2, and CMap were used for differential expression, immune infiltration, functional enrichment, survival, and drug-induced gene perturbation analysis.
Results: SLC43A2 expression was higher in LIHC, correlated with worse survival, but could not predict prognosis of LIHC separately (AUC = 0.467). SLC43A2 positively correlated with immune exhaustion markers (all p < 0.001) and with increased infiltration of Tregs, macrophages and myeloid-derived suppressor cells (MDSC) (all p < 0.05). SLC43A2 may regulate 120 IRGs. A prognostic risk score model was developed using the TCGA-LIHC cohort and validated by the ICGC-LIRI-JP cohort. Arachidonic acid, SB-202190 and guanethidine were identified as possible immunomodulators pharmacologically targeting SLC43A2 in LIHC.
Conclusion: SLC43A2 may create suppressive tumor microenvironment and regulate related IRGs, thus affecting the prognosis of LIHC. Arachidonic acid, SB-202190, and guanethidine may be worthy of further study as immunomodulators on SLC43A2.
Keywords: liver hepatocellular carcinoma (LIHC), SLC43A2, tumor immune microenvironment (TIME), prognostic risk score model, prognostic biomarker, therapeutic target
INTRODUCTION
Liver hepatocellular carcinoma (LIHC) is a highly prevalent and lethal cancer, and many therapeutics are being tested for this disease (Siegel et al., 2022). In recent years, immunotherapy has greatly improved the prognosis of patients with LIHC (Fu et al., 2019; Ruf et al., 2021). Immune cells depend on solute carrier transporters (SLCs) to transport metabolites involved in gene regulation and signal transduction (Chen and Chen, 2021). A previous study, published in Nature, indicated that tumor SLC43A2 (solute carrier family 43 member 2) could modify T cell methionine metabolism and lead to T cell depletion. Inhibiting tumor SLC43A2 can normalize methionine metabolism in effector T cells, rescue their function and improve anti-tumor immunity in preclinical models (Bian et al., 2020).
However, to the best of our knowledge, the relationships between SLC43A2 and tumor immune microenvironment (TIME) as well as prognosis in LIHC have not been reported. In addition to T cell exhaustion, whether SLC43A2 plays a role in modulating other immune cells infiltration or regulating immune-related genes (IRGs) in LIHC is unclear.
Using readily available cancer databases, we investigated into the predictive potential of SLC43A2 on LIHC prognosis and its relationship with tumor-infiltrating immune cells. Furthermore, we analyzed SLC43A2 related IRGs and constructed a prognostic risk score model to improve the accuracy of prognosis prediction in LIHC. Finally, we tried to find possible small molecule drugs (SMDs) which may combat the adverse effects of SLC43A2 in LIHC through the CMap database.
MATERIALS AND METHODS
Data collection and statistical analysis
Gene expression profiles and clinical information of 374 LIHC patients were downloaded and extracted from the TCGA databases as the TCGA-LIHC cohort (https://portal.gdc.cancer.gov/). In addition, RNA expression sequencing data and clinical information of 231 LIHC patients were obtained from the ICGC-LIRI-JP cohort (https://dcc.icgc.org/releases) for validation. The 1793 IRGs were obtained from Immunology Database and Analysis Portal database (ImmPort database, https://www.immport.org/shared/home).
The RNA-Seq gene expression data with workflow type of FPKM was transformed into TPM format and converted to log2 for further study. All statistical analyses were performed using R (https://www.r-project.org/, V 4.0.5). Corresponding R packages of limma, survival, survminer, ROC, ClusterProfiler, Rms, DESeq2, Venn, and ggplot2 were used.
Expression analysis of SLC43A2 between LIHC and normal tissues
GEPIA (http://gepia.cancer-pku.cn/) (Tang et al., 2019), GSCALite database (Liu et al., 2018), and R software were used for mRNA differential expression analysis of tumor/normal tissue. Information on SLC43A2 protein expression in normal liver tissue and LIHC tissue was extracted from the Human Protein Atlas (HPA, http://www.proteinatlas.org/) (Uhlen et al., 2017).
Survival analyses of SLC43A2 in LIHC patients
GEPIA, the Kaplan–Meier (K–M) plotter database and R software were used to assess the effect of SLC43A2 expression on survival. Endpoints of survival including overall survival (OS), disease-specific survival (DSS), progression-free interval (PFI), and recurrence-free survival (RFS). Survival curves were generated by the Kaplan–Meier plots, and the results were displayed with hazard ratio (HR) and p-value.
SLC43A2 expression and immune cell infiltration in LIHC
TIMER2 (https://cistrome.shinyapps.io/timer/) is a comprehensive resource for systematic analysis of immune infiltrates across diverse cancer types (Li et al., 2017). GSCALite (http://bioinfo.life.hust.edu.cn/web/GSCALite/) integrates cancer genomics analysis based on TCGA data in 33 cancers and normal tissue data from GTEx for gene set analysis in a one-in-all data analysis workflow (Liu et al., 2018). We used these two datasets to analyze the relationship between SLC43A2 expression, immune cell infiltration, and T cell exhaustion markers (Andrews et al., 2017; Masugi et al., 2017; Agresta et al., 2018; Pai et al., 2019; Wang et al., 2020; Wolf et al., 2020). Furthermore, a multivariate Cox proportional hazards regression model found immune cell subsets independently associated with survival adjusted for age, stage, and sex. A p value less than 0.05 was considered statistically significant.
SLC43A2 related differentially expressed genes (DEGs) and functional enrichment analysis
According to the median levels of SLC43A2 expression, we divided LIHC patients into high/low expression groups. |log2 FC| >1.5 and p adjust <0.05 was used as the threshold value to screen for DEGs. In order to elucidate the functional profiles of the DEGs, Gene ontology (GO) (Walter et al., 2015) and Kyotoencyclopedia of genes and genomes (KEGG) (Kanehisa et al., 2017) analyses were used for functional enrichment analysis. The “p.adjust” function in the R programming language was used to adjust for multiple comparisons.
Identification of IRGs that may be regulated by SLC43A2
Based on the 1793 IRGs and SLC43A2 related DEGs, we obtained 120 IRGs that may be regulated by SLC43A2, of which 22 OS related IRGs were found by Univariate Cox regression analysis. Furthermore, Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression model was used for signature construction (Tibshirani, 1997). Ultimately, 5 genes (LECT2, CXCL8, FABP6, NR0B1, PGLYRP4) were selected from the 22 OS associated SLC43A2 related IRGs to construct a prognostic prediction model.
Identification and validation of the prognostic risk score model
Based on the expression levels of 5 genes and corresponding regression coefficients, the risk score of patients in TCGA-LIHC cohort were calculated. Risk score = sum (corresponding coefficient × each gene’s expression). TCGA-LIHC patients were divided into high-risk and low-risk groups by the median of risk score. Principal component analysis (PCA) was used for dimensionality analysis. The survival analysis was visualized using K-M survival curves with log-rank testing. The ICGC-LIRI-JP cohort was used to validate the prognostic value of the risk score model. Multivariate cox regression analysis and Receiver operating curves (ROC) were used to estimate whether risk score in combination with stage had better prognostication. In addition, a nomogram was constructed and assessed by the calibration curves to predict 1-, 3-, and 5-year OS rate. When the curve approaches to the 45-degree line, it represents the best prognostic prediction.
Identification of SMDs for reversing immunosuppressive of SLC43A2 in LIHC
The Connectivity Map (CMap) v2.0 (https://portals.broadinstitute.org/cmap) (Lamb et al., 2006) was used to identify the SMDs that may reverse the immunosuppressiveness of SLC43A2. CMap provide transcriptomic data for drug treatments. We identified SMDs possessing the lowest risk score of the 5 genes involved in the risk score model (the connectivity enrichment value was > 0.8, p < 0.01). And the 3D conformers of the top 3 candidate therapeutic agents were downloaded (https://go.drugbank.com, https://www.ncbi.nlm.nih.gov/geoprofile).
RESULTS
Associations between SLC43A2 expression and clinicopathologic factors in LIHC
Figure 1 was the workflow of our research. Compared to normal tissue, LIHC had considerably higher expression level of SLC43A2. Figure 2 showed the expression differences of SLC43A2 in GEPIA (Figure 2A, p < 0.05), GSCA (Figure 2B, p < 0.001), TCGA-LIHC unpaired (Figure 2C, p < 0.001) and paired (Figure 2D, p < 0.001) analyses respectively. Besides, immunohistochemical staining from HPA indicated the upregulation of SLC43A2 protein in LIHC [Figures 2E,F, Normal tissue: Weak (<25%), LIHC Tumor: Moderate (25%–75%)]. High expression of SLC43A2 had higher levels of AFP (25 vs. 4 ng/ml, p = 0.012), while T stage, N stage, M stage, age, Albumin (g/dl), or Body Mass Index (BMI) had no significant differences (Table 1).
[image: Figure 1]FIGURE 1 | Flow diagram of this study.
[image: Figure 2]FIGURE 2 | Difference of SLC43A2 expression between LIHC and normal tissues. The difference of the mRNA expression of SLC43A2 between LIHC and normal tissues in GEPIA (A) and GSCALite (B) datasets. The mRNA expression levels of SLC43A2 in 374 LIHC samples and 50 normal samples (C). The mRNA expression levels of SLC43A2 in 50 LIHC and matched-adjacent normal samples (D). The difference of protein levels of SLC43A2 between LIHC and normal tissues based on HPA (E, F). (ns, no significance, p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001).
TABLE 1 | The association between SLC43A2 expression and clinicopathological variables.
[image: Table 1]Associations between SLC43A2 expression and survival in LIHC
Elevated SLC43A2 expression had a negative effect on OS of LIHC (GEPIA database analysis, HR = 1.6, log-rank p = 0.021) (Figure 3A). The K-M plotter database also showed that high-levels of SLC43A2 were associated with worse OS and RFS (45.73 vs. 71.03 months, log-rank p =0.01; 17.9 vs. 36.1 months, log-rank p = 0.021 respectively; Figures 3B,C). Moreover, the 10-year OS, DSS, and PFI were significantly lower in patients with higher SLC43A2 expression (in TCGA-LIHC cohort, HR = 1.67, 95%CI = 1.18–2.37, p = 0.004; HR = 1.65, 95%CI = 1.06–2.58, p = 0.027; HR = 1.40, 95%CI = 1.02–1.93, p = 0.037; respectively, Figures 3D–F).
[image: Figure 3]FIGURE 3 | Correlations between SLC43A2 expression and survival in LIHC. OS curves in LIHC patients with SLC43A2-high or -low expression by using GEPIA [(A), logrank p = 0.021, HR = 1.6]. OS (B) and RFS (C) in LIHC patients with SLC43A2-high or -low expression by using the Kaplan Meier plotter database (logrank p = 0.01 and logrank p = 0.021, respectively). OS, DSS, and PFI between LIHC patients with high or low SLC43A2 expression in TCGA-LIHC cohort [(D–F), p = 0.004, 0.027, and 0.037 respectively]. OS, overall survival; DSS, disease-specific survival; PFI, progression-free interval; RFS, recurrence-free survival.
Associations between SLC43A2 expression and immune infiltration in LIHC
Multivariate Cox proportional hazards regression model showed that CD8+ T cells, endothelial cells, and hematopoietic stem cells could independently predict longer OS for LIHC patients. While Th2 cell, T cell regulatory (Tregs), macrophage, myeloid dendritic cell (MDC), and myeloid-derived suppressor cells (MDSC) predicted worse OS (Table 2, all p < 0.05, adjusted by age, stage, and sex).
TABLE 2 | The associations analyzing by Multivariate Cox proportional hazards regression models between immune infiltrates and overall survival of LIHC in TCGA (n = 371).
[image: Table 2]We found that SLC43A2 was positively associated with Tregs, macrophage and MDSC infiltration in LIHC in both the GSCA dataset (Figures 4A,B) and the TIMER2 dataset (Figure 4C). SLC43A2 was also positively correlated with the expression of T cell exhaustion markers PDCD1, TIM3(HAVCR2), CD244, CD274, CTLA4, and LAG3 in LIHC (p < 0.001) (Figure 4D).
[image: Figure 4]FIGURE 4 | Correlation of SLC43A2 expression with immune infiltration level in LIHC. Correlations between SLC43A2 expression (A), SLC43A2 methylation (B) and the relative abundances of 24 immune cells by using GSCA dataset. Bubble size are correlate with FDR significance. Black outline border indicates FDR ≤ 0.05, FDR: the false discovery rate. (A, B). Correlation of SLC43A2 expression with immune infiltration level in LIHC using TIMER2 dataset (C). Correlation of SLC43A2 expression with the abundance of PDCD1, TIM3(HAVCR2), CD244, CD274, CTLA4, and LAG3 in LIHC using TIMER2 dataset (D).
SLC43A2 related DEGs and functional enrichment analysis
Differential gene expression analysis in LIHC patients with high or low SLC43A2 expression identified 638 upregulated genes and 284 downregulated genes according to the standard of p.adjust <0.05 and |log2 FC| > 1.5 (Figure 5A). GO enrichment and KEGG pathway analysis revealed that genes upregulated by SLC43A2 were enriched in several immune-related pathways such as humoral immune response, circulating immunoglobulin(lg), antigen binding (Figure 5B, p.adjust <0.05). Genes downregulated by SLC43A2 were enriched in pathways associated with copper ion (Figure 5C, p.adjust <0.001).
[image: Figure 5]FIGURE 5 | Differential expression analysis of SLC43A2 and the functional enrichment analysis of these DEGs. Volcano plots of the DEGs (|log2(FC)|>1.5 & p. adjust <0.05) (A). GO enrichment and KEGG Pathway analyses of 638 genes upregulated and 284 genes downregulated in SLC43A2 (B and C). BP, biological process; CC, cellular component; MF, molecular function.
Associations between SLC43A2 and IRGs in LIHC
SLC43A2 related IRGs were identified with the intersection of the IRGs and SLC43A2-related DEGs in LIHC. As shown in Figure 6A, we identified 111 upregulated and 9 downregulated SLC43A2 related IRGs. Of the 120 SLC43A2 related IRGs, 22 IRGs were found to be associated with OS and unassociated with age, gender, AFP (ng/ml), and Child–Pugh grade (Figure 6B). To minimize overfitting, LASSO Cox regression was used to select 5 genes (CXCL8, FABP6, NR0B1, PGLYRP4 and LECT2) (Figures 6C,D), all of which were closely related to SLC43A2 (Figure 6E) (p < 0.01).
[image: Figure 6]FIGURE 6 | Analysis of SLC43A2 related IRGs in LIHC. Venn diagrams showing the intersection of the IRGs and SLC43A2-related DEGs in LIHC, which was defined as SLC43A2-related IRGs (A). Forest plots showing the results of univariate Cox regression analysis of OS based on clinicopathological factors (such as age, gender, AFP, Child-Pugh grade and stage) and SLC43A2 IRGs [(B), only the 22 IRGs significantly associated with OS were shown]. Five genes (LECT2, CXCL8, FABP6, NR0B1, PGLYRP4) were furtherly selected from the 22 SLC43A2 related IRGs by the LASSO Cox regression (C, D). Correlation of SLC43A2 with the 5 genes (LECT2, CXCL8, FABP6, NR0B1, and PGLYRP4) (**p < 0.01) (E).
Development and external validation of the prognostic risk score model
The risk score of each patient was calculated based on gene expression and corresponding regression coefficients. The gray dashed line in Figures 7A,C represents the cutoff value point and divided the cohort into two groups with the left part represents low‐risk score group and the right part represents high‐risk score group. Point plot shows high‐ and low‐risk score patients groups divided by the median cutoff values and represented by color: Blue represents low‐risk score group, and red represents high‐risk score group. The scatter plot of ordered risk scores shows OS status of each patient. Heatmap shows the expression profile of the 5-gene signature. Each column indicates a patient in the low-risk score group (blue) and high-risk score group (red). Each row represents the level of gene expression associated with survival (red represents high, and blue represents low). The TCGA-LIHC cohort was divided into high-risk and low-risk groups according to the median risk score (Figure 7A). The OS difference between these two groups was significant (Figure 7B, p < 0.001). Results were similar in the validation cohort of ICGC-LIRI-JP (Figures 7C,D, p = 0.048). The clustered heat maps showed that the expression of prognostic genes CXCL8, FABP6, NR0B1, and PGLYRP4 was upregulated in the high-risk group, while the expression of LECT2 was downregulated in the high-risk group (Figures 7A,C).
[image: Figure 7]FIGURE 7 | Risk score model prediction and validation. Building a five-gene signature risk score in the TCGA-LIHC cohort (A) with the OS probability for high and low risk patients (B) and validating in the ICGC-LIRI-JP cohort (C, D). The risk score was calculated based on the expression of 5 genes (LECT2, CXCL8, FABP6, NR0B1, PGLYRP4). The Kaplan-Meier survival curves of OS between high-risk and low-risk groups were shown in TCGA-LIHC cohort [(B), p < 0.001] and in the ICGC-LIRI-JP cohort [(D), p = 0.048]. ROC analysis to compare SLC43A2, stage, risk score, stage and risk score in predicting survival [(E), AUC = 0.467, 0.618, 0.627, 0.667]. Multivariate Cox regression analysis of OS based on stage and risk score in the TCGA cohort (F). A nomogram was constructed based on stage and risk score (G). Calibration plot evaluating the predictive accuracy of the nomogram at 1-, 3-, and 5-year survival (H).
Construction of a nomogram based on the prognostic risk score and stage
Pathological stage (stage III: HR:2.058; 95% CI:1.342–3.156; stage IV: HR: 5.755; 95% CI: 1.775–18.658) and high-risk score (HR: 6.691; 95% CI: 3.185–14.059) were independent risk factors for OS in the Multivariate Cox regression analysis (Figure 7F). The ROC curve analysis showed acceptable discrimination with AUCs of 0.467, 0.618, 0.627, and 0.667 at SLC43A2, stage, risk score, and stage and risk score, respectively. The diagnostic efficiency of stage and risk score was better than that of stage (Figure 7E, ∗p < 0.05). We then developed a nomogram to predict 1-, 3-, and 5-year overall survival based on the risk score and pathologic stage in LIHC (Figure 7G). Moreover, the calibration plot (Figure 7H) demonstrated optimal predictive accuracy with predicted survival rate highly consistent with actual survival.
Identification of SMDs for reversing immunosuppressive of SLC43A2 in LIHC 
We furtherly analyzed the CMap database to predict potential SMDs for reversing immunosuppressive of SLC43A2 in LIHC. The top three SMDs were revealed using the highest absolute enrichment values and p < 0.01 (Table 3). The 3D conformers for the top three most significant candidates are shown in Supplementary Figure S1.
TABLE 3 | Top 3 small molecules with the highest absolute enrichment values identified with risk score model DEGs.
[image: Table 3]DISCUSSION
LIHC is one of the most frequently occurring cancers worldwide, ranked 3rd in global incidence by the International Agency for Research on Cancer (WHO, 2022). However, the clinical response of some LIHC patients to this treatment has been unsatisfactory (Fu et al., 2019). Previous studies have shown that CD8+ T cells were critical to the efficacy of immunotherapy (Fan and Rudensky, 2016; Guo et al., 2020). SLC43A2 was found to impair T cell function, partly because the tumor cells highly expressed SLC43A2 and then outcompeted T cells for methionine (Bian et al., 2020). However, the effects of SLC43A2 on TIME, IRGs, and prognosis of LIHC have not been reported.
We firstly reported that high SLC43A2 expression was associated with worse OS and strong enrichment of inhibitory immune cells such as Tregs, macrophages, MDC, and MDSC in LIHC. Consistent with previous reports (Ma et al., 2016; Zhang et al., 2019a; Fu et al., 2019; Xu et al., 2022) we found that Tregs, macrophages, MDC and MDSC predicted worse OS, even in Multivariate Cox proportional hazards regression analysis (Table 2, all p < 0.05, adjusted by age, stage and sex). This may partly explain why patients with high SLC43A2 have lower survivorship.
Intriguingly, we found that SLC43A2 was associated with higher CD8+ T cell, higher T cell exhaustion markers, and lower levels of naive CD8+ T cell. Genes that may be influenced by SLC43A2 were enriched in immune pathways. These results support the conclusion that SLC43A2 could lead to CD8+ T cell exhaustion and may affect TIME.
Our study was the first to report on the relationship between SLC43A2 and IRGs. We found 120 IRGs that may be influenced by SLC43A2 and then identified 5 IRGs (CXCL8, FABP6, NR0B1, PGLYRP4 and LECT2) to establish a risk score model to predict the OS of LIHC. CXCL8, FABP6, and NR0B1 promote tumor growth in LIHC (Bar-Peled et al., 2017; Zhang et al., 2019b; Sun et al., 2019; Huang et al., 2015). PGLYRP4 plays a role in inflammation and immune cell recruitment (Dabrowski et al., 2019; Karami et al., 2021). LECT2 inhibits the tumorigenicity of the LIHC cells in vivo (Zhu et al., 2022; Ong et al., 2011). This risk score model was developed using the TCGA-LIHC cohort and validated using the ICGC-LIRI-JP cohort. Combining risk score and pathologic stage was the most effective method for predicting OS of LIHC patients.
SLC43A2 played an important role in suppressing anti-tumor immunity, however, precise inhibition of SLC43A2 of tumor cells in vivo was difficult since it was widely expressed in various tissues such as the placenta, small intestine enterocytes, kidney epithelium, and peripheral blood leukocytes (Chen and Chen, 2022). Thus we tried to find SMDs that may reverse the immunosuppressive role of SLC43A2. Based on the CMap database (Lamb et al. 2006), which collected expression data from cells following exposure to drugs and other perturbations, we found that our three drugs—arachidonic acid, SB-202190, and guanethidine would lead to lower expression of CXCL8, FABP6, NR0B1, and PGLYRP4 and higher expression of LECT2 in LIHC. In our risk score model, CXCL8, FABP6, NR0B1, and PGLYRP4 were recognized as risk genes while LECT2 was a protective gene. This is to say, after being treated by the 3 SMDs, the risk score of LIHC could decrease. Arachidonic acid, a phospholipase A2 metabolite, reduced cell and migration and increased apoptosis of breast cancer and lung cancer (Muzio et al., 2006). SB-202190, an ATP competitive antagonist of the p38 stress-activated protein kinases (Shanware et al., 2009), could be valid for inhibiting tumor cell migration, invasion, and metastasis in LIHC (Yang et al., 2010; Düzgün Ş et al., 2017). Guanethidine could inhibit the release of noradrenaline, which usually served as an immunosuppressor to improve a suitable environment for tumor cells to grow and metastasize (Sarkar et al., 2013)]. To the best of our knowledge, these three drugs have not been adequately studied in LIHC.
Our study is based on bioinformatic analysis and lacks experimental verification, but we have several suggestions for further research on SLC43A2. First, the detailed mechanism of the impact of SLC43A2 on immune infiltration in LIHC needs to be verified in vitro and in vivo. Second, how SLC43A2 alters the expression of the 5 IRGs in LIHC needs to be verified. Third, verify whether the selected SMDs (arachidonic acid, SB-202190 and guanethidine), could affect anti-tumor immunity and achieve therapeutic effects.
In conclusion, the high expression of SLC43A2 was significantly associated with the poor survival and T cell exhaustion in LIHC. SLC43A2 may influence IRGs expression and lead to suppressive TIME. Our risk score model could improve the predictive efficiency of SLC43A2 and the pathologic TNM stage on OS. Arachidonic acid, SB-202190, and guanethidine may reverse the adverse role of SLC43A2 in LIHC.
DATA AVAILABILITY STATEMENT
The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession numbers can be found in the article/Supplementary Material.
AUTHOR CONTRIBUTIONS
YL, JW, and LH contributed to the concept and design of this study and participated in manuscript writing. LC and NH contributed to the concept and design of this study. XY and JW analyzed and interpreted data. FH, YC, QH, and JW participated in data collection. All authors contributed to the study and reviewed the manuscript.
FUNDING
National Natural Science Foundation of China [81602104] (to LH).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2022.911378/full#supplementary-material
REFERENCES
 Agresta, L., Hoebe, K. H. N., and Janssen, E. M. (2018). The emerging role of CD244 signaling in immune cells of the tumor microenvironment. Front. Immunol. 9, 2809. doi:10.3389/fimmu.2018.02809 | | 
 Andrews, L. P., Marciscano, A. E., Drake, C. G., and Vignali, D. A. A. (2017). LAG3 (CD223) as a cancer immunotherapy target. Immunol. Rev. 276 (1), 80–96. doi:10.1111/imr.12519 | | 
 Bar-Peled, L., Kemper, E. K., Suciu, R. M., Vinogradova, E. V., Backus, K. M., Horning, B. D., et al. (2017). Chemical proteomics identifies druggable vulnerabilities in a genetically defined cancer. Cell. 171 (3), 696–709. e23. doi:10.1016/j.cell.2017.08.051 | | 
 Bian, Y., Li, W., Kremer, D. M., Sajjakulnukit, P., Li, S., Crespo, J., et al. (2020). Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature 585 (7824), 277–282. doi:10.1038/s41586-020-2682-1 | | 
 Cantonero, C., Sanchez-Collado, J., Lopez, J. J., Salido, G. M., Rosado, J. A., and Redondo, P. C. (2020). Arachidonic acid attenuates cell proliferation, migration and viability by a mechanism independent on calcium entry. Int. J. Mol. Sci. 21 (9), E3315. doi:10.3390/ijms21093315 | | 
 Chen, R., and Chen, L. (2021). Solute carrier transporters: Emerging central players in tumour immunotherapy. Trends Cell. Biol. 32, 186–201. doi:10.1016/j.tcb.2021.08.002 | | 
 Dabrowski, A. N., Shrivastav, A., Conrad, C., Komma, K., Weigel, M., Dietert, K., et al. (2019). Peptidoglycan recognition protein 4 limits bacterial clearance and inflammation in lungs by control of the gut microbiota. Front. Immunol. 10, 2106. doi:10.3389/fimmu.2019.02106 | | 
 Düzgün Ş, A., Yerlikaya, A., Zeren, S., Bayhan, Z., Okur, E., and Boyaci, I. (2017). Differential effects of p38 MAP kinase inhibitors SB203580 and SB202190 on growth and migration of human MDA-MB-231 cancer cell line. Cytotechnology 69 (4), 711–724. doi:10.1007/s10616-017-0079-2 | | 
 Fan, X., and Rudensky, A. Y. (2016). Hallmarks of tissue-resident lymphocytes. Cell. 164 (6), 1198–1211. doi:10.1016/j.cell.2016.02.048 | | 
 Fu, Y., Liu, S., Zeng, S., and Shen, H. (2019). From bench to bed: The tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 38 (1), 396. doi:10.1186/s13046-019-1396-4 | | 
 Guo, M., Yuan, F., Qi, F., Sun, J., Rao, Q., Zhao, Z., et al. (2020). Expression and clinical significance of LAG-3, FGL1, PD-L1 and CD8(+)T cells in hepatocellular carcinoma using multiplex quantitative analysis. J. Transl. Med. 18 (1), 306. doi:10.1186/s12967-020-02469-8 | | 
 Huang, W., Chen, Z., Zhang, L., Tian, D., Wang, D., Fan, D., et al. (2015). Interleukin-8 induces expression of FOXC1 to promote transactivation of CXCR1 and CCL2 in hepatocellular carcinoma cell lines and formation of metastases in mice. Gastroenterology 149 (4), 1053–1067. e14. doi:10.1053/j.gastro.2015.05.058 | | 
 Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017). Kegg: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45 (D1), D353–D361. doi:10.1093/nar/gkw1092 | | 
 Karami, H., Derakhshani, A., Ghasemigol, M., Fereidouni, M., Miri-Moghaddam, E., Baradaran, B., et al. (2021). Weighted gene Co-expression network analysis combined with machine learning validation to identify key modules and hub genes associated with SARS-CoV-2 infection. J. Clin. Med. 10 (16), 3567. doi:10.3390/jcm10163567 | | 
 Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel, M. J., et al. (2006). The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease. Science 313 (5795), 1929–1935. doi:10.1126/science.1132939 | | 
 Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J. S., et al. (2017). Timer: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 77 (21), e108–e110. doi:10.1158/0008-5472.CAN-17-0307 | | 
 Liu, C. J., Hu, F. F., Xia, M. X., Han, L., Zhang, Q., and Guo, A. Y. (2018). GSCALite: A web server for gene set cancer analysis. Bioinformatics 34 (21), 3771–3772. doi:10.1093/bioinformatics/bty411 | | 
 Ma, C., Kesarwala, A. H., Eggert, T., Medina-Echeverz, J., Kleiner, D. E., Jin, P., et al. (2016). NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 531 (7593), 253–257. doi:10.1038/nature16969 | | 
 Masugi, Y., Nishihara, R., Yang, J., Mima, K., da Silva, A., Shi, Y., et al. (2017). Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut 66 (8), 1463–1473. doi:10.1136/gutjnl-2016-311421 | | 
 Muzio, G., Trombetta, A., Maggiora, M., Martinasso, G., Vasiliou, V., Lassen, N., et al. (2006). Arachidonic acid suppresses growth of human lung tumor A549 cells through down-regulation of ALDH3A1 expression. Free Radic. Biol. Med. 40 (11), 1929–1938. doi:10.1016/j.freeradbiomed.2006.01.020 | | 
 Ong, H. T., Tan, P. K., Wang, S. M., Hian Low, D. T., Ooi, L. L. P. J., and Hui, K. M. (2011). The tumor suppressor function of LECT2 in human hepatocellular carcinoma makes it a potential therapeutic target. Cancer Gene Ther. 18 (6), 399–406. doi:10.1038/cgt.2011.5 | | 
 Pai, C. S., Simons, D. M., Lu, X., Evans, M., Wei, J., Wang, Y. H., et al. (2019). Tumor-conditional anti-CTLA4 uncouples antitumor efficacy from immunotherapy-related toxicity. J. Clin. Invest. 129 (1), 349–363. doi:10.1172/JCI123391 | | 
 Ruf, B., Heinrich, B., and Greten, T. F. (2021). Immunobiology and immunotherapy of HCC: Spotlight on innate and innate-like immune cells. Cell. Mol. Immunol. 18 (1), 112–127. doi:10.1038/s41423-020-00572-w | | 
 Sarkar, C., Chakroborty, D., and Basu, S. (2013). Neurotransmitters as regulators of tumor angiogenesis and immunity: The role of catecholamines. J. Neuroimmune Pharmacol. 8 (1), 7–14. doi:10.1007/s11481-012-9395-7 | | 
 Shanware, N. P., Williams, L. M., Bowler, M. J., and Tibbetts, R. S. (2009). Non-specific in vivo inhibition of CK1 by the pyridinyl imidazole p38 inhibitors SB 203580 and SB 202190. BMB Rep. 42 (3), 142–147. doi:10.5483/bmbrep.2009.42.3.142 | | 
 Siegel, R. L., Miller, K. D., Fuchs, H. E., and Jemal, A. (2022). Cancer statistics, 2022. Ca. Cancer J. Clin. 72 (1), 7–33. doi:10.3322/caac.21708 | | 
 Sun, F., Wang, J., Sun, Q., Li, F., Gao, H., Xu, L., et al. (2019). Interleukin-8 promotes integrin β3 upregulation and cell invasion through PI3K/Akt pathway in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 38 (1), 449. doi:10.1186/s13046-019-1455-x | | 
 Tang, Z., Kang, B., Li, C., Chen, T., and Zhang, Z. (2019). GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47 (1), W556–w560. doi:10.1093/nar/gkz430 | | 
 Tibshirani, R. (1997). The lasso method for variable selection in the Cox model. Stat. Med. 16 (4), 385–395. doi:10.1002/(sici)1097-0258(19970228)16:4<385:aid-sim380>3.0.co;2-3 | | 
 Uhlen, M., Zhang, C., Lee, S., Sjostedt, E., Fagerberg, L., Bidkhori, G., et al. (2017). A pathology atlas of the human cancer transcriptome. Science 357 (6352), eaan2507. doi:10.1126/science.aan2507 | | 
 Walter, W., Sánchez-Cabo, F., and Ricote, M. (2015). GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31 (17), 2912–2914. doi:10.1093/bioinformatics/btv300 | | 
 Wang, X., Yang, X., Zhang, C., Wang, Y., Cheng, T., Duan, L., et al. (2020). Tumor cell-intrinsic PD-1 receptor is a tumor suppressor and mediates resistance to PD-1 blockade therapy. Proc. Natl. Acad. Sci. U. S. A. 117 (12), 6640–6650. doi:10.1073/pnas.1921445117 | | 
 WHO, (2022) Global cancer observatory. Available from: http://globocan.iarc.fr. 
 Wolf, Y., Anderson, A. C., and Kuchroo, V. K. (2020). TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 20 (3), 173–185. doi:10.1038/s41577-019-0224-6 | | 
 Xu, L., Zou, C., Zhang, S., Chu, T. S. M., Zhang, Y., Chen, W., et al. (2022). Reshaping the systemic tumor immune environment (STIE) and tumor immune microenvironment (TIME) to enhance immunotherapy efficacy in solid tumors. J. Hematol. Oncol. 15 (1), 87. doi:10.1186/s13045-022-01307-2 | | 
 Yang, F., Yin, Y., Wang, F., Wang, Y., Zhang, L., Tang, Y., et al. (2010). miR-17-5p Promotes migration of human hepatocellular carcinoma cells through the p38 mitogen-activated protein kinase-heat shock protein 27 pathway. Hepatology 51 (5), 1614–1623. doi:10.1002/hep.23566 | | 
 Zhang, Q., He, Y., Luo, N., Patel, S. J., Han, Y., Gao, R., et al. (2019). Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell. 179 (4), 829–845. e20. doi:10.1016/j.cell.2019.10.003 | | 
 Zhang, Y., Zhao, X., Deng, L., Li, X., Wang, G., Li, Y., et al. (2019). High expression of FABP4 and FABP6 in patients with colorectal cancer. World J. Surg. Oncol. 17 (1), 171. doi:10.1186/s12957-019-1714-5 | | 
 Zhu, S., Bennett, S., Li, Y., Liu, M., and Xu, J. (2022). The molecular structure and role of LECT2 or CHM-II in arthritis, cancer, and other diseases. J. Cell. Physiol. 237 (1), 480–488. doi:10.1002/jcp.30593 | | 
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Liao, Weng, Chen, Hu, Yuan, Wang, He, Cai, Huang, Wang and Huang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 21 September 2022
doi: 10.3389/fgene.2022.988821


[image: image2]
Significance of immunogenic cell death-related genes in prognosis prediction and immune microenvironment landscape of patients with cutaneous melanoma
Weijiang Fu and Guangxin Ma*
Hematology and Oncology Unit, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
Edited by:
Zhouxiao Li, Ludwig Maximilian University of Munich, Germany
Reviewed by:
Yutao Wang, China Medical University, China
Qi Shu, Zhejiang Cancer Hospital, China
* Correspondence: Guangxin Ma, guangxin@sdu.edu.cn
Specialty section: This article was submitted to Cancer Genetics and Oncogenomics, a section of the journal Frontiers in Genetics
Received: 07 July 2022
Accepted: 17 August 2022
Published: 21 September 2022
Citation: Fu W and Ma G (2022) Significance of immunogenic cell death-related genes in prognosis prediction and immune microenvironment landscape of patients with cutaneous melanoma. Front. Genet. 13:988821. doi: 10.3389/fgene.2022.988821

Cutaneous melanoma (CM) is one of the most life-threatening tumors. Although targeted therapies and immune checkpoint inhibitors have significantly improved patient outcomes over the past decades, they still have their efficacy limitations. Immunogenic cell death (ICD) induces regulated cell death through immunogenic signal secretion and exposure. Accumulated evidence suggests that the ICD process is an effective target for the treatment of a variety of tumor types, including CM. However, the research on ICD in CM is far from complete, and its clinical value has not been widely concerned. By analyzing the Cancer Genome Atlas (TCGA) database, we constructed a new risk model based on 4 ICD-related genes and validated its ability to predict the prognosis of CM patients. In addition, we comprehensively analyzed the tumor microenvironment (TME) of CM patients and showed a significant immunosuppressive TME in the high-risk group compared with the low-risk group. By Immunophenoscore (IPS), we further explored the correlation between the model and immunotherapy response. The data of Genomics of Drug Sensitivity in Cancer (GDSC) database were further extracted to analyze drug sensitivity and evaluate its correlation with the established risk model. In the end, differential expressed genes (DEGs) were analyzed by Gene Set Variation Analysis (GSVA) to preliminarily explore the possible signaling pathways related to the prognosis of ICD and CM. The results of this study provide new perspectives and insights for individualized and accurate treatment strategies for CM patients.
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INTRODUCTION
As one of the threatening types of cancer, cutaneous melanoma (CM) accounts for 10% of all new skin cancer cases diagnosed, and its prevalence and mortality are further increasing worldwide (Siegel et al., 2020). Due to its high rate of invasion and distant metastasis, CM accounts for 72% of skin cancer deaths (Schadendorf et al., 2018). In recent years, immune checkpoint blockade has attracted extensive attention for its remarkable efficacy in clinical application of melanoma (Sullivan and Flaherty, 2015). Despite significant advances in targeted therapies and novel immunotherapies (Davis et al., 2019; Steeb et al., 2020), the efficacy of all treatments is greatly affected in comparison to aggressive surgical treatment in the early stages of the disease. Therefore, there is a need to identify tumor-related biomarkers and stages that influence prognosis. Therefore, accurate early diagnosis is crucial for a good prognosis of melanoma.
Immunogenic cell death (ICD) is a type of regulated cell death with different functions, which is characterized by the secretion and exposure of immunogenic signals in dead tumor cells. Immunogenic signals are known as damage related molecular patterns (DAMP) (Tesniere et al., 2008; Bezu et al., 2015). These DAMPs include: an endoplasmic reticulum (ER) partner exposed to the plasma membrane of dead cells, calreticulin (CALR), which is conducive to the function of phagocytes (Obeid et al., 2007); ATP secreted in an autophagy-dependent manner during ICD eventually plays a chemotactic role (Elliott et al., 2009); under the action of ICD, cells release a nucleoprotein high mobility group box 1 (HMGB1) that binds to toll like receptor 4 (TLR4), which acts as adjust like effects (Apetoh et al., 2007); type I interferon (IFN) is secreted during ICD through interferon expressed on cancer and immune cells α and β Receptors ultimately mediate chemotaxis and immune stimulation (Sistigu et al., 2014). ICD and its related damp have been reported to affect the outcome of a variety of tumor diseases. The ICD process of damp above will lead to the secretion of immunogenic signals in tumor cells, which can activate dendritic cells (DC) and change immunosuppression in tumors (Radogna and Diederich, 2018). Additionally, chemotherapeutic drugs cause ICD, which in turn enhances the anti-tumor immune response (Zhao et al., 2016). Previous studies have reported that radiotherapy and some chemotherapy drugs (such as Adriamycin and oxaliplatin) can induce ICD in vitro and in vivo and stimulate the immune response against tumor cells (Paolini et al., 2011; Pol et al., 2015). The accumulated preclinical and clinical evidence shows that the ICD process is a promising effective therapy target for a variety of tumors, including CM (Sethuraman et al., 2020; Zhang et al., 2020). However, the clinical value of ICD in CM has not been widely concerned.
In this study, after analyzing the Cancer Genome Atlas (TCGA) database, we systematically studied the relationship between ICD related genes and the clinicopathological characteristics of CM patients. Based on 4 ICD related-genes, we constructed a new risk model and verified its ability to predict the prognosis of CM patients. In addition, we comprehensively analyzed the immune microenvironment of CM patients, further explored the correlation between the model and immune response and drug sensitivity treatment, and preliminarily explored the potential signal pathways in the process. The results of this study provide new perspectives and insights for the individualized and accurate treatment strategies of CM patients.
RESULTS
Identification of prognostic immunogenic cell death-related genes
In this study, a total of 33 ICD genes were extracted to evaluate the prognosis signature of patients with CM. According to the univariate Cox regression analyses, 20 ICD genes associated with overall survival (OS) were identified (Figure 1A). The 20 ICD genes were subsequently subjected to the least absolute shrinkage and selection operator (LASSO) model to calculate the optimal coefficients, and 8 ICD-related genes were selected for the subsequent analysis (Figure 1B,C). The expression of ICD genes in normal tissues and tumor tissues was statistically analyzed in Supplementary Figure S1.
[image: Figure 1]FIGURE 1 | Identification of prognostic ICD-related genes in CM. (A) Univariate Cox regression analysis suggests that 20 ICD-related genes are associated with OS in CM. (B,C) Least absolute shrinkage and selection operator analysis (LASSO) shows the minimal lambda and coefficients of prognostic ICD-related genes.
Risk model construction of immunogenic cell death-related genes
A fresh risk model was established to evaluate the prognosis of CM patients based on the ICD-related genes prognostic signature. Based on the multivariate Cox regression analysis, 4 ICD-related genes including BAX, EIF2AK3, CXCR3 and IL10 were identified to construct the risk model. According to the median of risk score, the patients with CM were ranked with the risk score and classified into low- and high-risk group. The scatter dot plot showed that the survival time of CM patients was inversely correlated with the risk score (Figure 2A). The Kaplan-Meier survival curve suggested that the OS rate of CM patients in low-risk group was significantly longer than those in high-risk group (Figure 2B). Principal component analysis (PCA) results illustrated a clear separation between low- and high-risk groups based on the 4 prognostic ICD-related genes (Figure 2C). Heatmap visualization results revealed the expression differences of 4 ICD-related genes in low- and high-risk group (Figure 2D). The low-risk groups showed a lower expression of BAX, whereas the expression of EIF2AK3, CXCR3, and IL10 were higher in low-risk group. These results demonstrate that the risk model construction based on the prognostic signature of 4 ICD-related genes could accurately evaluate the prognosis of CM patients.
[image: Figure 2]FIGURE 2 | Construction of risk model based on the prognostic ICD genes of patients with CM. (A) Distribution of risk score of CM patients and scatter dot plot shows the correlation of risk score and survival time. (B) The Kaplan-Meier survival curve shows that the OS of low-risk group was significantly higher than high-risk group. (C) Principal component analysis (PCA) shows a significant difference in high- and low-risk group based on the four prognostic ICD genes. (D) Heatmap illustrates the expression of four prognostic ICD genes (BAX, EIF2AK3, CXCR3 and IL-10 in high- and low-risk groups.
Constructing a risk mode in the Cancer Genome Atlas and GEO cohort
To confirm the accuracy and reliability of the prognosis value of ICD-based risk score, a risk model was constructed using TCGA and GEO cohort. The patients with CM in TCGA cohort were randomly divided into training and test cohort based on the 4 ICD-related genes prognostic signature. The CM patients were ranked according to the median risk score in both cohorts, and the scatter dot plot revealed that the survival time of CM was inversely associated with risk score (Figures 3A,B). The PCA analysis of the training set and validation set was shown in Supplementary Figure S2.
[image: Figure 3]FIGURE 3 | Risk model construction in training cohort and test cohort and GSE65904. The distribution of risk score calculated by ICD-related genes prognostic signature and the scatter dot plot shows the association of risk score and survival time in (A) Training cohort, (B) test cohort, (C) GSE65904. (D–F) The Kaplan-Meier survival curve displayed the OS rate of patients with CM in low- and high-risk group in training cohort, test cohort, and GSE65904.
Meanwhile, GSE65904 cohort was employed to further investigate the precision of risk model. According to the median risk score, the CM patients in GEO cohort were ranked and the scatter dot plot indicated a significant correlation of survival time and risk score (Figure 3C). The Kaplan-Meier survival curve analysis showed that patients in the training cohort with low-risk score had higher OS rate than those with high-risk score (p < 0.001, Figure 3D). Additionally, the OS rate of CM patients with low-risk score was significantly higher compared to those with high-risk score in the test cohort (p = 0.015, Figure 3E). The result of GSE65904 cohort illustrated that the OS rate of patients with CM in low-risk group was significantly longer than high-risk group (p < 0.001, Figure 3F). Collectively, these above findings demonstrate that constructing the risk model based on the 4 ICD-related genes prognostic signature is accurate and reliable.
Risk model based on the immunogenic cell death-related genes is an independent prognostic indictor
Univariate and multivariate Cox regression analysis were performed to investigate the ICD-related genes prognostic signature was an independent prognosis factor for CM. Univariate Cox regression analysis suggested that age (hazard ratio (HR) = 1.020, p < 0.001), stage (HR = 1.473, p < 0.001), T stage (HR = 1.445, p < 0.001), N stage (HR = 1.443, p < 0.001), and risk score (HR = 2.274, p < 0.001) were closely related to OS rate of CM patients (Figure 4A). Multivariate Cox regression analysis demonstrated that T stage (HR = 1.396, p < 0.001), N stage (HR = 1.654, p < 0.001), and risk score (HR = 2.225, p < 0.001) were significantly correlated with OS rate for CM (Figure 4B). Subsequently, a model of nomogram was established to accurately predict the 1-, 3-, 5-years OS rate of CM patients based on the ICD-related prognostic signature and clinicopathological characteristics (Figure 4C). Additionally, the calibration curve revealed that the 1-, 3-, and 5-year’s survival time predicted of nomogram exhibited a satisfactory consistency to the actual OS rate for CM patients (Figure 4D). The time-dependent ROC showed that the AUC of 1-, 3-, 5-year was 0.672, 0.660, and 0.661, respectively (Figure 4E). The ROC curves of the training set and validation set was also analyzed to prove the performance of this risk model. (Supplementary Figure S3) Collectively, these results demonstrate that the prognostic signature based on the ICD-related genes is an independent prognostic predictor and accurately estimates the prognosis of CM patients.
[image: Figure 4]FIGURE 4 | Independent prognostic analysis of clinical characteristics and risk score. (A) Univariate Cox regression analysis suggests a clear association between OS rate and clinical characteristics including age, gender, stage, T stage, N stage, and the risk score. (B) Multivariate Cox regression analysis indicates that T stage, N stage and risk score are an independent prognostic indicator for CM. (C) Nomogram construction of risk score and clinicopathological characteristics to predict the 1-, 3-, 5-years OS rate of CM patients. (D) Calibration curve shows the accuracy between predictive capacity and actual OS rate of 1-, 3-, and 5-years. (E) Time-dependent ROC curve shows the AUC at 1-, 3-, and 5-years.
Correlation analysis of immunogenic cell death-related genes prognostic signature and clinicopathological characteristics
Thereafter, a stratified subgroup analysis was conducted to investigate the prognostic value of the prognostic signature based on the ICD-related genes. The CM patients were classified into the subgroups according to the age (>65 vs. ≤ 65), gender (female vs. male), N stage (N 0–1 vs. N 2–3), stage (stage 0–1 vs. stage 2–4), and T stage (T 0–1 vs. T 2–4). The Kaplan-Meier survival curve analysis revealed that the OS rate of patients with CM in low-risk group was higher than those patients in the high-risk group based on the ICD-related gene prognostic signature among the different clinicopathological characteristics (Figures 5A–J). These results illustrate that the prognostic signature based on the ICD-related genes could accurately predict the prognosis of CM patients relative to the clinicopathological characteristics.
[image: Figure 5]FIGURE 5 | The Kaplan-Meier survival curve of patients in low- and high-risk groups stratified by clinicopathological characteristics. The survival curve analysis reveals the OS rate of patients in low- and high-risk group stratified by (A,B) Age (>65 vs. ≤65), (C,D) Gender (female vs. male), (E,F) N stage (N 0–1 vs. N 2–3), (G,H) Stage (stage 0–1 vs. stage 2–4), (I,J) T stage (T 0–1 vs. T 2–4).
Consensus clustering analysis for immunogenic cell death-related genes associated with prognosis and immune infiltration landscape in cutaneous melanoma
Consensus clustering analysis was performed to cluster the patients with CM into different subgroup, and the result illustrated an optimal classification for consensus clustering with the K = 2 (Figures 6A–C). According to the 4 ICD-related genes, the patients with CM were successfully classified into two subgroups, with 198 patients in Custer A, and 260 patients in Cluster B. The result of PCA showed a clear separation between the Cluster A and Cluster B based on the ICD-related genes (Figure 6D). The Kaplan-Meier survival curve analysis suggested that the patients in Cluster A had higher OS rate than those in Cluster B (Figure 6E).
[image: Figure 6]FIGURE 6 | Consensus clustering analysis of CM patients based on the ICD-related genes. (A) Consensus clustering heatmap of group at k = 2. (B) Cumulative distribution function (CDF) curve for k = 2–9. (C) Relative change in area under CDF curve for k = 2–9. (D) Principal components analysis (PCA) shows a significant distribution pattern between cluster A and cluster B. (E) The Kaplan-Meier survival curve analysis reveals that the OS rate of patients in Cluster A is higher than those in Cluster B.
Subsequently, multiple immune estimate algorithms were conducted to investigate the immune infiltration landscape of patients in Cluster A and Cluster B. The results of ESTIMATE algorithm showed that the patients in Cluster A had higher stromal, ESTIMATE, and immune score, whereas the tumor purity was significantly higher in Cluster B (Figures 7A–D). To explore the immune infiltration landscape of patients in Cluster A and Cluster B, CIBERSORT and ssGSEA algorithm were performed.
[image: Figure 7]FIGURE 7 | Immune infiltration landscape analysis of CM patients in Cluster A and Cluster B. (A) Stromal score. (B) ESTIMATE score. (C) Immune score. (D) Tumor purity. (E) The fraction of 22 immune cells in Cluster A and Cluster B calculated by CIBERSORT algorithm. (F) The fraction of 23 immune cells in Cluster A and Cluster B via ssGSEA algorithm.
The result of CIBERSORT algorithm illustrated a markedly increased in proportion of B cells naive, plasma cells, CD8 + T cells, CD4 + memory activated T cells and T cells regulatory (Tregs)in Cluster A, but the patients in Cluster B showed a higher proportion of CD4 + memory resting T cells, NK cells resting, macrophages M0, macrophages M0, macrophages M2, dendritic cells activated, mast cells resting, mast cells activated, eosinophils than those patients in Cluster A, indicating a notable difference of immune infiltration landscape in the two subgroups (Figure 7E). Moreover, the result of ssGSEA algorithm revealed that the fraction of 23 immune cells in Cluster A was much greater than in Cluster B, illustrating a higher immune status of patients in Cluster A (Figure 7F). The differential expression of ICD genes between the two clusters was illustrated in the Supplementary Figure S4. These above results demonstrate that the ICD-related genes are associated with the prognosis and immune infiltration landscape of patients.
The risk model is associated with immune infiltration landscape in cutaneous melanoma
The immune infiltration landscape of CM patients in low- and high-risk group was further explored using multiple immune estimate algorithms. The results of ESTIMATE algorithm indicated that the patients with high-risk score had lower stromal, ESTIMATE, and immune scores than those with low-risk score. Notably, the tumor purity in low-risk group was significantly lower than in high-risk group (Figures 8A–D). The result of CIBERSORT algorithm suggested that the fractions of B cells naive, plasma cells, CD8 + T cells, CD4 + memory activated T cells, macrophages M1 and mast cell activated were higher in low-risk group, Inversely, the patients in high-risk group exhibited a markedly increased in the proportion of T cells follicular helper, T cells regulatory (Tregs), NK cells resting, macrophages M0, macrophages M2, dendritic cells resting, dendritic cells activated, mast cells restin, mast cells activated and eosinophils (Figure 8E). The result of ssGSEA algorithm revealed that the fractions of 23 immune cells were significantly lower in high-riak group than in low-risk gorup, indicating that the patients with low-risk score had higher immune status (Figure 8F). Taken together, these findings demonstrate that the risk model for ICD-related gene is associated with the immune infiltration landscape and can indicate the immune status of CM patients.
[image: Figure 8]FIGURE 8 | Immune infiltration landscape analysis of CM patients in low- and high-risk group. (A) Stromal score. (B) ESTIMATE score. (C) Immune score. (D) Tumor purity. (E) The fraction of 22 immune cells in low- and high-risk group calculated by CIBERSORT algorithm. (F) The fraction of 23 immune cells low- and high-risk group calculated by ssGSEA algorithm.
Risk model is associated with immunotherapy response
As a novel predictor of immunotherapy response to anti-CALT-4 and anti-PD-1, immunophenoscore (IPS) has been employed to indicate the response to immune checkpoint inhibitor (ICI) therapy in tumor. Considering the remarkable differences of the immune infiltration landscape in low- and high-risk group, the association between risk score and IPS/ICI was further investigated. The results of IPS analysis revealed that the patients in low-risk group showing a promising response to anti-CTLA-4, anti-PD-1 and anti-CTLA-4/anti-PD-1, illustrating a better benefit potential in immunotherapy of patients in low-risk group (Figures 9A–D). The result of ICI suggested that the expression of LAG3, CTLA-4, PD-1, PDCD1LG2, and PD-L1 in low-risk group were significantly higher than in high-risk group (Figure 9E). To further illustrate the correlation between the risk score and the efficacy of immunotherapy, IMvigor210 cohort was investigated. Tumor Immune Dysfunction and Exclusion (TIDE) analysis was further applied for the prediction of immunotherapy. According to the prognostic ICD-related genes, the risk score of patients in the IMvigor210 cohort were calculated and divided into the low- and high-risk group. According to TIDE analysis, high-risk patients had a lower TIDE level and a higher exclusion score (Figures 10A,B). The Kaplan-Meier survival curve analysis suggested that the overall survival rate of patients in the low-risk group was significantly higher than patients with high-risk scores (Figure 10C). Additionally, the risk score in CR/PR was significantly lower than in SD/PD in the IMvigor210 cohort, indicating that the patients with low-risk score had a better outcome with immunotherapy (Figure 10D). These results demonstrate a promising immunotherapy sensitivity in low-risk group, providing an innovation insight for the future individualized precision therapy for CM patients in different risk subgroup.
[image: Figure 9]FIGURE 9 | Immunophenoscore (IPS) and immune checkpoint inhibitor (ICI) expression of CM patients in low- and high-risk group. (A–D) IPS score shows the response to PD-1 and CTLA-4 for CM patients in low- and high-risk groups. (E) Immune checkpoints inhibitor (ICI) expression of patients with CM in low- and high-risk groups.
[image: Figure 10]FIGURE 10 | Immunotherapy response analysis. (A) TIDE. (B) Exclusion. (C) The Kaplan-Meier curves shows the OS rate of patients in the low- and high-risk group in anti-PD-L1 cohort (IMvigor210 cohort). (D) The risk score in CR/PR and SD/PD indicates a significant difference in the IMvigor210 cohort. PR, Partial Response, PD, Progressive Disease; SD, Stable Disease, and CR, Complete Response.
Correlation analysis of risk score and drug sensitivity
The association between the antineoplastic drug sensitivity and risk score was further investigated in the following study. The IC50 of sunitinib, saracatinib, rapamycin, paclitaxel, lapatinib, ruxolitinib and dasatinib in low-risk group were significantly lower than in high-risk group, whereas the IC50 of sorafenib was higher in low-risk group (Figures 11A–H). The correlation of risk score and drug sensitivity indicated that the risk score was significantly positively correlated with sunitinib (R = 0.54, p < 2.2e-16), saracatinib (R = 0.44, p < 2.2e-16), rapamycin (R = 0.6, p < 2.2e-16), paclitaxel (R = 0.58, p < 2.2e-16), lapatinib (R = 0.48, p < 2.2e-16), ruxolitinib (R = 0.5, p < 2.2e-16) and dasatinib (R = 0.45, p < 2.2e-16), but negatively correlated with saracatinib (R = -0.24, p < 1.6e-07) (Figures 11I–P). These results illustrate a different response of antineoplastic drugs of CM patients in different risk subgroups, suggesting a promising benefit for individualized targeted therapy of CM patients in the future.
[image: Figure 11]FIGURE 11 | Drug sensitivity analysis in low- and high-risk group. The IC50 value exhibits a significant difference in low- and high-risk group among (A) Sunitinib, (B) Sorafenib, (C) Saracatinib, (D) Rapamycin, (E) Paclitaxel, (F) Lapatinib, (G) Ruxolitinib and (H) Dasatinib. (I–P) Correlation analysis of risk score and drug sensitivity.
Functional enrichment analysis
To explore the potential molecular mechanism associated with the role of ICD-related genes, enrichment analysis and GSVA were utilized. The volcano diagram exhibited the DEGs in low- and high-risk groups, and the result showed that most of the DEGs were down-regulated in high-risk group (Figure 12A). GO enrichment analysis indicated that DEGs were mainly enriched in immune-related procession, such as lymphocyte mediated immunity, and positive regulation of lymphocyte activation (Figure 12B). KEGG enrichment analysis suggested that DEGs were significantly enriched in hematopoietic cell lineage, cell adhesion molecules, and cytokine-cytokine receptor interaction (Figure 12C). Moreover, GSVA analysis was employed to calculate the KEGG terms in each CM patient, and the result showed that immune-related signaling pathways were obviously enriched in low-risk group (Figure 12D). Overall, these findings demonstrate that immune-related processes may mediate the role of ICD-related genes in CM patients.
[image: Figure 12]FIGURE 12 | Functional enrichment analysis of differential expressed genes (DEGs) in low- and high-risk group. (A) The volcano diagram exhibits the DEGs in low- and high-risk group with the threshold setting at | FC | ≥ 2 and p-value < 0.05. (B) GO enrichment analysis of DEGs in low- and high-risk groups. (C) KEGG enrichment analysis of DEGs in low- and high-risk groups. (D) GSVA shows the KEGG terms of each CM patient in low- and high-risk groups.
DISCUSSION
As one of the most aggressive malignancies, CM takes responsibility for a large proportion of tumor related deaths and the main cause of CM death is early metastasis (Nikolaou and Stratigos, 2014). Therefore, early detection and risk stratification are essential to improve CM survival. In this study, we first constructed a risk model based on four prognostic ICD-related genes, verified its ability to predict the prognosis of CM patients, and preliminarily explored the possible mechanism involved in this process. We also attempted to explore the relationship between prognostic models predicting the prognosis of CM and the immune microenvironment. Considering the heterogeneity of CM tumors, we conducted a consensus clustering analysis based on the ICD genes of the model. By clustering the CM samples, we obtained two subtypes and explored the differences between different subtypes on heterogeneity and tumor microenvironment.
Although melanoma has immunogenicity, it develops an immune escape mechanism to stimulate its rapid progression. These mechanisms include impaired antigen presentation of tumor cells, the accumulation of dysfunctional effector T cells and the production of immunosuppressive TME (Oliveira et al., 2021). Therefore, many methods have been developed to revitalize the anti-tumor immune response. Recently approved immune checkpoint inhibitors (ICI) immunotherapies have completely changed the treatment of CM with significantly improved survival rate and disease lasting control (Hodi et al., 2018; Hamid et al., 2019). However, the response rate to ICI is still limited (Reijers et al., 2022). Therefore, further efforts should be made to maximize the efficacy of ICI treatment. ICD targeting has been proved to be an effective way to prevent CM carcinogenesis (Fu et al., 2022; Zhang et al., 2022). In our data, TIDE analysis between different groups was used to predict the effect of immunotherapy. The low-risk group was more responsive to immunotherapy. Combined with the significance of immunotherapy in clinical application, the influence of ICD classification on prognosis was explained. In addition, differences in drug sensitivity as determined by ICD may also partly account for differences in prognosis. This is in line with the report that ICD related to CM immunophenotype cold to hot transformation. In some CM patients, adverse tumor microenvironment (TME), lack of invasive T lymphocytes, or increased Tregs failed to respond to ICI. This kind of situation is called “cold” TME. The latest report says that by activating ICD, targeting wee1/akt pathway can lead to the recruitment and activation of immune cells in TME, triggering an inflammatory cascade, so that the “cold” TME of melanoma can be transformed into a “hot” TME responsive to programmed cell death proteins, leading to the complete regression of established tumors (Dinavahi et al., 2022). Combined with the significant prognostic significance of ICD-related genes risk model in this paper, further research on the process of ICD will help to achieve a better clinical prognosis of CM.
As a member of the Bcl-2 family, BAX forms pores in the outer membrane of mitochondria, resulting in the release of pro-apoptotic factors into cytosol, thus initiating the process of apoptosis (Tait and Green, 2010). In CM, low expression of BAX has been reported to be associated with higher PFS (Gutta et al., 2020). The correlation between higher BAX expression and poor prognosis in our high-risk group also verified this conclusion. This is not consistent with the intuitive role of BAX in promoting apoptosis in tumors. In fact, in acute myeloid leukemia and non-Hodgkin lymphoma, highly expressed BAX is also associated with poor outcome. Since the mechanism is not fully elucidated, there is therefore a need to interpret or study characteristics that indicate apoptosis capacity or resistance in specific disease settings and contexts (Gutta et al., 2020). It has been proposed that following effective apoptosis-induced therapy, dormancy in tumor tissue, stem-cell-like cancer cells repopulate the tumor and promote further spread and progression of the disease after amplification (Labi and Erlacher, 2015; Ichim and Tait, 2016). This may partly explain why expression patterns of high apoptotic reactivity are associated with poor prognosis. Chemokine receptor CXCR3 has been reported to be a biomarker of sensitivity to PD-1 blockade (Chow et al., 2019; Telli et al., 2021). Combined with the important role of PD-1-related therapy in CM, the correlation between higher CXCR3 expression level and better prognosis of CM can be explained. In addition, the important role of CXCR3 in CM T cell transport was also noted (Mikucki et al., 2015). This is consistent with our results that higher CXCR3 expression levels are associated with higher T cell infiltration levels in TME. It was previously thought that melanoma inhibits the killing effect of the immune system by secreting immunosuppressive cytokines including IL-10 (Chen et al., 1994). However, as reviewed in 2019, IL-10 showed conflicting effects on immunity and cancer (Ouyang and O'Garra, 2019). IL-10 itself has an effective anti-tumor effect and also inhibits metastasis through immune-dependent mechanisms, including inhibition of infiltrating macrophages and angiogenic factors and activation of CD8+ T cell CTL (Berman et al., 1996; Fujii et al., 2001; Mannino et al., 2015). In addition, IL-10 can activate CD4+ T cells and CD8+ CTLs under certain in vitro conditions (Groux et al., 1998). This is consistent with our data that the low-risk group with higher IL-10 expression level has a better prognosis and the corresponding results of immune infiltration. Our data suggest that low EIF2AK3 gene expression levels in this cohort are associated with poorer outcomes. As an unfolded protein response (UPR) protein kinase, EIF2AK3 (also known as PERK) regulates protein synthesis. Although EIF2AK3 has been reported to be necessary for the progression of CM, it also has the ability to trigger pro-apoptotic signals and inhibit cell division by inhibiting cyclin D1 translation in CM (27977682). In addition, EIF2AK3 induces immune metabolic reprogramming and enhances anti-tumor T cell function (Chakraborty et al., 2022). Therefore, the dual characteristics of tumor inhibition and tumor promotion of EIF2AK3 still need to be further studied in CM.
In our results, lower CD8+ T, CD4+ T cell, B cell, plasma cell, MDSC cell level and higher M2 macrophage cell level indicated that patients in the high-risk CM group undoubtedly had immunosuppressive TME. The significance of DAMP in TME has been reported. ATP, as a DAMP member, directs immune cells to inflammatory sites; in addition, the loss of its receptor almost completely blocks macrophage activity and accumulation of CD4+ T and B cells (Merz et al., 2018). Moreover, ATP from dying cancer cells promotes proteolytic maturation of caspase-1 and cleavage and release of interleukin (IL)-1β (Ghiringhelli et al., 2009). In addition, as an important member of DAMP, the CALR molecule acts as an important “eat me” signal against the “don’t eat me” signal of tumor cells to promote antigenic uptake and immune recognition of APC (Le Saux et al., 2021). HMGB1 was characterized extracellular as a pro-inflammatory predictor. As a “danger” signal, HMGB1 polarizes pro-inflammatory microglias through the RAGE-NF-κB pathway, thereby activating innate immunity (Fan et al., 2020). After ICD development in tumor cells, HMGB1 acts on TLR4 on DC and promotes optimal processing of tumor antigen toward crossover triggering T cells (Moriya et al., 2021). Our data again validated the significant correlation between ICD-related TME changes and CM prognosis.
In conclusion, we constructed a risk model consisting of 4 ICD-related genes and effectively predicted the prognosis of CM patients. We also comprehensively analyzed the immune microenvironment between high and low risk groups. The correlations of immune infiltration level, immune response and drug sensitivity treatment between two risk levels were further explored and signal pathways involved were preliminarily analyzed. This study provides a new perspective and insight for individualized and accurate treatment strategies for CM patients.
MATERIALS AND METHODS
Ethics statement
This study has been approved by the Ethics Committee of Qilu Hospital (Jinan, China). The data was retrieved from published literature, and all analysis were performed in accordance with the Declaration of Helsinki.
Transcriptome data and clinical data collection
The normalized transcriptome gene expression matrix (RNA-Sep, FPKM format) and clinical information materials were downloaded from The Cancer Genome Atlas database (TCGA) (https://portal.gdc.cancer.gov/). The transcriptome gene expression matrix of the normal tissues for CM were downloaded from the UCSC Xena database (https://xenabrowser.net/datapages/) (RNA-Sep, FPKM format). Moreover, the normalized transcriptome gene expression matrix of normal tissues and tumor tissues was merged and normalized for the subsequent analysis. The samples without survival time were excluded and a total of 458 CM samples were included for the subsequent analysis. Perl scripts were conducted to merge the gene expression matrix of each sample and the expression of mRNAs were annotated using the ensembles human genome browser GRCh38.p13 (http://asia.ensembl.org/index.html). The transcriptome matrix of GSE65904 was obtained from the GEO database (https://www.ncbi.nlm.nih.gov/geo/) and we extracted the expression file from above transcriptome matrix via Perl scripts. A total of 210 CM samples were collected from GSE65904 for the further analysis. The transcriptome data of TCGA and GEO were merged and removed batch effects via “SVA” R package. The clinical information materials included survival time, survival status, age, gender, stage, and T, N stage were obtained using Perl scripts from the TCGA database. In this study, all information and clinical matrix involved were downloaded from the public database. Approval from the ethics committee and written informed consent from patients were not required.
Risk model construction of immunogenic cell death-Related genes
The Immunogenic Cell Death (ICD) related genes were identified and extracted from the previous research, and a total of 33 ICD-related genes were included to construct the risk model (Garg et al., 2016) (Supplementary Table S1). Based on univariate Cox regression analysis, the least absolute shrinkage and selection operator (LASSO) algorithm was employed to identify the ICD-related genes associated with overall survival (OS) rate using R package “glmnet”. Then, multivariate Cox regression analysis was performed to identify the candidate prognostic ICD-related genes and constructed the risk model. The risk score of each sample was calculated according to the following formula: = (−0.244 x the expression of CXCR3) + (−0.236 x the expression of IL10) + (−0.344 x the expression of EIF2AK3) + (0.276 x the expression of BAX expression). Thereafter, the CM patients were divided into low- and high-risk groups according to the median risk score. The Kaplan-Meier survival curve was conducted to estimate the OS rate of patients in low- and high-risk group via log-rank algorithm using R packages “survival”. The principal component analysis (PCA) was used to investigate the separation pattern of patients in low- and high-risk group based on the prognostic ICD-related genes using R package “ggplot2”.
Validation of the risk model
According to the ICD-related genes, the samples in TCGA database were classified into the training cohort and the test cohort to the ratio of 7:3, with 321 samples in the training cohort and 137 samples in the test cohort, and calculated the risk score of each sample, respectively. Moreover, GSE65904 was utilized to validate the stability of the risk model as an external validation cohort. The risk score of each sample was calculated and divided into low- and high-risk groups according to the median risk score.
Independence evaluation of risk model
Univariate and multivariate Cox regression analysis were employed to investigate the risk model was an independent indicator for CM using R package “survival”. A nomogram model was constructed of clinicopathological characteristic and risk score via R package “rms”. According to Cox regression analysis, all variates were calculated and estimated the 1-, 3- and 5- year’s survival probability of patients. Calibration diagram and consistency index (C-index) were commonly parameters to assess the accuracy of nomograms and the C-index was positively correlated with the nomogram accuracy. The prognostic capability of the risk model constructed by risk score was validated using time-dependent receiver operating characteristic (ROC) analysis via R package “timeROC”.
Consensus clustering
According to the prognostic ICD-related genes, consensus clustering was performed using the R package “ConsensusClusterPlus”. The clustering was established on the grounds of partitioning around medoids with “Euclidean” distances and 1,000 verifications were performed. Finally, according to the optimal classification of K = 2−9, the patients with CM were clustered into two subtypes for the further analysis.
Immune infiltration landscape analysis
ESTIMATE algorithm was conducted to evaluate the estimation of stromal and immune cells in tumor. Stromal, immune, ESTIMATE score, and tumor purity were calculated via R package “estimate”. CIBERSORT algorithm was utilized to investigate the immune infiltration landscape, and 22-types immune cells were evaluated based on “CIBERSORT R script v1.03”. A single sample gene set enrichment analysis (ssGSEA) algorithm was performed to assess the proportion of 23-types of immune cells via the “GSVA” R package.
Immunotherapy response and drug sensitivity analysis
In this study, the result of Immunophenoscore (IPS) was obtained from the TCIA database (https://tcia.at/home). The expression of immune checkpoint inhibitor (ICI) included LAG3, CTLA4, PD-1, PDCD1LG2, and PD-L1 were extracted from the TCGA matrix using R package “limma”. The expression of ICI was transformed by log2(expression + 1). Tumor Immune Dysfunction and Exclusion (TIDE) Analysis was analyzed using TIDE database (http://tide.dfci.harvard.edu/login/). An anti-PD-1/PD-L1 treatment cohort (IMvigor210) cohort was used to evaluate the response of anti-PD1/PD-L1 for CM patients. The expression of ICD-related genes was extract from the IMvigor210 cohort and the risk scores of each sample were calculated. A total of 348 samples were divided into low- and high-risk group. Drug sensitivity (IC50) was a vital indicator for evaluating drug efficacy or sample response to treatment. Based on the Genomics of Drug Sensitivity in Cancer (GDSC) database, the drug response of each sample in low- and high-risk was predicted via R package “pRRophetic”. All statistical analyses were visualized via “ggplot2” R package.
Functional enrichment analysis
The R package “limma” was used to identify the differential expressed genes (DEGs) in low- and high-risk group, and the p-value was adjusted using “FDR” method. Moreover, the threshold for screening DEGs was set at |Fold Change| ≥ 2 and p-value < 0.05. Metascape database (http://metascape.org/) was used to explore the potential biological functions of DEGs, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed to enrich the DEGs into pathways using the “clusterProfiler” R package (Yu et al., 2012). The activity of KEGG term in each patient with CM was conducted using R package “GSVA”.
Statistical analysis
All statistical analyses were performed using R software (version 4.1.0) and Perl scripts. Spearman-ranked correlation analysis was applied to investigate the correlation between risk score and IC50, with p-value < 0.05 was considered significantly different. Differential functions were analyzed using the Wilcoxon rank-sum test between the two groups, and statistical significance was set at p-value < 0.05.
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Background: The incidence of clear cell renal cell carcinoma (ccRCC) is high and has increased gradually in recent years. At present, due to the lack of effective prognostic indicators, the prognosis of ccRCC patients is greatly affected.Necroptosis is a type of cell death, and along with cell necrosis is considered a new cancer treatment strategy. The aim of this study was to construct a new marker for predicting the prognosis of ccRCC patients based on long non-coding RNA (nrlncRNAs) associated with necroptosis.
Methods: RNA sequence data and clinical information of ccRCC patients from the Cancer Genome Atlas database (TCGA) were downloaded. NrlncRNA was identified by Pearson correlation study. The differentially expressed nrlncRNA and nrlncRNA pairs were identified by univariate Cox regression and Lasso-Cox regression. Finally, a Kaplan-Meier survival study, Cox regression, clinicopathological features correlation study, and receiver operating characteristic (ROC) spectrum were used to evaluate the prediction ability of 25-nrlncrnas for markers. In addition, correlations between the risk values and sensitivity to tumor-infiltrating immune cells, immune checkpoint inhibitors, and targeted drugs were also investigated.
Results: In the current research, a novel marker of 25-nrlncRNAs pairs was developed to improve prognostic prediction in patients with ccRCC. Compared with clinicopathological features, nrlncRNAs had a higher diagnostic validity for markers, with the 1-year, 3-years, and 5-years operating characteristic regions being 0.902, 0.835, and 0.856, respectively, and compared with the stage of 0.868, an increase of 0.034. Cox regression and stratified survival studies showed that this marker could be an independent predictor of ccRCC patients. In addition, patients with different risk scores had significant differences in tumor-infiltrating immune cells, immune checkpoint, and semi-inhibitory concentration of targeted drugs. The feature could be used to evaluate the clinical efficacy of immunotherapy and targeted drug therapy.
Conclusion: 25-nrlncRNAs pair markers may help to evaluate the prognosis and molecular characteristics of ccRCC patients, which improve treatment methods and can be more used in clinical practice.
Keywords: signature, long noncoding RNA, necroptosis, prognosis, clear cell renal cell carcinoma
INTRODUCTION
CcRCC is one of the most common fatal malignant tumors of the urinary system, comprising a proportion of 3%–5% of all new cancers annually. It is second only to prostate cancer as well as bladder cancer of the urinary system (Aiello and Kang, 2019). ccRCC is the most common renal cell carcinoma, in the proportion of 80% of cases (Miller et al., 2019). In spite of the emergence of various novel targeted drugs and treatment strategies, the prevalence and mortality of ccRCC continue to increase year by year. (Escudier et al., 2019) In addition, ccRCC is resistant to both radiotherapy and chemotherapy (Makhov et al., 2018). Surgery is the main efficient therapy for local ccRCC, but its efficacy for advanced ccRCC is limited. Metastasis has been reported in approximately 30% of patients with ccRCC at the time of first diagnosis (Zheng and Yang, 2017). Therefore, the construction of effective prognostic indicators is of great significance for the clinical treatment of ccRCC patients. Necroptosis is a caspase-independent cell necrosis, a novel kind of apoptosis mediated via receptor-interacting protein kinase 1/3 (RIPK1/RIPK3) and through the mixed lineage kinase domain-like (MLKL) (Declercq et al., 2009). An increasing quantity of studies have indicated that necroptosis exerts an important function in tumors. Its role in regulating tumorigenesis and cancer progression is a double-edged sword (Gong et al., 2019). On one hand, RIPK3, as a vital mediator of the necroptosis pathway, is down-regulated in various cancers and inhibits the growth and metastasis of tumor cells (Wang et al., 2020; Tan et al., 2021). This evidence suggests that necroptosis plays an active role in inhibiting tumor progression.
In addition, studies have shown that tumors can induce necrosis of microvascular (Strilic et al., 2016; Chen et al., 2021a). On the other hand, the key MLKL is up-regulated in some cancers, which is associated with tumor hyper-aggressive behavior and immunosuppressive microenvironment (Ando et al., 2020; Yamauchi et al., 2021). Furthermore, studies have shown that tumors induce microvascular endothelial cells and promote the invasion and metastasis of cancer cells (Strilic et al., 2016; Chen et al., 2021a).
LncRNA is a protein-free coding RNA with more than 200 nucleotides in length, which is involved in special functions, such as mRNA splicing, transcriptional regulation, and post-transcriptional regulation of mRNA (Zuo et al., 2021). Studies have confirmed that LncRNAs are closely related to tumor genesis, transformation, and immunity, and can become the new potential prognostic biomarkers for tumor patients due to their excellent molecular stability (Denaro et al., 2019; Statello et al., 2021). Therefore, further elucidation of the relationship between nrlncRNAs and ccRCC is crucial for discovering new targets for drugs of ccRCC and improving the prognosis of patients.
At present, many studies have focused on the relationship between lncRNA expression standards and the prognosis of malignant tumors. Several studies have reported the prediction of prognosis of tumor patients (Hou et al., 2022) by lncRNA marker construction. (Hou et al., 2022). Recently, more and more studies have concentrated on the part of lncRNA expression in prognostic of ccRCC. Tang et al. (2021) established an immunity-associated lncRNA marker to forecast prognosis of renal clear cell carcinoma. Yu et al. (2021a) established an m6a-related lncRNA marker to forecast prognosis of ccRCC. Lei et al. (2021b) established an autophagy-associated lncRNA marker to forecast the prognosis of ccRCC. At the same time, there are few studies on predicting the prognosis of patients with malignant tumors by lncRNA markers associated with necroptosis. Among them, Wang and Liu. (2021), Chen et al. (2022a), and Lu et al. (2022) respectively constructed necroptosis-associated lncRNA markers to forecast prognostic of gastric cancer, breast cancer, and lung cancer. But there is currently no research on necroptosis-associated lncRNAs in ccRCC.
In this paper, we use necroptosis-associated lncRNAs for the first time to establish a prognosis marker to assess the prognostic of ccRCC patients. We construct a prognosis marker according to express standards of lncRNA pairs as illustrated by Hong et al. (2020) as well as independent of lncRNA expression criteria. In the paper, ccRCC transcription data can be downloaded from TCGA, and nrLncRNAs are mined by Pearson relevant study. Secondly, a 25-nrLncNA pair signature is constructed to predict the survival of ccRCC patients by univariate study and LASSO regression study. In addition, signature exploration based on the 25-nrLncRNA pairs’ signature is crucial to provide strong theoretical evidence for the application of immunotherapy and targeted drug therapy in ccRCC patients.
MATERIALS AND METHODS
Data acquisition
The detailed process of our study is illustrated in Figure 1. Transcriptome sequencing data with FPKM layout and clinic information with XML layout of 539 ccRCC patients could be obtained from the TCGA database (as of 30 March 2022) for subsequent data analysis (Tomczak et al., 2015). The FPKM information could be curated and noted using the Perl program (version Strawberry-Perl-5.30.0.1) (Nie et al., 2021) and then accessed through Ensembl Human Genome Browser (version 26) classified them into protein-coding genes and LcnRNAs (Yates et al., 2020), and screened out 533 cases with complete follow-up information for subsequent study.
[image: Figure 1]FIGURE 1 | The flowchart for this article.
The clinical characteristics of the study population are indicated in Supplementary Table S1. As the materials were sourced from the TCGA database, the TCGA-approved publication specification was strictly followed without authorization from the ethics committee.
Identification of nrlncRNAs in ccRCC
Based on the necroptosis gene group M24779. gmt and searching published studies (Zhao et al., 2021), all sixty-seven necroptosis-associated genes could be collected (Supplementary Table S2). Pearson correlation study evaluated the correlation between death-related gene expression and lncRNAs. NrlncRNAs were selected according to correlation coefficients >0.6 and p < 0.001.
Identification of differentially expressed nrlncRNAs in ccRCC
We used the “limma” package in R software to verify differentially expressed nrLncRNAs (DEnrlncRNAs) between tumors as well as adjacent ordinary tissues, p < 0.05 and |logFC|>1.0 were set as cutoff criteria (Ritchie et al., 2015). DEnrlncRNAs were visualized using a heat map package and volcano package.
Establishment of differentially expressed nrlncRNAs pairs
We performed several pairing cycles analysis of these DEnrlncRNAs to define DEnrlncRNA pairs. We obtained a matrice of 0 or 1, for DEnrlncRNA pairs A|B, 0 indicates that specimen A expressed below B, and 1 means that the expression of B is lower than A in this sample. If the nrlncRNA pair has a value of 0 or 1 of all persons, expression standards of both nrlncRNAs are the same in all people, then it is not necessary to pair and build a prediction model. Thus, stable DEnrlncRNA pairs with a stability score of 20%–80% will be obtained for further study, because the 20%–80% range was used in other previous studies (Sun et al., 2021; Tang et al., 2021).
Development of nrlncRNA pairs prognostic signature
After DElnrlncRNA pairs were obtained, univariate Cox regression was performed for each pair of DEnrlncRNA, and nrlncRNA pairs with p < 0.05 were screened. Then, the LASSO regression was assumed linear, we perform LASSO regression to avert over-fitting as well as obtain proper variables. Then, multivariate Cox regression was used to construct survival prediction markers. A risk score was obtained for each sample according to the prognostic marker equation constructed by multivariate Cox regression. The risk score = [image: image], where n represents all nrlncRNA pairs contained in the marker, where β represented the coefficient of nlncRNA pair i and S represented the expression of nlncRNA pair i. Risk score for every patient could be obtained for further analysis. The results of the Cox study were visualized by investigators as well as living packages in R software.
Evaluation of the nrlncRNA pairs prognostic signature
The sensitivity and specificity of the model were evaluated by ROC curve, and the predictive ability of the prognostic risk model was determined by calculating the area under the curve (AUC). After constructing the 1-year, 3-years, and 5-years ROC charts, the 1-year ROC chart had the largest AUC score was found, and Akaike Information Criterion (AIC) scores for each point of the 1-year ROC chart to detect the maximum inflection point were calculated. This value was selected as the critical value to distinguish between high-risk and low-risk ccRCC patients. CcRCC patients were ranked according to risk scores, which were visualized as the distribution of risk scores, and assessed the number of patients in the high-risk and low-risk segments by distribution curves and scatter plots. Kaplan-Meier curve was used to analyze the survival prognosis of high-risk sites and low-risk sites.
Correlation analysis of clinicopathological features and analysis of independent prognostic factors
To validate the clinical utility of constructed marker, we analyzed the relationship among risk scores as well as clinicopathological features (survival status, age, gender, tumor grade, clinical stage, and T, M, and N stage) with a chi-square test. Wilcoxon signed-rank test was used to study distinctions of these clinic pathological characteristics among high-risk as well as low-risk parts, and box plots were applied to display the results of the analysis. To evaluate the precision of the prognosis model in the aspects of prognosis living results, univariate and multivariate Cox regression analyses were performed on risk scores and clinicopathological features, identifying independent risk factors and displaying the results using forest maps. At the same time, in order to compare the accuracy of the risk score and clinical characteristics in predicting life, we plotted the risk score and clinicopathological characteristics in the same graph and drew the ROC curve of 1 year for comparison.
Tumor-infiltrating immune cells analysis
To investigate the relationship between this marker and tumor-infiltrating immune cells, we first counted penetration values of the ccRCC dataset specimen based on seven currently recognized algorithms: XCELL (Aran et al., 2017), TIMER (Li et al., 2020), QUANTISEQ (Finotello et al., 2019), MCPCOUNTER (Dienstmann et al., 2019), EPIC (Racle and Gfeller, 2020), CIBERSORT-ABS (Tamminga et al., 2020), and CIBERSORT (Newman et al., 2015). Spearman Correlation study was used to evaluate the relationship between risk Score value and tumor-infiltrating immune cells. The results were shown in the bubble chart, based on p < 0.05 The process is performed with the R ggplot2 package.
Immune checkpoints correlation analysis
To investigate whether there is differential expression of immune checkpoint-related genes in high and low-risk patients. We plotted expressions of CTLA4, GAL9, LAG3, PD-1, PD-L1, PD-L2, TIGIT, and TIM-3, separately, contrasted the difference using the Wilcoxon signed-rank test, and visualized them using the ggstatsplot package as well as violin plots.
Targeted drug sensitivity analyses
The half-inhibition rate (IC50) of the drug was used as the index of drug sensitivity. And in order to evaluate the clinical signature for ccRCC treatment, we counted IC50 of commonly used targeted medicines for ccRCC, including axitinib, bevacizumab, pazopanib, sorafenib, and sunitinib. IC50 differences between high-risk as well as low-risk parts were contrasted via Wilcoxon signed-rank test, and consequences could be visualized with pRRophetic and ggplot2 packages in R software.
Statistical analyses
Statistical analysis was performed in R software (version 4.1.1). The prognostic significance was assessed by univariate, Lasso, and multivariate Cox regression analysis. Kaplan-Meier survival curve study was used to analyze OS. ROC profile analysis and its AUC values were applied to evaluate the reliability and sensitivity of prognostic signature. Spearman correlation test was used for risk score correlation analysis. p < 0.05 was considered as a significant difference among all tests.
RESULTS
Identification of nrlncRNAs in ccRCC Patients
The detailed process of our study is illustrated in Figure 1. Transcriptome analysis information and clinical information of ccRCC were obtained from the TCGA database, which contained 539 ccRCC tissue specimens as well as 72 ordinary kidney tissue specimens. We found that 533 specimens with fully clinical information could be selected for follow-up analysis. The information could be noted according to a human Gene Transfer Format (GTF) annotation file, 67 necroptosis-related genes were obtained according to previous studies (Supplementary Table S2), and a Pearson correlation study was used to verify 347 nrlncRNAs (Supplementary Table S3) with correlation coefficients >0.6 and p < 0.001. Further differences show the study was performed using |log fold change| >1.0 and false discovery rate (FDR) <0.05 as screening standards. We obtained 136 DEnrlncRNAs, 6 down-regulation lncRNAs and 130 up-regulation lncRNAs were included (Figure 2A; Supplementary Table S4), and gene heatmaps were generated using R software (Figure 2B).
[image: Figure 2]FIGURE 2 | Development of nrlncRNA pairs prognostic signature. (A) Heat maps of 136 DEnrlncRNAs. (B) Volcano map of 136 DEnrlncRNAs. (C) Establishment of prognostic DEnrlncRNAs LASSO regression. (D) Distribution of LASSO coefficients for 50 DEnrlncRNA pairs. (E) Univariate Cox hazard analyses were conducted for 25 DEnrlncRNA pairs. (F) Multivariate Cox hazard analyses were conducted for 25 DEnrlncRNA pairs.
Construction of a prognosis signature according to DEnrlncRNA pairs
A total of 5,434 DEnrlncRNA pairs were screened from 136 DEnrlncRNAs by using an iterative cycle method as well as a 0 or one matrix (Supplementary Table S5). We screened out 50 DEnrlncRNA pairs with a univariate test and LASSO regression study (Figures 2C,D), followed by a multivariate Cox regression study, of which 25 were included in the prognostic signature based on a stepwise approach (Figure 2F; Table 1). Figure 2E shows the univariate Cox regression analysis results of lncRNA.
TABLE 1 | 25 prognostic nrlncRNA pairs multivariate COX regression study results.
[image: Table 1]Validation of prognostic signature based on DEnrlncRNA pairs
ROC curves of the above 25 pairs of DEnrlncRNA subjects at 1-, 3-, and 5 years were plotted and AUC scores were collected. All AUC scores exceeded 0.8 (Figure 3A), and the maximum AUC at 1 year was 0.902 (Figure 3B). An AIC score with a cut-off point of 2.898 was found in the 1-year ROC curve. (Figure 3C).
[image: Figure 3]FIGURE 3 | ROC curve of nrlncRNA pairs signature. (A) 1-year, 3-years, and 5-years ROC profiles. (B) ROC curve with best AUC value over 1 year. (C) Cut-off point calculated by AIC.
Clinical assessment by prognostic signature based on DEnrlncRNA pairs
We used the prognosis indicator model to calculate the risk score of all ccRCC patients. Patients were then divided into high-risk (n = 127) as well as low-risk (n = 399) (Figure 4A) according to the cutoff point calculated above. The survival status of the two cohorts of patients are shown in Figure 4B. According to the Kaplan-Meier test results, the clinical results of patients with low risk were better than those with high risk. The survival time of low-risk patients was longer than those at high risk (p < 0.001) (Figure 4C). We then used the Wilcoxon sign-rank test (Figure 5A) to create a heat map of the relationship between risk scores and clinical indicators. Then, we obtained a heatmap by Wilcoxon signed-rank test (Figure 5A) depicting the relation between risk scores as well as clinical indicators. Survival status (Figure 5B), tumor grade (Figure 5E), clinical stage (Figure 5F), T stage (Figure 5G), and M stage (Figure 5H), as well as N stage (Figure 5I) were remarkably correlated with risk score (p < 0.001), while age (Figure 5C) and gender (Figure 5D) were not remarkably correlated with risk score (p > 0.05).
[image: Figure 4]FIGURE 4 | The signature for prognosis prediction in ccRCC. (A) Risk score curves in ccRCC patients. (B) Distribution of living conditions in patients with ccRCC. (C) Kaplan-Meier whole living profiles of high-risk as well as low-risk groups in prognostic signature.
[image: Figure 5]FIGURE 5 | Clinical correlation of prognosis marker using clinic pathological features of ccRCC patients. (A) Bar charts summarizing common clinical features (B) Survival status (p < 0.001). (C) Age (p > 0.05). (D) Gender (p > 0.05). (E) Tumor grade (p < 0.001). (F) Clinical stage (p < 0.001). (G) T stage (p < 0.001). (H) M stage (p < 0.001). (I) N stage (p < 0.001).
This prognostic signature as an independent prognostic predictor
To further explore the prognosis score of constructed prognostic marker in ccRCC, univariate as well as multivariate Cox regression analysis were conducted on risk scores and clinical indicators, and forest plots were drawn (Figure 6B and Figure 6C). Univariate Cox regression study indicated that age (p = 0.019, HR = 1.022, 95% CI [1.004–1.040]), grade (p < 0.001, HR = 2.183, 95% CI [1.647–2.895]), clinical stage (p < 0.001, HR = 1.853, 95% CI [1.527–2.248]), T stage (p < 0.001, HR = 1.890, 95% CI [1.493–2.393]), M Stage (p < 0.001, HR = 4.113, 95% CI [2.657–6.367]), N Stage (p < 0.001, HR = 3.089, 95% CI [1.596–5.979]), and risk score (p < 0.001, HR = 1.076, 95% CI [1.059–1.093]) were related to the overall survival, Multivariate Cox regression study indicated risk score (p < 0.001, HR = 1.074, 95% CI [1.051–1.097]) was related to overall survival and was an independent predictor of ccRCC. The ROC profiles of clinical indicators and risk scores were drawn to compare their 1-year survival prediction performance (Figure 6A). The results showed that the AUC score of the patients was the highest (0.902), which proved that the risk score had the best predictive ability.
[image: Figure 6]FIGURE 6 | To assess forecasted independence of the prognostic marker for ccRCC prognosis. (A) 1-year ROC profile shows a higher risk score compared to other common clinicopathological features. (B) Univariate Cox regression analysis of risk score and clinicopathological characters. (C) Multivariate Cox regression analysis of risk score as well as clinic pathological characters.
Correlation analysis between prognostic signature and tumor-infiltrating immune cells
We used the Pearson correlation test to study the relationship between prognostic signature as well as tumor immunity infiltration cells based on seven algorithms, and the result presented a lollipop form, as indicated in Figure 7. Differences in tumor-infiltrating immune cells among high-risk and lowrisk cohorts are shown with boxplots (Supplementary Figure S1). Consequences indicated most immunity-infiltration cells in the ccRCC tumor micro circumstance (Supplementary Table S6) were negatively associated with high risk scores containing Granulocyte-monocyte progenitor, Hematopoietic stem cell, Macrophage M2, Myeloid dendritic cell, Neutrophil, T cell CD4+ memory resting, and T cell CD4+. Cells positively associated with high risk scores included B cell memory, cancer-related fibroblast, class-changed memory B cell, macrophage M0, macrophage M1, NK cell activation, T cell CD4+ central memory, T cell CD4+ memory activation, T cell regulatory (Tregs), and T cell CD8+ central memory.
[image: Figure 7]FIGURE 7 | Correlation of tumor-infiltration immunity cells with the prognostic signature based on 7 known algorithms.
Correlation study between prognosis marker and immune checkpoint inhibitors
Immune Checkpoint Inhibitors are one of the important treatments for ccRCC. We further discovered relationship between prognosis marker and immune checkpoint-related genes, and discovered that high risk scores were significantly associated with high express of CTLA4 (p < 0.001; Figure 8A), GAL9 (p < 0.001; Figure 8B), and LAG3 (p < 0.001; Figure 8C), PD-1 (p < 0.001; Figure 8D), and TIGIT (p < 0.001; Figure 8G) were positively correlated, while high risk score were negatively related to high express of TIM-3 (p < 0.001; Figure 8H), but PD-L1 (p > 0.05; Figure 8E) and PD-L2 (p > 0.05; Figure 8F) were not remarkably different from risk scores.
[image: Figure 8]FIGURE 8 | Relationship among prognostic signature as well as express standards of immunity checkpoint-associated genes, (A) CTLA4 (p < 0.001), (B) GAL9 (p < 0.001), (C) LAG3 (p < 0.001), (D) PD-1 (p < 0.001), (E) PD-L1 (p > 0.05), (F) PD-L2 (p > 0.05), (G) TIGIT (p < 0.001), (H) TIM-3 (p < 0.001).
Correlation analysis between prognostic signature and targeted drug sensitivity
Targeted medicines are the most important principal treatment for terminal ccRCC. We discovered the high-risk score was related to a low IC50 for sunitinib (Figure 9E), suggesting that this prognostic signature could be a potential prediction of sunitinib sensitivity. In contrast, the IC50 of axitinib (Figure 9A), bevacizumab (Figure 9B), pazopanib (Figure 9C), and sorafenib (Figure 9D) did not differ significantly between high-risk and low-risk sites.
[image: Figure 9]FIGURE 9 | The relationship between prognostic signature and sensitivity of targeted drug. (A) axitinib (p > 0.05), (B) bevacizumab (>0.05), (C) pazopanib (>0.05), (D) sorafenib (>0.05), (E) sunitinib (p < 0.001).
DISCUSSION
CcRCC is a common urological malignancy and is the most universal kind of kidney cancer, comprising a proportion of 80% of total kidney cancer types, but more than 30% of sick persons with ccRCC have metastases at diagnosis (Zheng and Yang, 2017; Miller et al., 2019). Surgery is the primary therapy for early-stage clear cell carcinoma, however, molecularly targeted medicines are the primary treatment for advanced transferred clear cell carcinoma, which can significantly prolong the overall survival and non-developmental survival of ccRCC patients. But lack of markers of drug sensitivity to molecularly targeted drugs and the lack of molecule signatures of ccRCC metastasis have generated great difficulty for clinical therapy (Wettersten et al., 2017). Thus, it is quite vital important to discover susceptive and peculiar tumor signatures for clinical treatment of ccRCC patients and to make the survival rate of ccRCC patients better. In the paper, we obtained 50 differentially expressed nrlncRNA pairs and identified 25 nrlncRNA pairs significantly associated with ccRCC prognosis by univariate, LASSO, and multivariate Cox regression study to establish the signature of ccRCC based on necroptosis-associated lncRNA. Among these lncRNAs, studies reported that AL162586.1 was significantly associated with bladder cancer prognosis (Chen et al., 2021b). AL139287.1 was confirmed to be related to Head and Neck Squamous Cell Carcinoma prognosis (Shen et al., 2021). HMGA1P4 is highly expressed in gastric cancer tissues and promotes cisplatin resistance in gastric cancer (Qiao et al., 2020). Studies have reported that the low expression of SEMA6A-AS1 in hepatocellular carcinoma is associated with the poor prognosis of HBV-associated hepatocellular carcinoma (Yu et al., 2020). AC091185.1 has been published to be related to prognostic among patients with lung adenocarcinoma (Zheng et al., 2021a). AC093110.1 can adjust the expression of SPTBN1 in breast tumors as well as promote the proliferation and migration of breast cancer cells (Zhang et al., 2022). AP002807.1 was associated with prognosis in ccRCC (Li et al., 2021). The study reported that AC008906.1 forecast prognostic of acute myeloid leukemia (Zheng et al., 2021b). Notably, exploration of these newly discovered nrlncRNAs could lead to a better understanding of ccRCC and perhaps new goals of ccRCC therapy. Then, according to the AIC optimal fit to acquire critical value for differentiating between high as well as low-risk cohorts, patients with ccRCC were separated into a high-risk cohort and a low riskcohort. The results showed prognosis of patients in the low-risk group was remarkably better than that in the high-risk group patients. The risk score was an individual prediction of prognostic in patients with ccRCC. Meanwhile, the ROC curve verification indicated this marker was significantly better than the clinicopathological features in forecasting prognostic of ccRCC patients. In conclusion, these studies suggest that nrlncRNA marker can precisely forecast prognostic of ccRCC patients.
Tumor-infiltration immune cells are an important part of the tumor immunity micro circumstance and exert a vital regulatory part in tumor development and metastasis (Grivennikov et al., 2010). To discover the relationship between risk scores and tumor-infiltration immune cells, we applied seven approaches for evaluating tumor-infiltration immunity cells as well as showed that B cell memory, cancer-related fibroblast, class-changed memory B cell, macrophage M0, macrophage M1, NK cell activation, T cell CD4+ central memory, T cell CD4+ memory activation T cell regulatory (Tregs), and T cell CD8+ central memory was positively associated with risk scores. Previous studies have shown that ccRCC is one of the most immune-infiltration cancers, with high levels of CD8+ T cell, B cell memory, and T cell regulated (Tregs) infiltration. It is related to poor prognostic in ccRCC (Vuong et al., 2019; Pan et al., 2020). Moreover, studies have confirmed that high levels of macrophage M1 infiltration are remarkably related to whole living as well as illness-free living in ccRCC (Xu et al., 2020). We also performed a correlation study of immune checkpoint-associated genes as well as targeted drugs with risk scores and found that CTLA4, GAL9, PD-1, and TIGIT were explored to be positively related to risk score. TIM-3, however, was negatively correlated with risk scores. These immune checkpoint-associated genes can serve as potential therapeutic targets. At the same time, studies have also confirmed that PD-1 is highly expressed in ccRCC, while TIM-3 is underexpressed (Chevrier et al., 2017). Immune checkpoint inhibitors that block PD-1 and CTLA4 have been indicated to be efficient in the therapy of ccRCC and can be used as standard therapy (Motzer et al., 2018). Sunitinib is a principal targeted treatment drug for patients with terminal ccRCC (Bedke et al., 2017). Our prognostic signature showed patients in the high-risk group were more sensitive to sunitinib than those in low-risk group. Identifying the sensitivity of patients with advanced ccRCC to sunitinib may reduce the cost of therapy and reduce drug side effects (Xie et al., 2021). But we are also aware of some limitations and deficiencies of this study. First, our research lacked external validation from other clinic datasets. Second, the potential molecule mechanism of nrlncRNA in ccRCC needs further verification through molecular experiments. Third, the specific mechanism between nrlncRNA on markers and immunotherapy effect in ccRCC patients was not clarified. Thus, in our next study, we will gather clinical specimens for further validation and further exploration through laboratory experiments, but its evaluation will take a long time. In summary, we established a new nrlncRNA pair marker in ccRCC patients in the paper, by integrating of 25 nrlncRNA pairs, which was a single predictor of prognosis in ccRCC patients, and has a subject operating characteristic region of 0.902, 0.835, and 0.856 at 1, 3, and 5 years, respectively. Cox regression and stratified survival study showed this marker could be an independent predictor of ccRCC patients. Furthermore, patients with different risk scores had significant differences in tumor-infiltrating immune cells, immune checkpoint, and semi-inhibitory concentration of targeted drugs, suggesting that this marker could be used to evaluate the clinical efficacy of immunotherapy and targeted drug therapy. This marker predicts immunotherapy efficacy and sunitinib sensitivity in ccRCC patients.
Studies have also shown that necroptosis-related genes are promising biomarkers for predicting prognosis and treatment response in ccRCC (Luo and Zhang, 2022). Necroptosis-related signatures have also been demonstrated as novel prognostic predictors of immune microenvironment and treatment response in ccRCC (Chen et al., 2022b). The results of this study also show that nrlncRNAs pair markers may help to evaluate the prognosis and molecular characteristics of ccRCC patients, as previously reported.
In conclusion, this study demonstrated that 25-nrlncRNAs pairs marker may contribute to evaluating prognostic and molecular characteristics of ccRCC patients, improve treatment methods, and can be more used in clinical practice.
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Liver hepatocellular carcinoma (LIHC) is a malignancy with a high mortality and morbidity rate worldwide. However, the pathogenesis of LIHC has still not been thoroughly studied. Transmembrane and coiled-coil domains 3 (TMCO3) encodes a monovalent cation, a member of the proton transducer 2 (CPA2) family of transporter proteins. In the present study, TMCO3 expression and its relationship with cancer prognosis, as well as its immunological role in LIHC were studied by bioinformatic analysis. We found the significant overexpression of TMCO3 in LIHC in the TCGA, HCCDB, and GEO databases. In LIHC patients, high TMCO3 expression was related to poorer overall survival (OS) and TMCO3 had good predictive accuracy for prognosis. Moreover, TMCO3 was linked to the infiltrates of certain immune cells in LIHC. The correlation of TMCO3 with immune checkpoints was also revealed. Moreover, patients with LIHC with low TMCO3 expression showed a better response to immune checkpoint blockade (ICB) than those with LIHC with high TMCO3 expression. GO and KEGG enrichment analyses indicated that TMCO3 was probably involved in the microtubule cytoskeleton organization involved in mitosis, small GTPase mediated signal transduction, and TGF-β pathway. In conclusion, TMCO3 may be a potential biomarker for LIHC prognosis and immunotherapy.
Keywords: TMCO3, ICB, diagnostics, immune infiltrates, LIHC
INTRODUCTION
Liver hepatocellular carcinoma (LIHC) is the most common subtype of primary liver cancer, usually diagnosed at a late stage, and has become the second deadliest type of cancer worldwide (Sung et al., 2021). It is estimated that around one million people die from liver cancer each year (Villanueva, 2019; Llovet et al., 2021). The high rate of death from LIHC is due to its late diagnosis and high incidence of liver dysfunction. For patients with advanced diagnosis, postoperative metastasis and recurrence, the 5-years survival rate is poor, less than 50% (Anwanwan et al., 2020). Currently, treatment options for LIHC are limited, including surgery, interventional therapy, chemotherapy and immunotherapy (Anwanwan et al., 2020). Nevertheless, the 5-years survival rate of patients is not significantly improved due to factors such as post-operative recurrence, early metastasis, and the development of drug resistance (Morise et al., 2014). There is a lack of effective methods to predict patient prognosis and provide personalized treatment. Therefore, there is an urgent need to find more credible diagnostic biomarkers and to develop novel indicators to forecast patient survival and thus deliver personalized treatment therapies.
Transmembrane and coiled-coil domains 3 (TMCO3) encodes proton antiporter 2 (CPA2) family of transporter proteins, a member of the monovalent cation. This family members usually combine the output of a monovalent cation with the input of a proton that crosses the cell membrane. It has been reported that this gene is mutated in patients with a rare genetic visual defect: corneal drop cataract (Chen et al., 2016). However, the role of this gene in LIHC or other human cancers has not been studied.
Tumor microenvironment (TME) is a critical factor influencing the progression and treatment of LIHC (Kurebayashi et al., 2018). There is growing evidence that tumor-infiltrating immune cells (TIICs) influence the biological behavior of LIHC cells and eventually influence patient prognosis (Zheng et al., 2017; Li et al., 2020). Additionally, several recent studies and clinical trials have shown that immunotherapy or combination immunotherapy has the potential to improve the prognosis of patients with advanced LIHC (Rizzo et al., 2021; Rizzo et al., 2022a). In patients with unresectable untreated LIHC, disease-free survival (DFS) and overall survival (OS) are significantly longer with combination ICB, and there is greater hope that patients will undergo subsequent surgery (Rizzo and Brandi, 2021; Rizzo et al., 2022b). Our previous study has identified several biomarkers that predict the response to ICB treatment in LIHC patients, including TUBA1B (Hu et al., 2022a), TUBA1C (Hu et al., 2022b), and KIFC1 (Li et al., 2021). However, whether TMCO3 promotes the progression of LIHC or influences the immune infiltration of LIHC, or may be a predictor of ICB treatment, has not been reported.
In our study, we firstly demonstrated that TMCO3 expression was upregulated in LIHC and was correlated with poor prognosis by analyzing the data from the TCGA, GEO, HPA, and HCCDB database. Secondly, through functional enrichment analysis, we found that TMCO3 was related to multiple tumor-related signaling pathways. Patients with LIHC with different TMCO3 expression showed different outcomes to ICB treatment. In conclusion, our results suggest that TMCO3 could be used as a new prognostic biomarker and a possible therapeutic target for LIHC.
METHODS
Data acquisition and TMCO3 expression analysis
The data for TMCO3 expression analysis was obtained from the TCGA (https://tcga.xenahubs.net) (accessed on 06 June 2022) and GEO (GES112790, including 183 LIHC samples and 15 normal samples) (http://www.ncbi.nlm.nih.gov/geo/) (accessed on 09 June 2022) databases. The “Wilcox.test” method was used to assess the differential TMCO3 mRNA expression in LIHC and normal tissues. We applied “Kruskal-wallis test” to explore the expression TMCO3 in different stages of LIHC. Boxplot was drawn using the “ggpubr” R package. The TIMER (https://cistrome.shinyapps.io/timer/) (accessed on 17 June 2022), HCCDB (http://lifeome.net/database/hccdb.html) (accessed on 11 June 2022) and GEPIA (http://gepia.cancer-pku.cn/index.html) (accessed on 20 June 2022) databases were employed to explore the expression of TMCO3 as we previously done (Hu et al., 2022a).
Immunohistochemical (IHC) images of the TMCO3 protein in normal and LIHC tissues were downloaded to evaluate the differential TMCO3 protein expression in the human protein atlas (HPA, https://www.proteinatlas.org/) database (accessed on 18 June 2022). In addition, the location of TMCO3 in U-2 OS, A-131, and U251 MG cell lines were assessed in the HPA database.
Univariate and multivariate Cox regression analyses
We used univariate and multivariate Cox regression analyses (p < 0.05 as significant) to assess the effect of TMCO3 expression and other clinical features (including: age, sex, race, pTNM-stage and grade) on OS. To screen whether TMCO3 and these clinicopathologic factors could be regarded as independent contributors for LIHC, we developed a nomogram model. We performed univariate and multivariate Cox hazard regression analyses on LIHC samples from the TCGA database using the R package “forestplot”. Furthermore, to predict potential OS in patients with LIHC, we used the R ‘rms’ package and the “survivor” package to build a validated nomogram model. Once each element was divided into points, we summed the points for each parameter to calculate the total number of points. Lastly, we validated the nomogram using the harmonic index (c-index) and calibration curves.
Analysis of the association of TMCO3 with survival of LIHC patients
The relevance of TMCO3 to the OS and DFS of LIHC was explored in the GEPIA database. Additionally, the relationship of TMCO3 with other human cancers was also assessed in this database (accessed on 25 June 2022).
Immune infiltration analysis
We used the TIMER database (accessed on 30 June 2022) to explore the correlation of TMCO3 expression with several immune cells infiltration in LIHC. In addition, the CIBERSORT method which was developed to evaluate the abundance of particular cells in hybrid cell populations using gene expression datasets was also employed to evaluate the correlation of TMCO3 expression with other immune cell infiltrates as previously reported (Hu et al., 2021; Zhu et al., 2021). Through using R packages “ggplot2,” “ggpubr,” and “ggExtra”, we assessed the correlation of TMCO3 with immune filtration.
Immune checkpoints analysis
Subsequently, the expression of several immune checkpoints, including CTLA4, PDCD1, SIGLEC15, HAVCR2, TIGIT, CD274, LAG3, and PDCD1LG2 was extracted in the high and low TMCO3 expression group (median as the cut-off). The two-gene correlation map was implemented by the R package “ggstatsplot”. Spearman’s correlation analysis was performed to characterize associations between quantitative variables that were not normally distributed. The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was applied to assess patients’ response to ICB treatment.
Analysis of differentially expressed genes
We divided the obtained expression data into low and high expression groups based on median TMCO3 expression levels, which were then further analyzed by unpaired Student’s t-test in the ‘DESeq2’ R package. |log2 fold change (FC)|>1 and adjusted p < 0.05 were taken as the thresholds for DEGs.
Functional enrichment
We selected the enriched KEGG signaling pathway analysis to illustrate the main biological roles of the major potential mRNAs. Gene ontology (GO) analysis was performed on potential mRNAs targets. We clustered the biological processes (BPs) of potential targets using the “ClusterProfiler” package in R software. Additionally, the LinkedOmics (http://www.linkedomics.org/) (accessed on 29 June 2022) was employed to perform the GSEA analysis (including GO and KEGG enrichment analyses) of TMCO3 in LIHC (Yu et al., 2022).
Protein Protein interaction (PPI) network
The TMCO3 PPI information were built from STRING (https://cn.string-db.org/) (accessed on 1 July 2022) website to further study the role of TMCO3 in LIHC.
RESULTS
The expression of TMCO3 in LIHC
We obtained TMCO3 mRNA expression levels from the TCGA database and investigated them to identify differential expression patterns between tumor and normal tissues and found that in several tumor tissues, the expression of TMCO3 was higher than in the respective normal adjacent tissues, including ESCA, COAD, GBM, HNSC, LIHC, and LUAD (Figure 1A). The data in HCCDB also confirmed the elevated TMCO3 expression in LIHC than in normal liver tissue (Figure 1B). The same results were obtained for the TCGA-based data (Figures 1C,D). Additionally, by analyzing the data downloaded from GEO, we also found that TMCO3 was up-regulated in LIHC than normal tissues (Figure 1E). We further assessed the expression of TMCO3 in different stages of LIHC, and we observed that TMCO3 expression was higher in stage II than in stage I but lower than in stage III (Figure 2A).
[image: Figure 1]FIGURE 1 | The TMCO3 expression in normal tissues and LIHC (A) The TMCO3 mRNA expression in human cancers and normal tissues. (B) The TMCO3 expression in LIHC and adjacent tissues in HCCDB database. The TMCO3 expression in LIHC and normal tissues in GEPIA (C), TCGA (D), and GEO (E) databases. *p < 0.05, ***p < 0.001, ****p < 0.0001.
[image: Figure 2]FIGURE 2 | The expression and location of TMCO3 protein (A) The TMCO3 protein IHC in LIHC and normal tissues from HPA database. (B) The association with TMCO3 expression and tumor stages of LIHC. (C) The immunofluorescence staining of TMCO3 and microtubules in U-2 OS, A-131, and U251 MG cell lines in HPA database. *p < 0.05, **p < 0.01, ****p < 0.0001, ns: no significant difference.
Next, we investigated the TMCO3 protein expression in LIHC and normal liver tissues in HPA database. The IHC staining of TMCO3 was stronger in LIHC than in normal tissues (Figure 2B). Moreover, in U-2 OS, A-131, and U251 MG cell lines, the proteins of TMCO3 were mainly localized in the cytoplasm (Figure 2C).
The prognostic value of TMCO3 in LIHC
The univariate and multivariate Cox regression analyses revealed that TMCO3 expression may be an independent prognostic factor in LIHC (p < 0.001) (Figures 3A,B). The nomogram model demonstrated that TMCO3 can be an independent factor associated with OS and has an accurate predictive ability for 1-, 3-, and 5-years prognosis (Figures 3C,D). In GEPIA database, we observed that TMCO3 was related to the OS and RFS in several cancers, including BLCA and KIRC (Figures 3E,F). In LIHC, the expression of TMCO3 was correlated with poor OS than low TMCO3 expression (p = 8.9e−05) (Figure 3G). However, the TMCO3 expression was not correlated to DFS (p = 0.083) (Figure 3H).
[image: Figure 3]FIGURE 3 | The prognostic value of TMCO3 in LIHC (A) Univariate and (B) multifactorial Cox analysis of TMCO3 and other clinical factors in LIHC (C) The nomogram and (D) Calibration curves of TMCO3, age, and pTNM-stage was established to predict 1-, 3-, and 5-years OS in LIHC patients. The association of TMCO3 with the OS (E) and DFS (F) in pan-cancer. The correlation of TMCO3 with OS (G) and DFS (H) in LIHC.
The correlation of TMCO3 with immune cell infiltrates in LIHC
We used the TIMER database to examine the relevance of TMCO3 to immune cell infiltration in LIHC, and we found that TMCO3 expression was associated with the infiltration of B cells (Cor = 0.315, p = 2.26e−09), CD4+ T cells (Cor = 0.428, p = 8.87e−17), CD8+ T cells (Cor = 0.212, p = 7.93e−05), dendritic cells (Cor = 0.375, p = 8.55e−13), neutrophil (Cor = 0.402, p = 8.55e−13), and macrophages (Cor = 0.435, p = 3.60e−17), (Figure 4A). Additionally, we applied the CIBERSORT algorithm to assess the relevance of TMCO3 to the infiltration of other immune cells. We found that TMCO3 was related to the infiltration levels of Tregs (Cor = 0.164, p = 2.29e−03) (Figure 4B), activated NK cells (Cor = c0.113, p = 3.66e−02) (Figure 4C), resting myeloid dendritic cells (Cor = 0.205, p = 1.29e−04) (Figure 4D), monocytes (Cor = −0.215, p = 1.87e−04) (Figure 4E), gamma delta T cells (Cor = −0.2, p = 1.87e−04) (Figure 4F), and macrophage M0 (Cor = 0.186, p = 5.14e−04) (Figure 4G).
[image: Figure 4]FIGURE 4 | The association of TMCO3 with immune cell infiltrates (A) The association of TMCO3 with several immune-infiltrating cells in LIHC. The correlation of TMCO3 with Tregs (B), activated NK cells (C), resting myeloid dendritic cells (D), monocytes (E), gamma delta T cells (F), and macrophages (G).
TMCO3 was associated with immune checkpoints and LIHC patient response to ICB
Subsequently, we investigated the immune checkpoints expression in low and high TMCO3 expression group. The expression of CD274 (p = 8.74e−04), CTLA4 (p = 1.23e−02), HAVCR2 (p = 1.14e−08), PDCD1(p = 1.35e−05), TIGIT (p = 5.22e−05), SIGLEC15 (p = 8.74e−04) was higher in TMCO3-high group than in TMCO3-low group (Figures 5A,B). The TMCO3 expression was associated with the expression of PDCD1 (Cor = 0.22), CD274 (Cor = 0.2), HAVCR2 (Cor = 0.31), TIGIT (Cor = 0.19), and CTLA4 (Cor = 0.19) (Figure 5C). Moreover, patients with LIHC with high TMCO3 expression had higher TIDE scores than the group with low TMCO3 expression (Figure 5D). These results suggest that TMCO3 can be applied as a predictor for ICB efficacy in LIHC.
[image: Figure 5]FIGURE 5 | The correlation of TMCO3 with the immune checkpoints and response to ICB (A,B) The immune checkpoints expression in TMCO3-low and TMCO3-high groups in LIHC. (C) The correlation between TMCO3 and immune checkpoints in LIHC. (D) The TIDE scores in TMCO3-low and TMCO3-high groups in LIHC. **p < 0.01, ***p < 0.001.
The potential functions of TMCO3 in LIHC
We established the PPI network of TMCO3 to assess the potential proteins that interplay with TMCO3 by STRING. The results indicated that TMCO3 may interplay with GART, TEME117, NQO2, CPA2, TYSND1, ATP6V1A, NQO1, C20orf96, and CNEP1R1 (Figure 6A). The volcano plots of differential genes in low and high groups of TMCO3 expression were shown in Figure 6B. The top 50 genes positively or negatively associated with TMOC3 was shown in Figures 6C,D. The top ten genes that was positively associated TMCO3 included ATP11A, RAP2A, UGGT2, GLS, RASSF3, CUL4A, ZMIZ1, STK24, GORAB, and FAM83G (Figure 6C). The top ten genes that was negatively associated with TMCO3 included C7orf55, DCXR, DNAJC30, APOC4, CCS, SLC27A5, UFSP1, ADH6, ADI1, and OCEL1 (Figure 6D). The GSEA analysis based on GO analysis indicated that TMCO3 was involved in microtubule cytoskeleton, peptidyl-threonine modification, regulation of small GTPase mediated signal transduction, cytokinesis, CENP-A containing chromatin organization, semaphoring-plexin pathway, microvillus organization, mitochondrial respiratory chain complex assembly, mitochondrial gene expression, vascular endothelial growth factor receptor pathway, peroxisome organization, translational initiation, antibiotic metabolic process in LIHC (Figure 6E). The GSEA analysis based on KEGG pathway analysis revealed that TMCO3 was associated with the TGF-beta pathway, phosphatidylinositol signaling system, ErbB pathway, proteoglycans in cancer and cell cycle in LIHC (Figure 6F). The KEGG pathway enrichment results of differentially upregulated genes (TMCO3-high vs. TMCO3-low group) indicated that proteoglycans in cancer, PI3K-akt pathway, cell cycle and focal adhesion were enriched in these up-regulated genes (Figure 7A). GO analysis indicated that organelle fission, nuclear division, mitotic spindle organization, extracellular matrix organization, and extracellular structure organization were related to these genes (Figure 7B). The KEGG pathway enrichment results of differentially down-regulated genes (TMCO3-high vs. TMCO3-low group) demonstrated that retinol metabolism, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, and cholesterol metabolism were enriched in these down-regulated genes (Figure 7C). GO analysis revealed that xenobiotic metabolic process, fatty acid metabolic process, steroid metabolic process, and alcohol metabolic process were enriched in these down-regulated genes (Figure 7D).
[image: Figure 6]FIGURE 6 | The potential role of TMCO3 in LIHC (A) PPI network of TMCO3 in LIHC. (B) The volcano plot showing the differential genes in TMCO3-high and TMCO3-low groups in LIHC. The top 50 genes that positively (C) and negatively (D) associated with TMCO3 in LIHC (E) Biological process GO analysis and KEGG pathway analysis (F) of TMCO3 in LIHC.
[image: Figure 7]FIGURE 7 | The enrichment analyses of differential genes. KEGG pathway analysis (A) and GO analysis (B) of the up-regulated genes. KEGG pathway analysis (C) and GO analysis (D) of the down-regulated genes.
DISCUSSION
LIHC has a high morbidity and mortality rate and is the third leading cause of tumor-related deaths worldwide. The overall 5-years survival rate for patients with LIHC is less than 20% (Villanueva, 2019; Nault and Villanueva, 2021). In spite of many efforts in early diagnosis and new treatments, the outcome of patients with LIHC is still unsatisfactory owing to the specific TME and the tumor heterogeneity (Gao et al., 2015; Bruix et al., 2019). Studies on hepatocarcinogenesis, heterogeneity and drug resistance have drawn attention and efforts to TME. Tumors rely on TME to maintain their proliferation, metastasis and invasion (Quail and Joyce, 2013). Briefly, the TME comprises resident stromal cells, recruited immune cells, and non-cellular components capable of interacting with cancer cells. In addition, TIICs may be related to immune disruption as the tumor grows (Quail and Joyce, 2013). Many studies have elucidated immune targets, particularly ICBs (El Dika et al., 2019; Liu et al., 2019). However, ICBs can lead to complexity and heterogeneity of TME in LIHC and do not have the desired therapeutic effect on LIHC patients (El Dika et al., 2019; Zeng et al., 2020). Nevertheless, ICBs remain a new therapeutic advancement for patients with LIHC, particularly for those with advanced LIHC (Zeng et al., 2020). Multiple studies have demonstrated that immune infiltration, a hallmark of TME and tumor heterogeneity, responds better to ICB. The presence of genetic indicators of T helper cells and CD8 T cells contributes to a better outcome according to previous studies on several malignancies (Chen and Han, 2015). Our previous studies have revealed several biomarker that may be served as predictors for LIHC and predict the therapeutic insensitivity to ICB, including TUBA1C (Hu et al., 2022b), KIFC1 (Li et al., 2021), TUBA1B (Hu et al., 2022a). Herein, a novel biomarker has been revealed that may be regarded to be a diagnostic and immunological predictor.
In our research, we identified that the protein and mRNA expression of TMCO3 was significantly higher in LIHC tissues than in normal liver tissues. Subsequently, we investigated the relevance of TMCO3 to the prognosis of LIHC and found that the OS of LIHC was poorer in the TMCO3 high expression group, suggesting that elevated TMCO3 expression predicted poor LIHC prognosis. In addition, the association of TMCO3 with the clinicopathology of LIHC was also confirmed. We found that TUBA1B was significantly higher in stage III than in stage I of LIHC. In addition, univariate and multifactorial Cox analyses showed that TMCO3 was an independent prognostic factor for LIHC. Next, we constructed a nomogram to predict 1-, 3-, and 5-years OS in patients with LIHC. In conclusion, TMCO3 is a potential prognostic biomarker for LIHC.
Tumor immune cell infiltration is correlated with tumor progression and response to immunotherapy (Binnewies et al., 2018; Zhu et al., 2020; Zhu et al., 2022). In our study, we observed a strong positive association between TMCO3 expression and infiltration of several immune cell types, suggesting a higher degree of tumor immune cell infiltration in LIHC patients with high TMCO3 expression. The top four immune cell types that showed a significant positive correlation with RPS3A expression were neutrophils, CD4 T cells, DCs and macrophages. Therefore, it is expected to increase tumor immune cell infiltration by targeting TMCO3. Furthermore, TMCO3 expression was positively related to the expression of most of the immune checkpoint molecules we observed in public database samples, suggesting that this gene may promote the synthesis or expression of immunosuppressive molecules through unknown mechanisms. More importantly, TIDE scores were elevated in the TMCO3 high expression group than in the low expression group, indicating that LIHC patients with lower TMCO3 expression has increased therapeutic insensitivity to ICB in LIHC. Therefore, TMCO3 can be a biomarker to predict the responsiveness of LIHC to ICB treatment.
Ultimately, we investigated the genes and pathways related to TMOC3 to explore the potential role of TMCO3. The results indicated that TMCO3 may interplay with GART, TEME117, NQO2, CPA2, TYSND1, ATP6V1A, NQO1, C20orf96, and CNEP1R1. The top ten genes that was positively associated TMCO3 included ATP11A, RAP2A, UGGT2, GLS, RASSF3, CUL4A, ZMIZ1, STK24, GORAB, and FAM83G. The top ten genes that was negatively associated with TMCO3 included C7orf55, DCXR, DNAJC30, APOC4, CCS, SLC27A5, UFSP1, ADH6, ADI1, and OCEL1. These proteins may interplay with TMCO3 to exert tumorigenic effects. The GO analysis indicated that TMCO3 was involved in microtubule cytoskeleton, peptidyl-threonine modification, regulation of small GTPase mediated signal transduction, cytokinesis, CENP-A containing chromatin organization, semaphoring-plexin pathway, vascular endothelial growth factor receptor pathway, microvillus organization, mitochondrial respiratory chain complex assembly, mitochondrial gene expression, peroxisome organization, translational initiation, antibiotic metabolic process in LIHC. The KEGG pathway analysis revealed that TMCO3 was related to the TGF-beta pathway, phosphatidylinositol signaling system, ErbB pathway, proteoglycans in cancer and cell cycle in LIHC. These results may indicate the potential role of TMCO3 in LIHC.
There are also several limitations in this work. Due to the lack of validation experiments in this study, in the future investigation, we will further verify the more accurate mechanism of action of TMCO3 in LIHC by in vitro in vivo experiments. In addition, the heterogeneity of tumors, the health status of patients, and changes in the immune microenvironment may cause immune checkpoint non-response and poor therapeutic effects. This is an important reason for the poor efficacy of many immunotherapies at present. Moreover, this work was conducted only based on the mRNA and protein expression profile. As the development of single-cell sequence technology, more and more novel advanced methods (such as Single-cell Multi-omics Gene co-Regulatory algorithm (Song et al., 2022), graph-based convolutional networks (Song and Su, 2021), BIOMEX (Taverna et al., 2020), and single-cell Graph Convolutional Network (Song et al., 2021)) are important in discovering potential targets, pathogenesis, and specific cells in tumors. Applying them to future research and data analysis to gain a deeper understanding of tumorigenesis and development is necessary.
CONCLUSION
Taken together, we found for the first time that TMCO3 has a poor prognosis in hepatocellular carcinoma and explored its possible mechanisms in LIHC. We confirmed the correlation of TMCO3 with LIHC immune infiltration and suggested that TMCO3 may serve as a new immunotherapeutic biomarker. Patients with LIHC with high TMCO3 expression may be more sensitive to ICB therapy. Thus, our findings will help to further provide precise immunotherapy for LIHC patients.
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Immune checkpoint genes (ICGs), the foundation of immunotherapy, are involved in the incidence and progression of hepatocellular carcinoma (HCC). Cuproptosis is characterized by copper-induced cell death, and this novel cell death pathway has piqued the interest of researchers in recent years. It is worth noting that there is little information available in the literature to determine the relationship between cuproptosis and anti-tumor immunity. We identified 39 cuproptosis-related ICGs using ICGs co-expressed with cuproptosis-related genes. A prognostic risk signature was constructed using the Cox regression and the least absolute shrinkage and selection operator analysis methods. The signature was built using the Cancer Genome Atlas (TCGA)-Liver Hepatocellular Carcinoma database. The TCGA and International Cancer Genome Consortium cohorts were classified into two groups; the low- and high-risk groups were determined using a prognostic signature comprised of five genes. The multivariate Cox regression analysis revealed that the signature could independently predict overall survival. Furthermore, the level of immune infiltration analysis revealed the robustness of the prognostic signature-immune cell infiltration relationship observed for Tregs, macrophages, helper T cells, and naive B cells. Both groups showed significant differences in immune checkpoint expression levels. The gene enrichment analysis was used for characterization, and the results revealed that enriching various pathways such as PI3K-AKT-mTOR signaling, glycolysis, Wnt/beta-catenin signaling, and unfolded protein response could potentially influence the prognosis of patients with HCC and the level of immune infiltration. The sensitivity of the two groups of patients to various drug-targeted therapy methods and immunotherapy was analyzed. In conclusion, the findings presented here lay the foundation for developing individualized treatment methods for HCC patients. The findings also revealed that studying the cuproptosis-based pathway can aid in the prognosis of HCC patients. It is also possible that cuproptosis contributes to developing anti-tumor immunity in patients.
Keywords: immune checkpoint, cuproptosis, hepatocellular carcinoma, immune infiltration, prognosis
INTRODUCTION
Liver cancer is the third leading cause of cancer-related deaths worldwide, with hepatocellular carcinoma (HCC) accounting for 75% of all primary liver cancer cases (Sung et al., 2021). According to the World Health Organization, HCC will cause approximately one million deaths by 2030 (Villanueva, 2019). Surgical and locoregional methods are first-line treatments for early to advanced-stage liver cancer (Llovet et al., 2021a). Systemic therapies treat approximately 50–60% of HCC patients. (Llovet et al., 2018; Llovet et al., 2021b). Systemic therapy has emerged as a standard treatment option for patients with advanced-stage liver cancer. Sorafenib and lenvatinib are used as first-line treatments for HCC patients (median survival: 11–14 months), and cabozantinib and ramucirumab are used as second-line treatments (median survival: 8–11 months) (Llovet et al., 2022). The immune checkpoint inhibitor (ICI)-based immunotherapy has revolutionized HCC treatment, and promising outcomes obtained with nivolumab (anti-PD-1 antibody), tremelimumab (anti-CTLA-4 antibody), athezolizumab (anti-PD-L1 antibody), and bevacizumab (anti-VEGFA antibody) (Sangro et al., 2013; Chiew Woon et al., 2020; Finn et al., 2020). Over 20 phase III trials using ICI combination therapy are currently in progress. (Llovet et al., 2021b). Furthermore, the U.S. Food and Drug Administration has approved pembrolizumab as monotherapy and the combination of nivolumab and ipilimumab as second-line treatment for advanced-stage HCC patients (Zhu et al., 2018; Yau et al., 2020). Many patients do not respond to immune checkpoint blockade (ICB) treatment, which can be attributed to complex pathogenesis, tumor immune microenvironment characteristics of HCC, and tumor heterogeneity (Ribas and Wolchok, 2018; Centanni et al., 2019). Moreover, specific clinical characteristics affect immunotherapy efficacy (Hu et al., 2019; Yu et al., 2021). Therefore, analyzing molecular or gene signatures and particular models can aid in predicting individual responses to immunotherapy. Researchers discovered a link between immune checkpoint genes (ICGs) and cancer onset and progression. It has also been reported that the ICGs may be potential targets for ICB therapy (Liu et al., 2019; Tan et al., 2021; Wu et al., 2021). The analysis of the available clinical information and expression data on the combination of ICGs can aid in identifying targets for personalized therapy and optimizing the existing therapeutic strategies.
Tsvetkov et al. (2022) recently identified a novel copper-induced cell death pathway known as cuproptosis. Cell death is caused by the direct binding of copper to lipoylated components of the tricarboxylic acid (TCA) cycle, resulting in lipoylates protein aggregation, iron-sulfur cluster protein loss, and proteotoxic stress, eventually culminating in cell death (Tsvetkov et al., 2022). The relationship between various cell death mechanisms associated with ferroptosis, pyroptosis, and necroptosis and the tumor immune microenvironment has previously been reported. Complex crosstalk between anti-tumor immune cells has also been observed (Wang et al., 2019; Tang et al., 2020; Xu et al., 2021). However, the relationship between cuproptosis and anti-tumor immunity has yet to be investigated. Studying the co-expression relationship between cuproptosis-related genes (CRGs) and ICGs can help understand the relationship between cuproptosis and anti-tumor immunity.
This study presents the findings from analyzing the expression levels of the cuproptosis-related ICGs, the interaction between the ICGs and the prognosis of HCC patients, and anti-tumor immunity. The enriched signaling pathway and the correlation between the cuproptosis-related ICGs and infiltrated immune cells were studied to understand the underlying mechanisms better. The association between gene signature and systematic therapy, including targeted therapy and immunotherapy, was investigated. The findings could aid in developing individualized HCC treatment.
MATERIALS AND METHODS
Data collection
The mRNA expression data were rectified to fragments per kilobase million (FPKM). Data corresponding to simple nucleotide variation and the relevant clinical information of 377 patients were obtained from the Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/reposiory). The mRNA expression profiles (normalized read count) and the clinical information of 231 patients were retrieved from the International Cancer Genome Consortium (ICGC) database (https://dcc.icgc.org/projects/LIRI-JP). The gene expression profiles were normalized with the R package “Linear Models for Microarray Data (limma)”. The ICGC and TCGA databases are freely accessible to the public. Therefore, the local ethics committees waived the ethical approval requirement. Several studies (Hu et al., 2020; Oliveri, 2022; Tsvetkov et al., 2022) provided information on the genes linked to ICG and cuproptosis. Finally, 13 CRGs and 79 ICGs were identified and used in the experiments. Our study included 231 HCC patients from the ICGC (LIRI-JP) cohort and 365 HCC patients from the TCGA-LIHC cohort. Data on patients’ clinical baseline characteristics are shown (Table 1). Figure 1 depicts the relevant flow chart.
TABLE 1 | Clinical baseline characteristics of the patients.
[image: Table 1][image: Figure 1]FIGURE 1 | The flowchart of the overall study.
Construction and validation of a prognostic cuproptosis-related immune checkpoint gene signature
The TCGA cohort’s precancerous and cancerous tissues were compared using the “limma” R package to identify the differentially expressed cuproptosis-related genes (DECGs). If the genes met certain criteria (false discovery rate (FDR): < 0.05; |Fold Change|: > 1), they were classified as DECGs. Pearson’s test investigated the correlation between the DECGs and the ICGs (p < 0.05; |correlation coefficient|: > 0.21). The differential expression and the correlation analysis were visualized using heatmap and Cytoscape (version 3.6.1). The univariate Cox regression analysis method was used to identify the prognostic genes among the cuproptosis-related immune checkpoint genes (p < 0.05). Data overfitting was avoided using the “glmnet” package to integrate the gene expression data, survival status, and survival time. The least absolute shrinkage and selection operator (LASSO)–Cox analysis method was used for regression analysis. A 10-fold cross-validation method was used to construct the optimized model. The risk score was calculated, and the following regression coefficients were determined:
[image: image]
The median risk score was calculated to classify the patients into low- and high-risk groups. The R packages “Survival,” “survminer,” and “timeROC” were used for survival analysis, and the R setting “maxstat” was used to determine the optimal cut-off expression level during the survival analysis of each gene. The “Rtsne” package was used for the t-distributed stochastic neighbor embedding (t-SNE) analysis, and the prcomp function in the “stats” package was used for principal component analysis (PCA). The multivariate Cox regression analysis method (p-value < 0.05) was used to identify the independent risk factors. Subsequently, the ICGC database (LIRI-JR) validated the prognostic signature using the same risk score calculation formula and statistical analysis methods. Multivariate and univariate Cox regression analyses were carried out to test the independent prediction ability (p-value < 0.05). The “rms” package in R was used to construct a prognostic nomogram, and the calibration curve was used to evaluate the predictive performance of the nomogram. A bootstrap method with 1,000 resamples was used to evaluate the signature’s predictive ability using the concordance index. The TCGA cohort’s results were obtained using multivariate and univariate methods.
Analysis of the immune infiltration
The relationship between the level of immune infiltration realized and the ICG signature was determined using data from the Tumor Immune Estimation Resource (TIMER 2.0; http://timer.cistrome.org/) and CIBERSORTx (https://cibersortx.stanford.edu). They assess the score of immune infiltrating cells from each TCGA and ICGC cohort sample. The results were obtained for each of the TCGA and ICGC cohort samples. Several methods, including CIBERSORTx algorithm, (Newman et al., 2019), MCPCOUNTER, (Becht et al., 2016), TIMER 2.0, (Li et al., 2016), EPIC, (Racle et al., 2017), xCELL, (Aran et al., 2017), and QUANTISEQ, (Finotello et al., 2019), were used to analyze the relationship between the immune cell infiltration levels and risk scores. The Immuno-Oncology Biological Research (IOBR) package was used to calculate the infiltration scores of immune cells [including macrophages, CD4+ T cell, B cell, neutrophils, CD8+ T cell, and dendritic cell (DC)]. The expression level of each gene was analyzed to determine the infiltration scores for every patient in the TCGA-LIHC database. Pearson’s correlation coefficient was used to determine the correlation for each signature gene. The “psych” package in R was used to generate the results. Finally, the Wilcoxon test was used to compare the difference in immune checkpoints between the two groups. P < 0.05 was accepted as statistically significant.
Function enrichment analysis
The potential molecular mechanisms and biological functions of the ICG signature were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The differentially expressed genes (DEGs) for the two groups (high- and low-risk group) were extracted in the limma R package with FDR < 0.05 and |log2FoldChange| >1. The “enrichplot,” “org.Hs.eg.db,” and “clusterProfiler” packages were used for KEGG analysis (statistical significance: p and q < 0.05). The gene set enrichment analysis (GSEA) method was used to understand the enriched pathways in both groups. The molecular signature dataset was analyzed using Java GSEA v. 4.2.2 and h. all.v7.5.1 symbols. gmt [Hallmarks] (threshold criteria: |NES| > 1 and FDR < 0.05).
Assessing the clinical significance of the prognostic signature
The “pRRophetic” package was used to determine the drug sensitivity of each sample. The Cancer Genome Project database (https://www.sanger.ac.uk/) was used to analyze the relationship between risk score and drug sensitivity. The analysis was conducted in R using the “pRRophetic” package (p-value < 0.05). Simulation studies were conducted using the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu/) to understand the key mechanisms associated with tumor immune evasion and predict the response potential of tumor immunotherapy. This algorithm simulates the primary mechanisms of tumor immune escape: T cell dysfunction in tumors, cytotoxic T lymphocyte (CTL) invasion levels, and the exclusion properties of T cells in tumors with low levels of CTL invasion (Jiang et al., 2018). The TIDE score, T cell dysfunction, and T cell exclusion were used to estimate immunotherapy efficacy in the TCGA cohort, and the same evaluation was performed in the ICGC cohort for validation. Before TIDE analysis, the gene expression data were normalized.
Evaluation of genomic features and tumor mutation burden
The single nucleotide variation in the Masked Somatic Mutation type in TCGA-LIHC was downloaded and converted to the mutation annotation format to build waterfall diagrams to visualize gene mutation frequency using the “maftools” package. The differences in TMB realized in the low- and high-risk groups were also studied; p < 0.05 was used as the significant difference threshold. The comprehensive survival analysis was carried out based on the TMB level (high- and low-TMB group) and risk score (high- and low-risk group; statistical significance: p < 0.05).
Statistical analysis
The Pearson’s or Spearman’s rank coefficients of correlation were used to investigate the relationship between variables. The continuous variables and normal distributions recorded for the two groups were compared using a t-test or Mann-Whitney U test. The categorical variables were compared using Fisher’s exact or Chi-squared tests. The Kaplan-Meier (K-M) method was used to plot receiver operating characteristic (ROC) curves. The statistical significance was determined using log-rank tests. Using multivariate and univariate Cox regression analyses, independent predictors of overall survival (OS) time were identified. R versions 3.6.1 and 4.1.1 were used to conduct statistical analyses (statistical significance: p < 0.05).
RESULTS
Identification of prognostic immune checkpoint genes based on differentially expressed cuproptosis-related genes
Differential expression of 11 genes associated with cuproptosis was observed in the TCGA cohort. Eight of these genes were upregulated, and three were downregulated (Supplementary Figure S1A). Thirty-nine immune checkpoint genes were correlated with DECGs (Supplementary Figure S1B). Seven genes related to prognosis were screened out of the 39 genes using the univariate Cox regression analysis method (Figure 2A). The K-M analysis method was used to assess the prognostic significance of the expression levels of these seven genes. High levels of CD276, LGALS9, SIRPA, BTN2A1, and TNFRSF4 genes and low levels of CD40LG and BTNL9 genes reflected poor patient prognosis (Figures 2B–H).
[image: Figure 2]FIGURE 2 | Screening of cuproptosis-related immune checkpoint genes (ICGs) related to the prognosis of hepatocellular carcinoma (HCC) patients. (A) Univariate analysis shows that cuproptosis-related ICGs, including CD276, LGALS9, CD40LG, BTNL9, SIRPA, BTN2A1, and TNFRSF4 genes, were associated with the prognosis of HCC patients. (B–H) Kaplan-Meier analysis of cuproptosis-related ICGs related to prognosis.
Prognostic signature construction
The seven prognostic gene-based prognostic signature was developed using LASSO-Cox regression analysis. The optimal λ value was used to determine the prognostic signature of five genes (BTNL9, SIRPA, TNFRSF4, CD40LG, and BTN2A1) (Figures 3A,B). Each sample’s risk score was calculated using the risk score equation (Risk Score = -0.233700910650553 * BTNL9 + 0.137008446999748 * SIRPA + 0.278119160353374 * TNFRSF4—0.656319252714311 * CD40LG + 0.217796049191113 * BTN2A1). Based on the median cut-off value, the TCGA cohort was divided into two groups (low-risk: n = 183; high-risk: n = 182). Figure 3C presents the significant differences in overall survival (OS) between the two groups (p < 0.001). K-M analysis was conducted on patients belonging to different subgroups (stages: I–II and III–IV; grades: 1–2 and 3–4; T stages: I–II and III–IV, age ≤ 60). The results indicated that the signature could distinguish between high- and low-risk groups in different subgroups (p < 0.05, Figures 3D–K). The prognostic curve, risk plot, and heatmap show the relationship between risk score, survival status, and signature gene expression (Figure 4A). The heatmap presenting the expression profiles of signature genes was scrutinized. The results showed that the expression levels of TNFRSF4, SIRPA, and BTN2A1 genes in the high-risk group were higher than those in the low-risk group. It was also observed that the expression levels of BTNL9 and CD40LG genes in the low-risk group were higher than those in the high-risk group. The t-SNE analysis and PCA methods yielded a two-way distribution for patients in different risk groups (Figures 4B,C). The accuracy of the risk scores was determined by analyzing the time-dependent ROC curves (Figure 4D). For the TCGA cohort, the area under curves (AUC) associated with the survival rates were calculated (1-year: 0.71; 3-year: 0.71; and 5-year: 0.77).
[image: Figure 3]FIGURE 3 | Identifying a prognostic signature based on five cuproptosis-related immune checkpoint genes (ICGs) and their prognostic value. (A,B) LASSO Cox regression with 10% discount cross-validation for developing a prognostic signature. (C) Kaplan-Meier (K–M) analysis of high- and low-risk groups in the TCGA cohort. (D–K) K–M analysis of high- and low-risk groups in different subgroups of the TCGA cohort.
[image: Figure 4]FIGURE 4 | Evaluation of the prognostic signature in the TCGA cohort and the expression of cuproptosis-related genes. (A) The distribution of the patient’s risk scores, survival status, and the expression of signature genes for high- and low-risk groups in the TCGA cohort. (B) and (C) The principal component analysis and t-distributed stochastic neighbor embedding analysis of patients in different risk groups in the TCGA cohort. (D) The receiver operating characteristic curves of the prognostic signature for predicting 1-, 3-, and 5-year survival rates of patients in the TCGA cohort. (E) Heat map showing the co-expression relationship of differentially expressed cuproptosis-related genes and signature genes. (F) Kaplan-Meier analysis of the prognostic value of the LIPT1 gene.
The correlation heatmap was constructed, and the relationship between signature genes and DECGs was examined. As shown in Figure 4E, all the signature genes had a significant correlation with LIPT1 gene expression (p < 0.05), and high levels of the LIPT1 gene were associated with a poor prognosis (p < 0.05; Figure 4F).
Validating the 5-gene signature prognostic value
The ICGC cohort samples were scored using the same method as the TCGA cohort samples, and the high- and low-risk samples were then categorized using the TCGA cohort’s median cut-off value. The K-M analysis revealed a significant difference in OS between low-risk and high-risk groups (p < 0.001, Figure 5A). A significant difference in OS was also observed when the K-M analysis method was used to analyze the various subgroups of the ICGC cohort. Gender, age, and tumor stage of the patients were investigated in the low- and high-risk groups (p < 0.05, Supplementary Figures S2A–F). PCA and t-SNE analysis for the ICGC cohort also showed a two-way distribution of patients into two groups (Figures 5B,C). The prognostic curve, risk plot, and heatmap analysis revealed that the number of deaths in the high-risk group was significantly higher, and the expression of signature genes observed in the two groups was comparable to that obtained from the TCGA database (Figure 5D). The AUC values for the ICGC cohort were recorded (1-year: 0.78; 2-year: 0.69; and 3-year: 0.70) (Figure 5E). In addition, the patient’s baseline characteristics were determined and compared (Tables 2,3). Patients in the high-risk group were more likely to be at an advanced stage (p < 0.01).
[image: Figure 5]FIGURE 5 | Evaluation of the prognostic signature in the ICGC cohort and the prognostic value in two cohorts. (A) Kaplan-Meier analysis of high- and low-risk groups in ICGC cohort. (B) and (C) The principal component analysis and t-distributed stochastic neighbor embedding analysis of patients in different risk groups, in the ICGC cohort. (D) The distribution of the patient’s risk scores, survival status, and the expression of signature genes for high- and low-risk groups in the ICGC cohort. (E) The receiver operating characteristic curves of the prognostic signature for predicting 1-, 2-, and 3-year survival rates of patients in the ICGC cohort. Univariate and multivariate Cox regression analyses show the risk score as an independent prognostic factor (F) and (H) in the TCGA cohort and (G) and (I) in the ICGC cohort.
TABLE 2 | Clinical baseline characteristics of patients with different risk groups in the TCGA cohort.
[image: Table 2]TABLE 3 | Clinical baseline characteristics of patients with different risk groups in the ICGC cohort.
[image: Table 3]Multivariate and univariate Cox regression analyses were conducted to determine if our signature is independent of other clinical parameters. The TCGA cohort was studied using the univariate Cox regression analysis method. Correlation between the OS and the risk score was recorded (p < 0.001; hazard ratio (HR) = 3.933; 95% confidence interval (CI) = 2.399–6.450) (Figure 5F). The multivariate Cox regression analysis method revealed that the signature was an independent predictor of survival (p < 0.001; HR = 3.003; 95% CI = 1.792–5.033) (Figure 5H). Similarly, the ICGC cohort was studied. The univariate (p < 0.001; HR = 3.515; 95%; CI = 1.860–6.643) (Figure 5G) and multivariate Cox regression analyses (p < 0.01; HR = 2.627; 95% CI = 1.272–5.425) (Figure 5I) results were used to determine the nature of the signature. Our signature was found to be an independent predictor of OS. Further, ROC curves were generated using a combination of the data on stage and the risk score to determine sensitivity and specificity. The value of AUC was increased in the TCGA and ICGC cohorts (Supplementary Figures S3A,B). The construction of the nomogram also confirmed the result, with the risk score having the most weight in the nomogram that predicts the 1-, 3-, and 5-year survival rates (Supplementary Figures S3C,D). The concordance index further confirmed the signature’s predictive ability (Supplementary Figure S3E).
Immune infiltrate analysis
Several algorithms were used to investigate the association between immune cell infiltration level and the signature (Figures 6A–H). The infiltration of Treg cells, M0 macrophages, type 2 helper T cells (Th2 cells), and follicular helper T cells were positively correlated with the risk score (p < 0.05). A negative correlation was observed for the infiltration levels of neutrophils, NK cells, memory resting CD4+ T cells, and naive B cells (p < 0.05). The ICGC cohort’s results were verified under the same algorithms (Figures 6I–P). The results of immune infiltration analysis obtained by different algorithms are summarized in Supplementary Figures S4A,B. Given the clinical significance of immune checkpoint blockade-based immune therapy in HCC, the correlation between the immune checkpoints and the risk score was investigated further. In the TCGA cohort, the high-risk group had significantly higher PDCD1 and CTLA4 gene expression levels than the low-risk group (p < 0.05; Figure 6Q). The ICGC cohort was analyzed, yielding similar results (Figure 6R). The relationship between the levels of expression of each signature gene and the level of immune cell infiltration was analyzed further. Figure 7 presents a positive correlation between the levels of expression of BTN2A1, TNFRSF4, SIRPA, CD40LG genes, and immune cells infiltration levels, while the BTNL9 gene expression level was negatively correlated (Figures 7A–E). Furthermore, the expression levels of the LIPT1 gene were positively correlated with immune cell infiltration (Figure 7F). These findings demonstrated the prognostic signature’s robustness and association with the tumor immune cell infiltration level.
[image: Figure 6]FIGURE 6 | Correlation between the signature and the immune microenvironment. The infiltration of (A) Tregs cells, (B) M0 macrophages, (C) Th2 cells, and (D) follicular helper T cells were positively related to risk scores in the TCGA and (I–L) ICGC cohorts, respectively. The infiltration of (E) neutrophils, (F) NK cells, (G) memory resting CD4+ T cells, and (H) naive B cells were negatively related to risk scores in the TCGA and ICGC (M–P) cohorts, respectively. The expression of immune checkpoints in high- and low-risk groups, in (Q) TCGA and (R) ICGC cohorts. The upper and lower ends of the boxes indicate the interquartile range. Lines in the boxes indicate median values, and black dots show outliers. * p < 0.05; ** p < 0.01; *** p < 0.001; ns, no statistical significance.
[image: Figure 7]FIGURE 7 | The correlation between the expression of signature genes and immune cell infiltration. The expression of (A) BTN2A1, (B) TNFRSF4, (C) SIRPA, (D) CD40LG, and (F) LIPT1 genes was positively correlated with immune cell infiltration. The expression of the (E) BTNL9 gene was negatively correlated with immune cell infiltration.
Function enrichment analysis based on the prognostic signature
The GSEA analysis revealed that the hallmark tumor-related pathways were primarily associated with the high-risk group, as shown in Supplementary Figure S4C. The pathways studied were PI3K-AKT-mTOR signaling, glycolysis, Wnt/beta-catenin signaling, and unfolded protein response pathways (Figures 8A–D). Bile acid and xenobiotic metabolism influenced the low-risk group (Supplementary Figure S4C).
[image: Figure 8]FIGURE 8 | Gene set enrichment analysis of the cuproptosis-related ICG signature. (A–D) Four remarkably enriched tumor-associated HALLMARK pathways in the high-risk group.
A total of 637 DEGs were screened out. KEGG analysis revealed that the DEGs associated with the two groups were enriched in seventeen pathways (Supplementary Figure S4D, Supplementary Table S1), including glycolysis, cell cycle, tyrosine metabolism, and ECM-receptor interaction. Therefore, the findings demonstrated the biological significance of the prognostic gene signature.
Analysis of the sensitivity of systemic therapy and immunotherapy
The half-maximal inhibitory concentration (IC50 value) of the first- and second-line targeted therapy methods was calculated using drug sensitivity analysis (Zhang et al., 2022). The most commonly used chemotherapeutics for HCC were also investigated. According to the findings, the IC50 value for erlotinib was lower in the low-risk group (p < 0.05, Figure 9H), whereas the IC50 values for sorafenib, vinorelbine, sunitinib, 5-fluorouracil, XL-184 (cabozantinib), mitomycin C, and doxorubicin were lower in the high-risk group (Figures 9A–G; p < 0.05) in the TCGA cohort. The ICGC cohort yielded comparable results (Supplementary Figures S5A–H).
[image: Figure 9]FIGURE 9 | Predictive analysis of the prognostic signature for systemic therapy and immunotherapy in the TCGA cohort. (A–H) The half-maximal inhibitory concentration (IC50) of drugs for targeted therapy and chemotherapy in high- and low-risk groups in the TCGA cohort. (I) The Tumor Immune Dysfunction and Exclusion scores of high- and low-risk groups in the TCGA cohort. (J) Correlation analysis between risk score and TIDE score in the TCGA cohort. The upper and lower ends of the boxes indicate the interquartile range. Lines in the boxes indicate median values, and black dots show outliers. *p < 0.05; **p < 0.01; ***p < 0.001; ns, no statistical significance.
TIDE score is calculated by assessing the T cell dysfunction and exclusion parameters, and it can predict tumor response to immune checkpoint inhibitors (ICIs). The TIDE scores were analyzed to determine the model’s accuracy in predicting the efficacy of immunotherapy. Figure 9I shows the TIDE scores for the groups, which indicated that high-risk group patients might have a poor response to immunotherapy (p < 0.001), and the results were confirmed for the ICGC cohort (p < 0.001, Supplementary Figure S5I). Furthermore, the characteristics of T cell exclusion and the myeloid-derived suppressor cells (MDSC) were analyzed, and the results are presented (p < 0.001, Figure 9I, Supplementary Figure S5I). Both cohorts had a positive correlation between the TIDE score, level of T cell exclusion realized, MDSC, and risk score (p < 0.01, Figure 9J, Supplementary Figure S5J).
Overall, the prognostic signature correlated with systemic therapy and immunotherapy response. This can aid scientists and clinicians in developing treatment methods based on patients’ sensitivity to targeted therapy and immunotherapy.
Evaluation of genomic features and tumor mutation burden
The optimal cut-off value for classifying the samples into low- and high-TMB groups was determined. TMB levels were higher (p < 0.05) in the high-risk group than in the low-risk group (Supplementary Figure S6A). The survival rate in the low-TMB group was higher than in the high-TMB group (p < 0.05, Supplementary Figure S6B). A comprehensive survival analysis method was used for the risk score and TMB parameters (Supplementary Figure S6C), and patients with low TMB in the low-risk group had the best prognosis. The gene mutations were visualized as waterfall diagrams. Supplementary Figures S6D,E show that the low-risk group had a lower mutation rate (the top 15 genes) than the high-risk group. Both groups carried the missense mutation. The high-risk group had the highest TP53 gene mutation frequency, while the low-risk group had the highest CTNNB1 gene mutation frequency.
DISCUSSION
Most HCC patients are diagnosed at an advanced stage of the disease and thus do not benefit from radical treatment methods. Early diagnosis prolongs survival. Many patients go undiagnosed when they develop atypical symptoms at an early stage (Gou et al., 2019). Despite the promising results, only a few patients benefit from ICI-based immunotherapy. Under normal circumstances, the host immune system, mainly cytotoxic T lymphocytes (CTLs) and NK cells, can target and eliminate the malignantly transformed cells (Schumacher and Schreiber, 2015). However, the immune response is tightly regulated by a variety of activating and inhibiting mechanisms to prevent autoimmune events and maintain immune dynamic balance. As the main pathway to regulate the immune response, the immune checkpoints (ICs) signaling pathway will be activated, when the IC receptors, which are expressed on CTL and NK cells, interact with the IC ligands, which are expressed on tumor cells or immunosuppressive cells. At this time, the cytotoxicity and immune surveillance were suppressed, leading to tumor immune evasion (Kim et al., 2016). In addition, tumors can also restrain anti-tumor immunity by up-regulating the expression of ICs, resulting in an immunosuppressive tumor microenvironment (Wang et al., 2017). Cuproptosis-induced cell death has recently received much attention, but few studies have investigated the association between cuproptosis, prognosis, and anti-tumor immunity in HCC. The findings show that ICGs co-express with CRGs. A prognostic model based on five cuproptosis-related ICGs was established to investigate the relationship between gene expression signatures, prognosis, and anti-tumor immunity in HCC. Furthermore, the related signaling pathways were investigated, and the sensitivity to systematic therapy in patients with different expression signatures was assessed to better understand the differences in anti-tumor immunity in patients. Finally, the genetic variations were evaluated, including somatic mutations and their characteristics.
The TCGA-LIHC cohort was divided into two groups. The groups were established based on the expression levels of the five cuproptosis-related ICGs (CD40LG, TNFRSF4, SIRPA, BTN2A1, and BTNL9). We recorded poor prognoses for high-risk patients. The findings were confirmed for the ICGC cohort. Lower levels of expression of CD40LG, which is expressed on the CD4+ helper T cells as a co-stimulatory molecule, are observed in cancer patients, indicating an impaired immune response (Cai et al., 2021). Researchers have reported that CD40LG has a potent anti-tumor effect, which can be attributed to the CD40L–CD40LG interactions and can induce anti-tumor immunity by eliminating tumor-specific CD4+ and CD8+ tolerance (Sotomayor et al., 1999; Schmitz et al., 2001). TNFRSF4, a co-stimulatory receptor expressed by Tregs, can bind to OX40L and activate the NF-kB pathway (Song et al., 2008). Increased TNRSF4 expression levels in HCC patients were associated with vascular invasion, high serum alpha-fetoprotein levels, and a poor prognosis (Xie et al., 2018). Pan et al. (Pan et al., 2013) indicated that SIRPA, an inhibitory molecule expressed by myeloid cells, is a crucial modulator in tumor-polarized macrophages. These could be potential therapeutic targets for HCC. The Vγ9Vδ2+ T cells are also promising anti-tumor therapy targets (Rigau et al., 2021). Cano et al. (Cano et al., 2021) reported that the BTN2A1 gene influences Vγ9Vδ2+ T cells to mediate cytotoxic attacks on cancer cells. The anti-BTN2A1 monoclonal antibodies help to mitigate the cytotoxic effects of Vγ9Vδ2+ T cells on cancer cells (Cano et al., 2021). This indicates that the BTN2A1 gene is a potential therapeutic target. The findings show that LIPT1 and the signature genes co-express in significant amounts. HCC patients with high levels of LIPT1 gene expression had a poor prognosis. LIPTI gene was also linked to immune cell infiltration. LIPT1 gene encodes for liopyltransferase-1, which activates 2-ketoacid dehydrogenases involved in the tricarboxylic acid cycle (TCA cycle) (Ni et al., 2019; Solmonson et al., 2022). Liopyltransferase-1 transports the lipoic acid cofactor, including PD-ketoglutarate dehydrogenase, to the mitochondrial 2-ketoacid dehydrogenases involved in the TCA cycle (Solmonson et al., 2022). LIPT1 gene is also involved in copper ionophore-induced cell death (Tsvetkov et al., 2022). LIPT1 deficiency can cause developmental delays, epilepsy, and broad metabolic abnormalities (Ni et al., 2019). However, the role of the LIPT1 gene in cancer onset and progression remains unknown. The findings presented here shed light on the potential role of the LIPT1 gene in cancer onset and progression. The findings may aid in developing novel ideas for future research.
The GSEA method investigated gene signatures, prognosis, and anti-tumor immunity mechanisms. Cancer cells experience an energy crisis as the extent of cell proliferation increases, forcing them to undergo metabolic reprogramming. (Dimri et al., 2020). Glycolysis is a critical metabolic pathway. It regulates proliferation, immune evasion, cell invasion, metastasis, angiogenesis, and drug resistance (Feng et al., 2020). Promoting the PI3K/AKT/mTOR pathway improves glucose transporter levels, increasing the rate of glycolysis, which promotes cancer progression (Dimri et al., 2020).
Stress from the abnormal accumulation of unfolded or misfolded proteins inside the endoplasmic reticulum (ER) significantly affects the progression of diseases such as cancer and diabetes. The unfolded protein response (UPR) pathway monitors the processes involved in endoplasmic reticulum protein homeostasis (Hetz et al., 2020). Oncogenic factors trigger ER stress and activate UPR, which can induce the process of oncogenic transformation and promote tumor growth, angiogenesis, and immune evasion (Hetz et al., 2020). UPR signaling can also control immune cell functions and differentiation. This method can also aid in establishing crosstalk with both adaptive and innate immune responses (Bettigole and Glimcher, 2015; Hetz et al., 2020). The activation of the Wnt/beta-catenin signaling pathway downregulates CCL5 expression and inhibits the DC recruitment process, resulting in increased resistance to ICIs and immune response escape in HCC patients (Ruiz de Galarreta et al., 2019). In addition, Wnt/beta-catenin signaling reduces the expression of the NKG2D ligand in HCC cells, hindering the generation of MHC-independent immune responses initiated by NK cells (Cadoux et al., 2021). These findings are consistent with our predicted results.
Complex molecular mechanisms drive anti-tumor immunity in HCC. The interaction of tumor cells with immune cells, and other immunomodulators in the tumor microenvironment determines the response to ICIs (Sia et al., 2017). The level of LIPT1 gene expression correlated positively with the level of immune cell infiltration. This suggests a potential association between cuproptosis and immune infiltration levels. Tregs, Kupffer cells (which account for 90% of liver macrophages), monocyte-, and myeloid-derived macrophages have previously been identified as the key cells driving the immunosuppressive effect. In HCC patients, the functions of these cells result in the generation of evading immune responses. They also promote carcinogenesis and immune evasion via multiple mechanisms. The mechanisms include the secretion of various immunosuppressive cytokines and interleukin (IL)-10 and the recruitment of the Tregs cells and the CD4+ T helper 17 (Th17) cells (Llovet et al., 2022). Th2 cells, which primarily secrete IL-2 and IL-10, have been shown to promote immunosuppression, and tumor progression and metastasis. (Zhou et al., 2021). The results show a positive correlation between M0, Tregs, Th2 cells, follicular helper T cells, and the risk score, suggesting immunosuppression in high-risk group patients. These findings are also consistent with our prediction of the TIDE score.
Notably, it is crucial to explore the co-regulatory relationship between CRGs and ICGs at a deeper level, as this is the foundation of our successful clinical transformation. The advancement of single-cell multi-omics technologies is promising. Recent research has proposed a novel algorithm, the Single-cell Multi-omics Gene co-Regulatory algorithm (SMGR), (Song et al., 2022), which is efficient for identifying co-regulatory programs and is useful in determining molecular mechanisms and providing accurate targets. The single-cell multi-omics is the trend of molecular research in the future, and we look forward to more brand-new technologies that can inspire us.
There are a few limitations to the study. The findings presented here are based on bioinformatics analysis and lack experimental and clinical validation. Second, the reported direct relationship between cuproptosis, prognosis, and anti-tumor immunity in HCC patients need to be validated further.
CONCLUSION
In conclusion, a novel cuproptosis-related ICG signature was developed for effective prognosis prediction beginning with ICGs that are co-expressed with CRGs. The immune response of HCC patients could also be predicted. Further research was conducted to explore the signaling pathways involved in the immune responses, cuproptosis, and level of immune infiltration. The findings presented here could aid in developing individualized treatment plans for HCC patients. It also contributes to a better understanding of the role of cuproptosis in patients’ prognosis and the development of anti-tumor immunity in HCC patients.
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Supplementary Figure S1 | (A) The heatmap shows the differentially expressed cuproptosis-related genes (DECGs) between paracancerous and cancerous tissues in the TCGA cohort. (B) The Cytoscape visualizes the co-expressive relationship between DECGs and immune checkpoint genes.
Supplementary Figure S2 | (A–F) Kaplan-Meier analysis of high- and low-risk groups in different subgroups of the ICGC cohort.
Supplementary Figure S3 | Evaluation of the prognostic value of the signature. The receiver operating characteristic curves of the prognostic signature combined with the stages for (A) Predicting 1-, 3-, and 5-year survival rates of patients in the TCGA cohort and (B) predicting 1-, 2-, and 3-year survival rates of patients in the ICGC cohort. (C) The nomogram was constructed using the combination of risk score, age, gender, grade and stages. (D) The calibration curve of the nomogram. (E) The concordance index of risk score and other clinical parameters.
Supplementary Figure S4 | Immune infiltration analysis, gene set and functional enrichment analysis of the prognostic signature. (A) and (B) Analysis of immune infiltration under different algorithms for TCGA and ICGC respectively. (C) The gene set enrichment analysis of high- and low-risk groups. (D) The Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the signature.
Supplementary Figure S5 | Predictive analysis of the prognostic signature for systemic therapy and immunotherapy in the ICGC cohort. (A–H) The half-maximal inhibitory concentration (IC50) of targeted therapy and chemotherapy drugs in the ICGC cohort’s high- and low-risk groups in the ICGC cohort. (I) The Tumor Immune Dysfunction and Exclusion (TIDE) score of the ICGC cohort’s high- and low-risk groups. (J) Correlation analysis between risk score and TIDE score in the ICGC cohort. The upper and lower ends of the boxes indicate the interquartile range. Lines in the boxes indicate median values, and black dots show outliers. *p < 0.05; **p < 0.01; ***p < 0.001; ns, no statistical significance.
Supplementary Figure S6 | Evaluation of genomic features and tumor mutational burden (TMB). (A) TMB levels in high- and low-risk groups. (B) and (C) Kaplan-Meier analysis of patients with different TMB subgroups. The waterfall diagrams show the situation of gene mutations in the (D) high-risk group and (E) low-risk group.
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Background: Growing evidence suggests that infiltrating neutrophils are key players in hepatocellular carcinoma (HCC) tumor progression. However, a comprehensive analysis of the biological roles of neutrophil infiltration and related genes in clinical outcomes and immunotherapy is lacking.
Methods: HCC samples were obtained from the TCGA and GEO databases. The CIBERSORT algorithm was used to reveal the TIME landscape. Gene modules significantly associated with neutrophils were found using weighted gene co-expression network analysis (WGCNA), a “dynamic tree-cut” algorithm, and Pearson correlation analysis. Genes were screened using Cox regression analysis and LASSO and prognostic value validation was performed using Kaplan-Meier curves and receiver operating characteristic (ROC) curves. Risk scores (RS) were calculated and nomograms were constructed incorporating clinical variables. Gene set variation analysis (GSVA) was used to calculate signaling pathway activity. Immunophenoscore (IPS) was used to analyze differences in immunotherapy among samples with different risk scores. Finally, the relationship between RS and drug sensitivity was explored using the pRRophetic algorithm.
Results: 10530 genes in 424 samples (50 normal samples, 374 tumor samples) were obtained from the TCGA database. Using WGCNA, the “MEbrown” gene module was most associated with neutrophils. Nine genes with prognostic value in HCC (PDLIM3, KLF2, ROR2, PGF, EFNB1, PDZD4, PLN, PCDH17, DOK5) were finally screened. Prognostic nomograms based on RS, gender, tumor grade, clinical stage, T, N, and M stages were constructed. The nomogram performed well after calibration curve validation. There is an intrinsic link between risk score and TMB and TIME. Samples with different risk scores differed in different signaling pathway activity, immunopharmaceutical treatment and chemotherapy sensitivity.
Conclusion: In conclusion, a comprehensive analysis of neutrophil-related prognostic features will help in prognostic prediction and advance individualized treatment.
Keywords: hepatocellular carcinoma, WGCNA, neutrophils, risk score, tumor immune microenvironment
1 INTRODUCTION
Hepatocellular carcinoma (HCC) is the most common case type of liver cancer and the fifth leading cause of cancer-related death worldwide (Ioannou et al., 2007; Global Burden of Disease Study 2013 Collaborators, 2015; Lersritwimanmaen and Nimanong, 2018). Because symptoms are not obvious or asymptomatic in the early stages of cancer, most HCC cases are already in the incurable stage at the time of diagnosis. Even if detected early, with surgical resection, the best treatment, recurrence rates are high (Famularo et al., 2018; Fujiwara et al., 2018). This makes the prognosis of HCC poor (Jemal et al., 2017). Therefore, it is of great significance to study the influencing factors affecting HCC tumor progression and clinical prognosis, to develop novel and reliable indicators for treatment effect estimation, and to further advance individualized treatment.
In recent years, the progress of liver cancer treatment technology is encouraging, and many cutting-edge treatment methods have been discovered by researchers and applied in clinical practice. Among them, the development of anti-tumor immunotherapy is particularly rapid, and it has become a breakthrough in the treatment of liver cancer (Heinrich et al., 2018; Iñarrairaegui et al., 2018; Llovet et al., 2018). Immunotherapy is characterized by recognition by the immune system, and then by activating the immune system in the host to suppress or kill tumor cells, thereby reducing the rate of tumor recurrence and metastasis. International guidelines also clearly stated that immunotherapy is one of the effective methods for the treatment of advanced liver cancer (European Association for the Study of the Liver, 2018). Unfortunately, however, immunotherapy is only effective in a minority of HCC patients. The main reason for the limited nature of this treatment may be the suppression of the tumor immune microenvironment (TIME) (O'Reilly et al., 2019). TIME is a dynamic system composed of tumor cells and their surrounding immune cells, inflammatory cells, microvessels and various cytokines (Chew et al., 2017). TIME mainly affects the proliferation and metastasis of tumor cells by producing and activating cytokines, chemokines and growth factors, and recruiting immune cells (Yang et al., 2014). Among them, neutrophils play a particularly important role in this process.
As the most abundant leukocyte type in the human body, the anti-infection function of neutrophils has been generally recognized (Nathan, 2006; Nauseef and Borregaard, 2014). The important role of neutrophils in tumor cell progression and anti-tumor has long been confirmed by many studies (van Rees et al., 2016). There are many immune receptors on neutrophils that can bind to a variety of different extracellular ligands, thereby regulating activation and inhibition of signaling (van Rees et al., 2016). Among many cancer types, the role of neutrophils in HCC is particularly pronounced. Study finds that in HCC, circulating neutrophils may promote tumor development and can more accurately predict prognosis (Margetts et al., 2018; Quintela et al., 2019). In HCC tumor tissues, a high density of neutrophil infiltration is associated with shorter survival (Kuang et al., 2011). Recent studies have shown that neutrophils can be a potential therapeutic target for HCC (Geh et al., 2022). However, a comprehensive understanding of the role of neutrophils in the development of HCC is still lacking. The most reliable and efficient strategy for comprehensively assessing tumor susceptibility to clinical therapy is likely to be derived from the immune profile. Therefore, it is of great interest to identify HCC cases based on neutrophil-related risk profiles, thereby facilitating individualized treatment.
In this paper, we explore the potential role of neutrophils using the TCGA dataset, with external validation using the GEO (Gene Expression Omnibus) dataset. The abundance of 22 tumor-infiltrating immune cells (TIC) subtypes was obtained using the CIBERSORT algorithm. Gene modules significantly associated with neutrophils were identified by weighted gene coexpression network analysis (WGCNA). From these 590 genes, we finally got 9 genes significantly associated with HCC. The risk score (RS) was calculated according to the contribution of each gene to prognosis, and all samples were grouped according to the median RS. Subsequently, based on risk characteristics and other clinical variables, we developed and validated a HCC prognostic nomogram. We explored the synergistic effects of RS and tumor mutational burden (TMB) and potential relationships with TIME and cell signaling pathways. Finally, the effect of risk characteristics on the efficacy of immunotherapy and chemotherapy was investigated. In conclusion, based on neutrophil-related genes, reliable biological indicators and prognostic indicators for predicting the clinical prognosis of HCC have been established, which can guide for the precise treatment of HCC.
2 MATERIALS AND METHODS
2.1 Data download and preprocessing
The TCGA-LIHC dataset was downloaded from the TCGA portal and 424 HCC samples were obtained. There are 374 tumor samples and 50 normal tissue sequencing profiles. Among the 374 tumor samples, four samples had missing clinical data, and the remaining 370 tumor samples were used for follow-up studies. We obtained somatic mutation data from the TCGA database and analyzed copy number variation (CNV) to further analyze potential relationships between neutrophil-related risk signatures and TMB. The GSE76427 cohort was obtained from the GEO database for external validation.
2.2 Landscape of immune cell infiltration
The sequencing data of the samples were analyzed using the CIBERSORT algorithm (http://cibersort.stanford.edu/) to obtain the relative abundance of 22 TICs subtypes. The relative abundance of these TICs can be used to represent the structural composition of TIME cells.
2.3 Neutrophil-associated gene module
We selected 10,530 genes from TCGA-LIHC as data and the relative abundance of 22 TICs subtypes as the phenotype of interest. We used WGCNA to study the association between gene co-expression networks and phenotypes (Langfelder and Horvath, 2007; Langfelder and Horvath, 2008; Gysi et al., 2018). A “dynamic tree-cut” algorithm was used to introduce similar genes into the same candidate module. Pearson correlation test (p < 0.05) was used to analyze the correlation between the module eigengenes and the phenotype of interest. Finally, we focused on the “neutrophil” population and extracted the gene modules most significantly associated with neutrophils for subsequent analysis.
2.4 Construction of neutrophil-related prognostic features
To investigate the impact of neutrophil-related genes on the prognosis of HCC cases, we extracted 590 genes in the “MEbrown” gene module. Through univariate Cox regression analysis, Lasso regression and multivariable Cox regression analysis, 9 neutrophil-related genes (PDLIM3, KLF2, ROR2, PGF, EFNB1, PDZD4, PLN, PCDH17, DOK5) related to the prognosis of HCC were finally screened. The TCGA cohort was used as our training set, and the risk score (RS) was calculated as follows: ↓
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2.5 Validation of prognostic neutrophil-related features
RS was calculated for each HCC sample. Taking the median of RS as the dividing line, all samples were divided into two parts: high-risk group (HRG) and low-risk group (LRG). Kaplan-Meier (KM) survival analysis was used and the KM survival curve was drawn to compare the survival difference between the HRG and LRG. To verify its prognostic value, we mapped the transient receiver operating characteristic (ROC). Univariate Cox regression and multivariate Cox regression were used to validate RS as an independent prognostic factor for HCC patients.
2.6 Establishment and verification of nomogram
To intuitively and accurately predict the 1-year, 3-year, and 5-year survival probability of HCC patients, we combined RS with clinical variables to draw a prognostic nomogram. Calibration curves were used to verify the performance of the model.
2.7 Gene set enrichment analysis
The c2.cp.kegg.v7.4.symbols collection were used to explore the function annotation by GSEA software.
2.8 Relationship between tumor mutational burden and risk score
Somatic mutation data were obtained from the TCGA database. Waterfall plots of HRG and LRG were drawn using the “maftools” R package (Yoshihara et al., 2013). Differences in the survival of HCC patients were analyzed according to median TMB and RS.
2.9 Association of tumor immune microenvironment and risk score
To investigate the potential association between RS and TIME, we assessed immune infiltration using seven methods. Immune cells and stromal cells in HCC malignancies were estimated using the ESTIMATE algorithm (Yoshihara et al., 2013). We calculated immune and stromal scores and explored the relationship between RS and immune infiltration signatures by the Spearman correlation.
2.10 Genome variation analysis
To assess the activation of hallmark and metabolic pathways described in the MSigDB database (Chan et al., 2019), we used the GSVA package (version 1.36.3) to pass the Gene Set Variation Analysis (GSVA) (Rizvi et al., 2015) predicts pathway activity and ultimately assesses relative pathway activity in a single sample.
2.11 Predicting the effect of immunotherapy
To explore the potential association between immunotherapy and RS, we analyzed the association between the expression levels of immune checkpoint blockade-related genes (PDCD1, etc.) and HRG/LRG. In this process, Immunophenoscore (IPS) (Charoentong et al., 2017) was used as a novel robust predictor of response to immunotherapy regimens.
2.12 Prediction of chemotherapy effect
To explore the relationship between RS and drug sensitivity, we constructed a ridge regression model based on the Genomics of Drug Sensitivity in Cancer cell lines and TCGA gene expression profiles. Using the pRRophetic algorithm, half-maximal inhibitory concentrations (IC50) were estimated for four chemotherapeutic agents (sorafenib, gemcitabine, cisplatin, and doxorubicin) in HCC patients.
2.13 Statistical analysis
The Wilcoxon test and the Kruskal–Wallis test were used to compare two groups and more than two groups of variables, respectively. The analysis of RS and TMB was performed by the chi-square test, and the correlation between coefficients was analyzed by Spearman. Two-sided p < 0.05 was considered statistically significant. All statistical calculations were done in R software (version 4.1.1).
3 RESULTS
3.1 Tumor immune microenvironment landscape in hepatocellular carcinoma
Table 1 lists the data characteristics of the samples in this study after preprocessing. The number of complete follow-up data samples available for the TCGA-LIHC and GSE76427 datasets is 370 and 115, respectively. The median follow-up time for the two cohorts was 1.66 and 1.16 years, respectively. The probabilities of end-point events in the two cohorts were 35.68% and 20.00%, respectively.
TABLE 1 | Clinicopathological characteristics of HCC patients from the TCGA and GSE76427 databases.
[image: Table 1]The relative abundances of the 22 TICs isoforms (Figure 1A) were obtained using the CIBERSORT algorithm as shown in Supplementary Table S1. The comprehensive heatmap we created (Figure 1B) visualized the differences in the TIME landscape between tumor and normal tissues. Potential connections between various TIME immune cells in HCC tissues are shown in Figure 1C. Neutrophils were positively correlated with B cells memory (r = 0.18, p < 0.05) and significantly negatively correlated with T cells follicular helper (r = -0.29, p < 0.05).
[image: Figure 1]FIGURE 1 | Landscape of immune cell infiltration in the tumor immune environment of HCC. Subpopulation of 22 immune cell subtypes (A) and proportional heatmap of 22 TICs in each HCC samples (B). (C) Intrinsic correlation of 22 infiltrating immune cells in HCC.
3.2 Establish the weighted gene co-expression network analysis network
10,530 gene data and immune-infiltrating subsets were extracted from the TCGA-LIHC dataset to develop the WGCNA network. The scale-free network was constructed by setting the optimal soft-threshold power (β) to the first power value of 17 when the scale-free topology index reached 0.90 (Figure 2A). Weighted hierarchical clustering analysis was then performed and the results were segmented, resulting in 6 gene modules (Figure 2B). The relationship between each immune cell and candidate gene modules in HCC tumor tissues was analyzed using Pearson correlation, and the results are shown in Figure 2C. By observation, we can easily find that the module with the strongest correlation with neutrophils is “MEbrown” (r = 0.11, p = 0.03). We used the 590 genes in the “MEbrown” module (Supplementary Table S2) for further analysis.
[image: Figure 2]FIGURE 2 | Choosing an appropriate soft threshold (power) and building a hierarchical clustering tree. (A) The choice of the soft threshold enables the scale-free topology to achieve an exponent of 0.90, and the average connectivity for 1–20 soft threshold powers is analyzed. (B) Neutrophil-related genes with similar expression patterns were merged into the same module using a dynamic tree-cutting algorithm, creating a hierarchical clustering tree. Heatmap of correlations between (C) modules and immune-infiltrating cells (traits).
3.3 Development risk signature
Neutrophil-related gene expression data and prognostic information of HCC patients were extracted from the TCGA-LIHC dataset. Using univariate Cox regression analysis, 122 genes were initially screened from 590 genes (p < 0.05, Supplementary Table S3). To more intuitively show the results of univariate Cox regression, we draw Figure 3A. To prevent overfitting, we performed a lasso regression analysis on the 122 genes obtained above (Figures 3B,C). Finally, through multivariate Cox regression analysis, we screened out 9 neutrophil-related genes (PDLIM3, KLF2, ROR2, PGF, EFNB1, PDZD4, PLN, PCDH17, DOK5, Supplementary Table S4) that are beneficial for predicting the prognosis of HCC patients. The RS was computed: [image: image]
[image: Figure 3]FIGURE 3 | (A) 122 genes associated with HCC prognosis screened using univariate Cox regression. (B) Variation curve of regression coefficient with Log (λ) in Lasso regression. (C) Ten-fold cross-validation for tuning parameter selection in lasso regression.Vertical lines are drawn from the best data according to the minimum criterion and 1 standard error criterion. (D) Kaplan-Meier curve analysis showed differences in overall survival between high- and low-risk groups in the TCGA-LIHC cohort.
The 370 HCC samples were divided into HRG and LRG according to median RS to reveal potential optimal values for neutrophil-related genes.
3.4 Validation of prognostic risk characteristics
To validate the scientific validity of the risk signature, we used 370 HCC samples in the TCGA-LIHC dataset for internal validation. The KM survival curve we plotted indicated that HRG had a poor prognosis (p < 0.001, Figure 3D). In addition, we performed an external validation of the survival results using the GSE76427 dataset, the results of which are shown in Supplementary Figure S1. All samples were regrouped according to the median expression of each gene. The KM survival curve was drawn with the expression of a single gene as the only variable. The results showed that each neutrophil-related gene had a significant impact on the clinical prognosis of HCC (p < 0.05, Figure 4A). We combined RS with clinical variables such as gender and age, and explored the potential role of RS in predicting the prognosis of HCC. The hazard ratios (HR) for RS in univariate Cox regression and multivariate Cox regression were 1.179 (95% CI 1.128–1.232; Figure 4B) and 1.150 (95% CI 1.092–1.211; Figure 4C), respectively. These results suggest that the risk signature developed based on neutrophil-related genes has good prognostic predictive power and can serve as an independent risk factor for the prognosis of HCC patients. The expression patterns of 9 genes, the distribution of sample survival status, and the corresponding risk scores among the 370 samples in the TCGA-LIHC cohort are shown in Figures 5A–C. In addition to this, we also performed external validation using 115 independent samples from the GSE76427 cohort (Figures 5D–F). These results all clearly demonstrate that neutrophil-related risk-prognostic features have stable and robust prognostic value.
[image: Figure 4]FIGURE 4 | (A) Kaplan-Meier curve analysis showed the difference in overall survival between the high and low expression groups for 9 neutrophil-related genes (PDLIM3, KLF2, ROR2, PGF, EFNB1, PDZD4, PLN, PCDH17, DOK5). (B) Univariate Cox regression results for overall survival. (C) Multivariate Cox regression results for overall survival.
[image: Figure 5]FIGURE 5 | (A) Confirmation of prognostic risk scores in the TCGA cohort. (B) Polygenic model risk score distribution in the TCGA cohort. (C) Survival status and duration of HCC patients in the TCGA cohort. (D) Confirmation of prognostic risk scores in the GSE76427 cohort. (E) Polygenic model risk score distribution in the GSE76427 cohort. (F) Survival status and duration of LUAD patients in the GSE76427 cohort.
3.5 Functional analysis of neutrophil-related genes
According to the median expression level of each neutrophil-related gene, we divided all samples into high and low expression groups. Then, high and low gene expression groups were functionally enriched using GSEA (Figures 6A–I). KEGG enrichment analysis showed that the high expression of the EFNB1 gene was related to cytokine cytokine receptor interaction. The high expression of the PGF gene was significantly enriched in signaling pathways such as hypertrophic cardiomyopathy, neuroactive ligand-receptor interaction and fatty acid metabolism.
[image: Figure 6]FIGURE 6 | GSEA for samples with high and low expression of 9 central genes. (A) Enriched gene set collected in KEGG for samples with high DOK5 expression. (B) Enriched gene set collected in KEGG for samples with high EFNB1 expression. (C) Enriched gene set collected in KEGG for samples with high KLF2 expression. (D) Enriched gene set collected in KEGG for samples with high PCDH17 expression. (E) Enriched gene set collected in KEGG for samples with high PDLIM3 expression. (F) Enriched gene set collected in KEGG for samples with high PDZD4 expression. (G) Enriched gene set collected in KEGG for samples with high PGF expression. (H) Enriched gene set in the KEGG collection for samples with high PLN expression. (I) Enriched gene set in the KEGG collection for samples with high ROR2 expression.
3.6 Distribution of clinical variables and risk scores in samples
To visualize the distribution of clinical variables in low/high risk subgroups, we plotted Figure 7A. The proportions of gender, WHO grade, clinical stage, T, N, and M stage clinical subtypes in the low/high risk subgroup are shown in Figures 7B–G.
[image: Figure 7]FIGURE 7 | Clinical significance of prognostic risk characteristics. (A) Heatmap showing the distribution of clinical characteristics and corresponding risk scores in each sample. Incidence of clinical variable subtypes of LRG/HRG. (B) Gender, (C) Grade, (D) Clinical stage, (E) Stage T, (F) Stage N, and (G) Stage M.
3.7 Construction of prognostic nomogram
The area under the curve (AUC) of the ROC curve we drew was 0.769, 0.779 and 0.764 for 1-year, 3-year and 5-year overall survival (OS), respectively, indicating a high prognostic validity (Figure 8A). To further validate that RS had the best prognostic predictive power among clinical variables, we designated these variables as candidate factors and included them in the AUC analysis. The results confirmed our conjecture, with the AUC analysis RS achieving maximum values at 1, 3, and 5 years of OS (Figures 8B–D), which further affirmed the clinical predictive power of the risk signature. Subsequently, combining these clinical variables with RS, a prognostic nomogram was developed for quantitatively predicting the probability of survival at a specific time in HCC patients (Figure 8E). The calibration curve indicated that the prognostic nomogram we developed had reliable predictive performance (Figure 8F).
[image: Figure 8]FIGURE 8 | Validation of prognostic efficiency of risk signatures. (A) ROC analysis was used to estimate the predictive value of prognostic features. (B–D) The area under the curve (AUC) of the risk score for predicting overall survival at 1, 3, and 5 years and other clinical characteristics. (E) Nomogram was used to predict survival in HCC patients. (F) 1-, 3-, and 5-year nomogram calibration curves.
3.8 Association of risk signatures with tumor mutational burden
Studies have shown that TMB is related to the anti-tumor immune response of immune cells (McGranahan et al., 2016). We speculate that TMB may be an important factor affecting the efficacy of anti-tumor immunotherapy. To this end, we analyzed the differences in TMB in different RS groupings (Figure 9A). Subsequently, we present the distribution of RS and TMB for 370 HCC samples in the form of scatter plots (Figure 9B). It was found that RS and TMB were significantly correlated (R = 0.17, p = 0.0013). According to the median of TMB, HCC samples were divided into high- and low-mutation groups, and then KM survival curves were drawn. The results showed that the low-mutation group had a better prognosis compared with the high-mutation group (Figure 9D). The survival curve was drawn according to TMB and RS, and the results showed that the samples with low TMB and low risk had the best survival status (Figure 9E). This also shows that RS and TMB have a certain synergy in predicting HCC survival.
[image: Figure 9]FIGURE 9 | Correlation between risk score and TMB. (A) Differences in TMB between HRG and LRG. (B) Scatterplots depicting the positive correlation between risk scores and TMB. (D) Kaplan-Meier curves of high TMB and low TMB groups. (E) Kaplan-Meier curve stratification of patients according to TMB and risk signature. The oncoPrint was constructed using high-risk score (C) and low-risk score (F).
In addition, in order to more intuitively display the somatic mutation situation of the high-risk group and the low-risk group, we drew a comprehensive landscape map of somatic mutations in the high-risk group (Figure 9C) and the low-risk group (Figure 9F). The results showed that genes such as TP53 (36% vs. 16%), TTN (26% vs. 22%), and MUC16 (17% vs. 15%) had higher mutation rates in the high-risk group, while CTNNB1 (28%) vs. 23%), ALB (11% vs. 9%) and other genes had higher mutation rates in the low-risk group.
3.9 Risk signature in tumor immune microenvironment context of hepatocellular carcinoma
Based on the intrinsic link between RS and TIME of neutrophil-related genes, we further investigated the contribution of RS to the complexity and diversity of TIME. Using Spearman correlation analysis, the results are shown in Figure 10A (Supplementary Table S5). By ESTIMATE analysis, it was found that the stromalscore and ESTIMATE score showed a significant downward trend in the high-risk group (p < 0.01, Figure 10B). Validation of the correlations predicted by the four methods MCPCOUNTER (Figure 10C), CIBERSORT (Figure 10D), TIMER (Figure 10E) and CIBERSORT−ABS (Figure 10F) indicated that our analysis was accurate.
[image: Figure 10]FIGURE 10 | Estimated abundance of tumor-infiltrating cells. Patients in the (A) high-risk group had a stronger correlation with tumor-infiltrating immune cells, as shown by the Spearman correlation analysis. (B) Association between prognostic risk signatures and central immune checkpoint genes. The correlations predicted by the four methods MCPCOUNTER (C), CIBERSORT (D), TIMER (E), and CIBERSORT−ABS (F) were validated.
3.10 Enriching signaling pathways in low/high risk populations
By GSVA analysis (Figures 11A,B), we found that neutrophil-related genes were negatively correlated with KEGG/PPAR signaling pathway and positively correlated with most other signaling pathways. RS is negatively correlated with adipocytokine signaling pathway, and positively correlated with the p53 signaling pathway.
[image: Figure 11]FIGURE 11 | Enrichment pathways of GSVA. (A) Heatmap showing the correlation of representative pathway terms of Hallmark with risk score. (B) Heatmap showing the correlation of representative pathway terms of KEGG with risk score. Prediction of Immunotherapeutic Response. (C) Correlation of expression level of immune checkpoint blockade genes with risk score.
3.11 Immunotherapy prediction
Since there is no information on immunotherapy in the TCGA-LIHC dataset, we used an indirect approach to analyze immunotherapy. The relationship between immune checkpoint blockade-related gene expression and RS was analyzed. The results showed that most of the immune checkpoint blockade-related genes (VTCN1, TNFSF9, TNFSF18, TNFSF15, CD80, etc.) were positively correlated with the risk score, and a few immune checkpoint blockade-related genes (such as TMIGD2 and BTLA) were associated with RS were negatively correlated (Figure 11C). The IPS scores of different RS groupings are shown in Figures 12A–D. HRG IPS scores were lower when PD1-positive and CTLA4-positive, suggesting that high-risk patients are more suitable for novel immune checkpoint inhibitors (ICIs) immunotherapy.
[image: Figure 12]FIGURE 12 | (A–D) IPS score distribution map. Estimates of chemotherapy effect risk scores. (E) Sensitivity analysis of sorafenib in patients with high and low risk scores. (F) Sensitivity analysis of gemcitabine in patients with high and low risk scores. (G) Sensitivity analysis of cisplatin in patients with high and low risk scores. (H) Sensitivity analysis of doxorubicin in patients with high and low risk scores.
3.12 Predicting response to chemotherapy
Through pRRophetic algorithm analysis, we found that the IC50 of chemotherapeutic drugs (sorafenib, gemcitabine, cisplatin, and doxorubicin) were different in HRG/LRG. We found that sorafenib has a lower IC50 in LRG (p < 0.05; Figure 12E), suggesting that sorafenib has a higher drug sensitivity in LRG. In contrast, gemcitabine, cisplatin and doxorubicin had lower IC50s in HRG (p < 0.05; Figures 12F–H), suggesting that tumor cells in HRG are more sensitive to these drugs.
4 DISCUSSION
The high degree of malignancy of HCC, combined with the generally late diagnosis and inadequate treatment methods, makes it a major threat to human health worldwide (Vanderborght et al., 2020). Treatment is complicated by underlying liver disease in up to 80 percent of all HCC cases (Kirstein and Wirth, 2020). HCC is an inflammation-related malignancy in which TIME can induce immune tolerance and escape through various mechanisms (Fu et al., 2019). As the first barrier against pathogen invasion, neutrophils not only have anti-inflammatory and anti-infection effects, but also play a pivotal role in anti-tumor immunity.
In our study, two datasets, TCGA-LIHC and GSE76427, were used, the former for developing neutrophil-related risk signatures and the latter for external validation. The 10530 genes were divided into 6 gene modules according to their functional similarity using WGCNA and the “dynamic tree cutting” algorithm. The correlation of these 6 gene modules with immune cells in HCC tumor tissues was analyzed by Pearson correlation. The “MEbrown” significantly associated with neutrophils was selected and 590 genes were extracted from this gene module. Through a series of screening, 9 neutrophil-related genes (PDLIM3, KLF2, ROR2, PGF, EFNB1, PDZD4, PLN, PCDH17, DOK5) with good prognostic value for HCC were finally obtained. RS was calculated from the coefficient of each gene and the expression level in the sample. With the median RS as the boundary, all samples were classified as HRG and LRG. We analyzed the survival of HRG/LRG samples in the TCGA-LIHC and GSE76427 datasets, and plotted K-M survival curves. The K-M survival curve plotted using the TCGA-LIHC dataset (Figure 3D) indicated that the LRG sample had a better prognosis (p < 0.001). Interestingly, when HRG/LRG sample survival was analyzed using the GSE76427 dataset (Supplementary Figure S1), we found that HRG samples had better prognosis (p = 0.041). This may be related to the small sample size in the GSE76427 dataset, which requires sufficient samples for validation.
We used RS to represent neutrophil-related genes to further explore its impact on the prognosis of HCC and its relationship with TMB, cell signaling pathways, immunotherapy and chemotherapy. To display the relationship between risk characteristics and HCC prognosis more intuitively and conveniently, a nomogram was constructed by combining RS and other clinical variables. It can directly use the graph to calculate the value of a variable, such as the patient’s index score or survival probability. In the nomogram model we constructed, if the RS and other clinical variables are known, and the scores obtained by each independent variable are added together, it is possible to predict the 1-year, 3-year year and 5-year survival probability.
We explored the association of risk signature and TMB in this study and found that risk signature and TMB had some synergistic effects in predicting patient survival. Previous studies have found that TMB can be used to predict the efficacy of immune checkpoint inhibitor therapy (Snyder et al., 2014; Hugo et al., 2016; Carbone et al., 2017; Liang et al., 2021; Xu et al., 2022a; Xu et al., 2022b). It has also been found that TMB is associated with the prognosis of diffuse glioma (Wang et al., 2020). Studies have shown that HCC generally has a lower TMB (Ang et al., 2019; Mauriello et al., 2019; Wang and Li, 2019; Li et al., 2020a). In contrast, Ritu and his team found that HCC patients with higher TMB had poorer prognosis (Shrestha et al., 2018). Cai and colleagues found that high TMB was associated with poor prognosis in HCC patients after radical hepatectomy (Cai et al., 2020). These findings further confirm our conclusions.
Among the many treatments for liver cancer, immunotherapy has great advantages. Precise and effective HCC immunotherapy brings a new dawn to patients. In recent years, the clinical application of ICIs has increased the enthusiasm for HCC immunotherapy research. Studies showing that the combination of atezolizumab (anti-PD-L1) and bevacizumab (anti-VEGF) can significantly improve overall survival has made them first-line therapy for patients with advanced HCC (Donisi et al., 2020; Donne and Lujambio, 2022; Sperandio et al., 2022). Besides ICI, there are other immunotherapy strategies under investigation, such as oncolytic virus immunotherapy and adoptive T cell transfer (Foerster et al., 2022). Despite great progress in HCC immunotherapy, current immunotherapies are only able to induce durable responses in a subset of HCC patients (Ruf et al., 2021). There is ample evidence that the effect of HCC tumor immunotherapy is significantly associated with TIME (Riaz et al., 2017; Cheng et al., 2020; Ruf et al., 2021). Immunotherapy of HCC is promising but challenging.
We developed a potential association between neutrophil-related gene-based risk signatures and TIME. It was found that stromalscore and ESTIMATE score had an increasing trend in LRG. This indicates that the tumor purity in the LRG samples is relatively low. Some researchers suggest that TIME can be used as an independent factor affecting the prognosis of HCC patients and provide help for precision medicine (Taube et al., 2018; Xu et al., 2019).
Among the 9 neutrophil-related genes we screened, several genes have been confirmed to play important roles in the occurrence, development and prognosis of HCC tumors. Studies have found that KLF2 gene plays a tumor suppressor function by inhibiting TGF-β/Smad signaling in HCC cells (Li et al., 2020b). Geng and colleagues found in a study of 85 samples that Ror2 protein deletion was associated with poor prognosis in HCC (Geng et al., 2012). Liu and his team found that PCDH17 is regulated by DNMT3B methylation and inhibits cell proliferation, invasion and migration in HCC via EMT (Liu et al., 2022). These existing research results confirm the scientific reliability of our construction of risk characteristics. Although we screened out the 9 genes most related to HCC from many neutrophil-related genes and constructed a prognostic risk model, the underlying mechanisms of these genes’ functions still need to be explored and discovered by a large number of researchers. Of course, our study also has some limitations and needs to be further improved. Therefore, it is necessary to collect tissue samples and validate our results at the cellular, animal and tissue levels separately in the studies noted to make the results more credible.
5 CONCLUSION
In conclusion, bioinformatics-based deciphering of the TIME landscape constructs a prognostic signature dominated by neutrophil-related genes. This prognostic feature has a certain good value in predicting the clinical prognosis of HCC, analyzing gene mutation, TIME heterogeneity and treatment response. Nonetheless, future prospective studies are needed to further examine this feature.
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Cyclin-dependent kinases (CDKs) play an important role in cell division. Given that abnormal cell proliferation caused by dysregulation of cell division is one of the major causes of endometrial cancer (EC), it is important to elucidate the role of CDK family genes in the diagnosis and prognosis of EC. In this study, The Cancer Genome Atlas (TCGA) database was used to analyze the frequency of copy number variations and somatic mutations in 26 CDK family genes. Subsequently, the expression of these genes in EC was assessed, and their relationship with overall survival (OS) was examined via Kaplan–Meier analysis to assess their prognostic significance. A prognostic model based on seven CDK genes was constructed using Lasso and Cox regression, and the predictive performance of the model was analyzed using Kaplan–Meier analysis and column line plots. The correlation between CDK genes and immune cells was also examined. Patients with EC in the high-risk group had a poorer prognosis. The results of qRT-PCR and immunohistochemical analyses validated that CDK16 is highly expressed in EC tissues. Patients with EC with high CDK16 expression had worse 10-year OS than patients with low CDK16 expression. These findings suggest that the prognostic model constructed based on CDK genes can help to develop individualized and targeted treatment strategies for patients with EC.
Keywords: endometrial cancer, cell cycle protein-dependent kinase, CDK16, prognostic model, nomogram
INTRODUCTION
Cyclin-dependent kinases (CDKs) are key proteins involved in the cell cycle and transcription. The human genome contains 21 genes encoding CDKs and 5 genes encoding CDK-like (CDKL) proteins (Malumbres et al., 2009). These CDKs function at various stages of the cell cycle and may act as specific protein chaperones that are essential for the functioning of the cell cycle (van den Heuvel, 2005). The importance of CDKs has led to an increase in the use of CDK inhibitors in the treatment of cancer (Malinkova et al., 2015; Goel et al., 2020; Bury et al., 2021), including advanced-stage cancer (Chohan et al., 2018). The role of CDK inhibitors has been extensively investigated in individual cancers such as lung cancer, rectal cancer, breast cancer, pancreatic ductal adenocarcinoma, and gastrointestinal tract cancer (Balakrishnan et al., 2016; Garcia-Reyes et al., 2018; Zhang et al., 2019; Ding et al., 2020; Qin et al., 2020).
Endometrial cancer (EC) is the sixth most common neoplasm among women worldwide (Lortet-Tieulent et al., 2018). In the United States (USA), EC is the most prevalent cancer of the female reproductive system (Siegel et al., 2020). Although the prognosis is usually favorable, high-grade EC has a propensity to recur. Prevention of recurrence is essential because the prognosis of recurrent EC is very poor. At present, traditional and minimally invasive surgeries are the two most crucial treatment options for EC (Chambers et al., 2019; Wright et al., 2019). Recently, there has been an increase in the use of radiotherapy, chemotherapy, targeted therapy, and immunotherapy for treating EC (Ott et al., 2017; Makker et al., 2019; Aoki et al., 2020).
Although CDKs have been extensively investigated in several cancer types, their role in EC remains elusive. In this study, we examined the expression of 26 CDK family genes in healthy endometrial and EC tissues and assessed their relationship with the survival outcomes of patients with EC. Additionally, we constructed a risk score model based on CDK genes and plotted a column line graph for predicting the prognosis of EC.
MATERIALS AND METHODS
Endometrial cancer dataset source and preprocessing
Our research flowchart is shown in (Supplementary Figure S1). Clinical data from the TCGA database was obtained data for patients with uterine corpus endometrial carcinoma including total mortality and prognosis, as well as data on common gene expression. The background was corrected and quantile normalization was carried out using multi-array averaging techniques of Affy and simpleaffy. The TCGA Genome Data Commons (GDC, https://portal.gdc.cancer.gov/) was used to download RNA sequencing (FPKM values) and cytogenetic mutation data, which were then thoroughly evaluated using the R package TCGAbiolink (Colaprico et al., 2016). The FPKM values were converted to transcript per kilobase million values. The “ComBat” algorithm of the sva package was used to correct the batch effect of non-biological technical bias. All data were examined using R (version 4.1.2) and the R Bioconductor package.
Copy number and mutation analysis of cyclin-dependent kinases family genes
The expressions of 26 CDK family genes were retrieved from the TCGA database. Copy number variation (CNV) analysis was performed using Perl software (5.32.1.1) and R (4.1.2), and the distribution of the CDK family genes on the chromosomes was obtained using the RCircos package. The maftools package was used to generate waterfall maps of the mutations. The effect of single mutations on the expression level of other genes was further investigated using Student’s t-test. The ggplot2 package was used to visualize the direction and size of associations between gene expression and mutations.
Prognostic analysis of cyclin-dependent kinases genes and consensus clustering analysis
The Kaplan–Meier plotter was used to analyze the relationship between CDK family genes and the prognosis of patients with EC. The igraph, psych, reshape2, and RColorBrewer packages in R were used to establish a co-expression network of CDK genes.
Construction of risk scoring model
The full TCGA set was randomly chosen to serve as both a training dataset and a testing dataset based on the expression profile and survival statistics of CDK family genes. The training dataset was used to construct a CDK family genes model, which was then applied to the complete and test datasets to ensure its accuracy. To evaluate the relationship between pyroptosis-related genes and survival status, the Lasso and Cox regression (“glmnet” and “survival” package) were used. Cross-validation was used to create a reliable model for the Lasso regression. Seven genes were shown to be related to survival based on the penalty parameter (λ), and a multivariate Cox regression model was built using these genes. The optimal set of genes was chosen and used to predict survival using the forward-backward Cox regression algorithm. Survival curves were developed for the training and test datasets using the Kaplan-Meier approach. This formula was used to determine risk scores.
[image: image]
Comparison of immune cell infiltration
To determine the relative abundance of tumor-infiltrating immune cells (TIICs) in EC samples, the extent of infiltration was estimated using the CIBERSORT algorithm (Chen et al., 2018). A p-value of <0.05 indicated significant differences in immune cell infiltration between the two groups.
Functional analyses of cyclin-dependent kinases family genes in endometrial cancer
The clusterProfiler package was used for Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses of differentially expressed genes (DEGs). GO analysis considers three aspects for characterizing gene functions, namely, biological processes, cellular components, and molecular functions. Significant DEG-related signaling pathways were mapped on a bubble graph. For gene set enrichment analysis (GSEA), the candidate genes were divided into the risk-high group and the risk-low group, based on the mean of risk score. Functional predefined gene sets were obtained from the Molecular Signatures Database, MSigDB (https://www.gsea-msigdb.org/gsea/msigdb). The candidate genes involved in the pathway with the screening criteria of p < 0.05 and false discovery rate (FDR) < 0.25 were considered significantly enriched. The normalized enrichment score and adjusted p-value were applied to select the significantly enriched signaling pathways.
Collection of clinical samples
Tissue specimens were collected from patients with EC undergoing surgery in the Department of Gynecological Oncology of the First Affiliated Hospital of Bengbu Medical College between January and December 2021. A total of 10 EC tissue and adjacent normal tissue samples were used for qRT-PCR, whereas 112 EC tissue samples and 10 adjacent normal tissue samples were used for immunohistochemical (IHC) analysis. The patients neither underwent chemotherapy, radiotherapy, or biological treatment preoperatively or postoperatively nor were previously diagnosed with EC. Until protein extraction, postoperative tissue samples were stored at −80°C.
Experimental materials
The rabbit anti-human CDK16 antibody was purchased from CUSABIO (CSB-PA017648ESR2HU) (100 μl, Wuhan, China). A horseradish peroxidase (HRP)-conjugated anti-rabbit antibody was purchased from Jackson ImmunoResearch Inc. (West Grove, PA, United States). Bovine serum albumin was purchased from Sigma-Aldrich (St. Louis, MO, United States). Skimmed milk and Tween-20 were purchased from Sangon Biotech Co., Ltd. (Shanghai, China). The TRIzol reagent was purchased from Thermo Fisher Scientific (United States). The PrimeScriptTM First Strand cDNA Synthesis Kit was purchased from TaKaRa (Tokyo, Japan), and the SYBR Green Real-Time PCR Master Mix was purchased from TOYOBO (Osaka, Japan).
Immunohistochemical analysis
All tissue samples were fixed in 4% paraformaldehyde, embedded in paraffin, cut into 4-μm-thick sections, and adhered to slides. After deaffinity under different density gradients of xylene, the slides were rehydrated, and antigens were retrieved with citric acid buffer (pH 7.8, 0.1 M) at approximately 82°C for 24 min. Subsequently, the slides were uniformly coated with endogenous peroxidase blocking solution for 15 min at room temperature to prevent peroxidase activity and were incubated with the anti-CDK16 primary antibody overnight. The following day, the slides were gently washed with PBS, incubated with a biotin-conjugated secondary antibody for 10 min at room temperature, and treated with streptavidin peroxidase for 5 min. Thereafter, the slides were stained with hematoxylin, washed to remove any remaining debris, and air-dried for IHC analysis.
Quantitative reverse transcription polymerase chain reaction
Total RNA was isolated using the TRIzol reagent. The RevertAid First Strand cDNA Synthesis Kit was used to reverse transcribe the isolated RNA, and the SYBR Green Realtime PCR Master Mix was used to extract the synthesized cDNA. The following primers were used for qRT-PCR: human CDK16 forward, 5′-TTG​GGC​CGT​TGT​TC-3'; CDK16 reverse, 5′-GTG​CTC​ACG​GCG​GCT​C-3'; GAPDH forward, 5′-AAGGTGTTCTECTCGGTGAC-3'; GAPDH reverse, 5′-GAG​GGT​AGA​GGA​CTG​AAT​AGT​ACC​TG-3'. GAPDH was used as an internal control. Each sample from each group was tested thrice, and the paired Student’s t-test was used to analyze qRT-PCR data.
Construction and evaluation of a nomogram for patients with endometrial cancer
A nomogram model was created to predict the OS of patients with EC at 1, 3, and 5 years using prognostic factors based on the findings of the univariate and multivariate Cox regression analyses. The “RMS” package in R software was used for the nomogram analysis. The nomogram was evaluated graphically by drawing calibration curves that contrasted the observed values with the nomogram-predicted probability (using the Kaplan-Meier method). The scatter points of a properly calibrated nomogram prediction model will fall on a 45°diagonal line. The overall predictive power of the nomogram model was also assessed using the Harrell concordance index (C-index). The C-index has a value between 0.5 and 1, and the greater the C-index, the more accurate the prediction. All statistical analyses in this investigation were two-tailed, and the significance threshold was set at 0.05.
Statistical analysis
The R software (version 4.1.2), Perl software (version 5.32.1.1) and GSEA (version 4.2.3) were used for statistical analysis. A p-value of <0.05 was considered significant.
Ethics statement
The First Affiliated Hospital of Bengbu Medical College’s Ethics Committee examined and approved the investigations involving human subjects (2021) 143. The participants/patients provided written informed consent to take part in this investigation.
RESULTS
Cell cycle regulation and expression of cyclin-dependent kinases family genes
The expression data of 26 CDK family genes were extracted from TCGA database. Figure 1A shows the schematic representation of some basic steps in cell cycle regulation. The mRNA expression of the 26 CDK genes was compared between EC and healthy endometrial tissues to determine whether abnormal expression was associated with EC. Eventually, a total of 19 differentially expressed CDK genes were identified (Figure 1B). These results suggest that the mRNA expression of CDK genes is different between EC and healthy endometrial tissues, and the aberrant expression of CDK genes may be associated with the carcinogenesis and progression of EC.
[image: Figure 1]FIGURE 1 | Cell cycle regulation steps and expression of CDK family genes. (A) Schematic diagram of some basic steps in cell cycle regulation. (B) Expression of 26 CDK family genes in normal endometrial tissue (dark blue) and tumor tissue (dark yellow). Box plots indicate the interquartile range of values. The rows in the boxes indicate median values and the asterisks above indicate p-values (*p < 0.05,**p < 0.01,***p < 0.001).
Landscape of genetic variations of cyclin-dependent kinases family genes in endometrial cancer
Copy number variations (CNVs) were prevalent in the 26 CDK genes, especially copy number amplification, whereas the frequency of copy number deletion was high in CDK7, CDK8, CDK10, and CDK11B (Figure 2A, Supplementary Table S1). The location of CNVs in CDK genes on chromosomes is shown in Figure 2B. The functional interaction network constructed using the GeneMANIA database showed that genes such as MELK, WEE2, and PKMYT1 were most likely to interact with CDK genes (Figure 2D). Additionally, the frequency of somatic mutations in CDK genes was 26.65% (141/529 samples), and all CDK genes were found to be mutated (Figure 2C).
[image: Figure 2]FIGURE 2 | Molecular characterisation and genetic variation of CDK family genes in EC. (A) CNV frequencies of CDK genes in EC. The green dots represent the frequency of copy number deletion, the red dots represent the frequency of copy number amplification, and the height of the columns represents a change frequency. (B) Location of the CNVs of CDK genes on 23 chromosomes. (C) Mutation frequencies of CDK genes in 529 patients with EC TCGA database. Each column represents one patient, the bar on the top represents TMB, and the numbers on the right represent the mutation frequency of each CDK gene. The bar on the right represents the proportion of each CDK gene. The stacked bars below represent the proportion of conversation in each sample. (D) Functional interaction network of CDK genes established using the GeneMANIA database.
Prognostic significance of cyclin-dependent kinases family genes
The prognostic significance of CDK family genes in EC was evaluated. A total of 12 prognostic genes were identified via univariate Cox proportional risk regression analysis. Hazard ratios were calculated, and forest plots were generated (Figure 3A). The combined profile of CDK gene interactions, expression, and prognostic significance in EC is shown in Figure 3B. Upregulation or downregulation of most CDK genes had a significant impact on prognosis, and a majority of these genes were identified as risk factors. The relationship between OS and CDK genes was analyzed using the Kaplan–Meier plotter (Figures 3C–I), and patients with low expression of CDK8 and CDK16 had better OS.
[image: Figure 3]FIGURE 3 | Prognostic significance of CDK family genes. (A) Univariate Cox regression analysis was used to analyze CDK family genes. (B) Circos plot for univariate cox regression analysis showing the relationship between the prognosis of EC and high (>5, red) and low (<5, grey) expression of CDK genes in TCGA-UCEC dataset (purple, risk factors; green, favorable factors). The p-values in Cox regression analysis ranged from 1e-04 to 1 (the larger the bubble, the higher the correlation). (C–I) Survival curve of the impact of CDK8, CDK9, CDK15, CDK20, CDKL2, and CDKL5 on OS in TCGA-UCEC dataset.
Risk score model based on cyclin-dependent kinases family genes
TCGA-UCEC cohort (544 patients) was divided into the training 272) and validation 272) groups. Lasso–Cox regression analysis was performed to evaluate coefficients for a few selected CDK genes in the training group, the risk score model was developed. The risk score was calculated using the following formula: (0.844 * CDK3 exp.) + (0.138 * CDK8 exp.) + (0.280 * CDK14 exp.) + (-0.365 * CDK16 exp.) + (0.064 * CDK19 exp.) + (-0.365*CDK20 exp.) + (0.142 * CDKL2 exp.) (Figures 3A,B, Supplementary Tables S2, S3). The training and validation groups were further divided into the high- and low-risk groups based on the median risk score. In the training group, the death rate was 40.2% and 14.2% in the high- and low-risk groups, respectively. In the validation group, the death rate was 23.1% and 9.92% in the high- and low-risk groups, respectively. According to survival analysis, patients in the low-risk group had significantly longer OS than patients in the high-risk group (Figures 4C,E, p < 0.001). Furthermore, ROC curves were plotted and the area under the curve (AUC) was estimated to assess the accuracy of the risk model in predicting survival (Figures 4D,F). Heatmaps were plotted to demonstrate the survival status of seven independent prognostic genes, risk score distributions, and expression differences were used to evaluate the risk model constructed using the TCGA database (Figures 4G–L). The prognostic model demonstrated excellent prognostic prediction ability, indicating that it can accurately predict the onset and development of EC.
[image: Figure 4]FIGURE 4 | Construction of a prognostic model based on CDK family genes. (A) Lasso coefficients of 12 genes associated with OS. (B) 10-fold cross-validation error (the first vertical line represents the minimum error, whereas the second vertical line represents the cross-validated error within 1 standard error of the minimum). (C–L). Performance of the risk score model based on seven CDK genes in the training and validation groups. (C,E) Kaplan-Meier curves showed that patients with high risk scores had worse OS than patients with low risk score. (D,F) ROC curves for predicting survival at 1,3, and 5 years (G–K) Survival was longer and mortality was lower in the low-risk group than in the high-risk. (I,L) Heatmaps demonstrating the distribution of risk scores in the training (I) and validation (L) groups.
Construction and assessment of nomogram
To increase the clinical utility and usability of the CDK-based risk signature, a nomogram was constructed (Figure 5A). Each patient was assigned a total point value by adding the point for each prognostic parameter. The clinical outcome of patients was worse when the total points were higher. The calibration curve showed that the performance of the nomogram was comparable to that of an ideal model (Figure 5B). Additionally, the receiver operating characteristic receiver operating characteristic (ROC) curve showed that the nomogram had a good survival status prediction capacity and accuracy (Figure 5C). Cox regression analysis showed that the CDK family gene prognostic signature and the age, grade, and stage were associated with the prognosis of patients with EC.
[image: Figure 5]FIGURE 5 | Nomogram model construction and prognostic factor analysis. (A). A nomogram model was constructed to predict the 1-year, 3-year, and 5-years OS probabilities of patients with EC. (B) Calibration curves for the nomogram model to predict the probability of the 1-year, 3-year, and 5-year OS of patients with EC. (C) ROC curves for the nomogram model to predict the probability of the year 1-year, 3-year, and 5-year OS patients with DC. (D,E) The results of univariate (D) and multivariate Cox regression (E) for the OS of patients with EC are shown in forest plots.
The independent significance of the CDK family gene prognostic signature was assessed by examining the model and the clinical prognostic parameters across the entire dataset using univariate and multivariate Cox regression. Age, grade, stage, and weight made up the clinical prognostic parameters. The results of the univariate Cox regression analysis showed that the CDK family gene prognostic signature and the age, grade, and stage were associated with the prognosis of patients with EC (p < 0.05) (Figure 5D). Meanwhile, the multivariate Cox regression analysis showed that the CDK family gene prognostic signature, age, grade, and stage were independent prognostic factors for patients with EC, whereas the weight type was not (Figure 5E).
Hub genes are significantly related to immune cell infiltration
To examine the correlation between the risk model and immune cell infiltration, the relationship between the 7 core prognostic genes and 22 types of TIICs was examined using the CIBERSORT algorithm (Figure 6A; Supplementary Table S4). The results revealed that CDK8 was negatively correlated with regulatory T cells and plasma cells and positively correlated with activated memory CD4 T cells and naive B cells. In addition, CDK16 was negatively correlated with resting dendritic cells and resting memory CD4 T cells and positively correlated with follicular helper T cells and M0 macrophages. A histogram was plotted to demonstrate the levels of immune cell infiltration in the high-and low-risk groups (Figure 6B). Furthermore, the proportion of immune cells was compared between the high- and low-risk groups (Figure 6C). The proportion of regulatory T cells, activated NK cells, and monocytes was significantly higher in the low-risk group, whereas that of follicular helper T cells, activated dendritic cells, and activated memory CD4 T cells was significantly higher in the high-risk group.
[image: Figure 6]FIGURE 6 | The 7 core prognostic genes were significantly associated with immune cell infiltration. (A) Correlation between the 7 prognostic genes and 22 types of infiltration immune cells. (B) Histogram demonstrating the difference in the proportion of 22 types of minimum cells in the high-and low-risk groups. (C) Box plots demonstrating the difference in the proportion of 22 types of immune cells in the high- and low risk groups.
Functional analyses of cyclin-dependent kinases family genes in endometrial cancer
The clusterProfiler package was used for GO and KEGG functional enrichment analyses of DEGs (Figures 7A–D). KEGG analysis showed that the DEGs were enriched in the cell cycle, p53 signaling pathway, cellular senescence and viral carcinogenesis (Figures 7A,B). GO analysis showed that the DEGs were enriched in biological processes such as the G1/S-phase transition of the mitotic cell cycle; cellular components such as the serine/threonine protein kinase complex, protein kinase complex, and transferase complex; and molecular functions such as cyclin-dependent protein serine/threonine kinase activity and cyclin-dependent protein kinase activity (Figures 7C,D). These findings indicate that CDK genes may play a key role in cell cycle-related signaling pathways. Furthermore, GSEA was used to examine the top 10 relevant signaling pathways in the high-risk group (Figure 7E). The results showed that DEGs in the high-risk group were significantly enriched in pathways associated with functional cell structure and cell cycle, including homologous recombination, DNA replication, and base excision repair (Figures 7E–I). Therefore, the seven core prognostic genes may play an important role in cellular functional architecture and cell cycle, thus promoting the development and progression of EC.
[image: Figure 7]FIGURE 7 | Functional enrichment analysis of CDK family genes in endometrial cancer. (A,B) KEGG enrichment analysis of CDK genes. (C,D) GO functional annotation of CDK genes. (E–I) Significant pathways in the high-and low-risk groups were analysed via GSEA.
Expression of CDK16 in endometrial cancer and adjacent normal tissues
Next, we further analyzed the 7 core prognostic genes. In Figure 1B we found higher expression of CDK8 and CDK16 in EC tissues than in adjacent normal tissues (p < 0.05), while CDK14, CDK15, and CDK19 were lower expressed in EC tissues than in adjacent normal tissues. The expression of CDK3 and CDK20 in EC tissues was not statistically significant compared with the expression in adjacent normal tissues (p > 0.05). In Figures 3C,F we found that EC patients with high CDK8 and CDK16 expression had shorter Overall survival (p < 0.05). The results showed that CDK8 and CDK16 have the potential to be prognostic biomarkers for EC and therefore we are more interested in CDK8 and CDK16. In previous studies, researchers have used in vitro experiments to demonstrate that CDK8 expression is higher in EC tissues than in adjacent normal tissues and that CDK8 acts as a tumor suppressor in EC (Gu et al., 2013). However, no study has examined the role of CDK16 in EC. Therefore, CDK16 was the target of interest in this study. The mRNA expression of CDK16 was higher in EC tissues than in adjacent normal tissues in TCGA-UCEC dataset (p < 0.001) (Figure 8A). In addition, the results of qRT-PCR and IHC staining validated that the mRNA expression of CDK16 was higher in EC tissues than in adjacent normal tissues (p < 0.01) (Figures 8B,C). Altogether, these results indicate that CDK16 is upregulated in EC.
[image: Figure 8]FIGURE 8 | Expression of CDK16 in EC and adjacent normal tissues. (A) CDK16 expression was higher in tumour tissues than in adjacent normal tissues in TCGA cohort (p < 0.001). (B) qRT-PCR revealed that CDK16 expression was higher in tumour tissues than in adjacent normal tissues. (C) Immunohistochemical analysis revealed that CDK16 expression was higher in tumour than in adjacent normal tissues (*,p < 0.005; **p < 0.01; ***p < 0.001).
Correlation between CDK16 expression and the clinicopathological features of patients with endometrial cancer
Box plots and heatmaps were constructed to demonstrate the correlation between CDK16 expression and the clinicopathological characteristics of patients with EC (Figures 9A–E). CDK16 expression was correlated with pathological stage and histological grade (Figures 9C,D) but not with age and weight (Figures 9A,B). These results suggest that CDK16 plays a key role in the progression of EC.
[image: Figure 9]FIGURE 9 | Correlation between CDK16 expression and the clinicopathological features of patients with EC: (A) age, (B) weight (C) pathological stage, (D) histological grade. (E) Heatmap demonstrating the correlation between CDK16 expression and the clinicopathological characteristics of patients with EC.
DISCUSSION
The human genome has 21 genes that encode CDKs and an additional 5 genes that encode CDKL kinases, a distantly related class of catalytically active proteins that can be controlled by interactions with cell cycle proteins and CDK inhibitors (CKIs) (Malumbres et al., 2009; Lim and Kaldis, 2013). CDK is involved in metabolism, communication, and apoptosis, in addition to transcription and the cell cycle. It also ensures accurate DNA duplication within each cell, resulting in homogeneous DNA duplication within each of the two daughter cells. Additionally, precise gene expression regulation is necessary for healthy growth, whereas transcriptional dysregulation is required for the emergence and spread of cancer (Lukasik et al., 2021; Vervoort et al., 2022). Several studies on CDKs and cancer have been published in recent years, and there is strong evidence that CKIs can be utilized to treat cancer (Leal-Esteban and Fajas, 2020; Jhaveri et al., 2021; Reinius and Smyth, 2021; Liu et al., 2022). There is evidence that targeting CDKs in addition to conventional platinum medications may significantly improve the effectiveness of treatments for ovarian cancer (Zhou, 2017); CDK4 and CDK6 inhibitors may be effective in oral squamous cell carcinoma (Kujan et al., 2019); CDK inhibition has the potential to treat pancreatic ductal adenocarcinoma (Garcia-Reyes et al., 2018); breast cancer, including triple-negative and advanced breast cancer, is common cancer for which CKIs are used (Sarosiek, 2018; Quereda et al., 2019; Sofi et al., 2022). The FDA recently approved the dual CDK4/6 inhibitors Palbociclib, robocalled, and abaculi in combination with other medications for the treatment of hormone receptor positive (HR+) advanced or metastatic breast cancer as well as other breast cancer subtypes (Ding et al., 2020). CDK7 inhibitors are being investigated as anti-cancer drugs (Sava et al., 2020; Wang et al., 2020; Liang et al., 2021), and CDK12/13 inhibitors are used in the treatment of a variety of cancers (Tadesse et al., 2021).
CDK16, also known as PCTAIRE1 or PCTK1, is a member of the CDK family, which plays an indispensable role in tumorigenesis (Xie et al., 2018). It is closely associated with hepatocellular carcinoma, breast cancer, and non-small cell lung cancer (Wang et al., 2018; Liu et al., 2020; Li et al., 2022). CDK16 knockdown results in advanced G2 mitotic arrest and abnormal centrosome dynamics in cancer cells, indicating that CDK16 plays a crucial role in cancer cell proliferation. Therefore, CDK16 is a desirable target for therapeutic intervention (Yanagi et al., 2016).
Although CKIs have been investigated in EC (Giannone et al., 2019), the results have not been promising. To the best of our knowledge, this study is the first to comprehensively explore the molecular profiles of CDK family genes in EC using TCGA database. The CNV frequency, expression, and prognostic significance of CDK genes in EC were analyzed. Lasso–Cox analysis was used to construct a prognostic model based on seven CDK genes significantly associated with prognosis. Patients with EC were divided into the high- and low-risk groups based on the median risk score, and patients with high-risk scores were found to have a poorer prognosis than those with low-risk scores. Therefore, the risk model exhibited good discriminatory performance in predicting the prognosis of patients with EC. Univariate and multivariate Cox regression analyses showed that the risk score was an independent predictor of prognosis in patients with EC. Additionally, a nomogram was constructed to assess the clinical applicability of the risk model. To assess the relationship between the risk score and immunity, the CIBERSORT algorithm was used to analyze the proportion of TIICs. The proportion of regulatory T cells, activated NK cells, and monocytes was significantly higher in the low-risk group, whereas that of follicular helper T cells, activated dendritic cells, and activated memory CD4 T cells was significantly higher in the high-risk group. These results indicate that the risk score is significantly associated with the immune microenvironment of EC. Regulatory T cells are the internal fighters of the immune system that can counteract pathological immune activation and are associated with immunotherapy (Allos et al., 2019; Akkaya and Shevach, 2020). As powerful effectors of innate immunity, NK cells constitute the first line of defense against cancer (Guillerey, 2020). Monocytes are innate immune cells that play a key role in the development and progression of cancer (Olingy et al., 2019). Dendritic cells are potent antigen-presenting cells associated with the immune response (Brossart et al., 2001). CD4 T cells play an important role in cancer immunology and immunotherapy (Borst et al., 2018). Furthermore, IHC and qRT-PCR analyses revealed that CDK16 expression was higher in EC tissues than in adjacent normal tissues, and patients with high expression of CDK8 and CDK16 were found to have shorter OS.
CONCLUSION
In this study, we systematically analyzed the mutation frequency, expression, and prognostic significance of CDK family genes in EC and constructed a risk model based on prognostic CDK genes. Patients with EC were divided into the high- and low-risk groups based on the median risk score. The prognosis of patients in the low-risk group was significantly better than that of patients in the high-risk group. The established nomogram accurately predicted the recurrence of EC and may help to individualize the treatment of EC. The risk score was significantly associated with the immune microenvironment of EC. Additionally, patients with EC with high CDK16 expression had worse 10-year OS, and CDK16 expression was correlated with the pathological stage and histological grade of EC. The findings of this study offer valuable insights into developing individualized and targeted therapy for patients with EC.
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Purpose: Osteosarcoma is the most common primary malignancy of bone with a dismal prognosis for patients with pulmonary metastases. Evaluation of osteosarcoma prognosis would facilitate the prognosis consultation as well as the development of personalized treatment decisions. However, there is limited effective prognostic predictor at present. Lung Immune Prognostic Index (LIPI) is a novel prognostic factor in pulmonary cancers, whereas, the prognostic significance of LIPI in osteosarcoma has not yet been well clarified. In this study, we firstly explore the prognostic role of LIPI and further modify this predictive model in osteosarcoma.
Patients and methods: A retrospectively study was conducted at Musculoskeletal Tumor Center of West China Hospital between January 2016 and January 2021. Hematological factors and clinical features of osteosarcoma patients were collected and analyzed. The area under curve (AUC) and optimal cuff-off of each single hematological factor was calculated.
Results: In this study, lactate dehydrogenase (LDH), derived neurtrophil to lymphocyte ratio (dNLR), and Hydroxybutyrate dehydrogenase (HBDH) have higher AUC values. LIPI was composed of LDH and dNLR and was further modified by combing the HBDH, forming the osteosarcoma immune prognostic index (OIPI). OIPI divided 223 osteosarcoma patients divided into four groups, none, light, moderate, and severe (p < 0.0001). OIPI has a higher AUC value than LIPI and other hematological indexes in t-ROC curve. According to the univariate and multivariate analysis, pathological fracture, metastasis, NLR, platelet–lymphocyte ratio (PLR), and OIPI were associated with the prognosis; and metastasis and OIPI were independent prognostic factors of osteosarcoma patients. An OIPI-based nomogram was also established and could predict the 3-year and 5-year overall survival. In addition, OIPI was also revealed correlated with metastasis and pathological fracture in osteosarcoma.
Conclusion: This study first explore the prognostic significance of LIPI in osteosarcoma patients. In addition, we developed a modified LIPI, the OIPI, for osteosarcoma patients. Both the LIPI and OIPI could predict the overall survival of osteosarcoma patients well, while OIPI may be more suitable for osteosarcoma patients. In particular, OIPI may have the ability to identify some high-risk patients from clinically low-risk patients.
Keywords: osteosarcoma, tumor immune micro-environment, inflammation, prognostic predictive factors, lung immune prognostic index
1 INTRODUCTION
Osteosarcoma is the predominant primary malignant bone tumor and mainly affects adolescents and the elderly. The current standard treatment of osteosarcoma includes radical resection and neoadjuvant chemotherapy (Anderson, 2016). With the application of chemotherapy in cancer therapy, the 5-year overall survival (OS) has been improved to 50%–70% (Bielack et al., 2002). However, due to the drug resistance, distant metastasis and/or local recurrence, the outcome of osteosarcoma patients remains dismal (Yan et al., 2016). Therefore, identifying significant factors correlated with prognosis of osteosarcoma patients is urgently needed. Previous studies had reported the prognostic significance of several biomarkers in osteosarcoma and each of them has been correlated with advantages and disadvantages. Traditional prognostic factors including Enneking stage, tumor size, metastasis, and pathological fractures were instructive in making treatment decisions, but they were thought having limited power for prognosis prediction because they just cover single aspect of clinical or pathological features (Yang et al., 2020). New prognostic factors such as the micro-RNAs, long non-coding RNAs, and gene signature were significant in predicting the prognosis and the outcome of osteosarcomas patients. However, the high expenses and inconveniences of those novel factors limited their further clinical application (Liu et al., 2015a; Wang et al., 2015a; Li et al., 2015). Therefore, a simple, accurate, and inexpensive prognostic predictive factor of osteosarcoma patients is urgently required.
Extensive evidences show that cancer-related inflammations play an important role in the progression of malignant tumors (Candido and Hagemann, 2013; Diakos et al., 2014). Targeting of the inflammation pathway has been confirmed as a novel treatment method in prolonging OS (Aggarwal et al., 2009). Due to the diverse roles of inflammation in malignant tumors progression, several biomarkers, including neutrophil–lymphocyte ratio (NLR), platelet–lymphocyte ratio (PLR), lymphocyte-monocyte ratio (LMR), serum lactate dehydrogenase (LDH), and derived neutrophil to lymphocyte ratio (dNLR), were reported valid in predicting the OS and disease-free survival in various cancers (Koh et al., 2015; Pan et al., 2015; Gu et al., 2016; Li et al., 2017).
LDH acts a crucial role in tumor metastasis and proliferation and is associated with the prognosis of osteosarcoma (Augoff et al., 2015; Marais et al., 2015; Yu et al., 2017; Yin et al., 2018; Gong et al., 2019). HBDH is the isoenzyme of LDH and the value of HBDH could reflect the activity of LDH. However, the prognostic effect of HBDH in osteosarcoma patients remains unclear. Defined as absolute neutrophil count/[white blood cell concentration−absolute neutrophil count], dNLR was also a novel inflammation biomarker to measure inflammatory status in cancers (Capone et al., 2018; Mezquita et al., 2021; Yang et al., 2021). According to Mezquita et al. (2018) the combination of baseline LDH and dNLR, also named Lung Immune Prognostic Index (LIPI), is a novel index for predicting the benefit from immune checkpoint inhibitor and predicting OS or progression-free-survival (PFS) in lung cancer (Kazandjian et al., 2019; Sonehara et al., 2020). The role of LIPI was also explored in extra-pulmonary cancers (Auclin et al., 2021; Feng et al., 2021; Obayashi et al., 2022). However, as far as we know, the prognostic predictive ability of LIPI remains unclear in osteosarcoma.
In this retrospectively study, we tend to explore the prognostic significance of the LIPI in osteosarcoma. Additionally, we intend to establish a modified LIPI, the osteosarcoma immune prognostic index (OIPI), for osteosarcoma patients.
2 PATIENTS AND METHODS
2.1 Patients
From January 2016 to January 2021, all the cases with osteosarcoma in Musculoskeletal Tumor Center of West China Hospital were reviewed. The patients meeting the following criteria were included: 1) patients with high grade osteosarcoma diagnosed by histopathology; 2) patients who presented complete hematological test results before neoadjuvant chemotherapy; 3) patients who received standard treatment at West China Hospital. We excluded: 1) patients who had received neoadjuvant chemotherapy before their first visit in our hospital; 2) patients with hematological diseases; 3) Patients with other malignancies; 4) patients who did not receive standard treatment (patients who are misdiagnosed and inappropriately treated or fail to complete postoperative chemotherapy). Eventually, 223 patients were included in this study and each of them was followed up regularly till death or January 2022. During the follow-up, patients were recommended the outpatient visit every 3 months in the first year postoperatively; every 4 months in the second year; every 5 months in the third year; every 6 months in the fourth and fifth year and yearly thereafter. This study was approved by the ethics committee of West China Hospital and written informed consent was obtained from all participants.
2.2 Data collection and analysis
Leukocytes count (Leut#), neutrophils count (Neut#), lymphocytes count (LYMPH#), monocytes count (MONO#), platelet count (PLT), lactate dehydrogenase (LDH), hydroxybutyrate dehydrogenase (HBDH) were extracted from the first blood routine of 223 patients before neoadjuvant chemotherapy. The formulas for calculating NLR, PLR, LMR, dNLR are as follows: NLR = Neut#/LYMPH#, PLR = PLT/LYMPH#, LMR = LYMPH#/MONO#, dNLR = Neut#/(Leut#-Neut#).
In addition, age, gender, tumor site, pathologic fracture status, and tumor metastasis status were collected from the patients’ medical records. OS was calculated from the date of diagnosis to the date of death or last follow-up. In the overall cohort, the optimal cutoff value for each hematological marker was calculated based on the time-dependent receiver operating characteristic (ROC) curve and converted into a binary variable according to the cutoff value.
2.3 Establishment and validation of osteosarcoma immune prognostic index
Leukocytes count (Leut#), neutrophils count (Neut#), lymphocytes count (LYMPH#), monocytes count (MONO#), platelet count (PLT), lactate dehydrogenase (LDH), hydroxybutyrate dehydrogenase (HBDH) were extracted from the first blood routine of 223 patients before neoadjuvant chemotherapy. The formulas for calculating NLR, PLR, LMR, dNLR are as follows: NLR = Neut#/LYMPH#, PLR = PLT/LYMPH#, LMR = LYMPH#/MONO#, dNLR = Neut#/(Leut#-Neut#).
In addition, age, gender, tumor site, pathologic fracture status, and tumor metastasis status were collected from the patients’ medical records. OS was calculated from the date of diagnosis to the date of death or last follow-up. In the overall cohort, the optimal cutoff value for each hematological marker was calculated based on the time-dependent receiver operating characteristic (ROC) curve and converted into a binary variable according to the cutoff value.
2.4 Construction and evaluation of the nomogram
After the above-mentioned screening process, the prognostic factors were used to construct a nomogram for predicting the OS. For each patient, the total point was equal to the sum of the points of all factors. The link between the total points and the probability of OS were shown at the bottom of the nomogram. The discrimination ability and accuracy of nomograms were evaluated by Harrell’s Concordance Index and calibration curve, respectively. The diagonal acts as a reference line and represents the best prediction. Decision curve analysis (DCA) was used to evaluate the clinical application of the nomogram by estimating the net benefits at different threshold probabilities. The clinical impact curve was also drawn to predict reduction intervention probability per 100 patients. In addition, the constructed nomogram also predicted the overall survival of the validation cohort to assess the stability of the nomogram’s predictive ability.
2.5 Exploration of the relationship between osteosarcoma immune prognostic index and clinical characteristics
In all 223 patients, the association between the OIPI and traditional clinical characters, such as tumor site, pathological fracture, tumor metastasis status, was further explored by Spearman correlation analysis.
2.6 Statistical analysis
Kolmogorov-Smirnov was used to assess whether continuous variables were normally distributed, and Mann-Whitney U test or Spearman correlation analysis was used to assess differences between continuous variables according to the results. Categorical variables were evaluated using the chi-square test and the fisher’s exact test based on the number of individuals in each group. All statistical analyses were conducted using R software, version 4.1.0 (Institute for Statistics and Mathematics, Vienna, Austria). p-values < 0.05 were considered to indicate statistical significance.
3 RESULTS
3.1 Patient characteristics and optimal cut-off values of hematological factors
Patient characteristics were shown in Table 1. A total of 223 patients were enrolled in this study including 131 male and 92 female. The age of patients ranged from 7 to 67 years with a mean age of 22 years. Tumors mainly located at the extremities (96.0%) and only 9 tumors (4.0%) located at the extra-extremities. Pathological fracture at diagnosis was found in 25 (11.2%) patients and metastasis at diagnosis was found in 39 (17.5%) patients. The AUCs and optimal cuff-off of LDH, HBDH, PLR, NLR, LMR, and dNLR were calculated. As shown, the AUCs and optimal cuff-off were 0.631 and 160 for LDH, 0.688 and 164 for HBDH, 0.573 and 191.94 for PLR, 0.586 and 2.9 for NLR, 0.527 and 2 for LMR, 0.626 and 2.01 for dNLR, respectively (Figures 1A–F).
TABLE 1 | Clinicopathological characteristics of patients.
[image: Table 1][image: Figure 1]FIGURE 1 | ROC analysis of different hematological biomarkers. (A–F) The AUC and best cutoff values of dNLR, LDH, HBDH, LMR, NLR, and PLR were shown, respectively. The vertical axis represents the sensitivity and the horizontal axis represents the 1-specificity. dNLR, derived neurtrophil to lymphocyte ratio; LDH, lactate dehydrogenase; HBDH, Hydroxybutyrate dehydrogenase; LMR, lymphocyte-monocyte ratio; NLR, neutrophil–lymphocyte ratio; PLR, platelet–lymphocyte ratio.
3.2 Establishment of osteosarcoma immune prognostic index and survival analysis of various hematological factors
As shown, several hematologic markers were associated with survival outcomes in osteosarcoma, except for the LMR (Figure 2A). The low NLR group showed a better survival outcome rate than the high NLR score group (p = 0.002). The low PLR group showed a better survival outcome rate than the high PLR score group (p = 0.0016) (Figures 2B,C).
[image: Figure 2]FIGURE 2 | Predictive ability of different hematological biomarkers on OS in 223 patients with osteosarcoma. (A–E) Prognostic predictive effect of different inflammatory biomarkers on OS. Cumulative hazard function was plotted by the Kaplan–Meier methodology and the p value was calculated with two-sided log-rank tests. According to the logistic regression analysis, the differences between four LIPI or OIPI groups in the survival probability were significant. OS, overall survival; LMR, lymphocyte-monocyte ratio; NLR, neutrophil–lymphocyte ratio; PLR, platelet–lymphocyte ratio; LIPI, Lung Immune Prognostic Index; OIPI, osteosarcoma immune prognostic index.
In the current study, we constructed the LIPI combined with LDH and dNLR referring to previous research (Mezquita et al., 2018). LIPI divided patients into 3 groups: the 1st group of 52 patients who presented good LIPI, 2nd group of 109 patients who presented moderate LIPI, and a 3rd group of 62 patients who presented poor LIPI (Figure 2D). As expected, compared with other hematological, LIPI showed better predictive ability in OS (Figure 3A). However, we found that HBDH was also an effective prognostic factor with AUC value of 164, and performed better in evaluating the OS than other single hematological factors (Figure 3A). Thus, we combined the LIPI with HBDH and developed a new biomarker of osteosarcoma patient, OIPI. OIPI divided 223 osteosarcoma patients into 4 groups: the 1st group of 45 patients who presented none OIPI, the 2nd group of 72 patients who presented light OIPI, the 3rd group of 65 patients who presented moderate OIPI, and a 4th group of 41 patients who presented severe OIPI. OIPI has a good prognostic predictive power that is even stronger than that of LIPI (Figure 3A). To further investigate the distinction between LIPI and OIPI in predicting the OS for osteosarcoma patients, we drew the Sankey with R software. As shown in Figure 3B, patients in good LIPI group were divided into none and light OPI group, while patients in the severe OIPI group were all from patients in the poor LIPI group. As it can be seen, some patients (those who survived) in the poor LIPI group were shunted to the moderate OIPI group rather than the severe OIPI group, indicating that OIPI is more precise than LIPI in identifying osteosarcoma patients with poor prognosis.
[image: Figure 3]FIGURE 3 | Comparison of different hematological biomarkers in predicting the overall survival. (A) The difference of predictive ability was shown in time-dependent ROC curve, in which a larger AUC value meant a better prognostic predictive ability. (B) The Sankey showed the difference between LIPI and OIPI in distributing osteosarcoma patients. NLR, neutrophil–lymphocyte ratio; PLR, platelet–lymphocyte ratio; LMR, lymphocyte-monocyte ratio; dNLR, derived neurtrophil to lymphocyte ratio; LDH, lactate dehydrogenase; HBDH, Hydroxybutyrate dehydrogenase; LIPI, Lung Immune Prognostic Index; OIPI, osteosarcoma immune prognostic index.
3.3 Univariate analysis and multivariate analysis
The univariate analysis exhibited that the pathological fracture (HR = 2.013 (1.081–3.751), p = 0.028), metastasis (HR = 4.892 (3.093–7.736), p = 1.13e−11), NLR (HR = 2.01 (1.278–3.161), p = 0.003), PLR (HR = 2.06 (1.302–3.261), p = 0.002) and OIPI (HR = 2.065 (1.618–2.636), p = 5.61e−09) were associated with the OS (Figure 4A). Then the significant values were subjected to multivariate analyses to determine independent prognostic factors. The results showed that both metastasis (HR = 3.628 (2.221–5.927), p = 2.67e−07) and OIPI (HR = 1.737 (1.287–2.346), p = 0.000314) were independent prognostic factors of OS in patients with osteosarcoma (Figure 4B).
[image: Figure 4]FIGURE 4 | Independent risk factors of OS in 223 osteosarcoma patients. (A) Univariate analysis of clinical characters and inflammatory biomarkers. (B) Multivariate analysis of significant clinical characters and inflammatory biomarkers in univariate analysis to determinate independent prognostic factors. NLR; neutrophil–lymphocyte ratio; PLR, platelet–lymphocyte ratio; LMR, lymphocyte-monocyte ratio; OIPI, osteosarcoma immune prognostic index.
3.4 Construction and validation of osteosarcoma immune prognostic index-based nomogram
In order to investigate the clinical application of OIPI, we also developed a nomogram combining OIPI with clinical characteristics in patients with osteosarcoma. The hematological indexes (OIPI, PLR, and NLR) and clinical characters (metastasis and pathological fracture) were included in this nomogram to predict the 1-, 3-, and 5-year OS probability for osteosarcoma patients. As shown, cox proportional hazards regression assigned a score based on the hazard ratio for each covariate, and the sum of the scores for each covariate was the nomogram total score (Figure 5A). According to the calibration curve, the 3-year and 5-year OS curve were consistent with the diagonal line in calibration curve, which meant that, this nomogram could accurately predict 3-year and 5-year OS with the C-index of 0.76 (Figure 5B). Moreover, we explored the clinical benefits of the nomogram through DCA and clinical impact curve. The result demonstrated that the combined model (clinical characters and OIPI) could bring significant net benefits over the clinical model (without OIPI) (Figures 5C,D).
[image: Figure 5]FIGURE 5 | Construction and validation of the osteosarcoma overall survival nomogram. (A) The nomogram was constructed by combing OIPI, PLR, NLR, metastasis and pathological fracture and the sum of the scores for each covariate was the nomogram total score. (B–D) This nomogram was validated by the calibration curve, decision curve analysis, and clinical impact curve. OIPI, osteosarcoma immune prognostic index; PLR, platelet–lymphocyte ratio; NLR; neutrophil–lymphocyte ratio.
3.5 The predictive ability of osteosarcoma immune prognostic index compared with clinical characters
To compare the predictive ability of OIPI with clinical characters including gender, age, tumor site, pathological fracture, and metastasis, we plotted the time-dependent ROC curves. As shown in Figure 6, the predictive effect of the OIPI was significantly higher than that of the clinical characters.
[image: Figure 6]FIGURE 6 | Comparison of the predictive effect between OIPI and clinical characters on OS. A larger AUC in the t-ROC means a better predictive ability. OIPI, osteosarcoma immune prognostic index.
3.6 Association between osteosarcoma immune prognostic index and pathological fracture and metastasis
Finally, we also explored the relationship between OIPI and clinical characters including pathological fracture and metastasis by Spearman correlation analysis. As demonstrated in Figure 7, OIPI was correlated with metastasis (p = 0.00684) and pathological fracture (p = 0.0346).
[image: Figure 7]FIGURE 7 | Association between OIPI and clinical characters including metastasis and pathological fracture. (A,B) The Spearman’s rank analysis showed that OIPI was related to the metastasis and pathological fracture. OIPI, osteosarcoma immune prognostic index.
4 DISCUSSION
In this study, we developed the OIPI with the combination of LDH, dNLR, and HBDH. OIPI stratify the 223 osteosarcoma patients into four groups: none, light, moderate, and severe. For example, a patient with dNLR>2.01, LDH>160IU/L, and HBDH >164 IU/L was classified as severe OIPI. The OIPI show better prognostic predictive ability over other hematological indexes and clinical features. Besides, our results also revealed that metastasis and OIPI were the independent risk factors of the prognosis in osteosarcoma patients. The significant prognosis risk factors were used to construct a nomogram which could validly predict the 3-year and 5-year OS of osteosarcoma patients. Moreover, OIPI was also closely related to the metastasis and pathological fracture of osteosarcoma patients. Therefore, our findings indicated that OIPI could act as a useful tool to predict the prognosis of patients with osteosarcoma.
Osteosarcoma was the leading cause of tumor-associated mortality in adolescent and children (Ritter and Bielack, 2010). With the advancement of comprehensive treatment, the rate of OS has increased up to 60%–70% in non-metastatic osteosarcoma patients (Bielack et al., 2002). Despite of the advancement of treatment, apparent OS heterogeneity was still observed in osteosarcoma patients. Currently, the traditional clinical features including Enneking staging system, metastasis status, tumor site, histological type, and tumor grade were the main prognosis evaluation factors (Yang et al., 2020). However, those factors have gradually exposed their inaccuracy and inappropriateness during the clinical application, and discrepancy often occurs between those factors and clinical outcomes (Wang et al., 2015b). Recently, several new prognostic factors, including the micro-RNAs, long non-coding RNAs (lnc-RNA), and gene signature were reported effective in the prognosis prediction of osteosarcoma patients (Liu et al., 2015a; Wang et al., 2015a; Li et al., 2015; Li et al., 2021). Most of these biomarkers have a predictive ability, for example, our previous study demonstrated that the metabolic-related gene pairs signature (MRGP) could reliably predict the OS with a high AUC of 0.9 in osteosarcoma patients (Li et al., 2021). Unfortunately, in osteosarcoma, the vast majority of genes have not been validated by independent cohorts and are still away from clinical application. In addition, most of these biomarkers do not have uniform detection methods, such as the expression levels of miRNAs and lnc-RNAs can be affected by the extraction and processing modes (Mathew et al., 2020; Zhong et al., 2020). Indeed, inconsistencies in miRNA and lnc-RNA expression results are frequently reported (Mathew et al., 2020; Zhong et al., 2020). More importantly, the high-cost and inconvenience of detecting these factors limit the further clinical practice.
In contrast, the hematological parameters are derived from blood test results and are low-cost, simple, and convenient to detect. A large number of studies have confirmed the prognostic value of hematological parameters in patients with cancers, such as elevated LDH and ALP implying a poor prognosis in patients with osteosarcoma (Koh et al., 2015; Marais et al., 2015; Pan et al., 2015; Gu et al., 2016; Zumárraga et al., 2016; Li et al., 2017). However, due to the complexity of the tumor microenvironment, a single hematological parameter is not sufficient to fully reflect an individual’s inflammatory status. Nevertheless, there is still a large gap in the predictive ability of these single hematological biomarkers compared with metastasis status. In addition, the predictive stability of these single parameters is not enough and have various clinical significance in different studies, such as the LMR (Liu et al., 2015b; Song et al., 2021) (Figure 2A). As the growing recognition towards inflammatory response and prognosis, it is vital to develop a comprehensive index to evaluate the inflammatory status and to predict the long-term survival rate. Some attempts have been taken to integrate certain significant inflammatory factors in order to evaluate patients’ clinical outcome, such as the establishment of LIPI in lung cancer (Mezquita et al., 2018).
LIPI is a comprehensive inflammatory factor composed of dNLR and LDH (24). LIPI was relevant with inflammatory status and has recently been widely reported as a novel prognostic factor in lung cancer and extra-pulmonary cancer (Mezquita et al., 2018; Kazandjian et al., 2019; Sonehara et al., 2020; Auclin et al., 2021; Feng et al., 2021; Veccia et al., 2021; Xie et al., 2021; Obayashi et al., 2022). More inspiring, studies have shown that LIPI can not only predict the survival but also excellently predict the response to immunotherapy (Mezquita et al., 2018; Auclin et al., 2021; Feng et al., 2021). However, to the best of our knowledge, the prognostic predictive effect of LIPI has never been investigated in osteosarcoma yet. Based on the significant clinical implications for both lung and extra-pulmonary cancers, we hypothesized that, LIPI would also be interesting in predicting the prognosis of patients with osteosarcoma. As expected, our results suggested that LIPI had good predictive ability in predicting the OS of osteosarcoma patients (Figure 3A). The median OS of patients having good LIPI was significantly longer than that of moderate LIPI and poor LIPI, which was consistent with the result reported by Sonehara et al. (2020); Feng et al. (2021). In addition, during the analysis process, we found that HBDH, an LDH isoenzyme, equally showed prognostic significance in osteosarcoma patients (Figures 1B, 3A), and had a good predictive ability with the highest AUC value (0.688) among single hematological parameters (Figure 3A). Given the excellent performance of HBDH in osteosarcoma, we introduced this metric into LIPI and constructed OIPI. We therefore hypothesized that OIPI may be more suitable for patients with osteosarcoma than LIPI.
In this study, OIPI divided 223 patients into four groups, of which 45 patients had none OIPI, 72 patients had light OIPI, 65 patients had moderate OIPI, and 41 patients had severe OIPI (Figure 2E) (p < 0.001). Compared with traditional prognostic factors such as metastasis, OIPI divided osteosarcoma patients more evenly; suggesting that OIPI may be able to identify poor prognosis high-risk patients whose metastatic features are not identifiable (poor prognosis in the initial absence of metastasis) (Figure 6). Our findings also elaborated that OIPI performed better than other hematological factors such as LDH, dNLR, NLR, and PLR in predicting OS in osteosarcoma patients (Figure 3A). Most importantly, OIPI does have a higher predictive power than LIPI, as expected (Figure 3A). Compared with LIPI, OIPI is more accurate in identifying patients with poor prognosis. Our results revealed that some of the patients who survived in poor LIPI were redistributed into moderate OIPI group instead of severe OIPI group, while all patients who died in poor LIPI were distributed into severe OIPI group (Figure 3B). This led to the hypothesis that, OIPI is more likely to identify osteosarcoma patients who have a real poor prognosis. Moreover, the combination of dNLR, LDH, and HBDH can further reduce the potential bias, as each individual indicator may be affected by various factors. Our results suggested that OIPI is indeed more suitable for osteosarcoma patients than LIPI. In the other hand, OIPI has the advantage of being low cost and is as easily accessible as other hematological factors. Therefore, we believe that OIPI may be more suitable for clinical application than other hematological factors.
Inflammation related to cancers has been recognized as the seventh landmark of cancers (Mantovani et al., 2008). Inflammation predisposes to tumor development and promotes various stages of tumor initiation, growth, progression and metastasis (Greten and Grivennikov, 2019). Through engaging the dynamic and extensive interactions with cancer cells and surrounding stromal, inflammatory cells participate in the formation of the inflammatory tumor microenvironment (Greten and Grivennikov, 2019). The dual role of neutrophils in inhibiting or promoting cancer cell growth and metastatic spread remains controversial. But in general, neutrophils are associated with the metastasis at nodal site, tumor grade, and tumor stage for its high intra-tumoral density in solid tumors (Masucci et al., 2019). In contrast, lymphocytes in solid tumors are thought to participate in antitumor immunotherapy by secreting cytokines and inducing apoptosis of tumor cells, and there have been lots of studies evaluating their predictive value in different immunotherapies and chemotherapies (Teixidó et al., 2015; Ingold Heppner et al., 2016; Tas and Erturk, 2017). Platelets protect circulating tumor cells from lethal attack by the immune system or other proapoptotic stimuli, and provide signals to establish a pro-metastasis niche environment, ultimately promoting tumor growth and metastasis (Haemmerle et al., 2018). As a classical prognostic factor, LDH could reflect systemic cancer burden and predict the outcomes of numerous cancers, in which an elevated LDH was correlated with the poor prognosis of osteosarcoma patients (Walenta and Mueller-Klieser, 2004). dNLR is a more responsive indicator of systemic inflammatory status than NLR as dNLR includes monocytes and other granulocytes. The predictive potential of dNLR has been demonstrated in a variety of cancers (Capone et al., 2018; Mezquita et al., 2021; Yang et al., 2021). In non-colorectal gastrointestinal cancer, Li et al. (2020) reported that higher level of dNLR was associated with reduced OS in patients with non-colorectal gastrointestinal cancer. To our knowledge, this study is the first to explore this biomarker in osteosarcoma. Our results suggested that elevated dNLR (>2.01) was also correlated with the poor outcome of osteosarcoma patients (Figures 1A, 2A). As the basic components of OIPI, the elevated LDH, dNLR, and HBDH are associated with the poor outcomes in osteosarcoma.
It must be acknowledged that our study has some limitations. First, this was a single-center study, which was retrospective and may have caused selection bias. Second, this study did not fully explore the predictive potential of OIPI. To our knowledge, two studies with large sample sizes have affirmed the prognostic value of LIPI in predicting response to immunotherapy in non-small cell lung cancer. Therefore, it is reasonable to assume that OIPI may be able to predict the response to immunotherapy in osteosarcoma. However, as the first to explore the prognostic ability of LIPI and OIPI in osteosarcoma, this current study lays a foundation for evaluating LIPI and OIPI in predicting the response to immunotherapy in osteosarcoma. Finally, the prognostic value of HBDH in osteosarcoma still needs further validations. This study preliminarily explored the prognostic value of HBDH, an isoenzyme of LDH, a classical marker for predicting the prognosis of cancer patients. Surprisingly, HBDH performed better than LDH in our cohort. However, studies on the prognostic value of HBDH in cancer patients are very scarce. In osteosarcoma, only our study has reported the prognostic value of HBDH. Further studies are therefore needed to clarify the predictive power of HBDH in patients with osteosarcoma or even cancer.
5 CONCLUSION
In conclusion, this present study is the first to construct an OIPI that may be more suitable for osteosarcoma patients based on LIPI and practical hematological markers in osteosarcoma. Our results revealed that both LIPI and OIPI could predict the overall survival of osteosarcoma patients well, and OIPI had a better predictive ability than other hematological parameters. In particular, OIPI may have the ability to identify some high-risk patients from clinically low-risk patients. Further studies are needed to validate our conclusions, especially the value of LIPI versus OIPI in predicting response to immunotherapy in osteosarcoma patients.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding authors.
ETHICS STATEMENT
The studies involving human participants were reviewed and approved by the Ethics Committee of West China Hospital, Sichuan University. Written informed consent to participate in this study was provided by the participants’ legal guardian/next of kin.
AUTHOR CONTRIBUTIONS
YL and CT designed the research study. XH, ML, and FT performed the research. CZ and LL provided help and advice on revised the manuscript. GK, YW, and YZ analyzed the data. XH, LM, and FT wrote the manuscript. All authors contributed to editorial changes in the manuscript. All authors read and approved the final manuscript.
FUNDING
This study is funded by the Science and Technology Research Program of Sichuan Province (2020YFS0036), and 1·3·5 project for disciplines of excellence, West China Hospital, Sichuan University (ZYJC18036), and China Postdoctoral Science Foundation (2021M702342).
ACKNOWLEDGMENTS
Thanks to the support of West China Hospital, Sichuan University for the research.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
REFERENCES
 Aggarwal, B. B., Vijayalekshmi, R. V., and Sung, B. (2009). Targeting inflammatory pathways for prevention and therapy of cancer: Short-term friend, long-term foe. Clin. Cancer Res. 15 (2), 425–430. doi:10.1158/1078-0432.ccr-08-0149
 Anderson, M. E. (2016). Update on survival in osteosarcoma. Orthop. Clin. North Am. 47 (1), 283–292. doi:10.1016/j.ocl.2015.08.022
 Auclin, E., Vuagnat, P., Smolenschi, C., Taieb, J., Adeva, J., Nebot-Bral, L., et al. (2021). Association of the lung immune prognostic index with immunotherapy outcomes in mismatch repair deficient tumors. Cancers 13, 3776. doi:10.3390/cancers13153776
 Augoff, K., Hryniewicz-Jankowska, A., and Tabola, R. (2015). Lactate dehydrogenase 5: An old friend and a new hope in the war on cancer. Cancer Lett. 358 (1), 1–7. doi:10.1016/j.canlet.2014.12.035
 Bielack, S. S., Kempf-Bielack, B., Delling, G., Exner, G. U., Flege, S., Helmke, K., et al. (2002). Prognostic factors in high-grade osteosarcoma of the extremities or trunk: An analysis of 1, 702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol. 20 (3), 776–790. doi:10.1200/jco.2002.20.3.776
 Candido, J., and Hagemann, T. (2013). Cancer-related inflammation. J. Clin. Immunol. 33 (1), S79–S84. doi:10.1007/s10875-012-9847-0
 Capone, M., Giannarelli, D., Mallardo, D., Madonna, G., Festino, L., Grimaldi, A. M., et al. (2018). Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab. J. Immunother. Cancer 6 (1), 74. doi:10.1186/s40425-018-0383-1
 Diakos, C. I., Charles, K. A., McMillan, D. C., and Clarke, S. J.Cancer-related inflammation and treatment effectiveness. Lancet. Oncol. 2014;15(11):e493-e503. doi:10.1016/s1470-2045(14)70263-3
 Feng, J. F., Zhao, J. M., Chen, S., and Chen, Q. X. (2021). Prognostic significance of the lung immune prognostic index in patients with resected esophageal squamous cell carcinoma. Cancer Manag. Res. 13, 2811–2819. doi:10.2147/cmar.s298412
 Gong, T., Liu, J., Jiang, J., Zhai, Y. F., Wu, C. M., Ma, C., et al. (2019). The role of lactate deshydrogenase levels on non-small cell lung cancer prognosis: A meta-analysis. Cell. Mol. Biol. 65 (1), 89–93. doi:10.14715/cmb/2019.65.1.16
 Greten, F. R., and Grivennikov, S. I. (2019). Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity 51 (1), 27–41. doi:10.1016/j.immuni.2019.06.025
 Gu, X., Sun, S., Gao, X. S., Xiong, W., Qin, S., Qi, X., et al. (2016). Prognostic value of platelet to lymphocyte ratio in non-small cell lung cancer: Evidence from 3, 430 patients. Sci. Rep. 6, 23893. doi:10.1038/srep23893
 Haemmerle, M., Stone, R. L., Menter, D. G., Afshar-Kharghan, V., and Sood, A. K. (2018). The platelet lifeline to cancer: Challenges and opportunities. Cancer Cell 33 (6), 965–983. doi:10.1016/j.ccell.2018.03.002
 Ingold Heppner, B., Untch, M., Denkert, C., Pfitzner, B. M., Lederer, B., Schmitt, W., et al. (2016). Tumor-infiltrating lymphocytes: A predictive and prognostic biomarker in neoadjuvant-treated HER2-positive breast cancer. Clin. Cancer Res. 22 (23), 5747–5754. doi:10.1158/1078-0432.ccr-15-2338
 Kazandjian, D., Gong, Y., Keegan, P., Pazdur, R., and Blumenthal, G. M. (2019). Prognostic value of the lung immune prognostic index for patients treated for metastatic non-small cell lung cancer. JAMA Oncol. 5 (10), 1481–1485. doi:10.1001/jamaoncol.2019.1747
 Koh, C. H., Bhoo-Pathy, N., Ng, K. L., Jabir, R. S., Tan, G. H., See, M. H., et al. (2015). Utility of pre-treatment neutrophil-lymphocyte ratio and platelet-lymphocyte ratio as prognostic factors in breast cancer. Br. J. Cancer 113 (1), 150–158. doi:10.1038/bjc.2015.183
 Li, F., Cao, L., Hang, D., Wang, F., and Wang, Q. (2015). Long non-coding RNA HOTTIP is up-regulated and associated with poor prognosis in patients with osteosarcoma. Int. J. Clin. Exp. Pathol. 8 (9), 11414–11420.
 Li, L. Q., Zhang, L. H., Yuan, Y. B., Lu, X. C., Zhang, Y., Liu, Y. K., et al. (2021). Signature based on metabolic-related gene pairs can predict overall survival of osteosarcoma patients. Cancer Med. 10 (13), 4493–4509. doi:10.1002/cam4.3984
 Li, S., Zou, J., Liu, C., Jiao, X., Gong, J., Li, J., et al. (2020). Baseline derived neutrophil-to-lymphocyte ratio as a prognostic biomarker for non-colorectal gastrointestinal cancer patients treated with immune checkpoint blockade. Clin. Immunol. Orl. Fla) 212, 108345. doi:10.1016/j.clim.2020.108345
 Li, Y., Wang, C., Xu, M., Kong, C., Qu, A., Zhang, M., et al. (2017). Preoperative NLR for predicting survival rate after radical resection combined with adjuvant immunotherapy with CIK and postoperative chemotherapy in gastric cancer. J. Cancer Res. Clin. Oncol. 143 (5), 861–871. doi:10.1007/s00432-016-2330-1
 Liu, T., Fang, X. C., Ding, Z., Sun, Z. G., Sun, L. M., and Wang, Y. L. (2015). Pre-operative lymphocyte-to-monocyte ratio as a predictor of overall survival in patients suffering from osteosarcoma. FEBS open bio 5, 682–687. doi:10.1016/j.fob.2015.08.002
 Liu, Y., Teng, Z., Wang, Y., Gao, P., and Chen, J. (2015). Prognostic significance of survivin expression in osteosarcoma patients: A meta-analysis. Med. Sci. Monit. 21, 2877–2885. doi:10.12659/msm.894448
 Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancer-related inflammation. Nature 454 (7203), 436–444. doi:10.1038/nature07205
 Marais, L. C., Bertie, J., Rodseth, R., Sartorius, B., and Ferreira, N. (2015). Pre-treatment serum lactate dehydrogenase and alkaline phosphatase as predictors of metastases in extremity osteosarcoma. J. Bone Oncol. 4 (3), 80–84. doi:10.1016/j.jbo.2015.09.002
 Masucci, M. T., Minopoli, M., and Carriero, M. V. (2019). Tumor associated neutrophils. Their role in tumorigenesis, metastasis, prognosis and therapy. Front. Oncol. 9, 1146. doi:10.3389/fonc.2019.01146
 Mathew, R., Mattei, V., Al Hashmi, M., and Tomei, S. (2020). Updates on the current technologies for microRNA profiling. MicroRNA (Shariqah, United Arab. Emir. 9 (1), 17–24. doi:10.2174/2211536608666190628112722
 Mezquita, L., Auclin, E., Ferrara, R., Charrier, M., Remon, J., Planchard, D., et al. (2018). Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol. 4 (3), 351–357. doi:10.1001/jamaoncol.2017.4771
 Mezquita, L., Preeshagul, I., Auclin, E., Saravia, D., Hendriks, L., Rizvi, H., et al. (2021). Predicting immunotherapy outcomes under therapy in patients with advanced NSCLC using dNLR and its early dynamics. Eur. J. Cancer 151, 211–220. doi:10.1016/j.ejca.2021.03.011
 Obayashi, K., Miki, J., Fukuokaya, W., Yanagisawa, T., Kimura, S., Tsuzuki, S., et al. (2022). The prognostic value of the preoperative lung immune prognostic index in patients with urothelial bladder cancer undergoing radical cystectomy. Int. J. Clin. Oncol. 27 (2), 396–402. doi:10.1007/s10147-021-02059-8
 Pan, Q. X., Su, Z. J., Zhang, J. H., Wang, C. R., and Ke, S. Y. (2015). A comparison of the prognostic value of preoperative inflammation-based scores and TNM stage in patients with gastric cancer. Onco. Targets. Ther. 8, 1375–1385. doi:10.2147/ott.s82437
 Ritter, J., and Bielack, S. S. (2010). Ann. Oncol.21 (7), vii320–vii325. doi:10.1093/annonc/mdq276
 Sonehara, K., Tateishi, K., Komatsu, M., Yamamoto, H., and Hanaoka, M. (2020). Lung immune prognostic index as a prognostic factor in patients with small cell lung cancer. Thorac. Cancer 11 (6), 1578–1586. doi:10.1111/1759-7714.13432
 Song, X., Zhang, H., Yin, F., Guo, P., Yang, X., Liu, J., et al. (2021). Systemic inflammatory markers for predicting overall survival in patients with osteosarcoma: A systematic review and meta-analysis. Mediat. Inflamm. 2021, 3456629. doi:10.1155/2021/3456629
 Tas, F., and Erturk, K. (2017). Tumor infiltrating lymphocytes (TILs) may be only an independent predictor of nodal involvement but not for recurrence and survival in cutaneous melanoma patients. Cancer Invest. 35 (8), 501–505. doi:10.1080/07357907.2017.1351984
 Teixidó, C., González-Cao, M., Karachaliou, N., and Rosell, R. (2015). Predictive factors for immunotherapy in melanoma. Ann. Transl. Med. 3 (15), 208. doi:10.3978/j.issn.2305-5839.2015.05.07
 Veccia, A., Sforza, V., Vattemi, E., Inno, A., Kinspergher, S., Dipasquale, M., et al. (2021). Pretreatment lung immune prognostic index as a biomarker in advanced non-small-cell lung cancer patients receiving first line pembrolizumab. Immunotherapy 13 (13), 1093–1103. doi:10.2217/imt-2021-0002
 Walenta, S., and Mueller-Klieser, W. F. (2004). Lactate: Mirror and motor of tumor malignancy. Semin. Radiat. Oncol. 14 (3), 267–274. doi:10.1016/j.semradonc.2004.04.004
 Wang, B., Tu, J., Yin, J., Zou, C., Wang, J., Huang, G., et al. (2015). Development and validation of a pretreatment prognostic index to predict death and lung metastases in extremity osteosarcoma. Oncotarget 6 (35), 38348–38359. doi:10.18632/oncotarget.5276
 Wang, T., Ji, F., Dai, Z., Xie, Y., and Yuan, D. (2015). Increased expression of microRNA-191 as a potential serum biomarker for diagnosis and prognosis in human osteosarcoma. Cancer Biomark. 15 (5), 543–550. doi:10.3233/CBM-150493
 Xie, J., Zang, Y., Liu, M., Peng, L., and Zhang, H. (2021). The lung immune prognostic index may predict the efficacy of different treatments in patients with advanced nsclc: A meta-analysis. Oncol. Res. Treat. 44 (4), 164–175. doi:10.1159/000514443
 Yan, G. N., Lv, Y. F., and Guo, Q. N. (2016). Advances in osteosarcoma stem cell research and opportunities for novel therapeutic targets. Cancer Lett. 370 (2), 268–274. doi:10.1016/j.canlet.2015.11.003
 Yang, Q., Chen, T., Yao, Z., and Zhang, X. (2020). Prognostic value of pre-treatment Naples prognostic score (NPS) in patients with osteosarcoma. World J. Surg. Oncol. 18 (1), 24. doi:10.1186/s12957-020-1789-z
 Yang, T., Hao, L., Yang, X., Luo, C., Wang, G., Lin Cai, C., et al. (2021). Prognostic value of derived neutrophil-to-lymphocyte ratio (dNLR) in patients with non-small cell lung cancer receiving immune checkpoint inhibitors: A meta-analysis. BMJ open 11 (9), e049123. doi:10.1136/bmjopen-2021-049123
 Yin, J. Q., Fu, Y. W., Xie, X. B., Cheng, X. Y., Yang, X. Y., Liu, W. H., et al. (2018). Telangiectatic osteosarcoma: Outcome analyses and a diagnostic model for differentiation from aneurysmal bone cyst. J. Bone Oncol. 11, 10–16. doi:10.1016/j.jbo.2017.11.003
 Yu, S. L., Xu, L. T., Qi, Q., Geng, Y. W., Chen, H., Meng, Z. Q., et al. (2017). Serum lactate dehydrogenase predicts prognosis and correlates with systemic inflammatory response in patients with advanced pancreatic cancer after gemcitabine-based chemotherapy. Sci. Rep. 7, 45194. doi:10.1038/srep45194
 Zhong, L., Ming, Z., Xie, G., Fan, C., and Piao, X. (2020). Recent advances on the semi-supervised learning for long non-coding RNA-protein interactions prediction: A review. Protein Pept. Lett. 27 (5), 385–391. doi:10.2174/0929866526666191025104043
 Zumárraga, J. P., Baptista, A. M., Rosa, L. P., Caiero, M. T., and Camargo, O. P. (2016). Serum values of alkaline phosphatase and lactate dehydrogenase in osteosarcoma. Acta Ortop. Bras. 24 (3), 142–146. doi:10.1590/1413-785220162403157033
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 He, Tang, Zou, Li, Wang, Kenmegne, Zhou, Lu, Min, Luo and Tu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 20 October 2022
doi: 10.3389/fgene.2022.974726


[image: image2]
Chromatin regulators-related lncRNA signature predicting the prognosis of kidney renal clear cell carcinoma and its relationship with immune microenvironment: A study based on bioinformatics and experimental validation
Xinyu Zhang1,2†, Xinyue Qin3,2†, Tiannan Yu1,2†, Kexin Wang2, Yinhao Chen1,2* and Qianwei Xing1*
1Department of Urology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
2Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
3Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
Edited by:
Zhouxiao Li, Ludwig Maximilian University of Munich, Germany
Reviewed by:
Xiu-wu Pan, Shanghai Jiao Tong University, China
Feng Jiang, Fudan University, China
* Correspondence: Qianwei Xing, xingqianwei@ntu.edu.cn; Yinhao Chen, haodada8861@163.com
†These authors have contributed equally to this work
Specialty section: This article was submitted to Cancer Genetics and Oncogenomics, a section of the journal Frontiers in Genetics
Received: 21 June 2022
Accepted: 05 October 2022
Published: 20 October 2022
Citation: Zhang X, Qin X, Yu T, Wang K, Chen Y and Xing Q (2022) Chromatin regulators-related lncRNA signature predicting the prognosis of kidney renal clear cell carcinoma and its relationship with immune microenvironment: A study based on bioinformatics and experimental validation. Front. Genet. 13:974726. doi: 10.3389/fgene.2022.974726

Background: Kidney Renal Clear cell carcinoma (KIRC) is a major concern in the urinary system. A lot of researches were focused on Chromatin Regulators (CRs) in tumors. In this study, CRs-related lncRNAs (CRlncRNAs) were investigated for their potential impact on the prognosis of KIRC and the immune microenvironment.
Methods: The TCGA database was used to obtain transcriptome and related clinical information. CRs were obtained from previous studies, whereas CRlncRNAs were obtained by differential and correlation analysis. We screened the lncRNAs for the signature construction using regression analysis and LASSO regression analysis. The effectiveness of the signature was evaluated using the Kaplan-Meier (K-M) curve and Receiver Operating Characteristic curve (ROC). Additionally, we examined the associations between the signature and Tumor Microenvironment (TME), and the efficacy of drug therapy. Finally, we further verified whether these lncRNAs could affect the biological function of KIRC cells by functional experiments such as CCK8 and transwell assay.
Results: A signature consisting of 8 CRlncRNAs was constructed to predict the prognosis of KIRC. Quantitative Real-Time PCR verified the expression of 8 lncRNAs at the cell line and tissue level. The signature was found to be an independent prognostic indicator for KIRC in regression analysis. This signature was found to predict Overall Survival (OS) better for patients in the subgroups of age, gender, grade, stage, M, N0, and T. Furthermore, a significant correlation was found between riskScore and immune cell infiltration and immune checkpoint. Finally, we discovered several drugs with different IC50 values in different risk groups using drug sensitivity analysis. And functional experiments showed that Z97200.1 could affect the proliferation, migration and invasion of KIRC cells.
Conclusion: Overall, the signature comprised of these 8 lncRNAs were reliable prognostic biomarkers for KIRC. Moreover, the signature had significant potential for assessing the immunological landscape of tumors and providing individualized treatment.
Keywords: prognosis, chromatin regulators-related lncRNA, signature, immune microenvironment, kidney renal clear cell carcinoma (KIRC)
INTRODUCTION
Renal Cell Carcinoma (RCC) is among the ten most common forms of cancer globally (Siegel et al., 2018), second only to bladder cancer among urinary system tumors. There is no histological variety of RCC more common than Kidney Renal Clear cell Carcinoma (KIRC), accounting for 80%–90% of RCC. The KIRC is also the most common pathological variety causing death in renal cancer patients (Hsieh et al., 2017). There are more than 330,000 new cases of RCC globally and over 140,000 deaths each year and the incidence has continued to rise (Siegel et al., 2017). Advancements in medicine and the popularity of physical examinations have resulted in improvement in the medical level and an increase in the early diagnosis rate of KIRC. However, some patients have advanced KIRC at the time of diagnosis. Surgical treatment is preferred when KIRC is detected early. Because KIRC is not sensitive to radiotherapy and chemotherapy, targeted therapy is the main treatment for patients with advanced KIRC. According to statistical data, the prognosis of advanced KIRC is particularly poor, with a 5-year survival rate as low as 11.7% (Morrissey et al., 2015). Therefore, it is crucial to investigate the pathogenesis of KIRC, especially advanced KIRC. This type of research can also provide new insights into the clinical treatment of KIRC, and also provide potential molecular targets for the targeted therapy.
Noncoding RNAs have been extensively studied since the development of high-throughput technologies such as second-generation sequencing. Long noncoding RNAs (LncRNAs), a class of no protein genes coding potential, are initially assumed to be nonfunctional transcriptional byproducts. Studies on transcriptional activation, cell cycle regulation and epigenetic regulation (Miranda-Castro et al., 2019; Zhang et al., 2019) have been found for lncRNAs in the onset and development of disease. The occurrence and progression of tumors are influenced by more than a hundred lncRNAs with dysregulated expression, particularly urinary malignancies, as research advances. Liu et al. demonstrated that a signature composed of four lncRNAs can predict the prognosis of KIRC and that the signature could be used as a potential biomarker (Liu et al., 2020). Xia et al. validated a signature based on nine redox-related lncRNAs as a prognostic marker for KIRC (Qi-Dong et al., 2020). More studies have demonstrated that lncRNAs affect the prognosis of KIRC, implying that we may be able to develop more accurate biomarkers of KIRC based on lncRNAs.
Chromatin Regulators (CRs) are a class of proteins mainly involved in the fine regulation of chromatin structure (Gonzalez-Perez et al., 2013). The CRs are mainly composed of DNA methylators, histone modifiers, and chromatin remodelers. To participate in the biological process of the tumor, CRs can promote epigenetic changes. Polybromo-1 (PBRM1), a chromatin regulator, has been identified as the most mutated gene in KIRC and a potential target for KIRC therapy (Aili et al., 2021). A recent study recommended 11 CRs as a biomarker for bladder cancer (Zhu et al., 2022). However, no study has been conducted to investigate the role of CRs-related lncRNAs (CRlncRNAs) in KIRC. In the study, we employed bioinformatics to construct a signature of CRlncRNAs and analyzed if it could be used for KIRC.
METHOD AND MATERIALS
Collection and processing of data
Data on all KIRC transcriptomes, their clinical characteristics and mutation data were obtained from The Cancer Genome Atlas (TCGA) database (https://www.cancer.gov/), excluding samples with missing clinical information. Mutation data was downloaded to analyze the association between the signature and tumor mutational burden (TMB). From the previous study, we obtained 870 CRs (Lu et al., 2018). Differential analysis of these regulators was done using |logFC| > 1 and False Discovery Rate (FDR) < 0.05 as screening conditions, to acquire Differentially Expressed CRs (DECRs) in KIRC. In addition, CRlncRNAs were selected by Pearson correlation analysis, with correlation coefficients higher than 0.8 and p-values below 0.05. Finally, differential analysis was used to identify Differentially Expressed CRlncRNAs (DECRLs), with the same conditions as before.
Construction of a prognostic signature based on chromatin regulators-related lncRNAs
To generate training and testing sets, a 7:3 split of the entire TCGA dataset was performed. We used the training set for signature construction. A testing set was used to demonstrate the value of the signature and the entire set. The training set was first subjected to univariate regression analysis to identify DECRLs that affect the prognosis of KIRC. In addition, Least Absolute Selection Operator (LASSO) regression analysis was employed to avoid overfitting. These lncRNAs were used to construct a prognostic signature for calculating risk scores for KIRC patients. The formula for calculating risk scores was: Risk score = [image: image], where β represented the coefficient value of lncRNAs and exp denotes the expression level.
Validation of the prognostic signature
The prognostic model was further validated using a testing and the entire set. Patients were classified into high- and low-risk groups based on their median risk score. Based on the Kaplan-Meier (K-M) curve, we compared survival difference of different groups of patients. We also calculated Area Under the Curve (AUC) and assessed the accuracy of the signature in predicting KIRC prognosis using the Receiver Operating characteristic Curve (ROC). The differential expressions of eight lncRNAs were compared between different groups using heatmaps.
Validation of prognostic signature as an independent prognostic factor
Based on logistic regression analysis, the correlations between clinicopathological factors and riskScore were calculated and presented in the form of a heatmap. The prognostic value of the riskScore was investigated using univariate/multivariate regression analysis. The ROC was subjected to compare the accuracy of signature and several clinical characteristics in the prediction of KIRC prognosis.
Construction and evaluation of nomogram
As per the previous methods (Iasonos et al., 2008), a nomogram was developed based on 8 clinical characteristics and riskScore to assess Overall survival (OS) in patients with KIRC. Additionally, calibration curves were used to assess the nomogram for OS.
Enrichment analysis and gene set variation analysis (GSVA)
Annotating differentially expressed genes involved the use of Gene Ontology (GO) analysis, which was comprised of three processes, including biological process, molecular function and cellular components. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was applied in the investigation of the relevant pathways to further analyze the mechanisms associated with prognostic models in KIRC. The GSVA was an algorithm that can calculate the variance scores for specific sets of genes in each sample, without the need for prior variance analysis between samples. GSVA was performed on the entire as per the previous methods (Hänzelmann et al., 2013), and Person correlation analysis was used to assess the correlation of GSVA scores with prognostic models and the 8 lncRNAs.
Assessment of tumor microenvironment and immune cell infiltration
We used the ESTIMATE algorithm to calculate ImmunityScore, StromalScore and ESTIMATEScore for different risk groups for improving understanding of the association between immunity and riskScore. The CIBERSORT (Newman et al., 2015), CIBERSORT-ABS, TIMER (Li et al., 2017), xCELL (Aran et al., 2017), MCPcounter (Dienstmann et al., 2019), QUANTISEQ and EPIC (Racle and Gfeller, 2020) were used to assess immune cell infiltration in samples of the entire TCGA set and to establish the association between riskScore and immune cell infiltration. In this study, we investigate the level of tumor-infiltrating immune cells and assessed their immunological activities using ssGSEA.
Prediction of drug sensitivity
Immune checkpoint expression in different groups was examined using the Wilcoxon signed-rank test. We further evaluated the usefulness of prognostic signature in predicting the effect of drug treatment for KIRC. For the purpose of determining sensitivity to drugs, the half-maximal inhibitory concentration (IC50) of different samples was calculated using the pRRophetic package (Geeleher et al., 2014). A lower IC50 value was indicative of higher drug sensitivity.
Validation of the expression of lncRNAs in KIRC based on quantitative real-time PCR (qRT-PCR)
Verification of gene expression was conducted at tissue level and cellular level. Validation at the cellular level was accomplished using normal renal tubular epithelial cells (HK-2) and renal tumor cells (ACHN, 769-P, 786-O). In addition, we collected KIRC and adjacent normal tissue samples from nine pairs of KIRC patients who underwent surgery at Nantong University Hospital for tissue-level validation. TRIzol reagent was used to extract RNA as per the instructions of the vendor. The reverse transcription kit (Vazyme, Nanjing, China) was then used to convert RNA to cDNA. The SYBR Green was used for qRT-PCR. The primer sequences for lncRNAs were presented in Table 1.
TABLE 1 | Primer sequence of lncRNAs.
[image: Table 1]Cell culture and cell transfection
ACHN and 769-P cells (Shanghai Institute for Biological Sciences) were cultured in a constant temperature incubator at 37°C with a CO2 volume fraction of 5%. Cells were spread into 6-well plates and transfected the next day. The interference plasmids were obtained from GenePharma (Shanghai, China). And each 6-well plate was replaced with 2 ml complete medium +3.75 µl LipofectamineTM 3000 + 2500 ng negative control or sh-RNA when the cell density reached about 70%. After 12 h, the complete medium containing serum and antibiotics was replaced with 2 ml. 48 h after transfection, the cells were collected and used for subsequent experiments.
Cell function experiments
After cells were transfected for 48 h, cells were spread evenly in 96-well plates, and 5 parallel replicate wells were set up for each group of fragments. After waiting for cell apposition according to the cell characteristics, 10 μl CCK-8 reagent was added separately for 5 consecutive days, and the absorbance at 450 nm and 630 nm was detected by enzyme marker at the same time every day. The 24-well plates were infiltrated using 200 μl of culture medium. After that, transwell chambers were added, and the stromal gel and medium were configured according to 1:6 in advance in the invasion experiment and put into the chambers. The configured cell suspensions were added to the chambers and fixed after 48–72 h using 4% paraformaldehyde, stained with crystal violet, rinsed with PBS and photographed.
RESULTS
Identification of differentially expressed CRlncRNAs (DECRLs)
Figure 1 showed the flow chart of the whole paper. First, we retrieved 870 CRs from a previous study and downloaded the entire transcriptome data of KIRC including 539 tumors and 72 paracancerous tissue samples in the TCGA database. The 870 CRs were screened by differential analysis in the first step. Figures 2A,B shows DECRs as heatmaps and volcano maps. We then obtained 287 DECRLs, including 258 up-regulated lncRNAs and 29 down-regulated lncRNAs (Figures 2C,D).
[image: Figure 1]FIGURE 1 | Workflow of this study.
[image: Figure 2]FIGURE 2 |  The differentially expressed chromatin regulator-related genes identified in KIRC. (A) Heatmap of these differently expressed chromatin regulators. (B) Volcano plot of these differently expressed chromatin regulators. (C) Heatmap of these differently expressed chromatin regulators-related lncRNAs. (D) Volcano plot of these differently expressed chromatin regulators-related lncRNAs (CRlncRNAs). (E,F) Lasso regression analysis of CRlncRNAs and calculation of the minimum criteria.
Construction and validation of a prognostic signature for DECRLs
We developed a prognostic signature for patients with KIRC using TCGA training set. First, univariate regression analysis was conducted to obtain 99 lncRNAs associated with KIRC prognosis (Supplementary Table S1). Then, LASSO and multivariate regression analysis were employed to identify 8 lncRNAs (LINC00551, AL031722.1, AC093001.1, NDUFB2-AS1, LINC00894, Z97200.1, AC006160.1, and AC092422.1) that were involved in the development of risk model (Figures 2E,F). Using the training set, we performed K-M survival analysis on 8 lncRNAs (Supplementary Figure S1). Patients with high expression of AC006160.1, AC093001.1, LINC00894, NDUFB2-AS1, and Z97200.1 were predicted to have a poor prognosis, whereas patients with high expression of AC092422.1, AL031722.1, and LINC00551 were expected to have a better prognosis. Moreover, the risk score was computed as: risk score = (−3.2301 * LINC00551 expression) + (−0.4501 * AL031722.1 expression) + (0.2268 * AC093001.1 expression) + (0.7924 * NDUFB2-AS1 expression) + (0.5056 * LINC00894 expression) + (0.5577 *Z97200.1 expression) + (0.9458 * AC006160.1 expression) + (−0.9352 * AC092422.1 expression). We validated the expression of these eight lncRNAs using PCR at the tissue level and cellular level (Figure 3). AC092422.1 expression in the three kidney cancer cells was not statistically significant. The rest of the genes were significantly different in the expression in the kidney cancer cell lines. For instance, the expression of LINC00551 decreased in ACHN, 769-P and 786-O cells. Moreover, tissue-level expression results revealed that seven genes were highly expressed in KIRC, which was slightly different from the cellular level expression results.
[image: Figure 3]FIGURE 3 |  Verification of gene expression. (A) LINC00551, (B) AL031722.1, (C) AC093001.1, (D) NDUFB2-AS1, (E) LINC00894, (F) Z97200.1, (G) AC006160.1, and (H) AC092422.1 expression in normal and kidney cancer cell lines; (I) eight lncRNAs expression in normal kidney tissue and KIRC tissue. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
Survival results analysis and model validation
The patients were divided into two risk groups including high-risk and low-risk. Patients in the high-risk category had poorer survival (Figure 4A). Figures 4B,C showed the survival status and distribution of patients, with higher scores accounting for more deaths. The ROC was also used to validate the signature for prognostic prediction. The signature had AUC values of 0.768, 0.751, and 0.765 for 1-, 3-, and 5-year, indicating that it had good predictive efficacy (Figure 4D). The expressions of these 8 lncRNAs in high- and low-risk groups were displayed in Figure 4E. We used both the testing and entire set to verify the reliability of the signature. The results of the testing set implied that high-risk patients had a worse prognosis (Figures 4F–H). Additionally, the results of the ROC analysis indicated moderate accuracy (Figure 4I). Figure 4J depicted a heatmap of 8 lncRNAs differentially expressed in high- and low-risk groups. The validation results for the entire testing set exhibited the same trend (Figure 4K−O).
[image: Figure 4]FIGURE 4 |  Verification of 8 CRlncRNAs signature. (A–E) KM survival, risk score, 1-, 3-, and 5-year ROC and heatmaps of according to CRlncRNAs groups in TCGA training set. (F–J) KM survival, risk score, 1-, 3-, and 5-year ROC and heatmaps of according to CRlncRNAs groups in TCGA testing set. (K–O) KM survival, risk score, 1-, 3-, and 5-year ROC and heatmaps of according to CRlncRNAs groups in the entire TCGA set.
The signature was an independent prognostic factor for KIRC
We used univariable and multivariable Cox analysis on three datasets to investigate the prognostic significance of the signature in KIRC. In the entire set univariable/multivariable Cox analysis revealed that riskScore could serve as an independent prognostic factor of KIRC (univariable Cox analysis: HR = 1.268 and p < 0.001, multivariable Cox analysis: HR = 1.177 and p < 0.001; Figures 5A,B). Meanwhile, the results of univariable/multivariable Cox analysis in the training and testing set all suggested that riskScore could independently affect the prognosis of KIRC (univariable Cox analysis: HR = 1.258 and p < 0.001, multivariable Cox analysis: HR = 1.166 and p < 0.001 (training set); univariable Cox analysis: HR = 1.379 and p < 0.001, multivariable Cox analysis: HR = 1.258 and p = 0.008 (testing set) (Figures 5C–F). All of the results indicated that the signature could affect the prognosis of KIRC independently (Supplementary Table S2).
[image: Figure 5]FIGURE 5 | The assessment of independent prognostic factor. (A,B) Univariate and multivariate Cox regression analysis of the entire dataset (TCGA). (C,D) Univariate and multivariate Cox regression analysis of the training dataset. (E,F) Univariate and multivariate Cox regression analysis of the testing dataset. (G–I) 1-, 3- and 5-year ROC curves of riskScore and other clinicopathologic characteristics.
The relationship between prognostic signature and clinical characteristics
The results of 1- and 3-year ROC curves showed that riskScore and stage had higher sensitivity and specificity in predicting OS of patients with KIRC than other factors. Furthermore, the results of 5-year ROC curve showed that riskScore had the highest sensitivity and specificity (Figures 5G–I). The heatmap depicted the relationships between riskScore and clinical variables, where riskScore differed significantly in grade, stage, T, and M (Figure 6A). Column charts were used to show the proportion and distribution of patients with various clinical traits in the high and low-risk groups (Figures 6B–H). Patients in the high and low-risk groups had the similar age, sex, and N percentages (Figures 6B,C,F). On the contrary, there were differences in the composition of grade, stage, T, and M in the high and low-risk groups of patients. We further investigated the effect of prognostic signature in different clinical subgroups on the prognosis of patients with KIRC. Except for N1, all the signature predicted a better prognosis for KIRC patients with different clinical traits (Figure 7). Survival did not differ significantly among N1 patients with different risk scores.
[image: Figure 6]FIGURE 6 |  Correlation between risk score and clinicopathological factors. (A) Heatmap for CRlncRNAs prognostic signature and clinicopathological factors. (B–H) Proportion and distribution of patients with different clinical traits in high- and low-risk groups.
[image: Figure 7]FIGURE 7 |  K-M survival curves of patients with different clinical traits. (A) Age >65 ranked by risk score for OS. (B) Age< = 65 ranked by risk score for OS. (C) Female ranked by risk score for OS. (D) Male ranked by risk score for OS. (E) Grade1-2 ranked by risk score for OS. (F) Grade3-4 ranked by risk score for OS. (G) M0 ranked by risk score for OS. (H) M1 ranked by risk score for OS. (I) N0 ranked by risk score for OS. (J) N1 ranked by risk score for OS. (K) Stage I-II ranked by risk score for OS. (L) Stage III-IV ranked by risk score for OS. (M) T1-2 ranked by risk score for OS. (N) T3-4 ranked by risk score for OS.
Construction of nomogram, GO, KEGG, and GSVA
A nomogram containing clinical factors and riskScore can be used for the prognosis of KIRC patients (Figure 8A). The OS of KIRC patients can be predicted by calculating the total score. The calibration curve results suggested that the nomogram plot had a good predictive ability (Figure 8B). We conducted differential analyses, GO and KEGG analyses on high and low-risk groups. These genes were mainly involved in antigen binding and immunoglobulin receptor binding in terms of molecular function. Cellular component analysis revealed that these genes were enriched in the immunoglobulin complex, the external side of the plasma membrane, among others. The biological process results revealed that they were primarily related to humoral immune response and phagocytosis (Figure 9A). According to KEGG analysis, they were involved in mineral absorption, IL−17 signaling pathway, viral protein interaction with cytokine and cytokine receiver, HIF−1 signaling pathway and so on (Figure 9B). We performed GSVA and correlation analysis to further explore the pathways associated with risk score. The GSVA results showed that signaling pathways such as UV_RESPONSE_DN, TGF_BETA_SIGNALING, and MITOTIC_SPINDLE were significantly associated with 8 lncRNAs (Figure 9C). Many pathways including ADIPOGENESIS, ANDROGEN_RESPONSE, and ANGIOGENESIS were significantly negatively associated with risk score. This suggested that there could be an association between the pathways and the development of KIRC.
[image: Figure 8]FIGURE 8 |  Construction of nomogram based on the signature and clinicopathological factors. (A) nomogram for predicting 1-, 3-, and 5-year OS. (B) The calibration plots for predicting 1-, 3-, and 5-year OS.
[image: Figure 9]FIGURE 9 | Enrichment analysis of differentially expressed genes. (A) GO analysis. (B) KEGG analysis. (C) GSVA analysis.
Correlation between prognostic signature and tumor microenvironment and immune cells infiltration
It was well known that TMB was an important marker for tumor treatment. We further explored the relationships between TMB and risk scores as well as OS. We found that the higher the risk score the higher the TMB (Supplementary Figure S3A). Besides, patients in the high-TMB high-risk group had the worst prognosis, while those in the low-TMB low-risk group had the best prognosis compared to the other two groups (Supplementary Figure S3B). The stromal score and immune score were assessed in different risk groups to further examine the TME. The high-risk group had higher ESTIMATEScore and ImmuneScore, but there were no significant differences in StromalScore between the two groups (Figures 10A–C). The XCELL algorithm results indicated that the riskScore was significantly positively related to B cell, CD4+effector memory T cell, CD8+T cell, whereas it was negatively correlated with endothelial cell and so on (Figure 10D). The QUANTISEQ algorithm results revealed that riskScore was significantly positively associated with M1 Macrophage, among others, while negatively associated with neutrophils. The results of the EPIC algorithm showed that riskScore was significantly positively related to Macrophage while negatively correlated with endothelial cells. Moreover, we investigated the relationship between these 8 lncRNAs and immune cell infiltration (Supplementary Figure S2). The results found that LINC00894 was positively related to CD4+ central memory T cells (R = 0.41, p < 2.2e−16, Supplementary Figure S2A). NDUFB2−AS1 negatively correlated with endothelial cells (Supplementary Figures S2B,C). The Z97200.1 was positively correlated with NK T cell (R = 0.42, p < 2.2e−16).
[image: Figure 10]FIGURE 10 |  Analysis of immune landscape. (A–C) The relationship between prognostic signature and TME. (D) The relationship between immune cells and risk score was explored by correlation analysis.
Associations between prognostic signature and immune checkpoint and immune functions
We performed correlation analysis as well as explored the expression of immune checkpoints in different risk score groups since the study of immune checkpoints can be of great help in immunotherapy. The high-risk group had higher expression of CTLA4, LAG3, PDCD1 and other immune checkpoints than the low-risk group (Figure 11A). The CTLA4, PDCD1, and TNFSF14 were significantly and positively correlated with riskScore (Figure 11B). In addition, CD44 was significantly negatively associated with AL031722.1 while TNFRSF25 was significantly positively associated with LINC00894 (Figure 11B). The ssGSEA results revealed that the high-risk group had higher score of immune cells such as CD8+ T cells and Macrophage (Figure 11C). The high-risk group had higher APC scores for co-stimulation, Check-point, inflammation promoting, parainflammation and other immune functions were higher (Figure 11D).
[image: Figure 11]FIGURE 11 | (A) Expression of immune checkpoints in high- and low-risk groups. (B) Relationships between immune checkpoint and risk score and lncRNAs. (C,D) Comparison of the scores of immune cells and immune functions between high- and low-risk groups. (E–J) The abilities of the risk model to predict drug sensitivity.
Analysis of drug sensitivity
To further improve the prognosis of KIRC, we investigated the relationship between riskScore and the IC50 value of various drugs. The IC50 values for bosutinib, camptothecin, gefitinib, sunitinib and parthenolide were lower in the high-risk group, indicating that there was greater sensitivity to these drugs in high-risk patients (all p < 0.001, Figures 11E–J). The IC50 value of lapatinib, on the other hand, was higher in the high-risk group (Figure 11H).
Biological Functions of lncRNAs
Based on the results of gene expression at the cellular level, we selected two lncRNAs (Z97200.1, AC093001.1) with the greatest differences in expression between normal kidney cells and KIRC cells and the most meaningful p values for functional experiments. CCK-8 assay revealed that the absorbance (OD) values of the Z97200.1-interfered and AC093001.1-interfered groups were significantly lower and cell proliferation was slower compared to the control group (Figure 12A and Supplementary Figure S4A). By transwell assay, it was found that the number of cells crossing the transwell chamber was significantly reduced in the Z97200.1-interfered group compared to the control group (Figure 12B). However, there was no significant change in the number of cells crossing the transwell in the AC093001.1-interfered group compared to the control group (Supplementary Figure S4B). The above experimental results indicated that high expression of Z97200.1 promoted the migration and invasion of KIRC cells.
[image: Figure 12]FIGURE 12 |  Z97200.1 stimulated the proliferation, migration and invasion of ACHN cells. (A) ACHN cells growth rates at 1, 2, 3, 4, and 5 days after knockdown of Z97200.1 were measured using a CCK-8 assay. (B) Transwell assays were conducted to assess whether Z97200.1 knockdown affected the invasion and migration of ACHN cells.
DISCUSSION
The RCC was one of the most common varieties of urinary tract cancer. In clinical practice, the first-line drugs for KIRC were still tyrosine kinase inhibitors. However, due to individual heterogeneity, drug resistance occurred more often in some patients. To that end, new biomarkers must be discovered to improve the diagnosis and prognosis of KIRC. Numerous tumors were influenced by chromatin regulators to date. The high mobility group A1 (HMGA1), a chromatin regulator, had been shown to suppress BRCA1 gene expression in human breast cancer (Baldassarre et al., 2003). A study by Ding et al. identified Brahma-related gene 1 (BRG1) as a target for PTEN-deficient prostate cancer therapy (Ding et al., 2019). There was also an increasing number of studies on the relationship between prognostic models and kidney cancer. Based on a model of genes associated with ferroptosis and a model of genes associated with lactate, Hong, Sun et al. found that the OS of KIRC could be predicted using these models (Hong et al., 2021; Sun et al., 2022). Currently, lncRNAs had been extensively studied in RCC (Zhai et al., 2017; Yang et al., 2018; Guo et al., 2021). Tang et al. found that a model constructed from lncRNAs associated with ferroptosis and a model constructed from lncRNAs associated with pyroptosis could both be used to predict OS in KIRC (Tang et al., 2021; Tang et al., 2022). Yu et al. constructed a model consisting of lncRNAs associated with M6A and demonstrated that it could predict the prognosis of KIRC independently (Yu et al., 2021). However, no chromatin regulator-related lncRNAs had been studied in KIRC.
Differentially Expressed Chromatin Regulator-related lncRNAs (DECRLs) were identified using the TCGA database. Then, univariate and multivariate regression analyses were conducted to build a prognostic risk signature containing 8 lncRNAs (LINC00551, AL031722.1, AC093001.1, NDUFB2-AS1, LINC00894, Z97200.1, AC006160.1, and AC092422.1). We further performed survival and ROC analyses on the prognostic signature consisting of these 8 lncRNAs. Three datasets were used to validate the reliability of the signature. Univariate/multivariate Cox regression analysis demonstrated that the model could independently influence overall survival in KIRC. A nomogram was developed to further predict the 1-, 3- and 5-year survival rates of KIRC patients. In prognostic signature, three lncRNAs have been identified to be involved in tumor progression or as tumor prognostic markers. The LINC00551 was reported to reduce HSP27 phosphorylation and thus inhibit the proliferation and invasion of esophageal squamous cell carcinoma cells (Peng et al., 2021). Furthermore, LINC00551 has been shown to decrease the proliferation and invasion of esophageal squamous cell carcinoma cells by reducing HSP27 phosphorylation (Wang et al., 2020). Meng et al. demonstrated that LINC00894 expression was elevated in breast cancer cells, which promoted their proliferation and migration (Meng et al., 2021). There was only one publication on AL031722.1, involvement in the construction of a prognostic signature for low-grade gliomas (Lin et al., 2020). However, the remaining five lncRNAs have been little studied so far, and whether they are involved in the progression of KIRC remains to be further confirmed experimentally.
We further investigated the biological processes and signaling pathways involved in the prognostic signature constructed based on chromatin regulators by GO, KEGG and GSVA analyses. This signature was found to be involved in the IL-17 and HIF-1 signaling pathways, among others. Interleukin 17 (IL-17), a pro-inflammatory cytokine, had a crucial role in tumor formation (Nardinocchi et al., 2015; Qian et al., 2017; Zhao et al., 2020). In breast cancer, Chen et al. showed that estrogen receptors down-regulated PD-1/PD-L1 expression by regulating the IL-17 signaling pathway (Shuai et al., 2020). The HIF-1α and HIF-1β are comprised of the transcription factor hypoxia-inducible factor (HIF-1). In the study of solid tumors, the HIF-1 signaling pathway was frequently mentioned (Vaupel and Mayer, 2007; Bertout et al., 2008). The HIF-1α has been demonstrated to play an inhibitory role in KIRC (Schödel et al., 2016). The PHD3 has been proposed to cause neovascular dysplasia in pancreatic ductal adenocarcinoma through the HIF-1 signaling pathway (Tanaka et al., 2015). These pathways were involved in the biological process of numerous tumors. Based on the findings of the pathway analysis in this study, we can postulate that the model may affect KIRC through these pathways, however, this needs to be validated by further studies.
TME and immune cell infiltration have significant effects on tumor progression (Mlecnik et al., 2016; Malka et al., 2020). In this study, the prognostic signature was correlated with ESTIMATEScore and ImmuneScore. The ESTIMATEScore and ImmuneScore, on the other hand, reflected the purity of immune cells and the level of immune cell infiltration in the tumor tissue. Immune cell infiltration was shown to influence tumorigenesis and recurrence and played a critical role in immunotherapy and clinical outcomes of tumors. A higher level of macrophage infiltration was associated with the aggressiveness of human breast cancer (Acerbi et al., 2015). Hepatocellular carcinoma scoring system based on immune cell infiltration could predict patient prognosis and guide immunotherapy (Yang et al., 2021). According to Bai et al., patients with the high tumor immune infiltration group had a better prognosis and were likely to benefit more from immunotherapy (Bai et al., 2021).
The conventional view was that in most malignancies, patients with high infiltration of CD8+ T cells had a better prognosis. However, the impact of the degree of CD8+ T cell infiltration in KIRC tissue on patient prognosis remained controversial. Some studies suggested that the prognosis of KIRC patients with high CD8+ T cell infiltration was worse, while others had put forward the opposite view (Davis et al., 2020). Combined with the results in this paper, we found that higher risk scores suggested a worse prognosis and that high risk was associated with high infiltration of CD8+ T cells. In addition, some CD8+ T cells infiltrated in KIRC were found to express CXCL13, a chemokine. High expression of this subpopulation of CXCL13 and CD8 protein-positive T cells resulted in immune escape, leading to a worse prognosis for patients with KIRC with high infiltration of CD8+ T cells (Dai et al., 2021). In this paper, whether the presence of CXCL13 expression in CD8+ T cells was associated with poorer prognosis remains to be further verified in subsequent experiments. This study concluded that this model and immune cell infiltration were significantly correlated, suggesting that the prognostic model may influence the prognosis of KIRC by modulating tumor immune cell infiltration. However, this needed to be validated by further tests to confirm the mechanisms involved.
Immunotherapy was gaining more and more clinical and scientific attention due to its effectiveness and less side effects. Immune checkpoint inhibition therapy was one of the most important methods (Sharma and Allison, 2015). In recent years, immune checkpoint inhibitors, represented by CTLA-4 monoclonal antibody and PD-1/PD-L1 monoclonal antibody, had achieved more satisfactory results in the treatment of KIRC (Motzer et al., 2015). Currently, molecular targeting agents targeting the PD1/PD-L1 pathway, such as nivolumab, pembrolizumab and avelumab, had been successfully applied in the clinical treatment of KIRC. In this paper, PD-1 and CTLA-4 expression were higher in the high-risk group, which may explain the poor prognosis of patients in the high-risk group. In this study, we found that riskScore was correlated with immune checkpoints such as CTLA-4 and PD-1 by correlation analysis, and thus hypothesized that riskScore may influence the patient’s response to immunotherapy by modulating the immune checkpoint. In addition, we analyzed the IC50 value of some clinical drugs and found that the IC50 value were different in different risk groups. However, KIRC was not sensitive to radiotherapy, so the drug treatment for KIRC patients still needed to be discussed.
Overall, this study had certain advantages. This was the first exploration of the role of prognostic signature constructed on the basis of chromatin regulator-related lncRNAs in KIRC. Further, we used PCR to verify the expression of these 8 lncRNAs in KIRC at tissue level and cellular level. In addition, we explored the possible enrichment pathways in prognostic signature and the relationship with TME and immune response. We also selected relevant lncRNAs in the model and investigated its effect on the biological function of KIRC cells. However, our study also had some limitations. The prognostic signature was verified by the TCGA dataset, and the follow-up needed to be validated by other databases. Secondly, the prediction efficiency of the signature for 1- and 3-year survival of KIRC was lower than that of stage. Besides, the expression validation at tissue level and cellular level was slightly different from the expression of lncRNAs in the database, which may be related to the small sample size. Finally, the mechanism of prognostic models involved in regulating KIRC remained to be confirmed.
CONCLUSION
In general, we constructed a prognostic signature based on 8 chromatin regulator-related lncRNAs, which was useful for clinicians to determine the prognosis of KIRC. Furthermore, the signature exhibited tremendous potential in evaluating TME and immunotherapy in KIRC patients. More studies are needed to validate this signature in the future.
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Background: Glioma has the highest fatality rate among intracranial tumours. Besides, the heterogeneity of gliomas leads to different therapeutic effects even with the same treatment. Developing a new signature for glioma to achieve the concept of “personalised medicine” remains a significant challenge.
Method: The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) were searched to acquire information on glioma patients. Initially, correlation and univariate Cox regression analyses were performed to screen for prognostic pyroptosis-related long noncoding RNAs (PRLs). Secondly, 11 PRLs were selected to construct the classifier using certain algorithms. The efficacy of the classifier was then detected by the “timeROC” package for both the training and validation datasets. CIBERSORT and ESTIMATE packages were applied for comparing the differences (variations) in the immune landscape between the high- and low-risk groups. Finally, the therapeutic efficacy of the chemotherapy, radiotherapy, and immunotherapy were assessed using the “oncoPredict” package, survival analysis, and the tumour immune dysfunction and exclusion (TIDE) score, respectively.
Results: A classifier comprising 11 PRLs was constructed. The PRL classifier exhibits a more robust prediction capacity for the survival outcomes in patients with gliomas than the clinical characteristics irrespective of the dataset (training or validation dataset). Moreover, it was found that the tumour landscape between the low- and high-risk groups was significantly different. A high-risk score was linked to a more immunosuppressive tumour microenvironment. According to the outcome prediction and analysis of the chemotherapy, patients with different scores showed different responses to various chemotherapeutic drugs and immunotherapy. Meanwhile, the patient with glioma of WHO grade Ⅳ or aged >50 years in the high risk group had better survival following radiotherapy.
Conclusion: We constructed a PRL classifier to roughly predict the outcome of patients with gliomas. Furthermore, the PRL classifier was linked to the immune landscape of glioma and may guide clinical treatments.
Keywords: long nonconding RNA(lncRNA), pyroptosis, glioma, prognostic classifier, tumor immune microenvironment
INTRODUCTION
Glioma represents the highest morbidity, incidence, and fatality rates compared to other intracranial tumours, with an annual incidence of 3–6.4/100,000 persons, accounting for 23.3% of brain tumours and 78.3% of malignant tumours (Sung et al., 2021). Moreover, gliomas are highly malignant and invasive, making them the leading cause of death associated with intracranial malignant tumours (Ostrom et al., 2019). The prognosis of low-grade glioma (LGG) is relatively good. The median overall survival (OS) of WHO grade 2 glioma is around 11 years, whereas that of WHO grade 3 glioma is 3 years (Smoll et al., 2012). The median OS of glioblastoma (GBM) is just 19.2 months (Tesileanu et al., 2020). Based on pathologic characteristics and molecular alterations, the 2021 World Health Organisation (WHO) classification of gliomas brings meaningful instructions to clinical practice (Louis et al., 2021). However, the prognostic classifier based on accurate tumour-specific biomarkers of glioma for personalised precision is still poor. Therefore, the construction of novel prognostic signatures and the direction of clinical treatment remain priorities.
Long noncoding RNAs (lncRNAs), a kind of RNA void of protein-coding function, are involved in tumour progression mechanisms, including proliferation, apoptosis, invasion, and migration (Gou et al., 2018). In gliomas, the involvement of lncRNA is not fully grasped. Research illustrates that lncRNA PCED1B-AS1 can up-regulate hypoxia-inducible factor 1-alpha (HIF-1α) expression, thus promoting cell proliferation, glucose uptake, and lactic acid release in glioma cells (Yao et al., 2020). Meanwhile, some lncRNAs also function as biological markers for predicting glioma patients’ prognoses. For example, the expression of insulin-like growth factor binding protein 7-antisense 1 (IGFBP7-AS1) is a biomarker correlated with a dismal prognosis for glioma individuals (Li et al., 2019). Furthermore, mounting data show that lncRNAs participate in pyroptosis regulation. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is capable of activating the nucleotide oligomerisation domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome by adsorbing microRNA (miRNA)-133 as a miRNA sponge through the competing endogenous RNA mechanism during cardiac ischaemia and reperfusion injury (Yu et al., 2018). XLOC_000647 has been proven to decrease the proliferative and invasive capacity of pancreatic cancer cells by reducing NLRP3 expression (Hu et al., 2018).
Pyroptosis is not the same as the other types of cell death, including necrosis, apoptosis, and necrotic apoptosis, in that it releases inflammatory mediators regulated by gasdermin (Shi et al., 2017). The occurrence of the pyroptosis is the first to activate caspase 1 and caspase 4/5/11 via the classical and non-classical pathways to cleave gasdermin D (GSDMD) (Cheng et al., 2017; Karki and Kanneganti, 2019). After cleaving GSDMD, the N-terminal segment of GSDMD is implicated in the formation of oligomers and the binding of these oligomers to the cell membrane. This results in the generation of pores in the cell membrane and the production of inflammatory mediators, such as interleukin (IL)-1β and IL-18. Another mechanism for pyroptosis activation is the stimulation of caspase 3-induced cleavage of gasdermin E to produce its N-terminal products, resulting in cell perforation (Wang et al., 2017). The strong and complicated relationship between pyroptosis and tumourigenesis and tumour development has not been elucidated (Xia et al., 2019). Inflammatory mediators released from cells that undergo pyroptosis might promote tumourigenesis and induce drug resistance. On the other hand, pyroptosis of the tumour cells inhibits tumour growth (Xia et al., 2019). Drugs used to induce tumour cell death can produce anti-tumour immunity, resulting in tumour regression. It has been reported that when drugs are used to induce tumour pyroptosis it leads to anti-tumour immunity (Wang et al., 2020). The pyroptosis gene GSDMD may not only participate in regulating macrophage infiltration and polarisation but also influence the response to temozolomide in GBM (Liu et al., 2021). Research evidence has illustrated that pyroptosis-related gene signatures have a good prognostic value (Yang Z. et al., 2022; Zhang et al., 2022; Zheng et al., 2022). Nevertheless, research reports on pyroptosis-related lncRNA (PRLs) and its prognostic value in gliomas are scarce. This study sought to probe into the prognostic significance of PRLs, develop a classifier to foresee the survival outcome of patients with gliomas, and provide a clinical guideline and new insights into the concept of “personalised medicine” in glioma. We also intend to discover the most significant lncRNAs that regulate pyroptosis in gliomas to identify an effective therapeutic target for treating gliomas. Figure 1 illustrates the study’s flow chart.
[image: Figure 1]FIGURE 1 | Research procedure shown as a flowchart.
MATERIALS AND METHODS
Collection of data on patients with gliomas
Data on transcriptomes, somatic mutations, and clinical characteristics of patients in the TCGA cohort were obtained from The Cancer Genome Atlas (TCGA). While data on transcriptomes and clinical parameters of patients in the CGGA_693 and CGGA_325 cohorts were extracted from the Chinese Glioma Genome Atlas (CGGA) (Zhao et al., 2021). Patients without data on the survival time and those who lived for less than 30 days after diagnosis were excluded from our study. Finally, we included data from 1576 glioma samples. Transcriptomic data of TCGA and CGGA_693 were analysed to identify the prognostic PRLs. In the subsequent development of the classifier, the TCGA dataset was chosen as the training set, while the CGGA_693 and CGGA_325 datasets were the validation datasets. Before the analysis, these transcriptomes of patients with gliomas were normalised to fragments per kilobase million (FPKM), except for the DESeq2 differential expression analysis. Table 1 summarises the clinical information of each dataset.
TABLE 1 | Clinicopathological features of the patients in the TCGA, CGGA_693, and CGGA_325 cohorts.
[image: Table 1]Discovery of prognostic pyroptosis-related lncRNAs
Previous studies provided us with 33 pyroptosis-related genes (Ye et al., 2021). The type of RNA aligns with the annotation of the Genome Reference Consortium Human Build 38 (GRCh38) to lncRNA would be considered. Then, the lncRNAs with Pearson’s r absolute value of >0.5 and p-value <0.001 were considered as PRLs. Lastly, PRLs linked to prognosis were determined via Cox regression analysis.
Establishment and evaluation of the predictive potential of the PRL classifier
To select the significant lncRNA linked to the prognoses of patients with gliomas, the Boruta algorithm, an algorithm based on random forest, was used for feature selection (Kursa and Rudnicki, 2010). The lncRNA confirmed as the crucial feature for prognosis will be included in the subsequent study. To further evaluate the candidate lncRNA for the construction of the PRL classifier, we applied the least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression. The classifier was referred to as the “risk score”. Below is the formula for risk score
[image: image]
Where [image: image] denotes the coefficients, and [image: image] denotes the FPKM value of 11 PRLs. The median value of the risk score was considered as a threshold value to distinguish between high- and low-risk score. We compared the survival times of the two groups utilising the “Survminer” package. The area under the curve (AUC) value calculated by the “timeROC” package was used to examine the predictability of the risk score and clinical factors linked to the prognosis of patients with gliomas, was derived utilising.
Construction and verification of a nomogram
First, the risk variables of the clinicopathological parameters that might impact the prognosis of patients with glioma were determined by means of univariate Cox regression. Predicated on the prognostic factors, a nomogram was created using multivariable stepwise logistic Cox regression, and visualisation was done with the “rms” package in R. The prediction effectiveness of the nomogram was also evaluated by calculating the AUC values of each clinical feature using the “timeROC” package. The predictability of the nomogram was assessed using calibration curves and AUC values of each factor.
Functional enrichment analysis
Differential expression analysis between the high and low risk score groups was performed using the “DESeq2” package. The “ClusterProfiler” package was applied to annotate the function of differentially expressed genes based on Gene Ontology (GO) and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways enrichment analysis. The enrichment score of each glioma sample was calculated through Gene Set Variation Analysis (GSVA). “Limma” package was applied to analyze the differentially activation of Reactome and KEGG pathways between high and low risk groups.
Evaluation of the association between the PRL classifier and the glioma microenvironment and mutation profile
“CIBERSORT” was used to explore the infiltration levels of 22 distinct types of immune cells in the glioma samples (Newman et al., 2015). The stromal and immune scores, as well as the tumour purity of the glioma samples, were computed with the “ESTIMATE” package (Yoshihara et al., 2013). The tumour immune checkpoints were retrieved from past studies (Ping et al., 2021; Zheng et al., 2021). “Maftools” was used to visualise the mutation sites and calculate the tumour mutation burden (TMB) of each glioma sample.
Prediction of drug sensitivity of glioma
The “oncoPredict” package was applied to predict the 50% inhibiting concentration (IC50) values of the glioma samples to various antineoplastic drugs in the Cancer Therapeutics Response Portal (CTRP) (Maeser et al., 2021). Then Spearman correlation analysis was implemented for IC50 values and risk score for identifying the sensitive and resistant drugs (with the |R | >0.5 and p < 0.05).
Evaluation of the effectiveness of radiotherapy
Since there were only a few patients with GBM in the low risk group, we merged three datasets and grouped the patients based on their clinical features. Following this, we conducted a survival analysis to probe the efficacy of radiotherapy in each clinical subgroup.
Prediction of the response to immune checkpoint blockade (ICB)
On the webpage http://tide.dfci.harvard.edu, an online computation was performed to determine the tumour immune dysfunction and exclusion (TIDE) score, which was applied to anticipate how gliomas respond to ICB. The cut-off value for predicting the patient’s response to ICB was set at 0.
Acquisition of glioma samples and real-time quantitative polymerase chain reaction (RT-qPCR)
All glioma samples were obtained after the patients provided informed consent. The Research Ethics Committee of Zhujiang Hospital affiliated with Southern Medical University approved this research. In addition, 20 glioma tissue samples (nine LGGs and 11 GBMs) were obtained from patients who received surgical resection. TRIzol was utilised to obtain the total RNA from the samples. A reverse transcription kit (AG11718) was then employed to extract the genomic deoxyribonucleic acid (DNA) (gDNA) from RNA samples and synthesise the complementary DNA (cDNA). The amplification of cDNA was performed on QuantStudio 3&5 using SYBR green (AG11718). Gene expression was standardised using the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The primers for cDNA amplification are depicted in Supplementary Table S1.
Statistical analysis
Data analysis and visualisation were done with the help of the R software (4.0.4). The Fisher’s exact test and chi-square test were employed to explore if there was a significant variation in clinical characteristics between the groups with high and low risk score, respectively. When comparing non-normally distributed continuous variables, we adopted the Wilcoxon rank-sum along with Kruskal–Wallis tests. The significance level was established at a two-sided p-value of <0.05.
RESULTS
Determination of the prognostic pyroptosis-related LncRNA
As per the annotation of GRCh38 to lncRNA, the TCGA dataset comprised 14,690 lncRNAs, and the CGGA_693 dataset comprised 3951 lncRNAs. Then 1074 and 782 prognostic PRLs were obtained from these two datasets using correlation analysis and univariate Cox regression analysis. These two datasets then shared 311 lncRNAs that were considered prognostic indicators. Finally, 11 PRLs, including RP11-303E16.2, RP11-360L9.7, RP11-513M16.7, RP11-617F23.1, CTD-2521M24.6, paired box interacting protein 1-antisense RNA 2 (PAXIP1-AS2), RP11-428J1.5, RP11-158M2.3, SET binding factor 2-antisense RNA 1 (SBF2-AS1), adenosine diphosphate ribosylation factor guanosine triphosphatase-activating protein-antisense RNA 1 (AGAP2-AS1), and AP001469.9, were selected to construct the classifier.
Construction of the PRL classifier and validation of its predictability
After feature selection using the Boruta algorithm, 87 of the 311 prognostic PRLs were considered essential to anticipate the survival outcomes of patients with gliomas (Figure 2A). To simplify these signatures, the LASSO Cox algorithm and multivariate stepwise Cox regression were applied (Figures 2B,C). Figure 2D shows the univariate Cox regression coefficient of the 11 PRLs, suggesting that four of these PRLs are protective factors for glioma while the others are risk factors. Meanwhile, the correlations between 11 PRLs and 33 pyroptosis-related genes were presented in a heatmap (Figure 2E). When determining how to distinguish the high and low risk group, the median value was employed as the dividing line. Kaplan-Meier (KM) analysis highlighted that patients with a high risk score exhibited a dismal survival prognosis irrespective of the dataset (training or validation dataset) (Figures 3A–C). Similarly, it was observed that an increased risk score was associated with shorter survival time and a poor outcome (Figures 3D–F). The receiver operating characteristic (ROC) curve of the three datasets presented that risk score exhibited a larger AUC value than the clinicopathological parameters, indicating the relatively robust predictive power of PRL risk score (Figures 3G–I).
[image: Figure 2]FIGURE 2 | Construction of the prognostic pyroptosis-related lncRNA (PRL) classifier. (A) The Boruta algorithm was used to select important features. (B,C) The LASSO cox regression was conducted based on the minimum parameters. (D) The 11 PRLs were analyzed using univariate Cox regression. (E) The association of the 33 pyroptosis-related genes with 11 PRLs in TCGA cohort. *p < 0.05, **p < 0.01, and ***p < 0.001.
[image: Figure 3]FIGURE 3 | Validation of the PRL classifier. (A–C) The findings of KM curves for the three different cohorts in the TCGA, CGGA_693, and CGGA_325. (D–F) Representation of the TCGA, CGGA_693, and CGGA_325 cohorts’ risk score and survival status distribution plots. (E–G) Multiple ROC curves depicting the risk score as well as clinical variables for the TCGA, CGGA_693, and CGGA_325 cohorts.
All the clinicopathological feature subgroups were compared for survival differences between the two classifications to explore whether the PRL classifier was suitable for all patients with gliomas. In most subgroups, patients with high risk score exhibited a dismal prognosis, except for a patient with GBM in the CGGA_325 cohort (Supplementary Figure S1).
Association between risk score and the clinicopathological features of glioma
The proportion of the clinicopathological features suggesting a bad prognosis (isocitrate dehydrogenase [IDH] wild type, higher WHO grade, more malignant classification, etc.) was relatively high in the TCGA cohort (Figure 4A). However, both groups had similar proportions in terms of sex. Subsequently, the box plot revealed that elderly patients or those with a higher WHO grade or more malignant glioma had a higher risk score (Figures 4B–D). Patients with IDH wild type, chromosome 1p/19q codeletion, and O6-methylguanine-DNA methyl-transferase (MGMT) promoter unmethylation also had a higher risk score (Figures 4F–H). This finding was consistent in the CGGA_325 and CGGA_693 cohorts (Supplementary Figure S2), suggesting the generalisability of the risk score in glioma.
[image: Figure 4]FIGURE 4 | Correlation analysis between the PRL classifier and clinical-pathological parameters in TCGA cohort. (A) A heatmap illustrating the distribution of the clinical-pathological features and expression profiles of the 11 chosen PRLs in the high-and low-risk groups. (B–H) Various levels of risk scores in patients who had gliomas classified by: sex, age, WHO grade, 2021 WHO classification, IDH mutation status, 1p/19q codeletion, and MGMT promoter methylation. A, astrocytoma; O, oligodendroglioma; GBM, *p < 0.05, **p < 0.01, and ***p < 0.001. ns, no significance.
Establishment of a nomogram
Clinical and pathological features were combined to establish a nomogram for constructing a model that may efficiently anticipate the outcome of patients with gliomas. Univariate cox regression revealed risk score, patient age, 2016 WHO grade, 2021 WHO classification, MGMT promoter methylation, IDH mutation, and chromosome 1p/19q codeletion as significant prognostic factors (Table 2). A nomogram was then developed using risk score, 2016 WHO grade, patient age, the IDH mutation status, and chromosome 1p/19q codeletion status premised on the multivariate stepwise regression findings. The nomogram is presented in Figure 5A. The calibration curves revealed that the nomograms predicted survivor probabilities that were highly consistent with actual survivor probabilities intuitively (Figures 5B–D). As a result, the ROC plot showed excellent predictability for survival probabilities within 1, 3, and 5 years (Figures 5E–G). The increase in the predictive power of the nomogram compared with risk score and clinical features are intuitively clear from the line chart, irrespective of the cohort (TCGA, CGGA_693, or CGGA_325 cohorts) (Figures 5H–J).
TABLE 2 | Univariate and multivariate Cox analyses in the TCGA, CGGA_693, and CGGA_325 cohorts.
[image: Table 2][image: Figure 5]FIGURE 5 | Development and assessment of a nomogram in TCGA cohort. (A) Nomogram based on the PRL risk score, age, WHO grade, MGMT promoter status and 2021 WHO classification. (B–D) Calibration curves that indicate the congruence between predicted and observed 1-, 3-, and 5-year overall survival (OS) in TCGA, CGGA_693 and CGGA_325 cohorts, respectively. (E–G) The receiver operating characteristic (ROC) curve analyses of the nomogram in predicting 1-, 3-, and 5-year OS in TCGA, CGGA_693 and CGGA_325 cohorts. (H–J) Line chart showing the AUC value of the nomogram, the risk score, grade, MGMT promoter status, age, and 2021 WHO grade in the TCGA, CGGA_693, and CGGA_325 cohorts.
Functional enrichment analysis
Firstly, the patient distribution in the high and low risk score groups was separated in the three-dimensional (3D) principal component analysis (PCA) plot, indicating, at least in part, the difference in the effect of pyroptosis or the degree of pyroptosis in glioma between the two groups (Figure 6A). The results of GO enrichment analysis showed that the 3912 differentially expressed genes (DEGs) were mostly enriched in immune-related pathways (immune receptor activity, immunoglobulin receptor binding, antigen binding, etc.), matrix-related pathways (extracellular matrix structural constituent, collagen trimer, collagen-containing extracellular matrix, etc.) and ligand-receptor interaction genset (cytokine binding, receptor ligand activity, signaling receptor activator activity, etc.) (Figure 6B). Among these immune-related pathway, humoral immunity-related pathways (antigen binding, immunoglobulin complex, circulating, humoral immune response, etc.) account for a large part. Similarly, the DEGs were also enriched in immune-related pathway (complement and coagulation cascades, antigen processing and presentation, Th1 and Th2 cell differentiation, etc.), matrix-related pathway (ECM-receptor interaction) and ligand-receptor interaction genset (cytokine-cytokine receptor interaction) based on the results of KEGG enrichment analysis (Figure 6C). Moreover, the results of KEGG GSVA showed the increased activation of cell proliferation related pathways (DNA replication, cell cycle, pyrimidine metabolism), DNA repaired related pathways (base excision repair, mismatch repair, homologous recombination) and metabolism related pathways (glutathione metabolism, amino sugar and nucleotide sugar metabolism, galactose metabolism) in the glioma with high risk score (Figure 6D). Similarly, the cell proliferation related pathways (G2 phase, DNA strand elongation, G2 M DNA replication checkpoint, etc.), DNA repaired related pathways (mismatch repair) and cell death related pathways (TRAIL signaling, FASL CD95L signaling, caspase activation via death receptors in the presence of ligand, etc.) were also upregulated in the high-risk group based on the results of Reactome GSVA (Figure 6E). Similar to KEGG and GO enrichment analysis, immune biological process genesets (RUNX3 regulates immune response and cell migration, leukocyte transendothelial migration) and matrix-related pathways (ECM receptor interaction, glycosaminoglycan degradation, glycosaminoglycan biosynthesis keratan sulfate) were also activated in the glioma with high-risk score. In brief, the results of enrichment analysis showed the differences in the immune biological process, matrix constitution, intercellular communication and cell metabolism between high and low risk groups.
[image: Figure 6]FIGURE 6 | PCA plot and Functional enrichment analysis in TCGA cohort. (A) PCA showing the distribution differences between the high- and low-risk groups. (B,C) Results of GO and the KEGG analyses. The immune biological process, matrix-related pathway and intracellular communication pathways were boxed in red, blue, and green, respectively. (D,E) The top 20 differential activation pathways in KEGG and Reactome geneset between high and low-risk groups.
Metabolic heterogeneity and microenvironment of gliomas with different risk score
Subsequently, we further explored the difference in metabolism, immunity, and matrix between high and low risk groups. Energy metabolism GSVA suggested that the energy metabolic pattern was depended on glycolysis, fatty acid oxidation and pentose phosphate pathway (Figure 7A). While glutaminolysis might be a crucial energy source for the glioma with low risk score. In terms of the differences in immunity and matrix, ESTIMATE analysis illustrated that patient having a high risk score exhibited significantly elevated stromal and immune scores and lower tumour purity (Figure 7B). Further investigation revealed that immune cells infiltrated gliomas with a high risk score (M2 macrophages, regulatory T cells, γδ T cells, and T follicular helper cells) and were mostly immunosuppressive (Figure 7C). However, certain anti-tumour immune cells (CD8+ T cells and M1 macrophages) were also found in higher proportions in the group with a high risk score. The immune cells enriched in the low-risk group were not special. The phenomenon of the CGGA_693 and CGGA_325 cohorts is largely consistent with that of the TCGA cohort (Supplementary Figure S3). Figure 7D shows that a high risk score was linked to an elevated immune checkpoint expression level, indicating an immunosuppressive microenvironment in the high risk group.
[image: Figure 7]FIGURE 7 | The correlation of PRL classifier with heterogeneous microenvironment in the TCGA cohorts. (A) GSVA showing the differences in the energy source between high and low risk group. (B) Comparison of the stromal, immune, and ESTIMATE scores, as well as the tumour purity between the high- and low-risk groups. (C) The abundance of 22 immune cells in the high- and low-risk groups. (D) The expression levels of the immune checkpoints in the high- and low-risk groups. (E,F) The top 20 genes mutation were visualized in the high- and low-risk groups. *p < 0.05, **p < 0.01, and ***p < 0.001. ns, no significance. FAO, fatty acid beta oxidation; PPP, pentose phosphate pathway.
The association between the PRL classifier and somatic mutation profile
The oncoplot showed that the mutations of tumour protein p53 (TP53), IDH, alpha-thalassemia/mental retardation, X-linked (ATRX), were prevalent in the high and low risk groups (Figures 7E,F). The frequency of the mutations that suggest a relatively good prognosis (IDH1, TP53, ATRX, and capicua) was lower in the high-risk group. Patients in the high-risk group exhibited an elevated frequency of mutations in epidermal growth factor receptor (EGFR) and phosphatase and tensin homolog (PTEN), indicating a poor prognosis. The difference in the somatic mutation between the two groups also reflected the accuracy of the PRL classifier in the prediction of glioma patients’ prognostic status.
The association between the risk score and drug sensitivity
The findings of Spearman’s correlation analysis revealed that the drug sensitivity of 40 antineoplastic agents was related to the risk score. Among these 40 drugs, 12 were relatively sensitive in the high-risk group while the others were relatively resistant (Figure 8). The 12 agents that were relatively sensitive in the high-risk group comprised 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (lovastatin and simvastatin), phosphatidylinositol-3-kinase (PI3K) pathway inhibitors (IC-87114 and TGX-221) and B-raf (BRAF) inhibitors (GDC-0879 and TGX-221). Most of the 28 agents relatively resistant in the high-risk group were platinum agents (carboplatin and platin), histone deacetylase inhibitors (apicidin, BRD-A94377914, pandacostat, BRD-K24690302, and vorinostat) and EGFR inhibitors (vandetanib, neratinib, and lapatinib). Further analysis among the six drugs recommended in the guidelines revealed that the sensitivities of temozolomide and carboplatin + etoposide in patients with gliomas patients did not vary considerably across the two groups (Figure 8). An elevated risk score was associated with greater sensitivity to procarbazine, vincristine, and etoposide but greater resistance to vorinostat, carboplatin, and carboplatin + vorinostat.
[image: Figure 8]FIGURE 8 | Association between the risk stratification and drug sensitivity, the effectiveness of radiotherapy, and the predictive response to immunotherapy. (A) The association of the risk scores with drug sensitivity evaluated using Spearman’s analysis. Each row represents a drug. The length of the row indicates the correlation, indicating that the risk score is related to drug resistance (Rs > 0) or drug sensitivity (Rs < 0). (B) The IC50 of the anti-glioma chemotherapeutic drugs in the high- and low-risk groups. (C) The KM curves for all patients, patients with glioma of WHO grade Ⅳ, and patients aged >50 years with or without radiotherapy in the high- and low-risk groups. (D) The TIDE scores of patients within the high- and low-risk groups. (E) The estimation of immunotherapy responsiveness in high- and low-risk groups. (F) The TMB levels of patients in the high- and low-risk groups.
The association between the PRL classifier and the effectiveness of radiotherapy
As demonstrated by the KM survival analysis, no remarkable variation in the survival outcome was observed among patients treated with radiotherapy and those who were not, regardless of their risk score. Patients aged >50 years and those with glioma of WHO grade 4 benefitted from radiotherapy, while patients with a low risk score did not benefit from radiotherapy (Figure 8C). Furthermore, the other subgroup of patients showed no significant difference in survival time (Supplementary Figure S4).
Different classifications lead to different responses to ICB
Patients with a higher risk score had a higher TIDE score, indicating poor responsiveness to ICB (Figure 8D). The bar plot revealed that high-risk groups respond less frequently to ICB (Figure 8E). Subsequent analysis revealed that patients having a high risk score exhibited a higher TMB (Figure 8F). It was previously reported that gliomas with a high TMB showed poor responsiveness to immunotherapy (Samstein et al., 2019). Therefore, our TMB analysis might explain some of the variations across the two groups in terms of their responses to ICB.
Expressions of the 11 prognostic PRLs in the glioma samples
Among the 11 PRLs selected to construct the classifier, seven were up-regulated in GBM, while the others were down-regulated compared with LGG (Figure 9A). According to the results of the RT-qPCR, CTD-2521M24.6, PAXIP1-AS2, RP11-303E16.2, RP11-360L9.7, RP11-428J1.5, AGAP2-AS1, and SBF2-AS1 were up-regulated in GBM, and RP11-513M16.7, RP11-617F23.1, and RP11-158M2.3 expressions were significantly lower compared with LGG (Figure 9B). AP001469.9 expression showed no difference between GBM and LGG. This result was in line with that of the TCGA cohort, highlighting the applicability of the PRL classifier.
[image: Figure 9]FIGURE 9 | Validation of the 11 PRL expression levels. (A) The 11 PRL expression levels between LGGs and GBMs in TCGA cohort. (B) Expression analysis of the 11 PRLs in 9 LGG and 11 GBM samples. *p < 0.05, **p < 0.01, and ***p < 0.001. ns, no significance.
DISCUSSION
Accumulating evidence suggests that tumour development is influenced by pyroptosis in a dual manner (Xia et al., 2019). Sustained release of inflammatory mediators by cells that undergo pyroptosis could promote epithelial-mesenchymal transition and build an immunosuppressive microenvironment, resulting in tumourigenesis. However, chemotherapy-induced pyroptosis could activate an immune response against tumours (Xia et al., 2019). Moreover, increasing studies have shown the feasibility and therapeutic potential of targeting distinct targets to trigger pyroptosis (Loveless et al., 2021). Nevertheless, pyroptosis in glioma has only been the subject of a limited amount of research efforts. The majority of research attention on pyroptosis was focused on the prognostication of pyroptosis-related genes. Few researchers investigated the prognostic value and underlying mechanism of lncRNA in pyroptosis regulation in glioma. Furthermore, growing evidence has demonstrated the crucial function of lncRNA in glioma progression regulation (Peng et al., 2018). Despite the same treatment, different effects are observed due to the heterogeneity of gliomas. Moreover, even patients with a similar pathological type of glioma have completely different prognoses. Therefore, it is important to establish a universal classifier for all glioma types as a prognosis-related predictor in patients with gliomas, thereby guiding clinical decision-making.
In our study, we first identified 311 prognostic PRLs on the basis of the CGGA_693 and TCGA cohorts. Among the prognostic PRLs, 11 PRLs (RP11-303E16.2, RP11-360L9.7, RP11-513M16.7, RP11-617F23.1, CTD-2521M24.6, PAXIP1-AS2, RP11-428J1.5, RP11-158M2.3, AGAP2-AS1, SBF2-AS1, and AP001469.9) were selected for construction of the PRL classifier. Among the 11 PRLs, four were protective factors, while the rest were risk factors. It has been reported that PAXIP1-AS2 overexpression leads to a decrease in translesion DNA synthesis (TLS) by up-regulating the amount of RAD18 and DNA polymerase η (Swain et al., 2021). Furthermore, TLS inhibition increases the cell genomic incompleteness, resulting in tumourigenesis (Knobel and Marti, 2011). Therefore, PAXIP1-AS2 might participate in tumourigenesis. Based on the RT-qPCR results, GBM exhibited higher PAXIP1-AS2 expression than LGG. The higher expression of PAXIP1-AS2 suggested that it could be a crucial factor for glioma development. The contribution of PAXIP1-AS2 to tumourigenesis and progression needs further research. AGAP2-AS1 could facilitate glioma growth by up-regulating hepatoma-derived growth factor (HDGF) (Zheng et al., 2019). In another study, AGAP2-AS1 was considered a risky prognostic biomarker for the construction of a prognostic signature (Yu et al., 2021). This result illustrates the contribution of AGAP2-AS1 to tumour progression, suggesting that AGAP2-AS1 might be a target to suppress tumour growth. The lncSBF2-AS1-enriched exosomes induced chemotherapy resistance by remodelling the microenvironment (Zhang et al., 2019b). To stimulate angiogenesis, the nuclear factor of activated T cells 5 in GBM may upregulate SBF2-AS1 expression, which in turn could sponge miR-338-3p and elevate the HDGF expression level (Yu et al., 2017). This is consistent with our findings that SBF2-AS1 is a risk factor in the PRL classifier. Although few studies have been reported on reaming PRLs, the RT-qPCR results of 11 PRLs in the glioma sample are broadly consistent with those of the TCGA dataset, illustrating that the differential expression of the 11 PRLs might be involved in glioma progression. However, we only explored the prognostic value of these 11 PRLs. Therefore, further research is warranted to explore the potential mechanisms of the 11 PRLs for pyroptosis regulation in gliomas.
The prognostic value and superiority of the PRL classifier were validated through KM survival analysis and a ROC plot. The survival rates of patients with a high risk score were quite dismal. The superior predictability of the risk score was presented using a ROC plot.
At the same time, the findings of the chi-square test illustrated that in the group with a high risk score, the proportion of clinical features suggesting a poor prognosis was higher. All results demonstrated the accuracy of the PRL classifier and the contribution of the 11 PRLs in influencing the prognosis of glioma. However, the prediction accuracy of the PRL classifier in glioblastoma subgroup needs to be further discussed. As the number of patients with GBM was low in the low risk group, the findings of the KM survival analysis might be inaccurate. Eventually, clinical characteristics linked to prognosis in glioma patients were used to generate a nomogram. Moreover, the predictability of the nomogram improved by the addition of a clinical covariate. Consequently, the nomogram may be a robust predictive tool for patients with gliomas.
Subsequent research revealed the underlying mechanism between the two groups. The 3D PCA plot revealed the difference in the degree of pyroptosis in glioma, suggesting the meaningful classification of the PRL classifier. And the results of GO and KEGG pathways enrichment analysis showed the differences in the immune biological process, matrix-related pathways, and receptor-ligand interaction between high and low risk group. This indicates that the 11 prognostic PRLs might affect the immune and stromal microenvironment, and intercellular communication of the glioma by regulating pyroptosis, leading to a difference in the prognosis of patients with gliomas. Antigen presentation, humoral immunity, and T cell differentiation are the main immune processes that differed between high and low risk groups. It has been reported that damage associated molecular patterns (DAMPs) released by pyroptosis cell could serve as immune adjuvant to enhance antigen presentation capacity of antigen-presenting cells and promote humoral immunity (Wang et al., 2022). However, the enhancement of humoral does not imply a better prognosis. A study showed that B cells located at the invasive margins could facilitate recurrence and progression (Zhang et al., 2019a). As for T cell differentiation, it has been shown that IL18, the cytokine released from pyroptosis cell, was not just involved in the differentiation of Th1 and Th2, but promoted the IL17 response in concert with IL23 (Esmailbeig and Ghaderi, 2017). And the anti-tumor effect of Th1, the pro-tumor effect of Th2 and the dual role of the Th17 in tumor might be the potential causes affecting the prognosis of the patients. While the relationship between pyroptosis and matrix remodelling has previously been reported. It has been reported that IL-1β can reduce the expression of the matrix components collagen type II and aggrecan in chondrocytes (Guo et al., 2021). In breast cancer, IL-1β has also been shown to up-regulate matrix metalloproteinase (MMP) 2, and MMP9, thereby promoting invasiveness and vasculogenic mimicry of tumour cells (Nisar et al., 2021). Research has shown that IL-18 promoted the invasive ability of HL-60 human myeloid leukaemia cells by up-regulating MMP9 expression (Zhang et al., 2004). And the cytokine released during pyroptosis and the interaction between cell and matrix might account for the differences in intercellular communication. While cell-cell communication in tumor microenvironment is related to tumor progression and metastasis (Fang et al., 2018). A more complex intracellular communication may create a more unstable tumor environment, leading to a completely different outcome of the patients. While the results of GSVA broadened our understanding about the different prognosis of patients in the high and low risk group. We found that the cell metabolism, cell death and proliferation related pathways and DNA repair related pathways were increased activation in the high-risk group. The metabolism of glutathione, amino sugar/nucleotide sugar and galactose was increased activate in the high-risk group. It has been reported that excess glutathione was correlated with tumor metastasis and progression (Fang et al., 2018). And the enhancement of amino sugar/nucleotide sugar metabolism would provide feedstock for the hexosamine pathway, leading to the glycosylation of lipids and proteins. For example, previous study found that the increased amino sugar/nucleotide sugar metabolism would increases complex N-Glycan structures and intracellular OGlcNAcylation, leading to tumor progression (Kim et al., 2020). Besides, a study suggested that the GBM could use galactose as energy sources (Sharpe et al., 2021). Therefore, the galactose could serve as an additional energy source for gliomas with high risk score in inadequate tumor perfusion environments, which may contribute to tumor progression. Thus, the differences in metabolism pathways might be responsible for the different survival outcomes between two groups. However, the underlying mechanism of metabolic reprogramming by the 11 PRL are still poorly understood. Another finding was that the cell death and proliferation related pathways were activated simultaneously in the high-risk group, suggesting that the gliomas might adapt and change the tumor microenvironment via this pattern. For example, the efferocytosis of the death cell could create an immunosuppressive microenvironment (Zhou et al., 2020). At the same time, the increased activation DNA repair related pathways in the glioma with high risk score may lead to a resistant to chemotherapy and radiotherapy (Bao et al., 2006). In summary, the 11 PRL might affect the immune biological process, matrix construction, metabolic reprogramming, and DNA preparation of the glioma, leading to a different prognosis of the patients in different groups.
The differences in the cell metabolism, immune biological process, and matrix constitution between two groups were further discussed. The glycolysis, fatty acid oxidation and pentose phosphate pathway were the main energy provider for glioma with high risk score. While the energy source of glioma with low risk score was depend on glutamine. The application of drugs targeting different metabolic pathways to patients in different groups according to their metabolic characteristics may offer new therapeutic strategies for glioma. Then the results of the ESTIMATE analysis revealed that the higher the inflammatory and stromal cell infiltrate and the lower the tumour purity in the glioma, the higher the risk score. CIBERSORT analysis revealed that gliomas with a high score comprised significantly more immunosuppressive immune cells, suggesting the presence of an immunosuppressive microenvironment in gliomas with high risk score. This is also illustrated by the differential expression of immune checkpoints between the two classifications. Collectively, these findings illustrate that the 11 PRLs might influence the formation of an immunosuppressive microenvironment and matrix remodelling of the glioma, leading to a dismal prognosis in patients with a high risk score. However, the infiltration level of some anti-tumour immune cells (M1 macrophages and CD8+ T cells) was relatively elevated in gliomas with high risk score. CD8+ T cells were found to be dysfunctional and failed to secrete sufficient tumour necrosis factor and interferon-γ to aid tumour regression (Philip and Schietinger, 2022). This explains why a higher proportion of CD8+ T cells is associated with poor survival outcomes. M1 macrophages demonstrated an anti-tumour effect in most studies (Hambardzumyan et al., 2016). However, the pro-tumour effect of M1 macrophages has also been reported. A study revealed that some inflammatory mediators secreted by M1 macrophages, namely, chemokine (C-C motif) ligand 5 and IL-6, were found to be tumour supportive, suggestive of a poor prognosis. Detailed discussion on this requires further research. This part of our study revealed the difference in the degree of pyroptosis in glioma and the immunosuppressive microenvironment and diverse metabolism of gliomas with high risk score. Moreover, a pyroptosis inducer exhibits an outstanding potential to activate a tumour cell-intrinsic immune response (Loveless et al., 2021), suggesting that a pyroptosis inducer might be suitable for treating patients with high risk score.
Currently, the primary treatment performed for gliomas is a comprehensive treatment based on a combination of surgery and chemotherapy, radiotherapy, and tumour treatment fields (TTF). Despite rapid advances in establishing an early diagnosis and treatment, nearly all gliomas become chemoresistant and metastatic. Our findings illustrate that patients with high risk score had a relatively enhanced sensitivity to HMG-CoA reductase inhibitors, PI3K pathway inhibitors, and BRAF inhibitors but were more resistant to platinum agents, histone deacetylase inhibitors, and EGFR inhibitors. Among the eight recommended regimens (Nabors et al., 2020), patients with higher risk score were found to be more sensitive to procarbazine, vincristine, and etoposide, while patients with lower risk score were more sensitive to vorinostat, carboplatin, and carboplatin + vorinostat. According to the current guidelines for glioma, radiotherapy is recommended for patients with high-grade and recurrent gliomas. However, it is unclear whether all patients with high-grade gliomas will benefit from it. Research has shown the crucial function of lncRNA nuclear enriched abundant transcript 1 in regulating the pyroptosis of HCT116 cells induced by ionising radiation (Su et al., 2021). This article suggests the critical function of pyroptosis in radiotherapy. Due to the difference in the sensitivity to pyroptosis, the effectiveness of radiotherapy might differ between the low- and high-risk groups. As per the findings of the KM survival analysis, patients aged >50 years or those with glioma of WHO grade Ⅳ benefitted from radiotherapy. This finding might guide clinical decision-making in terms of radiotherapy administration. Although immunotherapy is not the primary treatment for glioma, it has gained popularity. Hu5F9-G4, an anti-CD47 antibody, played a role in treating paediatric GBMs (Yang K. et al., 2022). The cytotoxic T-lymphocyte-associated antigen 4 antibody ipilimumab combined with nivolumab, plays a role in recurrent GBMs (Yang K. et al., 2022). However, the anti-programmed death 1 antibody pembrolizumab is ineffective in most gliomas, except for patients with special mismatch repair defects (Yang K. et al., 2022). From the studies above, we found that immunotherapy for glioma is developing. Nonetheless, immunotherapy may only be effective in specific patients. The TIDE scores revealed that patients having a higher risk score might not gain benefit from the ICB. Subsequently, the comparison of the TMB between the two groups verified the accuracy of the prediction. Therefore, other treatment regimens are required.
Indubitably, there are still significant limitations to our study. First, the medical history, tumour size, tumour location, and other factors associated with survival outcomes across the low- and high-risk groups were not matched. Second, the significance of the 11 PRLs in tumourigenesis cannot be explained because of the lack of non-tumour tissue. Further research involving larger samples is warranted to support the findings of our study. Third, the mechanism behind the involvement of the 11 PRLs in pyroptosis regulation in gliomas is not well known, necessitating additional research. The current studies are retrospective in nature, based on public databases and predictions. A prospective study to assess the clinical application of the PRL classifier would be more convincing.
CONCLUSION
This study developed a PRL classifier and a nomogram as predictors for the survival outcome of patients with gliomas. Furthermore, the different immune landscapes between the two classifications helped us understand the underlying mechanisms of PRL in pyroptosis regulation and shaping the microenvironment of glioma. Simultaneously, the PRL classifier helped in clinical decision-making regarding radiotherapy, chemotherapy, and immunotherapy. We anticipate that these findings will help researchers and doctors in performing subsequent research and clinical work.
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Background: Pyroptosis is a form of programmed cell death accompanied by specific inflammatory and immune responses, and it is closely related to the occurrence and progression of various cancers. However, the roles of pyroptosis-related genes (PRGs) in the prognosis, treatment response, and tumor microenvironment (TME) of prostate cancer (PCa) remain to be investigated.
Methods: The mRNA expression data and clinical information of PCa patients were obtained from the Cancer Genome Atlas database (TCGA) and the cBioPortal for Cancer Genomics website, and the 52 PRGs were obtained from the published papers. The univariate, multivariate, and LASSO Cox regression algorithms were used to obtain prognostic hub PRGs. Meanwhile, qRT-PCR was used to validate the expression of hub genes between PCa lines and normal prostate epithelial cell lines. We then constructed and validated a risk model associated with the patient’s disease-free survival (DFS). Finally, the relationships between risk score and clinicopathological characteristics, tumor immune microenvironment, and drug treatment response of PCa were systematically analyzed.
Results: A prognostic risk model was constructed with 6 hub PRGs (CHMP4C, GSDMB, NOD2, PLCG1, CYCS, GPX4), and patients were divided into high and low-risk groups by median risk score. The risk score was confirmed to be an independent prognostic factor for PCa in both the training and external validation sets. Patients in the high-risk group had a worse prognosis than those in the low-risk group, and they had more increased somatic mutations, higher immune cell infiltration and higher expression of immune checkpoint-related genes. Moreover, they were more sensitive to cell cycle-related chemotherapeutic drugs and might be more responsive to immunotherapy.
Conclusion: In our study, pyroptosis played a significant role in the management of the prognosis and tumor microenvironment of PCa. Meanwhile, the established model might help to develop more effective individual treatment strategies.
Keywords: prostate cancer, pyroptosis, tumor microenvironment, immune checkpoint inhibitor, treatment response
INTRODUCTION
Prostate cancer (PCa) is the world’s second most frequent male malignancy, and it causes significant health problems for men (Sung et al., 2021). In the United States, the number of new cases in 2021 is expected to be around 248,530, with around 34,130 fatalities (Siegel et al., 2021). Although PCa has a higher overall survival rate than some other cancers, it has a very high recurrence rate. Many patients will experience disease progression and eventually develop castration-resistant prostate cancer (CRPC), which is incurable and may become drug resistant (De Angelis et al., 2014; Fujita and Nonomura, 2019; Howard et al., 2019). Certainly, Individualized chemotherapy and immunotherapy have a good prospect of promise for improving the prognosis of PCa patients (Dudzinski et al., 2019). However, immunotherapy has a low response rate in unselected PCa patients (Sandhu et al., 2021). Fortunately, genetic testing is becoming increasingly beneficial for treating patients with PCa (Merseburger et al., 2021). That is, because identification of target genes can guide patients to assess cancer risk, conduct, precision medicine treatment (such as individualized chemotherapy and immunotherapy), and manage disease prognosis (Giri et al., 2018). Therefore, further studies into the molecular mechanisms of PCa, and the development of effective biomarkers, are required to improve patient prognosis and quality of life.
Pyroptosis is a novel mechanism of programmed cell death triggered by some inflammasomes. Pyroptosis causes cell swelling, plasma membrane lysis, chromatin breakage, and cell content release via particular pathways, resulting in a potent inflammatory response. Pyroptotic cells are unique in maintaining nuclear integrity (Shi et al., 2015; Ding et al., 2016; Kovacs and Miao, 2017; Fang et al., 2020). Generally, there are three pathways to activate pyroptosis: the canonical pathway, the noncanonical pathway, and a new-found pathway. In the canonical pathway, some inflammasomes recruit and bind to apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), resulting in the formation of the ASC complex which recruits procaspase-1 and activates caspase-1. Caspase-1 is involved in the cleavage and maturation of proIL-18/1β, as well as the cleavage of gasderminD (GSDMD). The released N-terminal fragment of GSDMD (GSDMD-NT) causes pore formation in the plasma membrane, leading to secretion of IL-18/1β and water influx, which results in cell swelling and osmotic lysis (Liu et al., 2016; Fang et al., 2020). In the noncanonical pathway, bacterial-derived lipopolysaccharide (LPS) recognizes and activates caspase-4/5/11 to induce pyroptosis by cleaving GSDMD (Khanova et al., 2018; Rathinam et al., 2019). The new-found pathway is achieved by the cleavage of gasderminE (GSDME), which depends on the activation and participation of caspase-3 (Rogers et al., 2017; Wang et al., 2017). Pyroptosis appears to play a significant role in tumor progression and is linked to proliferation, migration, cell cycle, and treatment resistance in various of cancers, according to accumulated evidence (Heo et al., 2019; Yu et al., 2019; Tan et al., 2021). Recent studies have found that pyroptosis-related genes (PRGs) have satisfactory predictive abilities in the prognosis of PCa and could be used as novel tumor biomarkers (Fu et al., 2022; Hu et al., 2022; Wang et al., 2022). Meanwhile, its relationship with PCa immunity may provide assistance in the treatment of PCa (Li et al., 2022; Zhang et al., 2022). However, systematic evaluation of the relationship between differentially expressed PRGs and the prognosis, immune microenvironment, and treatment response of PCa is still worth further exploration.
Therefore, our study aims to develop a novel prognostic signature based on PRGs to systematically explore the relationships between the signature and clinicopathological characteristics and disease progression in PCa patients. In addition, we further investigated its correlation with the tumor microenvironment (TME), mutation profiles, and the patient’s response to immunotherapy and chemotherapy in PCa. This study provides new insights into the role of pyroptosis in PCa.
MATERIALS AND METHODS
Data collection and preprocessing
Gene expression data (FPKM value) for 495 prostate cancer samples and 52 normal samples were obtained from the TCGA official website (https://portal.gdc.cancer.gov/). The log2 transformation is used to normalize the TCGA-PRAD cohort. The clinical information for TCGA-PRAD was obtained from the cBioPortal for Cancer Genomics website (http://www.cbioportal.org/), as were the gene expression data and clinical information for the MSKCC/GSE21032 dataset. Patients who did not have survival information were excluded from our analysis. The clinical information of patients was shown in Supplementary Table S1. PRGs were gathered from the Molecular Signatures Database (MSigDB) (http://www.gsea-msigdb.org/gsea/msigdb/search.jsp) and previous reports (Liberzon et al., 2015; Wu et al., 2021a). We got a total gene set of 52 PRGs after deleting duplicate genes, found in Supplementary Table S2.
The identification of prognostic hub genes
First, we used the R package “limma” to investigate the differential expression of PRGs between PCa tissues and adjacent nontumorous samples (Ritchie et al., 2015), and then we created a heat map with the R package “pheatmap” and a bar graph with the R packages “ggplot2” and “ggpubr” (Kolde, 2019). The “spearman” method was used to calculate the correlation coefficients of the differentially expressed pyroptosis-related genes (DE-PRGs) in PCa, and correlation plots were created using the R package “corrplot” (Wei and Simko, 2017). The STRING website (https://cn.string-db.org/) was used to calculate and generate the interaction network of DE-PRGs. Additionally, based on the DE-PRGs, we utilized the R package “ConsensusClusterPlus” for unsupervised clustering analysis of PCa samples (Wilkerson and Hayes, 2010), as well as the R package “survival” for survival analysis, to see whether the DE-PRGs were associated with patient differences (Therneau, 2020). For DE-PRGs, we utilized univariate Cox regression analysis to screen for genes associated with disease-free survival (DFS), and p < 0.05 was considered the cut-off value. LASSO regression was applied to lessen the risk of overfitting by R package “glmnet” (Simon et al., 2011). Finally, the multivariate stepwise Cox regression analysis was used to identify the hub genes, which were most associated with the prognosis of PCa.
Validation of hub genes from RNA and protein expression levels
We obtained three PCa cell lines (LNCap, PC3, DU-145) cultured in RP1640 medium (Gibco) and one normal prostate epithelial cell line (RWPE-1) cultured in DMEM medium (Gibco) from the Second Hospital of Lanzhou University. Meanwhile all cells were cultured in a humidified incubator at 37°C and 5% CO2 with 10% fetal bovine serum added to every medium. Then we extracted the total RNA from the cells using TRIzol (AG21101; Hunan, China) reagent according to the manufacturer’s instructions, followed by reverse transcription. In addition, we measured the mRNA relative expression levels of the hub genes by real-time quantitative PCR, which were quantified by 2–ΔΔCT. The primer sequences of the hub genes and the internal reference gene could be found in Supplementary Table S3. Finally, we obtained immunohistochemistry (IHC) correlation data of hub genes from the Human Protein Atlas (HPA) (https://www.proteinatlas.org/) and further validated them by the protein expression levels of the genes (Uhlen et al., 2017).
Construction and validation of the risk model
We utilized the training set (TCGA cohort) and the validation set (MSKCC cohort) to construct and validate the risk model, and both datasets calculated the risk score according to the formula: (expgene1 × coefgene1) + (expgene2 × coefgene2) + (expgene3 × coefgene3) +(expgene4 × coefgene4) +(expgene5 × coefgene5) +(expgene6 × coefgene6). The median risk score was the cut-off value to separate patients into high and low risk groups. Kaplan-Meier (KM) survival analysis with log-rank test and time-dependent subject work characteristics (ROC) analysis were used to assess the risk model’s correctness. We then utilized univariate and multivariate analyses to explore whether the risk score compared to clinicopathological characteristics of PCa was an independent prognostic factor. In addition, Wilcoxon and Kruskal-Wallis tests were used to examine the relationship between risk score and clinicopathological characteristics of PCa (age, T-stage, N-stage, Gleason score, and PSA value).
Construction and validation of prognostic nomogram
Based on the independent prognostic factor risk score and Gleason score, we employed the R packages “rms” (Harrell, 2021) and “survival” (Therneau, 2020) to generate a nomogram to forecast the probability of DFS at 1, 3, and 5 years, and estimated the nomogram prediction scores for each patient. To evaluate the accuracy of the nomogram, we utilized the “calibration” function of the R package “rms” for calibration curve analysis and the R package “timeROC” for ROC analysis (Blanche et al., 2013; Harrell, 2021).
Difference analysis in high and low risk groups, functional analysis
To better elucidate the biological function of FRGs in PCa, we obtained EDGs between high and low risk groups by the R package “limma” using p-value < 0.05 and log2 foldchange (log2FC) > 0.585 (Ritchie et al., 2015). The Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were then carried out using the R packages “clusterProfiler” and “org.Hs.eg.DB,” with a critical value of p < 0.05 (Carlson et al., 2019; Wu et al., 2021b).
Tumor microenvironment cell infiltration, tumor somatic mutation
The TME is comprised of tumor cells and non-tumor components such as blood vessels, immune cells, adipocytes, and tumor-associated fibroblasts (Binnewies et al., 2018). Hence, we analyzed the infiltration of immune cells in PCa samples by single sample gene set enrichment analysis (ssGSEA) using the R package “GSVA” (Hänzelmann et al., 2013) and the correlation of immune cells with risk score by the “Spearman” method using the R package “reshape2” (Wickham, 2007), and visualized by the R package “ggplot2” (Wickham, 2016). Then, we used the R package " estimate " to perform stromal score, immune score, and estimate score of PCa samples and to elucidate their relationship with high and low risk groups (Kosuke et al., 2016). The tumor mutation burden (TMB) data of PCa samples was collected from the TCGA database. The samples were separated into two groups based on the risk model, and the TMB score was computed using the R package “maftools” and displayed as a waterfall chart via the R package “ggplot2” (Wickham, 2016; Mayakonda et al., 2018). We also used the R package “reshape2″ to examine the link between risk score and TMB, followed by survival analysis using the R packages “survival” and “survminer” (Kassambara et al., 2021).
Prediction of immunotherapy and drug sensitivity
The different expression of common immune checkpoint-related genes in high and low-risk score groups was achieved by the Wilcoxon test, and the “spearman” method was used to determine the correlation between immune checkpoint-related genes and risk score using the R package “reshape2” (Wickham, 2007), and visualized using the R package “ggplot2” (Wickham, 2016). In previous studies, the Immunophenoscore (IPS) was used to predict tumor response to immunotherapy with CTLA-4 and PD-1 blockers (Charoentong et al., 2017). Furthermore, we used the Wilcoxon test to compare IPS in high and low-risk groups after downloading IPS data for PCa from the Cancer Immunome Atlas (TCIA) (https://TCIA.at/home). In addition, the sensitivity of prostate cancer patients in high and low-risk groups to commonly used cell cycle chemotherapy drugs was computed using the R package “pRRophetic”, which was based on the Genomics of Drug Sensitivity in Cancer (GDSC, https://www.cancerrxgene.org) database (Geeleher et al., 2014).
Statistical analysis
R software (version 4.1.2) and GraphPad Prism (version 9.0) were used for data analysis, statistics, and graphs in this study. The hub genes were discovered by univariate Cox regression, LASSO regression, and multivariate stepwise Cox regression analysis on DE-PRGs. The Wilcoxon test, Kruskal-Wallis test, and Dunnett’s test were used to compare differences between two or more groups as appropriate. The “Spearman” or “Pearson” approach was used to explore the relationship between distinct variables. The log-rank test of Kaplan-Meier analysis was used to perform the survival analysis. The above statistical methods produced significant results at p < 0.05.
RESULTS
Expression and correlation of FRGs in TCGA-PRAD
First, we analyzed the expression of 52 FRGs in 495 tumor samples and 52 normal samples from the TCGA cohort, finding that 35 PRGs were expressed differently in normal and tumor tissues. From the heat map and boxplot, it can be seen that 12 genes, BAK1, CASP6, CYCS, PLCG1, TP53, CHMP2A, CASP8, GPX4, BAX, CHMP4C, GSDMB, and GSDMA, are highly expressed in tumor tissues, and the remaining 23 genes are highly expressed in normal tissues (Figures 1A,B). The PPI analysis revealed that these 35 PRGs had abundant interactions (Figure 1C). Meanwhile, the correlation analysis of these 35 genes in the TCGA cohort showed that they had a high correlation, such as GPX4 and CHMP2A (Figure 1D). Furthermore, we used these 35 genes to divide the TCGA cohort into two clusters (Figure 1E) and performed survival analysis, finding that patients in cluster 2 had a worse DFS (Figure 1F), implying a solid link between PRGs and patient differences. As a result, it was necessary for us to investigate the prognostic PRGs further.
[image: Figure 1]FIGURE 1 | The landscape of expression and correlation of pyroptosis-related genes (PRGs) in prostate cancer. (A) The heatmap of 52 FRGs between prostate cancer tissues and normal prostate tissues. (B) The bar graph of 35 differentially expressed PRGs in prostate cancer and normal tissue. (C) The PPI network of 35 differentially expressed PRGs derived from the STRING database. (D) The correlation of 35 differentially expressed PRGs in prostate cancer. (E) Consensus Clustering matrix for k = 2. (F) The Kaplan-Meier (KM) curves of two clusters and cluster 2 had a worse DFS. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
Construction and validation of PRGs prognostic model
The univariate Cox regression analysis was used to analyze the above 35 DE-PRGs, and 13 genes were found to be associated with the DFS of PCa (Figure 2A). We then performed LASSO regression analysis with tenfold cross-validation on these 13 genes to mitigate the overfitting effect (Figure 2B). Subsequently, we performed multivariate stepwise Cox regression analysis to find 6 hub genes with the best prognostic value (Figure 2C). Before establishing the prognostic model, we conducted individual survival analyses on these 6 genes and discovered that genes with low expression had superior DFS (Figure 2D). In addition, we used qRT-PCR to compare the expression of hub genes (CHMP4C, GSDMB, NOD2, PLCG1, CYCS, GPX4) between prostate cancer cell lines (LNCap, PC3, DU-145) and the normal prostate epithelial cell line (RWPE-1). The results showed that, in comparison to RWPE-1, the 6 hub genes were generally more highly expressed in LNCaP, PC-3, and DU-145 cells (Figures 3A–F). Meanwhile, the IHC data obtained from HPA showed that the protein expression levels of the six genes were also higher in the prostate tumor tissues (Figures 4A–F). Therefore, we established a prognostic model using these six genes. Risk score = (0.2985 * expCHMP4C) + (0.5625 * expCYCS) + (0.6243 * expGPX4) + (0.3102 * expGSDMB) + (1.0209 * expNOD2) + (0.9242 * expPLCG1). Then, we divided PCa patients from the TCGA cohorts into high and low risk groups, with the median risk score as the cut-off value (Figure 5A). As shown in Figure 5B, PCa patients in the high-risk group had a higher likelihood of disease progression, which occurred earlier. According to the KM survival analysis, patients in the low-risk group had a better DFS than those in the high-risk group (Figure 5C). Furthermore, the area under the receiver operating characteristic curve (AUC) of the 1, 3, and 5-year DFS for the TCGA cohort was 0.685, 0.735, and 0.729 (Figure 5D), respectively, demonstrating that our risk models have a relatively high degree of accuracy. The heat map and box plot showed that all six hub genes had higher expression in the high-risk group of patients than in the low-risk group (Figures 5E,F). In the validation set (MSKCC cohort), the risk score was generated using the same formula, and PCa patients were classified into two groups: high and low risk, with the median risk score (Figure 6A). Although the expression of hub genes in the high and low-risk groups was slightly different from the TCGA cohort, the overall tendency was for the high-risk group to have higher gene expression (Figures 6E,F). Consistent with the results of the TCGA cohort, PCa patients in the high-risk group in the MSKCC cohort also had faster disease progression (Figure 6B). The results of KM survival analysis showed that patients in the low-risk group had a more favorable DFS (Figure 6C). And the AUC for 1, 3, and 5-year DFS were 0.734, 0.645, and 0.619, respectively (Figure 6D). These results indicated that the risk model in the MSKCC cohort could also play an important role in the prognosis of PCa.
[image: Figure 2]FIGURE 2 | Identification and prognostic analysis of 6 hub genes. (A) 13 prognostic PRGs obtained by univariate Cox regression analysis. (B) LASSO analysis of 13 prognostic PRGs. (C) The risk coefficients for 6 hub PRGs obtained by multivariate Cox regression analysis. (D) The KM survival analysis of 6 hub genes.
[image: Figure 3]FIGURE 3 | The mRNA expression levels of 6 hub genes in PCa cells (DU-145, LNCap, PC3) and the normal prostate epithelial cell line (RWPE-1). (A–F) The mRNA relative expression levels of CHMP4C, GSDMB, PLCG1, CYCS, GPX4, and NOD2 in DU145, LNCap, PC3, and RWPE -1.
[image: Figure 4]FIGURE 4 | The expression levels of 6 hub genes in normal and tumour tissues. (A–F) The IHC - based protein expressions of CHMP4C, GSDMB, CYCS, GPX4, NOD2, and PLCG1 in PCa tissues and normal prostate tissues. These images were obtained from the HPA database.
[image: Figure 5]FIGURE 5 | Risk model based on the 6 hub genes in TCGA cohort. (A) Distribution of patients’ risk scores. (B) Distribution of survival status of patients in high and low risk groups. (C) The KM curves in high and low risk groups of patients. (D) 1, 3, 5-year ROC curve. (E,F) The heatmap and bar graph of expression of 6 key genes in high and low risk groups.
[image: Figure 6]FIGURE 6 | Risk model based on the 6 hub genes in MSKCC cohort. (A) Distribution of patients’ risk scores. (B) Distribution of survival status of patients in high and low risk groups. (C) The KM curves in high and low risk groups of patients. (D) 1, 3, 5-year ROC curves. (E,F) The heatmap and bar graph of expression of 6 key genes in high and low risk groups.
Independent prognostic value of risk models
To evaluate the prognostic significance of different clinical features of PCa patients and to evaluate whether the risk model can be used as an independent prognostic factor for PCa, we used univariate and multivariate Cox regression analyses on risk scores and different clinical features of PCa patients in the TCGA and MSKCC cohorts, respectively. In the TCGA cohort, the risk score and the Gleason score had p < 0.05 (Figures 7A,B) in both univariate and multivariate analyses, indicating that they were both independent prognostic factors for PCa. Meanwhile, they got the same results in the validation set (MSKCC cohort) (Figures 7C,D). Furthermore, we evaluated the relationship between risk score and clinical features of PCa, finding that patients older than 55 years old had a higher risk score than patients younger than 55 years old, and that the risk score of patients increased as Gleason score, T-stage, and N-stage increased (Figures 8A–E). These results were also verified in the MSKCC cohort (Figures 8F–I).
[image: Figure 7]FIGURE 7 | Independent prognostic value of risk score and clinical features. (A,B) Exploring independent prognostic factors using univariate (A) and multivariate (B) Cox regression analysis in TCGA cohort. (C,D) Validation of independent prognostic factors using univariate (C) and multivariate (D) COX regression analysis in MSKCC cohort.
[image: Figure 8]FIGURE 8 | The relationship between risk score and clinical features of PCa. The relationship between Age (A), PSA (B), N (C), T (D), Gleason (E) and risk core in TCGA cohort. The relationship between Age (F), PSA (G), T (H), Gleason (I) and risk score in MSKCC cohort.
Construction and validation of the prognostic nomogram
We utilized the risk score and Gleason score to construct a prognosis nomogram based on the TCGA cohort because they are independent prognostic factors for PCa. The sample “TCGA-KK-A6E6” was chosen as an example simultaneously. The result showed that this patient’s probability of disease recurrence was 8.57%, 24.6%, and 36.4% at 1, 3, and 5 years, respectively (Figure 9A). Furthermore, the 1, 3, and 5-year calibration curves in the TCGA and MSKCC cohorts were all near the standard curve (Figures 9B,C). The AUC of the time-dependent ROC of the nomogram at 1, 3, and 5-year were all greater than 0.75 (Figures 9D,E), indicating that the prognostic nomogram we developed has high accuracy and validates its utility in predicting patient prognosis.
[image: Figure 9]FIGURE 9 | Construction and validation of a prognostic nomogram. (A) A nomogram established by the independent prognostic factors: risk score and Gleason. (B) The calibration curve of 1, 3, and 5-year in TCGA cohort. (C) The calibration curve of 1, 3, and 5-year in MSKCC cohort. (D) The ROC curve of 1, 3, 5-year in TCGA cohort. (E) The ROC curve of 1, 3, 5-year in MSKCC cohort.
Functional enrichment analysis
The volcano diagram shows that there are 856 DEGs between high and low risk groups (FDR <0.05, |log2FC| ≥ 0.585), 684 of which are up-regulated genes and 172 of which are down-regulated genes (Figure 10A). The functional enrichment of these 856 genes was then performed using GO and KEGG enrichment analysis. Nuclear division, mitotic nuclear division, chromosomal segregation, mitotic sister chromatid segregation, and other cell cycle-related functions were mostly represented in the GO enrichment analysis (Figure 10B). In addition, KEGG enrichment analysis suggested that the genes were mainly associated with the cell cycle, cytokine-cytokine receptor interaction, ECM-receptor interaction, primary immunodeficiency. (Figure 10C).
[image: Figure 10]FIGURE 10 | Functional analysis based on the DEGs between high and low risk groups. (A) The differentially expressed genes between high and low risk groups. (B) The bar graph of GO enrichment analysis, BP (biological process), CC (cellular component), MF (molecular function). (C) The bar graph of KEGG enrichment analysis.
The characteristics of tumor microenvironment and tumor somatic mutation
According to the results of functional enrichment, the risk score was closely related to the cell cycle process, extracellular matrix, and cytokines. These factors play essential roles in the tumor microenvironment, tumor genetic alterations, and the treatment of tumors (Quail and Joyce, 2013). The following study discovered that the high-risk group had a larger infiltration of immune cells in the TCGA cohort (Figure 11A). The results of correlation analysis showed that the risk score was significantly positively correlated with the activated CD8 T cell, CD56dim natural killer cell, effector memory CD8 T cell, activated CD4 T cell, myeloid derived suppressor cell, regulatory T cell, plasmacytoid dendritic cell and macrophage. And the risk score was significantly negatively correlated with neutrophil, monocyte, mast cell and type 17 T helper cell (Figure 11C). Furthermore, the stromal score, immune score, and estimate score all exhibited higher expression in the high-risk group (Figure 11B), indicating that the tumor and non-tumor components of PCa in the high-risk group had a more complex relationship. We further analyzed the TMB of PCa, finding that there was a significant difference in TMB score between high and low-risk groups, with the high-risk group having the higher score (Figure 12A), and correlation analysis also revealed that risk score increased with increasing TMB score (Figure 12B).
[image: Figure 11]FIGURE 11 | Comparison of immune microenvironment in high and low risk groups. (A) Differences in 28 immune cell infiltration between high and low risk groups by ssGSEA. (B) Differences in ImmuneScore, StromalScore and ESTIMATEScore between high and low risk groups. (C) Correlation between risk score and immune cells.
[image: Figure 12]FIGURE 12 | Comparison of tumor mutation burden (TMB) between high and low risk groups. (A) The TMB score was different between high and low risk groups. (B) The risk score was significantly and positively correlated with TMB. (C) The KM curves for patients with high and low TMB. (D) The KM curves showed that the L-TMB + low-risk group had the best prognosis. (E,F) No significant relationship was found between the risk score and mRNAsi. (G) The tumor somatic mutation of patients in the low-risk group. (H) The tumor somatic mutation of patients in the high-risk group.
Additionally, according to the optimal TMB threshold, PCa patients were separated into two groups: H-TMB and L-TMB, and the results of survival analysis revealed that patients in the low TMB group had a better DFS (Figure 12C). Similarly, when we combined the TMB and risk score groups, we found that the L-TMB + low-risk group had the best DFS (Figure 12D). Furthermore, no significant relationship was found between the risk score and mRNAsi (Figures 12E,F). Finally, there is a distinction between the high and low-risk groups in terms of the tumor somatic mutation. The overall mutation rate in the high-risk group is higher (63.25%) than in the low-risk group (52.36%). The mutation rate of “TP53” is highest in the high-risk group, while “SPOP” is highest in the low-risk group (Figures 12G,H).
The sensitivity to immunotherapy and chemotherapy in the high and low risk groups
Immunotherapy for tumors has entered a new era with the continuous development of immune checkpoint and chimeric antigen receptor (CAR) T cell therapies (Yang, 2015). The immune checkpoint blocking therapy was crucial in the immunotherapy of some malignancies (Grapin et al., 2019). We analyzed the association of PCa immune checkpoint-related genes PD-1 (PDCD1), PD-L1 (CD274), CTLA4, PD-L2 (PDCD1LG2), IDO1, and VTCN1 with the risk score and hub genes (Figure 13A) and discovered that PD-1, CTLA4, and IDO1 were highly expressed in the high-risk group (Figure 13B), and the risk score was significantly positively correlated with PD-1, CTLA4, and IDO1 (Figure 13C). Furthermore, Figure 13A showed that NOD2 was the hub gene with the strongest association to immune checkpoint-related genes, and NOD2 was significantly positively connected to these 6 genes (Figure 13D). Subsequently, we further downloaded IPS for PCa from the TCIA database. We analyzed the relationship between IPS and high and low-risk groups, finding that the four components of negative or positive responses for PD1 and CTLA4 were not significantly different in high and low-risk groups (Figure 14A). Fortunately, patients with high NOD2 expression had the higher IPS than those with low expression (Figure 14B).
[image: Figure 13]FIGURE 13 | The relationship between immune checkpoint-related genes and risk score. (A) Heatmap of correlations between immune-check genes and central genes and risk score. (B) PD-1, CTLA4 and IDO1 were highly expressed in the high-risk group. The correlation between immune checkpoint-related genes and risk score(C) and NOD2(D).
[image: Figure 14]FIGURE 14 | The responses to immunotherapy and chemotherapy. (A) The Violin plots of immunotherapy response between high and low risk groups. (B) The patients with high NOD2 expression were more sensitive to immunotherapy. (C) The estimated IC50 of common cell cycle-related chemotherapeutic agents between high and low risk groups.
The risk score was closely related to the cell cycle progression of PCa according to the above functional enrichment analysis, and we further analyzed the response of PCa patients in the TCGA cohort to eight common cell cycle-related chemotherapy drugs (Docetaxel, Gemcitabine, Paclitaxel, Doxorubicin, Cisplatin, Etoposide, Mitomycin, and Methotrexate). The results revealed that these drugs had lower half maximal (50%) inhibitory concentration (IC50) in patients of the high-risk group (Figure 14C), implying that these patients may be more sensitive to these drugs.
DISCUSSION
PCa is a common male urological malignancy. In Asia, the 5-year survival rate for PCa is above 60% (Hassanipour et al., 2020). Between 2001 and 2016 in the United States, the 10-year survival rate for localized stage PCa approached 100% (Siegel et al., 2020). However, a large proportion of PCa patients might experience disease progression, even to the CRPC stage, which increases the risk of PCa-specific death. From 2011 to 2016, the 5-year survival rate for distant stage PCa in the United States was only 32.3% (Siegel et al., 2020). Therefore, there is an urgent need to identify novel prognostic signatures for PCa to improve precise treatment and health management.
Pyroptosis, a new type of programmed cell death that involves the release of inflammatory factors and some immunological responses, is closely related to the occurrence and development of tumors (Du et al., 2021). At present, much research has explored the role of pyroptosis in various tumors, establishing some effective models for predicting prognosis and treatment response and analyzing the potential role of pyroptosis in the tumor microenvironment (Wu et al., 2021a; Li et al., 2021; Shao et al., 2021). A recent study explored the correlation between pyroptosis and PCa patients, resulting in a new signature for predicting PCa patients’ prognosis (Hu et al., 2022). However, the relationship between the members of PRGs and PCa still remains worthy of research.
In this study, we first obtained 35 PRGs that were differentially expressed between tumor and normal tissues in the TCGA-PRAD cohort. Following that, six hub genes (CHMP4C, NOD2, GSDMB, PLCG1, GPX4, CYCS) were found to be strongly associated with the DFS of PCa using univariate cox regression, LASSO regression, and multivariate stepwise Cox regression analysis. In the TCGA-PRAD cohort, we established a risk model of PRGs using these six hub genes, and patients were separated into high and low-risk groups based on their median risk score, with the patients in the high-risk group being found to be more likely to experience a worse DFS. These findings were validated in the MSKCC external validation dataset.
According to previous research, these hub genes are closely related to the occurrence and development of various diseases. CHMP4C, an ESCRT-III subunit, is involved in the abscission checkpoint (NoCut) in response to mitotic problems. Dysregulation of abscission by CHMP4C may act in concert with oncogene-induced mitotic stress to promote genomic instability and tumorigenesis (Sadler et al., 2018). It has been reported that CHMP4C may play an important role in aggressive prostate cancer and may be a potential therapeutic target (Fujita et al., 2017). NOD2 is an intracellular pattern recognition receptor that senses bacterial peptidoglycan conserved motifs in the cytosol and stimulates the host immune response (Ferrand et al., 2019). It has been reported that NOD2 has been linked to the innate immune response of prostate epithelial cells and the occurrence and progression of prostate cancer (Kang et al., 2012). GSDMB, a member of the Gasdermin family, is a downstream effector protein in the pyroptosis pathway (Li et al., 2020), and it has been related to the development of bladder and stomach malignancies in multiple studies (Zhou et al., 2020; He et al., 2021). PLCG1 is a member of the phosphatidylinositol-specific phospholipase C (PLC) family that hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to generate inositol 1,4,5-trisphosphate and diacylglycerol (DAG), which is associated with the proliferation and invasion of tumor cells. Aberrant expression and regulation of PLCG1 have been linked to the development of various cancers, including breast, lung, pancreatic, gastric, prostate, and ovarian cancers (Mandal et al., 2021). GPX4 is an enzyme that explicitly reduces phospholipid hydroperoxides to repair oxidative lipid damage (Gaschler and Stockwell, 2017). GPX4 is not only a negative regulator of ferroptosis and has been associated with numerous cancers (Riegman et al., 2020), but it also helps to attenuate lipid peroxidation, inflammasome activation, and pyroptosis in the context of sepsis (Kang et al., 2018). CYCS, or cytochrome c, has been implicated in numerous regulated cell death forms in addition to being an electron carrier in the mitochondrial respiratory chain (Bock and Tait, 2020), such as the release of cytochrome c into the cytoplasmic matrix upon stimulation by Bax to activate caspase-3, which leads to pyroptosis by triggering GSDME cleavage (Zhou et al., 2018). Meanwhile, a previous study indicated that cytochrome c may impact the sensitivity of the PCa cell line (PC3) to chemotherapeutic agents (Grayson et al., 2021). Therefore, these hub genes might be potential therapeutic targets for PCa.
The following study investigated the association between risk score and clinicopathological characteristics, and discovered that the high-risk group had a higher degree of malignancy. Meanwhile, in our study, only the risk score and the Gleason score were independent prognostic factors for PCa, showing that the risk model had a strong prognostic value. Furthermore, a nomogram with two independent prognostic factors can assist clinicians in predicting patient prognosis and provide a more trustworthy reference for health management than a single routine clinical parameter.
To explore the functional mechanisms of the risk model, we first obtained 856 differentially expressed genes between the high and low-risk groups, and functional enrichment analysis revealed that these genes were mainly closely related to cell cycle processes. And there were several cell cycle related drugs in chemotherapy for PCa, such as Docetaxel, Gemcitabine, Paclitaxel, Doxorubicin, Cisplatin, Etoposide, Mitomycin, and Methotrexate. We then calculated their estimated IC50s in different patients. The estimated IC50s of these drugs were all lower in the high-risk group than in the low-risk group, indicating that patients in the high-risk group were more sensitive to these drugs.
There is mounting evidence that cell cycle processes are not only linked to tumor development (Liu et al., 2022), but also play a role in immune escape and immunotherapy (Bednarski and Sleckman, 2019). In the subsequent study, we discovered that the high-risk group had more immune cell expression than the low-risk group, and a majority of the immune cell infiltration was positively correlated with the risk score, suggesting that there may be more abundant immune effects in the high-risk group. Later, immunotherapy-related markers such as TMB, mRNAsi, and IPS were incorporated into further studies. The results showed that the risk score was positively correlated with the TMB score, and the total somatic mutation rate in the high-risk group (63.25%) was higher than that in the low-risk group (52.36%). However, there was no obvious link between risk scores and mRNAsi. In addition, although the immune checkpoint-related genes PD-1 and CTLA4 were significantly higher expression in the high-risk group, the IPS analysis revealed no significant difference in the response of patients in the high and low-risk groups to PD1 and CTLA4 immune checkpoint inhibitors. Fortunately, the hub gene NOD2 was significantly and positively correlated with the expression of immune checkpoint-related genes, and patients with high NOD2 expression also had the higher IPS than those with low expression. These results point to a complex relationship between the PRGs and the immune microenvironment of PCa, which could be helpful for future research into PCa immunotherapy, particularly the function of the hub genes.
We constructed a risk model of PCa using PRGs and analyzed the relationship between the risk model and PCa from multiple perspectives, which may have good clinical significance. However, our study also has certain limitations. The sample size from the TCGA and MSKCC databases may not be sufficient and more data needs to be collected. At the same time, further in vitro experimental research and clinical trials are required to confirm our findings.
CONCLUSION
In conclusion, our study demonstrates that pyroptosis plays a vital role in PCa prognosis and that pyroptosis has some effects on the regulation of the TME in PCa. Meanwhile, we provide new insights into PCa prognostic research and assist in developing more effective individual treatment strategies.
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Backgrounds: Neutrophil extracellular traps (NETs) play an important role in the occurrence, metastasis, and immune escape of cancers. We aim to investigate Long non-coding RNAs (lncRNAs) that are correlated to NETs to find some potentially useful biomarkers for lung adenocarcinoma (LUAD), and to explore their correlations with immunotherapy and chemotherapy, as well as the tumor microenvironment.
Methods: Based on the The Cancer Genome Atlas (TCGA) database, we identified the prognosis-related lncRNAs which are associated with NETs using cox regression. The patients were then separated into two clusters based on the expression of NETs-associated lncRNAs to perform tumor microenvironment analysis and immune-checkpoint analysis. Least absolute shrinkage and selection operator (LASSO) regression was then performed to establish a prognostic signature. Furthermore, nomogram analysis, tumor mutation burden analysis, immune infiltration analysis, as well as drug sensitivity analysis were performed to test the signature.
Results: Using univariate cox regression, we found 10 NETs-associated lncRNAs that are associated with the outcomes of LUAD patients. Also, further analysis which separated the patients into 2 clusters showed that the 10 lncRNAs had significant correlations with the tumor microenvironment. Using LASSO regression, we finally constructed a signature to predict the outcomes of the patients based on 4 NETs-associated lncRNAs. The 4 NETs-associated lncRNAs were namely SIRLNT, AL365181.3, FAM83A-AS1, and AJ003147.2. Using Kaplan-Meier (K-M) analysis, we found that the risk model was strongly associated with the survival outcomes of the patients both in the training group and in the validation group 1 and 2 (p < 0.001, p = 0.026, and p < 0.01). Using receiver operating characteristic (ROC) curve, we tested the sensitivity combined with the specificity of the model and found that the risk model had a satisfactory level of 1-year, 3-year, and 5-year concordance index (C-index) (C = 0.661 in the training group, C = 0.679 in validation group 1, C = 0.692 in validation group 2). We also explored the immune microenvironment and immune checkpoint correlation of the risk model and found some significant results.
Conclusion: We constructed a NETs-associated lncRNA signature to predict the outcome of patients with LUAD, which is associated with immunephenoscores and immune checkpoint-gene expression.
Keywords: neutrophil extracellular traps (NETs), long non-coding RNAs (lncRNAs), risk score, lung adenocarcinoma (LUAD), tumor mutation burden
INTRODUCTION
Lung Adenocarcinoma (LUAD) is a particular pathologic type of non-small cell lung cancer (NSCLC), which accounted for nearly 90% of deaths of lung cancer worldwide (Relli et al., 2019). As the most common primary lung cancer type, LUAD is mainly caused by tobacco smoking—whether primary or secondary exposure, indoor/outdoor air pollution, and occupational exposure to other harmful agents such as silica, asbestos, radon, heavy metals, and so on. Despite all those reasons, the reason ranked first in etiology in LUAD is tobacco smoking (Hutchinson et al., 2019). Traditional treatments of LUAD include surgical excision, chemotherapy, and radiotherapy. Newly discovered treatment therapies, for example, immunotherapy is also making progress in the treatment of LUAD (Succony et al., 2021). Presently, evidences have shown that the discovery and application of new molecular biomarkers is quite promising in improving the outcomes of patients with LUAD (Xu et al., 2020).
Neutrophils play an indispensable role in the immune response. Neutrophil extracellular traps (NETs) are structures released by immune cells under various stimulations or pathological conditions (Kolaczkowska and Kubes, 2013; Németh et al., 2016). NETs are extracellular structures made up of mitochondrial and nuclear DNA as well as histones, which have been recently considered an innate defense mechanism to constrain and eliminate invading pathogens (Pruchniak and Demkow, 2019). The process of classical NETs formation is defined as “neutrophil extracellular traposis (NETosis)”, which has been identified as a unique form of regulated cell death, which is different from programmed-cell deaths, such as apoptosis, ferroptosis, and pyroptosis (Manda-Handzlik et al., 2020). NETs play a vital role in the development and progression of tumors. Although the NET is considered an immune response against pathological conditions, there are still a lot of researchers who claim otherwise. In hepatocellular carcinoma (HCC), NETs were proved to induce the metastasis of primary HCC (Dickson, 2020; Yang et al., 2020). Also, NETs could render the metastasis of breast cancer, which was induced by cancer cells (Park et al., 2016). Therefore, it is essential to find out the important biomarkers related to NETs to predict the prognosis of LUAD, and to provide possible therapeutic targets for this disease (Mutua and Gershwin, 2021).
Long non-coding RNAs (lncRNAs) are RNAs with a length of more than 200 nucleotides that do not have the function of encoding proteins and play important roles in a wide range of cellular processes (Eptaminitaki et al., 2022). By participating in pathophysiological activities such as cell growth, apoptosis, invasion and metastasis, lncRNAs play a key regulatory role in the development and evolution of cancers, so it can be used as a tumor marker for a variety of malignant tumors, including LUAD (Vallone et al., 2018; Tian et al., 2020; Tian et al., 2021). In addition, multiple lncRNAs have been identified as promising biological therapeutic targets and closely related to drug resistance of lung cancer (Chen et al., 2020; Yu et al., 2020; Zhang et al., 2021). Also, studies related to the mechanisms regarding the synergetic interactions between those NETs associated lncRNAs are becoming more and more important (Fang et al., 2021).
In this article, we constructed a NETs-associated lncRNA risk model for the prediction of prognosis based on public databases and repositories. Kaplan-Meier survival analysis and ROC analysis were used to assess the validity of the model. Also, based on the risk model we acquired, analyses were employed to investigate the relationship between the model and tumor immunity, immune checkpoint, and chemotherapeutic sensitivity.
MATERIALS AND METHODS
Data acquisition and processing
LUAD patients’ transcriptomic data and clinical information were downloaded from TCGA database (LUAD samples: 539, normal samples: 59) (Tomczak et al., 2015). Samples with no follow-up information and incomplete clinical information were also deleted, 478 tumors samples were retained for this study. Perl software was used to integrate the raw data into an expression matrix.
NETs associated-lncRNA downloading and acquisition
We identified 469 lncRNAs that had close correlation with NET-related genes from the TCGA database based on Pearson analysis and he standard used in this part was Pearson R > 0.5 and p < 0.001 (Liu et al., 2022).
Survival analysis using univariate cox regression
Univariate cox regression was conducted for lncRNAs that are identified as NETs-related lncRNA associated with prognosis using the R software package survival (version 3.2). The lncRNAs with survival significance (p < 0.01) were filtered to conduct further analysis.
Consensus clustering analysis
To evaluate the characteristics of classifying patterns of NETs in prognosis and immune feature, all LUAD patients were divided into two subgroups by performing consensus clustering analysis. This method identified distinct NETs modification patterns based on the expression level of NETs-related genes by “ConsensusClusterPlus” package. For the major parameters in the “ConsensusClusterPlus” function, the following was set: the max cluster number (maxK) = 9, proportion of items to sample (pItem) = 0.8, proportion of features to sample (pFeature) = 1, cluster algorithm (clusterAlg) = hc/hierarchical, and distance = spearman. The above process is repeated 1,000 times to ensure the consistency of the classification (Wilkerson and Hayes, 2010).
Establishing a prognostic signature using LASSO regression
We randomly divided the entire set (478 samples) into two sets using the R package “caret.” The least absolute shrinkage and selection operator (LASSO) regression was performed to construct a prognostic signature to reduce the number of variables and to reduce Multicollinearity in our model. The risk score can be illustrated as follows: Risk score = [image: image] (βi: coefficient of gene i; gene_expressioni: expression of gene i). The patients were grouped by risk scores, which divided them into high-risk and low-risk groups (Ni et al., 2022). Survival analysis was performed accordingly using package Survival (version 3.2).
Time ROC curve analysis for assessing the prognostic ability of the model
The receiver operating characteristic (ROC) curve is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied (Hoo et al., 2017).
Tumor immune infiltration analysis
In this study, we employed multiple methods for tumor immune infiltration, including TIMER, QUANTISEQ, ESTIMATE, and so on (Li et al., 2017; Chakraborty and Hossain, 2018). Immune checkpoint analysis was also performed to examine the immunological differences between the high-risk and the low-risk groups. The details of the immune-infiltration analysis have been intensively described in our previous works (Liu et al., 2021a).
Tumor mutation burden analysis
Tumor mutation burden (TMB) analysis, which refers to the density of non-synonymous mutation in the protein-coding area of the tumor cell genomes (Cui et al., 2021).
Nomogram construction
The nomogram of the risk score and relevant clinical information was depicted using package survival (version 3.2) and package RMS (version 6.3) (Wu et al., 2020).
Immunophenoscore analysis
Immunophenoscore (IPS) consists of MHC molecular (MHC), effector cells (ECs), immune checkpoints (CPs), and immunosuppressive cells (SCs). Immunophenotype scores with a scale ranging from 0 to 10 was calculated using the expression of representative genes or immune manifestation of gene sets (Xu et al., 2021). The IPS of LUAD patients were obtained from the Cancer Immunome Atlas (TCIA) framework (Kirby et al., 2020). Furthermore, IPS z-score is regarded as an integration of the four phenotypes: MHC, CPs, SCs and ECs.
Tumor stemness analysis using stemness scores
To analyze the features of tumor stem cells in LUAD patients, we downloaded RNA expression data and DNA methylation data for LUAD from TCGA. RNA stemness score (RNAss) and DNA stemness score (DNAss) of the patients were presented using the R packages “limma” and “corrplot” correspondingly (Zhang et al., 2020). The algorithms for calculation of tumor stemness have been introduced and described by scientists previously (Malta et al., 2018).
Drug sensitivity analysis
The “pRRophetic” package and the expression matrix of LUAD patients was used for predicting the minimum drug inhibition concentration (IC50) of drugs in uveal melanoma patients of high-risk and low-risk groups (Geeleher et al., 2014). Drugs that have statistically different IC50 values and may become candidates for the treatment of LUAD were obtained as potential therapeutic drugs.
Statistical analysis
R v.4.1.0 was used to do statistical tests. The differences of the two subgroups were calculated by Student’s t test and ANOVA. Kaplan-Meier analysis and log rank test were employed to calculate the discrepancy of OS between the two risk groups. The relationships between risk score and immune infiltration level were calculated by Pearson correlation test. p < 0.05 was defined to have statistical difference.
RESULTS
10 NETs-related lncRNAs were filtered as the potentially prognosis-related lncRNAs
We identified 469 lncRNAs that was correlated with Nets from TCGA database by Pearson correlation analysis with the correlation coefficient >0.5 and p < 0.001. Then, the univariate cox regression was performed for the NETs-associated lncRNAs that have potential prognostic values (p < 0.05). 10 NETs-associated lncRNAs in total were obtained, namely AL133335.2, AL137230.1, AC004080.2, SIRLNT, AL365181.3, AL590666.2, FAM83A-AS1, AL133390.1, AC106045.1, and AJ003147.2. All lncRNAs had HR > 1, meaning that the lncRNAs were related to a poor prognosis of LUAD (Table 1). Based on the expression profiles in TCGA database, these 10 NETs-associated lncRNAs expression were different between the LUAD and normal tissues (Figures 1A,B). According to the similarity of NETs-related genes expression level and the proportion of fuzzy clustering measurement, it was found that, when k = 2, the cluster had the best stability. Therefore, the LUAD patients were separated into 2 clusters: cluster1 and cluster 2 according to the expression of the 10 NETs-associated lncRNAs. Survival analysis using Kaplan-Meier plot showed that cluster 2 had a significantly poorer prognosis than cluster1, illustrating the possible relation of the NETs-associated lncRNAs with the clinical outcomes of LUAD patients (Figures 1C,D).
TABLE 1 | Univariate Cox regression analysis of Nets-related lncRNAs.
[image: Table 1][image: Figure 1]FIGURE 1 | Different prognosis and clinicopathological features of two LUAD clusters. Boxplot (A) and heatmap (B) revealed the difference in expression of 10 NETs-associated lncRNA in normal and tumor tissues (C) The overall survival rate of LUAD patients in the two clusters was calculated by Kaplan-Meier curve (D) Heatmap exhibited the differences in expression of 10 NETs-associated lncRNA and clinicopathological features of two LUAD clusters (*p < 0.05, ** p < 0.01, *** p < 0.001).
The expression of 10 candidate-NETs associated lncRNAs is associated with PD-L1 expression and immune infiltration scores
To further explore the immune properties of the 10 candidate-NETs associated lncRNAs, we started an analysis on tumor immune infiltration and immune checkpoint analysis. Firstly, we compared the PD-L1 and CTLA4 expression levels between the normal group and the tumor group. We eventually found that the tumor group had a lower level of PD-L1 expression compared with the normal group (Figure 2A). Similarly, the expression of PD-L1 in cluster 2 is also lower than that in cluster1 (Figure 2B). However, the expression cytotoxic T-lymphocyte-associated protein 4 (CTLA4), which is also an important immune checkpoint that could be a potential therapeutic target, is downregulated in the tumor group and upregulated in cluster 2 (Figures 2D,E). Furthermore, the ESTIMATE score, immune score, and stromal score are both lower in cluster 2 than in cluster 1, indicating the immunological differences between the two clusters (Figures 2G–I). We also performed correlation plots of the 10 candidate lncRNAs, and found a significant correlation between the expression of gene AL137230.1 and AC004080.2. Also present was a strong correlation between gene AL133390.1. Such correlation implied a potential link and interaction between those NETs-associated lncRNAs, which are worthy of our further investigations (Figures 2C,F). Furthermore, based on the expression of the PD1 and CTLA1 we categorized the patients into 4 different categories, namely CTLA4−PD1-, CTLA4−PD1+, CTLA4+PD1-, and CTLA4+PD1+. The IPS z-scores were analyzed between the 4 groups according to 4 categories. It could be noted that the distribution of the scores in cluster 1 was significantly higher than that of cluster 2 in CTLA4−PD1-, CTLA4+PD1-, and CTLA4+PD1+ patients (Figures 2J–M). The abundance of B cells memory and NK cells resting was significantly higher in cluster2 (Figure 2N).
[image: Figure 2]FIGURE 2 | Immunoassay of two clusters. The expression level of PD-L1 between normal and tumor tissues (A), between cluster 1 and cluster 2 (B). The correlation between PD-L1 expression and expression of 10 NETs-associated lncRNA (C). The expression level of CTLA4 between normal and tumor tissues (D), between cluster 1 and cluster 2 (E). The correlation between CTLA4 expression and expression of 10 NETs-associated lncRNAs (F). The difference in ESTIMATE score, immune score and stromal score between cluster 1 and cluster 2 (G–I). Immunephenoscores (IPS) analysis (J–M). The abundance of immune infiltration cells in cluster 1 and cluster 2 (N) (* p < 0.05, ** p < 0.01, *** p < 0.001).
Construction of a prognosis-related signature of LUAD related to NETs
The strong correlation between the 10 NETs-associated lncRNAs showed significant collinearity, which meant that reducing the number of variables using methods like LASSO regression is necessary. All LUAD patients were randomly divided into training cohort, testing cohort and entire cohort, and there was no significant difference in clinical information among the three groups (Supplementary Table S1). Using LASSO regression, we found that the prognostic signature eventually contained 4 NETs-associated lncRNAs: SIRLNT, AL365181.3, FAM83A-AS1, and AJ003147.2. By setting a median risk score as the cutoff value, patients in the training group and validation group were all separated into 2 groups: the high-risk group and the low-risk group in training cohort, testing cohort and entire cohort respectively (Figures 3A–C). Survival analysis showed that the patients all showed better clinical outcomes in the low-risk group, regardless of which group they were in (Figures 3D–F). Furthermore, we constructed a time-ROC curve to evaluate the precision of the model. The 1-year, 3-year and 5-year C-index of the model in the training group were separately 0.729, 0.688, and 0.674; and the C indexes in the 2 validation groups all fell between 0.6 and 0.7, regardless of the year of the cutoff (Figures 3G–I).
[image: Figure 3]FIGURE 3 | Prognostic model construction and evaluation. In the training cohort (A), testing cohort (B) and entire cohort (C) the patient with different risk score, survival status, and NETs-associated lncRNAs expression were shown. Survival analysis of training cohort (D), testing cohort (E) and entire cohort (F) and the prognosis of high-risk group was significantly worse. ROC curve revealed that in the training cohort (G), testing cohort (H) and entire cohort (I), the AUC values for 1, 3, and 5-year OS were over 0.6.
Multivariate regression validated that the risk score is independent prognostic factor
We next used multivariate cox regression to combine the risk score with the phenotype data to evaluate the risk score and its relevance to the patients’ clinical prognosis. Multivariate cox regression showed that the risk score had a hazard ratio of 1.466 (95%CI: 1.324–1.623) in the training group. Similarly, the hazard ratio of risk score in the validation group was 1.365 (95%CI: 1.218–1.529). The risk score in both groups had significant relevance to the clinical outcomes of the patients, which was independent of the influences of the stages, gender, age, and so on (Figures 4A,B).
[image: Figure 4]FIGURE 4 | The construction and assessment of prognostic nomogram. (A,B) Univariate and multivariate Cox regression analyses were used to evaluate whether risk score and clinical characteristics were independent predictors. (C) A nomogram was constructed to predict OS (D–F) The calibration curves of the nomogram based on 1-, 3-, and 5-year OS (G–I) The ROC curve of risk score and clinical characteristics was performed based on 1-, 3-, and 5-year OS (J–L) When combined risk score with clinical factors for analysis, the AUC values of 1-, 3-, and 5-year OS was detected.
Assessment of the signature using ROC curve and nomogram
To further assess the value of the model, we used a nomogram to combine the clinical phenotypes with the risk score (Figure 4C). After combining the phenotype data with the risk score, we found that the predicted survival rate was adjacent to the actual survival rate in the comparison plot, in the entire group at 1-year, 3-year and 5-year (Figures 4D–F). Also, we compared the predicting value of the risk score with different types of clinical data, including age, gender and clinical stages, and found that the risk score demonstrated a stronger capability to predict than those clinical data (Figures 4G–I). Previous study demonstrated that as AUC >0.6, predictive signature could effectively predict the survival rate of tumor patients (Liu et al., 2022). The muti-ROC curves proved that AUC of NETs-related signature was greater than 0.6, synthesizing clinical factors and risk scores would be better than clinical factor (Figures 4J–L). Based on above results, we inferred that risk score evaluated by NETs-related genes can accurately forecast the prognosis of LUAD patients.
The gene signature is correlated to cell-cycle and once-immunological properties
GSEA enrichment analysis related to the gene signature showed that the pathways enriched in the high-risk group were cell cycle, phenylalanine metabolism, steroid hormone biosynthesis, and systemic lupus erythematosus (SLE). Conversely, the pathways enriched in the low-risk group were allograft rejection, asthma, cell adhesion molecules (CAMs), and intestinal immune network (Figures 5A,B). The results showed that immunological differences may be a major protection factor in the low-risk group. Immune infiltration scoring and cell components showed that the infiltration of immune cells in the high-risk group was generally lower than the low-risk group. Scorings of immunological processes also revealed that the high-risk group was lower in multiple immunological signs of progress, such as APC and T cell co-stimulation, HLA activity, checkpoint, and type I and II IFN responses (Figures 5C,D).
[image: Figure 5]FIGURE 5 | GSEA, ssGSEA and ESTIMATE analysis. Gene set enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) in high-risk and low-risk groups (A,B). ssGSEA analysis showed the difference of immune cells and immune function between high-risk and low-risk groups (C,D). The difference of immune score, stromal score, ESTIMATE score between high-risk and low-risk groups (E–G). The correlation of immune score, stromal score, ESTIMATE score and risk score (H–J). (ns, not significant, * p < 0.05, ** p < 0.01, *** p < 0.001).
Tumor-immune infiltration differences in the data showed the differences of immune landscape between the high-risk and the low-risk group
Using recently-developed immune infiltration algorithms to calculate the abundance of immune cells in different samples, we found that differences existed between the high-risk and the low-risk groups in immune scores and stromal scores; using the ESTIMATE algorithm, we also found estimate scores varied between the high-risk and the low-risk group. All data showed that the low-risk group exhibited a higher score (Figures 5F–J).
The immune infiltration and tumor mutation analysis
Tumor mutation analysis was subsequently conducted, and the most frequently mutated genes in the high-risk and the low-risk group were generally similar, with the most frequently mutated gene being TP53. The 10 genes most frequently mutated both in the high-risk group and the low-risk group were (listed in descending order): TP53, TTN, MUC16, CSMD3, RYR2, LRP1B, ZFHX4, USH2A, KRAS, XIRP2 (Figures 6A,B). Not surprisingly, the high-risk group carried significantly more mutation burden than the low-risk group (Figures 6C,D). Tumor mutation burden was subsequently analyzed combined with the risk scores and we found the group with a higher mutation rate received better clinical outcomes, and the clinical outcomes of patients in the L-TMB+high risk group were significantly poorer than other groups, compared with the H-TMB+low risk group which ranked best as regards the clinical outcomes (Figures 6E,F), and we found that the high-risk group was associated with higher mutation rate and higher tumor-stemness scores (Figures 6G,H). EPCAM PMS2, MSH2, and MSH6 expression were also compared between the low-risk group and the high-risk group, and all showed higher expression levels in the high-risk group (Figures 6I–L).
[image: Figure 6]FIGURE 6 | The relationship between risk score and mutation, tumor stemness, mismatch repair-related genes. Waterfall plots displayed the mutation information of top 20 genes with high mutation frequency in high-risk group (A) and low-risk group (B). The difference of TMB between high-risk and low-risk groups (C). The correlation of TMB and risk score (D). Survival analysis of LUAD patients with different level of TMB and TMB combing with risk score (E,F). The difference of tumor stemness index (RNAss and DNAss) between high-risk and low-risk groups (G,H). The difference of mismatch repair-related genes expression between high-risk and low-risk groups (I–L).
After applying multiple algorithms to calculate the immunological differences, we constructed an immune infiltration heatmap, and the results were shown to include the different results in immune infiltration (Figures 7A,B). Furthermore, the correlation between the infiltration and expression of every single gene was depicted using a heatmap (Figure 7C). We found that the risk score was correlated to the level of macrophages, dendritic cells, mast cells, NK cells, and T-cells (Figures 7D–J).
[image: Figure 7]FIGURE 7 | Analysis of immune cell infiltration. The immune landscapes of high-risk and low-risk groups (A). The difference of immune cell between high-risk and low-risk groups (B). The association of 4 NETs-associated lncRNAs expression and immune cell infiltration (C). The association of risk score and immune cell infiltration (D–J) (* p < 0.05, ** p < 0.01, *** p < 0.001).
Immune checkpoint and immunophenoscore analysis
Immune checkpoints are a class of immunosuppressive molecules that are expressed on immune cells and regulate the degree of immune activation, and they play an important role in preventing the occurrence of autoimmunity (Zhai et al., 2021). Immune checkpoint genes were analyzed between the high-risk group and the low-risk group. The differences in the expression were quantified and depicted (Figure 8A). Although the immune checkpoint inhibitors like anti-CTLA4 monoclonal antibodies and anti PD-1/PD-L1 antibodies have been used clinically and improved patients’ outcomes, there are also other factors like human leukocyte antigens (HLAs) that affect the sensitivity to immunotherapy. Hence, we investigated the expression of HLA molecule family across the high-risk and the low-risk groups, and found that most of the HLA genes showed higher expression in low-risk groups (Figure 8B). Moreover, we re-analyzed the IPS z-scores across CTLA4−PD1-, CTLA4−PD1+, CTLA4+PD1-, and CTLA4+PD1+ groups, and found that in all subgroups, IPS scores were lower in the high-risk groups (Figures 8C–F).
[image: Figure 8]FIGURE 8 | The correlations between risk score and immune checkpoint, immunephenoscores (IPS). The difference of immune checkpoint related genes (A) a and HLA-related genes (B) were showed in boxplot between high-risk and low-risk groups. The differences of IPS in patients with different risk are shown (C–F) (ns, not significant, * p < 0.05, ** p < 0.01, *** p < 0.001).
Drug sensitivity analysis
The study of the sensitivity of different groups of patients to chemotherapy or targeted-therapy drugs can provide help for the formulation of future treatment regimens. Using half maximal inhibitory concentration (IC50) as the index for the antitumor potency of the drugs, we investigated the differences in drug responsiveness between the high-risk and the low-risk groups. The high-risk group was more sensitive to antitumor drugs like Axitinib, Erlotinib, Doxorubicin, Bortezomib, Gefitinib, Gemcitabine, Paclitaxel, Tipifarnib, and Vinblastine (Figures 9A–I). Those antitumor drugs were potentially more capable of inhibiting high-risk uveal melanoma with relatively minor dosage. Conversely, drugs like Vinblastine, Cisplatin and Methotrexate exhibited lower antitumor efficiency in high-risk groups (Figures 9J–L).
[image: Figure 9]FIGURE 9 | Drug sensitivity analysis. The IC50 of Axitinib, Erlotinib, Doxorubicin, Bortezomib, Gefitinib, Gemcitabine, Paclitaxel, Tipifarnib, Vinblastine, Vinblastine, Cisplatin and Methotrexate was analyzed in high-risk and low-risk groups (A–L).
DISCUSSION
As a lethal disease with a poor survival rate, the treatment of lung adenocarcinoma has become a heated topic in clinical oncology for decades. Despite the therapeutic advances based on progress in molecular biology and tumor immunology, the survival rate and efficiency of therapy are still not satisfactory (Relli et al., 2019; Anichini et al., 2020).
Neutrophil Extracellular Traps (NETs), a mechanism that is an indispensable part in innate immunity, are also involved in cancer progression and has been an emerging hotspot in recent years (Demkow, 2021). Accumulating pieces of evidence has shown that NETs could arouse dormant cancer cells, causing the unstrained growth and the metastasis of malignant tumors (Demers and Wagner, 2013). Also, NETs are believed to play a key role in the immune microenvironment of tumors. The close correlation between cancer cell and the co-localization between the tumor cells and NETs has also been discovered recently, which is believed to have a positive effect on the progression of the tumor (Masucci et al., 2020).
Although many molecular mechanisms have been found to take part in the pathogenes is of LUAD, little has been found about the mechanisms related to NETs. Recent pan-cancer analyses have figured out a prognostic signature related to NETs, which include the LUAD. However, to the best of our knowledge, a NETs-related signature has not been constructed for LUAD patients (Zhang et al., 2022).
Therefore, inspired by the recent discoveries of NETs’ oncogenic properties, we used TCGA to construct a NETs-related model based on the RNA-seq data. In our study, 469 NETs-related lncRNAs in total were identified as NETs-associated lncRNA lncRNAs. According to the univariate cox regression, 10 NETs-related lncRNAs were filtered and we separated the patients into 2 subgroups: cluster 1 and cluster 2. We found some differences between the 2 clusters that are related to survival and tumor immunity. The abundance of B cells memory and NK cells resting was significantly higher in cluster 2. NK cells are cytotoxic lymphocytes with direct killing effect in the innate immune system, participate in natural and adaptive immunity, and are the first line of defense for anti-tumor immunity (Valipour et al., 2019; Bald et al., 2020). ESTIMATE score, PD-L1expression, CTLA4 expression and IPS score are lower in cluster 2, which means that patients in cluster 2 have lower immunogenicity. So it can be applied to forecast the immunotherapeutic effect of LUAD patients.
Next, we used the LASSO regression method to reduce the variable to four, reducing over-fitting while strengthening the clinical significance of the model. The results showed the signature we constructed was of strong clinical relevance, and could effectively predict patients’ outcomes. Calibration is used to describe the accuracy of a model to predict the probability of individual clinical outcomes. In practical application, it is usually characterized by calibration curve. The calibration curve shows the deviation between the predicted value of the model and the actual value, which is another way to test the prediction ability of the model (Gittleman et al., 2020). Similar to the results of other studies (Liu et al., 2021b; Cui et al., 2022), the calibration curve showed that the observed OS ratios in 1, 3 and 5 years were in good agreement with the predicted ratios.
Also, we discovered the differences between the immune cell infiltration, and immune checkpoint analysis, and found out that the results are related to the infiltration of various types of immune cells, such as macrophages, T cells, and NK cells. In addition, immune infiltration affects the survival rate of tumor patients (Riquelme et al., 2019). The results indicate that different types of immune cells are correlated to the signature, and the sensitivity to immunotherapy varied between the low-risk group and the high-risk group, further demonstrating its clinical significance. Low TMB is associated with low immune infiltration, which means a poor immune response (Hu et al., 2021). HLA alleles have been shown to stratify tumor patients with high accuracy (Callahan et al., 2018). This may be the mechanism of the difference in immunogenicity between the two groups. Moreover, it is also recommended to perform RNA-seq in clinically harvested samples, calculating immunephenoscores (IPS) and immune infiltration scores and to validate the relevance with our previous model (Chen et al., 2022a). Then, we analyzed the drug sensitivity of the two risk groups, providing targeted guidance for LUAD patients to choose treatment drugs.
Of all 4 NETs-related lncRNAs that are involved in the prognostic signature, it has been proved that lncRNA-FAM83A-AS1 could promote tumor progression in lung adenocarcinoma, via promoting the HIF-1α/glycolysis axis (Chen et al., 2022b). Our study further validated its robust capability as a biomarker in lung adenocarcinoma. lncRNA SIRLNT was recently discovered as a tumor promoter in breast cancer, by regulating the miR-4766-5p (Liang et al., 2018). However, whether those lncRNAs could act as a tumor promoter in LUAD requires further investigation.
However, due to the limitations of bioinformatic methods, we were only capable to find the correlations between the scores and immune phenotypes. Further studies are needed to reveal the mechanisms that lie within, including in vitro and in vivo studies regarding the molecular mechanisms. Also, the interactions between the lncRNAs in the signatures we constructed still require further investigation.
CONCLUSION
Above all, the risk model we constructed was strongly correlated to the NETs properties and could predict patient outcomes. Besides, whether the risk model was correlated to the sensitivity of immunotherapy still requires further investigation. Therefore, in vitro and in vivo experiments regarding lung adenocarcinoma are urgently needed to test the possible target lncRNAs and their oncogenic mechanisms.
DATA AVAILABILITY STATEMENT
The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.
AUTHOR CONTRIBUTIONS
JS conceived the study and participated in the study design and performance. WD conducted the bioinformatics analysis and manuscript writing. BL, YZ, and LH revised the manuscript. All authors read and approved the final manuscript.
ACKNOWLEDGMENTS
We would like to extend our gratitude to the researchers and study patients for their contributions.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2022.1047231/full#supplementary-material
REFERENCES
 Anichini, A., Perotti, V. E., Sgambelluri, F., and Mortarini, R. (2020). Immune escape mechanisms in non small cell lung cancer. Cancers 12 (12), E3605. doi:10.3390/cancers12123605
 Bald, T., Krummel, M. F., Smyth, M. J., and Barry, K. C. (2020). The NK cell-cancer cycle: Advances and new challenges in NK cell-based immunotherapies. Nat. Immunol. 21 (8), 835–847. doi:10.1038/s41590-020-0728-z
 Callahan, B. M., Tong, W. L., and Blanck, G. (2018). T cell receptor-β J usage, in combination with particular HLA class II alleles, correlates with better cancer survival rates. Immunol. Res. 66 (2), 219–223. doi:10.1007/s12026-018-8990-y
 Chakraborty, H., and Hossain, A. (2018). R package to estimate intracluster correlation coefficient with confidence interval for binary data. Comput. Methods Programs Biomed. 155, 85–92. doi:10.1016/j.cmpb.2017.10.023
 Chen, B., Yao, Y., Mao, D., Li, C., Wang, X., Sheng, S., et al. (2022). A signature based on costimulatory molecules for the assessment of prognosis and immune characteristics in patients with stomach adenocarcinoma. Front. Immunol. 13, 928742. doi:10.3389/fimmu.2022.928742
 Chen, Z., Chen, Q., Cheng, Z., Gu, J., Feng, W., Lei, T., et al. (2020). Long non-coding RNA CASC9 promotes gefitinib resistance in NSCLC by epigenetic repression of DUSP1. Cell Death Dis. 11 (10), 858. doi:10.1038/s41419-020-03047-y
 Chen, Z., Hu, Z., Sui, Q., Huang, Y., Zhao, M., Li, M., et al. (2022). LncRNA FAM83A-AS1 facilitates tumor proliferation and the migration via the HIF-1α/glycolysis axis in lung adenocarcinoma. Int. J. Biol. Sci. 18 (2), 522–535. doi:10.7150/ijbs.67556
 Cui, G., Liu, J., Wang, C., Gu, R., Wang, M., Sun, Z., et al. (2022). Comprehensive analysis of the prognostic signature and tumor microenvironment infiltration characteristics of cuproptosis-related lncRNAs for patients with colon adenocarcinoma. Front. Oncol. 12, 1007918. doi:10.3389/fonc.2022.1007918
 Cui, G., Wang, C., Lin, Z., Feng, X., Wei, M., Miao, Z., et al. (2021). Prognostic and immunological role of Ras-related protein Rap1b in pan-cancer. Bioengineered 12 (1), 4828–4840. doi:10.1080/21655979.2021.1955559
 Demers, M., and Wagner, D. D. (2013). Neutrophil extracellular traps: A new link to cancer-associated thrombosis and potential implications for tumor progression. Oncoimmunology 2 (2), e22946. doi:10.4161/onci.22946
 Demkow, U. (2021). Neutrophil extracellular traps (NETs) in cancer invasion, evasion and metastasis. Cancers 13 (17), 4495. doi:10.3390/cancers13174495
 Dickson, I. (2020). NETs promote liver metastasis via CCDC25. Nat. Rev. Gastroenterol. Hepatol. 17 (8), 451. doi:10.1038/s41575-020-0345-1
 Eptaminitaki, G. C., Stellas, D., Bonavida, B., and Baritaki, S. (2022). Long non-coding RNAs (lncRNAs) signaling in cancer chemoresistance: From prediction to druggability. Drug resist. updat. 65, 100866. doi:10.1016/j.drup.2022.100866
 Fang, C., Liu, F., Wang, Y., Yuan, S., Chen, R., Qiu, X., et al. (2021). A innovative prognostic symbol based on neutrophil extracellular traps (NETs)-related lncRNA signature in non-small-cell lung cancer. Aging 13 (13), 17864–17879. doi:10.18632/aging.203289
 Geeleher, P., Cox, N., and Huang, R. S. (2014). pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PloS one 9 (9), e107468. doi:10.1371/journal.pone.0107468
 Gittleman, H., Sloan, A. E., and Barnholtz-Sloan, J. S. (2020). An independently validated survival nomogram for lower-grade glioma. Neuro. Oncol. 22 (5), 665–674. doi:10.1093/neuonc/noz191
 Hoo, Z. H., Candlish, J., and Teare, D. (2017). What is an ROC curve?Emerg. Med. J. 34 (6), 357–359. doi:10.1136/emermed-2017-206735
 Hu, C., Zhao, L., Liu, W., Fan, S., Liu, J., Liu, Y., et al. (2021). Genomic profiles and their associations with TMB, PD-L1 expression, and immune cell infiltration landscapes in synchronous multiple primary lung cancers. J. Immunother. Cancer 9 (12), e003773. doi:10.1136/jitc-2021-003773
 Hutchinson, B. D., Shroff, G. S., Truong, M. T., and Ko, J. P. (2019). Spectrum of lung adenocarcinoma. Semin. Ultrasound CT MR 40 (3), 255–264. doi:10.1053/j.sult.2018.11.009
 Kirby, J., Prior, F., Petrick, N., Hadjiski, L., Farahani, K., Drukker, K., et al. (2020). Introduction to special issue on datasets hosted in the Cancer Imaging Archive (TCIA). Med. Phys. 47 (12), 6026–6028. doi:10.1002/mp.14595
 Kolaczkowska, E., and Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13 (3), 159–175. doi:10.1038/nri3399
 Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J. S., et al. (2017). TIMER A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 77 (21), e108–e110. doi:10.1158/0008-5472.CAN-17-0307
 Liang, Y., Song, X., Li, Y., Sang, Y., Zhang, N., Zhang, H., et al. (2018). A novel long non-coding RNA-PRLB acts as a tumor promoter through regulating miR-4766-5p/SIRT1 axis in breast cancer. Cell Death Dis. 9 (5), 563. doi:10.1038/s41419-018-0582-1
 Liu, J., Cui, G., Shen, S., Gao, F., Zhu, H., and Xu, Y. (2021). Establishing a prognostic signature based on epithelial-mesenchymal transition-related genes for endometrial cancer patients. Front. Immunol. 12, 805883. doi:10.3389/fimmu.2021.805883
 Liu, J., Geng, R., Ni, S., Cai, L., Yang, S., Shao, F., et al. (2022). Pyroptosis-related lncRNAs are potential biomarkers for predicting prognoses and immune responses in patients with UCEC. Mol. Ther. Nucleic Acids 27, 1036–1055. doi:10.1016/j.omtn.2022.01.018
 Liu, J., Wang, Y., Yuan, S., Wei, J., and Bai, J. (2021). Construction of an immune cell infiltration score to evaluate the prognosis and therapeutic efficacy of ovarian cancer patients. Front. Immunol. 12, 751594. doi:10.3389/fimmu.2021.751594
 Malta, T. M., Sokolov, A., Gentles, A. J., Burzykowski, T., Poisson, L., Weinstein, J. N., et al. (2018). Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173 (2), 338–354. e315. doi:10.1016/j.cell.2018.03.034
 Manda-Handzlik, A., Bystrzycka, W., Cieloch, A., Glodkowska-Mrowka, E., Jankowska-Steifer, E., Heropolitanska-Pliszka, E., et al. (2020). Nitric oxide and peroxynitrite trigger and enhance release of neutrophil extracellular traps. Cell. Mol. Life Sci. 77 (15), 3059–3075. doi:10.1007/s00018-019-03331-x
 Masucci, M. T., Minopoli, M., Del Vecchio, S., and Carriero, M. V. (2020). The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis. Front. Immunol. 11, 1749. doi:10.3389/fimmu.2020.01749
 Mutua, V., and Gershwin, L. J. (2021). A review of neutrophil extracellular traps (NETs) in disease: Potential anti-NETs therapeutics. Clin. Rev. Allergy Immunol. 61 (2), 194–211. doi:10.1007/s12016-020-08804-7
 Németh, T., Mócsai, A., and Lowell, C. A. (2016). Neutrophils in animal models of autoimmune disease. Semin. Immunol. 28 (2), 174–186. doi:10.1016/j.smim.2016.04.001
 Ni, X., Chen, C., Cui, G., Ding, W., and Liu, J. (2022). Crosstalk of RNA adenosine modification-related subtypes, establishment of a prognostic model, and immune infiltration characteristics in ovarian cancer. Front. Immunol. 13, 932876. doi:10.3389/fimmu.2022.932876
 Park, J., Wysocki, R. W., Amoozgar, Z., Maiorino, L., Fein, M. R., Jorns, J., et al. (2016). Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl. Med. 8 (361), 361ra138. doi:10.1126/scitranslmed.aag1711
 Pruchniak, M. P., and Demkow, U. (2019). Potent NETosis inducers do not show synergistic effects in vitro. Cent. Eur. J. Immunol. 44 (1), 51–58. doi:10.5114/ceji.2019.84017
 Relli, V., Trerotola, M., Guerra, E., and Alberti, S. (2019). Abandoning the notion of non-small cell lung cancer. Trends Mol. Med. 25 (7), 585–594. doi:10.1016/j.molmed.2019.04.012
 Riquelme, E., Zhang, Y., Zhang, L., Montiel, M., Zoltan, M., Dong, W., et al. (2019). Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178 (4), 795–806. e712. doi:10.1016/j.cell.2019.07.008
 Succony, L., Rassl, D. M., Barker, A. P., McCaughan, F. M., and Rintoul, R. C. (2021). Adenocarcinoma spectrum lesions of the lung: Detection, pathology and treatment strategies. Cancer Treat. Rev. 99, 102237. doi:10.1016/j.ctrv.2021.102237
 Tian, H., Pan, J., Fang, S., Zhou, C., Tian, H., He, J., et al. (2021). LncRNA DPP10-AS1 promotes malignant processes through epigenetically activating its cognate gene DPP10 and predicts poor prognosis in lung cancer patients. Cancer Biol. Med. 18 (3), 675–692. doi:10.20892/j.issn.2095-3941.2020.0136
 Tian, R., Zhang, C., Xiong, F., and Chen, H. (2020). PCAT1/miR-129/ABCB1 axis confers chemoresistance in non-small cell lung cancer. Front. Biosci. 25 (5), 948–960. doi:10.2741/4842
 Tomczak, K., Czerwińska, P., and Wiznerowicz, M. (2015). The cancer genome Atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol. 19 (1), A68–A77. doi:10.5114/wo.2014.47136
 Valipour, B., Velaei, K., Abedelahi, A., Karimipour, M., Darabi, M., and Charoudeh, H. N. (2019). NK cells: An attractive candidate for cancer therapy. J. Cell. Physiol. 234 (11), 19352–19365. doi:10.1002/jcp.28657
 Vallone, C., Rigon, G., Gulia, C., Baffa, A., Votino, R., Morosetti, G., et al. (2018). Non-coding RNAs and endometrial cancer. Genes 9 (4), E187. doi:10.3390/genes9040187
 Wilkerson, M. D., and Hayes, D. N. (2010). ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinforma. Oxf. Engl. 26 (12), 1572–1573. doi:10.1093/bioinformatics/btq170
 Wu, J., Zhang, H., Li, L., Hu, M., Chen, L., Xu, B., et al. (2020). A nomogram for predicting overall survival in patients with low-grade endometrial stromal sarcoma: A population-based analysis. Cancer Commun. 40 (7), 301–312. doi:10.1002/cac2.12067
 Xu, J. Y., Zhang, C., Wang, X., Zhai, L., Ma, Y., Mao, Y., et al. (2020). Integrative proteomic characterization of human lung adenocarcinoma. Cell 182 (1), 245–261. e217. doi:10.1016/j.cell.2020.05.043
 Xu, Q., Chen, S., Hu, Y., and Huang, W. (2021). Landscape of immune microenvironment under immune cell infiltration pattern in breast cancer. Front. Immunol. 12, 711433. doi:10.3389/fimmu.2021.711433
 Yang, L., Liu, Q., Zhang, X., Liu, X., Zhou, B., Chen, J., et al. (2020). DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature 583 (7814), 133–138. doi:10.1038/s41586-020-2394-6
 Yu, T., Bai, W., Su, Y., Wang, Y., Wang, M., and Ling, C. (2020). Enhanced expression of lncRNA ZXF1 promotes cisplatin resistance in lung cancer cell via MAPK axis. Exp. Mol. Pathol. 116, 104484. doi:10.1016/j.yexmp.2020.104484
 Zhai, Y., Moosavi, R., and Chen, M. (2021). Immune checkpoints, a novel class of therapeutic targets for autoimmune diseases. Front. Immunol. 12, 645699. doi:10.3389/fimmu.2021.645699
 Zhang, Y., Guo, L., Dai, Q., Shang, B., Xiao, T., Di, X., et al. (2022). A signature for pan-cancer prognosis based on neutrophil extracellular traps. J. Immunother. Cancer 10 (6), e004210. doi:10.1136/jitc-2021-004210
 Zhang, Y., Liu, H., Zhang, Q., and Zhang, Z. (2021). Long noncoding RNA LINC01006 facilitates cell proliferation, migration, and epithelial-mesenchymal transition in lung adenocarcinoma via targeting the MicroRNA 129-2-3p/CTNNB1 Axis and activating wnt/β-catenin signaling pathway. Mol. Cell. Biol. 41 (6), e0038020. doi:10.1128/MCB.00380-20
 Zhang, Y., Tseng, J. T., Lien, I. C., Li, F., Wu, W., and Li, H. (2020). mRNAsi index: Machine learning in mining lung adenocarcinoma stem cell biomarkers. Genes 11 (3), E257. doi:10.3390/genes11030257
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Ding, Li, Zhang, He and Su. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 10 November 2022
doi: 10.3389/fgene.2022.996444


[image: image2]
A pyroptosis expression pattern score predicts prognosis and immune microenvironment of lung squamous cell carcinoma
Wei Chen1,2,3†, Min-Yu Wen1,2,3†, Kai-Bin Yang1,3†, Li-Tao Zheng1,2,3 and Xuan Li1,3*
1State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
2Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
3Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
Edited by:
Zhouxiao Li, Ludwig Maximilian University of Munich, Germany
Reviewed by:
Elton J. R. Vasconcelos, University of Leeds, United Kingdom
Fei Xu, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China
* Correspondence: Xuan Li, lixuan@sysucc.org.cn
†These authors have contributed equally to this work and share first authorship
Specialty section: This article was submitted to Cancer Genetics and Oncogenomics, a section of the journal Frontiers in Genetics
Received: 17 July 2022
Accepted: 18 October 2022
Published: 10 November 2022
Citation: Chen W, Wen M-Y, Yang K-B, Zheng L-T and Li X (2022) A pyroptosis expression pattern score predicts prognosis and immune microenvironment of lung squamous cell carcinoma. Front. Genet. 13:996444. doi: 10.3389/fgene.2022.996444

Pyroptosis has been proved to significantly influence the development of lung squamous cell carcinoma (LUSC). To better predict overall survival (OS) and provide guidance on the selection of therapy for LUSC patients, we constructed a novel prognostic biomarker based on pyroptosis-related genes. The dataset for model construction were obtained from The Cancer Genome Atlas and the validation dataset were obtained from Gene Expression Omnibus. Differential expression genes between different pyroptosis expression patterns were identified. These genes were then used to construct pyroptosis expression pattern score (PEPScore) through weighted gene co-expression network analysis, univariate and multivariate cox regression analysis. Afterward, the differences in molecule and immune characteristics and the effect of different therapies were explored between the subgroups divided by the model. The PEPScore was constructed based on six pyroptosis-related genes (CSF2, FGA, AKAP12, CYP2C18, IRS4, TSLP). Compared with the high-PEPScore subgroup, the low-PEPScore subgroup had significantly better OS, higher TP53 and TTN mutation rate, higher infiltration of T follicular helper cells and CD8 T cells, and may benefit more from chemotherapeutic drugs, immunotherapy and radiotherapy. PEPScore is a prospective prognostic model to differentiate prognosis, molecular and immune microenvironmental features, as well as provide significant guidance for selecting clinical therapies.
Keywords: pyroptosis, lung squamous cell carcinoma, TCGA, prognosis, immune microenvironment
INTRODUCTION
As one of the most common cancers, lung cancer accounts for a large portion of death from cancer worldwide. Although the incidence declined from 2009 to 2018, approximately 350 people die of lung cancer per day in the United States. (Siegel et al., 2022). In non-small cell lung cancer (NSCLC), lung squamous cell carcinoma accounts for approximately 25%–30% of cases. The treatment for patients with LUSC is usually considered difficult due to numerous disease features and comorbidities such as chronic obstructive pulmonary disease. (Papi et al., 2004). LUSC is not sensitive to many target therapies for the alterations approved for targeted treatments are rare. Additionally, its sensitivity to chemotherapy and radiotherapy is unsatisfactory. Thus, the options for the treatment for the LUSC are limited, especially in advanced LUSC. Given such difficulties, establishing a reliable and accurate prognostic maker which could assist in developing medical plans for LUSC is urgently needed.
Pyroptosis, initially discovered in the mononuclear macrophage, is a type of lytic inflammatory cell death initiated by the inflammasome. Gasdermins (GSDMs), pre-forming effector proteins, are the crucial mediators of pyroptosis. As the cytoplasm perceives invasive infections or danger signals, the GSDMs will be activated. Activated GSDMs are then inserted into cytomembranes and form large pores on the cytomembranes, disrupting the cell osmotic potential and inducing rapid cell death. Pyroptosis is associated with various pathophysiological effects in humans, and it has been reported to be related to hair loss, asthma and hearing impairment. (Shi et al., 2017; Liu et al., 2021). There is increasing evidence suggesting that pyroptosis could inhibit or promote tumorigenesis. For example, the expression of the GSDMD could suppress gastric cancer cell proliferation, while low expression of the GSDMD shows a suppressive effect on NSCLC cell proliferation. (Gao et al., 2018). GSDMA and GSDME are epigenetically inhibited by methylation in most human cancer cells. (Moussette et al., 2017). Nevertheless, the correlation between the pyroptosis state and the prognosis of the LUSC remains unclear.
Considering existing studies, pyroptosis is significantly influence the development of the LUSC. (Zhang et al., 2019; Liu et al., 2021). In this study, the hub differentially expressed genes (DEGs) significantly associated with pyroptosis expression pattern and OS of LUSC patients were identified by weighted gene co-expression network analysis (WGCNA) and univariate Cox regression analysis on a genome-wide scale. We constructed a novel prognostic maker, pyroptosis expression pattern score (PEPScore), for investigating the prognosis value of these genes. Then the molecular and immune profile of the PEPScore was explored. We found that the tumor environment was significantly affected by pyroptosis, and we also confirmed that the PEPScore is a promising prognostic marker and has an important guiding significance for the selection of the chemotherapy, radiotherapy and immunotherapy.
METHODS
Patients and datasets
The mRNAs-seq data, gene mutation information and the relevant clinical data of 551 LUSC, comprising 502 cancer samples and 49 para-cancer samples, were acquired from the TCGA database (Supplementary Table S1) (https://portal.gdc.cancer.gov/repository). For the external validation cohort, Gene Expression Omnibus (GEO) was used to collect the mRNAs-seq data and related clinical data. (ID: GSE30219, GSE73403, https://www.ncbi.nlm.nih.gov/geo/).
Identification of different pyroptosis states in LUSC and their association with survival
A total of 51 pyroptosis-related genes were gathered from the previous articles (Jiang et al., 2021; Li et al., 2021) and Molecular Signatures Database (Subramanian et al., 2005; Liberzon et al., 2015) (MSigDb, version: 7.4 http://www.gseamsigdb.org/gsea/msigdb/cards/REACTOME_PYROPTOSIS.html). We investigated the expression differences of pyroptosis-related genes between 502 tumors and 49 normal samples by utilizing the R package of “limma” with a p-value of 0.05. The Pearson correlation between these pyroptosis-related genes was calculated in tumor samples utilizing the “corrplot” package.
The relationship between the pyroptosis-related genes and the essential cancer pathway activity was accessed through the GSCALite website. RPPA data form TCPA database was used to calculate score for 7,876 samples, 10 cancer related pathways and 32 cancer types in this website (Liu et al., 2018). The “ConsensusClusterPlus” package was used to distinguish different expression patterns based on the mRNA expression data of 51 pyroptosis-related genes. The consensus distributions for each k value were revealed through empirical cumulative distribution function (CDF) plot. We used the cluster consensus plot and CDF plot to confirm the number of clusters and their stability. Then, the TCGA samples were clustered into two clusters and were displayed by t-distributed Stochastic Neighbor Embedding (t-SNE) and heatmap utilizing the “Rtsne” package. Finally, the “survival” package was used to compare the OS of the two clusters using Kaplan-Meier curves with a log-rank test.
Identification of pyroptosis-related hub genes
The “limma” package was used to obtain the DEGs between the two clusters (C1 vs C2). Determination of DEGs was based on an absolute log2FC of >1 and a p-value of 0.05 adjusted by false discovery rate (FDR), which was visualized by the heatmap and volcano map using “pheatmap” and “ggplot2” packages.
Then, the “WGCNA” R package was carried out to identify hub genes. To examine the independence and average connectivity degree of multiple modules with varying power levels, the gradient approach was applied. Among all the soft threshold values, the one that showed the highest mean connectivity was selected (β = 2). By adjusting the merging threshold function to 0.25, we finally identified six modules. The first two modules with the highest correlation were chosen (the yellow and turquoise modules). The edges between two genes with weight >0.3 were utilized to form a network based on the genes in yellow and turquoise modules. A total of 410 hub genes were identified for further investigation in the yellow and turquoise modules.
The possible regulatory functions of these genes were discovered using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis provided by the R package “clusterProfiler".
Construction and validation of the prognostic signature
The batch effects between TCGA and GEO datasets were adjusted by empirical Bayes framework with the “sva” R package. Then, univariate Cox regression analysis was carried out to choose prognostic hub genes significantly correlated with OS among the 410 hub genes (yellow and turquoise modules in WGCNA), and 21 genes were selected for further analysis (p < 0.01). Next, the 21 genes were used to develop a robust and concise PEPScore model by multivariate Cox regression analysis in TCGA cohort. Consequently, a six-gene PEPScore model was created, with the PEPScore equaling the sum of each patient’s gene expression value (FPKM format) multiplying their coefficients in the multivariate Cox model. Based on the median PEPScore value, every patient in the TCGA and GEO databases was grouped into a high- or low-PEPScore subgroup. Kaplan-Meier survival curves with log-rank were employed to identify the prognostic power of the PEPScore in the two subgroups utilizing the “survival” R package. The co-expression network of the pyroptosis-related genes in two subgroups was conducted through the “igraph” package. The “timeROC” R package was performed to visualize the ROC curves and determine the area under the curves (AUC) for 1-, 3-, and 5-year OS, while the ROC predicting the pyroptosis expression patterns by PEPScore was performed by “pROC” R package. The independent prognostic value of the PEPScore was confirmed using univariate and multivariate Cox regression analysis. Finally, the model performance was compared with other studies through the “survcomp” R package.
Construction of the nomogram
The nomogram predicting the probability of 1-, 3- and 5- year OS of LUSC was developed by all independent prognostic factors acquired by univariate and multivariate Cox regression analysis. The discrimination performance of the nomogram was assessed by calibration and AUC. The nomogram’s discriminating ability was measured using calibration curve. Then, using the time-ROC curve and decision curve analysis (DCA), we compared the nomogram with all to those with only one independent prognostic factor. The best model is the one with the highest computed net benefit.
Comprehensive molecular and tumor-microenvironmental profiling in two subgroups
To explore the potential mechanism underlying the difference of PEPScore in different PEPScore groups, we initially used the R package “clusterProfiler” to perform Gene Set Enrichment Analysis (GSEA) on the HALLMARK gene sets. To assess the quality and quantity of gene mutations in two groups, we performed gene mutation analysis and calculated the tumor mutational burden (TMB) using “Maftools” package. The information on genetic alterations was obtained from the TCGA. The patients were dichotomized based on a cut-off of the TMB calculated by R package of “survminer”. According to the cut-off value of TMB (cut-off = 2.105), those with higher TMB were grouped into high-TMB group, and the others were grouped into low-TMB group. The difference in OS between the two groups was assessed using Kaplan-Meier curves with log-rank analysis.
To explore the difference in immune characteristics of 502 LUSC samples, we utilized “CIBERSORT” to assess the relative proportion of 22 different kinds of immune cells. Then we compared the quantity of these cells between high- and low-PEPScore subgroups.
Exploration of the treatment strategy for two subgroups
The Drugbank database (Wishart et al., 2018) (https://go.drugbank.com/) was used to explore LUSC-related drug target genes. Chemotherapy response of each sample was evaluated by the “pRRophetic” R package (Geeleher et al., 2014) based on Genomics of Drug Sensitivity in Cancer (GDSC), including Cisplatin, Gemcitabine, Docetaxel, Vinblastine, Etoposide and Paclitaxel. To explore the immunotherapy response of each sample, the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm (Fu et al., 2020) (http://tide.dfci.harvard.edu/) was used to determine the TIDE score, TIS score, cell dysfunction score and exclusion score. The radiotherapy sensitivity of each sample was evaluated by the radiosensitivity index (RSI), which was reported in the prior study. (Eschrich et al., 2009).
Statistical analysis
Figure 1 depicts the entire analytical procedure. An independent t-test was performed to explore the difference of continuous variables with normal distribution between two groups. For continuous variables did not follow a normal distribution, the Wilcoxon test was used. The categorical variables were compared using the Pearson chi-square test. Kaplan-Meier survival analysis with the log-rank test was used for the univariable survival study. Data processing was completed by Perl (version5.30.0) and R software (version 4.1.1). All statistical analyses were conducted with R software. All our codes are available at the github website (https://github.com/chenw265/For_research.git).
[image: Figure 1]FIGURE 1 | Abstract graphical representation for comprehensive characterization of PEPScore subgroups in LUSC.
RESULT
Classification of pyroptosis-related genes in different expression patterns
42 pyroptosis-related DEGs were identified by differential expression analysis for pyroptosis-related gene expression levels between 502 tumors and 49 normal samples (Supplementary Figure S1A). According to the correlations between the pyroptosis-related genes, majority of them were significantly co-expressed or mutex-expressed. (Supplementary Figure S1B). Then the expression levels of the pyroptosis-related genes in major cancer signaling pathways among 32 cancer types were analyzed though the GSCALite. (Liu et al., 2018). In these tumor tissue, most pyroptosis-related molecules, particularly IRF1, GZMB, CASP5, BAK1 and AIM2, were consistently inhibited in the cell cycle, DNA damage response, hormone AR and RTK signaling pathway, but highly activated in the apoptosis signaling way. (Figure 2A). And in LUSC tissue, most pyroptosis molecules inhibited the hormone AR, cell cycle and DNA damage response pathways but activated the apoptosis, hormone ER and EMT (Figure 2B).
[image: Figure 2]FIGURE 2 | Exploration of two different expression patterns of pyroptosis-related molecules. (A) Heatmap depicts the association between pyroptosis-related genes expression levels and essential cancer signaling pathways. The percentage is the total proportion of tumors in which a gene has an influence on the pathway among the 32 cancer types (number of inhibited or activated cancer types/32 *100%). Pyroptosis genes that have a role (inhibit or activate) in at least five cancer types are included in this heatmap. The percentage of tumors in which a pathway may be inhibited by specified genes is represented by “pathway inhibit” (blue), whereas activation is represented by “pathway activate” (red). (B) The correlation between the pyroptosis-related genes in LUSC and essential cancer signaling pathways. The dotted line indicates inhibition, whereas the solid line indicates activation. (C) t-SNE plot shows two different pyroptosis expression patterns represented by the expression of pyroptosis-related genes. (D) Kaplan-Meier curves for the OS between two distinct pyroptosis expression patterns. (E) Univariate Cox analysis to explore the prognosis value of each pyroptosis-related genes for LUSC.
We performed consensus clustering analysis to identify different expression patterns of the pyroptosis-related genes in patients with LUSC. When k = 2, we got the most satisfying Cumulative Distribution Function (CDF), indicating that the LUSC patients could be well grouped into two clusters (Supplementary Figures S2A-H), which was confirmed by heatmap and t-SNE (Supplementary Figure S2I, Figure 2C). The OS between the two expression patterns has a significant difference (Figure 2D).
Identification of pyroptosis-related hub genes
Preliminary screening for survival-related genes was conducted using univariate Cox regression (Figure 2E). But we found that only two genes (IL1B and NOD1) met the criteria of p < 0.05, which was not satisfactory for the requirements of our model construction.
Therefore, we then analyzed differential expression between two clusters on a genome-wide scale and a total of 962 DEGs were obtained as the candidate genes (n = 962). Heatmap and volcano map for DEGs show obvious differences (Supplementary Figures S3A, B). Candidate genes were analyzed by WGCNA analysis and six modules were identified using the optimal soft-thresholding power and the average linkage hierarchical clustering. (Supplementary Figure S3C, Supplementary Figure S4). A total of 410 genes in the turquoise and yellow modules were further chosen as hub genes, whose expression patterns are most closely related with the two different pyroptosis status. The gene network in turquoise and yellow modules was displayed in Supplementary Figure S3D. According to GO analysis, the hub genes were enriched in cell differentiation and immune-related process. According to KEGG analysis, the hub genes were mainly correlated with staphylococcus aureus infection, hematopoietic cell lineage, rheumatoid arthritis, cytokine-cytokine receptor interaction, etc. (Supplementary Figure S3E, detailed in Supplementary Table S2).
Construction and validation of the prognostic model
In order to identified the genes that are highly correlated with OS among the hub genes whose expression patterns are most closely related with the two different pyroptosis status, the univariate Cox regression analysis was carried out among the selected 410 hub genes (yellow and turquoise modules in WGCNA), and 21 genes were identified (Figure 3A). Six genes (CSF2, FGA, IRS4, CYP2C18, TSLP, AKAP12) correlated with prognosis were further identified by multivariate cox regression analysis among these 21 genes. We used these genes to develop a pyroptosis-related prognostic model named Pyroptosis Expression Pattern Score (PEPScore). The PEPScore was calculated as follows: [image: image] The coefficient of the formula is obtained from multivariate Cox regression analysis, while the expression level of genes is in FPKM format (Supplementary Table S3). Each patient was grouped into low-PEPScore and high-PEPScore subgroups based on the median value of the PEPScore.
[image: Figure 3]FIGURE 3 | Prognostic value and the characteristics of different PEPScore subgroups. (A) The forest plot depicts the result of univariate Cox analysis on 21 pyroptosis-related hub genes. (B) Kaplan-Meier survival analysis and ROC curves for patients in the TCGA cohort to identify the prognostic power of the PEPScore. (C and D) Kaplan-Meier survival analysis and ROC curves for patients in the GSE30219 and GSE73403 cohort to validate the prognostic power of the PEPScore. (E) ROC curve showing the specificity and sensitivity for PEPScore to predict the pyroptosis expression patterns. (F) The co-expression network of the pyroptosis-related genes in the high-PEPScore subgroup and low-PEPScore subgroup.
As demonstrated by Kaplan-Meier curves, the high-PEPScore subgroup had a lower survival probability than the low-PEPScore subgroup. The ROC curve further confirmed that the PEPScore had good prediction ability and the AUC was 0.625 for 1-year, 0.666 for 3-year and 0.677 for 5-year OS (Figure 3B). Two GEO datasets were applied for external validation. A significant difference in OS was found between the low-PEPScore and high-PEPScore subgroups according to Kaplan-Meier curves, which was consistent with the result of TCGA data. ROC curve indicated that the PEPScore possessed an excellent predictive efficacy as well (Figures 3C, D).
Furthermore, the ROC curve indicated that PEPScore had the best specificity of 0.691 and the best sensitivity of 0.745 to predict different pyroptosis expression patterns (C1, C2) when the median value of the PEPScore was the cut-off value of the ROC curve (Figure 3E). The pyroptosis-related gene co-expression network and the pyroptosis-related gene expression levels between the subgroups were significantly different, which suggested that the PEPScore and pyroptosis were closely related (Figure 3F, Supplementary Figure S5A). Besides, there is significant co-expression or mutex-expression between six model genes and most pyroptosis-related genes (Supplementary Figure S5B).
Finally, although we did not use pyroptosis-related genes to construct model directly in a common way, the PEPScore still shows great prediction accuracy. Li et al. directly used pyroptosis-related genes as input and construct a nine-gene risk model using LASSO in LUSC, and their risk model also shows good performance. (Li et al., 2022).However, the AUC of the PEPScore was higher than Li et al.’s risk model in 1-, three- and 5-year OS. The C-index of PEPScore was also higher than Li et al.’s risk model’s as well (Supplementary Figure S6).
Clinical characteristics of the PEPScore
Univariate and multivariate Cox regression analysis were used to validate the independent prognostic value of PEPScore (Supplementary Figure S7A). Additionally, the traditional clinical characteristics were not statistically different except for gender. (Supplementary Figure S7B).
To extend the clinical applicability of PEPScore, we developed a nomogram in the TCGA cohort by integrating clinical variables (Supplementary Figure S7C). Each patient obtained a total score based on a combination of the points for prognostic criteria. Patients with a higher total score had a worse prognostic effect. The calibration plot shows that the nomogram acted consistently with an ideal model (Supplementary Figure S7D). Decision curve analysis (DCA) and ROC curve analysis demonstrated that prediction specificity of the nomogram was the best, followed by PEPScore, age, or TNM staging (Supplementary Figure S7E, F).
Comprehensive analysis of molecular and tumor-microenvironmental characteristics in subgroups
According to the GO and KEGG analysis, DEGs obtained from the differential expression analysis between the high-PEPScore and low-PEPScore subgroups (a total of 821 DEGs) were mainly enriched in immunological and cell differentiation signaling pathways (Figure 4A, detailed in Supplementary Table S4). GSEA showed that the gene sets of low-PEPScore were mainly correlated with tumor proliferation signaling pathways, while the gene sets of high-PEPScore were mainly correlated with tumor metastasis and immune response signaling pathways. (Figure 4B, detailed in Supplementary Table S5).
[image: Figure 4]FIGURE 4 | Comprehensive analysis of molecular and tumor-microenvironmental characteristics in PEPScore subgroups. (A) GO and KEGG analysis for revealing the potential regulatory mechanisms underlying the difference of PEPScore in different subgroups. A total of 821 DEGs were obtained from differential expression analysis between high- and low-PEPScore subgroups. (B) GSEA used on the HALLMARK gene sets to explore the potential mechanism underlying the difference of PEPScore in different subgroups. (C) Top 20 mutated molecules in the LUSC patients in TCGA database of different PEPScore subgroups. Each column represents an individual and the mutated genes are arranged by mutation frequency. The color block indicates mutation type, the number on the right shows the mutation percentage, and the figure above shows the TMB. (D) TMB calculation to access the quality and quantity of gene mutations in two PEPScore subgroups. (E) The Kaplan-Meier curves with the log-rank test show significant differences in OS between high and low TMB subgroups. The cut-off value of TMB was 2.105, which was calculated by R package of “survminer”. (F) The Kaplan-Meier curves with the log-rank test show significant differences in OS among LUSC patients with different PEPScore and TMB.
To further understand the PEPScore, we then analyzed gene mutations between the subgroups. High-PEPScore subgroup had a lower mutation rate than low-PEPScore subgroup, most of which were missense mutations. TP53 mutation was the most common mutation, followed by TTN mutation in both high-PEPScore and low-PEPScore subgroups (Figure 4C). Then we analyzed the mutation of the PEPScore model genes. FGA and IRS4 had the highest mutation rates, accounting for 3%. And missense mutation accounted for the largest part (Supplementary Figure S8A).
And then, we analyzed the relationship between PEPScore and the TMB. The difference analysis showed that the high-PEPScore group got a lower TMB (Figure 4D p = 0.0083). The high-TMB group had a clear survival advantage over the low-TMB group (Figure 4E). And the Kaplan-Meier curves illuminate those patients with low TMB and high PEPScore got the shortest median OS, while those with high TMB and low PEPScore got the longest one (Figure 4F, p < 0.001).
Then infiltration of immune cells was analyzed through “CIBERSORT” and was compared between PEPScore subgroups by the Wilcoxon test. There are more abundant T cells CD4 memory resting, macrophages M0, dendritic cells activated and neutrophils in the high-PEPScore subgroup, while there are more abundant T cells CD8, T cells follicular helper and dendritic cells resting in the low-PEPScore subgroup (Figure 5A). Characteristics correlated with the immune landscape, which includes the clinicopathological characteristics of different PEPScore subgroups, are shown in Figure 5B. According to the correlation analysis between immune cells and the six model genes, AKAP12 and CSF2 showed a negative correlation with the infiltration of T follicular helper cells and CD8 T cells, and they were also positively correlated with neutrophils, T cells CD4 memory resting, etc. Especially, CSF2 was the gene that had a significantly strong correlation with most immune cells (Supplementary Figure S8B).
[image: Figure 5]FIGURE 5 | The landscape of the TME and the characteristics of different PEPScore subgroups. (A) The proportions of immune cells in the two PEPScore subgroups. The thick line in the box indicates the median value, whereas the dispersed dots indicate an outlier. The upper and bottom border of the box reflects the 25th and 75th percentiles. Asterisk denotes the p-value (*: p < 0.05, **: p < 0.01, and ***: p < 0.001). (B) PEPScore categorization and TEM cell proportions for 495 patients in the TCGA dataset. Patient annotations include gender, stage, race, age, smoking, and neoadjuvant treatment.
Then we explored the relationship between PEPScore and the checkpoint molecules and chemokine receptors expression levels. We found that PEPScore was significantly positively correlated with the expression levels of the checkpoint molecules and chemokine receptors, except for VTCN1, while the association between CD274 and IDO1 was statistically insignificant (Supplementary Figure S9).
The role of PEPScore subgroups in clinical therapy
We investigated the relationship between PEPScore and the clinical efficacy of LUSC therapy. We analyzed the expression differences of common chemotherapeutic drug targets in LUSC between the subgroups, including drugs of chemotherapy, immune checkpoint inhibitors, antiangiogenic drugs and tyrosine kinase inhibitors. We found that the expression level of the Tislelizumab, Pembrolizumab, Nivolumab and Sintilimab target (PDCD1), ipilimumab target (CTLA4), Bevacizumab targets (C1QA, C1AB, C1QC, FCGR3A, FCGR1A, FCGR2A, FCGR2B and FCGR2C), Anlotinib targets (KDR, PDFGRB, FGFR3 and KIT) and Crizotinib (ROS1, MST1R) were higher in high-PEPScore subgroup. While the expression level of target genes for Gemcitabine, Etoposide, and Larotrectinib were higher in low-PEPScore subgroup (Figure 6A). Besides, we used “pRRophetic” R tools to calculate the IC50 value of drugs and we found that the IC50 of Cisplatin, Vinblastine, Etoposide and Docetaxel was obviously lower in the low-PEPScore subgroup, implying a negative association between the chemotherapeutic drug sensitivity of LUSC and PEPScore (Figure 6B). TIDE is a computational framework developed to evaluate the potential of tumor immune escape from gene expression, serving as a surrogate biomarker to evaluate the response to immune checkpoint blockade. According to the TIDE algorithm, the TIDE score in the low-PEPScore subgroup was found to be lower than the high-PEPScore subgroup, which suggested that low-PEPScore patients might benefit more from immunotherapy. And MIS score was higher in the low-PEPScore subgroup, while the T cell dysfunction score as well as TIS score were higher in high-PEPScore subgroup (Figure 6C). The predictive value of PEPScore was estimated by ROC curves. We found that the AUC of PEPScore was better than TIDE and TIS, indicating that the predictive value of PEPScore was as excellent as TIDE and TIS for OS (Figure 6D). On top of these two kinds of therapies, we also explored the relationship between radiotherapy and PEPScore. The low-PEPScore subgroup got a lower RSI score than high-PEPScore subgroup, suggesting that the high-PEPScore subgroup was less expected to benefit from radiotherapy (Figure 6E).
[image: Figure 6]FIGURE 6 | PEPScore predicts drug sensitivity. (A) The heatmap presents the different expressions of common drug targets for LUSC patients in high-PEPScore and low-PEPScore subgroups. Asterisk denotes the p-value (*: p < 0.05, **: p < 0.01, and ***: p < 0.001). (B) The difference in IC50 of the common chemotherapeutic drugs between high- and low-PEPScore subgroups. (C) The Wilcoxon test shows the difference in TIDE, MSI, TIS and T cell exclusion and dysfunction scores in high- and low-PEPScore subgroups. The p-value is indicated by asterisk (****p < 0.0001). (D) ROC curve analysis of the predictive value of the PEPScore, TIDE and TIS. (E) The difference in Radiotherapy index (RSI) between high- and low-PEPScore subgroups.
DISCUSSION
In this study, we first analyzed differential expression of 51 pyroptosis-related genes in tumor and non-tumor tissues, as well as the association between these pyroptosis-related genes and cancer signaling pathways. We found that most of them were different and associated with various cancer signaling pathways. Based on pyroptosis-related DEGs, two pyroptosis expression patterns with different prognosis were identified through consensus clustering. Nevertheless, the association between pyroptosis-related gene expression and LUSC patient prognosis was not satisfactory enough in univariate Cox analysis. This may be caused by the mutual compensation of the complex signaling pathway network in humans. Thus, we identified the DEGs between different pyroptotic expression patterns on the whole genome, and we used WGCNA combined with univariate cox analysis to identify 21 pyroptosis expression pattern hub genes and established prognostic model PEPScore based on six genes (CSF2, FGA, AKAP12, CYP2C18, IRS4, TSLP). PEPScore was shown to be a reliable prognostic pyroptosis-related biomarker for LUSC. High PEPScore suggested better survival while low PEPScore was the opposite in both TCGA and GEO cohorts. Besides, ROC and DCA showed that combining PEPScore with conventional clinical prognostic factors could better predict patients’ OS.
PEPScore was made of six genes, CSF2, FGA, AKAP12, CYP2C18, IRS4, and TSLP. Colony-stimulating factor 2 (CSF2, also known as GM-CSF), secreted as monomeric glycoproteins, can control the production, differentiation, and function of granulocytes and macrophages. (Ingelfinger et al., 2021). CSF2 could induce pyroptosis-related molecule expression in the neutrophils, including IL-1B, caspase-1 (p20) and NLRP3. (Furuya et al., 2018). Although a few studies believe that CSF2 inhibits tumor progression, most studies have shown that it can stimulate various types of tumor cell growth and migration, including lung cancer, gliomas and skin carcinoma. (Dong et al., 2012; Hong, 2016). Thymic stromal lymphopoietin (TSLP), an IL-7-like inflammatory factor could promote TH2 cell responses that are involved in immunity in various inflammatory diseases. High expression of TSLP could up-regulate the expression of GSDMD-N, IL-1beta, as well as IL-18 in human THP-1macrophages, inducing Caspase-1-dependent pyroptosis through activation of NLRP3 inflammasome. (Moon and Kim, 2011; Ji et al., 2021). Indeterminately, in certain studies, TSLP has a cancer-promoting effect, whereas in others, a cancer-protective effect. (Dong et al., 2012). We found that lower expression of TSLP led to a poorer prognosis, providing some insights for further studies. Fibrinogen alpha chain (FGA) polymerizes with FGB and FGG to form an insoluble fibrin matrix, which is an extracellular matrix protein participating in blood clot formation as well as tumor angiogenesis and metastasis. A-kinase anchoring protein 12 (AKAP12) is a member of the AKAP protein kinase family that suppresses tumors. The expression of AKAP12 is down-regulated in various cancers including colon cancer, childhood acute lymphoblastic leukemia and hepatocellular carcinoma, etc. Insulin receptor substrate 4 (IRS4), a cytoplasmic protein containing many potential phosphorylation sites, is overexpressed in NSCLC. Cytochrome P450 family 2 subfamily C member 18 (CYP2C18), is a member of the superfamily of cytochrome P450 enzymes, which are monooxygenases involved in drug metabolism and other substances. It is reported to be correlated with esophageal cancer, gastric adenocarcinoma and breast cancer. Although our results demonstrate that pyroptosis-related genes expression and the six model genes have various degrees of association, the relationship between the FGA, AKAP12, CYP2C18 and IRS4 and the pyroptosis remains unclear. From the calculation formula of PEPScroe, we found that the CSF2, FGA and AKAP12 and PEPScore were positively correlated, while CYP2C18, IRS4 and TSLP and PEPScore were negatively correlated. In conclusion, all these six genes are significantly involved in pyroptosis and cancer development, which may be a potential therapeutic target.
Although we did not use pyroptosis-related genes to establish models directly like most studies, the PEPScore still shows a strong association with pyroptosis (Ye et al., 2021; Chen et al., 2022; Yang et al., 2022; Yu et al., 2022). The ROC curve shows high specificity and sensitivity for PEPScore to distinguish different pyroptotic expression patterns. Moreover, the expression of the pyroptosis-related genes and their correlations are significantly different between the PEPScore subgroups. The way our model constructed is an entirely different approach from previous studies, and our results also demonstrate the reliability of this method. It is worth mentioning that the model constructed by our method has a better performance than the model constructed by common method used on a previous study in LUSC (Li et al., 2022).
To further acquire the biological insight into the PEPScore, we explored and compared gene mutation between the PEPScore subgroups. The most frequent mutation is missense mutation, followed by nonsense mutation and frameshift deletions. The most common mutation gene in both groups, TP53, is more frequent in low-PEPScore subgroup, as reported previously. Although TP53 is a tumor suppressor gene, mutation of TP53 can significantly upregulate the expression of interferon-gamma, activated T-effector and immune checkpoint, which indicates more likely to benefit from PD-1 inhibitors. Besides, the second most frequently mutated gene between two subgroups was TTN, which is considered associated with TMB, and high TTN mutation is revealed to be related to better survival. (Yang et al., 2020). Therefore, high-PEPScore LUSC patients with low TP53 and TTN mutation possess a worse prognosis compared with low-PEPScore LUSC patients with high TP53 and TTN mutations.
Different from apoptosis, pyroptosis can provoke different degrees of inflammation reaction and is considered related to immunity. (Liu et al., 2021). Our GO, KEGG and GSEA analysis also suggested that pyroptosis can affect the tumor immune microenvironment. Therefore, further understanding of the TMB and the landscape of the TME can provide a more complete understanding of the biological characteristics of PEPScore as well as provide guidance for finding a new therapeutic regimen for LUSC or improving immunotherapy effect. TMB is a potential biomarker to predict ICI therapy efficacy. (Yarchoan et al., 2017). In our study, patients with high TMB and low PEPScore had significantly better prognosis compared with patients with low TMB and high PEPScore, and in the same PEPScore subgroup, patients with high TMB had better prognosis compared with patients with low TMB, suggesting that TMB can help explain why PEPScore influence the immunotherapy effect. But not explaining all of it, there may still be other mechanisms. Besides, the infiltration of the immune cells in two PEPScore subgroups is different. Neutrophils and M0 macrophages were enriched in high-PEPScore subgroup, while T follicular helper cells (TFH), cytotoxic CD8 T cells as well as dendritic resting cells were more abundant in low-PEPScore subgroup. Previous results revealed that high density of the T cell infiltration, especially cytotoxic CD8 T cells, indicating a better prognosis. (Gentles et al., 2015). The presence of the TFH, which is critical for the germinal center formation and gives necessary help for B cell mutation and function, is considered related to prolonging survival in most human cancers. Neutrophils are also regarded as tumor accomplices since they can regulate tumor survival and migration, angiogenesis as well as immune response, promoting tumor progression and metastasis. (Xiao et al., 2021). Our results support these conclusions. The different components of the immune cells in different PEPScore subgroups may result from the different pyroptosis states of the tumor cells, which has a different regulation effect on tumor immune microenvironment. Based on the correlation analysis between model genes and immune cells, the expression of AKAP12 and CSF2 has a negative correlation with the infiltration of CD8 T cells as well as T follicular helper cells, which may be because the expression of these genes promotes these cells undergoing pyroptosis, leading to poor prognosis in LUSC patients.
Finally, we confirm that PEPScore is reliable in predicting the prognosis of patients with LUSC as well as providing guidance on therapy selection. Our results show that different types of chemotherapeutic drug targets were expressed at different levels in PEPScore subgroups. Moreover, TIDE and MSI, considered effective biomarkers for immunotherapy, are also different in different PEPScore subgroups. (Jiang et al., 2018). Interestingly, despite the high expression of immunotherapy targets in the high-PEPScore subgroup, their TIDE was low, which is inconsistent with the previous report that up-regulated immunotherapy targets are correlated with better immunotherapy effects. We speculate that this may be because of the aforementioned changes in the pyroptotic state of the cancer cells, which affects their immune microenvironment and promotes tumor immune escape. Regrettably, the subgroup analysis of the IC50 of chemotherapeutic drugs, immunotherapy TIDE score and RSI suggests that any single treatment method is not effective enough for the high-PEPScore subgroup, and they may need combination therapy.
Although our multidimensional results show that the PEPScore has great predict effects in LUSC, this study still had some limitations that need to be considered. Firstly, our study results cannot provide the exact mechanism by which pyroptosis modulates the prognosis in LUSC. Some experiments for exploring the potential mechanism are needed. Secondly, this study cannot explain the exact mechanism by which model genes of PEPScore affect the LUSC pyroptosis status. Therefore, in subsequent studies, further exploration of the specific mechanisms by which model genes alter the pyroptosis status of tumor cells is necessary. Moreover, a large-scale clinical cohort validation is still lacking before the PEPScore enter into the application in clinical practice. These have not only increased the challenges but also provided us with optimism, making us more motivated to continue digging.
In conclusion, we constructed a PEPScore model which was validated internally and externally to predict the prognosis of LUSC patients. PEPScore is correlated with gene mutation and tumor immune microenvironment in terms of molecular biological function. The PEPScore overall performance on the validated datasets shows that the model is robust with broad application prospects.
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Background: Cancer-associated fibroblasts (CAFs) play an important role in the tumorigenesis, immunosuppression and metastasis of colorectal cancer (CRC), and can predict poor prognosis in patients with CRC. The present study aimed to construct a CAFs-related prognostic signature for CRC.
Methods: The clinical information and corresponding RNA data of CRC patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The Estimation of STromal and Immune cells in MAlignant Tumor tissues (ESTIMATES) and xCell methods were applied to evaluate the tumor microenvironment infiltration from bulk gene expression data. Weighted gene co-expression network analysis (WGCNA) was used to construct co-expression modules. The key module was identified by calculating the module-trait correlations. The univariate Cox regression and least absolute shrinkage operator (LASSO) analyses were combined to develop a CAFs-related signature for the prognostic model. Moreover, pRRophetic and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms were utilized to predict chemosensitivity and immunotherapy response. Human Protein Atlas (HPA) databases were employed to evaluate the protein expressions.
Results: ESTIMATES and xCell analysis showed that high CAFs infiltration was associated with adverse prognoses. A twenty-gene CAFs-related prognostic signature (CAFPS) was established in the training cohort. Kaplan-Meier survival analyses reveled that CRC patients with higher CAFs risk scores were associated with poor prognosis in each cohort. Univariate and multivariate Cox regression analyses verified that CAFPS was as an independent prognostic factor in predicting overall survival, and a nomogram was built for clinical utility in predicting CRC prognosis. Patients with higher CAFs risk scores tended to not respond to immunotherapy, but were more sensitive to five conventional chemotherapeutic drugs.
Conclusion: In summary, the CAFPS could serve as a robust prognostic indicator in CRC patients, which might help to optimize risk stratification and provide a new insight into individual treatments for CRC.
Keywords: colorectal cancer, cancer-associated fibroblasts, tumor microenvironment, prognosis, WGCNA
INTRODUCTION
Colorectal cancer (CRC) is globally the third most commonly diagnosed cancer and the second leading cause of cancer-related deaths (Bray et al., 2018). Although 39% of patients diagnosed with localized CRC present 90% 5-year survival, this decreases to 71% for patients with tumors that have spread regionally and is less than 14% in those with advanced distant metastases (Thompson et al., 2022). According to the Global Cancer Observatory (https://gco.iarc.fr/today), there were 555,628 new cases and 283,751 deaths from CRC in China in 2020. The occurrence and development of CRC is a multi-step and complex process with multiple genes involved. Colorectal cancer cells have an extraordinary biological ability to adapt themselves to adverse environments, leading to their strong invasive and metastatic characteristics (Kleppe et al., 2018). Conventional assessment, including methods based on tumor-node-metastasis (TNM) staging and pathology, is intrinsically subjective and not sufficient to predict treatment response and prognosis. The development of a novel prognostic model is therefore imperative for CRC. Prognostic prediction models are widely utilized both in the clinic and research to predict the probability or the risk of a specific events or future outcomes (Toll et al., 2008).
Cancer arises from the accumulation of gene mutations within cancer cells, while both tumorigenesis and patients’ response to therapies are strongly regulated by non-mutant cells and the extracellular matrix (ECM) within the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are a special type of fibroblasts that surround tumors and form a key part of the TME. In recent years, CAFs have received increasing attention due to their crucial roles in tumor invasion, angiogenesis, and ECM remodeling by promoting cell-cell interaction and the secretion of pro-invasive factors (Villaronga et al., 2018; Bertero et al., 2019). Targeting CAFs by altering their numbers, subtype or biological functionality is emerging as an attractive avenue to improve therapeutic strategies for cancer.
In this study, we identified the infiltration score of CAFs in CRC as a risk factor. The bulk transcriptome RNA-seq and relevant clinical data of CRC patients were obtained from The Cancer Genome Atlas (TCGA) datasets through the UCSC Xena browser (https://xenabrowser.net/datapages/). (Goldman et al., 2020) In addition, through a variety of bioinformatics methods, we aimed to discover promising CAFs-targeting therapeutic hallmarks and constructed a robust CAFs-related gene signature to predict the prognosis and drug response of CRC patients. Figure 1 illustrates the workflow of the study.
[image: Figure 1]FIGURE 1 | Flow diagram of the current investigation.
MATERIALS AND METHODS
Data source and preprocessing
Data that containing the RNA expression profiles and relevant clinical information of colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ) patients were accessed through TCGA datasets. Following the removal of the batch effects, the two parts of data were merged using the “limma” R package (version 3.52.2). The GSE159216 and GSE72968 datasets were obtained from the Gene Expression Omnibus (GEO) data portal (https://www.ncbi.nlm.nih.gov/geo/) for further validation. In total, the data of 771 patients from the TCGA cohort, 283 patients from the GSE159216 cohort, and 585 patients from the GSE72968 cohort were recorded for utilization in the current study.
Estimation of tumor microenvironment infiltration
The R package “xCell” (version 1.1.0) estimates the comprehensive levels of 64 immune and stromal cell types (Aran et al., 2017). The estimation of STromal and Immune cells in MAlignant Tumor tissues using the Expression data (ESTIMATES) algorithm (version 1.34.0) can accurately quantify the immune score and stromal score to identity the infiltration degree of immune cells and predict the immune status (Yoshihara et al., 2013). We applied xCell and ESTIMATES to separately calculate the abundance scores for stromal cells and immune cells for patient samples from different CRC stages.
Construction of prognostic tumor immune cells
Spearman’s correlation analyses were conducted to determine the correlation between TME infiltration (immune score and stromal score) and CAFs levels in CRC samples. The “ggpubr” R package (version 0.4.0) was used to produce correlation plots. After selecting the cut-off values with the best sensitivity and specificity, CRC samples in the TCGA cohort were divided into two groups according to CAFs infiltration score using the “survival” R packages (version 3.6.1). The Kaplan-Meier survival curve was plotted using “survminer” R packages (version 0.4.6) to compare the survival rate.
Identification of the hub CAFs-related module by weighted gene co-expression network analysis
In order to find genes that closely related to CAFs, we performed WGCNA by utilizing the “WGCNA” R package (version 1.69) to find modules highly correlated with CAFs levels and stromal score (Langfelder and Horvath, 2008). After calculating the Pearson correlation between each gene pair, the weighted adjacency matrix was constructed using the WGCNA function adjacency function. Then, we used topological overlap matrix analysis to cluster the adjacency matrix of CRC patients’ gene expression data. Next, the dynamic tree cut algorithm was applied to identify modules on the dendrogram. Finally, we calculated the correlation between the identified gene modules identified and CAFs levels to mine the hub module for subsequent analysis.
Function and pathway enrichment analysis of genes in the hub module
In order to explore the biological function and pathway of genes in the hub module, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were analyzed and visualized through the “clusterProfiler” (version 3.18.0) and “org.Hs.eg.db” (version 3.1.0) R packages.
CAFs-related genetic mutation analysis
The genetic landscape of CAF-related genes with copy number variations (CNV) and single nucleotide variations (SNV) from the TCGA datasets was generated with the “maftools” R package (version 2.6.05). Then, CNV and SNV correlation heatmaps were drawn using the “Complexheatmap” R package (version 2.6.2).
Construction and validation of a CAFs-related prognostic model
We designed a prognostic signature for CRC patients by focusing on CAFs marker genes, which were identified from the hub module. Univariate Cox analysis of the overall survival (OS) was applied to screen the prognostic values of CAFs-related genes. Genes with p < 0.05 in the univariate Cox analysis were regarded as candidate prognostic genes. Next, we displayed the prognostic genes in a forest plot using the “forestplot” R package (version 1.9). To minimize the risk of overfitting, we used LASSO-penalized Cox regression analysis to eliminate genes with an overfitting tendency and built a prognostic signature using the “glmnet” R package (version 2.2.1) (Simon et al., 2011). The signature of CAFs was established as follows: CAFs risk score = Ʃ(βi*Expi), where βi represented the corresponding regression coefficients of each candidate prognostic gene, and Expi was the candidate gene’s expression value. According to the median value of CAFs risk scores, we divided CRC patients into high-risk and low-risk groups. The OS curve was plotted via Kaplan-Meier analysis. Meanwhile, time-dependent receiver-operating characteristic (ROC) analysis was carried out by the “survivalROC” R package (version 1.34.0). Finally, heatmaps were generated to visualize the association between the risk scores of CAFs and candidate genes. Similarly, we validated our CAF prognostic model on the GSE159216 and GSE72968 external validation cohorts.
Construction of predictive nomogram
Univariate and multivariate Cox regression analyses were performed to identify the independent prognostic factors. A nomogram was then constructed based on CAFs signature, clinical stage, TNM stage and lymphatic invasion using the “rms” R package (version 6.0.1). Afterwards, the ROC curve and calibration curve were employed to evaluate the nomogram’s predictive performance and accuracy.
Prediction of patients’ drug response based on CAFs signature
We predicted the chemosensitivity/resistance for the high and low risk groups via the “pRRophetic” R package (version 0.5). According to ridge regression, the half-maximal inhibitory concentrations (IC50) were estimated for TCGA samples (Geeleher et al., 2014a; Geeleher et al., 2014b). Furthermore, the Tumor Immune Dysfunction and Exclusion (TIDE) (http://tide.dfci.harvard.edu/) algorithm was employed to predict the potential response to immune checkpoint blockade (ICB) therapy between the two groups (Jiang et al., 2018).
Association of prognostic CAFs signature with cancer hallmarks
A total of 50 hallmark gene sets were downloaded from the molecular signature database (MSigDB, http://software.broadinstitute.org/gsea/msigdb). These 50 hallmark gene sets were subjected to the gene set variation analysis (GSVA) R package (version 1.32.0) to further obtain the GSVA scores of each gene set for each sample from the TCGA cohort (Hänzelmann et al., 2013). The Pearson correlation between CAFs signature and 50 hallmark gene sets were calculated by the “Hmisc” R package (version 4.4.1).
Human protein atlas database and immunohistochemistry verification
In order to further validate the protein expressions of CAFs signature genes, the immunohistochemistry staining images of prognosis-related genes in CRC tissues were retrieved from the HPA online database (http://www.proteinatlas.org/) (Uhlén et al., 2015).
Statistical analysis
All statistical analyses were carried out using R software (version 4.0.3). The Wilcoxon signed rank test was applied for comparisons between two groups, and the Kruskal-Wallis test for comparisons between three or more groups. Statistical significance was determined as two-sided with p < 0.05.
RESULTS
TME infiltration patterns with different CRC stages
By running xCell and ESTIMATES algorithms, we measured the TME constituents in patients with different stages of CRC from the TCGA cohort. As shown in Figure 2, the pooled results of the stacked bar graph and Wilcoxon analyses on TCGA COAD/READ datasets revealed the stromal and immune scores; the infiltrations of several TME contents such as B cells, CD8+ T cells, M1 Macrophages, M2 Macrophages, NK cells and Tregs were lower at later stages of CRC. However, the infiltration of CAFs increased first and then decreased in stage IV.
[image: Figure 2]FIGURE 2 | Differences in immune infiltration characteristics among the four stages. (A) Differences in stromal score and immune score among the four stages based on xCell algorithms. (B) Differences in eight immune cell scores among the four stages based on ESTIMATE algorithms.
Clinical correlation of tumor-infiltrating CAFs
We first investigated the relationship between the stromal/immune scores and CAFs infiltration score. The results in Figure 3A reveal that stromal score was not correlated with CAFs infiltration score; however, the immune score showed a positive correlation with the CAFs infiltration score (p = 0.042). To investigate the potential relationship between OS and CAFs infiltration score, we further divided CRC patients into high- and low-score groups based on infiltration scores and the constructed Kaplan-Meier survival curves. We found that CAFs infiltration score was significantly negatively correlated with OS (p = 0.035) (Figure 3B). Overall, all these results suggested that CAFs infiltration score is associated with CRC patients’ prognoses.
[image: Figure 3]FIGURE 3 | Evaluation of stromal/immune scores in CRC tissues. (A) The correlation between the stromal/immune scores and CAFs infiltration score. (B) The correlation between CAFs infiltration score and OS.
WGCNA for key gene module associated with CAFs
We constructed the WGCNA analysis for all genes. With the power value selected as 7, the scale independence approached 0.8 (Figure 4A), suggesting a gene coexpression network with an inherent modularity and a scale-free topology. A total of 17 modules were identified through hierarchical clustering (Figure 4B). Next, we examined the correlation between the 17 modules and CAFs/stromal scores (Figure 4C). All of the brown, yellow, and tan modules had higher correlation with the CAFs/stromal scores. Thus, they were considered as key modules because of the high correlation with traits. Under the condition of module membership (MM) > 0.5 and gene significance (GS) > 0.03, 559 genes in the brown, yellow and tan modules were taken out (Figure 4D).
[image: Figure 4]FIGURE 4 | WGCNA and the identification of CAFs-related hub module. (A) Analysis of the scale-free ft index for various soft-threshold powers (β) and the mean connectivity for various soft-threshold powers. (B) Clustering dendrogram of all genes with dissimilarity based on topological overlap and assigned module colors. (C) The correlation between modules and traits were displayed. (D) The correlation between GS and MM in the brown, yellow, and tan modules.
GO and KEGG functional downstream analyses of CAFs-related genes
In order to investigate the biological functions and pathways of the above 559 genes in key modules, GO and KEGG pathway enrichment analyses were carried out. As shown in Figure 5, extracellular matrix organization, collagen fibril organization, collagen-containing extracellular matrix, and extracellular matrix structural constituent were the main significantly enriched GO terms. Moreover, the top 10 enriched KEGG pathways were also exhibited, which included Th17 cell differentiation, Staphylococcus aureus infection, protein digestion and absorption, PI3K-Akt signaling pathway, inflammatory bowel disease, hematopoietic cell lineage, ECM-receptor interaction, cytokine-cytokine receptor interaction, cell adhesion molecules, and amoebiasis.
[image: Figure 5]FIGURE 5 | GO and KEGG analysis for the genes of brown, yellow and tan modules.
Alterations of CAFs-related genes in CRC samples
In order to investigate alterations in CAFs-related genes in the CRC samples, especially SNV and CNV, we analyzed CRC patients with SNV and CNV data after extraction from the TCGA. The top 30 genes with the highest mutation counts were shown in Supplementary Figure S1.
Construction and verification of twenty-gene prognostic CAFs signature
In the TCGA cohort, by performing univariate Cox regression analysis on the 559 CAFs marker genes identified above, a total of 51 genes were found with p < 0.05. LASSO Cox regression algorithm was then performed to select hub genes. The minimal log(lambda) was determined as the optimal value by tenfold cross-validations (Figures 6A,B). Finally, a twenty-gene CAFs prognostic signature was constructed based on the expression levels of each gene and the coefficient, with the following formula: risk score = (0.0179849395327801 * expression of CYTH3) + (0.133678301953266 * expression of NAV3) + (0.97605105976877 * expression of EPHA6) - (1.01688005937021 * expression of CASS4) + (0.15388612377183 * expression of SIGLEC1)—(0.162312764949028 * expression of SLAMF1) + (0.0151723782273217 * expression of MAN1C1) + (0.107689308053911 * expression of LAMP5) + (0.0193478751759346 * expression of NOVA1) + (0.127100030231241 * expression of IGFBP3) + (0.0420090450866688 * expression of ADAM8)—(0.194826817771919 * expression of CDC25C) + (0.0834898746044337 * expression of ZNF385A) + (0.0492899593436562 * expression of CADM3) + (0.131501239268304 * expression of TUB) + (0.584400505367543 * expression of NLGN1) + (0.05334380595326 * expression of RCAN2) + (0.231247598432235 * expression of SUSD5) - (0.82291587246458 * expression of LSAMP) + (0.286394869616561 * expression of S1PR3). Among the 20 prognostic genes, sixteen (CYTH3, NAV3, EPHA6, SIGLEC1, MAN1C1, LAMP5, NOVA1, IGFBP3, ADAM8, ZNF385A, CADM3, TUB, NLGN1, RCAN2, SUSD5 and S1PR3) were regarded as risk-related genes, while CASS4, SLAMF1, CDC25C and LSAMP were considered as protective genes (Figure 6C). Kaplan-Meier survival curves revealed the relationship between prognosis and the expression levels of 20 genes (Supplementary Figure S2). Based on this risk formula, we calculated the CAFs risk score for each patient. The heatmap exhibited the risk scores and expression differences between the 20 genes in the TCGA cohort (Figure 6D).
[image: Figure 6]FIGURE 6 | Screening of signature genes and the prognostic value of the CAFs-related signature in TCGA cohorts. (A) Ten-fold cross-validations for the screening of optimal parameter (lambda). (B) LASSO coefficient profiles determined by the optimal lambda. (C) The forest plot presented the HRs and p-values from the univariate Cox regression as well as the LASSO coefficient of the twenty prognostic signature genes. (D) Heatmap visualizing the expression levels of twenty prognostic CAFs genes with the CAFs risk scores in the TCGA cohort. (E) The distribution of patient survival status ranked by corresponding risk scores. (F) The Kaplan-Meier survival curves of OS between high and low risk score groups. (G) The time-dependent ROC curves of the prognostic signature for 1-, 2-, and 3-year overall survival.
The patients in the TCGA cohort were divided into high- and low-CAFs risk groups according to the median risk scores. The distribution of the risk score and patients’ survival status were ranked by the risk score value (Figure 6E). According to the Kaplan-Meier survival curves, patients in the high CAFs risk group had significantly unfavorable OS compared with the low CAFs risk group (Figure 6F). A ROC curve was constructed in Figure 6G showing the prognostic accuracy of the signature, and the AUCs for 1-, 2-, and 3-year overall survival were 0.711, 0.746, and 0.734, respectively. Moreover, we also verified the predictive ability of the signature in another two independent cohorts, GSE159216 and GSE72968. Patients in the high CAFs risk group had a worse prognosis than those in the low CAFs risk group (Figures 7A–D).
[image: Figure 7]FIGURE 7 | Verification of the CAFs-related signature. The Kaplan-Meier survival curves of OS between high and low risk score groups in GSE159216 (A) and GSE72968 (C). The time-dependent ROC curves of the prognostic signature for 1-, 2-, and 3-year overall survival in GSE159216 (B) and GSE72968 (D).
Independent prognostic value of CAFs risk score
There were no differences in CAFs risk score between COAD and READ patients from the TCGA cohort (Supplementary Figure S3A). However, the CAFs risk score was significantly related to clinical stage, TNM stage, and lymphatic invasion (Supplementary Figures S3B–F). We next performed univariate and multivariate Cox regression analyses on the clinical variables to identify whether CAFs prognostic signature (CAFPS) was an independent prognostic predictor of OS. We found that CAFPS was significantly associated with OS in the univariate Cox regression analysis (HR = 0.33; 95% CI = 0.22–0.49; p < 0.001; Figure 8A). Furthermore, multivariate Cox regression analysis was carried out to correct the confounding factors. The CAFPS was nevertheless proved to be an independent predictor for OS (HR = 0.43; 95% CI = 0.27–0.69; p < 0.001; Figure 8B).
[image: Figure 8]FIGURE 8 | Univariate (A) and multivariate (B) Cox analysis and forest plot revealed the independent prognostic value of CAFs prognostic signature (CAFPS).
Establishment of predictive nomogram for CRC patients
According to the regression analysis results, we developed a nomogram including our CAFPS and multiple clinical factors. In the TCGA cohort, clinical stage, TNM stage, lymphatic invasion, and CAFPS were eventually selected to establish an accurate predictive nomogram (Figure 9A). Next, we evaluated the discriminative ability of the nomogram using the ROC-related AUC. The AUC of CAFPS was 0.711, and the calibration plots of 1-, 2-, and 3-year OS showed no deviations from the Platt calibration curves, indicating the high predictive accuracy of the nomogram (Figures 9B,C).
[image: Figure 9]FIGURE 9 | A nomogram was constructed to predict the survival of CRC patients in the TCGA cohort. (A) The nomogram for predicting the overall survival of CRC patients at 1, 2, and 3 years. (B) The ROC curves of the nomogram, clinical stage, TNM stage, and lymphatic invasion for the survival prediction of CRC patients at 1, 2, and 3 years. (C) The nomogram calibration curves of 1-, 2-, and 3-year survival probabilities.
Prognostic value of CAFPS for drug response
We next examined the correlation between CAFPS and cancer hallmark-related pathways. As shown in Supplementary Figure S4, CAFPS was significantly associated with 32 cancer relevant pathways among the total of 50 pathways. To explore the difference between low-risk and high-risk groups regarding drug resistance potential, we estimated the IC50 levels of 138 chemotherapy drugs or inhibitors in the two groups. We found that AZD.0530, JNK.9L, PD.0332991, shikonin, and Z.LLNle.CHO could be candidate drugs for treating patients in the high-risk group (Figures 10A–E). The bubble chart shows the top 30 most relevant drugs for 20 prognostic genes (Supplementary Figure S5). We also predicted the response of CRC patients in the TCGA cohort to immunotherapy by the TIDE algorithm. The CAFPSs were significantly different between the non-responder group and the responder group (Figure 10F; p < 0.01). The proportion of responders in the low CAFPS group was significantly higher than that in the high CAFPS group (Figure 10G). The AUC of CAFPS for 1-year overall survival was 0.739 (95% CI = 0.689–0.79; Figure 10H). These evidences indicated that the CAFPS based on the signatures of 20 genes was helpful to assess patients’ response to chemotherapy and immunotherapy.
[image: Figure 10]FIGURE 10 | Drug sensitivity prediction in CRC patients. (A–E) Boxplot showing the mean differences in the estimated IC50 values of five drugs (AZD.0530, JNK.9L, PD.0332991, shikonin, and Z.LLNle.CHO). (F) Distribution of TIDE value after prediction. (G) Responders to immunotherapy in the low and high CAFPS groups. (H) ROC curve of CAFPS for 1-year overall survival.
Evaluation of the expression patterns of CAFs-related signature genes at the protein levels via HPA database
Finally, we used the IHC data from the HPA database to validate our previous findings to evaluate the expression of risk model genes associated with CAFs in tumor and normal tissues. Since IGFBP3, LSAMP, S1PR3 and ZNF385A have not been included in the HPA database, we provided the IHC results for ADAM8, CADM3, CASS4, CDC25C, CYTH3, EPHA6, LAMP5, MAN1C1, NAV3, NLGN1, NOVA1, RCAN2, SIGLEC1, SLAMF1, SUSD5, and TUB. The results showed that the protein expression levels confirmed the majority of our previous findings at the mRNA levels. Moreover, the IHC results from HPA database indicated that the protein expressions of ADAM8, CYTH3, and TUB were higher in CRC stroma (Figures 11A,E,P), while those of CADM3, EPHA6, MAN1C1, NAV3, NLGN1, NOVA1, and RCAN2 were higher in CRC interstitial areas (Figures 11B,F,H–L). No expressions of LAMP5, SLAMF1, and CDC25C were observed either in stroma or interstitial areas (Figures 11G,N,D). Moreover, CASS4, SIGLEC1, and SUSD5 were weakly expressed, like CASS4 and SUSD5 in interstitial areas (Figures 11C,O) and SIGLEC1 in stroma (Figure 11M).
[image: Figure 11]FIGURE 11 | IHC showing the protein expression of ADAM8 (A), CADM3 (B), CASS4 (C), CDC25C (D), CYTH3 (E), EPHA6 (F), LAMP5 (G), MAN1C1 (H), NAV3 (I), NLGN1 (J), NOVA1 (K), RCAN2 (L), SIGLEC1 (M), SLAMF1 (N), SUSD5 (O), and TUB (P) based on the HPA dtabase.
DISCUSSION
CAFs, as one of the most abundant cell type in the TME, facilitate the development, propagation and invasiveness of tumors (Chan et al., 2017). They have been previously reported to support the TME, which can lead to poor prognosis and drug resistance (Chen et al., 2014; Shiga et al., 2015). On the one hand, CAFs can produce proteases to remodel the tumor extracellular matrix (ECM) and increase the stiffness of tumor tissue, creating a pathway for tumor cells to invade more easily (Kechagia et al., 2019). Increased tumor tissue stiffness in ECM also makes blood vessels collapse and lead to hypoxia, which promotes the survival and proliferation phenotype of tumor cells and reduces drug releases (Zhang et al., 2021). On the other hand, the roles of CAFs are not limited to ECM regulation but also include communicating with other cells to establish an immunosuppressive TME, enabling tumor cells to evade antitumor immunity (Barrett and Pure, 2020). CAFs are a rich source of secretomes and may influence the process of tumor-specific immune cell differentiation. Recently, several studies have indicated that CAFs skew infiltrating tumor-associated macrophage (TAM) populations towards the M2 immunosuppressive phenotype (Mao et al., 2021). However, emerging evidence suggests that WNT-2 secreted by CAFs may inhibit the differentiation and activation of dendritic cells, facilitating immune evasion by esophageal squamous cell carcinoma and colorectal cancer (Huang et al., 2022). Notably, the secretory function of CAFs could produce extensive crosstalk with surrounding cells in the TME, eventually leading to drug resistance (Monteran and Erez, 2019). In recent years, many studies have demonstrated the cancer-promoting effect of CAFs; therefore, the ability to target CAFs could be an attractive strategy for anti-cancer therapy.
In the present study, via the analysis of transcriptome data of TCGA cohorts, we estimated the proportion of CAFs in patients with CRC, and confirmed that it was closely associated with prognosis. Since CAFs exhibit a high degree of heterogeneity (Kalluri, 2016), integrating multiple biomarkers into an aggregated model would considerably improve their prognostic value. Thus, we established a CAFs-related gene signature including twenty genes (ADAM8, CADM3, CASS4, CDC25C, CYTH3, EPHA6, IGFBP3, LAMP5, LSAMP, MAN1C1, NAV3, NLGN1, NOVA1, RCAN2, S1PR3, SIGLEC1, SLAMF1, SUSD5, TUB, and ZNF385A) through WGCNA, univariate, LASSO, and multivariate Cox regression analysis for predicting the prognosis and therapy response of CRC patients. In our study, the risk score derived from CAFs-related gene signature was abbreviated as CAFPS in our study. Moreover, CAFPS’ predictive value has been validated in two additional independent cohorts, suggesting the reliability of the CAFPS-based model. We subsequently generated a nomogram based on clinical stage, TNM stage, lymphatic invasion, and CAFPS for clinical application.
Twenty CAFs-related genes were used to construct a new prognostic model through WGCNA. According to the risk value of each gene, ADAM8, IGFBP3, RCAN2, SIGLEC1, ZNF385A, LAMP5, MAN1C1, CYTH3, S1PR3, CADM3, TUB, NAV3, SUSD5, NOVA1, NLGN1, and EPHA6 were regarded as risk genes related to the poor prognosis of patients with CRC, whereas CASS4, SLAMF1, LSAMP, and CDC25C were associated with favorable prognosis. The biological functions of these genes involved in our signature have been elucidated more or less in previous studies. It was shown that the high levels of ZNF385A, LAMP, CADM3, NAV3, and NLGN1 indicate the poor prognosis of CRC patients (Martinez-Romero et al., 2018; Chang et al., 2021; Chen et al., 2021; Yu et al., 2021; Li et al., 2022), and these results were in accordance with our findings. Similarly, low expressions of CYTH3, NOVA1, and EPHA6 were highly correlated with longer OS in patients with other types of cancers (Zhang et al., 2014; Zhou et al., 2018; Xu et al., 2022). Furthermore, high expression of ADAM8 has been reported in various tumor types and is related to invasiveness and poor prognosis (Conrad et al., 2019). ADAM8 has been found to cleave and remodel the ECM components of the tumor stroma (Zack et al., 2009; Schlomann et al., 2015), and thus could directly contribute to tumor invasiveness and metastasis. IGFBP3 and SUSD5 promote epithelial-mesenchymal transition (EMT) through the upregulation of a major cell surface receptor of hyaluronic acid (CD44H) (Vicent et al., 2008; Du et al., 2022). SIGLEC1 is a sialic binding receptor mainly expressed by macrophages; the infiltration of SIGLEC1+ macrophages in CRC was associated with tumor progression (Cassetta et al., 2019). In addition, the involvement of S1PR3 has been demonstrated in tumor growth. The S1P/S1PR3 axis is considered to promote tumor cell proliferation, migration and angiogenesis (Lee et al., 2017).
In the present study, RCAN2 was identified as a harmful predictor; however, our results are the contrary to the finding of Niitsu et al. (Niitsu et al., 2016) This may be related to the KRAS mutation in CRC leading to the decreased expression of RCAN2. Similar to our results, low expressions of CASS4 and LSAMP indicated poor prognosis in other types of cancers (Zhao et al., 2020; Gong et al., 2022). SLAMF1 and CDC25C were also identified as anti-tumor biomarkers in CRC (Qi et al., 2021; Song et al., 2022).
Some limitations of our results have to be recognized. First, although some genes were expressed at very low levels in CRC tissues, 20 candidate hub genes could not be filtered out due to the restrictions of the applied bioinformatics methods. Second, ours was a retrospective study for the establishment of gene signatures using public databases, thus multi-center and large-sample studies are needed to prospectively verify the prognostic and predictive efficacy of our CAFPS. Finally, the verification by detection at the protein level is insufficient; the molecular mechanisms of how the 20 candidate genes of this study influence the prognosis of CRC patients and responses to treatments need to be further explored through basic research.
CONCLUSION
In summary, we used WGCNA analysis to create a gene co-expression network, and identified and validated a twenty-gene CAFs-related signature associated with CRC progression and prognosis. Based on this signature, the CAFPS could identify CRC patients who might not benefit from chemotherapy or immunotherapy.
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Background: Anoikis is considered as a particular type of programmed cell death, the weakness or resistance of which contributes greatly to the development and progression of most malignant solid tumors. However, the latent impact of anoikis-related genes (ARGs) on gastric cancer (GC) is still ambiguous. Based on these, this study established an anoikis-related prognostic model of GC to identify the prognosis of patients and provide more effective treatment in clinical practice.
Methods: First, we extracted four public datasets containing the gene expression and clinicopathological information of GC, which were worked as the training and validating sets, separately. Then, an anoikis-related survival-predicted model of GC was developed via Lasso and COX regression analyses and verified by using the Kaplan-Meier (KM) curve and receiver operating characteristic (ROC) curve analyses. Next, we assigned GC patients to two groups characterized by the risk score calculated and analyzed somatic mutation, functional pathways, and immune infiltration between the different two groups. Finally, a unique nomogram was offered to clinicians to forecast the personal survival probability of GC patients.
Results: Based on seven anoikis-related markers screened and identified, a carcinogenic model of risk score was produced. Patients placed in the high-score group suffered significantly worse overall survival (OS) in four cohorts. Additionally, the model revealed a high sensitivity and specificity to prognosticate the prognoses of GC patients [area under the ROC curve (AUC) at 5-year = 0.713; GSE84437, AUC at 5-year = 0.639; GSE15459, AUC at 5-year = 0.672; GSE62254, AUC at 5-year = 0.616]. Apart from the excellent predictive performance, the model was also identified as an independent prediction factor from other clinicopathological characteristics. Combining anoikis-related prognostic model with GC clinical features, we built a more comprehensive nomogram to foresee the likelihood of survival of GC patients in a given year, showing a well-accurate prediction performance.
Conclusion: In summary, this study created a new anoikis-related signature for GC, which has potentially provided new critical insights into survival prediction and individualized therapy development.
Keywords: gastric cancer, anoikis-related genes, prediction, prognosis, immune infiltration
INTRODUCTION
Statistically, gastric cancer (GC) ranks fifth in morbidity and fourth in mortality in all malignant solid tumors in the whole world (Sung et al., 2021). Though the rapid advancement of endoscopic technology facilitates the early diagnosis of GC, the prognosis of patients has not significantly improved, owing to the non-specific symptoms and notorious aggressiveness of GC (Krejs, 2010; Li et al., 2022a; He et al., 2022). The vast majority of death from cancer is not due to a primary tumor but a sequel of metastatic cells within the tumor disorder (Sethi and Kang, 2011; Adeshakin et al., 2021). Consequently, identifying effectual metastasis-related prognostic biomarkers is vital to early intervention and prognosis prediction of GC.
Anoikis, a particular form of apoptosis, is stimulated by the absence of the attachment between cells or between cells and nearby extracellular matrix (Frisch and Francis, 1994; Paoli et al., 2013). It prevents dysplastic cells, pre-cancerous epithelial cells, from departing from their primary location and spreading elsewhere, avoiding the aggressive behavior of the detached tumor cells (Taddei et al., 2012). Anoikis resistance, which is the breakdown or avoidance of anoikis, is expected to confer selective superiority upon the detached cancer cells, affording them an increased anchorage-independent survival time, thereby facilitating eventual reattachment and uncontrolled growth of other sites (Frisch and Screaton, 2001; Guadamillas et al., 2011; Khan et al., 2022). Anoikis is envisioned as a pivotal defense in combating tumor metastasis and maintaining normal tissue homeostasis (Kim et al., 2012; Paoli et al., 2013). However, few studies have evaluated anoikis-related signatures in GC.
Thus, in this study, we concentrated on the predictive performance of anoikis-related genes (ARGs) in the prognosis of GC and developed an anoikis-related risk score model. We further explored and compared the differences in the genetic mutation, functional enrichment, and immune microenvironment between the two risk groups.
MATERIALS AND METHODS
Data acquisition and preprocessing
The RNA-sequencing and relevant clinical information data of GC patients used as a training set were downloaded from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/). All of the raw counts were transformed to transcripts per million (TPM) and log2-modified before analysis. For validation, three microarray datasets (GSE84437, GSE15459, GSE62254) along with related clinical data were acquired from Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) and easyGEO database (https://easygeo.cn/). The raw data of GSE84437 were quantile normalized and log2-modified before analysis. After removing duplication, 740 ARGs were integrated from the GeneCards database (https://www.genecards.org/), Harmonizome database (https://maayanlab.cloud/Harmonizome/), and National Center for Biotechnology Information (NCBI) database (https://www.ncbi.nlm.nih.gov/) (Supplementary Table S1) (Rouillard et al., 2016).
Identification of anoikis-related prognostic markers
First, we intersected the gene symbols from TCGA-STAD and GSE84437 cohorts to guarantee that the genes achieved from the following analysis were shared and removed the batch effect between the data of two datasets by operating the “sva” R package to ensure the comparability. Then, the “limma” R package was utilized to analyze the genes with differences in expression between tumor and adjacent normal tissues in the TCGA cohort (Ritchie et al., 2015). Setting the criteria of absolute fold change (|logFC|) > 1.0 and adjusted p-value <0.05, we selected 1,482 differentially expressed genes (DEGs). Further, taking the intersection of ARGs and DEGs, extracting the expression matrix of intersectant genes, and combining the matched survival information, univariable Cox regression analysis was performed on TCGA-STAD and GSE84437 cohorts separately to pick out potential genes affecting the outcome of GC patients (p < 0.05). The Venn diagram was depicted to show the intersectant genes via the “VennDiagram” R package.
Functional enrichment analysis
Based on anoikis-related DEGs, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) enrichment analyses were conducted to seek out underlying functional pathway, by using multiple R packages (“clusterProfiler”, “enrichplot”, and “ggplot2”) (Kanehisa and Goto, 2000; Subramanian et al., 2005; Kanehisa et al., 2021). Two gene sets (“c2.cp.kegg.v2022.1.Hs.symbols.gmt”, “h.all.v2022.1.Hs.symbols.gmt”) were collected from the Molecular Signatures Database (https://www.gsea-msigdb.org/gsea/msigdb) for GSEA analysis (Subramanian et al., 2005).
Risk score calculation
The TCGA-STAD data were worked as the training set as noted before. We made use of The Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression technology to identify the promising prognostic markers and produce the anoikis-related gene prognostic score (ARGPS) model. The expression level of the candidate genes and the corresponding regression coefficients were employed as the key components of the models. The formula for calculating ARGPS is ARGPS = ∑ (regression coefficient of genen × expression level of genen).
Development and validation of the ARGPS model
Using the median ARGPS as the cut-off value, we divided 335 GC patients into high-and low-risk groups and plotted Kaplan-Meier (KM) survival curves to probe into the significant differences in the overall survival (OS) between the two groups. The prognostic value of the ARGPS model was assessed through receiver operating characteristic (ROC) curves. By computing the area under the ROC curve (AUC) in a given year in R software, we can estimate the efficiency and accuracy of the model. As for three GEO datasets (GSE84437, GSE15459, GSE62254), the validating sets, the same processes were applied to test the predictive performance of the ARGPS system. Moreover, we adopted univariable and multivariable Cox regression analyses to evaluate the independent prognosis-related significance of this model. A nomogram was made to probably calculate the survival probability for GC patients. The C-index, calibration curve, and decision curve analysis (DCA) were served to estimate the performance and credibility of the nomogram (Vickers and Elkin, 2006; Fitzgerald et al., 2015; Kerr et al., 2016; Vickers et al., 2016).
Immune cell infiltration analysis
The CIBERSORT, a computational method, and Single-sample GSEA (ssGSEA), an extension of Gene Set Enrichment Analysis (GSEA), were applied synergistically to contrast the tumor immune microenvironment between the two groups (Newman et al., 2015). A leukocyte gene signature matrix file gained from CIBERSORTx website (https://cibersortx.stanford.edu/), was engaged to clarify the genetic signatures of 22 traditional immune cells. The four R packages (“GSVA”, “GSEABase”, “limma” and “Hmisc”) and two websites [TIMER (https://cistrome.shinyapps.io/timer/) and TIMER 2.0 (http://timer.cistrome.org/)] were exploited to measure the correlation between markers, markers and immune cells (Ritchie et al., 2015; Li et al., 2016; Li et al., 2017; Li et al., 2020).
Mutation analysis
The somatic mutation of GC patients in the TCGA cohort was also obtained from the TCGA database (https://portal.gdc.cancer.gov/). The differences in somatic mutation data between the two risk groups were examined and took the form of waterfall graphs. The “maftool” R package was applied to calculate tumor mutation burden (TMB), referring to the number of tumor mutations per megabase in each tumor sample.
Statistical analysis
R software version 4.2.0 served as the tool for statistical analyses. p-value <0.05 was viewed as statistically significant.
RESULTS
Identification of anoikis-related prognostic genes
Figure 1 displayed the flow diagram of this study. 15,121 genes were retained through batch effect removal. 1482 DEGs were filtered in the variance analysis between cancerous and adjacent normal samples in the TCGA dataset (|logFC| > 1.0, p.adj< 0.05) (Supplementary Table S2; Figure 2A). Then, we got 141 anoikis-related DEGs by intersecting DEGs with ARGs, which was displayed by the Venn diagram (Figure 2B). GO and KEGG functional enrichment analysis on these genes were carried out to scrutinize the function of the ARGs on GC development. The result of GO analysis revealed that they were enriched in the intrinsic, extrinsic, and regulated apoptotic signaling pathways in the biological process part, and collagen-containing extracellular matrix, an indispensable substance for anoikis, in the cell component part, signifying that anoikis played a huge part in the development of GC (Figure 2C). In the KEGG analysis, the most plenteous pathways were “Human papillomavirus infection”, “MicroRNAs in cancer” and “Human T-cell leukemia virus one infection” (Figure 2D). By performing a univariable Cox regression analysis on GC patients of TCGA-STAD and GSE84437 cohorts, we gained 20 and 43 ARGs significantly associated with GC prognosis, separately. The forest plots described the detail (Figures 3A,B).
[image: Figure 1]FIGURE 1 | Drawing of the flow chart in this study.
[image: Figure 2]FIGURE 2 | Identification of the anoikis-related prognostic genes. (A) The variance analysis between tumor and adjacent normal tissues in the TCGA dataset (|logFC| > 1.0, p.adj< 0.05). (B) The insection between 1482 DEGs and 740 ARGs is displayed by the Venn diagram. The dot plots of GO (C) and KEGG (D) enrichment analysis are based on 141 anoikis-related DEGs. TCGA, The Cancer Genome Atlas; DEGs, differentially expressed genes; ARGs, anoikis-related genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
[image: Figure 3]FIGURE 3 | Univariable Cox regression analysis. The results of univariable Cox regression analyses of TCGA (A) and GEO (B) cohorts. (C,D) The results of LASSO analysis of ten prognostic ARGs. TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; LASSO, Least Absolute Shrinkage and Selection Operator; ARGs, anoikis-related genes.
Development and validation of the ARGPS model
We intersected the results of two univariable Cox regression analyses and got 10 potential ARGs markers (PDK4, SKP2, EZH2, NOX4, PDGFRB, MMP11, SERPINE1, DNMT1, THY1, SNCG). Taking the TCGA cohort as the training set, lasso Cox regression was carried out on the ten candidate genes to identify the prognostic markers (Figures 3C,D). According to the regression analysis result, an ARGPS model was established as follows: ARGPS = 0.116 ✕ PDK4 exp + (−0.340) ✕ EZH2 exp +0.297 ✕ NOX4 exp +0.108 ✕ MMP11 exp +0.247 ✕ SERPINE1 exp + (−0.412) ✕ DNMT1 exp +0.243 ✕ SNCG exp. Based on the median ARGPS, GC patients of the TCGA cohort were classified into the high- and low-risk groups. The risk score distribution and scatter plots were mapped to indicate that GC patients with a high-risk score, had shorter survival times and a higher proportion of death (Figure 4A). Then, the KM curve illustrated that the OS of patients in the high-risk group was lower, meaning a poorer prognosis (Figure 4B). Next, we calculated the three- and five-year AUC values under the time-dependent ROC curves were 0.643 and 0.713, respectively, suggesting specificity and sensitivity of the ARGPS in prognostic prediction (Figure 4C). Furthermore, to evaluate whether the ARGPS model is suitable for other datasets, we selected GSE84437 and two additional independent GEO datasets (GSE15459, GSE62254) as validation cohorts, grouped GC patients, and did the same analyses. The same results as the training set (TCGA) were also observed, proving the excellent stability and predictive efficacy of the ARGPS (Figures 4D–L). The clinical characteristics of GC patients in four cohorts were shown in Table 1.
[image: Figure 4]FIGURE 4 | Construction and validation of the ARGPS model. (A,D, G,J) Distribution of ARGPS and relationship between ARGPS and survival status in the training and three testing sets. (B,E,H,K) The K-M survival curves of the high- and low-ARGPS groups in the training and three testing sets. (C,F,I,L) The time-dependent ROC curves for predicting OS at 3 and 5 years in the training and three testing sets. ARGPS, anoikis-related gene prognostic score; KM, Kaplan-Meier; ROC, receiver operating characteristic; OS, overall survival.
TABLE 1 | Clinical characteristics of GC patients in TCGA and three GEO cohorts.
[image: Table 1]Validation of a nomogram
A heat map illustrated the differences in the seven model genes expression and the distribution of clinicopathological features between two risk groups in the training set (Figure 5A). In combination with the clinical features of GC patients, we performed the univariable and multivariable Cox regression analyses and the result showed the independent prognostic predictability of the ARGPS (Figures 5B–D). Given the inconvenient clinical utility of the ARGPS, a hybrid nomogram model was created for predicting the survival probability of GC patients in a given year (Figure 5E). The result showed that C-index was 0.687, denoting the great reliability of the nomogram. Calibration curves of the OS at 1, 3, and 5 years were evenly distributed diagonally, proving the pretty fitness of the model (Figure 5F). Additionally, from DCA curves and AUC values, in clinical decision-making, the ARGPS model was found to be able to serve as the most effective prognostic indicator among other clinical characteristics (Figures 5D,G).
[image: Figure 5]FIGURE 5 | Validation of ARGPS’s ability to predict the prognosis of gastric cancer. (A) The differences in the expression of seven markers and the distribution of clinicopathological features between the two risk groups in the TCGA cohort were plotted by the heat map. The results of univariable (B) and multivariable Cox regression analysis (C) between ARGPS and clinicopathological factors. (D) The ROC curves based on the ARGPS model and other clinicopathological factors in the TCGA cohort. (E) Nomogram based on ARGPS and clinicopathological features in the TCGA cohort. (F) Calibration curves for the validation of the nomogram. (G) DCA curves of the clinical utility between ARGPS and other clinical factors regarding the overall survival (OS) in the TCGA cohort. TCGA, The Cancer Genome Atlas; ARGPS, anoikis-related gene prognostic score; ROC, receiver operating characteristic; DCA, Decision curve analysis.
ARGPS model and functional analysis, gene mutation
For the purpose of further elucidating the underlying mechanisms of the impact of ARGPS on prognosis, KEGG and HALLMARK gene sets were selected to search for significantly enriched pathways between the two risk groups. In the high-risk group, the genes were mostly enriched in antigen processing and presentation, extracellular matrix (ECM) receptor interaction, protein export, proteasome, and ribosome in the KEGG part, and angiogenesis, mitotic spindle, protein secretion, reactive oxygen species pathway, and TGF-beta signaling in the HALLMARK part (Figures 6A,B). Detailed enrichment pathways and parameters are shown in Supplementary Tables S3, S4. Waterfall plots were exploited to analyze the somatic mutations in the two risk groups. From Figures 6C,D, the most common type of mutations in both groups was missense mutations, followed by Multi_Hit, which means that a gene has multiple mutations in the same sample. In the high-risk group, the overall levels of TMB were lower than those in the other group, which is contrary to our conventional understanding. Besides that, all mutant genes shown in the graphs were mutated less frequently in the high-risk group.
[image: Figure 6]FIGURE 6 | Analysis of enrichment function and genetic mutation at a different risk score. (A,B) Part of significantly upregulated pathways in the high-risk group enriched by GSEA analysis. (C,D) Comparison of genetic mutation between the high- and low-risk groups utilized by the “maftool” R package. GSEA, Gene Set Enrichment Analysis.
ARGPS model and immune infiltration
To explore whether and how the ARGPS model influenced the tumor immune landscape, bar graphs were first drawn to show the relative proportion of 22 different immune cells in every sample of the TCGA cohort (Figure 7A). The ssGSEA analysis was applied to study deeply the discrepancy between the immune status of the two risk groups. For type analysis of 28 immune cells, we discovered that compared to GC patients with a lower risk score, those with a higher risk score had significantly higher infiltration of multiple cells (including activated B cell, central and effector memory T cell, immature B cell, regulatory T cell, T follicular helper cell, type 1 T helper cell, activated dendritic cell, CD56 bright natural killer cell, eosinophil, immature dendritic cell, macrophage, mast cell, MDSC, natural killer cell, natural killer T cell, and plasmacytoid dendritic cell), whereas lower infiltration of activated CD4 T cell (Figure 7B). For type analysis of 13 immune pathways, multiple pathways (including APC co-stimulation, CCR, check-point, HLA, parainflammation, type I and II interferon response) of the high-risk group were also significantly more vibrant than those of the low-risk group, which may work for the worse prognosis of the GC patients (Figure 7C). Furthermore, the heat maps were painted to show the strong relationship of the seven markers to immune cells and pathways (Figures 8A,B). In addition, the TIMER database was available to predict the relation between the markers. Figure 8C plotted the linear correlation of each of the two markers, indicating the intense relationship between the seven markers.
[image: Figure 7]FIGURE 7 | Evaluation of the immune microenvironment of gastric cancer. (A) The proportion and distribution of 22 immune cells in each sample of the TCGA cohort were calculated by the CIBERSORT algorithm. The sum of all estimated cell scores in each sample is 1. The difference of (B) 28 immune cells and (C) 13 immune pathways infiltration levels between the high- and low-risk groups compared by the ssGSEA analysis. ns > 0.05, *<0.05, **<0.01, ***<0.001. TCGA, The Cancer Genome Atlas; ssGSEA, Single-sample Gene Set Enrichment Analysis.
[image: Figure 8]FIGURE 8 | Estimation of the correlation between markers and immune infiltration. The correlation between the seven markers and (A) 28 immune cells and (B) 13 immune pathways showed by heat maps. (C) The linear relation of each of the two markers in the model is predicted by TIMER. *< 0.05, **< 0.01.
DISCUSSION
Previously, there were some reports in the literature about the effects of anoikis on GC. Kai Wang et al. sequenced the whole genomes of gastric cancer tissues and performed comprehensive molecular profiling, discovering that RHOA hotspot mutants could facilitate anoikis escape in the organoid cultures (Wang et al., 2014a). Numbers of molecules and pathways have been confirmed to be involved in the anoikis resistance, which resulted in the metastasis and progression of GC (Li et al., 2020b; Ye et al., 2020; Zhang et al., 2022a; Li et al., 2022b). In addition, by reducing anoikis resistance and cancer cell mobility, some drugs could trigger apoptosis and inhibit metastasis, thereby delaying the progression of GC (Kim et al., 2022). All of the above emphasized that the notion of targeting genes associated with anoikis might be imperative to control tumor development and progression. As we know, in GC, this study is the first to identify anoikis-related prognostic biomarkers and construct a relevant predictive model to evaluate patient outcomes.
In this research, we screened out seven genes related to the prognosis of GC, which contained PDK4, EZH2, NOX4, MMP11, SERPINE1, DNMT1, and SNCG, and created a predictive risk score model, namely ARGPS model. Certain interactions between these markers and tumor initiation and progression have been described in studies before. For example, Zimu Zhang et al. disclosed that PDK4 promoted invasion and migration ability of GC cells (Zhang et al., 2022b). In the high-PDK4 group, enriched functional pathways were correlated with cell adhesion regulation and synaptic activity, which were substantial in cancer anoikis resistance, proliferation, invasion, and metastasis (Zhong and Rescorla, 2012; Alanko et al., 2015; Zhang et al., 2022b). In vitro studies demonstrated that EZH2 bound to the vital tumor suppressor PTEN locus and led to proliferation, invasion, and pluripotent phenotype of GC cells (Gan et al., 2018). IL-6/STAT3 signaling, whose aberrant expression in GC cells was thought to be a main mechanism for tumorigenesis and pathogenesis, drove EZH2 transcriptional stimulation and mediated unfortunate outcome (Yu and Jove, 2004; Yu et al., 2009; Li et al., 2010; Pan et al., 2016). NOX4, one of the major origins of reactive oxygen species (ROS), played a crucial role in genomic instability, resistance to anoikis, migration, and extravasation into distant sites (Bedard and Krause, 2007; Liou and Storz, 2010; Peiris-Pages et al., 2015; Schumacker, 2015). The expression of NOX4 in GC was significantly relevant to tumor size, lymph node metastasis, venous invasion, and unfortunate survival (Du et al., 2019). What is interesting is that NOX4 could enhance cell propagation by activating the GLI1 transcription factor, which was a distinguished molecule in the Hedgehog signaling pathway (Briscoe and Therond, 2013; Tang et al., 2018). Meanwhile, it was verified that the suppression of GLI1 protein could evoke anoikis in vitro and prevent tumor formation in vivo (Kandala and Srivastava, 2012). Similarly, SERPINE1, a key inhibitor of tissue plasminogen activator and urokinase, is abundant in tumor tissues and strongly interrelated with the propagation and invasiveness of GC cells (Chen et al., 2022). SERPINE1 could induce angiogenesis and tumor inflammatory microenvironment, in which anoikis was a critical player, by regulating the expression level of VEGF and IL-6 via VEGF and JAK-STAT3 inflammatory pathways (Sakamoto and Kyprianou, 2010; Feng et al., 2014; Teng et al., 2021; Chen et al., 2022). Y-B Kou et al. discovered that the growth, expansion, and invasion activities of GC cells could be inhibited by the knockdown of MMP11, probably through downregulation of the PCNA, IGF-1, and VEGF (Kou et al., 2013). In addition, MMP11 in exosomes secreted from gastric cancer-associated fibroblasts can be delivered into GC cells to partially accelerate their progression and metastasis (Xu et al., 2019). DNMT1, whose full name is DNA methyltransferase 1, is one of the DNA-modifying enzymes (Lyko, 2018). It might participate in the modulation of DNA methylation levels and give rise to the development of an anoikis-resistance phenotype (Campos et al., 2007; Lyko, 2018). Recently, a study suggested that lncRNA SAMD12-AS1 potentially played oncogenic roles in GC by directly bounding to DNMT1 and enabling DNMT1 to restrain the P53 signal pathway (Lu et al., 2021a). A strong interaction between the expression level of SNCG, a pro-metastatic oncogene, in primary and metastatic sites has been revealed in many solid tumor types (Liu et al., 2005). In addition, SNCG expression in GC tissues, particularly in metastatic tissues, was relevant to tumor microenvironment and metastasis (Hu et al., 2009; Wang et al., 2014b). Thus, hypoxia-inducible lncRNA-AK058003 could increase GC metastasis by targeting SNCG (Wang et al., 2014b). It is worth noting that markers did not work alone but had some linkages. For instance, the synergistic mediation of methylation by EZH2 and DNMT1 contributed to the progression of GC (Ning et al., 2015).
Based on ARGPS we calculated, GC patients were separated into high- and low-risk groups. Follow-up analyses revealed that the GC patients with the high-risk score correlated with a poorer prognosis, which was confirmed by three testing cohorts (GSE84437, GSE15459, GSE62254). The results of univariable and multivariable Cox analyses with other clinical confounding factors showed extraordinary standalone prediction value of ARGPS. Then, a nomogram was built to accurately quantify personalized predictive scores and survival probabilities. Both C-index and the calibration curves showed superb consistency. Additionally, decision curve analysis was used to suggest the potential clinical utility of the model.
We compared the differences in functional pathways and somatic mutations between the two groups. GSEA analyses have enriched ECM receptor interaction and reactive oxygen species pathways, which were highly related to anoikis (Tang et al., 2018). Moreover, these results suggested that anoikis might closely connect with immune invasion, material transportation, and angiogenesis in GC. Intriguingly, not only the overall pattern of gene mutations was lower in the high score group but also the mutation frequency of commonly mutated genes was lower. The difference in TMB between the two groups was confirmed to be statistically significant by the Wilcoxon rank sum test. Although most genetic mutations (such as missense mutations) were harmful or lethal to the body, the possibility of beneficial effects could not be entirely ruled out. A panel-based sequencing study of advanced gastric cancer showed that patients with elevated TMB had higher objective response rates and longer progression-free survival, suggesting that TMB could be employed as a potential predictive biomarker (Kim et al., 2020). Among patients with advanced gastric cancer who received neoadjuvant chemotherapy before radical gastrectomy, those with high TMB showed favorable treatment response and better disease-free survival (Li et al., 2021). Besides, in multiple cancer types, TMB was considered as another indicator of patients’ response to immunotherapy because a positive correlation between TMB and benefit of immunotherapy was observed in a comprehensive analysis (Hodges et al., 2017; Yarchoan et al., 2017).
Epigenomic alterations in cancer interact with the immune microenvironment to dictate tumor evolution and therapeutic response (Sundar et al., 2022). Though a variety of programmed cell death modes (e.g., necroptosis, pyroptosis, ferroptosis, etc.) have been showed to be associated with tumor immunity, the correlation between anoikis and immunity is still unclear (Gao et al., 2022; Niu et al., 2022). We managed to explore the differences in the immune landscape between the two groups, showing that in the high score group with the worrisome outcomes, the proportion of most immune cells and functions were significantly increased, representing that anoikis may regulate tumor progression by affecting immune infiltration levels. If we think about this among all the different immune cells, there are both protumorigenic and antitumorigenic cells. One should note that one of the most crucial elements of the tumor immunosuppressive microenvironment are myeloid-derived suppressor cells (MDSCs), which plays an important role in Helicobacter pylori-induced intestinal metaplasia and tumor progression (Ding et al., 2016; Ding et al., 2020; Ding et al., 2022). Based on our results, MDSCs infiltration level was relatively high in the high-ARGPS group and was significantly related to SNCG, MMP11, NOX4 and SERPINE1. Besides, EZH2 and DNMT1 could regulate the differentiation and accumulation of MDSCs (Huang et al., 2019; Smith et al., 2020; Lu et al., 2021b; Yang et al., 2022). Due to the certainty of immunity on tumor progression and the uncertainty of anoikis on the immune landscape, the interaction between anoikis and immunity (especially MDSCs) might be an interesting field to research.
Though this study has made a breakthrough, it still is limited by some aspects. First, this study was confined to mining and analyzing public databases. Second, although the established model and nomogram had a pretty good predictive capability, taking the heterogeneity of the cells in tumor tissues into consideration, studies on anoikis executed at the single-cell level may shed light on the critical role of anoikis on the outcome of GC patients more accurately. Third, despite this study showing that there was a powerful relationship between the ARGs and immunity, the detailed mechanism was still not fully explained. Finally, the study has a lack of validation in vivo or in vitro. Through combined the results of this study with previous literature, we reasonably believe that the underlying mechanism of anoikis-related markers and gastric cancer immune microenvironment (especially MDSCs) seems to be full of promises and worthful for future investigation.
CONCLUSION
To sum up, our seven-gene ARGPS model is capable of predicting the outcome of GC patients, and the nomogram can assist the clinician to develop personalized treatment plans for various patients. More research in the future into the molecular interaction between anoikis and tumor is required to provide the theoretical basis for clinical practice and a road map for precision medicine.
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GLOSSARY
APC co_stimulation antigen-presenting cell co-inhibition
APC co_inhibition antigen-presenting cell co-inhibition
ARGPS anoikis-related gene prognostic score
ARGs anoikis-related genes
AUC area under the ROC curve
CCR C-C chemokine receptor
DEGs differentially expressed genes
DNMT1 DNA methyltransferase 1
EZH2 enhancer of zeste homologue 2
EMT epithelial–mesenchymal transition
exp expression
GC gastric cancer
GEO Gene Expression Omnibus
GSEA Gene Set Enrichment Analysis
GLI1 GLI family zinc finger 1
GO Gene Ontology
HLA human lymphocyte antigen
IL-6 interleukin-6
IGF-1 insulin-like growth factors-1
lncRNA long non-coding RNA
JAK Janus tyrosine Kinase
KM Kaplan-Meier
LASSO least absolute shrinkage and selection operator
MMP11 matrix metalloproteinase 11
NOX4 NADPH oxidase 4
MDSC Myeloid-derived suppressor cells
MHC_class_I major histocompatibility complex class I
NCBI National Center for Biotechnology Information
OS overall survival
PCNA proliferating cell nuclear antigen
PDK4 pyruvate dehydrogenase kinase-4
ROC receiver operating characteristic
ROS reactive oxygen species
STAD stomach adenocarcinoma
TCGA The Cancer Genome Atlas
ssGSEA Single-sample Gene Set Enrichment Analysis
TMB tumor mutation burden
SKP2 s-phase kinase associated protein 2
PDGFRB platelet derived growth factor receptor Beta
SERPINE1 serine protease inhibitor clade E member 1
SNCG γ-synuclein
STAT3 signal transducer and activator of transcription 6
THY1 Thy-1 cell surface antigen
Type_I_IFN_Reponse type I interferon response
Type_II_IFN_Reponse type II interferon response
VEGF vascular endothelial growth factor.
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Screening and identifying a novel M-MDSCs-related gene signature for predicting prognostic risk and immunotherapeutic responses in patients with lung adenocarcinoma
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Background: Lung adenocarcinoma (LUAD) shows intratumoral heterogeneity, a highly complex phenomenon that known to be a challenge during cancer therapy. Considering the key role of monocytic myeloid-derived suppressor cells (M-MDSCs) in the tumor microenvironment (TME), we aimed to build a prognostic risk model using M-MDSCs-related genes.
Methods: M-MDSCs-related genes were extracted from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Utilized univariate survival analysis and random forest algorithm to screen candidate genes. A least absolute shrinkage and selection operator (LASSO) Cox regression analysis was selected to build the risk model. Patients were scored and classified into high- and low-risk groups based on the median risk scores. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis along with R packages “estimate” and “ssGSEA” were performed to reveal the mechanism of risk difference. Prognostic biomarkers and tumor mutation burden (TMB) were combined to predict the prognosis. Nomogram was carried out to predict the survival probability of patients in 1, 3, and 5 years.
Results: 8 genes (VPREB3, TPBG, LRFN4, CD83, GIMAP6, PRMT8, WASF1, and F12) were identified as prognostic biomarkers. The GEO validation dataset demonstrated the risk model had good generalization effect. Significantly enrichment level of cell cycle-related pathway and lower content of CD8+ T cells infiltration in the high-risk group when compared to low-risk group. Morever, the patients were from the intersection of high-TMB and low-risk groups showed the best prognosis. The nomogram demonstrated good consistency with practical outcomes in predicting the survival rate over 1, 3, and 5 years.
Conclusion: The risk model demonstrate good prognostic predictive ability. The patients from the intersection of low-risk and high-TMB groups are not only more sensitive response to but also more likely to benefit from immune-checkpoint-inhibitors (ICIs) treatment.
Keywords: LUAD, M-MDSCs, prognostic model, immunotherapeutic responses, precision medicine
INTRODUCTION
Lung cancer is the second most commonly diagnosed cancer with 11.4% of incidence rate and 18% mortality rate, ranked first, among 36 tumors in 185 countries in the worldwide (Sung et al., 2021). LUAD is a prevalent subtype of NSCLC and comprises for greater than 40% of lung cancer cases (Shi et al., 2016). ICIs is one of the most promising treatments for LUAD when compared to other cancer therapies, such as surgery, chemotherapy, and radiotherapy. Though ICIs therapy shows an increased estimated overall survival rate over 5 years among these patients which is 16% (Gettinger et al., 2018), only a small fraction of patients can response to ICIs treatment. Therefore, it is an urgent need to identify effective prognostic biomarkers to stratify the patients and predict immunotherapeutic responses for precision medicine.
Tumor heterogeneity is tightly linked to the tumor microenvironment (TME). Benefiting from the advancements in sequencing technologies and machine learning algorithms, understanding of the characteristics of TME at the molecular level has substantial clinical value to predict prognosis in patients. In the TME of LUAD, many studies have been focused on the prognosis of T cells (Du et al., 2021), B cells (Zhang et al., 2021), cancer-associated fibroblasts (CAFs) (Navab et al., 2011; Min et al., 2021), and tumor-associated macrophages (TAMs) (Chen et al., 2021), as well as the biological processes, including epithelial-mesenchymal transition (EMT) (Shi et al., 2021) and angiogenesis (Cai et al., 2021). However, the analysis on the prognostic significance of M-MDSCs, showing a strong immunosuppressive function, is still insufficient.
In clinical practice, metastasis is an important cause of cancer-related deaths (Veglia et al., 2021). MDSCs are highly undifferentiated cells derived from immature myeloid progenitor cells with immunosuppressive ability in the TME of LUAD. They can be divided into M-MDSCs and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) (Talmadge and Gabrilovich, 2013; Bronte et al., 2016; Gabrilovich, 2017; De Cicco et al., 2020). M-MDSCs exert greater immunosuppressive effects relative to PMN-MDSCs, which suppress antigen-non-specific and antigen-specific T cell functions by generating nitric oxide (NO), arginase-1 (Arg-1), and other immunosuppressive factors (Wang Y. et al, 2019). Moreover, M-MDSCs participate in EMT and angiogenesis in the TME, forming a pre-metastatic niche (Groth et al., 2019), and finally differentiate into TAMs with immunosuppressive ability. TAMs participate in angiogenesis and tumor pre-metastasis (Yang et al., 2020; Consonni et al., 2021). Although various methods have been developed to overcome the therapeutic resistance due to the existence of M-MDSCs, the results remain unsatisfactory.
Given the important role of M-MDSCs between monocytes and TAMs and its close relationship with tumor heterogeneity in the TME, we hypothesized that M-MDSCs-related genes could act as prognostic signature genes and effectively stratify patients. Based on univariate survival analysis, random forest algorithm, and LASSO Cox regression method, a risk model was generated using the TCGA training set and these findings were validated in the GEO dataset. We aimed to discover robust biomarkers to precisely stratify LUAD patients. Understanding the mechanism underlying the differences between risk groups might help develop effective strategies for ICIs therapy.
MATERIALS AND METHODS
LUAD and M-MDSCs datasets
The data of RNA-seq transcriptome (workflow: HTSeq-Counts) and corresponding clinical information of the TCGA-LUAD cohort (https://portal.gdc.cancer.gov/) were downloaded using the R package “TCGAbiolinks” (Colaprico et al., 2016) as the training group. Entrez IDs were converted into gene symbols and the counts were transformed using the file from TCGA (https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-reference-files) into the transcripts per million (TPM) formation. Next, the data were log (x+1) normalized. Using the “GEOquery” (Davis and Meltzer, 2007), from the GEO database (https://www.ncbi.nlm.nih.gov/geo), the validation dataset GSE68465 (Director’s Challenge Consortium for the Molecular Classification of Lung Adenocarcinoma et al., 2008) and M-MDSCs datasets GSE131552 and GSE162353 (Kwak et al., 2020) were obtained. Patients with insufficient information were excluded with the exclusion criteria as follows: overall survival days less than 30 days; lack of specific information on clinical characteristics; recurrent cases; lack of information on gene expression in the clinical data. First, 594 RNA-seq cases and 515 LUAD clinical cases were extracted from the TCGA database. After the exclusion, 592 cases (including 59 normal tissues and 533 tumor tissues) for differential analysis and 482 cases for survival analysis were obtained. Both GSE131552 and GSE162353 consisted of three monocytes samples and three M-MDSC cases and the GSE68465 comprised 439 cases for survival analysis.
Analysis of differentially expressed genes (DEGs)
DEGs were acquired between monocytes and M-MDSCs using the R package, “limma”, and visualized on a heatmap (This DEGs were defined as M-DEGs). The cut-off values for M-DEGs screening were p < 0.05 and |logFC| > 1. DEGs in TCGA were identified using the R package, “DESeq2”, and visualized on a volcano plot (This DEGs were defined as LUAD-DEGs). The cut-off values for LUAD-DEGs were set as padj < 0.05 and |logFC| >1. The volcano plot were drawn using the R packages, “ggplot2”. Finally, The genes obtained from the intersection of M-DEGs and LUAD-DEGs were defined as M-MDSCs-related genes, for these genes can exert function to affect prognosis and immunotherapy of LUAD patients.
Acquisition of the signature gene
To construct an effective and precise prognostic risk model based on M-MDSCs-related genes, the “survival” package was firstly used followed by the univariate Cox regression analysis to filter the prognosis-related genes (p < 0.05). Subsequently, the random forest algorithm was utilized to obtain genes with the top variance using the R package, “randomForestSRC”. The intersecting genes between univariate Cox regression and random forest analysis were our target for further evaluation.
Construction and verification of M-MDSCs-related prognostic model for patients with LUAD
The prognostic risk model was constructed by LASSO Cox regression analysis using “survival” and “glmnet” packages. Each patient was scored according to the levels of gene expression and their corresponding coefficients as follows: Risk score = Exp (gene1)* Coef (gene1) + ……+ Exp (genen)* Coef (genen), where Exp indicated the level of gene expression and Coef represented the corresponding coefficient of gene. According to the median risk value, patients were classified into low- and high-risk groups. To visualize the grouping effect between these two groups, t-distributed stochastic neighbor embedding (t-SNE) analysis was conducted using the “ggplot2” and “Rtsne” packages. The Kaplan-Meier (K-M) curve and log-rank test was applied to compare differences of the survival probabilities between the two risk groups using the “survival” and “survminer” packages. The receiver operating characteristic curve was plotted to evaluate the accuracy of the model using “survminer”, “timeROC”, and “survival” packages.
Functional annotation and estimation of immune status between risk groups
To elucidate the mechanism and find potential targets between the two risk groups, GO annotation and KEGG analysis were performed using “clusterProfiler” (Yu et al., 2012). Additionally, to further estimate the immune status between the two risk groups, R packages “estimate” and “ssGSEA” were applied. These results were demonstrated using “ggplot2”.
Evaluation of TMB for patients with LUAD
The Mutation Annotation Format (MAF) files of somatic variants for LUAD were extracted from TCGA using the GDCquery_Maf (pipelines = “varscan”) tool in the R package, “TCGAbiolinks”. The mutational data were analyzed using “maftools.” The mutational frequency with the number of variants/the length of exons (38 million) was defined as the TMB value. Further, patients were categorized into low-TMB and high-TMB groups according to the median TMB value for subsequent analysis.
Construction and calibration of nomogram for patients with LUAD
Univariate and multivariate Cox analysis were conducted using the R package, “survival”. Four clinical variables (age, gender, risk score, and stage) were employed to construct the nomogram for predicting the overall survival of LUAD patients over 1, 3, and 5 years by using the R package, “rms.” To estimate the consistency between the practical results and prediction outcomes, a calibration curve was constructed and plotted.
Statistical analysis
The t-test or Wilcoxon test were chosen to compare the mean between two groups based on actual requirements. Benjamini–Hochberg was carried out to adjust the p-value for multiple testing with the R function “p.adjust”. Kaplan-Meier (K-M) and the log-rank test were performed for the survival analysis. p < 0.05 represented statistical significance. All statistical analyses were performed on the R software (v4.0.3).
RESULTS
Obtation of M-MDSCs-related prognostic signature genes for patients with LUAD
LUAD-DEGs between normal controls and TCGA-LUAD patients were presented (Figure 1D). M-DEGs between monocytes and M-MDSCs in the GEO dataset were shown in Figures 1B,C. In order to simplify complexities and achieve the best stratification with fewer genes, two different algorithms (including the univariate Cox regression and random forest) were utilized to select the most significant prognostic-related genes. As the result, nine genes were identified from univariate Cox regression (Figure 1A) and random forest (Figure 1E) analysis as shown in the Venn diagram (Figure 2A).
[image: Figure 1]FIGURE 1 | Identification of M-MDSCS-related signature genes in LUAD patients. (A) Univariate Cox regression analysis revealed the 56 genes significantly correlated with clinical prognois. (B,C) Heatmap for the difference between Monocytes and M-MDSCs datasets (GSE131552, GSE162353). (D) A volcano map of the differently expressed genes in TCGA training set. (E) Randomforest showed the number of trees and its classification effect.
[image: Figure 2]FIGURE 2 | Risk model based on M-MDSCs-related signature genes for LUAD patients. (A) Venn plot showed genes acquired from different methods for model constrution. (B,C) Lasso and partial likelihood deviance coefficient profiles of the selected genes.
Construction and verification of the M-MDSCs-related prognostic model for patients with LUAD
Prognostic model was constructed using the nine genes obtained from the above analysis, eight signature genes were acquired (Figures 2B,C). The risk score for each LUAD patients was derived as follows: expression values of
[image: image]
In the TCGA training set, LUAD patients were categorized into two risk groups (Figure 3A) based on the median value of the risk scores. Blue dots represented patients who were alive, while those in red indicated the death of patients, the survival time was obviously reduced with an increase in the risk scores (Figure 3C); The t-SNE plot demonstrated a good grouping effect between the risk groups (Figure 3E). K-M curve analysis showed significant survival differences (p < 0.05), whereby the low-risk group had a better prognosis (Figure 4A). The values of area under the time-dependent ROC curve over 1, 3, and 5 years were 0.7, 0.65, and 0.63, respectively (Figure 4C).
[image: Figure 3]FIGURE 3 | The distribution of risk scores in training (TCGA) and validation set (GSE68465). (A) The patients from TCGA training set were divided into high- and low-risk groups based on the median value of the risk scores. (B) The patients from GEO validation set were divided into high- and low-risk groups based on the median value of the risk scores. (C) The distribution of the survival time between high- and low-risk groups in the TCGA training set. (D) The distribution of survival time between high- and low-risk groups in the GEO validation set. (E) The t-SNE plot in the TCGA training set. (F) The t-SNE plot in the GEO validation set.
[image: Figure 4]FIGURE 4 | Evaluation of the predictive ability of the eight-gene signature. (A) K-M survival curve for OS in the TCGA training set. (B) K-M survival curve for OS in the GEO validation set. (C) Time-dependent ROC curve of prognostic model at 1-,3-,5-year in the TCGA training set. (D) Time-dependent ROC curve of prognostic model at 1,-3,-5- year in GEO validation set.
The area under the curve (AUC) of risk model in the TCGA training set was greater than 0.6, suggesting it had a good predictive power. To validate the generalization of our model, GSE68465 included 439 samples with useful survival information was applied for the following analysis. The risk scores distribution based on the median value and the association between survival time and risk scores was shown in Figures 3B,D. With an increase of the risk scores, the survival time was decreased, which was consistent with the results of the TCGA training set. t-SNE analysis showed good grouping effects between the two risk groups (Figure 3F). The K-M curve showed significant survival differences (p < 0.05) and patients in the high-risk group experienced worse survival outcomes (Figure 4B). The time-dependent ROC curve demonstrated good generalization effect, AUC values for the prognostic model over 1, 3, and 5 years were 0.7, 0.67, and 0.6, respectively (Figure 4D).
Functional and pathway enrichment analyses and estimation of the immune status between two risk groups
To elucidate the mechanism affecting the prognosis of LUAD patients between the two risk groups, GO annotation, KEGG enrichment analyses and immune cell infiltration status estimation were performed. The GO annotation of DEGs between the two risk groups were mainly enriched in the metabolic and multicellular organismal process (Supplementary Figure S1). KEGG results showed high-risk group significantly enriched in cell cycle processes (Figure 5A), including “E2F targets”, “G2M checkpoint” and “mitotic spindle” (Figure 5B), while low-risk group remarkably enriched in IFN-γ and inflammation related pathway (Figure 5C). Estimate algorithm was performed to compare immune status between the two risk groups (Figures 6A–D), the immune score and estimate score of low-risk group was significantly higher than high-risk group, while the tumor purity of low-risk group was remarkably lower than high-risk group. It seems the risk was consistent with the immune status. Then, ssGSEA was carried out to compare the distribution of immune cells (Figure 6E) and verified the “estimate” result. “Activated B cell”, “Activated CD8+T cell”, “Activated dendritic cell” and “Natural killer cell” were remarkably enriched in the low-risk group, which contributed to its decrease of risk.
[image: Figure 5]FIGURE 5 | Function and pathway enrichment analysis by GSEA between high- and low-risk groups in LUAD patients. (A–C) The pathway enrichment and analysis between high- and low-risk groups in LUAD patients.
[image: Figure 6]FIGURE 6 | Estimated the difference of immune status between high- and low-risk groups in LUAD patients by ESTIMATE and ssGSEA algorithm. The ESTIMATE algorithm evaluated the difference of (A) immune scores (B) stromal score (C) estimate score (D) tumor purity between high- and low-risk groups in LUAD patients (E) ssGSEA algorithm evaluated the level of immune cells infiltration between high- and low-risk groups in LUAD patients. ***p < 0.001; **p < 0.01; *p < 0.05; ns, Not significant.
Analysis of TMB between the two risk groups
TMB in high-risk and low-risk groups was also investigated. The differences in the mutational landscape between the two risk groups were shown in Figures 7A,B. The frequency of mutations was higher in the high-risk group (90.64%) as compared to the low-risk group (79.48%) in the waterfall map depicting the top 10 mutations. The boxplot showed that the low-risk group had a lower TMB value relative to the high-risk group (Figure 7C) (p < 0.001). Analysis of overall survival indicated that the patients from the intersection between low-TMB and high-risk groups showed the worst prognosis, while patients from the intersection between high-TMB and low-risk groups showed the best prognosis (p < 0.0001) (Figure 7D).
[image: Figure 7]FIGURE 7 | Analysis of the TMB between high- and low-risk groups and predicted prognosis in different combination in LUAD patients. (A) Waterfall plot demonstrated mutation information of the genes with high mutation frequencies in the high-risk group. (B) Waterfall plot demonstrated mutation information of the genes with high mutation frequencies in the low-risk group. (C) Difference of TMB between high- and low-risk groups. ***, p < 0.001. (D) K-M curve for four combinations groups divided by risk groups and TMB groups.
Construction of the nomogram and its calibration for patients with LUAD
The risk score was proved to be an independent prognostic factor after performed univariate and multivariate Cox regression analysis (p < 0.001) (Supplementary Figures S2, S3). The nomogram integrated the risk score with other clinical characteristics, including age, stage and gender for the prediction of 1-, 3-, and 5-year overall survival probabilities (Figure 8A), thus providing a quantitative tool for estimating prognosis of patients in the clinical settings. Good consistency was observed between the practical results and prediction outcomes (Figures 8B–D).
[image: Figure 8]FIGURE 8 | The nomogram for predicting the overall survival of LUAD patients. (A) The nomogram for predicting the LUAD patients with 1,-3,-5-year overall survival. (B–D) The plots depicted the calibration of the nomogram between predicted and actual outcomes.
DISCUSSION
LUAD is a heterogeneous intratumoral disease (Herbst et al., 2018), making its high incidence and mortality rate that causes major public healthcare concern (Malla et al., 2021). Traditional clinical treatment does not consider changes at the molecular level, and a huge deficiency exists in traditional clinical treatment. Although immunotherapy has substantially improved the survival of patients with advanced LUAD, the outcome remains unsatisfactory due to the tumor heterogeneity. While the studies on the roles of heterogeneity in TME are limited, therefore, it is necessary to identify potential biomarkers of TME to stratify patients for the personalized therapy. In this study, the prognostic risk model based on M-MDSCs-related genes demonstrated good prognostic prediction ability in the TCGA training set and showed good generalization effect in the GEO validation set. High- and low-risk groups stratified by prognostic biomarkers showed significant differences in survival analysis. Functional annotations and assessment of immune cell infiltration levels revealed that the high-risk group was enriched in cell cycle-relevant targets and contained lower infiltration ratios of CD8+T cells, which resulted in a strong immunosuppressive state than low-risk group. The patients from the intersection between low-risk and high-TMB groups had the best prognosis. Risk score was an independent prognostic factor, the nomogram indicated that the practical results and prediction outcomes had good consistency.
In our research, prognostic biomarkers consisted of eight genes (VPREB3, TPBG, LRFN4, CD83, GIMAP6, PRMT8, WASF1, and F12), most of which were closely related to the prognosis of LUAD. VPREB3 encoded proteins were involved in the maturation of B cells and might play an important role in the assembly of pre-B cell receptors (Rosnet et al., 2004). In the TME, B cells participated in all clinical stages of lung cancer and played an important role in tumor development (Wang S.-S. et al, 2019). TPBG was a leucine-rich transmembrane glycoprotein that encoded cell adhesion, which was expressed in many tumor tissues but hardly in normal adult tissues and was involved in the directional movement of cells. TPBG, also known as 5T4, was a marker of early differentiation of human embryonic stem cells and was involved in the EMT process and was associated with poor prognosis in a variety of tumors (Stern and Harrop, 2017). LRFN4, also known as SALM3, was expressed in many tumors and leukemia cell lines. LRFN4 was involved in the migration of monocytes/macrophages to inflammatory regions and might play a role in the polarization of M2 macrophage (Konakahara et al., 2011), which were involved in a poor prognosis for LUAD (Cao et al., 2019). The CD83 gene encoded a membrane protein that belonged to the immunoglobulin superfamily of receptors, studies had shown that CD83 was not only a typical co-stimulatory molecule, but played an important role in controlling the immune response (Grosche et al., 2020). CD83 was expressed in a variety of active immune cells (B lymphocytes, T lymphocytes, monocytes, dendritic cells, neutrophils, etc.) (Grosche et al., 2020), and these immune cells were closely related to the prognosis of LUAD. GIMAP6 was expressed in lymphocytes and was involved in the development of cells in the immune system, where it regulated immune function by controlling cell death and activating T cells (Ho and Tsai, 2017). In addition, GIMAP6 induced by IFN-γ played an important role in antimicrobial immunity (Yao et al., 2022). Although GIMAP6 had been poorly reported in the prognosis of LUAD, its activation of T lymphocytes played an important role in improving the prognosis of LUAD (Jackute et al., 2015). PRMT8 was a member of the arginine methyltransferase, its participation in arginine methylation played an important role in cell signaling, RNA processing, transcriptional regulation and DNA repair (Lee et al., 2005). PRMT8 had been reported to be involved in the prognosis of a variety of tumors, with high expression of PRMT8 associated with a good prognosis in breast and ovarian cancers and poor prognosis in gastric cancer (Hernandez et al., 2017). WASF1, also known as WAVE1, was a member of the Wiskott-Aldrich syndrome protein family and acted as a regulator between Rac-GTPase and actin to induce actin polymerization (Ito et al., 2018), was an integral part of cell motility and a key step in cancer metastasis (Fernando et al., 2008), which was a hallmark of poor prognosis in patients with LUAD (Inamura and Ishikawa, 2010). F12, also known as clotting factor 12, was a serine protease. There was substantial evidence showed they played an important role in macrophage polarization and tumor-associated macrophages were associated with poor prognosis for LUAD (Renne and Stavrou, 2019; Zheng et al., 2020). We investigated and explored the role of eight signature genes in the prognosis of LUAD, which reasonably explained as prognostic biomarkers to a certain degree.
The predictive power of prognostic risk model and significant difference in survival analysis between high- and low-risk groups of LUAD patients prompted us to explore the mechanism of the risk differences. GO enrichment results were consistent with the need for high-intensity metabolic activity in tumor cells. In the TME, tumor cells rapidly proliferated in a hypoxic environment, only by producing metabolic flows different from normal cells could they meet their survival in extreme condition. KEGG enrichment showed that the high-risk group was mainly enriched in the signaling pathways related to the cell-cycle (G2M_Checkpoint, E2F_Targets, Mitotic_Spindle), while the low-risk group was mainly enriched in the signaling pathways related to IFN-γ and inflammation. The result of high-risk group was consistent with the theory that overactivated cell cycle allowed tumor cells to evade immune surveillance in addition to accelerating cell proliferation (Li and Stanger, 2020), which contributed to its high risk. IFN-γ played an important role in activating cellular immunity and activating antitumor immunity (Jorgovanovic et al., 2020), which could kill tumor cells and led to low risk. Analysis of GO and KEGG showed the risk difference was closely related to the immune status of patients. Then, we estimated the level of immune cell infiltration with R packages “estimate” and “ssGSEA.” In the TME, which includes cells that exerts immune killing effects (CD8+T, CD4+T, NK, DC, M1, etc.) and immune suppressive effects (Treg, MDSCs, TAM, etc.), there are also stromal cells (CAF, etc.) and the infiltration ratio of different cells is closely related to the prognosis of LUAD patients. In the estimation of immune cells infiltration by “estimate,” the low-risk group had a higher proportion of immune score, a higher proportion of estimation score and a lower proportion of tumor purity when compared to the high-risk group, which pointed to the close relationship between risk difference and proportion of immune cell infiltration. In order to further verify the relationship between risk difference and immune status, we evaluated the level of immune cells infiltration between high- and low-risk groups with “ssGSEA” and found that the results were consistent with the estimation by “estimate.” Compared with the high-risk group, the low-risk group had a higher proportion of immune killing-related cells, such as activated B cells, CD8+T cells, DC cells and NK cells. Studies have shown that activated B cells (Germain et al., 2014), CD8+T cells (Gueguen et al., 2021), DC cells (Goc et al., 2014) and NK cells (Zeng Y. et al, 2021) were associated with a good prognosis in LUAD patients. In addition to explaining the mechanism of the difference of risk between the high- and low-risk groups, functional annotations and immune cell infiltration levels also indicated a close relationship between the degree of risk and immune status. The high-risk group was in an immunosuppressive state due to the overactivation of the cell cycle and a lower infiltration of immune-killing cells. Besides increasing the infiltration ratio of immune-killing cells, targeting cell cycle-related target signaling pathway will achieve a better clinical effect in reversing the immunosuppressive state of high-risk group. Available data showed the prognosis of LUAD patients was significantly improved by targeting G2M_Checkpoint-related signaling pathways (Zeng L. et al, 2021). The low-risk group had relatively strong immune-killing function with a higher infiltration ratio of CD8+T, which contributed to a better prognosis in LUAD patients. The correlation between the invasion ratio of CD8+T in tumor tissues and the response to ICIs had been clinically proved (Topalian et al., 2016). Given the relationship between risk level and immune status in high- and low-risk groups, it is reasonable to infer that low-risk group is more likely to benefit from ICIs treatment.
At present, ICIs therapy utilizes the immune system to kill tumor cells and only benefit a small number of patients who can respond to this treatment (Syn et al., 2017). Inspired by this phenomenon, we try to utilize some biomarkers to stratify these patients, to overcome the shortcomings of ICIs therapy caused by tumor heterogeneity. TMB is a potential molecular predictive biomarker for ICIs response, implying that neoantigens generated by tumor cells can be effectively recognized by the immune system (McGrail et al., 2021). However, using TMB as a predictive biomarker to select patients who can respond to ICIs therapy remains unsatisfactory (Addeo et al., 2019). The risk difference stratified by the prognostic biomarkers obtained from our model may explain the imperfect forecasting of TMB. A higher TMB means that there is a greater possibility producing tumor-associated neoantigens that can be effectively recognized by the immune system and thus can be utilized to predict the effects of immunotherapy. From the distribution of TMB and immune cells infiltration between high- and low-risk groups, patients from the intersection of low-risk and high-TMB groups might produce more effective tumor-associated neoantigens, which could be identified by cytotoxic T lymphocyte and led to more CD8+T cells infiltration, while patients from the intersection of high-risk and low-TMB groups might not produce enough tumor-associated neoantigens, which finally resulted in lower CD8+T cells infiltration. Prognostic analysis of the four combinations (high-risk and high-TMB, high-risk and low-TMB, low-risk and high-TMB, low-risk and low-TMB) confirmed this deduction, the patients from the intersection of low-risk and high-TMB groups had the best prognosis and the patients from the intersection of high-risk and the low-TMB groups had the worst prognosis. Hence, in theory, patients from the intersection of low-risk and high-TMB groups are more likely to sensitive response to and benefit from ICIs therapy.
Despite the promising results, our risk model demonstrates its potential value in precision medicine, the current study still exists some shortcomings. Firstly, the prognosis of patients is closely related to the TME. Considering the heterogeneity of the TME, constructing a prognostic risk model with only one kind of signature molecules may limit the prediction ability of the prognostic risk model. Secondly, the regulation of tumor progression by these eight genes requires experimental investigation. Thirdly, the samples for the construction of the prognostic risk model gathered from retrospective studies, whether the conclusion can guide the clinic still needs a large number of multi-center clinical samples for further discussion and verification.
CONCLUSION
In conclusion, the prognostic risk model constructed by M-MDSCs-related genes shows good predictive ability in the prognosis of LUAD patients. The risk stratification of patients by prognostic biomarkers demonstrates the degree of risk is closely related to immune status. Theoretically, the patients have the characteristics of both low-risk and high-TMB are not only more sensitive response to but also more likely to benefit from ICIs treatment.
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Background: The only curative option for patients with locally or locally advanced adrenocortical carcinoma is primary tumor curative sexual resection (ACC). However, overall survival remains low, with most deaths occurring within the first 2 years following surgery. The 5-year survival rate after surgery is less than 30%. As a result, more accurate prognosis-related predictive biomarkers must be investigated urgently to detect patients’ disease status after surgery.
Methods: Data from FerrDb were obtained to identify ferroptosis-related genes, and ACC gene expression profiles were collected from the GEO database to find differentially expressed ACC ferroptosis-related genes using differential expression analysis. The DEFGs were subjected to Gene Ontology gene enrichment analysis and KEGG signaling pathway enrichment analysis. PPI network building and predictive analysis were used to filter core genes. The expression of critical genes in ACC pathological stage and pan-cancer was then investigated. In recent years, immune-related factors, DNA repair genes, and methyltransferase genes have been employed in diagnosing and prognosis of different malignancies. Cancer cells are mutated due to DNA repair genes, and highly expressed DNA repair genes promote cancer. Dysregulation of methyltransferase genes and Immune-related factors, which are shown to be significantly expressed in numerous malignancies, also plays a crucial role in cancer. As a result, we investigated the relationship of AURKA with immunological checkpoints, DNA repair genes, and methyltransferases in pan-cancer.
Result: The DEGs found in the GEO database were crossed with ferroptosis-related genes, yielding 42 differentially expressed ferroptosis-related genes. Six of these 42 genes, particularly AURKA, are linked to the prognosis of ACC. AURKA expression was significantly correlated with poor prognosis in patients with multiple cancers, and there was a significant positive correlation with Th2 cells. Furthermore, AURKA expression was positively associated with tumor immune infiltration in Lung adenocarcinoma (LUAD), Liver hepatocellular carcinoma (LIHC), Sarcoma (SARC), Esophageal carcinoma (ESCA), and Stomach adenocarcinoma (STAD), but negatively correlated with the immune score, matrix score, and calculated score in these tumors. Further investigation into the relationship between AURKA expression and immune examination gene expression revealed that AURKA could control the tumor-resistant pattern in most tumors by regulating the expression level of specific immune examination genes.
Conclusion: AURKA may be an independent prognostic marker for predicting ACC patient prognosis. AURKA may play an essential role in the tumor microenvironment and tumor immunity, according to a pan-cancer analysis, and it has the potential to be a predictive biomarker for multiple cancers.
Keywords: AURKA, pan-cancer analysis, tumor micro-environment, regulatory mechanism, ferroptosis
INTRODUCTION
Adrenal cortical carcinoma (ACC) is a rare malignant tumor with an annual incidence of one to two per million that can occur at any age and is more common in women (Cheng et al., 2021; Faron et al., 2022; Pitsava et al., 2022). It is an incidental adrenal tumor and one of the most common reasons for adrenalectomy, accounting for 14% of all spontaneous adrenal tumors (Alyateem and Nilubol, 2021). Although radical resection is the only option for the majority of ACC patients, postoperative survival remains low. As a result, understanding the molecular mechanism of ACC and identifying key target molecules can help predict tumor prognosis.
Currently, ACC is diagnosed using hormone detection and imaging, which plays a vital role in the initial diagnosis and prognostic detection and necessitates repeated detection (Mete et al., 2022). Efforts have been made for decades to discover new reliable, usable diagnostic and prognostic factors. Despite these achievements, 5-year mortality remains higher than 50% (Mizdrak et al., 2021). Accordingly, it is critical to discover new biomarkers that can predict patient outcomes and provide new treatment options.
Ferroptosis, a distinct mechanism of cell death caused by iron-dependent phospholipid peroxidation, has been shown to damage treatment-resistant cancer cells, particularly those in mesenchymal condition and prone to metastasis (Jiang et al., 2021). Correlative research has demonstrated that ferroptosis-related genes are linked to prognosis in various malignancies, including uveal melanoma, glioma, and adrenocortical tumors (Chen et al., 2021a; Luo and Ma, 2021; Zheng et al., 2021).
Aurora kinase A (AURKA) is a serine/threonine kinase family member, and its activation has been linked to several malignancies. Several studies have shown that highly expressed AURKA can be used as a prognostic marker in various malignancies, including ACC (Du et al., 2021; Tang et al., 2021; Zhang et al., 2022).
Tumor samples from GEO databases were combined with standard models in this study. Differential expression analysis and ACC predictive analysis revealed significantly correlated genes. Pan-cancer analysis was used to study the expression of target genes in 40 different types of cancer. Then the correlations between target gene expression and tumor immune microenvironment, immune checkpoints, DNA repair genes, and methyltransferase were discovered.
MATERIALS AND METHODS
Data source
The GEO database (https://www.ncbi.nlm.nih.gov/geo) was used to download the RNA expression data for ACC from accession numbers GSE12368, GSE19750, and GSE75415, which contained 17 regular and 74 tumor tissues. All data were quantile normalized using a log2-scale transformation. The gene symbols found in multiple probes were calculated using their mean expression levels.
Ferroptosis-related genes
The “Limma” package of R software was used to investigate the differential expression genes (DEGs) of ACC (version: 3.42.2). p-values were adjusted to account for false-positive results. The number of highly expressed molecules in groups 1 (tumor) and 2 (standard control) that met the |log2(FC)|>1&p. Adj0.05 threshold was counted. The DEGs were also visualized using the “ComplexHeatmap” and “ggplot2” packages. The DEGs and ferroptosis-related genes were then intersected to obtain ferroptosis-related genes with differential expression (DEFGs).
Functional analysis
Metascape Online (https://metascape.org/gp/index.html#/main/step1) was used for available analysis. Metascape was used to perform functional analysis and build a PPI network using the ferroptosis-related genes. MCODE was used to reveal more densely connected regions.
Construction and prognostic value of IRSS
Univariate (Wei et al., 2022) Cox regression model is a semi-parametric regression model. The model’s dependent variables are survival results and survival time. It may examine the impact of several variables on survival time simultaneously. It does not require estimated data and can evaluate data with suppressed survival time. The least absolute shrinkage and selection operator (LASSO) is an L1-regularized linear regression approach. Using L1-regularization, part of the learned feature weights will be set to zero, achieving the goal of sparsity and feature selection (Tian et al., 2022). Univariate Cox regression analysis of DEFGs was used to identify significant prognosis-related genes, followed by LASSO regression analysis to obtain independent genes. A multivariate Cox regression analysis was also performed to obtain regression coefficients for independent prognostic factors. Finally, an immune risk score signature (IRSS) based on the Cox regression coefficient beta value was developed.
Survival analysis
One-way Cox was used to analyze the association of ACC expression with patient survival, and Xian Tao Academic created a forest plot of the correlation of overall survival and disease-specific survival of ARUKA in pan-cancer (https://www.xiantao.love).
Immune correlation analysis
The TIMER database was used to download data from multiple immune-infiltrating cells in 40 cancers, and the correlation between target gene expression and immune cell scores was examined separately. A lollipop graph of the correlation of target genes with immune cells in the cancer microenvironment and a diagram of the correlation of target genes with immune scores, stromal scores, and computational scores in five cancers were drawn using Xian Tao Academic (https://www.xiantao.love).
Correlation analysis of DNA repair genes and methyltransferases
Using the TCGA expression profiling data, the correlation of DNA repair genes with target gene expression was assessed. The relationship between methyltransferases and the target gene was also investigated. Xian Tao Academic (https://www.xiantao.love) was used to create heat maps, with red dots indicating significant correlations.
RESULTS
Results of DEGs screening in ACC
The information on the GEO database used is listed in Table 1. A total of 2,311 differentially expressed genes were identified following differential gene analysis: in GSE12368, the total number of molecules after filtering was 21,655, of which 849 IDs met the |log2(FC)|>1&p. Adj0.05 threshold. There were 170 highly expressed (logFC is positive) individuals in the standard group and 679 highly expressed (logFC is negative) individuals in the tumor group. The number of molecules in GSE19750 after filtering is 21,655, and 849 IDs meet the |log2(FC)|>1&p. Adj0.05 threshold.
TABLE 1 | The information of datasets from the GEO database.
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We used Metascape Online to perform a functional analysis to investigate ACC’s underlying mechanisms of ferroptosis signatures. The Gene Ontology (GO) analysis results show that these DEFGs were primarily enriched in response to stimuli, oxidative stress responses, immune system processes, and negative regulators of transferase activity, as shown in Figures 1C, D. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, these d DEFGs were primarily enriched in ferroptosis, cellular responses to stimuli, selective autophagy, and EIE2AKI response to heme deficiency. As a result of these findings, we decided to investigate the relationship between the ferroptosis-gene set and the tumor immune microenvironment. Furthermore, the MCODE plugin and the MetascapeOnline-based protein-protein interaction (PPI) network identified necessary modules in these filiform genes (Figure 1D). STMN1, CDKN2A, CDKN1A, MAP3K5, TNFAIP3, and AURKA are involved in seven edges and six nodes.
Construction and prognostic value of IRSS
The associations of 42 DEFGs with overall survival in ACC were calculated separately using univariate survival analysis. Six genes were significantly related to ACC prognosis, including AURKA, TNFAIP, HELLS, STMN1, FANCD2, and SLC4OA1. The high expression of the six genes associated with poor prognosis in ACC, as shown in Figure 2A, greatly impacted the overall survival of ACC patients and was followed by LASSO regression analysis.
[image: Figure 2]FIGURE 2 | Establishment of ACC ferroptosis-related prognostic model. (A) six Significantly Differential Gene Survival Analysis Survival Chart. (B) Forest plot showing the results of a univariate Cox regression analysis. (C) Ten-fold cross-validation plot. (D) LASSO coefficient trajectory diagram. (E) The risk score, survival status and heat map of three key genes in patients.
LASSO regression can improve model accuracy and interpretability while also eliminating the issue of collinearity between independent variables (Yu et al., 2021). The results of Figures 2C, D determined that the model fit best when the penalty coefficient was 3, and the corresponding three immune genes, TNFAIP3, AURKA, and HELLS, were included in the model (Figure 2E).
Each patient’s risk score was calculated as previously described (Peng et al., 2022). Furthermore, the risk score of each ACC patient was directly computed using the above formula. The samples were then divided into high- and low-risk groups, which were then grouped based on the median. The KM curve results showed that the high-risk group had a worse prognosis than the low-risk group (Figure 3A, log-rank p 0.001; HR = 11.63% CI = 3.9634,12).
[image: Figure 3]FIGURE 3 | Validation of the model. (A) Survival map of high and low risk patients. (B) 3-Gene time-dependent ROC plot. (C) Single-gene time-dependent ROC plot. (D) Expression of AURKA in normal population and ACC patients. (E) Expression of AURKA in ACC patients at different stages. (F) AURKA expression in a wide range of cancers.
The area under the receiver operating characteristic (ROC) curve (AUC) was used to assess IRSS’s prognostic predictive value in ACC patients. The receiver operating characteristic curves are referred to as ROC curves, with sensitivity as the ordinate and 1-specificity as the abscissa (DeLong et al., 1988). The AUC is a probability value ranging from 0.5 to -1 that is used to evaluate the accuracy of the model prediction; a more extensive area indicates higher accuracy. In the current study, the greater its value, the greater the agreement between predicted and actual overall survival.
The area under the curve (AUC) was 0.918 (3-year OS), 0.902 (5-year OS), and 0.853 (7-year OS), as shown in Figure 3B, indicating that the prediction model was well established. We also created ROC curves for the effect of AURKA alone on survival time in ACC patients, with AUCs of 0.906 (2-year OS), 0.920 (3-year OS), and 0.818 (5-year OS) (Figure 3C). The above results demonstrated the model’s robustness and accuracy in predicting patient prognosis. Simultaneously, we discovered that AURKA’s single-gene and polygenic prognostic models have similar prediction results. AURKA is a common intersection of ferroptosis-related genes and three differentially expressed gene sets in the GEO database. As a result, we make the bold assumption that AURKA is a crucial gene associated with ferroptosis prognosis in ACC. Then, we looked at AURKA’s pan-cancer expression and its relationship to ACC pathological stage.
Expression of AURKA in pan-cancer
The expression level of AURKA was higher in ACC tissue (Figure 3D), and the expression level of AURKA in different stages of ACC was shown in Figure 3E, indicating that the expression level of AURK increased with the progression of ACC. We then investigated AURKA expression in pan-cancer, and the results show that AURKA was highly expressed in all 31 tumors except PCPG and THCA (Figure 3F).
Prognostic analysis of AURKA expression in ACC and other cancers
The correlation of AURKA expression with overall survival and disease-specific survival in 40 TCGA tumors was calculated using univariate survival analysis. AURKA expression, as shown in Figure 4A, significantly impacted overall survival in multiple cancers.
[image: Figure 4]FIGURE 4 | Prognostic analysis of AURKA in pan-cancer. (A) Forest plot of overall survival prognostic analysis of AURKA in pan-cancer. (B) Disease-specific survival prognostic analysis of AURKA in pan-cancer.
In addition to COAD, COADREAD, DLBC, ESCC, and THYM, forest plot results revealed that high AURKA expression was associated with poor patient prognosis. Figure 4B depicts the correlation of AURKA expression with disease-specific survival, demonstrating that in ACC, GBMLGG, KICH, KIRC, KIRP, and LGG, patients with high AURKA expression had significantly lower disease-specific survival than patients with common AURKA expression. Overall, the findings suggest that AURKA could be used to predict the prognosis of ACC and other cancers.
Correlation of AURKA with immune cells in the pan-cancer microenvironment
It has been studied whether AURKA expression correlates with immune infiltration in ACC or other types of cancer. The findings revealed that AURKA expression is associated with the level of immune infiltration in various tumors. Particularly Th2 cells. AURKA was significantly positively correlated with Th2 cells in all 40 cancers studied, and it was the first positive correlation. We also chose 12 cancers to map the relationship between AURKA and immune cells in these cancer microenvironments (GBM, LUSC, LUAD, TGCT, CESC, COADREAD, SARC, ACC, KICH, ESAD, STAD, READ). Figure 5 shows that, in addition to Th2 cells, many other immune cells were negatively correlated with AURKA. The killer CD8+T regulated by Th1 was the main focus of the previous immunotherapy study for AURKA. Perhaps Th1-executing B Cells will have an unanticipated effect on AURKA targeted therapy. AURKA may also inhibit other immune cells in the tumor microenvironment, though the specific mechanism is unknown.
[image: Figure 5]FIGURE 5 | Lollipop plot of AURKA’s association with immune cells in 12 cancers.
Xiantao Academic then created a correlation chart of AURKA expression levels in LUAD, SARC, ACC, ESCA, STAD, immune score, matrix score, and calculation score, which were all negatively correlated (Figure 6).
[image: Figure 6]FIGURE 6 | Correlation of AURKA expression level with immune score, stroma score, calculated score in LUAD (A), SARC (B), ACC (C), ESCA (D), STAD (E).
Correlation of AURKA expression with immune checkpoints
More than 40 common immune checkpoint genes were analyzed, as was the relationship between AURKA expression and immune checkpoint gene expression. Figure 7 depicts the results. AURKA was positively correlated with the presentation of immune checkpoint genes in many cancers, which supports our findings in Figure 5. Meanwhile, we discovered that AURKA was significantly negatively associated with most checkpoint genes in thymic carcinoma. The thymus is the site of T cell maturation and a mechanism that inhibits the AURKA-mediated increase in immune checkpoint expression, protecting T cells in the thymus.
[image: Figure 7]FIGURE 7 | Heatmap of AURKA’s association with immune checkpoints in a broad range of cancers.
The relationship between AURKA expression and DNA repair gene and methyltransferase expression
AURKA was found to be associated with DNA repair genes as well as methyltransferase genes in several common cancers, as shown in Figures 8A, B. AURKA may have an indirect effect on cancer development and progression by modulating epigenetic status.
[image: Figure 8]FIGURE 8 | The relationship between AURKA expression and DNA repair gene and methyltransferase expression. (A) Heatmap of correlations between AURKA and DNA repair genes. (B) Heatmap of correlation between AURKA and methyltransferase genes.
DISCUSSION
Although the incidence of adrenal cortical carcinoma is very low, it is one of the most aggressive solid tumors with a poor prognosis (Yeoh et al., 2022). Furthermore, the recurrence of ACC patients after surgery is still common. As a result, more biomarkers are required for more accurate predictive detection in ACC patients to improve the detection of postoperative risk. The discovery of predictive cancer biomarkers can aid in predicting each patient’s prognosis (Mizdrak et al., 2021; Lippert et al., 2022; Waszut and Taylor, 2022). Using robust rank analysis and a PPI network, XiaoH et al. identified five genes (TOP2A, NDC80, CEP55, CDKN3, and CDK1) that could predict the prognosis of ACC (Xiao et al., 2018). Giordano et al.‘s laid the groundwork for ACC molecular classification and prediction, as well as a rich source of potential diagnostic and prognostic markers (Xu et al., 2019).
Ferroptosis is a new iron-dependent programmed cell death method discovered that can induce cell death by promoting cellular lipid peroxidation. It is involved in the occurrence and development of many diseases and plays an essential regulatory role in disease processes. Related studies have shown that ferroptosis plays a role in the progression of various cancers. For example, inhibiting glutathione synthesis in ccRCC in clear cell renal cell carcinoma can induce ferroptosis and inhibit tumor growth (Miess et al., 2018); According to other research (Liu et al., 2020; Chen et al., 2021b; Lu et al., 2022), ferroptosis attenuates the viability of glioma cells, and activation of ferroptosis inhibits glioma cell proliferation. Inhibition of ferroptosis accelerates glioma proliferation and metastasis and promotes angiogenesis and malignant transformation of gliomas. One study discovered that ferroptosis sensitivity was significantly increased in adrenocortical carcinoma and proposed ferroptosis induction as a treatment option for ACC (Belavgeni et al., 2019).
We obtained six critical genes in this study by crossing the up-regulated genes in ACC with the genes associated with overall survival in ACC. Three of them were chosen to build a polygenic model. The AURKA prediction model and the polygenic model produced very similar results. Meanwhile, AURKA is the point of convergence for the ferroptosis-related gene set and the GEO databases. As a result, we boldly identified AURKA as a critical gene in ACC ferroptosis. We then looked at AURKA expression in ACC and other cancers to see if it had any predictive value. The findings revealed that AURKA was highly expressed in ACC and most cancers and that its expression level increased as ACC progressed. It is consistent with previous research findings (Naso et al., 2021; Sankhe et al., 2021; Ng et al., 2022; Wang et al., 2022). Related studies have also shown high levels of AURKA as an indicator of poor prognosis in bladder cancer. It is also associated with the development and prognosis of rectal cancer, hepatocellular carcinoma, and head and neck cancer (Lu et al., 2021; Tsepenko et al., 2021; Guo et al., 2022; Huang et al., 2022). This research discovered that high AURKA was related to a bad prognosis in various malignancies by creating a deep forest graph and feeding back the association between AURKA, overall survival, and disease-specific survival. It gives compelling evidence that ARUKA may be used to predict the prognosis of ACC and other malignancies.
In addition, we investigated the relationship between AURKA and immune cells in the pan-cancer microenvironment. We discovered that AURKA had a substantial positive link with Th2 cells in all 40 malignancies studied, and these were all the first positive correlations. We next chose 12 malignancies to investigate the association between AURKA and immune cells in them, finding that all immune cells except Th2 cells were adversely connected with AURKA. Previous research (Bustos-Moran et al., 2019; Sun et al., 2021; Long and Zhang, 2022) has shown that AURKA may impact T cells, reshape the immunosuppressive tumor microenvironment, apoptosis, and hypoxia and hence contribute to immunological control, particularly CD8+ T cells that govern Th1 regulation. For example, studies (Han et al., 2020) suggest that decreasing Aurora-A activity or deleting the AURKA gene might boost IL10-induced infiltration and growth of CD8+ T cells in malignancies. Th1-executing B Cells may have unanticipated impacts on AURKA targeted treatment. AURKA may also block other immune cells in the tumor microenvironment, albeit the particular mechanism is unknown. We next looked at the relationship between AURKA expression level and immunological score, stromal score, and computational score in five malignancies (ACC, SARC, LUAD, ESCA, and STAD), which were all shown to be negatively linked. AURKA has also been identified to affect tumor immunological patterns in diverse malignancies by controlling the expression of particular immune checkpoint genes, according to subsequent research. AURKA was shown to be favorably connected with the indication of immune checkpoint genes, which supports our prior results from a pan-cancer immunological correlation study. The discovery of immunological checkpoints opens up new avenues for tumor therapy. Immune checkpoint inhibitors have been employed in treating many tumors recently, and their effectiveness and safety have been objectively validated (Cai et al., 2022; Minegishi et al., 2022). In addition, we discovered an intriguing phenomenon. AURKA was strongly inversely related to most checkpoint genes in thymic cancer. The thymus is the location of T cell maturation. Thymic cancer has a mechanism that blocks the AURKA-mediated rise in immune checkpoint expression, safeguarding T cells in the thymus.
DNA repair capacity, which is primarily determined by repair gene expression levels, is the first line of defense against genotoxic stress, which causes metabolic changes, inflammation, and cancer, and is also required for maintaining genome stability and protecting cells from endogenous and exogenous DNA traumatic injuring (Shao et al., 2022; Zuo et al., 2022).
This study looked at nine DNA repair genes: MSH2, MSH3, MSH6, MLH1, PMS2, EPCAM, MGMT, ALKBH2, and ALKBH3. In most malignancies, AURKA expression was strongly positively linked with DNA repair genes, according to the findings. Furthermore, the results of this study revealed that the levels of ARUKA and the methyltransferase gene expression exhibited a substantial positive link in a range of malignancies.
CONCLUSION
To summarize, we did differential expression analysis on the GEO database data, obtaining DEFGs by intersecting with ferroptosis-related genes and exploring some information from them. The significant result is that AURKA is a critical gene for the prognosis of ferroptosis in ACC and can be exploited as an ACC biomarker. The expression of ARUKA is connected with the tumor microenvironment and the number of immune cells in the pan-cancer study, which can impact cancer growth by controlling the level of immune cells, DNA repair, and DNA methylation. This result can only be reached from bioinformatics research, and thus further biological tests are required to demonstrate ARUKA’s probable relevant activities, action mechanisms, and signaling pathways in ACC ferroptosis. It is believed that this work would aid in related research while providing additional biological information about the mechanism of AURKA in tumor immunity and the tumor microenvironment in future research.
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Background: Cervical cancer (CC), the fourth most common cancer among women worldwide, has high morbidity and mortality. Necroptosis is a newly discovered form of cell death that plays an important role in cancer development, progression, and metastasis. However, the expression of necroptosis-related genes (NRGs) in CC and their relationship with CC prognosis remain unclear. Therefore, we screened the signature NRGs in CC and constructed a risk prognostic model.
Methods: We downloaded gene data and clinical information of patients with cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) from The Cancer Genome Atlas (TCGA) database. We performed functional enrichment analysis on the differentially expressed NRGs (DENRGs). We constructed prognostic models and evaluated them by Cox and LASSO regressions for DENRGs, and validated them using the International Cancer Genome Consortium (ICGC) dataset. We used the obtained risk score to classify patients into high- and low-risk groups. We employed the ESTIMATE and single sample gene set enrichment analysis (ssGSEA) algorithms to explore the relationship between the risk score and the clinical phenotype and the tumor immune microenvironment.
Results: With LASSO regression, we established a prognostic model of CC including 16 signature DENRGs (TMP3, CHMP4C, EEF1A1, FASN, TNF, S100A10, IL1A, H1.2, SLC25A5, GLTP, IFNG, H2AC13, TUBB4B, AKNA, TYK2, and H1.5). The risk score was associated with poor prognosis in CC. Survival was lower in the high-risk group than the low-risk group. The nomogram based on the risk score, T stage, and N stage showed good prognostic predictive power. We found significant differences in immune scores, immune infiltration analysis, and immune checkpoints between the high- and low-risk groups (p < 0.05).
Conclusion: We screened for DENRGs based on the TCGA database by using bioinformatics methods, and constructed prognostic models based on the signature DENRGs, which we confirmed as possibly having important biological functions in CC. Our study provides a new perspective on CC prognosis and immunity, and offers a series of new targets for future treatment.
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1 INTRODUCTION
Cervical cancer (CC) is one of the most common cancers in women, and it is the fourth leading cause of cancer death (Vu et al., 2018). Globally, there are an estimated 530,000 new cases and 270,000 deaths each year. Today, preventive human papillomavirus (HPV) vaccination for CC is available worldwide, but more than a quarter of patients with CC still die each year due to a severe lack of medical supplies in many developing countries (Small et al., 2017). Despite the multidisciplinary approach of surgery combined with chemotherapy that has been applied to patients with CC, their prognosis remains unsatisfactory, making the search for an effective therapeutic target an urgent issue (Ghasemi et al., 2019).
Cell death is an important component in maintaining homeostasis in an organism, and resistance to cell death is usually the cause of tumor formation. Cell death can be divided into two types: necrosis and apoptosis. In recent years, a novel type of cell death has been identified that differs from necrosis and apoptosis, namely necroptosis, which is mechanistically and morphologically similar to apoptosis and necrosis (Gong et al., 2019). Necroptosis, a complementary mode of apoptotic failure, is a type of programmed cell death that is activated by caspase-independent signaling pathways, mainly by the receptor-interacting protein kinase 1 and 3 (RIPK1/RIPK3)/mixed lineage kinase domain-like protein (MLKL) complex (Quarato et al., 2016). Necroptosis is thought to play a key role in cancer progression and metastasis, and some studies have identified necroptosis-related genes (NRGs) as possible biomarkers of cancer prognosis (Gong et al., 2019). MLKL has recently been identified as a downstream component of RIPK3, a key factor in tumor necrosis factor (TNF)-induced necroptosis, and as a prognostic biomarker in CC (Ruan et al., 2015). Necroptosis also plays an important role in tumor immunology and cancer immunotherapy, where it is involved in triggering CD8+ T cell–driven antitumor immunity (Sprooten et al., 2020). RIPK3, a regulator of necroptosis in tumor cells, also serves as a novel predictive marker for cancer immunotherapy personalization (Smola, 2016). Fibroblasts in the tumor microenvironment (TME) induce a robust immune response through necroptosis and initiate transduction through nuclear factor κB (NF-κB) signaling (Yatim et al., 2015). Considering its important role in cancer biology and antitumor immunity, necroptosis has emerged as a new target for bypassing cell death resistance and modulating antitumor immunity and tumor therapy in oncological treatment. Induction of necroptosis by pharmacological intervention is emerging as a promising tool for multiple anti-apoptotic cancer cells. RETRA has been shown to play a role in CC treatment as a drug-induced necroptosis anticancer agent by selectively inducing necroptosis in CC cells through phosphorylation of the structural domains of RIPK1/RIPK3 and MLKL (Mohanty et al., 2022). However, to date, few studies have investigated the significance of NRGs in the prognosis and immunotherapy of CC.
In this study, we screened NRGs as prognostic biomarkers for CC using The Cancer Genome Atlas (TCGA) database and constructed an associated risk prediction model based on 16 signature DENRGs. We comprehensively analyzed the role of NRGs in CC and highlighted their prognostic and immunotherapeutic potential for CC. Analysis of immune infiltration, TME, immune checkpoints, mutations, and clinicopathological features revealed significant differences between the high- and low-risk CC groups. Our study provides accurate prognostic predictions and effective immunotherapy strategies for patients with CC.
2 MATERIALS AND METHODS
2.1 Data collection
We extracted transcriptome profiles, clinical characteristics, and tumor mutation data (simple nucleotide variation) of patients with cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) from the TCGA database (https://portal.gdc.cancer.gov/). We collected NRGs from the following Gene Ontology (GO) terms: necroptotic process (GO:0070266), execution phase of necroptosis (GO:0097528), necroptotic signaling pathway (GO:0097527), negative regulation of necroptotic process (GO:0060546), positive regulation of necroptotic process (GO:0060545), regulation of necroptotic process (GO:0060544), ripoptosome assembly involved in necroptotic process (GO:1901026), negative regulation of programmed necrotic cell death (GO:0062099), positive regulation of programmed necrotic cell death (GO:0062100), programmed necrotic cell death in response to starvation (GO:0097385), regulation of mitochondrial membrane permeability involved in programmed necrotic cell death (GO:1902445), and regulation of programmed necrotic cell death (GO:0062098). We identified 651 genes associated with necrotizing apoptosis via GeneCards. A published study proposed 159 genes (Zhang et al., 2022). After removing the duplicated genes involved in the above GO terms, we had a total of 749 NRGs for the downstream analysis.
2.2 Identification and functional analysis of differentially expressed NRGs in CC
We identified differentially expressed genes (DEGs) between 306 CC and three adjacent control samples by using the “DESeq2” R package with |log2FC| >1 and adjusted p-value <0.05 as criteria (Waardenberg and Field, 2019). We obtained differentially expressed NRGs (DENRGs) by overlapping DEGs with the 749 NRGs. We used the “ClusterProfiler” R package to screen significantly enriched GO terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of DENRGs with the threshold of an adjusted p-value <0.05. Furthermore, we uploaded DENRGs to the STRING database (https://string-db.org/) to investigate their interactions.
2.3 Construction and verification of the risk score model in CC
According to the expressions of prognostic DENRGs and coefficients, we calculated the risk score of each patient in the training set with the following formula: ∑(coefficient × gene expression). According to the median value of the risk score, we divided patients in the training set into high- and low-risk groups. We analyzed the overall survival of high- and low-risk groups with Kaplan-Meier analysis. To evaluate the accuracy of risk score model, we plotted receiver operating characteristic (ROC) curves using “survivalROC” in R. We used the International Cancer Genome Consortium (ICGC) dataset as the validation group to verify the above results. Moreover, to test the reliability of the risk score model, we conducted similar analyses in the validation set.
2.4 Construction of the nomogram to predict prognosis of CC
To determine independent prognostic factors for CC patients, we used clinical characteristics (age, sex, and TNM stage) and the risk score for univariate and multivariate Cox regression analysis. Then, we incorporated independent prognostic factors to construct the nomogram to predict the 1-, 3-, and 5-year survival of patients with CC. We plotted calibration curves to evaluate the performance of the nomogram.
2.5 Exploration of the mechanisms underlying necroptosis-related CC
To explore the potential mechanisms of prognostic DENRGs in regulating CC, we performed the following analyses. 1) We compared the risk score among different subgroups stratified by T stage (T1, T2, T3, T4), N stage (N0, N1), M stage (M0, M1), and grade (G1, G2, G3, G4) using the Wilcoxon or Kruskal–Wallis test to investigate the relationship between risk score and the progression of CC. 2) We downloaded GO and KEGG reference gene sets from the MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb/) to perform gene set enrichment analysis (GSEA). We identified significantly enriched GO terms and KEGG pathways between the low- and high-risk score with an adjusted p-value <0.05. 3) We calculated the immune and stromal score of each patient with the ESTIMATE algorithm, and then determined the correlations between the risk score and immune/stromal scores. 4) We downloaded a 28 immune cell gene sets from The Cancer Imaging Archive (TCIA) database. We calculated the single sample GSEA (ssGSEA) scores for the different types of immune cells in each sample by using the “GSVA” package in R to compare the differences in immune infiltration levels between samples from the high- and low-risk groups (Cheng et al., 2021). We used the Wilcoxon test to analyze difference.
2.6 Analysis of the TME score, tumor mutation burden, and immune checkpoint molecules
1) We predicted the proportion of infiltrating stromal and immune cells in tumor tissue using the “estimate” package in R, based on ssGSEA. We generated the stromal score, the immune score, and the ESTIMATE score (Ke et al., 2021). 2) We downloaded mutation data from the TCGA database, selecting the TCGA-ESCA project, simple nucleotide variation as the data category, VarScan2 Variant Aggregation as the workflow type, and used masking. We used “maftools” in R to calculate the mutation load for each sample. We evaluated the mutations in the 16 genes used to establish the prognosis. 3) We extracted the expression of 47 immune checkpoint molecules from the training set expression matrix and compared their expression differences between the high- and low-risk groups using the Wilcoxon test. We screens 27 differentially expressed immune checkpoint–related genes between the high- and low-risk groups using an adjusted p-value <0.05 as the screening criterion.
2.7 Statistical analysis
We assessed the difference in overall survival between the high- and low-risk groups by the Kaplan-Meier method and log-rank test. We determined the predictive accuracy of the risk model by determining the area under the ROC curve (AUC). We used R version 4.0.0 for all analysis. We considered significant differences as p < 0.05 unless otherwise specified.
3 RESULTS
3.1 One hundred eighty DENRGs are associated with CC
The study flow chart is presented in Figure 1. We identified 4,857 DEGs between the CC and control samples, including 2,998 upregulated and 1,859 downregulated genes (Figure 2A). We identified 749 NRGs from GeneCards and the literature; the list is shown in Table S1. The top 15 upregulated and top 15 downregulated genes are shown in a heatmap (Figure 2B); the logFC of the top 20 NRGs is shown in another heatmap (Supplementary Figure S1). A volcano plot of NRGs is presented in Figure S2. After overlapping DEGs with NRGs, we identified 180 genes as DENRGs (Figure 2C). The list of 180 DENRGs is shown in Table S2. In addition, we constructed a protein–protein interaction (PPI) network, in which we observed the interplay among most DENRGs (Figure 2D).
[image: Figure 1]FIGURE 1 | The flow chart of this study. Abbreviations: DENRGs, differentially expressed necroptosis-related genes; GO, Gene Ontology; GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; NRGs, necroptosis-related genes.
[image: Figure 2]FIGURE 2 | (A) Identification of differentially expressed necroptosis-related genes (DENRGs). Identification of differentially expressed genes (DEGs) in cervical cancer (CC) tumor tissue and normal control tissue based on a volcano plot. (B) The expression of the top 15 upregulated and downregulated genes in CC presented in a heatmap. (C) The expression of 180 DENRGs between the tumor and normal groups. (D) Protein–protein interaction network of the 180 DENRGs.
3.2 Functional enrichment of DENRGs
Functional analysis showed that DENRGs are mainly enriched in GO terms and KEGG pathways relevant to necroptosis and apoptosis. In biological processes, DENRGs are mainly enriched in cell death and related receptor signaling pathways. In cellular components, DENRGs are mainly enriched in DNA damage repair related pathways. In molecular functions, DENRGs are enriched in pattern recognition receptor activity pathways (Figures 3A–C). Moreover, KEGG analysis revealed that these DENRGs are mainly enriched in necroptosis, influenza A, and apoptosis (Figure 3D).
[image: Figure 3]FIGURE 3 | Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed necroptosis-related genes (DENRGs). GO enrichment of DENRGs for (A) biological processes, (B) cellular components, and (C) molecular functions. (D) KEGG enrichment of DENRGs.
3.3 Construction and validation of DENRG-related prognostic signature
We evaluated the prognostic value of 16 DENRGs in CC by univariate Cox and LASSO regressions. By univariate Cox regression, we found 26 DENRGs (TPM3, CHMP4C, EEF1A1, FASN, TNF, MY O 1B, S100A10, IL1A, H2BC12, ALOX15, H2AC8, H1.2, EZH2, GSN, SLC25A5, FASLG, GLTP, IFNG, H2AC13, TRAF2, TUBB4B, AKNA, BCL2, TYK2, H2AC16, and H1.5) to be significantly related with the survival of patients with CC (Figure 4A). To obtain a more robust prognostic signature, we input those 26 DENRGs into the LASSO algorithm. We narrowed the prognostic signature down to 16 DENRGs (TPM3, CHMP4C, EEF1A1, FASN, TNF, S100A10, IL1A, H1.2, SLC25A5, GLTP, IFNG, H2AC13, TUBB4B, AKNA, TYK2, and H1.5) (Figures 4B,C). Then, we calculated the DENRG-related prognostic as: [the expression of TPM3 × 0.102505 + expression of CHMP4C × 0.189606 + expression of EEF1A1 × 0.033772 + expression of FASN × 0.192809 + expression of TNF × 0.203929 + expression of S100A10 × 0.007325 + expression of IL1A × 0.103649 + expression of H1.2 × (−0.10396) + expression of SLC25A5 × (−0.11957) + expression of GLTP × (−0.38244) + expression of IFNG × (−0.19587) + expression of H2AC13 × (−0.10861) + expression of TUBB4B × (−0.31664) + expression of AKNA × (−0.27736) + expression of TYK2 × (−0.27591) + expression of H1.5 × (−0.34445)]. These 16 prognostic DENRGs were expressed abnormally in the CC samples compared with the normal samples (Figure 4D).
[image: Figure 4]FIGURE 4 | (A) Cox regression analysis to identify differentially expressed necroptosis-related genes (DENRGs) related to biochemical recurrence-free survival. Univariate Cox regression identified 26 DENRGs significantly associated with prognosis (p < 0.05). (B) Screening for genes that can be used independently for prognostic risk prediction using the best LASSO model parameter λ. (C) Variable number change. (D) Heatmap of the expression of the 16 DENRGs in the high- and low-risk groups.
According to the median risk score, we divided the patients with CC in the TCGA training set into high- and low-risk groups (Figure 5A). As the risk score increased, we observed more dead patients (Figure 5B). The high-risk group had worse survival compared with the low-risk group (Figure 5C). The AUC of the ROC curves were 0.792, 0.818, and 0.855 for 1-, 3-, and 5-year survival, respectively (Figure 5D), suggesting that the risk score model had good performance in predicting the prognosis of patients with CC. Furthermore, we tested the risk score model in the ICGC validation set and obtained similar results (Figures 5E–G). The AUC of ROC curves in the validation set were 0.767, 0.788 and 0.828 for 1-, 3-, and 5-year survival (Figure 5H), further demonstrating the reliability of the DENRG-related prognostic signature in predicting the survival of patients with CC.
[image: Figure 5]FIGURE 5 | (A) Construction and evaluation of a risk model. Distribution of risk scores in the training set. (B) Survival status of patients in the training set. (C) Kaplan–Meier plot of the training set (p < 0.05). (D) Receiver operating characteristic curves showing the 1-, 3-, and 5-year predictive efficiency of the risk score. (E) Distribution of risk scores in the validation set. (F) Survival status of patients in the validation set. (G) Kaplan–Meier plot of the validation set (p < 0.05). (H) The area under the receiver operating characteristic curves in the validation set for 1-, 3-, and 5-year survival.
3.4 The development of a DENRG-related nomogram
We performed univariate and multivariate analyses with independent prognostic factors in CC, including the risk score, T stage, N stage (Figures S3, 6A). We established the nomogram based on prognostic factors to predict the 1-, 3-, and 5-year survival of patients with CC (Figure 6B). Calibration curves showed that the predicted overall survival was close to the actual overall survival (Figures 6C–E). The AUC values for 1-, 3-, and 5-year survival of the nomogram model were 0.815, 0.840, and 0.815, respectively, indicating the good performance of the nomogram (Figure 6F).
[image: Figure 6]FIGURE 6 | Construction of a prognostic model and nomogram. (A) Forest plot of the multivariate Cox model. (B) Nomogram for the prognostic model. (C) Calibration curve for 1-year survival. (D) Calibration curve for 3-year survival. (E) Calibration curve for 5-year survival. (F) Receiver operating characteristic curve for 1-, 3-, and 5-year survival.
3.5 Risk score and tumor stage
To further evaluate the utility of prognostic DENRGs, we compared the risk scores among different groups divided by T stage, N stage, M stage, and grade. Interestingly, we noticed that the risk score increased with the progression of CC, and patients with T4 CC had the highest risk scores (p < 0.05). However, the risk score was not significantly changed in other stages and grades (p > 0.05) (Figures 7A–D). These results indicate that prognostic DENRGs play important roles in the T stage metastasis and malignancy degree of CC, which may further affect the survival of patients with CC.
[image: Figure 7]FIGURE 7 | Risk score and tumor stages and gene set enrichment analysis (GSEA). Difference in risk score among (A) T stages, (B) N stages, (C) M stages, and (D) grades. Differences in pathway enrichment in tumors of patients in the high- and low-risk groups: (E) Gene Ontology (GO) analysis of biological processes, (F) GO analysis of cell components, and (G) GO analysis of molecular functions. (H) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis.
3.6 Gene set variation analysis between high- and low-risk groups
We performed GSVA to unveil the potential molecular mechanisms and to identify biological processes. For GO biological process, cellular component, and molecular function analysis, the pathways enriched in the high-risk group include cell junctions, phosphorylation, and other related pathways; the pathways enriched in the low-risk group include those related to viral defense, T-cell differentiation, cell adhesion, cytokine receptors, and protein coupling (Figures 7E–G). Among the KEGG pathways, the high-risk group was significantly enriched in pathways related to glycosaminoglycan biosynthesis, while the low-risk group was significantly enriched in pathways related to immunity and lysosomes (Figure 7H). These results suggest that prognostic DENRGs may regulate the development and progression of CC via cell proliferation.
3.7 Differences in immune-related outcomes between the high- and low-risk groups
Increasing evidence has demonstrated the important role of the immune microenvironment in the outcome of CC. Thus, we explored whether NRGs could modulate the immune microenvironment of patients with CC. We found that the risk score was not correlated with stromal score (p > 0.05, Figure 8A). In addition, although the risk score was significantly correlated with immune score, it was weak (p < 0.01, r = -0.303, Figure 8B). The TME score analysis showed that the immune score was significantly higher in the low-risk group than in the high-risk group (p < 0.01, Figure 8C). Furthermore, we compared the immune infiltration between patients in the low- and high-risk groups and observed that the infiltration levels of activated B-cell, activated CD4+ T-cell, activated CD8+ T-cell, activated dendritic cells, central memory CD4+ T-cell, effector memory CD4+ T-cell, immature B-cell, immature dendritic cells, natural killer T-cell, and natural killer T-cell, were different (Figure 8D). Figure 8E shows the mutation status of the 16 genes used to build the prognostic model.
[image: Figure 8]FIGURE 8 | Differences in immune-related outcomes between the high-risk and low-risk groups. Risk and ESTIMATE scores: (A) correlation between the risk score and the stromal score. (B) Correlation between the risk score and the immune score. (C) Differences in tumor microenvironment scores between the high- and low-risk groups. (D) Boxplot of differences in the degree of immune cell infiltration. (E) Mutation map of prognosis-related genes in patients with cervical cancer. (F) Differential expression of immune checkpoint molecules.
4 DISCUSSION
The occurrence and development of CC is a complex process regulated by multiple factors, and the incidence of CC has been trending younger in recent years (Torre et al., 2015; Small et al., 2017). Necroptosis is a newly discovered mode of programmed cell death and often used as an alternative when apoptosis induction is compromised. Necroptosis is involved in tumor proliferation and metastasis and is closely associated with the TME and tumor immunity (Su et al., 2015). In recent years, it has been shown that necroptosis enhances anti-tumor immunity in cancer therapy and could become an effective cancer treatment (Wu et al., 2022). Therefore, we developed an NRG characterization model to predict the prognosis of patients with CC, and we used the obtained risk score to group them into high- and low-risk groups for the analysis of clinical indicators, the ESTIMATE score, the tumor mutational load, immune checkpoint molecules, and immune infiltrating cells.
Both apoptosis and necroptosis are forms of programmed cell death, which is a natural barrier limiting the survival and propagation of malignant cells. The molecular mechanisms regulating necroptosis are closely related to the signaling cascades that control apoptosis and necrosis (Schmidt et al., 2015). MLKL is a prognostic biomarker for cervical squamous cell carcinoma and has recently been identified as a key RIPK3 downstream component of TNF-induced necroptosis (Ruan et al., 2015). Through the use of CC models, PolyIC-driven immunogenicity has been shown to be dependent on the necroptosis regulator RIPK3 in tumor cells, suggesting that RIPK3 could serve as a novel predictive marker for the personalization of cancer immunotherapy (Smola, 2016). Considering the above criteria, NRGs may be involved in necroptosis, necrosis, apoptosis, tumor immunity, and their interactions. Consistently, based on our GO, KEGG, and GSEA analyses, these DENRGs are involved in necroptosis, necrosis, apoptosis, and immune- and tumor-related pathways.
We identified 16 DENRGs, and they have been reported that are associated with necroptosis. TPM3, CHMP4C, EEF1A1, FASN, TNF, S100A10, and IL1A represent a high-risk score and poor prognosis, suggesting that these genes may be associated with the tumor process in patients with CC and appear to be pro-oncogenes. In contrast, H1.2, SLC25A5, GLTP, IFNG, H2AC13, TUBB4B, AKNA, TYK2, and H1.5 are abundantly expressed in the low-risk group, suggesting that these genes may be oncogenes for CC. CHMP4C is highly expressed in CC tissues and cell lines and plays a role as a pro-oncogene in them (Lin et al., 2020). The EEF1A protein blocks apoptosis and facilitates viral replication and interacts with the E7 protein of human papillomavirus (HPV) 38 to participate in events related to incidence of CC formation-related events (Ghittoni et al., 2010). FASN plays a key role in tumor lipid metabolism and is associated with the tumor-associated phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Its overexpression is often associated with tumor progression and poor prognosis (Cao et al., 2017). FASN may be a potential therapeutic target for CC, and a FASN inhibitor (orlistat) reduces apoptosis triggered by CC cells (C-33A, ME-180, HeLa, and SiHa) in a time-dependent manner (Nascimento et al., 2022). S100A10 may have anti-apoptotic effects in cancer cells, interacting with Bad and impeding its pro-apoptotic activity (Bharadwaj et al., 2021). The S100A10 subunit promotes L2-mediated human papillomavirus infection, which is associated with the development of CESC (Taylor et al., 2018). Elevated expression of IL1A, a pleiotropic pro-inflammatory cytokine, is associated with poorer prognosis in CC through multiple complex mechanisms involving cell proliferation, apoptosis, angiogenesis, and the inflammatory microenvironment (Song et al., 2016). There is growing evidence that H1-2 has important functions in multiple cellular processes including apoptosis, autophagy, the cell cycle, and gene transcription. H1-2 acts as a signaling molecule to initiate apoptosis, and its deletion may lead to resistance to apoptosis in mice and tumor cells (Lai et al., 2021). Both SLC25A5 and GLTP are associated with good prognosis in CC (Qu et al., 2021). Colon cancer cells overexpressing GLTP (HT-29) exhibit RIPK-3-mediated MLKL phosphorylation, increased intracellular Ca2+, levels and induce cell death through necroptosis (Mishra et al., 2019). The CC-associated oncoprotein HPV E6 can downregulate AKNA and lead to cancer progression (Wang et al., 2020). In contrast, AKNA contributes to dysregulation of the cancer immune system and can serve as a genetic factor and biomarker of susceptibility to CC (Ramírez-González et al., 2021). This is consistent with our results that TYK2 is a protective gene in the prognostic model of necroptosis in CC (Ding et al., 2020). Both TNF and IFGN are triggers of necroptosis and can synergistically induce RIPK-dependent necroptosis (Hojo et al., 2019). MLKL was initially identified as a key mediator of TNF-induced necroptosis and can be used to assess the prognosis of patients with cervical squamous cell carcinoma, and TNF is also important for immune and cellular homeostasis in mammals (Ruan et al., 2015). Its role as a major regulator to balance cell survival, apoptosis, and necroptosis has been studied extensively in various cell types and tissues (Blaser et al., 2016). IFNG is an immune response gene and some of its single nucleotide polymorphisms (SNPs) are associated with cervical carcinogenesis and plays a decisive prognostic role in squamous cervical cancer (Chen et al., 2020). However, there are few reports on the role of TPM3, H2AC13, TUBB4B, and H1.5 in CC, which will be an important direction for our future research.
Resistance to apoptosis is one of the characteristics of tumors, and therefore induction of cell death mechanisms other than apoptosis is emerging as a new cancer treatment strategy. Necroptosis mediates cancer-related immune responses by promoting interactions between cancer and immune cells through the release of damage-associated molecular patterns (DAMPs), cytokines, or chemokines in the TME (Sprooten et al., 2020). The TME plays an important role in the course of tumorigenesis, progression, and prognosis of CC. In this study, we found that risk scores were negatively correlated with immune scores, and different risk score groups showed different TME infiltration characteristics. In low-risk group, the abundance of CD8+ T-cell, CD4+ T-cell, and NK cells were increased. These immune cells have been widely reported as effector cells in the TME, and have a positive immune response to cancer cells (Litwin et al., 2021). Furthermore, tumor cells undergo necroptosis, which activates CD8+ T-cell to eliminate cancer cells and thus induce an anti-tumor immune response. Necroptosis-associated genes (EEF1A1, IFNG) can activate CD8+ T-cell (Guan et al., 2022). DAMP from necrotic tumor cells can induce strong anti-tumor CD8+ T-cell expression (Yatim et al., 2015). According to our results, it indicates that the lower the risk score, the better the immunity and prognosis of patients. In high-risk group, neutrophil was increased. Tumors can increase tumor cell proliferation by inducing the conversion of neutrophils into tumor-associated neutrophils and releasing inflammatory mediators (Demkow, 2021). Therefore, the patients with high risk score might have more severe inflammatory reaction, tumor proliferation and worse prognosis. Overall, we could roughly predict immunity of patients according to their risk score.
Immune checkpoints present an effective immunosuppressive mechanism in cancer, providing more effective treatment options to improve cancer survival. Immune checkpoint inhibitor (ICI) therapy is considered an effective treatment for CC (Mauricio et al., 2021). In our results, most immune checkpoint molecules—including BTLA, CD27, CD28, CD86, CTLA4, ICOS, ID O 1, TIGIT, TNFRSF14, TNFRSF18, TNFRSF25, TNFRSF9, and VTCN1—are highly expressed in the low-risk group. CTLA-4, CD28, BTLA, TIGIT, and ICOS belong to the immunoglobulin-associated receptor family and are responsible for various aspects of T-cell immune regulation. CTLA-4 is an immune checkpoint protein receptor that downregulates the immune system. CTLA-4 has been identified as a prognostic marker in CC, and CTLA-4 inhibitors CTLA-4 inhibitors in combination with radiation/chemotherapy may improve outcomes for patients with CC (Odiase et al., 2021). Blocking CTLA-4 allows the body to overcome HPV-driven immunosuppression associated with CC (Callahan and Wolchok, 2013). In addition to conventional ICIs targeting CTLA4, PD-1, and PD-L1, novel ICIs including agonists targeting BTLA, TIGIT, and the co-stimulatory receptor ICOS are increasingly being used in clinical therapy. IDO1 induces immunosuppression of T-cell by depleting l-tryptophan and kynurenine in the local TME, suppressing effector T-cell and over-activating regulatory T-cell (Jung et al., 2019). Blockade of IDO1 contributes to shrinkage of CC (Blocking IDO1 Helps Shrink Bladder, Cervical Tumors, 2018). In addition, members of the tumor necrosis factor receptor superfamily (TNFRSF) are present on T-cell and play a key role in T-cell development, survival, immune activation, and the anti-tumor immune response (Schaer et al., 2014). Combined with our results, patients in the high-risk group may be less sensitive to ICIs, and thus ICI treatment may be more effective in the low-risk group. Taken together, these immune checkpoint molecules may be explored as meaningful targets for CC, and the combination strategy of ICIs with radiation/chemotherapy offers a new direction for the future treatment of CC and may help to overcome resistance to radiation/chemotherapy and immunotherapy alone.
In conclusion, we have identified 16 NRGs that are significantly associated with CC prognosis. Our findings provide possible explanations for the different prognostic assessments of patients with CC and offer prospects for future studies on necroptosis as a therapeutic target for CC and exploration of new immunotherapeutic approaches.
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Low expression of NR1H3 correlates with macrophage infiltration and indicates worse survival in breast cancer
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Background: Nuclear receptor NR1H3 is a key regulator of macrophage function and lipid homeostasis. Here, we aimed to visualize the prognostic value and immunological characterization of NR1H3 in breast cancer.
Methods: The expression pattern and prognostic value of NR1H3 were analyzed via multiple databases, including TIMER2, GEPIA2 and Kaplan-Meier Plotter. TISIDB, TIMER2 and immunohistochemical analysis were used to investigate the correlation between NR1H3 expression and immune infiltration. GO enrichment analysis, KEGG analysis, Reactome analysis, ConsensusPathDB and GeneMANIA were used to visualize the functional enrichment of NR1H3 and signaling pathways related to NR1H3.
Results: We demonstrated that the expression of NR1H3 was significantly lower in breast cancer compared with adjacent normal tissues. Kaplan-Meier survival curves showed shorter overall survival in basal breast cancer patients with low NR1H3 expression, and poorer prognosis of relapse-free survival in breast cancer patients with low NR1H3 expression. NR1H3 was mainly expressed in immune cells, and its expression was closely related with infiltrating levels of tumor-infiltrating immune cells in breast cancer. Additionally, univariate and multivariate analysis indicated that the expression of NR1H3 and the level of macrophage infiltration were independent prognostic factors for breast cancer. Gene interaction network analysis showed the function of NR1H3 involved in regulating of innate immune response and macrophage activation. Moreover, NR1H3 may function as a predictor of chemoresponsiveness in breast cancer.
Conclusion: These findings suggest that NR1H3 serves as a prognostic biomarker and contributes to the regulation of macrophage activation in breast cancer.
Keywords: NR1H3, immune infiltrates, macrophages, prognosis, breast cancer
INTRODUCTION
Breast cancer is the most common malignancy and the second leading cause of cancer related-deaths among women worldwide (Bray et al., 2018). Despite advancements in treatment regimens, the mortality of breast cancer remains a challenge (Gradishar et al., 2015; Biglia et al., 2016). The 5-year overall survival rate of breast cancer patients with distant metastasis is only approximately 25% (Coleman et al., 2008). The subtypes of breast cancer are based on the expressions of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor 2 (HER-2) (Payne et al., 2008; Rakha et al., 2010). Although the hormone receptors, tumor size/grade and number of axillary node metastases have been widely used as prognostic biomarkers in the case of breast cancer, these factors are limited to predict patient’s survival with specific subtypes. There is a need to identify reliable biomarkers to predict the clinical outcome of breast cancer regardless of tumor heterogeneity effectively.
Macrophages are an important part of infiltrating immune cells in tumor microenvironment (TME).They are always abundantly present in breast cancer (Pollard, 2008). In the last decade, accumulating evidences have revealed that macrophages can participate in tumorigenesis by mediating immune escape, metastasis and tumor angiogenesis (Li X. et al., 2017; De Palma et al., 2017; Cully, 2018; Zhu et al., 2019). Nuclear receptor NR1H3 is a key regulator of macrophage function and lipid homeostasis (Joseph et al., 2004; Mitro et al., 2007; Bensinger et al., 2008; Fessler, 2008; Zelcer et al., 2009), especially playing a central role in the anti-inflammatory response in macrophages (Duc et al., 2019). The low expression of NR1H3 is a poor prognostic factor for muscle-invasive bladder cancer (Wu et al., 2017). In breast cancer, recent studies showed that NR1H3 is likely to be an onco-suppressor gene and related to immune infiltration (Vedin et al., 2009; Garattini et al., 2016; Yu et al., 2021). However, the prognostic value and immunological characterization of immune-related gene NR1H3 in breast cancer remain unclear.
In this study, we visualized the prognostic landscape of NR1H3 in breast cancer using databases, including TIMER2, GEPIA2, and Kaplan-Meier Plotter. We also explored the potential relationship between NR1H3 expression and macrophage infiltration level using the TIMER2 and TISIDB databases. Our results indicate that NR1H3 influences the prognosis of patients with breast cancer, probably via its interaction with infiltrating macrophages. Immune-related gene NR1H3 is likely to be one of potential immune markers for breast cancer immunotherapy.
MATERIALS AND METHODS
NR1H3 expression analysis
TIMER2 database (http://timer.cistrome.org/) was used to show the expression difference of NR1H3 between tumor and adjacent normal tissues in different cancer types of the TCGA project (Li et al., 2020). The “Expression analysis-Box Plots” module of the GEPIA2 web server (http://gepia2.cancer-pku.cn/#analysis) was used to obtain box plot of the expression difference between the breast tumor tissues and the corresponding normal tissues of the GTEx database (Tang et al., 2019). Additionally, the NR1H3 expressions in different pathologicals and clinical stages were obtained using the UALCAN database (http://ualcan.path.uab.edu/analysis-prot.html) (Chandrashekar et al., 2017). The Oncomine database (http://www.oncomine.org) was used to validate the expression of NR1H3 in breast cancer (Rhodes et al., 2007).
Human tissue microarray and immunohistochemical analysis
Paired human breast cancer and adjacent non-tumor paraffin tissue microarrays were purchased from Shanghai Zuocheng Biotech (Shanghai, China). The sections were subjected to antigen retrieval and incubated with primary antibodies against NR1H3 (ab41902, abcam) and CD68 (ab955, abcam) at 4°C in a humid chamber overnight. The next day, the sections were incubated with biotinylated secondary antibody for 60 min. Protein levels of NR1H3 and CD68 were evaluated as follows: the slides were appraised for the intensity of the staining (0–3) and the percentage of positively stained cells (0–4). Index of protein levels was calculated as the intensity of the staining × the percentage of positively stained cells. Therefore, slices were divided into 4 groups: negative (score 0), low expression (score 1–4), medium expression (score 5–8) and high expression group (score 9–12).
Subtypes of breast cancer
The subtypes of breast cancer for sub-group analysis are divided based on the 2013 StGallen criteria using the expression of HER2, ESR1 and MKI67, including basal (ESR1-/HER2-), luminal A (ESR1+/HER2-/MKI67 low), luminal B (ESR1+/HER2+/MKI67 high) and HER2(HER2+/ESR1-).
Survival analysis
GEPIA2 and GSCA (http://bioinfo.life.hust.edu.cn/GSCA/#/) databases were used to reveal the correlation between NR1H3 expression and overall survival (OS), disease-free survival (DFS) or progress free survival (PFS) of breast cancer patients (Tang et al., 2019). Kaplan-Meier Plotter (https://kmplot.com/analysis/) was used to assess the effect of NR1H3 on OS, relapse-free survival (RFS), distant metastasis-free survival (DMFS) and post-progression survival (PPS) in breast cancer (Lanczky et al., 2016). Hazard ratios (HRs) with 95% confidence intervals (CI) and log-rank p-values were calculated. Additionally, we constructed univariate and multivariate Cox proportional hazard models. Multivariate analysis comprised seven variables, including the expression of NR1H3 gene, macrophage level, age, tumor stage, gender, race and tumor purity. The survival curves, featuring patterns of NR1H3 gene expression and macrophage level were shown on the diagram. The association between each immune cell type and OS was displayed under the low or high expression of NR1H3.
Immune infiltration analysis
The correlation between NR1H3 expression and immune infiltration was determined using the TISIDB, TIMER and TIMER2. TISIDB (http://cis.hku.hk/TISIDB/index.php) was used to show the relations between NR1H3 expression and abundance of 28 tumor-infiltrating lymphocytes (TILs) types, immunoinhibitors, immunostimulators, MHC molecules, chemokines and chemokine receptors (Li T. et al., 2017; Ru et al., 2019). The TIMER2 online tool (http://timer.cistrome.org/) was used to analyze the correlation of NR1H3 with the infiltration level and prognostic value of immune cells, including macrophages, CD4+ T Cells, CD8+ T Cells, monocytes, B Cells, dendritic cells (DCs), neutrophils and natural killer (NK) cells (Li et al., 2020). We also used the TIMER2 to explore the immune infiltration distribution between different somatic copy number changes of NR1H3, and analyze the correlation between the expression of NR1H3 with monocyte markers (CD86, CD115/CSF1R, CD14), macrophage markers (CCL2, CD68, IL10, CD80), M1 macrophage markers (IRF5, INOS/NOS2, COX2/PTGS2), M2 macrophage markers (CD163, VSIG4, MS4A4A) and immune checkpoint molecules (PD-1/CD274, PD-L1/PDCD1, PD-L2/PDCD1LG2 and CTLA-4).
Single-cell analysis
The scRNA-seq database TISCH (http://tisch.comp-genomics.org) was used to show the detailed cell-type annotation at the single-cell level in breast cancer (Sun et al., 2021). Sub-expression analysis of GEPIA 2021 (http://gepia2021.cancer-pku.cn/) visualized the NR1H3 expression in each immune cell type (B Cells, CD4+ T Cells, CD8+ T Cells, NK cells and macrophages) available in TCGA/GTEx sub-datasets.
Genes mutation prediction analysis
The muTarget database (http://www.mutarget.com) is a cancer biomarker/target discovery tool that can identify mutations resulting in expression change. We used the database to predict the mutant genes that affect the expression of NR1H3 gene.
Interaction network and functional enrichment analysis
The gene ontology (GO) term enrichment analysis was performed by the LinkedOmics database (http://www.linkedomics.org/) pathway analysis. Gene Set Enrichment Analysis (GSEA) was used to search for Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathways enrichment analysis. The network neighborhoods of NR1H3 were visualized by ConsensusPathDB-human (http://consensuspathdb.org). These data originate from currently 32 public resources for interactions (Kamburov et al., 2009). The GeneMANIA (http://genemania.org/), an online tool for investigation into associated or similar genes for target genes, was used to validate the gene interaction network results and conduct functional enrichment analysis (Franz et al., 2018).
Receiver operating characteristics plotter
The ROC Plotter platform (http://www.rocplot.org/) was used to identify NR1H3 whether predicts benefit from endocrine therapy and chemotherapy (Fekete and Győrffy, 2019). The platform integrates multiple gene expression datasets at transcriptome level and contains 3,104 breast cancer patients with treatment and response data. The ROC Plotter is a validation tool for predictive biomarkers.
Statistical analysis
The Kaplan-Meier plotter, GSCA and GEPIA2 databases were used for generating survival plots, with data including either HR and p-values or p-values derived from a log-rank test. The Cox proportional hazards regression model was used for univariate and multivariate analyses to evaluate the independence of NR1H3 in predicting prognosis. The correlation of gene expression was assessed by Spearman’s correlation analysis. p-values <0.05 were considered as statistically significant.
RESULTS
Assessment of NR1H3 expression in breast cancer
To determine the expression pattern of NR1H3 in breast cancer, we analyzed the NR1H3 expression profile based on multiple public databases. As shown in Figures 1A,B, expression of NR1H3 was significantly lower in breast invasive carcinoma (BRCA) compared with adjacent normal tissues. Three breast datasets in the Oncomine were adopted for the validation of lower NR1H3 expression in breast cancer (Supplementary Figure S1A–C). Immunohistochemistry analysis using the tissue microarray (including 83 paired breast cancer and adjacent normal breast tissues) showed that the protein level of NR1H3 was significantly downregulated in breast cancer compared to adjacent normal tissues (Figures 1C,E, p < 0.0001). In addition, according to the clinical data of these cancer cases, we found that the lower expression of NR1H3, the more lymph node metastasis (Figure 1D, p > 0.05). Then we analyzed the expression of NR1H3 in BRCA based on tumor subclasses using the UALCAN database. Luminal (p < 1.0e-12), HER2Pos (p = 4.1e-10), TNBC Basal-like 1 (TNBC-BL1) (p = 5.2e-03), TNBC Basal-like 2 (TNBC-BL2) (p = 1.54e-5), TNBC mesenchymal stem-like (TNBC-MSL) (p = 6.26e-5), TNBC Mesenchymal (TNBC-M) (p = 4.4e-16), TNBC unspecified (TNBC-UNS) (p = 1.0e-4) showed lower NR1H3 expression compared with normal tissues (Supplementary Figure S1D). No statistical difference was found in NR1H3 mRNA expression among different tumor stages (p > 0.05) (Supplementary Figure S1E). Moreover, the expression of NR1H3 was also significantly lower in other types of cancers compared with the corresponding normal tissues, such as colon adenocarcinoma (COAD), kidney chromophobe (KICH), lung adenocarcinoma (LUAD) and thyroid carcinoma (THCA) tissues (Figure 1A).
[image: Figure 1]FIGURE 1 | NR1H3 expression in different types of human cancers. (A) High or low expression of NR1H3 in different human cancer tissues compared with normal tissues from the TCGA database in TIMER2. (B) The level of NR1H3 expression in BRCA using GEPIA2 database. (C) Index of NR1H3 protein expression and IHC score groups distribution in breast cancer and adjacent normal tissues. p < 0.0001 (D) The number of lymph node metastasis in different NR1H3 protein expression groups in breast cancer. (E) Immunohistochemistry analysis of NR1H3 protein in breast cancer and adjacent normal tissues. Scale bar = 50 μm. BRCA, breast invasive carcinoma; IHC, immunohistochemical. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
Correlation of NR1H3 with survival in different subtype of breast cancer
To evaluate the value of NR1H3 in predicting the prognosis of breast cancer patients, the association between NR1H3 expression and clinical prognosis of OS, DFS and RFS was analyzed in TCGA cohort. Kaplan-Meier survival curves showed that OS was shorter in BRCA patients with low NR1H3 expression in the GEPIA2 and GSCA databases (Supplementary Figure 2A,B). Then we used the Kaplan-Meier plotter approach to conduct a group of survival analyses using gene probe 203920_at. Similarly, the poor prognosis in breast cancer (OS p = 0.007; RFS p = 1.9e-8; DMFS p = 0.004; PPS p = 0.011) was shown to correlate with lower NR1H3 expression (Figure 2A; Supplementary Figure S2C). It is well known that breast cancer is a heterogeneous tumor and is divided into different subtypes based on ER/PR and HER-2 expression (Colombo et al., 2011). As shown in Figure 2; Supplementary Figure 2, OS (p = 0.015), DMFS (p = 0.004) and PPS (p = 0.023) were shorter in basal breast cancer patients with low NR1H3 expression, but not in luminal A, luminal B and HER2+ breast cancer patients (p > 0.05). Moreover, low NR1H3 expression was correlated with poorer prognosis of RFS in basal (p = 5.3e-6), luminal A (p = 3.0e-4), luminal B (p = 0.002) and HER2+ breast cancer patients (p = 0.0003) (Figure 2).
[image: Figure 2]FIGURE 2 | Kaplan-Meier survival curves of OS and RFS comparing the high and low expression of NR1H3 in breast cancer. (A) In the Kaplan-Meier plotter database, low expression of NR1H3 indicated a worse survival prognosis of OS, RFS in breast cancer patients. (B) RFS survival curve of luminal A breast cancer patients. (C) OS and RFS survival curve of basal breast cancer patients. (D) RFS survival curve of luminal B breast cancer patients. (E) RFS survival curve of ER-positive breast cancer patients. (F) RFS survival curve of ER-negative breast cancer patients. (G) RFS survival curve of PR-negative breast cancer patients. (H) OS and RFS survival curves of HER2-positive breast cancer patients. (I) RFS survival curve of HER2-negative breast cancer patients. OS, overall survival; RFS, relapse-free survival; ER, estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor 2.
We further explored the prognostic characteristics of NR1H3 under different ER, PR, and HER-2 status. ER-positive subtype had shorter RFS (p = 0.023) in breast cancer with low NR1H3 expression (Figure 2E). Low NR1H3 expression was only correlated with worse PPS in PR-positive subtype (p = 0.03) (Supplementary Figure S2D). ER-negative (RFS p = 8e-04; DMFS p = 0.006) and PR-negative (RFS p = 6.3e-04; DMFS p = 0.045) subtypes were also statistically associated with clinical prognosis of RFS and DMFS, but only a trend towards poor survival without statistical significance of OS and PPS in NR1H3-low breast cancer (Figures 2F,G, Supplementary Figure S2F,G). Compared with high NR1H3 expression, low expression of NR1H3 indicated a worse survival prognosis of OS (p = 0.047), RFS (p = 3e-04) and PPS (p = 0.033) in HER2-positive breast cancer (Figure 2H; Supplementary Figure S2H). Among HER2-negative, only RFS (p = 5.8e-06) and DMFS (p = 0.023) showed statistical survival differences (Figure 2I and Supplementary Figure S2I). In addition, the correlation of NR1H3 expression with clinical and pathological features from Kaplan-Meier Plotter was integrated in Table 1. For instance, RFS was shorter in lymph node positive breast cancer patients with low NR1H3 expression (p = 0.015), but not in lymph node negative breast cancer patients (p = 0.058). For grade 3 breast cancer patients, low expression of NR1H3 indicated a worse survival prognosis of OS (p = 0.01), RFS (p = 0.025) and DMFS (p = 0.035). These results suggest that low NR1H3 expression may be a risk factor for a poor prognosis in breast cancer patients.
TABLE 1 | Correlation of NR1H3 gene expression with OS, RFS, DMFS and PPS in breast cancer with different clinicopathological features.
[image: Table 1]Correlation analysis between NR1H3 expression and infiltrating immune cells
GO enrichment analysis revealed adaptive immune response and immune cells activation process were correlated with the expression of NR1H3 in breast cancer (Figures 3A,B). Additionally, the signaling pathways were significantly enriched of NR1H3 by KEGG analysis and Reactome analysis were presented in Figures 3C,D. Tumor-infiltrating immune cells, as prominent components of the TME, are closely linked to the initiation, progression or metastasis of cancer (Fridman et al., 2011; Steven and Seliger, 2018). Here, we found the relations between abundance of 28 TIL types and expression of NR1H3 were strongly correlated across different human cancer types (Supplementary Figure S3). Specifically, NR1H3 expression was closely related with infiltrating levels of TIL in BRCA. Next, we analyzed the correlation between NR1H3 expression and 6 types of infiltrating immune cells (B Cells, CD4+ T Cells, CD8+ T Cells, neutrophils, macrophages and DCs) in BRCA using TIMER database. Consistently, Figure 4 showed that NR1H3 expression level had significantly positive correlations with infiltrating levels of B Cells (r = 0.178, p = 2.18e-8), CD8+ T Cells (r = 0.108, p = 7.62e-4), CD4+ T Cells (r = 0.36, p = 7.41e-31), macrophages (r = 0.076, p = 1.68e-2), neutrophils (r = 0.302, p = 1.79e-21), and DCs (r = 0.324, p = 1.22e-24) in BRCA and with negative correlation with tumor purity (r = -0.332, p = 5.56e-27). Moreover, the same trend results were found in each subtype (Figure 4). These findings strongly suggest that NR1H3 is correlated with immune cells infiltration in breast cancer.
[image: Figure 3]FIGURE 3 | Function and pathway enrichment analyses of NR1H3 in breast cancer. (A,B) Significant Gene Ontology terms of NR1H3, including biological processes (BP) and molecular function (MF). (C,D) Significant GSEA results of NR1H3, including KEGG pathways and Reactome pathways. GSEA, Gene Set Enrichment Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes.
[image: Figure 4]FIGURE 4 | Correlation of NR1H3 expression with 6 types of infiltrating immune cells (B Cells, CD4+ T Cells, CD8+ T Cells, neutrophils, macrophages, and DCs) in BRCA and each subtype available in TIMER. DCs, dendritic cells; BRCA, breast invasive carcinoma.
Next, TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, XCELL, MCPCOUNTER and EPIC algorithms were further used to validate the potential relation between the expression of NR1H3 and the infiltration level of 8 types of immune cells (B Cells, CD4+ T Cells, CD8+ T Cells, monocytes, macrophages, DCs, neutrophils and NK cells) in diverse cancer types of TCGA. As shown in Supplementary Figure S4, CD8+ T Cells and macrophages were two immune cell types most strongly correlated with NR1H3 expression in BRCA.
Association between NR1H3 copy number variations and immune infiltrates
The association between NR1H3 copy number variations (including deep deletion, arm-level deletion, diploid/normal, arm-level gain and amplification) and immune infiltrates in BRCA was investigated using different algorithms of TIMER2. The immune infiltration distribution by the somatic copy number alterations (sCNA) status of NR1H3 across TCGA cancer types was demonstrated in Figure 5A. Then, six of significant relationships between the changes in NR1H3 copy number variations and immune infiltrates in BRCA using TIMER2 were presented (Figure 5B). In particular, arm-level deletion (p = 3e-07), arm-level gain (p = 1.4e-09) and high amplification (p = 0.021) of NR1H3 had significant correlation with CD4+ Th2 cell infiltration level using XCELL algorithms. High amplification of NR1H3 was associated with low M2 macrophage infiltration level, compare with the “diploid/normal” status (p = 0.039). By CIBERSORT and CIBERSORT-ABS algorithms, high amplification of NR1H3 had high B Cell and low DC cell infiltration (Figure 5B). However, no statistical difference was found in CD8+ T Cell, neutrophil, and NK cell infiltration from TIMER2 (data not shown). These findings indicate the potential mechanism by which NR1H3 alterations affect immune infiltration distribution.
[image: Figure 5]FIGURE 5 | The association between NR1H3 copy number variations and immune infiltrates. (A) A stacked bar plot showed the relative proportion of different sCNA states of the NR1H3 for all TCGA cancer types. (B) Analysis according to different groups of sCNA showed a significant difference in NR1H3 expression at the CD4+ Th2 cell, M2 macrophage, B Cell and DC cell levels among these groups in BRCA. sCNA, somatic copy number alterations. DC, dendritic cell. *p < 0.05, **p < 0.01, ***p < 0.001.
Correlation between NR1H3 expression and tumor infiltrating macrophages in BRCA
Considering the role of NR1H3 in immune infiltrates in BRCA and its prognostic impact, we used six BRCA data sets (BRCA_SRP114962, BRCA_GSE143423, BRCA_GSE138536, BRCA_GSE136206_mouse_aPD1aCTLA4, GSE114727-inDrop, BRCA_GSE114727_10X and BRCA_GSE110686) in the TISCH platform to analyze the expression of NR1H3 at the single-cell level. The results showed higher NR1H3 expressions in immune cells, mainly in monocyte/macrophage, compared with malignant cells (Supplementary Figure S5). Then we analyzed the GSE114727-inDrop dataset, which is divided into 12 types of cells. Figures 5A–D showed the number of cells in each cell type, with the distribution and number of various TME-related cells presented. In this data set, CD4+ T Cells were the most abundant immune cells (n = 5,413), whereas NR1H3 was highly expressed in monocyte/macrophage (Figure 6D). GEPIA2021 platform also revealed the consistent results that NR1H3 is highly expressed in macrophages in BRCA tumor/BRCA normal from TCGA and breast tissue from GTEx using EPIC algorithm (Figure 6E).
[image: Figure 6]FIGURE 6 | NR1H3 expression in TME-related cells. (A–C) The TME cell types and distribution in the GSE114727_inDrop dataset. (D) The distribution of NR1H3 in different cell types was analyzed using single-cell resolution in the GSE114727_inDrop dataset using the TISCH database. (E) Comparison of NR1H3 expression distribution across samples in BRCA Tumor/BRCA normal from TCGA and breast tissue from GTEx. TME, tumor microenvironment; TISCH, Tumor Immune Single Cell Hub; BRCA, breast invasive carcinoma.
We further analyzed the correlation of NR1H3 expression and monocyte/macrophage markers in tumor tissues using TIMER2. We adjusted these results based on tumor purity, and revealed significant correlations between NR1H3 expression and monocyte markers (CD86, CD115/CSF1R, CD14), macrophage markers (CCL2, CD68, IL10, CD80), M2 macrophage markers (CD163, VSIG4, MS4A4A) and M1 macrophage markers (IRF5), whereas the M1 macrophage markers INOS/NOS2 and COX2/PTGS2 showed no correlation with NR1H3 expression (Supplementary Figure S6A).
In order to verify the findings from the database, we detected the protein level of NR1H3 and macrophage marker CD68 in paraffin tissue microarrays from breast cancer patients by IHC. The slides showed that NR1H3 and CD68 protein were expressed in interstitial cells of breast tumor tissues. A typical staining pattern is shown in Figure 7A. However, we did not find a linear relationship between NR1H3 and CD68 expression levels.
[image: Figure 7]FIGURE 7 | The survival curves, featuring patterns of NR1H3 gene expression and macrophage infiltration level were shown on the diagram. The association between macrophages and OS was displayed as the low or high expression of NR1H3. (A) Representative IHC analysis of NR1H3 and CD68, Scale bar = 50 μm. (B) Kaplan-Meier curve for the NR1H3 expression level and macrophage infiltration using TIMER algorithms in BRCA. (C) Kaplan-Meier curve for the NR1H3 expression level and monocyte infiltration using MCPCOUNTER algorithm in basal breast cancer. (D) Kaplan-Meier curve for the NR1H3 expression level and monocyte infiltration using XCELL algorithm in luminal A breast cancer. (E) Kaplan-Meier curve for the NR1H3 expression level and macrophage infiltration using TIMER algorithm in luminal B breast cancer. OS, overall survival; IHC, immunohistochemical.
NR1H3 expression and macrophage infiltration are independent risk factors for BRCA
As mentioned above, we observed a statistical positive correlation between the immune infiltration of macrophages and NR1H3 expression in BRCA. Then we evaluated the prognostic efficiency of the combination of infiltrated macrophages and NR1H3 expression patterns for breast cancer (Supplementary Figure S6B). The low expression of NR1H3 accompanied by a high level of infiltrated macrophages was associated with poor prognosis in BRCA. However, there was no significant relations between the B Cells/CD4+ T Cells/CD8+ T Cells/neutrophils/NK cells/DCs and prognosis under the low expression level of NR1H3 based on most algorithms (Supplementary Figure S7). Specifically, under low NR1H3 expression, higher macrophage infiltration level had a worse outcome in BRCA using the TIMER algorithm (HR = 1.72, p = 0.0311), compared with lower macrophage infiltration level. On the contrary, the low M2 macrophage infiltration level predicted favorable prognosis under the high expression of NR1H3 using the CIBERSORT algorithm in BRCA (HR = 2.31, p = 0.0135), compared with the high M2 macrophage infiltration level. In BRCA-LumA, under low NR1H3 expression, higher monocyte level had a worse outcome (HR = 3.12, p = 0.0279). The statistically different scatterplot data of the above tumors produced using different algorithms was presented in Figures 7B–E; Supplementary Figure S8.
Additionally, to evaluate whether NR1H3 expression level and macrophage infiltration are independent risk factors for prognosis of BRCA, we conducted the univariate and multivariate analysis included seven variables: macrophage infiltration level, age, stage, gender, race, tumor purity and expression of NR1H3 (Table 2). The results showed that macrophage infiltration (HR = 6.20, p = 0.002), stage 3 (HR = 3.11, p = 0), stage 4 (HR = 13.17, p = 0) and NR1H3 expression (HR = 0.75, p = 0.018) were prognostic variables for the prognosis of OS in BRCA patients. After adjustments of age, stage, gender, race, and tumor purity, the level of macrophage infiltration (HR = 8.44, p = 0.002) and the expression of NR1H3 (HR = 0.73, p = 0.044) were independent prognostic factors in BRCA. These results suggest that NR1H3 is an independent prognostic biomarker and combining its expression level with the macrophage would help to play a more effective role in the prognosis prediction of BRCA.
TABLE 2 | Univariate and multivariate analysis of prognostic variables of OS in BRCA.
[image: Table 2]Association between NR1H3 and immunomodulatory molecules
The TISIDB database was used to infer the correlations between expression of NR1H3 and immunomodulators/chemokines across human cancers. As shown in Supplementary Figure S9, the relations between immunoinhibitors, immunostimulators, MHC molecules, chemokines and chemokine receptors and expression of NR1H3 were strongly correlated. Furthermore, NR1H3 was also positively associated with immune checkpoint molecules (PD-1/CD274, PD-L1/PDCD1, PD-L2/PDCD1LG2, and CTLA-4) in TIMER2 database (Supplementary Figure S10). These results suggest that NR1H3 is closely related to the immune status of human cancers.
Gene interaction network of NR1H3 and functional enrichment analysis of NR1H3-related partners
To understand the biological function of NR1H3, ConsensusPathDB was used to integrate interaction network of NR1H3 in Homo sapiens. The network defined the neighborhood-based entity set centered by NR1H3 and containing 19 interaction nodes and 22 physical entity nodes (Figure 8A; Supplementary Figure S11A).
[image: Figure 8]FIGURE 8 | Gene interaction network of NR1H3. (A) The gene interaction network of NR1H3 using the ConsensusPathDB database. (B) The gene interaction network of NR1H3 constructed by the GeneMANIA.
A gene interaction network was constructed using the GeneMANIA. Twenty NR1H3-associated genes were observed in the interaction network, functions of which focused on macrophage derived foam cell differentiation, regulation of macrophage derived foam cell differentiation, foam cell differentiation, regulation of interferon-gamma-mediated signaling pathway and regulation of inflammatory response (Figure 8B).
To further investigate the molecular mechanism of the NR1H3 in tumorigenesis, we attempted to screen out the targeting NR1H3-binding proteins and the NR1H3 expression-correlated genes for a series of pathway enrichment analyses. Based on the STRING tool, we obtained a total of 152 NR1H3-binding proteins, which were supported by experimental evidence. We used the GEPIA2 tool to combine all tumor expression data of TCGA and obtained the top 300 genes that correlated with NR1H3 expression. An intersection analysis of the above two groups showed two common members, ITGB2 and ITGB7 (Supplementary Figure S11B–D).
We also analyzed a gene interaction network of NR1H3 and common member ITGB2 using the GeneMANIA. The functions of phagocytosis, toll-like receptor signaling pathway, regulation of innate immune response, macrophage activation, regulation of toll-like receptor 4 signaling pathway, positive regulation of immune effector process and positive regulation of innate immune response were significantly related (Supplementary Figure S12).
Relationship between mutation status and NR1H3 expression in breast cancer
In order to reveal the relationship between gene mutation status and NR1H3 expression in breast cancer, we screened mutations resulting in NR1H3 expression change using muTarget tool. The results showed that mutations of TMPRSS15, TBC1D4, ERCC5, ANKRD30A, SPINK5, TNXB, PHF8, FBXW7, ZEB, and RGS22 would lead to the alteration of NR1H3 expression (Figure 9A). Then we verified the above genes in the TIMER2 database and found that the FBXW7 mutation was significantly associated with high NR1H3 expression and high macrophage infiltration (Figure 9B, Figure 9C, Supplementary Figure S13A,B). Higher infiltration of M1 macrophage and lower infiltration of M2 macrophage were shown in the mutant group, compared with the wild type group (Figure 9C; Supplementary Figure S13C).
[image: Figure 9]FIGURE 9 | The relationship between gene mutation status and NR1H3 expression in breast cancer. (A) The mutant genes that affect the expression of NR1H3 gene in the muTarget database. (B) The relationship between gene mutation status and NR1H3 expression in breast cancer was verified using TIMER2. (C) Higher infiltration of macrophage was shown in the FBXW7 mutant group, compared with the wild type group.
Association between NR1H3 and response to drug therapy
We used ROC Plotter to identify whether NR1H3 predicted benefit from endocrine therapy and chemotherapy. ROC Plotter showed that NR1H3 was upregulated in responders of luminal A (AUC = 0.564, p = 2.9e-02) and grade 1 subtype breast cancer patients with Tamoxifen treatment (AUC = 0.822, p = 1.1e-05) based on relapse-free survival (RFS) at 5 years (Supplementary Figure S14A). For pathological response, high NR1H3 expression predicted benefit from Anthracycline treatment in TNBC, luminal A, HER2 negative, ER negative, grade 1 and nodal positive subtype patients (Supplementary Figures S14B,C). NR1H3 was upregulated in responders of HER2 negative, ER negative, grade 1, nodal positive subtype patients with Taxane treatment (Supplementary Figure S15A). For patients treated with FAC (Fluorouracil, Adriamycin, Cytoxan), high NR1H3 expression predicted pathological response in luminal A and HER2 negative breast cancer (Supplementary Figure S15B). In addition, NR1H3 was highly expressed in pathological responders receiving FEC (Fluorouracil, Epirubicin, Cyclophosphamide) treatment in grade 1 breast cancer patients and Ixabepilone treatment in HER2 negative patients (Supplementary Figures S15C,D). These data indicated that NR1H3 may function as a predictor of chemoresponsiveness in breast cancer.
DISCUSSION
Previous studies have shown that the nuclear receptor (NR) family members are key regulators of macrophage function, controlling transcriptional programs involved in inflammation and lipid homeostasis (Cully, 2018). As an important member of NR1 subfamily, the role of NR1H3 in tumor microenvironment remains to be revealed. Here, we evaluated the association between NR1H3 expression level and breast cancer patients’ prognosis in multiple public databases. The current clinical data-based evidence supports the role of NR1H3 expression in the clinical features of breast cancer. To our knowledge, this is the first study to report a consistent association between decreasing NR1H3 expression level and poor prognosis in breast cancer patients.
Breast cancer is a heterogeneous disease and is divided into different subtypes based on the expression status of ER/PR and HER-2 (Rakha et al., 2010). Basal tumors, with an overlap in definition with triple-negative subtypes, tends to have a higher relapse risk and is more aggressive than other subtypes (Colombo et al., 2011; Valentin et al., 2012). Luminal A tumors had the lowest rate of relapse when comparing other subtypes (Wang et al., 2011). We observed that low expression of NR1H3 was found to be significantly associated with poor clinical outcome in basal subtype, HER2 positive subtype and grade 3 breast cancer patients. Moreover, NR1H3 expression and macrophage infiltration level were indicated as novel prognostic indicators for breast cancer, conferring significantly worse survival for those with low NR1H3 expression accompanied by a high level of infiltrated macrophages.
Our data are in line with experimental results previously published.NR1H3 was reported to be an onco-suppressor gene in various cancers (Vigushin et al., 2004; Garattini et al., 2016; Wu et al., 2017; Cully, 2018). In vitro, culture medium from NR1H3 activated macrophages causes growth inhibition and apoptosis of breast tumor cells (El Roz et al., 2013). In mouse models, NR1H3 ligands augments mammary-tumor growth and increases NR1H3-dependent metastasis (Nelson et al., 2014). These findings indicate that NR1H3 may be important in breast carcinogenesis. Whether pharmacological NR1H3 agonists have potential preventive or therapeutic antitumor activity in breast cancer needs more studies to confirm.
To further explore the underlying mechanisms of NR1H3 in breast carcinogenesis, we investigated the correlation of NR1H3 expression with tumor-infiltrating immune cells of breast cancer. Our results revealed the important role of NR1H3 in TME as well as providing a potential relationship between NR1H3 and tumor-immune interactions in breast cancer. As we all known, activated immune cells attacks tumor cells to prevent the development of cancer in the early phase of carcinogenesis. Here, we provide evidence that high expression of NR1H3 is strongly correlated with multiple immune infiltration in breast cancer tissues, including B Cells, CD4+ T Cells, CD8+ T Cells, neutrophils, macrophages and DCs. These results indicate that expression of NR1H3 is related to the immune activation of TME.
Existing studies have shown that tumor-infiltrating immune cells play important roles in the initiation, progression, metastasis and therapeutic resistance of cancers (Fridman et al., 2011; Gajewski et al., 2013; Quail and Joyce, 2013; Topalian et al., 2015; Steven and Seliger, 2018). Among various infiltrating immune cells, high macrophages infiltrate density predicts worse patient prognosis. Intratumoral macrophage populations can be classified as M1 and M2 macrophages along a functional scale. The M1 macrophages exhibit antitumor activity by releasing pro-inflammatory cytokines, oxygen intermediates and reactive nitrogen. In contrast, the M2 macrophages are stimulated by the Th2 cytokines to exert protumor ability, and can participate in carcinogenesis in several ways, including metastasis, immune escape and angiogenesis (Li X. et al., 2017; De Palma et al., 2017; Cully, 2018; Zhu et al., 2019). In the present study, we showed that NR1H3 was correlated with infiltrating level of macrophages as well as the expression of monocyte/macrophage markers in breast cancer. NR1H3 mainly expressed in monocytes/macrophages and high amplification of NR1H3 was associated with a low M2 macrophage infiltration level. Based on these results, we evaluated the prognostic efficiency of the combination of infiltrated macrophages and NR1H3 expression patterns for breast cancer. As we expected, the low expression of NR1H3 and low M1 (anti-tumor)/high M2 (pro-tumor) macrophage infiltration predicted a poor prognosis in breast cancer patients.
We found the association between NR1H3 expression and mutated FBXW7, which is one of the most frequently mutated genes in human cancers and its functional inactivation can lead to tumorigenesis. FBXW7α, the most abundant isoform in proliferating cells, attenuates the LPS response through inhibition of C/EBPδ and TLR4 expression and that FBXW7α-depletion alone is sufficient to activate inflammatory signaling (Balamurugan et al., 2013). Importantly, FBXW7α plays a negative role in TAM M1 polarization, and FBXW7α siRNA increases the expression of M1 markers, including the secretion of TNF-α, IL-12, and IL-6, and COX2 and NOS2 expression in the cytoplasm. Long et al. proved that the FBXW7α/miR-205 axis might regulate TAM polarization by affecting SMAD1 expression. (Long and Zhu, 2019). In our results, FBXW7 mutation is related to up-regulation of NR1H3 expression, high M1 macrophage infiltration and low M2 macrophage infiltration, which is consistent with our previous results of NR1H3.
We also integrated the information on NR1H3-binding components and NR1H3 expression-related genes for a series of enrichment analyses. We identified a potential impact of NR1H3 in regulation of macrophage activation and inflammatory response regulation. Gene interaction network and functional enrichment analysis revealed the molecular mechanism by which low expression of NR1H3 gene leads to poor prognosis of breast cancer patients. However, the limitations in current study are also lies in the lack of experimental verification. Moreover, the detailed mechanisms of NR1H3 in regulating activation of TME in breast cancer needs further study.
In summary, our study showed that low NR1H3 expression was correlated with worse survival, especially for basal subtype, HER2 positive subtype and grade 3 breast cancer patients. NR1H3 was related to immune cells infiltration and regulation of macrophage activation. Importantly, the expression of NR1H3 and macrophage infiltration level were independent risk factors for prognosis of breast cancer patients. Therefore, NR1H3 could be a useful biomarker in breast cancer patients and activation of NR1H3 might be a potential therapeutic antitumor strategy of breast cancer.
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Supplementary Figure S1 | Box plots showing lower NR1H3 expression in breast tissues compared with normal tissues. Using the Oncomine, the expression difference of NR1H3 between tumor and adjacent normal tissues was compared in Sorlie Breast (A), Sorlie Breast 2 (B), and Ma Breast 4 (C) datasets. (D) The level of NR1H3 expression in BRCA based on tumor subclasses using the UALCAN database. (E) The level of NR1H3 mRNA expression in different tumor stages using the UALCAN database. BRCA, breast invasive carcinoma.
Supplementary Figure S2 | Kaplan-Meier survival curves comparing the high and low expression of NR1H3 in breast cancer. (A, B) Kaplan–Meier survival curves of OS, DFS, and PFS comparing the high and low expression of NR1H3 in the GEPIA2 and GSCA database. (C-I) Kaplan-Meier survival curves of DMFS and PPS comparing the high and low expression of NR1H3 in different subtypes in the TCGA dataset. OS, overall survival; DFS, disease-free survival; PFS, progress free survival; DMFS, distant metastasis-free survival; PPS, post progression survival.
Supplementary Figure S3 | The landscape of relation between NR1H3 expression and TILs in different cancer types available at TISIDB database. TILs, tumor-infiltrating lymphocytes.
Supplementary Figure S4 | The landscape of relations between NR1H3 expression and immune infiltration of B cells, CD4+ T cells, CD8+ T cells, monocytes, macrophages, DCs, neutrophils and NK cells across human cancers in the TIMER database. DCs, dendritic cells; NK, natural killer.
Supplementary Figure S5 | Correlation between NR1H3 expression and the TME. (A, B) Correlation analysis between the expression of NR1H3 in primary breast cancer tissues and the TME. TME, tumor microenvironment.
Supplementary Figure S6 | Correlation and prognostic efficiency of macrophage infiltration across multiple cancer types. (A) Correlation between NR1H3 expression and gene markers of monocyte/macrophage across multiple cancer types. (B) The clinical relevance of the combination of infiltrated macrophages and NR1H3 expression patterns across multiple cancer types.
Supplementary Figure S7 | Assessment of association between the combination of immune infiltrates and NR1H3 expression patterns and clinical outcome across diverse cancer types.
Supplementary Figure S8 | Kaplan-Meier curves for NR1H3 expression level and monocyte/macrophage infiltration using multiple algorithms in BRCA (A), basal subtype (B), luminal A subtype (C) and luminal B subtype (D). BRCA, breast invasive carcinoma.
Supplementary Figure S9 | The landscape of relationship between NR1H3 expression and immunoinhibitors (A), immunostimulators (B), MHC molecules (C), chemokines (D) and chemokine receptors (E) across human cancers.
Supplementary Figure S10 | Correlation of NR1H3 expression and PD-1/CD274, PD-L1/PDCD1, PD-L2/PDCD1LG2, and CTLA-4 across diverse human cancers.
Supplementary Figure S11 | Genes correlated with NR1H3. (A) Detailed information of NR1H3 interaction networks. The network consisted of 19 physical interactions from eight different databases. (B) An intersection analysis of the NR1H3-binding and correlated genes was conducted. (C) Correlation of NR1H3 expression and ITGB2 in BRCA using TIMER2 database. (D) Correlation of NR1H3 expression and ITGB7 in BRCA using TIMER2 database. BRCA, breast invasive carcinoma.
Supplementary Figure S12 | The gene interaction network of NR1H3 and ITGB2 constructed by the GeneMANIA.
Supplementary Figure S13 | The relationship between gene mutation status and NR1H3 expression in breast cancer. (A) The relationship between FBXW7 and NR1H3 expression in breast cancer was verified using GEPIA database. (B) The relationship between TMPRSS15 and RGS22 gene mutation status and NR1H3 expression in breast cancer was verified using TIMER2. (C) The FBXW7 mutation was significantly associated with lower infiltration of M2 macrophage.
Supplementary Figure S14 | Association between NR1H3 and response to drug therapy. (A) Association between NR1H3 and response to Tamoxifen treatment based on RFS at 5 years. (B, C) Association between NR1H3 and pathological response for Anthracycline treatment. RFS, relapse-free survival.
Supplementary Figure S15 | Association between NR1H3 and pathological response for Taxane (A), FAC (B), FEC (C) and Ixabepilone (D) treatment in breast cancer patients. FAC, Fluorouracil, Adriamycin, Cytoxan; FEC, Fluorouracil, Epirubicin, Cyclophosphamide.
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Introduction: SLC2A1, a member of the SLC transporter family, is involved in a variety of cell death modalities and has been found to be associated with the prognosis and immune microenvironment of a variety of tumors. However, there is a lack of systematic and comprehensive studies on the role of SLC2A1 in pan-cancer.
Methods: The mRNA, promoter methylation, and protein expression levels of SLC2A1 in pan-cancer were comprehensively evaluated using GEPIA2.0, TIMER2.0, and UALCAN databases. UCSCXenaShiny based on the cancer genomic atlas pan-cancer data and GEPIA2.0 database were used to assess the prognostic significance of SLC2A1 in pan-cancer. Genetic alterations in SLC2A1 were also evaluated using cBioPortal. The relevance of SLC2A1 to immune infiltrating cells in pan-cancer was evaluated using the XCELL algorithm in combination with the TIMER2.0 database. The correlation of SLC2A1 with the efficacy of immune checkpoint blocker (ICB) therapy was evaluated using the tumor immune dysfunction and exclusion (TIDE) score. The correlation of SLC2A1 with numerous immune-related markers was also evaluated using the TISIDB database. The correlation of SLC2A1 with tumor biological function was evaluated at the single-cell level using the CancerSEA database. Finally, the biological function of SLC2A1 was comprehensively evaluated using gene set enrichment analysis (GSEA) and protein interaction networks.
Results: SLC2A1 expression is aberrant in a variety of tumors and is strongly associated with the prognosis of several cancers. SLC2A1 is significantly associated with a variety of immune infiltrating cells including CD8+ T cells, myeloid-derived suppressor cells and macrophages in a variety of tumors. Meanwhile, the expression of SLC2A1 significantly correlated with multiple immune-related markers. In addition, SLC2A1 can also predict the effect of immune checkpoint blocker therapy in some tumors. In a functional analysis, SLC2A1 was significantly associated with hypoxia, epithelial-mesenchymal transition, mTORC1 signaling, and multiple metabolic pathways in pan-cancer.
Conclusion: Our study systematically and comprehensively summarizes the prognostic significance and immune-related role of SLC2A1 in pan-cancer and reveals the potential mechanism of SLC2A1 in regulating the tumor microenvironment and tumor behavior, providing a new effective pan-applicable biomarker for prognostic prediction and the evaluation of immunotherapeutic strategies for tumors.
Keywords: SLC2A1, pan-cancer, prognostic biomarker, immunotherapy, tumor immune microenvironment
1 INTRODUCTION
In recent years, the incidence and mortality rates of cancer have been gradually increasing, having a strong negative impact on human health and social development (Siegel et al., 2022). With the rise of targeted therapy and immunotherapy, an increasing number of cancers can be cured (Abbott and Ustoyev, 2019). However, drug resistance remains a problem that cannot be ignored in immunotherapy (O'Donnell et al., 2019; Jackson et al., 2019). With the in-depth research on tumor immunity, there is an urgent need to discover more biomarkers to assist in the diagnosis, evaluation, and treatment of cancer.
The SLC transporter family, which contains over 300 members, plays a significant role in the absorption of various nutrients and drugs by cells (Lin et al., 2015; Liu, 2019). SLC2A1 is a member of the SLC transporter family, which is mainly involved in encoding a glucose transporter protein present in cell membranes and cell surfaces. Meanwhile, SLC2A1 (GLUT1) is also a variety of programmed cell death-related genes that play important roles in ferroptosis (Zhou and Bao, 2020), anoikis (Chen et al., 2021a), necroptosis (Chen et al., 2022), and autophagy (Pei et al., 2022). In previous studies, we explored its role as a prognostic and immunotherapeutic marker in lung adenocarcinoma, finding it to be aberrantly expressed in numerous cancers (Wang et al., 2022). Additionally, SLC2A1 also has prognostic significance or an immune marker role in many other cancers. Xiao et al. explored the biological function of SLC2A1 in prostate cancer and found that it affects prostate cancer development by regulating cellular glycolysis and proliferation (Xiao et al., 2018). Wu et al. found that SLC2A1 inhibition blocks the growth of RB1-positive triple-negative breast cancer (Wu et al., 2020). Min et al. found that SLC2A1 improved the survival of gastric cancer patients by suppressing CD8+ T cells and B cells (Min et al., 2021). However, research on SLC2A1 is still confined to a few cancer species. There is no comprehensive and systematic analysis of its role in pan-cancer, and its role in the tumor immune microenvironment and potential mechanisms have not been fully explored.
In the present study, we performed a comprehensive pan-cancer analysis of the role played by SLC2A1 in the development and progression of 33 cancers and its possible mechanisms. We analyzed the expression of SLC2A1 in different cancers and the association between its expression and cancer prognosis, immune cell infiltration, immune-related marker expression, and tumor functional status. Furthermore, we performed functional enrichment analysis of SLC2A1-related genes and constructed protein interaction networks. Collectively, our study reveals the role of SLC2A1 as a powerful prognostic marker predicting immunotherapeutic efficacy for pan-cancer and explores its potential mechanisms.
2 METHODS AND MATERIALS
2.1 Data collection
Except for the special annotation of data source, the RNA sequencing (RNA-seq), DNA methylation beta value, copy number segment data and related sample annotation data of 33 cancer types used in this study were downloaded from the cancer genomic atlas (TCGA) (Tomczak et al., 2015).
2.2 Expression evaluations of SLC2A1 based on public databases
Tumor Immune Estimation Resource, version 2.0 (TIMER2.0) (Li et al., 2020) and Gene Expression Profiling Interactive Analysis, version 2.0 (GEPIA2.0) (Tang et al., 2017) were applied to compare SLC2A1 expression in tumor tissue and corresponding normal tissues. In GEPIA2, the matched TCGA normal and genotype-tissue expression dataset (GTEx) data were analyzed, and the screening criteria were set as p-value < 0.05 and cutoff of |Log2|FoldChange (FC) | > 1. Furthermore, we utilized the GEPIA2 database to analyze the association between SLC2A1 expression and pathological stages across TCGA cancers. The DNA methylation levels of the SLC2A1 promoter were compared using TCGA data in The University of Alabama at Birmingham CANcer data analysis Portal (UALCAN) (Chandrashekar et al., 2017). Correlation analysis was performed using RNA sequencing data with DNA methylation data obtained from TCGA. The region of the DNA promoter was defined as TSS200-1,500. The protein expression levels and phosphorylation of SLC2A1 in normal and primary tumor tissues were compared in UALCAN using Clinical Proteomic Tumor Analysis Consortium (CPTAC) data and protein alterations of SLC2A1 were investigated using the PhosphpSitePlus database (Hornbeck et al., 2015).
2.3 Genetic alteration analysis of SLC2A1 based on public databases
The cBioPortal platform (Cerami et al., 2012) was applied to evaluate the mutation and copy number alteration (CNA) frequency of SLC2A1 across TCGA cancers. Then, we analyzed the relationship between different SLC2A1 mutation and CNA statuses and its expression. Additionally, we compared the frequency of other genetic alterations in the SLC2A1-altered group with that of the non-altered group, along with the survival of these two groups. Correlation analysis was subsequently performed using CNV data downloaded from TCGA with RNA sequencing data. In addition to this, we conducted a further analysis of the relationship between the CNA species of SLC2A1 and tumor prognosis in pan-cancer using UCSCXenaShiny (https://hiplot-academic.com/advance/ucsc-xena-shiny) (Wang et al., 2021).
2.4 Prognostic analysis of SLC2A1
The prognostic values of SLC2A1, including overall survival (OS) and disease-free survival (DFS), were evaluated across TCGA cancers in GEPIA2. p < 0.05 was considered to denote statistical significance. Additionally, the cyclic univariate cox regression analysis based on TCGA Pan-Cancer data to further confirm the prognostic values of SLC2A1 was conducted by UCSCXenaShiny. And the forest diagrams were used to display the p-value, Hazard Ratio (HR), and 95% confidence interval (CI) of each cancer using Xiantao Academic Tool (https://www.xiantao.love/).
2.5 Relationship between SLC2A1 and tumor immunity
The R package “Immunedeconv” (Sturm et al., 2020) was applied to calculate the immune infiltration scores of all TCGA cancers by XCELL algorithms (Aran et al., 2017). The Spearman’s correlation test was then used to assess the correlation between SLC2A1 expression and immune infiltration scores. Results were visualized using the “ggplot2” R package. Additionally, the correlation between SLC2A1 expression and immune checkpoint-related gene expression was also analyzed by the above method. The potential immune checkpoint blocker (ICB) response was predicted with the tumor immune dysfunction and exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu/) (Jiang et al., 2018) and visualized using R package “ggplot2” and “ggpubr” (Kassambara, 2020).
Then, purity-adjusted Spearman correlations between SLC2A1 expression and the infiltration level of tumor immune cells were conducted via TIMER2 to further validated the R analysis. Results with correlation coefficients greater than .5 were displayed.
Furthermore, we evaluated the correlation of SLC2A1 expression with the expression of immune-related biomarkers (such as immunoinhibitors, immunostimulators, and major histocompatibility complex (MHC) molecules) in the TISIDB database (http://cis.hku.hk/TISIDB/index.php) (Ru et al., 2019).
2.6 Functional correlation analysis of SLC2A1 at the single-cell level
We investigated the CancerSEA database (Yuan et al., 2019) to explore the expression of SLC2A1 at the single-cell level in different cancers and its relationship with the tumor functional status at the single-cell level. Correlation data between SLC2A1 expression and biological function in different cancers were downloaded on CancerSEA and visualized using a correlation bubble heatmap using the “ggplot2” R package. Results with significant correlations in each single-cell sequencing dataset and their t-SNE diagrams are obtained from CancerSEA and shown separately.
2.7 Gene set enrichment analysis and protein-protein interaction network of SLC2A1
To further explore the biological function of SLC2A1 in cancer, differential expression analysis of RNAseq data in TCGA pan-cancer was performed based on SLC2A1 expression grouping. Gene set enrichment analysis (GSEA) (Subramanian et al., 2005) was performed according to the results of differential expression analysis. Then, the correlation between SLC2A1 and the enrichment scores of 50 HALLMARK pathways of cancer (Liberzon et al., 2015) in different tumors were analyzed and visualized by bubble heatmap. GSEA was performed using “GSVA” (Hänzelmann et al., 2013), “ggpubr”, “data.table” (Dowle and Srinivasan, 2021), “ggplot2”, “limma” (Ritchie et al., 2015), and “clusterProfiler” (Wu et al., 2021) R packages. Additionally, to further verify the relationship between SLC2A1 and programmed cell death such as ferroptosis, loss of anoikis, autophagy, and necroptosis, we also performed correlation analysis of SLC2A1 with key genes in these cell death modalities.
A SLC2A1-related protein-protein interaction network (PPI) was constructed using the STRING database (Szklarczyk et al., 2021), and the max number of the first shell interactor was set as no more than 50, while that of the second shell was set as none. Cytoscape was used for image adjustment and beautification (Shannon et al., 2003). Gene Ontology (GO) (Gene Ontology Consortium Blake et al., 2013) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000) functional enrichment analyses were conducted to explore the biological role of SLC2A1-related genes in PPI. Additionally, a disease-specific enrichment analysis was conducted using Metascape (Zhou et al., 2019).
2.8 Statistical analysis
All the analysis methods and R packages were implemented using R version 4.2.1, except for the online website tools mentioned above. For all analyses, the low and high SLC2A1 expression groups were established according to the median SLC2A1 mRNA expression value in the selected dataset. Public databases were used under default settings, and all other correlation analysis methods were Spearman correlation analysis. p values less than .05 were considered statistically significant (*p < 0.05, **p < 0.01, ***p < 0.001).
3 RESULTS
3.1 SLC2A1 was aberrated in most cancers at the transcriptome level
In our study, TIMER2.0, GEPIA2.0, and UALCAN platforms were used to research differential SLC2A1 expression in tumors and corresponding normal tissues. Among the results of unpaired expression analysis provided by TIMER2.0, SLC2A1 was significantly upregulated in 14 cancer types and downregulated in two from TCGA (Figure 1A). SLC2A1 expression was increased in breast cancer (BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), head and neck squamous carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), rectal adenocarcinoma (READ), stomach adenocarcinoma (STAD), thyroid carcinoma (THCA), and uterine corpus endometrial carcinoma (UCEC). In contrast, its expression was decreased in kidney chromophobe (KICH) and prostate adenocarcinoma (PRAD). In the expression analysis results of matched tumors and normal tissues provided by GEPIA2.0, SLC2A1 was significantly upregulated in adrenocortical carcinoma (ACC), BRCA, CESC, COAD, glioblastoma multiforme (GBM), HNSC, KIRC, LUAD, LUSC, ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), READ, STAD, testicular germ cell tumors (TGCT), UCEC, and uterine carcinosarcoma (UCS) (Figure 1B). On the contrary, the expression level of SLC2A1 was downregulated in acute myeloid leukemia (LAML) and skin cutaneous melanoma (SKCM). The median expression of SLC2A1 in tumor and normal samples in a body map from GEPIA2.0 was also displayed (Figure 1C).
[image: Figure 1]FIGURE 1 | Aberrant transcriptome profiles and DNA methylation level of SLC2A1 in pan-cancer (A) mRNA level of PDHA1 performed by the TIMER2 database (B) GEPIA2.0 depicted the SLC2A1 expression in matched tumors group and normal group (C) The median expression of SLC2A1 of tumor and normal samples in bodymap from GEPIA2.0 (D) SLC2A1 overexpression significantly correlated with pathological stages in ACC, BRCA, CESC, COAD, ESCA, LUAD, LIHC, OV, KIRP, PAAD, TGCT *p < 0.05; **p < 0.01; ***p < 0.001.
Thereafter, we investigated SLC2A1 expression at different pathological stages via the GEPIA2.0 database. As shown in the violin plots, SLC2A1 overexpression significantly correlated with pathological stages in ACC, BRCA, CESC, COAD, ESCA, LUAD, LIHC, OV, KIRP, PAAD, and TGCT (Figure 1D). Similarly, as shown in Supplementary Figure S1, SLC2A1 expression was not significantly associated with pathological stages in other cancer types.
3.2 SLC2A1 promoter methylation was aberrantly expressed in multiple cancers and correlated with SLC2A1 transcriptome expression levels
Since DNA methylation can control gene expression without causing any alteration in the genomic sequence, we investigated the methylation level of the SLC2A1 promoter at the pan-cancer level with TCGA data in UALCAN to investigate whether the abnormal expression level of SLC2A1 was related to DNA methylation. The results showed that both SLC2A1 promoter methylation and SLC2A1 transcriptome levels were aberrantly expressed in COAD, CESC, KIRC, LIHC, LUAD, UCEC, TGCT and THCA (Figure 2A). Further analysis showed that the transcriptome expression levels of SLC2A1 were significantly correlated with the promoter methylation levels of SLC2A1 in CESC, COAD, LUAD, TGCT and THCA, suggesting that the aberrant transcriptome expression of SLC2A1 was indeed associated with DNA promoter methylation in these tumors (Figure 2B). In contrast, in UCEC, LIHC and KIRC, although there was both aberrant expression of SLC2A1 transcriptome level and aberrant expression of SLC2A1 promoter methylation, correlation analysis showed no association between the two (Figure 2C). In other tumors, SLC2A1 promoter methylation levels were not significantly abnormal (Supplementary Figure S2). This suggested that the aberrant expression of SLC2A1 at the transcriptome level was not exclusively due to DNA promoter methylation, and we therefore explored the genetic alterations of SLC2A1 in pan-cancer.
[image: Figure 2]FIGURE 2 | SLC2A1 promoter methylation was aberrantly expressed in multiple cancers and correlated with SLC2A1 transcriptome expression levels (A) SLC2A1 promoter methylation levels were aberrantly expressed in BLCA, COAD, CESC, KIRC, LIHC, LUAD, SARC, UCEC, TGCT and THCA (B) The transcriptome expression levels of SLC2A1 were significantly correlated with the promoter methylation levels of SLC2A1 in CESC, COAD, LUAD, TGCT and THCA (C) The transcriptome expression levels of SLC2A1 were not correlated with the promoter methylation levels of SLC2A1 in UCEC, LIHC and KIRC.
3.3 Genetic alterations in SLC2A1 affected its expression at the transcriptome level and correlated with tumor prognosis
We explored the SLC2A1 genetic alterations in human tumor samples via the cBioPortal tool, using the TCGA Pan-Cancer dataset to complete this analysis. The alteration frequency of SLC2A1 (9.17% of 109 cases) was the highest in uterine serous carcinoma (Figure 3A). Furthermore, we explored the mutation types and mutation sites within the SLC2A1 sequence. There were 80 mutations in the full sequence of SLC2A1. There were 63 missense mutations, nine truncating mutations, three splice mutations, and 5 S V/fusion mutations (Figure 3B). The mutation frequency of R218H, which was mainly located within the Sugar (and other) transporter (19–466) domain, was the highest among all mutated loci, occurring in three tumor patients (Figure 3B, C). The expression level of SLC2A1 did not differ significantly among the different SLC2A1 genetic alteration types (CNAs and mutations) (Figure 3D, E). Although the frequency of SLC2A1 alterations was low, occurring in only 2% of the 10,953 patients, the difference in the incidence of genetic alterations between SLC2A1-altered and -unaltered groups was surprisingly striking. In the SLC2A1-altered group, the frequency of genomic alteration co-occurrence was significantly higher, and the top five genes with a high co-alteration frequency were SMPD4P1, IGHJ4, TRAV13-1, IGLJ1, and TRAV4. (Figure 3F). And from the results of the correlation analysis between the expression level of SLC2A1 and the CNV level of SLC2A1, they were significantly correlated in 19 cancers (Figure 3G), including LIHC, KIRC and UCEC, where previous DNA promoter methylation failed to explain the abnormal expression of SLC2A1. In LIHC, TGCT, OV, PCPG and UVM, the correlation coefficients between these two exceeded .3 (Figure 3H). Combined with the results of previous analysis of DNA promoter methylation, we concluded that the genetic and epigenetic alterations of SLC2A1 lead to its aberrant expression in tumors.
[image: Figure 3]FIGURE 3 | Genetic alteration of SLC2A1 in pan-cancer (A) Genetic alteration status of SLC2A1 in pan-cancers was performed by cBioPortal (B) Main genetic alterations of SLC2A1 (C) R218H mutation site was visualized in the 3D structure of SLC2A1 protein (D) The association between the copy number alteration types of SLC2A1 and the expression of SLC2A1 from GISTIC (E) The association between the mutation types of SLC2A1 and the expression of SLC2A1 from GISTIC (F)The top 10 genes with co-alteration frequency. GISTIC, genomic identification of significant targets in cancer (G) The expression level of SLC2A1 and the CNV level of SLC2A1 were significantly correlated in 19 cancers (H) In LIHC, TGCT, OV, PCPG and UVM, the correlation coefficients between these two exceeded 0.3.
According to the Kaplan-Meier curves of the SLC2A1-altered group and -unaltered groups, there were no significant differences in survival (Supplementary Figure S3). The results of the analysis using UCSCXenaShiny, however, showed that the CNA species of SLC2A1 was strongly associated with tumor prognosis in a wide range of cancers. The results showed that in PANCAN dataset, both OS (Figure 4A) and PFS (Figure 4B) in the SLC2A1 normal group were intermediate between the SLC2A1 deleted and duplicated groups. In contrast, SLC2A1 duplicated alteration represented a poor prognosis in almost all statistically significant subgroups but was a surprise in LUAD. In LUAD, PFS was significantly higher in the SLC2A1 duplicated group than in the SLC2A1 normal and deleted groups (Figure 4B).
[image: Figure 4]FIGURE 4 | The CNA species of SLC2A1 was strongly associated with tumor prognosis in a wide range of cancers (A) The CNA species of SLC2A1 was strongly associated with OS in 10 cancers (B) The CNA species of SLC2A1 was strongly associated with PFS in 10 cancers.
3.4 SLC2A1 was aberrated in most cancers at the protein expression level
The protein expression levels and phosphorylation of SLC2A1 in normal and primary tumor tissues were compared in UALCAN using CPTAC data. The protein expression of SLC2A1 was significantly decreased in BRCA, OV, LIHC, and lung cancer, while being increased in COAD, KIRC, UCEC, PAAD, HNSC, and GBM (Figure 5A).
[image: Figure 5]FIGURE 5 | Proteomic evaluation of SLC2A1 in pan-cancer (A) The protein expression levels of SLC2A1 in normal and primary tumor tissues were compared in UALCAN using CPTAC data (B–E) Phosphorylation of SLC2A1 in tumor and normal tissues according to UALCAN (F) The type of SLC2A1 PTM sites and their number of references in research according to the PhosphpSitePlus database (G) Frequency of SLC2A1 protein alterations in different tumors according to the PhosphpSitePlus database. PTM, post-translational modification; *p < 0.05; **p < 0.01; ***p < 0.001.
We explored the differences in SLC2A1 phosphorylation in tumor and normal tissues. Among the data from four tumor types with SLC2A1 phosphorylation information included in CPTAC, we found a decreased S490 phosphorylation in BRCA, increased T234 phosphorylation in HNSC, and increased T234 phosphorylation in KIRC (Figures 5B–D). There were no significant changes in SLC2A1 phosphorylation in OV (Figure 5E).
To further explore the relationship between tumors and SLC2A1 alterations at the proteomic level, we analyzed SLC2A1 post-translational modification (PTM) sites and their frequency in different tumors in the PhosphpSitePlus database. The most frequent protein modifications of SLC2A1 are phosphorylation and ubiquitination (Figure 5F). Among all tumors, the frequency of SLC2A1 mutations was highest in gastric, bladder, and head and neck tumors (Figure 5G), which is strongly consistent with the results obtained with UALCAN data.
3.5 High expression of SLC2A1 predicted poor prognosis in a variety of cancers
GEPIA2.0 was used to identify the prognostic significance of SLC2A1 expression in pan-cancer. As shown in Figure 6A, high SLC2A1 expression was associated with poor OS in patients with ACC (p = 0.0042), KIRP (p = 0.026), brain lower grade glioma (LGG) (p = 0.017), LIHC (p < 0.001), LUAD (p < 0.001), PAAD (p = 0.0049), SARC (p = 0.013), and SKCM (p = 0.0028). Furthermore, according to Figure 6B, high SLC2A1 expression was associated with poor DFS in patients with ACC (p < 0.001), KICH (p = 0.047), LGG (p = 0.026), PAAD (p = 0.0044), and READ (p = 0.042).
[image: Figure 6]FIGURE 6 | The prognostic values of SLC2A1, including OS and DFS, were evaluated across TCGA cancers in GEPIA2 (A)The expression of SLC2A1 was associated with OS in patients with ACC, KIRP, LGG, LIHC, LUAD, PAAD, SARC and SKCM (B) The expression of SLC2A1 was associated with DFS in patients with ACC, KICH, LGG, PAAD and READ. The cutoff value was set as follows: p-value < 0.05 and |logFC| > 1.
To further explore the role of SLC2A1 as a prognostic biomarker in cancer, we analyzed TCGA Pan-Cancer survival data, including OS, DFS, disease-specific survival (DSS), and progression-free survival (PFS), and presented the results in the form of a forest diagram. The univariate Cox regression analysis showed that SLC2A1 expression levels were strongly related to OS in 10 cancers, DFS in four cancers, DSS in eight cancers, and PFS in eight cancers (Figure 6A–6D). SLC2A1 expression levels were strongly related to OS in ACC (HR = 3.632, p = 0.004), CESC (HR = 1.656, p = 0.037), KIRP (HR = 2.245, p = .015), LGG (HR = 1.526, p = 0.023), LIHC (HR = 1.732, p = 0.002), LUAD (HR = 1.969, p < 0.001), MESO (HR = 1.906, p = 0.008), PAAD (HR = 1.765, p = 0.008), SARC (HR = 1.572, p = 0.026) and SKCM (HR = 1.545, p = 0.002) (Figure 7A). At the same time, SLC2A1 was a risk factor in these cancers. DFS analysis results showed that SLC2A1 was a risk factor in ACC (HR = 3.966, p = 0.047), COAD (HR = 3.166, p = 0.016), LUAD (HR = 1.704, p = 0.014) and PAAD (HR = 3.600, p = 0.007) (Figure 7B). PFS analysis results revealed that SLC2A1 was a risk factor in ACC (HR = 3.839, p = 0.003), KIRP (HR = 3.786, p = 0.004), LGG (HR = 1.555, p = 0.025), LUAD (HR = 2.218, p < 0.001) MESO (HR = 1.910, p = 0.037), PAAD (HR = 1.994, p = 0.004), SARC (HR = 1.617, p = 0.032) and SKCM (HR = 1.542, p = 0.003) (Figure 7C). DSS results indicated that SLC2A1 was a risk factor in ACC (HR = 4.715, p < 0.001), KICH (HR = 5.488, p = 0.030), KIRP (HR = 1.770, p = 0.038), LUAD (HR = 1.546, p = 0.002), MESO (HR = 1.952, p = 0.013), PAAD (HR = 1.628, p = 0.014), READ (HR = 2.267, p = 0.019) and SARC (HR = 1.461, p = 0.027) (Figure 7D). These results indicate that SLC2A1 expression is significantly associated with the prognosis of many cancers and will negatively affect cancer prognosis.
[image: Figure 7]FIGURE 7 | The forest diagrams of univariate Cox regression analyses in (A)OS (B) DFS (C) DSS, and (D) PFS. The red mark demonstrates that SLC2A1 expression was significantly associated with prognosis. That HR > 1 indicated that it served as a risk factor for survival. HR < 1 indicated that it had the protective effect on survival. OS, overall survival; DFS, disease free survival; DSS, disease specific survival; PFS, progression free survival; HR, hazard ratio; CI, confidence interval.
3.6 The expression of SLC2A1 was closely related to tumor immune microenvironment and tumor immunotherapy
In recent years, immune cell infiltration in the tumor microenvironment (TME) has been found to have a close influence on tumorigenesis, progression, and other behaviors. Therefore, we explored the potential correlation between SLC2A1 expression and tumor-infiltrating immune cells by performing comprehensive research. Firstly, we used the XCELL algorithm to score the immune infiltration of all TCGA Pan-Cancer samples and calculated the correlation between SLC2A1 expression and 36 different immune infiltrating cells and tumor microenvironment scores in each cancer (Figure 8A). There was a strong correlation between SLC2A1 expression and stroma score, microenvironment score and immune score in most cancers. Additionally, SLC2A1 was strongly correlated with most immune cell infiltration in ACC, HNSC, LUSC, PAAD, STAD and TGCT. Detailed correlation analysis results are provided in Supplementary Table S1.
[image: Figure 8]FIGURE 8 | Correlation of SLC2A1 expression with (A) immune infiltrating cells in pan-cancer by CIBERSORT algorithm (B) Immune checkpoint genes, including CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, SIGLEC15, and TIGIT. Red indicated a positive correlation and blue indicated a negative correlation, and the size of the bubble indicates the magnitude of the correlation.
To investigate the relationship between SLC2A1 expression and immunotherapy, we extracted eight immune checkpoint-related genes (Ravi et al., 2018; Wang et al., 2019; Zeng et al., 2019; Yi et al., 2020) and evaluated their association with SLC2A1. In some cancers, such as LIHC and THYM, we found that SLC2A1 expression was positively correlated with immune checkpoint genes, while being negatively correlated in HNSC, LUSC, and TGCT (Figure 8B). Detailed correlation analysis results are provided in Supplementary Table S1. According to this, we calculated the difference in TIDE scores between the high and low SLC2A1 expression groups to explore the potential immune checkpoint blocker response of SLC2A1 on immunotherapy in these cancers. Higher TIDE scores presented worse ICB treatment results. In LIHC and TGCT, the high SLC2A1 expression group had lower TIDE scores, i.e., patients with high SLC2A1 expression may have better ICB treatment outcomes (Figures 9A, B). In contrast, in HNSC, the high SLC2A1 expression group had higher TIDE scores, indicating a worse ICB treatment outcome (Figure 9C). In LUSC and THYM, TIDE scores were not significantly different in the high and low SLC2A1 expression groups (Figure 9D, E). To further validate our conclusions, we performed a similar analysis in a public database.
[image: Figure 9]FIGURE 9 | The difference in TIDE scores between the high and low SLC2A1 expression groups in (A) LIHC (B) TGCT (C) HNSC (D) LUSC (E) UVM. TIDE, tumor immune dysfunction and exclusion. *p < 0.05; **p < 0.01; ***p < 0.001.
We first performed an immune infiltration cell-related assessment of SLC2A1 in TIMER2.0 and identified results with correlation coefficients of absolute values greater than 0.5. As shown in the results, we found a significant positive association between SLC2A1 expression and the immune infiltration value of myeloid-derived suppressor cells (MDSCs) in ACC (r = 0.603), LUAD (r = 0.526), TGCT (r = 0.562) and PAAD (r = 0.564); endothelial cells in LGG (r = 0.501), common lymphoid progenitors in TGCT (r = 0.609); neutrophils in THCA (r = 0.528); CD4+ T cells in PRAD (r = 0.525) and cancer-associated fibroblast in UVM (r = 0.550) (Figure 10A). We identified a negative correlation between SLC2A1 expression and the immune infiltration value of regulatory T cells (Tregs) (r = −0.507) and endothelial cells (r = −0.526) in ESCA; hematopoietic stem cells in LUAD (r = −0.501); class-switched memory B cells (r = −0.554), naïve B cells (r = −0.52), and mast cells (r = −0.536) in TGCT; and M2 macrophages in THYM (r = −0.629) (Figure 10B).
[image: Figure 10]FIGURE 10 | Spearman’s correlation analysis showed the (A) positive and (B) negative association between SLC2A1 expression level and immune infiltration cells across different TCGA cancer types according to TIMER2.0. TPM, Transcript per million.
We then investigated the relations between three kinds of immunomodulators and SLC2A1 expression. SLC2A1 expression correlated with multiple immunoinhibitory genes in most tumors, such as CD244, CSF1R, and TGFB1 (Figure 11A); immunostimulatory genes, such as TNFSF13 and TNFSF15 (Figure 11B); and MHC genes, such as CD40LG and TNFSF9 (Figure 11C). Additionally, we also analyzed the relationship between the methylation and CNV levels of SLC2A1 and these genes. The methylation level of SLC2A1 was closely associated with these genes in OV, PAAD, SKCM, and STAD (Figure 11D–F). The CNV level of SLC2A1 was closely associated with these genes in KICH and LGG (Figure 11G–I). The specific results of correlation coefficients with absolute values greater than 0.5 are shown in Supplementary Figures S4–S6.
[image: Figure 11]FIGURE 11 | The association between SLC2A1 expression and (A) immunoinhibitors genes (B) immunostimulators genes, and (C) MHC genes in pan-cancer according to TISIDB database. The association between SLC2A1 methylation level and (D) immunoinhibitors genes (E) immunostimulators genes, and (F) MHC genes in pan-cancer. The association between copy number variant level of SLC2A1 and (G) immunoinhibitors genes (H) immunostimulators genes, and (I) MHC genes in pan-cancer. Red indicated a positive correlation and blue indicated a negative correlation.
3.7 SLC2A1 expression was closely related to biological functional status in cancer at the single-cell level
The CancerSEA database was applied to explore the relationship between SLC2A1 expression and biological functions commonly involved in tumor occurrence and development in pan-cancer at the single-cell level. SLC2A1 expression was associated with common tumor biological function in UVM, KIRC, and retinoblastoma (RB) to varying degrees. In most cancers, SLC2A1 was highly related to hypoxia (Figure 12A; Supplementary Table S3).
[image: Figure 12]FIGURE 12 | Expression pattern of SLC2A1 at the single-cell level and its relationship with the tumor-related biological functional status according to CancerSEA database (A) The correlation between SLC2A1 expression and different tumor functional status across pan-cancer (B) The correlation between SLC2A1 expression and different tumor functional status in individual datasets (C) SLC2A1 expression distribution of AML-EXP0049, HNSC-EXP0064, OV-EXP0069, KIRC-EXP0064 and RB-EXP0073 were shown at single-cell levels by t-SNE diagram.
Figure 12A shows the results of a comprehensive analysis of all single-cell datasets included in CancerSEA. Additionally, we explored the correlation of SLC2A1 in individual datasets with various functions. The results showed that SLC2A1 showed a strong correlation with hypoxia in AML-EXP0049, HNSC-EXP0064, OV-EXP0069, and KIRC-EXP0064 single-cell datasets, with angiogenesis, differentiation, and DNA repair in the RB-EXP0073 single-cell dataset (Figure 12B). Additionally, SLC2A1 expression distribution within these datasets was shown at the single-cell level by the t-SNE diagram (Figure 12C). From what has been discussed above, we found that SLC2A1 expression is closely related to biological functional status in cancer.
3.8 SLC2A1 was closely associated with programmed cell death, hypoxia and metabolism
Finally, we further explored the biological function of SLC2A1 by functional enrichment of SLC2A1-related genes and functional interaction network construction. The correlation analysis between SLC2A1 and the enrichment scores of 50 HALLMARK pathways across TCGA cancers (Figure 13A) showed that SLC2A1 was significantly positively correlated with MTORC1_SIGNALING, HYPOXIA, EPITHELIAL_MESENCHYMAL_TRANSITION, and ALLOGRAFT_REJECTION in almost all cancers. Additionally, SLC2A1 expression was associated with almost all pathways in GBM, KIRC, and KIRP. Detailed results of the correlation analysis are provided in Supplementary Table S4.
[image: Figure 13]FIGURE 13 | Gene Set Enrichment Analysis and protein-protein interaction network of SLC2A1 (A) The correlation analysis between SLC2A1 and the enrichment scores of 50 HALLMARK pathways across TCGA cancers (B) Construction of PPI network involved in 51 SLC2A1-interacting proteins based on STRING and adjusted by Cytoscape (C) The disease specific enrichment analysis for SLC2A1-related genes by Metascape (D) The GO enrichment analysis for SLC2A1-related genes contained in PPI network (E) The KEGG enrichment analysis for SLC2A1-related genes contained in PPI network. FDR, false discovery ratio; NES, normalized enrichment score.
A 51-protein network centered on SLC2A1 was constructed by STRING and adjusted by Cytoscape (Figure 13B). We then conducted disease-specific enrichment analysis to explore the diseases correlating to these genes in Metascape. SLC2A1-related genes were mainly related to hypoglycemia, pancreatic neoplasm, tumor initiation, and many other tumors, among others (Figure 13C). GO and KEGG enrichment analysis for the 51 genes contained in the PPI network were conducted (Figure 11D, E; Supplementary Tables S5, S6). These SLC2A1-related genes were significantly associated with many metabolism-related biological functions, such as pyruvate metabolic processes, ADP metabolic processes, and central carbon metabolism in cancer pathways. Furthermore, they were also associated with HIF-1 signaling, which is related to hypoxia.
Additionally, according to the results of correlation analysis between SLC2A1 and programmed cell death-related genes, SLC2A1 was closely associated with these genes in almost all tumors, especially with Necroptosis-related genes, and its correlation reached above .6 in many tumors (Figure 14A–D; Supplementary Table 6). The results of these analyses further emphasize the role of SLC2A1 as a multiple programmed cell death-associated gene.
[image: Figure 14]FIGURE 14 | Correlation analysis between SLC2A1 and programmed cell death-related genes (A) SLC2A1 was correlated with ferroptosis-related genes in pan-cancer (B) SLC2A1 was correlated with anoikis-related genes in pan-cancer (C) SLC2A1 was correlated with necroptosis-related genes in pan-cancer (D) SLC2A1 was correlated with autophagy-related genes in pan-cancer.
4 DISCUSSION
Several studies have pointed out the potential of the SLC transporter family in drug discovery (Lin et al., 2015; Rives et al., 2017; Scalise et al., 2019; Schumann et al., 2020), and SLC2A1 has been included as a key gene for diagnostic or prognostic cancer signature prediction in several cancers (Mo et al., 2020; Chen et al., 2021a; Qin et al., 2021; Chen et al., 2022). However, no pan-cancer analysis of SLC2A1 had been available thus far. Our study provides a comprehensive and systematic analysis of the role of SLC2A1 in human cancers, investigates its differences and commonalities among different cancer species, and explores its potential as a pan-cancer biomarker.
First, the analysis of SLC2A1 expression in cancer was performed. Combining the results of unpaired and paired expression difference analysis, SLC2A1 was found to be differentially expressed in almost all tumors, especially in BRCA, CESC, COAD, HNSC, KIRC, LUAD, LUSC, READ, STAD, and UCEC. In contrast, SLC2A1 showed high expression in most cancers and low expression only in LAML and SKCM. SLC2A1 expression was correlated with clinical staging in 11 cancers, which indicated that SLC2A1 was associated with tumor progression. It was also observed that SLC2A1 expression in these tumors was positively correlated with the TNM stage of most tumors, i.e., as the stage increased, SLC2A1 expression increased, which was consistent with the results of the analysis of expression differences in tumors and normal tissues. However, in ESCA and OV, SLC2A1 showed a decrease in expression with increasing tumor stage, which appeared contradictory to the results of our analysis and may require further study.
After that, we analyzed SLC2A1 expression at the epigenetic level. SLC2A1 promoter DNA methylation levels were abnormal in 10 cancers. Most of these tumors with abnormal SLC2A1 promoter methylation levels also showed abnormal SLC2A1 mRNA expression levels, which may indicate that promoter methylation plays a role in aberrant SLC2A1 expression. This was confirmed by the results of further correlation analysis. Recently, Zou et al. found that SLC2A1 methylation and transcript levels are dramatically elevated when induced by environmental factors, inhibiting ferroptosis and autophagy and leading to reduced immune system function and, thus, poor prognosis in patients (Zou et al., 2022). Wang et al. also observed that methylation and aberrant expression of SLC2A1 lead to poor prognosis in lung adenocarcinoma (Wang et al., 2020). Nevertheless, the abnormal expression of SLC2A1 in some cancers still could not be explained, such as LIHC, LUAD, THCA.
We then explored SLC2A1 in terms of gene mutation and copy number variation. Genetic alterations in SLC2A1 were present in most cancers, and there were 80 mutation sites in SLC2A1, most of which were missense mutations. Although the type of genetic alteration in SLC2A1 was not significantly associated with SLC2A1 expression, correlation analysis of CNV levels of SLC2A1 and SLC2A1 expression levels showed a significant association between the two in 19 cancers. This suggested that for the abnormal expression of SLC2A1 that cannot be explained by epigenetic modifications, the cause might be due to genetic alterations of the gene.
Although there was no association between the genetic alteration type of SLC2A1 and SLC2A1 expression, the type of genetic alteration in SLC2A1 was strongly associated with tumor prognosis. In survival analyses of the SLC2A1 normal, duplicated, and deleted groups, the SLC2A1 duplicated group showed poor prognostic significance in several cancer types. In particular, in GBM, KIRP, LGG, SARC, the CNA species of SLC2A1 was strongly correlated with both OS and PFS. More importantly, this variability is still significant in the PANCAN dataset. This suggests that the type of CNA alteration in SLC2A1 can be used as a generalized tumor prognostic predictor. In LUAD, however, PFS was higher in the SLC2A1 duplicated group than in the normal and deleted groups, in contrast to the results of analyses in other cancer types. In fact, there have been studies using genetic CNV status to predict tumor prognosis. Wang et al. found that CNV of METTL4 could be a prognostic biomarker for soft tissue sarcomas (STS) by potentially influencing mast cell infiltration and DNA methylation (Mo et al., 2021). Hu et al. constructed a CNV-based prognostic signature for breast cancer that showed good prediction (Zhang et al., 2021). However, the mechanisms underlying the relationship between the CNV status of SLC2A1 and tumor prognosis are still unclear, and the paradoxical results exhibited in LUAD in particular deserve further investigation. This certainly provides new ideas and directions for subsequent studies.
We also analyzed the relationship between SLC2A1 and tumors at the proteomic level. The protein expression levels of SLC2A1 showed abnormalities in all 10 cancers in the protein expression data provided by CPTAC. In BRCA, NSCLC, and LIHC, SLC2A1 protein expression was significantly reduced relative to that in normal tissues, which contrasted with its transcriptome expression levels. This suggests that the translational and post-translational modification processes of SLC2A1 may be abnormal in these cancers. Sure enough, we found that the phosphorylation level of SLC2A1 was significantly reduced in BRCA. In addition, phosphorylation and ubiquitination of SLC2A1 were altered in a variety of cancers, predominantly in gastric, bladder, and head and neck tumors. This is consistent with the results of many published studies (Fenske et al., 2009; Bonfitto et al., 2010; Shen et al., 2020; Chen et al., 2021b). Mo et al. found that upregulated SUMO2 promotes SLC2A1 degradation through sumo- and ubiquitination of SLC2A1, which leads to the proliferation and metastasis of nasopharyngeal carcinoma (Chen et al., 2021b). Zhang et al. found that DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis (Shen et al., 2020).
Our investigation of prognosis yielded surprising results. Studies have shown that high SLC2A1 expression is suggestive of poor prognosis in most cancers. SLC2A1 was significantly associated with OS and DSS in ACC, KIRP, LGG, LUAD, MESO, PAAD, SARC, and SKCM. This indicates that SLC2A1 is valuable in these cancers both as a long-term and short-term evaluation index. Especially in ACC, the HR of SLC2A1 in the univariate regression analysis with OS, PFS, DSS, and DFS as endpoints was more than 3.5. However, there is only one study from 2009 that confirms the prognostic predictive function of SLC2A1 in ACC (Krawczyk et al., 2021). In another study conducted by Bonfitto et al., it was stated that SLC2A1 did not have a prognostic predictive role, despite its high expression in ACC (Guo et al., 2020). Therefore, more relevant studies may be needed to investigate the relevant role and mechanism of SLC2A1 in ACC. There are also many studies (Schreiber et al., 2011; Tesi, 2019; Wang et al., 2022) confirming the prognostic predictive role of SLC2A1 in some tumors, but they are mostly bioinformatic analyses and more experiments are needed to validate the above analyses. Overall, however, these results suggest that SLC2A1 has the potential to be a pan-cancer prognostic biomarker.
The inextricable link between tumor immunity and tumor prognosis is now well-established (Charoentong et al., 2017). Many genes affect tumor progression by altering the TME and influencing the degree of tumor immune cell infiltration. Therefore, we further explored the link between SLC2A1 and tumor immunity. The results of the tumor immune cell infiltration analysis showed that SLC2A1 was significantly associated with multiple immune cell infiltrations in a variety of cancers. For example, SLC2A1 was significantly postively correlated with Th2 CD4+ T cells and significantly negtively correlated with CD 8 + T cell, M2 macrophages and B cell in a variety of cancers. High expression of SLC2A1 can affect the prognosis of gastric cancer by suppressing CD8+ T cells and B cells (Min et al., 2021). Additionally, we found that SLC2A1 was significantly associated with MDSC infiltration in ACC, LUAD, TGCT, and PAAD. MDSC protects tumors from immune system attack and renders them resistant to immunotherapy (Lei et al., 2021a). Therefore, high MDSC infiltration levels are highly likely to lead to poor prognosis. The above studies show that SLC2A1 has a regulatory role in the degree of infiltration of multiple immune cells including MDSC, B cells, and Tregs in a variety of tumors, thus affecting tumor progression and prognosis.
The efficacy of immune checkpoint inhibitors (ICB) in treating tumors is widely recognized, and immune checkpoint-related genes are currently of interest to investigators. We identified eight immune checkpoint-related genes from the literature and analyzed their correlation with SLC2A1. SLC2A1 was significantly negatively correlated with these eight genes in TGCT, LUSC, and HNSC, while in THYM and LIHC, SLC2A1 was significantly positively correlated with them. This suggests that aberrant SLC2A1 expression in these cancers most likely influences the expression profile of immune checkpoints and thus alters the therapeutic effect of ICB. TIDE uses a set of gene expression markers to assess two different mechanisms of tumor immune escape, including dysfunction of tumor-infiltrating cytotoxic T lymphocytes (CTL) and rejection of CTL by immunosuppressive factors. High TIDE scores were associated with poor ICB therapy efficacy and short survival (Jiang et al., 2018). The TIDE scores of the high SLC2A1 expression group were significantly higher than those of the low expression group in HNSC, while it showed opposite results in LIHC and TGCT. This suggests that the high SLC2A1 expression group in LIHC and TGCT may predict a better ICB outcome. However, there is still a gap in studies related to ICB in these three cancers, and more studies may be needed to validate our results.
To further explore the relationship between SLC2A1 and tumor immunity, we analyzed the correlation between SLC2A1 and immune-related markers on TISIDB. These immunomodulators, including immunostimulatory, immunoinhibitory, and MHC genes, were collected from Charoentong’s study (Jing et al., 2019). SLC2A1 was significantly associated with multiple immune-related markers in ESCA and TGCT. Reviewing the results of immune infiltration-related studies, we found that SLC2A1 was associated with multiple immune cell infiltrates such as epithelial cells, B cells, and Tregs in ESCA and TGCT. Although there are no immunotherapeutic agents for ESCA and TGCT, our findings clearly elucidate avenues of research and motivate their application in immunotherapy. In addition to mRNA expression, we also analyzed the correlation between SLC2A1 methylation levels, CNV levels, and these markers. The methylation level of SLC2A1 had a strong correlation in OV, PAAD, SKCM, and STAD. However, due to the small number of OV samples (9 samples) included in the study, a bias may be at play. In the other three cancers, although there are no relevant studies yet, this result is revealing and suggests that we may be able to explore the factors affecting tumor immune response from the perspective of SLC2A1 promoter methylation. Also, CNV levels of SLC2A1 were significantly correlated with immune-related markers in KICH and LGG, which provides warrants further research.
Traditional bulk assays can only explain differences between samples from a holistic perspective, and their resolution is not sufficient to depict differences between individual cells. Single-cell RNA-seq can capture rare cell types while depicting the complex structure of TME most accurately and has become a powerful tool to study cellular heterogeneity (Mo et al., 2020). Therefore, we assessed the relevance of SLC2A1 to tumor biological function at the single-cell level using the CancerSEA database. In UM, SLC2A1 was negatively related to apoptosis, DNA damage, DNA repair, metastasis, and invasion, which showed that SLC2A1 might play an inhibitory role in tumorigenesis, progression, and metastasis. In RB, SLC2A1 was positively correlated with angiogenesis, differentiation, inflammation, and metastasis, while negatively correlated with the cell cycle and DNA damage and repair, which indicates that SLC2A1 might play a role in promoting the progression and metastasis of RB. Furthermore, we found a strong positive correlation between SLC2A1 and hypoxia in most cancers. It is well-known that hypoxia can lead to poor prognosis by modulating the TME. It can render tumors resistant to conventional therapies through multiple signaling pathways, such as apoptosis, autophagy, DNA damage, mitochondrial activity, p53, and drug efflux (Szwed et al., 2021). Mo et al. (2020) established a hypoxia-associated gene signature incorporating SLC2A1 with a good prognostic prediction for lung adenocarcinoma (AUC = 0.715). This suggests that in some tumors, SLC2A1 can affect the TME by regulating hypoxia, thereby affecting prognosis.
To comprehensively explore SLC2A1 function in cancer, we subsequently performed GSEA and constructed protein interaction networks. Among the 50 HALLMARK pathways associated with cancer, SLC2A1 was significantly associated with MTORC1_SIGNALING, HYPOXIA, and EPITHELIAL_MESENCHYMAL_TRANSITION in most cancers. mTORC is an important target for cancer, aging, and metabolism-related diseases that consists of two complexes, mTORC1 and mTORC2 (Han and Wang, 2018). mTORC1 plays an important role in various biological functions such as autophagy, iron death, and lipid metabolism (Rabanal-Ruiz et al., 2017; Han and Wang, 2018; Mittal, 2018; Lei et al., 2021b). Epithelial-mesenchymal transition (EMT) can pathologically promote cancer development and metastasis and is closely related to cell development and stem cell properties [69]. The PPI network constructed based on STRING contained 51 genes, and GO, KEGG, and disease enrichment analyses were performed based on these genes. From the disease enrichment analysis, SLC2A1-related genes were closely associated with a variety of tumors. The GO and KEGG results suggest that these genes are associated with multiple glucose metabolism pathways in addition to some tumor-related pathways. Both GSEA and KEGG enrichment analyses suggested a strong correlation between SLC2A1 and hypoxia.
Nevertheless, our study has some limitations. Firstly, it was based on an online database and did not use our own collected and obtained data. However, we used a cross-validation method of multiple databases to make the results of our analysis as reliable as possible. Secondly, our results are based entirely on bioinformatics analysis, and many of them have not been experimentally validated yet. In terms of functional enrichment, we only showed the association of SLC2A1 with a given pathway and did not explore its specific regulatory mechanism within the pathway. However, there are few published studies in this area, and our study mainly provides new research directions. In the near future, we will validate our results through in vivo and in vitro experiments.
In conclusion, we have performed a systematic and comprehensive analysis of the role of SLC2A1 in pan-cancer from multiple perspectives, including expression, prognosis, immunity, and biological function. Our results revealed the potential of SLC2A1 to be developed as a pan-cancer prognostic marker and immunotherapy evaluation marker.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
YW: conception and design; YW, HZ and KW: collection, assembly, analysis, and visualization of data; XJ and SS: data and figure interpretation. YW and KW: writing–original draft. XL and DS: writing–review and editing, supervision, and funding acquisition. All authors contributed to the writing and revision of the manuscript, knew the content of it, and approved its submission.
FUNDING
The study was supported by grants from the National Natural Science Foundation of Tianjin (grant No. 21JCYBJC00260) and the Project of Tianjin Science and Technology Innovation Bureau (grant No. 20JCYBJC01350).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2022.1068462/full#supplementary-material
REFERENCES
 Abbott, M., and Ustoyev, Y. (2019). Cancer and the immune system: The history and background of immunotherapy. Semin. Oncol. Nurs. 35 (5), 150923. doi:10.1016/j.soncn.2019.08.002
 Aran, D., Hu, Z., and Butte, A. J. (2017). xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18 (1), 220. doi:10.1186/s13059-017-1349-1
 Gene Ontology Consortium Blake, J. A., Dolan, M., Drabkin, H., Hill, D. P., Li, N., et al. (2013). Gene Ontology annotations and resources. Nucleic Acids Res. 41 (1), D530–D535. doi:10.1093/nar/gks1050
 Bonfitto, V. L., Demasi, A. P., Costa, A. F., Bonfitto, J. F., Araujo, V. C., and Altemani, A. (2010). High-grade transformation of adenoid cystic carcinomas: A study of the expression of GLUT1 glucose transporter and of mitochondrial antigen. J. Clin. Pathol. 63 (7), 615–619. doi:10.1136/jcp.2010.075390
 Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al. (2012). The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2 (10), 401–404. doi:10.1158/2159-8290.CD-12-0095
 Chandrashekar, D. S., Bashel, B., Balasubramanya, S. A. H., Creighton, C. J., Ponce-Rodriguez, I., Chakravarthi, B. V. S. K., et al. (2017). Ualcan: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19 (8), 649–658. doi:10.1016/j.neo.2017.05.002
 Charoentong, P., Finotello, F., Angelova, M., Mayer, C., Efremova, M., Rieder, D., et al. (2017). Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell. Rep. 18 (1), 248–262. doi:10.1016/j.celrep.2016.12.019
 Chen, H., Gao, S., Liu, W., Wong, C. C., Wu, J., Wu, J., et al. (2021). RNA N6-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m6A-GLUT1-mTORC1 Axis and is a therapeutic target. Gastroenterology 160 (4), 1284–1300. e16. doi:10.1053/j.gastro.2020.11.013
 Chen, J., Wang, H., Zhou, L., Liu, Z., Chen, H., and Tan, X. (2022). A necroptosis-related gene signature for predicting prognosis, immune landscape, and drug sensitivity in hepatocellular carcinoma. Cancer Med. 11, 5079. doi:10.1002/cam4.4812
 Chen, S., Gu, J., Zhang, Q., Hu, Y., and Ge, Y. (2021). Development of biomarker signatures associated with anoikis to predict prognosis in endometrial carcinoma patients. J. Oncol. 2021, 3375297. doi:10.1155/2021/3375297
 Dowle, M., and Srinivasan, A. (2021). _data.table: Extension of ‘data.frame’_. R package version 1.14.2. Available at: https://CRAN.R-project.org/package=data.table. 
 Fenske, W., Völker, H. U., Adam, P., Hahner, S., Johanssen, S., Wortmann, S., et al. (2009). Glucose transporter GLUT1 expression is an stage-independent predictor of clinical outcome in adrenocortical carcinoma. Endocr. Relat. Cancer 16 (3), 919–928. doi:10.1677/ERC-08-0211
 Guo, W., Sun, S., Guo, L., Song, P., Xue, X., Zhang, H., et al. (2020). Elevated SLC2A1 expression correlates with poor prognosis in patients with surgically resected lung adenocarcinoma: A study based on immunohistochemical analysis and bioinformatics. DNA Cell. Biol. 39 (4), 631–644. doi:10.1089/dna.2019.5291
 Han, J., and Wang, Y. (2018). mTORC1 signaling in hepatic lipid metabolism. Protein Cell. 9 (2), 145–151. doi:10.1007/s13238-017-0409-3
 Hänzelmann, S., Castelo, R., and Guinney, J. (2013). Gsva: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 14, 7. doi:10.1186/1471-2105-14-7
 Hornbeck, P. V., Zhang, B., Murray, B., Kornhauser, J. M., Latham, V., and Skrzypek, E. (2015). PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res. 43 (1), D512–D520. doi:10.1093/nar/gku1267
 Jackson, C. M., Choi, J., and Lim, M. (2019). Mechanisms of immunotherapy resistance: Lessons from glioblastoma. Nat. Immunol. 20 (9), 1100–1109. doi:10.1038/s41590-019-0433-y
 Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24 (10), 1550–1558. doi:10.1038/s41591-018-0136-1
 Jing, X., Yang, F., Shao, C., Wei, K., Xie, M., Shen, H., et al. (2019). Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 18 (1), 157. doi:10.1186/s12943-019-1089-9
 Kanehisa, M., and Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28 (1), 27–30. doi:10.1093/nar/28.1.27
 Kassambara, A. (2020). _ggpubr: ‘ggplot2’ Based publication ready plots_. R package version 0.4.0. Available at: https://CRAN.R-project.org/package=ggpubr. 
 Krawczyk, M. A., Kunc, M., Styczewska, M., Gabrych, A., Karpinsky, G., Izycka-Swieszewska, E., et al. (2021). High expression of solute carrier family 2 member 1 (SLC2A1) in cancer cells is an independent unfavorable prognostic factor in pediatric malignant peripheral nerve sheath tumor. Diagn. (Basel) 11 (4), 598. doi:10.3390/diagnostics11040598
 Lei, G., Zhuang, L., and Gan, B. (2021). mTORC1 and ferroptosis: Regulatory mechanisms and therapeutic potential. Bioessays 43 (8), e2100093. doi:10.1002/bies.202100093
 Lei, Y., Tang, R., Xu, J., Wang, W., Zhang, B., Liu, J., et al. (2021). Applications of single-cell sequencing in cancer research: Progress and perspectives. J. Hematol. Oncol. 14 (1), 91. doi:10.1186/s13045-021-01105-2
 Li, T., Fu, J., Zeng, Z., Cohen, D., Li, J., Chen, Q., et al. (2020). TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 48 (W1), W509–W514. doi:10.1093/nar/gkaa407
 Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., and Tamayo, P. (2015). The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell. Syst. 1 (6), 417–425. doi:10.1016/j.cels.2015.12.004
 Lin, L., Yee, S. W., Kim, R. B., and Giacomini, K. M. (2015). SLC transporters as therapeutic targets: Emerging opportunities. Nat. Rev. Drug Discov. 14 (8), 543–560. doi:10.1038/nrd4626
 Liu, X. (2019). SLC family transporters. Adv. Exp. Med. Biol. 1141, 101–202. doi:10.1007/978-981-13-7647-4_3
 Min, K. W., Kim, D. H., Son, B. K., Oh, Y. H., Kwon, M. J., Lee, H. S., et al. (2021). High polymerase ε expression associated with increased CD8+T cells improves survival in patients with non-small cell lung cancer. PLoS One 16 (3), e0233066. doi:10.1371/journal.pone.0233066
 Mittal, V. (2018). Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol. 13, 395–412. doi:10.1146/annurev-pathol-020117-043854
 Mo, Y., Wang, Y., Zhang, S., Xiong, F., Yan, Q., Jiang, X., et al. (2021). Circular RNA circRNF13 inhibits proliferation and metastasis of nasopharyngeal carcinoma via SUMO2. Mol. Cancer 20 (1), 112. doi:10.1186/s12943-021-01409-4
 Mo, Z., Yu, L., Cao, Z., Hu, H., Luo, S., and Zhang, S. (2020). Identification of a hypoxia-associated signature for lung adenocarcinoma. Front. Genet. 11, 647. doi:10.3389/fgene.2020.00647
 O'Donnell, J. S., Teng, M. W. L., and Smyth, M. J. (2019). Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 16 (3), 151–167. doi:10.1038/s41571-018-0142-8
 Pei, Y., Lv, S., Shi, Y., Jia, J., Ma, M., Han, H., et al. (2022). RAB21 controls autophagy and cellular energy homeostasis by regulating retromer-mediated recycling of SLC2A1/GLUT1. Autophagy 2022, 1–17. doi:10.1080/15548627.2022.2114271
 Qin, J., Xu, Z., Deng, K., Qin, F., Wei, J., Yuan, L., et al. (2021). Development of a gene signature associated with iron metabolism in lung adenocarcinoma. Bioengineered 12 (1), 4556–4568. doi:10.1080/21655979.2021.1954840
 Rabanal-Ruiz, Y., Otten, E. G., and Korolchuk, V. I. (2017). mTORC1 as the main gateway to autophagy. Essays Biochem. 61 (6), 565–584. doi:10.1042/EBC20170027
 Ravi, R., Noonan, K. A., Pham, V., Bedi, R., Zhavoronkov, A., Ozerov, I. V., et al. (2018). Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy. Nat. Commun. 9 (1), 741. doi:10.1038/s41467-017-02696-6
 Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43 (7), e47. doi:10.1093/nar/gkv007
 Rives, M. L., Javitch, J. A., and Wickenden, A. D. (2017). Potentiating SLC transporter activity: Emerging drug discovery opportunities. Biochem. Pharmacol. 135, 1–11. doi:10.1016/j.bcp.2017.02.010
 Ru, B., Wong, C. N., Tong, Y., Zhong, J. Y., Zhong, S. S. W., Wu, W. C., et al. (2019). TISIDB: An integrated repository portal for tumor-immune system interactions. Bioinformatics 35 (20), 4200–4202. doi:10.1093/bioinformatics/btz210
 Scalise, M., Console, L., Galluccio, M., Pochini, L., Tonazzi, A., Giangregorio, N., et al. (2019). Exploiting cysteine residues of SLC membrane transporters as targets for drugs. SLAS Discov. 24 (9), 867–881. doi:10.1177/2472555219856601
 Schreiber, R. D., Old, L. J., and Smyth, M. J. (2011). Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion. Science 331 (6024), 1565–1570. doi:10.1126/science.1203486
 Schumann, T., König, J., Henke, C., Willmes, D. M., Bornstein, S. R., Jordan, J., et al. (2020). Solute carrier transporters as potential targets for the treatment of metabolic disease. Pharmacol. Rev. 72 (1), 343–379. doi:10.1124/pr.118.015735
 Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13 (11), 2498–2504. doi:10.1101/gr.1239303
 Shen, C., Xuan, B., Yan, T., Ma, Y., Xu, P., Tian, X., et al. (2020). m6A-dependent glycolysis enhances colorectal cancer progression. Mol. Cancer 19 (1), 72. doi:10.1186/s12943-020-01190-w
 Siegel, R. L., Miller, K. D., Fuchs, H. E., and Jemal, A. (2022). Cancer statistics, 2016. CA Cancer J. Clin. 72 (1), 7–30. doi:10.3322/caac.21332
 Sturm, G., Finotello, F., and List, M. (2020). Immunedeconv: An R package for unified access to computational methods for estimating immune cell fractions from bulk RNA-sequencing data. Methods Mol. Biol. 2120, 223–232. doi:10.1007/978-1-0716-0327-7_16
 Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102 (43), 15545–15550. doi:10.1073/pnas.0506580102
 Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., et al. (2021). The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49 (D1), D605–D612. doi:10.1093/nar/gkaa1074
 Szwed, A., Kim, E., and Jacinto, E. (2021). Regulation and metabolic functions of mTORC1 and mTORC2. Physiol. Rev. 101 (3), 1371–1426. doi:10.1152/physrev.00026.2020
 Tang, Z., Li, C., Kang, B., Gao, G., Li, C., and Zhang, Z. (2017). GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45 (W1), W98–W102. doi:10.1093/nar/gkx247
 Tesi, R. J. (2019). MDSC; the most important cell you have never heard of. Trends Pharmacol. Sci. 40 (1), 4–7. doi:10.1016/j.tips.2018.10.008
 Tomczak, K., Czerwińska, P., and Wiznerowicz, M. (2015). The cancer genome atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol. Pozn. 19 (1A), A68–A77. doi:10.5114/wo.2014.47136
 Wang, J., Sun, J., Liu, L. N., Flies, D. B., Nie, X., Toki, M., et al. (2019). Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat. Med. 25 (4), 656–666. doi:10.1038/s41591-019-0374-x
 Wang, S., Xiong, Y., Zhao, L., Gu, K., Li, Y., Zhao, F., et al. (2021). UCSCXenaShiny: An R/CRAN package for interactive analysis of UCSC xena data. Bioinformatics 38 (2), 527–529. doi:10.1093/bioinformatics/btab561
 Wang, X., Shi, D., Zhao, D., and Hu, D. (2020). Aberrant methylation and differential expression of SLC2A1, TNS4, GAPDH, ATP8A2, and CASZ1 are associated with the prognosis of lung adenocarcinoma. Biomed. Res. Int. 2020, 1807089. doi:10.1155/2020/1807089
 Wang, Y., Wen, H., and Sun, D. (2022). SLC2A1 plays a significant prognostic role in lung adenocarcinoma and is associated with tumor immunity based on bioinformatics analysis. Ann. Transl. Med. 10 (9), 519. doi:10.21037/atm-22-1430
 Wu, Q., Ba-Alawi, W., Deblois, G., Cruickshank, J., Duan, S., Lima-Fernandes, E., et al. (2020). GLUT1 inhibition blocks growth of RB1-positive triple negative breast cancer. Nat. Commun. 11 (1), 4205. doi:10.1038/s41467-020-18020-8
 Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., et al. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov. (Camb). 2 (3), 100141. doi:10.1016/j.xinn.2021.100141
 Xiao, H., Wang, J., Yan, W., Cui, Y., Chen, Z., Gao, X., et al. (2018). GLUT1 regulates cell glycolysis and proliferation in prostate cancer. Prostate 78 (2), 86–94. doi:10.1002/pros.23448
 Yi, L., Wu, G., Guo, L., Zou, X., and Huang, P. (2020). Comprehensive analysis of the PD-L1 and immune infiltrates of m6A RNA methylation regulators in head and neck squamous cell carcinoma. Mol. Ther. Nucleic Acids 21, 299–314. doi:10.1016/j.omtn.2020.06.001
 Yuan, H., Yan, M., Zhang, G., Liu, W., Deng, C., Liao, G., et al. (2019). CancerSEA: A cancer single-cell state atlas. Nucleic Acids Res. 47 (D1), D900–D908. doi:10.1093/nar/gky939
 Zeng, D., Li, M., Zhou, R., Zhang, J., Sun, H., Shi, M., et al. (2019). Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol. Res. 7 (5), 737–750. doi:10.1158/2326-6066.CIR-18-0436
 Zhang, Z., Li, X., Yang, F., Chen, C., Liu, P., Ren, Y., et al. (2021). DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat. Commun. 12 (1), 5872. doi:10.1038/s41467-021-26180-4
 Zhou, N., and Bao, J. (2020). FerrDb: A manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations. Database (Oxford) 2020, baaa021. doi:10.1093/database/baaa021
 Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., et al. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10 (1), 1523. doi:10.1038/s41467-019-09234-6
 Zou, J., Li, Z., Xie, J., Wu, Z., Huang, Y., Xie, H., et al. (2022). Methylation drives SLC2A1 transcription and ferroptosis process decreasing autophagy pressure in colon cancer. J. Oncol. 2022, 9077424. doi:10.1155/2022/9077424
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2023 Wang, Wang, Zhang, Jia, Li, Sun and Sun. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 13 January 2023
doi: 10.3389/fgene.2022.1053263


[image: image2]
Interferon gamma-related gene signature based on anti-tumor immunity predicts glioma patient prognosis
Zhe Zhang1,2†, Xiaoli Shen1†, Zilong Tan1, Yuran Mei1, Tianzhu Lu3, Yulong Ji2, Sida Cheng1, Yu Xu1, Zekun Wang1, Xinxian Liu1, Wei He1, Zhen Chen1, Shuhui Chen2,4 and Qiaoli Lv2*
1Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
2Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
3Department of Radiation Oncology and Head and Neck Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
4Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
Edited by:
Wei Xu, Shanghai Changzheng Hospital, China
Reviewed by:
Howard A Young, National Cancer Institute at Frederick (NIH), United States
Nayiyuan Wu, Hunan Cancer Hospital, Xiangya School of Medicine, Central South University, China
* Correspondence: Qiaoli Lv, lvqiaoli2008@126.com
†These authors have contributed equally to this work
Specialty section: This article was submitted to Cancer Genetics and Oncogenomics, a section of the journal Frontiers in Genetics
Received: 25 September 2022
Accepted: 30 December 2022
Published: 13 January 2023
Citation: Zhang Z, Shen X, Tan Z, Mei Y, Lu T, Ji Y, Cheng S, Xu Y, Wang Z, Liu X, He W, Chen Z, Chen S and Lv Q (2023) Interferon gamma-related gene signature based on anti-tumor immunity predicts glioma patient prognosis. Front. Genet. 13:1053263. doi: 10.3389/fgene.2022.1053263

Background: Glioma is the most common primary tumor of the central nervous system. The conventional glioma treatment strategies include surgical excision and chemo- and radiation-therapy. Interferon Gamma (IFN-γ) is a soluble dimer cytokine involved in immune escape of gliomas. In this study, we sought to identify IFN-γ-related genes to construct a glioma prognostic model to guide its clinical treatment.
Methods: RNA sequences and clinicopathological data were downloaded from The Cancer Genome Atlas (TCGA) and the China Glioma Genome Atlas (CGGA). Using univariate Cox analysis and the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm, IFN-γ-related prognostic genes were selected to construct a risk scoring model, and analyze its correlation with the clinical features. A high-precision nomogram was drawn to predict prognosis, and its performance was evaluated using calibration curve. Finally, immune cell infiltration and immune checkpoint molecule expression were analyzed to explore the tumor microenvironment characteristics associated with the risk scoring model.
Results: Four out of 198 IFN-γ-related genes were selected to construct a risk score model with good predictive performance. The expression of four IFN-γ-related genes in glioma tissues was significantly increased compared to normal brain tissue (p < 0.001). Based on ROC analysis, the risk score model accurately predicted the overall survival rate of glioma patients at 1 year (AUC: The Cancer Genome Atlas 0.89, CGGA 0.59), 3 years (AUC: TCGA 0.89, CGGA 0.68), and 5 years (AUC: TCGA 0.88, CGGA 0.70). Kaplan-Meier analysis showed that the overall survival rate of the high-risk group was significantly lower than that of the low-risk group (p < 0.0001). Moreover, high-risk scores were associated with wild-type IDH1, wild-type ATRX, and 1P/19Q non-co-deletion. The nomogram predicted the survival rate of glioma patients based on the risk score and multiple clinicopathological factors such as age, sex, pathological grade, and IDH Status, among others. Risk score and infiltrating immune cells including CD8 T-cell, resting CD4 memory T-cell, regulatory T-cell (Tregs), M2 macrophages, resting NK cells, activated mast cells, and neutrophils were positively correlated (p < 0.05). In addition, risk scores closely associated with expression of immune checkpoint molecules such as PD-1, PD-L1, CTLA-4, LAG-3, TIM-3, TIGIT, CD48, CD226, and CD96.
Conclusion: Our risk score model reveals that IFN-γ -associated genes are an independent prognostic factor for predicting overall survival in glioma, which is closely associated with immune cell infiltration and immune checkpoint molecule expression. This model will be helpful in predicting the effectiveness of immunotherapy and survival rate in patients with glioma.
Keywords: interferon gamma, glioma, tumor microenvironment, immune signature, prognosis
INTRODUCTION
Glioma is the most common primary tumor of the central nervous system, accounting for approximately 75% malignant primary brain tumors in adults (Ostrom et al., 2017). Gliomas usually originate from glial cells or other progenitor cells and are accordingly termed as astrocytoma, oligodendroglioma, oligodendroglioma, and ependymoma (Zhang et al., 2012). According to the new classification of central nervous system tumors by the World Health Organization (WHO) in 2016, gliomas can be classified into grade I to IV (Villa et al., 2018). Higher grade gliomas (grade IV) are the most lethal glioma (also called as glioblastoma, GBM) that have poor prognosis, with a median OS of only 15 months (Bleeker et al., 2012). Conventional treatment for gliomas includes surgical resection combined with radiation and/or chemotherapy. Although immunotherapy, targeted therapy, and combination therapy have been developed, the immune regulation and immune escape mechanisms used by glioblastoma pose considerable challenges to immunotherapy (Gieryng et al., 2017).
Interferons are highly species-specific glycoproteins that exert antiviral, anti-proliferative, anti-tumor, and immunoregulatory effects, and play pivotal role in coordinating immune response (Gresser, 1990). IFN-γ is a member of the type II IFN family. The mouse and human IFN-γ proteins are encoded by a 6 kb gene consisting of four exons and three introns located on exons 10 and 12, respectively (Trent et al., 1982). IFN-γ protein is a homodimer formed by non-covalent binding of two 17 kDa polypeptide subunits (Ealick et al., 1991). IFN-γ is secreted primarily by lymphocytes (CD4+ T helper type 1 (Th1) cells and CD8+ cytotoxic T-cell) (Kasahara et al., 1983; Corthay et al., 2005), gamma delta T-cell (Gao et al., 2003), and natural killer (NK) cells (Keppel et al., 2015) and plays an important role in coordinating innate and adaptive immune responses against viruses, bacteria, and tumors. IFN-γ can also promote pathological inflammatory process (Ni and Lu, 2018), and its involvement is positively associated with survival in cancer patients. Therefore, it is necessary to study the immunoregulatory effects of IFN-γ in tumor microenvironment (TME) (Castro et al., 2018).
In this study, we analyzed gene expression and clinical data of glioma samples obtained from The Cancer Genome Atlas (TCGA) database. Next, a risk score model based on IFN-γ genes was constructed using minimum absolute contraction and selection operator (LASSO) regression analysis and Cox regression analysis and validated in the Chinese Glioma Genome Atlas (CGGA) dataset. The potential relationship between the risk scoring model and clinicopathological features was analyzed using a nomogram. In addition, we analyzed the risk scoring model in predicting glioma prognosis based on immune status of TME, its relationship with immune checkpoint molecule expression, and its potential role in predicting immunotherapy outcomes. Considering the close correlation between IFN-γ and clinical treatment outcomes, we believe that our predictive model will be a useful reference for the future research studies in this field.
MATERIALS AND METHODS
Data collection
We collected transcriptome data and clinical prognosis information of 689 glioma patients from TCGA portal (https://portal.gdc.cancer.gov/); data of 212 normal patients were used as control. Only samples for which information related to complete time of life, status of life, and clinicopathological type including patient age, gender, glioma grade, IDH state, and pathological type were available, included in analysis. In addition, transcriptome data and clinical data of 367 glioma patients were downloaded from the CGGA portal (http://www.cgga.org.cn/) (Liu et al., 2018) for verifying results. We collected 30 primary glioma samples and 10 normal brain tissue samples from the Jiangxi Cancer Hospital (2020ky074).
Gene set enrichment analysis
GSEA is performed to determine whether a set of pre-defined genes shows statistically significant and consistent differences between two biological states. Data of glioma and normal samples were subjected to GSEA (Subramanian et al., 2005) (https://www.gsea-msigdb.org/gsea/index.jsp). Significant differences in GSEA were verified by normalized enrichment score (NES) and error detection rate (FDR). Furthermore, we subjected our data to the Annotation, the Visualization, and Integrated the Discovery (DAVID) (Huang et al., 2009) (https://david.ncifcrf.gov/), Gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The pathway enrichment criteria were p < 0.05 and FDR< 0.05.
Construction and validation of IFN-γ -related gene signature
First, we used “survival” and “glmnet” R software packages (Friedman et al., 2010) and performed univariate Cox regression analysis and the LASSO regression analysis to screen survival-related genes in glioma patients. Multivariate Cox regression analysis was performed to screen genes that could be used as independent prognostic factors for OS, and their regression coefficients were calculated. The risk score for each glioma patient was calculated as follows: Risk score = [Expression of Gene 1× coefficient]+[Expression of Gene 2× Coefficient]++... [Expression of Gene n× coefficient] Patients were further divided into high - and low-risk groups based on the median risk score. Kaplan-Meier method was used to compare survival differences between high- and low-risk groups. Finally, the “survival ROC” R software package (Heagerty et al., 2000) was used to establish time-dependent receiver operating characteristic (ROC) curve analysis (including 1-, 3-, and 5-year survival rate) to evaluate the sensitivity and accuracy of risk score. In addition, we used CGGA data set to verify the risk scoring model and generate Kaplan-Meier survival curve and survival ROC curve.
RNA extraction and quantitative real-time PCR (RT-qPCR)
RNA was extracted from tissues using TRIzol reagent (TaKaRa, Shiga, Japan). cDNA synthesis was performed using PrimeScript RT kit (RR047A, TaKaRa). Real-time quantitative PCR was performed using a standard SYBR Green PCR kit (Takara, RR820A). We used the 2−ΔΔCT method for calculations. The primers for the mRNA TNFAIP6 were 5′-TGC​TAC​AAC​CCA​CAC​GCA​AA-3' (forward) and 5′-CTC​AGG​TGA​ATA​CGC​TGA​CCA-3' (reverse). The primers for the mRNA PSMB2 were 5′- ATC​CTC​GAC​CGA​TAC​TAC​ACA​C-3' (forward) and 5′-GAA​CAC​TGA​AGG​TTG​GCA​GAT -3" (reverse). The primers for mRNA IRF4 were 5′-GCG​GTG​CGC​TTT​GAA​CAA​G-3' (forward) and 5′- ACA​CTT​TGT​ACG​GGT​CTG​AGA-3' (reverse). The primers for mRNA IFNAR2 were 5′-TCA​TGG​TGT​ATA​TCA​GCC​TCG​T-3' (forward) and 5′-AGT​TGG​TAC​AAT​GGA​GTG​GTT​TT -3" (reverse). The primers for GAPDH, 5′-CCC​ATC​ACC​ATC​TTC​CAG​GAG-3' (forward) and 5′-GTT​GTC​ATG​GAT​GAC​CTT​GGC-3' (reverse).
Analysis of infiltrating immune cells
To investigate the correlation between the risk model based on IFN-γ associated genes and TME, we used ESTIMATE R package (Yoshihara et al., 2013) and CIBERSORT (https://cibersort.stanford.edu/) (Newman et al., 2015) to determine the TME score and the proportion of 22 kinds of infiltrating immune cells. Furthermore, we applied the Wilcox test to compare the differentially infiltrating immune cells between the high-rated and low-rated groups.
Construction of prognostic nomogram
A nomogram can be used to combine multiple variables to diagnose or predict the probability of disease onset or progression. Using the “rms” R software package and the prognostic and clinicopathological features of the IFN-γ -associated gene risk score model, we developed a nomogram to predict the prognosis of glioma patients. Simultaneously, calibration plots were generated to compare the predicted values with actual survival rates to evaluate the accuracy of the nomogram.
Statistical analysis
Kaplan-Meier method was used for survival analysis, and log-rank test was used to evaluate OS differences between groups. Univariate and multivariate analyses were performed using Cox proportional risk model to determine whether the risk scoring model could accurately predict prognosis of glioma patients. The violin diagram was drawn using the “violot” R software package. In addition, we performed an independent t-test to assess the relationship between IFN-γ -associated genes and various clinicopathological factors. SPSS (Version 26.0) and R software (Version 4.1.0) were used for all statistical analysis and generating charts. Results with p < 0.05 were considered statistically significant.
RESULTS
Identification of IFN-γ related genes
By performing GSEA of glioma and normal samples, specific gene sets were obtained. Twenty-six gene sets related to complement system, inflammatory response, interferon gamma response, mitotic spindle, Kras signaling, E2f targets, allograft rejection, IL2/Stat5 signaling, mTORC1 signaling, and MYC target v1, among others were enriched. (Figure 1A; Table 1). We selected 198 genes (p = 0.029) to further analyze the relationship between the function of the IFN-γ response-related genes and glioma patients prognosis. Functional enrichment analysis showed that the signaling pathway associated with the IFN-γ related gene was “Influenza A" (Figure 1C). Moreover, GO analysis revealed that in biological process (BP), molecular function (MF), and cellular component (CC), the gene was mainly involved in “immune response” and “regulatory region” among others. (Figure 1B).
[image: Figure 1]FIGURE 1 | Identification of IFN-γ related genes. (A) GSEA analysis of glioma and normal samples from TCGA database. Enrichment analysis of 198 IFN-γ - related genes: (B) Enriched GO terms. (C) Kyoto Encyclopedia of Genes and Genomes Pathway. (D, E) Establishment and evaluation of risk scoring model based on IFN-γ-associated genes.
TABLE 1 | Gene sets enriched in normal and glioma patients.
[image: Table 1]Establishment and evaluation of risk scoring model based on IFN-γ-associated genes
Based on the IFN-γ gene set in MSigDB, 198 IFN-γ -associated genes were selected. First, we performed LASSO regression analysis to identify the following 19 IFN-γ -associated genes, CASP4, PSMA2, SERPING1, KLRK1, SLC25A28, IFIT2, LY6E, TNFAIP6, ISG20, PSMB2, ITGB7, BANK1, IRF4, NFKBIA, IFNAR2, PIM1, TXNIP, IFITM3 and METTL7B (Figures 1D,E). Subsequently, univariate Cox analysis was performed on these 19 genes to search for genes associated with patient OS and prognosis. Eighteen IFN-γ related genes were selected (p < 0.05) (Figure 2A). Finally, multivariate Cox analysis revealed the four genes significantly associated with patient prognosis (p < 0.05), namely IFNAR2, IRF4, PSMB2 and TNFAIP6 (Figure 2B), that were subsequently used to establish a risk assessment model. In order to determine the expression of these four genes in glioma. We performed qRT-PCR analysis and found that the expressions of TNFAIP6 (Figure 2C), PSMB2 (Figure 2D), IRF4 (Figure 2E) and IFNAR2 (Figure 2F) were significantly upregulated in glioma tissues (n = 30) compared to normal brain tissues (n = 10). The equation used for calculating risk assessment was as follows: Risk score = (0.4007 * IFNAR2 expression value) + (−0.0693 * IRF4 expression value) + (0.8667 * PSMB2 expression value) + (0.3424 * TNFAIP6 expression value). We considered the median score as the critical value and divided the samples into the high- and the low-risk groups. Our results showed that the survival of patients in the high-risk group was worse than that in the low-risk group. The expression profiles of these four genes in the two groups is illustrated as a heat map (Figure 3A). Based on these findings, we inferred that our risk model may be an efficient tool to predict glioma patient prognosis.
[image: Figure 2]FIGURE 2 | 19 IFN-γ -associated genes were selected by the LASSO regression analysis. (A) 18 IFN-γ - associated genes were selected by univariate Cox analysis. (B) 4 IFN-γ - associated genes were selected by multivariate Cox analysis. The expressions of TNFAIP6 (C), PSMB2 (D), IRF4 (E) and IFNAR2 (F) were significantly upregulated in glioma tissues compared to normal brain tissues. ****p < 0 .0001.
[image: Figure 3]FIGURE 3 | Construction of OS prediction model based on 4 genes in the TCGA dataset: (A) Heat maps of four genes in the high and low risk score groups. (B) Time-dependent ROC curve for OS. (C) Kaplan-Meier analysis. Validation of OS prediction model based on 4 genes in CGGA dataset: (D) Heat maps of four genes in the high and low risk score groups. (E) Time-dependent ROC curve for OS. (F) Kaplan-Meier analysis.
The risk score model based on IFN-γ related genes could independently predict prognosis of glioma patients
Univariate COX regression analysis showed that risk score was significantly associated with prognosis (HR = 6.616, 95% CI = 4.701–9.313, p < 0.001; Table 2). Multivariate Cox regression analysis, after adjustment for other clinical characteristics, confirmed that risk score was independent of the clinical parameters (HR = 2.037, 95%CI = 1.236–3.357, p = 0.005) (Table 2). Kaplan-Meier analysis of differential survival between the two groups found that patients in the high-risk group had significantly worse survival (shorter survival duration and lower survival) than those in the low-risk group (p < 0.0001) (Figure 3C). To verify the superiority of our risk scoring model, relevant ROC curves were drawn. The AUC values of 1-, 3- and 5-year regions were 0.89, 0.89, and 0.88, respectively, (all AUC values >0.7; Figure 3B), indicating that the risk model had good predictive value.
TABLE 2 | Univariate and multivariate analysis of the risk scores in TCGA database and CGGA database.
[image: Table 2]Validation of the risk scoring model
We used the CGGA database as a validation set to evaluate the reliability of our risk scoring model for IFN-γ -associated genes. The median score was taken as the critical value, and the samples were divided into the high- and low-risk groups. Patient OS status was assessed and the heat maps depicting the expressions of the selected four genes in the two groups were drawn (Figure 3D). Survival was consistently low in the high-risk group (Figure 3F). ROC curve analysis of validation sets assessed the prognostic efficiency of risk scoring model. The AUC value for 1-, 3-, and 5-year was 0.59, 0.68, 0.70, respectively (Figure 3E). In addition, univariate COX regression analysis showed that risk score significantly correlated with prognosis (HR = 2.484, 95%CI = 1.855–3.327, p < 0.001) (Table 2). Multivariate Cox regression analysis showed that risk score could independently predict prognosis (HR = 1.585, 95%CI = 1.159–2.168, p = 0.004) (Table 2). Collectively, these results suggest that risk score based on the selected four genes could efficiently predict patient prognosis.
Correlation between risk scoring model, disease progression, and the nomogram
We explored the relationship between the IFN-γ -associated gene scoring model and various clinicopathological factors, and found that patients with advanced tumor grade, Astrocytoma, wild-type IDH1, 1P/19Q non-co-deletion, and wild-type ATRX had significantly higher risk scores (p < 0.05, Figures 4A–E). The IFN-γ related gene score model was statistically correlated with a variety of clinicopathological factors; the higher the risk score, the worse the clinicopathological status. In addition, we constructed a nomogram based on the risk scores and independent clinical factors (age, sex, and tumor grade) (Figure 5A). The nomogram was used to predict OS rates at 1, 3, and 5 years. Calibration curves for 1-, 3-, and 5-year OS showed that the nomogram had good predictive accuracy for the TCGA dataset (Figures 5B–D).
[image: Figure 4]FIGURE 4 | IFN-γ -associated gene scoring model was correlated with WHO Grade (A), glioma subtype (B), IDH1 (C), 1P19Q co-deletion (D), ATRX (E) and TP53 (F). **p < 0.01, ****p < 0 .0001.
[image: Figure 5]FIGURE 5 | Constructed a nomogram based on the risk scoring model and independent clinical factors. (A) Nomogram predicts 1 -, 3 -, and 5-year OS for glioma patients. (B–D) Calibration curves for 1-, 3-, and 5-year OS.
IFN-γ -associated gene scoring model predicts tumor microenvironment changes in glioma patients
To explore the association between immune response and IFN-γ related genes in gliomas whose data was obtained from TCGA, we applied the ESTIMATE algorithm to explore the relationship between the risk models and immune cell infiltration, where the immune score was positively correlated with risk score (Figure 6A). Next, we assessed the relative proportions of 22 types of infiltrating immune cells using the CIBERSORT. As shown in Figure 6B, CD8 T-cell, resting memory CD4 T-cell, monocytes, M2 macrophages, and activated mast cells had higher proportions among infiltrated immune cells. Furthermore, memory B-cell, naive CD4 T-cell, activated NK cells, and monocytes were negatively correlated with risk score, whereas CD8 T-cell, resting CD4 memory T-cell, regulatory T-cell (Tregs), M2 macrophages, resting NK cells, activated mast cells, and neutrophils were positively correlated with risk score (p < 0.05, Figure 6B).
[image: Figure 6]FIGURE 6 | Correlation between IFN-γ -associated gene scoring model and tumor microenvironment. (A) The ESTIMATE algorithm to explore the relationship between the risk models and immune cell infiltration. (B) The percentages of 22 immune cells were assessed using CIBERSORT. **p < 0.01, ****p < 0 .0001.
We also evaluated the prognostic value of 22 types of infiltrating immune cells and found that cells including memory B-cell (Figure 7A), monocytes (Figure 7B), neutrophils (Figure 7D), activated NK cells (Figure 7C), resting NK cells (Figure 7E), resting CD4 memory T-cell (Figure 7F), and CD8 T-cell (Figure 7G) was significantly associated with OS (p < 0.05). Neutrophils, resting NK cells, resting memory CD4 T-cell, CD8 T-cell higher dilatancy abundance was associated with poor OS, whereas a higher abundance of memory B-cell, monocytes, neutrophils, and activated NK cells indicated better OS. In summary, risk score statistically correlated with the altered proportion of most immune cells, suggesting that our IFN-γ-associated gene risk score model can predict the immunological status of glioma microenvironment.
[image: Figure 7]FIGURE 7 | Prognostic value of infiltrating immune cells: memory B-cell (A), monocytes (B), activated NK cells (C), neutrophils (D), resting NK cells (E), resting CD4 memory T-cell (F), and CD8 T-cell (G). Correlation between IFN-γ -associated gene scoring model and immune checkpoints: (H) Correlation Circos plots. (I) Expression of immune checkpoints in the high and low risk scoring group.
Correlation of interferon gamma gene risk assessment models with immune checkpoints
The association of our risk score with important checkpoint molecules, including PD-1, PD-L1, CTLA-4, LAG-3, TIM-3, TIGIT, CD226, CD48 and CD96, was evaluated in the TCGA dataset (Figure 7H). The correlation coefficient R between risk score and genes encoding immune checkpoint molecules is shown in supplementary Table 1. In addition, we found that the expression of LAG-3, CTLA-4, PD-L1, PD-1, CD48, CD226, TIM-3, and CD96 was significantly higher in high-risk groups than in low-risk groups (p < 0.0001; Figure 7 I).
DISCUSSION
Glioma is the most common primary malignant tumor of central nervous system. Conventional treatment modalities for glioma include surgery and radio- and chemo-therapy. However, none of these significantly improve the prognosis of glioma patients. Studies have shown that immunotherapy is a powerful strategy for clinical management of various cancers including glioma (Sanmamed and Chen, 2018; Riley et al., 2019; Daubon et al., 2020). Therefore, it is necessary to identify potential biomarkers to predict the survival in glioma patients. Moreover, immune-related biomarkers of TME will help to predict the patient immune response. To maximize the clinical benefits of glioma immunotherapy and improving patient prognosis, it may be a useful strategy to enrich the immune cell populations relevant for immunotherapeutic outcomes.
In tumors, IFN-γ acts as an effective apoptosis-inducing factor by directly inducing caspase-1 and caspase-8 in tumor cells (Chin et al., 1997). IFN-γ also plays an important role in regulating immune response; antigen presentation (Ivashkiv, 2018); inflammation; chemotactic signaling (Mauldin et al., 2016); modulating extracellular matrix, thereby affecting metastasis and tumor structure (Glasner et al., 2018); and activation and polarization of white blood cells (Burke and Young, 2019). Furthermore, IFN-γ plays an important role in inducing PD-L1 expression in glioma (Qian et al., 2018). So far, studies have focused on the role of IFN-γ in cancer progression and treatment; however, only a handful studies have investigated the role of IFN-γ-associated genes in glioma prognosis.
Here, we first selected 198 IFN-γ -associated genes. Among these, four genes (IFNAR2, IRF4, PSMB2 and TNFAIP6) were identified as potential prognostic markers by univariate Cox analysis and LASSO regression analysis, and were used to construct prognostic models. Silginer et al. reported that silencing the gene encoding IFN alpha/beta receptor 2 (IFNAR2) leads to decreased expression of PD-L1 and major histocompatibility complex (MHC) proteins, thereby facilitating immune evasion of glioma cells (Silginer et al., 2017). Lei et al. reported that IRF4 mRNA overexpression is associated with advanced pathological tumor grade and worse prognosis of glioma patients (Lei et al., 2021). Tan et al. reported that PSMB2 knockdown inhibits HCC proliferation, invasion, and tumorigenesis (Tan et al., 2018), whereas Niu et al. reported that TNFAIP6 is involved in inflammatory and immune response pathways (Niu et al., 2021). In our study, these four genes were involved in tumor development, inflammation, and immune response pathways. We used CGGA database to verify the validity and stability of our model. We observed significantly lower survival in the high-risk group than in the low-risk group (p < 0.0001). Univariate and multivariate Cox regression analysis confirmed that our model was an independent tool to predict patient prognosis (p < 0.05). Finally, a nomogram was established to validate the good performance of our risk model for predicting patient prognosis.
TME is a key factor regulating the development of malignant tumors (Quail and Joyce, 2017). Comprehensive understanding of the glioma TME will greatly improve the efficacy of glioma treatment strategies and prognosis of glioma patients. Our risk scoring model positively correlated with the immune score and matrix score of TME, indicating that the model was stable and accurate. Tumor-infiltrating immune cells are an important component of several cancers (Niu et al., 2020). CIBERSORT was used to evaluate the relative proportion of 22 types of infiltrating immune cells. M2 macrophages are the most important immune cell type and are involved in immunosuppression and tumor growth promotion (Zhu et al., 2017). Our results showed that M2 macrophages were more prevalent in the high-risk group. CD8 T-cell have the potential to treat glioblastoma via CAR T-cell therapy (Murphy and Griffith, 2016). We found that CD8 T-cell was significantly associated with OS (p < 0.05). Therefore, our risk score may correctly predict the status of glioma TME as well as patient outcomes.
Checkpoint inhibitors are playing an increasingly important role in glioma immunotherapy (Ghouzlani et al., 2021). Among them, PD-1 and its ligand PD-L1 significantly modulate immunotherapy outcomes in various tumors (Wang et al., 2019). The binding of PD-1 to PD-L1 facilitates cancer immune evasion via inhibiting T-cell function (Ricklefs et al., 2018). In this study, we observed a correlation between the risk scoring model and PD-L1 using the TCGA dataset (R = 0.54). The mechanism of positive correlation between the risk score and PD-L1 in glioma may be related to IFN/PD-L1 axis of anti-PD-1/PD-L1 treatment (Qian et al., 2018). Biomarkers identified based on risk score model can accurately predict the efficacy of PD-L1 inhibitor therapy, thereby allowing glioma patients to benefit more from PD-L1 blocker therapy in the future. Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) can affect the treatment of advanced cancer and targeting drugs have been used for treating different types of cancer (Rotte, 2019). CTLA-4 overexpression in glioma TME can induce immune cell infiltration (Liu et al., 2020). Our risk score model positively correlated with CTLA-4 (R = 0.33), which may be associated with CTLA-4 blocking and increased number of IFN-γ -producing tumor-infiltrating T-cell (Giles et al., 2018). Collectively, these results suggest that our risk score model can predict patient prognosis as well as response to immune checkpoint therapy.
We generated a risk model based on four IFN-γ -associated gene, which were selected based on rigorous screening criteria. The specificity and reliability of the model were verified in CGGA data sets. In addition, we generated a nomogram based on the clinical characteristics of patients. Further explore the correlation among TME, infiltrating immune cells, and immune checkpoint inhibitors, which may be useful in the future for effectively predicting prognosis of glioma patients in clinical settings. However, our study has limitations. Since our study mainly involved in silico analysis of mined data, the results should be validated in laboratories and clinics using a larger number of glioma patients in the future.
In conclusion, we constructed a risk score model based on IFN-γ-related genes that are closely related to the immune status of TME. This model can better predict the prognosis of glioma patients and help in optimizing glioma immunotherapy.
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Undifferentiated pleomorphic sarcoma (UPS), once termed as malignant fibrous histiocytoma, has always been diagnosed exclusively in clinical practice because it lacks any defined resemblance to normal mesenchymal tissue. Although myxofibrosarcoma (MFS) has been separated from UPS due to its fibroblastic differentiation with myxoid stroma, UPS and MFS are still identified as a sarcoma group in terms of molecular landscapes. In this review article, we will describe the associated genes and signaling pathways involved in the process of sarcoma genesis and make a summary of conventional management, targeted therapy, immunotherapy, and some novel potential treatments of UPS/MFS. With the progressive advancements in medical technology and a better understanding about the pathogenic mechanism of UPS/MFS in the coming decades, new lights will be shed on the successful management of UPS/MFS.
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INTRODUCTION
Undifferentiated pleomorphic sarcoma (UPS), once termed as malignant fibrous histiocytoma, is one of the most frequent soft tissue sarcoma (Weiss and Enzinger, 1978; Carneiro et al., 2009). Myxofibrosarcoma (MFS), histologically similar to UPS, was segregated from UPS, and re-classified as an individual entity in 2002 on the ground of its clinic pathology (Hu et al., 2020). However, comprehensive, integrated genomics shows that UPS and MFS are largely indistinguishable across the multi-platform molecular landscape (Cancer Genome Atlas Research Network and Cancer Genome Atlas Research Network, 2017). Therefore, we regard UPS/MFS as a single spectrum of disease herein. UPS/MFS, characterized by highly genetic complexity, has always been the puzzle in clinical practice. Profound knowledge of the pathogenesis of UPS/MFS is missing, and the definite diagnostic characteristics and therapeutic strategies are necessary. For a better understanding of UPS/MFS, advances on the identification of aberrant signaling involved in sarcoma genesis, advancement of conventional management, and development of targeted therapy and immunotherapy, as well as novel therapy with promising future, are required.
WHO OPENS PANDORA'S BOX OF UPS/MFS?
The genetically “complex” sarcoma, UPS/MFS, arises due to chromosomal aberrations and/or genetic alterations, but the exact mechanism remains elusive. And the significance of tumor microenvironment is certainly demonstrated in UPS/MFS.
Presence of special molecules and associated signaling
The oncogenic driver genes and related signaling pathways underlying the sarcoma genesis of UPS/MFS in terms of cell proliferation, invasion, and migration have been widely debated. Mutational profiles and genomic alterations indicate that signaling pathways such as PI3K/Akt/mTOR and Hippo signaling pathways are frequently affected (Cancer Genome Atlas Research Network and Cancer Genome Atlas Research Network, 2017; Zheng et al., 2019; Ye et al., 2020; Ali et al., 2019; Rivera-Reyes et al., 2018), because of genomic, transcriptional, and proteomic alterations in UPS/MFS (Cancer Genome Atlas Research Network and Cancer Genome Atlas Research Network, 2017; Ali et al., 2019; Zhou et al., 2018; Romeo et al., 2012) (Shown in Table 1)
TABLE 1 | The molecular landmark and potential pathways for sarcomagenesis of UPS/MFS.
[image: Table 1]The genetic alterations, such as mutation, deletion, epigenetic modifications, may be important for UPS/MFS development and progression, although non-specific. Further investigation had classified TP53, ATRX, H3F3A, ZFHX3, CSMD3, PRPRT, TRIO, CLTC, PDGFRB, ALK, PTCH1, RET, ERBB4, JAK3, GATA1, PIK3CG, RARA and MYH9 as “cancer driver genes” (Ali et al., 2019; Cui et al., 2022). Consistent with this finding, inactivation of tumor suppressor gene had been frequently reported in UPS/MFS. In some cases with TP53 mutation, p53 over-expression was detected (Cui et al., 2022). It is generally believed that p53 over-expression is associated with the recurrence, metastasis and poor prognosis. But the absent expression of TP53 was correlated with the positive expression of Skp2, driving cell proliferation by degrading p21 and p27 (Li et al., 2020) (Figure 1). Homozygous deletion of p16INK4a was also observed and considered to be involved in the development of UPS/MFS (Simons et al., 2000; Hakozaki et al., 2006). Despite the detection of hypermethylation of p16INK4a in some cases with loss at the region pinpointing CDKN2A (p16), there was no survival difference depending on the p16 expression (Niini et al., 2011) (Figure 1). It seemed that p16 might not be predominant senescence barrier in subtype of UPS/MFS, and the role of methylated modifications was unknown. However, the epigenetic screening found that methylation around the elements of ITGA10 and PPP2R2B, both of which were the upstream regulators of Akt/mTOR signaling. ITGA10 also impacted the downstream expression of TRIO and RICTOR, which activated RAC/PAK and Akt/mTOR signaling for UPS/MFS cell survival (Okada et al., 2016). Therefore, the epigenetic alterations around some signaling components might be involved in the sarcoma genesis and the progression of UPS/MFS.
[image: Figure 1]FIGURE 1 | Model summarizing the role of Skp2 and p16 in UPS/MFS. TP53 deficiency renders UPS/MFS cells dependent on Skp2 which survives sarcoma cells by degrading p21 and p27; p16 is an important regulator in cell cycle through interaction with cyclin-dependent kinases (CDK).
Aberrant activation of pathways in the UPS/MFS might be also driven by the component independent mechanism like receptor overexpression, altered transcription or post translational modifications. MET was a transmembranous tyrosine kinase receptor (TKR) in hepatocyte growth factor/MET (HGF/MET) pathway, and was well known as its critical role in pathogenesis of tumor. The MET gene amplification was identified in subset of UPS by immunochemistry and its receptor overexpression was detected by fluorescence in situ hybridization (Schmitz et al., 2015). Pathologically the activation of HGF/MET axis promoted cell proliferation and invasion. And the expression of both epidermal growth factor receptor (EGFR) mRNA and protein in UPS had been reported previously (Yamamoto et al., 2004; Hakozaki et al., 2006). However, it should be noted that the gene amplification was not always positively associated with the protein expression. The poor correlation between gene amplification and protein expression might be possibly due to the specific post-transcription processing. The observation that microRNA −152 (miR-152) downregulation led to an upregulation in TKR mRNA and protein levels in the UPS, and the dysregulation of TKR pathways were considered to play a role in sarcomagenesis (Pazzaglia et al., 2017). It was also reported that independent Rho/ROCK signaling members post-transcriptionally modified by miR-138 rendered primary UPS prone to be metastatic on the ground of the specifically over-expression of miR-138 in metastasis (Wong et al., 2015). In fact, the modified signal proteins with critical role also affect the biology and pathogenesis. Phosphorylation of Akt pathway components by overexpressed heat shock protein 90 (HSP90) significantly increased cell invasiveness and viability in specific subsets of UPS (Bekki et al., 2015). Independent of the activated Akt/mTOR signaling, phosphorylated STAT3 was downregulated in the JAK-STAT pathway, which was found to be associated with poor prognosis (Bekki et al., 2017). It, thus, will be necessary to determine the details of the molecular mechanism at different levels in this disease group (Figure 2).
[image: Figure 2]FIGURE 2 | Working model of confluent network summarizing GPCR/Rho/ROCK, RTK/Ras/MAPK, TGFβ/YAP/NF-κB/mTOR, IGFR/PI3K/mTOR, and HGF/MET pathways in UPS/MFS. (A). The decoupling of miR-138 from RHO-ROCK adhesion pathway promotes UPS cell migration; (B). miR-152 downexpression disinhibits target genes production with receptor tyrosine kinase activity, and thus upregulates the downstream MAPK signaling; (C). Hepatocyte growth factor/MET (HGF/MET) pathway was aberrantly activated due to its receptor overexpression. (D). The significant secretion of TGFβ cytokine by tumor-infiltrating macrophages (TAMs) in the sarcoma microenvironment activates downstream signaling; (E). Yes-associated protein (YAP) is constitutively activated by upstream pathways including TGFβ pathway; (F). TAZ and YAP are normally inhibited by Hippo pathway or Angiomotin (AMOT), but unusually stable in UPS/MFS; (G). YAP activates mTOR signaling, exhibiting NF-κB independent effect of on autophagy; (H). YAP controls the expression of ubiquitin specific protein 31 (USP31), and thus phosphorylated NF-κB persistently suppresses the circadian clock activity, leading to cellular metabolism shift and unfold protein response (UPR) dysfunction; (I). Stabilized YAP and TGFβ signaling cooperatively regulate hyaluronan-mediated motility receptor (RHAMM/HMMR) expression, enhancing sarcomagenesis and distant metastasis; (J). The complex between transcriptional co-activator with PDZ-binding motif (TAZ) and YAP translocate into the nucleus and upregulate FOXM1 expression, which is pro-growth factor in UPS/MFS; (K). The transcriptional product of ITAG10 is associated with RICTOR which is subunit of rapamycin complex 2 (mTORC2); (L). ITAG10 encodes TRIO, and promote cell survival via RAC/PAK signaling; (M). PPP2R2B encoding product directly interacts with PDK1 and suppresses AKT/mTOR signaling in UPS/MFS.
However, the signal paths were organized non-linearly. They could form a network through a series of molecular interactions. The external signals could be transmitted, amplified and enhanced by the common extracellular receptor of multiple pathways. Insulin-like growth factor 1 receptor (IGF1R) was identified as the common upstream regulator of PI3K/mTOR and RAS/mitogen-activated protein kinase (MAPK) signaling, indicating its compensatory pathway activation after single pathway inhibition. Actually, both RAS/MAPK and PI3K/mTOR pathways were found to be activated in majority of UPS without oncogenic mutations (Serrano et al., 2016). Presumably, growth factors and its receptors were responsible for the hyperactivations of the pathways. And it was reported that co-inhibition of/PI3K/mTOR signaling and IGF1R could significantly reduce the cell growth, migration and invasion in the UPS (May et al., 2017). Similarly, the common signal transducer within multiple pathways held promise for a job on the co-activation. YAP1, together with TAZ (WWTR1), was generally inhibited in the Hippo pathway, but they were frequently activated in UPS. It was also linked to TGF-β signaling, which enhanced cell migration and invasion mediated by hyaluronan-mediated motility receptor (HMMR/RHAMM) (Ye et al., 2020). In the muscle-derived UPS, YAP1 suppressed unfolded protein response target genes and circadian genes. The effect on autophagy, metabolic disruption and hyper-proliferation was enhanced via Hippo/NF-κB axis (Rivera-Reyes et al., 2018; Ye et al., 2018). (Figure 2)
Similar to the heterogeneous tumors, a small fraction of cells with sarcoma-initiating potential rendered UPS/MFS self-renewal. In some cases, Hedgehog and Notch signaling were aberrantly activated due to the upregulation of the effectors, making stem-like cells in a less undifferentiated state (Wang et al., 2012). The inactivation of Wnt signaling also proved to be involved in the differentiation from human mesenchymal stromal or stem cells. Dkk1, the specific secreted protein of the Wnt developmental program, commonly exerted an inhibitory effect via Wnt2/β-catenin signaling. Conversely, reestablishment of both Wnt2/β-catenin and Wnt5a/JNK non-canonical signaling could reverse the poor differentiation (Matushansky et al., 2007). (Figure 3)
[image: Figure 3]FIGURE 3 | A schematic imaging showing the potential involvement of pathways in the UPS/MFS. (A). The Hedgehog (Hh) and Notch signaling modulation are activated, and impose paracrine and autocrine effects on the sarcoma cells, maintaining mesenchymal stromal or stem cells in a less differentiated state. Pharmocological blockade by triparanol, cyclopamine and DAPT successfully inhibits Hh or Notch signaling. (B). Phosphorylated STAT3 dimer functions as transcriptional complex (TC) in the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. Suppressor of cytokine signaling 3 (SOCS3) overexpression has an effect on STAT3 dephosphorylation. (C). Both Wnt2/β-catenin and Wnt5a/JNK non-canonical signaling inactivation inhibit developmental program in UPS/MFS. Wnt5a/JNK non-canonical signaling might be the upstream regulator of NF-κB signaling.
Meanwhile, some researchers focused on the resident chloride channels. Chronic chloride intracellular channels (CLICs) overexpression could lead to tumorigenesis. Previous studies suggested that IAA-94 affected cell growth and survival by inhibiting CLIC1, which was found to be widely expressed in the UPS (Murray et al., 2014). But the function of the CLIC1 pro-oncogenic pathway remains to be further elucidated.
Presence of chromosome anomalies
Numerical and structural variants underlying chromosomal aberrations are frequently observed in the UPS/MFS, indicating the critical role of high chromosomal instability in the sarcoma genesis and progression. On one hand, the complex karyotypes with numerous marker chromosomes displayed aneuploidy, as indicated by the presence of multiple copies of chromosomes (Chr) and missing chromosomes. The events that each chromosome loss or gain in the analyzed metaphases, be they monosomy, trisomy or polysomy, were observed in respective investigation (Sreekantaiah et al., 1992; Aspberg et al., 1995; Schmidt et al., 1998a; Schmidt et al., 1998b; Mairal et al., 2000; Nishio et al., 2003; Nishio et al., 2010; Mertens et al., 2011; Becerikli et al., 2014). Of them, the most noticeable anomaly was trisomy, with a non-negligible percentage of pentasomy and hexasomy in comparison to that in normal human fibroblasts. But what calls for attention was that karyotype, which were identified as disomic group or tetraploidy, might be pseudodiploid or pseudotetraploid. According to the these investigations, Chr 2, 11, 12, 14, 18, 21, 22, Y frequently occurred loss, and the number for increase were for Chr 1, 3, 4, 6, 7, 8, 16, 17, 20. Furthermore a marked chromosomal aneuploidy varied from cell to cell within homologous clones. An observation that each chromosome presenting in 5–10 copies in >4% of the nuclei indicated the significant heterogeneity across the cell mass (Becerikli et al., 2014). Combined cytogenetic findings revealed chromosome counts varied between 22 and 180, with variations in a range from a near-haploid to hypooctaploidy modal chromosome number in different populations of cells (Sreekantaiah et al., 1992; Aspberg et al., 1995; Schmidt et al., 1998a; Nishio et al., 2003; Nishio et al., 2010; Mertens et al., 2011). On the whole, the tendency of numerical variants towards an increase or loss remains unknown. Another conundrum is that the cryptic mechanisms by which chromosomal aneuploidy occur are not fully understood, although the findings that impaired synchronization between chromosome duplication and cytokinesis, and the mutated tumor suppressor genes in UPS/MFS uncover the pathogenesis of aneuploidy in a small proportion of patients.
On the other hand, a plethora of structural aberrations had produced complex karyotype, in the form of rearrangement, ring chromosomes, telomeric associations, and dicentric chromosomes. Furthermore, high-level gains (amplification), namely, double minute chromosomes, homogenously staining regions (hsr), as well as add (19p) have been reported in UPS/MFS (Szymanska et al., 1995; Choong et al., 1996). But the majority of these structural changes detected by conventional cytogenetic analysis were non-specific for UPS/MFS, only a few were possibly not accidental. In general, chromosomal rearrangement was a recurrent structural variant, and the number of genetic gain and loss varied in a wide range lacking specific pattern, with a similar story told of the regions involved.
Firstly, with breakpoints analysis, numerous translocations were detected in the derivate or maker chromosomes as follow: t (1; 2), t (1; 3), t (1; 7), t (1; 10), t (1; 17), t (2; 3), t (5; 10), t (5; 11), t (5; 17), t (6; 8), t (6; 10), t (7; 10), t (9; 10), t (10; 11), t (10; 12), t (11; 17), and t (15; 21) (Mairal et al., 2000). And the fusion genes with potential involvement in sarcomagenesis, like TMTC-NTRK3, LMNA-NTRK1, were identified (Ali et al., 2019; Bai et al., 2022). Therefore, the chromosomal rearrangement was at play in the formation of composite karyotype.
Secondly, the reported number of copy number variation (CNV) range was from 2 to 168 (Mihic-Probst et al., 2004; Niini et al., 2011). However, the actual range of variant might be greater, due to the small number of cases in these researches.
Thirdly, the chromosomal regions with DNA CNVs were extensive and scattered. The array comparative genomic hybridization and the fluorescence in situ hybridization analyses showed that the most conspicuous copy number gains were for 1p12→p34.3, 1p21.3, 1p31.3→p31.2, 1p31→p32, 1p33→p32.3, 1p36, 1q11,1q21.2→q21.3, 1q21→q23, 2p21, 2q11.2→q21, 3p, 4p, 5p15.3, 6q11→q14, 6q22→qter, 7p12→pter, 7q22→q31,7cen→q11.2, 8p11.2, 8q12→qter, 8q24.21, 8q11.2→q21.1, 9q21→qter, 11p11, 11q13, 12q24, 14q11.2, 15q26, 15q21→qter, 16p13, 17p11.2, 19p13, 19q, 20q11.22, 20q13.2, and X; the regions with the most losses were at 1q41, 1q43→qter, 2q36.3→q37.2, 4q32→qter, 5q14→q23, 7q32→qter, 8p21→pter, 8q23, 9p21→pter, 9q31→q33, 10p11.2→p13, 10q11.2→q22, 10q25.3→q26.11, 13q, 13q13.3, 13q13.3→q14.11, 13q13.3→q14.2, 13q14.11, 13q14.11→q14.2, 13q14.3→q21.1, 13q14→qter, 16q12.1→q12.2, and 18q12→q22 (Tarkkanen et al., 1990; Mairal et al., 2000; Mihic-Probst et al., 2004; Kresse et al., 2010; Nishio et al., 2010; Niini et al., 2011). Gene amplifications were observed for 1p36, 1p32, 1q21→q23, 1q32, 3q26, 6q23, 4q, 5p, 7q, 8q21.2→q22, 8p23.1, 8q24, 9q31→q34, 10q26, 11q, 12q13→q15, 12p, 17q12, 20q (Tarkkanen et al., 1990; Sakabe et al., 1999; Mairal et al., 2000; Nishio et al., 2003; Mihic-Probst et al., 2004; Idbaih et al., 2005; Kresse et al., 2010; Nishio et al., 2010). Therefore, candidate genes in these loci, such as RB1, TP53, C-MYC, MDM2, ERBB, and KIT, are amplified or deleted, and the subsequent changes may be the first events in the sarcomagenesis and progression of UPS/MFS.
Presence of protumoral microenvironment
The immune cells in the tumor microenvironment are found to play a protumoral role in UPS/MFS. Tumor-associated macrophages (TAMs) are known to produce significant cytokines, including TGFβ, and IL6, which could aberrantly activate downstream signaling and thus induce cell proliferation, migration, and invasion in UPS/MFS (Shiraishi et al., 2018; Ye et al., 2020). The percentage of TAMs was a prognostic factor for UPS/MFS. As correlative analyses of the SARC208 trial showed, patients with increased percentage of TAMs expressing PD-L1 were more likely to respond to Pembrolizumab and had a better progression-free survival (PFS) (Keung et al., 2020). In addition, infiltration of dentritic cells and neutrophils corresponded to different prognostic indicators such as recurrence-free survival (RFS) and disease-specific survival (DSS) (Hu et al., 2020; Cancer Genome Atlas Research Network and Cancer Genome Atlas Research Network, 2017). These results indicated that UPS had an inflammatory microenvironment. The analysis found that UPS had a highly expression of antigen presentation genes and regulatory T-cell genes (Pollack et al., 2017). These genetic alterations might contribute to robust oligoclonal T-cell infiltration that upregulated PD-L1 and other inhibitory ligands subsequently. Thus, UPS/MFS may be dependent on the immunosuppression within the microenvironment for immune evasion.
Altogether, multiple driver factors have been identified in subtypes of UPS/MFS. Furthermore, the crosstalk between pathways also plays a role in sarcoma genesis, proliferation, invasion, migration, and self-renewal. But, when it comes to who opens the Pandora’s Box of UPS/MFS, more work is required to elucidate the underlying mechanism or further subgroup this set of sarcomas.
CONVENTIONAL MANAGEMENT OF UPS/MFS
It is acknowledged that surgery remains the mainstay of treatment for all patients with localized UPS/MFS. But the infiltrative growth pattern of UPS/MFS is a negative factor for prognosis after surgery. Welsch studied the negative association of infiltration patterns with local control and advised separate assessment of all tumor margins against residual infiltrative “tail” (Welsch et al., 2018). Wide or radical excision involving the “tail” is required; otherwise, these sarcomas are prone to local recurrence and even metastasis. Wide excision followed by radiotherapy is typically recommended for deep lesions, but additional radiation might be limited for post-radiation UPS/MFS. Furthermore, inadequate removal of UPS/MFS may be hardly salvaged by postoperative radiotherapy (Greto et al., 2019), indicating that a negative margin significantly impacts local control and overall survival (OS).
Nevertheless, total removal of infiltrative sarcoma is a complex procedure constrained by inadvertent positive margins (IPMs) after UPS/MFS resection. Qualitative confirmation of IPMs is helpful in improving prognosis. However, preoperative radiation-induced fibrosis and previous surgery might cause margin alteration. Next, even when surgeons have been aware of these factors, they may still encounter an unsettled disputation of adequate margins for the mass resection. The adequacy of a negative margin from sarcoma is various. Kainhofer reported that local control rates were superior after R0 resection by Union for International Cancer Control -classification (minimal resection margin >1 mm) compared to R-classification (resection margin clear but allowing <1 mm) (Kainhofer et al., 2016). At Stanford University, researchers distinguished patients with a negative margin after R1 resection (1–4 mm) from those after R0 resection (>4 mm) in terms of distant metastasis rate (Kamat et al., 2019). But a retrospective study advocated a minimum resection margin of 10 mm for UPS/MFS and emphasized the significance of wide excision with ≥10 mm margin in local control compared to adjuvant radiotherapy (Fujiwara et al., 2020). Even a prospective study introduced a microscopic margin of ≥2.5 cm with a relatively acceptable 5-year local rate of 90% (Sampo et al., 2008). Sometimes, the use of wide excision may be limited in practice. Mohs micrographic surgery (MMS) likely offers better margin control and less tissue removal, thanks to the marked cytomorphology (McCoppin et al., 2012). It seems that the clinical outcome is superior to that after wide resection. Further investigations are still needed because the margin quality and dimension and the availability of margin data from all patients limit these results.
In fact, the oncologists seem to prefer wide excision for spinal lesions. A retrospective study identified subtotal or piecemeal total resection as an independent factor associated with OS and advocated a margin width of 2–3 cm (Lou et al., 2019). In particular, some clinicians championed en bloc vertebrectomy for those implicated in vertebrae. For those deep lesions involving major vessels or vital organs, systemic chemotherapy and/or palliative radiotherapy have gradually been accepted as appropriate.
In clinical practice, the choice of chemotherapy, the dose/cycle of treatment, the use of single or combined agents, and the latent toxicity have sparked numerous discussions on the care patterns, whereas most conclusions on the clinical decision-making process for UPS/MFS are heterogeneous.
In general, neoadjuvant/adjuvant chemotherapy improved OS in subsets of UPS/MFS, with first-line treatment being anthracyclines plus ifosfamide (A + I), well recognized as the most utilized regimen. However, the clinical response is limited and varied, which might be ascribed to the nature of high heterogeneity. Young et al. (2017) found an improved response to combined agents of doxorubicin-ifosfamide compared to doxorubicin alone (42.5% versus 6.9%) and better OS after combination chemotherapy in subsets of UPS. Clinicians also conducted randomization trials of Gemcitabine plus docetaxel (G + D) for UPS, which showed that G + D is not superior to A + I (Gronchi et al., 2020). But combination chemotherapy and the rising response rate at the expense of toxicities might be appropriate for young and fit patients. The clinical experience also validated that doublet chemotherapy was commonly seen in younger populations with advanced UPS (Bae et al., 2016). Nevertheless, whatever A + I or G + D, limited response to combination therapy has yielded an unsatisfactory prognosis for UPS/MFS (Hensley et al., 2002; Gronchi et al., 2012).
Accordingly, many efforts have been undertaken to develop novel therapeutic agent. Trabectedin is one of the hot-button drugs which has shown cytotoxic activity in UPS/MFS. Better still, Trabectedin might be the alternative option or subsequent therapy after A + I failure for UPS/MFS (De Sanctis et al., 2015; Martinez-Cruzado et al., 2017). However, trabectedin for UPS/MFS demands further efficacy and safety evaluation.
Another debate on the timing and cycle of chemotherapy in UPS/MFS is among clinicians. A Japanese trial (JCOG0304) on perioperative chemotherapy found limited patient benefits because of significant hematological toxicities (Tanaka et al., 2015). While some multicenter randomized clinical trials with long-term follow-up compared preoperative three and perioperative five cycles of epirubicin-ifosfamide. The outcome was comparable between these regimens, and it seemed that adjuvant chemotherapy, if needed, might be well administered preoperatively and limited to three cycles (Gronchi et al., 2016). However, this conclusion is not of universality due to its research design and the number of cycles.
TARGETING THERAPY
Targeting druggable genes
Small wonder that identifying active targets for therapeutic interventions and establishing a novel signature to predict response to therapy are critical to management and clinical outcomes. The genomic and transcriptomic characterization of UPS identified TP53, ATRX, DOT1L, GCGR, COL4A2, KCNQ3, PKLR, SLC12A1, RARA, ALK, PTCH1, RET, ROS1, ABL1, MET, STK24(FARP1-STK24), ADAM17 (ASAP2-ADAM17), MMP20(PKNOX2-MMP20), NTRK1 (LMNA-NTRK1) as possible actionable genes, suggesting the potential use of immunotherapy. In fact, immunotherapy has gradually become a pillar in the powerful arsenal against advanced UPS. That dual agent checkpoint blockade immunotherapy plus radiotherapy can offer a complete response to patients with metastatic UPS is an inspiring news (Guram et al., 2018). Simultaneously, several immune therapy and radiotherapy investigations are underway to confirm the clinical utility (NCT03307616, NCT03116529, NCT03092323).
Targeting tyrosine kinases
Tyrosine kinase receptors have been identified as the therapeutic target due to their specific molecular dysregulation in UPS. A Korean retrospective trial on Pazopanib for patients pretreated with cytotoxic chemotherapy showed a higher disease control rate in UPS group (Oh et al., 2020). But the efficacy of Pazopanib seemed unfavorable after the failure of the first-line treatment with doxorubicin or ifosfamide for advanced UPS (Kim et al., 2019). A real-world experience with Pazopanib in patients with UPS in Northern California showed that the PFS was approximately 3 months, and over 60% of patients with UPS developed progressive disease (Seto et al., 2019), which is significantly different from the result reported by the PALETTE trial (PFS: 4.6 months) (van der Graaf et al., 2012). But a retrospective study in Korea showed that patients with UPS pretreated heavily before Pazopanib also achieved acceptable clinical outcomes, with a mean PFS of 7.1 months (Yoo et al., 2015). Another Japanese study showed that the median PFS was 15.3 weeks, and the median survival was 9.5 months after Pazopanib treatment in the UPS group (Nakamura et al., 2016). Therefore, the efficacy and safety of Pazopanib vary with different settings. The number of patients, the previous lines of therapy, physical performance, the heterogenetic nature of UPS, and the race are the possible confounding factors affecting the outcome.
Anlotinib is another novel tyrosine kinase inhibitor targeting multiple factors involving VEGF/VEGFR signaling and fibroblast growth factor receptor. The PFS rate at 12 weeks was 58% for refractory UPS, and the median PFS and OS were 4.1 months and 11 months, respectively (Chi et al., 2018). Although the efficacy and safety were acceptable to some extent, the small number of patients with UPS in this trial demands multicenter clinical trials.
Targeting anti-angiogenesis
Disruption of the tumor’s vasculature and interference with the vascular formation promises therapeutic strategies.
Endosialin (CD248), as detected by immunohistochemistry in most neoplastic cells of UPS and stromal fibroblasts, has been reported (Thway et al., 2016). Commonly, the expression of endosialin is significantly lost in the adult tissue. The sarcoma side population with renewal capability maintains the endosialin expression, and a randomized phase II trial of ontuxizumab (a humanized monoclonal antibody targeting endosialin) is underway (Sun et al., 2015). Consequently, the efficacy of this antibody remains to be evaluated.
Aminopeptidase N (CD13) expression is detected in higher-density UPS/MFS tumor cells. Further investigation into the prognostic impact of CD13 expression showed a significant association with relapse-free survival and OS. Torsten and his colleagues constructed the fusion proteins carrying NGR (asparagine-glycine-arginine) –containing peptides at the C-terminus of truncated tissue factor (tTF) binding to CD13 to inhibit sarcoma growth through vascular thrombosis. Although the therapeutic investigation of tTF-NGR against CD13 was performed in the human fibrosarcoma cell line, the prothrombogenic effect in vivo of these fusion proteins was independent of tumor histology (Kessler et al., 2018). These results suggest that it may be possible to use tTF-NGR for the treatment of UPS/MFS.
Targeting tumor microenvironment
Hypoxia-induced factor (HIF) is critical in the hypoxic microenvironment, which may induce tumor cell migration. Elevated expression of HIF-1α is a strong predictor of UPS with metastatic potential. The mechanism might be that HIF-1α enhances the expression of the intracellular enzyme procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2), which promotes collagen modification and deposition. The subsequent study on the PLOD inhibitor minoxidil showed that HIF-1α–dependent induction of PLOD2 activity was required for cell migration (Eisinger-Mathason et al., 2013). PLOD2 appears to be a novel therapeutic target to reduce tumor cell dissemination.
Programmed death-1/programmed death-ligand 1(PD-1/PD-L1) inhibitor therapy may be a suitable treatment for UPS with a higher level of T-cell infiltration. Pembrolizumab, an anti-PD-L1 antibody, was assessed in a multicenter, phase II clinical trial (Tawbi et al., 2017). Meaningful clinical activity was observed in patients with UPS, and no devastating treatment-related adverse event was reported. But due to its heterogeneity, subgroups of UPS might not respond to PD-1/PD-L1 monotherapy. For example, macrophage with indoleamine 2,3-dioxygenase 1 (IDO1) pathway activation might conversely limit the efficacy of PD-1 because of the immunosuppressive tumor environment (Toulmonde et al., 2018).
Targeting signal transduction
Signaling pathway members have been intensely scrutinized as potential therapeutic targets, promoting the development of inhibitors against the pathway’s components. The response of a genetically engineered mouse model closely resembling UPS to PI3K inhibitors BKM120 and BEZ235 seemed robust in delaying tumor growth. And the combination with doxorubicin significantly increased the complete response rate (Kim et al., 2012). Similarly, a dual PI3K/mTOR inhibitor, BGT226, combined with IGF1R inhibitor, AEW541, could synergistically reduce oncogenic activity and thus appeared to be a promising therapeutic strategy (May et al., 2017). These results showed that PI3K inhibitors were viable agents involved in the therapeutic regimen.
Neurotensin receptor 1 (NTSR1) was a component of GPCR, and its knockdown significantly prevented the aggressive behavior of UPS cells. SR48692, an inhibitor of NTSR1, was found to synergistically coordinate with chemotherapeutic agents to prevent UPS cell proliferation by inactivating extracellular kinase (Tokumoto et al., 2019). NTSR1 might be another target for UPS treatment.
Fibroblast Growth Factor 23 (FGF23), expressed explicitly in UPS of the bone compared to other sarcomas, was found to regulate cell proliferation, migration, and angiogenesis (Ali et al., 2019). FGF23 monoclonal antibody drugs with promising clinical results deserve further investigation in UPS.
Targeting cell cycle
The regulation of gene expression by covalent modification of histones, transforming chromosome agglutination, or affecting the affinity of transcriptional elements, is a promising therapeutic agent for UPS/MFS. EPAS1, the gene encoding HIF-2α, was significantly silenced by epigenetic modification in UPS to adapt to the intratumoral hypoxia environment. The histone deacetylase inhibitor Vorinostat induced the re-expression of HIF-2α, thus suppressing tumor growth in an autochthonous model (Nakazawa et al., 2016). Caffeine can induce apoptosis, and valproic acid can act as a histone deacetylase inhibitor. It was found that their combination could synergistically produce a cytocidal effect in cell lines established from human UPS via cell cycle perturbation (Igarashi et al., 2017).
Eribulin, a novel synthetic agent targeting microtubules, inhibited microtubule dynamics and cell cycle arrest and finally initiated mitochondria-dependent apoptosis. A Japanese study reported that patients with UPS had higher OS with relatively tolerable adverse events (Nakamura et al., 2019). But larger-scale studies are required to evaluate the clinical outcome after Eribulin treatment.
In addition, the small-molecule agent YM155 selectively suppressed surviving, a poor prognostic biomarker known to inhibit mitochondrial apoptosis in a dose- and time-dependent manner in UPS/MFS cell lines (Minoda et al., 2015). It is suggested that activation of the mitochondria-dependent apoptotic pathway might be a therapeutic target.
POTENTIAL THERAPEUTICS
Tumor-targeting Salmonella typhimurium A1-R, a facultative anaerobe that is an auxotroph of leucine and arginine, has amazingly shown strong efficacy in vivo and in vitro on patient-derived orthotopic xenograft (PDOX) models of UPS. Compared with the first-line therapy drug doxorubicin, A1-R was remarkably more effective against all PDOX models tested (Igarashi et al., 2018). These results suggest that bacterial therapy of S. typhimurium A1-R might be feasible for UPS.
In a murine xenograft model of UPS, Takeshi et al. provided a novel treatment with carbon dioxide (CO2). Transcutaneous CO2 application longer than 5 min could significantly decrease the tumor volume. Even CO2 treatment for ≥10 min could induce apoptosis (Ueha et al., 2017). In this regard, CO2 treatment might be useful and safe for further clinical trials.
In recent years, the success of adoptive cell therapy (ACT) and therapeutic cancer vaccine makes the cases for optimizing immunotherapeutic in UPS/MFS stronger. ACT including T-cell receptor (TCR) gene therapy, tumor-infiltrating lymphocyte (TIL) therapy, chimeric antigen receptor (CAR) T-cell therapy and natural killer (NK) cell therapy, is currently being investigated in sarcoma. There is limited clinical data available for UPS/MFS, albeit TCR therapy, and TIL therapy have been achieved objective response in other type of sarcoma. CAR T-cell therapy for UPS/MFS has emerged with the encouraging findings. Several UPS/MFS-associated receptors, EGFR, IGF1R, and TKRs, seemed to be amenable to this therapy (Pang et al., 2018). More mature results are awaited to prove the clinical efficiency of ACT in UPS/MFS, with some trials being under progress (NCT04052334, NCT03725605).
Cancer vaccine would be a promising therapeutic for UPS/MFS with greater immunogenicity. Delivery of antigen presenting cells into sarcoma could induce specific immune response with which there was a trend towards improved prognosis in the patients. Dendritic cells exposed to high Melanoma-associated antigen 3 (MAGE-A3) expression with poor prognostic indication, were detected in UPS/MFS. And the sufficient human leukocyte antigen expression and lymphocyte infiltration were beneficial for the antigen presentation in the UPS/MFS (Conley et al., 2019). Immunotherapy approaches targeting MAGE-A3 might have therapeutic value in the treatment of UPS/MFS. In fact, the cancer vaccine has been combined with chemotherapy or radiotherapy for soft tissue tumor including UPS in the previous clinical trials (Finkelstein et al., 2012; Krishnadas et al., 2015). But cancer vaccine still remains a highly charged issue.
SUMMARY AND FUTURE PERSPECTIVES
In general, UPS remains the diagnosis of exclusion. But with the identification of genetic/epigenetic alterations or chromosomal abnormities by comprehensive detection and the development of various treatments for UPS, the exact mechanism underlying the pathogenesis of UPS is sure to be clarified. In addition, whether differential investigations between UPS and MFS in future can provide new insights into their distinction also deserves more expectations.
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Identification of cuproptosis-related subtypes and the development of a prognostic model in glioma
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Introduction: A copper-dependent cell death, cuproptosis, involves copper binding with lipoylated tricarboxylic acid (TCA) cycle components. In cuproptosis, ferredoxin 1 (FDX1) and lipoylation act as key regulators. The mechanism of cuproptosis differs from the current knowledge of cell death, which may invigorate investigations into copper’s potential as a cancer treatment. An extremely dismal prognosis is associated with gliomas, the most prevalent primary intracranial tumor. In patients with glioma, conventional therapies, such as surgery and chemotherapy, have shown limited improvement. A variety of cell death modes have been confirmed to be operative in glioma oncogenesis and participate in the tumor microenvironment (TME), implicated in glioma development and progression. In this study, we aimed to explore whether cuproptosis influences glioma oncogenesis.
Methods: Gene expression profiles related to cuproptosis were comprehensively evaluated by comparing adjacent tissues from glioma tissues in The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) database. Gene expression, prognostic, clinical, and pathological data of lower-grade gliomas (LGG) and glioblastoma were retrieved from TCGA and Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) databases. The datasets were managed by “Combat” algorithm to eliminate batch effects and then combined. A consensus clustering algorithm based on the Partitioning Around Medoid (PAM) algorithm was used to classified 725 patients with LGG and glioblastoma multiforme (GBM) into two cuproptosis subtypes. According to the differentially expressed genes in the two cuproptosis subtypes, 725 patients were divided into 2 gene subtypes. Additionally, a scoring system that associated with TME was constructed to predict patient survival and patient immunotherapy outcomes. Furthermore, we constructed a prognostic CRG-score and nomogram system to predict the prognosis of glioma patients. 95 tissue specimens from 83 glioma patients undergoing surgical treatment were collected, including adjacent tissues. Using immunohistochemistry and RT-qPCR, we verified cuproptosis-related genes expression and CRG-score predictive ability in these clinical samples.
Results: Our results revealed extensive regulatory mechanisms of cuproptosis-related genes in the cell cycle, TME, clinicopathological characteristics, and prognosis of glioma. We also developed a prognostic model based on cuproptosis. Through the verifications of database and clinical samples, we believe that cuproptosis affects the prognosis of glioma and potentially provides novel glioma research approaches.
Conclusion: We suggest that cuproptosis has potential importance in treating gliomas and could be utilized in new glioma research efforts.
Keywords: cuproptosis, prognostic model, gene subtypes, tumor microenvironment, glioma
1 INTRODUCTION
Cuproptosis is a type of copper-dependent cell death that occurs by the binding of copper to the lipoylated components of the tricarboxylic acid (TCA) cycle. Lipoylated protein aggregation and subsequent loss of iron-sulfur cluster proteins cause cell death (Tang et al., 2022; Tsvetkov et al., 2022; Wang et al., 2022). Cuproptosis differs from the currently known mechanism of cell death and may invigorate research into copper’s potential as a cancer treatment (Kahlson and Dixon, 2022). Ferredoxin 1 (FDX1) and lipoylation are considered key regulators of cuproptosis. Six genes related to the lipoic acid pathway (LIPT1, LIAS, and DLD) and protein targets of lipoylation (DLAT, PDHA1, and PDHB) (Solmonson and DeBerardinis, 2018; Tang et al., 2022; Wang et al., 2022) were thought to be positive regulatory genes. In addition, pyruvate dehydrogenase complex-related genes, including MTFS, GLS, and CDKN2A, are considered negative regulators (Tsvetkov et al., 2022). Protein lipoylation is known to occur on only four enzymes: DBT, GCSH, DLST, and DLAT (Rowland et al., 2018; Solmonson and DeBerardinis, 2018). It has been found that knocking out either FDX1 or lipoylation-related enzymes can relieve copper toxicity in cells. The copper importer SLC31A1 (CTR1), and exporters ATP7A (Aubert et al., 2020) and ATP7B are related to the homeostatic mechanisms that maintain intracellular copper concentrations. SLC31A1 plays a key role in high-affinity Cu uptake (Lutsenko, 2010; Tang et al., 2022). ATP7A and ATP7B are closely related to Cu-transportation (Nevitt et al., 2012; Polishchuk et al., 2019). NFE2L2 and NL RP3 affect copper metabolism in hepatocellular carcinoma and Wilson’s disease (Dong et al., 2021; Ren et al., 2021). Thus, we had reason to believe that the 19 genes mentioned above may be cuproptosis-related genes and made them the basis of this study.
Glioma has a poor prognosis, and is the most prevalent primary intracranial tumor (Ostrom et al., 2014). Glioma patients have had limited prognosis improvement with conventional treatment options, including surgery and chemotherapy (Xu et al., 2020). Gliomas are classified into 4 grades in the 2021 World Health Organization (WHO) classification of central nervous system (CNS) tumors, with grades 1 and 2 being low-grade gliomas and grades 3 and 4 being high-grade gliomas (Louis et al., 2021). However, grades 2 and 3 gliomas are named lower-grade gliomas (LGG) according to the principles of common databases. In this study, we used naming rules of databases and classified LGG as grade 2 and 3 glioma, HGG as grade 4 glioma. A variety of cell death modes have been confirmed to be present in glioma and participate in the tumor microenvironment (TME) (Cai et al., 2022; Liu et al., 2022). Cuproptosis may play a role in glioma development and progression of glioma.
In this study, we aimed to explore whether cuproptosis influences glioma prognosis. We comprehensively evaluated the expression profiles of cuproptosis-related genes. Using cuproptosis-related genes from a survey of the literature, we were able to classify 725 patients with LGG and glioblastoma multiforme (GBM) into two subtypes. And then they were divided into 2 gene subtypes based on differentially expressed genes. Finally, our scoring system predicts patient survival and identifies the TME landscape of gliomas, enabling us to predict the treatment outcome of patients.
2 MATERIALS AND METHODS
2.1 Data sources
Gene expression, prognostic, clinical, and pathological data of gliomas were downloaded from The Cancer Genome Atlas (TCGA) (gene expression: 701 glioma and 5 adjacent samples; clinical: 1,104 samples; mutation: 984 samples) and Gene Expression Omnibus (GEO) (50 glioma samples) databases. The datasets were managed by “Combat” algorithm to eliminate batch effects and then combined.
2.2 Construction and analysis of cuproptosis subtypes
A consensus clustering algorithm based on Partitioning Around Medoid (PAM) algorithm was be used to categorize patients into cuproptosis subtypes. An analysis of patients’ clinicopathological characteristics and prognosis was carried out in order to determine the clinical features of the two subtypes. Cohort information included age, sex, glioma grade, and cuproptosis-related gene expression. We plotted the Kaplan-Meier curve with “survival” and “survminer” packages. Using “pheatmap” package, we generated a heatmap which would intuitively show the patient characteristics. GSVA and ssGSEA analyses revealed the TME differences between the two subtypes. ESTIMATE algorithm was used to calculate the immune and stromal scores of the cohort patients.
2.3 Differentially expressed genes identification and analysis
We used “limma” package to analyze differentially expressed genes between the two cuproptosis subtypes, with a standard of logFCfiter = 0.585 and adjusted p-value fliter = 0.05. To determine the potential functions of these genes, we used “clusterProfiler” and “enrichplot” to perform functional annotation of GO and analysis of KEGG pathway enrichment.
2.4 Construction of the cuproptosis-related genes score (CRG-score)
“Caret” package was used to randomly assigned the cohort patients to a training and test group (ratio of 1:1). We then analyzed the differentially expressed genes using LASSO and multivariate Cox analyses to select prognostic genes related to the gene subtypes. “Glmnet” package was used to avoid over-fitting.
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We calculated the CRG-score for each patient. Patients were divided into a low- and high-risk group based on the median value of CRG-score.
2.5 Validation of the prognostic CRG-score
The predictive capacity of the CRG-score was verified with multiple R packages. We used “ggpubr” package to identify the risk score difference between cuproptosis subtypes and gene subtypes. Survival analysis was performed by “survival” and “survminer” packages. The receiver operating characteristic (ROC) analysis was based on “timeROC” package. We also used the “pheatmap” package to reveal CRG-score model genes expression in the low- and high-risk group. Sankey diagram was based on “ggplot2” and “ggalluvial” packages, which showed an entire network of the subtypes, risk of CRG-score, and survival status.
2.6 TME, mutation and cancer stem cell analysis
Using ESTIMATE algorithm, stromal and immune scores of the low- and high-risk groups were evaluated. Additionally, we used CIBERSORT algorithm to calculate human immune-cell subsets of each patient in the two risk groups. To analyze mutation and tumor mutation burden (TMB), we used “maftools” and “ggpubr” packages. Curve of cancer stem cell analysis was made by “ggpubr,” “ggplot2” and “ggExtra” packages.
2.7 Establishment of a cuproptosis-related nomogram system
A nomogram was established by the “rms,” “regplot” and “survival” packages. The patients’ age, sex, glioma grade, and risk cluster were given a specific score, and the total score of each patient was the sum of these various factor scores. Based on a patient’s total score, the nomogram predicted 1-, 3- and 5-year survival accurately, which has been evaluated by calibration plots.
2.8 Clinical tissue samples
Ninety five glioma tissue samples were donated by 83 patients who had undergone surgery at Xiangya Hospital, including 27 grade 2, 6 grade 3, 50 grade 4, and 12 adjacent tissues. This study was approved by the Ethics Committee of Xiangya Hospital of Central South University.
2.9 RT-qPCR and immunohistochemistry (IHC)
TRIzol (Invitrogen, 15596018) was used to extract RNA from glioma tissue after grinding in liquid nitrogen. Then we converted RNA to cDNA by the RevertAid RT Reverse Transcription Kit (Thermo Scientific, K1691). The RT-qPCR data were analysed by the 2−ΔΔCT strategy and values were relative to the housekeeping gene Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH). A complete list of the primers used is provided in in Supplementary Table S1. The 95 glioma tissue samples were manufactured using a tissue microarray. The following antibodies were used for IHC: FDX1 (Proteintech, 12592-1-AP), PDHA1 (ABclonal, A1895), and DLST (ABclonal, A13297). The grading rules as follows: The intensity was scored as follows: 0, negative; 1, weak; 2, moderate; and 3, strong. The frequency of positive cells was defined as follows: 0, less than5%; 1, 5%–25%; 2, 26%–50%; 3, 51%–75%; and 4, greater than 75%. The final grade of staining was determined by multiplying the score for staining intensity with the score for the frequency of positive cells (values, 0–12). This grading rules can reduce the grading bias caused by different cell density.
2.10 Statistical analyses
We used Student’s t-test, Log-rank test, Cox regression model, GSVA analysis, ssGSEA analysis, PCA analysis, Least absolute shrinkage and selection operator (LASSO), multivariate Cox analysis, Spearman test and Wilcoxon test. All the statistical analyses were based on R (version 4.1.0). And the cutoffs for the Kaplan-meiers in this study was found by using the R package “survminer”.
3 RESULT
3.1 Genetic and transcriptional alterations of cuproptosis-related genes in glioma
19 cuproptosis-related genes were identified based on previous research. We analyzed the transcriptome profiling data of TCGA-GBM and TCGA-LGG cohorts to identify differences in mRNA expression between glioma and adjacent tissues. The expression of GLS (p < 0.001), LIPT1, FDX1, SLC31A1 (p < 0.01), DLST, CDKN2A, PDHA1, ATP7A, ATP7B, and NFE2L2 (p < 0.05) was different between glioma and adjacent tissues (Figure 1A). A summary analysis of simple nucleotide variations in the GBM and LGG cohorts showed that of the 984 samples, 45 (4.57%) had mutations in the cuproptosis-related genes. Only NLPR3, ATP3A, CDKN2A, ATP3B, MTF1, and GLS had an approximately 1% mutation frequency (Figure 1B).
[image: Figure 1]FIGURE 1 | Genetic alterations of cuproptosis-related genes in glioma. (A) Expression of 19 cuproptosis-related genes in glioma and adjacent tissue. (B) Mutations of 19 cuproptosis-related genes in a cohort of 984 glioma patients’ samples. (C) CNVs frequencies of cuproptosis-related genes. (D) Location of cuproptosis-related genes on chromosomes and their CNV alterations. (*p < 0.05; **p < 0.01; ***p < 0.001).
Next, we analyzed copy number variations (CNV) and discovered that all 19 cuproptosis-related genes had CNVs. Among these genes, CDKN2A, ATP7B, and DLST had widespread CNV loss, especially CDKN2A, which had a CNV loss frequency of >40% (Figure 1C). The comparison of 19 cuproptosis-related genes CNV with all CNV was showed in Supplementary Table S2. Figure 1D shows location of 19 cuproptosis-related genes on the chromosomes and their CNV alterations. However, the CNV changes do not adequately explain differences in mRNA expression between the adjacent and glioma tissues. This suggests that not only CNVs affecting the expression of cuproptosis-related genes, but other factors, such as DNA methylation and transcription, may affect the mRNA expression of cuproptosis-related genes. There is an association between CDKN2A mutations and the development and recurrence of gliomas (Varn et al., 2022). It could be an important indicator for molecular diagnosis, such as IDH mutation or MGMT methylation.
3.2 Prognostic related cuproptosis-related genes and identification of cuproptosis subtypes in glioma
We collected 3 eligible glioma cohorts (TCGA-LGG, TCGA-GBM, and GSE43378) to further study the expression patterns of cuproptosis-related genes that partake in tumorigenesis. A total of 725 patients were integrated from the 3 cohorts for further analysis (31 samples were removed because of the lack of complete clinical or gene expression information). Detailed patient information is presented in Supplementary Table S3. “Survival” and “survminer” packages were used to process the clinical data. The results of Kaplan-Meier analysis revealed the prognosis of cuproptosis-related genes, with p < 0.05. 14 of the 19 genes were thought to be associated with the prognosis of gliomas. Higher expression of ATP7A, CDKN2A, DLAT, DLD, DLST, FDX1, GLS, LIPT1, NFE2L2, NLRP3, and SLC31A1 predicted poorer survival. ATP7B, LIAS, and PDHA1 showed the opposite trend (Figure 2A). The Cox regression models of 19 cuproptosis-related genes were constructed to improve the survival analyses (Supplementary Table S4). The cuproptosis-related gene interactions, prognosis, and regulator connections are comprehensively illustrated in the cuproptosis network (Figure 2B).
[image: Figure 2]FIGURE 2 | (A) 19 cuproptosis-related genes’ Kaplan-Meier analysis based on TCGA-LGG and TCGA-GBM cohorts. (B) Interactions, prognosis and regulator connections among cuproptosis-related genes in glioma.
With the aim of examining the role of cuproptosis-related genes in glioma, a consensus clustering algorithm based on the PAM algorithm was used to categorize patients with glioma by analyzing their cuproptosis-related gene expression conditions. According to the algorithm results, it appears that when k = 2 the glioma cohort was optimally sorting into subtypes A and B (Figure 3A). The other consensus matrix, where k is valued from 3 to 9 were showed in Supplementary Figure S1. Subtype A included 333 patients, and subtype B included 392 patients. We used Kaplan-Meier analysis to compare the 2 subtypes, and the curves showed that compared to patients with subtype B, those with subtype A had a better survival probability (p < 0.001, Figure 3B). PCA analysis also revealed that there were differences between the 2 subtypes on cuproptosis-related gene expression profiles (Figure 3C). The heatmap showed that both cuproptosis-related gene expression and pathological characteristics are clearly different in the 2 subtypes (Figure 3D). More patients with grade 4 glioma were classified as subtype B, whereas more patients with grade 2 glioma were classified as subtype A. The heatmap also showed that most of cuproptosis-related genes were highly expressed in subtype B, while LIAS, ATP7B, PDHA1, and CDKN2A were expressed higher in subtype A. Also subtype B had more patients aged >65. These characteristics may explain the prognostic differences between the 2 cuproptosis subtypes.
[image: Figure 3]FIGURE 3 | Analysis of cuproptosis subtypes. (A) Consensus clustering algorithm heatmap with k = 2. (B) Kaplan-Meier analysis of 2 subtypes. (C) PCA analysis. (D) Heatmap based on cuproptosis-related genes expression and pathology characteristics between 2 subtypes. (E) GSVA analysis of cuproptosis-related genes subtypes with red represent activated pathway and blue inhibited. (F) ssGSEA analysis of these 2 subtypes. (G) TME score of 2 subtypes. (*p < 0.05; **p < 0.01; ***p < 0.001.)
GSVA analysis was used to explore the TME differences between the 2 cuproptosis subtypes (Figure 3E). Subtype A converged on lipid metabolism, particularly linoleic acid and retinol. Subtype B converged on pathways associated with the metabolism and damage repair of hereditary substances, including mismatch repair, homologous recombination, and nucleotide excision repair significantly. In addition, cell cycle and protein metabolism pathways are worthy of attention in subtype B. GSVA analysis revealed that the cell cycle and metabolism may cause different prognoses between the 2 cuproptosis subtypes.
In tumorigenesis and development of glioma, tumor immune microenvironment plays a critical part. Understanding how cuproptosis relates to the immune landscape in the tumor microenvironment may provide new avenues to treat cancer (Klemm et al., 2020). Therefore, we used ssGSEA to determine whether there was an immune infiltration difference between the cuproptosis subtypes (Figure 3F). A significant difference was found in the level of immune infiltration based on the analysis. Subtype B showed a higher infiltration level, especially in activated CD4+ and CD8+ T-cell, gamma delta T-cell, natural killer (NK) T-cell, and NK cells. We then used “estimate” package to compute the TME score of two subtypes (Figure 3G). In contrast to patients with Subtype A, those with Subtype B got higher stromal, immune, and ESTIMATE scores (p0.001). This suggests that the TME of patients with Subtype B has a higher proportion of stromal cells or immune cells.
The results showed an association between cuproptosis-related genes expression and glioma prognosis. We constructed 2 subtypes based on cuproptosis. The analysis revealed that the cell cycle, tumor metabolism, and immune infiltration may be related to cuproptosis in glioma.
3.3 Identification of gene subtypes based on differentially expressed genes in cuproptosis subtypes
We used the “limma” package to analyze differentially expressed genes in the 2 cuproptosis subtypes, with logFCfliter = 0.585 and adjusted p-value fliter = 0.05. We identified 2,486 differentially expressed genes, and we believe that these genes are related to potential biological differences between the cuproptosis subtypes. A volcano plot showed all differentially expressed genes and highlighted the cuproptosis-related genes (Supplementary Figure S2). Functional enrichment analysis was be conducted by a gene ontology database (Figure 4A). And those cuproptosis subtype-related genes were enriched for cytokine production, cell cycle, cell adhesion, and extracellular environment. An analysis of KEGG revealed the enrichment of proteoglycans in cancer, cell cycle, senescence, cell adhesion, and p53 signaling (Figure 4B). We could find that GO and KEGG are similar in the following ways: cell cycle, cell adhesion and extracellular environment (Figures 4A, B). We also believed that GO and KEGG confirmed GSVA results (Figure 3E), which shows different pathways between two cuproptosis subtypes such as KEGG_CELL_CYCLE, KEGG_PROTEIN_EXPORT and KEGG_MISMATCH_REPAIR. In addition, it was revealed that cuproptosis subtype-related genes may influence glioma cell characteristics and TME, and may contribute to glioma oncogenesis. To learn more about the significance of cuproptosis subtype-related genes in glioma prognosis, we used a consensus clustering algorithm based on the PAM algorithm. The 725 cohort patients were divided into 2 new subtypes: gene subtypes A and B with 459 and 266 patients, respectively (Figure 4C; Supplementary Figure S2). Kaplan-Meier analysis illustrated a significantly difference in prognosis between the 2 gene subtypes (p < 0.001, Figure 4D). The heatmap of gene subtypes showed that most elderly patients and patients with grade 4 glioma were classified as gene subtype B, explaining the prognostic differences in cuproptosis gene subtypes (Figure 4E). Significant differences were also found in cuproptosis-related gene expression between the 2 cuproptosis gene subtypes (Figure 4F).
[image: Figure 4]FIGURE 4 | Identification of the gene subtypes. (A,B) KEGG and GO enrichment analysis of cuproptosis subtype related genes. (C) Consensus clustering algorithm heatmap with k = 2 decided on 2 gene subtypes. (D) Kaplan-Meier analysis of 2 gene subtypes. (E) Heatmap of gene subtypes. (F) Differences of cuproptosis-related genes expression between 2 gene subtypes. (*p < 0.05; **p < 0.01; ***p < 0.001).
3.4 Construction and validation of the prognostic CRG-score
The CRG-score was constructed using differentially expressed genes among the gene subtypes. Using "caret" package, we randomly distributed the cohort patients (4 patients were excluded due to incomplete survival and gene expression data) into training (n = 360) and test (n = 361) groups. Our next step was to select the appropriate prognostic genes related to the gene subtypes through LASSO analysis and multivariate Cox analysis. Following result of the former with the minimum partial likelihood deviance, we kept 34 genes (Supplementary Figures S3A, B). And result of the latter revealed 11 genes, including 2 low-risk genes (NOG and MKX) and 9 high-risk genes (NBPF8, TSKU, AURKB, SLC25A43, P2RY6, STEAP1, CDK4, RARRES1, and KCNN4). The CRG-score was established as follows using the multivariate Cox regression analysis (Supplementary Table S5). The coefficients were kept 4 decimal places.
[image: image]
The CRG-score showed a significant difference between gene subtypes (Figure 5A). Patients with subtype A generally had a lower CRG-score, which means that these patients had a lower risk and better prognosis. Similar differences were found between the 2 cuproptosis subtypes (Figure 5B). This indicates that the CRG-score may have relevance to immune infiltration, metabolism, and cell cycle.
[image: Figure 5]FIGURE 5 | (A,B) Differences of CRG-score between 2 cuproptosis-related genes subtypes and gene subtypes. (C,D) Relationships between CRG-score and patients’ survival status. (E) The heatmap of the CRG-score related genes expressions and CRG-score. (F) The PCA analysis of low-risk and high-risk groups. (G) Kaplan-Meier analysis of low-risk and high-risk groups. (H) Expression of cuproptosis-related genes in low-risk and high-risk groups. (I) The entirety network of the subtypes, risk of CRG-score and survival status based on the corhorts. (J) The ROC curve showed 1-, 3-, and 5-year AUC values. (*p < 0.05; **p < 0.01; ***p < 0.001).
Compared with the median risk score, patients with a lower CRG-score were divided as the low-risk group (n = 356), and a higher score were divided as the high-risk group (n = 365) (Figure 5C). According to the distribution plot of the CRG-score risk, death rate from glioma rises while survival times decrease with mounting risk score (Figure 5D). The heatmap of the CRG-score-related gene expression in the 2 risk groups was also consistent with the formula of the CRG-score (Figure 5E). PCA analysis showed the dimensions of the low-risk and high-risk group (Figure 5F). Kaplan-Meier analysis indicated that patients in the high-risk group had a significantly poor prognosis (Figure 5G). The expression of cuproptosis-related genes varied widely, which confirmed the prospective connection between the CRG-score and cuproptosis (Figure 5H). Sankey diagram illustrates entire network of the subtypes, risk of CRG-score, and survival status (Figure 5I). The ROC curve represented the survival rate of the CRG-score with area under the curve (AUC) values of 0.874, 0.924, and 0.875, which contain respectively the 1-, 3-, and 5- year (Figure 5J).
To validate the prognostic performance of the CRG-score, we computed the CRG-score of an external validation group (GSE83300) and the test group which was randomly chosen from the cohort by “caret” packages. The distribution plot, heatmap, Kaplan-Meier analysis, and ROC curve analysis are shown in Supplementary Figures S5, S6. Consistent with the previous results, the low-risk group had better prognosis. The AUC values at the 1-, 3-, and 5-year were relatively high, which indicates that the CRG-score had a satisfactory capability to predict the survival of patients with glioma patients.
3.5 The validation of CRG-score related genes’ expression by clinical samples
We used RT-qPCR to analyze the expression of 11 CRG-score-related genes in gliomas and adjacent tissues (n = 5). The results are shown in Supplementary Figure S7.
3.6 Evaluation of immune correlation and TME between low- and high-risk groups
With the CIBERSORT algorithm, we further explored the potential role of immune infiltration by evaluating the association between the CRG-score and the abundance of immune cells. The CRG-score was positively correlated with Tregs, CD8+ T-cell, follicular helper T-cell, resting NK cells, neutrophils, M0, M1 and M2 macrophages. It presented negative correlation with resting memory CD4+ T-cell, plasma cells, activated NK cells, monocytes, activated mast cells, and eosinophils (Figure 6A). And a vioplot used Wilcoxon test was more significantly showed the relationship between immune infiltration and CRG-score (Figure 6B). Further, the CRG-score model genes were also correlated to the abundance of most immune cells significantly (Figure 6C). Using “estimate” package, we evaluated the TME score of low- and high-risk group (Figure 6D). A high CRG-score was associated with a high stromal and immune score, which indicated a close relationship between the CRG-score and TME.
[image: Figure 6]FIGURE 6 | Evaluation of immune correlation and TME. (A) The connections between CRG-score and immune cells abundance. (B) Wilcoxon test of CRG-score and immune cells abundance. (C) The connections between the genes in CRG-score model and abundance of immune cells. (D) The TME score of 2 risk groups. (*p < 0.05; **p < 0.01; ***p < 0.001).
3.7 Mutation and cancer stem cell analysis
The mutation data of the TCGA-LGG and GBM cohorts revealed a higher TMB index in the high-risk group (Figure 7A). Spearman correlation analysis indicated that the CRG-score was positively correlated with TMB (Figure 7B). We analyzed the somatic mutations in low- and high-risk group (Figures 7C, D). Differences in classical genes related to oncogenesis and development in gliomas, such as IDH1, TP53, ATRX, PTEN, EGFR, CIC, and PIK3CA, were observed. The low-risk group had higher mutation frequency of IDH1, TP53, ATRX, and CIC, in contrast to the high-risk group that had higher mutation frequency of PTEN, EGFR, MUC16, and PIK3CA. The somatic mutation results were consistent with the existing researches about prognosis of the gliomas (Rasheed et al., 1997; Cancer Genome Atlas Research et al., 2015; Chen et al., 2019; Bjorkblom et al., 2022; Ferrer, 2023). We also found that there was negative correlation between the CRG-score and the cancer stem cell index, indicating that gliomas with higher CRG-score had less stem cell characteristics and a higher degree of cell differentiation (Figure 7E).
[image: Figure 7]FIGURE 7 | (A) Tumor mutation burden of low- and high-risk groups. (B) Spearman correlation analysis of CRG-score and tumor mutation burden. (C,D) Somatic mutations differences of the low and high-risk groups. (E) The correlation between the CRG-score and the cancer stem cell index.
3.8 Construction of a nomogram to predict survival of glioma patients
Based on the CRG-score and clinicopathological characteristics, 1-, 3-, and 5-year survival could be predicted by a nomogram, which was constructed by “rms” package (Figure 8A). The calibration curve suggested that the nomogram was competent enough (Figure 8B).
[image: Figure 8]FIGURE 8 | Construction of a nomogram. (A) Prediction of 1-, 3-, and 5-year survival, based on the CRG-score and clinicopathological characteristics by a nomogram. The corresponding values of Gender, Grade, Age and Risk group were obtained by using their positions at the “Points” abscissa. A patient’s total point is the sum of the four values. And by using the total points coordinate scale, we can get the prognosis prediction of the patient. (B) The calibration curve of the nomogram. The more the prediction curve matches the grey curve, the better the prediction effect will be proved.
3.9 Validations by clinical samples
83 glioma tissue samples, including 27 grade 2 samples, 6 grade 3 samples, 50 grade 4 samples, and 12 adjacent tissues, were made into tissue microarrays. FDX1, DLST and PDHA1 were chose for immunohistochemistry. FDX1 and lipoylation act as key regulators in cuproptosis. DLST is one of the enzymes where lipoylation occur. PDHA1 was one of the protein targets of lipoylation. So, we believed that these three indicators are representative in cuproptosis. The expression of FDX1, DLST, and PDHA1 was detected and graded (Supplementary Figure S8). The results showed a general difference between LGG, GBM, and adjacent tissues, which is consistent with the database analysis (Figure 9).
[image: Figure 9]FIGURE 9 | Immunohistochemical results of tissue microarrays. (A–C) Immunohistochemistry of DLST, FDX1, PDHA1. (D–F) Statistical analysis of immunohistochemical grades. (*p < 0.05; **p < 0.01; ***p < 0.001).
4 DISCUSSION
Glioma is the most common malignant intracranial tumor, and has a poor prognosis. Most patients with GBM succumb to the disease within a year while approximately 5% have a 5-year survival rate (Ostrom et al., 2014). A large number of grade 2 and grade 3 glioma patients experienced tumor recurrence and increased tumor grade after surgery and radiochemotherapy. Targeted therapies, particularly genotype-targeted therapies are minimally effective (Chen et al., 2017; Nicholson and Fine, 2021). With increasing cell death research, multiple cell death models have been associated with tumor occurrence and development (Mou et al., 2019; Hou et al., 2020). A close relationship between cuproptosis and tumor development has been demonstrated since its discovery (Kahlson and Dixon, 2022; Tsvetkov et al., 2022). Because the combined effects of glioma pathogenesis and development by multiple cuproptosis-related genes have not been elaborated, we collected and comprehensively analyzed 19 cuproptosis-related genes to reveal the potential association between cuproptosis and glioma. We found changes at the genetic and transcriptomic levels of cuproptosis-related genes in LGG and GBM. Immunohistochemistry of FDX1, DLST, and PDHA1, which included 95 clinical tissues, verified genetic differences at the protein level. Based on this discrepancy, we identified two cuproptosis molecular subtypes in a cohort of 725 patients. Multiple analyses revealed notable differences between the 2 subtypes. In contrast with patients with subtype A, those with subtypes B had a lower survival probability. PCA also supported the differences between subtypes A and B. GSVA, KEGG, and GO analyses revealed that the 2 subtypes had differences in cell cycle, metabolism, immune infiltration, and other TME characteristics, which revealed the role of cuproptosis in glioma. We further investigated 2 gene subtypes identified by differentially expressed genes in cuproptosis subtypes. By analyzing the gene subtypes, we constructed a CRG-score to predict patient prognosis. We used the CRG-score to grade the patients in the cohort and divided them into a low- and high-risk group. The low- and high-risk group showed significant differences in prognosis, cuproptosis-related gene expression, infiltrated immunocytes, mutations, and other TME characteristics. To make the CRG-score more accurate and operable, we constructed a nomogram additionally. This cuproptosis-related model could explain the molecular mechanism of glioma to a certain extent and provide potential cuproptosis-related therapies for glioma.
Different from other types of tumor samples, in neurosurgery, we will try to remove tumors and avoid damaging any normal brain tissue. Collecting unnecessary normal brain tissue is ethical transgression. Therefore, in most researches related to glioma, adjacent tissues were used to replace normal brain tissues. In this study, clinical samples of patients we used were all adjacent tissues or glioma tissues needed to be surgically removed. And in TCGA databases, the naming of samples follows a principle, which a “-11A” tag represents normal tissue sample in all kinds of tumors. We could not determine whether the samples in TCGA-LGG and GBM database is normal or adjacent tissues. Although adjacent tissues were unlikely to be completely unaffected cells and signaling molecules from either immune response or the tumor itself, the glioma researches using TCGA databases and clinical samples nearly all used the same methods. So, we believed it did not affect our analyses.
In our study, we also found that cuproptosis cluster B overlapped heavily with the HGG and older patients could be framed as a confounder of the analysis. In order to verify whether age affected the cuproptosis subtypes. We counted the number of the elderly patients (>65 years old) and non-elderly patients in each glioma grade. We also counted their cuproptosis subtypes. We used chi-square test to verify whether age was relevant with cuproptosis subtypes in each glioma grade. And it showed no significant difference in all three grades (grade 2: p = 0.952; grade 3: p = 0.5626; grade 4: p = 0.7498). The age of the patients did not affect the cuproptosis subtypes in each glioma grades. We believed that TCGA-GBM database collected more elderly patients than non-elderly patients which led to a bias. The cluster B had more GBM patients which reflected a false image of more elderly patients.
CDKN2A is considered a negative regulator of apoptosis (Tsvetkov et al., 2022). CDKN2A is located at 9p21, which is also known as multiple tumor suppressor l (MTS1) or p16INKa. CDKN2A binds to and inactivates the CDK4 complex, leading to cell cycle arrest (Liggett and Sidransky, 1998; Monzon et al., 1998). As a tumor suppressor, CDKN2A can affect tumor development when silenced by deletion, methylation, or other mechanisms (Clurman and Groudine, 1998; Liggett and Sidransky, 1998). Many intracranial tumors are associated with changes in CDKN2A (Ichimura et al., 1996; Bostrom et al., 2001; Sievers et al., 2020). Multiple research teams have analyzed CDKN2A as an independent predictor of poor survival in both LGG and GBM (Lassaletta et al., 2017; Aoki et al., 2018; Shirahata et al., 2018; Appay et al., 2019). In the 2021 WHO classification of CNS tumors, CDKN2A/B homozygous deletion became one of the bases of glioma classification, which emphasized the importance of CDKN2A in the development of glioma (Louis et al., 2021; Komori, 2022). In this study, we observed differences in CDKN2A expression. We also discovered that cuproptosis affects cell cycle-related pathways in glioma, indicating that it may be involved in glioma development. These findings confirmed a potential connection between cuproptosis and glioma, which offers novel explanation in the progression of glioma.
Glioma development is often accompanied by immune-cell infiltration. Due to the lack of better treatments for glioma, studies on the immune microenvironment of glioma are gradually increasing (Lim et al., 2018; Xun et al., 2021; Li et al., 2022). Macrophages and monocytes are associated with glioma prognosis (Pyonteck et al., 2013; Ochocka et al., 2021). In the microenvironment of gliomas, monocytes may arrive as antitumor cells and differentiate into protumor macrophages (Ochocka et al., 2021). M0, M1 (antitumor), and M2 (protumor) subpopulations of macrophages play a vital role in glioma prognosis and immunotherapy (Komohara et al., 2008; Wei et al., 2020). Transformation between macrophage subpopulations can change glioma prognosis (Wang et al., 2022). Other immune cells, such as Tregs, CD8+ T-cell, and NK cells, also affect the biological history of glioma (Hussain et al., 2006). Activation of NK cells can enhance the effect of killing glioma cells (Lupo and Matosevic, 2020). Mast cells are believed to play an important role in angiogenesis and TME remodeling (Huang et al., 2008; Liu et al., 2011). The high level of mast cells may cause a better prognosis (Chen et al., 2022). The increases of neutrophils and M2 macrophages were also observed in a IDH-WT cohort, which means may be poor prognosis (Wang et al., 2017). In our study, we analyzed TME based on the CRG-score. The immune-cell infiltration status of the low- and high-risk group was consistent with current research results. Validating the prediction accuracy of the CRG-score and showing that cuproptosis was closely associated with glioma immune infiltration. Providing a new perspective on the association between cuproptosis and gliomas.
5 CONCLUSION
Our study revealed extensive regulatory mechanisms of cuproptosis-related genes in the cell cycle, TME, clinicopathological characteristics, and prognosis of glioma. Moreover, we constructed a prognostic CRG-score and nomogram system to predict the prognosis of patients with glioma. This suggests the potential importance of cuproptosis in the treatment of glioma and potentially providing novel glioma research approaches.
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Background: Kidney renal clear cell carcinoma (KIRC) is a representative histologic subtype of renal cell carcinoma (RCC). RCC exhibits a strong immunogenicity with a prominent dysfunctional immune infiltration. Complement C1q C chain (C1QC) is a polypeptide in serum complement system and is involved in tumorigenesis and the modulation of tumor microenvironment (TME). However, researches have not explored the effect of C1QC expression on prognosis and tumor immunity of KIRC.
Methods: The difference in a wide variety of tumor tissues and normal tissues in terms of the C1QC expression was detected using TIMER and TCGA portal databases, and further validation of protein expression of C1QC was conducted via Human Protein Atlas. Then, the associations of C1QC expression with clinicopathological data and other genes were studied with the use of UALCAN database. Subsequently, the association of C1QC expression with prognosis was predicted by searching the Kaplan-Meier plotter database. A protein-protein interaction (PPI) network with the Metascape database was built using STRING software, such that the mechanism underlying the C1QC function can be studied in depth. The TISCH database assisted in the evaluation of C1QC expression in different cell types in KIRC at the single-cell level. Moreover, the association of C1QC and the infiltration level of tumor immune cell was assessed using TIMER platform. The TISIDB website was selected to deeply investigate the Spearman correlation between C1QC and immune-modulator expression. Lastly, how C1QC affected the cell proliferation, migration, and invasion in vitro was assessed using knockdown strategies.
Results: KIRC tissues had notably upregulated C1QC level in comparison with adjacent normal tissues, with showed a positive relevance to clinicopathological features including tumor stage, grade, and nodal metastasis, and a negative relevance to clinical prognosis in KIRC. C1QC knockdown inhibited KIRC cell proliferation, migration, and invasion, as indicated by the results of the in vitro experiment. Furthermore, functional and pathway enrichment analysis demonstrated that C1QC was involved in immune system-related biological processes. According to single-cell RNA analysis, C1QC exhibited a specific upregulation in macrophages cluster. Additionally, there was an obvious association of C1QC and a wide variety of tumor-infiltrating immune cells in KIRC. Also, high C1QC expression presented inconsistent prognosis in different enriched immune cells subgroups in KIRC. Immune factors might contribute to C1QC function in KIRC.
Conclusion: C1QC is qualified to predict KIRC prognosis and immune infiltration biologically. Targeting C1QC may bring new hope for the treatment of KIRC.
Keywords: C1QC, kidney renal clear cell carcinoma, prognosis, immune infiltration, tumor microenvironment
INTRODUCTION
Renal cell carcinoma (RCC) comprises 4% of all malignancies and is the eighth most common cancer in the United Sates (Siegel et al., 2022). In China, a total of 75,800 newly diagnosed RCC cases and 26,900 RCC-related deaths are estimated to occur in 2016 (Zheng et al., 2022). As the major subtype of RCC, kidney renal clear cell carcinoma (KIRC) accounts for 75%–80% of the RCC diagnoses (Moch et al., 2022). However, nearly 25% patients developed metastasis at initial diagnosis of KIRC and, even worse, median survival for the above patients only reaches nearly 13 months (Cohen and McGovern, 2005). The past decades have witnessed revolutions in both KIRC understanding and treatment. To date, KIRC is considered to exhibit a strong immunogenicity, and we are in the era of immune checkpoint inhibitors. However, a considerable number of patients still have poor immunotherapy response and develop resistance to immunotherapy after being treated for a long term (Motzer et al., 2022). Hence, it is necessary to elucidate the immunophenotype of tumor-immune interactions and discover novel therapeutic targets related to immune in KIRC.
Tumor microenvironment (TME) comprises immune cells, extracellular matrix, immunomodulators, stromal cells, and tumor cells. Immune cells and molecules in TME jointly facilitate tumor immune escape, tumor growth, and metastasis, though they cannot enter tumor tissue (Peranzoni et al., 2018). Recent research has suggested that the complement system has an effect of immunoregulation associated with tumorigenesis in TME (Afshar-Kharghan, 2017). Complement C1q C chain (C1QC) is a polypeptide involved in the production of C1 which is the first component of the serum complement system. Functionally, C1QC can regulate a wide variety of fundamental pathological and physiological processes including occurrence and development of cancer, removal of immune complexes, inflammation of body, and apoptosis of cells (Son et al., 2015). C1QC is overexpressed among different TMEs (Ain et al., 2021), and its potential cancer-promoting effect has been reported in several studies. C1QC was reported to be elevated in soft tissue sarcoma and associated with worse prognosis (Zhang et al., 2020). Qi Yang et al. demonstrated that high expression of C1QC in female-derived tumor-associated macrophages was related to poor prognoses in non-small cell lung cancer (Yang et al., 2021). Notably, existing research has also suggested that inhibition of C1QC expression of tumor-associated macrophages can suppress the differentiation from M1 to M2 macrophages and inhibit the growth of digestive system cancer cells (Hui et al., 2022). However, C1QC overexpression reported a better skin cutaneous melanoma prognosis (Yang et al., 2022), not consistent with the promotive role of C1QC in cancer progression as mentioned in existing research. Thus, C1QC has multifaceted functions in TME.
However, there are few studies on the specific role of C1QC in KIRC, and its related prognosis and possible immune mechanisms are still ambiguous. In the present study, bioinformatics analysis and specific cell experiments were employed to explore function of C1QC in KIRC. The clinical relevance, the potential molecular mechanisms, and the association of C1QC with TME were studied by examining C1QC expression in KIRC. The findings of this study provide more insights into the effect of C1QC on KIRC and the possible regulatory function of C1QC over immune cell infiltration (such regulatory function partially impacted KIRC prognosis).
MATERIALS AND METHODS
C1QC expression level analysis and clinicopathological analysis
Table 1 all databases involved in the research. C1QC expression in pan-cancer and para-carcinoma tissues was studied with the use of TIMER (Li et al., 2020) and TCGA portal (Xu et al., 2019). Based on the immunohistochemical data of normal and KIRC patients, C1QC expression was studied using the Human Protein Atlas database (Karlsson et al., 2021) that comprises transcriptome and proteome data in accordance with investigation of immunohistochemistry and RNA sequencing. For the comparison of the C1QC expression in KIRC patients of different sample types, gender, race, age, tumor stages, tumor grades, subtypes, and lymph node metastatic status, relevant clinical characteristic data and transcriptional expression of C1QC were analyzed by UALCAN (Chandrashekar et al., 2022). The Wilcoxon rank sum test assisted in the assessment of the difference significance.
TABLE 1 | Summary of databases used in this study.
[image: Table 1]Survival analysis
Kaplan-Meier plotter (Lánczky and Győrffy, 2021) is a reliable tool for the evaluation of genes and survival parameters in tumors. In this study, associations of C1QC expression with overall survival (OS) and relapse-free survival (RFS) were analyzed by Kaplan-Meier plotter. The comparison was drawn on the two patient groups with the use of the Kaplan-Meier survival plot, and the result can be conducive to determining the hazard ratios (HR) with 95% confidence intervals (CI) and log rank p-values. Further analysis was performed on the association of C1QC expression with tumor grade in the UALCAN database.
C1QC interaction and functional enrichment analysis
Metascape (Zhou et al., 2019) refers to a web portal that provides protein interaction network structure analysis, pathway enrichment analysis, and rich gene annotation functions using data from more than 40 bioinformatics knowledgebases. STRING (Szklarczyk et al., 2021) is probably the most comprehensive protein-protein interaction (PPI) data source, covering physical interactions and genetic interactions. The above interactions are calculated according to computational predictions, organism knowledge transfer, as well as interactions adapted from other (primary) databases. Metascape and STRING served for the generation of an interaction network regarding C1QC with other essential proteins and pathways. UALCAN again assisted in exploring the association of C1QC with other genes in KIRC.
Immune-related analysis of C1QC
TISCH (Sun et al., 2021) acts as an RNA-sequencing database that ensures the investigation on TME across different cancer types based on the particular cell-type annotation. We used TISCH to explore C1QC expression in different cell types across different KIRC datasets. TIMER serves as a platform for comprehensive analysis of tumor-infiltrating immune cells, such as B cells, CD4 + T cells, CD8 + T cells, macrophages, neutrophils, and dendritic cells. We estimated the association of C1QC expression with immune infiltrations in KIRC by exploring the TIMER database. TISIDB (Ru et al., 2019) is a web-based database combining different heterogeneous data types specific to the tumor and immune system interaction, which, in the study, served for assessing the Spearman correlation between C1QC expression and immunoinhibitors, immunostimulators, and chemokines.
Cell culturing and transfecting processes
The KIRC cell lines 786-O and ACHN presented in this study were obtained from the National Collection of Authenticated Cell Cultures (Shanghai, China). 786-O and ACHN cells underwent culturing treatment in RPMI 1640 medium that involved 10% FBS under 37°C in a 5% CO2 chamber that covered 100 mg/mL streptomycin and 100 IU/mL penicillin. SiRNA (si-NC) and small interfering RNA against C1QC (si-C1QC) came from GeneChem. The Opti-MEM and the RNAi Fectin™ solution served for cell transfection. The obtained cells underwent 2 days of post-transfection.
Quantitative real-time polymerase chain reaction (qRT-PCR)
Trizol reagent (Invitrogen, Grand Island, NY) was adopted to extract total RNA from si-C1QC-transfected cells and si-NC-transfected cells. In accordance with the instruction of the manufacturer, the PrimeScript One Step RT reagent Kit (Takara, RR064A) was adopted to synthesize the cDNA. SYBR Green Real-Time PCR Master Mix (Toyobo, QPK201) and a StepOnePlus Real-Time PCR System (Applied Biosystems) were adopted to perform qRT-PCR. The thermocycling sequence conditions included 95°C for 30 s, followed by 45 cycles of 95°C for 10 s as well as 55°C for 1 min. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression was adopted to normalize all results. The 2−ΔΔCt method was adopted to determine the fold change in comparison with the mean value.
Western blotting assay
RIPA Lysis Buffer (Biosharp, Beijing, China) was adopted to lyse the above transfected cells. A 10% SDS-PAGE gel was adopted to separate the proteins through electrophoretic process. The separated product was placed into a PVDF membrane (Biosharp, Beijing, China). The respective secondary antibodies (Sangon Biotech, Shanghai, China) and the respective primary antibody (e.g., anti-C1QC and anti-GAPDH) (Proteintech, Wuhan, China; 1:2000 dilution) was adopted to achieve the 10-h incubation of the membranes after 5% evaporated skimmed milk was used to block the membranes. A high sensitivity plus ECL luminescence reagent (Sangon Biotech, Shanghai, China) was employed to detect the target bands after Tris-buffered saline Tween (TBST) was adopted to wash the membranes 3 times.
Transwell migration and invasion assays
In accordance with the guideline of producer, we seeded transfected 786-O and ACHN cells in 200 μL of RPMI 1640 medium free of serum. The transwell chamber was paved using Matrigel mix for invasion test instead of for migration test. RPMI 1640 medium and 10% FBS served as a KIRC cells chemoattractant after being introduced into the bottom chamber. After 1 day of incubation, the upper chambers underwent fixation, followed by 15 min of crystal violet staining. The images of the cell lines were taken, and they were counted within three fields for visualization.
Wound healing assay
786-O and ACHN cells were first seeded on six-well culture plate, and then underwent transfection. A standard 20 μL pipette tip served for eliminating the artificial linear wounds on the fused cell monolayer. That was followed by the gradual removal of free-floating cells and debris from the well bottom. After the medium was introduced, the plate underwent incubation at 37°C. One inverted microscope was employed to record the scratch gap area, and we photographed the recorded area at 0 and 48 h. The experiment was performed three times independently for distinguishing the quantitative cell migrating area and the original wound area.
Cell proliferation experiments
In the Cell Counting Kit-8 (CCK-8) test, 786-O and ACHN cells were first transfected and incubated at 37°C. Subsequently, we introduced CCK-8 solution into the introduction within each well. The well was incubated 2 h. The examination of absorbance was performed at 0, 24, 48, and 72 h at 450 nm.
Statistical analysis
One individual t-testing process served for comparatively analyzing the continuing information of the two groups. GraphPad Prism 8.0 served for the statistical analysis. p-value <0.05 reported statistical significance.
RESULTS
C1QC is highly expressed in KIRC
We initially studied the changes of C1QC expression levels between different tumor and adjacent normal tissues using the RNA-seq data from TCGA database. The analysis demonstrated that the expression levels of C1QC in READ (Rectum Adenocarcinoma), LUSC(Lung Squamous Cell Carcinoma), LUAD (Lung Adenocarcinoma), LIHC (Liver Hepatocellular Carcinoma), and COAD (Colon Adenocarcinoma) decreased notably, whereas those in KIRC, UCEC (Uterine Corpus Endometrial Carcinoma), THCA (Thyroid Carcinoma), STAD (Stomach Adenocarcinoma), KIRP (Kidney Renal Papillary Cell Carcinoma), HNSC (Head and Neck Cancer), and ESCA (Esophageal Carcinoma) increased significantly (Figure 1A). Then, further investigation was conducted on C1QC expression in a diverse set of cancer tissues. KIRC presented higher C1QC expression in comparison with most other cancers (Figure 1B). According to data from Human Protein Atlas database, there were different levels of protein expression intensity of C1QC in kidney cancer tissues but not in normal kidney tissues (Figure 1C). Furthermore, subgroup analysis based on different sample types, tumor stages, race, gender, age, tumor grades, subtypes, and lymph node metastatic status indicated that KIRC patients had obviously higher C1QC mRNA level in comparison with healthy individuals (Figures 1D–K). It is noteworthy that C1QC expression showed an upward trend with higher tumor grade.
[image: Figure 1]FIGURE 1 | C1QC expression overview. (A) C1QC mRNA expression in a variety of cancer tissues in comparison with normal tissues (*p < 0.05, **p < 0.01, ***p < 0.001). (B) C1QC mRNA expression in a variety of cancers. (C) C1QC protein expression in normal kidney tissues and KIRC tissues. (D–K) C1QC mRNA expression difference based on sample types, tumor stages, race, gender, age, tumor grades, subtypes, and lymph node metastatic status. The Wilcoxon rank sum test served for the assessment of the difference significance.
Prognostic significance of C1QC in KIRC
The prognostic significance of C1QC in KIRC was investigated using Kaplan-Meier plotter. As found, high level of C1QC reported shorter OS (HR = 1.67 (1.23–2.27), logrank p = 0.00097), but no significant association with RFS (HR = 0.76 (0.27–2.15), logrank p = 0.61) was detected (Figures 2A, B). TCGA database indicated that C1QC expression and tumor grade had synergistic effect on KIRC patients’ prognosis (Figure 2C), that conformed to the data in Figure 1I. Accordingly, C1QC serves as a hazard for the prediction of KIRC patients’ poor prognosis.
[image: Figure 2]FIGURE 2 | Clinical significance of C1QC in KIRC. (A, B) The association of C1QC expression with KIRC patients’ OS and RFS. (C) The association of C1QC expression with KIRC tumor grades.
C1QC promotes KIRC cells in vitro
To confirm the oncogenic activity of C1QC we identified through bioinformatics analyses in KIRC, the widely used KIRC cell lines, 786-O and ACHN with stable C1QC knockdown were successfully constructed. Knockdown efficiency of C1QC was confirmed through qRT-PCR (Figure 3A) and Western blotting assay (Figure 3B). CCK-8 (Figure 3C) assay showed that C1QC knockdown significantly inhibited the proliferation of 786-O and ACHN cells compared with the control group. According to wound healing assay, in the KIRC cell lines, C1QC inhibition presented an obviously lower wound closure rate in comparison with the control group (Figure 3D). In comparison with the control group in the confluence monolayer transwell experiment regarding cultured KIRC cell lines, si-C1QC could suppress the relative migration and invasion rate (Figures 3E, F). As revealed by the above results, C1QC knockdown is capable of inhibiting KIRC proliferation, migration, and invasion in vitro.
[image: Figure 3]FIGURE 3 | C1QC knockdown inhibits KIRC cell development. (A, B) The efficiency of C1QC knockdown is evaluated by qRT-PCR and Western blotting assay. (C) C1QC knockdown inhibits KIRC cell proliferation. (D) Wound healing assay of C1QC knockdown. (E) C1QC knockdown inhibits KIRC cell migration. (F) C1QC knockdown inhibits KIRC cell invasion. (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).
Genes and proteins co-interacted with C1QC are relevant to signaling pathways affecting immune system
Pathways enrichment analysis on co-expression genes were accomplished by GO and KEGG (Metascape). The functional pathways enrichment heatmap revealed that C1QC was closely linked with immune-related signaling pathways such as regulation of cell activation (GO:0050865), leukocyte activation (GO:0045321), positive regulation of immune response (GO:0050778), adaptive immune response (GO:0002250), inflammatory response (GO:0006954), negative regulation of immune system process (GO:0002683), regulation of defense response (GO:0031347), regulation of immune effector process (GO:0002697), cellular response to cytokine stimulus (GO:0071345), regulation of tumor necrosis factor superfamily cytokine production (GO:1903555), leukocyte activation involved in immune response (GO:0002366), leukocyte migration (GO:0050900), Chemokine signaling pathway (hsa04062), and phagocytosis (GO:0006909) (Figures 4A–C). A STRING interactive network was built to recognize proteins capable of interacting with C1QC (Figure 4D). Next, further study displayed that C1QC expression was obviously relevant to the proteins possibly interacting with C1QC (CSF1R, VSIG4, and C3AR1) (Figures 4E–G).
[image: Figure 4]FIGURE 4 | Genes and proteins co-interacted with C1QC show a relevance to immune-related signaling pathway. (A) KEGG and GO analysis results of genes co-expressed with C1QC in KIRC. (B) p-value colored network of enriched terms; p values for terms that have a larger number of genes are usually smaller. (C) Cluster ID-colored network of enriched terms; nodes sharing the same cluster ID usually approach to each other. (D) C1QC-proteins interaction. (E–G) Association analysis of C1QC with CSF1R, VSIG4, and C3AR1 in different ethnic groups.
C1QC expression at single-cell level
The study primarily investigated the C1QC expression at the single-cell level. The expression of C1QC in TME-related immune cells was analyzed using the TISCH database’s five datasets (KIRC-GSE111360, KIRC-GSE121636, KIRC-GSE139555, KIRC-GSE159115, and KIRC-GSE171306). In distribution heatmap (Figure 5A), we found low to moderate C1QC expression in immune cells (e.g., neutrophils, B cells, natural killer T cells, CD8+ T cells, CD4+ T cells, Tregs, and dendritic cells). C1QC was primarily expressed at the macrophages cluster except in KIRC-GSE139555 (in which mast cells showed the highest expression). We then analyzed the above datasets using single-cell cluster map, which were divided into various types of cells. As depicted in Figures 5B–F, C1QC expression level remained the highest in macrophages, consistent with the results shown in Figure 5A. Accordingly, C1QC expression level was quite different in distinct cell types with the highest in macrophages instead of KIRC cells, suggesting that C1QC may also play its role in immune cells besides cancer cells.
[image: Figure 5]FIGURE 5 | C1QC at single-cell level. (A) Heatmap demonstrates C1QC expression in cells from a variety of databases. (B–F) C1QC single-cell cluster in different databases.
C1QC expression is relevant to immune infiltration in KIRC
Existing research has suggested that immune infiltration can affect renal cancer prognosis (Zhang et al., 2019). Therefore, the Spearman correlation served for analyzing the association of C1QC transcription level and the measured immune cell infiltration level in KIRC. As found, C1QC expression presented a negative relevance to the purity of KIRC (rho = −0.323, p = 1.17e−12). However, high C1QC expression showed a strong relevance to the infiltrating degree of B cell (rho = 0.468), CD8+ T cell (rho = 0.461), CD4+ T cell (rho = 0.332), macrophage (rho = 0.676), neutrophil (rho = 0.645), and dendritic cell (rho = 0.746) (Figure 6A). Notably, they had p values far less than 0.001. Accordingly, C1QC can serve as an important tumor immune infiltration regulator in KIRC.
[image: Figure 6]FIGURE 6 | Associations of C1QC expression with immune infiltration and KIRC prognosis. (A) Levels of immune infiltration of B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell in KIRC. (B–O) Associations of C1QC expression of different immune cells subgroups with prognoses in KIRC.
Prognostic significance of C1QC in KIRC based on immune cells
This study has identified the relevance of C1QC expression to the immune infiltration of KIRC. Also, C1QC up-expression reported worse KIRC prognosis. Hence, C1QC might affect KIRC patients’ prognosis partly because of immune infiltration. We did prognosis analyses of C1QC expression in KIRC considering immune cells subgroups via Kaplan-Meier plotter again, finding that high C1QC expression of KIRC in enriched (HR = 1.66) or decreased B cells (HR = 1.86), enriched (HR = 1.75) or decreased (HR = 2.16) CD8+ T cells, enriched CD4+ T cells (HR = 1.82), enriched macrophages (HR = 1.75), enriched (HR = 1.7) or decreased (HR = 1.65) basophils, decreased eosinophils (HR = 2.19), and decreased natural killer T cells (HR = 2.44) cohorts had a worse prognosis respectively (Figures 6B–F, H, J, K, M, O). Contrarily, high C1QC level in KIRC had favorable prognosis in decreased CD4+ T cells (HR = 0.53), decreased macrophages (HR = 0.27), enriched eosinophils (HR = 0.61), and enriched natural killer T cells (HR = 0.59) subgroups respectively (Figures 6G, I, L, N). Of note, high C1QC expression induced an opposite effect on OS of enriched CD4+ T cells and decreased CD4+ T cells subgroups. This similar effect of C1QC expression was also observed in KIRC patients categorized based on macrophages, eosinophils, and natural killer T cells subgroups respectively. On that basis, high C1QC expressions in KIRC may affect prognoses partly through immune infiltration.
C1QC expression is associated with immune factors
More and more evidences have shown the crucial role of the immune system in cancer process (Candeias and Gaipl, 2016), which conforms to our finding from the pathways enrichment analysis for C1QC in Metascape. Therefore, we further investigated associations of C1QC expression and immune factors. After the filtering taking p < 0.01 and |±rho| > 0.4 as criteria, the immune factors including immunoinhibitors (BTLA, PDCD1 (PD1), CTLA4, etc.), immunostimulators (C10orf54, CD27, CD28, etc.), and chemokines (CCL3, CCL4, CCL5, etc.) which were strongly associated with C1QC expression of KIRC are shown in Figure 7.
[image: Figure 7]FIGURE 7 | Associations of C1QC expression with 3 cancer-related immune factor types in KIRC. (A) Immunoinhibitors. (B) Immunostimulators. (C) Chemokines. (A–C: Heat maps show associations of C1QC and immune factors in different cancers; a–d: Line graphs show associations of C1QC with specific immunomodulators in KIRC).
DISCUSSION
KIRC is a representative subtype of RCC, threatening the health of hundreds of thousands of people globally each year (Bukavina et al., 2022). KIRC often exhibits a poor prognosis for the high resistance to chemotherapy and radiotherapy (Cohen and McGovern, 2005). Understanding the molecular mechanisms underlying KIRC pathogenesis may assist the discovery of valuable diagnostic and prognostic biomarkers and the development of effective therapeutic targets. The complement system connects innate and adaptive immunity, which plays a critical role in maintaining homeostasis. Although complement activation is capable of resisting pathogen invasion and protecting the host, complement also plays a tumor-promoting function (Roumenina et al., 2019). C1QC, as a subunit of C1 which is the first complement structure, promotes cancer progression, as demonstrated previously. In colon carcinoma, C1QC regulates immune infiltration of macrophages, and then affects neutrophil activation, resulting in tumor progression (Deng et al., 2022). Also, a high proportion of C1QC-expressing tumor-associated macrophages (TAM) in the TME of colon cancer suggests a poor clinical outcome (Liu Y. et al., 2022). In lung squamous cell carcinoma, C1QC induced CD8+ T cell exhaustion by up-regulating the immunosuppressive TOX pathway genes, reducing OS (Zhang et al., 2021). Notably, C1QC protein expression presented a considerable increase in KIRC and a positive relevance to an advanced stage of disease (Zhang et al., 2016). This study verified the oncogenetic role of C1QC in KIRC. However, the specific role of C1QC in KIRC patients has been rarely investigated. Bioinformatics provide researchers with large and complex biological data, which guides gene exploration and assists clinical diagnosis, treatment, and prognosis prediction. The role played by C1QC expression in prognosis and tumor immunity of KIRC patients was explored in depth through bioinformatic analyses using public databases and the validation of basic experiments.
In our present study, we employed TIMER and TCGA portal databases to perform pan-cancer analysis on the transcription levels of C1QC, finding the obvious upregulation of C1QC expression in KIRC, in comparison with normal tissues. We then verified differential protein expression using Human Protein Atlas database and reached a consistent conclusion. Furthermore, we investigated associations of C1QC expression and clinicopathological characteristics in KIRC patients. KIRC patients presented considerably higher C1QC mRNA levels in comparison with normal tissues in accordance with the subgroup analysis based on different sample types, tumor stages, race, gender, age, tumor grades, subtypes, and lymph node metastatic status. Kaplan-Meier plotter database was applied to a survival analysis for confirming whether C1QC can predict the prognosis, finding that in KIRC, poorer OS was relevant to higher C1QC expression. Moreover, C1QC expression upregulation in tumor grade could report poor KIRC prognosis. On that basis, C1QC can predict the KIRC prognosis biologically.
To further examine the mechanism of C1QC in promoting KIRC development, functional annotations and PPI network were constructed. Results showed that C1QC protein, which may interact with CSF1R, VSIG4, and C3AR1, generally mapped to immune-related activities through GO and KEGG enrichment analyses. The positive associations of C1QC with CSF1R, VSIG4, and C3AR1 in KIRC were confirmed in our research. In contrast to C3AR1 (Chalbatani et al., 2022; Chu et al., 2020), high expression levels of CSF1R (Yang et al., 2016) and VSIG4 (Hu et al., 2019) both could negatively affect the survival of KIRC patients. Existing research has suggested that high mRNA expression of C1QC and CSF1R is associated with immunosuppression in the lung squamous cell carcinoma tissue microenvironment and worsen patient survival outcomes (Zhang et al., 2021). Notably, patients with anti-PD-1/PD-L1-resistant advanced RCC achieved clinical benefit in a phase I trial of CSF1R inhibitor (cabiralizumab) and CD40 agonist (sotigalimab) (Weiss et al., 2021). Taken together, CSF1R and VSIG4 may exert a synergistic effect on C1QC and lead to the poorer prognosis of KIRC patients through immune-related pathways.
Emerging studies have evidenced that immune system is involved in the thrive of malignant tumors (Candeias and Gaipl, 2016). The TME is a complex microenvironment formed during the fight between tumor cells and immune system, which is contributory to tumor growth and metastasis, and finally facilitates tumor immune escape. Single-cell RNA-sequencing provides more insights into the cell behavior in the TME, suggesting the evolutionary nature of cancer (Jiang et al., 2019). The single-cell analysis indicated that C1QC had a primary expression in macrophages instead of KIRC cells in tumor samples. This is the first study to explore C1QC expression in different cell clusters specific to cancer research. Fang Hong et al. conducted a single-cell pan-cancer analysis on C1QC and macrophages. They confirmed that the dysfunctional CD8+ T cell abundance may be adjusted by a certain subset of TAMs expressing higher C1QC through cytokine-mediated signaling (Hong et al., 2021). Zhou Liu et al. confirmed a certain subset of macrophages, i.e., macrophages associated with lipids, which highly express C1QC and exhibit an immunosuppressive effect and enhanced phagocytosis in the tumor-adipose microenvironment of breast cancer. Lipid-associated macrophages depletion potentiated the anti-tumor effect exerted by anti-PD1 therapy in the allograft cancer mouse models (Liu Z. et al., 2022). The above results indicated an oncogenic role of C1QC in macrophage polarization and revealed the cell type-specific role played by RNA editing.
Besides, the study confirmed the direct relevance of C1QC to immune infiltration degree in KIRC. In the TME, immune cell infiltration critically affects the cancer process. The result of in vitro experiments suggested that C1QC expression in proliferation, migration, and invasion of KIRC cells was required. Nevertheless, researches have not confirmed the relevance of C1QC expression to immune infiltration in KIRC. On that account, we focused on investigating such relevance, finding that C1QC expression in KIRC presented a positive association with tumor-infiltrating immune cells like B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell. Accordingly, C1QC regulated the infiltration of immune cells into the TME in KIRC tissues. Among the above immune cells, high C1QC expression in KIRC reported a poorer prognosis in enriched CD4+ T cells and macrophages subgroups in contrast to a fine prognosis in enriched eosinophils and natural killer T cells cohorts. Additionally, no matter in enriched or decreased B cells, CD8+ T cells, and basophils subgroups, high C1QC expression shortened the OS of KIRC patients. CD4 + T cells can enhance KIRC cell proliferation via activating YBX1/HIF2α signaling pathway (Wang et al., 2018). TREM2/APOE/C1Q-positive macrophage infiltration potentially indicates the prognosis of KIRC (Obradovic et al., 2021). Eosinophil levels and relative eosinophil change are associated with a good therapeutic effect of nivolumab for metastatic RCC (Herrmann et al., 2021). Furthermore, natural killer T cell is an important component of antitumor effect of secreted IL-21 on RCC (Kumano et al., 2007). According to previous studies, the proportion of CD4+ T cells (Lee et al., 2020) and macrophages (Wang et al., 2020) indicates inferior clinical outcome in patients with RCC respectively. The contrary effects of Eosinophils (Herrmann et al., 2021) and natural killer T cells (Geissler et al., 2015) were also confirmed respectively in other studies. The above results may explain that C1QC can shorten the OS of KIRC patients partly by mediating immune cell infiltration.
Finally, we identified a lot of C1QC related immunoinhibitors, like BTLA, PDCD1 (PD1), and CTLA4, which showed a positive relevance to C1QC expression. Meanwhile, some immunostimulators such as C10orf54, CD27, and CD28 and chemokines such as CCL3, CCL4, and CCL5 were also found to exhibit a positive relevance to C1QC expression. The above findings confirmed that C1QC could notably regulate KIRC from immune perspective. Hence, we speculated that combining these immunological checkpoint inhibitors and C1QC inhibitors may effectively enhance the anti-tumor effect for KIRC patients.
The association of C1QC with KIRC was studied, whereas some limitations should be acknowledged. First, this study was primarily based on bioinformatics. Research results may be affected by the constant update and expansion of online platform databases. Second, experiments should be urgently conducted to validate our analysis results. The function of C1QC and its underlying mechanisms in different cell types and cancers should be examined in depth.
CONCLUSION
In brief, the study is the first one that, through bioinformatics, demonstrated the strong relevance of the elevated C1QC to clinicopathological features, poor prognosis, and enhanced immune infiltration degree in KIRC. Furthermore, C1QC may affect the KIRC prognosis by virtue of a new mechanism, i.e., tumor immune infiltration, that contributes to a novel perspective for further in-depth research on immunotherapy of KIRC.
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High GTSE1 expression promotes cell proliferation, metastasis and cisplatin resistance in ccRCC and is associated with immune infiltrates and poor prognosis
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Background: Clear cell renal cell carcinoma is the most common and fatal form of kidney cancer, accounting for 80% of new cases. Although it has been reported that GTSE1 is highly expressed in a variety of tumors and associated with malignant progression and poor clinical prognosis, its clinical significance, correlations with immune cell infiltration and biological function in ccRCC are still poorly understood.
Methods: The gene expression, clinicopathological features, and clinical significance of GTSE1 were analyzed using multiple databases, including TCGA, GEO, TIMER, and UALCAN Kaplan–Meier survival analysis, gene set enrichment analysis gene ontology enrichment Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed. Tumor-infiltrating immune cells and immunomodulators were extracted and analyzed using TCGA-KIRC profiles. Protein‒protein interactions were built using the STRING website. The protein level of GTSE1 in ccRCC patients was detected by immunohistochemistry using a ccRCC tissue chip. Finally, MTT assays, colony-formation assays, cell flow cytometry analyses, EdU-staining assays, wound-healing assays, and transwell migration and invasion assays were conducted to assess the biological function of GTSE1 in vitro.
Results: GTSE1 was overexpressed in ccRCC tissues and cells, and GTSE1 overexpression was associated with adverse clinical-pathological factors and poor clinical prognosis. Meanwhile, the functional enrichment analysis indicated that GTSE1 and its coexpressed genes were mainly related to the cell cycle, DNA replication, and immunoreaction, such as T-cell activation and innate immune response, through multiple signaling pathways, including the P53 signaling pathway and T-cell receptor signaling pathway. Furthermore, we observed a significant relationship between GTSE1 expression and the levels of infiltrating immune cells in ccRCC. Biological functional studies demonstrated that GTSE1 could promote the malignant progression of ccRCC by promoting cell proliferation, cell cycle transition, migration, and invasion capacity and decreasing the sensitivity of ccRCC cells to cisplatin.
Conclusion: Our results indicate that GTSE1, serving as a potential oncogene, can promote malignant progression and cisplatin resistance in ccRCC. Additionally, high GTSE1 expression contributes to an increased level of immune cell infiltration and is associated with a worse prognosis, providing a potential target for tumor therapy in ccRCC.
Keywords: GTSE1, ccRCC, prognostic biomarkers, immune infiltration, malignant progression
INTRODUCTION
Renal cell carcinoma (RCC) is the most common type of kidney cancer, accounting for approximately 90% of cases, and one of the most common malignant tumors of the adult urinary system, accounting for approximately 2.2% of cases (Barata and Rini, 2017; Sung et al., 2021). The incidence of renal cell carcinoma (RCC) is gradually increasing, and the mortality rate has become the highest among all urological cancers (Capitanio et al., 2019). Clear cell renal cell carcinoma (ccRCC) is the most common histological type, accounting for approximately 85% of RCCs (Padala and Kallam, 2022). In view of the insensitivity of renal clear cell carcinoma to radiotherapy and chemotherapy, surgical operation is still the dominant treatment method, although the postoperative recurrence rate is still nearly 40%. In recent years, immunotherapy-based combinations have become the standard of treatment for patients with metastatic RCC and have shown effectiveness and improved overall survival in the first-line metastatic scenario (Lv et al., 2021). As a heterogeneous disease, ccRCC still lacks effective biomarkers for individualized treatment methods, especially in current immunotherapy. As a result, finding new immune-related molecular biomarkers and treatment targets for ccRCC is critical to improve the prognosis of ccRCC and obtain intervention benefits in patients.
The connection and interaction between the tumor microenvironment (TME) and tumor cells play a vital role in tumor occurrence, development, and recurrence. The TME, consisting of tumor cells and a variety of stromal cells, immune cells, cytokines, and chemokines, is essential for the in situ proliferation, directed metastasis, and immune microenvironment modification of tumor cells (Hinshaw and Shevde, 2019). ccRCC is more prone to infiltration of immune cells and alteration of the immune microenvironment, which is more conducive to the malignant progression of tumors. Therefore, immunotherapy in ccRCC also shows its potential application value. Immunotherapy has become an important complementary therapy in addition to radiotherapy, chemotherapy, and surgical treatment, mainly for patients with advanced or metastatic ccRCC (Dong et al., 2020). Immunotherapy represented by immune checkpoint (PD-1, CTLA4) inhibitors has made promising progress in the treatment of ccRCC and can prolong the overall survival (OS) and improve patient prognosis (Atkins and Tannir, 2018). However, up to 70% of patients with ccRCC still do not respond to immunosuppressive agents; thus, finding more reliable and effective immune-related biomarkers and prognostic markers is extremely urgent and necessary.
GTSE1, also known as G2 and S phase expressed-1, is mainly located in the cytoplasm and is specifically expressed in the G2 and S phases of the cell cycle (Monte et al., 2000). GTSE1 has a tight relationship with microtubules and can suppress P53-induced apoptosis and promote the malignant proliferation of tumors by promoting the degradation of P53 (Lin et al., 2019). Current studies have confirmed that GTSE1 expression is upregulated in a variety of tumors and is also associated with worse prognosis in tumor patients. For instance, GTSE1, as a cell cycle-associated protein, exerts a proliferative role in multiple tumors, such as prostate cancer, lung cancer, and bladder cancer (Liu et al., 2019; Zhang F. et al., 2021; Lai et al., 2021). GTSE1, also known as a regulated cytoskeletal protein, can promote cell migration and invasion in cervical cancer and hepatocellular carcinoma (HCC) (Wu et al., 2017; Chen et al., 2021). Considering its close relationship with microtubules, GTSE1 can promote the progression of osteosarcoma by inducing DNA repair and cisplatin resistance (Xie et al., 2021). Meanwhile, GTSE1 can also promote the malignant biological behavior of hepatocellular carcinoma by reducing the sensitivity of HCC cells to 5-FU (Wu et al., 2017). Many studies have confirmed the carcinogenic effect of GTSE1 in tumors. However, to date, the biological role and underlying molecular mechanism of GTSE1 in ccRCC are still poorly understood.
In this research, we first investigated the expression profiles of GTSE1 in ccRCC and identified its biological functions, potential clinical value, and relationship with tumor-infiltrating immune cells (TIICs) in ccRCC. In summary, we demonstrated that GTSE1 was abnormally highly expressed in ccRCC tissues based on the IHC assay of a ccRCC tissue chip and multiple databases analyses, including TCGA and GEO. Meanwhile, GTSE1 overexpression was associated with adverse clinical-pathological factors, worse outcomes, and malignant phenotypes. However, the TME-related and functional enrichment analyses verified that there was a positive relationship between GTSE1 expression and immune cell infiltration in the ccRCC microenvironment. A series of functional experiments also confirmed that high GTSE1 expression could promote the malignant biological behavior of ccRCC in vitro. Conclusively, our study indicated that GTSE1 may serve as a prognostic biomarker and a novel immune-associated therapeutic target for ccRCC patients.
MATERIALS AND METHODS
Data acquisition and processing
Five mRNA microarray datasets (GSE68417, GSE76351, GSE16449, GSE46699, GSE40435) were obtained from the NCBI-GEO datasets (https://www.ncbi.nlm.nih.gov/geo/). TCGA-KIRC datasets (611 cases, N = 72, T = 539) containing the gene expression level and its corresponding clinical information were derived from the TCGA database (https://portal.gdc.cancer.gov/). For GEO and TCGA cohort, the gene expression was normalized as the log2 (TPM+1). The TCGA and GEO publishing criteria were strictly followed in this research.
Differential expression analysis of GTSE1
GTSE1 expression in the pan-cancer was analyzed via the TIMER database and UALCAN web tool based on the TCGA cohort (Li et al., 2017). TCGA paired and unpaired analyses of GTSE1 were visualized in diagrams to exhibit the differential expression between the ccRCC tissues and normal tissues based on the TCGA-KIRC database. GEO datasets (GSE68417, GSE76351, GSE16449, GSE46699, GSE40435) were also utilized for visualization of the differential expression of GTSE1 between the ccRCC tissues and normal tissues.
Clinicopathological features and survival analysis
The clinicopathologic features including patient’s age, gender, cancer subtypes, metastasis status, cancer stages, and grade were visualized in Box-Whisker plots using the UALCAN website based on the TCGA-KIRC cohort, and the difference between the two groups is established by Student’s t-test and the p-value <0.05 is considered as a statistically significant threshold. The clinical outcome of overall survival (OS), Disease-Specific Survival (DSS), and Progress Free Interval (PFI) were selected from the TCGA-KIRC clinical data and The Kaplan-Meier (K-M) curves were utilized to create the survival plots based on the “survival” package and the log-rank test was used to compare the difference in survival curves (cutoff by the median expression level of GTSE1).
Protein-protein interaction comprehensive analysis
The protein and protein interactions were analyzed using the online website “STRING” (https://cn.string-db.org/). We can get the interacting proteins based on the functional and physical protein associations or the proteins which were part of a physical complex. GTSE1 was imported in the STRING and the protein and protein interaction network was exported based on the confidence score. The proteins whose confidence score ≥0.9 were identified as having the highest confidence were extracted and listed beside the picture.
Co-expression analysis in LinkedOmics
Linkedomics (http://linkedomics.org/) is an online analysis platform based on the TCGA database which could analyze 32 types of cancer data online (Vasaikar et al., 2018). We selected TCGA-KIRC, RNA-seq, GTSE1, RNA-seq, and Spearman to analyze positive and negative gene sets related to GTSE1 expression, and we set p-value <0.05 as the threshold of statistical difference. We took the expression of GTSE1 as the standard to display the positively correlated genes and negatively correlated genes in the form of a volcano map. Meanwhile, the top 50 positively correlated and negatively correlated genes were displayed in the heat map respectively. Finally, GEPIA2 (http://gepia2.cancer-pku.cn) was used to analyze the correlation between the expression level of the top 50 differential genes and the clinical prognosis in ccRCC, and the results were presented in heat map form (Tang et al., 2019). *p < 0.05 indicated statistical significance.
Functional enrichment analysis
In order to investigate the underlying biological functions of GTSE1. The top 1,000 co-expressed genes obtained from the LinkedOmics were extracted and performed the GO annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The “clusterProfiler” package was used to perform the functional enrichment analysis including the Gene Ontology (GO) and KEGG analysis. GO annotation consisted of biological process (BP), cellular component (CC), and Molecular function (MF). p-value < 0.05 and false discovery rate (FDR) < 0.05 were considered to be statistically significant. The “ggplot2” package was used for visualization.
Gene set enrichment analysis
The 539 ccRCC patients, whose gene expression data were obtained from the TCGA database were divided into the GTSE1 high-expression group and GTSE1 low-expression group according to the median expression level of GTSE1 with each group containing 269 patients. The gene expression of the two groups was imported to the GSEA 4.2.0 software to analyze the significantly changed signaling pathways and get the top 100 co-expressed genes of GTSE1in each group. The hallmark of gene sets and KEGG pathways were selected for further analysis (https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#H). Meanwhile, the Nominal p-value < 0.05 and FDR q value < 0.25 were set as a threshold of statistically significant.
TME related analysis
Estimate is an algorithm that predicts tumor purity by calculating the immune score and stroma score based on TCGA expression profile and single-sample Gene Set Enrichment Analysis (ssGSEA) analysis (Yoshihara et al., 2013). The abundance of 28 cell types was estimated and tumor purity, immune score, stromal score, and estimate score were also calculated based on the expression of GTSE1 (cutoff by the median expression level of GTSE1). CIBERSORT is an R/web version tool for deconvolution of expression matrices of human immune cell subtypes based on Linear Support Vector regression. The approach is based on a known reference set that provides a gene expression signature set for 22 immune cell subtypes: LM22 (Newman et al., 2015). The degree of infiltration of 22 immune cells was also grouped and calculated according to the median expression of GTSE1. The correlation between the HRD (homologous recombination deficiency) and GTSE1 expression was analyzed by the means of the “fmsb” package and Spearman’s method. Finally, the correlation between the immune checkpoint and GTSE1 expression was calculated and displayed as a heat map.
Cell culture and transfection
The ccRCC cell lines (786-O, Caki-1, RCC-4, SW839, 769-P, and OS-RC-2) and Human renal tubular epithelial cell line (HK-2) were all purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA). All the cells mentioned above were cultured in RPMI-1640 contained with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin solution (Gibco, Grand Island, NY, USA) at 37°C in a 5% CO2 cell incubator. All cell lines used in the research were at early passages. To suppress the expression of GTSE1, the two double-stranded siRNA oligonucleotides against GTSE1 were designed and chemically synthesized (Shanghai GenePharma Co.) and the siRNA was transfected into the cells using the Lipofectamine 2000 reagent (Thermo Fisher Scientific, Inc). The selected targeting sequences were as follows: si-NC: 5′-UUC​UCC​GAA​CGU​GUC​ACG​UTT-3’; si-GTSE1: 5′-GGA​AUC​AUG​CAC​UGC​UCA​UTT-3’. To upregulate the GTSE1 expression, a GTSE1 overexpression plasmid based on a pcDNA 3.1 vector was designed and synthesized (Beijing, Sino Biological). According to the manufacturer’s protocol, the plasmid GTSE1-overexpression and the negative control plasmid were transfected into the cells using the X-treme GENE HP DNA Transfection Reagent (Roche, Switzerland).
ccRCC tissue chip and immunohistochemistry (IHC) assays
To investigate the abnormal expression of GTSE1 in ccRCC tissues and the normal adjacent tissues, the ccRCC tissue chip (Catalog No. HKid-CRCC060PG-01) was purchased from Outdo Biotech Co., Ltd (Shanghai, China) including 30 ccRCC tissues and corresponding adjacent non-cancerous tissues. The tissue chip was subjected to the immunohistochemistry staining assay according to the protocol previously described in this research (Zhang M. et al., 2021). Especially, the primary antibody was purchased from Abcam (anti-GTSE1,1:500) (ab272670). Finally, the IHC staining images were scored based on the staining intensity (0, 1, 2+, 3+) and the percentage of positive cells (0 (0%), 1 (1%–25%), 2 (26%–50%), 3 (51%–75%) and 4 (76%–100%)). The final score used to assess the expression level of GTSE1 was calculated by the combination of the two scores, negative (0 score), weak (one to four score), moderate (five to eight score), and strong (9–12 score).
Quantitative RT-PCR (qRT-PCR)
The total RNA was extracted and isolated from the cell lysis using the RNAfast 200 reagents (Feijie Biotechnology, Shanghai, China) and reversed transcribed into cDNA using the Prime Script RT-PCR kit (Takara Bio Dalian, China). SYBR qPCR Master Mix was used to amplify the cDNA using the CFX96 Real-Time PCR system (Bio-Rad, CA, USA). All the specific primers used in the research were listed as GTSE1, F: CCA​CCG​GGA​TGT​TCT​CCC​T. R: TTC​AGC​CCC​AAC​TTG​TTT​GGA. GAPDH, F: ACC​CAG​AAG​ACT​GTG​GAT​GG. R: CAG​TGA​GCT​TCC​CGT​TCA​G. GAPDH was used as a loading control.
Western blot assay
The total protein was extracted with RIPA lysis (Catalog Number P0013B, Beyotime, China) containing 0.1 M PMSF and 1% protease inhibitor and phosphatase inhibitor (Shanghai Epizyme Biomedical Technology Co., Ltd.). After denatured by boiling for 10min and mixing with 5x loading buffer, the proteins were separated with SDS-PAGE and transferred onto the 0.45 μm polyvinylidene fluoride (PVDF) membranes. The membranes were subjected to the primary antibodies of anti-GTSE1 (ABclonal, Cat NO A13903, 1:1000) and GAPDH (ABclonal, Cat NO AC001, 1:10,000) at 4°C overnight after being blocked with the 5% nonfat milk for 1 h. On the second day, after being washed with TBST three times, the membranes were incubated with the corresponding peroxidase-conjugated secondary antibody for 1 h at room temperature. Finally, the expression of indicated proteins was detected and visualized by the ECL chemiluminescent detection system (Bio-Rad, CA, USA).
MTT assay
MTT assay was conducted to evaluate the cell viability of the ccRCC cells under the indicated conditions. Cells in the logarithmic growth phase were digested and centrifuged and then planted at a density of 4,000 cells per well into a 96-well plate with each well containing 200 µL culture medium. After cultivating for a certain time, the supernatant was removed and 200 µL complete culture medium containing 0.5 mg/mL MTT was added into each well. The 96-well plate was placed in a cell incubator for further cultivation for 4 h and then the OD value at 450 nm was detected with an ELISA reader (Bio-Rad, Hercules, CA, USA) after the 96 well-plates were shaken for 10 min with each well containing 150 µL DMSO. The experiment was executed in triplicate.
Clone formation assay
Cells were digested and centrifuged and then seeded in six well-plates with 1,000 cells in each well. Six well plates were cultured in the cell incubator for approximately 10 days to make the clones visual. After washing with ice-cold PBS three times, fixed and stained with 0.1% crystal dissolved with 4% paraformaldehyde for 10 min, the cell colony was captured with a microscope (Olympus, Tokyo, Japan). The experiment was repeated three times.
Cell flow cytometry analysis
For apoptosis analysis, cells planted in six well-plates were washed with PBS and harvested in ice-cold PBS. After being washed with PBS three times, the cells were suspended in a binding buffer containing Annexin V and PI staining solution at dark for 15min. Finally, the percentage of apoptosis cells was detected by flow cytometry (BD, Biosciences, USA) according to the manufacturer’s protocols. For cell cycle distribution analysis, cells in six well-plates were digested with trypsin, washed with ice-cold PBS, fixed with 70% ethanol at 4 °C for 12 h, and then stained with propidium iodide (PI, 50 μg/mL) and RNase (100 μg/mL) in PBS at dark for 15min. The cell cycle distribution was detected and analyzed by flow cytometer (BD, Biosciences, USA) and cell quest software version 3.3 (BD, Biosciences) according to the manufacturer’s protocols. The experiments were conducted three times.
Wound healing assay
Cells were seeded into six well-plates and then scratched a distance with a 200 μL pipette when the cell density reached 100%. After changing to serum-free medium, six well-plates were placed in a cell incubator for various durations (24 h and 48 h). The images of the scratch were captured by an orthotopic microscope every 24 h until the distance almost disappeared. This experiment was repeated in triplicate.
Transwell migration and invasion assay
Boyden chambers (Millipore, Germany) with an 8-μm pore size were placed into 24 well-plates to assess the migration and invasion ability. Briefly, 4 × 104 cells seeded in the upper chamber suspended in 200 μL serum-free culture medium were used to evaluate the migration ability of ccRCC cells. Meanwhile, 8 × 106 cells seeded in the upper chamber with Matrigel suspended in 200 μL serum-free culture medium was used to assess the invasion ability. After being incubated in the cell incubator for a certain time, the chambers were washed with PBS, fixed, and stained with 0.1% crystal violet dissolved with 4% paraformaldehyde. The visible cells were captured and counted with an inverted light microscope at ×100 magnification in five random fields. The experiments were performed in triplicate.
Statistical analysis
All statistical analyses and visualization of the results shown in this research were executed by R software version 4.1.3 and Prism version 9.0. The Wilcoxon test was used to compare two groups, whereas the Kruskal–Wallis test was used to compare multiple groups. Overall survival, Disease-Specific Survival, and Progress Free Interval were performed using the Kaplan–Meier curves and the log-rank test. Spearman analysis was used to evaluate the correlation coefficient among variances in this research. The statistical difference between the two groups was analyzed with Student’s t-test. *p-value < 0.05 was considered as the threshold of statistically significant.
RESULTS
High expression of GTSE1 in ccRCC
GTSE1 mRNA expression was investigated across cancers using the TIMER 2.0 web tool and the UALCAN web tool. The data indicated that GTSE1 expression was upregulated in a variety of tumor tissues, such as kidney renal clear cell carcinoma (ccRCC), bladder cancer (BLCA), breast cancer (BRCA), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), and head and neck squamous cell carcinoma (HNSC) (Supplementary Figure S1). To further explore GTSE1 expression in ccRCC, a ccRCC tissue chip consisting of 30 tumor tissues and matched normal tissues from 30 ccRCC patients was subjected to immunohistochemical staining, which showed that GTSE1 was overexpressed in ccRCC tissues compared with the corresponding normal tissues (Figure 1A). Meanwhile, the TCGA database and GEO database were also used to clarify the differential expression of GTSE1 in ccRCC compared with normal kidney tissues. We found that GTSE1 was upregulated in ccRCC samples in TCGA paired and unpaired analysis when compared with normal samples (Figure 1B). The GEO database also showed that GTSE1 expression in ccRCC tissues was higher than that in normal tissues (Figures 1C–G). Overall, all these above results demonstrated that GTSE1 was overexpressed in ccRCC tissues compared with normal tissues.
[image: Figure 1]FIGURE 1 | High expression of GTSE1 in ccRCC. (A) Representative images of IHC staining of GTSE1 in ccRCC tissues and matched normal tissues (n = 30). The IHC score of each tissue in ccRCC tissues and matched normal tissue were analyzed and exhibited in scatter diagrams and heatmaps. (B) GTSE1 mRNA level in ccRCC samples was shown in TCGA paired and unpaired analysis. (C–G) GTSE1 mRNA levels in ccRCC tissues and normal tissues in GSE68417 (C), GSE76351 (D), GSE16449 (E), GSE46699 (F) and GSE40435 (G). *p < 0.05, **p < 0.01, ***p < 0.001.
GTSE1 expression in subgroups of different clinical characteristics
The UALCAN web tool based on the TCGA-KIRC database was used to analyze the association between GTSE1 expression and clinicopathological parameters in ccRCC. The data suggested that GTSE1 expression was significantly correlated with KIRC subtype, cancer stage, nodal metastasis, and tumor grade (Figures 2C–F). Briefly, higher GTSE1 expression correlated with more lymph node metastasis, advanced clinical stages, and higher tumor grades. According to the gene microarray data and different clinical prognoses, two distinct subtypes (ccA and ccB) were used to distinguish ccRCC. Generally, tumor patients with the ccA subtype usually have a better prognosis than those with the ccB subtype (Brannon et al., 2010). Concordantly, there was a higher expression of GTSE1 in the ccB subtype than in the ccA subtype. Non-etheless, significant differences were not observed among GTSE1 expression and clinical-pathological features, such as patient age and gender (Figures 2A,B). The correlation between GTSE1 expression and the clinicopathological parameters of ccRCC is summarized in Table 1. Similar results were also observed in Table 2 based on the TCGA-KIRC cohort analysis. There was a positive correlation between GTSE1 expression and tumor stage, lymph node metastasis, distant organ metastasis, pathologic stage, and histologic grade. These results suggested that GTSE1 expression was positively associated with adverse clinical-pathological parameters, and the higher expression of GTSE1 indicated an advanced malignant progression of ccRCC.
[image: Figure 2]FIGURE 2 | GTSE1 expression in subgroups of different clinical characteristics. Box plots showing the relative mRNA expression of GTSE1 in different groups of ccRCC patients: (A) patient age (B), patient gender (C) ccRCC subtypes, (D) nodal metastasis status, (E) individual cancer stages, and (F) tumor grade.
TABLE 1 | The correlation between GTSE1 expression and different clinical characteristics.
[image: Table 1]TABLE 2 | Relationship between GTSE1 expression and clinicopathological features in patients with ccRCC.
[image: Table 2]Prognostic value of GTSE1 in ccRCC
Then, the relationship between GTSE1 expression and survival outcomes in ccRCC patients was explored by Kaplan–Meier survival curves based on the TCGA-KIRC cohort. The patients were divided into two groups by the median GTSE1 expression. The Kaplan–Meier curves of OS, DSS, and PFI demonstrated that the patients with higher GTSE1 expression had a worse outcome than those with lower GTSE1 expression (OS, HR = 1.56 (1.15–2.11, log-rank p = 0.004; DSS, HR = 2.26 (1.51–3.40), log-rank p < 0.001; PFI, HR = 1.96 (1.42–2.70), log-rank p < 0.001) (Figures 3A–C). The association between GTSE1 expression and clinical prognosis (OS, DSS, PFI) across cancers was also analyzed and is shown in Supplementary Figure S2. To assist clinicians in quickly determining the clinical overall survival of ccRCC patients, we designed a multivariate Cox analysis nomogram based on patient age, gender, and GTSE1 expression (Figure 3D). Briefly, we scored ccRCC patients on a scale from 0 to 100 based on their age, gender, and GTSE1 expression and then calculated the overall score. The total scores were then plotted on the horizontal axis to correspond to the survival probability of ccRCC patients after 1, 3, and 5 years. Meanwhile, calibration was also used to illustrate the accuracy of the nomogram model. The abscissa is the survival probability predicted by the model, and the ordinate is the survival probability actually observed. Each point represents the survival probability predicted by the model and the survival probability observed. The gray diagonal is the ideal case line. The bias-corrected line in the calibration plot was getting closer to the ideal curve (also known as the 45-degree line), which shows a reasonable agreement between observed and anticipated values (Figure 3E). The above results fully demonstrated that GTSE1 might serve as a prognostic biomarker associated with worse outcomes in ccRCC.
[image: Figure 3]FIGURE 3 | Prognostic value of GTSE1 in ccRCC. Kaplan–Meier survival curve analysis of OS (A), DSS (B) and PFI (C) verified the prognostic value of GTSE1 in ccRCC. (D) Nomogram used to predict the probability of 1-, 3-, and 5-year OS for ccRCC patients based on the patient’s age, gender, and GTSE1 expression level. (E) Calibration plot of the nomogram for predicting the OS likelihood.
Constructing protein interaction networks
Protein‒protein interactions (PPIs) constitute an important part of the cellular biochemical reaction network. Understanding protein-protein interactions is extremely important for understanding the biological functions and molecular mechanisms of proteins. Hence, the STRING web tool was used to analyze the PPI network of GTSE1, and the top 10 proteins interacting with GTSE1 are shown and listed in Figure 4. The proteins sorted according to the combined score were as follows: CCNB2, CDK1, PLK1, CCNB1, CDC20, KIF2C, RPS27A, AURKB, UBB, and UBA52. Previous research has verified that CCNB2, CCNB1, CDK1, PLK1, CDC20, KIF2C, RPS27A, and AURKB play vital roles in regulating the cell cycle transition, radiosensitivity and cell proliferation in various tumors (Wang et al., 2014; Nie et al., 2020; Zou et al., 2020; Gao et al., 2021; Gheghiani et al., 2021; Zhao et al., 2021). From the PPI network of GTSE1, we speculate that GTSE1 plays an important role in the cell cycle transition and malignant proliferation of tumors.
[image: Figure 4]FIGURE 4 | Constructing protein interaction networks. PPI network of GTSE1 and the top 10 proteins interacting with GTSE1. Annotation of GTSE1-interaction proteins and their confidence scores.
GTSE1 coexpression networks and functional enrichment analysis
Coexpression gene networks, including positively and negatively regulated genes, can reflect biological functions and underlying signaling pathways. The coexpressed genes of GTSE1 were analyzed using LinkedOmics based on the TCGA-KIRC cohort, and the results are presented in the form of a volcano map (Figure 5A). There were 6,830 genes positively correlated with GTSE1 and 3,560 genes negatively correlated with GTSE1 (FDR <0.01). The top 50 genes positively and negatively correlated with GTSE1 are shown in the heatmaps (Figure 5B). From the heatmaps, we could see a strong positive relationship between GTSE1 and PLK1, HJURP, TPX2, etc. Meanwhile, there was also an obvious negative relationship between GTSE1 and NR3C2, OSBPL1A, EMX2OS, etc. Remarkably, 46 of the top 50 positively regulated genes might serve as high-risk markers in ccRCC because of their high hazard ratio (HR, p-value < 0.05). Meanwhile, all top 50 negatively regulated genes might serve as low-risk markers because of their low HR (p-value < 0.05) (Figure 5C). To investigate the biological functions and underlying pathways of GTSE1, GO annotation and KEGG pathway enrichment analyses were performed based on the expression of GTSE1 and its coexpressed genes. Gene ontology consisting of molecular functions (MF), biological process (BP), and cellular component (CC) was clustered and analyzed using the “clusterprofile” package based on “R” software version 4.1.3. (Figures 6A–C). The enrichment analysis of BP indicated that GTSE1 and its coexpressed genes might be involved in the cell cycle transition and immune-related processes, including nuclear division, DNA replication, cell cycle G1/S transition, cell cycle checkpoint, T-cell activation, regulation of innate immune response, etc. GTSE1 and its coexpressed genes might be primarily involved in cellular components, including chromosomal regions, condensed chromosomes, microtubes, kinetochores, and immunological synapses. Molecular functions, including tubulin binding, ATPase activity, microtubule binding, DNA helicase activity, DNA replication, origin binding, etc., might have a close relationship with GTSE1 dysregulation. Moreover, the top 10 KEGG pathways that might be regulated by GTSE1 were clustered and are shown in Figure 6D, including the cell cycle, cytokine‒cytokine receptor interaction, oocyte meiosis, P53 signaling pathway, DNA replication, human T-cell leukemia virus one infection, Th17-cell differentiation, T-cell receptor signaling pathway, primary immunodeficiency, and base excision repair. The GO annotation and KEGG analysis revealed that GTSE1 not only participates in the regulation of cell proliferation and cell cycle transition but also has a tight correlation with the immune response.
[image: Figure 5]FIGURE 5 | GTSE1 coexpression networks in ccRCC (LinkedOmics). (A) The volcano plot of genes highly correlated with GTSE1 based on the Spearman test. (B) The top 50 genes positively correlated or negatively correlated with GTSE1 are shown in the heatmaps. (C) The overall survival analysis of the top 50 genes positively correlated or negatively correlated with GTSE1 is also displayed in the survival heatmaps.
[image: Figure 6]FIGURE 6 | Functional enrichment analysis. GO annotation including biological process (BP) (A), cellular component (CC) (B), and molecular function (MF) (C) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (D) pathway enrichment analyses based on the coexpressed genes of GTSE1 were clustered, and the top 10 terms of each subtype are displayed in the bubble diagram.
GSEA between the high- and low-GTSE1-expression groups
According to the median GTSE1 expression in TCGA-KIRC, patients were divided into high- and low-GTSE1-expression groups for GSEA to investigate the potential role and signaling pathways regulated by GTSE1. First, the top 100 genes upregulated in the high-GTSE1-expression group and the top 100 genes downregulated in the low-GTSE1-expression group are presented in the heatmap (Figure 7A). Moreover, 43/50 gene sets were upregulated in the GTSE1-high phenotype, and 7/50 gene sets were upregulated in the GTSE1-low phenotype. The significantly changed phenotype and KEGG pathways enriched in the GTSE1 high-expression group were as follows: “HALLMARK G2M CHECKPOINT”, “HALLMARK F2E TARGETS”, “HALLMARK MITOTIC SPINDLE”, “HALLMARK_IL6 JAK_STAT3_SIGNALING”, “HALLMARK INFLAMMATORY RESPONSE”, “HALLMARK IL2 STAT5 SIGNALING”, “HALLMARK EPITHELIAL MESENCHYMAL TRANSITION”, “HALLMARK_TNFA SIGNALING _VIA _NFKB”, “KEGG CELL CYCLE”, “KEGG_PRIMARY_ IMMUNODEFICIENCY”, “KEGG CYTOKINE RECEPTOR INTERACTION”, “KEGG OOCYTE MEIOSIS”, “KEGG T CELL RECEPTOR SIGNALING PATHWAY”, and “KEGG P53 SIGNALING PATHWAY” (Figure 7B; Supplementary Figure S3) Meanwhile, the phenotype and KEGG pathways enriched in the GTSE1 low-expression group were as follows: “HALLMARK OXIDATIVE PHOSPHORYLATION”, HALLMARK FATTY ACID METABOLISM”, “HALLMARK_PROTEIN_SECRETION”, and “HALLMARK_ ADIPOGENESIS” (Figure 7C) (Table 3). These results suggested that GTSE1 might be involved in epithelial-mesenchymal transition in addition to cell cycle regulation and the immune response. In summary, GSEA further demonstrated that GTSE1 might play a vital role in carcinogenesis and immunomodulation in ccRCC.
[image: Figure 7]FIGURE 7 | GSEA of GTSE1 in the TCGA-KIRC dataset and the significantly changed pathways in 50 hallmark gene sets based on GTSE1 expression. (A) Heatmaps of the top 100 genes upregulated or downregulated in the GTSE1 high-expression group and GTSE1 low-expression group in ccRCC patients. (B) GSEA displayed the most significantly upregulated signaling pathways enriched in the GTSE1 high-expression group. (C) GSEA displayed the most significantly downregulated signaling pathways enriched in the GTSE1 low-expression group.
TABLE 3 | The enrichment of GSEA gene sets at both the NOM P-value <0.05 and FDR q-value <0.25.
[image: Table 3]Association between GTSE1 expression and immune infiltration in ccRCC
In recent years, the tumor microenvironment (TME) has gained increasing attention for its critical role in regulating malignant tumor progression, affecting patient prognosis, and regulating immunotherapy (Wu and Dai, 2017; Wang et al., 2018). The combination of Estimate analysis and ssGSEA was used to evaluate the correlation between the immune infiltration and GTSE1 expression (Figure 8A). The tumor purity, estimate score, immune score, stromal score, and various immune cell infiltration levels were evaluated in the high- and low-GTSE1-expression groups (cutoff by the median expression level of GTSE1). Based on the analysis results of the heatmap and the TIMER database, we concluded that GTSE1 was positively correlated with EstimateScore, ImmuneScore, StromalScore, and infiltration of multiple immune cells, such as B cells (r = 0.22, p = 1.9e−06), CD8+ T cells (r = 0.165, p = 5.43e−04), CD4+ T cells (r = 0.251, p = 4.89e−08), macrophages (r = 0.165, p = 4.44e−04), neutrophils (r = 0.285, p = 5.47e−10), and dendritic cells (r = 0.33, p = 4.99e−13), but negatively correlated with tumor purity (Supplementary Figure S4). Meanwhile, the “CIBERSORT” algorithm was used to estimate the relative infiltration proportion of 22 immune cell types in the GTSE1 high- and low-expression groups in ccRCC (cutoff by the median expression of GTSE1) based on the TCGA-KIRC cohort. The results suggested that patients with high GTSE1 expression had higher immune infiltration levels of T cells CD8, T cells follicular helper, T cells regulatory (Tregs), Monocytes, Macrophages M0, Macrophages M1, Macrophages M2, Dendritic cells resting, and Neutrophils. However, the patients with high GTSE1 expression had lower immune infiltration levels in NK cells resting, Dendritic cells activated, and Mast cells resting (Supplementary Figure S5). In brief, these results revealed that GTSE1 was positively correlated with immune cell infiltration and tumor microenvironment characteristics, especially macrophages.
[image: Figure 8]FIGURE 8 | Association between GTSE1 expression and immune infiltration and immune checkpoints in ccRCC. (A) The correlation between the immune infiltration level and GTSE1 expression in ccRCC patients was evaluated and analyzed based on the combination of Estimate analysis and ssGSEA. (B) Heatmaps of the correlation between GTSE1 expression and immune checkpoints (immunoinhibitors, immunostimulators) based on the TCGA-KIRC dataset. *p < 0.05, **p < 0.01.
Correlation between GTSE1 expression and immune marker expression and immune checkpoints
To further clarify the association between GTSE1 expression and immune cell infiltration levels in ccRCC, the immune marker sets of various immune cells were analyzed using the TIMER and GEPIA databases. The correlation between GTSE1 expression and the expression level of biomarkers for specific immune cells, including CD8+ T cells, T cells (general), Tfh cells, Th1 cells, Th2 cells, Th17 cells, effector T cells, Tregs, T-cell exhaustion, dendritic cells, natural killer cells, monocytes, neutrophils, TAMs, M1 macrophages, M2 macrophages, and B cells, was assessed based on the TIMER database. The result suggested a significant correlation between the GTSE1 expression and CD8+T-cell markers (CD8A, CD8B), T-cell (general) markers (CD3D, CD3E, CD2), Tfh markers (BCL6, IL21), Th1 markers (TBX21, STAT4, STAT1, TNF, IFNG), Th2 markers (GATA3, IL13, STAT5A), effector T-cell markers (FGFBP2, FCGR3A), Treg markers (FOXP3, STAT5B, CCR8, TGFB1), T-cell exhaustion markers (PDCD1, CTLA4, LAG3, HAVCR2, GZMB), dendritic cell markers (HLA-DPB1, HLA-DRA, HLA-DPA1, CD1C, ITGAX), natural killer cell markers (KIR2DL4), monocyte markers (CD86, CD115), neutrophil markers (CCR7, CD11b), TAM markers (CD68, IL10), M1 macrophage (IRF5), M2 macrophage (CD163, VSIG4, MS4A4A), and B-cell markers (CD19, CD79A), and these correlations remained unchanged even after correction for tumor purity (Table 4). Tumor-associated macrophages (TAMs) are the most important component of the tumor microenvironment and can account for up to 50% of some solid neoplasms. Tumor-associated macrophages can promote the malignant progression of tumor cells through a variety of pathways and are currently the target cells of immunotargeted therapy (Vitale et al., 2019). The above results showed that GTSE1 expression was significantly correlated with macrophage-related cells (monocytes, TAMs, M1 macrophages, and M2 macrophages), especially monocytes and M2 macrophages. The specific correlation is shown in Supplementary Figure S6. Meanwhile, the GEPIA database was also used to further evaluate the correlation between GTSE1 and monocytes, TAMs, M1 macrophages, and M2 macrophages. Similar results were observed in the GEPIA web tools compared with those in TIMER (Table 5). These results suggested that GTSE1 might be involved in the regulation of macrophage polarization. The application of immune checkpoint inhibitors (ICIs) brings new hope for the treatment of patients with advanced ccRCC, especially advanced and metastatic ccRCC, which can significantly improve patient prognosis (Miao et al., 2018; McGregor et al., 2020). The expression of GTSE1 and the immune checkpoints, including the 24 immunoinhibitors and 36 immunostimulators, was extracted, and the correlation was analyzed based on the TCGA-KIRC cohort from the UCSC web database (Thorsson et al., 2018). The correlation analysis between the expression of GTSE1 and the immunoinhibitors and immunostimulators is shown in the form of heatmaps (Figure 8B). The results suggested that GTSE1 was strongly correlated with common immune checkpoints, including BTLA, CD276, CTLA4, LAG3, ITGIT, CD28, ITGB2, ICOS, PDCD1 (PD1), etc. From all of the results above, we can reasonably speculate that GTSE1 may serve as an indicator of the efficacy of immune checkpoint inhibitors due to its positive correlation with ICI expression. Even so, additional experimental analyses are needed to validate the vital role of GTSE1 in immunotherapy.
TABLE 4 | Correlations between GTSE1 and gene markers of immune cells in TIMER.
[image: Table 4]TABLE 5 | Correlation analysis between GTSE1 and relate genes and markers of monocyte, TAM and macrophages in GEPIA KIRC.
[image: Table 5]Effect of GTSE1 on cell proliferation in ccRCC
GTSE1 was upregulated in ccRCC tissues compared with normal tissues according to TCGA and GEO database analyses. Meanwhile, we detected GTSE1 mRNA expression in ccRCC cells and a human renal tubular epithelial cell line (HK-2) and found that compared with HK-2 cells, 786-O, Caki-1, RCC-4, SW839, 769-P, and OS-RC-2 cells had higher GTSE1 mRNA expression levels (Figure 9A). To further investigate the role of GTSE1 in regulating the malignant progression of ccRCC, gain- and loss-of-function assays were conducted by inhibiting GTSE1 expression in OS-RC-2 cells or overexpressing GTSE1 expression in 786-O cells according to GTSE1 expression in ccRCC cells. The efficiency of knockdown and overexpression of GTSE1 was measured by qRT‒PCR and Western blot assays (Figures 9B,C). The MTT assay revealed that the knockdown of GTSE1 in OS-RC-2 cells led to proliferation inhibition in a time-dependent manner. Conversely, the proliferation capacity was elevated in GTSE1-overexpressing 786-O cells (Figure 9D). A similar result was also observed in flow cytometry analysis; the results indicated that GTSE1 knockdown in OS-RC-2 cells could delay the G1/S phase transition, whereas the overexpression of GTSE1 in 786-O cells could accelerate the G1/S phase transition (Figure 9E). A colony-formation assay was also performed to confirm the clonogenic capacity of GTSE1 (Figure 9F). The DNA replication activity was detected by the EdU-staining assay, and GTSE1 suppression significantly reduced EdU staining in OS-RC-2 cells, whereas GTSE1 overexpression remarkably elevated EdU staining in 786-O cells (Figure 9G). All of these data indicated that high GTSE1 expression could promote ccRCC cell proliferation capacity.
[image: Figure 9]FIGURE 9 | Effect of GTSE1 on cell proliferation in ccRCC. (A) qRT‒PCR analysis of GTSE1 mRNA expression levels in ccRCC cell lines and the human renal tubular epithelial cell line HK-2. The efficiency of GTSE1 knockdown or GTSE1 overexpression was measured by qRT‒PCR (B) and Western blotting (C) analysis in OS-RC-2 or 786-O cell lines. (D) Cell viability of ccRCC cells was assessed by MTT assay. (E) Cell cycle distribution of ccRCC cells was detected by cell flow cytometry (FCM) analysis. The results are shown as a histogram of the mean ± SD of three independent experiments. (F) A colony-formation assay was conducted in ccRCC cells. (G) DNA replication activity was assessed by an EdU-staining assay (green indicates the EdU-incorporated cells; blue indicates nuclei). GAPDH was used as an internal control. *p < 0.05, **p < 0.01, ***p < 0.001.
Effect of GTSE1 on cell migration and invasiveness in ccRCC
The Gene Ontology (GO) annotation suggested that GTSE1 was probably involved in the positive regulation of cell-cell adhesion, and GSEA also found that GTSE1 could participate in the epithelial-mesenchymal transition (EMT) in ccRCC. We demonstrated that GTSE1 could promote cell proliferation in ccRCC. Furthermore, wound-healing and transwell assays were simultaneously performed to assess the potential role of GTSE1 in regulating the migration and invasion capacity of ccRCC cells. The results revealed that knocking down GTSE1 inhibited the wound-healing ability of OS-RC-2 cells and that overexpression of GTSE1 accelerated wound healing in 786-O cells (Figure 10A). Meanwhile, we also demonstrated that the GTSE1 loss resulted in an inhibition of the migration and invasion capacity in OS-RC-2 cells, whereas the GTSE1 overexpression promoted the migration and invasion ability in 786-O cells (Figure 10B). In conclusion, our results demonstrated that high GTSE1 expression could promote the migration and invasion capacity of ccRCC cells.
[image: Figure 10]FIGURE 10 | Effect of GTSE1 on cell migration and invasiveness in ccRCC (A) Representative images of wound healing in OS-RC-2 and 786-O cells. (B) Cell migration and invasion abilities were detected by transwell assays with or without Matrigel in OS-RC-2 cells with GTSE1 knockdown and in 786-O cells with GTSE1 overexpression. The quantitative analysis is shown below. **p < 0.01, ***p < 0.001.
Effect of GTSE1 on cisplatin sensitivity in ccRCC cells
The cellular component analysis revealed that GTSE1 had a tight relationship with microtubules, and previous research also demonstrated that GTSE1 was involved in the regulation of microtube nucleation and stability (So et al., 2019). It is well known that microtubules have a tight correlation with the chemosensitivity and chemoresistance of tumor cells (Mozzetti et al., 2005). Homologous recombination deficiency (HRD), which is a key indicator for the treatment and prognosis of various tumors, is also highly correlated with sensitivity to cisplatin and PARP inhibitors. Therefore, the correlation between HRD and GTSE1 expression across cancers was also investigated, and there was a positive correlation between HRD and GTSE1 in ccRCC (p < 0.001) (Figure 11A). The MTT assay also revealed that knocking down GTSE1 in OS-RC-2 cells increased the sensitivity to cisplatin, whereas the overexpression of GTSE1 in 786-O cells decreased the susceptibility to cisplatin treatment (Figure 11B). Similarly, the flow cytometry analysis also demonstrated that upregulation of GTSE1 in 786-O cells decreased, while GTSE1 ablation in OS-RC-2 cells increased the cell apoptosis ratio in ccRCC cells compared with the cisplatin treatment groups (Figure 11C). These results indicated that GTSE1 decreased the chemosensitivity of ccRCC cells to cisplatin.
[image: Figure 11]FIGURE 11 | Effect of GTSE1 on cisplatin sensitivity in ccRCC cells. (A) The correlation between GTSE1 expression and homologous recombination deficiency (HRD) is shown in the radar map. (B) The chemosensitivity of ccRCC cells (OS-RC-2, 786-O) to cisplatin was measured using the MTT assay. (C) The cell apoptotic ratio of ccRCC cells (OS-RC-2, 786-O) was determined using the FCM assay. *p < 0.05, **p < 0.01, ***p < 0.001. ##p < 0.01 versus the cisplatin treatment group.
DISCUSSION
Precision medicine has become an indispensable part of cancer treatment; thus, the discovery of biomarkers that can predict cancer prognosis and treatment efficiency is particularly urgent and required (Vargas and Harris, 2016). Due to the insensitivity of ccRCC to radiotherapy and chemotherapy, surgical resection is still the first-line therapy for clinical treatment. However, the mortality rate of postoperative patients, especially elderly patients and higher-stage patients, is still high and cannot be ignored (Falagario et al., 2021). The emergence of immune checkpoint inhibitors, such as nivolumab (anti-PD-1), has brought new hope for the treatment of ccRCC patients, but the problem of a low response rate still limits the progress of ccRCC treatment (Au et al., 2021). Therefore, the discovery of novel promising prognostic markers and therapeutic targets remains a pressing issue. Previous studies have revealed that GTSE1 could promote the malignant progression of tumors in lung cancer, colon cancer, and liver cancer (Zheng et al., 2019; Zhang F. et al., 2021; Li, 2021). However, the biological functions and underlying molecular mechanisms of GTSE1 in ccRCC progression are still poorly understood. To further understand the potential functions and regulatory network of GTSE1 in ccRCC, a series of bioinformatics analyses and functional experiments in vitro were performed.
In this study, bioinformatic analysis based on TCGA and GEO databases and immunohistochemistry staining on ccRCC tissue chips demonstrated that GTSE1 was particularly upregulated in ccRCC tissues and that high GTSE1 expression was significantly correlated with adverse clinicopathological factors, including advanced stage, metastasis in lymph nodes and reduced survival time in OS, DSS, and FPI, which indicated that GTSE1 might serve as an oncogene in ccRCC. Meanwhile, the high GTSE1 expression in ccRCC cells was verified by comparison with the human renal tubular epithelial cell line HK-2. To further confirm the prognostic value of GTSE1 in ccRCC, we created a nomogram to predict the OS probability in ccRCC patients based on GTSE1 expression, age, and gender, which is usually used as a predictive tool to help clinicians make clinical decisions (Cho et al., 2015). Calibration curves including 1-, 3-, and 5-year AUCs indicated that the nomogram had a high prediction accuracy, which suggested that we successfully built the GTSE1-based nomogram to guide the prognosis prediction of ccRCC patients. Despite this, the possibility of GTSE1 acting as a diagnostic or prognostic biomarker for ccRCC deserves further clinical verification.
Next, we investigated the protein-interaction network and the coexpressed genes of GTSE1, which were used for further biological functional enrichment analysis. The results suggested that the proteins that interacted with GTSE1, including CCNB2, CDK1, PLK1, and CDC20, were all associated with tumorigenic proliferation in ccRCC. Among these genes, PLK1 plays a particularly important role in cell cycle progression due to its vital role in regulating genomic stability and the DNA damage response during mitosis. Moreover, previous studies have established the causal relationship between PLK1 and tumorigenesis in ccRCC (Qian et al., 2022). Functional enrichment analysis, including GO annotation and KEGG analysis, revealed that GTSE1 was mainly located in the chromosomal region and promoted cell cycle transition and proliferation by regulating nuclear division and DNA replication. GSEA KEGG analysis also found that GTSE1 was positively correlated with cell cycle and P53 signaling pathways. All of the results above suggested that GTSE1 might serve as a regulator in the cell cycle transition and proliferation in ccRCC. Finally, gain- and loss-of-function assays were conducted to verify the oncogenic effect in promoting the proliferation of ccRCC. We found that the overexpression of GTSE1 could promote cell viability, colony formation, and cell cycle transition in ccRCC cells, while GTSE1 inhibition had the opposite effects. In addition, functional enrichment analysis also suggested that GTSE1 was associated with the positive regulation of cell-cell adhesion. GSEA also found that GTSE1 extremely participated in the epithelial-mesenchymal transition (EMT), which provided the driving force for tumor metastasis (Pastushenko and Blanpain, 2019). Meanwhile, the functional assay in vitro also demonstrated that the knockdown of GTSE1 suppressed, while the upregulation of GTSE1 improved, the migration and invasion capacity in ccRCC cells. All of the results above demonstrated that GTSE1 could promote the invasiveness and metastasis of ccRCC cells in vitro.
Considering the tight relationship between GTSE1 and microtubules and the causal association between microtubules and chemoresistance, the correlation between GTSE1 and HRD (homologous recombination deficiency) and the effect of GTSE1 on chemosensitivity to cisplatin in ccRCC were explored and demonstrated based on the TCGA-KIRC cohort and biological functional experiments. HRD is a key indicator of the treatment and prognosis of a variety of tumors. Clinical studies have confirmed that HRD status is highly correlated with sensitivity to cisplatin and PARP inhibitors (Hoppe et al., 2018; Mayer et al., 2020). The results demonstrated that GTSE1 was positively correlated with HRD in ccRCC and that the overexpression of GTSE1 could increase cell viability and decrease the apoptosis rate in ccRCC cells treated with cisplatin, while the knockdown of GTSE1 could decrease cell viability and increase the apoptosis rate in ccRCC cells treated with cisplatin. These results demonstrated that the upregulation of GTSE1 could reduce the chemosensitivity to cisplatin in ccRCC cells and ultimately contribute to chemoresistance to cisplatin in ccRCC.
ccRCC has stood out collectively of the foremost immune-infiltrated tumors, and clinically anti-PD-1/PD-L1 antibody has been permitted within the front-line setting of advanced or metastatic ccRCC (Motzer et al., 2015). Although the effect of anti-PD1 antibodies has been demonstrated, a significant proportion of patients are still non-reactive to such treatments. A recent study revealed that the state of T-cell activation in the tumor microenvironment is the prognostic determinant of ccRCC (Adotevi et al., 2010). The GO annotation and KEGG analysis all suggested that GTSE1 was significantly correlated with T-cell activation, the innate immune response, and the T-cell receptor signaling pathway. Moreover, we further explored the correlation between GTSE1 and immune infiltration in four aspects (tumor microenvironment, immune cell infiltration, immune cell markers, and immune checkpoints). In terms of the tumor microenvironment, GTSE1 was positively correlated with the StromalScore, ImmuneScore, and EstimateScore but negatively correlated with tumor purity. Regarding immune cell infiltration and immune markers, our results demonstrated that GTSE1 was not only positively correlated with immune cell infiltration, including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells but also positively correlated with the majority of immune cell markers. From the results of CIBERSORT, we found that GTSE1 was also positively correlated with T regulatory cells (Tregs) and macrophages (monocytes, M0 macrophages, TAMs, M1 macrophages, and M2 macrophages), in which Tregs are known as the main manipulator creating an immunosuppressive TME by suppressing the function of Th1 cells, and the higher level of Treg infiltration was related to adverse clinical-pathological factors and poor prognosis in ccRCC (Kiniwa et al., 2007; Sakaguchi et al., 2020). Meanwhile, the results in TIMER also revealed a strong positive correlation between GTSE1 and immune cell infiltration and immune marker expression of monocytes and M2 macrophages. Additionally, extensive TAMs, especially M2 macrophage infiltration, have been shown to be positively correlated with cancer progression and poor prognosis in multiple human cancers. This finding suggested that GTSE1 might play a vital role in regulating TAM polarization, which is considered one of the main regulators in the process of immune responses and is known to contribute to tumor metastasis (Noy and Pollard, 2014; Zhao et al., 2020). Coexpression analysis of GTSE1 and certain novel immune checkpoint genes indicated that high GTSE1 expression was associated with ICIs, such as PDCD1 (PD1), LAG3, and CTLA4, and might serve as an indicator for ICI therapeutic efficiency. Regardless, additional clinical trials are needed to clarify the question of whether GTSE1 could guide ICIs for further clinical application.
CONCLUSION
This study identified the overexpression of GTSE1 in ccRCC, which was positively correlated with adverse clinical-pathological factors and poor prognosis. High GTSE1 expression was closely related to immune cell infiltration and gene expression of ICIs. Meanwhile, GTSE1 could also create an immunosuppressive TME by promoting the immune cell infiltration of Tregs and M2 macrophage polarization. Finally, the biological functional assay demonstrated that GTSE1 could promote the malignant progression of ccRCC by promoting proliferation, migration, invasion capacity, and cisplatin resistance in ccRCC cells. Taken together, GTSE1 could promote tumor progression and serve as a potential biomarker and prognostic predictor in ccRCC.
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Comprehensive characterization of endoplasmic reticulum stress in bladder cancer revealing the association with tumor immune microenvironment and prognosis
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Background: This study constructs a molecular subtype and prognostic model of bladder cancer (BLCA) through endoplasmic reticulum stress (ERS) related genes, thus helping to clinically guide accurate treatment and prognostic assessment.
Methods: The Bladder Cancer (BLCA) gene expression data was downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. We clustered by ERS-related genes which obtained through GeneCards database, results in the establishment of a new molecular typing of bladder cancer. Further, we explored the characteristics of each typology in terms of immune microenvironment, mutations, and drug screening. By analyzing the ERS-related genes with univariate Cox, LASSO and multivariate Cox analyses, we also developed the four-gene signature, while validating the prognostic effect of the model in GSE32894 and GSE13507 cohorts. Finally, we evaluated the prognostic value of the clinical data in the high and low ERS score groups and constructed a prognostic score line graph by Nomogram.
Results: We constructed four molecular subtypes (C1- C4) of bladder cancer, in which patients with C2 had a poor prognosis and those with C3 had a better prognosis. The C2 had a high degree of TP53 mutation, significant immune cell infiltration and high immune score. In contrast, C3 had a high degree of FGFR3 mutation, insignificant immune cell infiltration, and reduced immune checkpoint expression. After that, we built ERS-related risk signature to calculate ERS score, including ATP2A3, STIM2, VWF and P4HB. In the GSE32894 and GSE13507, the signature also had good predictive value for prognosis. In addition, ERS scores were shown to correlate well with various clinical features. Finally, we correlated the ERS clusters and ERS score. Patients with high ERS score were more likely to have the C2 phenotype, while patients with low ERS score were C3.
Conclusion: In summary, we identified four novel molecular subtypes of BLCA by ERS-related genes which could provide some new insights into precision medicine. Prognostic models constructed from ERS-related genes can be used to predict clinical outcomes. Our study contributes to the study of personalized treatment and mechanisms of BLCA.
Keywords: bladder cancer, endoplasmic reticulum stress, molecular subtype, tumor microenvironment, prognostic
INTRODUCTION
Bladder cancer (BLCA) is the fourth most common cancer in male and the 11th most common cancer in female, with extremely high rates of recurrence and progression (Siegel et al., 2022). In recent years, treatment strategies for bladder cancer are not only traditional surgery and chemotherapy, but also immunotherapy (Abd El-Salam et al., 2022). Although immunotherapy has led to benefits for some patients, there are still patients with advanced bladder cancer who have had less benefit from immunotherapy (Afonso et al., 2020). Therefore, more immunotherapy targets still need to be developed to benefit patients with bladder cancer.
Endoplasmic reticulum stress is an attempt by cells to prevent the accumulation of misfolded or unfolded proteins, thereby activating the unfolded protein response (UPR) (So, 2018). ERS is identified by protein inositol-acquiring enzyme 1 (IRE1), protein kinase R (PKR)-like ER kinase (PERK), and activating transcription factor 6 (ATF6) that reside in the ER. Tumor cells are exposed to factors that alter protein homeostasis over time, resulting in ERS (Urra et al., 2016). Studies have shown that the tumor microenvironment (TME) can induce ERS and activate immune responses (Matsuo et al., 2013; Salvagno et al., 2022). In addition, ERS is also expected to be a new target for drug research in the treatment of tumors (Liu et al., 2022). However, studies in bladder cancer are still relatively rare, including promising studies of ERS in the microenvironment and treatment of bladder cancer.
This study comprehensively investigated the importance of ERS-related genes in BLCA. Novel molecular subtypes and prognostic signature of BLCA were constructed to innovatively explore the underlying mechanisms of ERS and bladder cancer. In addition, this study also correlated ERS with TME, gene mutation, and precision therapy in BLCA.
MATERIALS AND METHODS
ERS-related genes and database sources
No ethnical approval nor informed consent was required in this study to the public availability of data in the public database. Based on the GeneCards database, 258 ERS-related genes were obtained (Supplementary Tables S1, S2), and the screening criteria were protein-coding genes with a correlation score greater than 12. Obtain BLCA gene expression matrix, clinical information and mutation information through the TCGA website (Blum et al., 2018). GSE cohorts were gathered from Gene Expression Omnibus (GEO), namely, GSE32894 and GSE13507 (Barrett et al., 2013). The training dataset was TCGA-BLCA, accepting samples from 400 patients with survival information. 224 samples of GSE32894 cohort and 165 samples of GSE13507 cohort with valid survival time was used for validation (Kim et al., 2010; Sjödahl et al., 2012). Obtain the expression matrix and patient information for the IMvigor210 cohort via the “IMvigor210CoreBiologies” R package (Necchi et al., 2017). TISCH database was used to characterize the expression of the signature genes in different kinds of cells of bladder cancer tissue (Sun et al., 2021).
Function and pathway enrichment analyses
To investigate the pathways associated with ERS-related genes in BLCA, we used the “clusterProfiler” package in R to perform GO and KEGG enrichment analysis on ERS related genes (Yu et al., 2012) and the pathways obtained from MsigDB website (Liberzon et al., 2015). ERS-related pathways (Supplementary Table S3), tumor-related pathways (Supplementary Table S4) and metabolism-related pathway were also available from the MsigDB website (https://www.gsea-msigdb.org/gsea/msigdb/). In addition, to explore the mechanisms of each molecular subtyping more precisely, we collected stromal-related pathways from a study conducted by Mariathasan et al. (2018) (Supplementary Table S5). The “GSVA” package was used to calculate the enrichment score for TCGA samples (Hänzelmann et al., 2013).
Cluster Analysis
We performed consensus clustering analysis of ERS-related genes using the “ConsensusClusterPlus” package. The same clustering method was used for both the training and validation sets (Wilkerson and Hayes, 2010). GSE32894 cohort used for independent validation of our molecular subtypes.
Mutational analysis
The “maftools” package was used for analysis of mutations in BLCA subtypes (Mayakonda et al., 2018). The top ten genes with the highest degree of mutation in each subtype are shown by waterfall diagram. The “TCGAmutations” package was used for obtaining TMB scores of TCGA patients.
Depicting TME of BLCA
We used the “estimate” package for calculating immune, stromal and estimate scores. By using the TIMER method, immune infiltration analysis was performed on each sample of the four subtypes, thus comparing the immune microenvironment of each subtype (Li et al., 2017). To make the results more reliable, we still used CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL and EPIC methods to compare the immune infiltration of each subtype (Becht et al., 2016; Aran et al., 2017; Finotello et al., 2019; Racle and Gfeller, 2020; Le et al., 2021). Finally, we included the cancer immunity cycle (Chen and Mellman, 2013). The cycle reflects the 7 steps in which immune cells exert their anti-tumor effects (Supplementary Table S6).
Molecular subtypes of BLCA
In order to achieve precise treatment of patients with bladder malignancies, many experts have already performed molecular subtypes of BLCA. There are seven main molecular typing methods (Consensus, TCGA, MDA, Lund, CIT, UNC, Baylor) (Sjödahl et al., 2012; Choi et al., 2014; Damrauer et al., 2014; Rebouissou et al., 2014; Robertson et al., 2017; Mo et al., 2018; Kamoun et al., 2020)that are currently recognized. “ConsensusMIBC” and “BLCAsubtyping” R packages were used to divided samples of TCGA and GSE32894 to different subtypes in our study. Although these different methods could classify samples into a variety of types, the vast majority of patients can be categorized as luminal and basal subtypes. Additionally, we collected 12 specific classical signatures of BLCA. These results were summarized in a figure in the form of a heat map.
Chemotherapy and immunotherapy sensitivity analysis
We used a public database, Genomics of Drug Sensitivity in Cancer (https://www.cancerrxgene.org/), to assess the response of four subtypes to chemotherapy with four drugs (Yang et al., 2013). The drug response was estimated by calculating the half-maximal inhibitory concentration (IC50). Additionally, the tumour immune dysfunction and exclusion (TIDE) algorithm (Jiang et al., 2018) and Immunophenoscore (IPS) were used for predicting the sensitivity of immunotherapy (Charoentong et al., 2017).
Construction and validation of the signature
First, through univariate cox analysis and “survival” R package, we identified prognosis-related genes from 258 ERS-related genes. Then, to avoid overfitting of the model, Lasso regression analysis was performed on prognosis-related genes. Genes with non-zero coefficients at the best lambda value were included in multivariable Cox analysis. Finally, we obtain the prognostic risk score signature for ERS-associated genes. The following is the prognostic scoring formula:
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After that, we divided the patients into high ERS score and low ERS score groups according to their median ERS scores. The Kaplan-Meier method was applied to plot the survival curves, while the log-rank test was applied to calculate statistical significance. The feasibility and accuracy of ERS score for predicting 1-, 3-, and 5-year outcomes were further assessed by generating ROC curves. Meanwhile, the ERS scores were also highly effective in two independent validation sets GSE32894 and GSE13507.
Constructing comprehensive nomogram
For individualized assessment, we included stage, age, gender and ERS scores of the sample in univariate and multivariant Cox analysis. After that, we divided the age by 70 years into younger and older. The relationship between ERS score and age, gender, stage, survival, T-stage, N-stage and M-stage was further evaluated. We also evaluated the clinical outcomes of different types of patients in the high and low ERS score groups. Finally, stage, age and ERS score were used to construct comprehensive nomogram to enable prognostic assessment of individualized patients. In addition, we explored the correlation between the ERS score, the four molecular subtypes, and stage.
Statistical analysis
The data were analyzed through the use of R software (version 4.1.3). We analyzed the correlations between variables using Pearson or Spearman coefficients. Statistical tests were two-sided, and the level of significance was set at p < 0.05.
RNA sequencing of BLCA samples
An RNeasy Mini Kit (Qiagen, Valencia, CA) was used to extract total RNA of specimens. According to the manufacturer’s instructions RNA-seq was performed using the QuantSeq kit FWD HT kit (Lexogen) using 500 ng input RNA. We used NEBNext UltraTM RNA Library Prep Kit for Illumina (NEB, USA) to generate Sequencing libraries. Consequently, 125- to 150-bp paired-end reads were generated using an Illumina HiSeq platform. Additionally, 6 μg of total RNA per sample was used as the input material for the small RNA library using the NEBNext Multiplex Small RNA Library Prep Set for Illumina (NEB, Ipswich, MA). 50-bp single-end sequencing was performed on an Illumina Hiseq 4000 platform. HISAT2 aligner was used to align the raw reads to the human reference genome GRCh38. Finally, we obtained the baseline phase RNA sequencing results for 29 patients (named the TMU-BLCA cohort). All patients included in this study signed an informed consent form and were approved by the Ethics Committee of the Second Hospital of Tianjin Medical University. Clinical information for patients can be found at Supplementary Table S7.
Cell culture
The BCa cell lines T24, UMUC3 and EJ were purchased at the Chinese Academy of Sciences Cell bank, and the 253J-BV was presented by Professor Li Lei of the First Affiliated Hospital of Xi’an Jiaotong University. All cells were cultured in RPMI1640 or MEM with 10% fetal bovine serum (FBS) at 37°C in a 5% CO2/95% air incubator.
RNA extraction and real-time quantitative PCR (RT-qPCR)
For RT-qPCR, total RNA was extracted from 20 paired samples of bladder cancer and adjacent normal tissues by surgical excision in the Second Hospital of Tianjin Medical University. The specific situation of the patients is reflected in Supplementary Table S8. The total RNA isolation and subsequent RT-qPCR were conducted as previously described (Li et al., 2022). The primers sequences (Sangon Biotech) were as follow: ATP2A3: F CAT​CCT​GAC​GGG​TGA​ATC​TGT R TGC​CCG​ATG​TGA​TAT​TGG​TGC. STIM2: F AGA​CAA​CAA​TGT​CAA​AGG​AAC​GA R ACT​CCG​GTC​ACT​GAT​TTT​CAA​C. VWF: F CCG​ATG​CAG​CCT​TTT​CGG​A R TCC​CCA​AGA​TAC​ACG​GAG​AGG. P4HB: F GGC​TAT​CCC​ACC​ATC​AAG​TTC R TCA​CGA​TGT​CAT​CAG​CCT​CTC. GAPDH: F CGG​AGT​CAA​CGG​ATT​TGG​TC R TTC​CCG​TTC​TCA​GCC​TTG​AC.
RESULTS
Function and pathway enrichment analyses
ERS-related genes are mainly enriched in endoplasmic reticulum function-related GO and KEGG terms. In addition to this, they are also enriched in Human cytomegalovirus infection, Pathways of neurodegeneration-multiple diseases and response to topologically incorrect protein (Figure 1A). Overall, ERS related genes included in the study were significantly associated with endoplasmic reticulum stress, and they were also significantly enriched in the immune pathway. It confirmed a non-negligible relationship between ERS and the immune microenvironment.
[image: Figure 1]FIGURE 1 | Cluster Analysis. (A) Rectangular diagram showing the results of GO and KEGG enrichment analysis. (B, C) Consensus clustering analysis of ERS related genes. (D) The heat map shows the expression of ERS-related genes in the four subtypes. (E) Kaplan-Meier curves demonstrate differences in clinical outcomes for the four subtypes.
Cluster Analysis
Consensus clustering analysis of ERS genes classified BLCA into four subtypes (Figures 1B, C). These ERS-related genes were significantly different among the four subtypes, and more highly expressed genes were present in C1 and C2 (Figure 1D). Kaplan-Meier survival curves indicated that the C2 had the worst prognostic outcome, and the C3 had the best prognostic outcome (Figure 1E). With the same clustering approach, we observed the same phenomenon in the validation queue (Figures 3A–C). Combined with the clinical data, the C3 had younger age, better N-stage, pathological stage and T-stage (Supplementary Figures S1A–D). Similarly, the same phenomenon is observed in the verification cohort (Supplementary Figure S2). Thus, C3 may still be in the early stages of tumor development and patients have a better prognosis.
Exploring the TME of 4 ERS subtypes
To further investigate the characteristics of ERS in the four subtypes, we enriched the ERS-related pathways (Figure 2A). The results showed that ERS activity was significantly elevated in C1 and C2. Hypoxia affects ERO1α-mediated protein post-translational folding and disulfide bond formation leading to ERS (Chen and Cubillos-Ruiz, 2021). Interestingly, the activity of hypoxia-related pathways was also significantly elevated in C1 and C2. Similarly, we enriched tumor-associated pathways to explored the characteristics of the four isoforms precisely (Figure 2B). C3 was mainly associated with fatty acid metabolism, while C2 was mainly associated with immune pathways. Tumor-specific pathways such as MTOR signaling pathway, p53 signaling pathway as well as ERBB signaling pathway were enriched in C1, while others (NOTCH signaling pathway, MAPK signaling pathway, JAK-STAT signaling pathway, TGF-β signaling pathway, WNT signaling pathway and Hedgehog signaling pathway) were enriched in C2. C4 was associated with cell cycle and DNA damage repair related pathways. In addition, C2 had higher Angiogenesis, EMT1, EMT2, EMT3, and Pan-F-TBRs scores which means a higher stromal level may contribute to its worse prognosis (Figure 2C). We also explored metabolism-related pathways. The results showed that most metabolism related pathways were enriched in C1 and C2, while pyruvate metabolism, fatty acid metabolism, and tyrosine metabolism related pathways were enriched in C3 subgroup. It implied that differences in the metabolic microenvironment of different subtypes may influence to some extent the clinical outcome of patients (Supplementary Figure S2E). Mutational analysis revealed that unlike C3, which exhibited high tumor mutation burden in FGFR3, KDM6A, and TBC1D12, C2 exhibited high tumor mutation burden in TP53 and FLG (Figures 2D–G). The C4 has the highest total tumor mutation load (TMB) (Figure 2H). There are previous studies that reported FGFR3 mutations are strongly associated with earlier stage and longer survival time (van Rhijn et al., 2020). While TP53 mutations have opposite outcomes (Sjödahl et al., 2020). These researches coincided with our findings.
[image: Figure 2]FIGURE 2 | Enrichment analysis, Mutational analysis and Immune scoring. (A) The heat map shows the ERS-related pathways for the four subtypes. (B) The heat map shows the four subtype-related pathways. (C) Differences in Angiogenesis, EMT1, EMT2, EMT3 and Pan-F-TBRs scores across the four subtypes. (D–G) Waterfall diagram showing the top ten genes with high tumor mutational load for the four subtypes. (H) Differences in TMB scores across the four subtypes. (I–K) Comparison of estimate scores, immune scores and stromal scores in four subtypes.
After that, we explored TME of C1-C4. C2 had a highest estimate score, immune score and stromal score while C3 was lowest both in TCGA and GSE32894 cohorts (Figures 2I–K–KFigures 2I–K, 3D). Depending on seven immune infiltration methods of analysis, C2 had more immune infiltration which followed by C1 subtype. Conversely, C3 has least immune infiltration (Figure 4A). Immunomodulators are important for assessing the immune microenvironment of tumors. The gene expression of immunomodulators was elevated mainly in C1 and C2, further validating the high immune activation status of C1 and C2, especially in C2 (Figure 4B). In addition, C2 had stronger cancer immunity cycle activity and there was more activation of anti-tumor immune cells (Figure 5A). The C2 immune checkpoint expression was significantly higher (Figure 5B). These results suggested that the C2 may have a poor clinical outcome due to significant tumor immune escape though with a stronger immune response. The C2 phenotype was also closely associated with high M2 macrophage infiltration (Figure 5C). There was substantial evidence that M2 macrophage polarization suppresses the immune microenvironment and causes a poorer outcome (Komohara et al., 2016; Wei et al., 2022). This further substantiated our perspective that C2 phenotype is associated with immune evasion. Further validation was also obtained in the validation queue (Supplementary Figures S2A, B, S3A, B).
[image: Figure 3]FIGURE 3 | External verification of clusters. (A, B) Consensus clustering analysis of ERS-related genes. (C) Kaplan-Meier curves demonstrate differences in clinical outcomes for the four subtypes. (D) Comparison of estimate scores, immune scores and stromal scores in four subtypes.
[image: Figure 4]FIGURE 4 | Immune infiltration and immunomodulators analysis. (A) Heat map showing the results of 7 methods to assess immune infiltration. (B) Heat map showing the differential expression of immunomodulator genes in the four subtypes.
[image: Figure 5]FIGURE 5 | Exploration of tumor immune microenvironmen. (A) Four subtypes of cancer immunity cycle. (B) Heat map showing the difference in immune checkpoint expression between the four typologies. (C) Differential enrichment of M2 macrophages in four subtypes. (D) Violin plots showing the TIDE scores of different clusters. (E) Comparison of four subtypes and pan-cancer immune subtypes. (F) Comparison of four subtypes with BLCA subtypes.
Next, we compared these four subtypes with pan-cancer immune subtypes and BLCA molecular subtypes. We obtained the pan-cancer subtypes of TCGA BLCA samples from a previous study (Thorsson et al., 2018). The results showed that C1 and C2 were significantly associated with pan-C2 (IFN-γ) subtype, exhibiting the greatest amount of immune infiltration and poor prognosis, which is consistent with our study. The C3 was clearly associated with pan-C4 (Lymphocyte Depleted) subtype and shows lymphocyte depletion (Figure 5E). In comparison with the currently accepted molecular typing of bladder cancer, the C2 was more of the basal type, the C3 and C4 was more luminal subtype, and the C1 might be intermediate (Figure 5F). These results were similar for the validation cohort (Supplementary Figure S2C).
Drug Sensitivity analysis
Cisplatin, Gemcitabine, Paclitaxel and Doxorubicin are the most common chemotherapy drugs for BLCA. All four of these drugs showed the best efficacy in C1 and C2 (Supplementary Figures S4A–D). Therefore, the C1 and C2 subtype may have better benefit with chemotherapy drugs. Higher TIDE scores indicate that patients will benefit more from immunotherapy. Thus, we speculation C4 may more suitable for immunotherapy (Figure 5D).
Construction of prognostic signature
To better assess the prognosis of BLCA patients for clinical benefit, we constructed a ERS related prognostic signature in TCGA training database. The 258 ERS-related genes were analyzed by Univariate Cox analysis and 75 prognosis-related genes were obtained (Supplementary Figure S5). After LASSO analysis, 21 genes were included in the Multivariable Cox analysis (Figures 6A, B). Ultimately, we developed the 4-gene prognostic signature. [image: image] We divided the sample into high ERS score and low ERS score groups according to the median scores (Figure 6E). Prognosis was predicted by Kaplan-Meier curves for OS in high and low ERS score groups (Figure 6C). The results showed that patients in the high ERS score group had a worse prognosis (p < 0.001). For the OS survival prediction of ERS signature, the AUC of the ROC curves for 1, 3 and 5, years were 0.698, 0.687, and 0.702 (Figure 6D). It demonstrated that ERS signature we constructed has strong predictive value for OS prognosis in the training set.
[image: Figure 6]FIGURE 6 | Constructing and validating the prognostic model. (A, B) LASSO regression analysis to remove covariance. (C) OS Kaplan-Meier curve for training cohort TCGA. (D) OS ROC curve for training cohort TCGA. (E) High and low ERS scores and heat map showing the expression of four genes in the prognostic model for training cohort TCGA. (F, G) OS Kaplan-Meier curve for verification cohorts GSE32894 and GSE13507. (H, I) OS ROC curve for verification cohorts GSE32894 and GSE13507. (J, K) High and low ERS scores and heat map showing the expression of four genes in the prognostic model for verification cohorts GSE32894 and GSE13507.
Validation of prognostic signature
To further demonstrate that ERS scores could steadily predict prognosis, two validation sets GSE32894 and GSE13507 were integrated in our study. Similarly, we also divided the sample into high and low ERS score groups according to the median of the ERS scores (Figures 6J, K). The OS Kaplan-Meier curves for both validation sets indicate that high ERS score group has the worse OS prognosis (Figures 6F, G). The AUC of the ROC curves for 1, 3, and 5 years in the GSE32894 were 0.762, 0.744, and 0.745 (Figure 6H). The AUC of the ROC curves for 1, 3, and 5 years in the GSE13507 were 0.646, 0.712, and 0.690 (Figure 6I). The results were evidence of the powerful prognostic capability of the ERS signature.
Construction of Nomogram
Further, we explored the correlation between ERS score and clinical characteristics. Univariate and Multivariable Cox analysis showed that ERS score, stage and age were independent risk factors for the prognosis of BLCA (Supplementary Figures S6A, B). In addition, ERS scores were higher in patients older than 70 years, with higher stage, poorer OS prognosis, higher T-stage, and higher N-stage. However, there were no statistically significant differences in ERS scores by gender and M-stage (Supplementary Figures S6C–I). A clinically stratified analysis of gender, age, stage, T-stage, N-stage, and M-stage was performed in the TCGA database to analyze ERS signature prognostic performance. The results showed that patients in the low ERS scores cohort had improved survival outcomes compared with those in the high ERS score cohort in gender, age, stage, T-stage, and N0 (p < 0.05, Supplementary Figures S7A–I). In contrast, no prognostic differences were observed between the low and high ERS score cohort in the clinical stratification of N1-3 and M stage (Supplementary Figures S7J–L). To enhance clinical applicability, we constructed nomogram using stage, age, and scores (Figure 7A). Calibration plots and decision curves for 1-, 3-, and 5-year survival prediction indicated that nomogram has good predictive accuracy and benefit (Figures 7B–E).
[image: Figure 7]FIGURE 7 | Construction of Nomogram. (A) Constructing the Nomogram to assess patient prognosis. (B–E) Calibration plots and decision curves for 1-, 3-, and 5-year survival projections.
TME and immunotherapy prediction of two groups
To explore the characteristics between the high and low ERS score groups, we explored the differences in immune microenvironment and immunotherapy effects between the two groups. M0 macrophages, M2 macrophages, mast cells, and neutrophil infiltration were evident in the high ERS score group. In contrast, immune cells with tumor-killing properties such as CD8T cells was enriched in low-ERS score group (Figure 8A). The estimate score, immune score and stromal score were also higher in high ERS score group than in low ERS score group (Figures 8B–D). To evaluate the effect of immunotherapy, we introduced the IMvigor210 cohort and the IPS score for the study. The results showed that the prognosis and complete response rate of patients in low ERS score group were better than those in high ERS score group after PD-L1 blockage therapy (Figures 8E, F). Furthermore, IPS scores, IPS-CTLA4 blocker scores, IPS-PD1 blocker scores, and IPS-CTLA4 and PD1 blocker scores were higher in samples with low ERS scores (p < 0.05; Figures 8G–J), indicating that BLCA samples with low ERS scores may be suitable for anti PD-1 and CTLA-4 immunotherapy. Inspiringly, we were surprised to find that the ability of the ERS signature to predict immunotherapy efficacy was robust in our TMU-BLCA cohort. Patients with low ERS scores had good immunotherapy outcomes. These results further confirm the clinical importance of the ERS signature (Supplementary Figure S10F). Finally, we found that most patients in the high ERS score cohort were associated with C2 and advanced stage, whereas patients with low ERS score were C3 and earlier stage (Figure 8K).
[image: Figure 8]FIGURE 8 | Prognostic signatures of tumor immune microenvironment and drug prediction of two groups. (A) Immune cell infiltration analysis assessed by Cibersort algorithm of two groups. (B–D) Comparison of estimate scores, immune scores and stromal scores in two groups. (E, F) The IMvigor210 cohort assesses effectiveness of PD-L1 blockage therapy. (G–J) Violin chart showing IPS score differences. (K) The correlation between the ERS scores, the four subtypes, and the pathological stage is shown in the Sankey diagram.
Single cell analysis
Through TISCH website, we accessed to three single-cell databases GSE130001, GSE145281 and GSE149652 (Supplementary Figures S8A–C). P4HB expressed in a variety of cells, mainly expressed in stromal cells, including endothelial, fibroblasts, myofibroblasts and epithelial (Supplementary Figures S8D, S9A). VWF mainly expressed in endothelial (Supplementary Figures S8E, S9B). ATP2A3 mainly expressed in immune cells such as B-cell, while STIM2 expressed in a few amounts in a variety of cells (Supplementary Figures S8F–G, S9C–D).
The ERS signature genes expression validation by qRT-PCR
We verified the expression patterns of ERS model genes (ATP2A3, STIM2, VWF, and P4HB) in BLCA cell lines and normal uroepithelial cell lines by RT-qPCR (Supplementary Figure S10A). Compared with the expression levels in SV-HUC-1 uroepithelial cells, ATP2A3 and VWF were meaningfully low expressed in 4 bladder cancer cell lines (T24, 253J-BV, EJ, UMUC3), while P4HB were high. STIM2 were low expressed in T24, 253J-BV and UMUC3 cell lines but not significant in EJ cells. In addition, we found downregulated expression of ATP2A3, VWF in tumor tissues (Supplementary Figures S10B–E). Conversely, P4HB were upregulated. The above results implied that ERS model genes may play an important potential role in bladder cancer progression.
DISCUSSION
Current research on cancer has shifted the attention from individual tumor cells to the environment in which tumor cells arise and live. The environment, as known for us called TME, includes not only the core tumor cells, but also various immune cells, fibroblasts, extracellular matrix, and multiple signaling molecules that infiltrate it. There have been numerable studies that have confirmed that various components of the tumor microenvironment can inhibit the killing of tumor cells by immune cells, promote the proliferation and metastasis of tumor cells, and also can develop resistance to chemotherapeutic drugs, immunotherapeutic drugs (Kaymak et al., 2021). Therefore, a total commitment to the study of the immune microenvironment is of great significances for the treatment of cancer (Wu and Dai, 2017).
Up to date, a large number of studies have been reported that endoplasmic reticulum stress is closely associated with cancer development (Cubillos-Ruiz et al., 2017). Under normal conditions, the endoplasmic reticulum can process and fold proteins. However, in the tumor microenvironment, the presence of multiple stressors such as hypoxia, low PH and disorders of nutritional supply can lead to the appearance of a large number of unfolded or misfolded proteins in both malignant and stromal cells, which results in a state of ERS. Cells that are unable to tolerate this state undergo apoptosis, autophagy or immunogenic death. But what is inconceivable is that if tolerated by unfolded protein response (UPR) pathway, it may promote malignant development through a variety of mechanisms including cellular reprogramming (Chen and Cubillos-Ruiz, 2021). In addition, endoplasmic reticulum stress leads to chemoresistance as well as suppression of antitumor immunity (Song and Cubillos-Ruiz, 2019). In bladder cancer, H. H. Zhang et al. Zhang reported that OTUB1 can maintain ATF6 expression by inhibits the ubiquitination process thus promote progression (Tadros et al., 2017; Zhang et al., 2021). There are currently some studies targeting specific endoplasmic reticulum stress-related genes in bladder cancer (Nie et al., 2021), but comprehensive analyses of ERS-mediated TME in BLCA are rare. Identifying different ERS response patterns will help us understand the underlying mechanisms of endoplasmic reticulum stress and the tumor microenvironment, and will also allow us to derive appropriate drugs for precision therapy.
In our research, we first performed consensus clustering of 400 TCGA BLCA samples into 4 clusters by ERS-related genes. These four clusters exhibited different prognosis, degree of biological pathway enrichment, TME, and mutation status. ERS-related pathways were enriched in C1 and C2 with poorer survival, suggesting activation of ERS process was associated with short-term survival time. Similarly, hypoxia-related pathways were enriched in both clusters, suggesting that the occurrence of ERS in BLCA might mediated by hypoxia in TME. Besides these, C2 was characterized by poorest prognose, advanced tumor stage, basal subtype of BLCA, activation of stroma-associated and immune-related pathways, high mutation burden of TP53, as well as high immune cell infiltration level, particularly M2 macrophages. In accordance with previous researches, high immune infiltration level tends to a better prognose, which went against our results. Through further analysis we speculate that the poorer prognosis may be due to the overwhelmingly high expression of immune checkpoints in the C2 subtype, which implies immune escape and may result in the inability of immune cells to function effectively. Additionally, there have been studies shown that tumor-killing immune cells, such as T-cells, require proper targeting and migration to maximize their effects (Salmon et al., 2012). However, due to activation of the C2 subset of matrix-associated pathways, immune cells may not be able to reach the core of the tumor and thus fail to act as tumor killers. Moreover, M2 macrophages presented in the immune microenvironment abundantly of C2 can secrete immunosuppressive factors such as TGF-β and IL-10, which weaken the effects of T-cells, NK cells and other tumor-killing cells (Komohara et al., 2016). C1 showed lower level of immune infiltration second only to C2 and high tumor specific pathways activation such as MTOR, p53 and ERBB signaling pathways. Differently, C3 was featured as low immune and stromal scores, high mutation burden of FGFR3, luminal subtypes of BLCA, activation of fatty acid metabolism pathway, early stage of tumor, as well as a highest survival rate. Therefore, we hypothesized that tumorigenesis in C3 may be related to fatty acid metabolism in the TME. However, C4 was high correlation with DNA damage repair and high level of TMB, this may be the reason why C4 has a better prognosis. We validated the above crucial results with the GSE32894 dataset, and the results further confirmed the stability and reliability of the ERS clusters for the BLCA phenotype in our study. In order to achieve precise treatment, we further evaluated the cluster for which chemotherapy and immunotherapy are suitable. Common chemotherapy drugs for BLCA such as Cisplatin, Gemcitabine, Paclitaxel, Doxorubicin were suitable for C1 and C2, instead C3 or C4. TMB and TIDE score were used to predict immunotherapy sensitivity, and the results showed that patients in C4 may be more suitable for immunotherapy. TMB has been shown to be a good predictor of immunotherapy in an existing study (Gibney et al., 2016). The above results provide great help to our understanding of TME with ERS in BLCA, and are very instructive for clinical purposes.
According to the ERS clusters we developed, patients in different ERS cluster have different survival time, so we consider that ERS status may have a profound impact on prognosis. It has been demonstrated that ERS is associated with prognosis of patients with bladder cancer. For example, overexpression of XBP1 is associated with poorer OS in patients with metastatic cell carcinoma (Chen et al., 2016). However, there are no studies specifically predicting the prediction of patient prognosis and clinical characteristics in BLCA. Therefore, it is necessary to develop ERS-related prognostic signature to guide clinicians to implement individualized treatment. In our study, we developed a 4-gene prognostic model for ERS-related genes by lasso-cox analysis in TCGA cohort and validated in GSE13507 and GSE32894. Higher ERS score meant poorer prognosis. We then correlated the ERS scores with clinical characteristics, and the results further confirmed the far-reaching clinical implications of our signature. Surprisingly, we found that patients with high ERS scores were significantly associated with the C2 cluster, and conversely, patients with low ERS scores were C3 cluster. In addition, the results of our analysis of Imvigor210, TMU-BLCA cohorts and IPS score showed us patients of low ERS score group may more suitable for immune checkpoint inhibitors, which further verified the above results. Finally, we briefly compared several previous bladder cancer models and found that the ROC curves of our ERS signature were significantly better than theirs, which illustrated that the prognostic of ERS to predict patients with bladder cancer is robust (Liang et al., 2021; Yang et al., 2021; Wang et al., 2022). In addition, we validated the ERS model to predict immunotherapy response using a real-world cohort and obtained the ideal results. The results further validate that ERS model has important clinical implications.
Our study provided a comprehensive and systematic analysis of the transcriptome profile associated with endoplasmic reticulum stress, and on the basis of this, a prognostic model was developed to guide clinical personalized treatment. However, there are still some limitations in our study. For example, we need to further expand the sample size to prove the reliability of ERS clusters. Additionally, our study was retrospective and prospective studies are needed to further confirm the reliability of the findings.
CONCLUSION
In conclusion, the novel ERS clusters we established reflect to some extent the underlying mechanisms of TME in BLCA and provides new insights for personalized treatment of bladder cancer. Meanwhile, the ERS signature we developed is equally significant for guiding the prognosis of BLCA patients.
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Background: Breast cancer (BRCA) represents the most frequent diagnosed malignancy in women worldwide. Despite treatment advances, BRCAs eventually develop resistance to targeted therapies, resulting in poor prognosis. The identification of new biomarkers, like immune-related long non-coding RNAs (lncRNAs), could contribute to the clinical management of BRCA patients. In this report, we evaluated the LINC00426 expression in PAM50 BRCA subtypes from two clinical independent cohorts (BRCA-TCGA and GEO-GSE96058 datasets).
Methods and results: Using Cox regression models and Kaplan-Meier survival analyses, we identified that LINC00426 expression was a consistent overall survival (OS) predictor in luminal B (LB) BRCA patients. Subsequently, differential gene expression and gene set enrichment analyses identified that LINC00426 expression was associated with different immune-related and cancer-related pathways and processes in LB BRCA. Additionally, the LINC00426 expression was correlated with the infiltration level of diverse immune cell populations, alongside immune checkpoint and cytolytic activity-related gene expression.
Conclusion: This evidence suggests that LINC00426 is a potential biomarker of immune phenotype and an OS predictor in PAM50 LB BRCA.
Keywords: breast cancer, PAM50 subtypes, luminal B, LINC00426, immune-cell infiltration, immune checkpoint genes, cytolytic activity-related genes, tumor immune microenvironment
1 INTRODUCTION
In 2020, breast cancer (BRCA) was the most frequent diagnosed malignancy and the leading cause of cancer-related death in women worldwide (Harbeck et al., 2019; Sung et al., 2021). BRCA is a heterogeneous disease which includes well-defined histological types and protein markers, such as estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and Ki-67 (Bydoun et al., 2013; Goldhirsch et al., 2013; Ignatiadis and Sotiriou, 2013; Akram et al., 2017; Harbeck et al., 2019). According to the PAM50 gene signature, BRCA is classified in four intrinsic molecular subtypes: Luminal A (LA), Luminal B (LB), HER2-enriched and Basal-like (BL) (Perou et al., 2000; Bernard et al., 2009; Gao and Swain, 2018; Harbeck et al., 2019). In contrast to HER2-enriched and BL subtypes, luminal BRCAs constitute around 60%–70% of diagnosed cases and are commonly associated with improved clinical outcomes (Perou et al., 2000; Bernard et al., 2009; Harbeck et al., 2019). Despite treatment advances, BRCAs eventually develop resistance to therapies due to mutations and dysregulations in diverse genes and signaling pathways (Goldhirsch et al., 2013; Ignatiadis and Sotiriou, 2013; Akram et al., 2017; Brufsky and Dickler, 2018; Rani et al., 2019; Li et al., 2020a; Han et al., 2020; Hartkopf et al., 2020; Luque-Bolivar et al., 2020; Marra et al., 2020; Prat et al., 2020). The identification of new prognostic biomarkers and therapeutic targets, like long non-coding RNAs (lncRNAs), is a new area of research that could contribute to the clinical management of BRCA patients (Xu et al., 2017; Wang L. et al., 2020; Zhang L. et al., 2020; Cedro-Tanda et al., 2020; Ríos-Romero et al., 2020; Cisneros-Villanueva et al., 2021).
LncRNAs are a class of non-protein-coding transcripts greater than 200 nucleotides in length. Within a cell, lncRNAs are key players in a wide range of biological functions like regulation of gene expression, chromatin modification, genomic imprinting, transcriptional and translational processing (Zhu et al., 2013; Chen, 2016). Previous investigations showed that dysregulation in lncRNAs is associated with progression in diverse cancer types (Qiu et al., 2013; Bhan et al., 2017; Bolha et al., 2017; Schmitt and Chang, 2017), including recent studies that have demonstrated the association of different lncRNAs in processes related with cancer immunobiology, such as antigen presentation, immune cell infiltration and functional modulation of immune cells in the tumor immune microenvironment (TIME) (Denaro et al., 2019; Zhang Y. et al., 2020; Luo et al., 2020; Wu et al., 2020). The relevance of some immune-related lncRNAs in BRCA has been explored (Lin et al., 2016; Huang et al., 2018; Pei et al., 2018; Zhang L. et al., 2020; Liu et al., 2020). However, the role of diverse lncRNAs in BRCA immunobiology is unknown.
LINC00426 is a human lncRNA gene which contains 38,105 bases in length and is in the 13q12.3 region of the DNA antisense strand (GeneCards, 2021). LINC00426 is known to be associated with lung adenocarcinoma (LUAD) progression (Li H. et al., 2020), doxorubicin resistance in osteosarcoma (OSA) (Wang L. et al., 2020), immune-cell infiltration in clear cell renal cell carcinoma (ccRCC) (Xiang et al., 2021) and prognosis in hepatocellular carcinoma (HCC) patients (Zhu et al., 2020). Moreover, high expression of LINC00426 is associated with improved overall survival (OS) in non-small cell lung cancer (NSCLC) and LUAD (Du, 2020). In contrast, the high expression of this lncRNA is related to poor OS in OSA patients (Wang Y. et al., 2020). Despite these findings, the prognostic and biological role of LINC00426 in PAM50 BRCA subtypes remains unknown.
We evaluated the LINC00426 expression in PAM50 BRCA subtypes through RNA-seq data from two clinical independent cohorts (BRCA-TCGA and GEO-GSE96058 datasets) of public databases. Using Cox regression models and Kaplan-Meier survival analyses, we found that LINC00426 expression is associated with OS in LB BRCA patients from both cohorts. Differential gene expression (DGE) and gene set enrichment analyses (GSEA) revealed that LINC00426 is associated with different immune-related and cancer-related pathways and processes in LB BRCA. Additionally, the LINC00426 expression correlates with immune-cell infiltration, expression of immune checkpoint genes (ICG) and cytolytic activity-related genes (CARG). These data suggest that LINC00426 is a potential biomarker of immune phenotype and an OS predictor in PAM50 LB BRCA.
2 MATERIALS AND METHODS
2.1 Collection of BRCA clinical datasets (TCGA and GEO databases) and stratification according with the LINC00426 expression
Clinical information and raw RNA-seq expression data from BRCA patients in different PAM50 subtypes were obtained from TCGA database through cBioPortal (https://www.cbioportal.org/) and GDC Data Portal (https://portal.gdc.cancer.gov/projects). Female patients who received neoadjuvant treatment and/or were lacking OS data were excluded, leaving a total of 927 patients analyzed in this study (LA: n = 490; LB: n = 192; HER2-enriched: n = 77; and BL: n = 168). The raw expression data were normalized to transcripts per million (TPM) and log2(TPM+1). A validation cohort (GSE96058) of 3,052 patients (LA: n = 1,657; LB: n = 729; HER2-enriched: n = 327; and BL: n = 339) was obtained from GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96058). Again, female patients were lacking OS data and/or samples with label “repl” were excluded. For both datasets, patients were stratified in groups of low and high expression of LINC00426 by PAM50 BRCA subtypes, based on the lower (25%) and upper quartile (75%), respectively.
2.2 Survival analyses, number at risk by time and Cox proportional hazards regression analyses
Considering the OS data (in months), Kaplan-Meier survival analyses were performed through the log-rank test in patients stratified by PAM50 BRCA subtypes, according to the low and high expression of LINC00426. These analyses were performed using the R packages survival (version 3.4.0) and survminer (version 0.4.9). The absolute number of patients at risk by time (in months) was determined through the survfit() command and n.risk option from survival (version 3.4.0). Univariate analyses were performed through Cox proportional hazards regression models to identify clinicopathological variables associated with OS of patients stratified by PAM50 BRCA subtypes. Multivariate analyses were performed using Cox proportional hazards regression models and OS predictor variables, statistically significant, obtained via univariate analyses. Hazard ratios (HR) and 95% confidence intervals were obtained for each clinicopathological variable. These analyses were performed via survival (version 3.4.0) and survminer (version 0.4.9). p values < 0.05 were considered statistically significant.
2.3 Differential gene expression and functional annotation
DGE between groups of BRCA patients with low and high expression of LINC00426 was determined using the R package DESeq2 (version 1.38.1) (Love et al., 2014). Raw counts less than 10 were filtered and differentially expressed genes were defined as those with log2FoldChange (LFC) > 1.5 and <−1.5 with adjusted p values < 0.05. Volcano plots were generated using the R package EnhancedVolcano (version 1.16.0). The list of differentially expressed genes was used to perform Gene Ontology (GO) over-representation analyses for biological processes and molecular functions, using the R package clusterProfiler (version 4.6.0) (Yu et al., 2012). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to identify signaling pathways related with the LINC00426 expression through clusterProfiler using the default parameters. The results were represented as dot plots and adjusted p values < 0.05 were considered statistically significant.
2.4 Gene set enrichment analysis
Using the normalized RNA-seq expression data from groups of patients with low and high expression of LINC00426, a GSEA (Subramanian et al., 2005) was performed using the Hallmarks gene sets in GSEA (version 4.1.0) with default parameters and 1,000 permutations. Gene sets with nominal p values < 0.05 and FDR <25% were considered statistically significant, according to the GSEA User Guide instructions for sample size and phenotype permutations (https://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideFrame.html?Interpreting_GSEA).
2.5 Estimation of tumor-infiltrating immune cell populations
Using CIBERSORTx, an analytical software based on transcriptome deconvolution method to infer the cell-type-specific gene expression and cell type abundance from RNA-seq data, the relative abundance of 22 tumor-infiltrating immune cell populations was determined: naive B cells, memory B cells, plasma cells, CD8 T cells, naive CD4 T cells, memory CD4 T cells (resting), memory CD4 T cells (activated), T follicular helper cells, regulatory T cells, gamma-delta T cells, NK cells (resting), NK cells (activated), monocytes, M0 macrophages, M1 macrophages, M2 macrophages, dendritic cells (resting), dendritic cells (activated), mast cells (resting), mast cells (activated), eosinophils and neutrophils (Chen B. et al., 2018; Newman et al., 2019; https://cibersortx.stanford.edu/). This analysis was performed using the normalized gene expression data with 1,000 permutations. p values < 0.05 were considered statistically significant.
2.6 ICG and CARG expression signatures
The ICG expression signature for each patient was determined by calculating the geometric mean of seven ICGs (PDCD1, PDCD1LG2, CD274, CTLA4, LAG3, TIGIT and IDO1) (Haddad et al., 2020). Similarly, the CARG expression signature for each patient was determined by the geometric mean of three CARGs (GZMA, GZMB and PRF1) (Rooney et al., 2015).
2.7 Pan-cancer OS analysis in GEPIA2 platform
We used GEPIA2 to analyze OS based on LINC00426 expression across 32 cancer types (http://gepia2.cancer-pku.cn/#general) (Tang et al., 2019). The OS heatmap with HRs, was generated considering the lower (25%) and upper quartile (75%) for each cancer type. The OS contribution related with the LINC00426 expression was estimated through the Mantel-Cox test and adjusted p values < 0.05 were considered statistically significant. The 32 cancer types included in this analysis are as follows: acute myeloid leukemia, adrenocortical carcinoma, bladder urothelial carcinoma, cervical squamous cell carcinoma and endocervical adenocarcinoma, cholangiocarcinoma, colon adenocarcinoma, diffuse large B-cell lymphoma, esophageal carcinoma, glioblastoma multiforme, head and neck squamous cell carcinoma, kidney chromophobe, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, low grade glioma, liver hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, mesothelioma, ovarian serous cystadenocarcinoma, pancreatic adenocarcinoma, pheochromocytoma and paraganglioma, prostate adenocarcinoma, rectum adenocarcinoma, sarcoma, skin cutaneous melanoma, stomach adenocarcinoma, testicular germ cell tumors, thyroid carcinoma, thymoma, uterine corpus endometrial carcinoma, uterine carcinosarcoma and uveal melanoma.
2.8 Statistical analyses
Statistical analyses were performed through GraphPad Prism (version 8.3.0) and R package ggpubr (version 0.5.0). The non-parametric Kruskal-Wallis test was performed to identify differences in the LINC00426 expression between PAM50 BRCA subtypes. The non-parametric Mann-Whitney U test was performed to determine differences in the infiltration level of immune cell populations, ICG and CARG expression between groups of BRCA patients with low and high expression of LINC00426. Spearman correlation analyses were performed to determine statistical relationships between the LINC00426 expression and the infiltration level of immune cell populations, ICG and CARG expression (as individual genes and as gene expression signatures). p values < 0.05 were considered statistically significant.
3 RESULTS
3.1 The LINC00426 expression is an OS prognostic marker in PAM50 LB BRCA patients
Analysis of the BRCA-TCGA cohort (n = 927) found high expression of LINC00426 in non-luminal compared to luminal BRCA subtypes. Significant differences were identified between LA and BL (p = 0.0063), LB and HER2-enriched (p = 0.0089), LB and BL (p = 0.0004) subtypes. No significant difference was observed in the LINC00426 expression between LA and HER2-enriched subtypes (p = 0.0878) (Figure 1A). The clinicopathological characteristics of BRCA-TCGA patients are described in Table 1. Next, we evaluated whether the LINC00426 expression is an OS prognostic marker in patients across different BRCA subtypes. Kaplan-Meier survival analyses revealed that LINC00426 expression did not have an OS prognostic value in LA (p = 0.28), HER2-enriched (p = 0.21) and BL BRCA patients (p = 0.12) (Figures 1B, D, E). However, the high and low expression of LINC00426 were associated with increased and reduced OS in LB BRCA patients (p = 0.01) (Figure 1C), respectively. Univariate Cox regression analyses showed that LINC00426 expression was an OS predictor in LB BRCA patients (p = 0.024), with no significance observed in LA (p = 0.288), HER2-enriched (p = 0.246) and BL (p = 0.133) subtypes (Table 2). The OS prognostic value of LINC00426 expression in LB subtype remained significant on multivariate Cox regression analysis (Table 3). These results suggest that LINC00426 expression has a subtype-specific and an OS prognostic value in PAM50 LB BRCA patients from the TCGA cohort. Also, we identified that age (≤58 years old) was a good prognostic factor associated with OS and that late tumor stage, positive lymph node status and positive metastasis status were poor prognostic factors associated with OS in LA BRCA patients. These clinicopathological variables were also prognostic factors associated with OS in LB, HER2-enriched and BL BRCA patients (Table 2).
[image: Figure 1]FIGURE 1 | LINC00426 expression and Kaplan-Meier survival analyses in PAM50 patients from the BRCA-TCGA cohort. (A) Expression level of LINC00426 in BRCA patients stratified by PAM50 subtypes (Kruskal-Wallis test) (luminal A: n = 490; luminal B: n = 192; HER2-enriched: n = 77; and basal-like: n = 168). (B) Kaplan-Meier survival plot of LINC00426 expression in the OS of luminal A (n = 490), (C) luminal B (n = 192), (D) HER2-enriched (n = 77), (E) basal-like (n = 168) BRCA patients. The high and low expression of LINC00426 show associations with increased and reduced OS in PAM50 luminal B BRCA patients (p < 0.05), respectively.
TABLE 1 | Clinicopathological characteristics of luminal A, luminal B, HER2-enriched and basal-like patients from the BRCA-TCGA cohort (n = 927).
[image: Table 1]TABLE 2 | Univariate Cox proportional hazard regression analyses of clinicopathological variables impacting in the OS of luminal A, luminal B, HER2-enriched and basal-like BRCA patients (BRCA-TCGA cohort), including the LINC00426 expression.
[image: Table 2]TABLE 3 | Multivariate Cox proportional hazard regression analysis of clinicopathological variables impacting in the OS of luminal B BRCA patients (BRCA-TCGA cohort).
[image: Table 3]3.2 LINC00426 is associated with different immune-related and cancer-related processes
Next, we aimed to identify the biological processes and molecular functions associated with the LINC00426 expression in PAM50 LB BRCA through DGE analysis of protein-coding genes between patients with low and high expression of LINC00426. A total of 1,139 genes were found to be differentially expressed, of which 915 genes were downregulated (i.e., CLEC6A, IFNG, PLA2G2D, DCD and GNAT3) and 224 genes were upregulated (i.e., CPB1, TRH, SYT4, CPLX2 and NELL1) (Figure 2A; Supplementary Table S1). Subsequent GO analysis of the differentially expressed genes identified a significant over-representation of diverse immune-related biological processes, including the activation, migration, differentiation, proliferation, and cell-cell adhesion of T cells, lymphocytes and leukocytes (Figure 2B), alongside the over-representation of immune-related molecular functions, including signaling via cytokines, chemokines and MHC proteins (adjusted p-value < 0.05) (Figure 2C). The KEGG pathway analysis corroborated that LINC00426 is associated with immune-related signaling pathways (i.e., cytokine-cytokine receptor interaction, chemokine signaling pathways, hematopoietic cell linage and cell adhesion molecules) (adjusted p-value < 0.05) (Figure 2D).
[image: Figure 2]FIGURE 2 | Functional annotation of LINC00426 in PAM50 LB patients from the BRCA-TCGA cohort. (A) Volcano plot shows 1,139 differentially expressed genes between PAM50 LB BRCA patients with low and high expression of LINC00426. (B) GO analysis dot plot shows the over-representation of immune-related biological processes, and (C) immune-related molecular functions. (D) KEGG analysis shows the enrichment of immune-related signaling pathways.
The GSEA, showed that the group of LB BRCA patients with high expression of LINC00426 is significatively enriched (nominal p-value < 0.05 and FDR <25%) with eight immune-related gene sets (IL2-STAT5 signaling, complement, inflammatory response, allograft rejection, IL6-JAK-STAT signaling, interferon gamma response, TNFα signaling via NFκB and interferon alpha response) and seven cancer-related gene sets (KRAS signaling up, apoptosis, coagulation, epithelial-mesenchymal transition, PI3K-AKT-mTOR, apical junction and apical surface) (Table 4). In contrast, two cancer-related gene sets (estrogen response late and DNA repair) were significatively enriched in the group of LB BRCA patients with low expression of LINC00426 (nominal p-value < 0.05 and FDR <25%) (Table 5). Altogether, these results suggest that LINC00426 could play an important role in the regulation of LB BRCA immunobiology.
TABLE 4 | GSEA and statistical values for enriched hallmark gene sets in PAM50 LB BRCA patients with high expression of LINC00426 (BRCA-TCGA cohort).
[image: Table 4]TABLE 5 | GSEA and statistical values for enriched hallmark gene sets in PAM50 LB BRCA patients with low expression of LINC00426 (BRCA-TCGA cohort).
[image: Table 5]3.3 The LINC00426 expression shows differences in the infiltration level of immune cell populations
After identifying that LINC00426 is associated with immune-related and cancer-related processes, we used CIBERSORTx to estimate the abundance of 22 tumor-infiltrating immune cell populations (Chen C. et al., 2018; Newman et al., 2019) in groups of patients with low and high expression of LINC00426 in the PAM50 LB subtype from the BRCA-TCGA cohort. Using Spearman correlation analyses, we found that LINC00426 expression differentially correlates with the infiltration of 15 immune cell populations (Supplementary Table S2). LB BRCA patients with low expression of LINC00426 have reduced infiltration of naive B cells (p = 0.0242), plasma cells (p = 0.0324), CD8 T cells (p < 0.0001), memory CD4 T cells (resting) (p = 0.0220), memory CD4 T cells (activated) (p < 0.0001), gamma-delta T cells (p < 0.0001), M1 macrophages (p < 0.0001) and increased infiltration of memory B cells (p < 0.0001), NK cells (resting) (p < 0.0001), M0 macrophages (p < 0.0001), M2 macrophages (p < 0.0001), mast cells (resting) (p = 0.0018), mast cells (activated) (p = 0.0005) and eosinophils (p < 0.0001). These immune cell infiltration patterns are reverted in patients with high expression of LINC00426 (Figure 3A). The infiltration of naive CD4 T cells, T follicular helper cells, regulatory T cells, NK cells (activated), monocytes, dendritic cells (resting), dendritic cells (activated) and neutrophils did not show significant differences between groups of patients with low and high expression of LINC00426 (p > 0.05) (Figure 3B). These results suggest that PAM50 LB BRCA patients with low expression of LINC00426 are enriched with immune cell populations associated with immune evasion, which could be related with immunosuppressive TIMEs. Conversely, PAM50 LB BRCA patients with high expression of LINC00426 are enriched with anti-tumoral immune cell populations, which could be associated with inflammatory TIMEs.
[image: Figure 3]FIGURE 3 | Infiltration level of immune cell populations in PAM50 LB patients with low and high expression of LINC00426 from the BRCA-TCGA cohort. (A) Mann-Whitney U test shows significant differences (p < 0.05) in the infiltration level of naive B cells, plasma B cells, CD8 T cells, memory CD4 T cells (resting), memory CD4 T cells (activated), gamma-delta T cells, M1 macrophages, memory B cells, NK cells (resting), M0 macrophages, M2 macrophages, mast cells (resting), mast cells (activated) and eosinophils. (B) Infiltration of naive CD4 T cells, T follicular helper cells, regulatory T cells, NK cells (activated), monocytes, dendritic cells (resting), dendritic cells (activated) and neutrophils did not show significant differences (Mann-Whitney U test, p > 0.05).
3.4 The LINC00426 expression positively correlates with ICG and CARG expression
The evaluation of markers associated with the functional status of immune cells in the TIME is useful to determine the tumor immune status and for immunotherapies selection in patients. Well-defined markers associated to immune checkpoint and cytolytic activity are frequently used in immuno-oncology (Rooney et al., 2015; Sharma and Allison, 2015; Narayanan et al., 2018; He and Xu, 2020). Since previous studies suggest that some lncRNAs could be related with these immune-functional markers in cancer (Peng et al., 2020; Salama et al., 2020; Samir et al., 2021), we evaluated whether the LINC00426 expression correlates with ICGs (PDCD1, PDCD1LG2, CD274, CTLA4, LAG3, TIGIT and IDO1) and CARGs (GZMA, GZMB and PRF1) expression in the PAM50 LB subtype from the BRCA-TCGA cohort. Spearman correlation analyses indicated that LINC00426 expression, positively and significatively, correlates with PDCD1 (R = 0.797), PDCD1LG2 (R = 0.736), CD274 (R = 0.618), CTLA4 (R = 0.821), LAG3 (R = 0.639), TIGIT (R = 0.901), IDO1 (R = 0.738), GZMA (R = 0.878), GZMB (R = 0.749), PRF1 (R = 0.830), ICG (R = 0.843) and CARG signatures (R = 0.845) (p < 0.001) (Figure 4). Concordantly, the expression of ICG and CARG signatures were found to be significantly decreased in LB BRCA patients with low expression of LINC00426, in contrast to the high expression group (p < 0.0001) (Figures 5A, B). Further analysis indicated that the expression of ICG and CARG signatures were positively correlated in LB BRCA (p < 0.001) (Figure 5C). These results suggest that LINC00426 could be also a biomarker for the functional immune status in PAM50 LB BRCA.
[image: Figure 4]FIGURE 4 | Spearman correlation analyses of the LINC00426 expression with ICG and CARG expression in PAM50 LB patients from the BRCA-TCGA cohort. Positive correlation with statistical significance (p < 0.001) was identified in PDCD1, CD274, PDCD1LG2, CTLA4, LAG3, TIGIT, IDO1, GZMA, GZMB, PRF1, ICG and CARG signatures.
[image: Figure 5]FIGURE 5 | ICG and CARG signature expression in PAM50 LB patients from the BRCA-TCGA cohort. Differences in the (A) ICG and (B) CARG signature expression were detected between groups of patients with low and high expression of LINC00426 (p < 0.0001). (C) Spearman correlation between ICG and CARG signature expression in PAM50 LB BRCA patients (p < 0.001).
3.5 The validation of LINC00426 expression in an independent cohort supports its role as an immune phenotype-related biomarker and an OS prognostic marker in PAM50 LB BRCA
Next, we aimed to validate these results in a clinical independent cohort, the GEO-GSE96058 dataset (n = 3,052). The clinicopathological characteristics of PAM50 BRCA patients from this cohort are described in Supplementary Table S3. In this dataset, we identified that LINC00426 expression was significantly different between LA and HER2-enriched (p < 0.0001), LA and BL (p < 0.0001), LB and HER2-enriched (p < 0.0001), and LB and BL BRCA subtypes (p < 0.0001) (Supplementary Figure S1A). Kaplan-Meier analyses validated that LINC00426 expression did not have a prognostic value associated with OS in LA BRCA patients (p = 0.98) (Supplementary Figure S1B), while the high and low expression of LINC00426 were associated with increased and reduced OS in LB BRCA patients, respectively (p = 0.042) (Supplementary Figure S1C). In contrast to the BRCA-TCGA cohort, the LINC00426 expression was a prognostic marker for OS in HER2-enriched (p = 0.005) and BL (p = 0.005) BRCA patients in the GEO-GSE96058 cohort (Supplementary Figures S1D, E). These findings were validated via univariate Cox regression analyses (Supplementary Table S4). Multivariate Cox regression analyses showed that the OS prognostic value of LINC00426 expression in HER2-enriched and BL subtypes remained significant, while a tendency in LB subtype was observed in the GEO-GSE96058 cohort (Supplementary Tables S5–S7). In addition, we found that age (≤58 years old) and positive lymph node status were good and poor prognostic factors associated with OS, respectively, in all BRCA subtypes, which supports our findings in the BRCA-TCGA cohort (Supplementary Table S4).
As the LINC00426 expression was consistently identified as an OS prognostic marker in PAM50 LB subtype, we aimed to confirm whether LB BRCA patients with high and low expression of LINC00426 were associated with increased or reduced levels of tumor-infiltrating immune cell populations. In this context, we identified that LINC00426 expression differentially correlates with the infiltration level of 20 immune cell populations (Supplementary Table S8). Similar to our results in the BRCA-TCGA cohort, LB BRCA patients with low expression of LINC00426 showed low infiltration of naive B cells (p = 0.0003), plasma cells (p = 0.0225), CD8 T cells (p < 0.0001), memory CD4 T cells (resting) (p < 0.0001), memory CD4 T cells (activated) (p < 0.0001), gamma-delta T cells (p = 0.0004), M1 macrophages (p < 0.0001) and increased infiltration levels of memory B cells (p = 0.0049), NK cells (resting) (p < 0.0001), M0 macrophages (p = 0.0059), M2 macrophages (p < 0.0001), mast cells (resting) (p < 0.0001), mast cells (activated) (p < 0.0001) and eosinophils (p < 0.0001) (Supplementary Figure S2A). In addition, we found that LB BRCA patients with low expression of LINC00426 have reduced infiltration of T follicular helper cells (p = 0.0020), regulatory T cells (p < 0.0001), NK cells (activated) (p < 0.0001) and increased infiltration of naive CD4 T cells (p = 0.0137), dendritic cells (activated) (p = 0.0038) and neutrophils (p < 0.0001) (Supplementary Figure S2A), when compared to our results of the BRCA-TCGA cohort. We obtained the opposite results for the infiltration level of immune cell populations in the group of patients with high expression of LINC00426 (Supplementary Figure S2A). The infiltration of monocytes and dendritic cells (resting) did not show significant differences between groups of patients with low and high expression of LINC00426 in PAM50 LB BRCA (p > 0.05) (Supplementary Figure S2B).
We corroborated that LINC00426 expression positively correlates with the expression of PDCD1 (R = 0.763), PDCD1LG2 (R = 0.687), CD274 (R = 0.648), CTLA4 (R = 0.770), LAG3 (R = 0.664), TIGIT (R = 0.807), IDO1 (R = 0.737), GZMA (R = 0.783), GZMB (R = 0.705), PRF1 (R = 0.763), ICG (R = 0.792) and CARG signatures (R = 0.773) (p < 0.001) (Supplementary Figure S3). The expression of ICG and CARG signatures were found to be significantly decreased in LB BRCA patients with low expression of LINC00426, in contrast to the high expression group (p < 0.0001) (Supplementary Figures S4A, B). Also, the expression of ICG and CARG signatures were positively correlated in PAM50 LB BRCA of the GEO-GSE96058 cohort (p < 0.001) (Supplementary Figure S4C). These results support our findings in the BRCA-TCGA cohort and highlight the consistent OS prognostic value of the LINC00426 expression and its relationship with the PAM50 LB BRCA immunobiology, suggesting a fundamental role in this subtype.
4 DISCUSSION
The expression of lncRNAs vary between different cancer types and can promote or antagonize tumor progression (Qiu et al., 2013; Bhan et al., 2017; Bolha et al., 2017); therefore, the lncRNAs can be used as biomarkers for prognosis, treatment monitoring and as therapeutic molecular targets in cancer (Bolha et al., 2017). Specifically, lncRNAs are relevant in cancer immunobiology and have been proposed as immune-related biomarkers in different cancer types (Denaro et al., 2019; Zhang L. et al., 2020; Wu et al., 2020), including BRCA (Pei et al., 2018; Zhang Y. et al., 2020; DeVaux et al., 2020; Liu et al., 2020; Zhou et al., 2020; Zhang et al., 2021). Despite these advances, research on immune-related lncRNAs in PAM50 BRCA subtypes is limited. LINC00426 is an intergenic lncRNA located on 13q12.3 region (GeneCards, 2021) and has been studied in ccRCC, HCC, LUAD, NSCLC and OSA (Wang L. et al., 2020; Du, 2020; Zhu et al., 2020; Xiang et al., 2021). To our knowledge, this is the first study which evaluates the prognostic and biological role of LINC00426 in PAM50 BRCA subtypes.
In this study, we found that LINC00426 expression is a consistent OS predictor in PAM50 LB BRCA in the BRCA-TCGA and GEO-GSE96058 cohorts, in contrast to other subtypes. Particularly, the low and high expression of LINC00426 was associated with reduced and increased OS in LB BRCA patients, respectively. Interestingly, a previous study showed a similar prognostic behavior for LINC00426 in LUAD and NSCLC (Du, 2020). In contrast, Wang et al. reported that the high and low expression of LINC00426 is associated with reduced and increased OS in OSA, respectively (Wang Y. et al., 2020). We propose that LINC00426 expression could have a cancer type-dependent prognostic role. This hypothesis is supported by our pan-cancer exploratory analysis, where LINC00426 shows prognostic variations for OS in head and neck squamous cell carcinoma and hepatocellular carcinoma (Supplementary Figure S5). Similarly, a previous study showed dual prognostic roles of LINC00460 in different cancer types (Cisneros-Villanueva et al., 2021). Future studies might consider evaluating the prognostic role of LINC00426 between diverse cancer subtypes to determine potential differences, as we identified between PAM50 BRCA subtypes.
Previous reports demonstrated that LINC00426 promotes LUAD progression and doxorubicin resistance in OSA, suggesting a potential oncogenic role of LINC00426 in these cancers (Wang L. et al., 2020; Du, 2020). Conversely, Xiang et al. reported that LINC00426 expression positively correlates with CD8 T cells, while negatively correlates with monocytes and mast cells (resting) fractions in ccRCC (Xiang et al., 2021). We identified a differential correlation and infiltration changes between the LINC00426 expression and diverse immune cell populations in PAM50 LB BRCA patients, where the results for 14 immune cell populations were shared between BRCA-TCGA and GEO-GSE96058 cohorts. We propose that low expression of LINC00426 is potentially related with immunosuppressive TIMEs with high fractions of immune cell populations associated with cancer progression and immune evasion, such as mast cells, M0 and M2 macrophages (Stanton and Disis, 2016; Bense et al., 2017) in PAM50 LB BRCA, which potentially could be related with deficiencies in the host’s anti-tumor immune response. In contrast, we suggest that high expression of LINC00426 is potentially related with inflammatory TIMEs enriched with anti-tumoral immune cells, such as memory CD4 T cells, CD8 T cells and M1 macrophages (Stanton and Disis, 2016; Bense et al., 2017). This hypothesis is supported by our functional annotation analyses, where diverse immune-related processes were enriched in PAM50 LB BRCAs with high expression of LINC00426, indicating a favorable host’s anti-tumor immune response. Zhang et al. identified that the lncRNA TCL6 is correlated with the infiltration of B cells, CD8 T cells, CD4 T cells, neutrophils and dendritic cells, showing a prognostic value restricted for LB BRCA (Zhang Y. et al., 2020). Additional studies reported relationships between lncRNAs and immune cell infiltration in cancer (Li et al., 2020b; Liu et al., 2020; Zhang et al., 2021). Our findings are supported by previous studies that identified that the cell composition and functionality of tumor-immune cell infiltrates are strongly associated with diverse clinical outcomes in patients across different BRCA subtypes (Stanton and Disis, 2016; Bense et al., 2017; Vingiani et al., 2020).
Several studies demonstrated that tumor-intrinsic factors, like dysregulations on diverse oncogenic pathways, modulate the host’s anti-tumor immune response depending on the cancer type and cellular context (Cullis et al., 2018; Spranger and Gajewski, 2018; Pereira et al., 2022). We identified that PAM50 LB BRCAs with high expression of LINC00426 are also enriched with different cancer-related processes, such as KRAS signaling up, epithelial-mesenchymal transition and PI3K-AKT-mTOR. Tokumaru et al. demonstrated that the enrichment of KRAS signaling is associated with improved survival and favorable TIMEs enriched with B cells, CD8 T cells, M1 macrophages and monocytes in triple negative breast cancer (Tokumaru et al., 2020). Similarly, previous research identified that altered patterns of epithelial–mesenchymal transition markers are associated with inflammatory cell infiltrates in BRCA subtypes (Khadri et al., 2021). A study by Mafia et al. demonstrated that PI3K-AKT-mTOR signaling pathway is involved in the regulation of trafficking and functional roles of immune cells in the TIME (Mafi et al., 2022). Conversely, other studies found that apoptosis is associated with immune cell infiltration and cytolytic activity in BRCA (Rooney et al., 2015; Murthy et al., 2021), which supports our findings in the group of patients with high expression of LINC00426, where apoptosis is enriched and the CARG expression is increased. The differences in the enrichment of specific immune-related and cancer-related processes could explain the immune phenotypes and OS differences between PAM50 LB BRCA patients with low and high expression of LINC00426.
Because LINC00426 is related with immune cell infiltration, as detected in our functional annotation and CIBERSORTx analyses, we suggest that this lncRNA could be related with pathways involved in the recruitment of immune cell populations to the TIME (i.e., cytokines, chemokines and cell-cell adhesion pathways). In addition, previous studies showed relationships between lncRNAs, including FENDRR and BCAR4, with the expression of cytokines and chemokines in cancer, which could modulate the infiltration of immune cells to the TIME (Xing et al., 2014; Munteanu et al., 2021). Chen et al. demonstrated that the lncRNA LNMAT1 activates the expression of CCL2 through epigenetic pathways and hnRNPL binding to the promotor region of CCL2, which results in the recruitment of tumor-associated macrophages to the TIME of bladder cancer, promoting lymphatic metastasis via VEGF-C excretion (Chen C. et al., 2018). Further functional studies might address the exact mechanisms of LINC00426 in the immune cell population’s recruitment in PAM50 LB BRCA.
Diverse studies revealed that the expression of immune-checkpoints (i.e., CTLA-4, PD-1 and PD-L1) and cytolytic activity markers (i.e., GZMA and PFR1) are important to determine the functional status of local anti-tumor immune response (Rooney et al., 2015; Sharma and Allison, 2015; Charoentong et al., 2017; Cogdill et al., 2017; Nishino et al., 2017; Narayanan et al., 2018; Thorsson et al., 2018; He and Xu, 2020). Reports suggest that lncRNAs could be related with the expression of these markers in cancer (Kathuria et al., 2018; Wang et al., 2019; Wei et al., 2019; Peng et al., 2020; Salama et al., 2020; Samir et al., 2021) with Xiang et al. having shown that LINC00426 correlates with PDCD1 expression in ccRCC (Xiang et al., 2021). We identified that LINC00426 expression positively correlates with the expression of different ICGs (PDCD1, PDCD1LG2, CD274, CTLA4, LAG3, TIGIT, IDO1) and CARGs (GZMA, GZMB, PRF1). We suggest that LINC00426 could be involved, directly or indirectly, in the regulation of ICGs and CARGs expression in PAM50 LB BRCA. Studies demonstrated that the lncRNAs XIST, TSIX and MALAT1 regulate the PD-L1 expression in BRCA through ceRNA networks (Salama et al., 2020; Samir et al., 2021). Additional functional studies might elucidate the exact mechanisms of LINC00426 in the regulation of ICGs and CARGs expression in PAM50 LB BRCA.
Although the importance of the immune response was reported in LB BRCA (Nelson et al., 2017), there are currently no approved immunotherapies for the treatment of this subtype; however, some studies suggested that LB BRCA could be a potential candidate for immunotherapies (Bense et al., 2017; Nelson et al., 2017; Griguolo et al., 2021). Zhu et al. proposed that luminal BRCAs could be stratified in three different immune subtypes based on the expression of immune-related genes (Zhu et al., 2019). Food and Drug Administration (FDA) clinical trials like NCT04659551, NCT03356860 and NCT03815890 are currently evaluating the use of immune checkpoint inhibitors (i.e., Durvalumab, Nivolumab and Ipilimumab) in LB BRCA. In this context, the use of immune-related lncRNAs, such as LINC00426, might be useful for identifying patients who could benefit from immunotherapies, expanding the treatment options for LB BRCA.
The main limitations of our study are related to its retrospective nature and bioinformatics approach based on transcriptomic data, limiting the mechanistic conclusions of LINC00426. Validation of these findings is needed through methodologies like multiplex immunofluorescence or flow cytometry. Future studies focused on LINC00426 in PAM50 LB BRCA are needed that include experimental approaches to gain a wide understanding about the exact functional role of LINC00426. Despite these limitations, we conclude that LINC00426 is a potential biomarker of cancer immune phenotype whose expression has a consistent and an OS prognostic value in PAM50 LB BRCA patients in two independent cohorts, which suggest a potential use for immunotherapies selection in patients, but further analyses are mandatory to confirm this hypothesis.
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Lung adenocarcinoma, which is the second most prevalent cancer in the world, has a poor prognosis and a low 5-year survival rate. The MS4A protein family is crucial to disease development and progression, particularly for cancers, allergies, metabolic disorders, autoimmune diseases, infections, and neurodegenerative disorders. However, its involvement in lung adenocarcinoma remains unclear. In this study, we found that 11 MS4A family genes were upregulated or downregulated in lung adenocarcinoma. Furthermore, we described the genetic variation landscape of the MS4A family in lung adenocarcinoma. Notably, through functional enrichment analysis, we discovered that the MS4A family is involved in the immune response regulatory signaling pathway and the immune response regulatory cell surface receptor signaling pathway. According to the Kaplan–Meier curve, patients with lung adenocarcinoma having poor expression of MS4A2, MS4A7, MS4A14, and MS4A15 had a low overall survival rate. These four prognostic genes are substantially associated with immune-infiltrating cells, and a prognosis model incorporating them may more accurately predict the overall survival rate of patients with lung adenocarcinoma than current models. The findings of this study may offer creative suggestions and recommendations for the identification and management of lung adenocarcinoma.
Keywords: lung adenocarcinoma, MS4A gene family, prognosis, gene mutation, tumor immune microenvironment
INTRODUCTION
Cancer is a global public health issue and poses a major challenge to the standard of medical excellence of all nations. Lung cancer is the second most prevalent cancer worldwide and accounts for the highest cancer-related deaths in both men and women. Globally, 1,796,144 people passed away from this illness in 2020 (1). Small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) account for the majority of lung cancer cases. Currently, chemotherapy, radiation, and surgery are the main avenues for NSCLC treatment. Given the several investigations on tumor heterogeneity, NSCLC has also been treated with molecular targeted therapy and immunotherapy. However, the 5-year survival rate of NSCLC patients is only 26% (O'Brien and Besse, 2016; Miller et al., 2022). Lung adenocarcinoma is a typical subtype of NSCLC. Despite the discovery of numerous immunological checkpoints and prognostic indicators, the molecular makeup of lung adenocarcinoma remains unclear. There is still an urgent need for more research into treatment targets and prognosis indicators for lung cancer.
MS4A is a new gene family with four transmembrane-spanning domains. Currently, there are at least 16 members in the MS4A family. The MS4A gene family is crucial for cell differentiation, signaling, and cell cycle control (Liang and Tedder, 2001; Eon et al., 2016; Mattiola et al., 2021; Silva-Gomes et al., 2022). Previous research has suggested that members of the MS4A family, including MS4A1, MS4A3, MS4A4A, MS4A6A, MS4A7, MS4A12, and MS4A15, are associated with the onset and progression of cancers; however, the underlying mechanisms remain unknown (Kawabata et al., 2013; Heller et al., 2015; Liang et al., 2020; Pan et al., 2020; Jiang et al., 2021; Mudd et al., 2021; Fang et al., 2022; Luo et al., 2022; Zeng et al., 2022; Zhao et al., 2022). According to the published literature, MS4A2 is strongly associated with the prognosis of lung adenocarcinoma (Ly et al., 2017) and lung cancer brain metastases (Chen et al., 2021). Conversely, MS4A8 is considered to have a role in the morphology and cell development of NSCLC (Kudoh et al., 2020). However, further study of the expression and prognostic significance of the MS4A family in lung adenocarcinoma is needed.
We herein first evaluated the expression of the MS4A family in lung adenocarcinoma and its relationship with clinical patient prognosis and established a prognosis model. We examined the signal route involved by the MS4A family and its connection with the immune microenvironment of lung adenocarcinoma to learn more about the relationship between the pathophysiology of the MS4A family and the disease, which would help establish a theoretical foundation for identifying lung adenocarcinoma prognostic factors and treatment.
RESULTS
mRNA expression of the MS4A family in patients with lung adenocarcinoma
Using the TCGA database, we first looked for MS4A family expression in lung cancer and healthy lung tissues. In lung adenocarcinoma tissues, we discovered that the expression of one MS4A family gene was upregulated, and that of 10 other genes was downregulated (Figure 1). Compared with normal tissues, in lung adenocarcinoma tissues, MS4A2/3/4A/6A/6E/7/8/10/14/15 expression was downregulated, whereas MS4A1 expression was upregulated.
[image: Figure 1]FIGURE 1 | Levels of MS4A family expression in lung adenocarcinoma (TCGA). Blue represents the normal group, while red represents the tumor group. Levels of significance denoted by asterisks are *p < 0.05, **p < 0.01, and ***p < 0.001.
Mutation landscape of the MS4A family in lung adenocarcinoma
Using the Gene Set Cancer Analysis (GSCA) website, we examined the prevalence of somatic mutations and copy number variants in the MS4A family. Consequently, we discovered that 99/113 lung adenocarcinoma specimens (87.61%) had gene alterations (Figures 2A, B). We discovered that “missense mutations” was the most prevalent variant category, “SNPs” was the most prevalent variant type, and “C > A” was the most prevalent SNV type (see Figure 2A for more details). Among the 18 genes, MS4A14 was the most predominantly mutated gene, followed by MS4A4A, MS4A3, and MS4A1.
[image: Figure 2]FIGURE 2 | Incidence and classification of MS4A gene mutations in lung adenocarcinoma. (A) The types and proportions of mutations in the MS4A family. (B) MS4A family mutation frequency in lung adenocarcinoma.
Functional enrichment analysis of the MS4A family
To identify the function of MS4A, we used the R program to evaluate the pathways involving the MS4A family. Through Gene Ontology (GO) analysis, we discovered that the MS4A family was significantly enriched in the immune response regulatory signaling pathway and the immune response regulatory cell surface receptor signaling pathway in the BP category. There was an enrichment in the plasma membrane raft in the CC class. The MF terms were enriched with immunoglobulin binding (Figure 3A). KEGG pathway analysis revealed regulated terms (FDR<0.05), including asthma and FcεRI signaling pathway, hematopoietic cell line, sphingolipids signaling pathway, and phospholipase D signaling pathway (Figure 3B).
[image: Figure 3]FIGURE 3 | GO and KEGG enrichment analysis results for the MS4A Family. (A) The Gene Ontology enrichment analysis. (B) The enriched item in the analysis from the Kyoto Encyclopedia of Genes and Genomes. The number of enriched genes is indicated by the size of the circles. MF: molecular function; BP: biological process; and CC: cellular component.
High expression of MS4A2/7/14/15 is beneficial to the survival of lung adenocarcinoma patients
To forecast the predictive value of the MS4A family of genes in lung adenocarcinoma, we used the online database Kaplan–Meier plotter. Then, based on the statistical significance of MS4A’s mRNA expression level, we discovered four genes having a prognostic value. Poorer overall survival was strongly associated with lower expression of MS4A2 (p = 0.00038), MS4A7 (p = 0.018), MS4A14 (p = 0.0099), and MS4A15 (p = 0.00033) (Figures 4A–D).
[image: Figure 4]FIGURE 4 | Survival rates for lung adenocarcinoma were associated with the expression of (A) MS4A2, (B) MS4A7, (C) MS4A14, and (D) MS4A15 (Kaplan—Meier plotter).
Construction of an MS4A family prognostic gene model
To learn more about the function of prognostic genes in lung adenocarcinoma, four prognostic MS4A genes were used to create a model using LASSO Cox regression analysis. The findings were as follows: risk score = (−0.1232) *MS4A2+(-0.1048) *MS4A14+(-0.0642) *MS4A15 (Figures 5A, B). Lung adenocarcinoma patients were divided into two groups based on the risk score. The risk score distribution, survival status, and expression of these four genes are presented in Figure 5C. The level of gene expression declines as the risk score rises, and consequently, patients have shorter lives. The Kaplan–Meier curve, as seen in Figure 5D, demonstrates that patients with lung adenocarcinoma who have high risk scores have a worse prognosis than those who have low risk scores (median time = 3.3 years vs. 4.9 years, p = 0.0018). ROC analysis revealed that the AUC values at 1, 3, and 5 years were 0.673, 0.589, and 0.571, respectively (Figure 5E).
[image: Figure 5]FIGURE 5 | Creating a prognosis model using prognostic genes from the MS4A family. (A, B) The partial likelihood deviance on the prognostic genes and the LASSO regression analysis. (C) Expression heat map of relevant genes, survival time, and survival status according to risk scores of various samples of lung adenocarcinoma. (D, E) The ROC curve of the risk model and the overall survival curve of lung adenocarcinoma patients in the high- and low-risk groups, respectively.
Construction of a nomogram model
Using the prognostic gene model, we identified the influence of four prognostic genes on the survival rate of lung adenocarcinoma patients. However, several factors affect the prognosis in cancers. To further investigate the effect of prognostic genes and clinical parameters, such as age, sex, and clinical stage, on the overall survival of patients with lung adenocarcinoma, we built a model using nomograms. According to the single-factor Cox regression analysis, MS4A2/7/14/15 are protective factors in lung adenocarcinoma, whereas staging is a risk factor (Figure 6A). Multivariate Cox regression analysis revealed that the prognosis is significantly influenced by clinical stage and MS4A2, suggesting that MS4A2 and the pT (pathologic tumor), pN (pathologic tumor), and pM (prognostic distant metastasis) stages are independent factors affecting the prognosis of lung adenocarcinoma (Figure 6B). A nomogram incorporating variables with appreciable differences compared to the prognosis was created based on the findings of the multivariate analysis. We discovered that the 3- and 5-year overall survival rates could be reasonably predicted when compared to the ideal model of the entire cohort (Figures 6C, D).
[image: Figure 6]FIGURE 6 | Building a predictive nomogram. (A, B) p-value and risk ratio of clinical features and prognostic gene expression using univariate and multivariate Cox analyses. (C, D) Nomograms can be used to forecast the 1-, 3-, and 5-year overall survival of lung cancer patients. Ideal nomograms are shown by diagonal dotted lines, while 1-, 3-, and 5-year nomograms are represented by red, orange, and blue lines, respectively.
Immune cell infiltration of prognostic genes of the MS4A family in lung adenocarcinoma
From GO analysis findings, we learned that the MS4A family is involved in the immune regulation pathway and that the immunological microenvironment is crucial for cancer initiation and development. Using the TIMER database, we discovered a strong association between immune-infiltrating cells and MS4A family prognostic genes in lung adenocarcinoma. We noted a positive correlation between the prognostic genes (MS4A2 and MS4A7) and the quantity of immune-infiltrating cells (B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and dendritic cells; Figures 7A, B). The expression of MS4A14 is positively correlated with the infiltration of B cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells, but there is no significant correlation with CD8+ T cells (Figure 7C). The expression of MS4A15 is related to B-cell infiltration (Figure 7D).
[image: Figure 7]FIGURE 7 | Relationship between immune infiltration and four prognostic MS4As (TIMER). The expression of (A) MS4A2, (B) MS4A7, (C) MS4A14, and (D) MS4A15 in lung adenocarcinoma is correlated with the abundance of immune cells.
Validation of prognostic genes in lung adenocarcinoma by real-time quantitative polymerase chain reaction
To confirm the expression of prognostic genes of the MS4A family in lung adenocarcinoma, we used real-time quantitative polymerase chain reaction (RT-qPCR) to identify the mRNA expression levels of prognostic genes in lung adenocarcinoma and paired neighboring normal lung tissues. Among the nine pairs of lung adenocarcinoma and neighboring tissues obtained by us, MS4A2 expression in lung adenocarcinoma tissues was considerably downregulated in four pairs and upregulated in five pairs (Figure 8A; Supplementary Figures S2A–I). In one set of samples with upregulated expression, the relative expression of MS4A2 in lung adenocarcinoma tissues was more than 300 times that in normal lung tissues (Supplementary Figures S2A–I), and therefore, it was disregarded. In eight sample pairs, the expression of MS4A7 was dramatically reduced, whereas no significant variation in the expression level was noted in one pair (Figure 8B; Supplementary Figures S3A–I). Compared with normal lung tissues, MS4A14 and MA4A15 expression levels were significantly downregulated in six pairs of lung adenocarcinoma tissues and markedly upregulated in the remaining three pairs (Figures 8C, D; Supplementary Figures S4A–I, S5A–I).
[image: Figure 8]FIGURE 8 | Relative mRNA expression levels of (A) MS4A2, (B) MS4A7, (C) MS4A14, and (D) MS4A15 were detected by RT-qPCR in lung adenocarcinoma and healthy lung tissues. Levels of significance denoted by asterisks are *p < 0.05, **p < 0.01, and ***p < 0.001. “ns” represents no statistical significance.
Discussion
Members of the MS4A family have similar structures and roles. Previous reports indicate that the MS4A protein predominantly interacts with several immunological receptors and controls signaling pathways (Liang and Tedder, 2001; Polyak et al., 2008; Schmieder et al., 2011; Eon et al., 2016; Mattiola et al., 2019; Mattiola et al., 2021). The well-known members of the MS4A family, namely, MS4A1 (CD20), MS4A2 (FcεRIβ), and MS4A3 (HTm4), all have a significant role in cancer initiation and development. However, it is unknown how most members of this family contribute to lung adenocarcinoma.
To determine this, we started by exploring the expression of the MSA4 family in lung adenocarcinoma. Using the TCGA database, we discovered that 11/18 genes in the MS4A family had differential expressions. Based on our research on the prevalence of copy number variation and somatic mutation in the MS4A family, we found that the majority of the MS4A family members had gene mutations in lung adenocarcinoma. Specifically, MS4A14, MS4A4A, MS4A1, and MS4A3 genes had the highest prevalence of mutations. Additionally, we performed a functional enrichment analysis. The findings corroborated prior research by Mattiola and Eon Kuek and revealed that the MS4A family was primarily involved in the receptor signaling pathway on the surface of immune response-regulating cells and the immune response-regulating signaling pathway, which was associated with immunoglobulin binding (Eon et al., 2016; Mattiola et al., 2021). According to their research, the MS4A family is instrumental in humoral immunity, IgE signal transduction, and T-cell proliferation control (Lin et al., 1996; Howie et al., 2009; Kuijpers et al., 2010). Also, the MS4A family contributes to asthma and the FcεRI signaling pathway. Using the STRING website (https://cn.string-db.org/), we created a network map illustrating the interactions between the MS4A protein family and associated proteins. The interactions between the MS4A protein family and associated proteins are depicted in Supplementary Figure S1. The promoter methylation of FCER1G, which is most closely connected to the MS4A protein family, can inhibit the expression of FcεRI in patients with atopic dermatitis (Liang et al., 2012). This indicates that the FCER1G and MS4A protein families are jointly involved in the regulation of the FcεRI pathway. According to prognostic analyses, patients with low expression levels of MS4A2, MS4A7, MS4A14, and MS4A15 had a worse prognosis. The overall survival of patients with lung adenocarcinoma was positively correlated with the expression level of these genes. Then, to better predict the overall survival of lung cancer patients, we built a prognostic model incorporating the four prognostic genes. Using the LASSO Cox regression analysis and prediction nomogram, we found that the model could predict 3- and 5-year overall survival with reasonable accuracy. We discovered a significant positive correlation between prognostic genes and immune-infiltrating cells through immune infiltration analyses, and we also discovered that lung adenocarcinoma patients with low expression of the prognostic MS4A family genes had a poor prognosis. This shows that the downregulation of MS4A prognostic gene expression may have an impact on immune cells’ capacity to proliferate, mature, and kill. However, it is not yet apparent how immune cells will be impacted and at what stage this will appear. Additionally, this is the direction we need to explore next.
Notably, MS4A2, an intensively examined MS4A family member, is a crucial part of high-affinity IgE (Kraft and Kinet, 2007). In agreement with the findings of Ly et al., MS4A2 has low expression in lung adenocarcinoma and is associated with a bad prognosis (Ly et al., 2017). Their findings show that mast cells affect the development of lung cancer and that high MS4A2 expression on stromal mast cells is a positive prognostic sign for the survival of early lung cancer patients. We discovered that as per the prognostic model and nomogram analysis findings, MS4A2 is a protective gene in lung adenocarcinoma and an independent factor impacting prognosis; it is also considerably positively associated with immune-infiltrating cells. Then, using RT-qPCR, we further confirmed MS4A2 expression in lung adenocarcinoma. Notably, only three of the nine sample pairs gathered herein showed reduced expression of MS4A2. In agreement with other research studies, our bioinformatics study showed that the level of MS4A2 was low in lung adenocarcinoma. This could be attributed to the small sample size of this study. Another influencing factor could have been the primers we created because we only chose a small portion of the MS4A2 mRNA, and this may not accurately reflect all functions of MS4A2. As the MS4A family’s first identified ion channel, MS4A2 can function as a calcium channel (Alber et al., 1991; Ishibashi et al., 2001) which is associated with the development of numerous cancers (Gautier et al., 2019). Although this could be a process through which MS4A2 contributes to lung adenocarcinoma, more research is required to precisely determine the underlying pathway and mechanism. The FcεRI receptor is a tetramer complex, one of which, the β subunit, is encoded by MS4A2 (Bitting et al., 2023), suggesting a connection between the MS4A family and the FcεRI signaling pathway, which is consistent with the KEGG enrichment study demonstrating the involvement of the MS4A family in the FcεRI signaling pathway. Previous studies have suggested a link between MS4A2 and the onset of asthma. The mutation in exon 7 E237G may be a risk factor for the development of atopic asthma (Yang et al., 2014); however, the prevalence of asthma is unrelated to the methylation of the MS4A promoter (Ferreira et al., 2010). Further molecular mechanisms need to be studied.
During the study of the MS4A family, it was discovered using PCR amplification that MS4A7 is primarily expressed in B cells and monocytes in hematopoietic cell lines. In addition, MS4A7 is present in non-hematopoietic cell types, such as those found in the colon, thymus, lung, and other organs (Liang and Tedder, 2001; Mattiola et al., 2021). Few reports on MS4A7 in tumors have been published so far, mainly in cases of esophageal and gastric cancer (Sun et al., 2018; Zhou and Wang, 2020). In their research, it has been discovered that the poor prognosis of these two cancers is associated with high MS4A7 expression. Even in lung adenocarcinoma, MS4A7 has been reported to be a predictor of poor survival (Luo et al., 2022). In our study, however, the low expression of MS4A7 in lung adenocarcinoma suggests a bad prognosis. Our findings were further supported by the outcomes of RT-qPCR tests performed on lung cancer tissues and healthy lung tissues. In addition, the immune infiltration analysis revealed a strong correlation between MS4A7 and immune cells, particularly macrophages and dendritic cells, in lung adenocarcinoma. In contrast to our prediction results, which may be attributable to the various databases and analysis techniques used by us, Luo et al. (2022) reported MS4A7 as a predictor of poor lung adenocarcinoma; however, they did not analyze the expression level of MS4A7 in lung adenocarcinoma. The bad prognosis associated with high MS4A7 expression in gastric and esophageal cancers may be associated with the ability of MS4A7 to control tumor growth in lung adenocarcinoma through various other mechanisms; however, the specific mechanism of MS4A7 in lung adenocarcinoma remains to be confirmed.
Recent investigations have demonstrated that MS4A14 is highly expressed in renal clear cell carcinoma and that individuals with high MS4A14 expression have lower overall survival rates (Li et al., 2022). Conversely, patients with low expression of MSA14 in lung adenocarcinoma reportedly have a bad prognosis. The prognosis model has enabled us to determine that MS4A14 is a lung adenocarcinoma protective factor that is favorably correlated with patient survival time. However, the biological functions of MS4A14 remain poorly understood, and more research is required to determine how MS4A14 affects lung adenocarcinoma.
The MS4A family is closely related to calcium channels (Eon et al., 2016; Mattiola et al., 2021), and MS4A15, which controls the level of calcium ions to coordinate lipid remodeling and prevent iron death, has recently been shown to be present in the endoplasmic reticulum (Xin et al., 2022). According to several studies, MS4A15 is upregulated in ovarian cancer and can encourage the proliferation of ovarian cancer cells both in vivo and in vitro (Fang et al., 2022).
In our experiment, we found the expression of MS4A15 in lung cancer to be downregulated relative to that in normal lung tissues, indicating a negative prognosis for patients. Since MS4A15 is found in the endoplasmic reticulum, it possibly controls iron death and the structure and function of the mitochondria to influence the onset and progression of malignancies.
This study has some limitations. In vivo and in vitro tests are primarily lacking, and the mechanism behind the involvement of the MS4A family in lung adenocarcinoma remains to be identified.
In summary, we thoroughly examined the expression and prognosis of the MS4A family in lung adenocarcinoma and identified four MS4A family genes with prognostic value. Additionally, we found a strong association between prognostic genes and immune infiltration, and prognostic genes may influence lung adenocarcinoma development via calcium channels.
METHODS
Identification of differentially expressed MS4As
RNA-sequencing expression (level 3) profiles and associated clinical data for lung adenocarcinoma were retrieved from the TCGA database (https://portal.gdc.com; Supplementary Table S1) (Zhou et al., 2020; Jin et al., 2021). R version 4.0.3 was used to apply all analysis techniques and packages.
Mutation analysis of the MS4A family
We used the online database GSCA (http://bioinfo.life.hust.edu.cn/GSCA/#/mutation) to study the gene mutation landscape of the MS4A family in lung adenocarcinoma, and we used the TCGA database to gather SNV data from 113 lung cancer samples for analysis. Seven different mutation types were examined: Missense_ Mutation, Nonsense_ Mutation, Frame_ Shift_ Ins, Splice_ Site, Frame_ Shift_ Del, In_ Frame_ Del, and In_ Frame_ Ins. These mutations were called detrimental mutations.
Functional enrichment analysis
Following the collection and arrangement of data from the TCGA database, functional enrichment studies were carried out using the tools clusterProfiler v4 2.0 and org.Hs.eg.db v3.14.0, and bubble charts were produced. If there were numerous notable entries among them, the top 20 were automatically shown in the figure.
Prognostic analysis of differentially expressed genes
To assess the predictive significance of the mRNA expression of MS4A family members in patients with lung adenocarcinoma, the Kaplan–Meier plotter (http://kmplot.com/analysis/) was used. This plotter can help compare the 30 K gene (mRNA, miRNA, and protein) expression and survival rate associated with 21 tumor types, including breast cancer, ovarian cancer, lung cancer, and gastric cancer. The primary goal is to locate and validate biomarkers using a meta-analysis. The data primarily come from TCGA, EGA, and GEO (Nagy et al., 2021). On the basis of the median expression (high expression and low expression), patient samples were split into two groups in the Kaplan–Meier plotter, and their outcomes were assessed using the Kaplan–Meier survival map, risk ratio (HR) of 95% confidence interval (CI), and log-rank p-value. A p-value of 0.05 or lower was considered to indicate a statistically significant difference.
Construction of four gene prognostic models
Lung adenocarcinoma RNA-sequencing expression (level 3) profiles and associated clinical data (Supplementary Table S2) were downloaded (https://portal.gdc.com) from the TCGA dataset. Samples with clinical information were retained while converting counts data to TPM and normalizing the data log2 (TPM+1). Consequently, a total of 516 samples were collected for analysis. The survival differences between healthy individuals and patients with lung adenocarcinoma were tested using log-rank tests, and the predictive model’s accuracy was evaluated using timeROC (v0.4) analysis (Ji and Xue, 2020; Zhang et al., 2020; Xu et al., 2021). R (foundation for statistical computing 2020) version 4.0.3 was used to implement all analysis techniques and R packages. A p-value of 0.05 was considered to indicate statistical significance.
Construction of a nomogram
The lung adenocarcinoma RNA-sequencing expression (level 3) profiles and the associated clinical data (Supplementary Table S3) were downloaded from the TCGA dataset (https://portal.gdc.com). Univariate and multivariate Cox regression analyses were used to choose the appropriate phrases to construct a nomogram (Liu et al., 2020). Through the “forestplot” R package, the forest plot was used to display the p-value, HR, and 95% CI of each variable (Jeong et al., 2020; Xiong et al., 2020). A nomogram based on the outcomes of the multivariate Cox proportional hazards analysis was created to forecast the overall recurrence over the next 5 years.
Immune infiltration analysis
The TIMER web server (https://cistrome.shinyapps.io/timer/) is a comprehensive resource for the systematic investigation of immune infiltrates in various cancer types (Li et al., 2016; Li et al., 2017). Six immunological infiltrates (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells) can be estimated by TIMER. In this study, the relationship between prognostic genes and immune-infiltrating cells was examined using the “Gene Module.
RNA extraction and RT-qPCR
Nine patients with lung adenocarcinoma had their normal and cancerous lung tissues removed at the First Hospital of Jilin University, and total RNA was isolated using TRIzol (GenStar, China). We used a Uni kit (TransGen, China) to reverse transcribe RNA. Then, we performed RT-qPCR to determine the degree of cDNA expression using 2 × RealStar Green Fast Mixture (GenStar) as an internal control. The geometric mean of housekeeping gene GAPDH was used as an internal control to normalize the variability in expression levels. We used 2−ΔΔCT to determine the relative gene expression level, and GraphPad 8.0 was used to display the results. The difference between the two groups was compared. The data conformed to the normal distribution using the t-test, and the data did not conform to the normal distribution using the Wilcoxon test. The data were expressed as mean ± SD, with p < 0.05 indicating a significant difference. Supplementary Table S4 enlists the primer sequences used for RT-qPCR. The relative expression of prognostic gene mRNA in lung adenocarcinoma and normal lung tissues is presented in Supplementary Table S5. Each patient provided written informed consent and agreed to participate in the trial. The research methodologies followed the guidelines outlined in the Helsinki Declaration. The research protocol was approved by the First Hospital of Jilin University Ethics Committee.
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Background: The tumor microenvironment (TME) of breast cancer (BRCA) is a complex and dynamic micro-ecosystem that influences BRCA occurrence, progression, and prognosis through its cellular and molecular components. However, as the tumor progresses, the dynamic changes of stromal and immune cells in TME become unclear.
Objective: The aim of this study was to identify differentially co-expressed genes (DCGs) associated with the proportion of stromal cells in TME of BRCA, to explore the patterns of cell proportion changes, and ultimately, their impact on prognosis.
Methods: A new heuristic feature selection strategy (CorDelSFS) was combined with differential co-expression analysis to identify TME-key DCGs. The expression pattern and co-expression network of TME-key DCGs were analyzed across different TMEs. A prognostic model was constructed using six TME-key DCGs, and the correlation between the risk score and the proportion of stromal cells and immune cells in TME was evaluated.
Results: TME-key DCGs mimicked the dynamic trend of BRCA TME and formed cell type-specific subnetworks. The IG gene-related subnetwork, plasmablast-specific expression, played a vital role in the BRCA TME through its adaptive immune function and tumor progression inhibition. The prognostic model showed that the risk score was significantly correlated with the proportion of stromal cells and immune cells in TME, and low-risk patients had stronger adaptive immune function. IGKV1D-39 was identified as a novel BRCA prognostic marker specifically expressed in plasmablasts and involved in adaptive immune responses.
Conclusions: This study explores the role of proportionate-related genes in the tumor microenvironment using a machine learning approach and provides new insights for discovering the key biological processes in tumor progression and clinical prognosis.
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1 INTRODUCTION
Breast cancer (BRCA) is the most common cancer among women worldwide, accounting for 25.4% of all cancer cases in women and placing a heavy burden on both the health and finances of these patients (Ahmad, 2019). BRCA has a complex tumor microenvironment (TME), and the different cell types and altered gene expression patterns in the TME are all factors contributing to tumor heterogeneity that cannot be ignored. TME is a dynamic entity, characterized by changes in the types and quantities of various cell populations (Shalapour and Karin, 2015; Wang et al., 2020) that promote or inhibit tumor cell proliferation and metastasis throughout its evolution. Changes in stromal cells in the TME matter considerably in suppressing and promoting tumor metastasis during tumor evolution and metastasis initiation (Guo and Deng, 2018). For example, the co-evolution of malignant breast epithelial cells and their underlying mechanisms drive and support the occurrence of cancer-associated fibroblasts (CAFs) as a hallmark event in the development of most cancers (Roswall et al., 2018). The complement regulatory protein CD55 regulates the immune-promoting or immunosuppressive effects of tumor B cells by controlling the ICOSL + B cell production (Lu et al., 2020). However, the proportions of these important cell types within the TME were often overlooked. The composition of cell types within the TME varies between patients at different pathological stages (Yin et al., 2021), and the prognosis of the TME also differs in different states (Lohr et al., 2013; Germain et al., 2014; Goc et al., 2014; Giraldo et al., 2019). Additionally, the treatment measures for patients with different TME conditions are diverse (Ros and Vermeulen, 2018; Abou Khouzam et al., 2020; Shelton et al., 2021; Tiwari et al., 2022). Therefore, understanding the changes in cell types during breast cancer development can help us grasp the changing patterns of the TME in patients and thus provide targeted treatment for patients with different tumor microenvironments, improving their prognosis. Pseudo-temporal analysis can be used to simulate the development process of diseases and explore key molecular mechanisms (Gupta and Bar-Joseph, 2008; Tucker et al., 2015; Campbell and Yau, 2018). For example, PhenoPath has unsupervisedly simulated the disease trajectory of colorectal cancer and found that its trajectory fairly identified the immune contribution to the progression of colorectal cancer (Campbell and Yau, 2018). Therefore, pseudo-temporal analysis is helpful in analyzing the dynamic changes in the TME in breast cancer patients. In addition to changes in a cell type with tumor progression, at the transcriptomic level, some genes, such as the ferroptosis gene ACSL4/GPX4 (Sha et al., 2021); the pyroptosis genes GZMB, IL18, IRF1, and GZMA (Wang et al., 2022); and the glycolysis-related genes PGK1, SDHC, PFKL, and NUP43, play a role in TME inhibition or promotion of tumor evolution and serve as prognostic markers (Zhang et al., 2021). However, these studies fail to assess the importance of a global perspective on tumor development and place no focus on the impact of dynamic changes in the cell type and proportion in the current TME on tumor development and prognosis. Furthermore, the regularity of dynamic changes in the proportion of different cell types during tumor development and the related genes is rarely reported.
Machine learning can efficiently identify potential target genes and can be used to identify genes related to changes in cell proportions in the BRCA TME. Many studies have developed feature selection algorithms for the removal of invalid and redundant features (Kong et al., 2009; Ekins et al., 2019; Mi et al., 2021), and machine learning models have been constructed for medical imaging diagnosis, cancer staging, and drug response prediction by selected genes or other biological variables (Curtis et al., 2012; Chiu et al., 2019; Liu et al., 2019). TME, as a dynamic network (Marx, 2013), features dynamically changing gene synergy, and individual genes cannot explain the biological processes of the TME in tumor progression (Tse and Kalluri, 2007; Im et al., 2021; Barkley et al., 2022). Therefore, we need to determine the connections between genes related to cell proportions. Yu et al. (2011) developed a differential co-expression analysis (DCEA) method to identify differentially co-expressed genes (DCGs) and differentially co-expressed gene pairs (DCLs) so as to precisely identify dynamic changes in the co-expression between gene pairs at different states. The bulk RNA cannot precisely determine whether the expression of key genes is driven by certain cell types (Li et al., 2022) or explain the altered gene co-expression relationships in relation to the proportion and function of cell types. However, single-cell transcriptomics (scRNA) can accurately localize the specific expression of genes in different cell types and the specific functions of each cell type (Grün and van Oudenaarden, 2015). The identification of genes affecting dynamic changes in the stromal cell proportion in the TME by machine learning and the construction of a cell type-specific co-expression network (CCEN) in the TME by DCEA combined with scRNA can explore changes in cell type-specific genes and co-expression patterns that drive changes in the cell proportion and function of different cell types during tumor progression, and thus facilitate the exploration of individual differences and prognosis.
Therefore, potential genes (TME-key genes) in the TCGA-BRCA cohort affecting changes in the stromal and immune cell proportion in BRCA TME were hereby identified based on an improved sequential forward selection (SFS) (Marcano-Cedeño et al., 2010) signature selection strategy. Furthermore, CCEN was constructed by DCEA and primary BRCA-scRNA to characterize the trajectory of stromal and immune cell proportions with tumor development, revealing the specific cell types in the TME and their underlying mechanisms. Finally, a TME-key-related prognostic model and new prognostic markers were constructed based on a series of prognostic analyses, including lasso regression, thereby providing new prognostic markers and new potential targets for immunotherapy and drug treatment.
2 MATERIALS AND METHODS
2.1 Data source
The data used for analysis included The Cancer Genome Atlas (TCGA)-gene expression matrix for breast cancer (TCGA-BRCA) (n = 1052), the Genotype-Tissue Expression (GTEx) database’s gene expression matrix for normal breast tissue (n = 179), and the single-cell data on primary BRCA (BRCA-scRNA) (Wu et al., 2021). A total of 130,246 single cells from BRCA-scRNA were downloaded from https://singlecell.broadinstitute.org/single_cell/study/SCP1039/. These cells underwent quality control and were annotated using the typical canonical lineage.
The validation dataset used in this study was obtained from multiple origins. First, additional nine normal breast transcriptome samples were included, consisting of four breast tissue samples from GSE31448 (Sabatier et al., 2011) and five breast tissue samples from Anton Buzdin et al.'s atlas of RNA sequencing profiles for normal human tissues (GSE120795) (Suntsova et al., 2019). These external datasets were used to validate the analysis results based on GTEx normal breast tissue and TCGA-BRCA data. Furthermore, the transcriptome data on 99 adjacent normal tissues from TCGA-BRCA were used to demonstrate the biological differences between adjacent normal and normal breast tissues. The samples of adjacent normal tissues, which lie between normal and tumor tissue, served as transitional data to validate the conclusions of this study. Finally, breast cancer samples from GSE31448 were employed to validate the prognostic model, and the Kaplan–Meier plotter (Lánczky and Győrffy, 2021) online website was used for the overall survival analysis (OS) of prognostic genes.
In addition, all transcriptome expression matrices were in the form of FPKM matrices. To remove batch effects and normalize the data, the “normalizeBetweenArrays” function from the R package “limma” was used.
2.2 The feasibility of jointly calculating differential genes from TCGA and GTEx
Due to the potential impact of tumor–stroma interactions on the transcriptional profiles of adjacent normal tissue in the tumor microenvironment, this study avoids the use of adjacent normal tissue from TCGA-BRCA samples as the control group for differential gene (DEG) analysis compared to TCGA-BRCA. Instead, large-scale transcriptome data from GTEx breast tissue are utilized to calculate DEGs alongside TCGA-BRCA.
The “normalizeBetweenArrays” function in R language is employed to correct batch effects between two datasets. Additionally, to demonstrate the differences in transcript levels between TCGA-BRCA’s cancer-adjacent tissue and normal breast tissue, we conducted sample clustering analysis based on principal component analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). This analysis was performed to assess the similarity between samples and ensure the authenticity and reliability of our research results.
A rank-sum test was used for DEG’s analysis of TCGA transcriptome matrix. Multiple testing corrections were carried out to control the overall error rate using the Benjamini–Hochberg false discovery rate (FDR), and an FDR < 0.05 and a |log2 fold change (FC)| > 2 were adopted as the cut-off criteria to identify the final DEGs.
2.3 Single-cell differential gene analysis
BRCA-scRNA was used to search for cell type-specific highly expressed genes and investigate the mechanism of action of related cell types on the TME. The R package “Seurat” was used for BRCA-scRNA analysis. The cellranger output file of BRCA-scRNA (Wu et al., 2021) was read into R and converted into Seurat objects, giving each cell of the Seurat object the corresponding cell type and information on the UMAP coordinate of the clusters. The “FeaturePlot” function determined the type of cells with high gene expression, the parameter order was set to TRUE, and the cells expressing the gene were placed at the top of the graph. The “FindAllMarkers” function calculated the DEGs of different cell types with default parameters, where logFC ≥ 0.25.
2.4 Forward non-kicking SFS signature selection for the identification of genes driving potential changes in cell proportions
A large amount of irrelevant information in features can lead to the degradation of model generalization performance in the case of too few samples and too many features in the dataset. An appropriate feature selection method can eliminate useless and redundant features, and capture the optimal subset of features beneficial for predicting the target information (predictor variables) so that the generalization performance of the model can be improved. Herein, the performance of feature selection was utilized to capture target information and genes that could be closely associated with changes in the stromal cell proportion. Specifically, a multi-step feature selection and model construction strategy (CorDelSFS) was proposed.
2.4.1 Construction of the dataset
The DEGs were used as the original feature selection dataset, and to target the DEGs potentially associated with the TME, the R package “ESTIMATE” (Yoshihara et al., 2013) was used to calculate the TME scores for the entire TCGA tumor cohort. The immune cell relative proportion score (ImmuneScore) and stromal cell relative proportion score (StromalScore) were used as predictor variables for learning models in the feature selection strategy.
2.4.2 Different correlation metrics for ranking the importance of genes to be selected
The maximum information coefficient (MIC) (Reshef et al., 2011), distance correlation coefficient (dcor) (Székely et al., 2007), and Pearson correlation coefficient were used to calculate the correlation between the expression of genes and the two TME scorings, with a higher correlation indicating a higher-level importance of the gene in the TME. Finally, the genes were ranked in accordance with their importance to determine the order of the gene input into the model.
2.4.3 Improved SFS strategy
SFS (Marcano-Cedeño et al., 2010) is a classical wraparound feature selection method based on the principle of selecting one feature Xi at a time from the feature set X to join the feature subset S so that the loss function J (S + Xi, Y) can be maximized or minimized. In short, this method selects one feature at a time that makes J (S + Xi and Y) optimal. Furthermore, “forward” implies that the algorithm can only add features instead of removing them. Unimproved SFS algorithms may lead to redundancy due to their inefficiency in removing features. For example, the information space of feature A is a subset of features B and C. Suppose the SFS algorithm adds A, B, and C to the feature subset, the feature subset contains the redundant feature A, which will exert an impact on the prediction results of the model. Herein, an improved SFS algorithm was proposed. First, the features of TME importance ranking were input into the SFS model one by one to calculate the RMSE. Then, the algorithm used the RMSE as the judgment criterion to add useful features, following the principle of retaining useful features and rejecting useless features. Specifically, let the set of TME importance ranked features be X = [X1, X2, X3, … , Xi, … , Xn]; the number of features, n; the current set of introduced features, S; the number of introduced features, s; the number of unintroduced features, m; and the subset of unintroduced features, M (M = X-S); the introduction criterion and the loss function J (X and Y) is minimum. The introduction criterion for the s + 1 feature is
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2.4.4 Root-mean-square error (RMSE) as a loss function J
CorDelSFS predicts the dependent variable Y-pre using a linear regression model, with some error compared to the true Y. This error may be attributed to the performance of the learning machine or the noise of the trained dataset. To evaluate the merit of the training model and the feature genes, RMSE was thereby taken as the evaluation criterion for the model. The formula is as follows:
[image: image]
2.4.5 Comparison of other wraparound feature selection methods and machine learning models
To verify the superiority of CorDelSFS, other feature selection models were hereby used for comparison. From the feature selection strategy level, the compared feature selection methods included all without feature selection, the classical recursive feature elimination with cross-validation (RFEcv) and SFS without modification, the univariate filter with only relevance indicators, including MIC, Pearson, and dcor, and the method of inputting into SFS after sorting the correlation indicators (CorSFS). In terms of the level of embedded machine learning models, other machine learning methods embedded in the previously mentioned wrapped feature selection methods were used for the comparison with the hereby proposed feature selection models, including support vector machine regression (SVR), linear regression, random forest regression model (RF), decision tree (tree), and neural network (MLP).
2.5 Construction of the TME cell-specific differential co-expression network by integrating bulk RNA and single-cell RNA data
To investigate the unique co-expression patterns in the BRCA tumor microenvironment (TME), we performed differential co-expression analysis. However, differential co-expression networks based on bulk transcriptome can only measure the average level of gene expression changes in the tissue and cannot reveal the cell-type heterogeneity of gene expression. Single-cell transcriptomics, a technology that provides genome-scale molecular information at single-cell resolution, has been used to identify previously unknown cell types and associated markers (Treutlein et al., 2014; Zeisel et al., 2015; Shekhar et al., 2016). Therefore, we combined BRCA single-cell RNA sequencing data with differential co-expression analysis to assign cell-type labels to each gene node in the co-expression network and explore the TME cell-type heterogeneity in the network. The details are given in the following paragraphs.
2.5.1 DCGL package to build differential co-expression networks
DCEA identifies DCGs by comparing altered gene expression patterns under different conditions. Herein, such clear differential co-expression relationships between genes were used for identifying key markers of disease (Chen et al., 2021) and key signaling pathway screening (Savino et al., 2020) among others.
The DCGL v2.0 (Liu et al., 2010) package in R was used to predict DCGs and differentially co-expressed linkages (DCLs), as well as to identify DCGs. The Pearson coefficient count (PCC) of any two genes, which reveals their co-expression relationship, was also calculated using DCGL v2.0 software. DCLs are hereby classified into three categories: a co-expression pattern present in normal samples but not in tumor samples, a co-expression linkage that is absent in normal samples while specifically present in BRCA samples, and a co-expression pattern present in normal samples but a complete reversal of this co-expression pattern in tumor samples.
BRCA-specific DCLs build co-expression networks. Herein, interaction information from DCGs and DCLs was input to Cytoscape software (Shannon et al., 2003) to establish the differentially co-expressed network. DCLs with absolute values of the correlation less than 0.3 (|cor|<0.3) were defined as irrelevant. DCLs with the correlation only in tumor patients (|cornormal|<0.3 and |corcancer|≥0.3) were constituted as the BRCA TME-specific subnetwork. Finally, the DCLs of the subnetwork were filtered according to their correlation coefficient |corcancer|≥0.5 and |corcancer-cornormal|≥0.5 (|cor.diff|≥0.5), and displayed using Cytoscape.
2.5.2 Markers of cell type-specific highly expressed genes in the network based on BRCA-scRNA
DEGs were calculated for each cell type of BRCA-scRNA. The “FindAllMarkers” function calculated the DEGs of different cell types with default parameters. DEGs in different cell types in BRCA-scRNA were filtered by logFC ≥ 1. If the gene node in the network is a DEG of certain cell types, then the gene node is labeled by this cell type, and the cell type with the highest logFC was taken as the cell type-specific marker for the gene node, in the case of the gene that is specifically highly expressed in different cell types. The cell-type specificity of gene nodes is marked with different colors in the network.
In addition, we also associated the TME-key enriched pathways with the cell types of gene nodes and mapped pathway activity in each cell in BRCA-scRNA to verify the relationship between enriched pathways and cell types at the single-cell level. Therefore, CCEN not only has differential co-expression information on genes but also mapping information on cell types and pathways. The impact of TME-key genes on the TME can be studied from multiple dimensions, including the gene level, cell level, and functional level. The Metascape website was used for pathway enrichment analysis.
Gene Ontology (GO) and KEGG pathway analyses were performed using the Metascape bioinformatics tool (http://metascape.org) (Zhou et al., 2019), and only terms with p values ≤ 0.05, minimum counts ≥ 3, and enrichment factors ≥ 1.5 were considered significant.
2.6 Area under curve (AUC) of ROC for gene set activity
The R package AUCell was used to calculate gene set enrichment scores, and the “area under the curve” (AUC) was adopted to calculate whether a subset of the input gene set was enriched in expressed genes in each sample. The distribution of AUC scores across all samples made it possible to explore the relative expression of features. Given that the scoring method was based on ranking, AUCell was independent of the gene expression units and normalization procedures.
2.7 Trajectory analysis
Pseudo-temporal analysis is a method of mapping high-dimensional molecular data to a series of one-dimensional quantities called pseudo-time. These pseudo-time measurements quantify the relative progression of each individual in the biological process of interest, such as disease progression or cell development, allowing us to understand the (pseudo) temporal behavior of measured features without explicit time-series data. All pseudo-temporal analyses include three important pieces of information: 1) the key genes, which are the result of feature selection, 2) the pseudo-time, which is a one-dimensional ordering space, and 3) the ordering, which represents the evolutionary trajectory of the study object. Therefore, the selection of key genes for pseudo-time analysis is crucial as it can directly affect the meaning of the ordering results.
We designed the CorDelSFS feature selection algorithm to identify genes related to changes in cell-type proportions in the breast cancer tumor microenvironment (TME) and further screened for breast cancer-specific co-expressed genes through differential co-expression analysis. These genes were used as input features for pseudo-temporal analysis to ensure that the final ordering results of the samples reflect the dynamic changes in the TME.
Specifically, based on the expression of 101 TME-key DCGs in the transcriptomic data from TCGA-BRCA patients and normal breast tissue of GTEx in a proposed time series, trajectory analysis was performed using the R package “Monocle2” (v2.18.0), which was run with GTEx as the reference starting point and the function “orderCells.” In addition, the “plot_genes_branched_heatmap” function was used to plot the heatmap of genes associated with changes in cell proportions along the differentiation trajectory.
In the end, we validated the developmental trajectory of the tumor microenvironment (TME) by utilizing external datasets from nine normal breast tissues and 99 TCGA-BRCA adjacent tissues. These samples were merged into a transcriptional matrix with GTEx normal breast tissues and TCGA-BRCA samples to reconstruct a pseudo-time trajectory, which served as the validation trajectory. We compared the relative positions of different sample sets, including normal breast tissue samples from various sources, TCGA adjacent tissue samples, and TCGA-BRCA samples, along the pseudo-time trajectory.
2.8 Determination of genes in the TME-key DCGs closely related to the prognosis in BRCA
The TME-key DCGs in BRCA were analyzed using Cox regression and the LASSO technique for their prognostic significance.
To select genes that contribute to the prognosis of BRCA, univariate Cox regression was first performed, with p-values less than 0.05 indicating statistical significance for genes. Genes having the biggest effects on the prognosis of BRCA were identified using the LASSO approach with an L1 penalty. By reducing the number of indicators with a final weight of non-zero and the regression coefficient, an L1 penalty was applied by LASSO to identify indicators contributing the most (Tibshirani, 1996). Furthermore, the glmnet package in R was hereby used to perform LASSO and thus reduce the number of genes using 1000 iterations and 10-fold cross-validations. The following related parameters were chosen: cv = 10 and maxiter = 1000. After 1,000 iterations of LASSO, the ability of the associated gene to predict the prognosis became stronger, and the non-zero coefficient was higher. Following the incorporation of the chosen genes into a multivariate Cox regression model, forward selection and backward removal were used to identify the gene set with the best prognostic value for BRCA.
2.9 Establishment and validation of a prognostic model
The gene set identified using the multivariate Cox regression was adopted to construct a prognostic model. The prognostic score formula was set up as follows: Risk Score = (a1 * TNFRSF14 expression level) + (a2 * SUSD3 expression level) + (a3 * COX7A1 expression level) + (a4 * ROBO3 expression level) + (a5 * FBLN5 expression level) + (a6 * IGKV1D-39 expression level). The median was used as a cutoff to distinguish between the high-risk and low-risk BRCA patients having survival data, while K–M curves and ROC curve analyses were used to assess the accuracy of the prognostic model in making predictions.
2.10 TME stromal cell scoring and analysis of the level of immune cell infiltration
The level of immune cell infiltration was calculated using the R package “MCPcounter,” which predicted the abundance of 10 cell populations from transcriptome profiles (CD3+ T cells, CD8+ T cells, CTLs (cytotoxic lymphocytes), NK (natural killer) cells, B lymphocytes, monocyte lineage cells, bone marrow dendritic cells, neutrophils, endothelial cells, and CAFs) (Becht et al., 2016) as continuous variables.
Then, risk score and prognostic marker expression were divided into the high and low groups according to the median values. The Wilcoxon rank-sum test was performed to compare the differences in cell infiltration levels, ImmuneScore, and StromalScore between the high and low groups.
Correlations between risk score, gene expression, infiltration levels of different cell types, immune inhibitor, and immune stimulator were calculated using the Pearson correlation coefficient (p < 0.05).
2.11 GSEA pathway enrichment
The samples were divided into two groups according to the expression of genes. All genes in the two groups were sorted by logFC, and the enrichment of the gene sets was calculated using GSEA.
GSEA pathway enrichment was performed using the function “GSEA” from the R package “clusterProfiler,” and the pathway database was downloaded from the GO database as “c5. go.v7.4. symbols”. Pathways of GOBP were selected, and the top five pathways with p < 0.05 and the highest NES values were selected. In addition, the high- and low-risk groups of the samples were taken by the GSEA of the prognostic model as the grouping in the calculation of the ranking.
3 RESULTS
3.1 Machine learning identifies genes associated with stromal cell and immune cell proportions
The graphical abstract presents an overview of the entire analytical process of the study (Graphical Abstract). First, based on the clustering analysis of tumor samples, adjacent normal samples, and normal breast samples, it was demonstrated that the GTEx normal samples formed a distinct cluster together with nine samples from two additional external normal datasets. They were completely separated from the TCGA-BRCA samples and adjacent data (Figure 1A). Additionally, the TCGA-BRCA adjacent tissue samples formed a separate cluster and were located closer to the TCGA-BRCA tumor samples, indicating the influence of tumor cells on the adjacent tissue. Therefore, GTEx normal breast tissue was utilized as the control group to calculate differentially expressed genes with BRCA, and two additional normal external datasets were used for subsequent result validation. A total of 930 DEGs (647 downregulated and 283 upregulated) were identified between TCGA-BRCA patients and GTEx normal breast tissue based on FDR<0.05 and logFC>2 thresholds (Figure 1B; Supplementary Table S1). Furthermore, we identified genes related to StromalScore and ImmuneScore among the 980 DEGs using CorDelSFS, a novel feature selection method integrated in this study for identifying genes associated with changes in cell proportions.
[image: Figure 1]FIGURE 1 | CorDelSFS filtering of the TME-key gene and model comparison: (A) UMAP plot for sample clustering. PCA and UMAP were utilized to demonstrate the similarity between samples. The samples were sourced from TCGA-BRCA, TCGA-BRCA adjacent normal tissue, GTEx normal breast tissue, ANTE database normal breast tissue, and GSE31448 normal breast tissue. (B) Heatmap showing the expression of DEGs in normal samples (GTEx) and BRCA samples (TCGA-BRCA). (C) The RMSE of the learning model during feature selection is reduced. MIC, dcor, and Pearson are three different indicators of gene importance ranking. ImmuneScore and StromalScore are the predictor variables. (D,E) The Venn diagram represents the overlap of the subset of genes screened by CorDelSFS for three correlation (MIC, dcor, and Pearson) rankings. (D) StromalScore as the predictor variable. (E) ImmuneScore as the predictor variable. (F) The Venn diagram represents the intersection of subsets of genes screened by CorDelSFS with StromalScore and ImmuneScore as predictor variables, with a total of 296 intersecting genes (TME-key genes). (G,H) Comparison of heuristic feature selection methods, including all DEGs (ALL), RFECV SFS, the univariate filter with only relevance indicators, including MIC, Pearson, and dcor, and the method of inputting into SFS after sorting the correlation indicators (CorSFS). All feature selection methods have embedded linear learning models. The RMSE of CorDelSFS is lower than other feature selection methods. (G) StromalScore as the predictor variable. (H) ImmuneScore as the predictor variable. (I,J) Comparison of learning model performance in feature selection methods, including linear, SVR, RF, tree, and MLP, with a lower RMSE in the linear method. (I) StromalScore as the predictor variable. (J) ImmuneScore as the predictor variable. (K,L) Heatmap showing model performance comparison of feature selection methods combined with machine learning. CorDelSFS (MIC-CorDelSFS, DCOR-CorDelSFS, and R-CorDelSFS) shows the best performance. Feature selection methods include all DEGs (ALL), RFECV, SFS, and the univariate filter with only relevance indicators, including MIC (MIC filter), Pearson (Pearson filter), and dcor (DCOR filter), and the method of inputting into SFS after sorting the correlation indicators (MIC-CorSFS, Pearson-CorSFS, and DCOR-CorSFS), and CorDelSFS. The shade of red indicates the RMSE value, and the lighter red indicates the lower RMSE and better model performance (K) with StromalScore as the predictor variable and (L) ImmuneScore as the predictor variable.
The process was followed by a decrease in RMSE as useful genes were retained (Figure 1C). Finally, the MIC-CorDelSFS, DCOR-CorDelSFS, and Pearson-CorDelSFS models based on StromalScore and ImmuneScore filtered 291, 294, and 301; and 283, 270, and 285 genes, respectively. The loss function RMSE of CorDelSFS was significantly lower than the full range of DEGs (Table 1). The correlation metrics presented their own characteristics (Rudra et al., 2017). In StromalScore-based CorDelSFS, MIC-CorDelSFS identified 91 unique genes, dcor-CorDelSFS had 66 genes, and Pearson-CorDelSFS contained 74 genes (Figure 1D). Meanwhile, in the ImmuneScore-based CorDelSFS, the MIC-CorDelSFS identified 103 unique genes, the dcor-CorDelSFS had 88 genes, and the Pearson-CorDelSFS contained 79 genes (Figure 1E). To this end, it could reasonably be claimed that different correlation algorithms could identify different correlations. Then, the gene sets of the correlation metrics were combined to reduce the loss of TME information. Finally, the intersection of the StromalScore and ImmuneScore gene subsets was taken to screen TME-key genes, and a total of 296 TME-key (TME-key) genes were successfully screened (Figure 1F; Supplementary Table S2).
TABLE 1 | CorDelSFS screening signature genes and their error assessment.
[image: Table 1]To verify the efficacy of the selection strategy, CorDelSFS was compared with other strategies (Figures 1G, H). The selection strategies were divided into three categories, i.e., the unmodified classical RFECV and SFS, methods to filter genes using only correlation metrics, and SFS without correlation metric ranking. The RMSE of CorDelSFS is significantly lower than that of other methods, and the results have statistical significance as tested by the paired t-test. Therefore, CorDelSFS is considered to be significantly superior to other feature selection methods. In addition, the classical linear model with good robustness was hereby used as a training machine within CorDelSFS to evaluate the validity of each input gene. The linear regression model was compared with other learning machines, such as neural networks, support vector machines, and random forest regression models. The results still show that the linear model is slightly better than the support vector machine model and significantly better than the other models (Figures 1I, J). This result was also subjected to paired t-test analysis, demonstrating statistical significance.
Finally, all the previously mentioned training machines, feature selection strategies, and relevance metrics were combined, involving a total of 59 combinations, and the RMSE of all the combined models was calculated. The results show that among all the selection strategies, MIC-CorDelSFS, Dcor-CorDelSFS, and Pearson-CorDelSFS have the smallest test-set RMSE (Figures 1K, L).
3.2 Cell type-specific differential co-expression networks and TME dynamic changes
The tumor microenvironment is a dynamic network (Im et al., 2021). The co-expression patterns of genes and the proportion of each cell type in the TME are in the dynamic change as the tumor develops. Herein, a total of 101 DCGs (TME-key DCGs) and 100,258 associated DCLs (Supplementary Tables S3, S4) were identified from TME-key genes (Figure 2A). Pathway enrichment results show that 101 TME-key DCGs are mainly enriched to pathways such as adaptive immunity, membrane invagination, cell adhesion, cell junctions, and negative regulation of cell proliferation (Figure 2D).
[image: Figure 2]FIGURE 2 | Differential co-expression network analysis of the TME and inference of state trajectories: (A) Venn diagram showing that TME-key genes contain 101 DCGs. (B) Specific occurrence of CCEN in BRCA TME (cor.diff≥0.5). The node shape indicates whether the gene is a DCG. The color of the node indicates the gene’s cell-type specificity. The color of the links indicates the difference in the correlation (cor.diff) compared to the normal control; red indicates the positive correlation, blue indicates the negative correlation, and the color shade indicates the size of the cor. diff value. (C) Pathway specificity of IG gene subnetworks. The color of the node represents pathways. (D) Metascape pathway enrichment analysis of 101 genes. (E) Scoring of the AUC activity of adaptive immune responses on BRCA-scRNA. (F) Scoring of the AUC activity of membrane invagination on BRCA-scRNA. (G–Q) The continuous change in the expression pattern of 101 TME-key DCGs simulates the continuous change in the TME state by the proposed time series analysis. The TME trajectory differentiates into two branches. The upper branch indicates the direction to tumor cells. The lower branch indicates the direction to stromal cells and immune cells. (G) Simulated time-series (Pseudotime) value of the differentiation trajectory. (H) Demonstration of the trajectory of TCGA-BRCA samples and GTE breast normal tissue. (I–K) Tumor purity (I), stromal cell scoring (J), and immune cell scoring (K) of TCGA-BRCA samples calculated using ESTIMATE. (L–P) Relative proportion of different types of infiltrating cells, including T cells (L), B lineage (M), myeloid dendritic cells (N), fibroblasts (O), and endothelial cells (P), as calculated by MCPcounter. (Q) Clinical survival status of BRCA patients. (R) Trajectory of validation. Based on the pseudo-temporal trajectories of tumor tissue, adjacent tissue, and normal breast tissue, we validated the stability of constructing TME differentiation trajectories using 101 TME-key DCGs.
The BRCA TME-specific gene co-expression pattern determines the biological mechanisms specific to BRCA TME, such as angiogenesis and stronger immune response. Thus, TME-specific CCEN was further constructed using co-expression patterns specific to the disease state, and the cell types of node genes in the network (Figure 2B) were mapped to analyze the dynamics of TME-key DCGs and the roles they played in the TME. There was a certain pattern in the distribution of genes marked by different cell types in the co-expression network in BRCA TME. In the network, genes were specifically expressed by immune class cells and non-immune class stromal cells form tight sub-networks, respectively. Genes specific to immune cells such as myeloid, T cells, B cells, and plasmablasts were co-expressed, while those specific to non-immune classes of stromal cells such as PVL, CAFs, and endothelial were more closely linked. The genes enriched in adaptive immune response and membrane invasion were mainly derived from the plasmablast-specific IG gene subnetwork (Figure 2C) encoding immunoglobulin components, and the AUC activities of the two pathways were also the highest in plasmablasts. Other immune cell types also had a higher activity of adaptive immune response pathways (Figures 2E, F).
To investigate the global changes in the stromal cell proportion, a trajectory analysis was performed by integrating GTEx and TCGA-BRCA samples and using the expression of 101 TME-key DCGs. The trajectory analysis mapped the expression of the 101 TME-key DCGs to a one-dimensional space to simulate the dynamic processes of stromal and immune cell proportions during tumor development (Figure 2G). The TME differentiation trajectory begins with normal breast tissue and differentiates into two major branches over time (Figure 2H). The upper branch shows an increase in BRCA tumor purity and a decrease in the TME stromal score with simulated time, indicating a direction favorable for the development of BRCA cancer cells (Figure 2I). The lower branch shows a higher TME stromal score and lower tumor purity, indicating a direction favorable for the survival of stromal cells (Figures 2J–P; Supplementary Figure S1). Furthermore, patients at the end of the lower branch had a lower mortality rate (Figure 2Q).
To validate the authenticity of the trajectory of changes in cell proportions, we included nine normal breast tissue samples and TCGA-BRCA adjacent tissue samples as an external validation dataset. We reconstructed a pseudo-temporal trajectory as the validation trajectory. The results showed that the shape of the validation trajectory closely resembled the original trajectory (Figure 2R). Normal tissues from different data sources were positioned closer to the starting point of the trajectory, while adjacent tissues occupied the “mid-transition zone” of the trajectory, and tumor tissues predominantly clustered along the trajectory branches. These results suggest that the cell proportion trajectory constructed based on the expression patterns of 101 TME-key DCGs is robust and not affected by data batches. It further suggests that tumor cells have a non-negligible impact on the surrounding tissue, and therefore, adjacent tissue cannot be considered normal tissue directly.
With the passage of pseudo-time, the expression of 101 TME key DCGs showed varying degrees of changes in two branches, among which the plasma cell-specific IG gene (cluster4) had opposite expression patterns in two different branches (Figure 3A). The IG gene was expressed higher in the lower branch, and the IG gene-related endocytosis and adaptive immune pathways had higher activity in the lower branch (Figures 3B, C). The plasmablast-specific IG gene co-expression network matters considerably in the environmental interactions and immune function of the BRCA immune microenvironment, influencing the trajectory of TME development and the survival of BRCA patients.
[image: Figure 3]FIGURE 3 | Differential genes in BRCA-scRNA in plasmablasts and pathway enrichment analysis: (A) Heatmap showing the expression of 101 TME-key DCGs differentiated from the origin (GTEx) along different branches. (B,C) Scoring of AUC activity in TCGA-BRCA and GTEx normal breast tissue for adaptive immunity (B) and the membrane invagination pathway. (C). (D) Heatmap showing the expression of the top 50 DEGs upregulated in plasmablasts. (E) Pathway enrichment analysis of the top 200 DEGs upregulated in plasmablasts.
Furthermore, the top 50 differentially upregulated genes in plasmablasts in BRCA-scRNA contained many genes encoding antibody-like immunoglobulin light and heavy chains (IG genes) (Figure 3D). Pathway enrichment analysis of plasmablast DEGs shows that plasmablasts are mainly involved in adaptive immune response, SRP-dependent co-translational protein targeting to the membrane, B-cell receptor signaling pathway, etc. (Figure 3E), and that they play a role in the TME by synthesizing immunoglobulins to resist tumor cells and stop the progression and metastasis of BRCA.
3.3 Prognostic model construction and identification of prognostic markers in TME-key DEGs
The impact of 101 TME-key DCGs on the clinical prognosis of BRCA was also explored. A total of six prognostic marker genes, i.e., COX7A1, ROBO3, FBLN5, IGKV1D-39, SUSD3, and TNFRSF14, were hereby identified by univariate Cox regression analysis, LASSO regression (Figures 4A, B), and multivariate Cox regression analysis (Figure 4C), and a risk model was correspondingly constructed. The formula of the risk model is as follows: Risk Score = (−0.694 * expression level of TNFRSF14) + (−0.131 * expression level of SUSD3) + (0.517 * expression level of COX7A1) + (0.967 * expression level of ROBO3) + (−0.407* expression level of FBLN5) + (−0.341* expression level of IGKV1D-39).
[image: Figure 4]FIGURE 4 | Prognostic model construction and identification of prognostic markers. (A) LASSO coefficient profiles. (B) Using 10-fold cross-validation based on the OS minimum criterion, the tuning parameters (lambda) in the LASSO model are chosen. (C) Forest map indicating independent predictors of prognosis in BRCA. (D) Analysis of OS survival in high- and low-risk patients. (D1) TCGA training cohort. (D2) TCGA test cohort. (D3) GSE31448 cohort. (E) Distribution of risk scores and OS of the TCGA training cohort (E1), TCGA test cohort (E2), and GSE31448 cohort (E3). (F). Validation of the prognostic value of the prognostic index at 1, 3, and 5 years in TCGA training cohort (F1), TCGA test cohort (F2), and GSE31448 cohort (F3) using survival-dependent ROC curves. (G) The risk score was significantly correlated with age (G1), menopause status (G2), person neoplasm cancer status (G3), race (G4), breast carcinoma surgical procedure name (G5), and pathologic T-stage (G6). (H) Validation of OS survival analysis of FBLN5 (H1), SUSD3 (H2), TNFRSF14 (H3), and IGKV1D-39 (H4) in TCGA-BRCA. (I) Validation of OS survival analysis in the GSE31448 cohort of SUSD3 (I1) and IGKV1D-39 (I2). (J) Validation of OS survival analysis in Kaplan-Meier plotter online sites for FBLN5 (J1), TNFRSF14 (J2), and SUSD3 (J3).
All cases were divided into the high-risk and low-risk groups based on the median value of the risk score. According to Kaplan–Meier analysis, the survival curves of the high-risk patients were significantly lower than those of the low-risk patients (Figures 4D, E). Additionally, the AUCs based on the TCGA training cohort, TCGA test cohort, and GSE31448 cohort for 1-year, 3-year, and 5-year periods are shown in Figure 4F.
A study was conducted to correlate prognostic models with the clinical characteristics of BRCA based on the Wilcoxon rank-sum test. Higher risk scores were found in patients of advanced age (Age ≥ 65) (Figure 4G1). In menopause, patients in the post-menopause stage were exposed to a significantly higher risk than patients in the pre-menopause stage (Figure 4G2). In neoplasms, patients with tumors had a significantly higher risk score than that in those who were tumor-free (Figure 4G3). Among the different races, the risk score of white people was significantly higher than that of black people and African Americans (Figure 4G4). In the procedure, patients with modified radical mastectomy had significantly higher risk scores than those with lumpectomy and simple mastectomy (Figure 4G5). In the T-stage, patients in T4 were exposed to a significantly higher risk than other patients (Figure 4G6).
K–M survival analysis of TCGA-BRCA, GSE31448 cohort, and Kaplan–Meier plotter showed that among the six prognostic genes, FBLN5, IGKV1D-39, SUSD3, and TNFRSF14 were of great significance in at least two datasets. FBLN5, IGKV1D-39, SUSD3, and TNFRSF14 were significant in TCGA-BRCA cohort (Figure 4H). In the GSE31448 cohort, IGKV1D-39 and SUSD3 survival reached significance (Figure 4I). Kaplan-Meier plotter results present significant survival for FBLN5, SUSD3, TNFRSF14, and ROBO3 (Figure 4J). Currently, FBLN5, SUSD3, and TNFRSF14 have been reported as prognostic markers for BRCA (Mohamedi et al., 2016; Aushev et al., 2018; Chen et al., 2022), and IGKV1D-39 is a new potential BRCA prognostic marker discovered here.
3.4 Effect of different patient risks and IGKV1D-39 expression on BRCA TME
The relationship between the risk scores and TME of the patients, and the specific role played by the prognostic marker IGKV1D-39 in the TME was further investigated. Risk scores and IGKV1D-39 expression in TCGA-BRCA patients were found to be significantly different from their ImmuneScore and StromalScore, which are, indeed, lower in high-risk patients (Figures 5A, B). Analysis of immune cell infiltration levels showed that BRCA high-risk patients had fewer relative immune cell types (Figure 5E), which was significantly negatively correlated with the relative immune cell proportion (Figure 5G). In the correlation analysis with immune-related gene expression, the patient risk was found to be significantly and negatively correlated with the vast majority of immune inhibitors and immune stimulators (Figure 5H). IGKV1D-39 expression was negatively correlated with patient risks, and patients with a higher IGKV1D-39 expression had higher ImmuneScore and StromalScore (Figures 5C, D). Additionally, they also had a significant positive correlation with the proportion of multiple immune cells (Figures 5F, G), with the highest correlation in the B lineage (0.561). IGKV1D-39 was specifically highly expressed in the plasmablasts of BRCA-scRNA (Figure 5I), and its expression was significantly and positively correlated with most immune inhibitors and stimulators (Figure 5H). On the TME differentiation trajectory, the risk scores of these patients were elevated toward the direction of tumor progression (Figure 5J), and more of those in the high-risk group were distributed in the branch in the direction of tumor progression (Figure 5K). However, IGKV1D-39 was more expressed in the lower branches that favored stromal cell survival (Figure 5L).
[image: Figure 5]FIGURE 5 | Prognostic model and prognostic markers with microenvironmental correlations: (A,B) The risk score was significantly correlated with ImmuneScore (A) and StromalScore (B). (C,D) The IGKV1D-39 expression was significantly correlated with ImmuneScore (C) and StromalScore (D). (E,F) MCPcounter calculations of immune cell infiltration levels of the 10 immune cell subgroups in the high–low risk group (E) and the high–low IGKV1D-39 expression groups (F). (E,F) Differences in immune cell infiltration levels of the 10 immune cell subgroups calculated by MCPcounter in the high–low risk groups (E) and the high–low IGKV1D-39 expression groups (F). (G) Correlation analysis of risk scores, prognostic genes, and the level of immune cell infiltration. Using Pearson calculations, p < 0.05 reached significant. (H) Correlation between risk scores, prognostic genes, and immune inhibitors and stimulators. Using Pearson calculations, p < 0.05 reached significance. (I) Cell clustering UMAP plot of BRCA-scRNA showing specifically high expression in the IGKV1D-39 gene in plasmablasts. (J–L) Risk scores (J), risk grouping (K), and the expression of IGKV1D-39 (L) in TCGA-BRCA patients are shown on the TME trajectory. (M, N) GSEA plot in high- and low-risk groups. The top five pathways with p < 0.05 and the highest NES values. (M) Upregulated pathways in high-risk patients. (N) Downregulated pathway in high-risk patients. (O,P) GSEA in the high–low IGKV1D-39 expression groups. The top five pathways with p < 0.05 and the highest NES values. (O) Upregulated pathways of the highly expressed IGKV1D-39 group. (P) Downregulated pathways of the highly expressed IGKV1D-39 group.
GSEA pathway enrichment analysis found that the risk of patients upregulated energy metabolism, positive regulation of amine transport, and regulation of cell morphology, thereby possibly promoting BRCA proliferation and metastasis, and immune-related pathways were downregulated (Figures 5M, N). The expression of IGKV1D-39 upregulated immune-related pathways and downregulated pathways related to cell division and proliferation, such as chromosome segregation and vascular transport function. In this case, the IGKV1D-39 gene might play an important immune role in BRCA TME and inhibit the activity of cancer cells (Figures 5O, P). IGKV1D-39, as a potential prognostic marker for BRCA, provides a new reference for the therapeutic target and prognosis of BRCA.
4 DISCUSSION
Different stromal cell proportions in the TME affect tumor progression, and global changes in cell proportions reveal the direction of tumor development or even affect patient survival and prognosis, making it necessarily important to understand the cellular fractions in the TME and their phenotypes, so as to better understand the mechanisms of cancer progression and immunotherapeutic response.
CorDelSFS identifies genes associated with the stromal cell and immune cell proportions, and possesses a lower RMSE than other feature selection methods. Herein, the suitability of the characteristics of the learning model for the present feature selection strategy was analyzed, and the simplest classical linear regression model was found to be the most suitable for the feature selection strategy, followed by SVR, which was speculated to be related to the good robustness of linear regression. Neural networks might be more suitable for the prediction of rather large samples, such as image recognition.
The interaction between tumor cells and stromal cells leads to continuous changes in their abundance and function. Previous studies have overlooked the “dynamic” and “continuous” changes in cell proportions. Changes in cell abundance during the dynamic development of tumors and after certain critical biological events have been rarely studied. The TME-key genes identified by CorDelSFS are related to the proportion of stromal cells in different tumor states and can therefore reflect changes in cell proportions throughout tumor development. We constructed a pseudo-temporal ordering of tumor microenvironment development based on pseudo-temporal analysis. The process of TME changes is divided into two branches, with the upper branch developing in a direction favorable to tumor cells, with a low abundance of stromal cells, and the lower branch developing in a direction unfavorable to tumor cells, with a high abundance of stromal cells. Therefore, we have effectively simulated the dynamic process of the impact of TME cells on tumor development. Importantly, by combining CCEN and TME developmental trajectories, the plasmablast-specific IG gene subnetwork has contributed to the development of BRCA TME through adaptive immune responses toward branches favoring good patient prognosis. The immune gene CXCL9 is a core gene (Figure 2K) that is co-expressed with IG genes and may play a key regulatory role. In addition, IGKV1D-39 in the prognostic model constructed in TME-key DCGs is a newly identified prognostic marker of BRCA specifically expressed in plasmablasts.
The role of B cells has been actually underestimated. However, B cells and antibodies matter considerably in the antitumor immune response (Zitvogel and Kroemer, 2015; Sharonov et al., 2020). The density of B cells and mature tertiary lymphoid structures (TLSs) is a major predictor for the response to immunotherapy (Engelhard et al., 2021). The presence of antibody-secreting cells and TLSs in the TME is generally associated with a favorable clinical prognosis (Petitprez et al., 2020; Meylan et al., 2022). Furthermore, plasmablasts are activated by B cells and exercise adaptive immune functions, while B-cell receptor (BCR) is a transmembrane protein on the surface of B cells, composed of CD79 and immunoglobulins, which will differentiate into plasmablasts after antigenic stimulation (Figure 6A). Then, plasmablasts can proliferate and differentiate into plasma cells in a short period of time and produce a large number of antibodies, which can be used to guide the immune system in producing correct immune responses to different types of foreign invaders encountered (Market and Papavasiliou, 2003). In BRCA-scRNA, CD79A and CD79B are specifically highly expressed in B cells and plasmablasts (Figures 6B–D), while plasmablasts secrete a large number of immunoglobulins in response to the variable TME, including IGKV1D-39 (Figure 5I). Additionally, the adaptive immune and membrane invagination pathways, which are significantly enriched in TME-key DCGs, are likewise most active in plasmablasts. More importantly, the adaptive immune function exerted by plasmablasts affects the state of the entire immune microenvironment and the process of the tumor, thereby resulting in a favorable patient prognosis. In this case, plasmablasts are important in BRCA by secreting large amounts of antibody-like immunoglobulins. Many researchers have investigated the role of antibody-like immunoglobulins in the antitumor process (Lacombe et al., 2022), and natural antibodies remind the adaptive immune system of the presence of transformed cells during early tumorigenesis (Rawat et al., 2022). Early neoantigen recognition and initiation of adaptive immunity require immune surveillance by natural IgM (Atif et al., 2018). Moreover, allogeneic IgG combined with dendritic cell stimulation induces antitumor T-cell immunity (Carmi et al., 2015). A new study by Mazor et al. has recently demonstrated that the immune system of cancer patients can produce antibodies against tumors (Mazor et al., 2022). However, antigenic specificity and the function of tumor-infiltrating B cells remain largely unknown, and natural antitumor antibodies show great potential for adjuvant immunotherapy. They hereby discovered that the BRCA prognostic marker IGKV1D-39, as a component of the immunoglobulin light chain, participates in the anti-tumor process through adaptive immunity, and may contribute to the study of unknown targets on the surface of tumor cells, thus providing new ideas for the clinical prognosis of BRCA and the development of immunotherapy drugs.
[image: Figure 6]FIGURE 6 | Molecular mechanisms of B-cell differentiation into plasmablasts. (A) Schematic diagram of the activation of B cells into plasmablasts. (B) Annotation of each cell type in the UMAP clustering map of BRCA-scRNA. (C) UMAP plot showing the expression of the CD79A gene in different cell types. (D) UMAP plot showing the expression of the CD79B gene in different cell types.
However, the present study is also subject to some limitations. Due to the complexity of the feature selection algorithm, only DEGs can be used for identification, with other important genes as well as co-expression patterns possibly overlooked. Inadequate sample size and incomplete information on the TME in BRCA patients may result in the incompleteness of the information on the development of the TME trajectory, and some key information may be lost.
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cteristics 433) GSE15459 ( GSE62254 (n = 30

No. of patients (%) No. of patients (%) No. of patients (%) No. of patients (%)
Age
| <65 | 153 (45.67) | 283 (65.36) [ 101 (52.60) | 172 (57.33)
>65 | 179 (53.43) | 150 (34.64) 91 (47.40) 128 (42.67)
unknown 3 (00.90) 0 (0.00) 0 (0.00) 0 (0.00)
Gender | |
Male 217 (64.78) 296 (68.36) 125 (65.10) 199 (66.33)
Female 118 (35.22) 137 (31.64) 67 (34.90) 101 (33.67)
Grade [ |
Gl 9 (2.69) NA NA NA
G2 120 (35.82) NA NA NA
@ 197 (58.80) i NA NA 1 NA :
Unknown 9 (2.69) NA NA NA
Stage |
I Stage I 44 (13.13) NA 31 (16.15) 30 (10.00)
Stage I 107 (31.94) NA 29 (15.10) 96 (32.00)
Stage 11T [ 137 (40.90) | NA 72 (37.50) 95 (31.67)
Stage IV 33 (9.85) NA 60 (31.25) 77 (25.66)
Unknown 14 (4.18) NA 0 (0.00) 2(0.67)
T
7 T1 15 (4.48) 11 (254) NA 0 (0.00)
T2 | 73 (21.79) 38 (8.78) NA 186 (62.00)
T3 155 (46.27) 92 (2124) NA 91 (30.33)
T4 88 (26.27) 292 (67.44) NA 21 (7.00)
Unknown | 4(1.19) | 0 (0.00) NA 2(067)
N
No 98 (29.25) 80 (18.48) NA 38 (12.67)
N1 91 (27.17) 188 (43.42) NA 131 (43.67)
N2 67 (20.00) 132 (30.49) NA 80 (26.66)
N3 | 68 (20.30) 33 (7.62) NA 51 (12.00)
Unknown 11(3.28) 0 (0.00) NA 0 (0.00)
. |
Mo 302 (90.15) NA NA 273 (91.00)
M1 21 (627) NA NA 27 (9.00)
Unknown | 12 (3.58) | NA NA 0(0.00)

TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus.
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Characteristics Low-risk (n = 143) High-risk (n = 88) Total (n = 231) p-value
Gender 0.59
Female 40 (17.32%) 21 (9.09%) 61 (26.41%)

Male 103 (44.59%) 67 (29.00%) 170 (73.59%)

Age 1

> 60 113 (48.92%) 69 (29.87%) 182 (78.79%)

<60 30 (12.99%) 19 (8.23%) 49 (21.21%)

Stage <0001
-1 106 (45.89%) 35 (15.15%) 141 (61.04%)

-1V 37 (16.02%) 53 (22.94%) 90 (38.96%)
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Characteristics

Age
> 60

<60
Gender
Female
Male
Grade
Grade 1-2
Grade 3-4
NA

Stage

I-11
-1V
NA

Low-risk (n = 183)

96 (26.30%)
87 (23.84%)

52 (14.25%)
131 (35.89%)

133 (36.44%)
47 (12.88%)
3 (0.82%)

140 (38.36%)
33 (9.04%)
10 (2.74%)

High-risk (n = 182)

96 (26.30%)
86 (23.56%)

67 (18.36%)
115 (31.51%)

97 (26.58%)
83 (22.74%)
2 (0.55%)

114 (31.23%)
54 (14.79%)
14 (3.84%)

Total (n = 365)

192 (52.60%)
173 (47.40%)

119 (32.60%)
246 (67.40%)

230 (63.01%)
130 (35.62%)
5 (137%)

254 (69.59%)
87 (23.84%)
24 (6.58%)

p-value

0.11

<001

<001
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Characteristics TCGA ICGC Total (n = 596) p-value
cohort (n = 365) cohort (n = 231)

Gender 013

Female 119 (19.97%) (1023%) 180 (30.20%)

Male 246 (41.28%) 170 (28.52%) 416 (69.80%)

Age

Mean + SD 59.65 + 13.36 6730 +10.13 6261 1276

Median [min-max]
Grade
1

bl

NA
Survival Time (days)
Mean + SD

Median [min-max]
Survival Status
Alive

Deceased

61.00 [16.00, 90.00]

55 (15.07%)
175 (47.95%)
118 (32.33%)
12 (3.29%)

5 (1.37%)

170 (28.52%)
84 (14.09%)
83 (13.93%)
4 (0.67%)

24 (4.03%)

811.93 + 725.80
596.00 [1.00, 3675.00]

235 (39.43%)
130 (21.81%)

69.00 [31.00, 89.00]

36 (6.04%)
105 (17.62%)
71 (11.91%)
19 (3.19%)
0

81234 £ 418.56
780.00 [10.00, 2160.00]

189 (31.71%)
42 (7.05%)

64.50 [16.00, 90.00]

55 (15.07%)
175 (47.95%)
118 (32.33%)
12 (3.29%)
5 (1.37%)
<005
206 (34.56%)
189 (31.71%)
154 (25.84%)
23 (3.86%)
24 (4.03%)

812.09 + 624.50
660.00 [1.00,3 675.00]

<005
424 (71.14%)
172 (28.86%)
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Description Gene markers

Monocyte CD86 e b 0.65 i
I CD115(CSFIR) 036 s 0.65 e}
TAM ccL2 [ -0.029 051 0.17 0.15
CD68 030 b Lo i

1L10 032 s 025 *

» M1 Macrophage INOS(NOS2) [ 0.10 * 032 -
7 s 037 5 -0.16 0.18
COX2(PTGS2) 011 ¥ -0.11 038

M2 Macrophage CD163 030 - 061 -

| VSIG4 [ 033 b 059 [
MS4A4A [ 028 s 0.66 [

Tsnor, cocralition analye il Hiios tence of TOGA, Momml comelition silyiss i Bommad thems of TOOA ®p < (08, 5 < i1, < 0001,
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Description

Gene markers

CD8+T cell CDSA 034992 -t 035248 e
CDSB 031529 o 031888 Ll
T cell (general) CD3D 036113 al 035647 ek
CD3E 037063 e 036518 -
Ccp2 038451 - 037759 A
Th BCL6 0.11528 # 0.10862 *
121 020128 e 0.19370 Eeid
Thi TBX21 0.20800 ik 0.19546 goid
STAT4 0.33749 - 032898 e
I STAT1 032971 o 033517 o
TNF 026819 5, 027554 it
IENG 040222 - 040646 g
Th2 [ STAT6 -0.00671 087713 001124 080977
GATA3 0.12592 - 0.12597 -
w13 0.14219 b 0.12677 s
STATSA 0.26398 s 023410 -
Th17 | sTams 0.06623 0.12671 0.04464 033887
ILI7A 0.02166 061778 -0.00451 092306
Effector T-cell CX3CRI 0.02676 053755 002205 063679
FGFBP2 -0.20063 o -0.19788 ot
FCGR3A 032147 -, 032004 b
Treg FOXP3 045770 -, 045741 e
STATSB -0.13954 s -0.14747 i d
CCR8 0.36566 gl 036996 i
TGFB1 024327 o 0.19679 i
T cell exhaustion PDCD1 0.40949 - 041392 it
CTLA4 038155 L 036951 o
LAG3 046010 - 044692 bl
HAVCR2 0.12951 id 0.13178 s
GZMB 022821 e 021722 e
Dendritic cell HLA-DPB1 021582 A 021881 ol
HLA-DQB1 0.09303 % 007432 011101
HLA-DRA 020555 ad 021659 i
HLA-DPA1 0.20840 i 021134 o
cpiC 0.11546 - 0.10098 N
NRPL -0.04587 029050 -0.06650 015400
ITGAX 037992 - 037217 el
Natural killer cell KIR2DL1 -0.01606 071151 -0.03377 046944
KIR2DL3 0.01249 077355 002015 066605
KIR2DL4 0.18078 e 0.16237 il
KIR3DLI -0.04087 034628 -0.01841 069336
KIR3DL2 003513 041835 003632 043659
KIR3DL3 0.06810 0.11632 005419 024554
KIR2DS4 -0.02992 0.49061 -0.03690 042927
Monocyte CD86 030393 boid 030448 il
[ CD115 0.30650 e 029626 A
Neutrophils CCR7 030414 s 031092 e
CD11b 029245 A 028341 o
» | coesd -0.00164 096982 001247 078946
TAM [ ccL2 -0.01779 068202 -0.05426 024495
CD68 0.28870 i 030462 e
1L10 027710 s 027848 o
M1 Macrophage INOS(NOS2) -0.00554 0.89841 -0.03098 050695
IRF5 035396 - 035762 b
COX2(PTGS2) 0.04492 030057 001424 076036
M2 Macrophage CD163 022559 Gt 023012 bl
VSIG4 028625 . 028239 o
MS4AdA 022745 b 022875 G
B cell CDp19 032425 -, 030017 wx
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Enrichment in phenotype: Hi ES NES NOM P-value FDR g-value
HALLMARK_G2M_CHECKPOINT 074 220 0.00 000
HALLMARK_E2F_TARGETS 069 205 0.00 000
HALLMARK_MITOTIC_SPINDLE 057 169 0.00 000
HALLMARK_IL6_JAK_STAT3_SIGNALING 058 165 000 000
HALLMARK_INFLAMMATORY_RESPONSE 056 164 0.00 0.00
HALLMARK_TNFA_SIGNALING_VIA_NFKB 044 129 001 o2
HALLMARK_IL2_STAT5_SIGNALING 047 138 0.00 005
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 052 154 000 001
Enrichment in phenotype: Low ES NES NOM P-value FDR g-value
HALLMARK_OXIDATIVE_PHOSPHORYLATION 031 -1.48 000 002
HALLMARK_FATTY_ACID_METABOLISM 032 168 000 001
HALLMARK_PROTEIN_SECRETION 029 134 000 005
HALLMARK_ADIPOGENESIS 028 122 000 012

ES, enrichment score; FDR, false discovery rate; ES, Enrichment Score; NES, normalized enrichment score; NOM, normalized
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High expression of GTSE1

method

0245 Chisq.test
127 (23.6%) 142 (26.3%)
142 (26.3%) 128 (23.7%)
Race, n (%) 0420 Fisher.test
Asian 3 (0.6%) 5(0.9%)
Black or African
American 33 (62%) 24 (45%)
White 231 (43.4%) 236 (44.4%)
Gender, n (%) 0.116 Chisq.test
Female 102 (18.9%) 84 (15.6%)
Male 167 (31%) 186 (34.5%)
T stage, n (%) <0.001 Chisq.test
T 155 (28.8%) 123 (22.8%)
T2 42 (7.8%) 29 (54%)
T3 71 (13.2%) 108 (20%)
T4 1(02%) 10 (1.9%)
N stage, n (%) 0.002 Chisqtest
No 121 (47.1%) 120 (46.7%)
N1 1(0.4%) 15 (5.8%)
M stage, n (%) <0.001 Chisqtest
Mo 227 (44.9%) 201 (39.7%)
M1 23 (45%) 55 (10.9%)
Pathologic stage, n (%) <0.001 Chisqtest
Stage 1 151 (28.2%) 121 (22.6%)
Stage 11 36 (6.7%) 23 (43%)
Stage 11T 57 (10.6%) 66 (12.3%)
Stage IV 25 (4.7%) 57 (10.6%)
Histologic grade, n (%) <0.001 Chisqtest
Gl 9 (1.7%) 5(0.9%)
G2 136 (25.6%) 99 (18.6%)
G3 94 (17.7%) 113 (21.3%)
G4 24 (4.5%) 51 (9.6%)
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Variables Subgroup No. Comparisons Statistical significance (P)
Sample Normal 72 Normal vs. primary tumor 162E-12
Primary tumor 533
Patient’s age Normal 7
a0 years % Normal-vs-Age(21-40Yrs) 2.75E-04
41-60 years 238 Normal-vs-Age(41-60Yrs) 234E-14
) years |26 Normal-vs-Age(61-80Yrs) 1.62E-12
81-100 years 23 Normal-vs-Age(81-100Yrs) 1.48E-03
Patient’s gender Normal n
| Male 345 Normal-vs-Male LUE-16
| Femate s Normal-vs-Female L1E-16
KIRC subtypes Normal 7 Normal-vs-ccA subtype 162E-12
ccA s Normal-vs-ccB subtype 163E-12
[ B 175 ccA subtype-vs-ccB subtype 2.39E-06
Nodal metastasis | Normal n Normal-vs-NO 9.99E-16
N0 240 Normal-vs-N1 4.14E-05
N1 L6 NO-vs-N1 6.16E-04
Cancer stage Normal 7
[ Stage 1 % Normal-vs-Stagel 162E-12
Stage 2 57 Normal-vs-Stage2 5.59E-07
[ Stage 3 s Normal-vs-Stage3 8.09E-12
Stage 4 84 Normal-vs-Staged 9.93E-09
Tumor grade | Normal n
[ Grade 1 14 Normal-vs-Grade 1 419E-04
Grade 2 =S Normal-vs-Grade 2 <IE-12
Grade 3 206 Normal-vs-Grade 3 <IE-12
Grade 4 | 76 Normal-vs-Grade 4 6.01E-08
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Accession number Samples Experiment type

‘ GSE75415 GPL96 25 ‘ expression profiling by array

‘ GSE12368 GPL570 l 18 ‘ expression profiling by array

‘ GSE19750 GPL570 |48 | expression profiling by array






OPS/images/fgene-14-1165648/crossmark.jpg
©

|





OPS/images/fgene-13-965805/fgene-13-965805-g006.gif





OPS/images/fgene-13-1021600/fgene-13-1021600-g004.gif





OPS/images/fgene-13-996180/fgene-13-996180-g008.gif
e

wy

RERCacd

pweriy
Yy

4






OPS/images/fgene-14-1162787/fgene-14-1162787-g008.gif





OPS/images/fgene-13-965805/fgene-13-965805-g005.gif
AT T

o T A OS TT
= O TR T
= T A

s B o Tl

[RE R






OPS/images/fgene-13-1021600/fgene-13-1021600-g003.gif





OPS/images/fgene-13-996180/fgene-13-996180-g007.gif





OPS/images/fgene-14-1162787/fgene-14-1162787-g007.gif





OPS/images/fgene-13-965805/fgene-13-965805-g004.gif





OPS/images/fgene-13-1021600/fgene-13-1021600-g002.gif





OPS/images/fgene-13-996180/fgene-13-996180-g006.gif





OPS/images/fgene-14-1162787/fgene-14-1162787-g006.gif
Ano- P Mot B € B-—-« o S e 1)
TE==1 Too= T
ool REEEL
et e s I o o L






OPS/images/fgene-13-965805/fgene-13-965805-g003.gif





OPS/images/fgene-13-1021600/fgene-13-1021600-g001.gif
e 5 e 5 2

L S e o

FEFE TS T T T ST IFEFFF

3
‘Ea






OPS/images/fgene-13-996180/fgene-13-996180-g005.gif
rJéEEE.“






OPS/images/fgene-14-1162787/fgene-14-1162787-g005.gif





OPS/images/fgene-13-965805/fgene-13-965805-g002.gif





OPS/images/fgene-13-1021600/crossmark.jpg
©

|





OPS/images/fgene-13-996180/fgene-13-996180-g004.gif
z






OPS/images/fgene-14-1162787/fgene-14-1162787-g004.gif





OPS/images/fgene-13-965805/fgene-13-965805-g001.gif





OPS/images/fgene-13-989779/math_qu1.gif
riskscore

(coefi°Xi)






OPS/images/fgene-13-996180/fgene-13-996180-g003.gif
H
) el
> ==
“f —m—

i






OPS/images/fgene-14-1162787/fgene-14-1162787-g003.gif
s
P

(R






OPS/images/fgene-13-989779/inline_1.gif
risk score (RS) = (0.2945 x PDLIM3) - (0.4333 x KLF2) +
(0.2322 x ROR?) + (0.5494 x PGF) + (0.1935 x EFNBI) —
(0.4964 x PDZD4)

~(0.4623 x PLN) + (0.3700 x PCDH17) - (0.4628 x DOK5)
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VPREBS®(=0.0895214478145377) + LRFN4"(0.130109206874633)
P12 (0.0789203393477133) + PRMTS" (~0.0840653641514239)

+ TPBG" (0085357138019245) + GIMAPS' (~0.0384913787997157)
+ CD83* (~0.0878273131513041) + WASF1* (0.0439661671050762)
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Hallmark gene set Function Nominal p-value FDR value

| ESTROGEN_RESPONSE_LATE Cancer-related -0.364 -1.604 ‘ 0.004 ‘ 0231

DNA_REPAIR Cancer-related -0.413 -1.578 ‘ 0.040 ‘ 0.203

Gene sets with nominal p values < 0.05 and FDR <25% are considered statistically significant.
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Hallmark gene set Function ES NES Nominal p-val FDR value
IL2_STAT5_SIGNALING Immune-related 0616 2558 0.000 0.000
COMPLEMENT Immune-related 0.633 2554 0.000 0.000
INFLAMMATORY_RESPONSE Immune-related 0718 2506 0.000 0.000
ALLOGRAFT_REJECTION Immune-related 0808 2459 0.000 0.000
KRAS_SIGNALING_UP Cancer-related 0.606 2393 0.000 0.000
IL6_JAK_STAT3_SIGNALING | immune-related 0725 2333 0.000 0.000
INTERFERON_GAMMA_RESPONSE Immune-related 0767 2272 0.002 0.000
TNFA_SIGNALING_VIA_NFKB Immune-related 0610 2258 0.000 0.000
 ApopTOss Cancer-related 0451 2047 0.000 0.003
INTERFERON_ALPHA_RESPONSE Immune-related 0743 2040 0.002 0.003
COAGULATION Cancer-related 0532 2039 0.002 0.003
EPITHELIAL_MESENCHYMAL_TRANSITION Cancer-related 0.622 1942 0.015 0.008
PI3K_AKT_MTOR_SIGNALING Cancer-related 0387 1753 0.004 0028
APICAL_JUNCTION Cancer-related 0.39 1740 0.006 0.030
APICAL_SURFACE | cancer-retatea 0392 1470 0043 0138

Gene sets with nominal p values < 0.05 and FDR <25% are considered statistically significant.

ES. enrichment score: NES. normalized enrichment score.
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Variables Luminal B (n = 19.

HR (95% CI)

Tumor stage (late) 2.643 (0.837-8.351) 0.098

LINC00426 expression (low) 4.587 (1.229-17.119) 0.023

Bold indicates p values < 0.05. A variable with HR < 1 indicates a poor prognostic factor, while a variable with HR > 1 indicates a good prognostic factor.
BOC LA Besast caicnes C1 oonbidecs: inserval 1R hasard rails.
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Variables Luminal A (n = 490 Luminal B (n = 192)

HR (95% CI) HR (95% CI)
Age (<58) 0519 (0.301-0.895) 0.018 0,612 (0.297-1262) 0.183
Tumor stage (late) 2072 (1161-3.697) e 2101 (1.011-4.365) 0.047
Lymph node status (positive) 1.844 (1.038-3.278) 0.037 2,079 (0.949-4.554) 0.067
Metastasis status (positive) 6.045 (2.527-14.460) <0.001 3o (0.881-10550) 0078
ER status (positive) 0745 (0.230-2.408) 0.622 1852 (0.238-14.390) 0556
PR status (positive) 0829 (0.374-1834) 0.643 o5 (0424-2.623) 0.907
HER? status (positive) a0 (0.815-5.029) Lo 1,636 (0.455-5.879) 0451
LINC00426 expression (low) 1480 (0.718-3.050) 0288 a7 (1.217-15.810) 0.024
Variables HER2-enriched (n = 77) Basal-like (n = 168)
HR (95% CI) HR (95% CI) p-value
Age (<58) 0.163 (0.044-0.603) 0.006 0.888 (0.371-2.125) 0790
Tumor stage (late) 4859 (1572-15.020) 0.006 oo (2.457-14.870) <0.001
7 Lymph node status (positive) 3.056 (0.659-14.180) 0154 4385 (1.714-11.220) 0.002 i
Metastasis status (positive) 13.620 (3.485-53.270) <oon 3,671 (0.708-19.020) 0.121
ER status (positive) 1368 (0.417-4.490) 0.606 0251 (0.033-1888) 0179
PR status (positive) 0653 (0.143-2.986) 0.582 1344 x 10 (0.0-Inf) 0998
HER?2 status (positive) 0513 (0.130-2.021) 0340 3206 (0.680-15.110) 0.141
LINC00426 expression (low) 3.665 (0.409-32.860) 0246 Lasm (0729-10930) 0133

Bold indicates p values < 0.05. A variable with HR < I indicates a poor prognostic factor, while a variable with HR > 1 indicates a good prognostic factor.
BRCA. breast cancer: CL confidence interval HE. hazard ratio.





OPS/images/fgene-13-989779/fgene-13-989779-g007.gif





OPS/images/fgene-13-989141/fgene-13-989141-g005.gif





OPS/images/fgene-14-1034569/fgene-14-1034569-t001.jpg
Luminal A (n =490)  Luminal B (n = 192)  HER2-enriched (n = 77)  Basal-like (n = 168)

Stratification  Frequency (n) Frequency (n) Frequency (n) Frequency (

Age <58 221 99 44 103
>58 269 93 33 65
Tumor stage o 366 129 s 141
v o 61 » '

NA 14 2 2 4

| Lymph node status  Positive 249 109 46 64
Negative 231 79 27 104

na m 4 P 0

Metastasis status | Positve 8 4 s 3
Negative L 166 P 147

NA 80 2 8 18

ER status Positive 460 177 2 20
Negative 11 3 45 141

NA T 2 6 IR

PR status  posiive 424 145 s n
Negative 44 35 60 148

NA 2 12 4 9

HER2 status Positive 54 30 47 9
Negative 268 91 13 102

NA 168 71 17 57
08 staws | Alie i 161 e 146
Dead s IB s ‘»

BRCA, breast cancer; ER, estrogen receptc

ERS B eptdainin Gyl BictoE tecenitar 25 M Sk available: O vl siiviv PI. i petertiis Tocaier.
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Characteristics TCGA-LIHC GSE76427

cohort

N =370
Age
<=65 229 (61.89%) 65 (56.52%)
>65 141 (38.11%) 50 (43.48%)
Gender
Female 119 (32.16%) 22 (19.13%)
Male 251 (67.84%) 93 (80.87%)
Grade
1-2 232 (62.70%) NA
3-4 133 (35.95%) NA
Unknow 5 (1.35%) NA
Stage
-1 258 (69.73%) NA
-1V 88 (23.78%) NA
Unknow 24 (649%) NA
T
T0-T2 276 (74.59%) NA
T3-T4 92 (24.86%) NA
Unknow 2 (0.54%) NA
M
Mo 367 (99.19%) NA
M1 3 (0.81%) NA
N
NO-N1 365 (98.65%) NA
N2-N3 4 (1.08%) NA
Unknow 1(027%) NA
Survival status
Alive 238 (64.32%) 92 (80.00%)
Dead 132 (35.68%) 23 (20.00%)

The median follow-up time (year) 1.66 L16
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Variables Univariate analysis Multivariate analysis

95%Cl p-value
Macrophage 62 193-1991 0.002 844 2.1-32.66 0.002
Age 103 102-104 0 104 1.02-1.05 | 0
Stage2 166 0.96-2.86 0.068 147 081-2.67 | 0204
Stage3 [ 311 [ 175-551 [ 0 327 1.77-6.03 0
Staged 1317 649-26.73 0 1348 629-28.92 I 0 i
Gender male [ 083 [ 012597 0857 097 0.14-7.02 | 0978
Race Black [ 161 | 049-5.28 0436 105 031-3.55 0935
Race White [ 135 043-426 061 072 022-2.33 0587
Purity 168 [ 08-352 0171 121 05-291 0675
NRIH3 075 [ 059-095 0018 073 0.54-0.99 [ 0.044

0S, overall survival; BRCA, breast invasive carcinoma.
s liness s D0 e Awlawest I ol
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Covariates  High CRG-Score  Low CRG-Score  p value
Age 0.2477
age<65 123 (41.14%) 112 (46.47%)
age>65 176 (58.86%) 129 (53.53%)
Gender 0.5338
Female 136 (45.48%) 117 (48.55%)
Male 163 (54.52%) 124 (51.45%)
Stage 0.0389
1 45 (15.05%) 48 (19.92%)
I 106 (35.45%) 101 (41.91%)
it 91 (30.43%) 57 (23.65%)
v 50 (16.72%) 27 (11.2%)
unknown 7 (234%) 8 (3.32%)
T stage 0.0318
T1 4 (1.34%) 11 (4.56%)
T2 48 (16.05%) 45 (18.67%)
T3 203 (67.89%) 165 (68.46%)
T4 43 (14.38%) 20 (8.3%)
Tis 1(0.33%) 0 (0%)
N stage 0.0019
No 157 (52.51%) 160 (66.39%)
N1 78 (26.09%) 51 (21.16%)
N2 64 (21.4%) 29 (12.03%)
unknown 0 (0%) 1(041%)
M stage 0.114
Mo 216 (72.24%) 185 (76.76%)
M1 49 (16.39%) 27 (11.2%)
unknown 34 (11.37%) 29 (12.03%)
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Clinicopathological characteristics Overall survival Relapse-free survival Distant metastasis-free survival  Post-progression survival

Hazard ratio  p-value Hazard ratio  pvalue n  Hazardratio  pvalue n  Hazard ratio  pvalue
Intrinsic subtype.
bassl W01 06204209 | 0015 | 86 | 059047070 | 5306 | 571 063046087 0004 76 | 052(03-09) 0023
luminal A 79| 0611 | 025 | 277 | 0706087 | 3e0d | 1260 057067013 | 0301 204 | 104(07-149) 0831
uminal B SIS | 073052100 0081 | 1SI | 076(061051) 0002 | 756 076(05-) | 0051 139 | 07046107 | 0lol
HER2 positive 166 | 08QA-LA) | 0a | 315 | 0ROS-LD) | 029 | US| L0306-17) | 084 39 | 052(025-L1) | 0087

ER status - IHC and array

postive 20 | 0ss0e-12) o 2 0023 | 109 093071-122) | 059 15 078(OS-L14) | 0200
negative M9 07 @14 01 796 804 | SIS 065047-089) | 0006 66 06032-L1) 0101
PR status - IHC
postive 156 046(021-10 002 | 926 087 (06-L1) 033 89 L1(07-173) 0@s 32| 0310109 | 0030
negative 291 06604108 0098 | 925 | 067 (05308 604 | 67 074(056-099) 0045 37 181067489 0239
HER? status - array
postive 20 069 048-1) 0047 | 82 06705408  3e04 | 451 081058112 0203 | 82 | 061039097 0033
negative 159 | 081(065-10) 0059 4047 | 077 (068-086)  58e06 | 2314 082069097 | 0023 37 07806100 0073
Lymph node status
postive 452 072052-10) 0054 | 165 | 081(065-096) 0015 | 89 094073-12) 0615 153 | 081 (054-122) 03060
negative 76 | 07055109 003 | 2368 | 086(073-101) 0058 | 1309 | 082064105 010 181 | 07505-L13) 0166
Grade
! vs | osroa2y | os | | LpOe-1se | oes | 29 | 133053 0490 35| 06502418 | 0450
2 M3 07905119 0261 | 177 | 0810651 0055 | 798 | 087(065-116) | 034 | 12| 08051-127) | 0341
3 586 067(0505) 0010 | 1300 | 081 (067-097 0025 | 86 076058098 0035 1§ 07105100 0063

05, overall survival; RES, reapse-free survivak DMES, distant metataisfree survval PPS, post progression survval, ER, estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor 2.
PR S P
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Covariates  Total Test Train p value
Age 0.3854
age<65 235 (43.52%) 123 (4556%) 112 (4148%)
age>65 305 (5648%) 147 (54.44%) 158 (58.52%)
Gender 0.7301
FEMALE 253 (46.85%) 129 (47.78%) 124 (45.93%)
MALE 287 (53.15%) 141 (52.22%) 146 (54.07%)
Stage 0232
1 93 (17.22%) 49 (18.15%) 44 (163%)
I 207 (3833%) 111 (4111%) 96 (35.56%)
1 148 (27.41%) 73 (27.04%) 75 (27.78%)
v 77 (1426%) 31 (1148%) 46 (17.04%)
unknown 15 (2.78%) 6 (2.22%) 9 (3.33%)
T stage 0.8603
T 15 (2.78%) 8 (296%) 7 (259%)
T2 93 (1722%) 48 (1778%) 45 (16.67%)
T3 368 (68.15%) 184 (68.15%) 184 (68.15%)
T4 63 (1L67%) 30 (1L11%) 33 (1222%)
Tis 1(0.19%) 0 (0%) 1(0.37%)
N stage 04122
No 317 (587%) 166 (6148%) 151 (55.93%)
N1 129 (23.89%) 62 (22.96%) 67 (24.81%)
N2 93 (17.22%) 42 (1556%) 51 (18.89%)
unknown 1(0.19%) 0 (0%) 1.(0.37%)
M stage 0.0896
Mo 401 (74.26%) 204 (75.56%) 197 (72.96%)
M1 76 (14.07%) 30 (11.11%) 6 (17.04%)
unknown 63 (11.67%) 36 (13.33%) 27 (10%)
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Patients OIPI p-value
None Light Moderate Severe

Total patients 23 45 72 65 41 -
Age (years) 0.086
>22 67 20 2 15 10
<22 156 25 50 50 31
Gender 0.567
Male 131 29 38 38 26
Female 92 16 34 27 15
Tumor location 0309
Extremities 214 44 70 63 44
None-extremities 9 1 2 2 4
Pathological fracture 0.002
Yes 25 5 1 12 7
No 198 40 71 53 34
Metastasis 0.003
Yes 39 4 b4 14 14
No 184 41 65 51 27
LMR 0.001
>2 185 43 62 54 26
<2 38 2 10 1 15
NLR 0.000
>29 90 2 25 23 40
<29 133 43 47 42 1
PLR 0.006
>191.94 67 8 20 18 21
<191.94 156 48 52 47 20

OIPI, Osteosarcoma Immune Prognostic Index; LMR, lymphocyte-monocyte ratio; NLR, neutrophi

PLR, platelet-lymphocyte ratio.
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Gene A Gene B Neither A not B B not A Both Log2 Odds  p-Value q-Value Tendency

ratio
ATXN3 JosD1 299 39 21 1 1454 0272 0655 Mutual exclusivity
JOSD1 JosD2 325 2 13 0 <3 0.434 0655 Mutual exclusivity
ATXN3 JosD2 309 38 11 2 0.564 0.434 0655 Co-occurrence
ATXN3L JOSD1 330 8 21 1 0974 0.437 0655 Co-occurrence
ATXN3 ATXN3L 312 39 8 1 0 0.658 0715 Mutual exclusivity

ATXN3L JosD2 338 9 13 0 <3 0715 0715 Mutual exclusivity





OPS/images/fgene-13-972352/fgene-13-972352-g004.gif





OPS/images/fgene-13-1067826/crossmark.jpg
©

|





OPS/images/fgene-14-1165648/math_2.gif
@





OPS/images/fgene-13-965805/fgene-13-965805-t003.jpg
Gene Correlated Cytoband Spearman’s p-Value q-Value
gene correlation

ATXN3L JOsD2 19q13.33 0.0872 00984 0446
ATXN3 14q32.12 00319 0546 0848
JOSD1 22q13.1 0.0953 0071 0388

ATXN3 JOSD1 22q13.1 -0.0154 0771 0851
JOsD2 19q13.33 -0.108 0.04 00905

JOSD1 Josp2 19q13.33 -0.0351 0507 0623
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Immunomodulators

HAVCR2
KDR
LGALS9
ICOSLG
IL6R
MICB
TNFRSF4
TNERSF9
TNFSF9
TAP1
Act_CD4
Act_DC

ATXN3 expression TISIDB rho,
n =373

022
0276
0244
0224
0218
-0.207
0207
0232
-0.248
0274
0242
-0201

1.84e-05
7.01e-08
1.96e-06
1.33e-05
233¢-05
5.88¢-05
5.84e-05
651e-06
1.36e-06
8.64e-08
2.49e-06
9.47€-05





OPS/images/fgene-13-972352/fgene-13-972352-g002.gif





OPS/images/fgene-13-1061107/fgene-13-1061107-g007.gif





OPS/images/fgene-14-1165648/fgene-14-1165648-t001.jpg
mber RMSE

StromalScore MIC 291 97.446
deor 294 98404

Pearson 301 99.098

All - 234584

fmmmeScore | MIC 283 66588
deor 270 | 66.897

Pearson 285 62325

All - | esu

Note: “All” indicates that all genes were entered into the model for prediction.





OPS/images/fgene-13-965805/fgene-13-965805-t001.jpg
Genes  Expression

ATXN3  Upregulated
ATXN3L  Upregulated
JOSDI  Upregulated
JOSD2  Upregulated

DSS

HR (95% CI)

058 (0.37-0.92)
028 (0.18-0.44)
175 (11-2.77)

148 (092-2.39)

p-value

0.02
2.7e-09
0.017
0.11

HR (95% CI)

0.64 (0.45-0.91)
0.36 (0.25-0.51)
1.56 (1.05-2.32)
147 (1.01-2.13)

p-value

0013
2.1e-09
0.026
0.041

il Bevwens $iTDe Banile Mllenuon Fions: 1y Mumier wd Brusae €5 Tablontion:

PES

HR (95% CI)

0.62 (0.48-0.83)
0.57 (0.43-0.76)
1.46 (1.09-1.96)
1.14 (0.84-1.54)

p-value

0.0013
0.00014
001
039

RES

HR (95% CI)

058 (0.42-081)
060 (0.43-0.84)
150 (1.08-2.08)
122 (0.87-171)

p-value

0.0012
0.0028
0.015
0.25
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Variables

Univariate analysis

Multivariate analysis

HR (95% CI) p-value HR (95% CI) p-value

Age (Continuous) 1065 (1.065-1.075) <0.001 1038 (1.025-1.51) <0.001
Gender (Female vs. Male) 1257 (0.978-1616) 0.074 - -
WHO grade

1 1.000 - -

11 3377 (2.295-4.969) <0.001 1551 (0.999-2.409) 0.0508

v 18.603 (12.563-27.549) <0.001 1758 (0.956-3.233) 0.0679
2021 WHO classification

O, IDH mutant and 1p/19q codeletion 1.000 -

A, IDH mutant 1647 (0.999-2.716) 00504 1.861 (1.103-3.140) 0.0200

GBM 12566 (7.861-20.084) <0.001 1814 (0.957-3.438) 0.0679

Sample type (Primary vs. Recurrent) 1438 (0.910-2274) 0120 - -

IDH mutation (Mutant vs. wild type) 9.200 (6.962-12.16) <0.001 1 -

1p/19q status (Codel vs. Non-codel) 4474 (2.857-7.007) <0.001 1 -

MGMTp status (Methylated vs. Unmethylated) 3,063 (2.323-4.039) <0.001 1.285 (0.9283-1.779) 0131

Riskscore (Continuous) 101.1 (60.93-167.8) <0.001 21169 (7.826-57.259) <0.001

e asteoerinsns . ulkodesdrasly

ma; GBM, Glioblastoma.
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Variables

Age (Mean + SD)

Sex
Male
Female

WHO grade
i |
il
v

MGMTp status
Methylated
Unmethylated
NA

1p/19q codeletion
Codel
Non-codel
NA

IDH status
Mutant
Wildtype
NA

TCGA (n = 611)
4721 £ 15.10

343
268

219
235
157

431
139
41

149
447
15

384
210
17

GGA_693 (n = 656)

4343 + 1241

374
282

172
248
236

304
217
135

137
453

332
276
48

GGA_325 (n = 309)

4327 + 1193

194
115

97
135
151
140
18
62

239

165
143
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Order Primer 5 to 3

1 LINC00551_F TGCCTATAGGTGCCAAGACC
2 LINC00551_R TCTCCACCTGACATCCCTTC
3 AL031722.1_F CTCAAGCGATCGACCAGTCT
4 AL031722.1_R CTCCTGGGTTCAAGCAATTC
5 AC093001.1_F GCGGAAGCTTTGTTCTTTTG
6 AC093001.1_R TCGCGGTGTTACAGCTCATA
7 NDUFB2-AS1_F TAATGCCTGCAAGTGGACAG
8 NDUFB2-AS1_R GCTTGGCCACTTCCTTAACA
9 LINC00894_F TGAGCTGCTCCTCACTCTCA
10 LINC00894_R ATCCGACCACAGATCAGACC
11 Z97200.1_F ATCAGGGAAGAGGGGAGTGT
12 797200.1_R TICATCCCTGAGTCCCTTTG
13 AC006160.1_F GAATTCTGGTCGGAGATGGA
14 AC006160.1_R CCCTGATCATGACACTGCAC
15 AC092422.1_F GCTGACTCGTCCCTTTTCTG
16 AC092422.1 R TCCTCCAGATGAGCAGGACT

The relative expression of LncRNA was evaluated using the 2-*** method and plotted
by Graphpad Prism 8. The Institutional Rescarch Ethical Committee of Nantong
University Hospital Institutional Research Ethics Committee granted research ethics
approval for this study.
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Cmap name Enrichment p <0.01 Description

arachidonic ~0925 000072 An unsaturated, essential fatty acid; A precursor in the biosynthesis of prostaglandins, thromboxanes, and
acid leukotrienes

$B-202190 0801 00007 p38 MAPK inhibitor

guanethidine ~0877 000377 Inhibiting or interfering with the release distribution of norepinephrine
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Targeting molecule Genomic profiling Transcriptomic profiling Morphoproteomic profiling

TP53 subs, trun, homD, hetD = =
ING1 homD, hetD, amp - -
MDM2 HLA, hetD - -
(CDKN2A/CDKN2B (INK4A/ARF/INK4B) hypermethylation, hmD, hetD et =
miR-223 — dovmregu.laﬁm -
overexpression
CCDKN2A/CDKN2B (INK4A/ARF/INK4B) ‘homD, hetD, hypermethylation
RB1 HLA, mut, homD, hetD - -
‘hmoD, amp
mut, amp, homD
H3F3A mut - -
DOTIL
mcm mlmummncy = —
Braf mut = -
MET HLA - -
NF1 trun, subs - -
MAP2K1 gain - -
PRKCA - - overexpression
MAPK1 . — overexpression
FGFR2
PIK3CA
TSC1 trun - -
RICTOR amp = —
STK11 rearrangement = s
PTEN del - -
ITGAL0 hypomethylation upregulation =
PPP2R2B ‘methylation downregulation -
HSP9O — = overexpression
NF1 trun, subs - -
MET - - overexpression
KIT gain, loss = overexpression
HIF-2a o downregulation =
miR-152 - upregulation -
IGFIR - - overexpression
Ak mut — phosphorylation
mTOR . - phosphorylation
4BEP — = phospl\orylation
FGFR2
np:vgulnunn
Gl.|2 - overexpression
PTCHI = llplvguhtion —
HHIP E upregulation =
HES1 — upregulation -
HEY1 - upregulation -
HEY2 - upregulation -
miR-199b-5p upregulation
CDK8 amp - =
CCNEL HLA - -
overexpression
TAZ (ww’nu) - — overexpression
VGLL3
overexpression
phosphorylation
HMMR/RHAMM upregulation overexpression
TGFRRI amp upregulation .
TGEBL amp. upregulation )
SMAD3 fusion, amp. upregulation —
SMAD4 mut - -
FXOM1 amp upregulation —
ATRX amp, trun upregulation s
STAT1 - - overexpression
HIF-la — llplvguhnnn overexpression
PLOD2 overexpression
UPA/PLAU upregulation overexpression
STAT3 dephosphorylation
overexpression
overexpression
overexpression
TRIO-TERT gene fusion
Ccox-2 overexpression
downregulation
MMP2 - upregulation -
MMPY = downregulation -

Abbreviations: amp, amplification; CNY, copy number variation; del, Deletion; HLA, high-level amplification; homD, homozygous deletion; hetD, heterozygous deletion; mut, mutation; subs,
Substitution: tran. Trancation:





OPS/images/fgene-13-911378/fgene-13-911378-t002.jpg
T cell CD8*

T cell CD4* Th2

T cell regulatory (Tregs)

B cell

Neutrophil

Macrophage

Myeloid dendritic cell

NK cell activated

Mast cell activated

Cancer associated fibroblast
Common lymphoid progenitor
Common myeloid progenitor
Endothelial cell

Eosinophil
Granulocyte-monocyte progenitor
Hematopoietic stem cell

T cell follicular helper

T cell gamma delta

T cell NK_XCELL

MDSC

coef

-2755
5401
5819
-0923
0.874
2093
13301
~2.646
~2.839
0873
15179
-42.329
-4782
92.144
~11.595
~2.690
1505
2445
-2269
5705

0.064
221664
336527
0397
2397
8113
5978¢ + 13
0071
0.059
2393
3910e + 6
0.000
0.008
1.04e + 40
0.000
0.068
4505
11535
0.103
300361

95% CI_low

0.008
18.139
1.376
0.047
0.615
2287
19.217
0.001
0.003
0.004
0.630
0.000
0.000
0.000
0.000
0.009
0.025
0.003
0.000
18.29

95% CI_upper

0526
2708.793
82278.749
3391

9334
28.773
1.859% + 10
10.063
1042
1529.490
2427¢ + 13
771004
0817
6293 + 87
111.900
0528
806.634
49994.354
419792
4930.851

p Value

0.011*
0.000%
0.038*
0399
0208
0.001%
0.012%
0295
0053
0791
0.057
0.090
0.041*
0.101
0.164
0.010%
0570
0567
0593
0.000%**

Adnated by Ae; Sispe and Sex: *p< 005 *p<<0.01 "< 0001, MDIC, syelold destved suppressor cell.
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Characteristic

n
T stage, n (%)

T1

2

T3

T4

N stage, n (%)

N

N1

M stage, n (%)

Mo

M1

Age, median (IQR)

AFP (ng/ml), median (IQR)

Albumin (g/dl), median (IQR)

BMI, median (IQR)

Low expression of SLC43A2

187

94 (253%)
43 (11.6%)
40 (10.8%)
7 (19%)

131 (50.8%)
1(0.4%)

134 (49.3%)

4 (1.5%)

62 (52, 69)

9 (4, 114)
4(35,43)

25.01 (22,01, 28.66)

IQR, interquartile range; AFP, Alpha-Feto Protein; BMI, Body mass index.

High expression of SLC43A2

187

89 (24%)
52 (14%)
40 (10.8%)
6 (1.6%)

123 (47.7%)
3 (1.2%)

134 (49.3%)

0 (0%)

61 (51, 68)

25 (5, 535.5)
4(35,43)

24.16 (2132, 28.66)

p Value

0791

0361

0.122

0477
0.012%
0.842
0594
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Datasets Univariate Multivariate
Variable HR (95% ClI) HR (95% CI)
TCGA Age 4592 (3352-6.291) <0.001 1252 (0.861-1.819) 0240
Gender 1337 (0.998-1.791) 0051 1264 (0.913-1.751) 0.158
Histology 8.802 (6.367-12.168) <0.001 2220 (1.454-3.390) <0.001
Karnofsky Score 0.489 (0.348-0.686) <0.001 0778 (0.533-1.137) 0.195
1dh1 Status 0.111 (0.079-0.154) <0.001 0317 (0.188-0.534) <0001
Risk Score 6616 (4.701-9.313) <0.001 2,037 (1.236-3.357) 0.005
CGGA Age 2.897 (2.075-4.04) <0.001 1151 (0.797-1.662) 0.454
Gender 1131 (0.851-1.503) 0396 0996 (0.741-1.338) 0978
Histology 5.063 (3.787-6.768) <0.001 2,537 (1.769-3.640) <0001
1dh1 Status 0226 (0.168-0.305) <0.001 0394 (0.277-0.562) <0.001
Risk Score 2.484 (1.855-3.327) <0.001 1585 (1.159-2.168) 0.004
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GS follow link to MSigDB Size Es NOM p-val Rank at Max

COMPLEMENT 200 0598396 003198294 12,533
INFLAMMATORY RESPONSE 19 0631354 004535637 11,059
INTERFERON GAMMA RESPONSE 198 0720191 002941177 10,281
MITOTIC SPINDLE 198 0632598 001670913 14,770
KRAS SIGNALING UP 1% 0594534 00231579 10,234
E2F TARGETS 195 0786049 o 9399
ALLOGRAFT REJECTION 195 0670881 002547771 11,552
112 STATS SIGNALING 195 0622643 002708333 12435
MTORCI SIGNALING 195 0647061 00443038 14,672
MYC TARGETS V1 194 0723588 | 00131291 13,140
G2M CHECKPOINT 19 0747303 0.00408998 9630
APOPTOSIS 159 0630793 002291667 12,308
DNA REPAIR 147 0686525 002141328 12,039
INTERFERON ALPHA RESPONSE 95 0745016 004661017 11,450
PROTEIN SECRETION 95 0673518 0.02869757 10,966
IL6 JAK STAT3 SIGNALING 87 0718659 002736842 10,998
CHOLESTEROL HOMEOSTASIS 73 064373 000632911 12,308
MYC TARGETS V2 58 0706929 0.04814005 14,364
TGF BETA SIGNALING 54 | 0722212 | 000430108 10914
WNT BETA CATENIN SIGNALING 42 0650237 0.02620087 6137

NOTCH SIGNALING 32 0693124 000652174 6518
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