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Editorial on the Research Topic
Recent advances in computational modelling of biomolecular complexes

The spatiotemporal description of the molecular interactions that rule the biological
world poses tremendous challenges to current modeling and molecular dynamics (MD)
simulation methods (Pantano, 2022). The deep intricacies of interactions spanning several
orders of magnitude in time and space have prompted the scientific community to develop
novel methods to enhance our understanding of biomolecular complexes.

We present a Research Topic illustrating state-of-the-art applications to study key
constituents of biological matter. The modeling of large complexes demands the
development of new approaches which are derived based on statistical and
thermodynamic principles, such as the case of coarse-grained (CG) methods (Ingólfsson
et al., 2022). Some CG studies in this Research Topic deal with the nanomechanics of protein
complexes by the GōMartini approach (Liu et al., 2021; Mahmood et al., 2021), the first-ever
CG modeling of an entire cell, coupling of different molecular resolutions (i.e., CG and all-
atom) by the AdResS method and the study of double-stranded DNA. Figure 1 shows the
integration of different methodologies for the study of biomolecular complexes.

A first example of the power of CG descriptions is found in the work of
Wettermann et al., where a bead-stick model is used to represent double strands of
DNA under different ionic conditions and study their topological features. The analysis
of the probability of knot formations for systems of hundreds of thousands of base pairs can
be directly compared with data from nanopore experiments. Moreover, their analysis
predicts a scenario where the knotting probability is extremely low and therefore, useful
for setting up experiments where the knots are undesired.

Molecular modeling plays a crucial role in identifying binding motifs in large protein
systems such as integrins, yet it is limited by system sizes. At cellular scale, significant
conformational changes led to mechanotransduction, cell adhesion, differentiation, etc. In
such context, the perspective article by Liu and Perez shows traditional routes for identifying
collagen-like motifs that bind the I-domain of the α2β1 integrin, addressing their limitations
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and presenting alternative solutions by machine learning
approaches (i.e., AlphaFold). Also, Oliva et al. propose another
tool for protein structure modeling, Modelling eNvironment for
Isoforms (MoNvIso), which aims to discover protein structures for
genetic diseases. The method was tested on 70 proteins which
correspond to 257 human isoforms. This procedure can handle
large sets of proteins, but it can only model protein regions where
structural templates are given. A comparison with AlphaFold
supports validation of the MoNvIso approach for large search
determination of protein-protein interactions.

Beyond the description and prediction of structures and
interactions, the dynamic interplay between biological partners
has a fundamental role in describing biomolecular complexes,
especially when quantum and classical levels are required. The
work by Jand et al. employed the multiscale approach, denoted
as Adaptive Resolution Scheme (AdResS), to study the quantum
delocalization in space of the water molecules during the aggregation
process of two fullerene molecules. Using path-integral MD for the
quantum part and all-atom/CG MD description for the classical
region, they show the relevance of quantum effects in the free energy
profiles with consequences in the formation of fullerene complexes.

Classical all-atom MD simulations are key for understanding
biomolecular complexes, as they capture local conformations enabling
the calculation of free energy profiles. Ramirez et al. elucidated the
fingerprints of necroptotic pathways driven by the electrostatic
interactions in protein-lipid complexes. Zargari et al. report on free
energy calculation of protein-ligand by funnel metadynamics using all-
atom MD. Their results successfully combine all-atom MD and
enhanced sampling in docking studies. The work by Pham et al.
combines statistical mechanics and MD simulation to obtain a better
understanding of liquid-liquid phase transitions in cellular organelles.

They propose several quantities to characterize the metastability regime,
such as specific heat, surface tension, feature in molecular clusters, etc.
They employed a Lennard-Jones model for the analysis of liquid-liquid
transitions.

Similarly, Gomes et al. employed theMartini 3 force field combined
with the GõMartini approach to capture themechanical stability of bone
sialoprotein binding protein in the early stages of Staphylococci
infections, namely, the Bbp:Fgα complex. It required sampling
significant conformational changes in protein complexes by means of
steered CG and all-atoms MD simulations. The approach accurately
described the stabilizationmechanism of the Bbp:Fgα complex. The high
force-loads present during the initial stages of bacterial infection stabilize
β-sheet motifs in both proteins that, due to their position in the complex,
cannot be peeled as in another bacterial system.

Multiscale modeling usually requires reintroducing all-atom details
onto the CG trajectories to generate a complete atomistic picture. This
task can be as challenging as the design of the CGmodel. Moreover, the
simplification introduced by the CG simulation might generate
conformations that have no correspondence in an all-atom
representation. These important Research Topic are addressed by
Hunkler et al., extending the Back-mapping Based Sampling (BMBS)
to large systems, by applying it to the simulation of K48-linked tri-
ubiquitin. The authors discuss how to correct the inaccuracies generated
by the exploration in the CG level and distinguish relevant regions on a
low-dimension projection of the conformational space. Their approach
allows them to confidently access, with the all-atom resolution, parts of
the conformation space that are very difficult or nearly impossible to
explore by plain MD simulations.

Finally, a remarkable example of the capability of integrating coarse-
grained representations, molecular modeling, and simulation techniques
is provided by Stevens et al.. They combined a large volume of

FIGURE 1
Schematic description of the integration of different methodologies employed in the study of biomolecular complexes: i) all-atom MD, ii) coarse-
grained MD, iii) machine learning, and iv) modeling tools. Together they can cope with the study of complex molecular systems, such as biomechanics of
protein complexes and other systems at the cellular level.
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experimental data (i.e., cryoEM, cryoET, -omics data) to produce amodel
of a JCVI-syn3A cell. The integrative approach required the development
of mesoscopic models integrated into the Martini 3 ecosystem by
standard toolkits such as Polyply, Martinize2, and TS2CG. The length
scale is nearly half a micrometer, with 561million CG beads representing
more than 6 billion atoms. The size and architecture of this cellularmodel
represent a milestone in building a particle-based whole-cell model.

Certainly, subsequent multiscale simulations combining the
techniques illustrated in this Research Topic will be instrumental
in leading us to the next level of understanding and integration in
cellular and structural biology.
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Baluchestan, Zahedan, Iran

The rice weevil, Sitophilus oryzae (L.), is a major pest of stored grains

throughout the world, which causes quantitative and qualitative losses of

food commodities. Eucalyptus essential oils (EOs) possess insecticidal and

repellent properties, which make them a potential option for insect control in

stored grains with environmentally friendly properties. In the current study,

the binding mechanism of tyramine (TA) as a control compound has been

investigated by funnel metadynamics (FM) simulation toward the homology

model of tyramine1 receptor (TyrR) to explore its binding mode and key

residues involved in the binding mechanism. EO compounds have been

extracted from the leaf and flower part of Eucalyptus camaldulensis and

characterized by GC/MS, and their effectiveness has been evaluated by

molecular docking and conventional molecular dynamic (CMD) simulation

toward the TyrR model. The FM results suggested that Asp114 followed by

Asp80, Asn91, and Asn427 are crucial residues in the binding and the

functioning of TA toward TyrR in Sitophilus Oryzae. The GC/MS analysis

confirmed a total of 54 and 31 constituents in leaf and flower, respectively,

where most of the components (29) are common in both groups. This analysis

also revealed the significant concentration of Eucalyptus and α-pinene in

leaves and flower EOs. The docking followed by CMD was performed to find

the most effective compound in Eucalyptus EOs. In this regard, butanoic acid,

3-methyl-, 3-methyl butyl ester (B12) and 2-Octen-1-ol, 3,7-dimethyl- (B23)

from leaf and trans- β-Ocimene (G04) from flower showed the maximum

dock score and binding free energy, making them the leading candidates to

replace tyramine in TyrR. The MM-PB/GBSA and MD analysis proved that the

B12 structure is the most effective compound in inhibition of TyrR.
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1 Introduction

Stored-product insect pests are very popular in cereal

industries, as their metabolic wastes and body parts have a

detrimental impact on buyer satisfaction (Neethirajan et al.,

2007; Chang et al., 2017). It has been reported that 10%–15%

of grains are damaged during postharvest in developing

countries (Kumar and Kalita, 2017). The rice weevil,

Sitophilus oryzae (L.) (Coleoptera: Curculionidae), is a

significant insect affecting cereals worldwide (Ahmed,

2001). Its eggs are laid on cereal grain, and the incubated

hatchlings dig out a complete grain, where they pupate till

they mature into adult weevils (Sharifi and Mills, 1971).

Getting into grains of rice, weevil causes quantitative and

qualitative alterations and losses of nutritional value and

germination, acts as contamination in food commodities

with insect bodies and excrement, and most importantly,

encourages the growth of storage fungi (Mondal et al.,

2016; Seada et al., 2016). While phosphine or even other

compounds actually have been employed as fumigants to

control rice weevils (Hymavathi et al., 2011), resistance to

phosphine administration has been a significant challenge in

rice weevil management (Nayak et al., 2007; Hossain et al.,

2014). In order to protect stored grain products, additional

antiinsect pest techniques are required. Plant-derived

essential oils (EOs), derived through nonwoody portions of

the plants, mainly foliage, have insecticidal and repellant

qualities and can be used to control insects such as

Sitophilus oryzae in stored grains (Taylor et al., 2007;

Kiran and Prakash, 2015; Hossain et al., 2017). These

compositions determine the characteristics of plants and

supply plants with a crucial defense plan, especially against

herbivorous insect pests and harmful fungus (Dhifi et al.,

2016). The genus Eucalyptus is one of the most planted

species, which include volatile oils in their leaves (Brooker

and Kleinig, 1990). For years, essential oils from several

Eucalyptus species have been employed in the medicinal,

beauty, and food fields (Marzoug et al., 2011). Based on

previous studies, Eucalyptus EO exhibited the highest

toxicity to the rice weevil across a variety of EO treatments

(Hossain et al., 2019; Ebadollahi and Setzer, 2020).

Furthermore, components including 1,8-cineole, citronellal,
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citronellol, citronellyl acetate, p-cymene, eucamalol, limonene,

linalool, -pinene, -terpinene, -terpineol, alloocimene, and aro-

madendrene have been linked to the insecticidal activity of

Eucalypt (Batish et al., 2008). Among various species of

Eucalyptus, Eucalyptus camaldulensis has the most

comprehensive natural distribution, and its essential oils (EOs)

have a more complex makeup, with third components accounting

for 95% of the total leaf oil found (Dhakad et al., 2018).

According to the literature, the presence of two biogenic

amines, octopamine (OA) and tyramine (TA), in high

concentrations in the nervous systems of invertebrates shows

their pivotal role in neurotransmission, neuromodulation, and

neurohormones in insects (Ohta and Ozoe, 2014). As the

appearance of octopamine (OctR) and tyramine (TyrR) is

limited to invertebrates, two seven-transmembrane protein

receptors belonging to a class A G protein-coupled receptor

(GPCR) family are the targeting receptors for the introduction

of the new bioactive compounds against insects (Degen et al.,

2000).

Despite pesticides available for targeting OctR and TyrR in

insects (Kostyukovsky et al., 2002), the atomic-level

understanding is still in demand to shed light on the OA and

TA mechanism of action toward specific target receptors to find

and develop new drugs.

Demands for accurate in silico techniques lead researchers to

find a visually appealing and cost-effective method to convey

valuable, relevant data on protein–ligand binding such as ligand-

binding mode, ligand binding free energy, and binding kinetics

properties (Broomhead and Soliman, 2017; Raniolo and

Limongelli, 2020). Funnel metadynamics (FM) (Limongelli

et al., 2013) is a binding free-energy method that attempts to

simulate a bias potential flexibly created as a combination of

Gaussian functions in the region of chosen degrees of freedom

termed collective variables (CVs) to model the binding process

of a ligand from its own completely solubilized form to the

eventual binding site (Laio and Parrinello, 2002). When the

approximate position of the binding site in the protein structure

is known but there is little or no information about the ligand-

binding mechanism, these strategies come in handy. This

method can identify the ligand-binding mode, clarify the

dynamics of the ligand-binding mechanism, and calculate the

absolute protein–ligand binding free energy (Limongelli et al.,

2013; Hsiao and Söderhjelm, 2014; Troussicot et al., 2015;

Comitani et al., 2016; Saleh et al., 2017; Saleh et al., 2018;

Yuan et al., 2018; Wang et al., 2021). So far, according to the

authors’ knowledge, the binding mechanism between TA and

Sitophilus oryzae TyrR and the interaction models between this

receptor and some monoterpenes have been studied by some

researchers (Braza et al., 2019; Ocampo et al., 2020), but there is

no systematic approach to this issue. On the other hand, a

detailed examination of the interactions between the

components of EO E. camaldulensis as a bioinsecticide and

molecular targets of Sitophilus oryzae has been published;

therefore, in the current research, the interaction between E.

camaldulensis essential oil as a control agent and molecular

targets of Sitophilus oryzae as stored product pests has been

explored to 1) determine the chemical composition of E.

camaldulensis EOs, 2) to identify the EO components with

the highest affinity to insect molecular targets, and 3) analyze

the mechanism of action of more stable EO components on

insect molecular targets.

2 Material and methods

2.1 Preparation of eucalyptus
camaldulensis material and extraction

First, the aerial parts of Eucalyptus camaldulensis (leaf and

blossoms) were collected from the botanic farm of the University

of Sistan and Baluchestan (USB). Fresh leaves and flowers were

disinfected, dried in the sun, and afterward made into a fine

powder in a blender. Hydrodistillation with Clevenger

(Unividros®) equipment and a heated mantle are used to

extract the EO. After removing the organic matter, 100 g of

plant material was weighed and transferred to a 1 L flask, which

was half-filled using distilled water. The extraction took nearly

3 h. Anhydrous sodium sulfate (Na2SO4, Synth®) was used to

eliminate trace water from the oil, which was collected in a

container. This technique was repeated to extract roughly 3 ml of

pure essential oil, and the extracts were subjected to GC/MS

studies.

2.2 Gas chromatography-mass
spectrometry analysis

The analysis of extracted phytochemicals compounds was

done with GC-MS (Agilent Technologies 7890B—GC systems

5977A MSD) using the electron impact (EI) mode (ionizing

capability 70 eV) and a capillary column (VF-5 ms) (50 m ×

0.25 mm, film thickness 0.25 μm) filled with 5% phenyl

dimethyl silicone, and the ion supply temperature used was

250°C. In addition, the GC/MS settings are as follows: the

preliminary column temperature was set at 35°C and

maintained for 5 min; the temperature was increased to

260°C at a rate of 5°C/min, and the split ratio was 1:10. The

fraction composition of the samples was computed from the GC

peak regions (Supplementary Figures S1, S2). The molecular

structure of chemical compounds was approved using the

WILEY8, NIST08s, and FAME libraries and is listed in

Supplementary Tables S1, S2. The chemical composition of

Eucalyptus camaldulensis oil revealed the 54/31 constituents for

leaves/flowers (Supplementary Figures S3, S4). Among the

components of leaves, eucalyptol (22.50%), α-pinene
(14.33%), 1H-Cycloprop[e]azulene, decahydro-1,1,7-
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trimethyl-4-methylene (9.01%), β-pinene (6.32%), and

(-)-globulol (5.01%) are the most abundant species, while the

major constituents of flowers are eucalyptol (26.5%), α-pinene
(16.24%), globulol((-)-globulol) (5.93%), β-pinene (5.80%), and

γ-terpinene (5.23%). Evaluating the chemical structure of these

species show that most of them (29) are common, while the

bicyclo[3.1.0]hex-2-ene,2-methyl-5-(1-methylethyl)- and 1H-

Indene,1-ethylideneoctahydro-7a-methyl-,(1E,3aα,7aβ) are

only observed in the flower oil. In contrast, all of the other

compounds (25) are only related to the oil of leaves.

2.3 Homology modeling

It is necessary to find the crystal structure with high-sequence

similarity to the TyrR of Sitophilus oryzae in the homology

modeling process. The amino acid sequence came from the

UniProt database (ID A0A0S1VX60) (Masson et al., 2015).

The CLUSTALX program was also used instantly from its

website at https://www2.ebi.ac.uk/CLUSTALX to align the

sequence of the TyR receptor to that of the D2 dopamine

receptor as the template (PDB ID:6CM4) (Thompson et al.,

1997). MODELLER (Šali and Blundell, 1993) version 10.1 is

used to create homology models of TyrR using the D2 dopamine

receptor crystallographic structure and the methods

implemented in MODELLER. The 3D models all comprising

nonhydrogen atoms were automatically generated from the

alignments. The model with the lowermost probability density

function (pdf) and the fewest constraint violations was chosen

out of 1,000 for further investigation. To improve loops of the

chosen model, an ab initio method implemented in the

MODELLER was applied. The MODELLER was used to

determine the root means square (RMS) deviations of the

models concerning the template (6CM4) and determine the R

differences using template geometry for bond lengths and angles.

MODELLER was also used to determine the R differences using

template geometry for bond lengths and angles. The software

PROCHECK evaluated the overall stereochemical value of the

results and produced a model for each tyramine receptor type

(Laskowski et al., 1996). PROCHECK was used to determine the

G-factor for the proposed model. In addition, the Verify-3D is

also used to validate the environmental profile of the final

generated model (Lüthy et al., 1992).

2.4 Docking studies

Protein–ligand docking was initiated using LeDock software

(http://lephar.com). The initial structure of all compounds,

including a total of 54/31 constituents of leaves/flowers that

were obtained from gas chromatography-mass spectrometry

analysis, was sketched using HyperChem (Teppen, 1992).

Then, the geometry optimization and calculation of electronic

energy of the benchmark systems were performed using ORCA

software (Hočevar and Demšar, 2016) at the DFT, B3LYP/cc-

pvdz level of theory. The homology model of Sitophilus oryzae

TyrR was selected for docking and subjected to the LePro module

(http://lephar.com) for pretreatment of the macromolecule. The

docking parameters, including the active site of the protein, were

set so that the box with the dimensions of 16 × 16 × 16 Å was

placed in the center of D114 and N427, as these are the most

critical residues in the active site of TyrR. The number of binding

poses and the spacing value are set to 100 and 1.0 Å, respectively.

The conformation with the lowest binding energy and the most

interacting residues were chosen as the best.

2.5 Funnel-metadynamics simulation
setup

Funnel metadynamics (FM) (Limongelli et al., 2013)

simulations were performed using well-tempered

FIGURE 1
Schematic representation of the funnel restraint potential
describes the setup of FM simulation in our work. Binding/
unbinding axis, Z defines the binding path of TA from top to inside
of transmembrane protein. The distance between cone and
cylinder shape is defined as Zcc, and Rcyl is the radius of the
cylindrical section. Two CVs are defined as the distance between
the –NH2 group in TA and Asp114 (d1) and the distance between
the –OH group in TA and Asn427 (d2). TA represents a ball and
sticks while the protein shows in the cartoons.
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metadynamics (Barducci et al., 2008). The funnel parameters are

properly defined based on a previous study on GPCRs (Saleh

et al., 2017). The PLUMED plugin, the master version (Bonomi

et al., 2009), coupled with GROMACS 2020.1 (Pronk et al., 2013),

was employed to carry out ~360 ns of metadynamics simulations

in the NPT ensemble. The computational protocol was built by

setting the initial Gaussians height at 1.0 kJ/mol and their width

at 0.01 Å for the distance between the nitrogen/oxygen atom of

tyramine with Asp114 (d1)/TyrR427 (d2) CVs. Gaussians were

added every 500 steps (1 ps) so that the deposition rate was equal

to 1 kJ/mol·ps. The bias factor was set to 20; consequently, ΔT
was 3600 K. The cluster analysis of the conformations found in

basin A was performed using the GROMOS algorithm (Daura

et al., 1999) of the g-cluster tool implemented in the GROMACS.

The absolute TA/TyrR binding free energy was calculated using

the following equation (Limongelli et al., 2013):

ΔG0
b � −1

β
ln(kb) (1)

where Kb represents the equilibrium binding constant and can be

computed as follows:

Kb � C0πR2
cyl ∫dze−β(w(z)−wref) (2)

where C0 is the standard concentration of 1 M and is equal to 1/

1.660 Å−3 and πR2
cyl is the surface of the cylinder used as a

restraint potential in the unbound state. In contrast, the

potential W(z) and its value in the unbound state, Wref, can

be derived from the potential of mean force (PMF) obtained

through FM calculations. β is a constant and equal to 1/kBT,

where kB and T are the Boltzmann constant and the system’s

temperature, respectively. Considering cylinder radius R = 1 Å, a

schematic of the setup related to the funnel metadynamics is

depicted in Figure 1.

2.6 Conventional molecular dynamics
(CMD) simulations

2.6.1 System setup
Compounds with the best docking pose were chosen to study

the interactions of ligands with the active site of the TyrR and to

examine the inhibitory efficacy of the ligands. The homology

model of TyrR was embedded in the Sphingo and Ceramide Lipid

model, which was suggested to be the central part of membrane

proteins in insects (Zhou et al., 2013). The membrane was

therefore oriented toward the XY plane, bringing the GPCR

main axis and the Z-axis near to parallel. Also, the VDW and

bonded parameters of the TA and the general amber force field

(GAFF) were used to detect specified compounds following

docking using AmberTools’ antechamber program (Wang

et al., 2004), while the protein was modeled by the

AMBERff14SB force field (Maier et al., 2015). The partial

atomic charges are also calculated by considering the RESP

charge model (Vanquelef et al., 2011). The TIP3P water

model was used for full solvation, and 0.15 M KCL was

employed to neutralize the system. In three dimensions, the

periodic boundary condition (PBC) was employed, and all MD

simulations were done using a parallel version of SANDER in the

AmberTools 19 software package (Case et al., 2018). It is worth

noting that, before the MD simulation of protein–ligand

complexes, the steepest descent approach was employed to

reduce their efficiency and energy, as well as a leap-frog

algorithm to integrate their movements (Hockney and

Eastwood, 1988). In this procedure, to figure out the effect of

long-range electrostatic interactions of molecules, the particle

mesh Ewald (PME)method, much like the preceding studies, was

implemented (Darden et al., 1993). In addition, the constraints

applied on H-bonds using the LINCS algorithm in both

equilibration and production run (Hess et al., 1997). The

cutoff for nonbonded interactions was set to 12.0 nm. After

the optimization of the energy of the system, it was simulated

for 200 ps within the canonical ensemble (NVT) and with a 1 ns

time-step within the NPT ensemble. Moreover, two models,

including the Langevin dynamic model (Goga et al., 2012)

and the Parrinello−Rahman one (Parrinello and Rahman,

1981), were served using coupling constants of 0.1 and 0.5 ps

to couple the temperature and pressure of the system.

6.2.2 Free energy calculations, energy
decomposition, and clustering

Molecular docking is the most popular method in structure-

based drug design (Hu and Shelver, 2003), which is applied

chiefly to predict the binding pose of candidate drugs in the

predefined active site of the protein. However, the accuracy of

free energy calculation by docking score might be argued in terms

of its reliability in distinguishing between compounds with a

comparable binding affinity (Hu and Shelver, 2003).

Among the several methods being used for calculation of

binding free energy of ligand–protein complex, the molecular

mechanic energies coupled with the Poisson–Boltzmann

surface area (MM/PBSA) or generalized Born surface area

(MM/GBSA) are proposed in terms of their accuracy and

efficacy (Genheden and Ryde, 2012). Here, we used these

methods to calculate the relative binding free energies of

selected compounds extracted from Eucalyptus’s Eos. We

used a single MD trajectory of the bound complex in our

calculations, and 1,500 snapshots were employed from

15 replicas to estimate the binding free energy of each

ligand. To obtain binding free energy of the ligands bound

to TyrR, the MMPBSA.Py package has been employed (Miller

et al., 2012). We used the modified GB model which is

consistent with PB behavior in the electrostatic part of the

solvation energy (Feig et al., 2004). The saltcon parameter was

set to 0.15 M for reconciliation between PB and GB solvation

energies, as previously described (Srinivasan et al., 1999).
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Decomposition of energy for each residue is defined as the

most significant contribution of each residue to the ligand

binding, and is classified as the polar, nonpolar, VDW, and

electrostatic part of energy for every single residue. We used the

water swap residue-wise binding energy decompositions in our

work (Kiani et al., 2019).

Clustering of MD frames is, in particular, beneficial for

molecular docking simulations. In step with some standards,

MD frames that can be positioned within the identical group are

just like each other. Consequently, one may want to assume that

the alike clusters will behave similarly if a receptor in a cluster

interacts agreeably with a selected ligand. The most conventional

and regarded degree of similarity is the root mean square

deviation (RMSD) values obtained for partitioning MD

trajectories, which can be received through pairwise or matrix

error distances (De Paris et al., 2015).

2.7 Building of the TyrR model and
molecular docking

The absence of the crystal structure of TyrR forces us to

construct its 3D homology model. Hence, the MODELLER

(Šali and Blundell, 1993) was used, employing the

D2 Dopamine Receptor as a template to build the

structure. It is suggested that structural and sequence

similarity within TM regions, in terms of its quality and

importance in ligand binding, is preferable to those within

FIGURE 2
Homology modeling procedure of TyrR is shown. (A) The TyrR model describing TM and loop sections and showing the intra/extracellular
boundaries of the protein lustration as implicit (top) and explicit (bottom) lipid bilayer, (B) Ramachandran diagram is presented to the stereochemical
quality of the model made (C) alignment of the target sequence to the dopamine D2 receptor with the CLUSTALX program is shown.
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FIGURE 3
(A) The binding energy surface (BFES) of TyrR/TA system showing the location of basins A, B, and C. The binding modes corresponding to each
basin are also depicted to show the key residues involved in the binding of TA to its receptor. (B) Time evolution of binding/unbinding process during
the FM simulation with (i) separate and (ii) amalgamating forms of CVs. The unbound, precomplex, and binding states in (i) are colored as white, blue,
and orange, respectively. The recrossing events between bound and unbound states are shown in plot (ii) as a function of simulation time. (C)
The hydrogen-bonding network (HBN) plot highlighting the key residues during the FM simulation of the TA/TyrR complex.
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intra- or extracellular loops (Mirzadegan et al., 2003;

Kinoshita and Okada, 2015).

GMQE (Global Model Quality Estimate) is a quality estimate,

which combines properties from the target–template alignment

and the template structure. This property for our model is 0.41,

which is expected for the model. Despite the low percentage of

sequence similarity between target and template (36.7%), it can

still be stated that the obtained TyrR model possesses this quality,

especially in the transmembrane region where the natural ligand

binds (Cavasotto and Phatak, 2009).

Figure 2A illustrates the acquiredmodel annotating TM regions,

intra- and extracellular loops, as well as showing the boundaries in

which each part is placed. Moreover, the starting model, inserted in

the Sphingo and ceramide lipid, constructed by the CHARMM-GUI

membrane builder module (Jo et al., 2007), is also represented in

Figure 2A. The stereochemical quality of the constructed model is

also reported as a Ramachandran plot, and the results are shown in

Figure 2B. According to this figure, by themajority of residues in the

allowed region, the quality of the model can also be confirmed for

further analysis. Figure 2C represents the alignment of the target

sequence on the D2 Dopamine Receptor with the CLUSTALX

program. The essential residues that play a vital role in the binding of

TA in Bombyx mori, including Asp114 in TM3, Ser200, and

Ser204 in TM5 (Ohta et al., 2004), are conserved in target and

template.

Molecular docking is an essential device in structural

biology and computer-aided drug design (CADD), in which

two molecules fit together in a 3D area [9]. In the present

work, the 3D model of TyrR has been constructed as

previously described: the active site of the insect’s TyrA

receptors including Asp114 residue in TM3 and

Ser200 and Ser204 in TM5 (Ohta et al., 2004). The leaf

and flower ligands were obtained from PubChem

databases and saved in a structure-data file (SDF) format.

The ligands were docked onto the TA receptor using LeDock,

and the obtained docking energies are depicted in

Supplementary Table S1.

According to Supplementary Table S1, the binding affinity of

ligands with the receptor active site can be easily discussed by

comparing the docking scores. It has been seen that butanoic acid,

3-methyl-, 3-methylbutyl ester (−2.88 kcal/mol), 2-octen-1-ol, 3,7-

dimethyl-(-2.86 kcal/mol), citronellol (−2.82 kcal/mol), trans-β-
Ocimene (−2.48 kcal/mol), 1,3,6-Octatriene, 3,7-dimethyl-, (Z)-

(-2.42 kcal/mol), 1,4-eicosadiene (−2.39 kcal/mol), and 3-eicosyne

(−2.14 kcal/mol), respectively, had high binding affinity on the TA

receptor than the other compounds in leaf. Also, the docking score of

E. camaldulensis flower oil structures with TyrR shows that high

binding affinity relies upon butanoic acid, 3-methyl-, 3-methyl butyl

ester (−2.87 kcal/mol) and β-ocimene (−2.47 kcal/mol) compounds.

By taking the docking score of tyramine as a reference binding energy

(−2.84 kcal/mol), one can conveniently interpret the binding affinity

competition of leaf and flower ligands with TA receptor against

tyramine. The results indicate that butanoic acid, 3-methyl-, 3-

methylbutyl ester, 2-Octen-1-ol- 3,7-dimethyl-, citronellol, and

trans-β-ocimene with the maximum dock score are the main

candidates to be replaced instead of tyramine in TA receptor and

disrupt its function, the result ofmay lead to the insect’s death. Finally,

for better analyses of these interactions, the 3D structures of TA

receptor, tyramine, and the mentioned compounds were selected to

proceed toward ligand–protein molecular dynamics studies.

2.8 Molecular dynamics simulation

It is important to note that even if based on the analysis

of the docking results, it is stated that the ligand is placed in

FIGURE 4
Schematic illustration of the binding pathway trajectory of TA against TyrR is depicted on (A) the FES and (B) the corresponding 3D structure of
the protein. The trajectory showing the binding path is shown as arrows connecting each basin.
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a suitable binding state, it should be kept in mind that in the

results obtained from the docking, the effects related to the

solvent and temperature are not included. In this regard,

the more accurate results related to the binding of the

ligand in the activator of the studied protein have been

made reliable using MD simulations, and after that,

relevant analyses have been performed on the necessary

and effective molecular interactions for ligand–protein

binding. They also showed the dynamic behavior of the

complex at the atomic level in a flexible manner that treated

the ligand–receptor complex.

3 Result

3.1 Identifying the binding pose of TA
by FM

The funnel-shaped restraining potential was set in a way

that its cone was placed on a region surrounding all crucial

residues in the proposed binding site to avoid the influence of

the restraining potential on the ligand-binding mode. We

chose and optimized the dimension for the cone to boost

the convergence (Figure 3). As a first choice for the CVs

(Figure 3B), we selected the distance between the oxygen atom

in TA and the CG atom in Asp114 as d1 and the distance

between the nitrogen atom of TA and the ND2 atom in

TyrR427 as d2. The convergence was observed after 0.36 μs

when the ligand started from the unbound state where it was

fully solvated in the water phase, at the extracellular region,

and finally found its way to explore the binding site. Several

recrossing events were achieved in this trajectory, thereby

providing a quantitatively well-characterized FES and an

accurate estimation of TyrR-TA binding free energy. The

three lowest energy minima (basins) have been detected

from the FES corresponding to point A, point B, and point

C in Figure 3A. In basin A, TA adopted a configuration in

which a hydrogen bond between the –OH group of TA and

ND2 atom of Asn427 and two hydrogen bonds between the

–NH2 group of TA and O and OD atoms of Asp114 occurred.

This basin corresponds to the free energy of −62.7 kJ/mol. The

configuration of TA in basin C has the same binding energy

of −63.0 kJ/mol. The TA is involved in hydrogen bonds

between its –OH, –NH2 moieties, OD1 atom of Asp114 and

OD1 atom of Asp 80, respectively. These findings suggested

that Asp 114 is a crucial residue in the binding and the

function of TA toward TyrR in Sitophilus Oryzae (Figure 3C).

In basin B, which corresponds to the −58.3 kJ/mol in FES, we

observed the water-mediated binding mode, which sheds light on

the water’s role in binding structures of TA. In this mode, we can

see the hydrogen bond formed between the –NH2group of TA

and Asn91, a water-mediated hydrogen bond between the –OH

moiety in TA and Asp80 (Figure 3C).

3.2 TA binding path and evaluating the
binding free energy

To gain a better perception of binding events of TA on

the receptor, a rigorous method was required to sample the

path of binding/unbinding and produce an exact FES. Hence,

we exploited the FM simulation to obtain a quantitatively

well-described free energy landscape of ligand binding and

calculate the binding free energy of TA against TyrR. In this

regard, we track the binding events during the binding

process of TA, and the results are depicted in Figure 4.

However, as mentioned before in Figure 3A which points

to the ligand-binding pathway in reconstruction of a full

energy landscape, the arrows are used to illustrate the path

constructed by each basin and also the path the ligand

adopted during the binding pathway. Figure 4B depicts

the frames containing the ligand obtained from the FM

trajectory corresponding to each basin in the free energy

landscape. The ligand enters when ELs are in the open state

(see the next section) and reaches the binding site cleft

among the TMs after several binding/unbinding events. In

this stage, the ligand dropped in basin D and then tried to

find its pathway toward basin E, which corresponds to the

cleft between TM2 and TM4. The ligand spent some time in

this basin and then found its absolute binding modes

corresponding to basins A and C with an intermediate

binding mode (basin B), which facilitates the conversion

between them (Figure 4).

For the evaluation of the absolute binding free energy of TA,

the two minima A and C in FES were considered as bound states,

and the ligand at the starting point of the simulation submerging

in the balk water was deemed to be the unbound state. The TA

binding free energy is calculated initially between these two

states. Table 1 represents the binding energy for two basins, A

and C, concerning the unbound state, considering the analytical

correction.

With the lack of experimental data for the binding affinity of

TA toward Sitophilus Oryzae, we used the data for Bombyx mori

TABLE 1 Affinity and binding free energy of TA against TyrR were
obtained from FM simulation and compared with available
experimental data. The binding free energies and the binding affinities
are calculated for basins A and C.

Basin A Basin C

IC50, exp ΔGcalc Ki
b ΔGcalc Ki

TA affinity 5.191 −11.0 ± 0.8 8.64 −11.2 ± 0.8 6.17

Experimental affinity data for Bombyx mori was obtained from Ohta et al. (2004) and

was converted with the relation ΔG = −RT ln (Ki). b The IC50, Ki, and ΔG units are in

nM, nM, and kcal.mol−1, respectively.
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to compare our results to the available experimental data (Ohta

et al., 2004). In addition, to provide more structural details on the

TA binding, using a reweighting algorithm (Tiwary and

Parrinello, 2015), the FES is remapped as a function of the

position along the funnel line and distance from the funnel

line, producing the FES from the WT-MetaD trajectory above.

The WT-MetaD simulations’ binding mechanism is validated

mainly through the consistency of the minima found on the two

FES (Supplementary Figure S5).

3.3 Role of extracellular loops in the
binding of TA

To understand the physiological action of the TyrR

receptor, it is pivotal to characterize the molecular

mechanism of TA recognized by the TyrR receptor. The

recognition mechanism of peptide and nonpeptide ligands

by G protein-coupled receptors (GPCRs) has a different type

where peptide ligands prefer to interact primarily with amino

FIGURE 5
Demonstration of Els’s role in themechanismof TA binding obtained from FM simulation. (A) Transformation of the protein from the open to the
closed state, involving EL1, El2, and EL3. The correspondingmovement of each EL is depicted as red arrows (B) The effective hydrogen bond between
residues Glu187 and Gln 99 and also between Leu190 and Ser413, holds EL2 and EL3 together in the closed state.

TABLE 2 Binding free energy and its components obtained by MM-PB/GBSA calculation for all ligands.

B12 B23 G04

MM/PBSA ΔEVDW −24.42 −19.48 −21.66

ΔEele −0.64 −1.59 −0.09

ΔEPB 3.96 4.02 2.55

ΔENP −21.26 −18.92 −18.44

ΔGsolv 20.05 16.89 17.01

ΔGgas −25.06 −21.07 −21.76

ΔGBind −5.01 ± 3.2 −4.17 ± 2.35 −4.74 ± 2.92

MM/GBSA ΔEVDW −24.42 −19.48 −21.66

ΔEelec −2.56 −6.37 −0.38

ΔEGB 10.62 14.59 8.88

ΔESurf −3.77 −3.20 −3.29

ΔGsolv 6.84 11.39 5.58

ΔGgas −26.99 −25.85 22.04

ΔGBind −20.1 ± 3.5 −14.45 ± 3.83 −16.46 ± 2.97
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acid residues in the extracellular loops (ELs), but nonpeptide

ligands such as TA interact predominantly with binding site

cleft among the TMs (Baldwin, 1993). Here, we discuss the

possible involvement of the Els in the binding mechanism of

TA to the TyrR receptor. With a visual inspection, obtained

from FM simulation, we observed that the ligand induces

conformational changes in ELs at the early stage of

approaching the binding site cleft among the TMs. In

addition, Figure 5A illustrates the conformational changes

FIGURE 6
(Continued).

FIGURE 6
(Continue). Conformational analysis of the TyrR bound to the
selected EOs compounds. (A) Overall RMSD of the protein bound
to the EO compounds and TA as referenced ligand, showing in a
separate subplot, and (B) the corresponding RMSF plot,
highlighting the fluctuation of EL1, El2, and IL3 in blue, green, and
yellow, respectively. (C) The average RMSD of backbone atoms in
EL1, (D) IL2, (E) IL3, and (F) IL4 are also presented. In each plot, the
corresponding RMSD for each El and IL calculated from FM
simulation are depicted as subplots.
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in ELs that occur during TA recognition. A moment after

entry of ligand to the binding site cleft among TMs, the

EL2 and EL3 start to move inside toward the perpendicular

axis of the protein. Meanwhile, the EL1 moves outside

toward the vertical axis of the protein; these movements

change the conformation of the protein from “open state” to

the “closed state,” which curbs the ligand from going back

again outside of the protein channel (Figure 5). In the

conformation of the protein, changing from an open to a

closed state in the TA binding process, we observed that two

couples of residues were involved in a strong hydrogen bond

to make this conformational change happen. We also showed

that the interaction between Glu187 and Gln 99 side chains

on the one hand and the hydrogen bond between Leu190 and

Ser41, on the other hand, are responsible for keeping EL2 and

EL3 close to each other, forming the closed state (Figure 5).

3.4 Screening of the EO’s components of
E. camaldulensis

In the first step of discovering the affinity of essential oil’s

components against TyrR and discriminating the effectiveness of

compounds in flower and leaf, it is of interest to find the possible

bindingmodes of small molecules in the active site of the protein. The

docking was performed as described in the material and method

section. To screen all compounds, including 54 in leaf and 31 in

flower. The results of the docking are represented in Supplementary

Table S1. To make docking results more reliable, it is necessary to

evaluate the chosen program in terms of its reproducibility of native

ligand (TA) in the TyrR, which is supposed to be the binding mode

obtained from FM simulation. Redocking results of TA in the protein

have been shown in Supplementary Figure S1A. As shown in the

related figure, there is a good match between the LeDock result and

FIGURE 7
Bindingmodes of selected EO ligands include (A) B12, (B) B23, and (C)G04 bound to the TyrR after 150 ns of CMD. The protein is represented in
cyan, the ligand is yellow, and the hydrogen bonds are represented as orange dashed lines.

FIGURE 8
Heatmap contacts comparing hydrogen bond formation frequencies in (A) B12 and B23, (B) B12 and G04, and (C) B23 and G04 in the active site
of the protein. The related HBN is also shown in each plot.
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the FM binding mode. Therefore, after ensuring the performance of

the program, all of the extracted structures, as well as TA,were docked

on the active site of the TyrR, the results of which are given in

Supplementary Table S1. The two compounds from the leaf and the

one from the flower with a high docking score were chosen for further

analysis. Figure 5 shows the most effective compounds in the EOs.

3.5 Molecular affinity of EO’s components
toward TyrR

In this study, three ligand–protein structures have been selected to

perform150 ns ofMDsimulation, and1,500 snapshots from15 replicas

have been taken from the MD trajectories to calculate the MM-GB/

PBSA binding energies. This may guarantee the accuracy of binding

energy obtained from these methods (Sadiq et al., 2010). For this set of

ligands, the standard error of themean provided in this table is expected

to be around 1 kcal/mol on average. Table 2 shows theMM-PB/GBSA

binding energies for three ligands. The ranks for the abovementioned

ligands are demonstrated by the relevant PB/GB binding energies.

It is of great interest to rank EO’s selected compounds in

terms of their binding energy toward the TyrR. According to

Table 2, B12 is the most effective compound in the inhibition of

the protein. However, it should be noted that the binding energy

results are very close to each other, and this indicates that to

obtain a more accurate result, further analysis such as

decomposition analysis should be performed along with the

RMSD, RMSF, and binding modes from cluster analysis and

hydrogen bond (H-bond) frequency plots for all three

compounds. This result led us to further investigate how

B12 could be a viable candidate for inhibiting the protein.

3.6 Conformational analysis of the TyrR-
EO systems

3.6.1 RMSD analysis
To assess the effective compound in the Eucalyptus

Camaldulensis EO, we need to inspect the conformational changes

of receptors bound to each compound during the MD course and

compare them to the conformational pattern we observed from the

TA dynamic during FM simulation. The first frame, as a reference

conformation, has been used to measure structural changes based on

the root mean square deviation (RMSD). We focused on the central

regions in the protein whose conformational changes have a

significant impact on the function of the protein, that is,

transmembrane (TM) helixes and intra-/extracellular (IL/EL) loops.

Figure 6A showed the overall RMSD of the protein bound to the EO

compounds and TA as a subplot for visual comparison in which,

considering the first 150 ns of FM simulation, the B12 and

B23 compounds from the flower showed a similar RMSD pattern

to TA. We also found that the TMs have negligible contributions to

the overall RMSD of the protein due to restricted movement in the

membrane bilayer (~3 Å). Therefore, we concentrated on EL and IL

motion to compare themovements of the loopswhen the compounds

B12, B23, and G04 bound to the receptor with those we observed for

TA in FM simulation. Figures 6C,D show the RMSD for backbone

atoms of EL1 and EL2 loops, respectively. As can be seen, the average

RMSD of backbone atoms in EL1 and EL2 in the binding/unbinding

process of TA is ~1.5 Å and 3.5 A, respectively. Among the selected

compounds fromEO, only B12 shows the same pattern when it binds

to the receptor in terms of EL1 and EL2 movements.

The long intracellular loop 3 (IL3) is a 150-amino-acid loop

located between the TM5 and TM6 domains. Moreover, research

suggested that IL2 and IL3 consist of important interaction areas

in GPCRs as well as other cytoplasmic effectors (Gacasan et al.,

2017). The RMSD of IL2 and IL3 is given in Figures 6E,F. As can

be seen, the flexibilities of IL2 and IL3 have been affected by each

EO compound, but it is B12 that asserts the same signal of

movements to the IL2 and 3 loops on its binding state.

3.6.2 RMSF values
The influence of screening ligands on the flexibility of the

protein structure was studied using root-mean-square

fluctuations (RMSFs). Figure 6B shows that three regions, that

is, EL1, El2, and IL3, fluctuate the most in the presence of B12,

B23, and G04 compounds. B12 and B23 show the nearly same

pattern of fluctuation in all regions except IL3.

3.6.3 Clustering analysis
In an attempt to elucidate the binding mode of the selected

compounds from EOs, the cluster analysis has been done, and the

midpoint structure from the most populated cluster has been

determined as a representative structure for each ligand–protein

complex. Figure 7 shows the representative structures of B12,

B23, and G04 bound to TyrR. This can be further evidence for

claiming the effectiveness of B12 since, as can be seen in

Figure 7A, this ligand is involved in H-bond interactions with

Asp114 and Ser200 with water intervention. This is in line with

our findings of TA binding mode from FM simulation. The

proposed binding modes for B23 and G04 are thoroughly

different, indicating different mechanisms of action for these

ligands. As it is illustrated in Figure 7B, the B23 involved residues

including Arg193 and Ser193 in the EL2 loop. We previously

discussed the crucial role of the EL2 loop in the binding of TA,

and adaptation of such a binding mode by this ligand could affect

the binding mechanism of TA in insects. The same scenario can

be imagined for G04 where these ligands also intend to occupy a

cleft under the EL3 loop and between TM6 and TM7, as shown in

Figure 7C.

3.6.4 Hydrogen bonds analysis
To compare the stability of each selected ligand, it is a

prerequisite to evaluate the contacts it made during the MD

simulation. The get contacts (https://getcontacts.github.io/) have

been used to make such a comparison between chosen ligands,
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and the results are shown in Figure 8. In this figure, the most

frequent hydrogen bonds are calculated for pairwise combinations

of each ligand. These plots not only offer the ligand contacts but also

give some information about the hydrogen-bonding network

(HBN) in the presence of each ligand. Figure 8A depicts the heat

map contacts comparing B12 and B23, and we can see that

B12 shows more frequent contacts with Asp114 compared to

B23. Likewise, this can be seen in Figures 8B,C, where the heat

contact maps compare B12–G04 and B23–G04 in the same fashion,

and we see the same trend indicating the effectiveness of

B12 involving more hydrogen bonds with critical residues such

as Asp114. In addition, we can see some shared contacts in these

ligand–protein contact maps, such as Asn124 in contact with

Leu125 and Asp80 in contact with Ser428. However, it suggests

that the communications between these residues are crucial forHBN

and the function of the protein in the presence of these ligands.

3.6.5 Decomposition analysis
The pair-wise decomposition analysis can reveal the

contribution of energy terms of each residue in the binding

energy of the ligand–protein system. Figure 9 illustrates such an

analysis for three compounds: B12, B23, and G04. As seen in

Figure 9A, we can track down the contribution of Asp114, one of

the most essential residues in the binding of TA stressed by

experimental and FM simulation, in B12 and G04’s

decomposition plots. According to the figure, although the

total energy in the decomposition of Asp114 is an adverse

effect on the binding energy of B12, the VDW and

electrostatic interaction can favor the binding; the necessary

information related to the decomposition analysis of B23 and

B24 structures are provided in Figures 9B,C, respectively. In the

case of G04, as can be seen in Figure 6C, we also observed the

contribution of Asp114 in energy binding of this ligand, but

lacking a heteroatom in the structure makes it convenient to have

merely VDW interaction.

4 Discussion

As noted, previous experimental studies showed that

Eucalyptus essential oil exhibited the highest toxicity to the

rice weevil among the variety of EO treatments, and the results

show that E. camaldulensis essential oils, rich in insecticidal

terpenes, can be alternative candidates to synthetic chemicals

in the management of S. oryzae. In this regard, the EOs can

interfere with neurotransmission by blocking the mechanism

FIGURE 9
Bar plot depiction of energy decomposition as the VDW, electrostatic, polar solvation, and total energies for B12, B23, and G04.
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of action of OA/TA, which in insects, causes paralysis and may

be followed by death (Jankowska et al., 2018). Therefore, in the

current study, first, the TA binding mechanism of action

toward TyrR has been investigated as a reference to,

second, shed light on the interactions between the EO

components of E. camaldulensis and Sitophilus oryzae

tyramine receptor (SoTyrR) with a view toward a detailed

analysis of this insecticidal. For this aim, funnel

metadynamics and molecular docking, followed by

conventional molecular dynamics (CMD) simulation of the

ligand–protein complexes, were employed.

In this study, after extracting the EOs from leaves and flowers

of Eucalyptus camaldulensis using the GC/MS technique, we

performed relevant analysis related to the experimental phase.

The GC/MS analysis revealed a total of 54/31 constituents for

leave/flower chemical composition of E. camaldulensis oil, in

which most of the components (29) are common. Among the

total components, eucalyptol and α-pinene for both chemical

groups were the major constituents. Following the experimental

phase, computational studies were further investigated. At first,

after performing the homology modeling and determining the

protein 3D structure with the least error and themost accuracy, the

molecular docking method was used to select the appropriate

compounds. The docking results show that butanoic acid, 3-

methyl-, 3-methylbutyl ester, 2-Octen-1-ol, 3, 7-dimethyl-,

citronellol, and trans-β-Ocimene with the maximum dock score

are the main candidates to replace instead of tyramine in TA

receptor. Free energy methods, which play a pivotal role in drug

design research, use two main approaches to calculate free energy.

One is to calculate the bound and unbound states separately, in

approaches such as the MM/PBSA, and the other is to evaluate the

free energy difference between bound and unbound states, which

we can term absolute binding free energy. The latter can be

executed in two aspects: by decoupling the interactions between

the ligand and its receptor, by giving a nonphysical pathway, and

by displacing the ligand along a physical pathway of binding. The

immediate output of a binding-pathway free energy method is not

a free energy difference but a potential of mean force (PMF), which

is defined as the negative logarithm of the probability of being at a

given value of a specified reaction coordinate (Eqs 1, 2). Funnel

metadynamics (FM) is a kind of binding-pathway free energy that

calculated the PMF alongside the funnel-shaped pathway.

Therefore, in the current research, using the FM

simulation method with high sensitivity and in 360 ns, the

mechanism of action and the binding mode of the reference

ligand, TA, have been performed. The FM results suggested

that Asp114 followed by Asp80, Asn91, and Asn427 are

crucial residues in the binding and the function of TA

toward TyrR in Sitophilus Oryzae. Finally, in order to

explore the effective compounds in EOs, the binding free

energies of the selected ligands were investigated from

150 ns of CMD. The two compounds of the leaf (B12 and

B23) and the one structure (G04) from a flower with high

potential inhibition of the TyrR were chosen for MD analysis.

The shreds of evidence from the RMSD, RMSF, hydrogen

bonding, clustering, and decomposition analysis indicate that

the B12 structure has a higher ability to intervene in the

biological function of the TA in the insect.
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Nuclear quantum effects in
fullerene–fullerene aggregation
in water

Sara Panahian Jand, Zahra Nourbakhsh and Luigi Delle Site*

Institute of Mathematics, Freie Universität Berlin, Berlin, Germany

We studied the effects of the quantum delocalization in space of the hydrogen

atoms of water in the aggregation process of two fullerene molecules. We

considered a case using a purely repulsivewater–fullerene interaction, as such a

situation has shown that water-mediated effects play a key role in the

aggregation process. This study becomes feasible, at a reduced

computational price, by combining the path integral (PI) molecular dynamics

(MD) method with a recently developed open-system MD technique.

Specifically, only the mandatory solvation shell of the two fullerene

molecules was considered at full quantum resolution, while the rest of the

system was represented as a mean-field macroscopic reservoir of particles and

energy. Our results showed that the quantum nature of the hydrogen atoms

leads to a sizable difference in the curve of the free energy of aggregation; that

is, that nuclear quantum effects play a relevant role.

KEYWORDS

nuclear quantum effects, path integral molecular dynamics, PMF of aggregation of
hydrophobic particles, fullerene, adaptive resolution simulation (AdResS) method

Introduction

The aggregation of large hydrophobic nanoparticles in water is a subject of interest

for its technological and environmental relevance. In particular, the C60 fullerene,

which is produced in a massive manner by, for example, the arc discharge of graphite

electrodes (Montellano Lopez et al., 2011), is the most studied hydrophobic

nanoparticle in water, both experimentally (Labille et al., 2009; Chae et al., 2010;

Ma et al., 2010; Meng et al., 2010; Voronin et al., 2014) and theoretically (Li et al.,

2005a; Li et al., 2005b; Maciel et al., 2011; Zangi, 2014; Makarucha et al., 2016). In this

context, the potential of mean force as a function of the C60 fullerene–fullerene

distance (PMF), that is, the ensemble-averaged fullerene–fullerene space-dependent

force (Kirkwood, 1935; Darve, 2006), has been studied using several classical MD

approaches (Makarucha et al., 2016). The PMF explains, in terms of (free) energy cost,

the process of aggregation of the fullerene molecules, that is, how the two solutes reach

aggregation by breaking the hydrogen bonding network of water and coming near

each other. Simulation results based on classical models showed that aggregation

eventually occurs without any significant energy barrier. However, the classical

models used in previous work do not explicitly describe any quantum feature of
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water and, thus, cannot account for its potential effects on the

strength or flexibility of the hydrogen bonds. In this context,

the question of interest is whether the use of a quantum

molecular model leads to different results compared to a

corresponding classical model in the aggregation process.

When a long-range interaction between the carbon atoms

of the fullerene and the oxygen atoms of water is used to

model the system, water-mediated effects are not relevant in

PMF determination (Li et al., 2005b); thus, one can conclude

that nuclear quantum effects of water are not likely to play a

key role. However, when a purely repulsive C-O interaction is

used to model the system, the aggregation process is

dominated by the water-mediated effects (Li et al., 2005b);

therefore, nuclear quantum effects may become relevant.

Experimental results promote the hypothesis that water-

mediated effects actually regulate the aggregation (Voronin

et al., 2014). The present study tested the relevance of the

quantum nature of the hydrogen atoms in the C60-C60

aggregation process at room conditions by modeling the

C-O interaction as a purely repulsive interaction. This

study applied the PIMD technique within the Adaptive

Resolution approach (AdResS) (Praprotnik et al., 2005;

Praprotnik et al., 2008; Wang et al., 2013; Agarwal et al.,

2015; Delle Site and Praprotnik, 2017; Delle Site et al., 2019;

Cortes-Huerto et al., 2021). The AdResS technique reduces

simulation costs by requiring high (quantum) resolution only

in the mandatory solvation region, while the rest of the system

is treated at a lower resolution and a small computational cost.

The size of the high-resolution region can be automatically

and precisely defined by the AdResS method (Lambeth et al.,

2010). Our results showed that, at the qualitative level, the

PMF calculated with the quantum model did not differ from

the PMF calculated with the various classical models; however,

a one-to-one quantitative comparison with the TIP4P rigid

model; i.e., the closest classical model to our quantum model,

showed a sizable difference. Specifically, the depth of the

minimum of the PMF curve differed such that one could

see the classical model building a strong rigid cage around

the aggregated fullerene molecules (deeper minimum), while

in the quantum case, the H-bonding network was more flexible

and easier to break (less deep minimum). These interesting

results add to the methodological message of the paper

demonstrating the utility of the open system MD approach

to make possible tests of this kind with feasible computational

resources. This report is organized as follows: we first provide

a brief but essential review of the PIMD idea/technique,

followed by the essential description of the AdResS/open

system approach and its features. Although this method

was previously validated for the quantum water model used

here, we further validate the method by studying the solvation

of a single fullerene in water and compare the results with

simulations of reference. As anticipated, the case of a single

fullerene also allowed the precise determination of the

minimal solvation region of the two fullerene molecules

and, thus, automatically fixed the minimum

fullerene–fullerene distance in the PMF calculation. The

discussion and conclusions close the paper, while the

technical and computational details of the simulations are

reported in the Supplementary Appendix.

The essentials of path integral
molecular dynamics

Light atoms, such as the hydrogen atoms of water, are

strongly characterized by quantum effects that lead to their

delocalization in space. The path integral technique is a

theoretical tool that satisfactorily describes such effects [see

e.g., (Feynman and Hibbs, 1965) and references therein]. In

particular, a practical method that approaches realistic systems

with satisfactory results is the computational technique known as

path integral (PI) molecular dynamics (MD) (Tuckerman, 2010;

Tuckerman et al., 2014). In essence, one can use a classical

potential and delocalize the interatomic interactions by

FIGURE 1
Graphical illustration of the path integral/polymer ring
representation of two interacting water molecules of the TIP4P 4-
sitemodel used in this work (Habershon et al., 2009). Oxygen (red),
hydrogen (blue), and additional sitemodel (green). Each site is
represented by a polymer ring; for graphical convenience, only five
beads per atom/site are drawn although 30 beads per atom/site
are used in the real simulation. Atoms of different molecules
interact through bead–bead interactions. The beads involved in
the interatomic/intersite interactions are only the beads with the
same label (here represented as 1, 2, 3, 4, and 5) of each atom/site.
For simplicity, the oxygen–hydrogen interaction is illustrated. The
interaction potential has a classical form as the potentials used in
the atomistic simulation; however, in this case, the bead–bead
interaction is scaled by the number of beads.
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representing each atom as a polymer ring in which each bead

represents an interaction site for the corresponding bead of

another atom. The spatial deformation of the ring-polymer

during an effectively classical simulation mimics the quantum

delocalization of the atom in space (Figure 1); in principle, the

larger the number of beads, the more accurate the description of

the quantum effect of spatial delocalization.

However, in this representation, each bead counts as a degree

of freedom; thus, the cost of simulation, compared to the

equivalent classical representation, increases proportionally to

the number of beads. This aspect implies a sizable increase in the

overall simulation costs compared to classical systems. In general,

an atom requires at least 16 beads for a first approximation of a

realistic quantum representation. Thus, simulations of a system

with 1,000 water molecules represented by a three-site water

model with each atom represented by a ring-polymer of 16 beads

(thus, 48 degrees of freedom per molecule) become essentially

prohibitive, although in practice 30–32 beads are considered the

standard for trustworthy simulations (Agarwal and Delle Site,

2015). However, such calculations are expensive and, in

particular, for the case of the fullerene–fullerene PMF

calculations in the present study, are prohibitive using

standard computational resources. Overcoming this challenge

requires the use of simulation tools that drastically reduce the

mandatory degrees of freedom but provide reliable results. One

such method is the recently developed open system MD

technique (Delle Site et al., 2019) based on the AdResS

technique which has been extensively tested regarding its

merging to PIMD (Poma and Delle Site, 2010; Poma and

Delle Site, 2011; Potestio and Delle Site, 2012; Agarwal and

Delle Site, 2015; Agarwal and Delle Site, 2016; Evangelakis

et al., 2021).

The basics of the adaptive resolution
technique

AdResS treats an open subregion of the simulation domain at

full quantum resolution and the rest as a thermodynamic

reservoir of energy and particles, that is, as a large domain of

non-interacting particles (tracers) thermalized by an external

thermostat [the latest version is described in Delle Site et al.

(2019) and Evangelakis et al. (2021)]. Figure 2 illustrates the

concept, showing a high-resolution region (PI) embedded in a

(usually) much larger region of tracers (TR) thermalized by an

external reservoir that assures the correct thermodynamic

conditions. Between the high-resolution and tracer regions is

the so-called Δ (transition) region in which the molecules are at

high resolution and experience the external (one-body)

thermodynamic force. This force, together with the action of

the thermostat, assures the physically consistent exchange of

particles between the high-resolution and tracer regions. In

essence, the additional force corrects from any difference in

the chemical potential between the different regions and

ensures the exchange of particles at the chemical potential of

a reference (full high-resolution) system. The calculation of the

thermodynamic force is performed self-consistently during the

equilibration run of the AdResS system (Poblete et al., 2010;

Fritsch et al., 2012; Wang et al., 2013; Agarwal et al., 2014;

Gholami et al., 2021a; Gholami et al., 2021b). Tracer particles

entering the Δ region acquire the chemical structure of the water

molecule and the corresponding path integral resolution; on the

contrary, molecules leaving the Δ region for the TR region lose

their high resolution and become non-interacting particles.

Recent results have demonstrated the reliability of this

technique for the four-site water model used here with

30 beads per atom, which means that molecules entering the

TR region lose 120 degrees of freedom, while molecules entering

the Δ region acquire 120 degrees of freedom (Evangelakis et al.,

2021). The size of the Δ region is equal to the cut-off distance of

the interaction potential such that there is no missing interaction

between molecules in the PI and TR regions. The data on the PI

region are used to calculate the properties of the open system,

while the Δ region represents a sort of artificial region needed to

implement the boundary conditions for the PI region so that

molecules entering the PI region are automatically equilibrated

with the PI environment at the thermodynamic conditions

required by the study. The next section considers the

solvation of a single fullerene in water and confirmed the

reliability of the technique. We also define the maximal region

of interest in the fullerene–fullerene aggregation.

FIGURE 2
Graphical illustration of the AdResS model for the simulation
of liquid water solvating two fullerene molecules.
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Test of validity of the method:
Solvation of a single fullerene in water

To define a physically meaningful open region for the PI

resolution region of AdResS, the physical consistency was

routinely checked in the AdResS: 1) the water density in the

AT + Δ region should reproduce, within some numerical

accuracy, the full reference PI simulation value. The

thermodynamic force in Δ ensures that (1) is satisfied. 2)

The radial distribution functions should reproduce, within

some numerical accuracy, the reference full PI simulation

value. These functions represent relevant structural

properties that characterize a liquid and its solvation action

at certain thermodynamic conditions. In addition, at the

statistical mechanics level, their combination expresses the

probability distribution function of the system in

configuration space up to the two-body approximation

(Wang et al., 2013; Agarwal et al., 2015; Evangelakis et al.,

2021). 3) The probability distribution function of the particle

number in PI, P(N), must be consistent with P(N) of an

equivalent subregion in the full reference path integral

simulation so that the exchange of particles between the PI

region and the reservoir (TR) is physically consistent. The

concurrent fulfillment of 1, 2, and 3 assures that the explicit

quantum degrees of freedom of the PI region are sufficient to

reproduce the key features of solvation, while the explicit

quantum degrees of freedom outside this region are not

relevant for characterizing its physical property and, thus,

can be represented by a generic thermodynamic bath. The

size of the PI region automatically defines the minimal

extension of the mandatory solvation shell and the maximal

fullerene–fullerene distance in the PMF calculation (Delle Site,

2022). The maximum fullerene–fullerene distance of interest in

a PMF calculation can be accurately determined by the

minimum size of the region around each fullerene. Here,

water molecules, with their quantum degrees of freedom,

directly influence the behavior of the fullerene; beyond this

distance, water acts only as a thermodynamic bath and the

corresponding hydrogen bonding structure has no direct effect

on the fullerene. Regarding the PMF calculation, if the

maximum fullerene–fullerene distance is equal to the sum of

the radii of the smallest mandatory solvation shells of the single

fullerenes, then automatically for larger distances, the two

fullerenes do not experience the perturbation of the

hydrogen bonding network caused by the other; thus,

distances beyond these maximal values are of no interest in

the PMF calculation. Figures 3–5 show the calculation of the

water density, the various radial distribution functions, and the

P(N) for three different sizes of the PI region. The case of

1.22 nm agrees in a highly satisfactory manner with the results

of the reference full path integral simulation; thus, it validates

the technique as reliable to simulate a physically consistent

open region. Moreover, 1.22 nm represents the mandatory

solvation region and implies that 2.44 nm is the largest

fullerene–fullerene distance to be considered in the PMF

calculation.

PMF of aggregation of two C60
molecules

As discussed previously, for the solvation of two fullerene

molecules, the radius of the mandatory solvation shell is twice

that of the single fullerene molecule, that is, 2.44 nm. This is also

the maximal distance that must be considered for the calculation

of the PMF. Figure 6 shows the PMF curve calculated for the

quantum model with the PIMD-AdResS simulation, compared

to the equivalent classical rigid model. Qualitatively, the

aggregation process does not differ in the two cases and the

aggregation eventually happens without any significant energy

barrier. However, the aggregation in the classical model is

energetically more favorable than in the quantum model as

the two fullerene molecules approach a closer distance. Once

the two fullerene molecules have come in contact, the system falls

into a deeper minimum for the classical simulation compared to

the quantum case. Thus, the aggregated fullerene molecules are

more stable in the classical case compared to that in the quantum

case, with a substantial difference in (free) energy of about 7 kcal/

mol. At this point, the quantum model is the direct extension of

the classical model, that is, its force field is enhanced by the intra-

molecular flexibility (OH bond stretching and HOH angular

potential) together with the ring polymer representation of the

atoms. The straightforward implication is that the molecular

flexibility and the quantum delocalization of the H atoms can

sizably influence the (re)organization hydrogen bonding

network. For a purely repulsive C-O potential, as used in this

study, the aggregation is driven by water-mediated effects; in

other words, by the reorganization of the OH-bonding network

as the two fullerenes approach each other. The curves in Figure 6

suggest that the degree of reorganization of the OH-bonding

network passing from two cages localized around each fullerene,

when the fullerenes are far apart, to a large cage that embeds both,

once they aggregate, is higher in the classical case than in the

quantum case. This idea was also hypothesized previously

(Agarwal et al., 2017). Agarwal et al. (2017) also reported a

less structured OH-bonding network in the quantum case

compared to the classical case. The authors speculated, based

on experimental data, that this result may imply a different

characterization of aggregated C60 molecules when quantum

effects are considered. In that study, calculations of the

aggregation process were not yet possible using standard

computational resources and were defined as “feasible in the

near future.” The current results fill this gap and provide a

quantitative argument for their hypothesis. A detailed analysis

of the structure and dynamics of the bonding network would

require the calculation of time correlation functions to explain in
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FIGURE 3
Particle number density calculated in the AdResS setup and compared to the density calculated in the reference simulations for three different
radii of the PI region, namely, r= 1 nm, r= 1.1 nm, and r= 1.22 nm. All three figures show sufficient agreement with the reference density. For r= 1nm,
despite a satisfactory agreement in theΔ region, the AdResS density close to the fullerene shows a slight disagreement with the reference density. For
r = 1.1 nm in the Δ region, the accuracy of the density with respect to the density of reference is slightly beyond the 5% threshold. r = 1.22 nm
shows satisfactory agreement over the whole range and the accuracy of the density in the Δ region is within 5% compared to the reference value. 5%
is usually considered a satisfactory threshold.

FIGURE 4
Bead–bead radial distribution functions for hydrogen–hydrogen (A), oxygen–hydrogen (B), and carbon–oxygen (C) calculated in the PI region
of AdResS and the equivalent subregion of the reference simulation. Since these curves are calculated only in a subregion, they are not normalized.
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detail the dynamics of the aggregation. Such a study, which

requires much longer trajectories and the careful use of the

thermostat only in regions where the dynamics is not

investigated, goes beyond the scope of the present study,

which aimed to characterize only the static structural

properties of aggregation. In this context, the effect of the

flexibility of the quantum model becomes evident in the

hydrogen–hydrogen radial distribution function (Figure 7).

The hydrogen atoms are the true quantum particles of the

systems. In their spatial correlation, the quantum

delocalization and the induced flexibility of the bonds are

clearly expressed. Within the range of 1.0 − 2.5�A, the well-

structured classical model differs from the quantum model, in

which the probability is spread across the whole range. Regarding

the technical advantages of the AdResS, the explicit

computational gain is still modest compared to its full

potential as the parallelization of the code is not yet optimized.

The straightforward comparison with full path integral

simulations currently leads to a factor 3. Although not yet

optimal, it is already a non-trivial gain as it reduces the

requested computational resources to one-third. This

difference becomes significant when a large number of

calculations are required, as shown in the present case for the

determination of the PMF. The additional advantages of this

method include the possibility of determining the maximum

distance required in a PMF by reducing the need to sample

distances that are not relevant but that cannot be excluded a

priori. Finally, the drastic reduction in the number of degrees of

freedom requires a much lower allocation memory, while full

FIGURE 5
Particle number probability distributions calculated in the PI region and the equivalent subregion of the reference simulation.

FIGURE 6
PMF for the path integral model using AdResS compared to
the reference full atomistic classical simulation. The PMF is
calculated as a function of the distance between the centers of
mass of the C60 molecules. The zero of each curve was
chosen to be the corresponding bulk solvation energy, that is, the
value of the PMF at the plateau.

FIGURE 7
Hydrogen–hydrogen radial distribution function for a pure
water system. The classical rigid model (black line) has a first
sharply localized peak, while the quantummodel (red line) spreads
the probability over 1 Å. Further effects are visible, although in
a light form, also beyond the intramolecular and first neighbor
molecule environment.
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path integral simulations would require so much memory that

would a priori prevent groups without significant computational

resources from performing such simulations.

Conclusion

We applied the open system MD technique based on the

AdResS protocol to study the aggregation of two C60 fullerene

molecules in water considering quantum nuclear effects. After

validating the simulation techniques and the corresponding

technical set-up, we determined the PMF as a function of the

centers of the mass distances of the two solutes. These

calculations were performed for the quantum case and for the

classical case where molecules are modeled as rigid objects. Only

purely repulsive interactions between water and the C60 molecule

were considered. In such cases, water-mediated effects have been

shown to play a major role. In the case of a potential with an

attractive part, this part would play a key role in the aggregation

process; thus, the role of the H-bonding network becomes negligible.

The difference in the PMF curve of aggregation was qualitatively

similar, that is, aggregation occurs without barriers. However,

quantitatively, the difference was sizable. This result can be

interpreted as the combined effect of the molecular flexibility and

the quantum delocalization of H atoms in the reorganization of the

H-bonding network in the quantum case. Thus, nuclear quantum

effects are very relevant in the aggregation process if a purely

repulsive fullerene–water potential is used to model the

interaction. From the methodological aspect, the results of this

study demonstrated that the open system MD approach can

significantly reduce the computational resource requirements,

thus permitting studies to be performed that would otherwise be

significantly more expensive.
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The seamless integration of human disease-related mutation data into protein

structures is an essential component of any attempt to correctly assess the

impact of the mutation. The key step preliminary to any structural modelling is

the identification of the isoforms onto which mutations should be mapped due

to there being several functionally different protein isoforms from the same

gene. To handle large sets of data coming from omics techniques, this

challenging task needs to be automatized. Here we present the MoNvIso

(Modelling eNvironment for Isoforms) code, which identifies the most useful

isoform for computational modelling, balancing the coverage of mutations of

interest and the availability of templates to build a structural model of both the

wild-type isoform and the related variants.
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1 Introduction

The spatial and functional diversity of the 20,465 protein-

coding genes (Howe et al., 20212021) (https://www.ensembl.

org/) in the human genome is dramatically augmented through

alternative splicing that results in an enormous number of

potential protein isoforms. Exact numbers are not fully

known but common estimates for total isoforms are in the

10X range (245,000 transcripts in https://www.ensembl.org/).

Alternative splicing can result in isoforms with relatively subtle

changes through to those that vary enormously in their

structure, function, and subcellular spatial expression (Park

et al., 2018).

Indeed, most functional (and dysfunctional) biochemical

processes are affected by the expressed isoforms, which

feature distinct functional roles. Examples of this complexity

include the neuroligin and neurexin families, which perform

synaptic regulatory functions that are surprisingly isoform

specific (Markwick et al., 2007; Slabinski et al., 2007). This

complexity may be increased by the addition of genetic

variants, which can directly influence the protein structure

and function of the isoform. Moreover, genetic variations can

also affect the splice mechanisms and change the isoforms

directly (Park et al., 2018), but this is not addressed in this study.

Further information, key to our understanding of genetic

diseases, is the availability of three-dimensional structures of a

protein. The structure of many human proteins is now available

by accurate - yet time-consuming (Markwick et al., 2007;

Slabinski et al., 2007) - experimental techniques (such as

X-ray diffraction, NMR and electron microscopy (Murata and

Wolf, 2018)). These accurate but demanding approaches are

complemented by fast (and more approximate) computational

predictions (Kuhlman and Bradley, 2019), including homology

modelling (Kuhlman and Bradley, 2019) and deep learning

techniques such as AlphaFold (AF) (Tunyasuvunakool et al.,

2021), based on experimental structural information of

evolutionarily related template protein(s) (Kuhlman and

Bradley, 2019). Unfortunately, all these methods do not

usually provide the isoforms most likely involved in the

process of interest.

Here we present a computational platform that selects

specifically the most useful isoform for molecular modelling

and provides structural information, in the context of

identified genetic variants. The presence of a variable number

of protein isoforms makes it challenging to assign each mutation

to a specific position in the protein sequence, which frequently

hampers a reliable assessment of the impact of the genetic

variations (including disease relevant mutations (Rees et al.,

2010; Kato et al., 2018)) on an isoform suitable for molecular

modelling. In other cases, a mutation is observed that is relevant

to a specific isoform, but the databases reporting mutations

related to a particular genetic disease usually lack a reference

to the specific isoform.

Given a set of mutations at the protein expression level, our

pipeline can correctly assign them to the corresponding isoforms

at the protein level, providing important information that can be

used for further investigations. The second key step of the

determination of the isoform most useful for molecular

modelling is achieved by combining the mutation-isoform

map with the sequence coverage of available structural templates.

2 The MoNvIso (Modelling
eNvironment for Isoforms) pipeline

The general workflow of MoNvIso is summarised in Figure 1

and proceeds according to three steps described inmore details in

the next subsections:

1) Step 1: check of the gene names provided in the input file,

identification of canonical and additional isoforms extracted

from the Uniprot database. In the input file a list of the

mutations of interest is also present.

2) Step 2: check of the modelling propensity and how properly

mutations are mapped on the available isoforms. The

availability of templates is supervised by MoNvIso, as well

as the association of the mutations to the appropriate

isoforms. MoNvIso highlights failures in this mapping

procedure, i.e., when mutations cannot be mapped on any

available isoforms.

FIGURE 1
MoNvIso’s flowchart.
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3) Step 3: Building of the structural model of the identified

proteins. Model of the wild-type (WT) forms and of their

variants (selected by MoNvIso according to Step 2) are built if

experimental structures are not already available for the

selected isoforms.

The selection procedure is based on a function, named

Selection, (Step 2) that casts two contributions as follows:

Selection � w1 · (Structural function)
+w2 · (Mutation function)

The two terms, Structural function and Mutation function
numerically translate the modelling propensity and the mapping

of the mutations on the available isoforms to accomplish the two

conditions. w1 and w2 are the weights of two terms. By default,

w1 = w2 = 10 but they can be adjusted by the user. Structural
function and Mutation function are described more in detail in

the Subsection Step 2.

Collections of input and output files for the proteins KRAS

and KDM5C are collected in example_p1. rar and example_p2.

rar, which can be downloaded at https://github.com/

MoNvIsoModeling/MoNvIso.

2.1 Step 1

MoNvIso checks the list of gene names and the set of point

mutations provided by the user. The mutations can be

indicated in the input file according to different formats:

three-letters or single letter names for the amino acids.

Additionally, spaces and tabs are also accepted to simplify

the creation of the list by the user. Every gene name is searched

against the Uniprot (Bateman et al., 2021) database, the results

are extracted from two files, namely uniprot_sprot.fasta,

which contains the aminoacidic sequence of the canonical

isoforms according to the classification of Uniprot, and

uniprot_sprot_varsplic.fasta collecting the sequences of the

remaining isoforms obtained from Uniprot (see

Supplementary Figure S1 for the list of folders and files

created by MoNvIso) .

2.2 Step 2

MoNvIso then performs an analysis on each isoform

extracted from the Uniprot entry (see Step 1) based on two

functions: 1) checking the modelling propensity and 2)

mapping of the mutations. A score is associated with each

function and the combination of the two is used to select the

isoform most suitable to be modelled. Independently on the

chosen isoform to be modelled, the information on the mapped

mutations onto all the isoforms is provided by MoNvIso. In

detail:

2.2.1 Checking the modelling propensity.
Each isoform is then processed according to a standard

procedure: A search for homologous sequences is performed

using BLAST API (Altschul et al., 1990), which allows users to

submit BLAST searches for processing through cloud service

provider(s) using HTTPS; and a multi sequence alignment

(MSA) is generated using COBALT (Papadopoulos and

Agarwala, 2007). Subsequently, based on the MSA, the

hmmsearch function of HMMER (version 3.3.2 http://hmmer.

org/) uses the HMM (Hidden Markov Model) (Baum and Petrie,

1966) to find relevant templates in the PDB. The 10 most similar

sequences for the identified PDB structures are downloaded and

the chains necessary for the homology modelling are extracted as

separate files. The extracted structures are cleaned from water

molecules, ligands, disordered atoms, and non-standard residues,

then aligned to the MSA and are made available to the user in a

folder (see Supplementary Figure S1).

The resulting structures are ranked by resolution and

sequence identity to find the most appropriate templates, thus

excluding crystals with poor resolution or with sequences that are

very different from the original query (see Section Limitations).

The default values of the sequence identity and resolution

thresholds are 25% and 4.5 Å, respectively. However, the

thresholds can be modified by the user. A further selection

criterion is applied by calculating the coverage of the input

sequence by the sequences of the templates. To this aim,

MoNvIso identifies the minimum number of templates

necessary to model the highest percentage of the target

sequence. For a given target sequence (for example, Isoform

1 = ADRRVLTY) and the set of templates identified as described

above (for example, Template A: AD, Template B: AD, Template

C: RRVLT, Template D: DRR), MoNvIso proceeds as follows:

1) Sorting of the templates according to the covered lengths, in

our case Templates A, B, D, C;

2) Checking if the given sequence is covered by more than one

template or by a combination of templates. In our case,

Templates A and B cover the same portion;

3) If a single template covers the target, then this template is

considered (which is not the case of our example);

4) If the target is covered either by a longer template or by a

combination of other templates (with at least one covering

extra portions of the protein), the proper selection is

considered. In our example, this is accomplished by the

combination of Templates A and C, being the choice

between Templates A and B only dictated by the

alphabetical order.

The described procedure is applied by MoNvIso to entire

sequences or portions of them and to all the possible additional

isoforms (our example deals with a second isoform, Isoform 2 =

ADRKVLTY). Note that information about covered sections and
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associated templates are stored in the covered_intervals file

produced by MoNvIso.

Starting from the above description, the term Structural
function in Eq. 1, accounts for the availability of

crystallographic data defined as the number of amino acids

(AAs) that are covered by a template (or a combination of

templates) over the total number of AAs constituting the isoform

Structural function � (CoveredAA)
(Total AA) (2)

In the above example, for Isoform 1 we have Total AA =

8 and Covered AA = 7, resulting in a Structural function = 0.875,

while for Isoform 2 the values of Covered AA and Structural
function are 6 and 0.750, respectively.

2.2.2 Mapping of the mutations
The second term of Eq. 1, Mutation Function, considers the

entire list of mutations provided for the considered gene, thus

pinpointing to the isoform most suitable for homology

modelling. Our program maps all mutations onto the

appropriate isoform and increases by one the numerator,

Mutating AA that can be modelled, if the mutated residue can

be correctly located in the isoform sequence. The contribution of

matched mutations to the selection function is evaluated as follows:

Mutation function � (MutatingAA that can bemodelled)
(MutatingAAfound in at least 1 isoform)

(3)

According to our example, for the three mutations T2A, R3A,

R4L, MoNvIso highlights that the first mutation T2A is not

mapped on the two present isoforms, while it evaluatesMutating
AA that can be modelled equal to two and one for Isoforms 1 and

2, respectively.Mutating AA found in at least one isoform is two

for both isoforms, Mutation function (Isoform 1) = 1, and

Mutation function (Isoform 2) = 0.5.

For each gene and each isoform, the resulting Selections are
reported in the report. log file. Moreover, this file contains a

report on all mutations inserted in the input file, that is, i) the

mapped mutations, ii) on which isoform they were mapped and

iii) mutations not associated with any isoforms, together with iv)

the isoform most suitable to be modelled (see Supplementary

Figure S2). In our example, the selected isoform to be modelled is

Isoform 1 with Selection = 18.75.

2.3 Step 3

Structural models for the selected isoform in itsWT form and

in all the variant(s) associated with the properly mapped

mutation(s) are then created by using the MODELLER

program (Webb and Sali, 2016) based on the sequence

alignment obtained in the previous step. Regions not covered

by the templates are not considered. The models are then ranked

by the DOPE score (Shen and Sali, 2006), andMoNvIso yields the

top ranked one (the list of all the models with their DOPE score is

in the file MYOUT. dat, see SI for the list of all the files generated

by MoNvIso and their location). The modelling of the variants is

then performed by taking the MODELLER input file containing

the WT sequences of the templates and replacing the mutated

AAs in the sequence. MODELLER is then run again to produce

the model of the variant(s). This can be useful for mapping the

position of mutations on a three-dimensional structure, allowing

the study not only of the mutated residue but also of the amino

acids in its vicinity and with which the mutated residue may be in

contact.

3 Strengths

Our pipeline exploits a series of tools tailored to manage large

sets of proteins. Useful information is provided at each step of the

run so that decisions taken by the pipeline can be audited. In the

case of a failure of the pipeline to provide a satisfactory structural

model, the file report. csv traces the mutations on all the isoforms

and provides an easy way to identify the isoform mapping the

largest number of mutations. The previously mentioned report.

log file is also important. This file contains all the data that would

otherwise have to be manually collected such as the number of

isoforms for a gene, the location of the mutations, which

mutations cannot be mapped on any known isoform and

finally the values of the selection functions. These data can

provide a useful starting point if the user needs to manually

model the protein. For example, the user, upon data retrieval, can

also decide if another isoform should be prioritised because of a

mutation of particular interest not present in the isoform selected

by the program. Regarding the modelling part of the protocol, the

final alignments, the used templates with detailed information on

the selection process as well as the coverage are made available to

the user, as specified thoroughly in Section 2. Although the

process of building the variants can be time consuming if

many of them need to be built, this part is fully automated. In

most of the tested cases the models built showed a high quality

and can be used for further studies (see Section Results). Thus,

our pipeline reduces the time necessary to model a large number

of proteins by automating the slowest parts of the process

including the search for isoforms, the mapping of mutations,

the search for crystallographic data to use as templates and the

building of the alignments.

4 Limitations

As with any modelling study, also our method presents

limitations. MoNvIso does not model the parts of the protein

that are not covered by templates. The solution implemented in

the program is the modelling of the single domains, although this
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implies the uncertainty on reciprocal orientations of the

domains. An additional drawback is the possible presence of

several small portions that can be modelled but are interspersed

by regions not covered by templates. In some cases, the search for

templates with HMMER does not return any result (depends on

HMMER’s servers). When several successive searches for

homologues are queued on BLAST, a slowdown of the runs

may occur. Multiple point mutations coexisting on the same

proteins are not modelled by MoNvIso concurrently. Rather,

MoNvIso provides a series of structural models of single amino

acid variants for pairwise comparison. Finally, MoNvIso selects

the most useful isoform based on available structural data and

mutation coverage but there is no guarantee this is the most

functionally relevant one in every case.

5 Case studies

We tested MoNvIso on a set of 70 proteins. A corresponding

257 human isoforms were extracted from the Uniprot database

and relative mutations obtained from the relative Uniprot

webpage, with a maximum cap of five mutations per protein.

The genes and mutations considered are listed in the file

mutations.txt provided in Supporting Materials. For all

selected proteins MoNvIso was able to produce the alignments

and to map the mutations onto the identified isoform. It

successfully located, retrieved, and edited the templates to

generate the WT structural models as well as the variants,

when the identified mutations were in the modelled portions.

Out of the 70 proteins we modelled, 53 WT models could be

compared against equivalent ones available in the AF database

(DB) (https://alphafold.ebi.ac.uk/). This was done by extracting

from the AFmodel the part of the sequence that wemodelled and

performing an RMSD analysis on the Cα.
For the remaining 17 proteins (BCL11A, CACNA1B,

CAMKK1, CAMKK2, DNMT1, FMR1, GABRB3, GRIK2,

GRM5, PLXNB1, SCN2A, SLC17A8, SNAP25, STX1A, SYN1,

SYT1, TAF1), such comparison was not feasible because the

isoform selected by MoNvIso was not the canonical one as

considered by AF and was not sufficiently similar for direct

comparison, i.e. the number of Cα was different. For a further

13 proteins out of 70 we modelled an isoform different from the

canonical sequence but the RMSD comparison with the AF

models was possible because the changes were localised in

region not covered by templates.

Thus, for a total of 30 proteins out of 70 mutations are best

modelled on non-canonical isoforms. The results of the

comparison are presented in Supplementary Table S1 together

with the amount of residue for which AF has a high or very high

confidence (pLDDT score >70) about their position. The genes
are ordered from the one with lowest RMSD value to the highest.

According to Supplementary Table S1, 44 out of 57 (77%) models

present an RMSD below 20 Å, and a visual inspection reinforces

the validity of our results, since the larger RMSD values in this

group are mainly due to small, disordered loops. In the group of

models with RMSD above 20 there are subunits assuming

different orientations in both MoNvIso and AF structures.

When comparing the number of AA with a high or, very

high, confidence score, we see that in most of our results

(46 out of 57), the modelled portion retains at least 50% of

these residues.

As an example, we show two structures in Figure 2: the

proteins GRIN1 (Glutamate receptor ionotropic, NMDA one;

also known as GluN1; Uniprot #Q05586) and GRIN2B

(Glutamate receptor ionotropic, NMDA one; also known as

GluN2B; Uniprot #Q13224). These two transmembrane

FIGURE 2
Comparison between the ribbon representations of
GRIN1 (A) and GRIN2B (B)model structures generated with AF (left
panels) and MoNvIso (right panels). The ribbons are colored from
blue to red going from the N- to the C-terminal.
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proteins are subunits of the N-methyl-D-aspartate (NMDA)

glutamate receptor complex, which contribute to excitatory

transmission in the brain. In the first case both AF and

MoNvIso produce similar results that differ only in the

domains for which no templates are available, but still

modelled by AF. Examples of these domains are the

C-terminal part, starting from K866 to S938 and the

N-terminal helix (residues M1 to D23) that are modelled by

AF and not by MoNvIso (see top left and bottom right in

Figure 2A, respectively). These two portions of the sequence

are not considered by MoNvIso (see Step 3) since there are no

available templates to correctly model them, but AF does attempt

to model the whole chain. This leads to portions of the model

with low or very low confidence scores (calculated by AF), and

which corresponds to a pLDDT between 0 and 70, meaning that

those parts of the model are generally unreliable.

The results for GRIN2B (see Figure 2B) demonstrate the

differences between AF and MoNvIso predictions. AF

successfully models the N-terminal part of the protein but

fails to correctly build the trans and intra-membrane domains,

which are then added as loops twisted around the correctly

modelled section of the protein. Once again, the portions that

are missing from the PDB database are poorly modelled. Since

AF has been trained on the PDB dataset (Tunyasuvunakool et al.,

2021), it still relies on available crystallographic data to correctly

model structures. Thus, transmembrane domains such as those

of GRIN2B, which are underrepresented in that training set

because of the scarcity of experimentally determined

structures of transmembrane proteins and their complexes

(Kermani, 2021), may fail to be correctly built. In turn,

MoNvIso automatically recognises the parts of the protein

that can be modelled with confidence. As a result, MoNvIso

cuts out of the sequence the extra AAs that cannot be modelled,

producing a model ready to be used for further analysis.

6 Conclusion

Dissecting the impact of point mutations in the function of

a protein are often hindered by a lack of an appropriate

mapping of the mutation onto the correct isoform of a

protein, of the identification of isoform(s) useful for

molecular modelling, and of the associated building of a

reliable structure. This knowledge is important because

different isoforms of proteins can have widely differing

functional roles and spatio-temporal expression profiles. As

genomic variants associated with human traits and/or disease

are being discovered at an increasing rate, approaches to link

them to isoforms and find reliable structural models are

urgently needed. MoNvIso addresses these two aspects:

mapping a set of point mutations (provided by the user) on

known isoforms, along with selecting the isoform most suitable

to be modelled. The prediction of the structural models for the

WT isoforms and their variants is automated, making MoNvIso

appropriate for high-throughput investigations. Although

several platforms to provide accurate structures of a protein

are available and routinely used (Yang et al., 2014; Webb and

Sali, 2016; Waterhouse et al., 2018), surprisingly few of them

can be implemented in a pipeline (Webb and Sali, 2016) to

automate the modelling of multiple different proteins.

Therefore, our protocol combines this final step with the key

preliminary assessment of the isoform mapping correctly the

mutation of interest. Importantly, all steps of our protocol yield

results that can be used at different stages by the user: the

identification of specific isoforms containing residues involved

in selected mutations is per se a remarkable clue for genetic

assessment of the impact of isoforms, especially by handling a

large number of proteins and point mutations; the set of the

templates eventually identified by MoNvIso with the section of

the target protein covered by them are made available to the

user; finally, the structural predictions represent a valuable

starting point for additional refinements and investigations,

such as molecular dynamics simulations (Raval et al., 2012;

Hollingsworth and Dror, 2018; Lazim et al., 20202020; Miller

and Phillips, 2021; Itoh and Okumura, 2022), hot spots

evaluation (Murakami et al., 2017; Liu et al., 20182018;

Rosell and Fernández-Recio, 2018; Rosensweig et al., 2018),

protein-protein docking (Kangueane and Nilofer, 2018; van

Noort et al., 2021) and more (Poelwijk et al., 2016; Rivoire et al.,

2016; Salinas and Ranganathan, 2018). Finally, note that for

isoforms without good quality-templates, users could choose to

use predicted structures such as those provided by AF and

RosettaFold (Baek et al., 2021) or other modelling packages

and/or protocols to build their own structural models using the

isoform(s) correctly associated with the selected point

mutations.

The test of MoNvIso on a set of proteins and the comparison

with the results of AF confirms the validity of our approach.

Additionally, our computational protocol can be easily inserted

in a pipeline suitable to perform extensive campaigns of

investigation on protein-protein interactions. MoNvIso is

particularly useful to evaluate the availability of templates for

large sets of proteins and automatically selecting the isoform

most suitable to be modelled containing the point mutations of

interest. MoNvIso is freely available and can be downloaded from

GitHub at the following link: https://github.com/

MoNvIsoModeling/MoNvIso, implemented in Python 3.8 and

tested on version 3.0, 3.7 and 3.9 and supported on Linux.

Key points

1) We have developed a computational protocol to map

mutations on appropriate isoforms of protein.

2) The protocol identifies the available templates on which

mutations can be located.
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3) Ranking of the isoforms based on the number of located

mutations and the template coverage.

4) Structural models are built for the WT and mutated isoforms

if reliable templates are available.
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Generating a conformational
landscape of ubiquitin chains at
atomistic resolution by
back-mapping based sampling
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Ubiquitin chains are flexible multidomain proteins that have important biological
functions in cellular signalling. Computational studies with all-atom molecular
dynamics simulations of the conformational spaces of polyubiquitins can be
challenging due to the system size and a multitude of long-lived meta-stable
states. Coarse graining is an efficient approach to overcome this problem—at the
cost of losing high-resolution details. Recently, we proposed the back-mapping
based sampling (BMBS) approach that reintroduces atomistic information into a
given coarse grained (CG) sampling based on a two-dimensional (2D) projection of
the conformational landscape, produces an atomistic ensemble and allows to
systematically compare the ensembles at the two levels of resolution. Here, we
apply BMBS to K48-linked tri-ubiquitin, showing its applicability to larger systems
than those it was originally introduced on and demonstrating that the algorithm
scales very well with system size. In an extension of the original BMBS we test three
different seeding strategies, i.e. different approaches from where in the CG
landscape atomistic trajectories are initiated. Furthermore, we apply a recently
introduced conformational clustering algorithm to the back-mapped atomistic
ensemble. Thus, we obtain insight into the structural composition of the 2D
landscape and illustrate that the dimensionality reduction algorithm separates
different conformational characteristics very well into different regions of the
map. This cluster analysis allows us to show how atomistic trajectories sample
conformational states, move through the projection space and in sum converge
to an atomistic conformational landscape that slightly differs from the original CG
map, indicating a correction of flaws in the CG template.

KEYWORDS

molecular dynamics simulations, dimensionality reduction, back-mapping, coarse graining,
clustering, ubiquitin, polyubiquitin

1 Introduction

Nowadays molecular dynamics (MD) simulation is a well established tool to investigate
proteins and protein complexes at atomistic resolution. However it can still be computationally
very expensive to obtain convergent MD trajectories for larger protein systems consisting of
several thousand atoms. One typical way to overcome these limitations is to use coarse graining.
Here, the number of degrees of freedom is significantly reduced by combining multiple atoms
into one “super-atom” or “bead”.
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We used coarse grained (CG) MD simulations to study a chain of
ubiquitin (Ub) proteins. Ub consists of 76 amino acids and plays an
important role in cellular signaling. In a process called “ubiquitylation” an
isopeptide bond is formed between a lysine group of a substrate protein
and the C-terminal carboxylate group of an Ub molecule. Starting from
this first Ub molecule other Ub moieties can be attached to form poly-
ubiquitin chains (Ub-chains) of various lengths. The first attached
ubiquitin offers eight potential linkage-sites: the N-terminal
methionine (M1) and seven lysine residues (K6, K11, K27, K29, K33,
K48, K63). Depending on the involved linkage-sites, chain length and
topology, Ub-chains signal their substrate proteins for different functions,
e.g., DNA damage tolerance or proteasomal degradation. (Pickart and
Eddins, 2004; Komander and Rape, 2012).

To understand and explain differences in the physiological
behavior of polyubiquitin chains one needs tools to characterize
their conformational space. This is a challenging task due to a very
dynamic behavior of Ub-conjugates and their conformational
diversity. Thach et al. (2016) CG MD simulations in combination
with dimensionality reduction and clustering techniques can be used
to obtain a detailed description of the statistical ensemble of
configurations populated by Ub-chains. Recently Berg et al. (2020)
used a modified MARTINI v2.2 (Marrink et al., 2007; Monticelli et al.,
2008; de Jong et al., 2013) CG force field and machine learning to
describe and compare conformational spaces of di- and tri-Ub linked
via all eight linkage-sites as well as free ubiquitins. Coarse graining
massively speeds up the exploration of the phase space, but can
potentially lead to inaccuracies. To assess the results of the CG
sampling of tri-Ub we conducted extensive atomistic simulations
(4 µs of simulation time in total) of K48-linked tri-Ub-chains
starting from an extended conformation. We compared the phase

spaces of CG and atomistic simulations by projecting all data to the
same two-dimensional space (see Figures 1A,B, details on the
projection method are given in Section 2).

Already at first sight, the comparison reveals that while the
atomistic proteins quickly evolved from the extended starting
conformation to more compact structures with contacts between
the Ub-domains, large parts of the CG conformational space was
not sampled during the 4 µs of atomistic simulations.

Out of the 40 brute-force atomistic simulations only two sampled
the area in the middle of the map, corresponding to a completely
collapsed conformation (see Figure 1B). In order to get a better
understanding of the meaning of the different regions of the map,
in particular those visited by the CG model but not the atomistic one,
we colored the projection of the CG simulations based on the pairwise
distance between the centers of geometry (CoG) of the three Ub
moieties (Figures 1C–E). The conformational landscape can roughly
be divided into three parts, which are separated by a “T”-like shape of
more frequently sampled areas: the upper-right part represents
conformations where the first and second Ub moieties are in close
contact; the lower-left side contains conformations with close contacts
between the second and third moieties; and lastly there is a gradient in
terms of the distance between the first and the third moiety from the
upper-left hand side to the lower-right hand side.

Now the question arises whether the fact that the atomistic
simulations do not visit substantial parts of the CG conformational
space results from insufficient length of the atomistic simulations or
unphysical conformations produced by the CG model. One method
that is very well suited to address this question is back-mapping based
sampling (BMBS) (Hunkler et al., 2019).We introduced this technique
by analysing a rather drastically coarsened model of oligopeptides. The

FIGURE 1
2D projections of K48-linked tri-Ub trajectories from coarse grained (Berg et al. (2020)) (A) and two independent sets of atomistic simulations (B). (B) The
atomistic simulations are colored based on free energy values, the CG map is gray and the same as in (A); three exemplary conformations from the atomistic
simulations and their location in themap are illustrated. A red sphere is attached to the first residue, indicating the proximal unit, and a green sphere is attached
to the last residue, indicating the distal moiety. (C–E) 2Dmap colored by the center of geometry (CoG) distance between two of the three Ubmoieties in
the CG simulations.
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application of BMBS allowed to reintroduce atomistic and dynamic
information to the studied systems as well as to correct inaccuracies in
the CG sampling. The core idea behind the method is the following: by
navigating in two-dimensional free energy landscapes of very
efficiently produced CG ensembles, selected conformations can be
back-mapped to higher (e.g., atomistic) resolution to start new short
explorative atomistic simulations in order to sample all of the
accessible phase space as fast as possible. The convergence/
divergence of the initial CG and obtained BMBS-guided atomistic
landscapes is monitored quantitatively using a selected metric (earth
mover’s distance (EMD) (Applegate et al., 2011)). Details are given in
Section 2.2 and (Hunkler et al., 2019).

In the following we show how the BMBS algorithm can be used
to resolve the question whether the discrepancies between the CG
and atomistic landscapes stem from insufficient atomistic sampling
or from a major flaw in the CG model. Moreover, we demonstrate
here that BMBS is applicable to much larger systems compared to
the ones it was introduced on. We extend the originally introduced
BMBS scheme with analysis of the influence of the initial weights/
biases of the back-mapped configurations used to start the
atomistic BMBS simulations. We also perform detailed analysis
of the atomistic ensemble obtained with BMBS applying a newly
introduced clustering scheme Hunkler et al. (2022).

2 Methods/Computational details

2.1 Simulation details

All atomistic simulations were performed using either the
2016.4 or the 2020.4 version of the GROMACS package (Bekker
et al., 1993) with a modified GROMOS 54A7 force field (Schmid et al.,
2011) and the SPC/E water model. The force field was altered by the
introduction of an isopeptide bond, to be able to simulate the
covalently linked Ub moieties. Furthermore the following settings
were used: the time step was set to 2 fs, the temperature was set to
300 K using the velocity rescale thermostat and the pressure was set to
1 bar with the Parrinello-Rahman barostat. As an integrator
algorithm, the leap-frog algorithm was used. Long range
interactions were computed with the particle mesh Ewald method,
where a Fourier grid spacing of .16 nm and a pme-order of 4 were
used. For Coulomb and van-der-Waals interactions, a cutoff of 1.4 nm
was used. In order to constrain all bonds, the LINCS algorithm was
applied.

For the CG simulations a modified MARTINI force field was used
(based on MARTINI v2.2) (Marrink et al., 2007; de Jong et al., 2013)
where protein-water interactions were increased to avoid proteins
being too sticky. TheMARTINI non-polarizable CG water was used as
the solvent. The temperature was set to 300 K using the velocity rescale
thermostat, pressure was kept at 1 bar by the Parrinello-Rahman
barostat. The Verlet cut-off scheme was applied, the LINCS algorithm
was utilised for bond constraining and the leap-frog integrator was
used. A 10 fs time step was used due to the soft elastic network
potentials (IDEN) (Globisch et al., 2013). The cutoff distance for
short-range van-der-Waals interactions was set to 1.1 nm, and
electrostatics were treated by the reaction field method with a
cutoff distance of 1.1 nm and a dielectric constant of 15. For more
details on how the MARTINI force field was modified see Berg et al.
(2018).

2.2 Back-mapping based sampling

The back-mapping based sampling (BMBS) algorithm (Hunkler
et al., 2019) was used to efficiently reintroduce atomistic resolution to
CG simulations and is shortly summarised here. BMBS uses a low-
dimensional projection of CG free energy surfaces to initiate new
atomistic simulations and consists of the following steps: 1) CG
simulations are projected to a two-dimensional landscape; 2) a
number of selected CG structures are back-mapped to full
resolution atomistic level; 3) new short atomistic simulations are
run from the selected structures to rapidly explore the phase space;
4) convergence or divergence is monitored by comparing CG and
atomistic probability distributions in low-dimensional space. Those
steps rely on five main components: high-dimensional collective
variables (CVs) applicable to both CG and atomistic
configurations, a dimensionality reduction scheme, a method to
select starting configurations from the CG ensemble (seeding), a
back-mapping strategy and a statistical metric to monitor
convergence. All of them are described below.

2.2.1 Collective variables: Residue-wise minimal
distances

In principle many different CVs/feature sets can be used in
combination with the BMBS workflow. The specific choice of a CV
is almost exclusively dependent on the given system. The only
requirement regarding the CV is that it has to be able to describe
the system in both resolutions (in the atomistic and the CG model).
Therefore it must rely on coordinates that are present in both models.
The CVs which we use here to describe and analyse the tri-Ub system
are the residue-wise minimal distances (RMD). It has been shown
before that the RMD are very well suited to describe the domain-
domain configurations in ubiquitin chains since they are sensitive to
the protein interfaces and to the distances and relative orientations of
the domains (Berg et al., 2018; Berg and Peter, 2019; Berg et al., 2020).
For one conformation of tri-Ub such a CV is a 432 dimensional vector,
which contains the minimal distances of each of the 72 Cα atoms (the
highly flexible residues 73–76 of ubiquitin were not considered) of
each Ub domain to any Cα atom of each of the other moieties. This set
of internal coordinates describes a distance as well as a relative
orientation of individual ubiquitin moieties towards each other and
can be applied to both atomistic as well as CG systems (if a backbone
bead is present at any Cα location).

In order to describe the RMD vector of tri-Ub, the distal, middle
and proximal moieties are abbreviated as A, B and C. In this notation
“proximal” refers to the moiety with a free C-terminus with which the
chain can be linked to the substrate and “distal” denotes the terminal
moiety which is linked by its C-terminus to the middle Ub-unit. These
three domains can be formulated as A = (a1, a2, a3, . . . , an), B = (b1, b2,
b3, . . . , bm) and C = (c1, c2, c3, . . . , co), where ai, bj and ck are positions
of the Cα or the backbone beads respectively. Then pairwise distance
matrices DA,B, DB,C and DA,C are computed. By taking the minimum
values in each respective row and column the vectors of the residue-
wise minimum distances between all three moieties (AB, BA, BC, CB,
AC, CA) are calculated. Those vectors are then concatenated to one
high-dimensional representation (432 dimensions) of the considered
tri-Ub conformation, the RMD vector. All CG configurations are
projected to two dimensions by using their RMD vectors as input
features for the dimensionality reduction method encodermap (Lemke
et al., 2019; Lemke and Peter, 2019).
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2.2.2 Dimensionality reduction: Encodermap
Encodermap (Lemke et al., 2019; Lemke and Peter, 2019) utilizes an

autoencoder architecture but adjusts the autoencoder loss function by
adding a multidimensional-scaling-like loss term [Equations 1 to (Eq. 3)].
This additional loss function transforms all distances by a sigmoid
function (Eq. 4) and is termed as sketch-map loss due to its
connection to the sketch-map dimensionality reduction method
Ceriotti et al. (2011). The sketch-map loss function enables
encodermap to reproduce the connectivity between high-dimensional
data points in a 2D map, meaning that conformations with similar high-
dimensional CVs are also located close to each other in the 2D projection.
Furthermore, the autoencoder architecture enables the method to project
huge amounts of data in a very short time.

Lencodermap � kaLauto + ksLsketch + Reg (1)

Lauto � 1
N

∑
N

i�1
D Xi, ~Xi( ) (2)

Lsketch � 1
N

∑
N

i≠j
SIGh D Xi, Xj( )( ) − SIGl D xi, xj( )( )[ ]2 (3)

Here, ka, ks are adjustable weights, Reg is a regularization used to
prevent over-fitting; N denotes the number of data points to be
projected; D (·, ·) is a distance between points, X is the high-
dimensional input vector, x is the low-dimensional projection (the
bottleneck layer); SIGh and SIGl are sigmoid functions of the form
shown in Eq. 4,

SIGσ,a,b D( ) � 1 − 1 + 2
a
b − 1( ) D

σ
( )

a

( )
−b
a

, (4)

where a, b and σ are parameters defining the range of distances to
preserve.

Once the network has been trained, the encoder works as a
mathematical function that maps the high-dimensional inputs to
the low-dimensional projection. In this mapping function lies one
of the main advantages of the encodermap algorithm, namely the
extremely efficient projection of additional high-dimensional input
data points to the low-dimensional space.

Since the encodermap method is non-linear, the axes of the
resulting 2D space do not necessarily allow a physical
interpretation in terms of order parameters. Therefore we chose to
omit the x- and y-axes for all 2D plots shown in this manuscript.
Adding these axes would in our opinion rather mislead the reader than
help in understanding the figures.

Similar to the choice of CVs, a different dimensionality reduction
method can be chosen to be used with the BMBS workflow. However,
such a method should fulfill a few requirements. First it has to be
possible (and preferably fast) to project additional data points to the
low-dimensional space. And secondly the method should be able to
separate different structures reliably in the low-dimensional space (2D
or 3D if one wants to visualize the projection). Encodermap performs
remarkably well in both of these tasks and is extremely efficient in
projecting data once it is trained.

The parameters for encodermap used in this work are given in
Table 1. We used encodermap version 2.0.1 and its implementation
from https://github.com/AG-Peter/encodermap.

2.2.3 Seeding
The obtained two-dimensional projection of the CG ensemble is

used to seed new short atomistic MD simulations from back-mapped
CG structures. If the starting conformations are chosen properly, it
takes the BMBS simulations only a fraction of the simulation time
compared to a standard MD to sample a comparable amount of the
available phase space. In the original BMBS paper Hunkler et al. (2019)
the starting configurations were chosen based on the minima in the
two-dimensional CG landscape (Figure 2A). In this paper we want to
explore in more details different seeding strategies and study their
influence on the BMBS performance. In addition to the original
seeding method, which we call here minima-focused, we test
Boltzmann-weighted and uniform seeding (see Figure 2).

For the minima-focused seeding we chose the starting structures
to replicate the deepest free-energy minima of the CG 2D distribution
and their weighting as well as possible. To achieve this we applied a
binning to the 2D CG space and created a list with the most populated
bins. Then we randomly chose a data point from the highest populated
bin and repeated this until the percentage of starting structures from
this bin approximately matched the percentage of data points in this
bin. This procedure was reiterated for all the most populated bins until
a predefined number of starting conformations (50 in this paper) were
obtained.

The Boltzmann-weighted seeding was chosen to also include rare
conformations in the starting structures. We binned the 2D space as
before but randomly picked one bin and accepted or rejected this bin
with a Monte Carlo criterion (a probability proportional to the bin’s
population). A random data point from the accepted bin was chosen as
a starting structure and the process was repeated until 50 data points
were selected. Such a procedure allowed us to include rare
conformations and retain as well as possible the original CG
distribution given a very limited sample size (50 points).
Theoretically with a much larger sample size this procedure would
converge to a random selection of starting configurations from the full
high-dimensional configuration space.

Lastly we chose a uniform seeding (with uniform referring to a
uniform distribution in the 2D space). We again used the same
binning as before and randomly chose one bin. From this bin one
data point was randomly selected and the bin was then removed from
the pool of available bins (the removal of a bin becomes important if
the number of chosen data points approximates the number of
available bins). This was again repeated until 50 starting points
were selected.

The results of different seedings are compared in Section 3.1.

2.2.4 Back-mapping
In the main part of the original paper the back-mapping was done

by taking an atomistic structure with CVs similar to a target CG
structure. Then an external restrictive potential was applied to the

TABLE 1 Encodermap parameters used to generate the 2D projection shown in this work.

Encodermap parameters Nsteps Nlayers Nneurons σhighD A B σlowD a b ka ks

Values 10,000 3 300 20 12 10 1 2 10 1 500
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atomistic structure during an energy minimization step in order to
force its conformation to retain the CVs of the CG target. In this work
we used CG trajectories generated with the MARTINI model and thus
applied the “backward” (Wassenaar et al., 2014) script to reintroduce
an atomistic resolution into selected CG structures.

2.2.5 Statistical metric: Earth mover’s distance
Tomonitor a similarity between two conformational phase spaces,

e.g., a CG and atomistic sampling, we use the earth mover’s distance
(EMD) (also known as Wasserstein’s metric or Mallows distance). It is
a metric that describes how similar or dissimilar two given
multivariate distributions are. For a formal definition of the
method see e.g., Applegate et al. (2011). In order to be able to
quantitatively compare the EMD values we use unity-based
normalized EMDs. This implementation of the EMD brings all
values into the range (0,1) (Eq. 5).

EMD′ � EMD −min EMD( )
max EMD( ) −min EMD( ), (5)

with min(EMD) = 0 and max(EMD) = 1.62. The coefficient max
(EMD) is hereby defined as the EMD for the comparison of the CG 2D
projection with a uniform rectangular 2D distribution with the same
amount of data points. The dimensions of this 2D rectangular area are
given by the minimum and maximum x and y values of the CG
projection. By implementing the EMD in such a way, a value of
0 means that two given distributions are exactly identical and a value
of 1 means that two distributions are as dissimilar as the CG projection
compared to a uniformly distributed data set. In order to compute the
EMDs we used the python implementation pyemd v0.5.1 (Pele and
Werman, 2009).

2.3 Clustering scheme

To analyse atomistic ensembles of such complex systems as tri-Ub
we use a recently introduced clustering scheme which can effectively
work with large amounts of high-dimensional data Hunkler et al.
(2022). In this iterative clustering workflow we use HDBSCAN
(Campello et al., 2015) as the clustering algorithm and combine it

with two different dimensionality reduction algorithms, namely cc_
analysis (Diederichs, 2017) and encodermap (Section 2.2.2).
HDBSCAN is a hierarchical density-based clustering algorithm
which is able to find clusters of different shapes and densities
requiring only a small number of input parameters (at least one).
The cc_analysis is a multidimensional-scaling-like method that
minimizes the differences between Pearson correlation coefficients
of high-dimensional data points and the scalar product of low-
dimensional vectors representing them.

In this clustering workflow the probability density in the cc_
analysis projection is used as the clustering space (intermediate
dimensionality; usually between 10 and 40 dimensions), while the
2D encodermap space is utilized to efficiently process large data sets
and assign additional conformations to already identified clusters. The
provided data set is clustered iteratively until a specified amount of
conformations is assigned to clusters or until a specified amount of
clustering iterations have been performed. In the process of assigning
conformations to clusters a root-mean-square deviation (RMSD)
cutoff of Cα atom positions is used to obtain conformationally very
defined clusters.

For applying the clustering scheme to the tri-Ub system we set the
HDBSCAN parameters “min_cluster_size” and “min_samples” to
80 and used an RMSD cutoff distance of 3 Å. The clustering
scheme was run for three iterations.

3 Results and discussion

3.1 BMBS

We applied the BMBS method to the K48-linked trimer of
ubiquitin with three different seeding algorithms: minima focused,
Boltzmann weighted, and uniform (see Section 2.2.3 for detailed
description). In each case we chose 50 starting points. For every
starting structure we ran an atomistic MD simulation for 50 ns with a
cumulative simulation time of 2.5 µs for each seeding. The location of
the 50 starting points is shown in Figure 2. The BMBS simulation
trajectories were projected to the original CG landscape and can be
seen in Figures 3A–C. These three maps show that the choice of

FIGURE 2
Seeding strategies used in this paper: (A) minima focused (red points), (B) Boltzmann weighted (blue points), (C) uniform (green points). Each seeding
consists of 50 back-mapped conformations. Their projections are shown on the original CG landscape (gray gradient, same as in Figure 1 (A)).

Frontiers in Chemistry frontiersin.org05

Hunkler et al. 10.3389/fchem.2022.1087963

44

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1087963


starting points heavily influences the resulting conformational space (a
detailed analysis of the obtained conformations and their spreading in
the 2D projections is discussed in Section 3.3).

The BMBS with all three seedings visited the bottom part of the
CG 2D map which was not sampled by the two initial 4 µs atomistic
simulations (compare to Figure 1B). Notably the uniformly seeded
trajectories retain the “T” shaped arrangement of free-energy minima
of the original distribution even though only few of the starting
conformations were selected in those parts of the map. This
indicates a rather quick progression of the trajectories that were
seeded near the rims to the center part of the 2D projection.

A purely visual comparison of the obtained maps can be
misleading as it is important to not only cover the CG phase space
but to properly sample the free energy minima. For a quantitative
comparison of such two-dimensional distributions we use the EMD,
which fits perfectly into the BMBS workflow. The EMD is not sensitive
to bin sizes (can be applied for comparing different histograms), is
symmetric, and is more sensitive to similarities in highly populated
regions than to the rarely populated ones. The EMD values comparing
the original CG projection with the time evolution of the differently
seeded BMBS projections are shown in Figure 3D. Contrary to visual
perception, the EMD plot shows that both the minima-focused and
Boltzmann-weighted seedings produce atomistic ensembles whose
projections resemble the CG target map much better (an EMD
value of .13 after 50 ns of simulation time of the individual runs)
than the projection of the uniformly seeded trajectories (.179). On the
other hand, the uniformly seeded BMBS approaches the CG
distribution very quickly, especially in the first 10 ns of individual
simulation time. To put these EMD values into perspective, the
comparison of the projection of the initial 4 µs atomistic
simulations to the CG distribution gives an EMD of .815.

Therefore we can address the initial question on the reason of the
discrepancy between the CG and atomistic ensembles. By applying the
BMBS algorithm to the K48-linked tri-ubiquitin, we obtained
150 atomistic BMBS trajectories which provide enough evidence to

confidently say that the CG ensemble does not include a large amount
of unphysical conformations. Given enough simulation time, the two
initial atomistic trajectories would most likely also have sampled the
conformations that reside in the lower parts of the 2D map.

The generation of these new atomistic trajectories is however only
one aspect of the BMBS algorithm. Another part is the monitoring and
comparison of the 2D histograms which develop over time. This
analysis is provided in the next section.

3.2 EMD monitoring

In order to analyse the temporal/chronological development of the
BMBS compared to the CGmap we extracted 2D projections of BMBS
trajectories for different sampling times. We chose to generate one
histogram every 250 ps of individual simulation time for a good
temporal resolution. This resulted in 200 projections for each
seeding approach. For each of these histograms we computed the
EMD to the CG 2D map and obtained EMD values shown in
Figure 3D and Figure 4.

In addition to the time evolution of the minima-focused BMBS
(red lines in both figures) provided in Figure 3D, Figure 4 shows the
reversed timeline of the minima-focused BMBS histogram (orange
line) to the CG map. By reversed we mean that the projection of the
last frame of each minima-focused trajectory is the starting point from
which the histogram grows contrary to the original timeline, meaning
that each histogram starts from a point where the trajectory could
sample for some time and therefore will most likely be in some meta
stable state. The forward timeline (red line in Figure 4) has a non-
monotonic behaviour with the initial decrease in EMD values (the two
histograms become more similar to each other) until about 13 ns,
followed by an increase and plateauing of the values at about .13. The
same behaviour was found in the original (Hunkler et al., 2019) paper
for a predictive CG model based on extrapolated data and could be
explained as a correction of flaws in CG sampling. To reduce the

FIGURE 3
Projections of 50 atomistic simulations obtained using BMBS with minima-focused (A), Boltzmann-weighted (B) and uniform (C) seedings. (D) EMD
values between CG and BMBS projections as a function of sampling time. Colors of the projections and EMDs lines correspond to the coloring in Figure 2.
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influence of the seeding bias on the 200 time-resolved histograms we
also included the reversed timeline (orange line in Figure 4). This
timeline shows that the BMBS trajectories moved away from their
initial seedings. With increasing simulation time the trajectories
approach their original starting points, which leads to a decrease in
the EMD values. This clearly shows that the BMBS trajectories move
away from the most populated areas in the CG 2D map and indicates
that the underlying CG distribution of conformations is not perfectly
representing the conformational ensemble corresponding to the
atomistic Hamiltonian.

Using EMDs we also monitored and compared the behaviour of
different seeding approaches to each other. Figure 5 compares the
minima-focused (red curve) and Boltzmann-weighted (blue curve)
seedings to the histograms generated by the last 10 ns of the
simulations from the respective other seeding. With this
comparison we can identify if two sets of trajectories converge
to sample a shared part of phase space or whether they diverge over
time to different accessible areas of the conformational space. The
blue curve in Figure 5 changes only slightly, while there is a much
more significant decrease in the red curve. The minima-focused
histograms are more similar to the histogram representing the last
10 ns of the Boltzmann-weighted trajectories than vice versa
(reflected by the generally lower EMD values). These
observations allow us to draw two conclusions. First, the

minima-focused trajectories initially move away from their
seeding points but then do not change much in the remaining
simulation time. And secondly, the Boltzmann-weighted
trajectories significantly move away from their original seeding
and approach the same areas in the 2D map as the minima-focused
trajectories. This shows that the two systems evolve in the same
general direction, even though they are partially sampling quite
different areas of the 2D map at the end of the simulations.

Lastly we assess the question if the convergence of MD simulations
can be monitored using EMDs. Generally, a continuous upwards or
downwards trend in the EMD values indicates that the corresponding
atomistic ensemble has not converged yet. However, even if the EMD
curve has not changed significantly over a longer period of time, that
does not imply that a convergence has been reached. As can be seen in
Figure 3D the EMD plots from 25 to 50 ns of individual simulation
time for all three seedings only show a very minimal change over time.
But by comparing the three curves quantitatively, one observes higher
EMD values for the uniform seeding compared to other two
approaches, consequently the uniform simulations cannot be
converged. Overall this means that none of the three BMBS
ensembles can be considered converged and that an additional
simulation time has to be invested to cover the full phase space
and produce an ensemble that is representative of the actual
atomistic free-energy landscape. However, the EMD of 2D

FIGURE 4
Time resolved EMDs of both forward (red solid line, same as in Figure 3D) and reversed (orange dotted line) timelines of minima-focused BMBS
histograms to the CG map.

FIGURE 5
EMDs of the entire trajectories of theminima-focused seeding to the histogram of the last 10 ns of the Boltzmann-weighted seeding (red curve) and vice
versa (blue curve).

Frontiers in Chemistry frontiersin.org07

Hunkler et al. 10.3389/fchem.2022.1087963

46

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1087963


histograms can be an additional easily employed and efficient
indicator of the current degree of non-convergence.

The general workflow which we propose in this manuscript is
compatible with any atomistic force field, water model or CG
model (as long as the CV of choice is available in both the
atomistic and CG representations). In Hunkler et al. (2019) we
demonstrated the use of the BMBS with different CG models,
moreover it can be very informative in comparing the 2D
probability distributions of various atomistic or coarse grained
force fields with each other. As an example one could take the
results of the comparison of the probability distributions generated
by the two force fields used in this work (modified GROMOS
54A7 and modified Martini v2.2). We have shown that the resulting
2D distributions differ and have interpreted this difference as flaws
in the CG model (i.e. due to the shape of the minima-focused EMD
curve). Yet, it would be difficult to prove whether the discrepancies
in the 2D projections actually stem from the CG or the atomistic
model (or both). If however, we would now make the same
comparison using a different atomistic force field (but the same
back-mapped starting conformations), we could compare both the
atomistic 2D distributions with the CG model, as well as the
atomistic distributions with each other. This could lead to a
much better understanding of the origin of the differences in
the 2D projections and be useful for efforts to improve
simulation models in either resolution.

To summarize, the EMD, especially if used in a time resolved
fashion, is a very useful tool to analyse (2D) projections of the
sampled phase space of MD trajectories. We showed that the EMD
can be used to follow atomistic trajectories (that were specifically
seeded based on the minima of a CG template map) evolution over
time compared to the CG template. By first approaching the
seeding template but then moving away from it, the EMD curve
alludes to a correction of flaws in the CG map. This assessment of
the quality of the CG model is one of the strongest features of a
minima-focused back-mapping based sampling. The uniform
seeding on the other hand is primarily useful in order to obtain
atomistic conformations from all the CG space as fast as possible.
However, if one wants to generate a (close to) converged atomistic
ensemble that realistically represents the actual conformational
landscape, the Boltzmann-weighted seeding is the best choice. It is
on the one hand much faster in sampling of low energy
conformations compared to the uniform seeding (assuming the
CG model is somewhat viable) and on the other hand it includes
less bias of the CG map compared to the minima-focused seeding.

3.3 Cluster analysis

For the choice of starting configurations and the monitoring of the
convergence, the BMBS scheme relies on the 2D projection of the CG
configurational space. This is a radical reduction in dimensionality
considering the size of tri-Ub. Thus we decided to assess a quality of
this map by performing a clustering analysis in the high-dimensional
space of the atomistic configurations sampled with BMBS. Such
clustering can provide information on general conformational
trends in the map (similar to the change in CoG distances between
Ub moieties shown in Figures 1C–E) or show if the 2D projection is
able to separate relatively similar conformations. Additionally it allows
us to study the behaviour of individual short trajectories, e.g., whether

the same conformations were sampled by trajectories from different
origins (i.e. different seeding schemes and different starting regions on
the 2D map). This can complement the convergence analysis based on
the EMDs discussed in Section 3.2. Considering the system sizes and
complexity we used a recently developed clustering scheme which is
specifically designed to efficiently cluster large MD trajectories
Hunkler et al. (2022) (see Section 2.3).

We applied the clustering workflow to the combined atomistic
data of all three seeding schemes (upper left inset in Figure 6). The data
set contains 7.44 million conformations and 30% of these were
assigned to 61 clusters after three iterations of the clustering
process (the RMSD cutoff was set to 3 Å). As described in details
in Section 2.3, the clustering was performed in the intermediate-
dimensional space determined by cc_analysis and the resulting
clusters were then projected into the 2D map. They are shown in
Figure 6 including tri-Ub structures belonging to four example clusters
(structure bundles in the insets) to demonstrate the structural
consistency obtained by the clustering method (the shown cluster
numbers are used as they are assigned during the clustering process
and do not reflect any meaningful ordering e.g., by cluster size). The
compact placement of the clusters on the map shows that the 2D map
is a meaningful representation of the high-dimensional
conformational landscape - a property that was important for the
use of this projection for BMBS and for the comparison of the
atomistic and CG sampling with EMD.

The coloring based on the CoG distances shown in Figures 1C–E
provides a general understanding of the map. In order to get a more
detailed insight we show 10 clusters (including representative tri-Ub
configurations) from all parts of the 2D map (see Figure 7). These
clusters were selected based on their location in the 2D projection.
Conformations at the left hand side of the map (example clusters
19 and 59) are in general open chain conformations, meaning that
the proximal and distal moieties extend to opposite directions from
the middle moiety. The two clusters 20 (the largest cluster
containing 3.5% of all conformations) and 38 in the center of the
map adopt a collapsed conformation where each of the three
moieties are roughly in equal distance to each other. Those are
the most stable conformation in the system. One possible reason for
this stability is that the hydrophobic patches on the distal and the
middle moieties (primarily the part around the residues Ile 44 and
Val 70) are orientated towards the other units and are thereby
shielded from solvent. Cluster 38 intersects in the 2D projection
with cluster 20. They are however still identified as two different
clusters since they differ (mostly) in a small rotation of the distal
moiety. This is a nice illustration of the precision and sensitivity of
the proposed clustering workflow and its ability to pick up such
minimal structural differences and separate the conformations into
different clusters. Other examples of clusters overlapping in the 2D
projection but having small structural differences identified by
clustering in a higher-dimensional space are circled in Figure 7.
In the clusters 51 and 52 (on the right hand side of the map) the
middle and distal moieties (green sphere) are further apart than in
the most populated cluster 20 (middle of the map). Especially in
cluster 51, the proximal moiety is almost located between the other
two. For cluster 7 the situation is exactly reversed, here the distal
and middle chains are more distant and the proximal chain is
located in between the two other units. So the clusters shown here
confirm the general trends that we derived from the CoG distance
distributions.
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By using this clustering analysis we can also try to verify our
statement about the ability of BMBS to correct flaws in the CG
sampling using the minima-focused seeding. In Section 3.2 we
argued (based on the minima-focused BMBS vs CG EMD plots)
that the atomistic BMBS trajectories partially move away from the

area in the 2D projection they were seeded in and thereby generate
an atomistic 2D distribution that slightly differs from the CG one.
This process can be seen as a mending of inherent defects in the CG
model. To verify this, we inspect a few clusters and follow
individual trajectories in the 2D landscape (Figure 8A). We start

FIGURE 6
Projections of 61 clusters from the combined BMBS trajectories (gray gradient). Bundles of the structures (colored according to the secondary structure)
from selected clusters are shown to visualize the homogeneity of the found clusters. The upper left inset shows the projection of the combined BMBS
trajectories in the original CG landscape.

FIGURE 7
Selected clusters and their representative conformations in the BMBS projection (the same as in Figure 6). In all inset plots themiddlemoiety of the tri-Ub
system is positioned in the sameway. A red sphere is attached to the first residue, indicating the proximal unit, and a green sphere attached to the last residue,
indicating the distal moiety. Conformations from clusters overlapping in 2D map are circled.
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again with cluster 59 (left side of the map with extended
conformations). Of the 150 independent trajectories 8 were
initiated in or around that state but leave the cluster during the
simulation time (a projection of one such trajectory is illustrated in
Figure 8C). Figure 8D shows the cumulative number of members of
cluster 59 versus the simulation time of the individual trajectories.
This plot illustrates that the simulated trajectories indeed first
sample cluster 59 and quickly populate it until around 11 ns of
individual simulation time, but then the amount of conformations
that are assigned to the cluster decreases. From around 25 ns
onwards the cluster is not expanding. This means that after the
first half of the simulated time all trajectories that have been
initiated in this cluster (due to the high population of that
specific area in the CG projection) have moved away from it.
This example complements the correction trend observed in the
EMD plots (Figure 4).

Next we show an example of two intersecting clusters 36 and
56 which are formed by several atomistic trajectories (Figure 8A).
Figure 8B shows projections of two selected trajectories forming
these clusters. In this case four BMBS trajectories that were
initiated in and around a local minimum of the CG projection
moved away from their seeding points and formed clusters in a less
populated area of the CG map. This is another illustration where
the 2D distribution of the atomistic BMBS trajectories slightly
differs from the CG template distribution. This time, however, the
BMBS trajectories do not collectively abandon one area of the map,

but rather collectively move towards one specific section that was
not heavily populated by the CG model.

4 Conclusion

We have applied back-mapping based sampling to obtain a
conformational free-energy landscape of a flexible multidomain
protein—K48-linked tri-ubiquitin—at atomistic resolution. BMBS
had been introduced for much smaller peptides, where we had
shown that the method is able to very efficiently generate a
correctly weighted atomistic ensemble based on a 2D projection
of a coarse grained simulation ensemble. For tri-Ub we first
generated a 2D projection of a set of extensive CG simulations
with the help of the dimensionality reduction method
encodermap. From projecting the structures from a long (4 µs)
atomistic simulation onto this 2D map, we found that these
simulations had only visited a very limited part of the CG 2D
landscape. By employing the BMBS algorithm, we found that the
entire CG map is accessible to the atomistic trajectories, i.e. the CG
simulations had in fact not sampled unphysical conformations.
Rather, free energy barriers between different (metastable)
conformational states are too high to be easily overcome on the
timescales accessible to the atomistic model. This successful
application of BMBS to tri-Ub illustrates that the method scales
very well with system size. Furthermore we compared different

FIGURE 8
Monitoring of the sampling for three selected clusters. (A) The convex hulls of clusters 36, 56 and 59 in the 2D map. (B) A projection of one exemplary
trajectory that contributes to the forming of clusters 36 and 56. The trajectory is colored based on the simulation time (staring from red to blue). (C) Example of
one trajectory that leaves cluster 59. (D) The cumulative count of frames contributing to cluster 59 over the individual simulation time.
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seeding methods to initiate the atomistic simulations in the 2D
projection: minima focused, Boltzmann weighted and uniform. We
argue that Boltzmann weighted seeding is more advantageous in its
ability to retain a correct free energy profile on the one hand and,
on the other hand, to explore bigger areas of conformational space.
In this context we also illustrate and discuss the use of the EMD
metric for the comparison of different (2D) distributions in a time-
resolved fashion. Lastly, we employed a recently introduced
conformational clustering workflow to the combined atomistic
BMBS trajectories. In doing so we illustrate which parts of the
2D map represent which structural conformations. In this context
we also show that the encodermap algorithm separates different
conformational characteristics very well into different regions of
the 2D map, which validates the whole BMBS approach. Finally, we
show how individual atomistic BMBS trajectories sample
conformational states, move through the 2D map and in sum
converge to an atomistic 2D distribution that slightly differs
from the CG one, indicating a correction of flaws in the CG
template.
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Modeling the molecular fingerprint
of protein-lipid interactions of
MLKL on complex bilayers
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G. Ekin Atilla-Gokcumen2 and Viviana Monje-Galvan1*
1Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, University
at Buffalo, Buffalo, NY, United States, 2Department of Chemistry, College of Arts and Sciences, University at
Buffalo, Buffalo, NY, United States

Lipids, the structural part of membranes, play important roles in biological functions.
However, our understanding of their implication in key cellular processes such as cell
division and protein-lipid interaction is just emerging. This is the case for molecular
interactions in mechanisms of cell death, where the role of lipids for protein
localization and subsequent membrane permeabilization is key. For example,
during the last stage of necroptosis, the mixed lineage kinase domain-like (MLKL)
protein translocates and, eventually, permeabilizes the plasma membrane (PM). This
process results in the leakage of cellular content, inducing an inflammatory response
in the microenvironment that is conducive to oncogenesis and metastasis, among
other pathologies that exhibit inflammatory activity. This work presents insights from
long all-atom molecular dynamics (MD) simulations of complex membrane models
for the PMofmammalian cells with anMLKL proteinmonomer. Our results show that
the binding of the protein is initially driven by the electrostatic interactions of
positively charged residues. The protein bound conformation modulates lipid
recruitment to the binding site, which changes the local lipid environment
recruiting PIP lipids and cholesterol, generating a unique fingerprint. These results
increase our knowledge of protein-lipid interactions at the membrane interface in
the context of molecular mechanisms of the necroptotic pathway, currently under
investigation as a potential treatment target in cancer and inflamatory diseases.

KEYWORDS

protein-lipid interactions, lipid membrane modeling, local lipid fingerprint, MLKL protein,
molecular dynamics simulations, mechanisms of cell death

Introduction

The plasma membrane (PM) is the natural barrier that encapsulates cells and cellular
organelles; it is composed primarily of lipids arranged in a bilayer, proteins, and sugars (Corradi
et al., 2018). Lipids constitute the structural backbone of the membrane, and their relative
composition modulates membrane tension, rigidity, and shape (Casares and EscribRossello,
2019). Furthermore, lipids have a dynamic interaction with transmembrane and peripheral
membrane proteins (Kandt et al., 2008; Sapay and Tieleman, 2008; Monje-Galvan and Klauda,
2018) that is relevant to cell signaling cascades, ionic flux, cargo transport, mechanisms of cell
death, and disease progression. The molecular-level understanding of these protein-lipid
interactions at the membrane interface is relevant to understand mechanisms of membrane
permeabilization and cell death. This knowledge can be potentially leveraged in the treatment of
several diseases such as cancer.

For instance, necroptosis is a caspase-independent programmed cell death pathway under
consideration as a potential cancer treatment (Wang et al., 2017; Gong et al., 2019; Qin et al.,
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2019). This pathway initiates when the tumor necrosis factor TNF-α
binds its receptor and ends with the permeabilization of the PM and
the leakage of cellular content. The process responsible for PM
permeabilization is the interaction of mixed lineage kinase-like
(MLKL) protein with membrane lipids. MLKL is the final executor
of necroptosis by translocating to the PM and causing membrane
disruption (Galluzzi et al., 2017; Chen et al., 2019; Choi et al., 2019).
However, the details of these protein-lipid interactions and the
corresponding membrane permeabilization mechanism are
unknown. Necroptosis is a relevant pathway in cancer, and also in
neurodegenerative and inflammatory diseases (Choi et al., 2019).
Similarly, there are other diseases where protein-lipid interactions
alter normal function, such as in disruption of lipid metabolism in
hepatitis C (Lee et al., 2020a); hence, there is an urgency to characterize
their molecular mechanisms and understand the role of specific
protein-lipid interactions in membrane remodeling as well as their
relevance in the overall disease onset and progression.

MLKL is a pseudo-kinase with 469 residues distributed into three
domains: the four helical bundle (4HB), residues 1-121; the brace,
residues 133-175; and the pseudo-kinase domain (PsK), residues 193-
459 (Zhang et al., 2016; Murphy, 2020; Petrie et al., 2020; Sethi et al.,
2022a). MLKL is phosphorylated in preparation for the last step of
necroptosis, currently considered a critical step in MLKL protein
oligomerization. The 4HB domain of the oligomerized MLKL
translocates to the PM and permeabilizes it; studies on MLKL
lacking this domain show increase in cell viability (Zhang et al.,
2021). The brace region consists of two helices and affects the
interaction of the 4HB with the PM. Once the interaction between
the brace and 4HB is disrupted (i.e., salt bridge between R30 and
E136 breaks down), the 4HB interacts with and inserts in the PM (Su
et al., 2014). Furthermore, decreasing the membrane binding of MLKL
by inhibiting its S-acylation increases cell viability and restores
membrane integrity (Parisi et al., 2019; Pradhan et al., 2021).

There is not yet a consensus on how the oligomerized MLKL
permeabilizes the membrane. Some authors believe that it
penetrates the membrane forming ion channels where cell
content can leak (Zhang et al., 2021). However, other authors
claim that, instead of forming ion channels, the 4HB forms cation
channels or pores that allow cell content to flow (Xia et al., 2016).
Furthermore, two additional models propose alternative
mechanisms for membrane permeabilization, the carpet model
and the toroidal pore model (Grage et al., 2016; Engelberg and
Landau, 2020; Flores-Romero et al., 2020). Interestingly, the carpet
model does not require the protein to cross the membrane. To
increase our understanding of protein-lipid interactions in the
context of mechanisms of cell death, we present an initial
molecular dynamics study of a single MLKL protein with a
complex lipid membrane model that mimics the environment of
the PM. Our results suggest that binding of MLKL modulates lipid
recruitment and can generate a unique lipid fingerprint enriched in
phosphatidylinositol phosphates and cholesterol lipids at the
protein binding site. These changes also affect the packing of
lipids on the membrane surface of the binding leaflet, further
modulating membrane surface topology and charge distribution.
Proposing a final mechanism of membrane permeabilization is out
of the scope of this work, which is intended as the first step in
subsequent computational studies to characterize protein-lipid
interactions in the context of MLKL-driven membrane
remodeling and disruption.

Methods

Simulations setup

We used all-atom molecular dynamics simulations to model the
interaction between a single MLKL protein (PDBID: 4BTF) and the
PM as a starting point to characterize the molecular driving forces of
late-stage necroptosis. The protein sequence corresponds to a murine
model for MLKL, selected because its complete sequence of joint
protein domains was available on the PDB server; on the contrary, the
human MLKL tertiary structure is only available for separate domains
on the PDB. Supplementary Figure S1 shows the sequence alignment
for the N-terminus of the protein, namely the 4HB and Brace domains,
between the human (Uniprot: Q8NB16) and murine (PDBID: 4BTF)
models showing excellent agreement between the structures.

The membrane model was based on the HT-29 cell line, built with
a mixture of dioleoyl-phosphatidylcholine (DOPC): cholesterol
(Chol): dioleoyl-phosphatidylethanolamine (DOPE): palmitoyl-
oleoyl-phosphatidylinositol-4-phosphate (POPI-1,4): palmitoyl-
oleoyl-phosphatidylinositol-(2,5)-bisphosphate (POPI-2,5) (40:32:
20:4:4 mol%) to model the PM; hereon after, POPI-1,4 and POPI-
2,5 are referred to as PIP and PIP2. The membrane model was built
using CHARMM-GUI Membrane Builder (Jo et al., 2007; Go and
Jones, 2008; Jo et al., 2009; Cai et al., 2014; Lee et al., 2019), and the
protein was solvated in a three-site water model using the Solution
Builder (Lee et al., 2016; Lee et al., 2020b). The membrane model was
built with 600 lipids per leaflet, fully hydrated with at least 50 water
molecules per lipid. The default step-wise relaxation protocol from
CHARMM-GUI was used for initial minimization and equilibration
of the protein and membrane systems separately. Membrane-only
systems were equilibrated for 200 ns, while the protein-water system
was equilibrated for 50 ns before merging the equilibrated coordinates.

Upon equilibration, membrane and protein coordinates were
merged and the simulation box rendered neutral using .15 mM
KCl. The protein was positioned at different orientations above the
lipid bilayer to ensure unbiased binding: (Rep1) vertical, with the
pseudo-kinase domain facing membrane; (Rep2) vertical, with 4HB
facing membrane; (Rep3) horizontal, with the brace facing away from
the membrane; and (Rep4) horizontal, with the brace facing towards
the membrane. Supplementary Figure S2 illustrates these orientations
relative to the membrane surface. Table 1 summarizes the details of
each system built for this study. The systems built for Rep1 and
Rep2 are larger than Rep3 and Rep4 in terms of number of atoms and
the z box vector. Rep1 and Rep2 started with the protein from a
vertical conformation and had more water molecules to prevent the
protein from interacting with image atoms from the bilayer during the
simulation. Rep3 and Rep4 started with a horizontal protein, and were
built in a smaller box to reduce the number of water molecules and
reduce the computational cost. All systems were run with periodic
boundary conditions and monitored to ensure no central atoms were
interacting with its image atoms or with both membrane leaflets at the
same time due to periodicity. The protein-membrane systems were
run for 100ns to ensure they were equilibrated prior to transferring
them to the Anton2 machine. The four replicas were run on this
resource for at least 2,000 ns each, for a total of 8.76 μs of simulated
trajectory.

All systems were run using the CHARMM36m force field (Klauda
et al., 2010; Vanommeslaeghe and MacKerell, 2012; Huang et al.,
2017) and periodic boundary conditions. The Initial equilibration for
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the membrane-only and protein-only systems were performed using
GROMACS (Abraham et al., 2015) with a timestep of 2 fs.
Temperature was kept constant at 310.15 K using the Berendsen
thermostat with a 1.0 ps coupling constant (Berendsen et al., 1984).
Pressure was set at 1 bar and controlled semi-isotropically with the
Berendsen barostat using a coupling time of 5.0 ps and compressibility
of 4.5 × 10−5 (Berendsen et al., 1984). The merged protein-membrane
systems were run with NPT dynamics, using the Nose-Hoover
thermostat (Nosé, 1984; Hoover, 1985) and Parrinello-Rahman
barostat (Parrinello and Rahman, 1981; Nosé and Klein, 1983);
coupling and compressibility settings were kept as listed above.
Non-bonded interactions were modeled using Verlet force-switch
function with cutoffs set at 1.0 and 1.2 nm for Lennard-Jones
interactions (Grubmüller et al., 1991). Particle Mesh Ewald was
used for long-range electrostatics (Darden et al., 1993), and the
LINCS algorithm (Hess et al., 1997) to constrain bonds with
hydrogen atoms. The equilibration trajectories were run with
resources available at the Center for Computational Research
(CCR) at the University at Buffalo (Center for Computational
Research UaB, 2019).

The production runs for each protein-membrane replica were
computed on the Anton2 machine (Shaw et al., 2014a; Shaw et al.,
2014b), hosted at the Pittsburgh Supercomputing Center (PSC).
Simulation parameters were set by Anton2 internal guesser files,
which are automated scripts designed to optimize the parameters
for the integration algorithms of this machine. As such, the cut-off
values to compute non-bonded interactions between neighboring
atoms were set automatically during system preparation. Long-
range electrostatics were computed using the Gaussian Split Ewald
algorithm (Shan et al., 2005), and hydrogen bonds were constrained
using the SHAKE algorithm (Ryckaert et al., 1977). Finally, the
Nose–Hoover thermostat and MTK barostat (Martyna et al., 1994)
were used to control the temperature and pressure during NPT
dynamics on Anton2 using optimized parameters set by the
Multigrator integrator (Lippert et al., 2013) of the machine.

Trajectory analysis

We analyzed the trajectory primarily with VMD (William et al.,
1996) and MDAnalysis (Michaud-Agrawal et al., 2011; Gowers et al.,
2016). VMD was used to produce all the snapshots, and perform
Hydrogen bond, RDFs, and packing defects analyses (Wildermuth
et al., 2019). MDAnalysis was used to collect the raw data for the
time series and histograms presented in this work, and in-house python
scripts were used to further process the data and render all plots. Unless
stated differently, all quantities are represented along with their standard
error as computed from block averages during the listed time windows.

Cumulative plots were chosen to show lipid remodeling and
recruitment by tracking the positions of the atoms in the lipid
headgroup for a period of time. The size of this time window was
determined to highlight differences between initial and final
conditions on the membrane upon protein binding. The xyz
coordinates were stored and accumulated for each lipid in one-
nanosecond intervals for the determined time window. To show
recruitment of inositol lipids, we rendered a scatter plot with a hue
parameter of .5. To show height information, each z coordinate was
selected and compared to the average z-coordinate of the first frame,
zo, to find the relative position, zf � z − zo. A scatter plot with zf
mapped to a color bar was plotted. Finally, to show the distribution of
each lipid species per leaflet, we plotted a 2D density map in which the
xy-plane was divided into a 2D grid and the number of points in each
grid space was counted and plotted using a color bar.

Membrane lipids are free to move laterally, exposing regions of the
hydrophobic core known as packing defects. These defects are
enhanced when a protein binds and inserts into the membrane as
it displaces lipids, making packing defects a good metric for protein
insertion and membrane response. A method introduced by
Wildermuth et al. measures the magnitude of the packing defects
(Wildermuth et al., 2019). First, for a defined time window, images of
the xy-plane are rendered with VMD. Hydrophobic atoms in the lipids
are colored in yellow and the hydrophilic headgroups in blue.
Supplementary Figure S3 shows a single-frame snapshot as an
example; the yellow regions in the image correspond to packing
defects. Multiple snapshots are taken from consecutive frames in
the trajectory; an artificial intelligence algorithm for image analysis
in the OpenCV python library identifies contours and measures their
area. The code provided also allows for computation of the packing
defect area underneath the protein, i.e. in the region delimited by the
projection of the protein in the xy-plane (local packing defects). In this
work, packing defects are used as a complementary measure for
protein insertion in the binding leaflet.

Results

Protein binding conformation

MLKL binds the membrane within the first few hundred
nanoseconds of simulation and remains bound the entire
simulation. Figure 1A, shows the final bound conformation of the
protein in each replica; despite the different initial orientations,
common final bound states were found. Rep1 and Rep4 show a
vertically bound conformation, with the PsK domain interacting
with the membrane. Rep2 and Rep3 show the 4HB interacting with
the membrane, which remains in contact with the bilayer until the end

TABLE 1 Protein-membrane simulation systems.

System # Water molecules Total # atoms Box cell size (x, y, z, in nm) Sim. Time (ns)

Rep1 173,744 669,706 17.1 × 17.1 × 22.3 2,180

Rep2 173,750 669,724 17.2 × 17.2 × 21.9 2,180

Rep3 138,227 562,959 17.3 × 17.3 × 18.4 2,200

Rep4 135,548 554,910 17.3 × 17.3 × 18.2 2,200
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of the simulation. However, the PsK domain comes in contact with the
bilayer after the first microsecond of simulation in Rep2, for a final
horizontal bound conformation.

Figure 1B, shows the time series of the distance between the center
of mass (COM) of the individual protein domains and the phosphate
groups (P atoms) of the lipids in the binding leaflet; the COM of each
domain was computed from its Cα atoms. As expected from the final
conformations in Figure 1A, the PsK is the closest to the membrane in
Rep1 and Rep4, followed by the brace, and no interaction of the 4HB
with the bilayer. On the other hand, the 4HB is the first to contact the
membrane in Rep2, the brace interacts with the membrane in the first
half of the simulation, but then remains pointing towards the water

when the Psk domain, shown in black, binds the membrane after the
1 μsmark. Finally, Rep3 shows the 4HB and the brace both interact with
the bilayer at the same plane, while the PsK positions towards the water,
at nearly 180° with respect to its bound conformation on Rep1 andRep4.

A residue is considered in contact with the membrane when its Cα

is located within 12�A of lipid phosphate groups in the binding leaflet;
unless mentioned otherwise, this cutoff is used for all contact analyses.
The frequency of contact analysis per protein residue during the entire
trajectory is presented as % contact time in Figure 1C. Rep1 and
Rep4 show similar trends for the % contact time, with corresponding
residues in the PsK domain in contact with the bilayer in both replicas.
Note the brace domain does interact with the bilayer intermittently in

FIGURE 1
Binding conformation and dynamics of MLKL protein with amodel membrane. (A) Final bound conformations of MLKL for each replica. The 4HB domain
is shown in blue, the brace in red, and the PsK in black. Phosphate atoms of lipids are shown in orange, and fatty acid tails are shown in silver. (B) Center-of-
mass distance of the Cα in each protein domain with respect to the phosphate groups in the binding leaflet. (C) Percent of time each residue in contact with
any of the lipid species in the binding leaflet. (D)RMSF of protein residues. (E)Corresponding RMSD timeseries for each domain in the four replicas. Values
corresponding to 4HB domain residues are indicated in blue, to the brace in red, and to the PsK in black in panels (B–E), matching the domain colors in
panel (A).
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Rep4, yet not permanently. Conversely, in Rep2 and Rep3, the
frequency of contact is higher for residues in the 4HB domain. The
main difference between these two replicas is that the PsK domain in
Rep2 does interact with the membrane in the second half of the
trajectory, adopting a fully horizontal position after 1 μ s of simulation.
Some 4HB residues detach from the membrane as the PsK forms new
contacts; Figure 2, Final stage, shows greater number of PsK-lipid
contacts in Rep2 compared to PsK-lipid contacts in Rep3.

Figure 1D shows the root mean square fluctuations (RMSFs) of
protein residues averaged over the total trajectory time. Rep3 and
Rep4 exhibit a spike for residues surrounding residue 350 in the PsK
domain (increased fluctuations in this region), while Rep2 exhibits
larger fluctuations in the 4HB instead. Additionally, Figure 1E shows
the root mean square displacement (RMSD) for each replica over the
full trajectory. From this figure, it is evident there are no major
conformational changes in the protein for Rep1, Rep3, and Rep4,
which maintain their vertically bound conformation upon initial
binding. Rep4 is the most stable of the four, as it barely changes
over time with respect to is initial conformation. Rep1 experiences an
increase in RMSD towards the end of the simulation, but the new
conformation is stable for the last 200 ns of the trajectory. The PsK
domain in Rep3 changes conformation after the first microsecond of
the simulation, which was maintained for nearly 500 ns. There is a
decrease in the RMSD of the black curve at this timepoint; however,
the change is reverted and the RMSD returns to the value of the initial
bound conformation for the rest of the trajectory.

The most interesting set of RMSD curves is that of Rep2 (Figure 1E),
the only trajectory to exhibit both vertical and horizontal bound

conformations. Upon initial vertical binding by the 4HB, the protein
is stable with no shifts in conformation for nearly 500 ns. There is a
noticeable increase in the RMSD of all three protein domains between
700 and 1,000 ns timepoints in the trajectory. Of the three domains, the
brace is the one to show the sharpest change in configuration as it interacts
with the bilayer (see the red curve in this plot). Following the same trend,
the PsK domain also has a large conformational change as the protein lays
horizontally on themembrane surface. The next section discusses changes
in the lateral organization of lipids in response to the bound protein.

Lipid contacts

As MLKL protein approaches the membrane, it interacts with
specific lipid species in the binding leaflet, with a distinctive preference
depending on the bound conformation. Figure 2 shows contact
heatmaps for each lipid species in our model upon initial protein
binding, and during the last 200ns of trajectory: DOPC, DOPE, PIP,
and PIP2 with each protein domain (4HB, Brace, PsK). The overall
number of contacts is higher with DOPC and DOPE in all cases, as
expected, given their relative compositions in the membrane. PIP and
PIP2 have fewer total number of contacts with the protein due to their
relative abundance compared to other lipid species. However, as
summarized in Figure 2, PIP and PIP2 co-localize to the protein
binding site and increase their concentration rather notoriously. The
following section expands on evidence of inositol recruitment to the
protein binding site as evidenced by hydrogen bonding and 2D lipid
density maps.

FIGURE 2
Number of contacts per protein domain versus lipid type during the initial 100ns upon protein binding (top row), and the last 200ns of trajectory, when
lipid re-sorting has stabilized in response to protein binding (bottom row). The columns correspond to Rep1-Rep4 as labeled in the top of the figure. For all
replicas, a protein-lipid contact is countedwhen atoms in a protein domain are within 12�Aof the phosphate atoms in the respective lipid species in the binding
leaflet. Blue shade darkens as number of contacts increases.
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Protein-lipid interactions: Hydrogen bonding

The hydrogen bond analysis shown in Figure 3A was performed
with a donor-acceptor distance of 3.2�A and a cutoff angle of 30° on the
initial and final 500 ns of the trajectory using VMD. Figure 3A and
Supplementary Table S1 summarize this analysis; the final number of
hydrogen bonds between the protein and inositol lipids is highest for
Rep1 and Rep4, compared to much lower net number of hydrogen
bonds with DOPC or DOPE lipids. Figure 3A and Supplementary
Figure S4 show the number of hydrogen bonds increases consistently
across replicas for inositol lipids, Rep1 being the one where PIP has the
highest number of hydrogen bonds with the protein. Similarly, PIP2
has larger number of hydrogen bonds as the simulation advances,
except for Rep1; in all other cases, PIP2 is the species with highest
increase in hydrogen bonds as the simulation progresses.
Supplementary Figure S5A shows final snapshots of all four
replicas with PI lipids, shown in red and blue, and cholesterol,
shown in yellow, underneath the protein. Taken together, these
results suggest lipid resorting patterns upon protein binding leave a
specific lipid fingerprint at the protein binding site.

Figures 3B, C show examples of residues that form hydrogen
bonds with PIP lipids, most of which are positively charged arginine
and lysine residues. Specifically, G01, K25, R30, and K31 are
highlighted. Figure 3D further shows the 2D cumulative density of
PIP lipids on the membrane plane over the last 200 ns. The red circles
show regions with greater lipid density that match the location of the
protein, shown as orange scatter. Supplemenyary Figures S6D–F show
similar density maps for PIP lipids for the remaining replicas, where
we find similar patterns. Furthermore, Supplementary Figure S6G
shows the time progression of PI lipids under and around the protein
binding site; enriched PI lipid regions are linked to charged regions as
shown for all replicas in Figure 3E. These plots show highly negative
charged regions at and around the protein binding site, and
correspond PIP and PIP2 enriched zones. For instance, Figure 3E
for Rep4 shows a charged ring that matches the binding site.

Membrane response: Lipid packing defects

As the protein interacts with the membrane, it influences the surface
topology and lipid packing.We computed the lipid packing defects on the
membrane prior to protein binding, and at the end of the simulation,
when at least one microsecond of stable binding and subsequent lipid
sorting around the protein has taken place. Figure 4A shows the
percentage of surface area covered with lipid packing defects below
the projected area of the protein during the trajectory for Rep3 (local
packing defects, as described in themethods section). The area covered by

FIGURE 3
Hydrogen bonds and lipid recruitment upon MLKL binding. (A) Bar
plots of the total number of hydrogen bonds between protein and lipids
for each replica during the first 500 ns (in blue) versus the last 500 ns (in
orange). Close-up of hydrogen bonds between PIP lipids and the
4HB domain at: (B) 200 ns, and (C). 2000 ns. The 4HB domain is shown
in blue, PIP lipid headgroup in black, R30 residue in yellow, K25 and
K31 in pink, and G01 in red. (D) Cumulative plot of the lateral distribution
of PIP lipids as estimated from the location of the lipid phosphate atoms
for the last 200 ns. Blue points indicate the phosphate atom positions in

(Continued )

FIGURE 3 (Continued)
the xy-plane, while orange points show representative positions of
the atoms of the protein domains in contact (4HB and Brace). Panels
(B–D) show analysis for Rep3, the replica of focus as discussed in
subsequent sections. Similar plots for the remaining replicas are
found in the SM, Supplementary Figure S6. (E) 2D surface charge
distribution maps for the binding leaflets of each replica averaged over
the last 500 ns of simulation. The cumulative negative charge is shown
by the yellow/green regions, clearly localized in regions that correspond
to the protein binding sites in each replica. The darker regions
correspond to DOPC/DOPE-rich regions, with overall net charge of
zero.
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the packing defects underneath the protein increases over time,
correlating with protein insertion as verified by depth of bound
residues in the binding leaflet (see Supplementary Figure S7). Figures
4B, C show the number of lipid packing defects and respective surface
area coverage per leaflet at the beginning and end of the simulation with
their associated standard error. Interestingly, while Rep1 and Rep4 do not
exhibit significant changes in the number of packing defects between
leaflets at the beginning vs. the end of the trajectory, the surface area
coverage does change, with larger values in the binding leaflet. This is
accentuated in Rep2 and Rep3, which show the most interesting behavior
in terms of bound conformation and insertion of the 4HB past the lipid
headgroup region (see Figures 1A, 7; Supplementary Figure S7). This fact
is counterintuitive because the PsK domain, which binds the membrane
in Rep1 and Rep4, is larger than the 4HB domain; yet, it does not insert as
deep as 4HB (Supplementary Figure S7).

Membrane response: Surface topology

The protein bound conformation directly influences the local lipid
environment and, consequently, the surface topology. Figure 5 shows
2D histograms of the cumulative distribution of each lipid species per
leaflet for the last 500 ns of the trajectory. Rep3 is shown as reference
since it exhibits the deepest 4HB insertion across all replicas. This is in

agreement with multiple studies indicating the role of 4HB is for
retention and insertion of MLKL into the PM (Dondelinger et al.,
2014; Su et al., 2014; Wang et al., 2014). Each cumulative histogram
was generated by mapping the membrane onto a grid and counting the
number of phosphate groups in each zone. The DOPC map, for
example, shows a more uniform distribution of these lipids in the non-
binding leaflet; whereas, there is clear depletion of DOPC directly
underneath the protein binding site (see corresponding plot in the
bottom row). On the other hand, PIP and PIP2, present at lower
concentrations than DOPC, have a sharp increase around the protein
site in the binding leaflet, shown in bright green/yellow in the
map. This striking effect is also observed in cholesterol, which
colocalizes underneath the protein binding site in the binding
leaflet, and around the protein in the non-binding leaflet. Note that
the cholesterol enrichment underneath the protein matches with the
DOPC-depleted zone in the same leaflet. Similar 2D histograms for the
other replicas are shown in Supplementary Figure S8.

Figure 6 shows changes in the lateral lipid organization through
protein-lipid Radial Distribution Functions (RDF). These were
calculated by using the Cα atom of the deepest inserted protein
residue in each replica as a reference point (K268 for Rep1,
Q53 for Rep2 and 3, and G406 for Rep4 – see Supplementary
Figure S7 for details on identifying these residues), and the
phosphate or hydroxyl oxygen atoms of phospholipids and
cholesterol, respectively. Each plot compares the RDF for the first
50 ns upon protein binding and the last 100 ns of the trajectory.
Rep1 shows a slight increase in cholesterol and a noticeable decrease in
PIP2 near the bound protein at the end of the trajectory.

In most cases, the likelihood of observing cholesterol and PIP
lipids under the protein or closer to the deepest inserted residue is
higher at the end of the simulation compared to the beginning, which
is also depicted in Supplementary Figure S5A. The RDFs for DOPC
and DOPE retain the location of the first solvation shell; DOPC
experiences little to no change, but DOPE has higher relative
abundance at the end in most of the cases. Rep2 exhibits the most
interesting change for PIP2 lipids, as the final RDF shows three
distinctive shells. Note that Rep2 is the only replica that shows the
protein interacting with the bilayer in a fully horizontal fashion, in
which all the domains interact to some extent with the bilayer. The
bottom row of Figure 2 and Supplementary Figure S5A show PIP
interaction with the protein. Supplementary Figure S9 shows the
corresponding RDF analysis for lipid-lipid interactions on the
membrane plane of the binding leaflet. Results for all replicas show
little to no change in the lateral distribution of DOPC, DOPE, and
cholesterol species on the entire binding leaflet. However, the height
and width of the solvation shells for PIP and PIP2 species do change; in
this case, Rep4 shows two distinct solvation shells for PIP and PIP2
lipids at the end versus the beginning. Additionally, Rep2 shows an
inward shift and higher probability for the first solvation shell of PI
lipids at the simulation end versus the beginning.

Lipid sorting directly impacts the topology of the membrane
surface; Figure 7 shows the cumulative changes on the topology of
the membrane surface during the last 500 ns of the trajectory for
Rep2 and Rep3, respectively, as these replicas exhibit protein insertion
past the lipid headgroup region. These changes are calculated using the
first frame of the selected trajectory as the reference point.
Supplementary Figure S10 shows the corresponding plots for
Rep1 and Rep4; the latter shows a small indentation of the PsK
domain in the bilayer, but not as pronounced as the displacement of

FIGURE 4
Changes in lipid packing defects in the immediate environment due
to MLKL binding. (A) Bar plots for the percentage area of lipid packing
defect at the protein binding site with respect to the projected protein
surface area % � 100 · (local.defects/protein.area). Bars are plotted
in time windows of 100 ns for the full trajectory of Rep3, and show a net
increase in packing defects. (error bars indicate standard error). (B)
Number of lipid packing defects per leaflet at the beginning (blue tones
with left stripes and dots), and end (orange tones with right stripes) of the
simulation. (C) Total surface area of packing defects per leaflet at the
beginning (blue tones with left stripes and dots) and end (orange tones
with right stripes and dots) of the simulation. Darker blue and orange
represent the binding leaflet, and lighter hues show data for the non-
binding leaflet.
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lipids around the 4HB in Rep3. In Rep2 and Rep3, the 4HB domain
inserts past the lipid headgroup region, and cholesterol can mitigate
displacement of phospholipids by filling the space those lipids
occupied without pushing the protein away.

Discussion and conclusion

Four replicas were run starting from different MLKL protein positions
near a membrane model to characterize the protein binding mechanism
and associatedmembrane response. Our results showMLKL is attracted to
the membrane via electrostatic interactions. Then, as the protein binds the
membrane, it remodels the local lipid environment by depleting DOPC,
DOPE, and recruiting PIP, PIP2, and cholesterol consistent with previously
established experimental models (Dondelinger et al., 2014). Local
remodeling of lipid composition depends, to a large extent, on the
protein domain that binds the membrane. When the 4HB binds the
membrane, it can insert past the phosphate region of the lipids, increasing
the number of packing defects as it displaces the lipid headgroups and
interacts with the hydrophobic core. Bound conformations with the 4HB
interactingwith the bilayer align towhat has been proposed in the literature
for MLKL during PM permeabilization.

Dondelinger et al. (2014) propose the 4HB as the executor of
necroptosis, where the process is driven by interactions between
highly conserved positive residues in the first two alpha helices in
the 4HB and PIP lipids. More recently, experimental and simulation
works suggest that the brace domain is an active player in the process of
association of MLKL to lipid membranes (Yang et al., 2021; Sethi et al.,
2022b). For example, it is reported that interactions between positively
charged residues in MLKL and the membrane pull the brace away from
4HB for activation of this domain in humanMLKL (Sethi et al., 2022b).
Quarato et al propose a mechanism of initial recruitment of MLKL to
the plasma membrane via low affinity interactions between positive
residues on the helices of 4HB and membrane lipids, bringing the brace
in closer proximity to the membrane – similar to what was observed in

Rep2 and Rep3 in this work. This unmasks further positive residues on
the 4HB, leading to enhanced interaction with PIPs, also reproduced in
our trajectories as shown in Figure 3, Supplementary Figures S4, S6. In
our simulations, R30 exhibits hydrogen bonding with PIPs, this residue
has also been identified as critical for binding to the membrane and
stabilizing the interaction of the brace domain (Quarato et al., 2016). In
line with these observations, Rep3 seems the most likely scenario to
represent the interaction of MLKL with the plasma membrane in the
cellular environment via both the 4HB and the brace.

The PsK domain is well known to interact with other proteins such as
RIPK3 during necroptosis and act as a conformational-change switch that
activates MLKL after undergoing phosphorylation (Petrie et al., 2017).
Apart from this, not much is known about its interactions with membrane
lipids, or if PsK-lipid interactions are relevant in the context of necroptosis
and membrane disruption. Our results show Rep1 and Rep4 interact with
the membrane through the PsK domain stably during the entire trajectory
(see Figure 1E), and with Rep2 after 1 μ s. Our analyses examining the local
lipid distribution, hydrogen bonding, and membrane response do not give
direct strong evidence of a preferred binding domain. However, the
number of contacts between each domain and specific lipid species
does lead to a distinctive lipid fingerprint and local lipid distribution
(see Figures 2, 3, 5; Supplementary Figures S9, S10). Based on the
simulations presented here, it seems possible that a cooperative effect
for MLKL binding and oligomerization could lead to membrane
permeabilization; however, this event is not seen within the scope of
our simulations in this study. Given that all 3 domains can interact with the
membrane, it is possible that each domain contributes to specific lipid
interactions that aid the process of membrane remodeling, and eventual
bilayer disruption and permeabilization in a cooperative manner.

We observe the protein binds the membrane in all replicas well within
the first 200 ns of simulation. Rep2 further exhibits a change in bound
conformation after a microsecond of simulation and stable binding in a
vertical conformation. The protein is able to turn and remain horizontally
at themembrane interface with both the PsK and 4HB interacting with the
lipids. In all replicas, the lipid distribution at the protein binding site

FIGURE 5
2D cumulative histograms for the last 500 ns of Rep3 trajectory. Top row corresponds to observations for non-binding leaflet, and the bottom row for the
binding leaflet. White contours show a representative projection of the protein and the color bar is the cumulative number of lipids in each square of the 2D
histogram, represented by either their P atom or O3 for cholesterol. Color intensity changes from dark blue to bright yellow as concentration of lipid head
atoms increases.
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changed depending on the protein domain bound at the membrane. For
example, Rep3 experiences a drastic change in local lipid composition
when the brace domain contacts the membrane surface. The DOPE:PIP2
ratio changes from 5:1 to ~1:1; additionally, at the 4HB-membrane contact
site the DOPC:PIP2 ratio changes from 10:1 to ~10:3. The initial ratios are
based on the initial lipid composition, whereas the final ratios are extracted
by counting the lipid species underneath the protein and determining their
relative composition at the protein binding site. The change in lipid ratio is
a clear indicator of local lipid redistribution directly modulated by the
protein residues that bind the membrane. This distinct lipid fingerprint in
the case of MLKL seems to result mainly from electrostatic interactions of
positively charged residues and negatively charged lipid headgroups. The
bottom panels in Figure 3 further show a distinct distribution of charge
around the protein, in the ring-like 2D densitymaps right at the edge of the
protein binding site.

Some of the key charged residues that interact with the membrane are
shown in Figure 3. Notably, the positively charged residue K31, located in
the second helix of the 4HB domain in themousemodel (4BTF) studied in
this work, is conserved in humanMLKL. Experiments with humanMLKL
have shown that the positively charged residues 22-35 are facilitators of
MLKL oligomerization and recruitment to membranes as they interact
with PIP lipids (Dondelinger et al., 2014). Our simulations with themurine
protein model agree with a conserved behavior of these residues across
both human and mice MLKL. There are differences in the report of
relevant residues between the two orthologs; one work suggests that the
mousemodel associates with themembrane via residues found in the third
and fourth helices of the 4HB, in contrast to the humanmodel (Sethi et al.,
2022b). While initial interactions of MLKL in our simulations are due to
electrostatics, there is noticeable recruitment of PIP and PIP2 lipids to the
protein binding site, further stabilized by hydrogen bonding and

FIGURE 6
Lipid-Protein RDFs for each lipid species upon protein binding and at the end of the trajectory. The analysis was performed between the Cα atom of the
deepest inserted protein residue in each replica (Rep1: K268, Rep2 and Rep3: Q53, and Rep4: G406), and the phosphorus (P) or hydroxyl oxygen (O3) of the
lipids and cholesterol molecules, respectively. Initial curve is the averaged behavior during the first 50ns upon protein binding (shown in blue), and final is the
average behavior over the last 100ns of simulation (shown in orange). Each row corresponds to Rep1-4, and each column corresponds to the lipid
species listed at the top.
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displacement of net neutral lipids likeDOPC to themembrane bulk. This is
shown in Figure 5, the cumulative lipid density plots for different lipid
species that show the regions where these are enriched or depleted on the
membrane plane (Petrie et al., 2018; Murphy, 2020). The binding
conformation of even a single protein is able to alter local lipid
distribution, generating a distinctive lipid fingerprint and lateral
organization patterns (see Figure 7, RDFs). Cumulative plots of the
lateral distribution of PIP lipids in Figure 4D and Supplementary
Figures S3D–F further support this premise, showing stronger
concentration of PIP lipids near the protein over time in agreement
with experiment (Dondelinger et al., 2014).

The formation of a characteristic lipid fingerprint upon MLKL
binding also impacts membrane lateral packing and surface topology,
shown in Figures 4, 7A, respectively. The relationship between protein
binding and distribution of packing defects in the binding and non-
binding leaflets is not trivial; we observe distinctive behavior for the
different protein bound domains across our replicas. Packing defects
underneath the protein were found to be significantly larger in Rep2 and
Rep3 (Figures 4B, C), where the 4HB interacts with the membrane. This
domain inserts past the phosphate region of the binding leaflet, resulting
in a rearrangement of lipid packing. The overall number of lipid-packing
defects decreases, but their overall surface coverage increases (Figures 4B,
C); suggesting smaller packing defects merge into larger ones as lipid
sorting and recruitment to the protein binding site progress. In contrast,
the increase of packing defects surface area right below the protein in

Rep1 and Rep4 is rather subtle, and corresponds to a small or no insertion
into the membrane. These results agree with previous observations in the
literature that identified the 4HB as the killer domain (Dondelinger et al.,
2014; Hildebrand et al., 2014).

From Figures 5–7, it is evident that cholesterol is attracted to the
protein in the binding leaflet, creating a distinctive fingerprint that differs
from the non-binding leaflet. Accumulation of cholesterol is known to
increase order in themembrane hydrophobic core and decreasemembrane
fluidity (Czub and Baginski, 2006). In the context of membrane
permeabilization, accumulation of cholesterol under MLKL binding
sites in the inner leaflet of the PM could potentially lead to a more
fluid outer leaflet in the PM that allows easier permeation of small
molecules around the protein or oligomers. Alternatively, the clustering
of cholesterol nearMLKLmay be related to a necroptosis-independent role
of the protein in lipid trafficking. Though there is little in literature that
discusses the effects of cholesterol accumulation in the PM during
necroptosis, it is relevant for intracellular membranes. Death of
atherosclerotic lipid plaques is caused by cholesterol accumulation in
the endoplasmic membrane, which triggers the unfolded protein
response and in turn, apoptotic pathways (Tabas, 2004). Additional
studies would help determine if lipid sorting due to MLKL binding
follows a cooperative effect, in which more protein units are attracted
to the initial protein binding site due to the local lipid composition
remodeling. From our current studies, limited to a single MLKL near
the membrane and time scales that did not show disruption of the

FIGURE 7
Membrane deformation due to protein binding. (A) Cumulative membrane height (z-coordinate) during the last 500 ns of simulation for Rep2 (top row)
and Rep3 (bottom row). The color maps show the relative position of the lipid phosphate atoms (left), cholesterol hydroxyl group atoms (middle), and both
types of atoms (right) on the binding leaflet. The relative positions are computed with respect to their initial coordinates in the analysis period (i.e., the first
frame of the last 500ns of trajectory). Color intensity changes from pale yellow to dark purple as z position of atoms increase; white patches indicate
absence of headgroup atoms. (B) Close up of the bound protein for Rep2 and Rep3, showing different domains inserted past the phosphate atoms in the
membrane, shown as orange spheres. The 4HB is shown in blue, brace in red and PsK in black. Similar plots for Rep1 and Rep4 in Supplementary Figure S10.
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membrane, it seems plausible that oligomerization could be enhanced by
lipid re-sorting caused by previous MLKL binding events (Flores-Romero
et al., 2020).

Biochemical and lipidomic-based studies identified that
phosphorylation of MLKL prior to plasma membrane association
(Wang et al., 2014) or S-acylation of the protein can exacerbate
membrane permeabilization (Parisi et al., 2017; Parisi et al., 2019;
Pradhan et al., 2021); yet, how these modifications impact membrane
permeability is not fully understood. The need of MLKL oligomers has
been widely accepted in its mechanism to permeabilize the membrane
during necroptosis; however, there are conflicting reports in the
number of units that form the oligomer (Hildebrand et al., 2014).
This work offers a basis for the study of membrane response and the
specific lipid fingerprint that results upon binding of a peripheral
membrane protein, specifically during initiation of MLKL driven
mechanisms of cell death. The present work does not attempt to
fully explain the process of protein-mediated permeabilization of the
PM. Instead, it is geared towards characterizing the molecular
mechanisms that may contribute to membrane remodeling and
eventual disruption as a result of specific protein-lipid interactions.
There is still much to explore in the context of MLKL-lipid interaction
dynamics and how these shape the membrane surface topology,
especially when multiple protein units are involved.
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Influence of ionic conditions on
knotting in a coarse-grained model
for DNA

Sarah Wettermann, Ranajay Datta and Peter Virnau*

Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany

We investigate knotting probabilities of long double-stranded DNA strands in a
coarse-grained Kratky-Porod model for DNA with Monte Carlo simulations. Various
ionic conditions are implemented by adjusting the effective diameter of monomers.
We find that the occurrence of knots in DNA can be reinforced considerably by high
salt conditions and confinement between plates. Likewise, knots can almost be
dissolved completely in a low salt scenario. Comparisons with recent experiments
confirm that the coarse-grained model is able to capture and quantitatively predict
topological features of DNA and can be used for guiding future experiments on DNA
knots.

KEYWORDS

polymers, ionic conditions, knots, coarse-grained model, DNA

Introduction

The revelation of DNA packing and folding in the cell nucleus (Lieberman-Aiden et al., 2009;
Siebert et al., 2017; Stevens et al., 2017; Ganji et al., 2018) and the emergence of commercially
available nanopore techniques (Jain et al., 2016; Jain et al., 2018) has ushered in a new era of DNA
research in the past decade. Knots, which emerge naturally as a byproduct in long macromolecules
like DNA (Frisch andWasserman, 1961; Delbrück, 1962), may however be detrimental to biological
processes and technical applications. It is therefore of prime importance to study conditions and
length scales at which they appear in equilibrium and develop strategies to enhance (Lua et al., 2004;
Virnau et al., 2005; Tang et al., 2011; Amin et al., 2018) or suppress knotting (Di Stefano et al., 2014;
Renner and Doyle, 2014). From a technical point of view, numerical simulations are a great tool for
this task as structural and topological information are readily available. Coarse-grained models are
particularly relevant as knots appear at scales beyond the Kuhn length and models with atomistic
resolution are often poorly suited for efficientMonte Carlo algorithms required to scan configuration
space. It is therefore crucial to test and improve coarse-grained models for DNA to quantitatively
support and interpret experimental efforts.

A first link to double-stranded (ds)DNAwas already established in the first simulation paper on
polymer knots from 1974 (Vologodskii et al., 1974). In their seminal contribution, Vologodskii et al.
determined knotting probabilities of random walks and associated single segments with the Kuhn
length of DNA (100 nm)—a prediction which turns out to be surprisingly accurate as we will
demonstrate later. This basic approach has been refined further in the early 1990s in conjunction
with gel electrophoresis experiments on short DNA strands of up to 10 kbp (Rybenkov et al., 1993;
Shaw and Wang, 1994). Ideal segments were replaced by cylinders with excluded volume
interactions that depend on ionic conditions (Rybenkov et al., 1993), and it was also
demonstrated that DNA knotting probabilities vary somewhat with solvent conditions (reaching
about 4% in a high salt environment.) Higher resolution versions of this model in which one Kuhn
length is represented by several segments have been used to study the effect of confinement on short
strands in high salt conditions. Among other things, Orlandini, Micheletti and coworkers have
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demonstrated with numerical simulations that confining DNA between
plates or in nanopores increases knotting probabilities when typical
distances between plates or nanopore diameters are in the order of the
Kuhn length of DNA (Micheletti and Orlandini, 2012a; Micheletti and
Orlandini, 2012b; Orlandini and Micheletti, 2013). Alternatively, coarse-
grained bead-stick (Dai et al., 2012a; Dai et al., 2012b; Rieger and Virnau,
2016) or bead-spring (Trefz et al., 2014; Rothörl et al., 2022)
representations for DNA can be used in which the effective diameter
is adjusted to account for varying solvent conditions and which can be
adapted for molecular dynamics simulations. Of particular relevance to
our study is Dai et al. (2012b) in which the authors have studied knotting
of closed DNA rings in bulk and plate geometry and to which our results
for open strands can be compared. Variants of this model class have also
been applied to investigate, e.g., statics (Dai et al., 2015; Jain andDorfman,
2017) and dynamics of DNA knots in a nanochannel (Micheletti and
Orlandini, 2014), packing of DNA in viral capsids (Marenduzzo et al.,
2009; Reith et al., 2012) and recently for the reproduction of experimental
knotting probabilities of λ phage DNA in high salt conditions (Kumar
Sharma et al., 2019). Of course, there are also limits to this class of coarse-
grained descriptions, and higher resolutionmodels (Suma andMicheletti,
2017; Suma et al., 2018) may address questions which either require a
detailed structural description or an explicit modelling of electrostatic
interactions (Suma et al., 2018).

In this work we systematically extend previous analyses to DNA
lengths relevant to modern experiments on λ (Plesa et al., 2016; Kumar
Sharma et al., 2019) and T4 phages (Plesa et al., 2016). Our
comprehensive study also covers the full range of ionic conditions

for free DNA and DNA confined between two plates, and comparisons
with existing experimental data confirm the validity of the modelling
approach. This enables us to show, amongst others, that for the
considered strand sizes the dependence of knotting on salt
concentrations (Rybenkov et al., 1993) can be used to effectively
disentangle DNA prior to experiments where knots are undesired.

Methods

Implicit modelling of ionic solvent conditions

DNA is negatively charged, but long-range electrostatic interactions
are partially or completely screened by counterions in solution. In this
paper we follow an implicit solvent approach pioneered by Stigter
(1977) and Rybenkov et al. (1993) in which screened charges are
represented by effective excluded volume interactions. The diameter
d of a DNA chain is a parameter that quantifies the latter and can be
defined as the segment diameter of a representative chain which is
uncharged, but has the same configurational and morphological
properties as the original DNA with partial or completely screened
charges. The magnitude of the electrostatic repulsion, and consequently,
the numerical value of d, is a function of salt concentration. Stigter
(1977) modeled DNA in sodium chloride solution as charged cylinders.
Following the theory developed by McMillan and Mayer (1945) and the
calculations of Hill (Hill, 1956; Hill, 1960), Stigter carried out analytic
calculations to estimate the effective diameter of DNA as a function of
sodium chloride concentration (see Figure 1A).

Already in 1993 Rybenkov et al. (1993) were able to confirm this
approach (and Figure 1A) by representing DNA as a closed chain of
cylinders of Kuhn length 100 nm and by matching experimentally
determined knotting probabilities of a short P4 phage DNA strand (of
around 10,000 base pairs) with those obtained from Monte Carlo
simulations.

Here, we use a higher resolution variation of this ansatz whichmodels
DNA as a standard bead-stick chain and also resolves local structure at the
scale of the persistence length (which according to Kratky-Porod theory is
half of theKuhn length).We keep, however, the same effective diameter to
determine knotting probabilities in various ionic conditions for long,
experimentally relevant DNA strands (like λ phage or T4). In a previous
work (Rieger and Virnau, 2016), we have already validated this approach
by determining simulation parameters for physiological conditions
(0.15M) that reproduce experimental knotting spectra of short strands
from Rybenkov et al. (1993) and Shaw and Wang (1994) even without
making assumptions about the persistence or Kuhn length. Not only did
these simulations confirm a value for dwhich is close to the value of Stigter
(pink point in Figure 1A), they also confirmed the correct persistence
length of DNA. While we use d = 4.465 nm for physiological conditions,
values for other ionic conditions are directly taken from Figure 1A.

Bead-stick model. Simulations were performed using a discrete Kratky-
Porod model (Kratky and Porod, 1949; Dai et al., 2012b; Marenz and
Janke, 2016; Rieger and Virnau, 2016) with hard sphere interactions
between monomers and a constant distance between adjacent beads. For
simulations in slit confinement, walls are also hard and impenetrable.
Chain stiffness is implemented via a bond-bending potential:

U � κ∑
i

1 − cos θi( ) (1)

FIGURE 1
(A) Effective diameter of DNA, d as a function of NaCl concentration
as calculated by Stigter (1977) on the basis of polyelectrolyte theory. The
values for the effective diameter, d have been obtained by calculating the
interaction potentials of highly charged colloidal cylinders
representing DNA. The effective diameter value for physiological salt
concentrations 0.15 M has been taken from Rieger and Virnau (2016).
(B) Knot types considered in this paper.
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where θi for i = 1, . . . , N−1 are the angles between adjacent bond
vectors. Simulations were performed at various salt concentrations
with values for d obtained from Figure 1A. We assume a persistence
length lp of 50 nm or 150 base pairs (bp) for all considered salt
concentrations. For a Kratky-Porod chain the stiffness parameter κ for
any given effective diameter d can be computed as (Fisher, 1964; Trefz
et al., 2014; Rieger and Virnau, 2016)

κ ≈
lp · kBT

d
. (2)

In dsDNA the distance between adjacent base pairs is 1/3 nm. By
comparing the contour lengths, we conclude that a DNA strand with B
base pairs is represented by a chain of

N ≈ B · 0.3333 nm/d (3)
beads.
Several simplifications are implied in this approach. The dependence of
persistence length on ionic conditions was neglected as differences only
amount to a few percent at least in the formalism of Odijk (1977);

Skolnick and Fixman (1977). Note, however, that for small DNA strands
(up to several kilo bases) and high salt conditions the persistence length
can be significantly smaller (≈30–35 nm), (Kam et al., 1981; Manning,
1981; Post, 1983; Savelyev, 2012; Brunet et al., 2015; Rieger and Virnau,
2018) and also depends on the specific ions in the solvent (Brunet et al.,
2015) (the influence of which we neglect as well). Nevertheless, for larger
chains (such as those simulated in our paper) persistence length is
expected to increase again andmight actually be closer to 50 nm. In high
salt conditions knotting probabilities also depend little on the actual
value of the persistence length as demonstrated in Supplementary
Information, which taken together justifies our simplified assumptions.

Experiments (Plesa et al., 2016; Kumar Sharma et al., 2019) displayed
in Figure 2A use either KCl (1 and 1.5 M) or LiCl (4M) as buffer. In our
simulations we mainly study DNA strands of lengths 20,678 bp, 48,502 bp
and 165,648 bp corresponding to a linearized plasmid, λ phage DNA and
phage T4 GT7 DNA used in Plesa et al. (2016).

For comparison we have also implemented a simple random walk
which can be mapped onto DNA by setting the Kuhn length to
100 nm, which takes over the role of d from Eq. 3. Interestingly, this
simplistic model for DNA was already discussed in the first simulation
paper on polymer knots from 1974 (Vologodskii et al., 1974) and
yields, as we will see later, surprisingly reasonable results when
compared with recent experiments on long DNA strands (Plesa
et al., 2016). Of course, differences in knotting probabilities due to
varying ionic conditions are not captured in this approach, but could
in principle be included following Rybenkov et al. (1993). All chains
were simulated with a pivot Monte Carlo algorithm (Madras and
Sokal, 1988): After a pivot center is chosen at random, one arm of the
polymer is rotated by a random angle around the pivot point and the
move is accepted with the Metropolis criterion.

Knot analysis. Knots are defined only for closed chains and
characterised by the minimum number of crossings when projected
onto a two-dimensional plane (see Figure 1B) (Adams, 1994). The
simplest knot, apart from an unknotted ring which is called the unknot
(0), is the trefoil (31) with three essential crossings. Similarly, the next
knot type to follow is the figure-eight knot (41) with four crossings.
While there is only one knot with three and one knot with four crossings
(as indicated by the index), eventually the number of different knots
grows exponentially with the crossing number. In addition to prime
knots, multiple knots can also be combined on a ring to form so-called
composite knots as indicated in the right-most picture of Figure 1B.

Since we have simulated linear chains a closure to connect the two
end points of our chains needs to be defined. For this we first connect the
two termini with their centre of mass. Along these lines one can then
define a closure which emerges from one end, follows the first line,
connects to the second one far away from the polymer and ends at the
second end of the chain (Virnau et al., 2006). Once the open chain has
been closed the Alexander polynomial can be determined for which a
detailed description can be found in Virnau (2010). The size of a knot
can be determined by successively removing monomers from the two
ends of the polymer (before closure) chain until the knot type changes.

Results

First, we investigate knotting probabilities as a function of DNA
length and ionic conditions for unconfined DNA (Figure 2A). For
better clarity, we only plot fitted curves according to Deguchi and

FIGURE 2
(A) Knotting probability as a function of chain length for DNA chains
of up to 166 kbp in comparison to recent experiments (Plesa et al., 2016;
Kumar Sharma et al., 2019). Straight lines refer to simulations and data
points to experiments. Different colors represent varying ionic
conditions. (B) Knot spectrum as a function of DNA length for
simulations in a high salt solvent (4 M) scenario. Complex knots refer to
all other knots not listed here excluding the unknot.
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Tsurusaki (1997) for our simulated data. Experimental data from
recent nanopore experiments (Plesa et al., 2016; Kumar Sharma et al.,
2019) on 20,678 bp long linearized plasmids, λ phage (48,502 bp) and
T4 GT7 DNA (165,648 bp) are displayed as data points. We notice
that even in the range of 100 kbp, DNA already exhibits substantial
knotting which strongly depends on ionic conditions. Knotting

probabilities are larger in high salt scenarios and can reach up to
70% for the largest strands. Intriguingly, our coarse-grained
simulations also suggest that knotting can almost be avoided
completely in a low salt scenario. For the same 166 kbp strand
we only observe a knotting probability of 5%, which (if confirmed
experimentally) would open up new possibilities for disentangling
large DNA strands, e.g., in preparation of nanopore sequencing.
The latter may, however, prove challenging experimentally as it
becomes difficult to translocate at low ionic concentrations. These
large discrepancies are indeed surprising as prior simulations of
closed DNA rings with a similar model yielded significantly
higher knotting probabilities, particularly for the low salt
scenario (Dai et al., 2012b). Overall, agreement between
predicted and experimentally determined knotting
probabilities in medium to high salt conditions is quite good
and differences only amount to a few percent. Surprisingly,
comparisons with a simple random walk model still yield
reasonable agreement even though occurrences of knots are
overestimated systematically. At the length scales considered,
the knot spectrum is still dominated by trefoil knots as is depicted
for the high salt (4 M) scenario in Figure 2B. However, we already
observe the emergence of composite knots as demonstrated
before for even larger chains under physiological conditions in
Rieger and Virnau (2016).

In Figure 3A we show results for λ phage DNA (48,502 bp)
confined between two plates to study the interplay of ionic
conditions with confinement. As no experimental data is
available, Figure 3A only displays simulation results. The
general shape of the curves follows results for shorter chains
and high ionic conditions from Micheletti and Orlandini
(2012a), Orlandini and Micheletti (2013) and for rings in Dai
et al. (2012b): The knotting probability first increases with
increasing plate distance, reaches a maximum at around
100–150 nm before falling off and approaching the value
obtained for unconfined DNA. Here, we note again that
knotting is suppressed substantially in low salt scenarios. For all
salt concentrations, the number of knotted conformations in
comparison to unconfined DNA is roughly increased by a factor
of two at the maximum, and the position of the maximum shifts to
lower plate distances with increasing salt concentrations as noted
for closed rings in Dai et al. (2012b).

Figure 3B displays the knot spectrum as a function of plate
distance for the 4 M high salt scenario. While the amount of
complex knots decreases (and unknots thus increase) for
distances beyond the maximum, the composition of trefoil,
figure-eight and composite variants of the two only varies
slightly.

In Figure 3C, we plot the scaled trefoil knot length (which we
define as the ratio of the contour length of the trefoil knot to the
contour length of the whole chain). For all concentrations and plate
distances, a trefoil knot roughly occupies one-fifth of the chain and has
a similar size as in the unconfined scenario. For a simple random walk,
we roughly obtain the same result.

Discussion

We investigate with numerical simulations the influence of ionic
conditions on knotting of free DNA and DNA confined between two

FIGURE 3
(A) Knotting probability of λ phage DNA (48.5 kbp) as a function of
plate distance at various ionic conditions in slit-pore confinement. (B)
Knot spectrum for a salt concentration of 4 M. Complex knots refer to all
other knots not listed here excluding the unknot. (C) Average sizes
of trefoil knots.
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plates with a focus on long, experimentally relevant strands. From a
technical point of view we test and confirm a coarse-grained bead-stick
model by comparing simulations to recent nanopore experiments on
DNA knotting. The model is not only susceptible to the influence of
ionic conditions and reproduces the existing experimental knotting
probabilities for unconfined DNA, but also resolves the structure of
DNA below the persistence length. As such it is well-suited for the
numerical description of recent (Plesa et al., 2016; Kumar Sharma
et al., 2019) and ongoing DNA experiments in the range of tens to
hundreds of kilo base pairs and could be easily adapted for molecular
dynamics simulations. Extensions which account for smaller, varying
persistence lengths in small strands could be implemented as well to
study structural properties of DNA at these scales (Zoli, 2018). At
large length scales we observe a strong dependence on solvent
conditions: While knotting can be abundant in a high salt
scenario in which negative charges on DNA are completely
screened, it becomes almost negligible in low salt conditions.
Experiments on DNA dynamics (Shusterman et al., 2004) also
imply that characteristic time scales involved in these transitions
may well be below typical times required, e.g., for nanopore
sequencing even though further studies on this issue are
certainly warranted. If this drastic change is confirmed
experimentally in long strands, an adjustment of ionic
conditions could indeed be used as a switch to effectively
unknot DNA in scenarios where knots are undesired. Likewise,
such experiments could further improve coarse-grained models
by eliminating the need to assume effective excluded volume
interactions, which could be fitted to knotting probabilities
instead (Rieger and Virnau, 2016; Rieger and Virnau, 2018).
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Molecular dynamics simulation of
an entire cell
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Groningen, Groningen, Netherlands, 2Department of Chemistry, University of Illinois at Urbana-Champaign,
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The ultimatemicroscope, directed at a cell, would reveal the dynamics of all the cell’s
components with atomic resolution. In contrast to their real-world counterparts,
computational microscopes are currently on the brink of meeting this challenge. In
this perspective, we showhow an integrative approach can be employed tomodel an
entire cell, the minimal cell, JCVI-syn3A, at full complexity. This step opens the way
to interrogate the cell’s spatio-temporal evolution with molecular dynamics
simulations, an approach that can be extended to other cell types in the near future.

KEYWORDS

JCVI-syn3A, minimal cell, Martini force field, integrative modeling, coarse grain, polyply

Introduction

Biomolecular functions emerge from the molecular interactions taking place in cellular
environments. Understanding each component’s role in driving cell function poses an immense
challenge. For a long time, experimental techniques have been our main window into the
cellular environment. By resolving biomolecular structures and probing the dynamics of
biomolecular processes, both in vivo and in vitro, researchers have developed a global
understanding of how a cell functions.

A limitation of these experimental techniques is the spatio-temporal resolution that they
can probe, particularly within the complex and crowded environment of the cell. Molecular
dynamics (MD) simulations provide a suitable alternative approach, covering the relevant
length and timescales at molecular resolution, albeit over short periods of a cell cycle. Over the
past decades, MD has matured into a powerful tool that functions as a computational
microscope (Lee et al., 2009; Dror et al., 2012). With the advances in available computer
power, including the transition from using central processing units (CPUs) to graphical
processing units (GPUs), the complexity and the spatio-temporal scales of MD simulations
have increased remarkably. State-of-the-art simulations, containing hundreds of millions of
atoms, include dynamic models of a photosynthetic chromatophore vesicle (Singharoy et al.,
2019), the nuclear core complex (Mosalaganti et al., 2022), the membranes of a mitochondrion
(Pezeshkian et al., 2020), the bacterial cytoplasm (Yu et al., 2016), and a virus particle embedded
in a nanoscale aerosol droplet (Dommer et al., 2022). The natural next step is, arguably, the scale
of entire cells (Bhat and Balaji, 2020; Khalid and Rouse, 2020; Luthey-Schulten et al., 2022;
Thornburg et al., 2022).

Creating a whole-cell model has long been a major goal in computational modeling. A
computational cell will help us to resolve a more integral picture of how biomolecular
interactions drive cell function since biomolecular processes operate on a hierarchy of
interconnected scales. Thus, resolving the full cell function requires a holistic approach.
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The current state-of-the-art uses static representations of
heterogeneous cell-scale structures such as cellPACK (Johnson
et al., 2015; Maritan et al., 2022), genome-scale well-stirred
reaction models for metabolism (Karr et al., 2012; Macklin et al.,
2014; Karr et al., 2015; Breuer et al., 2019; Macklin et al., 2020), or
mesoscale kinetic models that attempt to include both structural and
chemical states of the cell such as Lattice Microbes (Roberts et al.,
2013). These computational techniques, despite granting impressive
insights into the complexity of cellular processes, are limited by the
spatial resolution they can achieve.

Constructing whole-cell models requires the integration of a large
amount of experimental data, i.e., relies on an integrative modeling
approach (Bonvin, 2021; Luthey-Schulten, 2021; Gupta et al., 2022).
Obtaining such data with high spatial and dynamic detail, particularly
in living cells, is very challenging, but exciting progress is being made
in elucidating the architecture and stoichiometry of cellular
components at unprecedented resolutions (Reading et al., 2017;
Ando et al., 2018; Cheng, 2018; Chorev et al., 2018; Christie et al.,
2020; Lorent et al., 2020; Narasimhan et al., 2020; Wietrzynski et al.,
2020; Štefl et al., 2020), setting the stage for spatially detailed
simulations of whole cells. To showcase this possibility, we
consider one of the simplest cells known to date: the minimal cell
created by the J. Craig Venter Institute (Hutchison et al., 2016), a
stripped-down version of aMycoplasma bacterium. The current strain,
named JCVI-syn3A (Syn3A), contains only 493 genes and is still able
to replicate independently (Breuer et al., 2019). This cell is particularly
amenable to detailed computational modeling because it is of relatively
small size (measuring 400 nm in diameter), and its precise
composition has largely been resolved (Breuer et al., 2019).

Here we present our ongoing effort to simulate Syn3A using the
Martini coarse-grained (CG) force field (Marrink et al., 2022). The
Martini force field employs a four-to-one mapping scheme, where up
to four heavy atoms and associated hydrogens are represented by one
CG bead. This reduction in the number of particles in the system,
together with a smoothening of the potential energy surface, speeds up
the simulations by about three orders of magnitude, enabling
simulations of systems that approach the size of entire cells. In the
case of Syn3A, about 550 million CG particles are required,
corresponding to more than six billion atoms.

In the remainder of this work, we first describe the set of tools
needed to construct a system as complex as an entire cell at theMartini
level (the Martini “ecosystem”), including a description of the stepwise
procedure to construct a starting model for Syn3A, from building the
chromosome and modeling the cytoplasm to the addition of the cell
envelope. We end with the prospects of actually simulating this model
and discuss the potential future avenues of simulating entire cells. The
integrative modeling workflow is schematically depicted in Figure 1.

Building cells with the Martini ecosystem

Modeling cellular environments using a coarse-grained approach
requires the use of a force field that incorporates enough detail to
represent all biomolecules and their interactions explicitly. In this
regard, the Martini force field is an excellent candidate, as
demonstrated by the wide range of application studies using
Martini over the past 2 decades (Marrink et al., 2022).
Additionally, parameters for a large variety of biomolecules are
already available, including proteins (de Jong et al., 2013), lipids

(Wassenaar et al., 2015), polynucleotides (Uusitalo et al., 2015;
Uusitalo et al., 2017), carbohydrates (López et al., 2009; Grünewald
and Punt, 2022) and metabolites (Sousa et al., 2021; Alessandri et al.,
2022). A curated collection of all parameters is available from the
Martini Database (Hilpert et al., 2022).

Accompanying the Martini force field is a collection of tools that
compose the software side of the Martini ecosystem (Figure 1). The
primary goal of this software suite is to facilitate the construction of
topologies and initial coordinates for running CG Martini MD
simulations. The Martini ecosystem is currently being extended
around a central framework, named Vermouth. Making use of a
graph-based description of molecules, Vermouth implements a
unified handling of processes frequently used in Martini, such as
topology and coordinate generation or resolution transformation, as a
lightweight python library (Kroon et al., 2022).

Proteins comprise the bulk of a cell’s organic material, composing
approximately 40% of the total intracellular volume (Ellis andMinton,
2003). The number of unique proteins expressed by the cell, i.e., the
proteome, can range from a few hundred to several thousand.
Consequently, describing realistic cellular environments requires
generating topology files for proteins of varying shapes and sizes as
well as packing these into a highly crowded solution. Martinize2,
which is built on top of Vermouth, is designed for high-throughput
generation of Martini topologies and coordinates for proteins from
atomistic protein structures. The workflow used in Martinize2
additionally performs quality checks on the atomistic protein
structures and alerts to potential problems making it ideal for such
a high-complexity use case (Kroon et al., 2022). To generate dense
protein solutions on a cellular scale as required for whole-cell
modeling, a new software tool, called Bentopy, is currently under
development. It uses an efficient collision detection scheme (Howard
et al., 2016) to generate random packings of proteins and protein
complexes within volumetric constraints. Furthermore, functional
annotations of proteins can be integrated into the algorithm,
biasing their spatial distribution in the cytosol based on their
known biochemical function.

Constructing coordinates and input files for chromosomal DNA
presents another challenge for modeling of a whole cell. Even for a
comparatively small genome as that of JCVI-syn3A, approaches that
rely on reading input coordinates and forward mapping such as used
in Martinize2, become too inefficient due to the sheer size of the
molecule. Instead the Polyply software, which was originally developed
to efficiently setup general polymeric systems, can be used (Grünewald
et al., 2022). Within Polyply, a multiresolution graph-based approach
is used to efficiently generate polymer topologies, in particular for
DNA, only from the sequence. In addition to topologies, system
coordinates can be generated using a specialized biased random
walk protocol. This tool of the Martini ecosystem has successfully
been applied to model dense polymer melts and simple ssDNA viral
chromosomes. At the moment, the package is being extended to
handle double-stranded nucleic acids, and generate more complex
DNA structures such as bacterial chromosomes.

Lastly, modeling lipid membranes has historically been a leading
application of the Martini force field (Marrink et al., 2019). Simulating
arbitrarily complex membranes of various sizes, geometries, and
lateral heterogeneities is facilitated by TS2CG (Pezeshkian et al.,
2020). This tool implements a backmapping algorithm that
converts triangulated surfaces into CG membrane models. As a
result of the method’s high level of control, the curvature-
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dependent lipid concentrations in both membrane leaflets can be
precisely determined by the user. In addition, proteins can be inserted
into the membrane together with their characteristic lipid shells

[i.e., lipid fingerprints (Corradi et al., 2018)], setting the stage for
building cell envelopes.

In the following subsections, we describe the application of the
aforementioned tools to construct a proof of principle whole-cell
simulation of Syn3A, illustrating how the current Martini
ecosystem enables users to study multi-component systems at the
mesoscale.

Chromosome building

The minimal genome of JCVI-syn3A contains 493 genes and is
encoded in a single circular chromosome of 543 kilobase pairs (kbps).
Since the chromosome is contained inside the cell’s cytosol, the
structural organization is heavily influenced by the crowded
intracellular environment. Due to the size and near-uniform
distribution of ribosomes present in the cytosol, the excluded
volume interactions of these protein-RNA complexes are known to
have a significant influence on the nucleoid organization (Mondal
et al., 2011).

The nucleoid structure of Syn3A was previously modeled by
Gilbert et al. (2021) based on the ribosome distribution and cell
boundary determined by cryo-electron tomography. A Monte Carlo
(MC) method grew the chromosome, modeled by a self-avoiding
polygon, on a lattice inside the cell boundary. Each MC step ensured
that no model constraints were violated, resulting in a circular genome
without steric clashes with the ribosomes or cell membrane. The
algorithm was validated by comparing the chromosome conformation
capture (3C) maps of ensembles of simulated nucleoid configurations
with experimental 3C maps. 3C maps show spatial correlations
between chromosomal regions, which are spatially close but can be
distant in the nucleotide sequence. Based on the features in the 3C
maps, we infer that the chromosome is organized more like a fractal
globule with little persistent supercoiling.

Whilst the previous chromosomemodeling approach with a lattice
polymer was tailored to be highly compatible with the whole-cell
simulations using Lattice Microbes, we have subsequently developed a
new method to generate circular chromosomes organized as fractal
globules in a continuum polymer model with 10 bp monomers. The
generated chromosome model is relaxed using Brownian dynamics
and an energy function for modeling dsDNA as a twistable worm-like
chain from (Brackley et al., 2014). In order to connect the
chromosome model to a Martini-level representation, the model is
transformed to a one-bead-per-base-pair resolution by spline
interpolation. Rotation minimizing frames are then constructed
along the chromosomal contour, providing a consistent reference
to which the Martini DNA model can be backmapped (Wang
et al., 2008). After adding an equilibrium twist along the frame’s
tangent vector, Martini base pair templates matching the 543 kbp
genome sequence are positioned along the chromosome following the
local contour reference frame. By performing a short energy
minimization the system is relaxed, resulting in a stable
chromosome structure. The subsequent model consists of 543 kbps,
which at a Martini resolution is equivalent to seven million beads. By
implementing this backmapping procedure in Polyply, we are able to
efficiently generate the coordinates for the chromosome in a force field
agnostic manner. The overall chromosome building takes a matter of
minutes, opening up the possibility of studying larger protein-DNA
complexes like chromatin fibers and Escherichia coli chromosomes.

FIGURE 1
Integrativemodeling workflow for building in silicowhole-cell models.
The initial step consists of collecting experimental data to inform the in silico
modeling. Data from CryoET images [Image from EMD-23661 by Lam and
Villa ref. (Gilbert et al., 2021)], Cryo-EM protein structures and -Omics
experiments are incorporated into our cell models. The second stage in the
workflow concernsmesoscalemodeling. Here a kineticmodel of the whole
JCVI-syn3A [Image ref. (Thornburg et al., 2022) is used to gain quantitative
insights into cellular processes and composition. As part of the final step,
Martini models of the cellular components are generated using tools in the
Martini ecosystem: Polyply, Martinize2, and TS2CG (Image ref. (Pezeshkian
et al., 2020)]. Lastly, Bentopy facilitates the assembly of the individual
molecular components in their appropriate abundances into the final
molecular-resolution whole-cell model.
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The required topology files were generated from the sequence using
the default Polyply methods.

Cytosol modeling

In order to model the cytosol, it is essential to have a complete
picture of the bacterial proteome, including both protein structures
and proteomics counts. The genome reduction leading to Syn3A
limits the number of different proteins that have to be taken into
account by only retaining 452 protein-coding genes. This minimal
genome has been extensively characterized, and only 91 genes
remain without an annotated function. A recent study by
Bianchi et al. (2022) uses computational analyses to further
elucidate the function of uncharacterized genes and work
toward complete functional characterization of the proteome. By
gaining a better understanding of the function of encoded proteins,
we will be able to inform the spatial distribution of proteins in our
whole-cell model.

From the 452 different proteins expressed by Syn3A, 281 are
characterized as cytosolic proteins, 63 as trans-membrane proteins,
42 as peripheral membrane proteins, and the remaining 66 still have
an unknown localization. As part of the computational gene
characterization workflow, Bianchi et al. modeled the protein
structures of the entire proteome using AlphaFold2 (Jumper et al.,
2021). Martinize2 successfully converted all but one of the predicted
protein structures (451) to a corresponding Martini model. Using
Bentopy, the cytosolic protein models are packed into the
intracellular volume alongside the chromosome and ribosomes.
The number of copies of each protein is based on available
proteomics data (Breuer et al., 2019; Thornburg et al., 2022); in
total, around 60,000 proteins were distributed within a spherical
volume with a diameter of 400 nm. Concerning the ribosomes, we
used bacterial homologs that we had already generated previously
(Uusitalo et al., 2017), placing 503 ribosomes in random orientations
near the positions originally determined from the cryo-electron
tomography map (Gilbert et al., 2021). Single-stranded RNA
fragments were not included at this stage.

The next major component of the cytosol are the small molecules
that, together with enzymatic proteins, participate in the metabolic
pathways. In the current model, we include only the metabolites for
which Martini topologies were already available, primarily amino
acids and nucleotide cofactors (Sousa et al., 2021), and which are
present at high concentrations inside Syn3A. The metabolite models
were automatically generated from the topology files using Polyply.
Based on available metabolomic data (Thornburg et al., 2022),
1.7 million metabolites are distributed within the cytosol,
approximately 55% of the metabolite count for the complete
metabolome.

Constructing the envelope

Modeling the cell envelope of the Syn3A is a straightforward
procedure since it is solely composed of a singular cytoplasmic
membrane. Furthermore, experimental measurements indicate the
absence of a cell capsule, drastically reducing the complexity of the
cell boundary. The lipid membrane is constructed using TS2CG with
a uniform lipid mixture across both membrane leaflets. It should be

noted that since the minimal cell acquires membrane components
through lipid synthesis from fatty acids and direct incorporation of
lipids from its environment, the lipid composition of the cellular
membrane heavily depends on the growth medium. We base our
model on the lipidomics data presented by (Thornburg et al., 2022),
indicating the presence of five main lipid types: cholesterol (59%),
sphingomyelin (18%), cardiolipin (17%), phosphatidylcholines
(4%), and phosphatidylglycerol (2%). In the absence of more
detailed lipidomics data, all lipids are modeled with fully
saturated palmitoyl tails. The total lipid count amounted to
1.3 million lipids.

Additionally, we randomly inserted membrane proteins into the
cell membrane using TS2CG. From the available proteomics data, the
number and types of membrane proteins are determined. While
AlphaFold2 structure predictions can be used directly to model
monomeric membrane proteins, experimental crystal structures are
still required for the protein transport complexes. Martinize2 is again
used to generate the Martini models for the membrane proteins. For
simplicity, we selected five abundant protein complexes and
distributed these uniformly over the membrane. In total,
2,200 protein complexes were embedded in the cell envelope,
corresponding with the expected number of membrane proteins
present on the surface of Syn3A.

Solvating and simulating the cell

Having modeled all the cell components, the final step in
constructing a starting structure for subsequent simulation is
defining the periodic simulation box and solvating the system.
Considering the whole-cell model’s spherical shape, a logical
choice for the periodic box is a rhombic dodecahedron. To
solvate, a periodic water box is tiled across the cell model,
removing the water beads that overlap with the model using a
collision detection scheme. The system is neutralized by placing
counter ions near the highly charged components in the cytosol,
i.e., the chromosome and ribosomes; the overall negative charge is
substantial, amounting to 3.2 million elementary charges. As part of
the solvation procedure, we also replace an appropriate number of
water beads with ion beads to establish an ion concentration of
135 mMNaCl across our system, mimicking the experimental buffer.
Thus, we ended up with a system containing 447 million water beads
(208 million inside, 239 outside of the cell), 8.5 million sodium, and
5.3 million chloride ions. Note that Martini CG water beads
represent four real water molecules. The total bead count,
including all biomolecules, adds up to 561 million beads. A
snapshot of the full system is shown in Figure 2.

Having constructed a starting model for Syn3A, the current
challenge is to perform an actual MD simulation. At the time being,
this proved to be non-trivial. Gromacs (Abraham et al., 2015), the
main MD engine to run Martini-based simulations, is having
difficulties handling systems comprising hundreds of millions of
particles, in particular featuring large molecules such as the
genome spread over multiple domains. The Gromacs developer
team is aware of this problem and is dedicated to solving it. Possible
other software engines to consider are ddcMD (Zhang et al., 2020)
and openMM (Eastman et al., 2017), both of which are supporting
Martini and offer simulation speeds comparable to those of
Gromacs.
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Discussion

In the wake of a continuous rise in computing power, MD
simulations have transitioned from studying idealized
representations of biomolecular systems to modeling their full
complexity. The culmination of this development would be
simulations at the level of entire cells. As a proof of principle that
we are ready to meet this challenge, we presented a model of the
complete minimal cell JCVI-syn3A, constructed using the Martini
ecosystem. The final simulation box comprises more than 560 million
CG beads, representing over six billion atoms in the cell (Figure 2).

Before looking at the broader prospects of this endeavor, it is
important to discuss a number of limitations of our approach. The
current model uses the Martini 2 version of the force field since
Martini models for nucleic acids, and other essential cellular
components are still under development for the latest Martini 3
release. However, the methods described in this paper can be
straightforwardly transferred to the latest version of Martini when
validated models become available. With over 800 different bead types
and a recalibrated interaction matrix, Martini 3 offers an improved
framework for CG MD simulations (Souza et al., 2021). Nevertheless,
inherent limitations of Martini, such as an inability to sample protein
secondary conformational changes, remain. We do not anticipate that
such changes are of primary importance in determining the cellular
organization, but details of protein-protein and protein-lipid
interactions might be affected. This problem could perhaps be
resolved by using Go potentials (Poma et al., 2017; Souza et al.,
2019), which are already integrated into Martinize2 and Bentopy.

Even though our in silico cell contains more than 500 unique CG
molecules and thereby presumably qualifies as the most complex

system simulated to date, it simplifies the composition of various
cellular components of Syn3A. Firstly, limited by the availability of
Martini models for the metabolites, only a small subset is currently
included in the cytosol. Future iterations of our whole-cell model will
include Martini models for the complete metabolome, which
comprises about 188 different compounds, and are expected to
benefit from the ongoing development of dedicated automatic
topology builders (Bereau and Kremer, 2015; Potter et al., 2021).
Secondly, since AlphaFold2 was used to predict the protein structures
of the whole proteome, only monomeric structures were initially
available. Essential multimeric proteins like the ribosomes and
membrane-embedded transport complexes are either left out or
represented by homologous proteins with available experimental
crystal structures. In the future, improved protein structure
prediction algorithms will be used that also facilitate the modeling
of multimeric protein structures. In addition, ongoing progress in the
experimental characterization of the Syn3A proteome and lipidome, as
well as the characterization of the spatial distributions of membrane
proteins, will help further increase our model’s realism. A “living” list
of the complete composition of our in silico cell can be found in our
GitHub repository (marrink-lab, 2022).

Another issue is the fine-tuning of the amount of interior solvent
(both water and ions), together with the lipid balance between the
inner and outer leaflet. Previous works on large-scale membrane-
enveloped systems (Pezeshkian et al., 2021; Vermaas et al., 2022) have
shown that finding this balance is a non-trivial task. Unbalanced
systems might experience strong osmotic pressures and membrane
(curvature) stress, causing unwanted shape deformations all the way to
membrane rupture. As a complicating factor, these effects may only
appear after prolonged simulation times. Clearly, dedicated

FIGURE 2
Whole-cell Martini model of JCVI-syn3A. The four stages of cell building are shown on the side. The final system contains 60,887 soluble proteins (light
blue), 2,200 membrane proteins (blue), 503 ribosomes (orange), a single 500 kbp circular dsDNA (yellow), 1.3 million lipids (green), 1.7 million metabolites
(dark blue), 14million ions (not shown) and 447million water beads (not shown) for a total of 561million beads representingmore than six billion atoms. Image
rendered with Blender (Blender Online Community, 2022).
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computational resources are required for the simulation of whole cells
or cell organelles. The forthcoming generation of supercomputers and
simulation software is becoming increasingly efficient, and billion-
particle simulations have already been achieved (Jung et al., 2019;
Castagna et al., 2020).

An important challenge is reaching timescales long enough to allow
meaningful analysis of such large systems. Assuming dedicated computer
time on current infrastructure, we anticipate that we can reach timescales
of the order of 10–100 µs in the foreseeable future. Although this is
typically considered a long enough simulation time for standard system
sizes (e.g., a single membrane protein), it is clear that on the scale of an
entire cell, we will not be able to equilibrate our system; the generated
ensemble of configurations will remain dependent on our starting state.
Equilibration will only happen locally, and multiple replicas will need to
be generated to obtain statistically relevant data. Note that the 10–100 µs
range offers a nice overlap with state-of-the-art experimental techniques.
For example, advanced MINFLUX microscopy from the Hell lab enables
the tracking of particles as small as 1–2 nm for 100 s of microseconds
(Eilers et al., 2018; Schmidt et al., 2021). Besides, Lattice Microbes
simulations of the Luthey-Schulten group (Roberts et al., 2013) use
time steps of the order of microseconds, which allows for a potential
feedback loop between these computational approaches.

Another major limitation is the fact that real cells operate out-of-
equilibrium, driven by the import and export of nutrients and an intricate
metabolic network of chemical reactions. In our approach, which is based
on classicalMD,we do not take this into account.We are therefore limited
to studying non-reactive processes, i.e., those arising from the physical
interactions among the constituents. The current composition of our cell
is based on average concentrations of proteins and metabolites and thus
reflects a steady-state. Coupling our classic approach with approaches
taking into account reactivity, such as the aforementioned Lattice
Microbes simulations or other metabolic network models (see below),
in principle, could capture the non-equilibrium aspect of real cells.

Keeping these limitations in mind, simulations of the minimal cell
with a molecular resolution will make it possible to study a wide range of
new aspects. Modelling cellular processes and chemical transformations
involves a hierarchy of interconnected scales that cannot be separated
without causing artefacts. Behaviour emerging from the interaction of
millions of different compounds is easily missed when systems are
simplified. One might question to what extent one part of the cell
affects another, given the limited timescales likely to be reached. If the
various cellular subsystems act independently, one might better simulate
those in isolation. To find out, one needs to simulate the complete system
in addition to the smaller-scale subsystems. Our whole-cell simulation is
only a first step, which will benefit from imminent improvements in high-
performance computing to extend these simulations to longer timescales,
up to the point where all parts of the cell may influence each other.
Currently, the internal organization of the cytosol of Syn3A is primarily a
black box. Our model will allow us to observe how proteins inside the
cytosol interact with macromolecular structures such as ribosomes and
chromosomes. Viewing the cytosol from this perspective, we can observe
emerging heterogeneities and viscosity gradients, following in the
footsteps of other realistic models of the cytoplasm of various cell
types (McGuffee and Elcock, 2010; Yu et al., 2016; Oliveira Bortot
et al., 2020). We can expect arising interaction patterns between
proteins and metabolites, and probe the possible appearance of
biomolecular condensates (Guilhas et al., 2020; Rhine et al., 2020).

A simulation at the level of the entire cell allows us to characterize the
extent to which the cell membrane affects (and is affected by) the cellular

interior. If we consider a membrane zone with a thickness of 30 nm
(~20 nm of the membrane together with its embedded proteins, plus
another 10 nm layer underneath), 40% of the total cell volume is part of
this membrane zone. Our simulations will provide detailed insights into
the nature and extent of depletion or crowding layers, and into the level of
heterogeneity inside this membrane zone, providing information on the
extent to which compounds are either enriched or depleted near the cell
surface (Nawrocki et al., 2019). A full-cell membranemodelmight explain
why the minimal cell grows on a diet of both saturated and unsaturated
fatty acids, but not on a diet of just saturated ones as observed in
lipidomics experiments from the Saenz lab (private communication).
A related question is why the cell membrane contains such a high
percentage of cholesterol (20%–60% dependent on growth medium);
this is uncommon for bacterial membranes although generally
Mycoplasma do contain some cholesterol for membrane stability.

Of special interest is the potential existence of dynamic highways,
i.e., regions in the cell with greater mobility of the constituents, whichmay
arise from crowding effects or liquid-liquid phase separation phenomena,
or may be induced by proximity of the cell membrane. Such dynamic
highways could be important in regulating transport in an otherwise
glassy state of the cytoplasm. For regions of the cell showing particularly
interesting behaviour, smaller systems can be extracted with the advanced
TS2CG tool and simulated for extended timescales to increase the
statistical relevance. Besides passively studying the cellular
environment, holistic cell modeling poses the ideal computational
sandbox in which we can introduce new components to the cellular
environment. For instance, elucidating the non-specific interactions
between the cytosol and drug candidates and showing how drug-
receptor interactions affect the entire cell instead of just the receptor site.

Using a multiscale modeling approach, we could potentially
explore cell dynamics at various stages in its life cycle. Compared
to MD simulations, other low-resolution modeling approaches can
more broadly explore timescales of several orders of magnitude longer.
Integrating other computational models will make it possible to sprout
MD simulations in interesting regimes observed with the lower-
resolution models. The primary computational method we will
focus on integrating into our framework is the whole-cell fully
dynamical kinetic model developed by the Luthey-Schulten lab,
which accounts for the metabolic pathways governing the cellular
processes (Thornburg et al., 2022). By transferring structural
information from the kinetic model into our high-resolution
model, it will be possible to paint a more detailed picture of the
cell’s internal organization and dynamics at specific points of the cell’s
life cycle, including during cell fission.

Since most of the tools in the Martini ecosystem are force field
agnostic, the workflow can also be applied to generate all-atom whole-
cell models. Given the substantial increase in associated computational
costs, it might be a wiser approach to only sample smaller subsystems
at the all-atom level. These could be straightforwardly obtained from
backmapping representative regions taken from the whole-cell CG
model. A number of such backmapping tools, optimized for Martini,
already exist (Louison et al., 2021; Vickery and Stansfeld, 2021; López
et al., 2022).

A final challenge lies in the analysis and interpretation of the
complex high-dimensional massive data that will be generated.
Clearly, it will be impossible to perform a comprehensive analysis
on a whole-cell trajectory, and one needs to focus on specific research
questions. However, the trajectories can nowadays be easily shared
with the broader community via dedicated open-access repositories
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such as Zenodo (https://zenodo.org/), allowing others to perform
whatever additional analysis they fancy. One can also envision the
usage of data reduction schemes to efficiently analyse the whole-cell
simulation. One possibility is storing only centers-of-mass movement
of the non-aqueous components, which would facilitate the analysis of
diffusional behavior, for instance. Another approach would be using a
voxel-based method (Bruininks et al., 2021) to dynamically segment
the whole-cell model into similarity regions, e.g., membrane periphery
or chromosomal region. The system segmentation would allow for
efficient quantitative comparison of the cytosolic properties within
and between distinct regions of the cell. Furthermore, machine-
learning can be invoked to extract interaction patterns and other
emergent behavior that might be missed by standard analysis tools
(Noé et al., 2020; Wang et al., 2020; Kaptan and Vattulainen, 2022).
We foresee that our data sets will generate novel ways of dealing with
this unprecedented level of complexity.

In conclusion, we presented a roadmap toward whole-cell MD
simulations, illustrated with the construction of the first MD model of
an entire cell using our Martini ecosystem. The model represents a
next level realized with the computational microscope, providing a
complete picture of the cell and making it possible to relate molecular
structures and interactions to cellular function directly. In the long
term, our computational framework will enable us to study a wide
variety of mesoscopic systems, possibly informing the design of fully
synthetic cells (Olivi et al., 2021) and modeling cells with more
complex internal structures.
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The coexistence region in the Van
der Waals fluid and the liquid-liquid
phase transitions

Dinh Quoc Huy Pham, Mateusz Chwastyk* and Marek Cieplak†

Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

Cellular membraneless organelles are thought to be droplets formedwithin the two-
phase region corresponding to proteinaceous systems endowed with the liquid-
liquid transition. However, their metastability requires an additional constraint—they
arise in a certain region of density and temperature between the spinodal and binodal
lines. Here, we consider the well-studied van der Waals fluid as a test model to work
out criteria to determine the location of the spinodal line for situations in which the
equation of state is not known. Ourmolecular dynamics studies indicate that this task
can be accomplished by considering the specific heat, the surface tension and
characteristics of the molecular clusters, such as the number of component chains
and radius of gyration.

KEYWORDS

Van der Waals fluid, phase diagam, liquid-liquid phase transitions, intrinsically disordered
proteins (IDPs), molecular dynamics simulations (MD)

1 Introduction

Cellular organelles can be either membraneless or membrane-bound. The membranes arise
as droplets during a liquid-liquid phase transition (Brangwynne et al., 2009; Brangwynne et al.,
2011; Shin and Brangwynne, 2017; Boeynaems et al., 2018; Elbaum-Garfinkle, 2019) as a result
of thermal fluctuations. These biological droplets can be micrometers in size and exhibit
hydrodynamical characteristics such as fusion (Caragine et al., 2018; Caragine andHaley, 2019).
Proteinaceous liquids involved in the phase transition have been found to be composed
primarily of intrinsically disordered proteins (IDPs) (Uversky, 2002; Dyson and Wright, 2005;
Fink, 2005; Dunker et al., 2008; Ferreon et al., 2010; Uversky and Dunker, 2010; Babu et al.,
2011; Wright and Dyson, 2015; Banani et al., 2017; Chwastyk and Cieplak, 2020; de Aquino
et al., 2020) that allow for a multitude of ways to bind and aggregate.

The droplets may form only within the coexistence region of the phase diagram of the two
fluids but their functionality requires that they are metastable. The paradigm model that yields
such a coexistence region is the van der Waals (vdW) fluid as described by the well-known
equation of state that generalizes the perfect gas law. In the density (ρ)—temperature (T) plane,
the phase diagram of the vdW fluid includes the coexistence region of gas and liquid that is
bounded by the inverted parabola, as shown in the bottom panel of Figure 1. Its vertex
corresponds to the critical temperature (Tc) above which one cannot distinguish between the
two phases. Such a phase diagram can be obtained for the system of nmmonatomic particles that
interact through the 6–12 Lennard-Jones (LJ) potential (Hensen and McDonald, 1973)
given by:

ΦLJ � 4ε
σ

r
( )12

− σ

r
( )6[ ], (1)
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where ε and σ are the uniform energy and length parameters. A
significant increase in ρ, at any T, results in solidification. A sufficient
decrease in T yields a similar effect. The solids may have several kinds
of symmetry and the more complete schematic phase diagram can be
found in ref. (Schultz and Kofke, 2018).

It should be noted that the separation into the two phases in the
coexistence region can occur either through nucleation or by spinodal
decomposition, depending on ρ and T. Both processes can be triggered
by quenching from a temperature above Tc, but have a different
physical mechanism. Nucleation arises as a result of a rare but large
energy fluctuation and is associated with metastability (Frenkel, 1955;
Feder et al., 1966; Abraham, 1975; Binder and Stauffer, 1976). On the
other hand, phase separation through spinodal decomposition takes
place in an initially unstable system in which all fluctuations grow
because there is no energy barrier (Cahn and Hilliard, 1958; Cahn and
Hilliard, 1971; Langer, 1971; Huang et al., 1974; Binder et al., 1978).
Thus, the generation of metastable droplets can take place only
between the binodal and spinodal lines. The spinodal line for the
vdW system is also an inverted parabola that is placed within the
coexistence region (cf. The bottom panel in Figure 1). The region
within the spinodal line is chaotic, unstable, and beyond a

thermodynamic description. Any short-lived clusters of atoms there
cannot be analogues of the “organelles.” Thus, the determination of
the proper conditions for the droplet formation involves figuring out
not only the position of the binodal line but also of the spinodal
boundary. It should be noted that droplets of a higher (lower) density
than the environment arise in the region that borders with the gas
(liquid) phase. The biophysical context assumes the higher density
situation.

In the absence of theoretically validated equations of state for the
protein solutions, we resort to considering a simpler system: a
homogeneous vdW fluid. This will allow us to test the novel
concepts related to the determination of the phase diagram, giving
us much-needed insight on how to deal with more complicated
situations. In principle, for the vdW fluid, one can derive the free
energy of the system, consistent with the equation of state, and analyze
its stability. Our purpose, however, is to find alternative ways to locate
the spinodal and binodal lines that could be used in molecular
dynamics simulations of proteins.

2 The phase diagram construction

A series of simulations and experimental studies (Nicolas et al.,
1979; Panagiotopoulos, 1994; Baidakov et al., 2000) of the van der
Waals fluids has been reviewed by Stephan et al. (Stephan et al., 2019)
and the data shown in the bottom panel of Figure 1 is based on this
reference. The results are presented in reduced units (the symbols are
denoted by an asterisk) that involve the length parameter, σ, and the
depth of the energy well, ε. Density is given in units of the number of
monomers per σ3. For the cutoff value of 6.85σ, the critical point is at
temperature Tc of 1.31 and density ρc = 0.316 that is consistent with a
direct analysis of the equation of state.

The theoretical and experimental data (Stephan et al., 2019) were
the references for our simulations. We performed molecular dynamics
simulations for two systems of 4,000 particles: one for 4,000 non-
bonded particles and the other one for 200 20-bead chains. During our
simulations we monitored the cluster sizes, appearance of cavities and
their volumes (Chwastyk et al., 2014a; Chwastyk et al., 2016), specific
heat (Chwastyk et al., 2015; Chwastyk et al., 2017) as well as a number
of other parameters to find a way to determine the phase diagram.

2.1 Details of the simulations

Our simulations were conducted by using the LAMMPS software
package (Plimpton, 1995). The cut-off for LJ potential was at a
distance of rc = 6.85σ. We used the Verlet algorithm to integrate
the equations of motion. The time was measured in units of
τLJ ≡

�����
mσ2/ε

√
, where m is the mass of each particle. This time unit

corresponds to the characteristic period of undamped oscillations at
the bottom of a 6–12 potential (Chwastyk et al., 2014b; Zhao et al.,
2017a; Zhao et al., 2017b). We used the integration step of Δt =
0.005τLJ for the simulations of monomers and Δt = 0.001τLJ for chains.
The length of our simulations was 1 000 000 and 5 000 000 steps for
monomers and chains, respectively, which corresponds to 5000 τLJ of
total simulation time. The trajectory analysis was done based on the
last 1666τLJ of the simulation in each case and the other part of the
simulation was the equilibration. Two atoms were considered to be in
contact if the distance between them does not exceed 1.3σ. Two chains

FIGURE 1
The bottom panel: The phase diagram of the van der Waals fluid.
The open black and solid red circles correspond to the binodal and
spinodal lines, respectively and the data originate from a summary of
simulations and experiments presented by Stephan et al. (2019).
The open red circles on the right of the graph represent the upper
density spinodal line obtained based on the average cluster size analysis.
The open red circles on the left of the graph represent low-density side
and they point to the location of the left side of the spinodal line. The
blue squares represent the high density binodal line based on the cubes
occupancy analysis, and the blue circles represent low density binodal
line. The green lines mark the densites at which the different phases are
presented in Figure 5. The TC marks the critical temperature. The top
panels: The method of ρL determination based on the occupancy of
small bins analysis.
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are treated as belonging to the same cluster when they have at least one
inter-chain contact. As a consequence, we define a cluster as a group of
beads (in the case of the simulation of monomers) or chains connected
by at least one contact. The chain is defined as a line of monomers
connected by harmonic potential:

Ubond r( ) � kb r − σ( )2, (2)
where kb = 75000ε/σ2 is a force constant, strong enough to keep two
atoms at distance of σ. This assumption was established according to
the results of Kevin S. Silmore et al. (Silmore et al., 2017). We used the
canonical ensemble (NVT) and the temperature was controlled by
Nose-Hoover thermostat with damping parameter of 1.0τLJ for
monomers and 10.0τLJ for chains.

2.2 The simulations results

Our simulations were conducted for 90 different densities from
ρ* = 0.01 to 0.90, at nine different temperatures for monomers: T* ∈
{0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.25, 1.3} and eight temperatures: T* ∈
{0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0} for chains. The example atomic
configuration is presented in Figure 2 for ρ* = 0.1 and T* = 1.1. The
largest cluster composed of 1160 atoms is positioned in the center and
14 smaller clusters are highlighted by red larger balls. They contain
from 5 to 15 atoms.

The top panels of Figure 1 pertain to our method of determination
of the high-density branch, ρL, of the binodal line. The idea is to divide
the volume into small cubes with a side of order of the size of the
molecule. For polymers or proteins, the radius of gyration, rg would be
an appropriate length scale. For monatomic molecules 2σwas found to
be optimal. The top left panel shows the probability distributions of
the cubic bins to have 0, 1, 2, 3, etc. Atoms. At the low density (ρ* = 0.2)

there is a substantial probability, P0, of having an empty bin. The top-
right panel shows that P0 decreases with ρ* and at around 0.64 it
approaches zero. We take this value as defining ρL. By considering
several other temperatures we get the data points indicated as blue
squares. They agree fairly well with the literature results except at the
very low T*s which appear to require longer averaging.

Let us now consider the average cluster (or droplet) sizes. These
can be characterized by either the radii of gyration, Rg, or the number
of molecules, n, that a droplet contains. The largest possible value of n
is nm. We find it useful to either consider averages over all clusters or
only over the largest clusters. In the latter case, the corresponding
average size will be denoted by nlar. The results for 〈n〉 and 〈nlar〉 are
shown in the top panel of Figure 3. We observe that 〈nlar〉 undergoes a
rapid growth at the low density branch of the binodal line, ρV, which
delineates the vapor phase. The average cluster size of all clusters also
undergoes a rapid growth, but at a higher density, ρsL. The growth
coincides with the upper spinodal line (the open red circles in
Figure 1). The lower panel shows the corresponding plots for 〈Rg〉
and 〈Rg,lar〉. They basically mimic the curves related to n except that
the growth of Rg for the largest cluster is affected by the fluctuating
morphology of the cluster, which affects Rg while not affecting n.

In order to determine ρsV, the low density branch of the spinodal
line, we study the specific heat, Cv. Since Cv is a measure of the energy
fluctuations, we would expect volatile energy changes upon entering
the non-thermodynamic spinodal region. Indeed, we observe sudden
spikes in Cv as a function of ρ, as illustrated in the bottom panel of
Figure 4 for T* = 1.1. The tallest of them is on the low-density side and
its location is marked by open red circles on the left side of Figure 1.

FIGURE 2
The snapshot of the equilibrium state from the simulation at ρ*=0.1
and T*=1.1. The largest cluster contains 1160 atoms and is shown at the
very center. 14 smaller clusters are also highlighted. They contain
between 9 and 15 atoms. FIGURE 3

The panels, correspondingly, show the plots of 〈n〉 and 〈Rg〉 vs. ρ*
for T*=1.1. The data points obtained by considering all clusters are shown
by the solid symbols. The open symbols correspond to the largest
clusters. It would be tempting to identify the density point at which
the lines 〈nlar〉 and 〈n〉merge (the arrow at the top) as corresponding to
ρL. However, the location of this point practically does not depend on T*.
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When going to higher densities, there is a sudden drop in Cv that
coincides with ρsL obtained from 〈n〉.

Yet another way to assess the boundary of the spinodal region is
through the surface tension, σten. It can be derived, both theoretically
and experimentally, by invoking the energy equipartition theorem
(Caragine et al., 2018; Caragine and Haley, 2019) leading to σten = kBT/
u2 where u2 is the fluctuation in the droplet linear size and kB is the
Boltzmann constant. In molecular dynamics, we take u2 to be a
fluctuation of Rg and average it over time. We perform this
procedure for sufficiently large droplets, as they are better defined.
However, to avoid the finite-size effects, we do not consider droplets
that span the whole system. The surface tension, σten, calculated in this
manner is shown in the upper panel of Figure 4 for T* = 1.1. The
behavior of σten as a function of density is rather irregular in the
spinodal region but then there a nearly monotonic increase is observed
between ρsL and ρL. The phase separation induced by the density
changes at T* = 1.1 is presented schematically in Figure 5. The
nucleation process can be observed in panels B and D for light and
dense phases, respectively. Panels A and E represent one-phase
regimes.

3 The phase diagram for chains of
monomers

Proteins differ from the Lennard-Jones atoms discussed so far in
two major ways: first, their molecules are in the form of chains, and
second, the monomers in the chains are of a heterogeneous nature as

FIGURE 4
The top panel shows the coefficient of the surface tension as a
function of ρ*. The lower panel shows the specific heat. Both panels are
for T =1.1*.

FIGURE 5
The phase separation during the density changes at T*=1.1 for system composed of 4,000 atoms. The densities of each box are ρ*=0.01, 0.11, 0.35,
0.57 and 0.8 for boxes (A), (B), (C), (D), and (E), respectively. The clusters are marked by red in panels (A,B). At the dense phase (C,D) the clusters are marked by
blue. The positions on the phase diagram of particular cases are marked by green letters in Figure 1.
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they represent 20 types of amino acid. The second aspect requires
special studies along the lines of Dignon et al. (Dignon et al., 2018a;
Dignon et al., 2018b; Dignon et al., 2019) or Mioduszewski et al.
(Mioduszewski and Cieplak, 2018; Mioduszewski and Cieplak, 2020;
Mioduszewski and Cieplak, 2021) who use different coarse-grained
models to analyze the protein dynamics. In addition, proteins may
have inverted binodal lines when hydrophobic effects intervene (Li
et al., 2002; Urry et al., 2002; Dignon et al., 2019). We now consider the
first of these aspects by performing molecular dynamics simulations
for nm = 400 chain molecules of length 20 each. The atoms in the
chains are connected at a distance of σ. The binodal lines for this
system have been derived by Silmore et al. (Silmore et al., 2017) by
using the procedure of Rowlinson and Widom (Rowlinson and
Widom, 1982) in which one starts with a dense blob of molecules
in the center of an elongated periodic box and reaches a heterogeneous
equilibrium. These results are presented by blue points in Figure 6. The
chains exhibit more cohesion, and therefore the critical point is moved
up in temperature in comparison to the monomeric system.

The clusters that are analogues of the biological droplets are
those that should be present immediately to the left of the left
branch of the spinodal line, i.e. close to the gas phase. To the right of
the right branch of the spinodal line, there are droplets of the low
density regions that are essentially like cavities in the liquid phase.
The cavities disappear on crossing the binodal line towards the
single-component liquid phase. In numerical practice, finding the
left brach of the spinodal line can be achieved by considering Cv.
This works also for the right-hand side spinodal line but
monitoring the surface tension offers an additional tool. Our
results for the determination of the spinodal line, based on the
Cv analysis are presented by red squares in Figure 6.

4 Conclusion

In principle, a precise determination of both the binodal and
spinodal line requires procedures of finite-size scaling. Our purpose
here, however, was to determine quantities to accomplish the task

of determining the region in which the metastable droplets could be
studied theoretically. In previous theoretical studies (Dignon et al.,
2018a; Dignon et al., 2018b; Mioduszewski and Cieplak, 2018;
Dignon et al., 2019; Mioduszewski and Cieplak, 2020) analyzing
proteinaceous droplets, no attempt was made to locate spinodal
lines within the two-phase region. The proposed approach should
help in such cases, as it allows for the determination of binodal and
spinodal line positions for fluids of complex composition.
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Coexistence curves (binodal lines) for chain of monomers
calculated by Kevin S. Silmore et al. (2017) (blue circles) and obtained
from our simulations based on specific heat analysis (red squares).
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May the force be with you: The role
of hyper-mechanostability of the
bone sialoprotein binding protein
during early stages of
Staphylococci infections

Priscila S. F. C. Gomes, Meredith Forrester, Margaret Pace,
Diego E. B. Gomes and Rafael C. Bernardi*

Department of Physics, College of Sciences and Mathematics, Auburn University, Auburn, AL, United States

The bone sialoprotein-binding protein (Bbp) is a mechanoactive MSCRAMM protein
expressed on the surface of Staphylococcus aureus that mediates adherence of the
bacterium to fibrinogen-α (Fgα), a component of the bone and dentine extracellular
matrix of the host cell. Mechanoactive proteins like Bbp have key roles in several
physiological and pathological processes. Particularly, the Bbp: Fgα interaction is
important in the formation of biofilms, an important virulence factor of pathogenic
bacteria. Here, we investigated the mechanostability of the Bbp: Fgα complex using
in silico single-molecule force spectroscopy (SMFS), in an approach that combines
results from all-atom and coarse-grained steered molecular dynamics (SMD)
simulations. Our results show that Bbp is the most mechanostable MSCRAMM
investigated thus far, reaching rupture forces beyond the 2 nN range in typical
experimental SMFS pulling rates. Our results show that high force-loads, which
are common during initial stages of bacterial infection, stabilize the interconnection
between the protein’s amino acids, making the protein more “rigid”. Our data offer
new insights that are crucial on the development of novel anti-adhesion strategies.

KEYWORDS

mechanobiology, Staphylococcus infection, biofilm, adhesins, molecular dynamics

1 Introduction

Staphylococcus aureus infections have a high clinical and communal impact with an
estimated mortality rate that can reach 30.2% Bai et al. (2022). The persistence of these
infections lies on the Staphylococcus aureus’ ability to form biofilms Costerton et al. (1999);
Archer et al. (2011); Suresh et al. (2019), and the eventual dissemination of these pathogenic
bacteria throughout the body Kwiecinski and Horswill (2020). Despite the increase in
sterilization and hygienic measures, modern medical devices play a key role in the transfer
of these bacterial colonies through device-associated biofilm infections Wertheim et al. (2004);
Otto (2009); Lister and Horswill (2014). The contamination of patients during medical and
dental procedures is of increasing relevance, particularly with the emergence of drug-resistant
bacteria. In the dental field, it has been estimated that the carrier prevalence of S. aureus in
healthy adults varies from 24% to 84%Donkor and Kotey (2020). Additionally, the oral cavity is
a source for cross infection and dissemination of the infection directly into the bloodstream,
increasing the likelihood of septicemia and possibly death McCormack et al. (2015); Garbacz
et al. (2021); Jevon et al. (2021).
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Biofilms shelter the bacteria and enhance the persistence of
infection by eluding innate and adaptive host defenses González
et al. (2018); Versey et al. (2021). Biofilms also form a barrier,
protecting colonies from biocides and antibiotic chemotherapies
Sharma et al. (2019). Adhesins play critical roles during infection,
especially during the early step of adhesion when bacterial cells are
exposed to mechanical stress Latasa et al. (2006). Adhesins bind to
their target ligands, holding it tight to them even at extreme force
loadings that largely outperform classical binding forces Gomes P. S. F.
C. et al. (2022). The resilience to mechanical forces provides the
pathogen with a means to withstand high levels of mechanical stress
during biofilm formation, thus yielding these pathogens highly
resistant to breaking these cell adhesion bonds. These unusual
stress-dependent molecular interactions play an integral role during
bacterial colonization and dissemination and when studied, reveal
critical information about pathosis Dufrêne and Viljoen (2020).

Among S. aureus adhesins, the bone sialoprotein binding protein (Bbp)
is a bifunctional Microbial Surface Component Recognizing Adhesive
Matrix Molecule (MSCRAMM) Gillaspy et al. (1998). Bbp is part of the
MSCRAMM serine-aspartate repeat (Sdr) family that also includes SdrF
and SdrG in Staphylococcus epidermidis, and clumping factor A (ClfA), B
(ClfB), SdrC, and SdrE in S. aureus Josefsson et al. (1998); McDevitt et al.
(1994); Ní Eidhin et al. (1998); Tung et al. (2000). Ligand-binding for Bbp
occurs generally in the N-terminal region, from residues 273 to 598, where
Bbp binds to fibrinogen-α (Fgα), a glycopeptide on bone and dentine
extracellular matrix (ECM). Bbp’s binding region is subdivided into
domains N2 and N3, which are made up of two layers of β-sheets with
an open groove at the C-terminus where primary ligand binding occurs
Zhang et al. (2015) (Figure 1B). The binding of Fgα follows a “dock, lock,
and latch” mechanism O’Connell (2003); Ponnuraj et al. (2003); Bowden
et al. (2008); Foster et al. (2014); Zhang et al. (2017), that has been
previously investigated by a myriad of techniques Herman et al. (2014);
Vanzieleghemet al. (2015); Vitry et al. (2017);Herman-Bausier et al. (2018);
Milles et al. (2018). Thus, the pathogenic bacteria does not invade a host cell,
but rather adheres to the ECM via Bbp: Fgα interactions Patti et al. (1994).

Using a combination of in silico and in vitro single-molecule force
spectroscopy (SMFS), we have previously reported that S. epidermidis’

adhesin SdrG, when in complex with Fgβ, was able to withstand
extreme mechanical loads Milles et al. (2018). The necessary force
applied to rupture the SdrG: Fgβ complex was shown to be an order of
magnitude stronger than that needed to rupture the widely employed
Streptavidin:biotin complex Sedlak et al. (2018), and more than twice
of that of cellulosomal cohesin:dockerin interactions Schoeler et al.
(2014); Bernardi et al. (2019). Most biological complexes rupture at a
relatively low force range Seppälä et al. (2017); Haataja et al. (2019);
Hoelz et al. (2011; 2012); Mendes et al. (2012); Bernardi and Pascutti
(2012), including other host-pathogen interactions Bauer et al. (2022).
A molecular mechanism for a catch-bond behavior of the SdrG: Fgβ
was then revealed by investigating the system in a “force-clamp”
regime Melo et al. (2022), with magnetic tweezers based SMFS
revealing that the SdrG: Fgβ bond can live for hours under force
loads Huang et al. (2022). Here, taking advantage of a powerful in silico
SMFS approach, we describe how Bbp plays a key role in bacterial
adhesion during nosocomial infections, by investigating the Bbp: Fgα
complex at different pulling velocities combining all-atom (aa) and
coarse-grained (CG) steered molecular dynamics (SMD) simulations
(Figures 1A, B). Building on in vitro SMFS data, our results point to
Bbp’s interaction with the extracellular matrix fibrinopeptide as the
most mechanostable so far investigated, independent of the loading
rate. Our findings reveal that a few key interactions are responsible for
the outstanding force resilience of the complex. Furthermore, our
results offer insights into the development of anti-adhesion strategies.

2 Results

2.1 Bbp is highly mechanostable under stress

To probe the mechanics of the interaction between Bbp and Fgα,
and to characterize the atomic details of the complex under force load,
we performed aa-SMD simulations with Bbp anchored by its
C-terminal while Fgα was pulled at different velocities
(Supplementay Table S1). The simulations resulted in Force vs
extension curves that reveal a clear one-step rupture event, as

FIGURE 1
Bbp’s adhesion domain. (A) Scheme illustrating the SMD protocol applying force at the interface between two molecules of interest. In this protocol, a
spring is attached to one of the termini of eachmolecule, in our case, the C-terminal end of both Bbp and Fgα peptide. While the end of Molecule two is fixed,
the end of Molecule one is then pulled at constant velocity. (B) Tridimensional structure of Bbp. The protein is represented in cartoon, colored by its different
domains. The latch is highlighted in green. Fgα is colored in orange and its aminoacids represented as sticks colored in light pink. The SMD pulling and
anchor points are indicated in the image as spheres.
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represented in Figure 2A. For the slowest pulling velocity, 160 replicas
were performed following a wide-sampling paradigm previously
developed in our group Sedlak et al. (2020). At the pulling velocity
of 2.5 × 10−04 nm/ps, we observed that the most probable rupture force
for the complex was 3,510 pN, as described by the Bell-Evans (BE) Bell
(1978); Evans and Ritchie (1997) fit of the peak forces at that pulling
speed (see Figure 2B). Our results reveal that Bbp: Fgα is the most
mechanostable complex investigated thus far, which is in agreement
with previous experimental data where we showed that SdrG: Fgβ
complex can withstand forces on the 2 nN range, equivalent to
breaking of covalent bonds Milles et al. (2018).

To investigate the dependence of the mechanostability of Bbp: Fgα
on the force loading rate, we performed CG-SMD simulations at

several, much lower, pulling speeds (Supplementary Table S1). We
have recently shown that aa-SMD and CG-SMD can be combined to
in an in silico SMFS approach Gomes D. E. et al. (2022); Melo et al.
(2022). Here, the combination of the two levels of molecular details is
capable of rendering predictions that are consistent with theory and
experimentation with the advantage of being 10 to approximately
100 times faster than aa-SMD simulations, depending on the pulling
speed Gomes D. E. et al. (2022); Melo et al. (2022). A Dudko-
Hummer-Szabo Dudko et al. (2006) (DHS) fit was performed
through the SMD data, including both the aa-SMD, and the CG-
SMD (see Figure 3). The DHS fit suggests that the system should
rupture at forces higher than 2 nN at 105 pN/s force loading rate, in
agreement with experimental data Milles et al. (2018). It is interesting

FIGURE 2
Bbp mechanostability under high mechanical load. (A) Force versus extension curve as an exemplary trace, with rupture peak force at 3,510 pN. (B)
Histogram for the most probable rupture force (blue, rugged plot in red) with the Bell-Evans (BE) model for the first rupture peak (red), based on the all-atom
steered molecular dynamics simulation replicas with the slowest simulated pulling velocity (2.5×10−4 nm/ps).

FIGURE 3
Dynamic Force spectrum for the Bbp: Fgα complex combining data from all-atom and coarse-grained SMD simulations. All-atom, and Coarse-grained
steered molecular dynamics simulations (CG-SMD and aa-SMD) were performed at different velocities: 2.5×10−6 to 2.5×10−3 nm/ps (blue) and 2.5×10−4 to
2.5×10−3 nm/ps (green), respectively. A Dudko-Hummer-Szabo Dudko et al. (2006) (DHS) fit was performed through the SMD dataset predicting Δx =
7.489×10−2 nm, k0off = 2.596×10−12 s−1, ΔG = 2.293×102 kBT.
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to note that the BE model is able to fit well all the simulation results, at
both aa and CG level, as evidenced by the density plots in Figure 3.

The influence of the peptide size on the rupture force was also
investigated. We have shown previously that SdrG complexed with
shortened Fgβ peptides had lower unbinding forces Milles et al.
(2018). Here, we simulated a model of Bbp complexed with Fgα
elongated by nine residues (See Methods section) by aa and CG-SMD
simulations (Supplementary Table S1). Our results show that the force
loading rate was not significantly impacted by the size of the peptide
(Supplementary Figure S1), indicating that the original complex
formed at the crystal structure has the minimal length to keep the
important contacts with the protein latch to hold the DLL
configuration.

2.2 Key hydrogen bonds are responsible for
Bbp: Fgα high mechanostability

After confirming that Bbp: Fgα complex presents a hyperstable
interaction under shear mechanical load, we used the approximately
3 μs of aa-SMD simulation data to investigate the molecular origin of
the mechanostability of the complex. Previously, simulations of the
SdrG: Fgβ revealed the presence of frequent and persistent hydrogen
bonds (H-bonds) between the peptide and the protein backbone,
showing that the high-force resilience of the complex was largely
independent of the peptide side-chains interactions, and therefore the
peptide’s sequence Milles et al. (2018). Here, we computed the
occupancy of the H-bonds between the Bbp and Fgα before the
complex rupture. We identified the key amino acid interactions
responsible for keeping the complex together at high force loads
(Table 1). Different than SdrG: Fgβ, Bbp: Fgα interactions are not
dominated by backbone-backbone interactions, with a significant
amount of side-chain interaction of the peptide playing an
important role in the complex mechanostability. The backbone
interactions between Bbp Leu584, Thr582, Thr586 and FgαThr565,Ser567,Thr586

have been previously described as important for Fgα binding at the
crystal structure Zhang et al. (2015). However, we noticed that the
side-chain H-bonds are rearranged upon application of mechanical
stress on the complex. On the crystal, BbpAsp334 forms a side-chain
H-bond with FgαSer566, and during the SMD simulations, this
interaction shifts to FgαThr565, being the H-bond with the highest
occupancy over the trajectories. Another shift occurs between

BbpAsp334,Ile335 interacting with FgαPhe564, on the crystal, to BbpSer333

interacting with FgαPhe564 in our simulations. The H-bond between
BbpAsp588 and FgαGln563 is described as important to lock the peptide
N-terminus and is still present before the rupture of the complex,
although with lower occupancy. Instead, a charged side-chain
interaction arises with significant occupancy values: BbpAsp556:
FgαLys562. These data corroborates the importance of backbone
interactions to maintain the high mechanostability and also
highlights important side chain H-bonds plasticity that occurs
when Bbp: Fgα is exposed to mechanical stress.

2.3 The force propagates indirectly from the
latch to the peptide

How a shear force load “activates” the hyperstability of the
complex can be investigated by analysing the evolution of pairwise
interactions during the force-loading event. Such analysis can be used
to investigate how a catch-bond may be formed in the Bbp: Fgα
complex Liu et al. (2020). Previously, it has been shown that SdrG: Fgβ
presents a catch-bond behavior Huang et al. (2022), which is expected
also for Bbp: Fgα. To analyse the pairwise interactions during the
SMD, we employed the generalized correlation-based dynamical
network analysis method Melo et al. (2020), which can also be
used to calculate force propagation pathways Schoeler et al. (2015).
Figure 4A shows the pairwise interactions obtained from the network
analysis. The thickness of the connections between nodes (amino acid
residues) represents how well correlated the motion of these nodes are,
and therefore how well connected are these amino acid residues.

The force propagation pathway that connects the pulling and the
anchoring residues shows that most of the force is propagating from
the protein latch directly to the peptide, passing by the center of Bbp’s
N2 domain (Figure 4B). These results are slightly different than the
ones obtained for the SdrG: Fgβ complex upon high mechanical stress
Milles et al. (2018). However, in a previous study, it was observed that
changes in the pulling velocities can lead to different force propagation
pathways, suggesting different unbinding mechanisms at different
pulling rates Melo et al. (2022).

The rigidity of the protein under high-force load can also be
studied using the betweenness map from the dynamical network
analysis (see Figure 4C). The betweenness is defined as the number
of shortest paths from all vertices to all others that pass through that
node, in this case, an amino acid residue. If an amino acid residue has
high betweenness, it tends to be important for controlling inter-
domain communication within a protein Melo et al. (2020). High
betweenness values (thicker red tubes) are seen on the latch that is in
direct contact with Fgα, highlighting the strong correlation between
the motif and the peptide. Interestingly, high betweenness is also
found at connections intra N2 domain, pointing that Bbp: Fgα
complex becomes more rigid under high force loads, particularly in
the region interconnecting the latch, the peptide and the N2 domains.
Such behavior helps the stabilization of the interactions under high
forces.

A representation of the network in subgroups, or communities, is
shown at Figure 4D. The communities group the amino acid residues
that are most inter-connected in relation to the rest of the network.We
can see that Bbp: Fgα is subdivided in a handful of communities. The
latch, most of Fgα, and part of the N2 domains are united in the same
community in light blue, showing that these amino acids are highly

TABLE 1 Hydrogen bonds occupancy between Bbp and Fgα residues calculated
and averaged before the main rupture event.

Bbp Fgα Occupancy (%) Nature

Asp334 Thr565 54.84 Side-chain

Asp556 Lys562 45.39 Salt-bridge

Leu584 Thr565 36.14 Backbone

Thr582 Ser567 35.62 Backbone

Thr586 Gln563 35.03 Backbone:Side-chain

Ser333 Phe564 18.54 Side-chain

Asp588 Gln563 12.77 Side-chain

Thr587 Ser561 12.66 Side-chain
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connected. We also measured the correlation between motions on the
interface residues to determine how cooperative their motion is and
the essential contacts that are keeping the complex stable under high
mechanical load. Essentially, the higher the correlation between

residues, the more relevant is their interaction for the stability of
the protein complex. We noticed that two Fgα residues are highly
correlated (values equal or superior to 0.5) to Bbp at the interface,
namely: FgαGln563: BbpAsp588,Ser585,Thr586,Thr587 and FgαPhe564:BbpSer585

FIGURE 4
Bbp:Fgα dynamical network under high mechanical load. (A) Representation of the dynamical network. The thickness of the links between the nodes
(amino acid residues) represents the correlation of motion between these residues. (B) The force propagates from the latch indirectly to the peptide, passing
by the N2 domain of the protein. The color scheme of the complex is the same from Figure 1. The network’s optimal path is colored in dark blue while the
sub-optimal paths are colored in red. (C) Full dynamical network revealing the most correlated regions of the complex. The weight of the network edges
(represented by the thickness of red tubes) is given by the betweenness values. (D) Generalized correlation-based communities represented by different
colors of the nodes and edges in the network.

FIGURE 5
Mean generalized coefficients for contacts along Bbp:Fgα interface. The x-axis is labeled by Bbp amino acid residues and the y-axis indicates the
averaged generalized correlation values (vertical bars indicate the standard error of themean), labeled by Fgα aminoacid residues. The circle sizes indicates the
average Cartesian distance. Only amino acid residues with a mean correlation higher than 0.35 are shown.
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(Figure 5). The importance of FgαGln563 described as a persistent
H-bond contact with BbpAsp588,Thr586 and important locking contact
is reinforced by its high correlation values. The same analysis was
performed for the simulations of Bbp complexed with the elongated
Fgα peptide (Supplementary Figure S2). The pattern of contacts is very
similar, reinforcing the importance of FgαGln563, and we observe the
absence of new contacts made by the extra residues, corroborating that
the short peptide contains the key residues responsible for holding the
complex tight at the DLL configuration.

3 Discussion

During infection, Gram-positive bacteria are frequently exposed to
high mechanical stress. These bacteria have evolved an intricate host-
binding mechanism to efficiently form colonies under the most
inhospitable conditions. Key for the maintenance of the colonies,
biofilms are an important virulence factor developed by S. aureus
among other bacteria. In the initial steps of infection and biofilm
formation, MSCRAMMS adhesins have an important role in clinging
the bacteria to their human hosts Otto (2009); Latasa et al. (2006).
Staphylococcus aureus isolated from patients suffering from septic
arthritis and osteomyelitis specifically interacts with bone sialoprotein,
present at bone and dentine extracellular matrix. This interaction is
mediated by an specific adhesin protein, namely Bbp Ryden et al.
(1987); Ganss et al. (1999); Tung et al. (2000).

Here we have explored the interaction of Bbp with Fgα by using an
in silico SMFS approach that relies on aa- and CG-SMD simulations.
CG-SMD simulations have proven to bridge the force-loading gap
between in vitro SMFS data with in silico data obtained from aa-SMD
simulations, distanced by orders of magnitude Gomes D. E. et al.
(2022). In addition, CG-SMD simulations require much less
computational power Liu et al. (2021); Poma et al. (2019), enabling
us to explore pulling speeds unfeasible to simulate via aa-SMD Gomes
D. E. et al. (2022). Using an approach previously described Souza et al.
(2019), we combined GõMartini approach Poma et al. (2017) with
Martini 3 Souza et al. (2021) obtaining sensible results. The higher
spread of rupture force at faster pulling rates suggests that force-
induced extensions may result in lost of relevant interactions between
CG-bead pairs, indicating that further optimization of the contact map
or redefinition of the native contacts is necessary to improve the results
Mahmood et al. (2021).

Here, we showed that Bbp: Fgα complex can withstand forces even
higher than the previously investigated SdrG: Fgβ complex Milles et al.
(2018), overcoming the 2 nN force range for rupture forces, equivalent
to breaking covalent bonds, demonstrating the high mechanostability
of the Bbp: Fgα complex. We revealed that the force propagation
pathway between the anchoring and pulling points of the Bbp: Fgα
complex goes beyond the interactions between the latch and the
peptide, passing through an intricate network involving several
amino acids of the Bbp N2 domain (Figure 4). We were also able
to point the key residues H-bonds responsible for keeping the complex
stable at such high mechanical stress, highlighting important
backbone-backbone interactions between BbpLeu584, Thr582, Thr586 and
FgαThr565, Ser567,Thr586 but also side-chain connections, such as BbpAsp334:
FgαThr565, BbpSer333:FgαPhe564 and BbpAsp588:FgαGln563 (Table 1). The
latter being an important contact to lock the peptide N-terminus
Zhang et al. (2015). FgαGln563 has also revealed to be a key network hub,
being highly correlated with several residues on the complex interface

such as BbpAsp588,Ser585,Thr586,Thr587 (Figure 5). We also showed that the
short Fgα peptide is able to hold the key interactions responsible for its
mechanostability by probing an elongated Fgα in complex with Bbp
(Supplementary Figures S1 and S2).

By probing the Bbp: Fgα complex under high mechanical load, we
discovered the molecular mechanism that triggers Bbp’s unique resilience
to shear forces. The high force-loads that can be found during initial stages
of bacterial infection stabilize the interconnection between the protein’s
amino acids, particularly along the β-sheets that, due to their force-loading
geometry, cannot be “peeled” like other β-sheet-rich proteins, such as
green fluorescent protein (GFP) Hughes and Dougan (2016); Dietz et al.
(2006) and human filamins Seppälä et al. (2017); Haataja et al. (2019). Our
results build on previous knowledge of host-microbial interactions,
supporting the idea that anti-adhesion therapies might be fundamental
in our fight against nosocomial bacteria infections.

Antiadhesion therapies are attractive since they would not target
essential processes and have the potential advantage of eliciting less
and slower resistance aquisition. Some of the approaches using
peptides have been reviewed elsewhere Dufrêne and Viljoen (2020).
Our findings support that a short peptide is capable of holding the
essential interactions to keep the protein locked in the DLL
configuration. This could be explored on the design of small
peptidomimetic compounds that can mimic these interactions.
Moreover, peptidomimetics overcome the poor pharmacokinetic
profile and low selectivity associated with peptide therapies, the
main drawback for this kind of approach Li Petri et al. (2022).
Another possible strategy would be to replace the peptide backbone
for a small drug-like molecule with substituents that could mimic the
bioactive conformation of the native peptide Spiegel et al. (2012).

Due to the good agreement between our in silico SMFS protocol and
experiments, we could use our simulations as a platform to study
structure-activity relationships and not only screen the early potential
drug candidates, but also decipher their mechanisms of action. The best
candidates can be later probed by SMFS experiments. In summary, our
work presents a key step in creating a intelligent design for a new class of
antibiotics that act on the initial stages of bacterial infection.

4 Methods

4.1 Structure preparation

The structure of Bbp in complex with Fgα has been previously solved
by means of X-ray crystallography at 1.45 Å resolution Zhang et al. (2015)
and deposited at the Protein Data Bank (PDB ID: 5CFA). Here we
retrieved this structure and prepared it for molecular dynamics (MD)
simulations using VMD Humphrey et al. (1996) and its plugin QwikMD
Ribeiro et al. (2016). To investigate the loading rate dependency on the size
of the peptide, we used Modeller v.10.1 Webb and Sali (2016) to create an
additional structure of the complex where the Fgα was elongated by nine
residues at its C-terminal end, in respect of the crystal structure, following
the sequence of Fgα fromHomo sapiens (Uniprot ID: P02671). The model
followed the same preparation as described for the crystal structure.

4.2 All-atom molecular dynamics simulations

The complexes between BBP and Fgα in its short or longer
configuration were solvated using the TIP3P water model
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Jorgensen et al. (1983), with the net charge of the protein neutralized
using a 150 mM concentration of sodium chloride. Steered molecular
dynamics (SMD) simulations were carried out using NAMD 3 Phillips
et al. (2020), with the CHARMM36 force field Best et al. (2012). The
simulations were performed assuming periodic boundary conditions
in the isothermal-isobaric ensemble (NPT) with temperature
maintained at 300 K using Langevin dynamics for temperature and
pressure coupling, the latter kept at 1 bar. A distance cut-off of 11.0 Å
was applied to short-range non-bonded interactions, whereas long-
range electrostatic interactions were treated using the particle-mesh
Ewald (PME) Darden et al. (1993) method. Taking advantage of a
hydrogen-mass repartitioning method implemented in VMD’s
autopsfgen, the time step of integration was chosen to be 4 fs for
all production aa-MD simulations performed. Before the SMD
simulations, the system was submitted to an energy minimization
protocol for 1,000 steps. An MD simulation with position restraints in
the protein backbone atoms was performed for 1 ns, with temperature
ramping from 0 K to 300 K in the first 0.5 ns at a timestep of 2.0 fs in
the NVT ensemble, which served to pre-equilibrate the system. In an
in silico single-molecule force spectroscopy (SMFS) strategy Verdorfer
et al. (2017); Bernardi et al. (2019), SMD simulations were carried out
in several replicas, using a constant velocity stretching protocol at
three different pulling speeds (Supplementary Table S1). SMD was
employed by harmonically restraining the position of the amino acid
at the C-ter of Bbp and moving a second restraint point at the C-ter of
Fgα peptide with a 5 kcal/mol Å2 spring constant, with constant
velocity in the z-axis. The force applied to the harmonic spring is
then monitored during the time of the SMD. The pulling point was
moved with constant velocity along the z-axis and due to the single
anchoring point and the single pulling point the system is quickly
aligned along the z-axis. The number of replicas for each velocity is
indicated at Supplementary Table S1.

4.3 Coarse-grained molecular dynamics
simulations

The atomistic model of Bbp: Fgα was modeled onto the Martini
3.0 Coarse-grained (CG) force field (v.3.0.b.3.2) Souza et al. (2021)
using martinize2 v0.7.3 Kroon (2020). A set of native contacts, based
on the rCSU + OV contact map protocol, was computed from the
equilibrated all-atom structure using the rCSU server Wołek et al.
(2015) and used to determine Gö-MARTINI interactions Poma et al.
(2017) used to restraint the secondary and tertiary structures with the
effective depth ϵ of Lennard-Jones potential set to 9.414 kJ.mol−1. All
CG-MD simulations were performed using GROMACS version
2021.5 Abraham et al. (2015). The Bbp: Fgα complex was centered
in a rectangular box measuring with 10.0, 10.0, 25.0 nm to the x, y, and
z directions. The anchor (Bbp C-terminal) and pulling (peptide
C-terminal) backbone (BB) atoms were used to align the protein to
the Z-axis. The box was then solvated with Martini3 water molecules.
Systems were minimized for 10,000 steps with steepest descent,
followed by a 10 ns equilibration at the NPT ensemble using the
Berendsen thermostat at 298K, while pressure was kept at 1 bar with
compressibility set to 3e−4bar−1, using the Berendsen barostat. A time
step of 10 fs was used to integrate the equations of motion. Pulling
simulations were subsequently done at the NVT ensemble with a time
step of 20 fs the temperature was controlled using the v-rescale
thermostat Bussi et al. (2007) with a coupling time of 1 ps for all

CG-MD simulations, the cutoff distance for Coulombic and Lennard-
Jones interactions was set to 1.1 nm De Jong et al. (2016), with the
long-range Coulomb interactions treated by a reaction field (RF)
Tironi et al. (1995) with ϵr = 15. The Verlet neighbor search Verlet
(1967) was used in combination with the neighbor list, updated every
20 steps. The LINCS Hess et al. (1997) algorithm was used to constrain
the bonds and the leapfrog integration algorithm for the solution of
the equations of motion. Several replicas of CG-SMD simulations were
performed at a range of speeds described at Supplementary Table S1.

4.4 Simulation data analysis

All analysis presented at the main text correspond to the Bbp:
Fgα original complex. Force loading rate and mean correlation
values for Bbp complexed with the elongated Fgα peptide are
found on the Supplementary Information material. H-bonds
occupancy between Bbp and Fgα were calculated and averaged
for aa-MD simulations 1 ns before the main rupture event, using
VMD Humphrey et al. (1996) with standard parameters for the
calculation: residue pairs; donor-acceptor distance of 3.0 Å; angle
cutoff of 20°. Mean correlation and dynamical network pathways
were calculated using the generalized dynamical network analysis
Melo et al. (2020) and VMD for aa-SMD at pulling velocity of 2.5 ×
10−4 nm/ps. In this analysis, a network is defined as a set of nodes
that represent amino acid residues, and the node’s position is
mapped to that of the residue’s α-carbon. Edges connect pairs of
nodes if their corresponding residues are in contact, and two non-
consecutive residues are said to be in contact if they are within 4.5 Å
of each other for at least 75% of analyzed frames. The interface
residues between Bbp: Fgα were defined in a radius of 10 Å between
nodes in each molecule. A representative for the full-network,
optimal and suboptimal paths and communities was rendered
using one of the SMD trajectory replicas. The mean correlation
analysis was carried out 1 ns before the first rupture event using a
cutoff of 0.35 for the mean correlation coefficients. All charts were
generated using in-house python scripts. The protein image was
rendered using VMD.
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Assessing a computational
pipeline to identify binding motifs
to the α2β1 integrin

Qianchen Liu and Alberto Perez*

Department of Chemistry andQuantumTheory Project, University of Florida, Gainesville, FL, United States

Integrins in the cell surface interact with functional motifs found in the
extracellular matrix (ECM) that queue the cell for biological actions such as
migration, adhesion, or growth. Multiple fibrous proteins such as collagen or
fibronectin compose the ECM. The field of biomechanical engineering often deals
with the design of biomaterials compatible with the ECM that will trigger cellular
response (e.g., in tissue regeneration). However, there are a relative few number of
known integrin binding motifs compared to all the possible peptide epitope
sequences available. Computational tools could help identify novel motifs, but
have been limited by the challenges in modeling the binding to integrin domains.
We revisit a series of traditional and novel computational tools to assess their
performance in identifying novel binding motifs for the I-domain of the α2β1
integrin.
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molecular recognition, integrin, AlphaFold, moecular modeling, binding

1 Introduction

The integrin superfamily (Hynes, 1987) encompasses 24 different integrins in humans
responsible for communication and singaling between cells and with the extracellular matrix
(ECM). Structurally, they are αβ heterodimers with two non-covalent subunits (arising from
18 α and 8 β subunits) located on the cell’s membrane (Hynes, 2002; Takada et al., 2007).
Their normal behavior controls cellullar processes such as cell adhesion, migration and
differentiation [(Critchley et al., 1999); (Mizuno et al., 2000); (Mercurio et al., 2001)].
Usually, these integrins recognize specific peptide epitope motifs present in large fibrous
proteins that form the extracellular matrix such as collagen or fibronectins (see Figure 1).
Hence, designing molecules that disrupt or enhance these interactions has long been a
potential therapeutic target. A recent study (Slack et al., 2022) shows over 60 integrin-target
therapies have been recorded (https://www.clinical-trials.gov and https://www.clinical-
trialsregister.eu/ctrsearch/search using the search term “integrin”) targeting diseases like
Multiple Sclerosis (Kawamoto et al., 2012) or Crohn’s disease (Hutchinson, 2007). Most
binding occurs through an “I-like domain” in the β subunit which contains a “metal ion-
dependent adhesion site” (MIDAS). Some peptide epitope binding motifs like RGD
(Arginine-Glycine-Aspartic) are present in many ECM fibers and bind many integrins
(Hatley et al., 2018). However, there is selectivity and specificity among their ligands—and
even for the RGD motif there is an interplay between the conformation it adopts and the
specificity to a particular integrin (Aumailley et al., 1991; Kapp et al., 2017). In the field of
biomaterial engineering, there is growing interest to develop computational pipelines that
can identify functional motifs to incorporate into engineered ECMs that trigger cellular
response (Perez et al., 2021).
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Our existing understanding of integrin-ligand recognition has
mainly been driven from experimental observations including
affinity chromatography Otey et al. (1993), antibodies against cell
epitopes Ley et al. (2016), and the use of NMR experiments Siebert
et al. (2010). Computational tools on the other hand have been
challenged by the complexity of modeling integrin-ECM
interactions as well as the diversity of function/structure
relationships arising from the multidomain architecture that
merit attention such as the origin of selectivity, mechanism for
signal transduction (Kalli et al., 2011), effect of the lipid
environment (Kalli et al., 2017), or interaction between the
different domains and their role in active/inactive conformations
to name a few (Chen et al., 2011). Although the number of
computational studies for integrin systems is limited, there is a
wide range of approaches that have been used including physics
based approaches such as docking (Guzzetti et al., 2017), atomistic
and coarse grained molecular dynamics (MD) (Craig et al., 2004;
Murcia et al., 2008; Choi et al., 2010; Zhu et al., 2010; Wang et al.,
2015; Farina et al., 2016; Fratev and Sirimulla, 2019), QM/MM

approaches (Freindorf et al., 2012), and machine learning (Mehdi
et al., 2013; Prytuliak et al., 2017; Asgari et al., 2019). Typically,
ligand docking calculations are applied to filter ligands with high
affinity, MD approaches are used to either predict free energy
differences with thermodynamic integration (TI) or
conformational changes via enhanced sampling, while ML
approaches have been traditionally used to discover new binding
motifs in protein-peptide complexes such as the well-known RGD,
GPR (the recognition site for αxβ2), or DLLEL (the binding site for
αvβ6) for integrins.

We focus on the I-domain of the α2β1 integrin, which contains a
binding motif and has been shown to retain the binding activity of
the whole integrin in recombinant studies expressing only the I
motif (PDB code 1dzi) (Emsley et al., 2000). The binding domain
undergoes a conformational change between the unbound and
bound forms in which three loops participate in coordinating a
central metal ion, with a glutamic acid from the collagen completing
the coordination of the metal (Emsley et al., 2000). The collagen used
here introduces a six aminoacid peptide motif (GFOGER, where O

FIGURE 1
Sytem of study. Artistic representation of the α2β1 binding collagen. The inset corresponds to the PDB structure 1dzi, focusing on the specific motif
area “GFOGER” on the collagen fiber (orange).
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stands for hydroxyproline), that forms triple helices analogous to
canonical collagen. Even though the three strands are homologous
for triple-helix formation, during binding each strand becomes
distinct, with one containing a critical Glutamic acid residue (E)
for binding (“leading strand”). By comparison, the other two strands
have been previously named “middle” and “trailing” strands)
(Emsley et al., 2000). Given the 206 possible peptide sequences
covering the length of the GFOGERmotif, we expect there are many
other sequences that might bind this integrin. Indeed, amongst
integrins that bind collagen, there are differences amongst canonical
motifs (GxOGER, where x = F, L, M, A) and non-canonical motifs
(Hamaia et al., 2012). Hence we ask the question of whether
computational pipelines can suggest new motifs and if they are
capable of assessing which of those suggested motifs are actually
better binders.

We seek to assess the advantages/disadvantages of using
traditional and novel pipelines combining multiple computational
techniques readily available. We divide the pipelines in three stages:
1) predicting new motifs, 2) predicting their ability to bind, and 3)
predicting their stability. Overall, finding new interacting motifs
against integrins remains challenging regardless of the pipeline used.

2 Computational methods

2.1 Identification of novel motifs

We started from the X-ray crystal structure of the α2 I domain
from α2β1 in complex with collagen [PDBid: 1dzi (Emsley et al.,
2000)] and performed a scan of all possible mutations (for the
20 common amino acids) at each position along the “GFOGER”
motif, collecting the expected free energy changes (ΔΔG) these
programs predict. Integrin complexes were first optimized in the
FoldX suite. Next, a position scan was conducted with the command
“Position Scan” on the GFOGER motif and the output results
showed the difference of binding energy for each mutation per
amino acid on collagen. ΔΔGbind was also calculated using
RosettaDDG predictions, with the backrub trajectory stride set to
35,000 and making three trials for each ΔΔG calculation.

The ProteinMPNN (message passing neural network)
(Dauparas et al., 2022) has recently been developed as a way to
identify the ideal sequence that will adopt a certain 3D structure. In
this model, we provided the PDB structure of the complex and asked
the model to design newmotifs to replace the native GFOGERmotif.

2.2 Stability MD simulations

We used standard minimization and equilibration protocols
(Braun et al., 2018) followed by production runs using Langevin
dynamics for 500 ns in the NPT ensemble using a Monte Carlo
barostat (Åqvist et al., 2004). Simulations used AMBER’s (Case
et al., 2020) pmemd module (Salomon-Ferrer et al., 2013). We
simulated the top 20 FoldX and Rosetta predictions using ff14SB
(Maier et al., 2015) solvated in a truncated octahedron box [OPC
water model (Izadi et al., 2014)], and 150 mM concentration of
Na+ and Cl− ions (Joung and Cheatham, 2008). As a control, we
simulated the I-domain in the presence and absence of the wild

type (WT) collagen (PDBid: 1dzi). All simulations were carried
out with a Co2+ ion in the MIDAS binding site. We simulated
10,000 steps of energy minimization, switching from steepest
descent to conjugate gradient after 5,000 cycles. The resulting
minimized system was heated from 0 to 100 K in NVT condition
for 50 ps with Langevin dynamics, and 100–300 K in NPT for
500 ps using Langevin dynamics, followed by a short (5 ns)
equilibration process at constant pressure (1 atm) and
temperature (300 K). Finally, unbiased and unrestrained
system went through production in a periodic boundary
condition for 500 ns in NPT by Langevin thermostat and
Monte Carlo barostat conditions. Bonds involving hydrogen
were constrained by the SHAKE algorithm. Cpptraj (Roe and
Cheatham, 2013) was used to analyze the root mean square
deviation (RMSD) and Dynamical Cross Correlation
(Kamberaj and Vaart, 2009) within the ensembles comparing
them to the wild type complex.

2.3 Structure predictions with AlphaFold

We used Alphafold Multimer (Evans et al., 2021b) to predict
the structure of the complex using either sequence data or
templates (containing the collagen and integrin domain far
from each other). Results were analyzed in terms of the
predicted local distance difference test (pLDDT) score as is
standard in the field (Jumper et al., 2021). In short, the pLDDT
score gives a per residue and global value to show how confident
the Alpha Fold prediction results are. Results above 80 typically
reflect high confidence in the prediction.

2.4 Thermodynamic integration (TI)
calculations

TI was used to calculate the relative binding affinity
(ΔΔGmutant−WT

bind ) between collagen and α2β1 upon mutation of
certain residues in collagen. Here, we applied “One-step”
transformations (Steinbrecher et al., 2011) to decrease the
simulation time, in which electrostatic and van der Waals
forces are varied synchronously (Shirts et al., 2003). The initial
system was prepared using AMBER’s tiMerge to eliminate
redundant bonding terms and increase calculation efficiency.
We ran TI simulations with pmemd. The complex and mutant
ligand were solvated separately in a cubic box with explicit OPC
(Izadi et al., 2014) water and a 10 Å clearance. We employed ff14SB
(Maier et al., 2015) for the protein parameters and general AMBER
force field (He et al., 2020) for general atom and bonds parameters.
Minimization, heating and equilibrium process was performed in
the NVT ensemble with a Monte Carlo barostat. The TI
production phase was done in the NPT ensemble (300 K and
1 atm), running for 500 ns Softcore potentials were applied to
reduce issues with the integration step at the endpoints
(Steinbrecher et al., 2011). Eleven independent MD simulations
were performed spaced evenly between the end-points (λ ∈ [0, 1]).
We performed six replicates for each simulated system. The
average and standard deviation for ΔΔGbind were calculated
from the differences amongst replicates.
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2.5 Sampling collagen binding modes with
MELD

The Modeling Employing Limited Data (MELD) approach uses
H,T-REMD (Sugita and Okamoto, 1999) to sample rare events. The
method changes the Hamiltonian by enforcing information that
guides to different conformations that might be compatible with the
end state. The caveat is that the data is framed as ambiguous and
noisy—thus MELD relies on Bayesian inference to identify the best
interpretation of the data compatible with the forcefield. In this

process, analyzing the resulting ensemble (e.g., through clustering)
identifies the states (conformations) most compatible with the
information and force field.

To guide the binding process we first placed harmonic distance
restraints amongst native contacts in the integrin (so it would not
unfold), and also between the three collagen strands, so it would not
dissociate. We then selected residues in the active site of the integrin
and in those of the collagen bindingmotif. Based on those two lists of
residues, we generated a list of twenty five possible contacts (some of
which were present in the native state and some of which were not).

FIGURE 2
Pipeline for selecting newmotifs. (A) FoldX and Rosetta are used to estimate relative free energy changes uponmutating each residue in the binding
motif to all possible amino acids. (B) Predicted effect of mutations by three different methods (FoldX, Rosetta, and MD) for a set of 22 mutations. (C) The
wild type samples a single state throughout the trajectory as identified by projecting onto the two first principal components. Reference Dynamic cross
correlation matrix (DCCM) for the wild type state. (D–F) Examples of a stable (D) and unstable (E,F) mutations as identified from RMSD, PCA, and
DCCM.
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We found that when enforcing 15 or more restraints, replica
exchanges were inefficient, leading to poor sampling. At the
other extreme, satisfying less than four restraints sampling was
not restrictive enough to sample native-like bound
conformations. We thus required that only eight restraints out of
the 25 possible ones be satisfied. Satisfying different subsets of eight
restraints give rise to different binding modes.

MELD simulations used the ff14SB force field (Maier et al.,
2015) for side chains and ff99SB (Hornak et al., 2006) for backbone,
together with the GBneck2 (Nguyen et al., 2013) implicit solvent
model. The collagen fiber was placed over 30 Å away from the
integrin. The temperature range was set between 300 and 500 K,
with 30 replicas. Ensembles were analyzed using hierarchical
clustering as implemented in CPPTRAJ (Roe and Cheatham,
2013) with an ϵ = 2 value, including heavy atoms at the interface
of the complex in the native state.

3 Results

3.1 Local search for new interaction motifs

Traditional design strategies start with a known binding motif and
search for single amino acid mutants that increase binding affinity
(ΔΔGbind). Such strategies lead to local sequence optimization, with
designs similar to the original motif. Here we used FoldX (Schymkowitz
et al., 2005) and Rosetta (Barlow et al., 2018) (see methods), two
traditional approaches with varying computational cost and success
rate. We observed that FoldX single point mutations have a wider
ΔΔGbind distribution, and are generally shifted towards higher energies
(see Figure 2A). While there is good agreement on the failed mutations,
the more computationally demanding Rosetta is better at
discriminating mutations that FoldX finds favorable.

To further assess the predicted motifs with an independent
methodology, we performed MD simulations of a selected group of
15 mutants. We expect that monitoring standard structural and
dynamical properties like RMSD and dynamical cross correlation
functions would be enough to distinguish those mutations that
remain stable in the 500 ns timescale vs. those that are unlikely to
bind (see Figures 2C–F). We monitored the RMSD of the interface
region, defined as heavy atom contacts to collagen in the native
structure (using a 10 Å cutoff). In this timescale, the integrin
oscillates around 1 Å from the initial structures, with few deviations
to higher RMSD values (2.5 Å). In the presence of collagen we observe a
similar behavior, where there are no deviations to larger RMSD states in
the 500 ns timescale. The RMSD of the whole complex oscillates at
around 4 Å. Figure 2 showcases the behavior of the wild type, neutral
and negative mutation on sampling [RMSD and projection on the top
two principal components using the Bio3d package (Grant et al.,
2006)]. Figure 2 exemplifies a negative control mutation (which
rapidly dissociates) and a neutral mutation that remains close to the
starting conformation.

We find that the more computationally efficient FoldX is capable
of filtering out mutations that are likely detrimental to the binding
affinity.While the ones predicted to be beneficial do not always agree
with MD and Rosetta results (see Figure 2B). We notice several
disagreements with Rosetta and MD—this is not surprising as
Rosetta has been designed to predict free energy differences while

short conventional MD trajectories do not contain enough sampling
to assess the free energy. We thus decided to perform
thermodynamic integration calculations to further identify the
agreement between Rosetta and MD-based approaches.

Thermodynamic integration increases the complexity in system
setup and analysis with respect a conventionalMD trajectory—but the
computational costs (considering replicates needed, see methods)
remains relatively small compared to other MD approaches. We
selected 15 mutations and compared results using Rosetta and TI
(see Supplementary Figure S1). For most residue mutations, both
programs agree in sign if not in magnitude. Previous work points to
systems including multiple binding modes or systems that are
sensitive to local conformational changes (such as the MIDAS
binding site) (Armacost et al., 2020) as problematic for TI. For
example, Guest and coworkers performed free energy perturbation
studies on a series of small molecule inhibitors to the β6 integrin with
an average error of 1.5 kcal/mol with respect to the experimental
results (Guest et al., 2020).

We searched for alternative binding modes by using the MELD
approach, which can simulate multiple binding/unbinding events.
MELD combines ambiguous/noisy information with molecular
simulations through Bayesian inference and has been routinely used
for predict the binding of macromolecules [protein-protein (Brini et al.,
2019), protein-peptide (Morrone et al., 2017; Mondal et al., 2022),
protein-DNA (Bauzá and Pérez, 2021), and protein-small molecule (Liu
et al., 2020)]. We derived ambiguous information based on native
contacts present in the crystal structure in such a way that different
interpretations of the data is compatible with different binding modes.
We expected, that the force field would be able to recognize the most
native-like amongst the binding modes for those sequences that have a
high affinity (clusters with high population) (Lang and Perez, 2021).
Unfortunately, due to the small interface region between collagen and
the integrin, the different binding modes found give rise to large
deviations in binding angles between the collagen in MELD
simulations with respect to the native structure (see Supplementary
Figure S2). On the other hand, satisfyingmore information overrides the
force field preferences and yields native-like bindingmodes regardless of
the sequence. Similarly, competitive binding simulations (Morrone et al.,
2017) with MELD also failed to distinguish which collagen mutations
were more likely to lead to more stable complexes. Presumably, these
limitations arise from the use of an implicit solvent (Nguyen et al., 2013)
needed for the MELD binding simulations.

Similarly, the recent successes of the AlphaFold (AF) (Evans
et al., 2021a) machine learning approach did not translate to this
system. We used a local installation of AlphaFold and performed
predictions in the presence/absence of structural templates. In our
hands, Alphafold multimer predictions were confident about the α2
I-domain structure (high pLDDT scores), but failed to predict the
structure of the collagen triple helix structure—and hence of the
complex (see Supplementary Figure S2).

3.2 Recent machine learning approaches
can suggest novel sequences based on the
structure

Whereas we used FoldX and Rosetta to predict local changes in
the sequence (single mutants), the recent protein MPNN (Dauparas
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et al., 2022) machine learning approach can in principle find an
optimal sequence given the structure of the complex. Contrary to the
other two methods, this approach does not provide a relative
binding affinity. We first generated two predictions in which we
allowed any residue in the motif along the tree collagen strands to
change (see “Prediction 1″ and “Prediction 2” in Supplementary
Figure S3). This gave rise to four different binding motifs. We next
generated four more sequences by creating homo-trimer collagen
strands with each of the four predicted motifs (see the latter four
motifs in Supplementary Figure S3A). We assessed the viability of
these motifs by running conventional MD. All sequences in which
the leading strand had an E to P mutation were unstable. Whereas if
this mutation occurred in other strands, the system remained stable.
This is expected as the Glutamic acid coordinates with a divalent site
when interacting with the integrin.

4 Discussion

In this work we focused on identifying collagen-like motifs that
bind the I-domain of the α2β1 integrin. Despite their biological
relevance and some successes (Craig et al., 2004; Murcia et al., 2008;
Choi et al., 2010; Zhu et al., 2010; Wang et al., 2015; Farina et al.,
2016; Fratev and Sirimulla, 2019), integrins remain challenging
systems to study through molecular modeling. The collagen fiber
with the GFOGER motif that we study was initially suggested based
on docking calculations (Emsley et al., 2000), which led to the
crystallization of the complex (pdb code 1dzi). Our use of local
(single mutant) and global (proteinMPNN) approaches shows that
current methodologies are better at discerning unfavorable
mutations than at providing reliable predictions. However,
consensus between different methods increases the likelihood of
success. Our use of MD stability analysis showed that it can be a
helpful tool to distinguish unfavorable mutations, but stable
simulations are not a guarantee of favorable mutations as
timescales remain limited. This becomes an issue even when
using thermodynamic integration, as multiple binding modes are
possible. While this is an actively developed field for small molecule
binders Gill et al. (2018), it remains more challenging for flexible
molecules such as collagen. For such flexible systems, we have
previously found the MELD Bayesian inference approach can
typically identify differences amongst different binder sequences.
Due to the small interface area, our standard protocol results in
binding modes where the collagen binds in the right region, but with
orientations that can deviate up to 90° from their experimental
binding mode. The caveat of increasing the number of restraints in
MELD to solve this issue leads to the inability to distinguish motif
sequence preferences.

Molecular modeling pipelines are undergoing rapid and drastic
changes thanks to the eruption of machine learning approaches. The
CASP event served as the perfect scenario for the first iteration of
AlphaFold to show the potential of machine learning in protein
structure prediction (Senior et al., 2020). Their initial approach
relied on following the leading strategies in the field: determine pair-
wise distance distributions between residues to impose as restraints
to predict structures. Two years later, AlphaFold presented a novel
strategy based on attention networks with an impressive
performance in CASP (Jumper et al., 2021). Making the network

available to the community and the appearance of collaborative
notebooks (Mirdita et al., 2022) rapidly allowed groups to apply it to
a myriad of problems: for molecular recognition (protein-protein
and protein-peptide) (Humphreys et al., 2021; Tsaban et al., 2022),
for predicting multiple biological states (Wayment-Steele et al.,
2022), relative binding affinities (Chang and Perez, 2022), or
even for designing new proteins via deep network hallucination
(Anishchenko et al., 2021). As these networks learn from data
deposited in the protein data Bank, they also implicitly learn
about the position of ions or ligands in active sites. However, AF
multimer was not able to predict the structures of the 1dzi complex.
Recent work showed that partial retraining pf AF weights for specific
targets could lead to an improved ability to correctly identify bound
or unbound peptides binding to the Major Histocompatibility
Complex (MHC) (Motmaen et al., 2022). This was possible
thanks to a large database of peptides known to be either
binders/non-binders to MHC. Such type of initiatives could soon
provide accurate results for predicting complexes involving
integrins, which combined with competitive binding strategies
(Chang and Perez, 2022) could lead to rapid identification of
functional motifs.

During the writing of this paper, several new machine learning
approaches appeared in the literature which make us optimistic
about the future: we highlight three that are relevant to the
discussion above. The first one is RosettaFoldNA (Baek et al.,
2022), which predicts the folding of RNA as well as nucleic acid-
protein complexes. The approach draws on the AF principles but
incorporates an additional physics-inspired term (Lennard Jones
potentials taken from Rosetta) to better reproduce geometries (e.g.,
reduce the overlap between protein and nucleic acids). In this
process, the algorithm has learned to assemble double-stranded
DNA, much like we hope the collagen triple helix can be predicted.
The second development is the OpenFold (Ahdritz et al., 2022)
initiative—a pyTorch-based implementation trainable to reproduce
AlphaFold levels of accuracy at a lower computational cost. The
authors also report the OpenProteinSet used to train the model. In
the last few months, the field used AF beyond what it was originally
designed to do. OpenFold will now give users the possibility to
retrain a tool equivalent to AF for new purposes. Finally, a recent
study (Akdel et al., 2022) highlights the potentially transformative
role of AF in structural biology, its accuracy matching experiments
for many applications, as well as the role of potential biases, and its
ability to identify features that are not typically present in databases.

5 Conclusion

In this work we assessed the role of different computational tools
to identify novel collagen-integrin binding motifs. FoldX serves as a
fast mutant screen, to filter out mutations that do not improve
binding affinity. A combination of Rosetta and MD (TI) serves to
further identify those mutations most likely to lead to improved
binding affinities. Although we were very enthusiastic about the
possibility of using AlphaFold to differentiate amongst binding
motifs, we found no evidence that it could predict the native
state. However, in light of recent work it seems like partial
retraining of the weights against known binders/non-binders
might lead to a feasible pipeline. Finally, proteinMPNN was able
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to correctly identify that mutations to the glutamic acid involved in
binding would be deleterious only in the leading strand. Although
further assessment is needed, proteinMPNN paves the way to
identifying functional motifs far from the starting sequence motif.
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