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Introduction

With climate change and population growth, the ratio of food production to demand is increasingly shrinking. Plants and their production are crucial for retaining the sustainability for the natural ecosystem and human food security (Qiao et al., 2022). Rapid development and technology progress in robotics and artificial intelligence (AI), plant phenotyping and precision agriculture start to play an important role in intelligent plant phytoprotection, soil protection, reducing chemicals and labor cost, and ensuring food supply (Qiao et al., 2022). Plant phenotyping refers to obtaining the observable characteristics or traits jointly affected by their genotypes and the environment, and is formed during plant growth and development from the dynamic interaction between the genetic background and the physical world in which plants develop (Li et al., 2020).

Precision agriculture helps to maximize efficiency of soil and water usage, with the objective of minimizing loss and waste. It also increases the yield of crops, as well as reduce the variability and input costs (Cisternas et al., 2020).

In recent years, researchers have made a significant progress in developing various AI methods, sensor technologies and agricultural robots for planting and monitoring plants (Weyler et al., 2021; Lottes et al., 2020; Hu et al., 2022 and Su et al., 2021), as shown in Figure 1. A significant number of plant morphological, physiological, and chemical parameters can be rapidly and conveniently measured using AI (Li et al., 2020). Additionally, the integration of AI and robotics technologies enables real-time monitoring of plants in complex field and controlled environment (Atefi et al., 2021). By probing the complex physiology of plants through plant phenotyping, higher quality plant seeds can be obtained (Watt et al., 2020). Moreover, during plant protection processes, the application of pesticides and fertilizers can be reduced, ultimately contributing to a more sustainable agricultural environment (Vélez et al., 2023).




Figure 1 | AI, sensors and robotics based dynamic 3-D plant phenotyping and precision agriculture framework.







Plant phenotyping

As an effective tool and process, plant phenotype is an essential part of modern, intelligent, and precise agricultural production. Various physiological and morphological parameters about plants are acquired by various sensors such as RGB cameras, lidar and multiple and hyperspectral cameras to serve as decision-making basis for real-time and future plant management (Rivera et al., 2023).

Shen et al. proposed a new backbone network ResNet50FPN-ED for the conventional Mask R-CNN instance segmentation to improve the detection and segmentation capability of grape clusters in complex field environments. The average precision (AP) was 60.1% on object detection and 59.5% on instance segmentation. Sun et al. proposed a multi-scale cotton boll localization method called MCBLNet based on point annotation, which achieved 49.4% average accuracy higher than traditional point-based localization methods on the test dataset. Based on an improved YOLOv5 model, Wang et al. proposed a fast and accurate litchi fruit detection method and corresponding software program. The results showed that the mean average precision (mAP) of the improved model was increased by 3.5% compared with the original model, and the correlation coefficient R2 between the application test and the actual results of yield estimation was 0.9879. Based on imaging technology, Li et al. performed three-dimensional reconstruction, point cloud preprocessing, phenotypic parameter analysis, and stem and leaf recognition and segmentation of corn seedlings in sequence, paving a new path for maize phenotype research. Li et al. proposed a Germination Sparse Classification (GSC) method based on hyperspectral imaging to detect peeled damaged fresh maize. The results show that the overall classification accuracy rate of this method in the training set is 98.33%, and the overall classification accuracy rate of the test set is 95.00%.





Plant disease detection

Pests and diseases occur irregularly and are harmful in plant growth and production. It is critical to detect pests and diseases in time for taking necessary actions. Recent advances in computer vision makes it a popular approach to accomplish this task (Guo et al., 2023).

Aiming at the problem of rapid detection of field crop diseases, Dai et al. proposed a novel network architecture YOLO V5-CAcT. They deployed the network on the deep learning platform NCNN, making it an industrial-grade crop disease solution. The results showed that in 59 categories of crop disease images from 10 crop varieties, the average recognition accuracy reached 94.24%, the average inference time per sample is 1.56 ms, with a the model size of 2 MB. To quantify the severity of leaf infection, Liu et al.. proposed an image-based approach with a deep learning-based analysis pipeline. They utilized image data of grape leaves infected with downy mildew (DM) and powdery mildew (PM) to test the effectiveness of the method. Experimental results showed that the DM and PM segmentation accuracies in terms of mean IOU of the proposed method in the test images were more than 0.84 and 0.74, respectively.

Cotton is an important economic crop, and its pest management has always been paid attention to. Fu et al. proposed a quantitative monitoring model of cotton aphid severity based on Sentinel-2 data by combining derivative of ratio spectral (DRS) and random forest (RF) algorithms. The overall classification accuracy is 80%, the kappa coefficient is 0.73, and the method outperforms four conventional methods. In order to facilitate easy deployment of deep convolution neural network models in mobile smart device APPs, Zhu et al. use pruning algorithms to compress the models. VGG16, ResNet164 and DenseNet40 are selected as compressed models for comparison. The results show that when compression rate is set to 80%, the accuracies of compressed versions of VGG16, ResNet164 and DenseNet40 are 90.77%, 96.31% and 97.23%, respectively. In addition, a cotton disease recognition APP on the Android platform is developed, and the average time to process a single image is 87 ms with the test phone.





Robotics and UAVs in smart farming

With the rapid development and popularization of mobile robots and unmanned aerial vehicles (UAVs), they have been increasingly deployed for agricultural applications for automated operations to avoid dangerous, repetitive and complicated manual operations (Vong et al., 2022 and Vélez et al., 2023).

Aiming at the harvesting problems faced in precision agriculture, Zheng et al. designed a robot gripper by studying the picking problem of clustered tomatoes. The results show that in the simulation environment, the gripper can smoothly grasp the medium and large tomatoes with diameter of 65∼95 mm, and all of them meet the minimum damage force condition during grasping operation. In terms of crop management such as robotic spraying and fertilization, Hu et al. proposed LettuceTrack, a multiple object tracking (MOT) method for detection and tracking of individual lettuce plant by building unique feature. The method is designed to avoid multiple spray of the same lettuce plant. In order to solve the problem of vibration deformation caused by corn harvester working, an improved empirical mode decomposition (EMD) algorithm was provided by Fu et al. to decrease noise and non-stationary vibration in the field. The results show that the proposed model could reduce noise interference, restore the effective information of the original signal effectively, and achieve the accuracy of 99.21% when identifying the vibration states of the frame.

UAVs could be used to monitor crop health, soil moisture levels, and identify areas that require irrigation or fertilization. With the use of advanced sensors and cameras, drones can capture sensing data and conduct surveys that provide farmers with valuable insights into crop growth and yield (Zhang et al., 2023). Moreover, various aspects of the guidance, navigation, and control of UAV when applied to agriculture started to be investigated to allow real-time crop management with fleets of autonomous UAVs. Huang et al. proposed a distributed control scheme to solve the collision avoidance problem in multi-UAVs systems. Numerical simulation results show that the method can effectively control multiple UAVs to complete the plant protection task within a predetermined time. Li et al. proposed a solution for field wheat lodging identification. Drones are used to obtain 3D point cloud data of wheat, which is processed with neural network to obtain the recognition result of wheat lodging. The results show that the F1 scores of the classification model are 96.7% for filling, 94.6% for maturity, respectively.





AI and sensors in agro-ecological environment

Plant growth and agricultural production can be unstable, since they are greatly affected by their environment. A good ecological environment including forest, land and water resources is the basis of sustainable development. Researchers are paying more attention to applying artificial intelligence and sensor technology to ecological systems, and making further contributions to sustainable plant protection by sensing and monitoring ecosystem (Maharjan et al., 2022).

Zheng et al. conducted research on forest fire hazard identification methods. They proposed an improved forest fire recognition algorithm for fire recognition by fusing backpropagation (BP) neural network and SVM classifier. They constructed a forest fire dataset and tested it with different classification algorithms. The results show that the proposed method achieves an accuracy rate of 92.73%, which proves the effectiveness of the algorithm. Based on smooth channels and ecological channels with different shapes, Zhou et al. proposed a method of arming ultrasonic sensors to obtain channel flow velocity. The results show that the method simplifies the arrangement of sensors in channel flow, and improves the accuracy of the flow measurement method. The method is helpful to promote the construction of ecological channels.





Conclusions

Sustainable agricultural development requires efforts from multiple perspectives. Human beings need to create a good ecological environment including water resources, forests and soil to ensure that plants grow in a healthy environment. A more reasonable arrangement of sensors and the use of artificial intelligence can monitor environmental changes in real time, so that farmers can make more optimum control measures. In addition, plant phenotypes will play a more important role in future agriculture, including plant breeding and plant parameter acquisition. AI and robotics technologies have been increasingly integrated into plant protection, fertilization and harvesting to pursue higher food quality and yield.

Varieties AI methods, intelligent agricultural robots and equipment have been proposed and proven to be efficient in laboratories as well as on agricultural fields. Deployment of these methods and robots during real agricultural production, while enabling the entire process at a lower cost, is upcoming challenges for both researchers and agricultural industry. Furthermore, multi-robot collaboration including ground-to-air cooperation will shape a better smart agricultural system, and build a sustainable and circular agricultural system for future farming.
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Crop leaf diseases can reflect the current health status of the crop, and the rapid and automatic detection of field diseases has become one of the difficulties in the process of industrialization of agriculture. In the widespread application of various machine learning techniques, recognition time consumption and accuracy remain the main challenges in moving agriculture toward industrialization. This article proposes a novel network architecture called YOLO V5-CAcT to identify crop diseases. The fast and efficient lightweight YOLO V5 is chosen as the base network. Repeated Augmentation, FocalLoss, and SmoothBCE strategies improve the model robustness and combat the positive and negative sample ratio imbalance problem. Early Stopping is used to improve the convergence of the model. We use two technical routes of model pruning, knowledge distillation and memory activation parameter compression ActNN for model training and identification under different hardware conditions. Finally, we use simplified operators with INT8 quantization for further optimization and deployment in the deep learning inference platform NCNN to form an industrial-grade solution. In addition, some samples from the Plant Village and AI Challenger datasets were applied to build our dataset. The average recognition accuracy of 94.24% was achieved in images of 59 crop disease categories for 10 crop species, with an average inference time of 1.563 ms per sample and model size of only 2 MB, reducing the model size by 88% and the inference time by 72% compared with the original model, with significant performance advantages. Therefore, this study can provide a solid theoretical basis for solving the common problems in current agricultural disease image detection. At the same time, the advantages in terms of accuracy and computational cost can meet the needs of agricultural industrialization.

Keywords: crop disease detection, convolutional neural network, model compression, knowledge distillation, activate quantitative, model deployment


INTRODUCTION

Crop disease assessment is necessary for the agricultural industry to understand crop quality and yield levels. Many factors affect crop yield, and it is generally accepted that crop yield varies from year to year depending on changes in climate, soil parameters, and fertilizers used. With the introduction of precision agriculture (Cisternas et al., 2020), crop life cycle processes, such as sowing, monitoring, weed control, pest and disease management, and harvesting also positively impact crop yield. Crop diseases affect leaves, stems, roots, and fruits, limiting crop growth and development and thus affecting crop quality and yield. World crop yields are estimated to be reduced by 11–30% annually due to crop diseases and pests (Deng et al., 2021). The leading causes of the emergence of these diseases are microbial, genetic diseases, and diseases caused by infectious agents, such as bacteria, fungi, and viruses. Secondary factors contributing to diseases are rainfall, humidity, temperature, and nutrient deficiencies.

There are many traditional methods to diagnose crop diseases. The most direct method is the human visual estimation, this method crop disease diagnostic technique relies on farmers' experience, and the corresponding expert system requires the writing of a large number of calibration rules, which is time-consuming and limited by the expert's empirical knowledge and has a limited scope of application. In contrast to traditional crop disease diagnostic techniques, some challenging, expensive, and time-consuming methods that require highly specialized operations have been proposed, one using spectroscopy to diagnose whether crop leaves are healthy and infected (Sanchez et al., 2020) and another method using polymerase chain reaction (Urbina et al., 2021) to extract DNA from leaves and analyze key fragments of DNA to determine whether crop leaves are healthy or infected. With the rapid development of artificial intelligence to promote precision agriculture, some fast and efficient AI detection methods (Jiang H. et al., 2020; Su et al., 2021; Tulbure et al., 2022) have been proposed to enable the development of automatic crop disease detection techniques through recent advances in artificial intelligence (AI), machine learning (ML), and computer vision (CV) technologies that are time-sensitive and efficient enough to accurately detect crop leaf diseases without human intervention. The application of artificial intelligence techniques in agriculture (Sharma, 2021; Dewi et al., 2022; Figueroa-Mata et al., 2022; Walker et al., 2022; Zhao et al., 2022) has made it essential to address various challenges of agricultural products, such as environmental impact, productivity, food security, and sustainability, by using new types of methods to solve many of the problems faced by farmers in the past. The strong applicability to the problems makes it easy to solve compound problems.

Current research related to plant disease detection in computer vision is divided into two main categories: methods based on manual features and in-depth learning features. Most of the existing studies belong to the former category (Chen et al., 2020; Jiang F. et al., 2020; Dawod and Dobre, 2022), which identifies objects in the feature space using manually extracted features as localizers or classifiers. Manual features have the advantage of localization and simplicity. However, they may lack the ability to extract the semantics and discriminate features in a changing environment and usually select appropriate features based on experience. Deep learning models solve the problem of manual feature extraction and are therefore widely used in various applications of crop disease measurement (Lawal, 2021; Li et al., 2021; Wani et al., 2022) Deep learning-based plant disease detection networks can be divided into the following networks: two-stage networks represented by Faster region-based convolutional neural network (Faster R-CNN) (Ren et al., 2017); one-stage networks represented by Single Shot Multibox Detector (SSD) (Liu et al., 2016), and You Only Look Once (YOLO) (Redmon and Farhadi, 2016, 2018; Redmon et al., 2017; Bochkovskiy et al., 2020). The main difference between the two networks is that the two-stage network needs first to generate a candidate frame (Proposal) that may contain lesions before performing the target detection process. In contrast, the one-stage network directly uses the features extracted from the network to predict the location and class of lesions. In agriculture, a one-stage network has apparent advantages over a two-stage network. The network represented by YOLO has the most advanced performance in target detection, with higher computational speed and better computational efficiency. YOLO (Redmon et al., 2017) combines the region proposal network (RPN) branching and classification stages in a single network, making its architecture more concise, and the YOLO model predicts the bounding boxes and their corresponding classes directly through a feedforward network compared to the previous region proposal-based detectors (Ren et al., 2017). YOLOV2 is the second version of YOLO; introducing anchors in YOLO V2 (Redmon and Farhadi, 2016) was inspired by Faster R-CNN; anchors improve the detection accuracy and simplify the learning process of the problem and the network. YOLO and YOLO V2 are the foundations of YOLO V3 (Redmon and Farhadi, 2018). YOLO V3 employs multi-label classification, in which each label calculates the classification loss using binary cross-entropy loss rather than mean square error, predicts objects at three different scales, and uses logistic regression to predict the score of each bounding box. YOLO V4 (Bochkovskiy et al., 2020), the next version of YOLO V3, consists of CSPDarkNet53 as the backbone, SPP (Spatial Pyramid Pool) as an additional block, Path Aggregation Network (PANet) as the neck, and YOLO V3 head together to improve the training accuracy by introducing new methods of data enhancement, optimized hyperparameters, and genetic algorithms.

Afzaal et al. (2021) reported the studies obtained using classical convolutional neural networks, namely GoogleNet, VGGNet, and EfficientNet, to identify potato leaf diseases at different growth stages. Sharma et al. (2021) proposed a CNN model for rice and potato leaf disease classification, which was able to classify rice images and potato leaves with 99.58% accuracy, outperforming other advanced machine learning image classifiers, such as SVM, KNN, decision trees, and random forests. To demonstrate the feasibility of deep learning algorithms based on an encoder-decoder architecture for semantic segmentation of potato late blight spots based on field images, Gao et al. (2021) used a SegNet-based encoder-decoder neural network architecture for lesion segmentation, which can extract semantic features from low to high level, in a disease test dataset with leaves and soil in the background to intersect and union (IOU) values of 0.996 and 0.386, respectively. Rashid et al. (2021) proposed a multilevel deep learning model to classify potato leaf diseases called PDDCNN. First, potato leaves were extracted using the YOLOV5 image segmentation technique from potato plant images. Then early blight and late blight of potato were classified by PDDCNN, which also used data enhancement techniques to improve the accuracy. Finally, the final accuracy was 99.75%. Mathew and Mahesh (2022) detected bacterial spot disease in sweet pepper plants by YOLOV5 and the training time was only 9.5% of the YOLO V4 model for the same accuracy. Zhao et al. (2021) extracted 10 classes of tomato leaf diseases from the PlantVillage dataset for training for multiple plant disease identification. They established the SE-ResNet50 model by embedding the attention mechanism SENet module into ResNet50, which achieved average recognition accuracy of 96.81% on the tomato leaf disease dataset.

Analyzing the above research process, the identification of crop diseases is mainly divided into image processing, texture feature extraction of crops, inputting machine learning for detection, or using convolutional neural networks for deep crop feature identification and extraction. However, the above studies have made good progress in crop image detection. However, related research is still only at the theory, exploration, and introduction stage. It is mainly because most of them only consider the accuracy of a single scene dataset and ignore the storage size, inference time, deployment cost, and application environment that need to be considered in the actual production of the model. Specifically, they are divided into the following deficiencies:

1. High computational cost: With the continuous development of neural networks, image detection tasks require a large and complex network with a large number of parameters to achieve higher accuracy. Typically, training a sizeable parametric network model will require mighty computer power and data storage capacity. However, the prohibitive computational cost and memory greatly hinder the deployment of CNNs on limited platforms with a wide range of resources, especially for frequently executed tasks or real-time applications. For agricultural application scenarios, the focus should be on requirements limited by the natural environment in the field and low-cost deployment, and simplicity of use.

2. Low generality of methods: Existing studies usually extract relevant data from the PlantVillage dataset, which are too old and unbalanced in terms of categories, covering fewer disease categories. On the other hand, most methods do not evaluate the performance of images with more crop categories and different severity of the same disease. This is because fewer disease categories are detected, coupled with features that are easier to distinguish. When tested on fewer categories of diseased leaves, any model version can be marked as good.

3. Long training period: when deep learning models are put into production environments, the use of classical neural network models or the use of two-stage (Duan et al., 2020) class models in training on datasets, due to their large number of model parameters, or due to the need to calculate Region Proposal first, and the backpropagation calculation is slow, and the development cost is too high, maintenance and scaling difficulties, it is difficult to be mobile device deployment.

This study solves the above problem and proposes a feasible technical solution. The significant contributions of this manuscript are as follows:

1. Model acceleration: The YOLO V5 model in one-stage was used as the base. Model accuracy is maintained by merging model pruning and knowledge distillation to make the model lighter while keeping model accuracy, considering the importance of model parameter size for the training environment of agricultural application scenarios. Activation Compressed Training Neural Network (ActNN) is chosen to perform dynamic random parameter quantization of YOLO V5 models to realize training tests of large parameter models when device memory is insufficient, thus ensuring comprehensive performance in different device environments. The model is characterized by high recognition accuracy and fast inference.

2. Model compression: The goal is to use various recomputation methods of CNN models to accelerate model inference, compress model parameters, intermediate activation results, and optimizer states, and minimize model storage space without severely compromising detection accuracy.

3. Model generalization: Extensive use of multiple publicly available data sets to build models for detecting multiple crop diseases and disease severity. Cover the need for a single model to detect multiple diseases to meet the standards of industrial-grade applications. Address the insufficient number of crop disease samples and category imbalance in public datasets by using datasets to fuse features, balance categories, and reduce differences due to multiple factors, such as shape, variety, and environmental factors.

4. Model deployment: To integrate multiple platforms and consider the specificity of model deployment in agricultural applications, the models are converted to Open Neural Network Exchange (ONNX) format. The CNN model forward computation is accelerated by importing a suitable framework to achieve efficient and stable deployment.

We built and optimized the datasets in this article on three representative datasets to demonstrate that this article's research could cover most agricultural disease image recognition scenarios. Our study fully considered the issues of model storage size, inference time, deployment cost, and application environment, and integrates the state-of-the-art YOLO V5 with these technologies for the first time, which is the innovation of this article.

This section summarizes issues relevant to this study and briefly describes related research. The remainder of the article is structured as follows: section Materials and Methods describes the material used in the article, and it is primarily concerned with the methodology. Section Experiment describes the model training equipment environment and parameters, and several experiments are fully implemented using the methods described in section Materials and Methods, with the results analyzed and discussed. Finally, section Conclusion summarizes the main conclusions and contributions of this work.



MATERIALS AND METHODS

The technical route of the industrial-grade crop disease image detection task solution proposed in this article is shown in Figure 1. The crop disease dataset labeled by plant pathologists is inputted into the YOLO V5-CAcT model for training, and the best model is selected to achieve rapid recognition of the target the model. Considering the importance of inference time and model size for almost all agricultural application scenarios, two model compression technology routes are proposed, with the red line in Figure 1 indicating technology route 1 and the gray line indicating technology route 2. The two technical routes can be used in combination in different environments. Technical route 1 is generally an adjunct to technical route 2 and can be adapted to any different equipment environment for training tests. For the sake of description, technology route 1 is not combined with technology route 2. The two technology routes have overlapping parts, and Figure 1b ActNN changes some of the original modules in YOLO V5 to take on the tasks that follow from Figure 1b. Technique 1 uses ActNN to randomly quantization the YOLO V5 model to reduce memory consumption when memory is insufficient. Technical route 2 uses model pruning and knowledge distillation to optimize model parameters, thus simplifying the structure and parameters of the model while maintaining accuracy.


[image: Figure 1]
FIGURE 1. Technical route diagram.



Based on YOLOV5 Crop Disease Detection Technology

You Only Look Once is the most representative target detection algorithm in the One-Stage family of algorithms, and the latest product of the YOLO architecture family is the YOLO V5 network (Jocher et al., 2021). This model has high recognition accuracy fast inference speed and avoids the candidate region recomputation in a two-stage algorithm. So far, the YOLO V5 algorithm has been iterated for six versions. Each version is launched, representing the latest technology in target detection, with features suitable for promotion in precision agriculture. Again, the YOLO V5 target recognition network model has a smaller weight file, nearly 90% smaller than YOLO V4 (Yan et al., 2021), which indicates that the YOLO V5 model is suitable for deployment to embedded devices instantaneous detection. Thus, the advantages of the YOLO V5 network are high detection accuracy, lightweight attributes, and fast recognition speed. The YOLO V5 architecture contains four main structures named YOLO V5l (Yan et al., 2021), YOLO V5x (Yan et al., 2021), YOLOV5m (Yan et al., 2021), and YOLO V5s (Yan et al., 2021), which have a decreasing number of model parameters in order. To adapt the mobile solution, the YOLO V5n(Nano) model is later proposed, which has the same model depth, reduced network width from 0.5 to 0.25, and reduced model parameters by 5.6 M compared to YOLO V5s, and derives the model at INT8 accuracy, which is only 2.1 MB in size. In this article, YOLOV5n(Nano), YOLO V5s, YOLO V5m, and YOLO V5l are used as benchmark test models, as shown in Figure 2.


[image: Figure 2]
FIGURE 2. Crop disease YOLOV5 network structure diagram.


The YOLO V5 framework consists of three main structures, including Neck Network, Backbone Network, and Detect Network. Neck Network is a convolutional neural network that combines fine-grained images and forms image features. Precisely, Neck Network aims to reduce the computation of the model and speed up the training. The Conv module is the basic convolutional YOLO V5, which performs two-dimensional convolution, two-dimensional regularization, and weighted linear unit (SiLU) activation (Singla et al., 2021) operations on the input in turn. C3 module consists of 3 Conv with many Bottlenecks, in which the structure of the composition is added to the calculation map in turn. Bottleneck completes the residual feature transfer without reducing the features. Moreover, the output results in Concat stitching, the output depth is the same as the input depth. C3 module converts the input data, calculates in the Bottleneck layer, adds the initial input Conv value and the calculated value of Bottleneck in Concat, and converges and outputs. Bottleneck continues to process Conv(1, 1) on the input value and outputs the calculated value of Conv(3, 1). after the Conv operation, SPP performs a Max Pooling operation using 5*5, 9*9, and 13*13 to combine the three Max Pooling values in Concat with the Conv values in the current input value, and Conv is sent after Conv. Upsample is a Pytorch base library function that doubles the number of each feature mapping array in the structure values; Concat plays the role of merging input layers.

The eleventh and fifteenth layers of Neck Network use Upsample module to expand the features, and the features extracted from the four and sixth layers of Backbone Network are passed to Neck Network for fusion. The fourth layer of the Neck is further fused with the Upsampled fifteenth layer using Concat. Then the fourteenth fused layer is fused with the second After the fusion, the fourteenth layer is fused with the eighteenth layer again. The small target detection uses the deeper ninth layer network features fused with the twenty-first layer Conv, and the fusion forms a larger fixed feature map output to the Detector for prediction. Since Detector currently has three Conv2d values, the three values are combined and output. YOLO V5 has three feature detection scales for feature detection of different sizes, while YOLO V5 has the feature of enhanced training data; the data loader can perform many types of data augmentation.



Model Compression and Deployment

With the depth and complexity of neural network architecture, the computation required to train State Of The Art (SOTA) AI models (Gholami et al., 2021) is growing at a rate of 15 times every 2 years, and the number of parameters of large Transformer models is growing exponentially at a rate of 240 times every 2 years (Gholami et al., 2021); the breakthrough of deep learning performance cannot be achieved without the crazy growth of the model size, and models with a more significant number of parameters usually have better performance It has become an industry consensus; however, the resulting memory wall problem limits the exponential growth of AI model parameters; therefore, a combination of model compression and hardware systems is usually required to optimize the structure of CNN models to achieve better maintenance performance. Model compression is a technical solution to address this problem during the model training phase by simplifying the model structure by reducing redundant parameters and speeding up model inference without significantly degrading performance. Current research on model compression techniques includes neural network pruning, low-precision quantization, knowledge distillation, and activation weight compression.


Neural Network Pruning

There are usually significant, redundant parameters between deep neural network model layers. Some of them play a feeble role in the target detection process, and the cumulative impact of these parameters on the feature map is negligible, and removing these parameters has little impact on the accuracy of target detection; therefore, the parameters between model layers need to be further compressed and optimized. Model pruning is a widely used model compression technique, and from the perspective of pruning granularity, pruning methods can be classified as structured and unstructured pruning (Wang et al., 2021), Filter Pruning via Geometric Median (FPGM) (He et al., 2019) is a structured weight pruning. The essence of the algorithm is to identify the geometric median close filters present in the network and achieve the purpose of streamlining the weights to accelerate inference by eliminating the redundant filters and their associated input-output relations. The geometric median is calculated as shown in Equation (1).

[image: image]

where x* is the minimum value of the parameter in d-dimensional space, denoting the geometric median; f(x) is the minimum value of the sum of Euclidean distances from N points a1 to ai, each ai ∈ ℝd; Equation (2) uses the geometric median of Equation (1) to obtain the sum of Euclidean distances of all filters in layer i;
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[image: image] denotes the filters in layer i, x is the tensor of layer i, [image: image]; Equation (3) [image: image] denotes the geometric median of layer i. The sum of the Euclidean distances of all filters in g(x) is substituted into Equation (3) to obtain the smallest geometric median within layer i. This median denotes the data center of the layer.
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If we consider the existence of filters close to the geometric median in layer i is redundant, it can be considered that this filter is replaceable, and the [image: image] calculated in Equation (4) indicates the proximity of replaceable filters, and the proximity region of the replaced network has little impact on the whole network. Therefore, replaceable filters are determined for all layers [image: image] of the network model.
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Equations (2) and (4) can be further expressed as Equation (5). From Equation (4), we can see that [image: image] can be replaced as [image: image], then g′(x) = g(x), thus, cutting these redundant filters can further reduce the model.

[image: image]

After FPGM pruning and then iterative pruning, the network can be quickly restored to its original performance. AutoSlim, an open-source automated model pruning tool (wzx, 2021), divides the model pruning function into three major architectures and supports authors to package their own SOTA pruning algorithms. Based on this, this article constructs a pruning algorithm supporting YOLO V5 and implements its FPGM-YOLOV5 algorithm. The FPGM-YOLOV5 pruning process is summarized in Figure 3.


[image: Figure 3]
FIGURE 3. FPGM pruning process.




Knowledge Distillation

After model pruning, the accuracy of the model generally decreases. Even if the pruned model is fine-tuned again, the accuracy may still have a large gap with the model before pruning. Therefore, this article can solve this problem by minimizing the accuracy loss by Knowledge Distillation (KD). Knowledge distillation uses transfer learning to supplement specific parameters missing in the small model to achieve the recognition accuracy of the large model as much as possible. Knowledge distillation can be regarded as a model compression method, where the large model is the teacher and the miniature model is the student.

Usually, the traditional training process finds the excellent likelihood for the ground truth under Hard Label. In contrast, the training process of KD uses the category probabilities of the teacher model as soft targets (Labels With Probabilities) to guide the training of the student model. The knowledge describing the similarity of different categories of information can be transferred from these soft targets (Hinton et al., 2015) to improve the performance of the student model.

Figure 4 shows the primary technical process of knowledge distillation. The teacher model is the original model with high training accuracy in the knowledge extraction process. The pruned original model is the student model, with a small number of parameters and a relatively simple model structure. The teacher model uses a series of hyperparameters to converge to the optimal state according to the established principles. Then, the same hyperparameters of the teacher model are used to train the student model for knowledge distillation. The distillation loss is corrected by coefficients β for the distillation loss of the teacher model and the student model where the Hard Label (Ground Truth) can effectively reduce the possibility of errors being propagated to the student model. Measuring the similarity of student and teacher models can be expressed in Equation (6), [image: image] is a function that can measure the similarity, expressed explicitly in softmax. In general, when the entropy value of the probability distribution output from softmax
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is relatively small, the value of negative labels is very close to 0, which contributes very little to the loss function, which leads to a reduction in the attention of the student model for negative labels during distillation, which is addressed by the temperature coefficient T in Equation (7). Where I is the logits input to the softmax layer, the higher T, the more the softmax output category value probability flat. The total loss Ltotal is represented by Equations (8)–(10), α and β are equilibrium coefficients, Lsoft is distillation loss, and Lhard is student loss; in Lsoft, N is the number of labels,
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and [image: image] is the value of the softmax output of the teacher model in class I at coefficient T; [image: image] is the value of the softmax output of the student model in class i at coefficient T; in Lhard, [image: image] is the value of the softmax output of the student model in class i at T = 1, cj is the ground truth value on class i, positive labels are taken as 1, and negative labels are taken as 0. The above KD theory is also implemented in this article on YOLO V5-CAcT.
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FIGURE 4. Step of knowledge distillation.




Quantitative Storage

In deep learning, model quantization means using fewer bits to store tensors initially stored in floating-point numbers and using fewer bits to perform initial computations in floating-point numbers, but this relies on specific hardware unit support.

Deep learning model parameters are commonly stored using Floating-Point Of 32-bit (FP32); usually, this article can use 16-bit, 8-bit, or even 4-bit to store the model to reduce its storage size. A prevalent practice is to use Integer Of 8-bit (INT8) to store each network parameter for each tensor of each channel in each layer of the model and export the INT8 model to ONNX format for storage after completion. In the model inference phase, this article restores the network parameters to FP32. The weights, intermediate tensor values, and activation values of the model during the operation and the model parameters will be reduced by a factor of 4 due to the substitution of INT8 for FP32 as the model parameter type. Most processors excel at processing INT-type data for embedded platforms, with fewer memory accesses and faster INT8 calculations, generally running 2–4 times faster. Unlike model quantization, the exported INT8 model storage in ONNX format does not rely on any dedicated hardware but only on the support of the inference framework and is therefore widely used in practical production. Quantization storage can be summarized in Equation (11), where q is the quantized value of a real number r of type FP32 (Jacob et al., 2018), while the scaling factor Scale and Zp determine the quantization q;
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Where [image: image] and [image: image] are the maximum and minimum values in the model weight tensor (FP32), respectively, the [INT8min, INT8max] are the range of values of INT8. The float and round functions indicate conversion to single-precision floating-point numbers and rounding. Use the following method to map FP32 to INT8, where Xfloat32 indicates FP32 weights, Xint8 indicates INT8 weights due to the storage of the INT8 model of ONNX, quantization of the stored Scale and Zp values can be saved.
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Thus, regardless of the framework into which it is loaded, the network parameters can be reduced to FP32 type during the inference phase using the following equation, with the inference time and model accuracy remaining unchanged.
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Activate Compression

Deep learning models to fit more features usually require more model parameters, and the industry has generally recognized that multi-parameter models have better performance. In addition, the size of the batch size and the input size of the image also affect the number of model parameters, and a larger batch size affects not only the computational cost but also the training performance (Takase, 2021); in addition, when training a model, in addition to storing model parameters, intermediate activation results and optimizer states are also stored, which requires more memory. It becomes challenging to train these large-scale models with limited GPU memory. Therefore, Chen et al. (2021) proposed the random quantization activation ActNN, which extends the reduced numerical accuracy Activation Compressed Training (ACT) quantization activation proposed by BLPA (Chakrabarti and Moseley, 2019) with the use of a non-uniform quantization strategy proposed by Tiny Script (Fu et al., 2020). ActNN is an excellent algorithm that can quickly compress model parameters without degrading prediction accuracy and supports the commonly used CNN backbone structure, implementing a randomized quantized network layer for most of the commonly used PyTorch nn.Module (Facebook, 2017), ActNN can be used for classification, detection, and segmentation tasks.

Briefly, ActNN implements a dynamic stochastic quantization activation neural network approach that reduces numerical precision by focusing on the activation quantization context, thus enabling quantization compression of weights, activations, and optimizers during training. The quantization process can make the gradient variance affect the convergence. ActNN contains a hybrid accuracy quantization strategy of group quantization and fine-grained quantization, which can approximately minimize the gradient variance during the training process to minimize the gradient variance and achieve a slight loss of accuracy in the 2-bit case. Equation (16), for each training iteration of the l-layer neural network, the forward propagation F(l) contains the N-feature mapping H(l−1) with the model parameters Θ(l).
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Backpropagation of G(l) to H(l) of layer l to find the gradient and carry the context C( ) to obtain [image: image], [image: image]computed gradient and update the parameters with SGD, calling this robust method precision (FP32) training as follows:
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ActNN to achieve 2-bit activation compression, the contexts C( ), Θ(l), and [image: image] represented in Equation (17) are each used in a randomized quantization strategy. The computed lossy gradient is an unbiased estimate of the original gradient, as shown in Equation (19) below, i.e., [image: image]:

[image: image]

ActNN dynamically adjusts the hybrid precision quantization strategy at runtime to make better use of the hardware features. Depending on the heterogeneous characteristics between different layers, the compression algorithm keeps more bits for the more essential activation results. In contrast, those activation results that have little impact on the model precision are processed using a compression algorithm above the limit level, assigning an average of 2-bits per activation result, maintaining precision while allowing the model activation parameters can be further reduced. Figure 5 shows that ActNN defines optional compression parameters with increasing compression levels from L1 to L5, where L1 and L2 are compressed using 4-bit per-group quantization, but L1 allows 32-bit quantization and processes only the convolutional layers; L3–L5 are compressed at 2-bit using fine-grained- mixed-precision, swapping, and defragmentation compression at 2-bit, respectively, which act on the activation results of all layers, and the specific processing effect depends on the proportion of the original model you process using the ActNN module. The processing is only done in training, and the detection process is not involved. In addition, as shown in Equation (20), the compression algorithm used in L1–L5 is a superposition of the previous compression level. In the training process, under the same hardware conditions, the higher the compression level, the longer the decompression time of the activation results during backpropagation, and the slower the training speed, from the perspective of adjusting the parameters and data, increasing the batch size and using high-resolution images will increase the Compression Activation (CA) and Decompression Activation (DCA) time, slowing down the model convergence efficiency.
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FIGURE 5. ActNN compression and decompression process.




YOLO V5 With ActNN Integration

The YOLO V5 network is based on the PyTorch implementation, and the three main structures in the model contain modules that are directly or indirectly inherited from the module under the nn package. These modules perform the primary operations from feature extraction, and feature fusion, to classification output, and are composed of convolutional computation, pooling operation, BN (Batch Normalization), and activation function as essential components to measure the size of the number of module parameters. Compressing the corresponding fine-grained parameters of the constituent modules enables effective optimization from the model base structure without changing the overall functional structure of the model and thus also without affecting the model's performance. ActNN implements most of the modules with compressed parameters, where QConv and QConvTranspose have versions of convolutional kernel modules corresponding to three different sizes, and QBatchNorm performs BN operations on three different versions of modules, in addition to the commonly used ReLU, Dropout, and MaxPool2d operations. In this study, the original network structure of YOLO V5 shown in Figure 2 is improved so that YOLOV5 integrates AcTNN, RA, FocalLoss, SmoothBCE, and Early Stopping, and YOLO V5-CAcT is proposed, which inherits all the features of YOLO V5 and adds the functional properties of activation compression parameters according to the technical route. For the four main model structures of YOLO V5, the corresponding implementations in this study are named YOLO V5s-CAcT, YOLO V5m-CAcT, and YOLO V5l-CAcT. Briefly, this article adopts AcTNN to integrate and replace some modules of the original network structure, and QConv, QBottleneck, QC3, and QSPP are designed to replace the corresponding modules, as shown in Figures 6a–d, and Upsample and Concat are still preserved because they are only involved in parameter passing and do not bring additional computational overhead. Finally, QConv2d is replaced with Conv2d in the Detector structure to obtain the model's overall structure after integration in Figure 6.


[image: Figure 6]
FIGURE 6. Integration of YOLO V5 model structure using ActNN.




Model Conversion

The fast crop leaf disease detection experiments are implemented based on the PyTorch framework, a deep learning framework developed by Facebook that is widely used in the industry for its efficient computational performance and good usability. However, PyTorch model files are not directly usable by other inference frameworks. The most common way to deploy PyTorch models is to convert them into an open format and then use other inference frameworks to convert the open format to their own. ONNX (Microsoft Facebook, 2018) is a generally accepted open format as a standard format for AI models, allowing engineers to move deep learning models between different frameworks. In addition, the use of ONNX will significantly reduce the probability of accuracy degradation after model transformation.



Simplify Operator and Model Deployment

Different deep learning frameworks generally implement different operators to perform the same operation. ONNX, the model standard, implements most operators, but when other models are converted to ONNX, a simple operation of other models will become redundant and complex in ONNX. Operator fusion combines multiple adjacent operators in ONNX into a linear block operator without storing redundant intermediate results in memory, reducing the number of accesses and therefore significantly reducing execution time, especially in GPUs and NPUs.

Currently, the convolutional layer context layers that generate the model after training are optimizable. Most of the inference framework operations in the inference phase can be reduced to linear operations, and simplifying the model structure generally requires linear optimization using fusion techniques (Chitty-Venkata and Somani, 2020). The sequence of steps involved in a single convolutional layer are convolutional operations, bias addition, batch-normalization-operators (BNO), and activation functions (SiLU, Hardswish, and Mish); the fusion mechanism combines these steps to form a single step, i.e., they are executed simultaneously, as shown in Figure 7.


[image: Figure 7]
FIGURE 7. layer fusion and data reuse.


To effectively match the deployment applications of real agricultural scenarios, further achieve model acceleration, and reduce the hardware burden, this article converts the simplified model into an NCNN model. It then loads it through the NCNN C++ API. The choice of using Tencent's Neural Network Inference Framework (NCNN) (Tencent, 2022) is because it is a high-performance neural network inference computing framework optimized for ARM mobile platforms, which is implemented entirely in C++ and does not rely on any third-party libraries. It can be quickly and efficiently deployed on multiple device terminals.




Dataset
 
PFD Dataset

The PFD dataset is based on the AI Challenger (Zhang et al., 2020) and PLD (Potato Disease Leaf) open-source datasets (The PLD dataset is available at https://www.kaggle.com/datasets/rizwan123456789/potato-disease-leaf-datasetpld) and some of the PlantVillage crop disease data (The PlantVillage dataset is available at https://www.kaggle.com/datasets/soumiknafiul/plantvillage-dataset-labeled). Almost all researchers in crop disease identification have used the PlantVillage dataset in their studies. The Plant Village dataset contains 31,397 healthy and diseased leaf images, which consists of 256 × 256 size JPG color images divided into 25 categories (20 diseased images, 5 healthy images, and 5 crop species) by species and disease. The PLD dataset is a collection of 4,072 potato disease images from the central region of the Punjab province of Pakistan, and the diseases include Early Blight, Late Blight, and Healthy. The AI Challenger dataset was divided into 61 categories by species, disease, and degree, with 10 species and 27 diseases (24 diseases had both general and severe degrees), but there were categories with imbalances or tiny sample sizes. The selection of AI Challenger as the research dataset can cover more crop diseases and better reflect the performance advantages of the model.



Building the Dataset

The PFD dataset contains 52,589 crop disease image data with an image size width of 256 and height between 256 and 512, mainly composed of the AI Challenger dataset and part of PlantVillage and PLD. The analysis by plant pathologists revealed six categories of crop diseases with unbalanced or incorrect categories in the AI Challenger dataset. Tomato Bacterial Spot Bacteria general, Tomato Bacterial Spot Bacteria serious, Tomato Target Spot Bacteria general, and Tomato Target Spot Bacteria serious 4 categories have serious labeling errors. This article extracted and replaced the Tomato Bacterial Spot Bacteria and Tomato Target Spot Bacteria in the PlantVillage dataset Color Images to reduce the original four categories of diseases to two categories. The remaining two categories of unbalanced samples are shown in Tables 1, 2 summarizes the three datasets. Using the image data generator method of Python's Albumentations library, 5 data enhancement techniques were applied to 2 types of unbalanced diseases present in the dataset to overcome overfitting and enhance the diversity of the dataset.

1. Spin: Rotating the images randomly by 0°, 90°, 180°, and 270°, simulating the randomness of shooting angles under natural conditions, will not change the relative positions of diseased and healthy crop features.

2. Color jitter: Identify crop disease scenes mainly in the field, which are affected by weather, and change the brightness, contrast, and saturation of images with 0.2 random probability to simulate the differences of images taken in different weather photos.

3. Blur: Motion blur or median filtering is added randomly to the images to simulate different defined images taken in a field environment with a random probability value of 0.2.

4. Noise: Add gaussian noise to an image with Multiplicative noise is used to generalize multiple images and shield the differences of many factors, such as image acquisition equipment and the natural environment.

5. Resize: After the above steps, the image's resolution is extended or scaled to 512 × 512 pixels by filling 0 pixels.


Table 1. Weak dataset enhancement.
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Table 2. AI challenger, PLD, and PlantVillage dataset summary.

[image: Table 2]

By the above data enhancement method, the sample size of each category was expanded by five times, and the enhanced dataset of these four crop disease categories contained 580 images. Later, after data analysis, it was found that the data set had less data on potato leaf disease-related species, and due to the rapid development of the potato seed industry, 4072 images of data from the PLD data set were selected to make up for this discrepancy. Finally, Convert the PFD dataset to VOC format, after statistics, the PFD dataset label categories consisted of crop species, disease name, and disease degree, including 59 disease categories, 10 crop species, and 27 disease classifications (of which 22 diseases have two degrees of classification: general and severe), and 10 healthy crop classifications, Figure 8 shows the sample images of the PFD dataset.


[image: Figure 8]
FIGURE 8. Sample images of the PFD dataset.




Data Pre-processing

In deep learning, to obtain better consistent classification results and better feature extraction, it is usually necessary to pre-process the dataset. there are more human-labeled data in the PFD dataset samples, which may have duplicate samples, thus causing the final result of the model solution to be biased toward reducing the training error of this part of the samples at the expense of the training error of other samples, i.e., OverSampling. In this article, we measure image similarity in four aspects: hue, saturation, brightness, and structure of the image, and use the Structural Similarity Index (SSIM) algorithm (Bakurov et al., 2022) with a similarity threshold of 0.95 (maximum value of 1) to filter out similar images, and considering that similar image samples affect the generalizability of the model, for each category of images below the similarity threshold are retained. The final de-weighted dataset was 51,772, and the training validation set and test set were divided 9:1 using the Hold-Out method. In contrast, the training and validation sets continued to be divided 8:2, as shown in Table 3.


Table 3. Dataset partition composition.
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Training Data Augmentation

In deep learning, different data enhancement techniques are applied to the training, to overcome the spillover, while the generalization capability and robustness of the model can be improved (Sambasivam and Opiyo, 2021). Therefore, in this article, an adaptive image enhancement technique is used to employ the Repeated Augmentation (RA) sampling strategy (Fort et al., 2021), where each mini-batch drawn from the training set corresponds to a different image-enhanced version of the same sample combination, and the sample combinations of the mini-batch are guaranteed to be non-completely independent, an approach that allows the model to more easily learn the enhanced invariant features. The above strategy is combined with YOLO V5-CAcT in the PyTorch framework to enhance the image data and select important hyperparameters to be used in subsequent model training. For this purpose, the YOLO V5s-CAcT model is selected in this article. The RA strategy is used, the training images are rescaled to 384 × 384 sizes before being input to the network, 300 cycles are iterated under hyperparameter evolution, and the test fluctuation range of the lesser image enhancement hyperparameters are selected as the final parameters for the subsequent training as shown in Table 4.


Table 4. Image augmentation parameter setting.
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EXPERIMENT

In this section, the experimental platform for this article is documented and the model training parameters used are summarized. Rigorous experiments were conducted on the techniques mentioned in the technical routes, and the conclusions demonstrate the feasibility of the solutions in this article. The two technical routes successfully train, optimize and deploy deep learning models with significant inference speed and very high accuracy compared to other models.


Experimental Setup and Training Parameters
 
Evaluation Platforms

The operating platform for this experiment is the Nettrix X640 G30 AI server with Ubuntu 20.04 OS environment, two Intel(R) Xeon(R) Gold 6226R CPUs @ 2.90GHz, two N-VIDIA GeForce RTX 3090 GPUs, 256G RAM, 7.5T solid-state drives. The training environment was created by Anaconda3 and configured with Python 3.9.5, PyTorch 1.10.1, and Torch Vision 0.10.1 artificial neural network libraries. Also, the CUDA 11.1 deep neural network acceleration library was used.



Training Setting

In the model used in this study, YOLO V5-CAcT represents the network structure that integrates AcTNN, model pruning, and knowledge distillation according to technical routes 1 and 2, while YOLO V5 represents the original network structure. The loss function uses BCELoss (Xu et al., 2022), the optimizer uses SGD, the batch size is 128, the input image size is 384, the learning rate is initialized from 0.0032 and finally to 0.12, the momentum parameter is 0.843, the weight decay is set to 0.00036, and the preheating parameter 5 is used to ensure that the model has some prior knowledge of the data. Other parameters were kept as default, and the model with the highest accuracy was selected as the pre-trained model by pre-training with 1,000 epochs on the PFD dataset and fine-tuning the model several times. Although this article uses Table 3 parameters for image broadening, likely, there is still a problem of imbalance between positive and negative samples in the sample, so the original loss function is changed using FocalLoss (Yun et al., 2019) and SmoothBCE (Zhang et al., 2019), and the Flgamma is set to 1.5, SmoothBCE serves to reduce the possibility of model overfitting, and the batch size is changed to 64, the input image size is 512, and other hyperparameters are set the same as pre-training. The convergence rate of model training is related to the specific dataset; when it appears that the model performance keeps growing in <0.01 steps, the training will not stop, and the model does not converge well; at this time, the best way is to monitor this problem and intervene in time, the Early Stopping (Dodge et al., 2020) early stopping mechanism appears to be an excellent solution to this problem. This article integrates the early stopping mechanism with YOLO V5-CAcT, and the parameter is set to 100. In addition, in this article, the model is trained by fine-tuning five times, executing 300 epochs each time, recording the results with the highest precision, and then using the best results as the input for the next step.




Results
 
Evaluation of Model Training

In this subsection, several YOLO V5 networks with different parametric quantities will be used for comparison: YOLO V5s, YOLO V5m, YOLO V5n(Nano), and trained according to the training setup in section Experimental Setup and Training Parameters, i.e., using the training method of the initial model with the improved policy model. To assess performance, average accuracy evaluation metrics recognized in the field of image detection are used to evaluate detection results, including precision (DP), recall (DRR), F1-score (F1), and average accuracy (mAp@0.5).
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Where TP, FP and FN in Equations (21) and (22) referred to the number of correct checkboxes, incorrect checkboxes, and missed checkboxes, respectively. F1 of Equation (23) is a comprehensive measure of the accuracy and completeness of the search. The calculation of m(Ap)@0.5 depends on AP@0.5, where AP@0.5 is defined as when the IOU threshold is taken as 0.5; for a specific category of samples with N correct checkboxes, each additional correct check box will correspond to a DP value, and the average of N DPs is obtained for the category AP@0.5, which is calculated in Equation (24). m(Ap)@0.5 is defined as the mean value of AP@0.5 under all categories, as shown in Equation (25), Q refers to the total number of detected categories, and there are 59 crop disease categories in this article, so it is 59 here. m(Ap)@0.5 as the mean cumulative value of the multi-category detection rate can show the comprehensive performance of the multi-category model as a whole, and it can be defined as an essential index to measure the comprehensive performance of the model. The difference between F1 and m(Ap)@0.5 is that m(Ap)@0.5 reflects the high accuracy rate and the high recall rate.

In addition to this, to further compare the methods proposed in this article to improve accuracy, we used ablation experiments to approach the detection task, all three methods are based on YOLO V5s-CAcT, including the following:

(1) YOLO V5s-CAcT1: Data Augmentation method based on the RA sampling strategy is used.

(2) YOLO V5s-CAcT2: Modify the original loss function, add FocalLoss and SmoothBCE loss function to the original loss function.

(3) YOLO V5s-CAcT3: Simultaneous use of Data Augmentation based on RA sampling strategy and use of FocalLoss with SmoothBCE loss function.

In this article, experiments were conducted on the AI Challenger and PFD datasets, and the experimental results for these two datasets are shown in Table 5. Table 5 shows the accuracy performance metrics when comparing using the three-class approach of this article and the three-class model of YOLO V5, which are generated from the latest research methods.


Table 5. AI challenger and PFD dataset model training results.
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Among these six models, the results of the PFD dataset are better than those of the AI Challenger dataset for all models of the same level. Regarding accuracy, the three methods based on the original YOLO V5 model, without considering the methods proposed in this article, have at least 1.6, 2.3, and 1.7% advantages in DP, F1, and mAp@0.5, respectively. In addition, during the training process, the four unbalanced crop disease categories of AI Challenger had different degrees of impact on the overall performance of the original YOLO V5 model. This phenomenon can be attributed to the severe shortage of sample size, especially the presence of mislabeled samples among them, making the accuracy rate worse. The PFD dataset removed the two crop disease categories that were mislabeled. The data images were regenerated using data enhancement for the other two categories with fewer samples, both of which showed better performance metrics than the original dataset in terms of experimental results; The post-supplemented potato leaf disease data also did not affect the model's overall performance, and the individual performance metrics were higher than those of the PFD dataset without the addition of PLD. Therefore, the method of constructing the PFD dataset proved to be successful.

Among the three methods proposed in this article, YOLO V5s-CAcT3 has better all-around performance than the other two methods. It outperforms the original YOLO V5s model in the AI Challenger and PFD datasets. The lowest performance metric selected from the three methods was compared to the original YOLO V5s model, with mAp@0.5 0.4% higher in AI Challenger and 1.5% higher in the PFD dataset. In addition, an interesting phenomenon is that the mAp@0.5 of YOLO V5s-CAcT1 in AI Challenger is better than that of the original YOLOV5s model. At the same time, in the PFD dataset, it is lower than that of the original YOLO V5s model by 0.6%. After analysis, the main reason for this phenomenon is that the pre-trained hyperparameters obtained using the RA sampling strategy in this article are built on top of the AI Challenger. A negative gain in performance occurs by applying it to the PFD; In YOLO V5s-CAcT2, a new strategy is used to recover and improve performance by 1.5%, so it is clear that YOLO V5s-CAcT1 and YOLO V5s-CAcT2 have some complementary effects. In addition, YOLO V5s-CAcT3 has a somewhat more significant improvement on DRR, with 1.2 and 2.1% improvement for the two datasets, respectively. In summary, the two strategies proposed in this article successfully improve the original YOLO V5s model.

To compare the proposed YOLO V5s-CAcT3 with other advanced methods, six well-known CNNs, such as Faster RCNN, SSD, YOLO v3, YOLO V4, and YOLO V5s, were selected as baseline methods for comparison experiments. By applying transfer learning methods, pre-trained weights are obtained on ImageNet (Gu et al., 2021) to initialize the weight parameters, and Softmax is embedded into the network for classification. The hyperparameters assigned to the network are a learning rate of 0.001, a momentum of 0.9, a batch size of 64, and a stochastic gradient descent (SGD) solver with unrestricted epochs for each model and multiple fine-tuning to ensure optimal convergence.

As shown in Table 6, the proposed method obtains competitive performance and provides better results than other comparative methods. The proposed method achieves an average accuracy of 95.6%, which exceeds that of YOLO V4, one of the most advanced models available, by 3.2%, and is the best of all algorithms. Comparing the size of all models, this model is relatively the smallest and has the highest accuracy. Further, the PFD training set gets pre-trained models with image enhancement hyperparameters, making it easier for the network to learn the features of plant disease images and obtain optimal weight parameters, thus improving the accuracy of crop disease identification. In contrast, the other methods are single neural networks that do not achieve optimal results despite applying transfer learning and fine-tuning.


Table 6. Test results of different models in the PFD dataset.
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The results of this study were compared with the results of other studies shown in Table 7. Rashid et al. (2021) and Mathew and Mahesh (2022) used the same dataset as this study. The accuracy of all these studies is lower than the model presented in this article. Even the accuracy of the YOLO V5 model used by Mathew and Mahesh (2022) was 4.8% lower than our study. By comparing the model accuracy of the different number of disease categories, the model accuracy of Zhang et al. (2020), Gao et al. (2021), Sharma et al. (2021), Zhao et al. (2021), and Al-Wesabi et al. (2022) is higher than our results, which is due to the smaller number of disease categories (up to 10 categories). Our study required the identification of up to 59 plant disease categories, which exceeded at least 85% of the disease categories in other studies and reduced the accuracy by up to 4.5% relative to other studies. Overall, the model has excellent overall performance and high diagnostic accuracy for many plant diseases.


Table 7. Results in the article compared with other state-of-the-art results.
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The YOLO V5s-CAcT3 is the result of the improvement of both strategies. To further illustrate the performance of the model on the PFD dataset and to demonstrate the crop disease accuracy of each category in the constructed PFD, the performance of the YOLO V5s-CAcT3 model is visually depicted in this article using Figure 9, with the blue line indicating the average accuracy of all crop disease categories and the brown line indicating the accuracy of each crop disease. Figure 9A is a composite indicator of the continuous variables of confidence and accuracy; the more the upper right corner of Figure 9A is closer to the accuracy 1 line, the better the classifier is working; With confidence levels above 0.8, 92% of the crop disease categories maintained an average accuracy above 0.9, whereas in general, only 0.75 was required. Although one of the crop disease categories was less accurate at confidence levels above 0.8, it remained above 0.75 and met the requirements. Figure 9B is a composite indicator of the continuous variation of recall and accuracy. The larger the area of the lower half of the blue curve in Figure 9B indicates that the classifier is working better in the limit, with a recall above 0.9 corresponding to accuracy above 0.85 and have 72% of the crop disease categories meeting this condition. There is also a poorer crop disease category in Figure 9B, with a recall of 0.7 and an accuracy of only around 0.6. This is the same category as the poorer crop disease category in Figure 9A. In summary, the YOLO V5s-CAcT3 model has shown good performance under both limits operating state curve validations.


[image: Figure 9]
FIGURE 9. Confidence accuracy curve and recall accuracy curve. (A) Precision-confidence curves of the YOLO V5s-CAcT3 model on the PFD dataset. (B) PR curves of YOLO V5s-CAcT3 model on the PFD dataset.




Analysis of Model Compression
 
Model Prune Results

A necessary process prior to pruning is to perform sparse training to find the most appropriate sparse rate, which is an essential parameter for controlling pruning depth. In order to find the optimal sparse rate, model sparse training experiments were conducted on the original model at sparse rates from 0.001 to 0.1 to investigate the effect of sparse rate variation on model accuracy and model parameter degradation. Using YOLO V5s-CAcT3 as the original model, Figure 10 shows the performance of the model, including the average accuracy and rate of parameter decline under the AI Challenger vs. PFD dataset, with the brown line indicating the average accuracy of the model and the light blue line indicating the percentage decline in the model parameters. The horizontal coordinates of the red pentagrams indicate the corresponding optimal sparsity, and the vertical coordinates indicate the average accuracy of the model or the percentage decrease of the model parameters, respectively. The analysis shows that the model's accuracy with sparse training decreases with increasing sparsity, while the rate of parameter decline of the model increases with increasing sparsity. The optimal sparse state of the model is chosen to ensure that the average accuracy of the model is the maximum of the critical state, i.e., the value before the average accuracy drops sharply, and also to satisfy that the rate of decline of the model parameters is as large as possible, in addition, the value of the horizontal coordinate corresponding to the maximum of the critical state is the optimal sparse rate.


[image: Figure 10]
FIGURE 10. (A) AI Challenger accuracy, parameter drop, and sparsity curves vs. (B) PFD accuracy, parameter drop, and sparsity curves.


Analysis of the experimental results shows that choosing the optimal sparsity rate ensures that the model accuracy is close to that of the original model while also reducing the number of parameters in the model. However, when choosing a sparse rate higher than the optimal sparse rate, although it can further reduce the number of model parameters, it cannot prevent the model accuracy from dropping sharply, as shown in Figure 10B, using a 0.01 sparse rate compared with 0.009 sparse rates will lead to a rapid decrease inaccuracy, so 0.009 is chosen as the optimal sparse rate for the following experiments of the YOLO V5s-CAcT3 model in this article. It is worth noting that the YOLO V5s-CAcT3 model has similar sparsification training curves under the AI Challenger and PFD datasets, and both show a dramatic change in performance after 0.009 sparsity, suggesting that the redundancy parameter threshold in the YOLO V5s-CAcT model space is around 0.009 sparsity, which is a guideline for other applications of sparsity.

The BN layer weight histogram is an essential indicator of the sparse training status. In this article, the training parameters were fine-tuned concerning section Experimental Setup and Training Parameters for 200 iterations of the training settings at a sparse rate of 0.009. As shown in Figure 11, the horizontal coordinates in the figure indicate the weighting factors and the vertical coordinates indicate the number of iteration cycles. The blue slice corresponding to the number of iterative cycles is the histogram of weights at a given cycle, viewed from the inside out as a process of superimposing individual histograms, The slices are organized by iteration cycle, with the more advanced slices indicating the newer the current sparse state slice of the model; the weight coefficients in the figure gradually converge to 0 as training progresses, with only some of the weight coefficients not decaying to 0, indicating that the weight coefficients are gradually becoming sparse. Until 140 iterations, the weight coefficients tend to stabilize, indicating that the sparse training has reached a steady state, and the stable sparse state will be used as the basis for subsequent model pruning.


[image: Figure 11]
FIGURE 11. Histogram of model weight change during sparse training.


Next, this article uses the sparse model with optimal sparse parameters for pruning. It uses the commonly used Slim-Filter-Pruner (Liu et al., 2017), L1-Norm-Pruner, and L2-Norm-Pruner (Li et al., 2016) pruning algorithms as a reference group to demonstrate the effectiveness of the pruning method in this article. Table 8 shows the effect of different pruning algorithms on the accuracy and parameters of the final pruning model, with the method in this article (FPGM-YOLOV5) significantly outperforming the other methods at different pruning rates. Table 8 compares with the model sparsification training results in Figure 10B, where the accuracy loss of the experiment is controlled within 2% at the optimal pruning rate of 0.3. Furthermore, the method also provides better pruning results than other methods at a pruning rate of 0.4. Also, it shows that the impact of the pruning algorithm in the table on the accuracy of the YOLO V5s-CAcT network starts to increase significantly between the pruning rates of 0.3 and 0.4. The experimental results verify the effectiveness of the pruning method.


Table 8. Results of different pruning algorithms.
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Model Distillation Results

Although the choice to use the optimal pruning rate maintains the accuracy of the model as much as possible, the accuracy of the detection is still considerably reduced compared to the original model. Using the knowledge distillation method, the model's accuracy can be restored, and the performance of the pruned model can even be further improved. This article divides the whole training process of knowledge distillation into two stages. First, the original model is selected as the teacher model, and four pruned models at a pruning rate of 0.4 are used as student models for the experiments. The student models are trained with different T(1, 5, 10, 15) by KD based on the effect of temperature T on model performance as proposed by Hinton's experiment (LeCun et al., 2015). The different pruning models were then trained with KD using the best-obtained temperature T. The training settings used the same hyperparameters as the previous experiments, but the optimizer used Adam and reduced the starting learning rate to 0.0001 and the α and β balance coefficients to 1.0 and 0.8, respectively.

Using different temperatures T, with the same teacher model structure, the results are obtained as shown in Figure 12. Knowledge distillation improved model performance for the different pruning models, and the model size was smaller than the post-pruning model. For the four pruning models, distillation extraction was poor when T was 5, while at distillation temperatures T of 10 or 15, the models usually achieved better performance, close to complete accuracy.


[image: Figure 12]
FIGURE 12. Effect of temperature parameters on knowledge distillation.


Finally, the change in performance of the trimmed model after model distillation training is compared with the original model relative to the untrimmed model. As shown in Table 9, the average test accuracy, model parameters, and the amount of floating-point operations required to calculate the YOLO V5s-CAcT3 model for each of the four types of pruning algorithms. We also calculated the percentage change in performance of the knowledge distillation relative to the pruning model. The results show that the performance of the four pruned models has been dramatically improved by the method in this article, with a 56% reduction in the number of parameters and a 40% reduction in GFLOPs (Giga Floating-point Operations Per Second) compared to the original model, with slight change accuracy. The negative gain in the number of parameters and GFLOPs on the model performance is within 15.5%, significantly reduced if chosen a lower pruning rate, In the same case, the FPGM-YOLOV5 method proposed in this article showed no negative gain at more significant pruning rates but the improved model performance by 4%. Thus, the test results of the four types of pruning methods fully demonstrate that the model distillation technique solution in this article can significantly reduce the network parameters and significantly improve the operational efficiency of the model with less accuracy loss.


Table 9. Performance comparison of the original model, the trim rate 0.4 model, and the distillation temperature T of 15 models.
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ActNN Model Results

Sparse training, pruning, and knowledge distillation of the model can effectively reduce the model parameters and improve the model performance, as the previous experiments using the YOLO V5s-CAcT3 model at various stages have fully confirmed. Due to hardware constraints, the model cannot be trained with limited GPU memory when the number of model parameters is large. The usual solution is to choose a smaller batch size or reduce the input image size, and in the limit case, only a model with a smaller number of parameters can be selected. This treatment will affect the convergence speed of the model and reduce its accuracy. Therefore, ActNN was chosen in this article to process the model, with YOLO V5m-CAcT and YOLO V5l-CAcT as the benchmark test models, and the dataset using PFD, with training settings and hyperparameters and improvement strategies configured according to the same attributes as YOLO V5s-CAcT3; Only the batch size and image size was changed during the training process. ActNN was turned on when GPU memory was insufficient, L3 was used for the compression level, each item was tested three times, and the average value was recorded at the end. The test results are shown in Table 10.


Table 10. ActNN compression test results at the L3 level.
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In the two models tested with ActNN, the model's accuracy reached a high level without any significant accuracy drop. The smaller batch size corresponds to a slightly smaller accuracy caused by short training sessions. A larger batch size with the same number of training sessions can fix the model's accuracy and make it converge quickly, It also shows that using a small batch size does not improve model accuracy. YOLO V5l-CAcT has a more significant number of model parameters than YOLO V5m-CAcT, and ActNN compression of model parameters controls the model to train appropriately when both run out of memory. In terms of overall accuracy, the compressed parameter model has at least a 0.52% advantage over the YOLO V5s-CAcT3 model, with almost no loss of accuracy compared to the uncompressed YOLO V5m-CAcT model. In addition, the larger input image size has a higher model accuracy.




Performance Evaluation of Model Deployment

YOLO V5s-CAcT3 used YOLO V5s as the original model and achieved higher accuracy using the improved method proposed in this article. However, the running environment of the model, Python, limits its development in the agricultural field and increases the operational costs. Therefore, this article optimizes the process by proposing two technical routes to compress the model. Technical route 1 complements technical route 2. The trained deep neural network model is compressed, followed by further optimization using simplified operators with INT8 quantization, and deployed in the NCNN framework to maximize detection performance. The experimental results of the training and model deployment are described in Table 11. The tests were performed using the PFD dataset and compressed with ActNN to YOLO V5s-CAcT3. The speed in Table 11 is the average inference time per image in the test dataset.


Table 11. Deployment performance results.
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As can be seen from the experimental results, after a series of deployment optimizations, the model deployed in NCNN was reduced by 88%, the inference time was reduced by 72%, and the model mAp@0.5 fluctuated by no more than 1.5%. A single compression scheme has a compression ratio of over 50%, and multiple compression schemes can be used. For complex PFD datasets, the method achieves a speed-up of 2.2–2.5 times in YOLO V5s-CAcT3, based on the strategy in this article. This demonstrates the feasibility and effectiveness of NCNN as a deployment solution. The various phases proposed in this article have a highly consistent articulation, and this approach brings convenience to development and deployment.





CONCLUSION

This work will encourage future research into alternative deep learning models tailored to specific application tasks. The technical routes proposed in the current research are complementary, meeting the training requirements, testing and deploying models under different hardware conditions, and providing flexibility for researchers to choose from.

This study proposes a fast, efficient, and broadly applicable solution for industrial-scale crop disease image detection tasks for crop leaf diseases and uses various model compression techniques to improve model performance. The PFD dataset was first constructed using PlantVillage with PLD to replace erroneous disease categories in the AI Challenger dataset, and multiple data enhancement methods were used to balance the smaller data samples. The adaptive image enhancement approach RA strategy is then used to improve the ability of the original YOLO V5 model to learn invariant features. Because the sample may contain an imbalance of positive and negative samples, the original model loss function is altered using the FocalLoss and SmoothBCE technique to reduce the risk of model overfitting and improve model robustness. In addition, to improve the convergence ability of the model and reduce the model training time, we integrated the Early Stopping mechanism into the model. These several techniques collaborated to improve the original YOLO V5 model and formed the YOLO V5s-CAcT3 model structure, which realized the disease detection of various crop leaf images. The effects of model storage size, inference time, deployment cost, and application environment on the model in agricultural disease application scenarios are also considered. The proposed FPGM-YOLOV5 pruning method achieves significant results on YOLO V5s-CAcT3, and the proposed method outperforms other pruning methods. Later, the performance of the pruned model was restored using the knowledge distillation technique, and better results were achieved at different temperatures T in the same test environment, and the performance was close to that of the original model. In addition, the proposed ActNN performs activation parameter compression on the training model, which solves the problem of poor hardware performance or training large parameter models. Finally, the model performance is improved further with the help of simplified operators and INT8 quantization on the model, and the best results are obtained by deploying the model in NCNN with an 88% reduction in model size and a 72% reduction in inference time compared to the original method, saving a significant amount of computational cost and time. The findings show that the current state-of-the-art ActNN, YOLO V5, and mutual collaboration of model pruning and knowledge distillation techniques have all achieved better results, effectively solving common problems in current agricultural disease image detection, and have broad application prospects for precision agriculture and agricultural industry efficiency. Research in this area will be expanded in the future to include more complex farming scenarios.
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APPENDIX
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FIGURE A1. Confusion matrix for the predictions of the best model trained on the PFD dataset.
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FIGURE A2. Prediction of the best model trained on the PFD dataset and live labeling of the sample images.
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FIGURE A3. Prediction of the best model trained on the PFD dataset and live labeling of the sample images.
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Accurately detecting and segmenting grape cluster in the field is fundamental for precision viticulture. In this paper, a new backbone network, ResNet50-FPN-ED, was proposed to improve Mask R-CNN instance segmentation so that the detection and segmentation performance can be improved under complex environments, cluster shape variations, leaf shading, trunk occlusion, and grapes overlapping. An Efficient Channel Attention (ECA) mechanism was first introduced in the backbone network to correct the extracted features for better grape cluster detection. To obtain detailed feature map information, Dense Upsampling Convolution (DUC) was used in feature pyramid fusion to improve model segmentation accuracy. Moreover, model generalization performance was also improved by training the model on two different datasets. The developed algorithm was validated on a large dataset with 682 annotated images, where the experimental results indicate that the model achieves an Average Precision (AP) of 60.1% on object detection and 59.5% on instance segmentation. Particularly, on object detection task, the AP improved by 1.4% and 1.8% over the original Mask R-CNN (ResNet50-FPN) and Faster R-CNN (ResNet50-FPN). For the instance segmentation, the AP improved by 1.6% and 2.2% over the original Mask R-CNN and SOLOv2. When tested on different datasets, the improved model had high detection and segmentation accuracy and inter-varietal generalization performance in complex growth environments, which is able to provide technical support for intelligent vineyard management.

KEYWORDS
 grape, instance segmentation, Mask R-CNN, attention mechanism, Dense Upsampling Convolution


Introduction

There is an urgent need to develop new technologies and methods for Precision Viticulture (PV) to ensure a greater efficiency, quality and sustainability of agricultural activities (Santesteban, 2019; Gené-Mola et al., 2020). However, agricultural automation is generally more difficult than industrial automation because of the uncertainties of field conditions, plant structures, and the outdoor environments, which necessitates systems capable of monitoring plant and fruit structure at a fine-grained level (Kirkpatrick, 2019). Proper detection and localization of such structures are critical components of agricultural monitoring, robotics, and autonomous systems (Duckett et al., 2018). For a variety of applications, an accurate fruit detection and localization is required, particularly, for fruit counting and yield estimation (Bargoti and Underwood, 2017). Upon fruits being accurately detected and localized, precision agricultural applications can be conducted for inter and intra-field variability management. Fruit detection can also serve as a precursor for disease and nutrient deficiency monitoring, as well as a critical component of actuation (Barbedo, 2019). For example, automated spraying and harvesting could be developed, which is drawing ever-increasing attention given the shrinking agricultural labor force (Shamshiri et al., 2018). In addition, as many agronomically relevant traits are highly heterogeneous with respect to environmental conditions, fruit detection can also be used for field phenotyping to improve plant research and breeding operations (Milella et al., 2019).

Early research on fruit detection relied on classical feature engineering methods, which included human-designed descriptors based on color, geometric and textural features (Gongal et al., 2015). Based on such features, machine learning techniques such as Bayesian classifiers, support vector machines (SVM), and clustering were applied to perform fruit detection and classification (Wu et al., 2012; Kurtulmuş and Kavdir, 2014). Although these schemes can achieve a high computing speed, they suffer from a limited accuracy under challenging conditions such as crop variability, multi-crop detection, lighting changes, and occlusion issues, among others (Xu et al., 2013).

With the rapid development of deep learning methods, many high-performance computer vision algorithms based on deep neural networks have also been successfully applied to fruit detection, with a higher detection speed and accuracy (LeCun et al., 2015; Yan et al., 2021). For example, Wang and He (2021) developed a YOLOV5s model with channel pruning based on a deep learning approach for a fast and accurate detection of growing apple fruit in their natural environment prior to thinning. Parvathi and Selvi (2021) proposed Faster-RCNN with ResNet-50 algorithm which can achieve a precision of 89.4% for the detection of coconut maturity. Previous detection techniques generally relied on rectangular bounding boxes to identify individual items. For fruits with a regular shape such as oranges and apples, this approach if adequately fitted to the fruit boundaries, could provide estimates of fruit shape and space occupancy (circular shape). However, for grape clusters, rectangular boxes would not properly adjust to the berries.

A step further beyond object detection is instance segmentation (Lin et al., 2014), which can correctly identify berry pixels in the detection box, allowing for a finer fruit characterization. Additionally, occlusions caused by leaves, branches, trunks, and even other clusters can also be addressed properly by instance segmentation, which is very useful for robotic manipulation and other automation tasks (Santos et al., 2020). Pérez-Borrero et al. (2020) proposed a deep learning-based approach for strawberry instance segmentation by designing a new architecture based on Mask R-CNN backbone and Mask networks. Based on the 200 test images, the results maintained competitive results to the original Mask R-CNN in term of mean AP (43.85% vs. 45.36%). However, the dataset in the study was single and the context was relatively simple and therefore not representative. As a result, its generalization performance may not be good enough for practical applications under variable natural conditions. Despite the use of various convolutional neural network (CNN) techniques for fruit recognition, the problem of detecting and segmenting wine grapes clusters from field images is still a very complex challenge due to a variety of relevant factors such as environment lighting, complex backgrounds, large shape variations between grapes clusters and occlusion.

In this study, an improved Mask R-CNN model was proposed to ensure the accuracy of grape detection and segmentation in field environments. The main contributions are listed as below:

1. The Efficient Channel Attention (ECA) mechanism was introduced into the backbone network of Mask R-CNN to enhance the feature extraction capability of the network under complex background conditions.

2. Dense Upsampling Convolution (DUC) was used in pyramid feature fusion instead of the traditional nearest neighbor interpolation upsampling method to obtain more image details and improve model accuracy.

3. The improved Mask R-CNN was trained on two datasets with different acquisition criteria to enhance the model generalization performance.

4. The detection and segmentation performance of the improved Mask R-CNN was compared against state-of-the-art (SOTA) models.



Materials and methods


Image preparation


Image acquisition

This work focuses on wine grapes of the Chardonnay variety in complex field background environments. The collection site was at a wine grape production demonstration site in Yangling, Shaanxi Province, China. Grape images were acquired prior to harvest in the vineyard using a Sony ILCE-5100 l digital camera from Thailand with a spatial resolution of 3,008 × 1,668 pixels, an aperture value of f/3.2 and an exposure time of 1/60 s. The collected images included two main parts, the Grape-A dataset and the Grape-B dataset.

In particular, the Grape-A dataset was collected during July–August 2020 from 9:00 am–12:00 pm each day in a variety of weather conditions such as sunny and cloudy days, and lighting conditions such as down light and back light. The camera lens was randomly placed at a parallel distance of 50–100 cm from the grapes and a total of 218 images were collected. While the Grape-B dataset was collected mainly between July and September 2021. The camera lens was taken at a random distance of 100–150 cm parallel to the grapes, and other acquisition conditions were the same as Grape-A dataset, and a total of 464 images were collected. Figure 1 shows examples of the acquired images under different environmental conditions.

[image: Figure 1]

FIGURE 1
 Examples of images acquired under different field sunlight conditions and distances. (A) Natural sunlight. (B) Smooth light. (C) Backlighting. (D) Distance changes (2020).




Images annotation

The acquired images were annotated via the interactive polygon tool in the LabelMe software (Russell et al., 2008), where the annotation information was saved in JSON files. The tool defines the continuous or discontinuous contours of the grapes by using a sequence of points. The criteria adopted in the labelling process included creating the most accurate possible mask for each cluster of grapes in the image, with the labelled pixels named “grape” consistently and the others treated as background. It covered extreme cases such as clusters that are obscured by trunks, leaves, wires, and ropes, overlapping clusters, and clusters located at the edge of the image or barely perceptible clusters. In cases where occlusion leaves the same target cluster in a truncated or separated state, the difficulty of annotating the same truncated instance can be effectively resolved by setting the same Group id in annotating the image (Figure 2).

[image: Figure 2]

FIGURE 2
 Example annotation of an occluded grape cluster for instance segmentation. (A) Divided clusters of the grape. (B) Annotation process. (C) Instances visualization.


After a precise annotation of each grape cluster contours in each image, the computer program automatically calculates the outer rectangular box based on the cluster polygon contours to save the time required for box annotation in object detection. The visualization of the annotated instance segmentation dataset is illustrated in Figure 3.

[image: Figure 3]

FIGURE 3
 Visualization of the annotation results for an example image. (A) Original image. (B) Annotated image.





Grape cluster instance segmentation based on improved Mask R-CNN

Mask R-CNN (He et al., 2017) is developed on the basis of object detection network Faster R-CNN (Ren et al., 2015), which replaces the RoIPool layer of the original Faster R-CNN with RoIAlign, and uses bilinear interpolation to eliminate the error caused by two quantization operations to solve the problem of region of interest (RoI) mismatch between the feature map and the original image. Additionally, the fully convolutional network (FCN; Long et al., 2015) is added as a semantic segmentation branch of the network. In this study, a grape instance segmentation method based on an improved Mask RCNN was proposed to accurately segment grapes in natural growth environments in the field. A residual feature pyramid structure (ResNet-FPN) fusing Efficient Channel Attention (ECA) and Dense Upsampling Convolution (DUC) were used instead of the original Mask RCNN backbone network to extract grape image features at different scales, and the extracted image features at different scales were used to find the anchor frames of interest in the feature space by the region proposal network (RPN; Li et al., 2018), i.e., rectangular boxes that may contain regions of interest. The network is then split into two branches, classification prediction and mask prediction, where the classification branch is the same as the Faster R-CNN, giving predictions for the RoI and generating category labels and rectangular box coordinates. The mask branch generates a binary mask that depends on the classification results, based on which grape clusters are segmented. Figure 4 shows the structure of the segmenting grape cluster method based on the improved Mask R-CNN network. The details are elaborated in the following subsections.

[image: Figure 4]

FIGURE 4
 Structure of grape cluster instance segmentation network based on improved Mask R-CNN.



Backbone network

The backbone network is crucial for feature extraction, and sufficient feature information can be extracted from the image to facilitate the subsequent image processing tasks. As the depth of the network increases, the mode performance will gradually degrade. This problem can be effectively solved by introducing a deep residual network (ResNet; He et al., 2016) into the Mask R-CNN backbone.

In this study, two different acquisition criteria were set, and the grape cluster size showed great variability due to the variation of the distance of the camera lens. In the image feature extraction process, the low-level features often contain more detailed information such as texture, color, and contour of the image, but contain a lot of irrelevant information and noise. While the higher-level features often contain high-level semantic information such as category and attributes of the image, but the spatial resolution of the higher-level features is very low, and more detailed information of the image are lost compared with the lower-level features. Therefore, in order to better obtain the grape cluster image feature information, the Feature Pyramid Network (FPN; Kim et al., 2018) is introduced in ResNet, so as to achieve effective integration of low-level features to high-level features at multiple scales, thus making full use of the feature information extracted by convolutional neural networks at different scales.

However, in complex field background environments, the images are susceptible to natural background variations. In particular, grape clusters in natural states have a great close-field nature and overlapping blockage between fruit targets, tree trunk and leaf cover, and light conditions cause some difficulties in the detection and segmentation of grape clusters. The attention-based approach allows the model to focus on and enhance effective feature information while ignoring some useless feature information, thus improving the model’s robustness to field environment variations. In view of the corrective effect of the ECA module on channel features, this study improves the backbone of Mask R-CNN by proposing a new backbone feature extraction network, ResNet50-FPN-ED. The network incorporates an attention mechanism that employs DUC in feature pyramid fusion instead of the traditional nearest neighbor interpolation up sampling method. The ECA module and DUC operations are described as detailed in sections ECA module and Dense Upsampling Convolution, respectively. The structure of the improved backbone network is shown in Figure 5.
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FIGURE 5
 Structure of the improved ResNet50-FPN-ED backbone network.


In the improved backbone network, the input image is first compressed to 1/2 of the original height (H) and width (W) by a 7 × 7 convolutional kernel in ResNet50, and then the feature maps are compressed to 1/4, 1/8, 1/16, and 1/32 times of the original image size by four different numbers of Bottleneck structures of the residual network to obtain feature maps C2, C3, C4, and C5 with different scales. Besides, these four types of feature maps are input to the channel attention module ECA for feature correction and filtering, and the effective feature information extracted by the network is given a higher weight to complete the calibration of the channel weight information and filter the useless information. The captured grape images have different sizes of grape cluster targets due to the influence of distance variations, and different targets have different features. Therefore, the FPN structure is constructed by connecting the obtained feature maps at different scales horizontally from bottom to top, and feature fusion at different scales is carried out. The fused feature maps at different resolutions are used to detect objects at the corresponding resolution sizes, which ensures that each network layer has the appropriate resolution and strong semantic features. The four feature maps obtained by the ECA module are first uniformly dimensioned down to 256 channels by 1 × 1 convolution, while the output size is maintained. The bottom feature map is then passed through a new up-sampling DUC in a top-down manner to obtain a feature map of the same size, and then the features are fused. This produces a multi-scale feature representation in a single cyclic operation, effectively fusing the information extracted at a deeper level with the feature information extracted by the network at a shallower level. Next, all levels of feature maps are allowed to be fused with features of different resolutions and semantic strengths, resulting in features with both good spatial and strong semantic information. Finally, the fused features of all levels are convolved by a convolution kernel of 3 × 3 size to eliminate the aliasing effect generated by feature fusion. The output is P2, P3, P4 and P5, and P6 is obtained by maximum Pooling of P5 with a stride of 2. These five different scales of feature maps are then used as input to the RPN to find regions of interest. The detailed network structure parameters of the improved backbone are shown in Table 1.



TABLE 1 Parameters of the improved Mask R-CNN backbone: ResNet50-FPN-ED network architecture.
[image: Table1]



ECA module

The SE (Hu et al., 2018) module brings side effects to channel attention prediction by performing a fully-connected operation after dimensionality reduction of the channels, as capturing the dependencies between all channels is inefficient and unnecessary. The ECA (Wang et al., 2020a) module, as a channel attention module, is an enhanced and improved version of the SE module, where its structure is shown in Figure 6. Its main idea is to propose a local cross-channel interaction strategy without dimensionality reduction, which captures local cross-channel interaction information by considering each channel and its k-nearest neighbors after global average pooling (GAP) of channels. The ECA module firstly computes the input feature map of size H × W × C (C is number of feature channels) using GPA to obtain a feature vector of size 1 × 1 × C to have a global receptive field. Secondly, the cross-channel interaction information was captured by 1D convolution with a convolution kernel size of k. The convolution kernel size k was related to the number of input channels and was adaptively chosen by Eq. (1) to determine the coverage of local cross-channel interactions (Wang et al., 2020a). The weights of each feature channel are then generated by a sigmoid activation function calculation. Finally, the output feature channel weight vector is multiplied with the original input feature map to complete the original feature calibration in the channel dimension, so that the extracted features are more directional, and invalid or ineffective feature channels are suppressed, thus improving the extraction of effective features. The ECA module avoids dimensionality reduction operations allowing the model to learn more effective channel attention, and the module has a small number of parameters which is determined only by its convolutional kernel size K (almost negligible).

[image: image]

where C is the number of input channelst, [image: image] is an odd number similar to t, γ was set to 2 and b was set to 1.

[image: Figure 6]

FIGURE 6
 ECA Module.




Dense Upsampling Convolution

When FPN fuses feature maps from the bottom up, the resolutions of feature maps obtained from different stages and depth networks are different (e.g., the output size of C2, C3, C4, C5), so upsampling operations are required to obtain feature maps of the same size as the previous level and then add them pixel by pixel for feature fusion to build a feature pyramid structure. However, the original Mask R-CNN uses a simple nearest neighbor interpolation approach for upsampling, which results in the loss of detailed information of some features and the interpolation is unlearnable, which has side effect on the model performance. Inspired by super-resolution, this paper uses DUC (Wang et al., 2018) instead of nearest neighbor interpolation upsampling operation, which is able to compensate for the loss in aspect dimension by channel dimension. The feature map is restored to the required resolution by making the model learn a series of upsampling convolution filters. The specific DUC operation flow is shown in Figure 7. The obtained feature map (H/r × W/r × C) is first fed into a set of 3 × 3 convolutions for learning, and the size of the feature map obtained after convolution is H/r × W/r × (C × r2), and then reshaped to H × W × C size, where r is the ratio of the up-sampled recovered feature map to the original feature map size.

[image: Figure 7]

FIGURE 7
 Illustration of DUC operation.




Grape cluster instance segmentation and loss function

Feature maps of five size scales generated by the improved backbone extraction network are sent to the RPN network. The size of grape clusters in different images varies greatly due to different capture distances. Five different scale anchors were designed in generating RoI: 8, 16, 32, 64, and 128, combined with labeling rectangular boxes with three aspect ratios of 0.5, 1, and 2. The final combination of 15 benchmark windows for predicting the regions containing grape clusters in the images makes the output more accurate RoI. The generated RoI and the corresponding feature maps are then sent to RoIAlign for alignment and fixing the anchor size. Finally, the aligned feature maps are passed to t the fully connected layer and fully convolutional layers. The fully connected layer is responsible for performing bounding box regression and classification, while the fully convolutional layer implements grape cluster instance segmentation by deconvolution operations to generate mask.

The loss function is essential for model training, which allows the model’s weights to be continuously optimized by the difference between prediction and ground truth. The loss function of the improved Mask R-CNN is shown in Eq. (2).

[image: image]

where [image: image] is the classification loss, [image: image] is the regression loss of the bounding box, and [image: image] is the mask loss. In particular, the mask branch generates a mask of size m x m for each RoI and each category, for a total of n categories. Thus, the total output is of size [image: image]. For the predicted binary mask output, a sigmoid function is applied to each pixel point and the resulting result is used as input to the cross-entropy loss function, with the overall loss defined as the average binary cross-loss entropy.




Model training

The experiments were conducted by using the open source platform detectron2, Pytorch version 1.7.1, with an NVIDIA RTX 3090 graphics card, CUDA version 11.0, and 24 GB of video memory. All training and testing of the models were performed on a Linux (Ubuntu 20.04) operating system.

The datasets (images and annotation results) under two different conditions were divided into a training set and a test set with equal proportions of 8:2, where the detailed division results are shown in Table 2. In order to facilitate subsequent model training and testing, the annotated results of each part of the dataset were converted to the annotation style of the standard COCO dataset (Lin et al., 2014).



TABLE 2 Training set and test set splitting.
[image: Table2]

In order to speed up the model training, weights trained on the COCO dataset were adopted. For the improved Mask R-CNN model, as its network structure has been changed accordingly, the network is initialized by loading partial weights. The hyperparameters for model training were set to 50 for epoch, 2 for batch size, 0.01 for the initial learning rate, and 0.1 times the initial value for decay rate for every 5,000 iterations. To prevent model overfitting, weight decay was set to 10−4 and stochastic gradient descent (SGD; Bottou, 2012) was used to update the parameters and optimize the training process.

Data enhancement techniques were used randomly during the training process, meaning that each new batch of images was input to the network for training with random mirroring operations (horizontal and vertical), rotation, cropping and color changes (brightness, contrast and saturation) applied online to the input images, along with a transformation of the coordinate information in the corresponding annotation file. In addition, a random scaling process was set for each batch of images with a minimum edge length from 640 to 800 pixels, in steps of 32, and a maximum edge size of no more than 1,443 pixels.



Model evaluation metrics

Similarly, COCO competition metrics (Lin et al., 2014) including average precision (AP) and average recall (AR) were used to evaluate the performance of the proposed grape cluster instance segmentation model. The AP summarizes the shape of the precision/recall curve, and is defined as the mean precision at a set of equally spaced recall levels (Everingham et al., 2010). AR is the maximum recall given a fixed number of detections per image, averaged over categories and intersection over unions ([image: image]). The necessary metrics including precision (P) and recall (R) in the calculation of AP and AR are described by Eq. (3).

[image: image]

where [image: image] [image: image] and [image: image] means true positive, false positive, and false negative, respectively.

In instance segmentation, a prediction is considered a [image: image] when it [image: image] is greater than a selected threshold, otherwise it is considered a [image: image] Some of the metrics used in the COCO competition are shown in Table 3 (Tassis et al., 2021).



TABLE 3 COCO metrics definition.
[image: Table3]




Results


Overall test results of the improved Mask R-CNN model

In order to evaluate the performance of the improved Mask R-CNN model for grape recognition under complex background conditions, a test dataset was created with a total of 138 images from both Grape-A and Grape-B datasets acquired in different years. The performance of the ResNet50-FPN, ResNet101-FPN and the Mask R-CNN with ResNet50-FPN-ED (an improved backbone network in this paper) was first evaluated for grape clusters recognition. The results on the test set are shown in Table 4, which show that the proposed improved Mask R-CNN backbone ResNet50-FPN-ED has significant advantages over the original backbone of Mask R-CNN. In particular, the AP reaches 60.10% on object detection task with an improvement of 1.4% over the original ResNet50-FPN; when [image: image] = 50%, the [image: image] reaches 85.60% with an improvement of 0.5%; for more stringent metrics, when [image: image]= 75%, [image: image] with an improvement of 1.1%; [image: image] reached 69.50% with an improvement of 2.10% over the original backbone. On the instance segmentation task, AP reached 59.50% with an improvement of 1.6% over the original backbone, [image: image] reached 87.10% with an improvement of 0.8%, [image: image] reached 66.90% with an improvement of 2.60%, [image: image] reached 66.90% with an improvement of 1.80% over the original backbone. Although the average inference speed of the proposed method on the test set is 62.6 ms per frame, which is slightly longer than the inference time of the original Mask R-CNN with ResNet50-FPN (57.3 ms per frame), it effectively improves the detection and segmentation accuracy for grape clusters. In addition, it was found that the trained Mask R-CNN with a deeper backbone ResNet101-FPN did not bring a greater improvement in detection and segmentation accuracy in field grape cluster recognition. The results of using ResNet50-FPN-ED as the Mask R-CNN backbone in this study were significantly better than ResNet101-FPN. Moreover, the deeper ResNet101-FPN network model has a much larger number of parameters, which takes a longer time to train and make inference (with instance segmentation speed being only 70.4 ms per frame), and therefore is not scalable. As the [image: image] increases, the AP value decreases, which is in line with the actual detection results of the model. It is also noted that the [image: image] is lower for both tasks due to the fact that all images contain multiple instances of the object of interest, especially for the Grape-B dataset, as the camera was captured at a greater distance in image acquisition and multiple grape instances could be observed within the field of view. For both identical tasks, the same Mask-RCNN network as used in the literature presented good results, e.g., Santos et al. (2020) used the same network for grape detection and instance segmentation in a field setting and obtained [image: image]= 74.3%, further confirming that the improved Mask R-CNN model is more accurate while with a higher reliability.



TABLE 4 Test results for different backbones on Mask R-CNN (the best one is highlighted in bold, the same below).
[image: Table4]

When [image: image]= 50%, the proposed method achieves an [image: image]of more than 85% for both detection and instance segmentation, but the results may still contain some uncertainty as the annotations are hand-made and not all cluster instances are annotated. This is because the target area where some cluster instances may appear is very small and not easily detected due to severe occlusion and irregular contours of the clusters. Due to the irregular contours of the clusters, some grapes grow too densely for the individual instances to be distinguished from each other when annotating clusters that overlap each other with some subjectivity and uncertainty. Therefore, when comparing the results, the network may have found other instances that were not labelled, or may not be able to indicate the labelled instances. In addition, some grapes grow overly densely resulting in overlap between clusters and shading by trunk leaves, which also affects model recognition. However, the proposed method is able to improve this situation. Figure 8 shows some prediction results of the Mask R-CNN model on the test set with a number of different backbones (including the improved one). The proposed backbone (ResNet50-FPN-ED) is able to detect more instances compared to the other two backbone networks (Figures 8C-1,2).

[image: Figure 8]

FIGURE 8
 Instance segmentation results by Mask R-CNN with different backbones. (A) Instances segmentation results of Mask RCNN with ResNet50-FPN. (B) Instances segmentation results of Mask RCNN with ResNet101-FPN. (C) Instances segmentation results of improved Mask RCNN with ResNet50-FPN-ED. (D) Ground truth results. (1, 2) are partial enlargements of the instance segmentation results of the corresponding images, respectively.




Grape segmentation results under different test sets

To further explain the performance of the proposed model under two different datasets Grape-A and Grape-B, the test sets of these two datasets were tested separately (i.e., the same training dataset with different test datasets). The example instance segmentation results of the improved Mask R-CNN for the two different types of datasets are shown in Figure 9. Figures 9A-1,C-1–3 show some of the instance regions found by the proposed model that are not fully annotated. This is due to the fact that the dataset was manually annotated and some instances are occluded and at the edges of the image which are difficult to perceive even for the human eye (Figures 9B-1,D-1,3). It can be seen that the number of observable instances on the Grape-A dataset is less than on Grape-B due to the capture distance (Figures 9A,C). Moreover, due to the denser field of view, the cluster shapes vary more significantly between instances in the Grape-B dataset, thus with more areas of cluster overlap. Figures 9C-2 shows that due to the occlusion of the leaves and trunk, the model generates a duplicate segmentation, mistaking two different instances for the same one, and surprisingly also found unannotated instances at the same time. However, the overall segmentation results are promising. It can effectively avoid the missed detection due to occlusion.

[image: Figure 9]

FIGURE 9
 Instance segmentation results of the improved Mask R-CNN on two different types of test datasets. (A) Several image segmentation results of improved Mask R-CNN in Grape-A dataset. (B) Ground truth for several images in the Grape-A dataset. (C) Several image segmentation results of improved Mask R-CNN in Grape-B dataset. (D) Ground truth for several images in the Grape-B dataset. (1-3) are partial enlargements of the instance segmentation results of the corresponding images, respectively.


The performance of the backbone ResNet50-FPN-ED in the improved Mask R-CNN was compared against the original backbone ResNet50-FPN on the two different datasets. The results on the test set of Grape-A dataset and Grape-B dataset are shown in Tables 5, 6, respectively. It is clearly observed from both tables that the proposed improved Mask R-CNN approach has significantly improved AP values for both detection and instance segmentation tasks over the original Mask R-CNN under two different types of datasets. This further confirms that the proposed method has better detection and segmentation results in dealing with datasets with different capture distances. It is worth noting that, as shown in the table, the proposed method has the most significant improvement in the detection and segmentation tasks on the Grape-A dataset. Compared with the original model, AP, [image: image], [image: image], and [image: image] have improved detection tasks by 2.6%, 0.9, 3.1%, and 2.9%, respectively. The performance for instance segmentation tasks are increased by 2.2%, 1.5%, 0.5%, and 2.3%, respectively. As aforementioned, this is related to the collection standards of the two datasets. Due to the observation distance and camera field of view, the target size of the overall grape cluster instance of Grape-A dataset is larger than that of Grape-B dataset. The introduced attention mechanism ECA module is more sensitive to larger target sizes than small targets, and the improved detection effect is also more significant.



TABLE 5 Performance comparison between the improved Mask R-CNN backbone and the original one on the Grape-A test set.
[image: Table5]



TABLE 6 Performance comparison between the improved Mask R-CNN backbone and the original one on the Grape-B test set.
[image: Table6]



Comparison of the improved Mask R-CNN model with SOTA models

To further verify the improved Mask R-CNN model, two SOTA models were compared. The instance segmentation network SOLOv2 (Wang et al., 2020b) and the object detection network Faster R-CNN (ResNet50-FPN) were also trained under the same conditions and compared on the 138 test images, where the results of the post-test comparisons are shown in Table 7. In addition, the model prediction results under different natural conditions were shown in Figure 10. The Faster R-CNN only performs object detection, and the results show that although the detection speed is 50.24 ms per frame, slightly faster than the improved Mask R-CNN model, it does not perform semantic segmentation to classify the berry pixels in detail. Because mask prediction has a time cost. Under the conditions of close camera lens distance, the two object box detections achieve almost the same results (Figures 10D,F), however, the improved Mask R-CNN has an advantage in the case of light variation and more severe occlusion (Figures 10A,C,G-2,I-2). The improved Mask R-CNN has improved AP by 1.8%, [image: image] by 1.4%, and [image: image] by 2.3% compared to the Faster R-CNN in object detection task. Although there is no significant difference in [image: image], the overall detection accuracy of the improved Mask R-CNN is better. In particular, SOLOv2 seems to perform better than Faster R-CNN for instance prediction under normal conditions (Figures 10A,B) but Figures 10H-1,2 shows more false segmentation in bright light. This may be related to the structure of the SOLOv2 network, which transforms the segmentation problem into a location classification problem and deals directly with instance segmentation without relying on box detection. SOLOv2 network is not conducive to the segmentation of overlapping targets (Figures 10E-1) and has a detection speed of only 54.90 ms per frame, which is slower than the proposed model. For the instance segmentation task, the proposed method improves AP by 2.2%, [image: image] by 3.5%, [image: image] by 2.9%, and [image: image] by 2.5% over the SOLOv2. It can be seen that the proposed improved Mask R-CNN model has a higher accuracy and stability than SOLOv2 and Faster R-CNN for grape cluster detection and segmentation under complex background conditions, which further demonstrates the advantages of the proposed method.



TABLE 7 Comparative test results of the improved Mask R-CNN model against Faster R-CNN and SOLOv2.
[image: Table7]

[image: Figure 10]

FIGURE 10
 Comparative results of the improved Mask R-CNN model with Faster R-CNN and SOLOv2 under different conditions. (A–C) are the prediction results of Faster R-CNN, SOLOv2, and improved Mask R-CNN under normal conditions, respectively. (D–F) are the prediction results of Faster R-CNN, SOLOv2, and improved Mask R-CNN under distance conditions, respectively. (G–I) are the prediction results of Faster R-CNN, SOLOv2, and improved Mask R-CNN under light conditions, respectively. (1,2) are partial enlargements of the instance segmentation results of the corresponding images, respectively.





Discussion


Effect of different natural environmental conditions on grape segmentation

Based on the image detection and instance segmentation of grape clusters, the model detection results show some variability due to the huge variation of light conditions in the field background conditions and the variation of camera lens distance during data collection. To verify the effectiveness of the improved Mask R-CNN under varying light conditions and camera lens variation in field conditions, the original Mask R-CNN was chosen to compare the instance segmentation performance. The results are shown in Figure 11. It can be seen that the original Mask R-CNN model results in missed detection due to darker regions caused by lighting and camera viewpoint changes, and overlapping occlusion between grape clusters (Figures 11A,E). In addition, the same grape instance is divided into two parts caused by the occlusion of the wire and the tree trunk, which leads the model to incorrectly detect one instance as two (Figure 11C). However, the proposed improved Mask R-CNN method can recover more instances than the original model under variable complex conditions (Figures 11B,F), and Figures 11D-1 also shows that the model is potentially corrective to the extracted features, indicating that the method introducing the channel attention mechanism can extract more effective feature information and suppress useless feature information than the original backbone, thus improving the model detection and segmentation accuracy. This result is consistent with that of Jiang et al. (2022) who improved the detection accuracy of young apple in low-quality images by adding the Non-local attention module (NLAM) and Convolutional block attention model (CBAM) to the baseline of the YOLOv4 model. The experimental results also show that the attention mechanism can better improve the detection accuracy of images with highlights/shadows, and severe occlusions. Previous studies (Li et al., 2021; Wang and He, 2022) have similarly shown this result. In particular, in this study, the DUC operation employed for feature fusion can recover more image detail information from the previous level in the feature fusion stage, which is very effective for semantic segmentation tasks.

[image: Figure 11]

FIGURE 11
 Effects of different natural environmental conditions on the performance of the improved Mask R-CNN. (A,C,E) are the predictions of the original Mask R-CNN under low light, occlusion and overlapping grape clusters in smooth light, respectively. (B,D,F) are the predictions of the improved Mask R-CNN under low light, occlusion and overlapping grape clusters in smooth light, respectively. (1) is partial enlargements of the instance segmentation results of the corresponding images.




Analysis of grape segmentation results under different training datasets

To assess the effect of models trained on different types of datasets, the improved Mask R-CNN was trained and tested individually on Grape-A and Grape-B datasets, and compared with the original Mask R-CNN, where the comparative results for Grape-A dataset and Grape-B dataset are shown in Tables 8, 9, respectively. It is shown that the proposed method consistently outperforms the original method. Notably, comparing the results of the models built on the overall dataset in section “Grape segmentation results under different test sets” and the two distinct types of test sets, the test results on dataset Grape-A alone were superior to the test results on a combination of the two datasets. However, the test results of the models trained on dataset Grape-B alone were almost remained consistent, which might be related to the structure of the training dataset. The great variability and specificity of the features between the samples inevitably introduces some adversarial and redundant features into the model learning process, leading to a lower performance of the combined training model than if it had been trained on a single dataset. Also, the model constructed from a single dataset suffered from poor generalization performance to more heterogeneous datasets. Although the number of grape cluster instances in Grape-A dataset was small, it was sufficient for the model to learn enough features to identify grape clusters under the same environmental conditions.



TABLE 8 Comparison of test results with different backbones based on dataset Grape-A.
[image: Table8]



TABLE 9 Comparison of test results with different backbones based on dataset Grape-B.
[image: Table9]



Effect of different grape varieties on grape segmentation

To verify the effect of different grape varieties on the segmentation of the proposed model, it was tested by using the Embrapa Wine Grape Instance Segmentation Dataset (WGISD), a publicly available dataset provided by Santos et al. (Santos et al., 2019). Four different varieties in the dataset, Cabernet Franc, Cabernet Sauvignon, Sauvignon Blanc and Syrah, were selected for prediction and some of the results are shown in Figure 12. What is surprising is that the model is still able to detect the clusters correctly for different varieties. The proposed model potentially improves the segmentation among different varieties. It also shows that the model has a satisfactory generalization performance for different grape varieties, which reduces the variation between varieties. This is probably benefited from the data enhancement during training, where potentially similar features between varieties are captured, reflecting the real field conditions.

[image: Figure 12]

FIGURE 12
 Example results of the improved Mask R-CNN model for different grape varieties.





Conclusions and future work

This paper presents an improved instance segmentation model for grapes in a natural field environment. A new backbone network, ResNet50-FPN-ED, was proposed to improve the Mask R-CNN model by introducing an ECA module in the backbone network and using DUC instead of the traditional nearest neighbor interpolation upsampling method in pyramid feature fusion. By correcting the feature information and recovering more image details in the feature fusion stage, the proposed method is able to improve the missed and false detection caused by the variability of grape cluster shape, illumination and occlusion conditions.

For the object detection task of the improved model, AP reached 60.1%, [image: image] reached 85.6%, [image: image] reached 65.1%, and [image: image] reached 69.5%, which was an improvement of 1.4%, 0.5%, 1.1%, and 2.1%, respectively, over the original Mask R-CNN model. For the instance segmentation task of the improved model, AP reached 59.5%, [image: image] reached 87.1%, [image: image] reached 66.9%, and [image: image] reached 66.9%, which was an improvement of 1.6%, 0.8%, 2.6%, and 1.8%, respectively, over the original model. More instances were recovered in the proposed model than the original one, which improves the detection performance for occlusion and darker areas. To verify the effectiveness of the improved Mask R-CNN model, it was also compared against the instance segmentation network SOLOv2 and the object detection network Faster R-CNN (ResNet50-FPN) under the same test conditions, and the improved Mask R-CNN had a higher AP over Faster R-CNN in object detection task (1.8% higher AP, 1.4% higher [image: image] and 2.6% higher [image: image] For instance segmentation task, the proposed method has 2.2% higher AP and 2.9% higher [image: image] than SOLOv2, and it is worth mentioning that [image: image] is 3.5% higher and [image: image] is 2.5% higher. Furthermore, the proposed model was trained and tested independently on two different datasets, Grape-A and Grape-B. The accuracy of both models was improved to a certain degree compared to the original Mask R-CNN model, and the effect of different datasets on model performance was discussed, and better generalization performance was also achieved across grape varieties on the public dataset.

There is also room for further improvement. One urgent improvement is the model detection speed so that the model can be deployed on mobile robots or agricultural tractor platforms for real time applications with video input. It is noted that the computation cost of the developed model is not a critical issue for offline applications such as yield prediction or yield mapping. However, for other applications in vineyard precision cultivation, such as precision spraying and harvesting, real-time processing is generally required. In the future, the model complexity can be reduced by pruning the model channels, thus increasing the model detection speed. In addition, the evolution of computing hardware and the development of efficient algorithms could also overcome this issue in the future. Furthermore, the manual annotation dataset is limited. Extending the grape dataset under different conditions, using domain adaptation algorithms to improve the generality of the algorithm and investigating further improvements in segmentation accuracy are also necessary for future work.
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The fast and precise detection of dense litchi fruits and the determination of their maturity is of great practical significance for yield estimation in litchi orchards and robot harvesting. Factors such as complex growth environment, dense distribution, and random occlusion by leaves, branches, and other litchi fruits easily cause the predicted output based on computer vision deviate from the actual value. This study proposed a fast and precise litchi fruit detection method and application software based on an improved You Only Look Once version 5 (YOLOv5) model, which can be used for the detection and yield estimation of litchi in orchards. First, a dataset of litchi with different maturity levels was established. Second, the YOLOv5s model was chosen as a base version of the improved model. ShuffleNet v2 was used as the improved backbone network, and then the backbone network was fine-tuned to simplify the model structure. In the feature fusion stage, the CBAM module was introduced to further refine litchi’s effective feature information. Considering the characteristics of the small size of dense litchi fruits, the 1,280 × 1,280 was used as the improved model input size while we optimized the network structure. To evaluate the performance of the proposed method, we performed ablation experiments and compared it with other models on the test set. The results showed that the improved model’s mean average precision (mAP) presented a 3.5% improvement and 62.77% compression in model size compared with the original model. The improved model size is 5.1 MB, and the frame per second (FPS) is 78.13 frames/s at a confidence of 0.5. The model performs well in precision and robustness in different scenarios. In addition, we developed an Android application for litchi counting and yield estimation based on the improved model. It is known from the experiment that the correlation coefficient R2 between the application test and the actual results was 0.9879. In summary, our improved method achieves high precision, lightweight, and fast detection performance at large scales. The method can provide technical means for portable yield estimation and visual recognition of litchi harvesting robots.
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object detection, YOLOv5, ShuffleNet v2, litchi, yield estimation


Introduction

Litchi (Litchi chinensis Sonn.) is a subtropical evergreen fruit tree whose cultivation range has widespread worldwide. Its fruit is nutritious and tasty. Meanwhile, litchi is an important economic crop and has a high economic value. Today, China is one of the primary litchi producers, accounting for about one-third of the world’s annual litchi production. Litchi trees in China are mainly distributed in the southern hilly regions, and the annual output value of litchi-related industries is more than four billion US dollars (Qi et al., 2019).

The construction and implementation of smart orchards have become a current research focus. The detection and evaluation of fruit maturity are crucial for yield estimation and harvest in smart orchards. Currently, there are destructive and non-destructive methods for judging fruit maturity. Destructive methods are used to find the physicochemical or biochemical properties of fruits. They need high technical requirements and have to destroy materials. The detection speed is slow, but more phenotypic information can be obtained. In contrast, non-destructive methods have the advantages of lower cost, more reliable detection results, and no need to destroy the fruit (Arunkumar et al., 2021). Various non-destructive detecting methods for fruit maturity have been extensively studied, such as ultrasonic methods (Yildiz et al., 2018), near-infrared spectroscopy (Pissard et al., 2021), scanning laser Doppler vibrometers (Hosoya et al., 2017), magnetic resonance imaging (Srivastava et al., 2018), electronic nose (Calvini and Pigani, 2022), and so on. Although these methods have high detection accuracy, they are only suitable for a single fruit or laboratory detection. The scope and prospect of promotion among fruit farmers are small, and they are not suitable for judging large-scale fruit maturity and yield estimation in orchards. In addition, computer vision is also a non-destructive method that can be used for inspection and has been found to be applicable in precision agriculture. Fruits are accurately detected with the help of computer vision technology, after which the fruit harvest work is achieved using robot technology. This harvesting method is significant to the intelligent and automatic management of orchards (Tang et al., 2020; Wang and He, 2021; Qi et al., 2022). In present-day China, most regions rely mainly on manual litchi harvesting. Due to the strong seasonality of litchi ripening, it takes massive labor to complete the large-scale litchi fruit harvesting quickly. At the same time, the maturity of litchi during the growing period is inconsistent, and even litchi from the same orchard or the same tree are ripened in batches (Jin, 2020; Chen et al., 2022). Therefore, it is important to detect litchi and classify their maturity through computer vision technology, achieve litchi orchards yield estimation, and then guide harvesting robots or fruit farmers to unfold the picking efforts in a timely, selective, and batch manner. Among them, litchi detection is a prerequisite for realizing orchard yield estimation. It is an urgent issue to be solved in today’s orchard production.

Over the years, related scholars have discussed some traditional object detection methods for fruits, and the feature extractors used are often based on features determined by artificial prior knowledge, and it is difficult to achieve robust feature representation (Wang C. et al., 2022). Wan et al. (2018) used a back-propagation neural network to detect the maturity of fresh tomatoes. Dameshwari and Ravindra (2017) employed MATLAB software for defect identification and maturity detection of mango fruits. Khojastehnazhand et al. (2019) realized maturity detection and volume estimation of apricot with the help of image processing technology. Wang et al. (2017) studied four effective color components and six visual features commonly used in image recognition, trained the Bayesian, KNN, ANN, and SVM classifiers, and finally integrated them to realize litchi recognition. However, the disadvantage of this method is that the detection algorithm requires a long reasoning time. He et al. (2017) used an improved LDA classifier to detect green litchi per plant. However, the parameters used in the multi-stage processing need to be manually specified, and the parameter debugging process is too cumbersome to be widely promoted. Xiong et al. (2018) proposed a nighttime litchi identification method based on Otsu, but the method requires a single environment and is not suitable for litchi recognition in a natural environment.

In recent years, there have been some two-stage fruit detection methods with the development of deep learning. Among them, the Faster R-CNN is widely applied as a classical algorithm (Barnea et al., 2016; Sa et al., 2016; Fu et al., 2020). Apolo-Apolo et al. (2020) employed the Faster R-CNN to detect citrus images captured by Unmanned Aerial Vehicles and then estimated citrus yield with an average standard error of 6.59%. Gao et al. (2020) achieved multi-class fruit detection with the help of the Faster R-CNN, such as apples. Fu et al. (2018) implemented a two-stage detection of kiwifruit fruit images using Faster R-CNN and ZFNet network. The average accuracy of the model was 92%, and the average processing time for a single image was 0.27s. Vasconez et al. (2020) applied the Faster R-CNN with the Inception V2 network implementation to detect avocado, lemon, and apple under different field conditions, with an mAP of 93%, and it took 0.22s on average to process a single image. Although the two-stage object detection method shows good performance, its detection speed has limitations that make it difficult to be applied to field real-time detection.

To meet the requirements of real-time object detection under complex agricultural application scenarios, it is usually necessary to seek an optimum between detection accuracy and calculation time. The single-stage object detection algorithm represented by the YOLO series has achieved a better balance between accuracy and speed. Koirala et al. (2019) improved the YOLOv3 network for mango detection by merging feature maps of different resolutions from the middle layer. The mAP of 98% was achieved, and the model took 0.07 s for a single image. Liu et al. (2020) replaced the traditional rectangular bounding box of the YOLOv3 model with a circular bounding box for tomato detection, achieving an mAP of 96% and a detection speed of 0.054 s on an image of 3,648 × 2,056 pixels. Liang et al. (2020) adopted the YOLOv3 model for detecting litchi fruits in a natural environment at night while extracting a region of interest on the main stem of litchi. Tian et al. (2019) combined YOLOv3 and DenseNet to detect apples in orchards with an F1 score of 0.817, IoU of 0.896, and a processing time of 0.304 s for a 4,000 × 3,000 pixel image. Wu et al. (2021) put forward an improved YOLOv3 model based on clustering optimization for multi-object recognition of banana buds and inflorescence axes. Zheng et al. (2021) improved the framework of YOLOv4 and proposed a multi-scale convolutional neural network based on a bidirectional feature pyramid network to detect green citrus with an accuracy rate of 91.55%. Wang L. et al. (2022) trained the improved YOLOv4 model to detect dense plums. Compared with some results from the original YOLOv4 model, the model size of the improved model was compressed by 77.85%. The parameters were only 17.92% of the original model parameters, and the detection speed were accelerated by 112%. Li D. et al. (2021) proposed to use a MobileNet-YOLOv4 model for fast and accurate detection of longan strings in Unmanned Aerial Vehicles images. Nevertheless, further studies are needed for highly occluded and overlapped fruit objects.

Litchi grows in haphazard and seriously adhered clusters in the natural environment, which branches and leaves may block. In litchi images used for yield estimation, minor pixel points on litchi fruits can make insufficient extraction of important feature information, resulting in missed or false detection. Although it is more convenient to carry out long-range detection with Unmanned Aerial Vehicles, only litchi distributed in the superficial layers are detected, and fruits that are obscured or overlap may be missed, which would give low yield estimates (Peng et al., 2022). Object detection methods based on deep learning have shown good performance on public datasets, but these models do not consider processing small, dense objects. When facing small object litchi that is densely obscured, problems such as insufficient feature extraction often occur. While with larger-scale detection feature maps, detection speed becomes a bottleneck of the model. In addition, although some lightweight fruit algorithms based on edge devices have also been studied (Zhang et al., 2021), deploying deep learning algorithms in the real-time field remains challenging. In this case, according to the biological characteristics of litchi fruit, our object detection algorithm needs to take into account the detection speed while considering the problem of densely occluded small objects. Consequently, how to improve the accuracy and speed of litchi object detection under dense and high overlaps becomes an essential goal of this study.

Since You Only Look Once version 5 (YOLOv5) model has been proven to perform well in other application domains to detect small objects (Chen et al., 2021; Zhang et al., 2022). In response to the above problems, this study will carry out improvement work based on the YOLOv5 model regarding the accuracy, model size, and detection speed to obtain a deep learning model suitable for litchi fruit detection. The specific improvements include: (1) increasing the recognition capability of the model for small objects by changing the input size of the model; (2) enhancing the accuracy of model detection by replacing and fine-tuning the backbone feature extraction network and adding an attention mechanism; and (3) further reducing the model parameters and accelerating the reasoning time of the model by deleting the detection head. Finally, an Android application based on the improved model will be developed to obtain the maturity and yield information of litchi conveniently and quickly by mobile phone. In conclusion, the improved method presented in this paper achieves high performance and fast detection performance in litchi orchard environments, providing technical means for portable litchi yield estimation and visual recognition of litchi harvesting.



Materials and methods


Materials


Image data acquisition

RGB images of litchi used in this study were all taken from the Litchi Exposition Park in Conghua District, Guangzhou City, Guangdong Province, China (2334′60″N, 11337′12″E), and the location is shown in Figure 1. All images were acquired between 9:00 a.m. and 6:00 p.m. on May 17, June 11, and June 30, 2021. The acquisition device used is a smartphone with three postfixed cameras: a 40-megapixel main camera, a 12-megapixel ultra-wide-angle camera, and an 8-megapixel telephoto camera. The 40-megapixel main camera at a pixel density of 400 ppi was chosen for this study. The sensor model is Sony IMX600 with CMOS photosensitive chip. The lens uses an f/1.6 aperture and an RYYB filter. The device supports optical image stabilization and the autofocus in three modes (laser focus/phase focus/contrast focus). In this study, the image’s resolution was set to 3,648 × 2,736 pixels, and the exposure parameter was set to auto mode. Finally, the images were saved in JPEG format.


[image: image]

FIGURE 1
The geographical location of the image acquisition.


In the natural growth state, litchi grows in dense clusters for litchi orchards. Immature litchi is turquoise and close to the branches and leaves. Mature litchi appears red. To capture as many images of litchi fruits in the natural environment as possible under multiple weather conditions, the acquisition equipment randomly transformed the sampling angle within a 2–5 m imaging distance. A total of 1,375 original litchi images were collected in this study, and litchi fruit samples with different maturity, posture, size, background, density, and occlusion were included in this dataset. Table 1 shows the sample collection site’s weather conditions and quantity distribution during the collection period.


TABLE 1    The weather conditions and quantity distribution during the image collection period.
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Building the dataset

At the data processing stage, litchi fruits were divided into two classes according to their maturity: mature litchi (litchi) and immature litchi (raw_litchi). As shown in Figure 2, LabelImg software was used to manually annotate the ground location boxes and class of litchi fruits in the original image and generated the corresponding annotation files. After the image annotation work was completed, the entire dataset was randomly divided into a training set, validation set, and test set according to the ratio of 7:1:2 for subsequent training and testing of the model. Statistically, each image collected in this study contains 10–100 fruits, and there are 53,855 labels for the litchi fruits dataset. The class ratio between the two is about 1.28, illustrating no significant data imbalance within the dataset.


[image: image]

FIGURE 2
Data annotation example: the blue box represents mature litchi, and the yellow box represents immature litchi.


Before the training of the model, this study performed several random combinations of offline data augmentation methods such as flipping, clipping, rotation, scaling, translation, brightness, histogram averaging, salt and pepper noise, and Gaussian noise on the training set (Taylor and Nitschke, 2018; Lyu et al., 2022). The five data augmentation methods were specifically (1) random horizontal flip of 25% of the training set + random vertical flip of 25% of the training set + random crop of 0–20% region of the image width/height; (2) histogram averaging + pepper noise 2%; (3) rotation 10°; (4) random modification of the brightness to 50–150% of the original + random Gaussian noise; (5) random scaling transformation 70–95% + random panning (−15–15%). To guarantee the quality of the data annotations before and after data augmentation, the anchor box positions in the annotation files associated with the original images were also coordinately transformed with different data augmentation methods. As shown in Table 2, the number of training sets after data augmentation was enlarged by five times, yielding a total of 5,710 image data available for network training. Ultimately, there are 6,175 image data for the litchi dataset.


TABLE 2    Details of the litchi image dataset.
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Methodologies


YOLOv5 model

YOLOv5 (Glenn et al., 2021) is one of the YOLO series of networks and an improved version of YOLOv3 (Redmon and Farhadi, 2018). The idea of the YOLO series of networks is to convert the object detection problem into a regression problem. Using the CNN network to process the image can directly obtain the class and position coordinates of the object, which makes the model have high-performance results in detection accuracy and speed. Compared to the YOLOv4 model (Bochkovskiy et al., 2020), the YOLOv5 model has achieved a better balance between accuracy and speed. The YOLOv5 model consists of multiple versions of different scales, from which extended lightweight model versions can be deployed on various devices.

The network structure of YOLOv5 is composed of a backbone network, a neck network, and a detection head. The YOLOv5 model employs the new CSP-Darknet53 structure as the backbone network to extract image features. The structure contains CBS modules, the C3 modules, and the SPPF module. CBS indicates the synthesis module of Conv, BN, and SiLU activation functions. The C3 module is the main module for residual feature learning, and its structure is divided into two branches. One is stacked by multiple Bottlenecks and three standard convolution layers, and the other only passes through a basic convolution module. Finally, the two branches are merged. The SPPF module further integrates multiple parallel MaxPool2d of different sizes, which can solve the multi-scale object problem to a certain extent. When the size of the input image is 640 × 640, the feature maps of 80 × 80 × 128, 40 × 40 × 256, and 20 × 20 × 512 are output after passing through the backbone network. As the neck of the network, the path aggregation network (Liu et al., 2018) plays the role of feature fusion and aggregates information paths in a combined bottom-up and top-down manner to obtain richer features from each layer. Like the YOLOv3 model, the YOLOv5 model also adopts three scales of head to detect small (80 × 80 × 128), medium (40 × 40 × 256), and large objects (20 × 20 × 512), respectively. Finally, these feature maps are divided into grids, and the K-means algorithm is used for each grid to generate anchor coordinate boxes to predict object boundaries iteratively. Each detection box outputs a feature vector of predicted bounding box center coordinates(x, y), width, height, confidence score, and class probability. To prevent a single object from generating redundant or overlapping prediction boxes, a Non-Maximum Suppression threshold is set to determine the final detection box. The last detection result of the input image is rescaled to the original image size, enabling the detection of the object.



Lightweight backbone network

Typically, the deep learning model has a large number of parameters and computations, requires high computer requirements, and is challenging to run directly on mobile phones or other edge devices. In this context, Ma et al. (2018) proposed a computationally efficient and lightweight CNN model suitable for mobile devices—ShuffleNet v2. The research results show that ShuffleNet v2 has higher accuracy than MobileNet v2 (Sandler et al., 2018) and Xception (Chollet, 2017) under the same model complexity. The contribution of ShuffleNet v2 lies in that it summarizes four rules of network design according to the performance of the actual scenarios, namely: (1) keep the number of input and output channels of the convolution layer equal to minimize memory access cost; (2) reduce group convolution operations to reduce memory access cost; (3) reduce network branching structures to enhance parallel computing power; and (4) reduce element operations to speed up the network speed.

The ShuBlock module is the basic unit of ShuffleNet v2 (Figure 3). The module has two branches. A branch is a residual unit containing a 1 × 1 convolution, a 3 × 3 deep separable convolution, and a 1 × 1 convolution. The other one needs to be handled in two cases: if the stride is 1, the residual edge is a shorted connection branch; if the stride is 2, the residual edge is a branch composed of a 3 × 3 deep separable convolution and a 1 × 1 convolution. Finally, the two components are stacked together, and a Channel shuffle is introduced to achieve information exchange between channels.


[image: image]

FIGURE 3
ShuBlock module.




Convolution block attention module

The Convolution Block Attention Module (CBAM) is an attention mechanism that combines the Channel Attention Module (CAM) with the Spatial Attention Module (SAM) (Woo et al., 2018). It is often seamlessly integrated into some CNN networks for end-to-end training due to its lightweight and generalized characteristics. Its function is to strengthen the model’s ability to extract features and suppress invalid background information by refining the input feature map (Li X. et al., 2021).

As shown in Figure 4, the CBAM structure is a tandem of two sub-modules of the channel and spatial attention, and the input of SAM is the feature map modified by the CAM mechanism, which can obtain more comprehensive and reliable attention information. The feature matrix is first input to the channel attention sub-module, where each channel represents a feature detector. The role of the CAM here is to process feature maps from different channels and focus on the meaningful feature map information. After that, the channel compression weight matrix is output, then multiplied by the original input feature characteristic matrix. When the feature map adjusted by CAM enters the spatial attention sub-module, the SAM will process the feature region of meaningful information in the feature map, generate the spatial compression weight matrix, and perform the same multiplication operation. And finally, the refined feature map is obtained. The CAM and SAM modules selectively fuse deep and shallow features. High dimensional features guide low dimensional features for adaptive feature refinement of CAM, and low dimensional features guide high dimensional features in reverse for the screening of Sam. This sequential way improves the network model’s ability to extract features without significantly increasing the amount of computation and parameters.
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FIGURE 4
Convolution block attention module structure.


In Figure 4, MaxPool represents the maximum global pooling; AvgPool represents global average pooling; Share MLP represents a multi-layer perceptron with shared weights; Channel Attention indicates the channel attention map output by CAM; Conv indicates convolution operation; Spatial Attention denotes the spatial attention map.




The improved YOLOv5s network structure

The YOLOv5 model is classified into x, l, m, s, and n versions according to the complexity of the network structure. To better balance accuracy and speed, this study chose the 6.0 version structure of YOLOv5s as the basis for model improvement. This study will investigate the accuracy, model size, and detection speed to find a more suitable litchi fruit detection model. Specifically, we will first replace and fine-tune the backbone network structure to compress the model size. Then we will add an attention mechanism to strengthen the accuracy of the model detection. After that, we will change the input size of the model from 640 × 640 pixels of the original YOLOv5 model to 1,280 × 1,280 pixels to improve the model’s ability to recognize small objects. And finally, we will reduce the model parameters and computation to accelerate the detection speed of the model by removing the large-scale detection head.


Fine-tuning the lightweight backbone network

This study used the building blocks of ShuffleNet v2 to form the backbone network of the improved model. First, the 6 × 6 convolution method from the first layer of the original backbone network was retained, and the first layer convolution of the ShuffleNet v2 was also changed from 3 × 3 to 6 × 6. Second, the successive stacks of ShuBlock building blocks are used to construct the lightweight backbone network. In this way, the number of model parameters can be reduced as much as possible to ensure the feature extraction capability. Afterward, like the original model, the SPPF structure was used on the output of the last layer to strengthen the extracted features. Therefore, when the size of the input image is 1280 × 1280, the output feature maps of (160 × 160 × 116), (80 × 80 × 232), and (40 × 40 × 464) will be obtained after the improved backbone network.



Optimize the network structure

In the feature fusion stage, low dimensional feature maps were introduced to increase the feature information of small objects while raising a large amount of background noise, impairing the accuracy of hierarchical object detection. To this end, we added a CBAM module to gain adequate feature information and suppress background noise before the feature maps entered the neck network.

For the three detection heads output by the original YOLOv5 model, the size(20, 20, 512) is used to detect large-scale objects. For the small object litchi in this study, the large-scale detection head had little contribution to the recognition results. Therefore, to further simplify the complexity of the detection model, this paper removed the 21st–23rd layers of the original YOLOv5 network and the detection output head (20, 20, 512) mimicking the network structure of the YOLOv4-tiny model (Wang et al., 2021). The pruned model has only two detection heads. This pruning operation gave the shallow feature map a smaller receptive field, which is more suitable for identifying dense small object litchi. Figure 5 shows the network structure of the improved model and the illustrations of each specific module, which are distinguished by different colors. In Figure 5, the blue area indicates the network structure of the improved model, and the gray area shows the illustration of each specific module that appears in the improved model. Where Conv is convolution; Concat is a feature fusion method based on the addition of channel numbers; BN is Batch Normalization; UpSample is upsampling; BottleNeck indicates bottleneck layer. The size of the input image is a tensor with dimensions of 1,280 × 1,280 × 3, and the final convolution operation will form image tensors with dimensions of 80 × 80 × 232 and 160 × 160 × 116.


[image: image]

FIGURE 5
Network structure diagram of the improved model.





Training of litchi object detection model

To make the model learn more valuable features, the input image of the model was first adjusted to 1,280 × 1,280 pixels, and the image padding method was applied to maintain the aspect ratio of the original image. After that, we improved the model according to the proposed improvement method. During this process, the loss function of the original YOLOv5s model was not altered. Finally, the annotated litchi training set was trained to utilize the Pytorch deep learning framework, and the validation set was used to verify the effect and performance of the model training.

The experimental environment in this study is shown in Table 3. First, the annotated VOC format dataset was converted to the data format accepted by the YOLOv5 model. Second, the parameters of the model training process need to be configured. After that, it is time to turn on the improved object detection network training. The training parameters of the improved model are: the initial learning rate is set to 0.01, the eta_min is 2 × 10−3, the last_epoch is −1, the momentum parameter is 0.937, the delay parameter is 5 × 10−3, the batch size is set to 8, and the T_max is 250. Optimized by the AdamW optimizer during the training process. Eight workers were employed for multi-threaded model training, and the cosine annealing learning rate was performed to update optimally during the training process. Besides offline augmentation methods, Mosaic data augmentation was also used to further enrich the background of detected objects, reinforce the awareness of litchi fruits characteristics, and strengthen the robustness and generalization performance of the model. The data-augmented network took about 28 h of training duration.


TABLE 3    The experimental environment in this study.
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Experimental results and comparative analysis


Model evaluation indicators

To precise evaluate the detection performance of the model on dense litchi images, we adopted eight evaluation indicators that are commonly used in classical object detection algorithms: Precision (P), Recall (R), F1-score, average precision (AP), mean average precision (mAP), network parameters, model size, and detection speed. And the IoU value was 0.5 during the experiment. This study used frames per second (FPS) to evaluate the model’s real-time detection performance. The larger the FPS, the faster the model detection speed. Each formula of P, R, F1, AP, and mAP is shown in Equations (1–5).
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In the above formulas, Q is the total number of classes; AP(k) denotes the AP value of the kth class, k = 2 in this study; TP represents the number of litchi fruits correctly detected (true positive); FP indicates the number of false detected (false positive); FN represents the number of missed detection (false negative). F1-score is defined as the harmonic mean of model precision and recall. AP represents the area of a PR curve and coordinate axis drawn according to different thresholds. It is the standard to measure the model’s sensitivity to an object. The higher the AP value, the better the performance of the object detection algorithm. The mAP is the average value of multiple AP classes, representing the universal detection performance of the algorithm for all classes. Compared with the F1-score, mAP is an indicator that more closely reflects the global performance of the network.



Experimental results and analysis


Experimental results

As shown in Figure 6, we used the mAP@0.5 indicator to measure the model’s overall performance on the training set. The upward climbing speed of the curve changed from fast to slow before the 170th epoch. After the 170th epoch, the curve flattened gradually, and the slope slowly tended to 0. The result value of mAP@0.5 exceeded 90% during the period. In addition, comparing the change of the mAP@0.5 value of the model before and after improvement on the training set, the improved model consistently exceeded the mAP@0.5 value of the original YOLOv5 model, and the fluctuation between them is shown in the yellow shaded part in Figure 6. The above results illustrate that the improved YOLOv5s model performs better for litchi fruit detection.


[image: image]

FIGURE 6
The comparison of mAP@0.5 of the model before and after improvement on the training set.


Table 4 presents the evaluation results of the improved model on the test set consisting of 275 images. The experimental data shows that the improved YOLOv5s model performed on the test set with an overall mAP of 92.4%, F1-score of 0.87, model size of 5.1 MB, and average detection time of 78.13 frames/s (FPS ≥ 24), which meet the requirement of real-time detection. The gap between the precision and recall of each class ranges from −0.3 to 4.4%, and the AP values of mature and immature litchi are similar. In conclusion, the litchi detection model proposed in this study has the advantages of high precision, lightweight, and fast inference speed.


TABLE 4    Evaluation results of the improved model on the test set.
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Detection effect of the improved model in different scenarios

Precisely detecting the obscured litchi fruits before harvesting is significant for litchi yield estimation. Most litchi tree grows in open and unstructured mountain orchards. Factors such as uncertain light exposure, occlusion, and clustered aggregation of fruits, especially the color similarity between immature litchi fruits and the background, make detecting all fruits on litchi trees in a natural environment very challenging.

To investigate the influence of different maturity stages and light conditions on the litchi fruit detection model, we show litchi’s image detection results in Figure 7. Where the white oval indicates that the fruit was falsely detected; the yellow oval represents the missed detected fruits; the green oval represents that the model is temporarily unable to distinguish whether it is immature or mature litchi.
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FIGURE 7
The improved model’s detection results at different maturity stages. Where the white oval indicates that the fruit was falsely detected; the yellow oval represents the missed detected fruits; the green oval represents that the model is temporarily unable to distinguish whether it is immature or mature litchi.


As presented in Figure 7, the improved model has a high recognition accuracy for litchi fruits in the mature (Figure 7A) or immature stage (Figure 7C). For the transition period of litchi fruits, the improved model shows good recognition performance, but there is one missed detection (as marked by the yellow oval in Figure 7B) and three places where the maturity could not be determined (as denoted by the green oval in Figure 7B). After alignment of detected results, it is found that the accuracy values judged by the model as mature litchi are all higher than those of immature litchi. Because the color distinction of the semi-mature fruits in the middle or later stages of veraison is not significant, the classification results of the model are rocked between mature and immature. This situation will be solved by further refining litchi categories in future research.

The model can clearly recognize fruits in the forward and side light conditions with high identification values (Figures 7D,E). The fruit characteristics are clear and stable in the forward and side light conditions. The contour of the fruit area is well separated from the background so that even an indistinct fruit with wind jitter or camera jitter can be identified. The model exhibits a friendly performance for the identification of these two situations. Although fruits in the backlight condition are mostly recognizable, there appeared instances where the model falsely detected curled litchi leaves as immature fruits (as indicated by the white oval mark in Figure 7F). Without external interference, the model may only notice the approximate candidate box of the fruit without wrapping the entire fruit outline. Therefore, extracting fruit contour edge features under the backlight condition in natural orchards is highly challenging. Although the method proposed in this paper has some errors, it still accurately and sensitively completes the detection of the litchi fruit in the image.

To explore the detection performance of the improved model for occluded litchi fruits, we collected the detection clipping images that were occluded in various ways. Figures 8A–C are the clipping images only obscured by leaves, other litchi fruits, and branches. It can be seen from Figures 8A–C that the improved model has better recognition results for litchi fruits with single occlusion. Fruits mixed with multiple occlusion methods can also be identified by the improved model (Figure 8D), but multiple fruits with high overlap or severe occlusion can be mistaken for one fruit or directly missed (Figure 8E). The reason may be that litchi fruits grow tightly in clusters, some fruits are heavily occluded, and essential features such as contours are lost, making the predicted yield lower than the actual yield. There is another possibility that the collected litchi dataset is limited, and it is difficult for the model to use a limited dataset to traverse various occlusion cases in natural orchards. This problem will be solved by expanding the dataset in the future. As shown in Figure 8F, some shaded parts or curled dry leaves similar to the shape of the fruit may also be falsely detected as litchi fruits. The morphology of litchi trees in the natural environment is random and unstructured. The obstacles in front of the fruit are dense and three-dimensional, and the degree of occlusion from different perspectives is also different, causing the illusion of the existence of the fake fruit. The case will make the predicted output value higher than the actual output value. To solve this problem, the planting structure of plants needs to be changed in the future by increasing the tightness of the combination of agricultural machinery and agronomy so that the morphology of the litchi tree is more suitable for mechanized harvesting in agriculture.
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FIGURE 8
The detection effect of the improved model for various occlusion methods appearing in the dataset. (A–D) Indicates that the occluded litchi can be detected accurately by the improved model, and (E–F) indicates that the occluded litchi are not detected correctly by the improved model (false detection or missed detection).


To evaluate the detection accuracy of the improved model for images with different densities, we randomly selected some images for experimental comparison research. Among them, for images below 40 litchi fruits, we considered it to be light dense. For images containing 40–80 litchi fruits, it is called moderately dense. For images where the number of litchi fruits exceeds 80, it is called heavily dense. The model detection results under three density levels are shown in Figure 9.
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FIGURE 9
The detection effect of the improved model on litchi images with three density levels.


Figures 9A–C show the original images of litchi with three density levels, and Figures 9D–F are the corresponding litchi detection results. Longitudinally, only one missed detection occurred in the light and moderately dense images, and eight missed detections occurred in the heavily dense images. The missed detection rate was within 3%. After viewing the enlarged Figure 9F, it is known that two fruits missed detection because of the complete overlap of different sizes. There are three missed detections because of severe occlusion of leaves and incomplete splicing of fruit contour edges. The remaining missed detections resulted from distortions or blurring of the fruit caused by a long distance so that the improved model could not confirm the contour area of the fruit. The next step is sharpening the fruit’s contour using a motion blur super-resolution algorithm. In terms of horizontal comparison, the improved model shows better recognition performance on litchi images with different density levels and maintains a high number of recognitions and recognition rates.




Ablation experiments

Based on the YOLOv5s model, we analyzed the influence of different improvement schemes on the detection performance of the model employing ablation experiments. All improvement operations were trained and validated using the same training and validation sets, and the tests were done on the same test set. The experimental results are shown in Table 5.


TABLE 5    The effect of different improvement schemes on the model performance.
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As shown in Table 5, the mAP of the original YOLOv5s model on 275 test images is 88.9%, the F1-score is 0.85, the number of parameters is 7,015,519, the model size is 13.7 MB, and the FPS is 104.17 frames/s. In contrast to the original model, the three improvement points proposed in this study positively impact different aspects. After replacing the backbone network alone, the model’s overall performance was slightly fine-tuned. It is worth noting that the model’s number of parameters and size is reduced to approximately half of the original model. When the CBAM module was added again, the mAP of the model showed a hint of elevation and a slight decrease in FPS values. After setting the input size of the model to 1,280 × 1,280 on this basis, the model gained more refined feature information. Its mAP reached 92.5%. The model size increased slightly with the enlarged image size, and the detection performance was significantly improved. After optimizing the network, the number of parameters continued to decrease when the overall mAP was similar, and the detection speed of the model accelerated by 37.5%. Compared with the original YOLOv5 model results, the mAP of the improved model presented a 3.5% improvement and 62.77% compression in model size. In summary, the improved method proposed in this paper achieves high-precision, small-scale, and fast detection performance at a large scale, which meets the requirements of real-time detection.



Comparison with other deep learning models

Several more classical network models were selected for retraining in this study to investigate the performance differences between the improved model and other models. We adopted the control variables method to guarantee the reliability of the results. All models were trained on the same training set using the same training environment, and finally, the detection results of the network models were contrasted on the same test set.

The comparison results are shown in Table 6. The differences between the models are mainly reflected in mAP detection performance, model size, and detection speed. The recognition results of the original YOLOv5s model for litchi fruits are 6.03, 14.2, and 19.77 percentage points higher than those of the MobileNetv3-YOLOv4 model (82.87%), the YOLOv4-tiny model (74.7%), and the SSD with VGG model (69.13%), respectively. The recognition result of the improved model is 3.5% higher than that of the original YOLOv5s model. In conclusion, it can be concluded that the improved model has better recognition performance than the other four network models. Compared with the rest of the object detection networks on the model size, the improved YOLOv5s network is only 5.1 MB, which is the smallest. In terms of detection time, the detection frame rate of the improved model is 78.13 frames per second, which is 46.76 frames/s lower than that of the YOLOv4-tiny model but significantly higher than that of the MobileNetv3-YOLOv4 model and the SSD with VGG model. Therefore, our model has superior recognition results, model size, and inference speed as an improved lightweight object detection model.


TABLE 6    Detection results of different object detection algorithms on litchi images.
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The deployment of model APP

Based on the model proposed in this study, we developed a mobile application software on the Android platform that can count the number of litchi fruits at different maturity stages in the image. Figure 10 is a schematic diagram of the detection scheme of the Litchi APP. The design scheme of the software was to first convert the pt model file from the trained PyTorch model into an ONNX model. Secondly, the ONNX model was converted into the NCNN model, and then the modified model was subjected to Fp16 quantization operation to complete the final model conversion. Finally, Android Studio software’s interface development and programming were carried out. The software had the online and offline detection function for litchi images. Some results for the selected litchi images, such as the number of litchi fruits with different maturity levels, the total number of fruits in the image, and the total time spent in detecting images, will be shown in the result area after model recognition.


[image: image]

FIGURE 10
Schematic diagram of the detection scheme of the Litchi APP.


To evaluate the detection precision by the application software, thirty images from the test set containing different maturity, light conditions, and density levels were randomly selected for detection. Each image was tested three times, and the average detection time was calculated. The test results were recorded and compared with the actual number of fruits. The fitted curve between the actual result value of the image and the software test result is shown in Figure 11. The Equation of the fitted curve is in the form of a linear function, and the correlation coefficient R2 is close to 1, indicating that the software test result value is very close to the actual result value of the image. It can be inferred that the software we developed has a high-precision detection performance in yield estimation. Meanwhile, for the detection speed of the model on the mobile phone terminal, the average time for statistical test detection on a smartphone with a Kirin990 processor is 182 ms.


[image: image]

FIGURE 11
The fitted curve between the ground truth in the orchard and the predicted value of the Litchi APP.






Conclusion

This study focused on litchi images collected under natural conditions. According to the growth characteristics of litchi, an object detection method and application software for estimating litchi yield in orchards were proposed and implemented. In this study, litchi images were first acquired, and the corresponding dataset was established. After that, ShuffleNetv2 was used as the backbone network of the improved model, and the CBAM module and a higher pixel model input size were introduced to improve the precision of the model. On this basis, the improved network structure was optimized to speed up the detection speed. Finally, the performance of the improved model was verified by training and comparative experiments. The main conclusions are as follows:


(1)This study used the improved model to detect litchi fruits on the test set and performed ablation experiments. The mAP of the improved model on the test set is 92.4%. Compared with the original YOLOv5s model, the mAP of the improved model presents a 3.5% improvement and 62.77% compression in model size. At the same time, the experimental results in different maturity stages, lighting conditions, occlusion methods, and density levels show better precision and robustness.

(2)Compared with other object detection models, the improved model has the highest mAP result. Regarding model size, the model specification of the improved YOLOv5s algorithm is much lower than that of other conventional algorithms, only 5.1MB. Meanwhile, the method in this paper is significantly more efficient in detecting speed than the MobileNetv3-YOLOv4 model and SSD model. Comparative experimental data show that the improved model achieved superior recognition accuracy and speed performance.

(3)A mobile application for litchi counting and yield estimation was developed based on the improved model, which realized the convenient and quick access to litchi yield information through the mobile phone. The correlation coefficient R2 between the application test and the actual results is 0.9879, which again shows the model’s accuracy in yield estimation. It can further provide technical support for the visual recognition of litchi harvesting robots in smart orchards.





Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.



Author contributions

LW designed the experiments and wrote the manuscript. YZ and ZX collected the material data and carried out the experiments. SW analyzed the experimental results. YHL and YBL supervised and revised the manuscript. All authors contributed to the article and approved the submitted version.



Funding

This work was supported by the Laboratory of Lingnan Modern Agriculture Project (Grant No. NT2021009), Key-Area Research and Development Program of Guangdong Province (Grant No. 2019B020214003), the Leading Talents of Guangdong Province Program (2016LJ06G689), Top Talents Program for One Case One Discussion of Shandong Province, the 111 Project (D18019), and Guangdong Basic and Applied Basic Research Foundation (2021A1515110554).



Acknowledgments

We thank the editor and reviewers of this Journal. We also thank Ultralytics for developing the YOLOv5s architecture (https://github.com/ultralytics/yolov5, accessed on 22 February 2022).



Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.


Abbreviations

YOLO, you only look once; CBAM, convolution block attention module; CAM, channel attention module; SAM, spatial attention module; AP, average precision of A class; mAP, average precision of multiple classes; FPS, frame per second; SSD, single shot multibox detector.


References

Apolo-Apolo, O., Martinez-Guanter, J., Egea, G., Raja, P., and Perez-Ruiz, M. (2020). Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV. Eur. J. Agron. 115:126030. doi: 10.1016/j.eja.2020.126030

Arunkumar, M., Rajendran, A., Gunasri, S., Kowsalya, M., and Krithika, C. (2021). Non-destructive fruit maturity detection methodology-A review. Mater. Today Proc. (in press). doi: 10.1016/j.matpr.2020.12.1094

Barnea, E., Mairon, R., and Ben-Shahar, O. (2016). Colour-agnostic shape-based 3D fruit detection for crop harvesting robots. Biosyst. Eng. 146, 57–70. doi: 10.1016/j.biosystemseng.2016.01.013

Bochkovskiy, A., Wang, C., and Liao, H. M. (2020). Yolov4: optimal speed and accuracy of object detection. arXiv [Preprint] Available online at: https://doi.org/10.48550/arXiv.2004.10934 (accessed on April 23, 2020)

Calvini, R., and Pigani, L. (2022). Toward the development of combined artificial sensing systems for food quality evaluation: a review on the application of data fusion of electronic noses, electronic tongues and electronic eyes. Sensors-Basel 22:577. doi: 10.3390/s22020577

Chen, S., Xiong, J., Jiao, J., Xie, Z., Huo, Z., and Hu, W. (2022). Citrus fruits maturity detection in natural environments based on convolutional neural networks and visual saliency map. Precis. Agric. doi: 10.1007/s11119-022-09895-2

Chen, Y., Zhang, C., Qiao, T., Xiong, J., and Liu, B. (2021). “Ship detection in optical sensing images based on YOLOv5,” in Proceedings of the Twelfth International Conference on Graphics and Image Processing (ICGIP 2020), (Xian), doi: 10.1117/12.2589395

Chollet, F. (2017). “Xception: deep learning with depthwise separable convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (Las Vegas, NV), 1251–1258.

Dameshwari, S., and Ravindra, M. (2017). Defect Identi?cation and maturity detection of mango fruits using image analysis. Int. J. Artif. Intell. Educ 1:514. doi: 10.11648/j.ajai.20170101.12

Fu, L., Feng, Y., Majeed, Y., Zhang, X., Zhang, J., Karkee, M., et al. (2018). Kiwifruit detection in field images using Faster R-CNN with ZFNet. IFAC PapersOnLine 51, 45–50. doi: 10.1016/j.ifacol.2018.08.059

Fu, L., Majeed, Y., Zhang, X., Karkee, M., and Zhang, Q. (2020). Faster R-CNN-based apple detection in dense-foliage fruiting-wall trees using RGB and depth features for robotic harvesting. Biosyst. Eng. 197, 245–256. doi: 10.1016/j.biosystemseng.2020.07.007

Gao, F., Fu, L., Zhang, X., Majeed, Y., Li, R., Karkee, M., et al. (2020). Multi-class fruit-on-plant detection for apple in SNAP system using Faster R-CNN. Comput. Electron. Agric. 176:105634. doi: 10.1016/j.compag.2020.105634

Glenn, J., Alex, S., Jirka, B., and Ayush, C. (2021). YOLOv5. Available online at: https://github.com/ultralytics/yoloV5 (accessed February 22, 2022).

He, Z., Xiong, J., Lin, R., Zou, X., Tang, L., Yang, Z., et al. (2017). A method of green litchi recognition in natural environment based on improved LDA classifier. Comput. Electron. Agric. 140, 159–167. doi: 10.1016/j.compag.2017.05.029

Hosoya, N., Mishima, M., Kajiwara, I., and Maeda, S. (2017). Non-destructive firmness assessment of apples using a non-contact laser excitation system based on a laser-induced plasma shock wave. Postharvest Biol. Tec. 128, 11–17. doi: 10.1016/j.postharvbio.2017.01.014

Jin, Y. (2020). Research progress analysis of robotics selective harvesting technologies. Trans. CSAM 51, 1–17. doi: 10.6041/j.issn.1000-1298.2020.09.001

Khojastehnazhand, M., Mohammadi, V., and Minaei, S. (2019). Maturity detection and volume estimation of apricot using image processing technique. Sci. Hortic Amsterdam 251, 247–251. doi: 10.1016/j.scienta.2019.03.033

Koirala, A., Walsh, K., Wang, Z., and McCarthy, C. (2019). Deep learning for real-time fruit detection and orchard fruit load estimation: benchmarking of ’MangoYOLO. Precis. Agric. 20, 1107–1135. doi: 10.1007/s11119-019-09642-0

Li, D., Sun, X., Elkhouchlaa, H., Jia, Y., Yao, Z., Lin, P., et al. (2021). Fast detection and location of longan fruits using UAV images. Comput. Electron. Agric. 190:106465. doi: 10.1016/j.compag.2021.106465

Li, X., Pan, J., Xie, F., Zeng, J., Li, Q., Huang, X., et al. (2021). Fast and accurate green pepper detection in complex backgrounds via an improved Yolov4-tiny model. Comput. Electron. Agric. 191:106503. doi: 10.1016/j.compag.2021.106503

Liang, C., Xiong, J., Zheng, Z., Zhong, Z., Li, Z., Chen, S., et al. (2020). A visual detection method for nighttime litchi fruits and fruiting stems. Comput. Electron. Agric. 169:105192. doi: 10.1016/j.compag.2019.105192

Liu, G., Nouaze, J., Mbouembe, P., and Kim, J. (2020). YOLO-tomato: a robust algorithm for tomato detection based on YOLOv3. Sensors Basel 20:2145. doi: 10.3390/s20072145

Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. (2018). “Path aggregation network for instance segmentation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 8759–8768. doi: 10.1109/CVPR.2018.00913

Lyu, S., Li, R., Zhao, Y., Li, Z., Fan, R., and Liu, S. (2022). Green citrus detection and counting in orchards based on YOLOv5-CS and AI edge system. Sensors Basel 22:576. doi: 10.3390/s22020576

Ma, N., Zhang, X., Zheng, H., and Sun, J. (2018). “Shufflenet v2: practical guidelines for efficient cnn architecture design,” in Proceedings of the European Conference on Computer Vision (ECCV), (Munich), 116–131. doi: 10.48550/arXiv.1807.11164

Peng, H., Li, J., Xu, H., Chen, H., Xing, Z., He, H., et al. (2022). Litchi detection based on multiple feature enhancement and feature fusion SSD. Trans. CSAM 38, 169–177. doi: 10.11975/j.issn.1002-6819.2022.04.020

Pissard, A., Marques, E. J. N., Dardenne, P., Lateur, M., Pasquini, C., Pimentel, M. F., et al. (2021). Evaluation of a handheld ultra-compact NIR spectrometer for rapid and non-destructive determination of apple fruit quality. Postharvest Biol. Tec. 172:111375. doi: 10.1016/j.postharvbio.2020.111375

Qi, W., Chen, H., Luo, T., and Song, F. (2019). Development status, trend and suggestion of litchi industry in mainland China. Guangdong Agric. Sci. 46, 132–139. doi: 10.16768/j.issn.1004-874X.2019.10.020

Qi, X., Dong, J., Lan, Y., and Zhu, H. (2022). Method for identifying litchi picking position based on YOLOv5 and PSPNet. Remote Sens Basel 14:2004. doi: 10.3390/rs14092004

Redmon, J., and Farhadi, A. (2018). Yolov3: an incremental improvement. arXiv[Preprint] Available online at: https://doi.org/10.48550/arXiv.1804.02767 (accessed April 8, 2018).

Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., and McCool, C. (2016). DeepFruits: a fruit detection system using deep neural networks. Sensors Basel 16:1222. doi: 10.3390/s16081222

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). “Mobilenetv2: inverted residuals and linear bottlenecks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (Salt Lake City, UT), 4510–4520. doi: 10.1109/CVPR.2018.00474

Srivastava, R., Talluri, S., Beebi, S., and Kumar, B. (2018). Magnetic resonance imaging for quality evaluation of fruits: a review. Food Anal. Method 11, 2943–2960. doi: 10.1007/s12161-018-1262-6

Tang, Y., Chen, M., Wang, C., Luo, L., Li, J., Lian, G., et al. (2020). Recognition and localization methods for vision-based fruit picking robots: a review. Front. Plant Sci. 11:510. doi: 10.3389/fpls.2020.00510

Taylor, L., and Nitschke, G. (2018). “Improving deep learning with generic data augmentation,” in Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), (Bangalore), 1542–1547. doi: 10.1109/SSCI.2018.8628742

Tian, Y., Yang, G., Wang, Z., Wang, H., Li, E., and Liang, Z. (2019). Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Comput. Electron. Agric. 157, 417–426. doi: 10.1016/j.compag.2019.01.012

Vasconez, J., Delpiano, J., Vougioukas, S., and Cheein, F. (2020). Comparison of convolutional neural networks in fruit detection and counting: a comprehensive evaluation. Comput. Electron. Agric. 173:105348. doi: 10.1016/j.compag.2020.105348

Wan, P., Toudeshki, A., Tan, H., and Ehsani, R. (2018). A methodology for fresh tomato maturity detection using computer vision. Comput. Electron. Agric. 146, 43–50. doi: 10.1016/j.compag.2018.01.011

Wang, C., Liu, S., Wang, Y., Xiong, J., Zhang, Z., Zhao, B., et al. (2022). Application of convolutional neural network-based detection methods in fresh fruit production: a comprehensive review. Front. Plant Sci. 13:868745. doi: 10.3389/fpls.2022.868745

Wang, L., Zhao, Y., Liu, S., Li, Y., Chen, S., and Lan, Y. (2022). Precision detection of dense plums in orchards using the improved YOLOv4 model. Front. Plant Sci. 13:839269. doi: 10.3389/fpls.2022.839269

Wang, C., Tang, Y., Zou, X., Luo, L., and Chen, X. (2017). Recognition and matching of clustered mature litchi fruits using binocular Charge-Coupled Device (CCD) color cameras. Sensors Basel 17:2564. doi: 10.3390/s17112564

Wang, D., and He, D. (2021). Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning. Biosyst. Eng. 210, 271–281. doi: 10.1016/j.biosystemseng.2021.08.015

Wang, L., Qin, M., Lei, J., Wang, X., and Tan, K. (2021). Blueberry maturity recognition method based on improved YOLOv4-Tiny. Trans. CSAM 37, 170–178. doi: 10.11975/j.issn.1002-6819.2021.18.020

Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018). “CBAM: convolutional Block Attention Module,” in Proceedings of the European Conference on Computer Vision (ECCV), (Munich), 3–19. doi: 10.1007/978-3-030-01234-2_1

Wu, F., Duan, J., Chen, S., Ye, Y., Ai, P., and Yang, Z. (2021). Multi-target recognition of bananas and automatic positioning for the inflorescence axis cutting point. Front. Plant Sci. 12:705021. doi: 10.3389/fpls.2021.705021

Xiong, J., Lin, R., Liu, Z., He, Z., Tang, L., Yang, Z., et al. (2018). The recognition of litchi clusters and the calculation of picking point in a nocturnal natural environment. Biosyst. Eng 166, 44–57. doi: 10.1016/j.biosystemseng.2017.11.005

Yildiz, F., Özdemir, A., and Uluişik, S. (2018). “Custom design fruit quality evaluation system with non-destructive testing (NDT) techniques,” in Proceedings of the 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), (Malatya), 28–30. doi: 10.1109/IDAP.2018.8620769

Zhang, W., Liu, Y., Chen, K., Li, H., Duan, Y., Wu, W., et al. (2021). Lightweight Fruit-detection algorithm for edge computing applications. Front. Plant Sci. 12:740936. doi: 10.3389/fpls.2021.740936

Zhang, Z., Qiao, Y., Guo, Y., and He, D. (2022). Deep learning based automatic grape downy mildew detection for smart vineyard agriculture. Front. Plant Sci. 13:872107. doi: 10.3389/fpls.2022.872107

Zheng, Z., Xiong, J., Lin, H., Han, Y., Sun, B., Xie, Z., et al. (2021). A method of green citrus detection in natural environments using a deep convolutional neural network. Front. Plant Sci. 12:705737. doi: 10.3389/fpls.2021.705737













	 
	

	TYPE Original Research
PUBLISHED 11 August 2022
DOI 10.3389/fpls.2022.960103





Flow velocity sensors arrangement for vegetated channels

Yi Zhou1, Weiwei Yao2, Xiangli He1, Tongshu Li1, Shiyu Wang1 and Yu Han1*

1College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China

2State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China

[image: image]

OPEN ACCESS

EDITED BY
Yongliang Qiao, The University of Sydney, Australia

REVIEWED BY
Bimlesh Kumar, Indian Institute of Technology Guwahati, India
Weijie Wang, China Institute of Water Resources and Hydropower Research, China
Wenting Han, Northwest A&F University, China
Jinjun Zhou, Beijing University of Technology, China

*CORRESPONDENCE
Yu Han, yhan@cau.edu.cn

SPECIALTY SECTION
This article was submitted to Sustainable and Intelligent Phytoprotection, a section of the journal Frontiers in Plant Science

RECEIVED 02 June 2022
ACCEPTED 18 July 2022
PUBLISHED 11 August 2022

CITATION
Zhou Y, Yao W, He X, Li T, Wang S and Han Y (2022) Flow velocity sensors arrangement for vegetated channels.
Front. Plant Sci. 13:960103.
doi: 10.3389/fpls.2022.960103

COPYRIGHT
© 2022 Zhou, Yao, He, Li, Wang and Han. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Ecological rivers or ecological channels are being widely used. Precious measurement and estimation of flow in irrigation areas are important issues in agricultural engineering. For the sustainable development of vegetation, it is necessary to consider how to use sensors to measure flow more easily in the river to protect both plants and sensors from damage. This article selects smooth channels and ecological channels of different shapes for research and presents a simplified method for arming ultrasonic sensors to obtain channel flow velocity. The flow characteristics along the normal line direction are obtained by theoretical analysis. The method uses the average flow velocity based on the normal to the channel wall to determine the location of the sensors. It combines the flow velocity determined by the sensors with the flow calculation method, thus simplifying the flow estimation steps. Experiments under flow conditions validate the efficacy of the proposed ultrasonic sensor arrangement method. This article not only simplifies the arrangement of sensors in channel flow but also improves the accuracy of the flow measurement method, which is important to promote the construction of ecological channels.
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Introduction

A key focus of the efficient and safe operation of smart irrigation districts is the measurement and monitoring of fluid flow (Gupta et al., 2021). Ecological flow is an important monitoring data for ecological channels. Riparian vegetation is particularly sensitive to fluctuations in water flow and level (Lozanovska et al., 2020). Additionally, the presence of vegetation can cause some disturbance to the flow field and flow measurement, and the presence of vegetation patches significantly altered the characteristics of wind-caused waves, water flow, and material transport in the shallow lake (Wang et al., 2021; Wu et al., 2022). At present, for flow measurement, most of them use manual handheld methods, which are more difficult to measure. Therefore, it is necessary to introduce a sensor device and study a simplified method of sensor placement in ecological/non-ecological channels to obtain flow.

Velocity distribution in smooth open channels has been extensively studied. However, many artificial and natural open channels are characterized by vegetation cover. Aquatic vegetation patches are an important part of the river ecosystem. Natural vegetation is an effective measure to protect slopes and soils, purify water quality, and improve the ecological environment of rivers for river ecosystem restoration. It is crucial to study the flow characteristics of rivers with vegetation. The current knowledge of the flow of these rivers is limited to the cross-sectional mean flow velocity and flow depth (Wang et al., 2015, 2019), but the calculation of river flow requires cross-sectional flow distribution. Flow measurement and control facilities are located throughout the irrigation district’s water delivery and distribution, especially at the bifurcation of the final channel system (Figure 1). Devices equipped with sensors are typically used to measure flow in irrigation areas. Flow measurement is inseparable from flow rate measurement. In a closed pipe or gate box, the propagation path depends on the chosen method of placing the sensor in the pipe, and the flow rate can be calculated from the measurement time (Munasinghe and Paul, 2020).


[image: image]

FIGURE 1
The whole process of water transmission and distribution in the irrigation area and the layout of flow measurement facilities.


How sensors can be placed to achieve good measurements and reduce workload has always been an area of interest and concern for scientists. Some products have developed an integrated plate gate flow meter that primarily uses Sonaray acoustic array technology. The technology provides an accurate pattern of flow velocity distribution within the metering chamber by mapping flow velocity states through multi-path cross-sections. Thirty-two individual acoustic sensors are placed in four chambers spanning eight planes within the chamber. Flow velocities are sampled in eight planes within the metering chamber, with each plane sampling all flow velocity fields in that plane using acoustic cross-transfer times. The vertical integration of the horizontal flow velocity distribution constitutes a three-dimensional flow velocity distribution. Yakunin (2017) presented a sensor arrangement that which when the sensors are located at the vertices of the tetrahedron, a minimum number of sensors can be used, making it possible to measure the velocity of the air in all three directions simultaneously. Jin et al. (2011) designed a theoretical model of an 18-channel ultrasonic flow sensor based on a time-difference ultrasonic flow meter. Jin et al. (2011) proposed to find the optimal location for placing the sensors based on maximizing the gram-rank equation of the sensor response at each possible location or combination of locations. Oehler and Illingworth (2018) discussed the feasibility of effective feedback control with a single sensor and a single actuator. However, commercial sensors for agriculture and its irrigation systems are very expensive (Garcia et al., 2020). Therefore, how to improve the location of flow sensors, reduce the number of flow sensors and obtain accurate flow estimation is the focus of current research.

A new calculation method is proposed in this article which differs from the previous methods. This simplified method is used to estimate the flow velocity from multiple specific sensing points of flow velocity sensors in an open channel. First, this article is conducted to obtain the flow velocity distribution characteristics of the channel through theoretical analysis. Then, the theoretical expressions for the location of sensors and the formulae for the calculation of the channel flow are given in this article. Finally, based on the results obtained, the flow rate can be quickly obtained by measuring the velocity at these points using the sensors and substituting them into the discharge calculation equation. In addition, relevant experiments were designed involving three cross-sectional types of channels: rectangular, trapezoidal with a curved bottom, and U-shaped. Based on the physical experimental model, it is verified that the above theoretical analysis is reliable in both vegetated and smooth channels.



Materials and methods


Location of sensor representative points: Smooth channel as an example

In irrigation areas, the accurate measurement of flow in various channels is an important issue in agricultural engineering. The velocity distribution in smooth open channels has been studied extensively. Log-law was considered to describe the time-averaged flow velocity distribution of a fully developed open channel with uniform turbulent flow, which was first proposed by Keulegan (1938).

[image: image]

where u+ = u/[image: image] , A = 2.3/κ , [image: image] is shear velocity, u is the flow velocity. C and D are constants and κ is the Karman constant.

Many researchers have demonstrated the validity of this law in different experiments (Kirkgoz, 1989; Tominaga and Nezu, 1991). Nonetheless, experiments have shown that the log-law normally deviates from experimental data in the outer region (Steffler et al., 1985). Coles (1956) proposed adding a wake function to the log-law to represent the mean velocity profile of the boundary layer, which was called the Wake law.

[image: image]

where [image: image] is the bed-shear velocity,κ≈0.41, Π≈0.20≈κ/2 is the wake strength coefficient, and h as the flow depth. Herein y0 is the zero-velocity bed defined by the log-law (first term).

Arc-bottom channels make up the majority of both natural and artificial channels. Arc-bottomed channels, important irrigation and drainage channel, are characterized by high flow rates. Generally speaking, the transfer of flow residual energy takes place along the relatively shortest distance to the boundary (Han et al., 2015). For an arc-bottomed channel, as the channel boundary is curved, we can connect the center of the circle to any point in the channel cross-section and extend it to get to the intersection point with the sidewall. Then, the length between these two points can then be obtained as the relative shortest geometric distance for energy dissipation. The objects of study in this article are arc-shaped channels and rectangular open channels, of which arc-shaped channels include U-shaped channels, and trapezoidal channels with arc bottom. The wall shear force for constant uniform flow in an arc-shaped smooth open channel is the same, and the velocity distribution follows the log-law. Take the trapezoidal and U-shaped channels at the bottom of the arc as examples, the position of the representative point of the mean velocity of the section normal line is deduced.

Based on the zoning theory and the quadratic wake function proposed by Coles (1956), the channel velocity distribution model can be written as the following general expression:

[image: image]

where A, B, and C’ are correlation coefficients, which are related to the experiment. [image: image] is the local friction velocity. ν is the kinematic viscosity coefficient of water. l is the normal distance from each point on the normal line to the side wall. Kl is the vertical distance from the sidewall to the boundary line. The tail flow function part of Eq. (3) is changed according to the trigonometric relationship as follows:

[image: image]

At any point in the channel, take the microelement with length and width of Kl and dw, and since dw tends to 0, the flow through the microelement can be expressed as:

[image: image]

Furthermore, the micro-element rectangle with length and width of dl and dw, respectively, are taken as shown in the shaded part in Figure 2, so that the flow through the micro-element rectangle is:

[image: image]
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FIGURE 2
The U-shaped channel is used as an example for analytical derivation. In a U-shaped channel with radius R and maximum water depth H, take a normal line passing through the center of the circle, and the length under the water surface is Kl.


The flow rate is obtained by integrating dl in the y’ direction:

[image: image]

At the same time, the flow can be expressed as Eq. (8).

[image: image]
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The flow velocity obtained using integration is equal to the flow rate obtained by the velocity-area method, that is Q = Q′, the expression of l is obtained by simultaneous combining Eqs. (7) and (8), that is:
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where [image: image]. Therefore, the solution of the representative point location needs to be related to the coefficients A and B in the velocity distribution law, and the values of A and B are obtained from experiments.



Simplified flow velocity sensor placement in vegetated channels

In nature, open channels are not completely smooth, that is, flexible vegetation accounts for a large proportion of the channel, so the study of hydraulic characteristics of channels containing flexible vegetation has been widely concerned in recent years. Unlike rigid vegetation, flexible vegetation will bend under the action of water flow, and with the change of flow velocity, the flow velocity will also change due to the influence of flexible vegetation bendings, such as the contact area between vegetation and water flow, and the resistance of vegetation to water flow. Therefore, the study of the effects of submerged flexible vegetation on the physical process of water flow, such as flow structure and flow characteristics, will contribute to the protection and restoration of water ecology. When studying the velocity distribution of vegetated channels, the flow is generally stratified in the vertical direction, which is called the zoning theory. Due to the difference in zoning theories, the velocity distribution models of fully submerged flexible vegetation channels have different expressions and cannot be described by a unified function. Most researchers have obtained the velocity distribution models based on the log-law of velocity distribution in a smooth open channel mentioned above. The following mainly introduces the velocity distribution model based on the two-zone theory. Kouwen et al. (1969) assumed the mixing length and put forward the velocity distribution model based on the classical log-law. The velocity distribution model of the upper part of the plant layer is as follows:

[image: image]

where uhv is the time mean velocity of the top of the plant after lodging along the water flow direction and the distance from the channel bottom is hv. hv is the average height of plants after bending. κ is Carmen constant. y is the distance from any point to the bottom of the channel.

In vegetated channels, generally, the constant, and uniform flow of fully submerged flexible vegetation channels is divided into the vegetation layer and a free water layer in the normal line direction. In the vegetated layer, the resistance per unit of fluid mass caused by vegetation can be described as:

[image: image]

where A = hv⋅d represents the contact area of each grass with water, ρ is the density of water body, Cd is the drag coefficient of plants, d is the diameter of plants, uud is the average velocity of the vegetation layer, and m is the density of vegetation.

According to Yang and Choi (2010), uud can be calculated by the following Equation:

[image: image]

In a uniform flow, the shear stress can be expressed as:

[image: image]

The shear stress in the upper layer of vegetation is not equal to the resistance per unit of fluid mass caused by the vegetation. Therefore, the average flow velocity of the vegetation layer is:

[image: image]

The coefficient α is introduced to correct the equation. In the free water layer, according to the principle of force balance, the equation of water flow in the non-vegetation layer of submerged vegetation under the condition of constant uniform flow is:

[image: image]

where τ is stress, ρ is density, and J is slope. Ignoring the viscous stress, the stress is equal to Reynolds stress, that is:

[image: image]

Integrate the above Equation from the water surface down to y in the upper vegetation layer, and the distribution relationship of Reynolds stress can be obtained as follows:

[image: image]

Introducing Prandtl’s mixing length theory and vegetation riverbed theory (Huai et al., 2009), channel flow velocity distribution formula with flexible vegetation can be written as:

[image: image]

Considering the reproducibility and uniformity of the experiment, the material of the invertible vegetation used in this study was plastic. The vegetation had a diameter of 3 cm and a height of 6 cm and was fixed to the inner wall of the channel without gaps to simulate the full coverage of vegetation in the channel or river. Eq. (20) reflects the influence of vegetation on the flow velocity of the upper layer from an overall perspective. The flow velocity near the vegetation close to the riverbed approaches zero (Tang et al., 2020). It should also be noted here that although the analysis of the flow inside the vegetation layer is neglected, the flow velocity of the water above is affected by the vegetation layer and is reflected in the flow velocity distribution expression, so it is applicable to the vegetation channel.

In the channel, the water flow scours the vegetation causing it to tilt. We measure the average height of the vegetation after falling as its boundary. In this study, it is considered that the flow velocity in the flexible vegetation layer is constant, i.e., the flow velocity in the vegetation layer is uud. The flexible vegetation used in this study is densely distributed and low in height, so the flexible vegetation can be analyzed as a whole. The height of the flexible vegetation used in the experiments is low. The focus of this study is on the flow above the vegetation layer. Considering that the inversion height of the vegetation layer in this study is small, resulting in a small flow response in the vegetation layer.

Similar to the derivation process in a smooth channel, based on the channel velocity distribution model with full coverage of flexible vegetation, the position of the representative point of the mean velocity in the free water layer can be obtained:

[image: image]

Kz is the vertical distance from the side wall to the boundary line.




Experimental setup

The experiments set vegetated channels and smooth channels. The side wall of the smooth channel is plexiglass, and for smooth channels, flexible vegetation covers the inner wall of the channel (Figure 3). To increase the reliability of the test, there are three types of channel sections in the table: arc-bottom trapezoidal, U-shaped, and rectangle. Tables 1, 2 have illustrated the flow characteristics and parameters for the smooth and vegetated channels.


[image: image]

FIGURE 3
Vegetated channel circulation system device arrangement.



TABLE 1    Flow characteristics and parameters for the smooth channels.

[image: Table 1]


TABLE 2    Flow characteristics and parameters for the vegetated channels.

[image: Table 2]

The experiments are carried out in the Hydraulic Experiment Hall of China Agricultural University (CAU) (Beijing, China) and the Hydraulics Laboratory at the Wuhan University (WHU) (Wuhan, China) (Huai et al., 2009). The main components of the channel are the head tank, the tail tank, the glass channel, and the water circulation system. The water tank is aligned with the center of the channel and symmetrical with the centerline of the glass channel. Also, additional honeycomb steel plates are installed at the entrance of the channel for a more uniform flow rate. An adjustable tailgate was installed at the end of the channel to vary the water depth. The cross-section of the smooth arc-bottomed channel is composed of an arc section at the bottom and a straight section connected with an arc section at both ends, its bottom arc is 0.19 m radius and 90° right angle arc, the side slope coefficient of a straight section at both ends is 1:1, the height of the channel bottom from the endpoint of the straight section is 0.18 m. The channel is fixed by using a steel structure bracket. The cross-section of the U-shaped vegetated channel consists of a circular arc at the bottom and a straight section at the top, and the flexible vegetation fully covers the inner wall of the channel. The total length of the test channel section is 6.7 m, the radius of the bottom arc of the flume is 0.25 m, the flume is fixed on the steel structure support, and the bottom slope of the channel chosen for this test is 1:1,500. An adjustable tailgate was installed at the end of the channel to vary the water depth. Considering the reproducibility and uniformity of the experiment, the material of the invertible vegetation used in this study was plastic. The vegetation had a diameter of 3 cm and a height of 6 cm and was fixed to the inner wall of the channel without gaps to simulate the full coverage of vegetation in the channel or river.

To ensure the relative accuracy of flow velocity measurement, the location of flow velocity measurement in the test is chosen at 2/3 of the channel length. Due to the symmetry of the channel section, the velocity distribution of the section should also be symmetrical, so the test only needs to measure the test data in half of the area with the mid-pipeline as the dividing line. In this test, a measurement line is arranged every 2 cm from the mid-pipeline to the right, and a measurement point is arranged every 1 cm for each measurement line to ensure that the measured data can accurately reflect the actual flow field.

The test needs to ensure that the water flow in the channel is uniform in the open channel, therefore, the water supply flow needs to be adjusted to keep the channel flow uniform and stable. The flow rate in the test is determined using a flow meter. Common current flow velocity measurement sensors are Acoustic Doppler Velocimetry (ADV) and propellers, both of which are used in the experiments. Flow velocity measurements are performed by ADV at measurement points on the channel, each of which is a grid node divided in advance, and the measured instantaneous flow velocity data can be transferred directly to a computer. The axes of the experiment are set as follows: x-axis for the longitudinal direction, z-axis for the lateral direction, and y-axis for the vertical direction. To study the variation of water flow characteristics of submerged vegetation along the water depth direction, the experimental measurements were carried out in the XY plane. To obtain the flow velocity data by using ADV, which needs to be installed on a rail located above the water tank that can move in both lateral and longitudinal directions. Normally observation is made at 0.1 depth increments between 0.1 and 0.9 of the total water depth. The minimum depth of the instrument is 2 cm. In the experiment, we ensure that the distance between the water surface and the instrument, and between the bottom of the canal and the instrument, is within the instrument specifications. In order to minimize the influence of ADV noise, the sample size of each measurement point in this experiment is about 2,000 times, 120 s of data are collected at each test point with a sampling frequency of 25 Hz, after which the computer software automatically generates an Excel containing the data in the specified folder, and finally, the acquired instantaneous velocity is averaged.



Results


Cross-sectional flow velocity distribution based on test data

According to the experiment results, the contour distribution of channel section velocity can be expressed. As can be seen from Figure 4, the magnitude of flow velocity in the cross-section is symmetrically distributed along the midline, and the core area of flow velocity is located below the water surface. The flow velocity in the vegetation layer is smaller, which indicates that the resistance is higher in the flexible vegetation layer. The flow velocity distribution pattern of water above the vegetation layer is similar to that of the smooth open channel, and all of them show a dip-phenomenon near the water surface. In addition, the empirical equation of the flow distribution shows that the inverted height hv and uud in the vegetated channel also affect the flow distribution. This is the reason why the contours of flow velocity distribution in the vegetated channel do not appear to show very regularly.


[image: image]

FIGURE 4
The contour distribution of velocity normalized in channels under M1 (A), M2 (B), N1 (C), N2 (D), T1 (E), T2 (F).




Velocity distribution along normal line direction in channels

In section “Materials and methods,” there are two representative points of the mean velocity derived along a normal line of smooth channel boundary and only one point in the vegetated channel yet. Since the representative point near the water surface is susceptible to surface turbulence and secondary flow, the representative point near the bottom of the channel is chosen for the following analysis. The normal measurement line is used as the study object, and the location of the representative mean flow velocity is plotted on each normal line. The theoretical location value is the location of the representative point of the mean flow velocity obtained from the above mechanism analysis, and the measured value is the location obtained by interpolation after averaging the measured flow velocity data. The results are shown in Figure 5.


[image: image]

FIGURE 5
Comparison between theoretical position and measured position of representative point of normal average velocity. (A) vegetated U-shaped channel, (B) smooth arc-bottom trapezium channel.


Unlike the smooth channel, in the vegetated channel, H, Ln, and hv are different for different flows, especially Ln in the normal direction of the sidewall is affected by both the water depth and the normal position, so the coefficients before different log expressions change with these parameters. So, the exact parameters are not given for the vegetated channels. In a vegetated channel the velocity distribution data of five normal line directions under three flow rates are expressed in the form of u/[image: image] and ln(z/hv), and the theoretical values are calculated by Eq. (20). Figure 6 are as follows:


[image: image]

FIGURE 6
Velocity distribution along normal line directions in vegetated channel under T1 (A), T2 (B), and T3 (C).


For smooth channels, first of all, the velocity data on the middle perpendicular are fitted by the empirical formula. It is found that the fitting formula is consistent with Eq. (3). Popularize and verify the formula to check whether the measured velocity data of the whole cross-section are in accordance with the formula. According to the fitting of three groups of test results, the values of A and B can be determined:

[image: image]

This result is very close to the relevant parameters in the classical log-law. Moreover, many researchers have given values of the parameters for specific working conditions, and their magnitudes are all around these two values. Therefore, in this test, the values of the two parameters A and B are reliable after the verification of a large amount of data. The velocity distribution data are expressed in the form of u/u* and ln(z), and the theoretical values are calculated by Eq. (3). The results are shown in Figure 7.


[image: image]

FIGURE 7
Velocity distribution along normal line directions in smooth channel. (A) M1, (B) M2, (C) N1, (D) N2.





Discussion


Analysis of flow velocity along normal line directions

The measured flow velocity at the representative point of normal average flow velocity is taken as theoretical value ut, and the flow velocity obtained by averaging the flow velocities at all normal measuring points is taken as experimental value um, which is divided by [image: image] to be dimensionless. The theoretical value (ut/[image: image])of the representative point is taken as abscissa and the experimental value (um/[image: image]) is taken as ordinate and plotted in the coordinate system. It can be seen from Figure 8 that the flow velocity data of all working conditions are distributed near the straight line with slope 1.


[image: image]

FIGURE 8
Comparison between the experimental and theoretical values of the mean velocity in the arc-bottom trapezoidal channel. (A) vegetated channel, (B) smooth channel.


In a vegetated channel, as the flow rate increases, the flow is closer to uniform flow, which makes the difference between the measured and theoretical values decrease. In all three flow cases, the flow velocity at the measurement points away from the sidewall on each normal line gradually deviates from the theoretical value. It shows that the log-law cannot explain the flow velocity distribution law near the water surface well, and the tail flow function needs to be added for correction.

In a smooth channel, the calculation revealed that in our test, from the mid-pipeline to close to the water surface, the normal error situation there is a trend of first decreasing and then increasing, indicating that in the channel quarter of the place, the measured value and equation can be a good match, and overall, the measured and calculated values of flow velocity are relatively close, the relative error is within 10%.

Compared with the four normal lines on the side (L1, 2, 3, and 4), the flow velocity distribution at the mid-pipeline (L0) deviates more from the theoretical value, which may be caused by the following two reasons:


I.In the case of flexible vegetation in the channel, the flow measurement point at the centerline of the cross-section is far from the full grass sidewall on both sides, which is less affected by the flexible vegetation and the flow velocity distribution is closer to the smooth open channel condition.

II. Secondary flow may exist in the open channel flow section.





A simplified algorithm for discharge estimation

Since the equations for the location of characteristic sensing points of the flow velocity sensors were obtained in section “Materials and methods,” we can estimate the discharge with multiple characteristic sensing points’ velocities by setting representative measurement lines. Therefore, the vertical line and two other normal lines of the channel as the measurement normal lines were selected for the distribution and control of measurement points.

If the channel does not contain vegetation, firstly, the locations of two normal average velocity representative points are determined on each of the three normal lines. Next, find the average position of the two points on the normal. Use the averaged point as the point for zoning and flow calculation. Connect the three partition points. The points on the two inclined normal lines intersect vertically with the water surface to form areas S11, S21, S31, and S4. The middle part of the channel is divided into areas S21 and S22 in smooth channel. The total flow rate of the channel can be calculated in zones, and the flow rate of each zone can be obtained by multiplying the flow rate measured by the flow sensor by the corresponding area. Nevertheless, for channels containing vegetation, in addition to considering the three areas, we can also obtain the flow of the vegetation layer by multiplying the top flow rate of the vegetation layer with the area of the vegetation layer, which is obtained by placing a flow sensor above the vegetation layer (Figure 9).


[image: image]

FIGURE 9
Diagram of estimating discharge with 3-measuring-lines. The positions of l11, l12 … l32 are determined by Eqs. (11) and (21), and S11, S21… S4 are the areas of the polygon. (A) vegetated channel, (B) smooth channel.


Considering that there are two channels with different roughness, including smooth and flexible vegetated channels, according to the velocity-area method, there are two formulas for calculating the total flow of channels:

(1) In the smooth channel, there are three partition polygons divided by the above method, and the total Q is:

[image: image]

(2) In the flexible vegetated channel, there are four partition polygons divided by the above method, and the total flow Q is:

[image: image]

where u1 is the velocity at the flow sensor placement point on the two inclined normal lines and u2 is the velocity at the flow sensor placement point on the mid-slope normal. α, β and θ are the flow correction factors, determined from the test data.

The two measurement normal lines at different locations affect the accuracy of the flow calculation. We use M1, M2, and M3 conditions as examples (Table 3). The normal line 3, located at about a quarter of the channel, is used to calculate the results of the flow with the smallest average error. Therefore, considering the average error and operability, as well as simplicity in practice, we conclude that the choice of the normal located at about a quarter of the channel is most suitable for measuring the discharge of the open channel.


TABLE 3    Comparison of errors in applying two different normal lines to calculate flow rates.

[image: Table 3]

For the rectangular vegetation-containing channels, the normal lines of the bottom walls are all perpendicular to the walls, so the positions of the representative points on the normal lines are located at the same height. As shown above, the representative point on the mid-pipeline is selected to place a flow sensor. The measured flow rate is used as the average flow rate of the upper water layer, and the flow sensor is selected to place a flow sensor at the height of vegetation inversion on the mid-pipeline (Figure 10). The measured flow rate is used as the average flow rate of the vegetation layer, so the section flow rate calculation formula can be expressed as Eq. (25).

[image: image]
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FIGURE 10
The schematic diagram for estimating the discharge of a rectangular vegetation-containing channel using one measurement line. The position of l1 is determined by Eq. (21), and the position of l2 is the height of the vegetation canopy after vegetation fall, measured from the experiment. S1 is the area of the water layer and S2 is the area of the vegetation layer.


The calculation formula of the average error value (e) in Table 4 is given. The accuracy of the flow calculation method is high, and its relative errors can all be controlled at about 5%, indicating that our proposed flow measurement calculation formula is feasible and can achieve the purpose of simplifying the flow measurement method and improving the accuracy of flow measurement.

[image: image]


TABLE 4    Relative error in calculating the flow rate.

[image: Table 4]

The results of the calculation of the relative error are shown in Table 4. The actual flow rate of the channel is the flow rate indicated by the test electromagnetic flow meter, and the theoretically calculated flow rate is the result obtained from the calculation formula.

However, in fact, this simplified method of estimating the flow velocity does have some deficiencies.


(1)For the channels studied in this article, there are only a few different cases of channel-related parameters, such as the degree of the bottom arc of the channel and the height of the vegetation in the channel. More laboratory tests and field experiments can be added in the future to explore whether the conclusions are also applicable.

(2)In the verification of the measurement point layout and flow measurement method, this article also needs to determine flow correction for different tests. However, questions such as how the correction should be made and whether there is a general rule for the correction coefficients need to be further improved by subsequent experiments and theoretical analysis.






Conclusion

Vegetated and smooth open channel flows are revisited in terms of the cross-sectional velocity distributions and flow measurement. Through mechanistic analysis and physical experiments, a new method for estimating channel flow by flow velocity sensors is proposed with the following main conclusions:


(1)In ecological channels, representative points indicating the average flow velocity exist in the normal line direction. In practice, the average flow rate of each measurement line can be quickly obtained by using flow velocity sensors for flow rate measurement. Especially for ecological channels, the influence of vegetation on the measurement can be reduced without affecting its accuracy. A simplified sensor flow measurement method facilitates the construction and restoration of ecological channels.

(2)The characteristics of the flow velocity distribution along the normal line directions in an ecological channel are obtained by theoretical analysis, and the expression of the multiple characteristic sensing points locations of the flow velocity sensor in the channel section is proposed. The velocity deduction based on log-law indicates the average velocity in the normal line direction under different flow rates and roughness, which fits perfectly with the experimental data.

(3)Based on the theory of representative points, the formula of ecological channel flow is given. By comparing the effects of applying the normal lines at different locations on the flow calculation results, we find that the normal lines located at the quarter of the ecological channel have the smallest relative errors. The validity of the flow calculation formula is proved by numerous experimental data.
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Cotton is an important source of fiber. The precise and intelligent management of cotton fields is the top priority of cotton production. Many intelligent management methods of cotton fields are inseparable from cotton boll localization, such as automated cotton picking, sustainable boll pest control, boll maturity analysis, and yield estimation. At present, object detection methods are widely used for crop localization. However, object detection methods require relatively expensive bounding box annotations for supervised learning, and some non-object regions are inevitably included in the annotated bounding boxes. The features of these non-object regions may cause misjudgment by the network model. Unlike bounding box annotations, point annotations are less expensive to label and the annotated points are only likely to belong to the object. Considering these advantages of point annotation, a point annotation-based multi-scale cotton boll localization method is proposed, called MCBLNet. It is mainly composed of scene encoding for feature extraction, location decoding for localization prediction and localization map fusion for multi-scale information association. To evaluate the robustness and accuracy of MCBLNet, we conduct experiments on our constructed cotton boll localization (CBL) dataset (300 in-field cotton boll images). Experimental results demonstrate that MCBLNet method improves by 49.4% average precision on CBL dataset compared with typically point-based localization state-of-the-arts. Additionally, MCBLNet method outperforms or at least comparable with common object detection methods.

KEYWORDS
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1. Introduction

Cotton is a kind of important economic crops in China, as well as important source of fiber and feed. With the increasing demand for sustainable development in modern agriculture (Dubey et al., 2021), cotton production has changed from high yield at any cost to high quality at low cost with better ecological sustainability. Throughout the growth cycle of cotton, cotton bolls are susceptible to pests and diseases such as bollworm and boll rot diseases. In recent years, large-scale fertilization and pesticide spraying are highly required to reduce the impact of pests and diseases on the yield and quality of cotton (Hafeez et al., 2022). A typical example is that cotton bolls are susceptible to verticillium wilt, resulting in premature senescence. Usually spraying a large amount of fungicides on the foliage can prevent the occurrence of Verticillium wilt (Lang et al., 2012). However, this strategy not only requires a mass of labor and material costs, but easily damages the ecological environment of cotton fields (Chi et al., 2021). To save costs and achieve sustainable planting, fixed-point quantitative fertilization and precise pesticide application can be used for misuse and overuse of chemical fertilizer and pesticide. The automatic cotton boll localization method is a key step to realize the precise and intelligent management of cotton fields. In addition, agricultural automation methods such as automatic cotton picking, cotton boll maturity analysis, and yield estimation are also inseparable from cotton boll localization. Therefore, it is necessary to develop a simple, effective and low-cost method for automatic localization of cotton bolls with computer vision technology, which also contributes to the realization of cost saving, quality improvement and sustainable intelligent planting.

The development of computer vision technology has promoted the agricultural automation level. At present, some researchers have studied the usage of image segmentation or object detection methods to automatically identify crop such as apples (Si et al., 2015), tea leaves (Chen and Chen, 2020), grapes (Luo et al., 2016) and cotton (Bhattacharya et al., 2013; Kumar et al., 2016; Singh et al., 2021). These methods usually require bounding box annotations or even pixel-level annotations for supervised learning. Bounding box annotation not only requires high annotation cost, but also inevitably contains some non-target regions, which may allow the model to learn some non-target features and cause misjudgment. Unlike bounding box annotation, point annotation has a relatively low labeling cost and the labeled points must belong to the object. Therefore, it seems possible to explore a simple and robust method for in-field crop localization based on point annotations.

Considering the advantage that point annotation will provide target location information simply and efficiently, a multi-scale cotton boll localization method is proposed based on point annotation and encoder-decoder network structure, named MCBLNet. It is mainly composed of scene encoding for feature extraction and generation of features at different scales, location decoding for location prediction and generation of multi-scale localization maps, and localization map fusion for multi-scale information association. Experiments are conducted to verify the effectiveness of MCBLNet and report relatively accurate localization performance. In general, the proposed MCBLNet method aims to locate cotton boll in real scenes simply and efficiently, and provides a theoretical basis for the realization of sustainable intelligent planting.



2. Related work

At present, crop localization methods based on deep learning technology are usually implemented by object detection or segmentation (Agrawal et al., 2016; Su et al., 2021; Franchetti and Pirri, 2022). Among them, the object detection method can be divided into one-stage and two-stage. Typical one-stage object detection methods include SSD (Liu et al., 2016) and YOLO series (Redmon et al., 2016; Redmon and Farhadi, 2017, 2018). Shi et al. (2020) designs channel and spatial masks based on the YOLOv3-tiny network to detect convolution kernels in the network that are closely related to specific target outputs, resulting in more efficient mango detection. Jintasuttisak et al. (2022) used the YOLOv5-m network to detect crowded date palms in UAV images. A series of networks from RCNN (Girshick et al., 2014) to Faster RCNN (Ren et al., 2017) are typical two-stage methods in object detection. Li et al. (2021) adopted a high-resolution network as the backbone to improve Faster RCNN to detect dense hydroponic lettuce seedlings. Mask RCNN (He et al., 2017) is an image segmentation method in the RCNN series of networks. Wang and He (2022) integrated the attention module into the Mask RCNN model, which enhanced the feature extraction ability of the model, thereby segmenting apples of different maturity levels. Although both object detection methods and image segmentation methods can localize crops with little scale variation and high color distinguishability, they require high labeling costs as a basis. Furthermore, both of them may have difficulty effectively detecting small objects in dense images due to the loss of spatial and detailed feature information (Wang et al., 2022). In addition, since objects in highly dense images may overlap each other, the prediction boxes of object detection methods also overlap each other. This will lead to unfriendly visualization results.

Some researchers localize dense objects based on point annotations. Song et al. (2021) proposed the P2PNet network to directly predict a set of points and perform one-to-one matching for dense object localization. Zand et al. (2022) proposed a multi-task dense object localization method based on VGG network. Although these methods can localize dense objects only with point annotations, they are difficult to localize various crops effectively due to their limited feature extraction ability, field crop scale changes, and natural plant growth changes. In addition, Ronneberger et al. (2015) proposed a fully connected network UNet based on the encoder-decoder structure, which can effectively extract image features while using skip connections to further enhance the localization accuracy. Ribera et al. (2019) located different targets in different scenes based on UNet. To sum up, a simple and efficient cotton boll location method based on point annotation may be designed by combining the dense crowd location strategy based on point annotation with the structure of UNet network.



3. Materials and methods


3.1. Materials

The CBL dataset targets in-field cotton boll localization. Field cotton boll images were collected in Xinjiang Uygur Autonomous Region (44.18N, 86E), and taken under natural illumination by the ground-based non-contact observation system (Li et al., 2020). The geographical location of the image acquisition is shown in Figure 1. Three hundred images exposed normal images were selected from images collected from 2016 to July and August 2018 to compose the CBL dataset, which contains a series of cotton field images during the growth cycle of cotton bolls.


[image: Figure 1]
FIGURE 1
 Location of field boll image acquisition sites.


As shown in Figure 2, the dataset consists of front view images of field bolls with four different resolutions of 3088 × 2056, 3456 × 2304, 1920 × 1080, and 5184 × 3456. In order to ensure the diversity of cotton boll images during the experiment, 180 images are used for training, 58 images are used for validation, and the other 62 images are used for testing. Following standard practice (Lu et al., 2021), the center of each boll is manually annotated with a point since point annotations provide information on the location and class of the target. The number of cotton bolls in the image varies from 1 to 44, and a total of 5,794 boll instances were finally annotated. Ground-truth is generated by Gaussian smoothing on a matrix of annotated points. The labeling tool used is LabelMe, which can be found at https://github.com/wkentaro/labelme.


[image: Figure 2]
FIGURE 2
 Example of CBL dataset. (A) Is the original image, (B) is the corresponding ground-truth.




3.2. Methods

In this section, we introduce our proposed fully convolutional network MCBLNet based on UNet. MCBLNet aims to learn a mapping from an input image of size h × w × 3 to a localization map of size h × w × 1, as shown in Figure 3. MCBLNet mainly composed of scene encoding for feature extraction, location decoding for position prediction and localization map fusion for multi-scale information association. The scene encoding, location decoding, and localization map fusion are as follows.


[image: Figure 3]
FIGURE 3
 The pipeline of MCBLNet network architecture.



3.2.1. Scene encoding and location decoding

Referring to the UNet network (Ronneberger et al., 2015), the detailed structure of feature encoding and multi-scale localization map prediction in MCBLNet is shown in Figure 4. It consists of an initial convolution block, four Down modules, four UP modules, and four end convolution blocks. The initial convolution (Init Conv) block is a set of two 3 × 3 convolutions with a stride of 1 and a padding of 1 for channel number expansion; the end convolution (End Conv) block is a combination of 1 × 1 convolution and sigmoid function for localization map prediction; Down module for scene encoding; Up module for location decoding. Scene encoding and localization decoding map the input image of size h × w × 3 into four localization maps of size h × w × 1, [image: image], [image: image], and [image: image], respectively. The four localization maps are designed to locate cotton bolls at different scales to ultimately reduce the missed detection rate.


[image: Figure 4]
FIGURE 4
 Detailed structure of scene encoder and location decoder.


Due to the repetitiveness of the structure, a part of the continuous downsampling convolution process in the UNet network is defined as the Down module, and its structure is shown in Figure 5A. It consists of a 2 × 2 max pooling layer for dimensionality reduction and two 3 × 3 convolutions with stride 1. Researchers have demonstrated that pooling layers can cause drastic changes in the output (Zhang, 2019). To obtain stable image features, the pooling layer is replaced by strided convolution. In order to expand the receptive field, the original ordinary convolution is replaced by three dilated convolutions with gradually increasing dilation rates. Then a new Down module is constructed as shown in Figure 5B. The network structure constructed by Down module is called MCBLNet-lite. In addition, to further enhance the feature extraction capability of the network, a 3 × 3 dilated convolution with a dilation rate of 4 is added. At the same time, skip connections are added to further utilize redundant information. Then the final Down structure is constructed as shown in Figure 5C. The final Down module is adopted in the proposed MCBLNet network.


[image: Figure 5]
FIGURE 5
 Down module structures. (A) Is Down of UNet, (B) is Down of MCBLNet-lite, (C) is Down of MCBLNet. “+” indicating matrix addition.


Similar to the Down module, a part of the continuous upsampling convolution process in the UNet network is defined as the Up module, shown in Figure 6A. In order to obtain more stable localization results, the upsampling layer is replaced with a transposed convolution (TransConv) for trainable upsampling. A new Up module is constructed as shown in Figure 6B.


[image: Figure 6]
FIGURE 6
 Up module structures. (A) Is Up of UNet, (B) Is Up of MCBLNet. “C” representing concatenate.


The convolutions in the UNet network are not padded, so the output localization map is smaller than the original input image. Therefore, it needs to be cropped before performing the concatenate operation. In order to simplify the operation and improve the robustness of the model, the corresponding padding is set for the convolution in MCBLNet, so that the size of the feature map after each layer of convolution is fixed. The output localization map size of MCBLNet is fixed to 1, [image: image], [image: image], and [image: image] times the input image. In fact, the output localization map is a fixed-size 2D matrix. The value of each point in the matrix represents the probability that this point is predicted to be the target. So the location map can be expressed as:

[image: image]

Among them, [image: image] represents a matrix of size n×m, and [image: image] represents the probability that the point in the ith row and the jth column is the target.



3.2.2. Localization map fusion

After scene encoding and localization decoding, the original input image is mapped into 4 predicted localization maps of different sizes. To obtain uniform and accurate localization results, it is necessary to combine the results of the four localization maps. Generally speaking, small-sized localization maps are more robust to large targets, and large-sized localization maps are more robust to small targets. In order to reduce the missed detection rate and false detection rate, localization map fusion module is designed to fuse four different localization maps to obtain the final localization map. First, the size normalizer in Figure 3 upsamples the localization maps with sizes of [image: image], [image: image], and [image: image], respectively to the same size as the original image. The upsampled 4 localization maps are added to obtain the final predicted localization map with the same size as the original input image. Then the final predicted location map can be expressed as:

[image: image]

where h and w are the height and width of the original image, respectively.



3.2.3. Loss function

Each point in the four predicted localization maps obtained by the proposed method represents the probability of whether the store belongs to the target. The cross-entropy loss function mainly describes the distance between actual output probability and expected output probability (Farahnak-Ghazani and Baghshah, 2016). Therefore, the cross-entropy loss function can be used to calculate the distance between each point in the predicted location map and the corresponding point in the ground-truth, which is expressed as:

[image: image]

where N is the number of pixels in the image, pi is the probability that the model predicts the ith pixel as a positive sample, and [image: image] is the true value of the ith pixel.

To accurately localize each object at each scale, the cross-entropy loss for each scale is computed separately. The total loss at final training is the sum of the losses generated from aforementioned four different scale maps, which can be expressed as [image: image].





4. Results and discussion


4.1. Implementation details

In order to reduce the amount of model parameters as much as possible without reducing the location accuracy, the number of output channels from the initial convolution block to the scene encoder is 16, 32, 128, 256, and 512 in turn. The number of output channels of the location decoder is 256, 128, 64, and 32 in sequence. In training, the resolution of images is resized to 768 × 512 to enable batch training without excessively missing the target pixels of the boll. Inspired by Ronneberger et al. (2015), the 768 × 512 input image is cropped into 12 image patches (256 × 256) for training separately to speed up training and perform data augmentation. The parameters epoch, batch size, and learning rate are set to 60, 16, and 0.0001, respectively.

Our method is implemented based on pytorch. All experiments are implemented on a server with Intel Core i9-10900X CPU at 3.70GHz and GeForce RTX 3090. The software is Ubuntu20.4 and python3.6.



4.2. Evaluation metrics

The object localization performance of the MCBLNet is evaluated by average precision (AP) (Everingham et al., 2015), a commonly used evaluation metric for object detection methods to ensure fairness and accuracy. AP is the area under the precision (P) and recall (R) curves. The calculation methods of P, R and AP are:

[image: image]
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where TP (true positive) is the number of correct localizations in all targets, FP (false positive) is the number of incorrect localizations in all targets, and FN (false negative) is the number of targets that were not detected. The connected domain of all points with predicted probability exceeding 50% is regarded as the predicted localization area. The set of their center points is used as the prediction point set. The nearest neighbor distance between prediction point set and ground-truth point set is calculated as the evaluation condition. Similar to Ribera et al. (2019) and Zand et al. (2022), the point is considered to belong to TP when the predicted point is within 10 pixels of some ground-truth point, otherwise it is classified to FP. Each ground-truth point is matched against only one predicted point. The APs used later are all AP50s.

In addition, FPS and parameter amount (Param) are used to evaluate the running speed and storage cost of the model. FPS represent the number of images that can be detected per second, and the size of the parameter amount refers to the size of space occupied by the model.



4.3. Model evaluation
 
4.3.1. Comparison of different localization methods

To demonstrate the effectiveness of the proposed method for cotton boll localization, we compare it with several object localization networks and object detection networks on the CBL dataset. Specifically, comparisons are made with the bounding box annotation-based SSD (Liu et al., 2016), FasterRCNN (Ren et al., 2017), YOLOv3 series (Redmon and Farhadi, 2018), and YOLOv5 series and point annotation based object localization methods P2PNet (Song et al., 2021) and MSPSNet (Zand et al., 2022). The specific experimental results are shown in Table 1.


TABLE 1 Table of experimental results for each method on the CBL dataset.

[image: Table 1]

The localization performance of MCBLNet-lite and MCBLNet methods on the CBL dataset is better than other compared methods, as shown in Table 1. Specifically, the AP of the MCBLNet is improved by 49.4% compared with the best point-based target localization algorithm MSPSNet, and the model parameter amount is only one-fifth of that. Compared with the best bounding box annotation based object detection algorithm yolov3-spp, the point annotation based MCBLNet method has an AP improvement of 19.5% with comparable detection speed.



4.3.2. Comparative experiments under different density distributions

The accuracy of the model may be affected by different occlusions and cotton boll counts in images of different densities distributions. Contrastive experiments are carried out according to the difference of object density in the CBL test images. Referring to the settings of Wang et al. (2022), images containing 10-20 cotton bolls are considered as moderately dense, and images containing more than 20 cotton bolls are considered as highly dense. Experiments are conducted on moderately dense and highly dense images with YOLOv3-spp, MSPSNet, and MCBLNet, respectively. Among them, YOLOv3-spp is the best localization method based on bounding box annotation in Table 1, and MSPSNet is relatively better among the localization methods based on point annotation except MCBLNet. The experimental results are shown in Table 2 and Figure 7.


TABLE 2 Localization results of three methods under different density distributions.

[image: Table 2]


[image: Figure 7]
FIGURE 7
 Localization effect of three methods in different density images. (A) Is original image and (B) is ground-truth. (C–E) Are the localization effects of MSPSNet, YOLOv3-spp, and MCBLNet, respectively.


It can be seen from Table 2 that the object detection method based on bounding box annotation has better accuracy for moderately dense cotton boll images than highly dense cotton boll images. The localization method based on point annotation is more accurate for highly dense cotton boll images than for moderately dense cotton boll images. It indicated that the localization method based on point annotations is more robust in localizing dense objects. Specifically, MCBLNet achieves 83.9% AP for high-density cotton boll images and comparable AP to YOLOv3-spp for moderately dense cotton boll images. It demonstrated that MCBLNet has better localization performance for cotton bolls with different densities.

The localization effect is shown in Figure 7. The red dots in Figure 7C are the predicted anchor points by MSPSNet. The yellow-green blob in Figure 7E is the prediction area by MCBLNet, and the red point is the center of blob. Compared with YOLOv3-spp and MCBLNet, MSPSNet has a large number of missed detections. When detecting dense boll regions, some prediction boxes of YOLOv3-spp overlap each other. Contrary to YOLOv3-spp, the prediction points of MCBLNet are distinguishable. Therefore, compared with YOLOv3-spp, MCBLNet has better visual localization results.



4.3.3. Ablation study

To measure the contribution of various factors to MCBLNet, ablation experiments are performed on the CBL dataset. The experimental results are shown in Table 3, in which Enhance Down represents the final Down module, and Map Fusion means the localization map fusion module.


TABLE 3 Ablation experiments on the CBL dataset.

[image: Table 3]

Comparing the experimental results of MCBLNet-lite and MCBLNet, the Enhance Down module can enhance the feature extraction ability by increasing the number of parameters. The AP of MCBLNet-lite is 6.5% higher than that of MCBLNet-lite_base, and the AP of MCBLNet is 1.5% higher than that of MCBNet_base. It can be seen that the localization map fusion module can improve the AP without increasing the amount of parameters and without affecting the running speed.





5. Conclusion

In this paper, a point annotation-based cotton boll localization method named MCBLNet is proposed. It can solve the localization problem of multi-scale objects in complex backgrounds simply and efficiently. The method mainly includes three parts: scene encoding which can effectively extract image features, location decoding which can output multi-scale localization maps and localization map fusion which can combine localization map information of different scales. Experiments were conducted on the CBL dataset. Experimental results show that the localization performance of our method significantly outperforms other point-annotation-based localization methods, and the performance is also better than or at least comparable to bounding-box annotation-based localization methods. Overall, the MCBLNet can simply and robustly locate crops using only point annotations.

In future work, we consider to fundamentally solve the problem of insufficient target feature extraction by further combining the structural characteristics of corresponding cotton boll to optimize the labeling method. At the same time, we also plan to add some output headers to reuse the extracted target features for object counting. In addition, location methods can be used in some practical agricultural applications, such as directional high-efficiency water-saving irrigation, fixed-point quantitative fertilization and precision pesticide application.
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Picking robot technology plays an important role in the rapid promotion of precision agriculture. The development of a successful robot gripper is critical for the final promotion and industrialization of the tomato picking robot. This paper investigated the cluster tomato picking strategy and the gripper structure design based on this strategy to address the problem of poor adaptability of the existing gripper design in the cluster tomato picking scene. Starting from the research on the behavior of artificially picking cluster tomatoes, the grasping method, finger structure parameters and picking movement pattern of the human hand are analyzed. The evaluation criteria of the gripper are summarized, a simplified mathematical model of the gripper is established, and the picking strategy under the model of the gripper is proposed. Furthermore, according to the simplified gripper model, a rigid-flexible coupling gripper structure is designed, and the gripping simulation analysis is carried out. According to the simulation results, the gripper can smoothly grab medium and large tomatoes with diameter of 65∼95 mm. The peak force and fluctuation force of tomato with different sizes during grasping were less than the tomato’s minimum damage force. The gripper has adaptability and stability characteristics, providing technical support for gripper manufacturing and the construction of a picking system for a tomato picking robot.
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Introduction

Tomato is an important vegetable crop with an annual global production of more than 182 million tons and a planting area of more than 5.05 million hectares. China is a big country of fresh and processed tomatoes. The tomato cultivation area has exceeded 1.1 million hectares and the annual output is 65.15 million tons (Huajing Intelligence Network, 2021), of which the greenhouse tomato area is about 642,466 hectares (YMT Research Institute, 2022). In the entire tomato production chain, the most time-consuming and labor-intensive part is the picking link, whose labor demand accounts for more than 50% of the entire planting and production process (Ren et al., 2020). For a long time, there are problems such as high labor cost, low efficiency, and heavy workload.

In recent years, with the advancement of visual recognition and intelligent control technology, the completion of tomato harvesting by robots has become a new development trend (Wu et al., 2020). As the terminal part of the interaction between the picking robot and the tomato, the gripper has a significant impact on the working efficiency of the robot and the fruit damage rate. Therefore, a properly designed gripper is the key problem that the tomato picking robot needs to solve urgently. Under the premise of ensuring stable clamping, the damage to the tomato fruit is reduced, and the smooth grasping is realized.

At this stage, the research on tomato picking robot gripper can be divided into three categories: rigid gripper, flexible gripper and rigid-flexible coupled gripper. The research and application of rigid gripper in tomato picking has achieved many achievements. It has the advantages of large grasping force, high precision and fast speed. However, there are problems such as poor flexibility and weak adaptability, and the complex structure and insufficient flexibility can easily cause damage to the fruit epidermis, resulting in a low success rate of picking. Chih-Hsing Liu’s team at National Cheng Kung University designed a two-fingered tomato gripper with sensory feedback. It can grab tomatoes with a size of 50∼140 mm, and the maximum payload is 2.5 kg (Liu et al., 2019). Hiroaki Yaguchi’s team at the University of Tokyo designed a three-finger rigid gripper that rotates along a central axis to pick tomatoes. However, because the opening of the gripper is too large, it is often hindered by tomato vines, and the picking success rate is only 62.2% (Yaguchi et al., 2016). Naoshi Kondo’s team at Kyoto University developed a rigid tip for picking tomato clusters (Fujinaga et al., 2021), which was too bulky to perform actual picking operations. The picking success rate is only 50%. Chao Ji’s team at China Agricultural University developed a rigid end effector for shearing and gripping tomato stems (Ji et al., 2013). The short tomato stalk caused visual recognition difficulties. The picking time of a single fruit was 37.2 s, and the sharp blade was easy to damage the fruit.

The finger structure of the flexible gripper obtains infinite degrees of freedom through continuous deformation when interacting with the fruit, replacing the joints and connecting rods of the rigid gripper. It has obvious advantages when grasping soft and crisp tomato fruit. The Kehong Zhou team of Jiangsu University (Zhou et al., 2022) and the Asiwan Kultongkham team of King Mongkut’s University of Technology Thonburi (Kultongkham et al., 2021) designed a tomato-picking soft gripper based on fluid elastic actuation, which grasps the tomato by inflating and deflating. However, when faced with the problem of tomato stacking, due to the large size of the flexible fingers, it is not easy to penetrate into the tomato gap. The fin-ray effect-based gripper designed by Khaled Elgeneidy’s team at University of Lincoln has been gradually commercialized (Elgeneidy et al., 2019). It is universal for picking tomatoes of different sizes, but is prone to slippage when picking tomatoes with smooth surfaces. Vito Cacucciolo’s team at the University of Electro-Communications developed a flexible gripper based on electroadhesion and dielectric elastomers (Cacucciolo et al., 2019), weighing only 0.015 N. Small cherry tomatoes can be grasped, and the gripping force is more dependent on the grasping posture. Therefore, most of the tomato picking flexible grippers currently developed are more suitable for specific single or small tomato scenarios.

Rigid-flexible coupling gripper is an emerging research direction in agricultural picking. Scholars combine flexible and rigid structures to take into account the advantages of flexibility and rigidity. At present, the form of rigid-flexible coupling is mostly a combination of flexible suction cups and rigid fingers (Liu et al., 2007; Jun et al., 2021). This type of end effector adopts multiple sets of driving systems and structures, which increases the complexity of the control system, the production cost and the risk of fruit damage. The advantages of rigidity and flexibility are not fully exploited, and further in-depth research is urgently needed.

To sum up, the structural design of various tomato picking grippers needs to be further studied, which is rooted in two major difficulties. First, the tomatoes are suspended in clusters of 3–4. There are situations where tomatoes are stacked on each other, handles and leaves block tomatoes, etc., which has a great negative impact on the picking success rate of robot grippers. Second, grippers are not suitable for realistic picking scenarios, and there is no scientific theoretical basis for support. The above two difficulties lead to the problem of clustered tomato picking still to be overcome. Therefore, this paper takes the clustered medium and large tomatoes in the greenhouse as the picking objects, and combines the tomato manual picking behavior with the design of the gripper structure. A rigid-flexible coupling gripper imitating human hand picking was designed, and picking strategy was formulated for the gripper. Through the simulation analysis of the gripper, the reliability of the design is verified, which provides a reference for the manufacture and application of the gripper for tomato picking.



Manual picking behavior of clustered tomato


Grasping methods of human hands

Generally speaking, humans can accurately and efficiently pick tomatoes of different sizes in an unstructured greenhouse environment through the coordination of the brain, eyes and hands, without causing damage to the tomatoes. From the perspective of bionics, tomato picking grippers can improve performance through bionic design based on human hand grasping technology, which requires a deep understanding of human picking behavior. Human hand grasping is a highly complex movement that requires brain and vision-guided coordination of multiple finger joints and muscles (Ma et al., 2019). Therefore, it is necessary to observe the habit of human grasping tomatoes, study the factors that affect the grasping action, and summarize the commonly used grasping methods. The above has important scientific value for the design of the gripper, the implementation of an effective grasping strategy, and the realization of efficient, accurate and non-destructive picking.

Scholars have done part of the research on how the human hand grasps objects. Bullock et al. (2013) found that the most commonly used type of grip is partial wrapping. Lee and Jung found that the properties of the grasped object have a significant impact on the choice of grasping type, and the shape of the object can define the type of hand posture and limit the potential contact position of the hand (Lee and Jung, 2014). Feix et al. (2014) found that “grip” often applies for large and heavy objects, “pinch” always works for small and light objects. However, previous research work has not addressed the problem of clustered tomato picking. For example, there is little reference information on the relationship between the pose and geometric features of tomato fruits and the selection of human hand grip types during harvesting. In this paper, the method of experimental analysis is used to study the influencing factors of the selection of grasping methods when picking tomatoes manually.



The experiment of picking tomatoes by hand

The experiment was carried out in the Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences in January 2022. In the greenhouse where Jiangshu No. 1 tomato variety (medium and large tomato) was grown, 45 tomato crops in 3 columns were randomly selected and divided into 5 groups. 40 ripe tomatoes of different sizes and positions were randomly picked from each group. Five professional growers of different palm sizes participated in the experiment, and each participant naturally picked 40 tomatoes for analysis. During testing, greenhouse ambient temperature: 20 ± 2°C; relative humidity: 50–65%. Most robots usually adjust the pose to be directly under the fruit, move up the stem and grasp the fruit. The picking work is done by rotating and twisting the stem of the fruit through the degree of freedom at the end of the robotic arm. Therefore, when picking tomatoes, each participant is required to face the fruit. The right hand grabs and twists the stem from directly under the tomato. Photographs and videos were taken of each participant’s grasp of the tomato and the twisting of the stem.



Picking experiment results


Tomato geometry and mass

Use a vernier caliper to measure the transverse diameter L1, longitudinal diameter L2 and transverse diameter height L3 of 200 tomatoes. The specific measurement positions are shown in Figure 1. The mass m of tomatoes was measured with an electronic scale JA5001 (Puchun, Shanghai, China).
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FIGURE 1
Diagram of tomato size.


The measurement results are shown in Table 1. The lateral diameter L1 of the tomato ranges from 66.4 to 92.7 mm, the longitudinal diameter L2 ranges from 52.6 to 81.3 mm, the height L3 of the lateral diameter ranges from 35.1 to 62.7 mm, and the tomato mass ranges from 152.7 to 378.2 g. Among them, tomatoes with a size of 75∼90 mm account for a large proportion, which proves that Jiangshu No. 1 is a medium and large tomato variety.


TABLE 1    Test results of geometry and mass.

[image: Table 1]



The types of human hand grasping

Referring to the statistical method of scholar Li et al. (2019), the experimental results were classified and counted. After the statistics of the experimental results, it was found that the tomato grasping types of each participant can be defined as three types: Fingertip pinch type, Semi-enclosed grip type for fingers and palms, and Full coverage grip type, corresponding to Figure 2.
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FIGURE 2
Human hand holding type of tomato picking (A) fingertip pinch type; (B) semi-enclosed grip type for fingers and palms; (C) full coverage grip type.


The palm during grasping is divided into three areas, the number ➀ is the fingertip area, the number ➁ is the root area of the finger, and the number ➂ is the palm area, as shown in Figure 3. Fingertip pinch type holds the tomato through the fingertips of 5 fingers (area ➀), with the thumb usually facing the other fingers. In the semi-enclosed grip type, the tomato is covered by the two contact areas (regions ➀ and ➁) of the fingertip and finger root, and is in contact with a small part of the palm. Full coverage grip type is covered by the fingertips, finger roots, and the full area of the palm (area ➀➁➂).
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FIGURE 3
Schematic diagram of palm area division.


The grasp type statistics of 200 tomatoes are shown in Table 2. Fingertip pinch type and Full coverage grip type account for less, and most tomatoes are picked by Semi-enclosed grip type for fingers and palms. According to the comparison of the tomato transverse diameter, it was found that among the 20 tomatoes picked by pinching, 75% of the tomatoes were smaller than 75 mm, which proved that the participants usually picked tomatoes with smaller sizes by pinch grip. The 10 tomatoes picked by the full coverage grip were over 90 mm in diameter, proving that extra-large tomatoes require a greater grip. Semi-enclosed grasping with fingers and palms is the most popular grasping method. The transverse diameter of 167 tomatoes is in the range of 75–90 mm, which is the common size of Jiangshu No. 1. It can be determined that the semi-enclosed grip type is suitable for most Jiangshu No. 1 tomatoes.


TABLE 2    Statistics for tomato grip types.

[image: Table 2]

After further research, it was found that not all fingers exerted a grasping force when adopting the Semi-enclosed grip type of tomato picking. The fingers that actually exert the grip force are the ring finger a, the index finger b, and the thumb c. In order to measure the angle formed between the three fingers, a circular white paper is placed between the fingers, the position of the three fingers is marked, and the angle formed by the three fingers is measured with a protractor. As shown in Figure 4, in the circular area (red circle) formed by the three fingers, the angle between the two fingers is not a uniform 120°. The angle between the ring finger a and the index finger b is about 90°, and the angle between the ring finger a and the thumb c is about 135°. At the same time, the sizes of the three fingers a, b, and c are different, but after placing the white paper over the fingertips, it is found that the fingertips are on the same horizontal plane. The fingers do not cover the entire contour of the tomato, the height of the fingers only exceeds the height of the largest transverse diameter. The correctness of this view was confirmed by comparing the size of the a and b fingers of the participants and the size of the tomato arc. In addition, when the fingers exert force on the tomato, the rigid phalanx mainly ensures the stability of grasping, supplemented by the soft finger pad to cushion and protect the tomato. Therefore, when designing the gripper for tomato picking, it will adopt a rigid three-finger structure and wrap a layer of flexible material on the outside to simulate the characteristics of the rigid-flexible coupling of fingers. The three fingers are of the same size, and the length is not greater than the height of the largest transverse diameter of the tomato. The radian imitates the posture of human fingers, after measuring with the radian ruler, it is determined to be 10∼20°. The angles formed by the three fingers are set to 90° and 135°, respectively.
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FIGURE 4
Semi-enclosed grip type for fingers and palms.




Manual picking strategy

The way of manually separating the tomato from the stem in the recorded video was analyzed. Before picking tomatoes, the experimenter rotated the tomato at a certain angle, so that the end of the stem was torn. Then a pulling action (instantaneous acceleration along the axis of the stem) is applied to the tomato, the pulling distance is about 3∼5 cm, and the tomato can be successfully separated from the stem. Unlike the robotic arm, the maximum rotation angle of the human hand is 180°. Therefore, it is possible to estimate the angular range of the rotation just by looking at the number of rotations and the stopping position. The statistical results of the rotation angle are shown in Table 3. The number of tomatoes with a rotation angle of less than 180° and between 180° and 360° was less, and only accounted for 22.5% of the total. Most tomatoes were spun more than one turn, somewhere between one turn and one and a half turns.


TABLE 3    Rotation angle before tomato separation.
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After in-depth research, it was found that tomatoes with a rotation angle of less than 180° usually fell off during the rotation. Such tomatoes are in an overripe state, some have cracked, have missed the best picking time, and are of poor quality. Tomatoes rotated between 180° and 360° are fully ripe. Although the quality of these tomatoes is at its best, it is no longer suitable for short-term storage. Tomatoes with a rotation angle between 360° and 540° are usually rotated twice (360°) and pulled without falling off. After continuing to rotate once (540°) and pulling, it can fall off the stem. Such tomatoes are just ripe and can be stored for a short period of time after picking, and are in the best picking state. Therefore, when picking tomatoes, make sure that the tomatoes are in the best picking condition. The rotation angle of the gripper is between 360° and 540°, which can ensure that the tomato can be smoothly separated from the stem.

The pulling action is the most vulnerable stage to damage the tomato, which will generate an instantaneous acceleration and force on the tomato. If the force is too high, the tomato will be damaged. In order to obtain the pulling force required for the pulling action and provide a reference for the design of the gripper picking strategy, 50 tomatoes in the best picking state were randomly selected for the pulling force experiment. The tomato and the dynamometer are fixed by a string. After the tomato rotates 360°, a momentary pulling action is applied from the end of the dynamometer to read the reading of the dynamometer. The results show that the average value of the instantaneous tensile force is about 11.66 N, and the maximum instantaneous tensile force reaches 15.29 N.





Design of the picking gripper


Evaluation criteria for grippers

After conducting literature research on the design of picking robot grippers, the evaluation criteria for gripper design for cluster tomato picking are summarized as follows:

(1) Picking objects (Navas et al., 2021): When performing the grasping task, the fingers generate a direct interaction force with the fruit. The fit between the shape and size of the fruit and the structure of the fingers is one of the most critical reference criteria for the rationality of the design.

(2) Gripper size (Shintake et al., 2018): The structure of the gripper is divided into a finger part and a fixed component part. The overall structure should follow the principle of volume minimization. Achieve picking tasks with the most compact structure and minimal workspace. The finger part should follow the principle of thin thickness and small volume. In the face of the fruit growing in clusters, the finger can penetrate into the crevice between the vine and the fruit.

(3) Lifetime (Chowdhary et al., 2019): This parameter is the number of days that the gripper can remain in normal operation before it malfunctions or exhibits a changed movement pattern. When the gripper is in use, it will be continuously loaded and open and closed, which wears the material of the structure. The lifetime is an important indicator for evaluating the gripper.

Based on the above evaluation criteria, the structure and tomato characteristics should be considered when designing the gripper. Based on the design criteria of thin fingers and simple and easy-to-control structure, the tomato grasping is realized with a light structure and an exquisite picking method.



Design of gripper structure

The structure design of the gripper is carried out according to the semi-enclosed grasping type of the fingers and palms. As shown in Figure 5, the gripper is composed of a fixed component, a driving mechanism and fingers. The fixed assembly includes a limit flange and a support flange. The limit flange is used to install the screw motor and limit the working stroke of the fingers. The bottom of the support flange is assembled with the robotic arm. The tetrahedral structure with raised surface plays the role of protection and limit. The drive mechanism consists of three limit links, three support links, a slider and a screw motor. The overall use of the under-driven structure. The slider moves up and down on the screw rod to drive the limit link and the support link to rotate, thereby driving the fingers to open and close. The number of fingers is 3, the angles formed by the three fingers are 90° and 135°, the finger length is 60 mm, and the arc is set to 15°. A layer of flexible material with a thickness of 2 mm is wrapped around the finger, as shown in the cross-sectional view of the finger in Figure 5. In addition, a layer of flexible material is installed on the limit flange to simulate the contact method of a small part of the palm and the tomato when grasping the tomato. The flexible material cushions tomatoes when the gripper is picking.
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FIGURE 5
Gripper structure design (1. Finger 2. Flexible finger pad 3. Limit flange 4. Slider 5. Support flange 6. Limit link 7. Support link 8. Screw motor).


In addition, for the controllability of the gripper, 4 piezoelectric thin film sensors are added. The accuracy of the sensor can reach ± 0.1 N. When making flexible finger pads and finger cots, thin film sensors are embedded in uncured colloid. After the colloid is solidified and formed, the sensor and the colloid form an integral body. Relying on 4 force feedback information, the gripper can form a reliable closed-loop control system.

After analyzing the actual scene of tomato planting, a protective sleeve was added between the support flange and the limit flange, as shown in Figure 6. On the one hand, the greenhouse environment is hot and humid. The connecting rod and motor are prone to corrosion and fracture after long-term operation. On the other hand, tomato vines are entwined. During the picking task, the branches and leaves are easy to penetrate into the gap of the gripper structure, causing the mechanism to jam and affecting the lifetime of the gripper. Therefore, adding a protective sleeve cannot only prolong the lifetime of the gripper, but also improve the success rate of picking.


[image: image]

FIGURE 6
Gripper grasps tomato.




Key parameters of the gripper

With reference to the tomato size measurement and basic design parameters, the design dimensions and structural materials of each part of the gripper are further determined. The 200 tomato varieties of Jiangshu No. 1 have a maximum lateral diameter of 92.7 mm and a minimum diameter of 66.4 mm. Therefore, in the limit space where the jaws are opened and closed as shown in Figure 7, when the fingers are in the state of limit opening, the diameter R1 of the middle of the fingers should be larger than the maximum transverse diameter of the tomato. The diameter R2 should be smaller than the minimum transverse diameter of the tomato in the state of extreme closed fingers. Consider that the tomato needs to go through the opening formed by the three fingertips first when picking. Moreover, the fingers have a certain radian, resulting in a small diameter of the circle formed at the tip of the three fingers, so set R1 to 110 mm. Set R2 to 60 mm to ensure the grip effect of smaller size tomatoes, and control the stroke of fingers and sliders within a certain range.
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FIGURE 7
Limit space for gripper opening and closing (A) limit opening size of fingers; (B) limit closing size of fingers.


A simplified mathematical model of the gripper is established as shown in Figure 8. The distance from point A and point D to the center line GH represents the radius of the circle formed by the middle of the finger when the finger is in the limit opening and closing state, which are 55 and 30 mm, respectively. AB = DE = 30 mm, representing half the length of the finger. According to the general selection of the stepper motor with less torque, the length of the support link to the center line JK is set to 25 mm. In order to ensure that the opening range of the gripper before picking is larger than the diameter of the tomato, a small inclination angle of 5° was set between the fingers and the support link. Set the rotation range of the support link to 15° when the fingers are in the limit tension state to ensure that the slider can be opened and closed by the fingers in a small stroke. After the above values are determined, the remaining connecting rod model length can be obtained: HJ = 39 mm, which represents the distance from the center of the slider to the bottom of the screw in the limit closed state. HC = FI = 35 mm, which represents the distance from the center of the slider to the center of the support rod. CK = FK = 40 mm, which represents the length of the support link. DF = AC = 58 mm, which represents the distance from the middle of the finger to the support link. HI = 24 mm, representing the stroke of the slider.
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FIGURE 8
Simplified mathematical model of gripper.


The structural parts of the gripper are made of nylon. Compared with resin materials, nylon materials have high temperature resistance, good toughness, high strength, and longer service life. Silicone was chosen as the flexible material covering the gripper fingers and over the flange for tensile strength and tear resistance. And it has strong adaptability to the greenhouse environment.



Gripper picking strategy

Combined with the particularity of the clustered tomato hanging and the picking method imitating the human hand, a new tomato picking strategy as shown in Figure 9 was determined for the gripper. The strategy is divided into five steps, including adjusting, grasping, pulling out, Spinning and cutting, transporting. In step (a), the robot arm is guided to rotate by the vision system, and the gripper is adjusted to the pose as shown in the figure. This pose can keep the fingers of the gripper on the outside of the clustered tomatoes, avoiding the situation that the tomato positioning information may change when the gripper goes deep into the tomato gap. In step (b), after determining the position and posture, the gripper moves along the stalk collinearly, approaching the tomato until the tomato touches the flexible finger pad of the limit flange. The controller receives the force information fed back by the sensor in the flexible finger pad, and drives the stepper motor to close the finger until the flexible finger pad touches the tomato. At this time, the controller will receive the information feedback from the sensor in the finger cots, and stop the finger closing movement when the pressure reaches the minimum damage force of the tomato. In step (c), the gripper grasps the tomato and moves downward by a height h1 to ensure that subsequent operations are not affected by fruit stacking. In step (d), after the pull out stage is completed, the robotic arm drives the gripper to rotate 540°, so that the connection between the stem and the tomato is torn. A displacement with instantaneous acceleration is applied to the axis of the stem to complete the separation of tomato and stem. The displacement distance is about 5 cm, and the pulling force is about 15 N. Step (e) is the final transport stage, the gripper transports the picked tomatoes to the designated position, and the cycle continues from step (a).
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FIGURE 9
Tomato picking strategies.





Gripper simulation experiment


Force simulation experiment


Force analysis of tomato

When the operation of the gripper on the tomato enters the gripping stage, the contact area and force between the tomato and the finger will have a greater impact on its deformation. The finite element software ANSYS (ANSYS 2020R2) was used to simulate the force and deformation of tomato. Analyze the deformation of tomato when it is in contact with fingers of different widths and select the most suitable finger width. Referring to the research results of scholars (Li, 2011), the material properties of tomato are set as follows: elastic modulus: 0.762 Mpa, Poisson’s ratio: 0.45, stress intensity: 0.122 Mpa, density: 1,070 × 10–9kg/m3. Create a Static Structural module in ANSYS Workbench, add material properties to get the ANSYS model. After that, the mainstream tetrahedral element is used to divide the model into the network, and the element size is set to 1 mm, and a total of 72,708 nodes and 37,018 elements are divided.

The contact area between the finger and the tomato will expand as the width of the finger increases. When the finger width reaches 30 mm, the effective contact area with the tomato reaches the maximum. As the width of the fingers further increases, the curvature of the fingers can no longer match the curvature of the tomato. The increased width cannot form effective contact with the tomato and becomes an ineffective contact area. Moreover, fingers that are too wide may have a certain negative impact on the picking effect of clustered tomatoes. Therefore, the finger width of the gripper is divided into five categories: 10, 15, 20, 25, and 30 mm. Finger widths above 30 mm are not studied. According to the mesh size calculation, set the force area when the tomato is in contact with the finger. Taking a finger width of 30 mm as an example, the contact area between a single finger and a tomato is about 1,800 mm2. When selecting the force-bearing area, 30 unit surfaces are selected horizontally, and 60 unit surfaces are selected vertically. The total number of unit surfaces is about 1,800, which is consistent with the actual contact area to the greatest extent. Set the stem and leaf on the top of the tomato as a fixed support. Apply a load force of 5 and 10 N to the corresponding force area, respectively, with the direction inward, and solve the total deformation and displacement of the tomato. Figure 10 shows the tomato deformation simulation when a 30 mm finger exerts a force of 5 and 10 N on the tomato.


[image: image]

FIGURE 10
Tomato deformation simulation (A) 5 N load simulation; (B) 10 N load simulation.


When the tomato is subjected to the load force exerted by the finger, as shown by the red dotted box area, the force-bearing part of the tomato deforms and displaces. At the same time, due to the extrusion of the force-bearing part, the other two sides and the lower part of the tomato experienced a large expansion displacement, as shown in the black dotted box area. Therefore, the maximum deformation of the tomato did not occur in the force-bearing part of the tomato, but occurred below the area on both sides of the force-bearing part, which was in line with the actual force of the tomato. The final simulation results are shown in Table 4. With the increase of the finger width and the expansion of the force-bearing area, the maximum deformation of the tomato and the displacement of the force-bearing area gradually decrease, which proves that the increase of the finger width has a certain protective effect on the tomato. The research on the physical properties of tomato according to the literature (Li et al., 2010) shows that the tomato is elastic deformation when the deformation amount is less than 1.5 mm, which will not affect the quality and storage time of the tomato. Therefore, a finger structure with a width of 30 mm was chosen. The force applied by a single finger to the tomato should be less than 10 N to ensure that the tomato is harvested without damage to the greatest extent.


TABLE 4    Statistics for tomato grip types.

[image: Table 4]



Force analysis of single finger

In order to reduce the damage to the tomato caused by the instantaneous load when the finger is in contact with the tomato, a 2 mm thick silicone finger cover is added to the outside of the finger structure. In order to further verify the protection of the silicone finger cover to tomatoes, finite element force simulations were performed on the fingers with silicone finger cover and nylon fingers. According to the literature (He et al., 2019), the properties of the silicone material are set as follows: elastic modulus: 2.14 Mpa, Poisson’s ratio: 0.48, density: 1,200 kg/m3. According to literature (Guessasma and Beaugrand, 2019), the nylon material properties are set as follows: elastic modulus: 1.11 × 103 Mpa, Poisson’s ratio: 0.35, density: 1,140 kg/m3. The model uses tetrahedral elements for network division. The element size is set to 1 mm, and a total of 203,830 nodes and 126,875 elements are divided. A 5 N load is applied to the corresponding finger surface to simulate the force state of the finger.

The simulation results are shown in Figure 11. The total displacement of the silicone-coated finger is about 3.05 mm, and the total displacement of the pure nylon finger is about 2.47 mm. The larger amount of finger deformation can provide a buffer for the tomato’s stress deformation, which proves that the silica gel material has a certain protective effect on the tomato.
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FIGURE 11
Finger deformation simulation (A) silicone covered finger; (B) nylon finger.





Motion state simulation experiment

In order to verify the kinematic performance of the gripper, its motion state was simulated with Adams2020 software. Import the gripper and tomato models into the software. Set the rotating pair, the moving pair and the screw pair for the connecting rod, the slider and the screw. Adjust the jaw opening and closing speed by setting the screw torque. As shown in Figure 12, the four stages of the gripper grasping the tomato are simulated, namely adjustment, descent, grasping, and lifting. Analyze the gripping state of the gripper during this process.


[image: image]

FIGURE 12
Gripper gripping state simulation (A) adjustment phase; (B) descending phase; (C) grasping phase; (D) uplift phase.



Motion state simulation

Simulate the movement state of the gripper grasping a tomato with a transverse diameter of 80 mm. Set the tomato material properties as follows: Mass: 300 g. Elastic modulus: 0.762 Mpa. Poisson’s ratio: 0.45. Density: 1,070 × 10–9 kg/m3.

(1) Finger movement state

The displacement and velocity states during finger movement are shown in Figure 13. The displacement process of the three fingers is basically the same. In the interval of 0∼10 s, the finger is in the adjustment stage. From the semi-closed state (the finger is about 35 mm away from the center line) to the fully open state (the finger is about 55 mm away from the center line). Finger 1 and finger 2 are displaced by about 13 mm in the Y-axis direction, and finger 3 is displaced by about 22 mm. In the interval of 10–20 s, the finger is in a steady descent stage. In the 20–25 s interval, the gripper is in the grasping phase. The displacement of finger 1 and finger 2 is about 11 mm along the Y-axis direction, and the displacement of finger 3 is about 17.5 mm. At 25 s, there was a small fluctuation in the displacement velocity due to the finger touching the tomato. In the interval of 25–30 s, the finger is in a steady upward state. During the finger opening and closing movement, the overall displacement and velocity curves are smooth and stable. Comparing the simulation results with the simplified mathematical model above verifies the correctness and rationality of the design.
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FIGURE 13
Finger movement (A) the motion of finger 1 and finger 2; (B) the motion of finger 3. (2) Slider motion state.


(2) Slider motion state

During the gripping process of the gripper, the motion state of the slider is shown in Figure 14. In the interval of 0∼10 s, the slider displacement is about 12.5 mm. In the interval of 20∼25 s, the displacement of the slider is about 10 mm. The slider displacement does not exceed the maximum stroke range, which is in line with the motion and design requirements.


[image: image]

FIGURE 14
Slider motion status.




Gripping state simulation

(1) Gripping and Movement Process Analysis

Three tomato models with transverse diameters of 70, 80, and 90 mm were established. The mass was set to 200, 300, 400 g, respectively. A simulated tomato-grip gripping force test was performed. The force of tomato with a transverse diameter of 80 mm is shown in Figure 15. When the finger is in contact with the tomato, the instantaneous contact force reaches 12.5 N. The contact force drops rapidly within 1 s. During the subsequent lifting of the gripper, the force of the tomato has been fluctuating within the non-destructive force range of 5 N. Tomatoes with a diameter of 70 and 90 mm are subjected to similar forces. Moreover, during the entire tomato grasping process, no falling phenomenon occurred. Therefore, the gripper can protect the tomato from damage, and has strong stability and protection. This proves that the design of the gripper satisfies the requirements.


[image: image]

FIGURE 15
The force of tomato with a diameter of 80 mm.


(2) Pulling Process Analysis

After the tomato is clamped, the force can be divided into two stages: the pulling stage and the falling stage. When the tomato enters the pulling stage, the force on the tomato includes the pulling force T of the stem on the tomato, the pressure FN of the three fingers on the tomato, the friction force fp between the tomato and the surface of the finger, and the gravity mg of the tomato, as shown in Figure 16A. Kinetic analysis was performed to obtain the conditions for the gripper to successfully separate the tomato from the stem:
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FIGURE 16
Force analysis of pulling process (A) pulling phase; (B) falling stage.


In the above formula, fp = μs, FN, g = 9.8 N/kg, m = 0.3 kg. θ is the inclination of the contact surface between the finger and the tomato. Set θ to 75° according to the finger arc. According to the literature (Zhou et al., 2022), the static friction coefficient μs on the silicone pad is 1.34 N/N. According to the data obtained from the above experiments, the maximum instantaneous tensile force T is about 15.29 N. Bring in the formula to obtain FN ≥ 2.65 N, 3FN ≥ 7.95 N, indicating that the total force of the three fingers on the tomato is less than the minimum damage force of the tomato.

When the tomato enters the falling stage, the force on the tomato includes the pressure FN of the three fingers, the supporting force Fp of the finger pad and the gravity mg of the tomato, as shown in Figure 16B. The kinematic analysis of the tomato at this time is carried out, and the force state formula is obtained:

[image: image]

Substitute FN = 2.65 N into formula (2) to obtain Fp = 5.00 N. Since Fp is less than the minimum damage force of the tomato, it proves that the gripper will not damage the tomato in the pulling stage and the falling stage.





Conclusion and outlook

(1) This paper proposes a combination of tomato manual picking behavior and gripper design. Based on the artificial hand picking method, a rigid-flexible coupling gripper structure and picking strategy for Provence tomato picking are designed.

(2) According to the experimental results of hand-picking tomatoes, it is concluded that the lateral diameter L1 of tomatoes ranges from 66.4 to 92.7 mm. The longitudinal diameter L2 ranges from 52.6 to 81.3 mm. The transverse diameter and height L3 range from 35.1 to 62.7 mm. The tomato mass ranged from 152.7 to 378.2 g. Among the grasping methods of human hands, the most suitable picking hand type is Semi-enclosed grip type for fingers and palms. The in-depth study of the gripping method provides a scientific basis for the design of the gripper.

(3) Based on the evaluation criteria of the gripper, the three-finger structure of the rigid-flexible coupling gripper is designed. The overall use of the under-driven structure. The limit link and the support link are driven to rotate by the slider moving up and down on the screw rod. The prototype is based on the manual picking of the actual three fingers. The three fingers of the gripper are 90° and 135°, the finger length is 60 mm, and the arc is 15°. The finger is wrapped with a layer of 2 mm silicone material. The diameter of the middle part of the fingers is 60∼110 mm in the limit state of opening and closing. The picking strategy for the gripper was designed based on the way the tomato and stem were separated by hand. When the tomato and stem are separated, rotate the stem 540° and apply an instantaneous acceleration along the axis of the stem. Pull the distance about 5 cm, and separate the tomato from the stem.

(4) The force analysis and simulation of tomato was carried out. When the finger width is 30 mm, and the force exerted by a single finger on the tomato is less than 10 N, the tomato can be picked to the greatest extent without damage. The single-finger force analysis was carried out to prove the protective property of the silica gel material on tomato. Through the simulation of the gripping state of the gripper, it is verified that the motion state of the gripper meets the design requirements. The peak force and fluctuating force of tomato of different sizes were smaller than the minimum damage force of tomato.

In future research, multiple tomato varieties will be studied, and an index library of gripper design will be established according to the picking strategy in this paper, including the maximum opening, minimum damage force, maximum instantaneous pulling force, maximum gripping force, etc. Combined with the intelligent pressure sensor, while improving the picking speed, the mechanical damage rate is controlled to ensure the post-harvest quality. It will also focus on the research on the combination of tomato visual recognition positioning and picking strategy, and put the gripper into the experiment of the actual tomato picking scene.
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As an important method for crop phenotype quantification, three-dimensional (3D) reconstruction is of critical importance for exploring the phenotypic characteristics of crops. In this study, maize seedlings were subjected to 3D reconstruction based on the imaging technology, and their phenotypic characters were analyzed. In the first stage, a multi-view image sequence was acquired via an RGB camera and video frame extraction method, followed by 3D reconstruction of maize based on structure from motion algorithm. Next, the original point cloud data of maize were preprocessed through Euclidean clustering algorithm, color filtering algorithm and point cloud voxel filtering algorithm to obtain a point cloud model of maize. In the second stage, the phenotypic parameters in the development process of maize seedlings were analyzed, and the maize plant height, leaf length, relative leaf area and leaf width measured through point cloud were compared with the corresponding manually measured values, and the two were highly correlated, with the coefficient of determination (R2) of 0.991, 0.989, 0.926 and 0.963, respectively. In addition, the errors generated between the two were also analyzed, and results reflected that the proposed method was capable of rapid, accurate and nondestructive extraction. In the third stage, maize stem leaves were segmented and identified through the region growing segmentation algorithm, and the expected segmentation effect was achieved. In general, the proposed method could accurately construct the 3D morphology of maize plants, segment maize leaves, and nondestructively and accurately extract the phenotypic parameters of maize plants, thus providing a data support for the research on maize phenotypes.

KEYWORDS
 three-dimensional point cloud, multi-view reconstruction, maize seedlings phenotype, point cloud pre-processing, point cloud segmentation


Introduction

Maize, as an important food crop and one of the three major cereal crops in the world, has a high economic value (Nuss and Tanumihardjo, 2010). Maize plant height and leaf area reflect, to some extent, the plant’s growth rate and robustness, and the leaves have a significant impact on maize yield and disease resistance (Liu et al., 2021b). Therefore, accurate acquisition of maize phenotypic traits is of great significance for understanding the growth status of the crop, crop yield estimation, disease resistance detection and breeding (Fourcaud et al., 2008). Currently, phenotypic information collection of maize seedlings is an important task in the maize breeding research. Traditional research methods mainly rely on manual measurement, with the problems of high workload and low efficiency. In addition, manually collected crop phenotypes have the disadvantage of insufficient information, which greatly affects the breeding process and hinders the long-term development of breeding trials. Therefore, it is urgent to develop advanced phenotypic data acquisition techniques in modern breeding and cultivation trials (Yang et al., 2020). It is noteworthy that the high-throughput phenotyping techniques offer the possibility of rapid and nondestructive detection of crop phenotypes (Qinghua, 2018; Zhao et al., 2019). Among them, three-dimensional (3D) reconstruction techniques is more widely used in agriculture as a highly representative high-throughput phenotyping technique (Perez-Sanz et al., 2017).

At present, the application of 3D reconstruction technology in agriculture develops rapidly, with diverse methods of data acquisition (Zheng et al., 2020). For example, Moreno et al. (2020) used LiDAR system equipment for 3D reconstruction of vineyards, estimated the amount of vine pruning, and achieved considerable results. Zhou et al. (2020) analyzed the variation of vertical structure of maize plants at different inversion levels and evaluated the variation of maize plant height at different inversion levels by using an unmanned aircraft with LiDAR on board for 3D reconstruction of maize. Yang et al. (2019) proposed a 3D point cloud reconstruction method based on Kinect self-labeling with comprehensive display of fruit tree morphological information and high accuracy of parameter extraction, which could accurately extract 3D information of fruit tree canopy. Wang et al. (2020) used Kinect device for 3D reconstruction of leaf lettuce, which has high alignment accuracy and stability. Although the above methods can be used to analyze crop phenotypes, LiDAR is expensive equipment and susceptibility to weather, and Kinect device has the disadvantage of obtaining point clouds with low resolution, and the accuracy of the generated point clouds is susceptible to light.

The structure from motion (SfM) method is a 3D reconstruction technique based on the basic principles of multi-view geometry (Iglhaut et al., 2019). Generally speaking, SfM performs 3D reconstruction from the acquired multi-view images, which has the advantages of being simple to use and subject to few environmental constraints (Liu et al., 2021c). In terms of the plant phenotypic measurements, the 3D reconstruction of plants based on the SfM algorithm has some advantages of higher reconstruction accuracy as well as the ability to achieve dynamic and lossless reconstruction of the research object (Xiao et al., 2020) used the SfM method to reconstruct a 3D model of three growth stages of sugar beet in the field and extracted phenotypic traits such as height, leaf area, and leaf length. The coefficient of determination R2 > 0.8 between the measured and estimated values showed that they had a high correlation. After acquiring image sequences from three different angles, (Andújar et al., 2018) used the SfM method for 3D modeling of weed plants, and found that the actual values of plant height and leaf area could be estimated accurately. Zhang et al. (2022b) conducted a 3D reconstruction of planted forests based on the SfM method after image acquisition by UAV. The results showed that the method not only described the understory structure of the plantation forest and its centimeter-level vegetation efficiently and economically, but also constructed a large-scale point cloud model. Sun et al. (2019) reconstructed the 3D structure of cotton boll using the SfM method and got the number and location of the boll by point cloud clustering and segmentation. Additionally, Zermas et al. (2020) adopted the SfM method to reconstruct the point cloud of maize plants and obtained phenotypic parameters through extraction of their skeleton.

This paper used two methods, RGB camera photography and video frame extraction, to obtain multi-view images and then reconstructed maize seedlings in 3D based on SfM algorithm. The accuracy and speed are balanced in performing maize phenotype analysis and segmentation. In addition, a point cloud pre-processing algorithm based on Euclidean clustering algorithm, color filtering algorithm, and voxel filtering algorithm was designed, which had a good effect in obtaining maize point cloud models. Moreover, phenotypic parameters such as maize plant height, stalk height, leaf length, leaf width and relative leaf area were extracted. The dynamic changes of morphological characteristics at the seedling stage of maize were analyzed, and the accuracy of the reconstruction was evaluated based on the measured data and errors analysis. Finally, the stalk segmentation of maize seedlings was identified by using a region growth segmentation algorithm, which achieved the expected segmentation results. In summary, this study provides a convenient, rapid and quantitative analytical method for 3D phenotypic measurements of maize seedlings.



Materials and methods


Experimental material

The selected experimental material was the maize seed of Zhengdan 958 variety, which was purchased from Baoding agricultural market. Firstly, maize seeds were heated in a water bath at 39°C and soaked for 7 h. Then, they were planted in pots and numbered into seed germination incubator. Furthermore, the corn was observed to grow over 1 week. The temperature in the germination incubator was set to 28°C and the humidity was set to 70%. Phenotypic parameters, such as plant height, stem height, leaf length, leaf width, and relative leaf area of maize seedlings, were recorded by manual measurements. Specifically, for maize seedling height, a tape measure was adopted to measure the distance from the above-ground part of the plant to the top of the plant canopy. For leaf length and leaf width of maize, vernier calipers with an accuracy of 0.01 mm were used for measurement. The relative leaf area is approximated by the product of the measured leaf length and leaf width.



Image acquisition

We adopted two methods to acquire images in this study. The main purpose is to balance the speed and accuracy of the corn 3D reconstruction. When analyzing the phenotypic parameters of maize, there is a higher requirement for the clarity of the point cloud model, and higher resolution images are needed. When identifying the structure of maize, it is only required to reconstruct the point cloud model quickly, and the reconstruction accuracy of the point cloud is not required at this time. In terms of the first method, the RGB camera was used to take pictures to obtain multi-view images. It required a collection of 50–60 images when the modeling was much sharper. The accuracy is also higher when analyzing phenotypic parameters of maize seedlings, but the process of data acquisition is time-consuming. The RGB camera (Model NO. FSFE-3200D-10GE, JAI) was a 2-CMOS multi-spectral prism camera. It employed two prism-mounted 3.2 megapixel CMOS imagers which were aligned with a common optical path for image alignment regardless of motion or viewing angle. The plant was placed on the center of the carrier table, and then the rotary arm with the camera rotates around it while taking photos at 6° intervals and transferring the acquired images to the computer for processing after rotating 360°.

In terms of the second method, plant videos were acquired with cellphone camera, and key frames were extracted from the video (Ma et al., 2015), with which the plant 3D model was reconstructed. The resolution of the images was 1080 × 1920, and the video frame rate was 30 fps. Modeling by video frame extraction is mainly for maize stalk segmentation recognition, which was only used to model the entire plant and has lower requirements for accuracy.

Figure 1A is a schematic diagram of the 3D imaging device, which consists of (a) rotating platform, (b) aluminum profile (the bracket constituting the device), (c) camera fixation support, (d) camera, (e) loading platform (for the placement of to-be-measured experimental materials), (f) controller (to control the rotational speed of the motor) and (g) computer (to process image data and for 3D reconstruction). Figure 1B is a real picture for the image acquisition part of the 3D imaging device. Therein, the rotating platform drives the rotation of the camera fixation support and camera.

[image: Figure 1]

FIGURE 1
 Image acquisition equipment. (A) Schematic diagram of the 3D imaging system. It is composed of (a) rotating platform, (b) aluminum profile, (c) camera fixing bracket, (d) camera, (e) load table, (f) controller, and (g) computer. (B) A picture of the 3D imaging equipment.




Methods


3D reconstruction based on SfM

3D reconstruction techniques based on images are mainly the techniques for recovering 2D images into 3D models (Aharchi and Ait Kbir, 2019). SfM is one of the 3D reconstruction methods, and its principle is to apply the matching algorithm to the acquired multi-view image sequence so as to obtain the correspondence of the same pixel points of the image, and use the matching constraint relationship combined with the triangulation principle to obtain the 3D coordinates of the spatial points, and then reconstruct the 3D model of the object (Chen et al., 2020). The reconstruction process mainly consists of the key steps such as feature point extraction and matching, sparse point cloud reconstruction, and dense point cloud reconstruction.

In this paper, the software used for 3D reconstruction based on SfM is mainly Visual SfM (version 5.26), Agisoft Metashape (version 1.6, Agisoft LLC, St. Petersburg, Russia), and CloudCompare (Martinez-Guanter et al., 2019). For multi-view images acquired by RGB camera shooting, Agisoft metashape was used for sparse reconstruction and dense reconstruction of point clouds. For the multi-view images acquired by video frame extraction, VisualSfM was adopted to acquire the sparse point cloud, which was then reconstructed into a dense point cloud. The RGB camera used in this study, an industrial-grade camera, could acquire high-quality pictures with a big file data size, while Agisoft Metashape could process the high-quality image sequence with higher accuracy and a better effect when applied to the 3D reconstruction. The video frame extraction method, which was based on videos shot by smartphones, the resolution and image quality of the obtained image are much lower than the former, and the generated data is small. VisualSfM harvested a higher speed and smaller time consumption when used for 3D reconstruction since it supported the acceleration of GPU and CPU.



Point cloud preprocessing

During the acquisition of point cloud data, due to the influence of equipment accuracy and environmental factors, some noisy points may inevitably appear in the point cloud data. In addition, there are often some discrete points in the point cloud data that are far away from the subject point cloud owing to the impact of external interference factors such as line of sight occlusion and obstacles. Thus, a point cloud filtering method is needed to filter out and remove the irrelevant information, which in turn improves the speed of the point cloud processing at the time of operation (Han et al., 2017). In this paper, the Euclidean clustering algorithm was used for the removal of background (Sun et al., 2020). The color threshold-based segmentation method was utilized to remove the noise points from the plant edges (Zhang et al., 2011). The point cloud voxel filtering algorithm was then used to downsample the point cloud to reduce the number of point clouds (Miknis et al., 2016).

The point cloud preprocessing algorithm used in this study is as shown in the Figure 2, in which (a) displays the acquired multi-view image sequence, (b) exhibits the original point cloud data of maize acquired based on SfM algorithm, (c) is a noisy point-containing point cloud model of maize acquired through background segmentation and removal using the Euclidean clustering algorithm, (d) shows the noisy point-free point clouds of maize acquired based on the point cloud color filtering algorithm, and (e) is the final point cloud model of maize acquired after down-sampling through the point cloud voxel filtering algorithm.

[image: Figure 2]

FIGURE 2
 Point cloud algorithm process flow chart.




Euclidean clustering for image background removal

Euclidean clustering, as a clustering algorithm based on the Euclidean distance metric, essentially judges the distance between near-neighboring points by distinguishing the proximity of their neighborhoods. The KD-Tree based nearest neighbor query algorithm is one of the important preprocessing methods to accelerate the Euclidean clustering algorithm.

A point in the space was randomly selected as the initial point, and the Euclidean distance between each sample point and the initial point was calculated by the KD-Tree nearest neighbor search algorithm. If it is less than the Euclidean distance threshold, the point clouds are clustered into the most similar classes. Besides, the process is repeated until the number of point clouds no longer increases, and the whole clustering process is finished.



Point cloud filtering based on color threshold

In terms of the fundamental idea of color-based threshold segmentation in 2D images, it is to determine a threshold value, compare the grayscale value of each pixel with the threshold value, and classify the pixels according to the comparison result. The point cloud filtering based on color threshold is similar to this, and the RGB color threshold was determined after the RGB information of the point cloud was obtained.

Since there was observable difference between the RGB value of the point cloud noise and the RGB value of the leaf, the threshold was determined based on the difference. From the point cloud color information, the white noise at the edge of the corn seedling leaves was removed.

First, point cloud files were input to traverse all points in point clouds and acquire the RGB value of each point cloud. The values of each point cloud in three channels—R, G and B—were denoted as r, g and b, respectively, the sum of which was defined as Srgb. The absolute value of the difference value between r and g was solved as absrg, that between b and g as absbg, and that between r and b as absrb, specifically as seen in Formula (1).
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The absrg/Srgb ratio was defined as Rrg, the absbg/Srgb as Rbg, and the absrb/Srgb ratio as Rrb, as seen in Formula (2).

[image: image]

By inquiring RGB color values, the threshold distribution range of green color value is as seen in Table 1.



TABLE 1 Color threshold distribution of corn point cloud.
[image: Table1]

When the point cloud part of maize met the above threshold distribution range, g > r and g > b, this point cloud was reserved as the maize plant part. If the above conditions were not satisfied, the point cloud was removed as a noisy point.



Point cloud down sampling based on voxel filtering

The purpose of point cloud voxel filtering is to reduce the number of point clouds using voxelization methods. Point cloud voxel filtering is the creation of tiny spatial 3D cubes, or voxel grids, in the point cloud data. All points in each voxel are approximated by its center of gravity, which enables point cloud down sampling. This method reduces the number of point clouds and keeps the morphological features of the point clouds unchanged. In addition, it is also useful in improving the speed of algorithms such as point cloud alignment and shape recognition. This method does not affect the microstructure of the point cloud compared to the random down sampling method, and the voxel-based filtering method is more accurate for the representation of surfaces corresponding to the sampled points.



Maize phenotype calculation method

The selection of a suitable calculation method is crucial to obtain accurate values of maize phenotypic parameters.

The corn plant height measured in this paper refers to the distance from the point where the plant meets the soil to the top of the corn seedling. Firstly, we use the translation and rotation matrix to align the growth direction of the maize seedlings with the positive direction of the z-axis, then we traverse all the point clouds to find the maximum and minimum values of the maize seedling point clouds on the z-axis, and finally we find the height of the maize by taking the difference.

The calculation formula is shown in Equation 3.
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The formula h indicates the height of the maize plant, zmax indicates the maximum value of the maize point cloud on the z-axis, and zmin indicates the minimum value of the maize point cloud on the z-axis.

In this paper, we use the RANSAC method of fitting a straight line to calculate the stalk height of maize. The Randomized Sampling Consensus (RANSAC) algorithm can estimate the parameters of a mathematical model from a set of observed data containing outliers using an iterative approach. The algorithm has a wide range of applications in linear fitting.

The algorithm is applied to the spatial straight line fitting with the following parameter settings. Firstly, M iterations are performed to find out the parametric model containing the maximum number of interior points, and then a subset of samples of size n is set to perform the calculation during the iteration. The point cloud model studied in this paper is a 3D model, so n = 2 is set and the iteration is stopped when M satisfies the following conditions.

The calculation formula is shown in Equation 4.

[image: image]

where P is the degree of confidence, which is generally set to 99%.

After finding the fitted straight line of the maize stem, then calculate the point cloud coordinates of the two endpoints of the line based on the Euclidean distance calculation formula to find the stem height of the maize.

In this paper, maize seedlings are selected for the study, and the leaves at this stage are characterized by a small degree of curl. Therefore, the calculation of the leaf width and length of maize leaves was performed using an interactive point selection measurement method. The point cloud coordinates of the widest point in the transverse direction of the maize leaf and the longest point in the longitudinal direction of the maize leaf were manually selected.

Afterwards, the leaf width and leaf length are calculated based on the Euclidean distance algorithm formula.

Suppose the coordinates of two point clouds are p1 (x1, y1, z1) and p2 (x2, y2, z2), then the Euclidean distance calculation formula in 3D space is shown in Equation 5.
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Point cloud coordinate scale transformation

In order to obtain the dimensional relationship between the plant point cloud in 3D virtual space and the real-world plant, it is necessary to find the corresponding reference to calculate the scaling ratio. For acquiring the scale of the corn 3D point cloud model and the real corn plant, we used the checkerboard grid as the reference to calculate the conversion scale.

The calculation formula is Equation 6.

[image: image]

Where Lreal represents the real length of the checkerboard grid, Lvirtual represents the length of the reconstructed model of the checkerboard grid, and k represents the conversion ratio. During the recording process, a checkerboard grid of a certain size (25 mm × 25 mm/grid) was placed by the plant. The actual size of the reconstructed maize model in the real world could be obtained after the calculation of the conversion ratio.



Point cloud segmentation

In this paper, we used the region growth segmentation algorithm to segment the point clouds of maize seedlings. This method can better identify and segment plant organs such as the leaves and stems of maize seedlings. The principle of the region growth algorithm is to gather point clouds with similarities to form a region. Firstly, a seed point was identified for each region to be segmented as the starting point of the growth. Secondly, the points in the neighborhood around the seed point that had the same or similar properties to the seed were merged into the region where the seed pixel was located. Then the new points continued to grow like seeds in all directions until no more points satisfying the conditions could be included. In this algorithm, the output data structure is an array of clusters, where each cluster is a collection of points considered to be part of the same smooth surface. Moreover, the point clouds segmented using the area growth algorithms have one cluster for each color.

The region growth segmentation algorithm is mainly based on the specific implementation of normal difference and curvature difference. Firstly, the normal and curvature are calculated and sorted in ascending order according to the curvature. Secondly, the lowest curvature is selected as the initial seed point, and the neighboring points around the seed point are compared with the seed point. Finally, the normal angle threshold is set to determine whether the normal angle is smooth enough, and the curvature difference threshold is set to determine whether the curvature is small enough. If the normal angle threshold and curvature difference threshold are satisfied, the point can be used as the seed point. If only the normal angle threshold is satisfied, the point is classified without seeding.




Results


Point cloud reconstruction results

After acquisition of the multi-view image sequence, the SfM algorithm was used to obtain the sparse point cloud. The Multi-View Stereo Reconstruction algorithm was then applied to reconstruct the sparse point cloud into a dense point cloud. Figure 3 shows the 3D point cloud reconstruction results of the image sequences extracted by these two methods.

[image: Figure 3]

FIGURE 3
 3D point cloud reconstruction process. (A1) The point cloud sparse reconstruction based on Agisoft Metashape. (B1–D1) 3D point cloud sparse reconstructions based on Visual SfM. (A2–D2) Point cloud extractions of maize seedlings.




Point cloud pre-processing results

Euclidean clustering algorithm was used to segment the plant point cloud and remove the irrelevant background and spatial discrete points. As shown in Figure 4, the algorithm could extract the 3D point cloud of corn seedlings in an intact way.

[image: Figure 4]

FIGURE 4
 Segmentation Chart of Maize Seedlings Based on Euclidean Clustering. The segmentation process from (A–D) shows that the irrelevant background segmentation such as carrier table, flower pot and checkerboard grid can be removed using the Euclidean clustering segmentation algorithm.


As shown in Figure 5, a lot of point cloud noises were contained in the 3D point cloud images in (a1–c1) in addition to maize seedlings. As observed from the images in (a2–c2) after point cloud filtering, the white noisy point clouds at the leaf edge were obviously reduced, indicating the good point cloud filtering performance of this algorithm.

[image: Figure 5]

FIGURE 5
 Color threshold based point cloud filtering of corn leaves. (A1-C1) Corn leaf point cloud images containing noise before filtering. (A2-C2) The corn leaf point clouds without noise after filtering.


The point cloud color filtering algorithm and the point cloud voxel filtering algorithm used in this paper had achieved good results in filtering the corn point clouds. Apart from that, eight groups of data were randomly selected from the acquired raw point cloud data for the point cloud filtering process. As shown in Figure 6, the number of point clouds in each group after filtering is significantly reduced compared with the number on point clouds before filtering.

[image: Figure 6]

FIGURE 6
 Number of point clouds before and after filtering. The three colors indicate the number of point clouds before filtering, the number of point clouds after color filtering, and the number of point clouds after voxel filtering, respectively.




Maize point cloud segmentation recognition results

The number of leaves of the maize plants all yielded similar results to the real plants when segmented using the region growth segmentation algorithm. As shown by the experimental result, the region growth algorithm used in this paper can not only segment and identify the number of leaves of maize more accurately, but also accurately identify the segmentation of its stems and leaves, and other organs (see the result of maize point cloud segmentation in Figure 7).

[image: Figure 7]

FIGURE 7
 Maize point cloud segmentation based on region growth. In the three data sets (A-C), the image on the left is when the data were collected, the middle one is the processed 3D point cloud image, and the image on the right is the corn point cloud after segmentation by the region growing algorithm.




3D point cloud accuracy analysis of maize phenotype

A comparison of the point cloud extraction results of each phenotypic parameter of maize with the manual measurement results is displayed in Figure 8. Based on the obtained point cloud model, phenotypic parameters such as plant height, leaf length, relative leaf area, and leaf width of maize were calculated. Apart from that, 30 sets of plant height values, 49 sets of leaf length values, 49 sets of relative leaf area values and 17 sets of leaf width values were extracted by algorithmic measurements. The plant height, leaf length, relative leaf area values and leaf width values extracted through point cloud had a significant linear relationship with the manually measured values. The coefficients of determination R2 were 0.991, 0.989, 0.926 and 0.963, respectively. Besides, the root means square error RMSE was 8.61 mm, 7.11 mm, 281.62 mm2 and 0.60 mm, respectively.
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FIGURE 8
 Accuracy analysis of phenotype extraction values based on 3D point cloud and manual measurements. From (A–D), the precision analysis of phenotypes of plant height, leaf length, leaf relative area and leaf width based on 3D point clouds and manual measurements, respectively. The sample sizes N for four of the phenotypic indicators were 30, 49, 49 and 17, respectively.


Through the comparison between the point cloud measurements and the corresponding manual measurements, it was concluded that the algorithm used in this paper was accurate in maize reconstruction with multi-view imaging. This verifies, to a certain extent, that the method of extracting phenotypic parameters of crops via 3D imaging has high practicality and stability, and can extract the phenotypic parameter values of plants rapidly and losslessly.



Error analysis

A total of 15 groups of measured maize data were selected to analytically evaluate their errors as seen in Table 2, where L0, W0, S0 and H0 denote the actual leaf length, leaf width, relative leaf area and maize plant height acquired through artificial detection, respectively, and L, W, S and H stand for those measured through point cloud computing, respectively.



TABLE 2 Measured data of phenotypic parameters of maize.
[image: Table2]

Two indexes—absolute error and relative error—were used to evaluate and analyze the errors generated by point clouds, where the former means the absolute difference value between measured value and real value, and the latter stands for the percentage of absolute error in the real value. In this study, the manually measured phenotypic parameter values of maize served as real values, and those obtained through point cloud computing as measured values. The absolute error and relative error of such phenotypic parameters and their average errors are listed in Table 3.



TABLE 3 Error analysis of phenotypic parameters of maize.
[image: Table3]

Table 2 displays the errors between manually measured values and point cloud computed values of maize seedlings. It could be seen from average absolute errors that the absolute errors of maize leaf length, relative leaf area and plant height were all large. The main reason was that the leaf length was mainly measured the straight line distance between the two ends of the leaf veins of the leaves, and did not fully consider the degree of curvature of the corn leaves. Moreover, the relative leaf area was approximately expressed by the product between leaf length and leaf width, and its absolute error was greatly influenced by the leaf length. The measurement of maize plant height was affected by soil factors, which disturbed the accurate measurement to some extent. The error in the measurement of maize plant height comes from the following two main components. In this paper, the stalk portion buried by soil is not included in the measurement of maize plant height. This part of the error exists for both manually measured and point cloud extracted maize plant height. Therefore, the maize plant height defined in this paper is the distance from the contact of the maize with the soil part to the highest point of the top of the maize. In addition, the point cloud extracted maize plants have a small portion of soil on the stalk near the soil part. This part is sometimes removed when performing plant height calculations. However, during the manual measurement, this part of the stalk with soil can be measured accurately. Therefore, there is some error in the point cloud extracted plant height compared to the actual measurement.

According to the average relative errors of maize phenotypes, the relative errors of maize leaf length, leaf width and plant height were relatively approximate, while the average relative error of relative maize leaf area was relatively large, which might be ascribed to the not intact enough local point clouds during the 3D maize reconstruction. Hence, the deviation of a minority of calculated relative leaf area data was large.



Results on the growth dynamics of maize seedlings based on 3D model

Four plants were randomly selected for growth tracking study, with the longest leaves from each plant numbered as Leaf 1–4 and the one of the shorter leaves numbered as Leaf 5–8. Figure 9 shows the dynamics of phenotypic parameters such as plant height, stem height, leaf length and relative leaf area of seedling numbered maize plants over 1 week. In the early stages of growth, all phenotypes presented an increasing trend. Among the four traits, the growth rate of plant height and stem height varied more significantly. Beyond that, the dynamics of leaf length and relative leaf area varied more significantly from leaf 1 to 4 and less significantly from leaf 5 to 8. By observing the changes in the phenotypic parameters of maize in Figure 9, we can find out that the growth rate of maize seedlings varies among different individuals. The differences in the growth rate of maize can reveal to some extent how well it is growing. It can be seen that the analysis of phenotypic parameters of maize can provide unique insights for its development in precision agriculture.
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FIGURE 9
 Line graph of growth dynamics of different phenotypic traits in maize. Maize phenotypic traits were plant height (A), stem height (B), leaf length (C), and relative leaf area (D) in that order.





Discussion

With the continuous development of 3D reconstruction technology, the research of the 3D reconstruction of crops based on various sensors has also made significant progress (Gibbs et al., 2017). The traditional phenotypic analysis methods of plants are characterized by destructiveness, great time consumption, low efficiency and high cost, so the present research focus has been on nondestructively, rapidly, and accurately acquiring plant phenotypes. The most extensively applied 3D reconstruction technologies for plant phenotypes mainly include image technology-based 3D reconstruction, laser radar technology-based 3D reconstruction and 3D reconstruction based on UAVs in combination with various sensors (e.g., multispectral cameras, hyperspectral sensors or lidars). When applied to the analytical investigation on plant phenotypes, UAVs integrate the merits of portability, high efficiency and suitability for field operation. However, UAV detection is also influenced by other limiting factors, such as weather effect, limited working altitude in the air, and limited data processing speed (Zhao et al., 2019). Despite the capability of 3D imaging, multispectral and hyperspectral cameras are sensitive to electromagnetic radiation spectra with a broad scope, and fail to detect the specific information from a single wavelength (Tripodi et al., 2018). In addition, most spectral cameras cannot be promoted in a large scale due to the high cost. The development lidars has provided an effective analysis tool for investigating indoor and field plant phenotypes and improved the 3D plant modeling at different spatial–temporal scales in agriculture. The plant phenotypes extracted by lidars play important roles in agricultural seed breeding and management by virtue of a very high accuracy (Jin et al., 2021). However, the difficulty of lidars lies in how to realize high-speed data acquisition through hardware and their real-time processing using algorithms so as to acquire high-accuracy original point cloud data. In this study, the image-based 3D reconstruction method with simple operations was used, where the RGB camera, which was cheap, could be integrated onto the self-established phenotype platform, thereby providing an effective solution to the extraction of crop phenotypes. In addition, studies on 3D reconstruction of maize have been more focused on the ears and grains stage (Ma et al., 2019; Wang et al., 2019; Zhu et al., 2020; Zhang et al., 2022a), while less attention has been paid to 3D reconstruction of seedlings. During the ears and grains stage, the maize structure is complex and it is more difficult to perform 3D reconstruction of maize. In contrast, at the seedling stage, the maize plant has few leaves and simple growth structures, so 3D reconstruction of maize at the seedling stage is easier to accomplish. In this paper, we have successfully achieved 3D reconstruction and phenotype extraction of maize seedlings.

Changes in phenotypic parameters during the growth of maize seedlings are important observations reflecting their growth. The size of leaves, plant height and stem height of maize seedlings are important phenotypic information that represent their growth rate and seed vigor (Das Choudhury et al., 2020). Therefore, we designed an image acquisition platform for the 3D reconstruction of maize seedlings after acquiring multi-view image sequences, and calculated the actual size of the maize phenotype with a checkerboard grid.

Compared to 3D reconstruction with devices such as LiDAR and Kinect, the method we used only requires the use of RGB cameras and video frame extraction to acquire image sequences, which is more convenient for acquiring data, faster and more automated when performing 3D reconstruction (Garrido et al., 2015; Sun and Wang, 2019). Thapa et al. (2018) measured the total leaf area of maize and sorghum using a lidar, with R2 values of 0.95 and 0.99, respectively, indicating a high measurement accuracy. In this study, the mean R2 value of image-based maize phenotype measurement could also reach 0.967, which differed very little from the model accuracy in geometrical measurement after lidar-based 3D reconstruction. Besides, the image-based method could acquire more detailed phenotype information in comparison with the lidar-based 3D reconstruction method. The multi-view image-based 3D reconstruction could not only observe the morphological characteristic information plants but also observe their color characteristic information. The color information could represent the plant growth status, based on which countermeasures could be taken in advance to ensure the healthy growth of crops.

In terms of the point cloud segmentation, the region growth algorithm used could achieve more accurate stalk segmentation recognition of corn seedlings. However, in order to obtain the optimized segmentation results, it was required to adjust the threshold values for point cloud segmentation step by step, which was a time consuming process. In recent years, researchers have investigated the skeletonization of crop point cloud models (Wu et al., 2019; Liu et al., 2021a), which provides a new research idea for point cloud segmentation. In conclusion, the effective segmentation of point clouds still needs more exploration and further research.

Compared with 2D imaging, 3D reconstruction can obtain more detailed morphological characteristics of crop phenotypes, but it could time consuming depending on the number of reconstructed point clouds and hardware equipment. In our study, it usually took 30 ~ 40 min to perform a set of 3D model reconstruction. Therefore, it is necessary to consider reducing the quality of the point cloud reconstruction as well as the number of point clouds without affecting the reconstruction effect, so as to accelerate the point cloud reconstruction process. The extraction of phenotypic parameters after 3D reconstruction of maize was influenced, to some extent, by such objective factors as incomplete experimental methods and equipment and the surrounding environment, and measurement errors were thus generated. Specifically, such errors mainly derived from the minor vibration of the rotating platform of the 3D imaging device during the rotation as well as out-of-focus situation during the photographing of RGB camera due to inadequate lighting. Consequently, a minority of acquired pictures were unclear, thus generating point cloud noises. The indoor environment was complicated, the 3D imaging device was not isolated using a background plate, so unrelated backgrounds during the photographing process were also recorded, thus leading to point clouds of unrelated backgrounds generated in the 3D reconstruction of maize.



Conclusion

In this study, the phenotypes of maize seedlings were investigated using the multi-view image-based 3D reconstruction method, including the following three parts.

In the first stage, the self-designed 3D imaging device was used to acquire image data, and a multi-view image sequence was acquired through an RGB camera and video frame extraction method, followed by the 3D reconstruction of maize seedlings based on SfM algorithm. Subsequently, the acquired original point cloud data of maize were preprocessed using the Euclidean clustering algorithm, point cloud color filtering algorithm and point cloud voxel filtering algorithm, thus obtaining a point cloud model of maize. In the second stage, the images acquired by the RGB camera were used for the 3D reconstruction of maize, and then the phenotypic parameters of maize obtained by point cloud computing were compared with the corresponding manually measured values. The mean R2 value could reach 0.967. In addition, the point cloud errors of maize phenotypes were analyzed, which tended to be small, indicating a high accuracy of the established 3D reconstruction model of maize in this study. Therefore, the proposed method was applicable to the phenotypic analysis of maize crops and feasible in analyzing maize phenotypes. In the third stage, the 3D reconstruction of maize was performed through the video frame extraction method, which was featured by a high speed and less time consumption. Afterwards, maize stem leaves were segmented and identified through the region growing segmentation algorithm, and the expected segment effect was harvested.

To sum up, the proposed 3D reconstruction method, which is characterized by automation, high efficiency and nondestructive extraction in the research on corn phenotypes, can provide guidance for maize breeding and growth monitoring.
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Plant disease evaluation is crucial to pathogen management and plant breeding. Human field scouting has been widely used to monitor disease progress and provide qualitative and quantitative evaluation, which is costly, laborious, subjective, and often imprecise. To improve disease evaluation accuracy, throughput, and objectiveness, an image-based approach with a deep learning-based analysis pipeline was developed to calculate infection severity of grape foliar diseases. The image-based approach used a ground imaging system for field data acquisition, consisting of a custom stereo camera with strobe light for consistent illumination and real time kinematic (RTK) GPS for accurate localization. The deep learning-based pipeline used the hierarchical multiscale attention semantic segmentation (HMASS) model for disease infection segmentation, color filtering for grapevine canopy segmentation, and depth and location information for effective region masking. The resultant infection, canopy, and effective region masks were used to calculate the severity rate of disease infections in an image sequence collected in a given unit (e.g., grapevine panel). Fungicide trials for grape downy mildew (DM) and powdery mildew (PM) were used as case studies to evaluate the developed approach and pipeline. Experimental results showed that the HMASS model achieved acceptable to good segmentation accuracy of DM (mIoU > 0.84) and PM (mIoU > 0.74) infections in testing images, demonstrating the model capability for symptomatic disease segmentation. With the consistent image quality and multimodal metadata provided by the imaging system, the color filter and overlapping region removal could accurately and reliably segment grapevine canopies and identify repeatedly imaged regions between consecutive image frames, leading to critical information for infection severity calculation. Image-derived severity rates were highly correlated (r > 0.95) with human-assessed values, and had comparable statistical power in differentiating fungicide treatment efficacy in both case studies. Therefore, the developed approach and pipeline can be used as an effective and efficient tool to quantify the severity of foliar disease infections, enabling objective, high-throughput disease evaluation for fungicide trial evaluation, genetic mapping, and breeding programs.
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1. Introduction

Disease management is critical to vineyard production. Among all grape diseases, downy mildew (DM) and powdery mildew (PM) cause considerable crop damages and economic losses annually. Both DM (Plasmopara viticola) and PM (Erysiphe necator) can infect grape leaves, canes, and clusters at nearly all stages, impacting the vineyard for multiple seasons (Pearson and Goheen, 1988; Thind et al., 2004). If not treated properly, DM infection can result in severe economic losses due to grapevine damages and vineyard replanting. PM infection also severely degrades grape quality and subsequent crop values, especially for the grape wine industry where nearly all wine grape varieties (Vitis vinifera) have very limited resistance to both diseases (Pearson and Goheen, 1988; Boso et al., 2019). As a result, fungicides have been widely used for grape DM and PM control (Gisi and Sierotzki, 2008), and in some cases, the usage can be overwhelming for potential risk assuage. Such excessive applications have been linked to adverse influences on human health (Kang et al., 2021), environment (Zubrod et al., 2019), and grower financial status. For example, fungicide applications to control powdery mildew can represent upwards of 70% of a vineyard's annual management expense. Additionally, intensive fungicide uses could lead to the increase of pathogen fungicide resistance and then disease control difficulty. Therefore, precision disease management is urgently needed to secure the productivity, profitability, and sustainability of the wine grape industry.

Efforts have been made to provide effective vineyard disease management and control strategies. The most straightforward strategy is to optimize fungicide application schedule based on disease occurrence to be detected and/or predicted at asymptomatic to very early stages. As disease infection and development are highly dependent on environmental factors, many studies have investigated the use of meteorological data to establish disease prediction models to assist in fungicide spray scheduling (Orlandini et al., 1993; Vercesi et al., 2000; Rossi et al., 2008; Chen et al., 2020; Sanghavi et al., 2021). While these models have shown some success and stakeholder adoption, they have two primary limitations. These models are usually site-specific and require onsite calibration to achieve reliable prediction accuracy. Sometimes, stakeholders may have not necessary resources (e.g., labor and instrumentation) to conduct the calibration, and therefore cannot readily adopt the models. More importantly, meteorological data are likely obtained at a very coarse scale (e.g., regional level) that cannot provide spatial details for disease evaluation in individual vineyards and/or research projects. While there are ongoing efforts in using other sensing technologies (e.g., optical sensing), asymptomatic or early disease detection is still a challenging task because diseases usually initiate from areas (e.g., lower and inner canopy) invisible to sensors for detection (Singh et al., 2020).

Fungicide trial evaluation and breeding of disease-resistant cultivars are alternative solutions that can provide long-term benefits for precision disease management. Fungicide trial evaluation aims to continuously monitor and evaluate the efficacy of potential fungicide treatments for a given region and crop, so that optimal treatments can be recommended to maximize the efficiency of fungicide applications and minimize adverse impacts such as the increase of pathogen fungicide resistance (Warneke et al., 2020; Campbell et al., 2021). Breeding disease resistant cultivars can provide natural protection to crops, which would dramatically reduce the need of intensive fungicide applications for risk assuage (Poland and Nelson, 2011; Di Gaspero et al., 2012). Both solutions require accurate disease infection evaluation in the field (Poland and Nelson, 2011; Di Gaspero et al., 2012; Chen et al., 2020; Warneke et al., 2020). It should be noted that the trial evaluation and breeding programs accept symptomatic disease detection and quantification because they focus on the difference of disease infection severity caused by either fungicides or genotypes.

Since most grape diseases appear firstly in grapevine canopies, foliar disease identification is a logical target to effectively characterize grape diseases with visible symptoms, such as grape DM and PM. Prior to leaf necrosis, DM infections typically look as yellow to brown “oil-spot” regions on the upper leaf surface, often with white fluffy sporulation on the lower leaf surface. PM infections usually appear as white, powder-like spots. Currently, human field scouting is the primary way to evaluate grape DM and PM infection. To guide human scouting, the Horsfall-Barratt scale has been proposed and adopted for disease severity assessments (Horsfall and Barratt, 1945), and the European and Mediterranean Plant Protection Organization (EPPO) standard has been widely adapted for fungicide efficacy evaluation (Buonassisi et al., 2017). However, field disease scouting is not only subjective (e.g., leaf sampling and visual inspection) but also requires skilled plant pathologists or experienced workforce who are often in low availability with high hiring cost. This has become a bottleneck for fungicide trial evaluation, research projects, and breeding programs related to disease resistance.

To overcome these issues, with the recent advances in optical sensing (particularly imaging techniques), researchers have developed proximal and remote sensing tools for disease identification and quantification. An intuitive method is to identify diseases of sampled leaves using handheld sensing devices (e.g., fluorescent signals) rather than human, subjective evaluation (Ghozlen et al., 2010; Lejealle et al., 2012; Latouche et al., 2015). In this way, knowledge and experience requirements of disease inspection can be dramatically reduced, so that common workforce with proper instrument operation training are able to conduct field disease scouting. However, active leaf sampling is still needed and can considerably affect evaluation performance. Furthermore, these handheld devices must be operated by human operators in the field, having limited scanning throughput and are thus not capable of passive disease monitoring. An alternative method is to assess diseases of whole crop canopies using autonomous sensing systems to avoid the leaf sampling process and improve scanning throughput. Commonly used systems include ground robots, unmanned aircraft systems (UAVs), manned aircraft, and satellites. While the aerial systems ranging from UAVs to Earth observations are capable of accurately measuring disease infections at scale (Barbedo, 2019; de Castro et al., 2021; Gold, 2021), they are constrained by the measurement resolution and sensing angles that are crucial to grape disease sensing. For instance, grape DM and PM firstly occur at the lower canopy and become mostly visible from the side canopy. Therefore, ground systems (e.g., robots) are considered more suitable options. Nonetheless, identifying disease infections in collected images is paramount to achieve accurate and rapid disease evaluation in the vineyard (Singh et al., 2018).

Image-based plant disease analysis has been intensively studied. Based on the core techniques used, studies can be classified into three categories: conventional image processing (IP)-based methods (Singh et al., 2020), conventional machine learning (ML)-based methods (Singh et al., 2016), and deep learning (DL)-based methods (Singh et al., 2018; Jiang and Li, 2020). Conventional IP-based methods have focused on the use of color, spectral, and texture information and filters to differentiate disease infections from healthy leaves and canopies. These methods have achieved good performance with advanced imaging modalities such as multispectral, hyperspectral (Bendel et al., 2020; Nguyen et al., 2021), and fluorescent imaging (Latouche et al., 2015). These methods are usually computationally efficient and provide pixel-level infection masks for infection severity calculation, but they need to be used concurrently with costly sensors and have limited generalizability to unseen datasets, presenting challenges of the model deployment in real world applications. ML-based methods can leverage features extracted using IP methods and learn decision rules (rather than predefined ones) for image classification and segmentation (Jian and Wei, 2010; Kaur et al., 2018; Mahmud et al., 2020). This addresses the model generalizability issue to a certain extent, but image feature designing and extraction are largely manually crafted (namely feature engineering), which could be suboptimal for unseen datasets. Many recent studies have reported DL-based methods for improved accuracy and robustness of analyzing plant disease images without feature engineering (Singh et al., 2018; Jiang and Li, 2020; Benos et al., 2021). The DL-based methods learn features through training datasets and have achieved state-of-the-art performance in image classification, detection, and segmentation. Semantic segmentation is preferred, because resultant segmentation masks contain both location and quantity information of disease infections at the pixel level, enabling accurate localization for treatment application and quantification of infection severity.

Specifically for grape DM and PM, Oberti et al. (2014) conducted the first experiment to thoroughly study the optimal viewing angles of sensing grape PM on leaves, and concluded that acute angles (30 to 50 degrees) from the leaf surface provide ample information for grape PM detection. Abdelghafour et al. (2020) developed an imaging system with strobe light illumination for vineyard image acquisition, and a traditional probability based method for feature extraction and grouping to segment grape DM infections in collected images. While the method was reliable on the reported dataset, it required manual tuning of model parameters (e.g., seed size in the seed growth segmentation) to achieve desired performance on images collected using different camera systems and/or from different vineyards. This has been the major limiting factor of the method for practical applications. Most research that used DL-based methods investigated deep convolutional neural networks (CNNs) for disease image classification and achieved high classification accuracy (over 97%) of grape DM and PM (Liu et al., 2020; Wang et al., 2021; Suo et al., 2022). A study also reported the use of object detection (e.g., YOLO variants) to detect grape DM infections with a mean average precision (mAP) of 89.55% at an intersection over union (IoU) of 0.5 and processing speed of 58.82 frames per second (FPS) (Zhang et al., 2022). With both high detection accuracy and efficiency, the reported model could be integrated with ground robots for realtime grape DM detection and treatment. From these studies, various attention mechanisms (Niu et al., 2021) and multiscale feature fusion were the two important components contributing to the high model accuracy and generalizability, which should be retained in the future. To the best of our knowledge, our previous study was the only one to examine the use of deep semantic segmentation models for grape DM evaluation in the vineyard (Liu et al., 2021). While the hierarchical multi-scale attention for semantic segmentation (HMASS) model (Tao et al., 2020) was used and evaluated, the performance was obtained only on small training and validation datasets without a separate testing dataset. Furthermore, the entire image-based approach to disease infection quantification should be fully introduced and thoroughly evaluated for both grape DM and PM.

The overarching goal of this study was to develop and evaluate an image-based approach for the quantification of grape foliar disease infection in the vineyard. Grape DM and PM were used as example diseases in this study. Specific objectives were to (1) train and analyze a deep learning model for semantic segmentation of grape DM and PM infections; (2) develop a deep learning-based processing pipeline for disease infection quantification; and (3) evaluate the performance of disease severity quantification by comparing the pipeline-derived and human-assessed measurements.



2. Materials and methods


2.1. Data acquisition system

A data acquisition system (DAQ) was designed to collect color images of grapevines in the vineyard (Figure 1A). The system consisted of a utility task vehicle (UTV) as a mobile platform, a custom stereo camera, a real-time kinematics GPS (RTK-GPS) receiver, and a power generator as power supply for the camera and GPS. The custom camera contained a stereo camera and strobe light illumination units (Figure 1B). The strobe lights were synchronized with the stereo camera shutter, so images were acquired using a fast exposure time (100μs) under a strong flash illumination (Mueller-Sim et al., 2017). This allowed the suppression of irrelevant background information collected in images. The stereo system was configured vertically, so a typical left-right stereo image pair was referred as a top-bottom pair in this study. Image acquisition frequency was set as five frames per second (FPS). During the data collection in a grapevine row, the UTV was driven by cruise control at a speed of approximately 1 m/s for movement consistency. Raw images were stored in portable gray map (PGM) format. A custom program was developed to convert the images to JPG format for processing.


[image: Figure 1]
FIGURE 1
 Data collection system used in this study. (A) The imaging and illumination module highlighted in the orange box could be flexibly mounted on the ATV. (B) A reference detailed design of stereo camera and strobe light system (Silwal et al., 2021).




2.2. Deep learning-based quantification of grape foliar disease infection

A deep learning-based processing pipeline was developed to quantify the severity of grape foliar disease infection using a sequence of stereo images (Figure 2). The processing pipeline consisted of four modules: disease infection segmentation, canopy segmentation, image overlap removal, and infection severity estimation. The first three modules were to process individual image pairs in an image sequence, and the last module was for the a given sequence as a whole.


[image: Figure 2]
FIGURE 2
 The processing pipeline for disease severity quantification. For each frame, the stereo image pair and GPS location were used to generate pixel-level disease classifications (masks). These masks were combined to provide panel severity rates. Hierarchical Multi-scale Attention for Semantic Segmentation (HMASS) network is a deep convolutional neural network for semantic segmentation.



2.2.1. Disease infection segmentation

A deep semantic segmentation model was trained and used for the identification of disease infected regions in images. Foliar disease infections varied dramatically in their sizes because of infection time and progress differences, requiring the multiscale analysis capability of a segmentation model. In this study, the hierarchical multi-scale attention for semantic segmentation (HMASS) network (Tao et al., 2020) was selected because of its flexibility of the network configuration for multiscale analysis at the inference stage without model retraining. The HMASS network learned model weights between two adjacent image scales (e.g., 0.5× and 1× images) during the training phase, and chained the learned weights to combine multiple scales (e.g., adding 0.25× with 0.5× and 2× with 1×) for analysis during the inference phase. Generally, if the ratio between two training scales is r, all scales (sk) can be combined for inference if they fulfill the criterion [image: image].

HMASS models were initialized with weights pretrained on the Microsoft Common Objects in Context dataset (Lin et al., 2014) and fine-tuned on the collected grapevine image datasets for disease segmentation. To avoid potential sacrifice of image details caused by image resizing, each original grapevine image (2,704 × 3,376 pixels) was split into 6 subimages (1,352 × 1,125 pixels) as input for processing. Based on our prelimineary tests, image scales of 0.5× and 1× were used for model training, and scales of 0.5×, 1×, and 2× were selected for inference. In addition to common data augmentation practices, class uniform sampling was used to select image regions with balanced class ratios (e.g., ideally the same number of pixels belonging to each class) for model training (Zhu et al., 2019). To ensure full model convergence, the Adam optimizer with an initial learning rate of 5 × 10−3 and a batch size of 4 was used to optimize models for 500 epochs. Training, validation, and inference programs were implemented using PyTorch (v1.7.0) and conducted on a server computer with two GPU cards (RTX A6000, Nvidia Corp, Santa Clara, CA). The training environment, parameters, and strategies were the same for all the disease datasets used in this study.



2.2.2. Canopy segmentation

The canopy segmentation module generated grapevine canopy masks in images. The active illumination with a fast camera shutter provided stable lighting intensity of images, enabling the use of simple color filtering for canopy segmentation. An input image was converted from the red, green, blue (RGB) color space into the hue, saturation, value (HSV) space where illumination effects on color appearance could be further isolated. The color filter was designed to identify grapevine canopies and remove irrelevant background such as grass and wooden poles (Equation 1). The filtering thresholds were carefully tuned and verified on representative images in the datasets.

[image: image]

where [Hp, Sp, Vp] are the HSV values for each pixel. A pixel was classified as canopy only if that pixel's HSV values satisfied all three conditions. After the color filtering, an open-close operation was applied to fill holes and remove small noise areas in the final canopy mask.



2.2.3. Overlapping area removal

To avoid repeated counts of both grapevine canopy areas and disease infections, the overlapping area removal module used the depth and GPS information to identify and remove repeated regions between consecutive images (Figure 3). The depth information of individual stereo images was obtained using the stereo semi-global block matching (StereoSGBM) method (Hirschmuller, 2007). The custom stereo camera was calibrated to rectify the two images of a stereo pair. Based on preliminary tests, key parameters of the StereoSGBM were set as minimum disparity of 180 pixels, maximum disparity of 356 pixels, and matching window size of 9 pixels. To smooth generated disparity maps, a Gaussian blur operation was applied with a kernel size of 11 x 11 pixels. The resultant disparity maps were converted to depth maps for the projection of 2D image pixels to 3D coordinates (Equations 2–4).

[image: image]

[image: image]
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where xi, yi were the coordinates of a pixel (p) in an image and xw, yw, zw were the corresponding 3D coordinates of that pixel, b was the baseline between the two cameras of a stereo system, d was the disparity of p, and fx, fy were the horizontal and vertical focal lengths.


[image: Figure 3]
FIGURE 3
 Illustration of the repetitive pixel criterion. θ and θ0 were point positioning angle and minimum visible angle. AoV is the angle of view of the camera. xw and zw were point horizontal and in-depth locations in the world coordinate frame. d was the distance between the adjacent frames. The point would have been marked as repetitive in frame t since it falls into the angle of view of camera at frame t + 1.


For two consecutive stereo images (i.e., image frames t and t + 1), the distance difference between their acquisition locations was calculated using their GPS records. As the two images were acquired within a short period of time, the camera could be considered to move primarily along the platform moving direction (the grapevine row direction) with negligible displacement in other directions such as up-and-down movement along y-axis and far-and-close movement along z-axis (across grapevine row). Thus, the overlap region calculation could be simplified using the horizontal (x-axis) camera field of view (FOV). Given the camera angular field of view (AFOV) and depth information, repeatedly imaged regions between the consecutive images were identified using Equation (5).

[image: image]

where the θ0 was the complementary angle of the maximal camera viewing angle, θ was the complementary angle of a given point (pt) projected from an image pixel, distgps was the distance between the two imaging locations, and [image: image] and [image: image] were the 3D x- and z-coordinates of pt at the frame t. By substituting (Equations 2–5) was reformulated as Equation (6).

[image: image]

where Xi, D were matrices (xi ∈ Xc and d ∈ D) with dimensions identical to image size. During programming, this criterion was transformed to take matrices of associated parameters for all pixels in the image as input and evaluated the repetitiveness at once. As a result, the computational cost was largely reduced. All pixels in the current frame fell into the criterion were marked as repetitive pixels and were not considered in the calculation of infection severity to avoid potential “double-counting” issue.



2.2.4. Infection severity quantification

The severity of disease infections was quantified using the ratio of infected and canopy areas in non-repeated image regions (or effective regions in this study). For each image, the infection and canopy masks in the effective regions were calculated by excluding pixels in the overlapping areas from the masks (Equations 7 and 8).
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where [image: image], [image: image], [image: image] represented infection mask, canopy mask, and overlapping area mask of the ith image frame, respectively, and [image: image], [image: image] represented effective infection and canopy masks of the ith image frame, respectively.

Grapevines were trained with a trellis system, so the grapevine canopies would be largely on the same plane. The infection severity could be estimated using image pixels rather than the physical areas in the 3D space. Therefore, for a given grapevine unit (e.g., a panel containing four grapevines), the infection severity (szone) was calculated by dividing the total effective infection areas (in pixels) by the total effective canopy areas (in pixels) in the image sequence collected in that grapevine unit (Equation 9).

[image: image]




2.3. Case study demonstration and evaluation

We evaluated the performance of the developed processing pipeline in two case studies on grape DM and PM fungicide efficacy. The two studies were performed at the Cornell Pathology Vineyards of Cornell AgriTech in Geneva, NY in 2019. In the vineyard, grapevine rows 1 to 3 were used for the DM fungicide trials, and rows 6 to 13 were used for the PM fungicide trials.


2.3.1. Downy mildew fungicide efficacy trial

The DM fungicide efficacy study was conducted involving 3 rows of 33-year-old chardonnay vines located on the edge of the field, with each being split into 16 panels of 4 vines each. Two adjacent panels were combined as one spray unit, resulting in a total of 24 spray units. Six treatments were applied to the spray units arranged in a randomized complete block design (RCBD) with 4 replicates per treatment (Supplementary Table S1). A hooded boom sprayer operating at 100 PSI was used to disperse treatments at a volume of 50 gallon per acre (GPA) pre-bloom and 100 GPA post bloom. To perform DM fungicide trials on these rows, additional chemical applications were made to control other grape diseases such as PM and pests.

Field data collection was conducted using the DAQ system on 29 August 2019, and the collected dataset contained 2072 stereo image pairs and their associated GPS locations. The images were segregated into individual panels based on the image content and GPS information. Human field scouting was conducted right after the data collection to provide reference measurements. A human expert sampled and evaluated 20 leaves for each spray unit (i.e., two adjacent panels with the same treatment). DM infection severity was graded as the ratio between infected and total leaf area for each leaf sample based on the Horsfall-Barratt scale (Horsfall and Barratt, 1945). All leaf grades from a spray unit were averaged to calculate the unit DM infection severity, resulting in a total of 24 reference measurements.

To use the developed processing pipeline, an HMASS model was trained using the collected dataset. Two panels that showed considerable infections (treatment 3 and control groups) were randomly selected to provide a total 224 annotated subimages (1,352 × 1,125 pixels) for model training and validation (Table 1). For rigorous model evaluation, additional 463 subimages were selected from a different grapevine row, including panels from treatment 3,4,5, and the control group (Table 1). The testing subimages were processed and annotated in the same way as the training-validation ones.


TABLE 1 Datasets for the segmentation of downy mildew infections.

[image: Table 1]



2.3.2. Powdery mildew fungicide efficacy trial

The PM fungicide efficacy study included 7 rows of 33-year-old chardonnay vines with the identical layout to the DM trials. The PM fungicide trial rows were 3 rows apart from the DM fungicide trial rows. A total of 18 treatments were applied in the RCBD arrangement with 4 replicates per treatment using the same sprayer system (Supplementary Table S2). To perform PM fungicide trials on these rows, additional chemical applications were made to control other grape diseases including grape DM.

Field image collection was conducted using the same DAQ system on 29 August 2019, followed by human field assessment of PM infection using the Horsfall-Barratt scale and leaf sampling and analysis procedures. Compared with the DM dataset, the PM dataset presented considerable challenges even for experienced human experts to identify PM infections in images. As a result, images collected from only control groups (the most infections) were included in annotation. The dataset contains 132 training tiles, 27 validation tiles, and 16 testing tiles from the PM control group located at panel 13 and 14 of row 10.




2.4. Evaluation methods

Performance evaluation was conducted for both individual pipeline components and the full processing pipeline. For the disease segmentation model, visual inspection of representative results and model training and validation curves were used for qualitative evaluation, and the mean intersection over union (mIoU) was used as the metric for quantitative evaluation. The quality of overlapping area removal was also assessed by visual inspection of representative cases because of challenges in ground-truth annotations.

Disease infection severity calculated using the developed pipeline was evaluated in terms of the measurement accuracy and effectiveness in differentiation of treatments. Pearson correlation analyses were conducted between infection severity rates measured by the pipeline and human field assessment. The correlation coefficient (r) was used as a metric to evaluate the goodness of the image-derived measurements. ANOVA analyses with post-hoc Tukey test were performed to differentiate the disease control efficacy among treatments using severity rates calculated by the pipeline and human field assessment. For each measurement method, the severity rates were normalized against the highest measurement value to avoid potential artifacts of ANOVA tests due to value range differences. All analyses and tests were performed using the stats package (v4.0.5) in R, and the significance level of 0.05 was used for the tests unless stated otherwise in the results.




3. Result


3.1. Downy mildew fungicide efficacy trial
 
3.1.1. Performance of grape DM segmentation

For grape DM segmentation, while a relatively small dataset was used, the HMASS model showed satisfactory training and validation accuracy (Figure 4). During the training process, the model quickly converged in the first 50 epochs and stabilized after 200 epochs, achieving mIoUs of 0.8 and 0.88 for the training and validation datasets, respectively. The high performance was due primarily to two reasons. First, the active illumination of the imaging system minimized the variation among collected images caused by ambient light changes, resulting in a relatively consistent data distribution that would require less training samples for robust performance. This has been investigated as the key for agricultural applications (Silwal et al., 2021). Second, in addition to common data augmentation, the use of class uniform sampling selected image regions with approximately balanced class ratio, enhancing the presence of underrepresented classes (e.g., DM infected areas) for model training. Compared with common image-level augmentation methods, the class uniform sampling augmented at the class level and facilitated the learning of important features for segmenting all classes (Zhu et al., 2019; Tao et al., 2020). Furthermore, the HMASS model achieved an overall mIoU of 0.84 on the testing dataset consisting of more (2.5 and 10 times larger than the training and validation datasets) and unseen (from different grape panels and treatments) images, confirming the high performance during model training and validation.


[image: Figure 4]
FIGURE 4
 HMASS training and validation process for DM infection segmentation dataset. Parameters were evaluated after each epoch. (A) Represents the cross-entropy loss evaluated on the training dataset. (B) Represents the cross-entropy loss evaluated on the validation dataset. (C) Represents the mIoU evaluated on the training dataset. (D) Represents the mIoU evaluated on the validation dataset.


Since the testing dataset contained images from various treatments, the trained HMASS model was also evaluated using images from individual treatments, and the results showed a performance difference among treatments (Table 2). Severely infected treatments (i.e., treatment 3 and control group) had a relatively higher accuracy than mildly infected treatments (e.g., treatments 4 and 5). This was because the images had different size patterns of DM infected regions among the treatments (Figure 5). Based on human annotation statistics, images collected in severely infected treatments had many large connected infected regions that were typically larger than 1 × 105 pixels, whereas images collected in mildly infected treatments largely contained spotted and small-sized infections, resulting in a common challenge in semantic segmentation of small objects and thus lower segmentation accuracy (Yang et al., 2020). In particular, compared with common objects (e.g., cars) that have shape features, disease infections usually had unpredictable spatial patterns, posing additional difficulties in accurate semantic segmentation. It should be noted that to eliminate potential influence due to training dataset selection, an HMASS model was trained using images of treatments 4 and 5 and tested on images of treatment 3 and control group in the testing dataset. Comparable segmentation accuracy (mIoU of 0.81 and 0.86 for treatment 3 and control group) was achieved, confirming that the infection size difference would be the major factor yielding the performance gap among treatments.


TABLE 2 Per-treatment downy mildew infection segmentation test.
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FIGURE 5
 Distribution of manually labeled ground truth mask size in DM testing datasets from treatment 3,4,5 and the control group, with severity rating of of “b”, “bc”, “c”, “a”, in Table 2 respectively.


The model performance was also confirmed by manually checking representative segmentation results (Figure 6). In most cases, the trained HMASS model successfully differentiated healthy and infected (brown regions) canopies and accurately segmented the infected regions with various sizes, which agreed with the high mIoU on the testing dataset (see healthy, mild, moderate, and severe cases in Figure 6). It was noteworthy that compared with the ground truth (human annotation), the model-generated masks might not perfectly detail spotted infections, especially their boundaries and sizes, yielding lower IoU values due to the IoU sensitivity to subtle differences. This would not lead to considerable degradation in disease identification and segmentation. There were some occasions that the trained HMASS model missed or misidentified the DM infections. Some grape leaves presented symptoms that looked similar to grape DM but were caused by other stresses, and the trained HMASS model was not able to correctly identify them (see the red circle in other stresses in Figure 6). In addition, as with all optical systems, the active illumination of the imaging system used in this study had a vignetting effect causing a lower illumination intensity at image corners. Sometimes, the low illumination intensity on an early DM infection (slight leaf discoloration) could reduce the clarity of that infection and miss the segmentation (see the yellow circles in poor illumination in Figure 6).


[image: Figure 6]
FIGURE 6
 Examples of Downy Mildew (DM) infection segmentation mask generated by HMASS. Images are selected from testing dataset. Ground truth are manually labeled. Red circle indicates region of non-DM damage confused by the inference model. Yellow circles are false negative detections due to insufficient lighting condition.


Although it could not fully address all possible cases, the trained HMASS model generally achieved a satisfactory accuracy of segmenting grape DM and robustly generalized to unseen images. Therefore, it should be sufficiently accurate and robust for grape DM infection identification and therefore quantification in successive steps.



3.1.2. Performance of overlapping region removal

The overlapping area removal module successfully identified regions that were repeatedly captured between consecutive image frames and provided effective areas for canopy and disease infection quantification (Figure 7). The selected case demonstrated the process for an image sequence collected from an entire grapevine row. At time t0, the imaging system stopped at the starting point and collected images of the same scene, so the repetitive masks were all white, meaning that all pixels in the current image frame were recaptured in the next image frame and would not be used as an effective area for canopy and infection quantification. From time t1 to t2, the imaging system started and accelerated to a preset cruising speed (approximately 1 m/s). During this period, the overlapping areas between consecutive images were reduced, and the non-overlapping areas were identified effective for the quantification and canopy and infection areas. When the imaging system moved at the preset cruising speed (after time t2), collected image frames showed a relatively constant overlapping region and thus effective area for the quantification. When the imaging system stopped at the ending point (time t3), the last image frame was considered having no overlapping region and fully used for processing.


[image: Figure 7]
FIGURE 7
 Example masks for repetitive region removal. Data collection vehicle started from stop at t0 and gradually accelerated from frame t1 to frame t1 + 2. The vehicle then moved with constant speed from frame t2 to t2 + 2. The vehicle moved out of the data collection region at frame t3. Canopies areas where the information was kept were labeled in red in effective area images. Infected regions within the effective areas were labeled in blue. The severity rate was determined by the sum of blue areas in the effective area images divided by the sum of red areas in the effective area images.


Generally, the generated repetitive masks and effective areas were reasonable based on human visual inspection and matched with the imaging system movement patterns (e.g., parked at a point, acceleration, and movement at a constant speed). The effective area in each image frame enabled accurate counting of grapevine canopy and disease infection pixels to avoid the "double-counting" issue. It should be noted that the developed overlapping area removal module was based on the depth and GPS information without the consideration of image features. As a result, complex object geometry might lead to some errors of overlapping region identification, especially near the separation line between overlapped and non-overlapped areas. Also, if the field terrain was considerably uneven (e.g., big bumps and ditches), the imaging system could not be considered moving only along the row direction (i.e., x-axis of the camera), causing additional errors in the generated repetitive masks and effective areas. However, these error sources were either trivial (only a small portion of pixels) or occasional (few big bumps in the field), and therefore, the generated repetitive masks and effective areas were sufficient to resolve potential “double-counting” issues that would considerably affect the accuracy of canopy and disease infection quantification.



3.1.3. Severity rate estimation evaluation

For grape DM infection quantification, there was a strong Pearson's correlation (r = 0.96) between image-derived and human-assessed infection severity rates, indicating the high accuracy of disease infection quantification using the developed processing pipeline (Figure 8). While the theoretical range of image-derived and human-assessed measurements was from 0 (not infected) to 1 (fully infected), severity rates calculated by the two methods showed different magnitudes because of sampling object difference. The human assessment was for individual leaf samples where full infection could occur, whereas the image-based method evaluated the whole grapevine in a specific unit (e.g., a panel) that would not be fully infected in practice. To avoid potential artifacts in successive statistical analyses, the image-derived severity rates were normalized to have the least infection of 0 and the most infection of 1.


[image: Figure 8]
FIGURE 8
 Pearson's correlation result of normalized severity rates of DM fungicide efficacy test calculated using the imaging-based pipeline and human field assessment.


Generally, the image-derived and human-assessed severity rates showed similar statistical patterns to differentiate grape DM fungicide treatments (Figure 9). When the grape panel was used as the unit, the image-derived severity rates demonstrated an identical statistical pattern as the human-assessed measurements, presenting the effectiveness of using the image-based method to quantify disease infection and evaluate fungicide efficacy. Also, the image-derived measurements showed smaller within treatment variance than the human assessments because of the objective, full panel evaluation over the subjective sampling-based evaluation. When the spray unit (two grape panels) was used, the image-derived severity rates were only capable of distinguishing treatments with considerable differences such as severely infected (e.g., control) and well-controlled groups (e.g., treatment 1). No statistical difference was found between well-controlled to mildly infected treatments. This occurred primarily because of the replication size reduction. The human field scouting collected 20 leaf samples in each spray unit, resulting in 80 (20 × 4 spray units per treatment) replications per treatment. In contrast, the image-based method used each spray unit as a replication and only had 4 replications per treatment. The considerable replication decrease would lead to the substantial reduction of statistical power to differentiate treatments irrespective of the measurement accuracy. In this study, a minimum of 8 replications would be needed, or replicate panel images would need to be split into subsampled images. The optimal replication size requires more investigations in future studies.


[image: Figure 9]
FIGURE 9
 Box plots of severity rates for the six treatments together with the control group for DM fungicide efficacy test in this study: (A) represents the imaging-derived severity rates at the panel level, (B) represents the imaging-derived severity rates at the spray unit level, and (C) represents the severity rates evaluated by human experts. Different letters indicate statistical significance between groups. Treatments within the same group are assigned the same color. The numbers with bars indicate differences of mean values between adjacent treatments.





3.2. Powdery mildew case study
 
3.2.1. Performance of grape PM segmentation

For grape PM segmentation, the HMASS model also converged successfully and showed an acceptable segmentation performance on the training and validation datasets (Figure 10). Compared with the grape DM model, the grape PM model used more epochs (300 epochs vs. 200 epochs) to converge with a relatively lower segmentation accuracy (mIoU of 0.76 for both training and validation datasets). This was mainly because it was more challenging to segment grape PM infections than grape DM infections. Grape DM infections had an obvious discoloration (yellowish to brownish color) that was well captured by the imaging system, whereas grape PM infections only showed the white to gray powdery appearance when they were imaged or viewed from acute angles (optimally 30 to 50 degrees from the leaf surface Oberti et al., 2014), presenting difficulties to not only the model for segmentation but also human experts for annotation. In terms of the model generalizability, the grape PM model demonstrated a good performance (mIoU of 0.73) on the testing dataset containing unseen images. Considering these factors, the trained HMASS model also provided acceptable accuracy for grape PM identification and segmentation to be used for infection quantification.


[image: Figure 10]
FIGURE 10
 HMASS training and validation process for PM infection segmentation dataset. Parameters were evaluated after each epoch. (A) Represents the cross-entropy loss evaluated on the training dataset. (B) Represents the cross-entropy loss evaluated on the validation dataset. (C) Represents the mIoU evaluated on the training dataset. (D) Represents the mIoU evaluated on the validation dataset.


The visual inspection of segmentation results of testing images confirmed the training performance evaluation (Figure 11). In most cases, the trained HMASS model successfully identified and segmented PM infections with varying sizes and infection severity, showing the model effectiveness and generalizability (see healthy to severe cases in Figure 11). Similarly to the grape DM segmentation, spotted and small-sized infections were the challenging cases and showed imperfect segmentation details (e.g., some spotted infections might be missed). A major challenge to the PM segmentation was the inadequate capability of sensing all PM infections with complex leaf geometry and orientation. If a leaf was imaged with its surface parallel with the imaging system, the leaf surface details were considerably reduced, resulting in the lack of texture and color features to delineate PM infections. As a result, the HMASS model could not reliably segment the infection boundary (see white circles in the unclear boundary case in Figure 11). The visibility of PM infections also substantially decreased in some cases where leaves were underlit (see yellow circles in the poor illumination case in Figure 11) and/or totally perpendicular to the camera (see the red circle in the poor illumination case in Figure 11), leading to the false negative identification of those regions (i.e., miss the infections). Since these extreme cases represented a small portion of all possible leaf orientation and geometry and limitations were mainly from the sensing system, the trained HMASS model performance was sufficiently accurate to identify and segment PM infections with clear symptoms for successive analyses.


[image: Figure 11]
FIGURE 11
 Examples of Powdery Mildew (PM) infection segmentation mask generated by HMASS. Images are selected from testing dataset. Ground truth are manually labeled. White circles are regions where boundaries of infections are not correctly detected. Yellow circles are false negative detections due to insufficient lighting condition. Red circles are false negative detection due to variant unobvious appearance of PM damage.




3.2.2. Severity rate estimation evaluation

A strong Pearson's correlation (r = 0.95) was also found between the image-derived and human-assessed severity rates for grape PM infection (Figure 12). Similarly to the grape DM case study, the image-based method evaluated the entire grape panel or spray unit rather than individual leaf samples, so measurements of the two methods were in different magnitudes. The image-derived severity rate theoretically had the range from 0 (not infected) to 1 (fully infected). Although the overall correlation was strong, many data points representing mildly infected panels showed certain deviations between the image-derived and human-assessed measurements (see the red circles in Figure 12). This was very likely due to the sensing system incapable of resolving mild PM infections in images. Consequently, these infections could be missed by the trained model, introducing errors in the calculation of infection severity rate. As the mildly infected panels had a relatively low absolute severity rate, such errors (mostly underestimation) presented more evident relative effects.


[image: Figure 12]
FIGURE 12
 Pearson's correlation result of normalized severity rates of PM fungicide efficacy test calculated using the imaging-based pipeline and human field assessment. Red circles represent outliers in the mildly infected cases.


ANOVA followed by Tukey test results showed that the control group was statistically different from all PM fungicide treatment groups using the severity rates calculated by the image-based method and human field assessment (Figure 13). Although the mean value of treatment 17 was higher than other fungicide treatments, the image-derived severity rates were not able to statistically differentiate treatment 17 from other treatments irrespective of replication unit used (either panel or spray unit), which was the major difference in statistical power than the human-assessed values. Possible reasons causing this were complex. On one hand, the imaging system for entire panel evaluation without subjective leaf sampling should be objective and yield improved severity rate calculation than human field scouting. On the other hand, human field scouting was able to check leaf samples from all possible viewing angles to not miss even mild PM infections, which should be more accurate for disease identification. Thus, it is worthy of further investigations in the future to reveal details. Nonetheless, the objective, full panel evaluation through the image-based method still provided smaller variations within treatment, which would be desired for statistical analyses with limited replications.


[image: Figure 13]
FIGURE 13
 Box plots of severity rates for the 17 treatments together with the control group for PM fungicide efficacy test in this study: (A) represents the imaging-derived severity rates at the panel level, (B) represents the imaging-derived severity rates at the spray unit level, and (C) represents the severity rates evaluated by human experts. Different letters indicate statistical significance between groups. Treatments within the same group are assigned the same color. The numbers with bars indicate differences of mean values between adjacent severity groups.






4. Discussion

The developed image-based approach has demonstrated a high accuracy of the quantification of grape DM and PM infection in the vineyard, enabling high throughput plant disease sensing for fungicide or biocontrol efficacy trials, genetic mapping of disease resistance, and resistance breeding and selection. The high accuracy has been achieved because of both sensing and analytics improvements. From the sensing perspective, the strobe light-enhanced imaging system provides an active and stable illumination to minimize image quality variations caused by ambient light changes, especially in the field. The improved consistency of image quality (mostly illumination-related) allows the use of simple image features (e.g., color) and operations (e.g., filtering) for reliable analyses such as canopy segmentation. Meanwhile, such improved image consistency simplifies the training requirements (e.g., the number of annotated training samples) of modern deep neural networks for downstream tasks such as grape DM and PM segmentation, which agrees with previous studies (Silwal et al., 2021).

From the analytical perspective, the experimental results have agreed with previous studies: modern deep learning models designed for general computer vision tasks can be effectively used for plant stress identification and segmentation with limited training datasets (Singh et al., 2018; Jiang and Li, 2020). These deep learning models provide accurate and implementable solutions to the core needs of plant disease (or stress in general) phenotyping. In addition to this, the developed pipeline has shown the advantage of combining multimodal sensing data for disease quantification. By combining the color, depth (retrieved via stereo camera), and localization information, the developed pipeline is capable of not only segmenting grape disease infections in a single image but also quantifying infection severity in an image sequence without “double-counting” concerns. This can provide a more accurate evaluation of disease infection severity in the field, especially production systems. Since the developed approach and pipeline showed high accuracy of diseases with different symptoms, the approach and pipeline could be potentially expanded to general foliar diseases with visible symptoms, which is substantially beneficial for grape disease research, breeding, and management.

Several key technical limitations have been identified in this study as well. First, the sensing system is the fundamental limiting factor for plant disease detection and quantification. When disease symptoms could not be fully and/or consistently sensed, there might not be too much to improve from data analytics. In this study, even the same deep learning model was used, the mIoU of segmenting grape DM and PM could vary up to 0.11, which is a considerable performance difference. Additionally, although DM and PM cause infections on both sides of the leaf surface and the symptoms on lower leaf surface are usually more obvious, the current imaging system only primarily sense the upper leaf surface due to occlusions. To solve this, one option is to use advanced sensing modalities (e.g., thermal, multispectral or hyperspectral imaging and advanced sensor mounting system), and another option is to optimize sensing systems for specific disease or stress of interest. For instance, the optimal imaging angle of grape PM is from 30 to 50 degrees with the leaf surface, which can guide the design of new optical sensors. Second, plant disease datasets can have some unique challenges to current computer vision (CV) algorithms and models. For instance, both grape DM and PM images have small and scattered infections, especially for mild infection cases. Segmenting these small objects has been widely acknowledged as a challenge even by the CV community (Yang et al., 2020). Plus, compared with common CV datasets, these small disease infections have unpredictable shapes, presenting additional difficulties. In some cases, the infection area may appear non-typical and can look similar to other leaf stresses. Due to the dataset and model limitation, the current method was only developed for typical infections seen in the field of experiments and labeled by human expertise and would not be directly applied for infections of significantly different appearances without further calibration. It requires interdisciplinary efforts on developing new CV models and incorporating domain knowledge to lift the constraints of model and dataset and further improve the data analysis accuracy. Third, experiments conducted in this study were well designed and controlled to allow either DM or PM (not both) to occur in the vineyard, so the collected datasets and trained models were not for the differentiation between multiple diseases. While the presence of a specific disease (or plant stress in general) could be well controlled in research and breeding, production vineyards usually show multiple diseases (even a combination of abiotic and biotic stresses) at the same time. Stress differentiation was not the objective of the present study, but it should be further investigated in the future to maximize the use of digital tools for production systems. Last, the developed pipeline is for offline analysis, which cannot be directly integrated with robots and other machinery for realtime disease quantification. This limits the potential of using the developed technology for vineyard management such as precision spraying. The most time-consuming module is the HMASS-based disease segmentation, so it is necessary to explore options to replace the HMASS model with light-weight ones or to optimize (e.g., model pruning) the HMASS model for online processing.



Conclusion

An image-based approach was developed for the quantification of grape foliar disease in the vineyard, and evaluated using grape DM and PM fungicide trials. For both diseases, the image-derived infection severity was highly correlated (r > 0.95) with human field assessment, and showed effective statistical power in differentiating the efficacy of fungicide treatments. Therefore, the developed approach can be used as an effective tool for grape DM and PM evaluation in research projects and production management. Future studies will be focusing on (1) exploring various sensing modalities for grape PM identification to improve the quantification accuracy and (2) investigating light-weight deep learning models for online disease segmentation and quantification.
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The urgent requirement for improving the efficiency of agricultural plant protection operations has spurred considerable interest in multiple plant protection UAV systems. In this study, a performance-guaranteed distributed control scheme is developed in order to address the control of multiple plant protection UAV systems with collision avoidance and a directed topology. First, a novel concept called predetermined time performance function (PTPF) is proposed, such that the tracking error can converge to an arbitrary small preassigned region in finite time. Second, combined with the two-order filter for each UAV, the information estimation from the leader is generated. The distributed protocol avoids the use of an asymmetric Laplace matrix of a directed graph and solves the difficulty of control design. Furthermore, by introducing with a collision prediction mechanism, a repulsive force field is constructed between the dynamic obstacle and the UAV, in order to avoid the collision. Finally, it is rigorously proved that the consensus of the multiple plant protection UAV system can be achieved while guaranteeing the predetermined time performance. A numerical simulation is carried out to verify the effectiveness of the presented method, such that the multiple UAVs system can fulfill time-constrained plant protection tasks.
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 prescribed performance, finite-time boundedness, collision avoidance, plant protection UAV, agriculture application


Introduction

With the rapid development of industrialization and urbanization, the shortage of the main rural labor force leads to a sharp rise in agricultural labor costs (Yongliang et al., 2019; Brown et al., 2022). There are about 2 billion hectares of land in the world (Sun et al., 2019), where dozens of major diseases and insect pests occur all year round, requiring a large number of agricultural plant protection operations. Taking pesticide spraying as an example, artificial spraying is not only easy to cause harm to the health of plant protection workers, but it may also lead to too much pesticide residue or too little spraying on some crops due to uneven spraying. Artificial plant protection operations lack environmental protection or efficiency. Therefore, unmanned aerial vehicles (UAVs) plant protection technology has been extensively investigated (Robert et al., 2011; Li et al., 2021; Martins et al., 2021; Toni and Kridanto, 2021). The study by Aeberli et al. (2021) lays a foundation for UAV-based banana plant counting and crop monitoring that can be utilized for precision agricultural applications to monitor health, estimate yield, and provide information on fertilizers, pesticides, and other input needed to optimize farm management. At present, there are research on a single pesticide spraying plant protection UAV. For example, the spatiotemporal distribution characteristics of the airflow field of the plant protection UAV are studied (Zhang et al., 2020) in order to improve the effectiveness of pesticide application and reduce environmental risk caused by spray drift. Nevertheless, labor cost of a single pesticide spraying plant protection UAV is high because each one needs professional pilots to operate (Sun et al., 2019). In addition, single UAV operational area and increased operational efficiency do not yield huge advantages due to their limited cruising time. Therefore, a formation control algorithm for plant protection UAVs is necessary to achieve the advantages of high efficiency, high safety, accuracy, and obstacle avoidance for practical application significance (Yang et al., 2020).

Plant protection UAVs are divided into fixed wing, single rotor, and multi-rotor, of which fixed wing is suitable for large-scale operations on large farms. Compared with a multi-rotor, single rotor has a higher cost and requires supporting facilities, which is not conducive to promotion and application. Multi-rotor plant protection UAV, with its advantages of high-operation efficiency, strong operation adaptability, and accurate operation process, is very suitable for disease and insect control in small or medium-sized fields and the precise local application of pesticide in the field, so it has been widely used as shown in Figure 1. The flight control design is a key issue for multiple UAVs to form and maintain formation and complete plant protection tasks. Since the control system must deal with the interaction between multiple UAVs, obstacles in a complex environment, and possible failures or saturated inputs, flight control design is still an open challenge. By only utilizing local neighboring relative interactions to construct control protocols, the advantages of independent central nodes and good scalability have spurred considerable interest in distributed control strategies. Recently, various distributed control methodologies have been extensively investigated for multiple UAVs systems (Huang et al., 2020; Wang et al., 2020, 2021; Junkang et al., 2021; Ya et al., 2022; Yuan et al., 2022). A fully distributed finite-time formation controller based on sliding mode and adaptive method is adopted (Rojo-Rodriguez et al., 2017) in order to achieve consistency of the whole formation by using only local communication between adjacent UAV individuals. Based on performing linear transformation, through a series of feasible solutions of linear matrix inequalities, two sufficient conditions for the existence of desired output feedback control protocols are derived for stochastic multi-agent systems with average dwell time (ADT) switching topologies (Zhou et al., 2019).


[image: Figure 1]
FIGURE 1
 (A) Formation application scenes. (B) Example for a multi-rotor plant protection UAV.


However, the above control method cannot assign the transient and steady-state behavior indexes of a multiple UAVs formation errors in advance, that is, the control performance of a multi-UAV system completely depends on the tedious regulation of parameters in the control protocol. In practice, the realization of specified performance indicators is the key for multi-UAV systems to complete plant protection tasks, because these indicators are closely related to the task requirements, for example, the maximum allowable range of tracking accuracy will affect the uniformity of pesticide spraying, and the planned time of tracking will affect the completion efficiency of plant protection work. Due to the prescribed performance control (PPC) proposed (Bechlioulis and Rovithakis, 2008), there have been some significant advances in the control of multiple UAVs systems (Bechlioulis and Rovithakis, 2016; Guo et al., 2017; Xu et al., 2022). The quantized cooperative control problem for MASs with unknown gains in the prescribed performance is studied by using a lemma and Nussbaum function (Liang et al., 2020). Generally, the exponential decay function is constructed as the classic default performance envelope (Zhai et al., 2017; Zhu et al., 2021), which results in the output tracking error convergent to the specified set of residuals only as the time approaches infinity. Nevertheless, this feature of the classic performance envelopes is inappropriate for time-constrained plant protection tasks. Thus, it is of great importance to explore a pre-set time prescribed performance control strategy to achieve the finite-time convergence for the formation errors of the multiple plant protection UAVs systems. In previous studies (Liu et al., 2018) and (Zhao et al., 2018), the finite-time control via adding a power integrator technique is investigated to address a finite-time stability problem for non-linear systems. But, the achieved finite-time design process becomes very complex (Jinpeng and Peng, 2018; Hongyi and Shiyi, 2019). In this sense, efforts are still lacking in designing pre-set time performance envelopes and reducing the complexity of finite-time schemes.

From a practical perspective, the working space of the plant protection UAV is usually 2–4 m above the ground, UAVs performing plant protection tasks often share the same airspace with dynamic flying objects in a real farmland scenario. In order to complete plant protection tasks safely and smoothly, there are specific requirements for real-time collision avoidance control methods of multiple plant protection UAVs while maintaining formation. Artificial potential function (APF) is usually considered as a solution to this problem because of its simple implementation and low computational cost (Olfati-Saber, 2006; Renevey and Spencer, 2019; Wei et al., 2021; Xue et al., 2021). An improved hybrid obstacle avoidance method combining the advantages of the ant colony algorithm, and APF is exploited (Xiangmin and Renli, 2020). Based on a previous study (Wan-ru et al., 2021), aiming at the unknown battlefield environment with various obstacle forms, the path planning method for multi-agent is studied to avoid dynamic and static obstacles and track targets in two-dimensional space. Whereas, when encountering obstacles that do not interfere with group operation, there is no need to apply obstacle avoidance control. This can not only pass-through obstacles safely but also reduce energy consumption. Furthermore, another key issue of multiple UAVs is that the desired control inputs cannot be implemented owing to the external disturbance, actuator saturation, and failure (Liu et al., 2020, 2022; Duo et al., 2021; Yang et al., 2021; Wang and Dong, 2022).

Motivated by the facts stated above, this study investigates the design of a performance-guaranteed distributed control for multiple plant protection UAVs with collision avoidance and a directed topology. Compared to the relevant existing research in the literature, the main contributions of this study can be summarized as follows:

(1) This study investigates a new prescribed performance function called predetermined time performance function (PTPF). The most outstanding feature is that it can make the error converge to an arbitrary small region in finite time, which is more advanced than the PPC (Bechlioulis and Rovithakis, 2008, 2016; Guo et al., 2017; Zhai et al., 2017; Liang et al., 2020; Zhu et al., 2021; Xu et al., 2022). The presented controller design process is simpler, and the corresponding result is also easier to be achieved than that in previous studies (Jinpeng and Peng, 2018; Liu et al., 2018; Zhao et al., 2018; Hongyi and Shiyi, 2019).

(2) Through a two-order filter for each agent to estimate the signals from the leader, this performance-guaranteed distributed control protocol avoids the use of the asymmetric Laplacian matrix of the topology graph.

(3) A collision prediction mechanism for dynamic obstacles is introduced. Then, a repulsive force field is constructed to achieve dynamic obstacle avoidance. Simultaneously, the PTPF enables the multiple plant protection UAVs formation to track the desired trajectory and limit the relative distance within the specified range, thus realizing the actual plant protection task.

The rest of this study is organized as follows: In the “Problem formulation” section, the main problem addressed is illustrated. In the “Main results” section, under a directed topology, the filter and the controller with prescribed performance is designed for the plant protection UAVs system with collision avoidance and external disturbance. Moreover, the closed-loop system stability is analyzed. The simulation studies are discussed in the “Simulation study” section and the “Conclusion” section concluded.



Problem Formulation


Problem statement

In this subsection, the mathematical multiple plant protection UAVs system under external disturbance with N UAVs can be modeled by the following dynamic equations:

[image: image]

where [image: image] is the position coordinates of the i-th UAV with initial conditions [image: image], [image: image] is the components of velocity of the i-th UAV in three coordinates, [image: image] is the actual control input, [image: image] denotes the external disturbance of the i-th UAV. The desired trajectory for the leader UAV [image: image] is bounded and only known by part of the N UAVs, with [image: image]d being bounded and unknown to all UAVs.



Algebraic graph theory

Let [image: image] denotes a directed digraph, which is used to model the communication network among the agents, where [image: image] denotes the set of nodes; [image: image] denotes the set of the edges; and [image: image] denotes the adjacency matrix. The node vi represents the i-th agent. The edge (i, j) denotes an edge of the graph [image: image], [image: image] if and only if there is a communication from agent j to agent i. The neighbor set of node vi is described as vi. The adjacency element aij corresponding to the edge (i, j) denotes the communication quality between the agents i and j, i.e., [image: image], otherwise aij = 0. A directed graph [image: image] is called undirected if and only if aij = aji. Clearly, for a directed graph, [image: image] is non-symmetric and the diagonal elements aii = 0. The in-degree matrix [image: image] is introduced such that [image: image] with [image: image] being the i-th row sum of [image: image]. Then, the Laplacian matrix [image: image] for the directed digraph [image: image] can be defined as [image: image]. Moreover, we use [image: image], where bi = 1 indicates that Pd is accessible directly by the i−th UAV, otherwise bi = 0. A sequence of edges of a graph [image: image] is called a path if it is in the form {(i, i1), (i1, i2), (i2, i3), (i3, i4)}. Throughout this study, the following notations are used. Let a ∈ ℝn and b ∈ ℝn being two vectors, then define the vector operator .∗ as a. ∗ b = [a(1)b(1), …, a(n)b(n)]T. Let [image: image] being a matrix, then [image: image] denotes the minimum eigenvalue of [image: image].

Assumption 1. The directed graph [image: image] includes a directed spanning tree, and the desired trajectory Pd(t) is accessible to at least one UAV. Besides, label this one UAV as i = 1 when there is only UAV accessible to Pd(t).

Assumption 2. The external disturbance nonlinearity di,p(t), i = 1, …, N, p = 1, 2, 3 are bounded functions, namely, [image: image], where [image: image] is a constant.

Lemma 1 (Yongliang et al., 2019). Based on Assumption 1, the matrix [image: image] is non-singular. Define [image: image], [image: image], [image: image], where θi > 0 for i = 1, …, N. It can be summarized that [image: image] is a positive definite.

Lemma 2 (Olfati-Saber, 2006). There exists a function φ(t) ≥ 0 and

[image: image]

where α > 0 and 0 < β < 1 are constants. Then, the solution of (2) is as follows:

[image: image]

where [image: image].

Remark 1. Assumptions 1 and 2 are not restrictive conditions. In Assumption 1, the desired trajectory Pd(t) can only be accessed by a subset of UAVs under a directed communication graph (i.e., [image: image]). In Assumption 2, the disturbance parameter di(t) usual to be bounded is natural assumption in engineering practice. Therefore, Assumptions 1 and 2 are reasonable.

Remark 2. From (3), it is worth mentioning that function φ(t) possesses finite-time convergence decreasing property (i.e., φ(t) > 0, [image: image], limt→T0φ(t) = 0, and φ(t) = 0, t ∈ [T0, ∞)), which implies that φ(t) can be limited to 0 in a finite time T0.




Main results

In this section, first we construct a collision prediction mechanism for dynamic obstacles. Then, we design three two-order filters [image: image], [image: image], and [image: image] for each UAV to produce informational estimates from the leader. Subsequently, a distributed tracking controller will be designed for an uncertain multi-agent system with external disturbance. Finally, we shall demonstrate that it results in the solution for the problem of pre-designed performance for (3).


Collision avoidance

Considering the main obstacles of the plant protection, UAVs in the farmland environment are dynamic flying objects in the air. In this section, the mathematical models of this obstacles will be simplified first, and the corresponding autonomous obstacle avoidance function will be designed. In the collision avoidance behavior control term, it is necessary to make obstacles threatening judgment because even if the UAV detects obstacles, it may not hit the obstacles in the real situation. Therefore, on the premise of not affecting the control effect of UAVs, obstacle collision prediction in advance can reduce unnecessary maneuvers. Assuming that there is a dynamic spherical obstacle in the flight space, i-th UAV can detect the obstacle at a certain time t. Define the position coordinates of center of b-th sphere dynamic obstacle as [image: image] and the bounded velocity sector as [image: image], b = 1, 2, …, M. Define the relative motion direction judgment function Qib(t) ∈ ℝ as

[image: image]

where nib = (Pi(t) − Pob(t))/||Pi(t) − Pob(t)|| denotes the unit vector of the relative position vector from the i-th UAV to the center of b-th sphere dynamic obstacle.

Since the trajectory of i-th UAV and b-th obstacle cannot be predicted in advance, it is assumed that i-th UAV and obstacle continue to keep moving in the direction and magnitude of the current speed to simplify the model. Then, the time for them to keep moving until the allowable distance can be calculated as

[image: image]

Based on (5), the obstacle avoidance decision function is defined as

[image: image]

with

[image: image]

where Rob denotes the radius of the b-th dynamic obstacle, and dissaf denotes the minimum collision avoidance distance, as shown in Figure 2.


[image: Figure 2]
FIGURE 2
 The collision prediction between i-th UAV and b-th dynamic obstacle.


If βib(t) = 1, it is necessary to use its maximum acceleration amax to decelerate so that the relative velocity α(t) of the two rapidly decreases to zero. In the process of reducing velocity, the movement distance of the i-th UAV disbrake(t) ∈ ℝ is calculated as

[image: image]

Simultaneously, disib(t) = ||Pi(t) − Pob(t)|| ∈ ℝ denotes the distance between the i-th UAV and the b-th dynamic obstacle at time t. Generally, if disib(t) − disbrake(t) < 0, the collision cannot be avoided, and the collision avoidance control term is needless. So, we assume that disib(t) − disbrake(t) > 0 all the time.

Based on the definition of σ norm (Olfati-Saber, 2006),

[image: image]

where ε > 0. The norm gradient is calculated as [image: image]. This new σ norm is promoted in order to solve for zero non-differentiable of ||z||.

Then, a repulsive potential function ϕib(x) is constructed as follows:

[image: image]

It is worth noting that ϕib(x) as shown in Figure 3, is strictly decreasing and reaches its minimum value 0 when x = Rob + dissaf. And the artificial potential function is designed as follows:

[image: image]


[image: Figure 3]
FIGURE 3
 Repulsive potential function ϕib(x).




Filters design

To facilitate the control design in distributed manner, design three filters [image: image],[image: image], and [image: image] for each UAV, where i = 1, …, N. In this subsection, for easy writing and derivation, we only write the desired x-coordinate trajectory Xd for the leader UAV and the superscript X, Y, Z is omitted.

Denote [image: image], p = 1, 2, where [image: image], [image: image]. Then, design the filters as follows:

[image: image]

with

[image: image]

and

[image: image]

where c0, c1, and c2 are positive constant parameters selected as c0 ≥ 1, c1 > c0 + 1, c2 = c0c1, Fi,1 = sup{Xd}, Fi,2 = sup{[image: image]d}, and i = 1, …, N.

Theorem 1. Consider a closed-loop system consisting of N filters (12) satisfying Assumption 1 with local controller (13). The asymptotic consensus tracking of all the filter's outputs to Xd, Yd, Zd is achieved (i.e., [image: image], [image: image], [image: image], and i = 1, …, N). Moreover, [image: image],[image: image], and [image: image] are bounded (Liu et al. 2021).

Remark 3: The proof of Theorem 1 is in Appendix. As given, a two-order filter is designed to produce a signal [image: image],[image: image], and [image: image] for each agent. Actually, [image: image], [image: image], and [image: image] are the estimates of Xd(t), Yd(t), Zd(t), respectively, which means that [image: image], [image: image], and [image: image] are the estimate of the desired trajectory of the leader plant protection UAV. Moreover, the desired trajectory is set according to the area of farmland and the spacing between plants. The agents no longer require estimating the matrix [image: image]. Cooperating these two-order filters makes the use of traditional adaptive control techniques for general MAS be easy. Thus, the unknown time-varying control coefficients for a plant protection multi-UAV system with a directed graph can be dealt with.



Control scheme

Cooperating with the filter (12), the distributed controller is designed. We define the following error variables [image: image], i = 1, …, N, k = 1, 2 as

[image: image]

where [image: image] was designed in (12), [image: image] is the offset vector relative to the leader's desired trajectory representing the desired formation with [image: image], where [image: image] are constant parameters, [image: image] is the offset vector relative to the intermediate control signal representing the desired velocity, where [image: image] are constant parameters, and [image: image] is the intermediate control signal defined later.

Inspired by PPC (Bechlioulis and Rovithakis, 2008) and Lemma 2, a new concept is defined by the following Definition 1.

Definition 1. A smooth function ρkp(t) is called predetermined performance function (PTPF) if it satisfies the following properties: (1) ρkp(t) > 0, (2) [image: image], (3) [image: image], where [image: image] is an arbitrarily predesigned positive constant, and (4) [image: image], where Tkp is the settling time.

In this study, for i = 1, …, N, the PTPF for t ≥ 0 is selected as follows:

[image: image]

where k = 1, 2, p = 1, 2, 3 and the constant lkp is a strictly positive design parameter. [image: image], [image: image], and [image: image] are the initial value, the maximum allowable size of the tracking error at steady state and the settling time, respectively, which are appropriately selected to satisfy [image: image] and [image: image] with any given initial condition [image: image].

Define the barrier functions t ↦ ri(t) as

[image: image]

where ξi,kp = ei,kp/ρkp and i = 1, 2, …, N, k = 1, 2, p = 1, 2, 3 are the normalized errors. Design the i+1-th virtual control signals [image: image] as

[image: image]

where [image: image] is a positive control parameter matrix, [image: image].

At this stage, the actual controller uk is designed as follows:

[image: image]

where [image: image] and [image: image] are positive design parameter matrixes, [image: image], [image: image], [image: image], [image: image] with [image: image], i = 1, 2, …, N, p = 1, 2, 3, b ∈ Nβi, and Nβi denotes the obstruction neighborhood of i-th UAV.

Remark 4. The PTPF (16) satisfies all the follow properties in Definition 1.

Remark 5. In order to avoid the moving obstacles, an APF Vib containing the relative position disib(t) and relative velocity Qib(t) of the agent, and the obstacles is constructed. Compared with the APF constructed (Olfati-Saber, 2006), the AFP constructed in this section contains more information about relative velocity, so as to realize the obstacle avoidance control of moving obstacles.



Stability and performance analysis

Theorem 2. Consider system (1) obeying Assumptions 1 and 2 controlled by the intermediate control signals (18) and the proposed distributed controller (19), all the signals in the closed-loop system are globally bounded. Then, we have the following properties:

(1) Pre-specified tracking performance can be guaranteed, namely, |ξi,kp(t)| < 1, i = 1, 2, …, N, k = 1, 2, p = 1, 2, 3;

(2) The output of each agent ultimately satisfies [image: image], [image: image], [image: image], where i = 1, …, N.


Proof

From the definition of the errors, the states [image: image] and [image: image] can be rewritten as follows:

[image: image]

From the definition of the normalized errors ξi,kp = ei,kp/ρkp and i = 1, 2, …, N, k = 1, 2, p = 1, 2, 3, we can get that

[image: image]

Then, the time derivative of barrier function can be given as follows:

[image: image]

where [image: image] and i = 1, 2, …, N, k = 1, 2, p = 1, 2, 3.

The performance functions ρkp(t) have been selected to satisfy [image: image], i = 1, 2, …, N, k = 1, 2, p = 1, 2, 3, which equals to [image: image], where ϒ = ϒ1× … × ϒi × … × ϒN an open set with ϒi = (−1, 1) × (−1, 1) × (−1, 1), i = 1, 2, …, N. Additionally, the fact that from (16), the desired trajectory Pdi and the performance functions ρkp(t), k = 1, 2, p = 1, 2, 3 are bounded and continuously differentiable with respect to time. The intermediate control signals vi,p and the control laws ui,p, i = 1, 2, …, N, p = 1, 2, 3 are smooth over the set ϒ. It is deduced that [image: image] is bounded and piecewise continuous in t and locally Lipschitz on ξk(t) over ϒ, where ξk(t) = [ξ1, k1(t), ξ1, k2(t), ξ1, k3(t), …, ξi,k1(t), [image: image]. According to Theorem 54 (Sontag, 1992), the conditions on [image: image] ensure the existence and uniqueness of a maximal solution ξk(t) of (21) over the set ϒ, such that ξk(t) ∈ ϒ or equivalently that ξi,kp(t) ∈ (−1, 1), t ∈ [0, τmax), where i = 1, 2, …, N, k = 1, 2, p = 1, 2, 3.

In the following, based on Hanqiao et al. (2022), we will prove that τmax = +∞ by seeking a contradiction. Suppose that τmax < +∞; then the related analysis is performed as follows, and a systematic procedure for the proof of the aforementioned statements is given below based on t ∈ [0, τmax).

Step 1: Construct the first Lyapunov function candidate as follows:

[image: image]

where rk(t) = [r1, k1(t), r1, k2(t), r1, k3(t), …, ri,k1(t), ri,k2(t), ri,k3(t), [image: image]. Take the infinitesimal generator of Lyapunov function V1 along (17) and (21) as follows:

[image: image]

Using [image: image] and ei,21 = ξi,21ρ21, ei,22 = ξi,22ρ22, ei,23 = ξi,23ρ23, one has

[image: image]

Combining (25), we obtain

[image: image]

where [image: image], [image: image], [image: image].

Step 2: Construct the following Lyapunov function as follows:

[image: image]

Taking the infinitesimal generator of Lyapunov function V2 along (22), we obtain

[image: image]

with

[image: image]

[image: image]

where

[image: image]

and

[image: image]

where [image: image] denotes the relative velocity perpendicular to the Pi(t) − Pob(t).

It can be deduced that μi,2p is bounded from the boundness of μi,2p for all [image: image]. Employing (19) leads to

[image: image]

Besides, from Assumption 2, there is a positive constant [image: image] satisfying [image: image] such that

[image: image]

Utilizing Young's inequality, [image: image] and [image: image] are derived as follows:

[image: image]

[image: image]

where [image: image] and ιi,2p = Ki,2p/4.

Note that ιi,2p = Ki,2p/4, we have

[image: image]

where [image: image], [image: image]. From (37), it follows that [image: image] is negative when [image: image] and [image: image], where [image: image], [image: image] and subsequently that [image: image] and [image: image] for all t ∈ [0, τmax), which implies that the trajectory of the closed-loop system is bounded as

[image: image]

[image: image]

for i = 1, …, N, p = 1, 2, 3. According to (18), the boundedness of r1(t) leads to the boundedness of v(t) for all t ∈ [0, τmax). In addition, from ξi,kp = ei,kp/ρkp, for all t ∈ [0, τmax), we conclude that

[image: image]

[image: image]

where [image: image]. As a result, due to (19), the control signal ui,p(t) is bounded from the boundedness of ri,2p(t). Moreover, (38) and (39) imply that ri,2p(t) for all t ∈ [0, τmax), where the set ϒξ = (ξi,low, ξi,upper) × … × (ξn, low, ξn, upper) is non-empty and compact. Therefore, assuming τmax < +∞ dictates the existence of a time instant tξ ∈ [0, τmax), such that ek, i(tξ) ∉ ϒξ, which is a clear contradiction. Therefore, τmax = +∞. Finally, from (40) and (41) come to the conclusion that |ei,kp(t)| < ρkp(t) for all t ≥ 0 with i = 1, 2, …, N, k = 1, 2, p = 1, 2, 3. From the exponentially decaying property of ρkp stated in Remark 4, we show that ei,kp can converge to the set [image: image] in a finite-time interval [0, Tkp]. It can be summarized from the above discussion that [image: image], i = 1, 2, …, N, k = 1, 2, p = 1, 2, 3. Then, in view of (15), we have [image: image], [image: image], [image: image]. Based on Theorem 1, it can be derived that

[image: image]

In the Lyapunov sense, the tracking error is kept within the preassigned bounds of transient and steady state range, and the proof of Theorem 2 is completed.

Remark 6. From Theorem 2, it should be noticed that the proposed memoryless control tracker is recursively constructed based on the specified performance design method, and the transient and steady state performance bounds of the error surfaces ei,kp are determined by adjusting the performance functions ρkp. Specifically, ei,kp can converge to the set [image: image] in a finite-time interval [0, Tkp], and the convergence of ei,kp to a preassigned set of arbitrary small residuals [image: image] in a finite time Tkp is achieved. Furthermore, the decline rate of ρkp, which is affected by the constant lkp, leads in a lower bound of the required convergence rate of ei,kp due toei,kp. And [image: image] is the settling time, which is defined by [image: image], [image: image], and lkp, which means that the maximum allowable size of the tracking error at the steady state [image: image] and the settling time Tkp are independent of the initial conditions. Hence, on account of these observations, the selection process of the design parameters is shown in the simulation study below.





Simulation study

In this section, a 25 m by 25 m2 of farmland with two dynamic obstacles is considered. Because farmland planting is limited by soil and sunlight, uniform planting is usually adopted. According to the applied agricultural environment and plant protection operation requirements, several parallel routes of UAV are planned in this section. Therefore, the expected track of formation with equal spacing is set up to carry out plant protection work. The following simulation example is presented to verify the effectiveness of the proposed adaptive universal control scheme.

The UAV basic simulation model parameters refer to the UAV technical parameters data from the T30 model agricultural plant protection UAV produced by Dajiang Science and Technology Co., Ltd.1, as shown in Table 1.


TABLE 1 T30 model agricultural plant protection UAV data.

[image: Table 1]

As mentioned above in the actual situation of plant protection operating environments in general agricultural applications, on the basis of altitude range (i.e., 1.5–15 m) shown in Table 1, the desired signal is set as [image: image], which means that the desired velocities are [image: image] and [image: image], and the desired height is 3 m. According to the boundary dimension data (i.e., 2.858 m × 2.685 m × 0.790 m) and maximum effective spray width data (i.e., 9 m), as shown in Table 1, the position offset vector is set as [image: image] to ensure full spraying and reduce residual. The corresponding velocity offset vector is set as [image: image]. The max accelerated velocity is [image: image].

Consider the uncertain non-linear system with external disturbance as follows:

[image: image]

where N = 6. The initial positions [image: image] are random numbers between 0m and 5m, [image: image], and the initial velocities are [image: image], i = 1, …, 6. The external disturbance is [image: image]. Considering the realities of the general agricultural environment, the dynamic obstacles like flying birds is simply modeled as a dynamic spherical obstacle in this section. Therefore, the obstacles' initial positions are set as [image: image] and [image: image], and the velocity vectors are [image: image] and [image: image]. The radiuses of obstacles are Ro1 = 0.3m and Ro2 = 0.25m, respectively. The minimum collision avoidance distance is dissaf = 1m.

The desired signal [image: image] is accessible to the first UAV as the leader of this formation. The communication topology for 6 plant protection UAVs is shown in Figure 4.


[image: Figure 4]
FIGURE 4
 Communication topology for six plant protection UAVs.


The selection of the control gains is described below. First, we select the parameters of the predetermined time performance function. According to the initial value and desired value of each UAV, it is obtained that [image: image], [image: image], and [image: image], and we set [image: image], [image: image], and [image: image] to ensure [image: image]. Next, according to the requirement of control accuracy and the predetermined time performance function (i.e., [image: image]), we set [image: image], [image: image]; then, the settling time can be calculated as T11 = 23.7326s, T12 = 12.8986s, and T13 = 16s. Second, for the filters, the optimal parameters are chosen as c0 = 2, c1 = 6, and c2 = 12 according to the filtering accuracy and dynamic performance. Finally, the proposed PTPF tracking control scheme with collision avoidance is established as follows:

[image: image]

where the control parameters are set as Ki,1 = diag{[10, 15, 3]}, Ki,2 = diag{[5, 10, 10]},Ki,2 = diag{[15, 15, 15]}, ε = 0.05, and i = 1, …, 6. The above parameters are gained through trial-and-error method according to the overshoot, the dynamics obstacle avoidance effects, and the control accuracy.

From the results in Figures 5, 6, it can be seen that the multiple plant protection UAVs system can form the desired formation in a line based on Pd(t).


[image: Figure 5]
FIGURE 5
 The multiple plant protection UAVs system flight process.



[image: Figure 6]
FIGURE 6
 The whole process diagram.


From the two detailed figures in Figure 6, through collision prediction mechanism, only UAV3 and UAV6 have to take the collision avoidance maneuver to the second and first obstacles in the reference path, respectively. UAV3 and UAV6 successfully realize the obstacle avoidance. It is worth noting that when [image: image], if there is no formation tracking constraint item, UAV is prone to maneuver too much to avoid obstacles. Over maneuvering maybe make the UAV too far away from the reference path, which will cause collision threat to surrounding plant protection UAVs normally traveling along the reference trajectory. By the prescribed performance control strategy, UAVs is also constrained by formation control in the process of obstacle avoidance. Thus, multiple plant protection UAVs formation can form the formation on the premise of autonomous obstacle avoidance function. Applying to a real 25-m by 25-m square of farmland scenario with two flying birds, the multiple plant protection UAVs can fly in parallel to the leader's desired trajectory Pd(t) and perform many plant protection tasks, such as monitoring and irrigation.

In Figure 7, the tracking error trajectories for various initial conditions, as long as the initial conditions of the PTPF satisfying [image: image], the desired tracking performance can be achieved under the proposed performance guaranteed distributed control method. Thus, Figure 7 demonstrates that the control protocol is effective. Under the control of this method, the multiple plant protection UAVs can avoid dynamic obstacles while tracking the desired trajectory and realize the formation reconstruction after obstacle avoidance.


[image: Figure 7]
FIGURE 7
 The formation tracking error e1.


Besides, to compare the proposed method, there is a comparison result as presented in Figure 8 under different PTPF [image: image], for t ≥ 0. This setup says that the PTPF is not actually being applied. In Figure 8, it is observed that without the PTPF, the tracking error cannot converge to zero, which also means that the multiple plant protection UAVs cannot form the ideal formation flight.


[image: Figure 8]
FIGURE 8
 The formation tracking error e1 without applying PTPF method.


Furthermore, from Figure 9, the distance between the UAVs and the obstacles shows that for the first obstacle, the obstacle avoidance mechanism of UAV6 is activated (i.e., |dis61| ≤ Ro1 + dissaf). Through the collision avoidance, the distance between them is longer than the radius of the first obstacle Ro1. Simultaneously, for the second obstacle, the obstacle avoidance mechanism of UAV3 is activated (i.e., |dis32| ≤ Ro2 + dissaf). Through the collision avoidance, the distance between them is longer than the radius of the second obstacle Ro2. Thus, the multiple plant protection UAVs system can adapt to real complex farm environments and finish the agriculture plant protection operation.


[image: Figure 9]
FIGURE 9
 Distance between UAV and obstacle 1, 2.


The obtained velocity curves are shown in Figure 10; the velocity states [image: image] and [image: image] show obstacle avoidance process at around the sixth second for UAV3 and the twentieth second for UAV6. After obstacle avoidance maneuvers, all the velocity curves are tracking the desired velocity [image: image] due to the prescribed performance formation tracking control item.


[image: Figure 10]
FIGURE 10
 The velocity of UAVs.


In Figure 11, the curves denote the performance-guaranteed distributed control protocol in this study.


[image: Figure 11]
FIGURE 11
 Control inputs.


As expected, from these simulation results shown in Figures 5–11, it is indicated that all the closed loop signals are bounded, and the effectiveness of presented method is verified. The multiple plant protection UAVs system can avoid obstacles within the pre-designed envelope range, that is, without flying too far away from the reference path. Therefore, the multiple plant protection UAVs can complete formation tracking within a pre-set time and reduce the risk of collision between individuals in the formation.



Conclusion

This study describes the distributed formation and keeping control method under dynamic obstacle avoidance of multiple plant protection UAVs system with predetermined-guaranteed tracking performance. A predetermined time performance function is proposed first. An obstacle prediction mechanism for dynamic obstacles is introduced to reduce unnecessary UAV maneuvers. Then, the virtual force field is constructed between plant protection UAVs and obstacles to realize dynamic collision avoidance. Then, by exploiting a two-order filter for each UAV, the asymmetric Laplace matrix is avoided. From these simulation results, as shown in Figures 5–11, it is indicated that based on PTPF, the distributed control strategy with collision avoidance keeps the multiple plant protection UAVs formation tracking the desired trajectory and avoiding dynamic obstacles. Thus, the actual plant protection task can be realized.

An interesting topic for future research is to study the optimization of the weight coefficients of each control term in the multiple plant protection UAVs cooperative control law. Optimization parameter method can not only ensure good performance but also improve the efficiency and reasonably schedule the UAV for maneuver. The multiple plant protection UAVs system can adapt to a more complex reality and complete the plant protection task in the shortest time. On this basis, the distributed PTPF formation tracking control for multiple plant protection UAVs systems subject to non-spherical obstacles is a meaningful future research topic. That is, when the obstacle surface cannot be simplified as a spherical, the multiple plant protection UAVs formation can still track the specified reference trajectory. Because if some obstacles are considered as spheres, the radiuses of them (i.e., Rob) will be too large, leading to premature or unnecessary evasive maneuvers, which is very unfavorable to the plant protection UAV work. This future study has positive practical significance for typical static obstacles in farmland scenes such as poles, trees, pumping stations, and substations. The proposed method will be verified through plant protection UAVs experiments and actual data in the future.
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Wheat is one of the important food crops, and it is often subjected to different stresses during its growth. Lodging is a common disaster in filling and maturity for wheat, which not only affects the quality of wheat grains, but also causes severe yield reduction. Assessing the degree of wheat lodging is of great significance for yield estimation, wheat harvesting and agricultural insurance claims. In particular, point cloud data extracted from unmanned aerial vehicle (UAV) images have provided technical support for accurately assessing the degree of wheat lodging. However, it is difficult to process point cloud data due to the cluttered distribution, which limits the wide application of point cloud data. Therefore, a classification method of wheat lodging degree based on dimensionality reduction images from point cloud data was proposed. Firstly, 2D images were obtained from the 3D point cloud data of the UAV images of wheat field, which were generated by dimensionality reduction based on Hotelling transform and point cloud interpolation method. Then three convolutional neural network (CNN) models were used to realize the classification of different lodging degrees of wheat, including AlexNet, VGG16, and MobileNetV2. Finally, the self-built wheat lodging dataset was used to evaluate the classification model, aiming to improve the universality and scalability of the lodging discrimination method. The results showed that based on MobileNetV2, the dimensionality reduction image from point cloud obtained by the method proposed in this paper has achieved good results in identifying the lodging degree of wheat. The F1-Score of the classification model was 96.7% for filling, and 94.6% for maturity. In conclusion, the point cloud dimensionality reduction method proposed in this study could meet the accurate identification of wheat lodging degree at the field scale.
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UAV image, point cloud, classification, wheat, lodging


Introduction

Wheat is one of the three major food crops in the world, and its output directly affects food security. Among them, wheat growth is a key factor affecting wheat yield (Hu et al., 2020). The height of wheat is one of the common phenotypic parameters used to assess its growing status. On the one hand, the height changes of wheat in different periods, especially the height changes caused by wheat lodging in the middle and late stages, provide reference data for wheat health assessment and yield estimation (Piñera-Chavez et al., 2020). On the other hand, monitoring and diagnosis of wheat lodging degree is an important basis for field risk assessment and precise management. Therefore, large-scale and accurate judgment of the degree of wheat lodging is of great significance for field management, yield estimation, and damage assessment.

In recent years, the development of remote sensing technology provides technical support for the rapid and accurate acquisition of image information and spatial information of large-scale farmland. unmanned aerial vehicle (UAV) remote sensing technology provides a new solution for the acquisition and analysis of high-throughput phenotypic information of field crops due to its powerful flexibility, efficiency, and simplicity (Gracia-Romero et al., 2019; Zeybek and Şanlıoǧlu, 2019). In particular, the height of field crops, which can be acquired by carrying different imaging sensors, as an indicator of phenotypic traits, is one of the key steps to improve the accuracy and efficiency of crop growth monitoring (Malachy et al., 2022). Among them, the efficient, non-destructive, and high-precision UAV-LiDAR can achieve real-time and comprehensive data collection (Zhao et al., 2021). Studies have shown that UAV-LiDAR was used to obtain 3D point cloud information of ground objects, which generates a digital elevation model to obtain plant height of crops. This method has been applied to various crops, such as vegetable wheat (Guo et al., 2019), corn (Zheng et al., 2015), rice (Tilly et al., 2014; Phan and Takahashi, 2021), soybean (Luo et al., 2021), etc. The above results could better realize the analysis of crop phenotype indicators. However, complicated processing procedures and expensive instruments limited the development of UAV-LiDAR remote sensing monitoring. Therefore, it is of great research value for lodging identification and crop growth assessment how to use remote sensing technology to quickly and accurately obtain crop growth information.

With the development of sensors, digital cameras have promoted the convenience and practicability of UAV high-throughput phenotyping platforms due to their low cost, lightness, and high resolution. For crop height monitoring, two common types of data are extracted from overlapping aerial images acquired by consumer digital camera, including digital orthophoto map (DOM) and digital surface model (DSM). Such as the height of wheat (Villareal et al., 2020), rice (Liu H. et al., 2018), maize, cotton and sorghum (Wu et al., 2017), and potatoes (Li et al., 2020). In addition, crop surface models (CSMs) are models formed by digitizing the morphology of plants. Therefore, it contains information about the overall shape of the plant and is often used to estimate the height of the plant. For example, Bendig et al. (2015) used CSMs to estimate the height of barley, and Volpato et al. (2021) used CSMs to extract the height information of wheat. The height and growth information of crops can also be obtained by using the digital elevation model (DEM) of the terrain of the experimental area. For example, the DEM model has been successfully used to estimate the height of cotton (Feng et al., 2019), and sugarcane (Sumesh et al., 2021). Currently, there is no generally accepted consensus on which method of DSM, CSM, or DEM model works better. Therefore, the extraction of crop height information still faces many challenges.

In fact, the point cloud data can obtain the information of the horizontal and vertical dimensions of the lodging crops at the same time, which can effectively reflect the height changes of the crops, especially the lodging degree of the crops. Although those Hu et al. (2021) used deep learning to process point cloud data successfully achieved quantitative analysis of lodging degree. However, disorder and irregularity make 3D point cloud data difficult to process (Guo Y. et al., 2021). Many scholars have proposed some deep learning methods to directly process point clouds. For example, PointNet point cloud learning network (Qi et al., 2017a), PointNet++ (Qi et al., 2017b), MV3D (Chen et al., 2017), 3D-BoNet (Yang et al., 2021a). However, the models mentioned above still have some issues such as low accuracy and poor robustness. Therefore, it is necessary to study methods about point cloud data processing.

Due to the sparse and unstructured characteristics of point cloud data, indirect processing of 3D scattered data will reduce the difficulty and complexity of point cloud processing (Liu and Bai, 2018). Studies have shown there have been many attempts to transform point cloud data into other forms. For example, Su et al. (2015) proposed to map point clouds to 2D images, and convolutional neural network (CNNs) were used to classify images. Zhou and Tuzel (2018) proposed to rasterize point clouds into voxels, and the 3D CNN was used to extract the local features of the voxel grid. Although point cloud homogenization has been achieved in the above research. However, to homogenize the point cloud data, it is necessary not only to reduce the dimensionality of the point cloud data, but also to apply spatial interpolation and spatial fitting methods to predict the data values of some blank locations. Of course, the Hotelling transform has the potential to solve the above issues (Chen and Chung, 2010). Therefore, the Hotelling transform method was used to reduce the dimensionality of the 3D point cloud data into a 2D image in this study, which provided a new idea for point cloud data processing.

CNN, as one of the commonly used deep learning methods, has excellent performance in a variety of image processing tasks, due to its local connection, and weight sharing (Yang et al., 2021b). Therefore, a classification method of wheat lodging degree based on CNN was proposed using images obtained by dimensionality reduction from point cloud data in this study. The self-built wheat lodging dataset was used to evaluate the performance of the method, aiming to improve the robustness of the lodging classification method. The purpose of this research is to (1) propose a point cloud dimensionality reduction method, which realized the conversion of 3D point cloud data into 2D image based on Hotelling transform and interpolation method, aiming to reduce the complexity of point cloud data processing, (2) propose a method for wheat lodging identification with point cloud data extracted from UAV images, aiming to improve the accuracy of identification, and (3) identify different lodging degrees of wheat using different CNN models, aiming to verify the robustness of the proposed method.



Materials and methods


Data collection


Acquisition wheat lodging angle and lodging area

Data was collected on May 7 and May 17, 2021 in the National Modern Agriculture Demonstration Zone (31°29′26″N, 117°13′46″E) in Guohe Town, Lujiang County, Anhui Province. On April 30, 2021, Lujiang County experienced hail, heavy rainfall, and strong winds of magnitude 4–5, resulting in varying degrees of wheat lodging in the study area. Field surveys and UAV monitoring were carried out on the wheat fields (filling stage, maturity stage) in the study area. Filling and maturity are the key periods to determine the grain weight of wheat, which directly affect the yield of wheat at harvest.

The wheat field was defined as a 3.8 m × 7.8 m plot, and the lodging area and lodging angle were measured for each wheat plot. The length and width of each wheat plot were measured and used to calculate the total lodging area of all the plots. To calculate the lodging angle, the sloping and vertical heights of the lodging wheat in the plot were measured using a tape measure, and 3–5 samples were measured in the same observation plot, and the average value of the lodging angles of the multiple samples were calculated as the lodging angle of the observation plot. A total of 360 wheat plots were measured.



Determination of wheat lodging degree

To evaluate the lodging degree, the lodging index (LI) was used to evaluate the lodging degree of wheat. The value of the lodging index is between [0, 1]. Among them, “0” represents normal growing wheat, “1” represents complete lodging, and the calculation formula is shown in the formula (1)-(2).
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Among them, h1 represents the actual height of wheat in the experimental plot and h2 represents the canopy height of the experimental plot. The larger the value of the lodging angle, the more serious the lodging of the wheat. θ represents the lodging angle, as shown in Figure 1.
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FIGURE 1
Diagram of angle of lodging.


Lodging ratio (LR) (0–100%) is the proportion of the lodging area in the total area of the wheat plot. LR can reflect the change of the lodging area in the horizontal direction. The larger the value of lodging rate, the more serious the lodging of wheat. The lodging degree of the wheat field was determined according to the lodging rate of the plot based on the double-threshold strategy of normal statistical theory. The specific steps are as follows: calculate the mean (μ) and standard deviation (α) of the lodging index of the wheat plot, and then divide the lodging index into four parts, namely [0, μ–α], [μ–α, μ], [μ, μ+α], and [μ+α, 1], corresponding to non-lodging, slight lodging, moderate lodging, and severe lodging, respectively. The mean value (μ) of lodging index of 360 wheat plots was calculated to be 0.40 and the standard deviation (α) was 0.274. Therefore, the lodging indices of different lodging degrees were determined as: non-lodging [0, 0.126], slight lodging [0.11, 0.40], moderate lodging [0.40, 0.674], severe lodging [0.674, 1]. Thus, the ground truth of different lodging degrees of wheat in different growth periods were obtained.



Acquisition and normalization of point cloud data

To obtain the original point cloud of the wheat field, Agisoft PhotoScan software was used to process the RGB image of the UAV. Specifically, the generation of the original point cloud in the study area is based on the structure from motion algorithm, which is used to process the input UAV images with the corresponding position and orientation system (POS), and feature point information. The purpose is to restore the spatial location information of the corresponding image feature points. However, affected by the undulation of terrain, the original point cloud of wheat field obtained after processing by Agisoft PhotoScan software still has the problem of elevation deviation. Therefore, it is necessary to normalize the acquired original point cloud of the research area to obtain normalized point cloud data, which provides a data basis for dimensionality reduction of wheat point cloud, and aims to improve the accuracy of wheat lodging degree judgment.

The specific steps include point cloud acquisition and point cloud normalization, as shown in Figure 2. Firstly, the stitched images of wheat fields are obtained from 98 UAV images, and the density point clouds are extracted from the stitched images, as shown in Figures 2a1–a3. Secondly, the Excess Green Index (ExG) was used to obtain the ground point cloud from the density point cloud, digital elevation model (DEM) was generated by interpolation fitting. Finally, the normalized point cloud is obtained by subtracting the original point cloud and DEM, as shown in Figures 2b2–b5. And the front views for point cloud and point cloud normalization were provided, as shown in Figures 2a4,b1.
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FIGURE 2
The acquisition process of normalized point cloud. (A) point cloud acquisition, (B) point cloud normalization.


In addition, to obtain the normalized point cloud of each wheat plot, the normalized point cloud was used to realize field cutting in MeshLab software, and the experimental wheat field size 3.8 m × 78 m was cut into 180-point clouds of 3.8 m × 7.8 m, which were numbered separately and exported in TXT format to provide data for the Hotelling transform of the point cloud.





Materials and methods


Acquisition of dimensionality reduction image from point cloud

The initial point cloud dataset is a set of 3D data, represented by x, y, z coordinates. Therefore, it is more troublesome to process such data. On the one hand, there are many dimensions and the complexity of the data is large. On the other hand, the point cloud is scattered in space, and there is no obvious three-dimensional topology. To this end, the idea of point cloud homogenization is used to reduce the dimension of the three-dimensional point cloud, and the point cloud data after dimension reduction becomes a two-dimensional form.

Firstly, Hotelling transformation was used to realize the transformation of the point cloud coordinate system (dimension unchanged), so as to find a set of optimal orthogonal vector bases to represent the original sample data. Then, the inverse distance weighted interpolation method is used to assign the grid eigenvalues, and finally, the numerical values of the grid eigenvalues are color-rendered, so as to realize the cloud dimension reduction map of the wheat sample sites.



Hotelling transform

The Hotelling transform is a transformation based on statistical properties, which transforms the original data set into the principal component space by finding subsets of the principal components of the data set of arbitrary statistical distribution, minimizing the cross-correlation of a single data sample. The process steps are as follows:

(1) Suppose a set of point cloud data Pn is represented as an 3×n dimensional matrix, each column represents a point (xk, yk, zk) in the space, k = 1, 2, 3…n, n represents the number of point cloud.
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Where, m represents the center of gravity of the data Pn, and C represents the covariance of the data Pn.

(2) The eigenvalue decomposition is performed on the obtained covariance C, and the eigenvector matrix V and the eigenvalue matrix D are obtained:
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(3) Finally, the eigenvector V is in descending order according to the corresponding eigenvalues, and a local coordinate system is established with the local neighborhood gravity center m as the coordinate origin and the three components of the eigenvector V as the three coordinate axes. The point cloud data Pn is converted into a new coordinate system, and its coordinate Pn in the new coordinate system is obtained by formula (8) calculation:
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V represents the feature vector, [image: image] represents the new coordinate system.



Grid division

To solve the problem that the point cloud is scattered and distributed, which makes it difficult to describe the characteristics, the regularization of the point cloud is realized based on the division of the grid. The size of the grid is determined according to the length range and width range of the points of the wheat field. The grid is divided according to formula (8):
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where cols and rows represent the number of grid lengths and grid widths, respectively, Δy and Δx are the length range and width range of the point cloud data, respectively, and d is the grid spacing.

In this study, the length and width of the wheat site cloud were 7.8 and 3.8 m, respectively, and the grid spacing was set to 0.01 m. Therefore, a regular rectangular pixel grid of 780 × 380 was used to interpolate the wheat site cloud.



Spatial interpolation of point cloud

Inverse distance weighting (IDW) is one of the most commonly used spatial interpolation methods. It is an interpolation method with the distance between the point to be interpolated and the actual observed sample point as the weight. The sample points that are closer to the point to be interpolated are given more weight, and their weight contribution is inversely proportional to the distance. The calculation formula is:
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In the formula, Z represents the estimated value of the point to be interpolated, Zi is the measured value of the i-th sample point; m is the number of measured sample points; Ki is the contribution weight of the i-th sample point to the estimated value, and di is the distance between the i-th sample point (xi, yi) and the point (x, y) to be interpolated.

Therefore, color rendering is performed based on the attribute values of the grid points. In this way, the dimensionality reduction of point cloud after Hotelling transform is realized. To effectively evaluate the effect of interpolation. In this study, the following indicators were used for evaluation, including the mean absolute error (MAE), the standard deviation (SD), and the median (Median).
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Here, wi is the error of the normal offset of point (xi, yi, zi).



Classification for lodging degree


Technology roadmap

To reduce the difficulty and complexity of point cloud processing, and at the same time retain the information in the horizontal and vertical dimensions of the point cloud, a classification method of wheat lodging degree based on the dimensionality reduction image from point cloud was proposed. The specific process is shown in Figure 3.
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FIGURE 3
Flow chart of technical route. (A) UAV images acquisition, (B) point cloud data acquisition, preprocessing, (C) dimensionality reduction images generation, (D) construction and evaluation of classification models.


It can be seen from Figure 3 that the specific steps include the following. Firstly, the UAV images are acquired. Secondly, point cloud data acquisition and preprocessing, including point cloud data normalization and cutting, etc. Then, the point cloud dimension reduction map is generated, including Hotelling transform, grid division, and spatial interpolation of point cloud. Finally, the classification model is constructed, and the CNN is used to classify the lodging degree of wheat, including AlexNet, VGG16, MobileNetV2, which are trained and validated with training set, and tested using the test set.



Classification model

In this study, AlexNet, VGG16, MobileNetV2 were used as classification models to identify the lodging degree of wheat. AlexNet is the winning network of the ISLVRC 2012 (ImageNet large scale visual recognition) competition (Krizhevsky et al., 2012). In this experiment, the target categories for predicting the lodging degree of wheat are 4 categories. Visual geometry group network (VGG) is a deep CNN proposed in 2014, which mainly uses small convolutional filters to build the network structure (Simonyan and Zisserman, 2014). The VGG16 network structure contains 16 layers, namely 13 convolutional layers, 5 pooling layers, and 3 fully connected layers. The MobileNetV2 network is an improvement based on the MobileNetV1 network (Howard et al., 2017). It follows the depthwise separable convolution (DSC) in the MobileNetV1 network, and introduces an inverted residual module containing a linear bottleneck, which can effectively improve the accuracy of image classification and detection. In addition, all models are trained and validated using a dataset consisting of bird’s-eye views which is from the point cloud data transformation. The basic parameters of the three models are compared in Table 1.


TABLE 1    Comparison of model parameters.
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Classification functions

To adapt to the four classification tasks (non-lodging, slight lodging, moderate lodging, and severe lodging) of wheat lodging in this study, the classifier Softmax of the above three CNN models is changed to four targets. The Softmax classifier is suitable for the processing of multi-classification target tasks, and converts each type of output into a value between [0, 1], making the sum of all classification probabilities to be 1.

Taking the output of the i-th node of the neural network as an example, the mathematical formula definition of the Softmax function is given:
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where zi — the output value of the i-th node, c, count variable, C, the number of output nodes, that is, the number of categories of classification.

After the above function transformation, the output value of the multi-classification can be converted into a probability distribution ranging from 0 to 1.



Evaluation index

To effectively evaluate the classification effect of wheat lodging degree, Accuracy and F1-score are used as evaluation indicators.
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Among them, TP represents the number of positive samples predicted to be Ture, FN represents the number of samples that are predicted to be False; TN represents the number of negative samples that are predicted to be True, FP represents the number of samples that were predicted to be False.





Results and analysis


Generation of normalized point cloud

Figure 4 showed point cloud extraction and normalization of the wheat field of and maturity stages of wheat. Among them, through many experiments, ExG was set to 0.0729 to separate the ground and non-ground in the image, and the results were shown in Figures 4A,B. Figure 4C was the point cloud of the research area before normalization, and Figure 4D was the point cloud of the research area after normalization.
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FIGURE 4
Normalized point cloud of wheat field in different periods. (A) ground point, (B) non-ground point, (C) original point cloud, and (D) normalized point cloud.


It could be seen from Figure 4 that the point clouds of different periods were different. For the original point cloud in Figure 4C, the west side of the wheat field grew better, and the lodging area of the wheat field was less. The eastern part of the wheat field was affected by the heavy rain, resulting in a large area of lodging of the wheat field. For the normalized point cloud in Figure 4D, which could better show the growth state of wheat. The height of the wheat field in the maturity stage was obviously lower than that in the grain filling stage, and most of them were below 0.9 m. Moreover, the area of lodging has increased significantly, and the degree of lodging has also become heavier.



Analysis of dimensionality reduction results in different periods

Figures 5, 6 showed dimensionality reduction images from point cloud of wheat fields at grain filling and maturity stages, respectively, which were obtained by an inverse distance weighted interpolation method. For the filling stage, Figures 5A,B were the RGB images and point cloud images of the wheat plots with the four different lodging degrees, respectively, and Figures 5C,D are the plots of 3D image, 2D image using distance-weighted interpolation. For the maturity stage, Figures 6A–D represented the RGB image, point cloud image, 3D images of point cloud, and 2D image of the wheat plot with the four lodging degrees, respectively.
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FIGURE 5
The result of point cloud dimensionality reduction of wheat field at filling stage. (A) RGB image, (B) point cloud image, (C) 3D image, and (D) 2D image.
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FIGURE 6
The result of point cloud dimensionality reduction of wheat field at maturity stage. (A) RGB image, (B) point cloud image, (C) 3D image, and (D) 2D image.


From Figures 5B, 6B, it could be seen intuitively that no matter which period it is, the point cloud data of wheat fields had a large amount of data and are irregularly arranged. It could be seen from Figures 5C, 6C that the three-dimensional angle image of wheat field obtained by inverse distance weighted interpolation could better reflect the canopy height distribution of wheat plots with different lodging degrees. The height distribution of wheat plots with different lodging degrees was also different. Among them, the z-axis value of the non-lodging wheat plot is above 0.9 m; 0.7–0.9 m for the slightly lodging wheat plot, 0.5–0.7 m for the moderately lodging wheat plot, and below 0.5 m for the severely lodged wheat plots.

It could be seen from Figures 5D, 6D that the two-dimensional images of wheat plots with different lodging degrees after inverse distance weighted interpolation were properly smoothed, and the grid point data was relatively complete, which could reflect the distribution of wheat lodging. In particular, it was easy to compare the location and height distribution of different lodging degrees in the wheat plots from the dimensionality-reduced images. Therefore, the images obtained by point cloud dimensionality reduction could better reflect the differences in the lodging degree of wheat, and provide a data basis for judging the lodging degree of wheat.



Classification results of lodging degree based on point cloud


Construction of dataset from point cloud

A total of 180 wheat plots were monitored in this study, and 360 original dimensionality-reduced images were obtained for the two periods of wheat. To improve the generalization ability of the network, random multi-angle rotations, such as 90°, 270°, horizontal flip, mirror flip, etc., which are used to augment the data of the dimensionality-reduced image of wheat from the point cloud, and 640 images are obtained. There are a total of 1,000 dimensionality reduction images from point cloud for wheat as the dataset for this experiment, which is divided into training set, validation set, and test set according to 16:4:5. Therefore, the training set is 640, the validation set is 160, and the test set is 200. In addition, there are 50 images of each lodging degree for test set. The dataset is shown in Figure 7.
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FIGURE 7
The dataset for classification of wheat lodging. (A) non-lodging, (B) slight lodging, (C) moderate lodging, and (D) severe lodging.




Hyperparameter settings

The software environment for image processing and analysis experiments is based on the Windows 10 operating system, the PyTorch deep learning framework, using Python as the programming language, and using PyCharm to build models. The test hardware environment is 16 GB memory, NVIDIA GeForce RTX2080 graphics card, equipped with Intel(R) Core (TM) i7-8700 @3.20 GHz CPU processor.

In this study, the initial learning rate of all CNN classification models was set to 0.001, the Batch Size of training samples is set to 4, and the number of iterations (epoch) was set to 400. The optimization algorithm is Adam, and the loss function is the Cross Entropy Loss. During the training process, early stopping is set to prevent the model from overfitting. If the performance of the model does not improve after 30 epochs, the training will stop.



Classification results of wheat lodging degree based on MobileNetV2

Figure 8 showed the recognition results of wheat lodging degrees at filling and maturity stages of wheat using the MobileNetV2 model. The point cloud dimensionality reduction data set was constructed with the dimensionality reduction images from point cloud obtained using the inverse distance weighted interpolation method, which was used to classify the lodging degree of wheat.


[image: image]

FIGURE 8
Recognition results of wheat lodging degree based on MobileNetV2. (A) filling stage, (B) maturity stage.


The accuracy for the filling and maturity stages of wheat could reach 94.5 and 95.5%. Especially in the filling stage of wheat, the classification accuracy of different lodging degrees was more than 90%. The classification results for the moderate lodging degree of wheat at maturity were slightly worse. The possible reason was that the clarity of the original data boundary of the maturity of wheat was poor, which led to wrong judgment of the data. Overall, the classification results based on dimensionality reduction images from point cloud data were better.





Discussion


Comparison results of different interpolation methods

To compare the effects of different interpolation methods on the lodging degree of wheat fields, the dimensionality reduction of point cloud data in wheat fields based on different interpolation methods was carried out, including local linear embedding, bitonal spline interpolation, and inverse distance weighted interpolation. From each of the four lodging degrees of wheat fields, 10 wheat plots were selected for point cloud interpolation method, and three error indexes of MAE, SD and Median were used to evaluate different interpolation methods. The average value of the error was taken as the interpolation error of different interpolation methods in different periods as the evaluation result, and the results were shown in the Table 2.


TABLE 2    Error indicators based on different interpolation methods.
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As could be seen from Table 2, the error of the interpolation method of wheat field point cloud data, MAE, SD and Median were 0.412–0.817, 0.754–1.289, and0.216–0.597 for the Filling period, MAE, SD and Median were 0.428–0.879, 0.785–1.364, and 0.243–0.673 for the maturity period.

It could be seen from Figure 9 that the three evaluation indicators of the error based on the inverse distance weighted interpolation method, such as MAE, SD, and Median, were smaller than those of other interpolation methods, no matter it was the grouting period or the maturity period. Compared with Biharmonic Spline Interpolation and Biharmonic Spline Interpolation, the error based on the Inverse distance weighted interpolation method reduced by 49.6 and 28% of MAE, 41.5, and 12.6% of SD, 63.8 and 34.7% of Median for the filling period, 53.1 and 34% of MAE, 44.7 and 18.8%, 67.9 and 42.2% of Median for maturity period. Experiments showed that the method based on inverse distance weighted interpolation had lower errors in processing wheat field lodging point cloud data in different periods.
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FIGURE 9
Comparison of interpolation precision.


Studies have shown that spatial interpolation methods have proven to be an important technique in point cloud data preprocessing (Liu S. F. et al., 2018). In addition to the three interpolation methods used in this study, Agüera-Vega et al. (2020) also compared inverse distance weighting (IDW), multiple quadratic radial basis functions (MRBF), kriging (KR) and linear interpolation triangulation (TLI) in processing point clouds extracted from drone images, which shows that the interpolation method has great potential, especially the point cloud data has been widely used. Therefore, more interpolation methods can be tried in future research work, aiming to provide the application efficiency of point cloud data (Agüera-Vega et al., 2020).



Comparison of classification results using different models

To verify the performance of wheat lodging classification based on the point cloud dimensionality reduction method, data sets of different growth periods were used, including dimensionality reduction images from point cloud based on the inverse distance weighted interpolation method of wheat fields at the filling and maturity stages, which were used to train and test the classification model, including AlexNet, VGG16, MobileNetV2 models. The results were shown in Table 3. It could be seen from Table 3 that for the training set, the F1-Score of the MobileNetV2 model was 9.73% higher than that of AlexNet, and 5.02% higher than that of VGG16. The precision of the MobileNetV2 model was 9.74% higher than that of AlexNet and 5.13% higher than that of VGG16 using the point cloud data of the wheat filling period. For the test set, the F1-Score of the MobileNetV2 model was 12.43% higher than that of AlexNet and 6.9% higher than that of VGG16. The Precision of the MobileNetV2 model was 12.04% higher than that of AlexNet, and 6.81% higher than that of VGG16.


TABLE 3    Classification accuracy (%) of wheat field lodging degree based on different methods.
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For the training set, the F1-Score of the MobileNetV2 model was 11.27% higher than that of AlexNet and 5.79% higher than that of VGG16 using the point cloud data of the wheat maturity period. The precision of the MobileNetV2 model was 10.88% higher than that of AlexNet and 5.7% higher than that of VGG16. For the test set, the F1-Score of the MobileNetV2 model was 12.16% higher than that of AlexNet and 7.4% higher than that of VGG16. The precision of the MobileNetV2 model was 12.17% higher than that of AlexNet, and 7.41% higher than that of VGG16.

By comparing the experimental results of different models, it was concluded that the classification of wheat lodging based on the dimensionality reduction images from point cloud based on the MobileNetV2 model performed well in both the filling and the Maturity stage of wheat.

The research shows that based on the role of point cloud in wheat height monitoring. At present, the method of acquiring point cloud has become more and more convenient with the development of sensors. Volpato et al. (2021) successfully extracted the height of wheat from dense point clouds generated by aerial images for monitoring of wheat growth. Dense point clouds extracted from drones carrying high-resolution RGB cameras, and Ground LiDAR were successfully used to estimate crop height (Madec et al., 2017). In particular, point cloud data can be obtained conveniently and quickly through UAV, which will play an important role in promoting crop phenotype acquisition and field management.



Dimensionality reduction result of point cloud for wheat field

To avoid the influence of the tilt angle of the point cloud, Hotelling transform was used to coordinate the point cloud locally. Figure 10 shows the comparison results of point clouds before and after Hotelling transformation. Figures 10A,B were the three-dimensional view and the Bird’s Eye View (BEV) of the point cloud in the standard coordinate system, respectively. Figures 10C,D were the 3D view and the Bird’s Eye View (BEV) of the point cloud after Hotelling transformation, respectively. As could be seen from Figure 10, the three directions with the largest distribution of point cloud data can be found through Hotelling transformation, and then the point cloud was rotated to these three directions as a whole, so that the point cloud was regularly covered in the coordinate system.
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FIGURE 10
Comparison of point clouds before and after Hotelling transform. (A) original three-dimensional view, (B) original bird’s eye view, (C) three-dimensional view after Hotelling transform, and (D) bird’s eye view after Hotelling transform.


In fact, the conversion of point clouds into 2D images has been successfully applied in many fields. For example, Li et al. (2022) transformed the point cloud into a bird’s-eye view (BEV) and verified the effect of the method on public datasets and unmanned motion platforms. Tsai et al. (2021) converted the point cloud into a bird’s-eye view, which was used as input to Faster R-CNN and YOLOv3 network architecture for tire detection. Huang et al. (2020) achieved dimensionality reduction transformation by converting 3D point cloud into 2D image through projection, which plays an important role in construction monitoring. Guo R. et al. (2021) projected point clouds onto a bird’s-eye view (BEV) for object detection. UAV-based point cloud datasets are also often used to estimate the height of plants. For example, Shin et al. (2018) estimated forest canopy height from UAV-based multispectral imagery and SfM point cloud data. There are even many studies that have successfully used point cloud datasets extracted from drone images to estimate the height of wheat, aiming to accurately monitor crop growth. For example, Song and Wang (2019) used UAV-based point cloud data to estimate the height of wheat in different periods, indicating that point cloud data has good potential for estimating crop height. Khanna et al. (2015) proposed a method for early winter wheat canopy height estimation using 3D point cloud statistical analysis. The above research shows that the application of point cloud can help farmers manage their farmland easily.




Conclusion

In this study, a classification method of wheat lodging degree based on dimensionality reduction images of point cloud data was proposed. This method not only realized the transformation of disordered point cloud data into 2D images based on Hotelling transform and point cloud interpolation method, but also realized the classification of different lodging degrees of wheat using three CNN models, including AlexNet, VGG16, and MobileNetV2. Further, the self-built wheat point cloud data was used for testing. The results showed that the F1-score of the classification model of wheat field lodging degree based on MobileNetV2 reached 95.7% for filling period and 94.6% for maturity period, which provided the technical basis for the analysis and application of 3D point cloud data of other crops. In addition, the research results provided a scientific basis for farmland management, disaster assessment, and yield estimation. Moreover, the 3D point cloud data processing method proposed in this study will also promote the development of new technology paths for UAVs in crop remote sensing monitoring.
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The precision spray of liquid fertilizer and pesticide to plants is an important task for agricultural robots in precision agriculture. By reducing the amount of chemicals being sprayed, it brings in a more economic and eco-friendly solution compared to conventional non-discriminated spray. The prerequisite of precision spray is to detect and track each plant. Conventional detection or segmentation methods detect all plants in the image captured under the robotic platform, without knowing the ID of the plant. To spray pesticides to each plant exactly once, tracking of every plant is needed in addition to detection. In this paper, we present LettuceTrack, a novel Multiple Object Tracking (MOT) method to simultaneously detect and track lettuces. When the ID of each plant is obtained from the tracking method, the robot knows whether a plant has been sprayed before therefore it will only spray the plant that has not been sprayed. The proposed method adopts YOLO-V5 for detection of the lettuces, and a novel plant feature extraction and data association algorithms are introduced to effectively track all plants. The proposed method can recover the ID of a plant even if the plant moves out of the field of view of camera before, for which existing Multiple Object Tracking (MOT) methods usually fail and assign a new plant ID. Experiments are conducted to show the effectiveness of the proposed method, and a comparison with four state-of-the-art Multiple Object Tracking (MOT) methods is shown to prove the superior performance of the proposed method in the lettuce tracking application and its limitations. Though the proposed method is tested with lettuce, it can be potentially applied to other vegetables such as broccoli or sugar beat.
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1. Introduction

Robotic application in precision agriculture has become a popular topic recently. Deploying robots in agricultural applications has the potential to significantly reduce the labor cost of repetitive tasks such as weeding (Lee et al., 2014; McCool et al., 2018; Jiang et al., 2020), fruit detection and yield estimation (Bargoti and Underwood, 2017), harvesting (Bac et al., 2017; Kurita et al., 2017; Sa et al., 2017), fertilizer or pesticide application (Adamides et al., 2017), crop mapping (Dong et al., 2017), and plant phenotyping (Ruckelshausen et al., 2009). In the case of robotic fertilizer and pesticide application in lettuce farms, compared to the conventional agricultural standard of treating the land indiscriminately, robotic autonomous spraying allows the crop to be targeted individually (Chebrolu et al., 2017). Not only does this make spraying more economical, it is also more eco-friendly. To precisely spray individual plants only once, the perception system of the robot needs to be able to detect crops against soil and weeds, as well as identify and track all individual crops.

There have been plenty of studies that exist in the literature, which successfully resolved the detection of individual plants of vegetables (Saleem et al., 2021; Jin et al., 2022; Ulloa et al., 2022). They allow robots to use their vision sensors to capture images of the farm field, and find the locations of plants in the images. With the detection results, the robot can spray each plant in the captured image precisely. However, only with detection results, the robot is unable to know which plants it has sprayed already when it travels through the farm lanes, without tracking each individual plant. To spray each plant exactly once, existing methods for robotic precision spray usually require the robot to travel in one direction and at a fixed distance to make sure the images continuously captured by the robot exactly follow one another and without the same plant in two images. When the robot needs to stop or slightly reverse back for obstacle avoidance, human intervention is needed to prevent the same plant to be sprayed twice, making the autonomy of the robot reduced significantly. Another common approach to tackle this problem is to use RTK-GPS or Simultaneous Localization and Mapping (SLAM) techniques to record the geometric locations of plants. However, usage of accurate RTK-GPS increases the cost of the robot considerably, and it also does not work in a greenhouse environment. Vision based SLAM techniques are not always robust, especially in the farm environment, and failure of them will directly lead to failure of spray action.

In this paper, we present LettuceTrack, a perception pipeline that incorporates the detection and tracking of lettuces using a camera attached to an agricultural robotic platform. As shown in Figure 1, a RGB camera is fixed facing downward in front of the VegeBot, an agricultural robot designed by the China Agricultural University, which is used to detect and track each plant when the robot travels through the lettuce farm. The proposed method detects lettuces and forms location features of them. Take the target in the red dotted box in the figure as an example, a novel feature for the middle target is obtained with the help of the upper and lower targets to reveal its identity information. It is combined with the novel matching approach proposed in the paper to successfully re-identify the same target even if it disappears from the camera field of view for a long time and re-appears again. The details of the feature extraction and the matching method are given in Section 3.2.


[image: Figure 1]
FIGURE 1
 Overview of the proposed method. (A) VegeBot: The agricultural robot designed by the China Agricultural University, which travels through a lettuce farm, detects and tracks each plant, and sprays them precisely. (B) The proposed method detects lettuces and extracts features of the targets. Take the target in the red dotted box in the figure as an example, a novel feature for the middle target is obtained with the help of the upper and lower targets to reveal its identity information. The novel matching approach proposed in the paper can successfully re-identify the same target even if it disappears from the camera's field of view for a long time and re-appears again.



The contributions of the paper are 2-fold. First, we proposed a deep learning-based Multiple Object Tracking (MOT) method to solve the joint detection and tracking of lettuces problem for agricultural robots to perform the precision spray task. With tracking incorporated, the robot relieves the requirement of traveling in one direction and at a fixed distance, so it can stop or reverse back whenever it needs. Second, we introduced a novel feature to help identify each individual plant, which makes it possible for the robot to successfully re-identify the same plant even when it reverses back and sees the plant that has been seen by the robot and gone out of sight before, where conventional Multiple Object Tracking (MOT) methods usually fail. Experimental results have been conducted to show the effectiveness of the proposed method, and a comparison with four state-of-the-art MOT methods is provided to prove the superior performance of the proposed method in the lettuce tracking application and its limitations. Although the proposed method is tested with lettuce, it can be potentially applied to other vegetables such as broccoli or sugar beat.

The rest of the paper is organized as follows. In Section 2, related work on crop detection in agriculture and MOT methods are discussed. In Section 3, the experimental setup and the details of the proposed method are described. In Section 4, experimental results of the proposed method and performance comparison with four state-of-the-art MOT methods are presented. In Section 5, conclusions and a discussion about further work are presented.



2. Related work

The key aspect for agricultural robots to execute precision spray task is to accurately detect and track each individual plant. Therefore, there are two fields of research that are closely related to our method, which is namely computer vision based crop detection and multiple object tracking.


2.1. Crop detection

Crop detection based on computer vision is a key component of precision spray and intelligent weeding systems for agricultural robots. There exist many works of detecting crops using hand-crafted features (Haug et al., 2014; Lottes et al., 2017; Milioto et al., 2017). However, hand-crafted features need to be adjusted differently according to different applications and situations. The disadvantages of using them are being easily affected by illumination and poor robustness. Most traditional methods aim to solve the limitation of information extracted by hand-crafted feature by using complex linear classifiers, e.g., SVM (Guerrero et al., 2012).

In recent years, the progress of the Deep Neural Network (DNN) has led to fundamental changes in all aspects of life. With the development of DNN, the perception capabilities of agricultural robots have been improved significantly (Saleem et al., 2021). Recently, more and more crop weed discrimination and classification methods based on Convolutional Neural Network (CNN) have been proposed and achieved surprising results (Milioto et al., 2018; Su et al., 2021; Ulloa et al., 2022). More abstract and representative information can be extracted through dozens or even hundreds of convolution layers with pooling layers. Jiang et al. (2020) presented GCN-ResNet-101, which is a semi-supervised learning method based on Graph Convolutional Network (GCN), to detect crops and weeds. Recognition accuracies are 97.80, 99.37, 98.93, and 96.51% on four different datasets which include crop and weed with the proposed approach. Ulloa et al. (2022) proposed Convolutional Neural Network (CNN) to detect vegetables and extract geometric characteristics of vegetables, which helped to conduct fertilization operation with the robot arm. Jin et al. (2022) proposed a method of crop-weed detection based on deep learning which can recognize vegetable crops and classify bother green objects as weed. Magalhães et al. (2021) provided an annotated visual dataset containing green and red tomatoes and tested it with five deep learning models. The results show that the single-shot multibox detector can be used to accurately identify targets in the dataset, which helps the harvesting robot to detect tomatoes in real time and in situ. Moreira et al. (2022) proposed to utilize a deep learning model to detect tomatoes and classify them to determine their mature stages. The results show that the YOLO-V4 model achieves the best performance with a macro F1-score of 85.81 and 74.16% in the detection and classification tasks, respectively.

In terms of segmentation of vegetable crops, Su et al. (2021) proposed a semantic segmentation algorithm based on DNN to solve the problem of similar appearance between wheat and ryegrass. The algorithm has high segmentation accuracy and can achieve the real-time segmentation performance of 48.95 Frames Per Second (FPS) on Nvidia GTX 1080 GPU to ensure that it can be deployed in real-time. Milioto et al. (2018) proposed a semantic segmentation system using the existing vegetation index to solve the problem of separating beets and weeds in crop fields. This method can achieve real-time classification at the running speed of 20 Hz on a real agricultural robot. You et al. (2020) presented a DNN-based semantic segmentation model, which introduces an attention mechanism to capture long-range contextual information to improve segmentation accuracy. Khan et al. (2020) presented CED-Net, a semantic segmentation approach, that exploits a cascaded encoder-decoder network structure to discriminate between crop and weed.

These methods based on object detection or segmentation can accurately detect and localize all crops in given images. However, they do not solve the correspondence of crops between consecutive images. As a result, conventional robotic precision spray usually requires the robot to travel at a fixed distance so that consecutive images just follow each other without any overlapping or missed crop. This is usually hard for a robot with high autonomy since it might stop or reverse back for dynamic obstacle avoidance. To overcome such a limitation, a better option is to adopt MOT and both detect and track each plant. With each detection assigned with a unique plant ID, the robot ensures to spray each plant exactly once.



2.2. Multiple object tracking

Multiple Object Tracking [or Multiple Target Tracking (MTT)] is a very important task in computer vision. Its essence is to detect and locate multiple targets in an image, give them their identities, and maintain their identities in consecutive frames (Luo et al., 2021). At present, advanced online MOT methods can be divided into two categories: two-stages MOT systems (Bewley et al., 2016; Bochinski et al., 2017; Wojke et al., 2017) and one-shot MOT systems (Wu et al., 2021; Zhang et al., 2021a,b; Liang et al., 2022).

The two-stage methods that follow the tracking-by-detection paradigm divide MOT systems into two independent tasks. Detection is first produced by various detector networks, then candidate boxes are added to tracklets across different frames by the data association network. SORT is a simple and fast tracker presented by Bewley et al. (2016) that uses the Kalman filter (Kalman, 1960) to predict the position of the target in the next frame and match it with the detected target with the Hungarian algorithm (Kuhn, 2010). It mainly uses Intersection Over Union (IOU) cost of the predicted bounding box and that of target detection as the basis for data association. However, objects are easy to lose or switch assigned IDs when situations like crowded targets or occlusion between objects happen. In order to solve these problems, DeepSort is proposed by Wojke et al. (2017), which applies a CNN trained with a large-scale person re-identification dataset to extract the appearance information of objects. DeepSort obtains appearance descriptors through a feature embedding to improve the performance of SORT. On the basis of inheriting the motion information of SORT, it combines the motion and appearance information to perform data association. The method is validated to be more effective in solving the problems of object loss, occlusion, and identity switch in complex scenarios. Zhang et al. (2021a) propose ByteTrack, which performs a simple and efficient data association method called BYTE without appearance. In this method, detection boxes with high confidence and low confidence are processed separately, so that the objects in the low score detection boxes are also exploited as much as possible rather than ignored.

Two-stage MOT methods are normally inefficient and slow because the task needs to be processed separately. One-shot MOT methods are introduced to tackle such a limitation. It performs object detection and re-identification (re-ID) feature embedding in separate networks simultaneously. Wang et al. (2020) proposed the first near real-time MOT system, which integrates object detection and appearance feature embedding into one task network. The inference speed of this method can reach from 18.8 FPS to 24.1 FPS when different input resolutions are set. Zhang et al. (2021b) proposed FairMOT, a simple approach that utilizes two homogeneous branches to predict objects and extract re-identification features. Since the unfairness of the two tasks is overcome by this method, it achieves high detection and tracking accuracy on several public MOT datasets. It also verifies that an anchor-free detector is more suitable for identity embedding extraction than an anchor-based detector. The above methods combine detection and feature extraction as one task, but the subsequent data association and matching are still separate tasks. CenterTrack (Zhou et al., 2020) combines detection and tracking into one network and forms an integrated MOT system. It is based on CenterNet (Zhou et al., 2019) which regards the detected objects as points from the detector. The method learns the offset vector between the object center points of two consecutive frames. Greedy matching is performed based on the distance between the predicted offset and the obtained center point in the previous frame for data association. TraDeS (Wu et al., 2021) utilizes tracking clues to assist detection based on CenterTrack (Zhou et al., 2020). It introduces a cost volume-based association module and motion-guided feature warper module to improve tracking accuracy in complex scenarios.

The existing MOT methods extract the feature information of targets to identify the targets that have appeared before. However, these methods tend to fail when the targets disappear in multiple frames or highly similar targets are presented. Unfortunately, these situations are quite common in the case of robotic crop detection and tracking. When the robot needs to reverse back, it observes crops that have been previously observed and lost tracking. Individual crops are also similar in shape, color, and texture. To tackle such challenging scenarios, we propose LettuceTrack, a novel MOT method that exploits the relationship of a plant with its neighbors to improve the accuracy of lettuce detection and tracking for robotic precision spray.




3. Materials and methods

When the robot travels along the farm, there exists a relative motion between the camera and the ground, and we adopt vision based detection and tracking to follow each plant. However, the positions of crops are actually immobile relative to the ground. We exploit such a characteristic to build a novel feature for each plant. Together with the proposed matching method, a unique ID for each plant can be reliably established. In the following part of the section, details of the data acquisition, the proposed feature extraction, and data association strategies are illustrated.


3.1. Data acquisition

The data was collected by the authors at a farm in Tongzhou District, Beijing, China. As shown in Figure 2, we used our agricultural robot which is equipped with an RGB camera to capture images when moving in many rows of the farm with lettuce growing in different stages. The speed of the robot varies in different parts of the dataset, which ranges from 0.35 to 0.45 m/s through the entire data acquisition process, according to the feedback data from wheel encoders.


[image: Figure 2]
FIGURE 2
 Data acquisition. (A) The lettuce farm. (B) The agricultural robot capturing images through a downward facing RGB camera.



We set the camera angle to be vertically down and at a height of 1.5 m from the ground to ensure that the number of plants in a single column of collected data is greater than three to construct the proposed feature for each plant. This is due to the fact that the proposed feature extraction of a plant is determined by its neighboring plants. The camera is set with a resolution of 1, 920 × 1, 080 and a frequency of 30 Hz. We collected data at two different growth stages of lettuce, which are namely the rosette stage and the heading stage, respectively. Lettuces are in the third and fourth weeks after transplanting. The distance between adjacent plants is from 0.3 to 0.35 m, and the distance between two rows of plants is about 0.3 m. Due to frequent weeding operations, there are fewer weeds, and the maximum weed density is about 10 weeds/m2.

There is an obvious difference between plant images at the two growth stages as shown in Figure 3 since the weather and lighting conditions are different at the time of collection. This helps to verify the generality of our method for crops in different growth stages and lighting conditions. The data of each growth stage is divided into one training set and two test sets. The training set is the images collected by the robot traveling straight from the starting point to the end point. The first test set is collected in the same way as the training set. We define this test set as test−straight. The second test set is collected when the robot travels straight to the end point and then reverses back to the starting point. We define it as test- back and forth (B&F). Our method and other state-of-the-art methods are trained and tested on the data of each growth period separately. Left and right parts of images are cropped from the raw camera images to get rid of unrelated area, so the resolution of images decreased from 1, 920 × 1, 080 to 810 × 1, 080. Following the MOT16 (Milan et al., 2016; Dendorfer et al., 2021) dataset, we annotate the six parts of our dataset and obtain ground truth MOT labels, which include the frame, ID number, and bounding box information of every plant. Details about the dataset are summarized in Table 1.


[image: Figure 3]
FIGURE 3
 Data acquisition during two growth stages of lettuce. (A–C) are lettuces in the third week after transplanting, (D–F) are lettuces in the fourth week after transplanting.




TABLE 1 Summary of six parts of the dataset used in the paper.


[image: Table 1]



3.2. Feature extraction and matching
 
3.2.1. Feature extraction

In the proposed method, a state-of-the-art and light weighted detection method, YOLO-V5, is adopted to detect lettuces (Jubayer et al., 2021; Zhao et al., 2021; Wang et al., 2022). Then, we can get the bounding box of each object in one frame and calculate the center point of each bounding box. As shown in Figure 4, a center line can be fitted through center points of detected plants as follows,

[image: image]

Once the center line is determined, plants can be divided into different lanes. Suppose there are two lanes on the farm, then two plants, whose center points of bounding boxes are (x1, y1) and (x2, y2), respectively, are in the same lane if their center points satisfy,

[image: image]

If there are multiple lanes, plants at each lane can be determined judging from their distance to the center line.


[image: Figure 4]
FIGURE 4
 Plants detection and center line extraction. (A) Vegetable plants detections. (B) Center points extraction. (C) Center line (Yellow) extraction.



To identify each individual plant, a novel geometric feature is generated for the plant. As all plants are fixed on the farm, we exploit this characteristic and design the feature based on its relationship with its neighboring plants at the same line. Take the second plant from the top on the left line in Figure 5 as an example, its feature is determined by the plant above it, the plant below it, and itself. We will concentrate on these three plants to illustrate the generation of plant features. From the detection results, we can obtain the coordinates of the center point, width, and height of each bounding box. The coordinates, widths, and heights of the middle plant, the upper plant, and the lower plant are expressed as (x, y, w, h), (x1, y1, w1, h1), and (x2, y2, w2, h2), respectively. Finally, the feature of each plant F can be constructed as follows:

[image: image]

where d1 and d2 are the distances from the center point of the upper and lower bounding boxes to the center point of the middle bounding box, respectively. wr and hr are the width ratio and height ratio between the upper and lower bounding boxes. In order to balance the influences of different parts of the feature vector, we multiply them with weighting parameters c1, c2, cw, and ch. These parameters control the importance of two distances and two ratios during the feature matching later. cw and ch can be tuned slightly larger to balance the influence of the distance and the ratio.


[image: Figure 5]
FIGURE 5
 Feature generation for a plant. To construct the feature for the second plant from the top on the left line, detection results of the plant above it, the plant below it, and itself are utilized. The feature is specifically defined by Equation (3).





3.2.2. Data association

Once the feature for each plant is computed as described in the previous section, it can be used to match plants in the current image to those in the previous image. Specifically, the distance between two features [image: image] and [image: image] are defined as follows:

[image: image]

where [image: image] and [image: image] are feature vectors of two detected plants as defined in Equation (3), and [image: image], [image: image], [image: image], [image: image], and [image: image], [image: image], [image: image], and [image: image] are corresponding feature elements. In essence, Euclidean distance is used to evaluate feature similarity of two detected plants for data association. If two targets involved in the comparison are the same target, the calculated distance in Equation (4) is less than a predefined threshold. Based on the feature distance, we construct a feature cost matrix denoted as Matrixfeat to perform the association of the targets in the later stage.

In addition to feature distance, we also utilize the Kalman filter (Kalman, 1960) to predict the positions of plants in the current frame according to those in the previous frame. We calculate the IOU of the predicted bounding box from the Kalman filter and the bounding box from the detection result to construct an IOU cost matrix denoted as MatrixIOU. We perform subtraction operation on two matrices as follows to get the final cost matrix denoted as Matrixfinal,

[image: image]

When two plants have a smaller feature distance and larger IOU, the cost matrix Matrixfinal has a smaller value at the corresponding element, which means those two plants are more likely to be one plant. Matrixfinal has better matching accuracy than using Matrixfeat and MatrixIOU alone. Finally, Hungarian algorithm (Kuhn, 2010) is deployed for an association of various plants based on the Matrixfinal.

In order to tackle the situation of re-identifying a plant that goes out of the camera field of view for a long time and re-appears in the current frame, an object library is built to store the plants that have appeared before. The plants in the object library are ordered by their ID numbers. When constructing the cost matrix Matrixfeat, MatrixIOU, and Matrixfinal, match candidates are searched from neighbors around the biggest ID that appeared in the previous frame. If the matching cost is larger than a predefined threshold, a new ID is assigned. An example is shown in Figure 6, there are three plants in the middle part of images of the previous frame and the current frame whose plant feature can be extracted as stated in Section 3.2.1. Since the biggest ID in the previous frame is 130, when constructing the cost matrix, matching candidates are searched from the neighbors of 130, i.e., from 130−x1 to 130+x2. Then, the cost matrix Matrixfinal is computed between the detected plants with the proposed feature, i.e., Det1, Det2, and Det3, and plants from 130−x1 to 130+x2 in the object library according to Equation (5). After applying the Hungarian method, Det1, Det2, and Det3 are matched to ID 130, 129, and 128, respectively.


[image: Figure 6]
FIGURE 6
 The structure of the proposed data association method based on the proposed feature extraction.



Finally, we focus on the plants on top and bottom of the images, whose features cannot be extracted as described in Section 3.2.1, since they do not have complete top or bottom neighbors. To assign IDs to these plants, first, the travel direction of the robot is determined by comparing image coordinates of plants in the middle part of images that have been successfully detected and tracked. Then, those plants which are going to go out of the camera's field of view are matched with plants in the previous frame. Those plants which are newly appeared in the camera field of view are further divided into new cases. If the ID of the nearest successfully detected and tracked plant in the middle part of the image is equal to the maximum ID of the object library, then a new ID is assigned to the newly appeared plant. Otherwise, they are matched with local neighbors of plants in the middle.

Two examples are shown in Figure 7. The robot travels forward from the starting point until the plant with ID 20 in Figure 7A, then it keeps traveling until the plant with ID 30, and then reverses back to the plant with ID 20 in Figure 7B. In both images, red rectangles denote plants whose features can be extracted as described in Section 3.2.1, blue rectangles denote plants that are matched with previously appeared plants, and green rectangles denote plants that are assigned with new IDs. In Figure 7A, the robot travels up, so plants with IDs 14 and 15 are matched with plants in the previous frame. Similarly in Figure 7B, the robot travels down, then plants with IDs 19 and 20 can also be matched with plants in the previous frame in the same way. Regarding plants that are newly appeared in Figure 7A, since the object library has the maximum ID of 18, which is equal to the ID of plant 18 in the current frame, new IDs of 19 and 20 are assigned to these plants. However, in Figure 7B, the maximum ID of the object library is 30 which is different from the ID of plant 16 in the current frame, they are matched with neighbors of plant 16, and then matched to plants with IDs of 14 and 15.


[image: Figure 7]
FIGURE 7
 ID assignment for plants whose features cannot be extracted as described in Section 3.2.1. In (A), the robot travels forward from the starting point until the plant 20, and in (B), it keeps moving forward until the plant 30 and moves backward to the plant 20. Red rectangles represent plants whose features can be extracted as described in Section 3.2.1, blue rectangles denote plants that are matched with previously appeared plants, and green rectangles denote plants that are assigned with new IDs.







4. Experimental results

In this section, implementation details of the proposed method, evaluation metrics for MOT accuracy, results of the proposed method, and its comparison with four state-of-the-art methods, as well as limitations of the proposed method are discussed.


4.1. Implementation details

As mentioned before, YOLO-V5 is employed as the detector in our method. Specifically, we choose to use the YOLO-V5m model of YOLO-V5 as our detector because it has both high inference speed and detection accuracy. It is trained on two parts of training data corresponding to two growth stages of lettuces in Table 1 based on the pre-trained model on COCO dataset with the SGD optimizer for 150 epochs. A NVIDIA RTX 2080Ti GPU is used for training and inference. The learning rate is initialized with 1e−2, and the input resolution of the neural net is set to be 640 × 640.

For the other four state-of-the-art MOT methods, which are ByteTrack, FairMOT, TraDeS, and SORT1, we finetune them on our dataset using their default hyperparameters. We conduct 150 epochs of training for each method on the pretrained model provided by the authors.



4.2. Evaluation metrics

The evaluation of MOT task is more complex than the detection and segmentation task. Multiple Object Tracking Accuracy (MOTA) (Bernardin and Stiefelhagen, 2008) is commonly used in many existing MOT works, but it is also shown to be affected by the detection and cannot well reflect the quality of data association in a method. To resolve this, Ristani et al. (2016) proposed identity related measures, i.e., Identification Recall (IDR), Identification Precision (IDP), and IDF1, which can better reflect the performance of data association. Formulations of IDR, IDP, and IDF1 are summarized as follows,
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where IDTP, IDFN, and IDFP refer to the number of true positive, false negative, and false positive ID assignment, respectively. In addition, ID Switch (IDSW) (Bernardin and Stiefelhagen, 2008; Li et al., 2009) is proposed to measure the stability of tracking.

Another popular metrics for evaluating MOT accuracy is Higher Order Tracking Accuracy (HOTA) presented by Luiten et al. (2021), which balances between detection and association performance. HOTA is calculated by detection accuracy score (DetA) and association accuracy score (AssA) as follows,

[image: image]

Among them, AssA is a combination of association accuracy score (AssRe) and association precision (AssPr) as follows,

[image: image]

where AssRe reflects the proportion of predicted trajectories in ground truth trajectories, and AssPr measures the accuracy of predicted trajectories tracking the trajectories in the ground truth. The detailed description of DetA, AssA, AssRe, and AssPr can be found in the original work (Luiten et al., 2021), which is omitted here for the brevity of the paper. In general, HOTA can better reflect the human's visual perception for MOT evaluation.

In this paper, we compute the above-mentioned MOT evaluation metrics with the MOTChallenge official kit2 (Dendorfer et al., 2021).



4.3. Results and discussions

We evaluate the MOT performance of the proposed method and four state-of-the-art methods with our dataset using the evaluation metrics mentioned above. The results are summarized in Table 2. In the table, test−straight1 and test−straight2, test−B&F1, and test−B&F2 indicate the situations where the robot travels only forward and the situations where the robot travels both forward and backward in the first and second growth stages, respectively.


TABLE 2 Performance of the proposed method and comparison to four state-of-the-art Multiple Object Tracking (MOT) methods.


[image: Table 2]

It can be seen from the table that SORT performs the best among other methods overall in terms of HOTA and IDSW, in the test data test−straight1 and test−straight2 where the robot only moves forward. Our method is slightly worse than SORT but better or similar to other methods. It is because this is a simple situation where all plants move in one direction in captured images, and SORT is especially suitable for such cases. Other state-of-the-art methods like FairMOT and TraDeS try to extract plant features for re-identification. However, different from human tracking, individual plants are visually quite similar to each other in terms of both color and texture. Therefore, the advanced object feature extraction and matching for object re-identification parts of FairMOT and TraDeS sometime provide misleading information. Our method also performs feature extraction and matching, but our feature extraction is based on the geometric relationship of a plant with its neighbors. Therefore, it provides better differentiation than the image feature of an individual plant, thereby suffering less from similar appearance of plants.

In the test data test−B&F1 and test−B&F2 where the robot moves both forward and backward, our method shows significantly better performance than other state-of-the-art methods, thanks to the proposed feature extraction and data association strategies. Other state-of-the-art methods cannot handle the situation where a plant disappeared from the camera field of view a long time ago and re-appears again and will assign new a ID to this plant. However, the proposed method can successfully search and re-identify the plant from its object library by comparing the proposed feature. For the robotic precision spray application, this is quite meaningful since assigning a new ID to the same plant means spraying the same plant twice.

In addition, to investigate the impact of the color contrast of the captured images on the performance of the proposed method, experiments are conducted by changing the color contracts of all images in the dataset. As shown in Figure 8, we change the original images in the dataset to be grayscale images, images with a contrast factor of 0.5 and images with a contrast factor of 1.5. The proposed method is trained and tested on the dataset with different color contrasts independently, and the results are summarized in Table 3. We can see from the table that in the test data of test−straight1 and test−B&F1, the performances of our method with images of different color contrasts are quite similar. In test data of test−straight2 and test−B&F2, the performance of our method with the gray-scale images is noticeably lower than those of the other three. This is mainly because there exists a certain level of over exposure in the captured images of test−straight2 and test−B&F2, which increase the difficulty of detection, especially with the grayscale images, as shown in Figure 8B. In comparison, lettuces are more clear in the grayscale images of test−straight1 and test−B&F1, as shown in Figure 8A. In summary, the performance of the proposed method is generally similar with images of different color contrasts, when captured images are clear and not overexposed. However, when the images of lettuces are not very clear, e.g., when they are overexposed, the performance tends to degrade especially with the grayscale images.


[image: Figure 8]
FIGURE 8
 Images in the dataset with different color contrasts. (A,B) are images of lettuces in the rosette stage and the heading stage. Images from left to right correspond to the original images, the gray-scale images, images with a contrast factor of 0.5, and images with a contrast factor of 1.5, respectively.




TABLE 3 Performance of the proposed method with images of different color contrasts.
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Qualitative comparisons of MOT performance between the proposed method and other state-of-the-art methods in the test data test−B&F1 and test−B&F2 are shown in Figure 9. In both Figures 9A,B, the blue arrows in the figure indicate the direction of robot motion. Specifically, the robot moves forward to a place and captures images in the left columns. It continues its travel for a while, then reverses back, comes to the same place, and captures images in the right columns of Figures 9A,B. Thus, the left and right columns show images of the same plants when the robot moves forward and reverses back. It can be seen that only the proposed method successfully re-identifies the same plants, while other methods assign new IDs for them. Note that in the left columns of Figures 9A,B, although SORT, as well as other methods, shows different ID numbers to ground truth ID labels, it does not necessarily mean the assigned ID is incorrect. In fact, as long as IDs for plants are consistent during the whole process, the result is acceptable.


[image: Figure 9]
FIGURE 9
 Qualitative comparisons of the proposed method and other state-of-the-art methods in the test data test−B&F1 and test−B&F2 where the robot moves both forward and backward. (A) results on test−B&F1 and (B) results test−B&F2. The left and right columns of (A,B) show images of the same plants when the robot moves forward and reverses back.



The inference speed is shown in Table 2 in terms of inference FPS. We can see from the table that the FPS of SORT is the highest among others since it does not need to extract object features. Although our method also extracts features of plants and perform data association, this process takes very little time, and it is only less than 10% slower than SORT while significantly better than other methods. Since the average FPS of the proposed method is approximately 90 FPS, it well meets the requirements of the real-time robotic spray action.



4.4. Limitations

There are two limitations that exist in the proposed methods. First, our method assumes that the positions of targets to be detected and tracked are fixed on the ground. While it is obviously true for robotic precision spray application, it is not the general case of MOT in computer vision society, but a special case of it. Second, it can be seen from the experimental results that the performance of the proposed method is similar to or a little worse than the best performing method, SORT, when the robot travels forward only. Its advantages over other state-of-the-art methods become obvious when the robot moves back and forth, which is quite normal in reality, e.g., it needs to avoid dynamic obstacles.




5. Conclusions

In this paper, an MOT method, LettuceTrack, for detection and tracking of lettuces is presented to solve robotic precision spray application. We propose a novel feature extraction and data association strategy to re-identify plants which go out of the camera's field of view and re-appear again. This ensures the robot to correctly recognize the same plant and spray them only once when it needs to reverse back for different reasons. Experimental validation of the proposed method is conducted using the dataset collected by our agricultural robot on a lettuce farm, and a comparison with other state-of-the-art methods has been provided. The results show that the proposed method shows superior performance to other methods by successfully re-identifying the same plants when the robot travels back and forth. The proposed method also runs at a high-speed of 90 FPS, which confirms its real-time deployment at the camera frame rate, i.e., around 30 FPS. Furthermore, limitations of the proposed method are also provided. The future work is to find a global re-identification strategy for the robot to recognize the same plants when it completely moves out of the farm and re-enters it again.
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Footnotes

1 The following open source implementations are used in the experiment. ByteTrack: https://github.com/ifzhang/ByteTrack, FairMOT: https://github.com/ifzhang/FairMOT, TraDeS: https://github.com/JialianW/TraDeS and SORT: https://github.com/abewley/sort.

2 https://github.com/JonathonLuiten/TrackEval
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Forests are indispensable links in the ecological chain and important ecosystems in nature. The destruction of forests seriously influences the ecological environment of the Earth. Forest protection plays an important role in human sustainable development, and the most important aspect of forest protection is preventing forest fires. Fire affects the structure and dynamics of forests and also climate and geochemical cycles. Using various technologies to monitor the occurrence of forest fires, quickly finding the source of forest fires, and conducting early intervention are of great significance to reducing the damage caused by forest fires. An improved forest fire risk identification algorithm is established based on a deep learning algorithm to accurately identify forest fire risk in a complex natural environment. First, image enhancement and morphological preprocessing are performed on a forest fire risk image. Second, the suspected forest fire area is segmented. The color segmentation results are compared using the HAF and MCC methods, and the suspected forest fire area features are extracted. Finally, the forest fire risk image recognition processing is conducted. A forest fire risk dataset is constructed to compare different classification methods to predict the occurrence of forest fire risk to improve the backpropagation (BP) neural network forest fire identification algorithm. An improved machine learning algorithm is used to evaluate the classification accuracy. The results reveal that the algorithm changes the learning rate between 0.1 and 0.8, consistent with the cross-index verification of the 10x sampling algorithm. In the combined improved BP neural network and support vector machine (SVM) classifier, forest fire risk is recognized based on feature extraction and the BP network. In total, 1,450 images are used as the training set. The experimental results reveal that in image preprocessing, image enhancement technology using the frequency and spatial domain methods can enhance the useful information of the image and improve its clarity. In the image segmentation stage, MCC is used to evaluate the segmentationresults. The accuracy of this algorithm is high compared with other algorithms, up to 92.73%. Therefore, the improved forest fire risk identification algorithm can accurately identify forest fire risk in the natural environment and contribute to forest protection.
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Introduction

Forests are vital links in the ecological chain and essential ecosystems in nature. Damaged forests seriously affect the ecological environment of the Earth (Han et al., 2018). Protecting the forest environment plants plays a critical role in sustainable human development, and the most important aspect of protecting forest plants is preventing forest fires. If a forest fire is not monitored and warned of in time, it burns down trees, reduces forest accumulation, and causes soil erosion and vegetation damage (Ryan et al., 2021). Forest fires can also destroy understory plant resources and cause irreparable losses to rich wild plant resources. Developing diversified forest fire risk monitoring methods is necessary to reduce the adverse effects of forest fires (Cai et al., 2018).

Developed countries have conducted substantial research on monitoring forest fire disasters to reduce the losses caused by forest fires. For example, Canada has a vast territory with an average of thousands of forest fires daily, but no major fire has occurred in recent decades. Japan has also made some achievements in forest fire disaster monitoring, and there have been no major fires. These are inseparable from the rapid development of forest fire monitoring technology (Van Hoang et al., 2020). Currently, there are two main monitoring methods for forest fire risk at home and abroad. The first is through ground monitoring, including infrared, video, and radar monitoring, and the other is air monitoring, primarily through satellite, microwave, and infrared monitoring (Hu et al., 2022).

The recognition and monitoring of forest fire risk images using a machine learning algorithm have been successfully performed in recent years to realize the timely monitoring of forest fires. First, to extract the features of the forest fire risk image, we segment the image and then classify it according to the features.

Thach et al. (2018) analyzed the spatial pattern of tropical forest fire risk using random forest and the multilayer perceptron neural network and used the Pearson correlation method to evaluate the correlation between the variables and forest fire. In total, three forest fire risk models, the support vector machine (SVM) classifier, random forest, and multilayer perceptron neural network, were trained and verified (Thach et al., 2018).

Lim et al. (2019) constructed two forest fire risk prediction models based on satellite fire data and medium-resolution imaging spectrometry data monitored by the Korean Forestry Administration. They analyzed the spatial autocorrelation between the fire frequency and intensity of the two data types using a semivariogram. The accuracy and performance of the model are good (Lim et al., 2019).

Balling improved the processing and analyzability of the forest image returned by the uncrewed aerial vehicle (UAV) by designing the UAV forest fire prevention system, forest fire image monitoring algorithm, and intelligent landing gear system. This method realized the real-time monitoring of forest fire and improved the digitization and automation of forest fire early warning and prevention (Balling et al., 2021).

Devotta et al. (2021) proposed an improved recognition and positioning algorithm based on the color index. Combined with the forest fire monitoring recognition algorithm of the UAV, it can process the video image data returned during the flight of the aircraft in real time, which can monitor and recognize forest fire risk and accurately judge its location (Devotta et al., 2021).

However, image processing technology based on machine learning can extract and analyze the image features of forest fire risk and effectively identify the risk of a forest fire. Zhang et al. (2019) built a forest fire prediction model based on the convolutional neural network structure suitable for forest fire sensitivity prediction.

Moayedi et al. (2020) adopted a hybrid evolutionary algorithm to realize the approximate and reasonable task of this forest fire environmental threat. A total of three fuzzy meta-heuristic algorithms, the genetic algorithm, particle swarm optimization algorithm, and differential evolution algorithm, were used to construct a sensitive area model of the forest fire. The results reveal that the optimized structure can replace the traditional forest fire prediction model (Moayedi et al., 2020).

Ghali et al. (2021) used deep learning technology to establish a deep learning convolutional transfer learning feature extraction network. Ghali also explored the correlation of the popular allocation standard of subspace learning and designed the deep convolution and domain adaptive sample classification algorithm. The experimental effect was good (Ghali et al., 2021).

The aforementioned methods obtain forest canopy image information using UAVs or video surveillance; analyze the complex characteristics of smoke, flame, and other images by processing forest fire risk images; and build a forest fire risk monitoring and early warning model. The model can predict the time of fire risk, direction of fire spread, and fire intensity. However, few researchers have studied high-precision and lightweight backpropagation neural network (BPNN) models. The BPNN and SVM algorithm are combined to build the forest fire risk identification algorithm MD-BPNN based on an improved BPNN to improve the efficiency of forest fire risk identification.

The organizational structure of this article is as follows: In section “Improvement of forest fire identification algorithm,” we recognize forest fire risk images. In section “Forest fire risk image recognition,” we propose a color segmentation model of forest fire insurance. Section “Color segmentation model of forest fire insurance” introduces the improvement of a BP neural network forest fire identification algorithm and makes an experimental analysis. Finally, section “Conclusion” summarizes the conclusions.



Improvement of forest fire identification algorithm


Steps of the algorithm

Michael et al. (2021) proposed that the BPNN primarily comprises forward signal propagation and reverse error signal propagation. During the forward propagation of the signal, the difference between the output signal and expected output value is calculated. The error signal is transmitted in reverse through the output when a large error occurs, and the value of each layer is modified to make the actual output close to the expected output.

In this study, the image processing steps through the layers are illustrated in Figure 1, and the output of the image recognition result is provided. When the input layer has a reverse propagation method, it may affect the input and output of other layers (Al-Zebda et al., 2021). The image enters the input, hidden, and output layers and is processed by the BPNN. Finally, the processed image is generated in the output layer. The MapReduce fusion deep learning neural network based on BP comprises the input, hidden, and output layers, as depicted in Figure 1. It is trained in two ways: the forward propagation deep learning method and BP deep learning process. The input of the former method affects the other layers. The possible errors in the input data of the output layer are corrected through BP.


[image: image]

FIGURE 1
Modified machine learning algorithm network model structure.


According to the weight vector space, gradient descent technology enhances the search technology and reduces the error rate. In the hidden layer, N is the number of neurons. The hidden layer can be regarded as the input of the output layer, and whether the result is correct can be observed in its evaluation. The series N = [1, 2, 3, ⋯⋯, 10] indicates the largest prediction result found. The series [x1, x2, ⋯⋯, xn] represents input variables. The series [w1, w2, ⋯⋯wn] denotes the weight between the hidden and input layers. Finally, the series [v1, v2, ⋯⋯, vn] is the weight assigned to hidden and output layers. In addition, Y(t) is a predictable output, and the transfer function is used to describe the nonlinear problem, expressed as follows:

[image: image]

The hidden layer z is the output expressed as follows:

[image: image]

wherew1,w2,w3……wn represent the weights of the hidden and input layers:

[image: image]

After the forward propagation process is completed, the error signal e is formed by the tasks of u and y(t) for the purpose of

[image: image]



Modified machine learning algorithm based on backpropagation neural network

In this study, the improvement steps of the deep learning BP neural network forest fire identification algorithm are as follows (Kukuk and Kilimci, 2021).

Step 1: Set algorithm parameters, including the initial weight diversity feature (W), that is, the weight between [−w, w] ranges. The lowest initial range here is [−1, 1].

Number of hidden layers: The number is set to 1 in this study.

Number of nodes in the hidden layer: The number of nodes in the hidden layer is less than the number of training samples.

Number of training cycles: One training cycle can improve the accuracy of description by scanning the records of the training set. At the cost of time, the accuracy may be reduced, but the use time will be reduced.

Error tolerance: It specifies that the error tolerance in the restatement is low. In terms of characteristics, error tolerance is a small-cost event with a diversity from 0 to 1.

Hidden layer sigmoid: It generates each hidden node through a sigmoid function. It can transform the continuous real value of the input into the output between 0 and 1.

Serious error: It avoid serious errors in network training (Mohammed, 2022).

Step 2: The output of the active function marked in the render parameters for each layer is calculated.

Activation function: It is responsible for mapping the input of neurons to the output.

Learning rate: The logarithm is kept in the range of [0.5∼0.8] at the beginning of discovery.

Number of training cycles: This is the only scan of all images in the training set.

Step 3: Once an error is found in the output layer, the error between all the obtained outputs and the selected outputs is calculated.

Step 4: The weight extension error gradient is adjusted on each epoch.

Step 5: The deep training mode is used to obtain the output. The depth training mode is expanded from the depth training set, allowing the functions marked in the aforementioned parameter list to be activated.

Step 6: Depth fusion is performed in the estimation function.

Step 7: The incorrect information of deep fusion is ignored, and the model is trained.

Experimental results: In the cluster (about five nodes), an 8.00 GB i3 CPU and 2.8 GHz of RAM are used. A forest fire risk dataset was constructed to compare different methods to predict forest fire risk. The forest fire risk monitoring dataset includes forest fire risk images collected by UAVs on the ground and forest fire risk images searched on the internet. Figure 2 presents the calculation results of the non-sampling fusion-level depth learning using several algorithms, and Figure 3 depicts the calculation results of the fusion-level depth learning perceptron with resampling.
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FIGURE 2
Performance comparison of all network models without sampling.



[image: image]

FIGURE 3
Performance comparison of all network models with resampling.


Figure 2 compares the algorithm performance using the network model without resampling. The recognition accuracy of the MD-BPNN algorithm is 0.947, which is the highest compared with the accuracy of other algorithms. The recall rate of the MD-BPNN algorithm is 0.884, and the F-measure is 0.984. The root mean square error (RMSE) is 0.0759. According to Figure 3, the algorithm performance is compared using the network model with resampling. The recognition accuracy of the MD-BPNN algorithm is 0.932, and the recall rate is 0.887. Furthermore, the F-measure is 0.985, and the RMSE is 0.0434.

The data in the table reveal the consistency measurement of the proposed algorithm. The algorithm changes the learning rate between 0.1 and 0.8, consistent with the cross-index verification of the 10x sampling algorithm.



Improved machine learning algorithm and support vector machine classifier

This article presents an improved machine learning algorithm and SVM classifier to recognize forest fire risk images. This method takes the color and shape of the fire image as the criterion and combines a variety of features. This method first extracts the color features of the flame according to the composition of the flame color to reduce some significant interference (Tang et al., 2022). Second, by constructing the multi-dimensional vector of color and shape, the shape characteristic parameters of the target area are calculated. The image recognition steps based on the BPNN are shown in Figure 4.


[image: image]

FIGURE 4
Image recognition steps based on backpropagation neural network.


The input layer of the forest fire risk recognition neural network based on the BPNN is composed of extracted features, including color moments, roundness ρ of the suspicious area, and the angle N of flame.

According to the different backgrounds of forest fire risk images, the distribution of y is y = [1, 0]. y = [0, 1, 0], andy = [0, 1]. According to Equation (5), the node in the hidden layer is 8.

[image: image]

After the number of nodes in the network hidden layer is determined, the forest fire risk image recognition steps are as follows:

Initialization: The input vector is X = [x1, ⋯, xn], the output vector is Y = [y1, ⋯, yk], and the hidden neuron vector is M = [m1, ⋯, mj].

Forward propagation: According to [image: image], the fitness of hidden layer is [image: image], so the output function of the hidden layer is Mj = f (S i).

According to [image: image], the fitness of the output layer is [image: image] and Y(k) = f (Q k).

Backpropagation: The actual output is Y(k), the expected output is Ok, the mean square error is [image: image], and the sum of the mean square error is E = ∑n=1 En. The learning error dk of the input layer and the learning error dj of the hidden layer are calculated, and the value of the weight is adjusted until the error disappears and is less than the expected error.

A total of 3,845 forest fire risk images which are taken in Longshan Forest Farm of Shaoguan, Guangdong (23 ° 12′N, 113 ° 22′E), and Lingyun Mountain of Foshan city (22 ° 57′N, 112 ° 46′E), are used as datasets. According to the ratio of 7:3, the datasets are divided into training sets and test sets. The datasets contain the image information of trees, lakes, roads, etc. in the forest environment taken by UAVs from above. The image information is collected under the conditions of sufficient light and low illumination. Longshan Forest Farm is located in Lechang city, Shaoguan, Guangdong Province. The forest farm mainly grows ecological public welfare forests and experimental forests such as Chinese fir, high-fat masson pine, bald cedar, eucalyptus, and rosemary. Lingyun Mountain is located in Gaoming district, Foshan city. Its vegetation consists of mainly masson pine, which is flammable and difficult to extinguish in case of fire. The environment of coniferous forest creates favorable conditions for the generation of crown fire.

Overall, 1,440 images are selected as the training samples, and 288 images are selected as the test samples, and the image samples are collected under the same background. Table 1 shows the parameters of some training samples.


TABLE 1    Parameters of some training samples.

[image: Table 1]

Table 2 lists the processing results. The results demonstrate that the image is considered a fire image if the output value exceeds 0.8.


TABLE 2    Training sample.

[image: Table 2]




Forest fire risk image recognition

In UAV image forest fire monitoring, image preprocessing technology is an essential link. Due to the influence of environmental factors such as illumination and image background, the image acquisition process will reduce the quality and clarity of the collected image, resulting in the inability to truly reflect the details of the image (Sayad et al., 2019; Cawson et al., 2020; Hossain et al., 2020). The purpose of applying image preprocessing technology is to weaken or eliminate useless image information so as to retain and enhance useful information.

In order to better meet the training requirements of the BP neural network model, the original fire image data are converted into small images of the same size (Gaur et al., 2021; Lin et al., 2021; Wang et al., 2021). Preprocessing of image data is divided into the following five steps:

The original forest image data are randomly cropped to 256 × 256 and the image is randomly rotate at −15°∼15°.

The cropped forest fire risk image with size 224 × 224 is transformed into a tensor of 0∼1.

After converting from –1 to 1, the tensor is normalized from 0 to 1.


Image enhancement

In the process of forest fire risk image recognition, the image needs to be enhanced (Abedi Gheshlaghi et al., 2021). The processing algorithm steps are as follows: First, the images are classified and divided into non-overlapping parts.

[image: image]

The average gradient vector [image: image] is calculated by using the following equation:

[image: image]

In Equation (7), the size of the image area is w × w:

[image: image]

The frequency of the flame determines the filtering effect (Babu et al., 2019; Sayad et al., 2019). If the frequency is not appropriate, the filtered image will be greatly deformed, resulting in the suppression of some flame structures, so the filtered image has a blank position. The direction window is determined according to the flame direction, and each pixel in the window is projected to the baseline. In order to calculate the flame frequency of the image, it is necessary to calculate the distance between the projected crest and trough. The algorithm steps are as follows (Mao et al., 2018):

We divided the image into non-overlapping subblocks of w × w. Next, we calculated the average value of each point along the w direction, denoted as M[ K ].

Combined with the characteristics of forest fire risk images, this study has used the method of enhancement filtering to enhance the image quality, and the most commonly used enhancement image algorithm is Gabor filtering (Wang et al., 2019). This algorithm regards the image in the local area as a group of parallel, frequency, linear, and fixed direction images. The Gabor window function is used to locate and filter the flame in the image so as to enhance the flame information. It can be expressed as follows:

[image: image]

As can be seen from Equation (9), combined with the directional characteristics of the image rotation filter, image information can be enhanced during filtering (Sun et al., 2021).

[image: image]
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In Equation (12), [image: image], φ is the direction of the Gabor filter, [xφ, yφ] represents the angle of rotation along the axes x and y, and f is the frequency of the sine wave and plane wave (Hong et al., 2018). There are two methods to enhance image information: one is the frequency domain method, and the other is the spatial domain method, such as image gray transformation operation, image histogram correction operation, and image filtering operation (Sousa et al., 2020; Joardar et al., 2021). Figure 5 is the effect picture after Gabor filtering, mean filtering, and Gaussian filtering.


[image: image]

FIGURE 5
Effect picture after using various filtering processes: (A) Original drawing, (B) gabor filtering, (C) mean filtering, and (D) gaussian filtering.




Image morphological processing

Morphological processing of forest fire risk image data captured by UAVs can extract image components that are meaningful to the rendered area, realize further discrimination operation, and extract the edge features of the target object and the essential features of the connected area (Devotta et al., 2021).

The basic operations of morphological image processing include expansion, corrosion, open operation, and close operation. In Figure 6A is the original (Figures 6B–F) are the comparison of the effects of several image morphological processing methods, such as binarization processing, expansion processing, corrosion processing, open operation, and closed operation (Wang et al., 2022).


[image: image]

FIGURE 6
Image morphological processing results: (A) Original image, (B) binarization treatment, (C) expansion treatment, (D) corrosion treatment, (E) open operation processing, and (F) closed operation processing.


Through the morphological processing of forest fire risk images, the image noise can be removed, the image shape can be simplified, the flame feature structure can be enhanced, and the flame information can be separated from the complex background.




Color segmentation model of forest fire insurance

In order to obtain a more detailed flame image, the flame pixels can be segmented in YCbCr color space and RGB color space, and the decision conditions can be obtained according to the two color spaces (Stankevich, 2020). In case of forest fire risk, the color of forest fire is quite different from the background color of the forest environment, and the characteristics are obvious. The main performance is that the color distribution of flame from outside to inside is red, yellow, and white. The color distribution of flame is shown in Figure 7.


[image: image]

FIGURE 7
Flame color distribution.



Pixel distribution characteristics of forest fire

In the actual forest fire risk monitoring process, when the shooting time is cloudy, the collected image information is dark. For general algorithms, it is usually difficult to achieve good results after direct processing. In order to improve the contrast effect of the image, the image needs to be preprocessed in advance. As shown in Figures 8A,B, the overall brightness value of the flame image is low. The color parameters of the HSV model include brightness, hue, and saturation (Van Le et al., 2021). The pixel value of the flame image is calculated. As shown in Figures 8C,D, the processed image has an obvious contrast effect and can meet the requirements of later image processing.


[image: image]

FIGURE 8
Flame brightness value: (A) Original image 1, (B) image 1 brightness value, (C) original image 2, and (D) image 2 brightness value.




Distribution of flame pixels

In Figures 9A–D are the flame image and the image separated by YCbCr channels.

This section compares the flame pixels of YCbCr channels with the average pixel value of the channel to describe the characteristics of flame pixels. In Figures 10A–C compare the flame pixel values in YCbCr channels with the average value of the corresponding channels (Mohammed, 2022).


[image: image]

FIGURE 9
YCbCr color space separation image: (A) Original image, (B) Y channel separation, (C) Cb channel separation, and (D) Cr channel separation.



[image: image]

FIGURE 10
Pixel values of flames in different channels: (A) Flame pixel value of Y channel, (B) flame pixel value of Cb channel, and (C) flame pixel value of Cr channel.


As can be seen from Figure 10, in the three channels, the distribution rule of flame pixels can be expressed as follows (Sevinc et al., 2020; Kumar et al., 2021; Dharmawan et al., 2022):

[image: image]

where YmeanCbmeanCrmean represent the average pixel value.

As shown in Figure 11. The comparison results are as follows:

[image: image]
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FIGURE 11
Value of pixels in the R and G channels.




Color segmentation results and comparison

This study uses the HAF (Equation 17) and MCC (Equation 18) methods to analyze the flame image information under low-light conditions and segment the flame color in the image. Figure 12 presents the results.


[image: image]

FIGURE 12
Segmentation flame image results.


Figure 12 illustrates the segmentation results of the flame image. The left column is the original image, and the central column is the segmented flame image based on the general BPNN algorithm. The right column displays the results from the proposed MD-BPNN algorithm.

The segmentation quality of the region algorithm can be quantified through this index. We define the matching index calculation as follows:

[image: image]

where Card represents the number of pixels, ρj denotes the weight, [image: image] represents the ith manually segmented region, and [image: image] denotes the jth region.

For the overlapping part, combined with the over-segmentation problem, the segmentation result region corresponds to the manual segmentation result region, and the following indexes are determined:

[image: image]

The calculation equation of the final evaluation index HAF is as follows:

[image: image]

In Equation (17), the weighting factor M plays an important role in judging the segmentation of the process, and its value is 0.5. In Figure 10, the HAF segmentation index comparison is shown in Figure 13.


[image: image]

FIGURE 13
HAF evaluation index results.


From the test data, it can be seen that in the case of excessive segmentation and insufficient segmentation, the average accuracy rate of the MD-BPNN algorithm evaluated by using the HAF index is 80.37%, and the segmentation result still has good anti-interference performance. Compared with other algorithms, the performance is better, which enhances the applicability of the algorithm in multiple scenarios.

The Matthews coefficient is used to evaluate results, calculated as follows (27):

[image: image]

In Equation (18), TP indicates a true positive, TN denotes a true negative, FP represents a false positive, and FN indicates a false negative. The MCC evaluation index results are presented in Figure 14.


[image: image]

FIGURE 14
MCC evaluation index results.


By calculating the accuracy of the algorithm, the average accuracy of the MD-BPNN is 92.73%, which is better than other authors’ algorithms.




Conclusion

According to the actual forest image recognition situation, this study improves the combination algorithm of the BP neural network algorithm and SVM classifier, models the recognition network, enhances the image and morphological processing through the training and learning of the recognition network, segments and extracts the features of the suspected forest fire area, improves the efficiency of forest fire recognition, and improves the stability of the network. The main contents are as follows:


(1)A forest fire risk dataset was constructed to compare different classification methods to predict forest fire risk. The results reveal that the algorithm changes the learning rate between 0.1 and 0.8, consistent with the cross-index verification of the 10x sampling algorithm.

(2)In the combination of an improved BP neural network and SVM classifier, forest fire risk is recognized based on feature extraction and a backpropagation network. A total of 1,450 images are used as training samples. The experimental results show that the recognition effect of fire risk images is good.

(3)By analyzing the forest fire image, the flame pixel values of the images on R and G channels are analyzed. The value of the former is higher than that of the latter.

(4)For the flame image under low lighting conditions, HAF and MCC indexes are used to evaluate the segmentation accuracy of the forest fire image. In the case of excessive segmentation and insufficient segmentation, the average accuracy of the MD-BPNN algorithm evaluated by using the HAF index is 80.37% and the segmentation result still has good anti-interference performance, thus enhancing the applicability of the algorithm in a variety of scenarios. The average accuracy of the MD-BPNN algorithm is 92.73%, which indicates that the algorithm has high accuracy.



The improved deep learning algorithm improves the efficiency of forest fire risk identification. However, there is still room to improve model performance. In future research, we will further optimize the performance of the algorithm and improve the ability of forest fire risk identification and prevention.
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Peeling damage reduces the quality of fresh corn ear and affects the purchasing decisions of consumers. Hyperspectral imaging technique has great potential to be used for detection of peeling-damaged fresh corn. However, conventional non-machine-learning methods are limited by unsatisfactory detection accuracy, and machine-learning methods rely heavily on training samples. To address this problem, the germinating sparse classification (GSC) method is proposed to detect the peeling-damaged fresh corn. The germinating strategy is developed to refine training samples, and to dynamically adjust the number of atoms to improve the performance of dictionary, furthermore, the threshold sparse recovery algorithm is proposed to realize pixel level classification. The results demonstrated that the GSC method had the best classification effect with the overall classification accuracy of the training set was 98.33%, and that of the test set was 95.00%. The GSC method also had the highest average pixel prediction accuracy of 84.51% for the entire HSI regions and 91.94% for the damaged regions. This work represents a new method for mechanical damage detection of fresh corn using hyperspectral image (HSI).
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1.  Introduction.

Fresh corn is favored by consumers for its excellent nutritional value and edible quality (Saka et al., 2018). Mechanical peeling is the main link in the processing of fresh corn, and the collision, extrusion, and friction between the ear and the high-speed rotating peeling roller can easily cause the mechanical damage of varying degrees to the crisp and tender kernels (Zhao et al., 2011). At present, most fresh corn processing plants still use the manual method to select and grade damaged ears. However, manual grading is a tedious and inefficient work, and it is more difficult to observe with naked eyes in the case of slight abrasion of seed coats (Wang, 2010). Therefore, it is urgent to find a fast automatic detection technology to detect the damage of fresh corn ear.

For detection of damaged corn ears, researchers identified them based on RGB images (Fu et al., 2020), and constructed a classification model using the color characteristics and texture characteristics (Zhang F et al., 2015). The detection of damaged corn based on traditional RGB images mainly utilizes the color difference and spatial feature difference of the target, and the classification results are seriously affected by the image acquisition environment (Gao and Liu, 2016). HSI data is a type of three-dimensional cube containing spatial pixel information (two-dimensional) and spectral information (one-dimensional) of an object (Torres et al., 2019). The wavelength of each pixel covers the entire spectral range, and meanwhile, all the data in each wavelength can form an image (Yin et al., 2017). Hence, HSI can extract more feature information for more complex spectral analysis and image processing, which cannot be achieved by the traditional machine vision. With the development of optical sensors and imaging technology, more and more studies have reported the application of HSI in the quality assessment and safety detection of various agricultural products (Kandpal et al., 2015; Su et al., 2021; Nazir et al., 2022). Among them, in the aspect of damage detection, HSI has been successfully used for the detection of crack in fresh jujube (Yu et al., 2014), scratch, scar, and spot in peach (Zhang B et al., 2015), insect damage in soybeans (Huang et al., 2013), wheat kernels damaged by Fusarium head blight (Lv et al., 2022), and freeze-damage of corn seed (Zhang et al., 2019). As far as we know, there is no report on the damage detection of fresh corn ear based on HSI. Therefore, an investigation into the potential of detecting the peeling-damaged regions of fresh corn with the spectral range of 400 nm–1000 nm deserves special attention.

At present, methods of partial least squares discriminant analysis (PLS-DA) (Ambrose et al., 2016), support vector machine (SVM) (Wakholi et al., 2018), K-singular value decomposition (K-SVD) (Fang et al., 2015), random forest (RF) (Che et al., 2018), and artificial neural networks (ANNs) (Zhang et al., 2021) are often used for HSI classification and have achieved relatively good classification results. However, a study of existing classification methods found that there are still some deficiencies in the current researches, which can be summarized as follows: (1) Non-machine-learning methods are limited by unsatisfactory detection accuracy. (2) Machine-learning methods, especially deep learning methods, rely heavily on training samples. However, there usually exist some interference samples while building training datasets, which significantly influence the accuracy of machine learning. (3) The background contents are not fixed in different detecting situations, containing various features, and are difficult to be accurately classified. Moreover, it is more difficult to classify the sound and damaged regions of fresh corn than other agricultural products due to the large number of kernels on the ear, the vertical and horizontal gaps between kernels, and the interspersed corn whisker. Therefore, it is necessary to develop a suitable algorithm for identifying the damage regions of fresh corn.

Aiming at the shortcomings of current methods, the germinating sparse classification (GSC) method was proposed to detect the sound and peeling-damaged regions of fresh corn. The innovations of this method could be summarized as follows: (1) The ‘seed germinating’ strategy is developed to refine training samples, which reduces the influence of unqualified training samples on dictionary learning. (2) For dictionary learning process, the atoms that are incompetent to accurately represent any training samples are removed during iterations, and the number of atoms can be dynamically adjusted. The strategy improves the performance of dictionary and reduces computational complexity. (3) For sparse classification process, the threshold algorithm with respect to the energy of sparse representation residual is proposed to determine the pixels of background. In addition, three commonly used classification methods K-SVD, SVM, and back propagation (BP) neural network were used to classify the sound, peeling-damaged, and background pixels in fresh corn hyperspectral images (HSIs). The classification results of the three methods were compared with that of the proposed GSC method to verify the superiority of the GSC method in the detection of fresh corn peeling damage.


2.  Experimental materials and data.

In this section, the fresh corn materials and equipment used in this study are described. Next, the hyperspectral data acquisition and preprocessing are introduced.

2.1.  Fresh corn materials.

The fresh corn variety used in this study was Jinxiangnuo, which was widely cultivated in Northeast China. One hundred and eighty fresh corn ears were hand-selected from the fresh corn production line at Fumin Food Processing Plant in Songyuan city, Jilin Province, China. The fresh corn ears were inspected by five trained workers and divided into sound and peeling-damaged. The 180 fresh corn ears were composed of 90 sound ears and 90 peeling-damaged ears. The hyperspectral data of randomly selected 60 sound ears and 60 peeling-damaged ears formed the training set, and the hyperspectral data of the remaining ears constituted the test set. The selected fresh corns were sealed in airtight bags, then stored at the optimum condition of 4°C to retain moisture. All fresh corn HSIs were taken within two hours after peeling.


2.2.  Hyperspectral image acquisition.

Hyperspectral data of fresh corn ears were collected by using a hand-held visible-NIR hyperspectral imaging system (Specim IQ, Specim Ltd., Finland). The system integrated a hyperspectral camera, scanning platform, image acquisition card, data acquisition software, and data processing software. As presented in Figure 1, the hyperspectral imaging system kept the internal environment consistent during all the acquisition processes to reduce the interference from the outside. The imaging spectrograph covered a spectral range of 400 nm–1000 nm. The resulting hyperspectral data cube had dimensions of 512×512 pixels and 204 wavebands. The lighting system consisted of two 150 W halogen tungsten lamps (QVF133, Philips Lighting (Shanghai) Co., LTD., Shanghai, China) which were fixed on both sides of the test platform at an angle of 45°. The hyperspectral imaging system operated at an exposure time of 22 ms during data acquisition. The distance between the lens and the fresh corns was 38 cm.



Figure 1 | Schematic diagram of the hyperspectral imaging system for acquiring reflectance images of fresh corns.




2.3.  Hyperspectral data preprocessing.

HSIs need to be calibrated by using white and dark reference images. The raw HSI was calibrated using equation (1):

 

where, Rc is the calibrated HSI; Ro is the raw HSI; Rb is a dark reference image obtained by completely blocking the lens with an opaque cover; Rw is a white reference image of a pure Teflon whiteboard (Spectralon, Labsphere Inc, North Sutton, NH, USA) with 99% reflectivity, obtained under the same environment as the raw HSI.

The RGB images corresponding to fresh corn HSIs were collected, and the region of interest (ROI) of fresh corn were labeled at pixel level by human judgment. The pixels corresponding to the sound regions and damage regions on the corn were denoted as the sound class and peeling-damaged class, respectively. However, it was inevitable to generate some impure training samples because of human mistakes or limited labeling conditions, which would directly affect the discriminant performance of the subsequent models and lead to a reduction of the classification accuracy. In order to improve the purity of training samples, all samples in training sets of the two classes were refined. The detailed method is described in subsection 3.2.2.

Modeling with all-waveband data not only takes a long time to compute and occupies a large amount of memory, but also degrades the performance due to the curse of dimensionality. Therefore, the dimension of hyperspectral data was reduced before using for training in this study. To determine the required spectral wavebands, the dimensionality reduction test including two steps was executed. By given the starting waveband and the ending waveband, first, the average spectra of the refined training samples of the sound class and peeling-damage class were calculated, respectively. Second, the spectral angle was obtained from the average spectra of the two classes of training samples. The spectral angle is utilized to reflect the difference between two classes of spectra. A larger spectral angle indicates greater difference between the two classes of training samples, and implying better performance for classification. Through the results of test presented in Table 1, it can be noted that the spectral angle of the two classes of training samples obtained by using the first 70 wavebands (corresponding wavelength range from 400 nm to 607 nm) was the largest, implying that the first 70 bands may have better potential to provide satisfactory classification performance.

Table 1 | Spectral angles of average spectra of refining samples of two classes in terms of different used bands.



The spectra after 70 wavebands (corresponding wavelength range from 608 nm to1000 nm) were mainly infrared and near-infrared, which was not helpful to the damage identification of fresh corn and even interfered with the classification results. Moreover, the complexity of our algorithm was low, and processing 70 wavebands would not significantly increase the running speed. The selected 70 wavebands were universal to both the training sample and the test target. Therefore, the first 70 wavebands were selected and applied to the four classification methods.



3.  Experimental methods.

In recent years, there has been increasing interest in sparse representation of signals. Sparse representation is widely used in the computer vision and pattern recognition in various fields, including image denoising (Sun et al., 2014), image classification (Zheng et al., 2020), face recognition (Liu et al., 2019), disease recognition (Feng and Zhou, 2016), and target tracking (Ma and Xu, 2021), etc. In these applications, the sparse representation method often leads to the most advanced performance. Therefore, this study aimed to develop a classification method based on sparse representation for fresh corn peeling damage. This section briefly reviews the theoretical background of the HSI classification based on sparse representation, and then introduces the detailed processes of the GSC method proposed in this paper.

3.1.  Related work.

In the sparse representation classification (SRC), pixels in the same class are assumed to approximately lie in the same low-dimensional subspace. Suppose there are C distinct classes in HSI, and the c-th class has Mc training samples.   is the total number of training samples. A spatial pixel in HSI can be approximately represented as x=[x1,x2,⋯,xN]∈ℝN×1 , where N is the number of wavebands. The subdictionary Dc∈ℝN×Mc is constructed by directly extracting the pixels of the c-th class in original HSI. All subdictionaries for C classes can be obtained, and all these subdictionaries constitute the final dictionary D=[d1,d2,⋯,dc,⋯,dC]∈ℝN×M . The SRC assumes that the pixel x of a particular class can be represented as a sparse linear combination of a dictionary D. Then x can be sparsely represented as x = Dα or approximate x≈Dα , satisfying

 

where α∈ℝM×1 contains the representation coefficients for the pixel x and e is the residual.

The sparse coefficient vector   can be obtained by solving the following optimization problem:

 

where ∥·∥0 represents the l0-norm of the vector α which counts the number of nonzero entries in the vector and K0 is the upper bound of the sparse level which is equal to the number of nonzero rows in  . The solution with the fewest number of nonzero coefficients is certainly an appealing representation. However, equation (3) is NP-hard (Li et al., 2017), which can be approximately solved by matching pursuit algorithms. Once   is obtained, the class of the pixel x is determined as the one with the minimal reconstruction residual (Fang et al., 2017),

 

where   is the sparse coefficient subset of   belonging to c-th class.


3.2.  Proposed method.

3.2.1.  Algorithm framework.

The proposed method contains three processes: sample refining, dictionary learning, and sparse classification. The graphical representation of the overall process of the proposed GSC algorithm is shown in in Figure 2.



Figure 2 | The graphical representation of the overall process of the proposed GSC algorithm.




3.2.2.  Sample refining.

The sample refining process is used to remove the unqualified training samples (Gong et al., 2019; Lv et al., 2019). For each class, the strategy is manually selecting a set of qualified training samples first, which are referred to as sample seeds in this study. These seeds are then employed as the baseline to be compared with each training sample. If a training sample has insufficient correlation with all seeds, the sample is considered not to belong to this class, and therefore, it will be removed from the training samples. The detailed process is summarized in Algorithm 1. In this algorithm, the correlation between a seed and a training sample is evaluated based on the 2-norm, expressed as   where zj–vc,i is the residual between the seed vci and the training sample zj. The ratio   is larger than the threshold γ means zj has insufficient correlation to vc,i. The above evaluation of zj is repeated for all seeds. If θmin ≥ γ, i.e., zj has insufficient correlation to all seeds, the training sample zj will be removed. The algorithm is executed for the peeling-damaged class and sound class to obtain training samples Z1∈ℝnp×η1 and Z2∈ℝnp×η2 , respectively, where η1 and η2 denote the number of training samples of two classes, respectively.



Algorithm 1 | Sampling refining process of the GSC.




3.2.3.  Dictionary learning.

Next, the dictionary learning process is executed to obtain the sparse dictionaries of peeling-damaged class and sound class, respectively. The process is summarized as Algorithm 2. Given the training samples Z, The first step is to initialize the dictionary D∈ℝnp×q , where q represents the number of atoms(column) of D. In this study the dictionary is initialized to be the Gaussian random matrix. The training process is an iterative process with the maximum number of iterative cycles of tmax. For each iterative cycle, the sparse coefficients sj is computed based on the l0-optimization problem,  , which can be solved by algorithms such as the orthogonal matching pursuit (OMP) (Wang et al., 2012). The step of sparse coefficients computation is called sparse coding. By completing the sparse coding step, the matrix S = [s1, s2, ⋯, sζ] is obtained. Then, for each atom di, we inspect whether the atom has been used in the sparse coding step. If an atom was not used, it will be removed from the dictionary, shown as lines 7–8 in Algorithm 2. The other atoms are then updated by using the strategy of the K-SVD. The Algorithm 2 is executed for both two classes, respectively, and two dictionaries D1∈ℝnp×q1 and D2∈ℝnp×q2 , where q1 and q2 denote the number of atoms of two dictionaries, respectively. It should be pointed out that the background, i.e., the pixels that do not belong to peeling-damaged class or sound class, usually contains various features. Thus, it is difficult to obtain a dictionary that can represent all features accurately. Based on this consideration, the background class is not involved in the dictionary learning process, but the classification among the background class and other two classes can be still realized, which is described as follows.



Algorithm 2 | Dictionary learning process of the GSC.




3.2.4.  Sparse classification.

The obtained dictionaries are used for pixel level classification of HSIs. The algorithm is summarized in Algorithm 3. The matrix Y denotes the classification result of the HSI  , and it is initialized by the zero matrix (all entries of Y are zero). The classification process is realized by classifying each spatial pixel. Given an arbitrary spatial pixel, the spectral data is extracted from  , expressed as  . Then, the sparse recovery problems with respect to x and two dictionaries D1 and D2 are solved to obtain the sparse coefficients s1 and s2, respectively, shown as steps 3 and 5 in Algorithm 3. Similar to the sparse coding process in Algorithm 2, the sparse recovery problem can be solved by using the OMP algorithm or other l0-optimization algorithms. The residuals of sparse recovery results are computed, denoted as rc = x – Dcsc, c = 1, 2. The 2-norm of residuals are computed, denoted as e1 and e2, respectively. Then, the classification of the pixel is determined by the judgement given by steps 7 and 8 of Algorithm 3. If the smaller one of e1 and e2 is larger than threshold ε, it means the spectral data x cannot be accurately represented by neither D1 nor D2. Hence, the pixel is considered to belong to neither peeling-damaged class nor sound class, and it is determined to belong to the background class (denoted as value-0 in Y). If the smaller one of e1 and e2 is not larger than threshold ε, the pixel is determined to belong to the class that satisfies  . The steps 2–8 are repeated for each spatial pixel, and finally the classification result Y∈ℝns1×ns2 is obtained.



Algorithm 3 | Sparse classification process of the GSC.



3.2.5.  Evaluation index.

The classification result of the HSI was obtained by pixel level classification. Considering that some outliers might reduce the accuracy of the algorithm, the block level calculation method was adopted to process the original classification result and eliminate the influence of outliers in this paper. In the block level method, first of all, every 2×2 pixels in the prediction classification results were divided into small blocks; and then the class with the largest number of pixels in the small block was statistically obtained; finally, all pixels in this small block were divided into this class. The evaluation indexes were the overall classification accuracy and the pixel prediction accuracy. The overall classification accuracy is the percentage of the correctly classified sound fresh corn and damaged fresh corn in the training set and test set. The pixel prediction accuracy of the entire HSI region can be calculated by dividing the number of the correctly predicted pixels in the classification result by the total number of the pixels in the test image. The pixel prediction accuracies of the damaged region can be calculated by dividing the number of correctly predicted pixels in the damaged region by the total number of such pixels in the ground-truth.




4.  Experimental results and analysis.

The experiment results and discussion are introduced in this section. Firstly, the refined training samples are presented, and the characteristics of reflectance spectra of fresh corn are analyzed. Then, the key parameters of the proposed GSC method are determined through experiments. Finally, the classification results of fresh corn HSIs are described. All experiments were carried out using the Matlab 2021a software.

4.1.  Refined samples and spectral characteristic.

There were 146893 and 190242 training samples for sound class and peeling-damaged class of fresh corn, respectively. After the sample refining process, 39085 and 116427 impure training samples were removed, and then 107808 and 73815 refined training samples were left in sound class and peeling-damaged class, respectively. The same refined training samples were used in the GSC, K-SVD, SVM, and BP classification methods. Figure 3 shows the original training samples and the refined training samples of the sound class and peeling-damaged class of fresh corn. As shown in Figure 3, some obviously unqualified training samples in the sound and peeling-damaged classes had been removed after sample refining. In addition, it could be seen that the spectral reflection intensity decreased first and then increased. The relative intensity of the peeling-damaged fresh corn was lower than that of the sound one, and it was because the damaged pigment and collapsed tissue of fresh corn could cause a reduced light reflection (Gao et al., 2019).



Figure 3 | Original training samples and refined training samples of the sound class and peeling-damaged class of fresh corn under the first 70 wavebands: (A) original training samples of sound class; (B) refined training samples of sound class; (C) original training samples of peeling-damaged class; (D) refined training samples of peeling-damaged class.




4.2.  Experimental parameter selection.

In order to obtain better classification performance, some key parameters of the proposed GSC methods needed to be determined, such as the sparse level k, maximum number of iterative cycles tmax, and threshold ε. The optimal parameters were determined by experiments, k ranged in {1, 2, 3, 4, 5}, tmax ranged in {3, 6, 10, 15, 20}, and ε ranged in {0.02, 0.04, 0.06, 0.08, 0.10}. If the parameter values were selected appropriately, the pixel prediction accuracies were high. Therefore, different parameter values were tested repeatedly on 12 HSIs of peeling-damaged fresh corn selected from the test set to determine the appropriate values of k, tmax, and ε. The following parameter combinations were selected during the test: the sparsity level was 2, maximum number of iterative cycles was 15, and threshold was 0.08. Two parameters were fixed in each group of tests to explore the appropriate parameter values for maximizing the pixel prediction accuracies of the GSC method. The average pixel prediction accuracies under different parameters are displayed in Figure 4. Aiming for the highest average pixel prediction accuracies, the optimal parameter values of the proposed GSC method were finally set as k=2, tmax=10, and ε =0.06 based on the experimental results shown in Figure 4. Taking one HSI as an example, the classification maps under different parameters are shown in Figure 5. The yellow pixels in classification maps represented the sound corn, the white pixels represented the peeling-damaged corn, and the black pixels represented the background.



Figure 4 | Average pixel prediction accuracies under different parameter levels. (A) sparsity level k; (B) iterative cycles tmax; (C) threshold ϵ.





Figure 5 | Classification maps under different parameter levels.




4.3.  Classification results analysis.

In this subsection, the GSC method and other three commonly used K-SVD, SVM, and BP methods were used to conduct the overall classification of fresh corn HSIs in the training set and test set, and finally determined that the fresh corn belonged to sound or damaged ear. Besides, all test fresh corn HSIs in the test set were precisely classified, and each pixel in the image was classified at the pixel level. Finally, the pixel was ascertained to belong to sound kernel, damaged kernel, or background classes. The overall classification accuracy and average pixel prediction accuracy of the four methods were obtained and compared.

4.3.1.  Results on overall classification accuracy.

The overall classification accuracy results of the fresh corn HSIs in the training set and test set using four classification methods are listed in Table 2. It can be seen that the proposed GSC method performed best in distinguishing sound and damaged fresh corn ears. For the training set, the identification accuracy of sound and damaged fresh corn by GSC method was 98.33%, with 2 damaged fresh corns misjudged as sound fresh corns. For the test set of the GSC method, the identification accuracy of sound and damaged fresh corn by was 95.00%, with 1 sound fresh corn misjudged as damaged fresh corn and 2 damaged fresh corns misjudged as sound fresh corns. Dysplastic corn kernels on fresh corn were often identified as damaged class, resulting in the sound fresh corn might be misjudged as the damaged fresh corn. In addition, the damaged fresh corn was misjudged as the sound fresh corn because the chemical and physical information on the surface tissue did not change significantly when the seed coat of fresh corn was slightly damaged. At this time, the spectral curves of the damaged fresh corn were similar to that of the normal fresh corn. Qiao et al., (2021) drew the same conclusion in the nondestructive detection of decayed blueberry.

Table 2 | Overall classification accuracies of HSIs in the training/test set using four methods under the selected optimal first 70 wavebands.




4.3.2.  Results on average pixel prediction accuracy.

Four classification methods were applied to classify the test fresh corn HSIs in the test set for precise pixel classification, and the average pixel prediction accuracies of 60 test images are shown in Figure 6. For the pixel classification results of the entire HSI region, the proposed GSC method had the highest average pixel prediction accuracy of 84.51%, followed by the BP neural network method which reached 76.23%. The average pixel prediction accuracy of the GSC method was 41.39%, 21.04%, and 10.86% higher than that of K-SVD, SVM, and BP methods, respectively. For the pixel classification results of the damaged region, the proposed GSC method had the highest average pixel prediction accuracy of 91.94%, followed by the BP, K-SVD and SVM methods with 77.31%, 61.50%, and 44.39%, respectively. The average pixel prediction accuracy of the GSC method was at least 18.92% higher than that of other methods. The average pixel prediction accuracy of the entire HSI region of four methods including the GSC method did not reach above 85%, but this did not affect the practical application of the GSC method. This is because the accurate identification of the damaged region of fresh corn in the practical application process is the key to realize the automatic detection and grading of peeled fresh corns. However, the average pixel prediction accuracy of the GSC method for the damaged region was higher than 90%, which satisfied the practical application.



Figure 6 | Average pixel prediction accuracies of the HSIs in the test set using four methods based on the given ground-truths.




4.3.3.  Analysis of classification results on typical scenes.

Three typical fresh corn HSIs were selected from the test set for detailed study, and denoted as Scene 1, Scene 2, and Scene 3, respectively. The classification results by using four methods of the selected three scenes are presented in Figures 7–9. Each method had two classification result images. One was the original classification result image based on pixel-level classification, the other was the classification result image processed by the 2×2 block-level method. In the following analysis, the pixel prediction accuracy of each method was considered to be the larger value of the two classification results. The RGB images corresponding to fresh corn HSIs (‘Objective’) and the corresponding ground-truths with manual labeling (‘label’) were given as the reference images of classification results in Figures 7–9.



Figure 7 | Classification results on a single seriously damaged fresh corn in Scene 1. (A) Pixel-level; (B) 2×2 block-level.



(1) Classification results on Scene 1

There was a seriously damaged fresh corn ear in Scene 1, in which the seed coats of most kernels had disappeared and the liquid endosperm was exposed. Table 3 shows the pixel prediction accuracy of Scene 1. Among the four methods, the GSC method had the highest pixel prediction accuracy of 78.77%, while the SVM method had the lowest pixel prediction accuracy of 54.41%. The prediction accuracy values of Scene 1 using K-SVD, SVM, and BP methods were all lower than the average values given in Figure 6. The possible reason is that the pure Teflon whiteboard as background class was wrongly classified as damaged kernel class by the three methods. As shown in Figure 7, the GSC and K-SVD methods could identify the complete contour of the objective fresh corn, while the SVM and BP methods incorrectly classified most of the background pixels into sound kernel class. The pixel prediction accuracy of the GSC method for the damaged regions of fresh corn in Scene 1 was 92.89%. The GSC method could recognize almost all damaged kernels, while the SVM and BP methods could only recognize a part of damaged kernels. However, the K-SVD method misclassified most of damaged kernels into background class.

Table 3 | Pixel prediction accuracies of the four methods based on the given ground-truth of Scene 1.



(2) Classification results on Scene 2

There were two fresh corn ears in Scene 2. One was a sound ear and the other was a seriously damaged ear. Table 4 shows the pixel prediction accuracy of Scene 2. Among the four methods, the GSC method had the highest pixel prediction accuracy of 85.15%, while the K-SVD method had the lowest pixel prediction accuracy of 45.66%. As shown in Figure 8, first, the GSC method could detect the complete contours of the two fresh corns and background, this indicated that the GSC method had the potential of detecting multiple fresh corns; second, it could identify almost all the damaged kernels in the damaged fresh corn; and third, it could completely recognize all the sound kernels in the sound fresh corn, in addition to identifying the gaps between kernels as background. The BP method could also identify the regions of fresh corns and background, but it could only identify a part of damaged kernels. The SVM method could not detect the edges of fresh corns, and they wrongly classified the background between two fresh corns into sound kernel class. The K-SVD method could identify the complete region of background, but it misclassified almost all damaged kernels into background class.

Table 4 | Pixel prediction accuracies of the four methods based on the given ground-truth of Scene 2.





Figure 8 | Classification results on one sound and one seriously damaged fresh corns in Scene 2. (A) Pixel-level; (B) 2×2 block-level.



(3) Classification results on Scene 3

There were two fresh corn ears in Scene 3. One was a sound ear and the other was a damaged ear with slight abrasion of seed coats. Table 5 shows the pixel prediction accuracy of Scene 3. Among the four methods, the GSC method had the highest pixel prediction accuracy of 87.68%, while the K-SVD method had the lowest pixel prediction accuracy of 65.85%. As shown in Figure 9, the GSC methods could accurately and completely detect fresh corns and background with clear edges, but it wrongly identified dysplastic corn kernels on the sound ear as damaged class. The K-SVD and BP methods could also effectively distinguish the fresh corn region and background region, but there were more pixels misclassified at the edge of fresh corn. Similar to the situation in Scene 2, the K-SVD method still misclassified the damaged kernels into background class, and the SVM method still misclassified the background between two fresh corns into sound kernel class. The SVM and BP methods could only identify a few damaged kernels.

Table 5 | Pixel prediction accuracies of the four methods based on the given ground-truth of Scene 3.





Figure 9 | Classification results on one sound fresh corn and one damaged fresh corn with slight abrasion of seed coats in Scene 3. (A) Pixel-level; (B) 2×2 block-level.





4.4.  Discussion.

4.4.1.  Discussion on using HSI detection instead of traditional RGB image.

It should be noted that the HSI was chose for damage identification of fresh corn instead of the traditional RGB images in this paper, mainly for the following reasons. Traditional RGB image classification method mainly relies on two points. (1) Differences in colors. However, there are many varieties of fresh corn, and the colors of seed coats are diverse, such as yellow, white, purple, and even multiple colors on an ear. Moreover, the color of white seed coat is the same as that of inner endosperm, so the classification accuracy based on the color differences is not high. Therefore, it is not feasible to accurately identify fresh corn peeling-damage by color differences. (2) Differences in spatial characteristics. However, the shape of the damage regions caused by mechanical peeling is random, which may be triangular, circular, or irregular. Therefore, there are no fixed spatial geometric characteristics, and it is not feasible to accurately identify fresh corn peeling-damage using spatial geometric characteristics.


4.4.2.  Discussion on dimensionality reduction method.

The dimensionality reduction method is to reduce the computation amount and improve the classification accuracy. For example, principal component analysis (PCA), a commonly used feature reduction method, takes training data and test data as a whole to extract the principal components. The results obtained in this case are good for both the training data and the test data. Therefore, the dimensionality reduction data are used for training to obtain the principal components, which are used to classify the test data and get better classification effect. For the problem addressed in this study, the test data needed to deal with cannot be obtained in advance while executing the training process, and therefore, the PCA results obtained by using training data may be not suitable for test data.


4.4.3.  Discussion on comparison with existing methods.

It could be seen from the experimental results that the developed GSC method had an absolute advantage in hyperspectral detection of fresh corn damage when background contents were containing multiple features. This can be explained at a theoretical level. As shown in Figure 7, the GSC method could correctly classify the pure Teflon whiteboard, large gaps between kernels, and marks on fresh corns made by a marking pen into the background class, while the other three methods had poor extraction effect for the background. This is because the GSC method determines background pixels by the threshold algorithm with respect to the energy of sparse representation residual during the sparse classification process. Even if the background contents are not fixed in different detecting situations, the classification effect will not be affected. It is worth mentioning that it is always a challenge to detect the slight abrasion of seed coats. By comparing the classification results in Figures 8, 9, it can be seen that the recognition effect of the fresh corn with slight abrasion of seed coats is obviously inferior to that of the seriously damaged fresh corn, and there was still a gap between the detection result of the abrasion region and the ground-truth. However, compared with other classification methods, the GSC method had the best recognition effect on the abrasion region with the pixel prediction accuracy of 81.13%, while the other three methods almost fail in the abrasion detection. This proves the absolute superiority of our proposed method. One possibility is that the reflectance spectra of slightly bruised seed coats are closer to sound seed coats, thus increasing the difficulty of classification. Another possibility is that it is difficult to recognize slightly bruised kernels with naked eyes, resulting that the ground-truths (‘label’) of the RGB images by manually labeling may be not completely accurate.


4.4.4.  Discussion on the practical applications.

During fresh corn processing, online detection of mechanical damage of fresh corn based on the GSC algorithm can be realized by using the imaging spectrograph. The peeled fresh corns are transferred to the sorting equipment by a conveyor covered with corn trays, and then vacuum packed. In order to improve the quality of fresh corn, damage detection is carried out before sorting. The lighting system and imaging spectrograph are mounted in a custom-made box above the conveyor. The speed of the conveyor is adjusted according to the spatial resolution and the integration time of the imaging spectrograph. The hyperspectral data on the front of the fresh corn are collected when the fresh corn is transported to the bottom of the imaging spectrograph. Then, the corn trays rotate and drive the fresh corns to rotate 180° to collect the hyperspectral data on the opposite side of the fresh corn. The damage detection of the whole fresh corn ear can be realized. Schematic diagram of the practical applications is shown in Figure 10.



Figure 10 | Schematic diagram of the practical applications.






5.  Conclusions.

In this paper, the feasibility of using hyperspectral imaging technique to detect the fresh corn peeling damage was studied. The GSC method was proposed to classify the pixels of sound kernel, peeling-damaged kernel, and background. For this purpose, each process of the GSC method was introduced, including sample refining, dictionary learning, and sparse classification. The classification results of fresh corn HSIs with serious damage and slight abrasion of seed coats were also presented. Although complete extraction of damage regions in fresh corn ear with slight abrasion of seed coats was still a challenge, the experimental results demonstrated that the GSC method had the highest accuracy regardless of the damage degrees of test images. Experimental results verified the feasibility of the GSC method. The overall classification accuracy of the training set was 98.33%, and that of the test set was 95.00%. It also had the highest average pixel prediction accuracy of 84.51% for the entire HSI regions and 91.94% for the damaged regions, which were significantly higher than compared methods, including the K-SVD, SVM, and BP methods. The peeling-damaged regions of fresh corn could be directly observed by the classification results based on pixel-level classification. This study made up for the gap in the detection method of fresh corn peeling damage. The datasets used for hyperspectral fresh corn damage detection study was built. In general, the results confirmed the feasibility of hyperspectral imaging technique in detecting the fresh corn peeling-damage in laboratory environment.
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Aphids are one of the main pests of cotton and have been an important disaster limiting cotton yield. It is important to use satellite multispectral data to monitor the severity of cotton aphids in a timely and accurate manner on regional scale. Based on the combination of derivative of ratio spectra (DRS) and random forest (RF) algorithm, this study researched the quantitative monitoring model of cotton aphid severity based on Sentinel-2 data. First, the cotton area was extracted by using a supervised classification algorithm and the vegetation index threshold method. Then, the DRS algorithm was used to analyze the spectral characteristics of cotton aphids from three scales, and the Pearson correlation analysis algorithm was used to extract the bands significantly related to aphid infestation. Finally, the RF model was trained by ground sampling points and its accuracy was evaluated. The optimal model results were selected by the cross-validation method, and the accuracy was compared with the four classical classification algorithms. The results showed that (1) the canopy spectral reflectance curves at different grades of cotton aphid infestation were significantly different, with a significant positive correlation between cotton aphid grade and spectral reflectance in the visible band range and a negative correlation in the near-infrared band range; (2) The DRS algorithm could effectively remove the interference of the background endmember of satellite multispectral image pixels and enhance the aphid spectral features. The analysis results from three different scales and the evaluation results demonstrate the effectiveness of the algorithm in processing satellite multispectral data; (3) After the DRS processing, Sentinel-2 multispectral images could effectively classify the severity of cotton aphid infestation by the RF model with an overall classification accuracy of 80% and a kappa coefficient of 0.73. Compared with the results of four classical classification algorithms, the proposed algorithm has the best accuracy, which proves the superiority of RF. Based on satellite multispectral data, the DRS and RF can be combined to monitor the severity of cotton aphids on a regional scale, and the accuracy can meet the actual need.
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1.  Introduction.


Cotton aphid (Aphis gossypii L.) has always been one of the important disasters limiting cotton yield. It has the characteristics of large-scale outbreaks and is widely distributed in major cotton regions all over the world (Ali et al., 2016; Allen et al., 2018; Chen et al., 2018);. At present, aphis gossypii is still mainly controlled by pesticides, but blindly spraying pesticides not only causes waste of resources but also causes serious pollution to the ecological environment (Lu et al., 2012; Xie et al., 2019; Heydari et al., 2020; Alengebawy et al., 2021). Therefore, timely and accurate monitoring of the location and severity of aphis gossypii is important for its precise control (Zhang et al., 2017; Lou et al., 2018; Lin et al., 2021).

Traditional crop pest monitoring methods are mainly based on manual detection, although the accuracy is high, it is usually labor intensive. It is time-consuming and laborious in large-scale monitoring, and there is an inevitable time lag and strong subjectivity, which cannot meet the need for accurate pesticide application. Remote sensing technology has the advantages of timely, effective, synchronous and rapid acquisition, and can obtain continuous surface information, which has become an important tool in the field of crop pest monitoring (Yuan et al., 2017; Yang, 2020; Zhao et al., 2020).

At present, some scholars have studied the growth of cotton under stress at the leaf scale and canopy scale by using near-ground hyperspectral and UAV hyperspectral data, and the results show that the spectral characteristics of cotton under different stress grades have changed, indicating that hyperspectral remote sensing has great application potential in crop monitoring (Nagasubramanian et al., 2018; Yu et al., 2018a; Guo et al., 2021). Hyperspectral remote sensing has been widely used in small and medium-scale crop detection (Liu et al., 2020; Terentev et al., 2022). However, due to the difficulty of obtaining hyperspectral data, there are still deficiencies in large-scale crop monitoring. Therefore, regional scale monitoring by satellite multispectral images is also the current research trend (Su et al., 2018; Zhang et al., 2019).

In recent years, the multispectral satellite sensor represented by Sentinel-2 has provided users with remote sensing data of higher spectral resolution and large-scale spatial range, which has great potential for the quantitative analysis of cotton pests (Liu et al., 2018; Zheng et al., 2018; Li et al., 2020). However, due to the limitation of spatial resolution, the cotton pest information contained in satellite multispectral data is the result of the comprehensive action of two factors, the abundance of cotton pests and the pest degree. Therefore, traditional qualitative analysis is difficult to meet the accuracy requirements of cotton pest monitoring. At present, it is still a challenge to eliminate the interference of factors other than pest information in the spectral feature extraction of remote sensing images. The derivative of ratio spectroscopy (DRS) algorithm is an innovative spectral processing algorithm, which can effectively eliminate the influence of the background spectrum from the mixed pixels, enhance spectral contrast and improve the extraction accuracy of target feature information. It has been applied in many fields and has achieved good results (Philpot, 1991; Zhao et al., 2013; Guo et al., 2021). The random forest (RF) algorithm is an integrated machine learning algorithm, which uses multiple decision trees as the basic classifier to discriminate and classify, and selects different training samples and different features to improve the accuracy and generalization performance of the model, which has the advantages of fast speed, strong anti-noise, and ability to process big data, and has been widely used in the field of remote sensing image classification (Yu et al., 2018b; Zhang et al., 2020).

In this study, ground-truthed hyperspectral data combined with Sentinel-2 satellite multispectral data were used to remove healthy cotton spectra by the DRS algorithm, and the spectral characteristics of different grades of cotton aphid infestation were studied at three different scales. The sensitive bands of aphid infestation were extracted by the Pearson correlation analysis method, and a quantitative analysis model of cotton aphid infestation based on Sentinel-2 data was established based on the RF algorithm, which was used to enhance the application capability of satellite multispectral data in cotton pest monitoring and precision agriculture.

The main work of this study is as follows: (1) Based on the multitemporal Sentinel-2 satellite data, the cotton area in the study area was extracted by using the supervised classification algorithm and vegetation index (VI) threshold method to remove unnecessary disturbing factors for the classification of aphid infestation severity; (2) The DRS algorithm was used to process and analyze the ground hyperspectral data, ground hyperspectral resampling data and Sentinel-2 multispectral image sampling point data. The sensitive bands associated with aphid infestation were extracted by Pearson correlation analysis, and the effectiveness of the DRS algorithm was verified; (3) The RF algorithm was trained and accuracy validated by multispectral image sample data for Sentinel-2 image classification and compared with four classification algorithms, spectral angle matching (SAM) (Kruse et al., 1993), support vector machine (SVM) (Pujari et al., 2016), decision tree (DT) (Marin et al., 2021) and BP neural network (Xu et al., 2020).




2.  Materials and methods.


2.1.  Experimental study and materials.

Xinjiang has very superior climate resources for agricultural production, and is especially suitable for cotton cultivation. Xinjiang is currently the main cotton growing area in China, accounting for 78.9% of the total cotton growing area and 87.3% of the total cotton production in the country in 2020. Due to the long growth period of cotton, the pest infestation effect is very obvious, resulting in many yield losses. There are four main species of cotton pests in Xinjiang, namely cotton aphid, cotton bollworm, cotton red spider and cotton plant bug (as shown in 
Figure 1
). The cotton aphid cause leaves to shrink and secrete honeydew on leaves, which can easily cause the leaves to wither and fall off, affecting the cotton quality. The impact of cotton bollworms on cotton is mainly to eat leaves, flowers, and also to arch the boll. The cotton red spider causes the entire cotton plant to redden and dry out, resulting in the loss of flowers and bolls. The cotton plant bug causes black spots on plants that lose their green color sucking the growing points of the cotton as well as causing the bolls to die or fall off. Among them, the cotton aphid is a long-lasting, heavy and fast breeder, prone to drug resistance and is harmful throughout the cotton reproductive process, especially at the seedling and boll stages. In this study, the cotton aphid was chosen as the research object.





Figure 1 | 
The main pests of cotton in Xinjiang and their harm to cotton. (A) Cotton aphid, (B) cotton bollworm, (C) cotton red spider, (D) cotton plant bug.




Korla is the capital of Bayingolin Mongolian Autonomous Prefecture in Xinjiang, with east longitude 85°14′10″-86°34′21″ and north latitude 41°10′48″-42°21′36″. It is located in the central part of Xinjiang, the southern foot of Tianshan Mountain, the northeast edge of the Tarim Basin, south of the world’s second largest desert - Taklimakan desert. As shown in 
Figure 2
. Korla has a warm climate, sufficient light, and abundant water, heat, and soil resources, providing suitable growth conditions for long staple cotton that loves warmth and light. It is an important high-quality cotton producing area in China. The cotton planting area accounts for more than 90% of the total planting area of local crops.




Figure 2 | 
Location of the study area and Sentinel-2 imagery. (A) China map, (B) Korla city, Bayingolin Mongolian Autonomous Prefecture, Xinjiang, (C) Sentinel-2 satellite multispectral image of the study area, note, Red: B4 band; Green: B3 band; Blue: B2 band.






2.2.  Data collection and processing.


2.2.1.  Ground survey data collection of aphid infestation.

This study was carried out in the cotton field of Korla Experimental Station of the Plant Protection Research Institute of the Chinese Academy of Agricultural Sciences in Korla, Xinjiang. The tested cotton was sown in mid to late April, spot sown on the film. The cotton aphid stress naturally occurred in the field. Cotton aphids in Korla generally migrate during seedling emergence and boll period. The field experiments was performed during July 3rd-11th, 2018, when the cotton was in boll period, the peak occurrence period of cotton aphids in the study area. At this time, cotton aphids migrate in summer, causing significant decline in cotton yield in Xinjiang. The ground data were investigated to obtain the hyperspectral data of the cotton canopy and judge the infestation grade of aphids. The ground aphid infestation grade was judged according to the aphids on the back of cotton leaves and the characteristics of the leaves. The cotton leaves damaged by aphids shrink to the back, and the leaves grow deformed. The honeydew secreted by aphids causes the leaves to show oily light. The classification standards of cotton aphid infestation degree refer to the Chinese national standard (GB/T 15799-2011), see 
Table 1
. According to the classification standards, the aphid infestation in the study area was divided into five grades, and a total of 60 ground sample points were selected, including 20 healthy cotton sample points, 20 grade 1 aphid infestation sample points, 10 grade 2 aphid infestation sample points, 6 grade 3 aphid infestation sample points, and 4 grade 4 aphid infestation sample points, to ensure the uniform distribution of sample points. Trimble geoexplorer 6000 series equipment was used to connect RTK terminals, the Chihiro location service was used to record the GPS information of each sample point, and the error was less than 2 cm.


Table 1 | 
Severity grading standards for cotton aphids.






2.2.2.  Ground spectrum acquisition and processing.

The experimental period was the boll stage of cotton, when the cotton field was basically closed, which was conducive to the acquisition of cotton spectral information. The Field Spec Handheld portable non-imaging spectrometer was used to collect hyperspectral data of the cotton canopy. The wavelength range of the spectrometer is 325 nm-1075 nm and the spectral resolution is 1.4 nm. The spectral acquisition was carried out in sunny, windless, cloudless and well-lit weather. The acquisition time was between 10:00-16:00 Beijing time. The range of each sampling point was 4 m2, and the five-point sampling method was used to collect spectral data five times. Each measurement generated 10 spectral data, that is, the collection of ground spectral data of one sample point was completed. The collection of cotton canopy spectral data of 60 sampling points was completed according to this standard.

The abnormal spectrum was removed from the cotton canopy hyperspectral data collected at each sampling point, and the average hyperspectral data of each sampling point were obtained. All the obtained hyperspectral data were classified according to different aphid infestation grades, and then the average value was calculated. Finally, the average spectrum of aphid infestation at different grades of cotton was obtained, as shown in 
Figure 3A
)




Figure 3 | 
(A) The original ASD hyperspectral curve of aphid infestation at different grades in the cotton canopy. (B) The simulated ASD hyperspectral resampling curve of aphid infestation at different grades in the cotton canopy.




In this study, the Sentinel-2B spectral response function was used to resample the ASD hyperspectral data to obtain the Sentinel-2B simulated spectrum of the ground sampling point. The resampling formula is:



where R is the reflectivity of a channel of the simulated wideband sensor; r is the relative reflection value of the wavelength of the narrow band sensor; r_λn and are the band range corresponding to the ith band of the broadband sensor; and f(r) is the spectral response function corresponding to the broadband sensor (Sentinel-2B in this study).

The specific operation method was to establish the average spectral data of each sampling point as a spectral library file in ENVI, and then resample the spectral library using the Sentinel-2B spectral response function of ENVI software to convert the narrow band spectrum into a wide band spectrum. The spectrum after resampling is shown in 
Figure 3B
).


   
2.2.3.  Sentinel-2 satellite image processing.

Sentinel-2 satellite data are from the ESA’s official website (https://scihub.copernicus.eu/), including two satellites A and B, which can cover 13 spectral bands, from visible near-infrared to short wave infrared, with different spatial resolutions. The two satellites complement each other, and the revisit period is 5 days. Sentinel-2 is the only data with three bands in the red edge range, which is very effective for monitoring vegetation health information. The images used in this paper are Sentinel-2B L1C data. The specific parameters are shown in 
Table 2
 below.


Table 2 | 
Spectral characteristics of Sentinel-2B from the European Space Agency.




Sentinel-2B L1C is an atmospheric apparent reflectance product with geometric fine correction. Therefore, it is necessary to conduct radiometric calibration and atmospheric correction, convert the data product into surface reflectance and eliminate the influence of clouds on surface reflectance. The Sentinel-2B L1C products were processed using Sen2cor software. Since the study area is composed of two images, it is necessary to splice the remote sensing images, and then subset the remote sensing images through the vector map of the study area.

Because the spatial resolution of Sentinel-2B is different in different bands, the cubic convolution algorithm was used to resample the resolution of all bands to 10 m. To be consistent with the ASD spectral range (325 nm~1075 nm), ten bands of B1, B2, B3, B4, B5, B6, B7, B8, B8A and B9 were selected for the satellite band, and the spectral range was 442.3 nm-943.2 nm.

According to the spectral acquisition time of the cotton ground canopy, the Sentinel-2B image data of two scenes on June 3 and July 13 were selected. Among them, the satellite image on June 3 is the auxiliary data. The cotton planting area was extracted from the multitemporal satellite data, and the satellite image on July 13 is the corresponding time data collected by the ground spectrum for processing and analysis.




2.3.  Method.


2.3.1.  Extraction of cotton areas.

To more accurately study the spectral feature extraction algorithm of different grades of cotton aphid infestation and avoid the interference of other ground objects, it is necessary to extract the cotton planting area in the study area. First, vegetated and non-vegetated areas need to be separated, according to the feature types on the satellite images of the study area, five ground types, including vegetation, buildings, roads, bare lands and clouds, were selected as supervised classification samples. Then, the SVM classification algorithm was used to classify the Sentinel-2 images in the study area on July 13. According to the classification results, vegetation areas were extracted and made into masks. As the main vegetation in the Korla region includes cotton and fragrant pear trees, according to the difference of NDVI values of cotton and fragrant pear, the Sentinel-2 image on June 3 was used to extract the fragrant pear planting area by using the VI threshold method (the NDVI threshold value is 0.45, the fragrant pear trees were larger than 0.45, and the cotton trees were smaller than 0.45) to make a mask. The cotton planting area mask in the study area was obtained by subtracting the fragrant pear mask extracted on June 3 from the vegetation area mask extracted on July 13. Finally, the mask was used to subset the Sentinel-2 image on July 13 to obtain the cotton planting area in the study area. The main process is shown in 
Figure 4
. SVM is a classical supervised classification algorithm, which shows many unique advantages in solving small sample, nonlinear and high-dimensional pattern recognition. Therefore, this study selects SVM as the method to extract cotton planting areas.




Figure 4 | 
Flowchart of cotton aphid infestation classification at different grades based on Sentinel-2 multispectral images.






2.3.2.  DRS algorithm.

The DRS algorithm is a special spectral processing method based on the linear mixing model. The purpose of using the algorithm is to eliminate the influence of other features in multiple features to obtain the correspondence between the mixed spectra of the target feature and multiple features and finally extract the band that is sensitive to the spectral information of the target feature. First, the ratio of two continuous spectra is calculated band by band, and then the ratio spectrum is differentiated to obtain the DRS curve (Philpot, 1991). Assuming that the spectrum contains n components, the linear spectral mixing model can be expressed by formula (2).



where i=1, 2, 3, …, m is the spectral band, j=1, 2, 3, …, n is the endmember component, and Fj
 is the proportion of each endmember in the mixed pixel. Under the premise of neglecting the error term, assuming that there are only two substances in the mixed pixel, the linear spectral mixing model can be simplified into formula (3).



Both sides of formula (3) are divided by the spectrum of the second component at the same time, which becomes formula (4).



Derive from both sides of formula (4) to obtain formula (5).

	(5)

It can be seen from formula (5) that the derivative spectrum is already independent of the content of the second component F2
, that is, the spectrum after derivation is only linearly related to the abundance of the first component, but not to the abundance of the material component as a divisor.

In this study, each pixel in the Sentinel-2 satellite multispectral image can be considered a mixed pixel of background plant and pest-stressed plant canopy spectra. Among them, the background plants are relatively healthy cotton plants that are not affected by pests, and aphid infestation is the main stress. To remove the interference of the background healthy plant information, the healthy cotton spectrum was selected as the background endmember, and the Sentinel-2 imaging spectral data were subjected to DRS processing pixel by pixel with it as the denominator, so as to obtain the spectral features that only reflect the stress degree of the cotton aphid, and then the effective band that can reflect the cotton aphid infestation was extracted.



2.3.3.  RF classification algorithm.

RF is an integrated machine learning algorithm based on multiple decision trees proposed by Leo Breiman (Breiman, 2001), which is suitable for solving high-dimensional nonlinear classification problems, can handle a large number of input variables and effectively avoids overfitting. It has good accuracy, generalization and robustness in the classification process (Rodriguez-Galiano et al., 2012). The RF algorithm uses the bootstrap sampling technique to randomly sample the input sample data with put back to form the data training sample set, and the remaining samples are collectively called Out of Bag Data (OOB), which can be used to test the model fitting accuracy. The decision trees corresponding to the sample subsets are constructed according to the feature splitting rules, and finally, the RF classification results are obtained by combining all the decision tree classification results through the simple voting method (Gu et al., 2016). The main flow of the algorithm is as follows:

(1) Suppose that the original sample set has N training samples, each sample has M features, and in the process of model training, n (n<N) sample subsets are extracted from the training samples with replacement through the bootstrap method.

(2) The decision tree model is constructed by using N training samples extracted each time and randomly selecting m (m<M) features at each node. The information of each feature is used to calculate and determine the growth direction of the decision tree at the split node.

(3) After K rounds of training, the results of each decision tree form a base evaluator sequence and then use a simple voting method to determine the results of the integrated evaluator.



where H(x) represents the final classification result of the model; I(.) is a property function; hi
 is a single decision tree classifier (base evaluator); and Y is the output target variable (target variable). The upper bound of the generalization error is:



where PE* is the model generalization error;   is the correlation between decision trees; and S is the classification strength of the decision tree.


    
2.3.4.  Model construction and accuracy evaluation.

In this study, the cotton planting area was extracted based on the SVM supervised classification and the VI threshold method through multitemporal Sentinel-2 data. Then, the DRS was processed on the cotton aphid spectrum at three scales, and the differences in spectral characteristics were analyzed and compared, which proved the effectiveness of the proposed algorithm. The Pearson correlation analysis algorithm was used to extract the bands significantly related to aphid infestation. Finally, combined with the RF classification algorithm, the multispectral image data samples after DRS processing were divided into training samples and test samples according to the ratio of 2:1 for model training. According to the model result, the Sentinel-2 image was classified into aphid severity grades, and the classification accuracy was calculated. To prove the superiority of this algorithm, we compared it with four commonly used classification algorithms. The confusion matrix algorithm was used as the evaluation standard of the stability and prediction ability of the constructed model, and the effect of the DRS algorithm was evaluated. The main process of this study is shown in 
Figure 4
.

The confusion matrix, also known as the error matrix, is a standard format for accuracy evaluation in the form of a matrix with n rows and n columns. The specific evaluation indexes include four kinds: overall accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA) and kappa coefficient, which reflect the accuracy of image classification from different aspects (Lewis and Brown, 2001; Luque et al., 2019).

Assuming that n represents the total number of samples in the classification accuracy evaluation, K represents the total number of classification categories in the classification accuracy evaluation, nii represents the number of samples correctly classified, and nij represents that they belong to class j and are wrongly classified into class i, the evaluation index formula is as follows:













3.  Results.


3.1.  Extraction results and precision evaluation of cotton planting areas.

Using Sentinel-2 images of the study area, the cotton planting areas extracted by a combination of SVM supervised classification algorithm as well as VI thresholding method are shown in 
Figure 5C
). And the red points are the sample points of cotton spectral field collection (60 sample points), which are used to verify the accuracy of cotton planting area extraction. 
Figure 5A
) shows the Sentinel-2 true color map of the study area, with the red, green, and blue bands corresponding to the 4, 3 and 2 bands of the Sentinel-2 image, respectively. 
Figure 5B
) shows the sample map used for supervised classification in the study area. The samples were divided into five major categories based on feature: vegetation, buildings, roads, bare lands, and clouds, and the sample edges were bolded by 0.5 times for display purposes. It could be seen from 
Figure 5C
) that the cotton planting area has been accurately extracted, and the background features such as buildings, roads, bare lands and clouds have been effectively removed. The accuracy of the cotton planting areas extracted results was verified by the longitude and latitude coordinates of the ground sample data in the study area. The results showed that 60 ground sample points were within the extracted planting areas, which showed the effectiveness of the extraction results, and laid the foundation for the next cotton aphid infestation severity classification.




Figure 5 | 
Sentinel-2 true color map, supervised classification sample map and cotton planting area extraction map of the study area. (A) True color map of Sentinel-2 multispectral image with red, green and blue bands corresponding to 4, 3 and 2 bands, respectively. (B) Supervised classification sample map of the study area, including five categories: vegetation, buildings, roads, bare lands, clouds. (C) Cotton planting area extraction results from Sentinel-2 multispectral images in the study area and location of cotton spectral sampling points.






3.2.  Spectral feature analysis of cotton aphid infestation at different scales based on the DRS algorithm.


3.2.1.  Ground ASD hyperspectral spectral features.

According to formula (4) in subsection 2.3.2, the ground ASD hyperspectral cotton canopy aphid infestation spectra of different grades in 
Figure 3A
) were processed by the ratio algorithm, with the healthy cotton plants spectral as the divisor and the aphid infestation stress spectra as the dividend, and the results are shown in 
Figure 6A
). After the ratio algorithm treatment, the spectral features of cotton plants under aphid-stressed were highlighted, and the higher the aphid severity, the more obvious the spectral features, and the lower the aphid severity, the flatter the spectral features and tended to the healthy plant spectra.




Figure 6 | 
DRS results of ASD hyperspectral of cotton aphid infestation at different grades. (A) Ratio spectra of cotton plants infested by different grades of aphids to healthy plants. (B) DRS of cotton plants infested by different grades of aphids to healthy plants.




The spectra in 
Figure 6A
) were derived according to formula (5) to obtain the DRS shown in 
Figure 6B
). As described in subsection 2.3.2, the spectrum after derivation is only linearly related to the abundance as a divisor, but not to the component as a divisor. 
Figure 6B
) shows the DRS obtained by taking the healthy cotton plant spectrum as the divisor. At this time, the spectral curve is no longer related to healthy vegetation information, but only to vegetation stress information. As seen from the figure, the peaks of the ratio spectral curves for different aphid severities appear in the visible and red-edge regions commonly used to characterize vegetation spectral features, which are similar to the results of a large number of existing studies (Guo et al., 2021). With the higher aphid severity grade, the absolute values of the spectra after the DRS treatment are larger, and the peaks appear at the 513 nm, 573 nm and 701 nm bands.



3.2.2.  Ground ASD hyperspectral resampling spectral feature.

Through formula (4), the spectral curves of cotton aphid infestation at different grades after ASD hyperspectral resampling were processed by the DRS algorithm. Similarly, using the healthy cotton plant spectra as the divisor and the aphid infestation stress spectra as the divisor (
Figure 7A
), the DRS results are shown in 
Figure 7B
). From the results, it can be seen that in the spectral range of 442 nm to 943 nm, the waveforms of ASD resampled spectra are similar to those of the DRS results before ASD resampling, with three peaks in the blue, green and red-edge bands, and the peaks correspond to the bands of 492.1 nm, 559 nm, and 703.8 nm, respectively.




Figure 7 | 
DRS results of ASD hyperspectral resampling of cotton aphid infestation at different grades. (A) Ratio spectra of cotton plants infested by different grades of aphids to healthy plants. (B) DRS of cotton plants infested by different grades of aphids to healthy plants.






3.2.3.  Sentinel-2 multispectral imagery spectral features.

Based on the ground truth point coordinates of different grades of cotton aphid infestation, the multispectral data were extracted from the Sentinel-2 image, and then the average values were obtained to obtain the standard spectral curves of different grades of aphid infestation in the study area. Finally, taking the healthy cotton plant spectra as the divisor and the aphid infestation stress spectra as the divisor (
Figure 8A
), the DRS results of cotton aphid infestation based on Sentinel-2 multispectral data were obtained, as shown in (
Figure 8B
). The spectral characteristics of aphid infestation were significantly enhanced with the same three peaks, in which the peak bands corresponding to the grade 2, 3 and 4 aphid infestation were 492.1 nm, 559 nm and 665 nm, respectively, and the peak bands corresponding to the grade 1 aphid infestation were 492.1 nm, 559 nm and 703.8 nm, respectively.




Figure 8 | 
DRS results of Sentinel-2 multispectral of cotton aphid infestation at different grades. (A) Ratio spectra of cotton plants infested by different grades aphids to healthy plants. (B) DRS of cotton plants infested by different grades of aphids to healthy plants.






3.2.4.  Spectral feature extraction of cotton aphid infestation.


After DRS algorithm processing, there are nine band features remain in the Sentinel-2 satellite multispectral image, as shown in 
Figure 8B
). To avoid the interference of unnecessary information, feature extraction was performed on the bands processed by the DRS algorithm to extract sensitive bands that are highly correlated with the severity of aphid infestation. Pearson’s correlation analysis was performed by using the aphid severity class values of 60 sample points with the DRS values of Sentinel-2 images, and the coefficient correlation plots were obtained as shown in 
Figure 9
. The results showed that there was a positive correlation between the cotton aphid infestation grade and the spectral value treated by the DRS at the B2, B4, B5 and B6 bands, of which the B2 band was significantly correlated at 0.01 level, and the B4, B5, B6 bands were significantly correlated at 0.001 level. There was a negative correlation at bands B3 and B8, of which the B8 band was significantly correlated at 0.01 level, and the B3 band was significantly correlated at 0.001 level. There was no correlation at the B1 and B7 bands. When there is significant correlation between variables (in 
Figure 9
, the “*” represents significant at the 0.05 level, the “**” represents significant at the 0.01 level, the “***” represents significant at the 0.001 level), it indicates a statistically significant correlation between the variables, the correlation coefficient R represents the closeness of the correlation. Generally, the R value between 0.2 and 0.4 indicates a general relationship, between 0.4 and 0.7 indicates a close relationship, and above 0.7 indicates a very close relationship. On this basis, B2, B3, B4, B5, B6, and B8 bands were selected as the input features of the random forest model.




Figure 9 | 
Pearson correlation analysis results of aphid infestation severity and DRS value in Sentinel-2 multispectral images. (* represents significant at the 0.05 level; ** represents significant at the 0.01 level; *** represents significant at the 0.001 level).







3.3.  Classification results and accuracy analysis based on the RF algorithm.

Based on the extraction results of cotton planting areas in Section 3.1 and the results of DRS algorithm analysis and spectral feature selection in Section 3.2, the Sentinel-2 multispectral images were used to classify cotton pest severity at the regional scale by the RF algorithm model. First, 60 ground sample points were divided into a training group and a test group at a ratio of 2:1, including 40 samples for training and 20 samples for verification. Then, the RF algorithm model was trained by training samples, and the optimal model results were selected by the cross validation method to classify the severity of aphids in Sentinel-2 multispectral images. The pest classification standard was based on the severity of cotton aphids (
Table 1
), and the classification results are shown in 
Figure 10
. It can be seen from the figure that there are great differences in the study area under aphid infestation stress. The areas with serious aphid infestation stress were mainly distributed at the edge of the study area, while other areas were less or not under aphid infestation stress, and most cotton was in a healthy state. The classification accuracy of the model is shown in 
Table 3
. The OA is 80%, and the kappa coefficient is 0.73, thus obtaining excellent classification results.




Figure 10 | 
RF classification results of cotton aphid infestation at different grades.





Table 3 | 
RF classification accuracy of cotton aphid infestation at different grades.






3.4.  Results and precision comparison of different classification algorithms for cotton aphid infestation.

To verify the superiority of the RF algorithm, four classical classification algorithms were selected to compare with the proposed algorithm. Among the four comparison algorithms selected, the SAM algorithm is a hyperspectral image analysis technology, which judges the similarity between the two spectral curve vectors by comparing the cosine between them and is commonly used in satellite hyperspectral image classification. The DT, SVM and BP algorithms are three commonly used machine learning classification algorithms. All four algorithms were performed in the same environment as the RF algorithm, and all of them were classified by the feature band selection results processed by the DRS algorithm. The highest accuracy was taken as the final classification accuracy using multiple cross-validation, and the classification results are shown in 
Figure 11
. To facilitate comparison, the classification result accuracies of the four algorithms on the test dataset were presented in the form of a confusion matrix (
Figure 12
), and the overall classification accuracies and Kappa coefficients are shown in 
Table 4
.




Figure 11 | 
Classification results of four algorithms for cotton aphid infestation at different grades in the study area. (A) SAM, (B) DT, (C) SVM, (D) BP.







Figure 12 | 
Confusion matrix of classification results of four algorithms for cotton aphid infestation at different grades in the study area. (A) SAM, (B) DT, (C) SVM, (D) BP.





Table 4 | 
Comparison of classification accuracy of four algorithms for cotton aphid infestation at different grades.




From the direct comparison between the classification results of the four algorithms and the proposed algorithm, it can be seen that the classification results of the SAM, DT, SVM, BP and RF algorithms are not intuitively different, but there are differences in details. For example, the SVM algorithm has more classification for grade 2 aphids, and the BP algorithm has more classification for grade 4 aphids. The comparison of the accuracy evaluation results shows that the overall classification accuracies of the five algorithms, RF, SAM, SVM, DT and BP, are 80%, 75%, 65%, 70% and 65%, respectively, and the Kappa coefficients are 0.73, 0.67, 0.52, 0.59 and 0.53, respectively. From the comparison of the overall accuracy and Kappa coefficients, RF has the highest classification accuracy among the five algorithms, which proves the superiority of the algorithm proposed in this paper.



3.5.  Effect evaluation of the DRS algorithm.

To verify the effect of the DRS algorithm on the classification accuracy, the Sentinel-2 original bands that have not been processed by the DRS algorithm were classified directly and compared with the final classification accuracy of the five algorithms proposed in this paper. The results are shown in 
Figure 13
. Among the five classification algorithms, all obtained better performance after the DRS algorithm. The overall accuracy of the five algorithms increased by 13% on average, and the kappa coefficient increased by 0.176 on average. The overall accuracy of the RF algorithm was increased by 15%, and the kappa coefficient was increased by 0.2, which proves that the spectral features processed by the DRS algorithm can effectively improve the extraction accuracy.




Figure 13 | 
Accuracy comparison of different algorithms before and after processing by the DRS algorithm. (A) Comparison results of OA. (B) Comparison results of Kappa.






3.6.  Effect of VI features on classification accuracy.

VI is a linear or nonlinear combination of visible and near-infrared wavelength reflectance based on the vegetation spectral features, to measure the state of surface vegetation and simplify spectral information (Zeng et al., 2022). In this section, ten vegetation indices related to crop pests were selected on the basis of original features, including normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), triangular vegetation index (TVI), soil adjusted vegetation index (SAVI), atmospheric resistance vegetation index (ARVI), renormalization difference vegetation index (RDVI), enhanced vegetation index (EVI), red normalized difference vegetation index (NDVI705), modified red edge simple ratio index (mSR705), and modified red edge normalized difference vegetation index (mNDVI705), which were used to increase the features of the machine learning model and improve the classification accuracy. The classification accuracy of cotton aphid infestation before and after adding VI features is shown in 
Figure 14
. From the OA and Kappa coefficients, it can be seen that the accuracy improvement after adding VI features is not obvious. The overall accuracy of the five algorithms increased by 1% on average, and the Kappa coefficient improved by 0.028 on average. The accuracy of BP algorithm is improved the most, which may be related to the model structure.




Figure 14 | 
Accuracy comparison of different algorithms before and after adding VI features. (A) Comparison results of OA. (B) Comparison results of Kappa.







4.  Discussion.

The effectiveness of the DRS algorithm was demonstrated by the results of ground hyperspectral data processing, which lays a foundation for hyperspectral resampling and satellite multispectral data analysis. After the hyperspectral data were resampled by the Sentinel-2 spectral response function, although the number of bands and spectral information were greatly reduced, the key spectral features of pests were effectively retained, indicating that the spectral features of pests can also be characterized through limited bands, which lays a foundation for pest classification using satellite multispectral data. By comparing the DRS algorithm results of Sentinel-2 multispectral data with ground hyperspectral resampling, it could be found that the waveforms were roughly the same, and there were three peaks, which also confirms that the processed Sentinel-2 multispectral data can effectively retain the spectral information of pests, laying a foundation for the following classification. The threat of cotton aphids to cotton plants is mainly reflected in two aspects. On the one hand, it sucks the juice from the back or tender head of leaves, resulting in a decrease in leaf activity and a change in chlorophyll and water content, making the cotton leaves curl up towards the back. On the other hand, the excreta of Aphis gossypii easily breeds mould and affects leaf photosynthesis, which leads to spectral changes in the range of visible and near-infrared wavelengths with the increase of aphid infestation grade (Tang et al., 2022). Due to the limitation of satellite multispectral image resolution, although the influence of the background endmember can be effectively removed by DRS algorithm processing, there are still some uncertainty reasons that lead to some discrepancies. In the Sentinel-2 multispectral DRS results, the peaks of grade 2, 3 and 4 aphids at the red edge shifted to the visible part and appeared in the red band part, while the peak of grade 1 aphids remained unchanged.

It is a trend to monitor plant pests on a large regional scale by satellite multispectral images (Ruan et al., 2021). Based on the combination of the DRS algorithm and RF algorithm, this study used Sentinel-2 images to classify the severity of cotton aphids. It is important to point out potential areas for further improvements. The previous experiment used only the original feature of the Sentinel-2 image processed by the DRS. From the perspective of improving classification accuracy and referring to existing research, in addition to adding VI features related to pests in the model (Joalland et al., 2017), the texture features (Zhu et al., 2017) and mathematical statistical features (Vishnoi et al., 2022) will also be considered, which may have a certain impact on the classification accuracy. Therefore, it is necessary to study the fusion strategy of various features to improve the classification accuracy. In addition to feature extraction, the factors that affect the accuracy of pest classification are also related to the selection of classification methods. At present, machine learning algorithms have been applied in many fields and achieved good results (Lu et al., 2022; Maia et al., 2022). In this study, five machine learning algorithms were selected for comparison of classification accuracy, and the best classification performance was achieved by RF, demonstrating the good performance of the algorithm in terms of pest classification potential. Compared with traditional classification algorithms, RF performs well in terms of accuracy, robustness and computational requirements compared to traditional classification algorithms. At present, there are some new machine learning algorithms and deep learning algorithms that also perform well, which can be considered later. Due to the limitation of sample collection time, weather, sunlight and other factors, the number of sample points collected in this study was limited (60), especially only 4 sample points for grade 4 aphid infestation were obtained, which might have some influence on the accuracy of model evaluation results.

Xinjiang is the main cotton producing area in China, and the experimental station of the Institute of Plant Protection of the Chinese Academy of Agricultural Sciences in Korla, central Xinjiang, was selected as the study area. However, due to the differences in the natural environment and geographical location, there could be differences in cotton varieties and management measures in different cotton production areas, resulting in significant differences in pest characteristics, which might affect the accuracy of the proposed method. Therefore, it needs to be further tested in other study areas to verify its effects of monitoring pest grades in large scale areas, which should be taken into account in subsequent research. The present research only considers cotton aphid infestation, which is consistent with the conditions of the experimental area at that time. However, different insect pests may occur simultaneously in some areas, and even diseases may also occur simultaneously. The spectral characteristics of stress caused by different diseases and insect pests are sometimes very similar, and whether they can be distinguished by the present method remains to be further explored, which is also a difficult point in the current crop disease and pest research.



5.  Conclusions.

In this study, a classification method of cotton aphid severity based on the combination of the DRS algorithm and RF algorithm is proposed, and the results show that the method has great application potential. The DRS algorithm can effectively remove the interference of the pixel background endmember of Sentinel-2 multispectral satellite images, enhance the spectral features of cotton aphids at different grades. On the basis of feature extraction, five machine learning algorithms were used to classify aphid infestations. The results show that the RF algorithm has the highest classification accuracy, which proves the superiority of the RF algorithm. Combined with the DRS algorithm and the RF algorithm, using Sentinel-2 satellite multispectral data can realize the monitoring of cotton aphid infestation severity on a regional scale, and the accuracy can meet the actual needs, thus helping to guide the precise application of pesticides, control pest development, reduce production costs, and protect the ecological environment.

The method presented in this paper provides a new technology for future research, and may also be applicable to other crops. Future work could consider collecting a wider range of data from different regions to improve the algorithm. Compared with the rich spectral information contained in hyperspectral images, the spectral information of satellite multispectral images is weak. Therefore, it is necessary to enhance the spectral features related to pests through the DRS algorithm to improve the classification accuracy. At the same time, to avoid the interference of irrelevant information and data redundancy, it is also necessary to further improve the feature extraction algorithm and simplify the model as much as possible. At present, we only consider the DRS processing on the Sentinel-2 original bands to remove the impact of healthy cotton background on aphid classification in the pest spectrum. In the future, it is necessary to further analyze the impact of other parameters in the background spectrum on the inversion results. At the same time, it is considered to add pest characteristics to improve the applicability of the satellite multispectral platform in large-scale pest monitoring.
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Deep convolutional neural networks (DCNN) have shown promising performance in plant disease recognition. However, these networks cannot be deployed on resource-limited smart devices due to their vast parameters and computations. To address the issue of deployability when developing cotton disease identification applications for mobile/smart devices, we compress the disease recognition models employing the pruning algorithm. The algorithm uses the γ coefficient in the Batch Normalization layer to prune the channels to realize the compression of DCNN. To further improve the accuracy of the model, we suggest two strategies in combination with transfer learning: compression after transfer learning or transfer learning after compression. In our experiments, the source dataset is famous PlantVillage while the target dataset is the cotton disease image set which contains images collected from the Internet and taken from the fields. We select VGG16, ResNet164 and DenseNet40 as compressed models for comparison. The experimental results show that transfer learning after compression overall surpass its counterpart. When compression rate is set to 80% the accuracies of compressed version of VGG16, ResNet164 and DenseNet40 are 90.77%, 96.31% and 97.23%, respectively, and the parameters are only 0.30M, 0.43M and 0.26M, respectively. Among the compressed models, DenseNet40 has the highest accuracy and the smallest parameters. The best model (DenseNet40-80%-T) is pruned 75.70% of the parameters and cut off 65.52% of the computations, with the model size being only 2.2 MB. Compared with the version of compression after transfer learning, the accuracy of the model is improved by 0.74%. We further develop a cotton disease recognition APP on the Android platform based on the model and on the test phone, the average time to identify a single image is just 87ms.
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Introduction

Plant protection, especially crop protection against plant diseases, plays a critical role in meeting the growing demand for crop quality and quantity. In the 21st century, the issue of protecting crops from yield losses due to disease remains challenging. Worldwide, it is estimated that 20-40% of crop yield is lost due to pests and diseases (Savary et al., 2019). The loss of staple cereals (rice, wheat, corn) and vegetable crops (potatoes and sweet potatoes) directly affects food security and nutrition, while the loss of core commodity crops such as cotton has a significant impact on household livelihoods and the national economy. Plant diseases are an essential factor in the severe decline in the quality and quantity of agricultural products. Therefore, early detection and diagnosis of the diseases are key to reducing losses. At present, many developing countries identify diseases through visual observation (Chen et al., 2020), which requires disease detection experts with a lot of practical knowledge in the field. However, 80% of the world’s food is produced by individual farmers (Lu et al., 2021), and it is difficult for most farmers to correctly identify the category of crop diseases.

Cotton is a significant cash crop (Khan et al., 2020) and a vital raw material for the textile industry, which plays a critical part in the world. The vast distribution of cotton areas in China and the great differences in natural conditions have resulted in a wide range of cotton diseases. There are more than 80 kinds of cotton diseases recorded, of which about 20 are the most common. Cotton diseases annually cause significant losses in the yield and quality, especially fusarium wilt and verticillium wilt. If we can observe these diseases in time and give specific treatment measures, these diseases will be controlled. Improving disease control methods is one of the initiatives implemented to solve these issues. Disease identification methods should be cheap and easy to use for farmers. With the development of communication networks, smart phones have become very popular in rural areas, so disease identification based on smart phones is very promising. It is worth mentioning that disease identification methods of plant pathogens, including molecular biotechnologies such as DNA, RNA and protein are fast and accurate (Sapre et al., 2021). However, the preparation of diagnostic kits and their application require more expensive instruments and professional technical support. Hence, it is difficult to be applied in the field outside the laboratory in the short term.

In the past few years, image classification in computer vision has been greatly developed, especially the emergence of deep convolutional neural networks (DCNN), which have greatly improved the accuracy of object recognition. Currently, many convolutional neural networks with superior performance have been proposed, including AlexNet (Krizhevsky et al., 2017), VGG (Simonyan and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), ResNet (He et al., 2016) and DenseNet (Huang et al., 2017). These networks have been successfully applied in the agricultural field, such as plant disease identification (Bharathi, 2020), plant species identification (Ghazi et al., 2017), weeds classification (Hoang Trong et al., 2020) and fruit detection (Vasconez et al., 2020). With the help of DCNN, image-based plant disease identification becomes more accurate, fast and easy to use (Kamilaris and Prenafeta-Boldú, 2018; Liu and Wang, 2021; Dhaka et al., 2021). Mohanty et al. (2016) used PlantVillage to train AlexNet and GoogLeNet to identify diseased and healthy leaves of 14 species of plants. Their trained model achieved 99.35% accuracy on the testing set and evaluated the applicability of a DCNN to classification problems. Extending the work of Johannes et al. (2017); Picon et al. (2018) adopted an adaptive algorithm of deep residual networks to detect multiple plant diseases collected in natural environments, achieving a balanced accuracy of 0.87. Aiming at the problem of multiple parameters and single feature scale in AlexNet, Zhang et al. (2019) proposed a global pooling dilated convolutional neural network, which combined the advantages of global pooling and dilated convolution, and can effectively identify cucumber diseases. Chen et al. (2020) used VGG with Inception module trained on ImageNet dataset as a pre-training model and performed transfer learning on the public datasets and the self-built datasets, respectively. Experimental results showed that the proposed method achieves substantial improvement over other state-of-the-art methods. Kundu et al. (2020) experimented with eight different deep learning models on the public dataset of the bell pepper. Their experimental results showed that the DenseNet model outperforms several other models in identifying sweet pepper diseases. Mi et al. (2020) proposed a new convolutional neural network C-DenseNet which embedded Convolutional Block Attention Module into the DenseNet network to grade wheat stripe rust, which achieved a testing accuracy of 97.99%, higher than the original DenseNet (92.53%) and ResNet (73.43%). Jiang et al. (2021) used VGG16 to identify the diseases in rice and wheat leaves with an overall accuracy of 97.22% and 98.75%, respectively. Collecting large datasets to train these networks is still a daunting task, but many studies have demonstrated the feasibility of deep learning in disease areas, especially deep transfer learning (Sladojevic et al., 2016; Ghazi et al., 2017; Hassan et al., 2021). Although CNN and its variants have shown superior performance in the field of disease identification, these models have a large number of parameters and computations, which are difficult to deploy on some type of target hardware such as mobile or edge devices. In addition, in numerous disease identification studies, they are rarely involved in cotton diseases.

The application of deep learning technology in disease identification is inseparable from the development of convolutional neural networks. From AlexNet with only 8 layers in the beginning, to VGG19 with 19 layers later, to ResNet breaking through 100 layers for the first time, its development is attributed to various factors, including the introduction of a powerful computing system and Graphics Processing Unit (GPU), increased memory and hard disk capacity (Hou et al., 2018). Deep learning is impractical on low-memory and low-energy devices due to the size of networks. The success of many large networks almost depends on GPU. However, with the proliferation of smartphones, mobile phone-based apps will make it easier for farmers to identify diseases. Furthermore, plant protection robots moving in the field also need to be able to identify diseases in real time on edge devices. In order to tackle the computational limitations and hardware constraints, many methods for compressing models have been proposed, such as knowledge distillation (Hinton et al., 2015), network pruning (He et al., 2018), weight quantization (Courbariaux et al., 2015), and design of lightweight networks (Howard et al., 2017). Li et al. (2016) pruned the characteristic graph with a small L1 norm of the filter by calculating the L1 norm of the filter. Ayinde and Zurada (2018) proposed an efficient technique to prune redundant features along with their connecting feature maps according to their differentiation and based on their relative cosine distances in the feature space. Lin et al. (2019) proposed a filter pruning scheme termed structured sparsity regularization (SSR). The scheme incorporates two different regularizers of structured sparsity into the original objective function of filter pruning, which fully coordinates the global output and local pruning operations to prune filters adaptively. These compression methods can solve the overparameterization of large neural networks and reduce the computational cost.

Using smart devices to identify crop diseases in the field is a promising approach (Li et al., 2020). Nalepa et al. (2020) tackle the problem of large memory requirements of DCNN in HSI classification and segmentation of hyperspectral images and presented quantizing spectral models for the tasks. Currently, most compact models for disease recognition are directly trained via lightweight networks. Tahir et al. (2021) presented disease recognition from the apple leaves based on InceptionV3 and achieved an accuracy of 97% on PlantVillage. Chen et al. (2021) used MobileNet-V2 as the backbone model and combined transfer learning to create a disease identification network for rice identification, with an accuracy rate of 98.48%, which can be deployed on mobile devices. Li et al. (2020) proposed a solanaceae disease recognition model based on SE-Inception, deployed on android phone. The accuracy of the model on the self-built dataset and the PlantVillge reached 98.29% and 99.27%, respectively, and the model sizes were 14.68 MB and 14.8 MB, respectively. Noon et al. (2021) used eight versions of EfficientNet and two versions of MobileNet to train the lightweight models for cotton disease identification, where the EfficientNet-B0 model had the best generalization ability and fastest inference ability. Liu and Wang (2020) used the MobileNetV2-YOLOV3 model to identify tomato diseases and achieved low memory, low latency, high recognition accuracy and high recognition speed. However, according to the information given in the work of Huang (Huang et al., 2017), the deeper the network is, the more effective the training is, and better results can be obtained. Therefore, we can expect that the compressed model will work better than the aforementioned lightweight networks on limited-resource devices.

Currently, more research focuses on improving the accuracy of deep learning models, and less attention is paid to the efficiency of model inference. In this study, when studying disease identification of cotton, we take into account the accuracy, speed of the model, and especially the deployability of the model on edge/mobile devices. We employ a simple but efficient approach of model pruning to compress the high-parameters networks. The γ coefficient in the BN layer is used as the scaling factor for network slimming and the importance of the channel is judged according to γ. In fact, the redundant channels with a small γ value in the disease identification network will be pruned. The well-known networks such as VGG16, ResNet164 and DenseNet40 are selected to train and compress. In order to improve the accuracy of models over our cotton disease dataset, we introduce transfer learning. Combining transfer learning and model compression: 1) compression after transfer learning, and 2) reverse the order. We carry out the experiments to evaluate our methods, and the results indicate that the compressed model can significantly reduce parameters and save time while maintaining the accuracy. Our methods realize the goal of creating a fast and efficient model for the identification of cotton diseases deployed on edge/mobile devices and meet the needs of intelligent agriculture.



Materials and methods


Image collection and augmentation

The datasets used in this study include the open plant disease dataset PlantVillage and our self-built cotton disease dataset (SCDD). The images in PlantVillage are taken indoors, with standard photography and simple backgrounds. PlantVillage contains 14 kinds of plants (Apple, blueberry, cherry, corn, grape, orange, peach, bell pepper, potato, raspberry, soybean, pumpkin, strawberry) with 54,306 images of plant disease leaves in total, which falls into 14 kinds of healthy leaves and 24 kinds of disease leaves. The more details of PlantVillage please refer to the work of Hughes (Hughes and Salathé, 2015). Here we only introduce image collection and image preprocessing of SCDD.

The cotton disease image set contains images collected from the Internet and taken from the fields. All images are resized to 32×32. A total of 8 types of image samples of cotton were collected, including 7 kinds of the diseases (areolate mildew, bacterial blight, curl virus, fusarium wilt, target spot, verticillium wilt and brown spot) and the healthy leaves. Some of the samples are shown in Figure 1.




Figure 1 | 8 Disease images of cotton set: (A) Areolate mildew, (B) Bacterial blight, (C) Brown spot, (D) Curl virus, (E) Fusarium wilt, (F) Healthy, (G) Target spot, (H) Verticillium wilt.



Figure 2 gives the image distribution in the cotton disease image set. It can be seen that the sample distribution of the image set is imbalanced. In detail, the image set contains 34 areolate mildew, 499 bacterial blight, 264 brown spot, 418 curl virus, 419 fusarium wilt, 58 target spot, 34 verticillium wilt, and 425 healthy leaves.




Figure 2 | Samples distribution.



The imbalance of quantity among different classes means that training of model becomes much trickier as typical accuracy is no longer a reliable metric for measuring the performance of the model. Even if the overall accuracy of the obtained classification model meets the requirements, the accuracy may not be high or even be unpredictable for minority classes. To handle the problem of imbalance classes, we take image augmentation to expand the minority classes including areolate mildew, target spot and verticillium wilt. The approaches contain rotation, random color, and horizontal flip. The examples of the augmented image are shown in Figure 3. After the augmentation, the final dataset is called SCDD which consists of 170 areolate mildew, 499 bacterial blight, 264 brown spot, 418 curl virus, 419 fusarium wilt, 357 target spot, 170 verticillium wilt, and 425 healthy leaves.




Figure 3 | Data augmentation operation.



SCDD is divided into training set and testing set according to the ratio of 80% and 20% (Mohanty et al., 2016), with 2,181 samples in the training set and 542 samples in the testing set. Similarly, PlantVillage is also divided into training set and testing set according to the ratio of 80% and 20%, with 43445 samples in the training set and 10861 samples in the testing set.



DCNN architectures

In this study, VGG16, ResNet164 and DenseNet40 are selected as the original networks for disease recognition. They have been intensively studied and observed to have good performance for plant disease classification (Bhatt et al., 2017; Ferentinos, 2018; Too et al., 2018; Kundu et al., 2020; Mi et al., 2020).

In 2014, VGG Lab proposed the VGG model (Simonyan and Zisserman, 2014), the schematic architecture of which is shown in Figure 4. The classical VGG16 consists of 13 convolutional layers and 3 fully connected layers, using the ReLU function as the activation function with a simple structure. The network uniformly uses 3×3 convolution kernels and 2×2 max-pooling size. Compared with AlexNet, VGG reduces the number of parameters, saves training time, increases the discriminative power of the function, and makes the network more robust by using 3×3 convolutional kernels instead of large-scale convolutional kernels. The VGG16 has 138 million parameters, and the model size is over 500 MB. The VGG16 model used in this study is a variation of the original VGG, which is taken from https://github.com/szagoruyko/cifar.torch . It is smaller than the classical VGG16 model, and the final classification layer of the model is modified to meet the requirement of 8-classified disease images of SCDD.




Figure 4 | The schematic architecture of VGG.



The ResNet network was proposed by He et al. (He et al., 2016). Figure 5 give its schematic architecture. The most significant feature of ResNet is the introduction of residual module, which solves the problems of difficult training and slow convergence caused by the deepening of the number of layers. The ResNet network discards the Dropout mechanism and uses Batch Normalization instead to speed up training. The classical ResNet-152 has 60 million parameters and requires 230MB of storage space. This study uses a framework of 164-layer pre-activated pre-ResNet (He et al., 2016) with a bottleneck structure and modifies the network structure of the model classification layer to apply to the classification of eight crop disease images.




Figure 5 | The schematic architecture of ResNet.



The DenseNet network was proposed by Huang et al. (Huang et al., 2017). Figure 6 shows its schematic architecture. Compared with ResNet, it has fewer parameters, strengthens feature reuse, aggregates different levels of features using concatenate, and has a regularization effect. The DenseNet is mainly composed of alternate connections between Dense Block and Transition layers. In the core structure Dense Block, the input of the current layer is the union of the output feature maps of all previous layers, and the output feature maps of the current layer are passed to all subsequent layers. The utilization rate of feature maps of each layer is improved, and the problem of gradient disappearance or explosion is effectively solved. Transition layers are placed behind the Dense Block to reduce the number of channels in the feature map and simplify the calculation. This paper constructs a DenseNet40 network with only 40 layers and modifies the output of the network classification layer to 8 classifications.




Figure 6 | The schematic architecture of DenseNet.





Pruning algorithm

The model training is the process of learning the data distribution. The update of parameters causes the input data of each layer to change constantly, so the network needs to change constantly to adapt to this new data distribution, which leads to slow convergence. To solve this problem, Ioffe and Szegedy (2015) proposed the concept of the Batch Normalization (BN) layer, which is also a network layer like the convolutional layer. The BN layer normalizes the input data, and the processed output value is shown in formula (1):







Wherexi is the input sample value, is the normalized sample value,μB andδB are the mean and variance, ϵ is a very small value, which is set to prevent the denominator from being zero and can be taken as10−8 , m is the number of samples in a single batch.

In order to prevent the generalization performance of the network from being weakened after batch normalization, two learnable parameters γ and β are introduced:



Where yi is the output of BN layer, γi and βi are the scaling factor and offset function corresponding to the activation channel respectively.

We adopt a simple but efficient method that utilized the γ coefficient as the scaling factor of network slimming (Liu et al., 2017). The importance of the channel is judged according to the size of γ to prune redundant parameters in the disease identification network. Generally, the model structure adopts the convolution layer + BN layer so that each channel will correspond to one γ value. The value of γ represents the importance of the channel. The larger the γ value, the greater the contribution of the corresponding channel to the network. Conversely, the smaller the contribution. Therefore, the channel with small γ value can be pruned to simplify the network scale. In normal training, the weight of the BN layer of the model is generally larger than zero. If the convolution channel corresponding to the weight of the BN layer is directly pruned, it will have a significant impact on the model. Therefore, we need to perform sparse training which is to add the regularization loss of the BN parameter to the original loss function to make the BN parameter tend to zero. Formula (5) is the objective function with the BN regularization loss function.



Wherex is the training input, y is the training target, W is the trainable weight, the first sum term is the original loss function of the convolutional neural network, and g(.) is the sparse induced penalty function on the scaling factor. In this study, we chose the L1 norm,g(s)=|s| , which is widely used to achieve parameter sparsity (Liu et al., 2017). λ is the balance factor of these two sum terms, and L is the loss function during sparse training.

The channels are pruned according to the importance evaluation factor γ. Its essence is to prune all the input-output relations connected to it. As shown in Figure 7, the channel corresponding to the smaller value of the scaling factor (purple) is pruned, that is, all branches connected to it are pruned (left), and the channel corresponding to the bigger value of the scaling factor is kept (blue). After pruning, a small and efficient network is obtained (right).




Figure 7 | Principle of pruning.



The pruning steps are shown in Figure 8. First, an original network with a complex structure and many parameters are trained normally to obtain the baseline model. The original network is then trained with sparse regularization so that most of the scaling factors γ of the network are close to zero to obtain the sparse model. Then the γ values of the obtained BN layers are sorted, and the channels are pruned according to a global threshold across all layers. The global threshold is defined as some percentile of all scaling factor values. If the pruning rate is set to 80%, the channels of 80% with small γ values will be pruned. Finally, the pruned compact network is fine-tuned so that the remaining weights are used for training a compact model with comparable performance to the baseline model. Fine-tuning is to retrain the pruned model over SCDD.




Figure 8 | Flowchart of pruning.





Transfer learning and compression

Transfer learning is the improvement of learning a new task through the transfer of knowledge from a related task that has already been learned (Weiss et al., 2016; Zhuang et al., 2020). In transfer learning, a base network is first trained on the source domain, and then the learned features are transferred to a second target network to be trained on target domain. This process will tend to work if the features are general, meaning suitable to both base and target tasks, instead of specific to the base task. In general, the source domain contains plenty of trainable samples, while the target domain does not. It is a popular approach in deep learning where pre-trained models are used as the starting point on computer vision tasks. Our goal is to train a lightweight network and classify cotton diseases. However, SCDD is too small, if training the network directly on it may lead to the problems such as low recognition accuracy or overfitting. Transfer learning can solve these problems very well (Ghazi et al., 2017; Chen et al., 2020; Wenchao and Zhi, 2022). The key to transfer learning is to find out the similarities between the source domain and the target domain (Gao and Mosalam, 2018). Thus, we select PlantVillage as the source domain and SCDD as the target domain due to both being plant diseases recognition tasks and the former having more disease categories and a lot of data. We train the networks over the source domain as the pre-trained models and then fine-tune those models over the target domain. Model compression and transfer learning play different roles in our study. The goal of the former is to provide models with a small size that can be deployed at edge/mobile devices, while the goal of the latter is to improve accuracy. Considering both goals, we combine both techniques in our methods. As shown in Figure 9, two strategies are proposed: (1) compression after transfer learning, and (2) transfer learning after compression. In the first case: (1) The original models are trained over PlantVillage as the pre-trained models. (2) The pre-trained models are fine-tuned over SCDD by the transfer learning. (3) Finally, the fine-tuned models are pruned to obtain the compact models. In the second case, the compression of the original models is first carried out over PlantVillage, and then the compressed models as the pre-trained models are fine-tuned over SCDD.




Figure 9 | Combination of model pruning and transfer learning.





Model evaluation index

Accuracy is an important index for evaluating classification models, and the larger it is, the better the performance of the model. Model parameters and floating point of operations (FLOPs) are two important indicators for deployment on small equipment. The computation resource of the mobile/edge devices is very limited. If the model is too complex, the application will get stuck and the response not be in time. In order to meet the hardware conditions of the mobile/edge devices, the classification accuracy of model should be high, and FLOPs and parameters of model should be small.

The model classification accuracy is the number of correct model predictions in a batch of data as a percentage of the total number of data in the batch.



Where TP is correctly predicted positive values, FP is incorrectly predicted positive values, TN is correctly predicted negative values and FN is incorrectly predicted negative values.

The structure of convolutional neural networks mainly includes convolution layers, activation layers, pooling layers and full connection layers, and core layers are convolutional layers. Convolutional layers are mainly used to extract image features in neural networks. Pooling layers are used to compress the feature map. The main pooling methods include average pooling and max pooling (Boureau et al., 2011), that is, the average or max value of specific features in a certain region is kept during the pooling operation. Its goal is to save helpful information while reducing network parameters. Full connection layers classify and integrate the highly abstracted characteristics produced by convolution layers. Pooling layers have no associated parameters in convolutional neural networks. The number of parameters for the convolutional layers is calculated in formula (7):



WhereCo is the number of output channels,Kw andKh are the width and height of the convolution kernel respectively,Ci is the number of input channels, and +1 is the bias unit.

The number of parameters for the fully connected layer is calculated in formula (8):



Where I is the number of input neurons, and O is the number of output neurons. FLOPs are used to measure the complexity of a model, that is, computation. The FLOPs of convolutional layers are calculated by formula (9):



WhereCi is the number of input channels, K is the size of the convolution kernel, H and W are the height and width of the output feature map, andCo is the number of output channels.

The FLOPs of full connection layer is calculated by the formula (10):



Where I is the number of input neurons, and O is the number of output neurons.




Results and discussion


Experimental setup

For each model, we set the batch size of training as 64 and the batch size of testing as 256, and the training epoch as 100. We use stochastic gradient descent (SGD) as the optimization method. The initial learning rate is 0.001 for VGG16 and 0.1 for ResNet164 and DenseNet40. The learning rate is multiplied by 0.1 at 50% and 75% epochs. The development environment is as follows: the operation system is Ubuntu 18.04.6 LTS 64-bit, the programming language is python 3.6, the deep learning frameworks are pytorch 1.3, and the IDE is pycharm 2020.3.5. The hardware environment of the computer for training is configured as below: 64GB memory, Intel® Xeon(R) Silver 4110 CPU @ 2.10GHz x64 processor, NVIDIA Tesla K40 GPU. In the following sections, we randomly form 5 sets of train set and test set adhering to rule of Section 2.1 and depending on the experimental setup, train 5 sets of models of VGG, ResNet and DenseNet for the best results (accuracy) and statistical analysis.



Performance test results over PlantVillage

First, we evaluate the performances of original VGG16, ResNet164 and DenseNet40 and their compressed versions over PlantVillage. In the experiments, the pruning rate is set to 80%, and the best results out of 5 experiments are given in Table 1. It is shown that the parameters of VGG16, ResNet164 and DenseNet40 are compressed to 0.32M, 0.37M and 0.27M, respectively, and their FLOPs are compressed to 0.01G, 0.05G and 0.1G respectively. Meanwhile, the recognition accuracies of all the models before and after pruning are nearly the same. DenseNet40-80% even slightly surpasses its original version. This shows that the presented pruning algorithm can not only reduce the model’s size greatly, but also keep high accuracy.


Table 1 | Comparison before and after compression over PlantVillage.





Compression after transfer learning

We adopt the original networks trained over PlantVillage as pre-trained networks, and perform transfer learning over SCDD to get the baseline models for identifying cotton disease. The baseline models are then compressed using the presented pruning algorithm, and the pruned models are retrained again using fine-tuning to compensate for the accuracy lost during the pruning phase. In the experiments, the pruning rates are set to 70% and 80%, respectively, and the epoch of all models is set to 100. The experimental results are shown in Table 2.


Table 2 | Comparison of parameters of cotton disease identification model before and after compression.



We first train the original VGG16, ResNet164, and DenseNet40 from scratch over SCDD to test the performance of the three networks, which achieve 87.27%, 82.29%, and 89.30% accuracy, respectively. To improve the accuracy of the models, we then carry out transfer learning over SCDD to obtain baseline models T-VGG16, T-ResNet164 and T-DenseNet40. By transfer learning, the accuracies of T-VGG16, T-ResNet164 and T-DenseNet40 are improved by 5.53%, 13.28%, and 7.19% compared with their original versions, respectively. The T-Densenet40, due to its own structure with the advantage of feature reuse, coupled with the strategy of transfer learning, has the best recognition effect among the three baseline models. It can be seen from Table 2 that the accuracy of the models with 80% pruning rate, in summary, are similar with the models with 70% pruning rate. However, the numbers of parameters of the latter are roughly half that of the former. After pruning, the T-VGG16-80% has an accuracy of 89.48% over the testing set. Compared to its baseline model, it only loses 3.32% accuracy, but its parameters are reduced from 14.72M to 0.30M, and FLOPs are reduced from 0.31G to 0.01G. Its actual pruning ratio is the highest. T-ResNet164-80% has an accuracy of 94.65% over the testing set and loses 0.92% of the accuracy compared to its baseline model, which loses less accuracy than T-VGG16-80%. The actual pruning ratios of T-ResNet164-80% and T-DenseNet40-80% are not as significant as T-VGG16-80%. T-DenseNet40-80% has an accuracy of 96.86% which is higher than its baseline model, increased by 0.37%. Since the original DenseNet40 has fewer parameters, the pruned T-DenseNet40-80% has the smallest parameters of 0.26M. Among the three compressed models, the T-DenseNet40-80% has the highest accuracy and the smallest parameters and size, and the T-VGG16-80% has the smallest FLOPs and the fastest speed. The findings indicate that the pruned models require substantially fewer parameters and FLOPs. Therefore, using the pruning algorithm to compress the cotton disease identification model achieve our expected result: less model size and running faster.

In order to further verify the performance of the compact model, Figure 10 shows the confusion matrices of the three compact models with 80% pruning rate over the cotton testing set, respectively. The value at the diagonal shows the number of samples correctly predicted. The testing set of SCDD has a total of 542 samples. The confusion matrix indicates the recognition ability of each compact model over the set. T-VGG16-80% has the most errors among the three models. The top two diseases misclassified by it are verticillium wilt (11 out of 34) and target spot (10 out of 71). Target spot is the most likely to be confused with other diseases by T-VGG16-80%, the rest of 7 classes all have been mistakenly identified as it. T-DenseNet40-80% has minimal errors among the three models. The highest error rate is still verticillium wilt (4 out of 34), and the second error rate is areolate mildew (2 out of 34). Compared with T-VGG16-80%, the errors of verticillium wilt and target spot misclassified by T-DenseNet40-80% are greatly reduced. This shows that the network has better discrimination ability. For T-DenseNet40-80%, verticillium wilt is the most likely to be confused with the rest. There are 6 samples of 3 categories being misclassified as it. The performance of T-ResNet164-80% is between T-DenseNet40-80% and T-VGG16-80%. The misclassified samples are uniformly distributed in the confusion matrix of each model, indicating that each of them has no bias over SCDD.




Figure 10 | Confusion matrix of the pruned model. (A) T-VGG16-80%, (B) T-ResNet164-80%, (C) T-DenseNet40-80%. Areolate mildew 1, bacterial blight 2, brown spot 3, curl virus 4, fusarium wilt 5, healthy 6, target spot 7, verticillium wilt 8.





Transfer learning after compression

In this case, the pruned models, VGG16-80%, ResNet164-80% and DenseNet40-80% over PlantVillage as pre-trained models and fine-tuned over SCDD to obtain compact models, denoted as VGG16-80%-T, ResNet164-80%-T and DenseNet40-80%-T.

Figure 11 shows the training process that three compact models fine-tune the parameters over SCDD. The initial accuracies of the three models exceed 50%, which shows that the target domain and source domain have a lot in common. Furthermore, thanks to small sizes, all the models converge very fast within 60 epochs.




Figure 11 | Training process of fine-tuning over SCDD in case of transfer learning after compression.



The best results out of 5 experiments are shown in Table 3. The sizes of parameters and FLOPs of VGG16-80%-T and DenseNet40-80%-T are the same as T-VGG16-80% and T-DenseNet40-80%, respectively. The accuracies of them are 90.77% and 97.23%, which are 1.29% and 0.37% higher than T-VGG16-80% and T-DenseNet40-80%, respectively. The parameters and FLOPs of ResNet164-80%-T are 0.36M and 0.05G, respectively, smaller than T-ResNet164-80%. Its accuracy is 96.31%, with an improvement of 1.66%. The accuracy of DenseNet40-80%-T is still the highest, showing that DenseNet40-80%-T is more suitable for the cotton disease recognition. Compared with their baseline models, VGG16-80%-T loses 2.03% accuracy, which is less than T-VGG16-80%, and ResNet164-80%-T and DenseNet40-80%-T both improve the accuracy by 0.74%.


Table 3 | Results of transfer learning after compression.



Usually, accuracy may not fully evaluate the model, especially in the case of imbalanced sample distribution. Table 4 gives the other performance indicators, including Precision, Recall and F1-score. It can be seen that the performance of the compressed models remains stable when we adopt image augmentation.


Table 4 | Performance of compressed models.



The above results indicate that compared with compression after transfer learning, transfer learning after compression has two advantages: (1) higher accuracy, and (2) faster training speed. Among the three models, DenseNet40-80%-T is the best, so we select it as the winner to participate in the follow-up experiments.



Comparing two strategies using the t-test

By comparing Table 2 with Table 3, it can be seen that the accuracies of transfer learning after compression (strategy 2) are higher than that of compression after transfer learning (strategy 1). Our further statistical analysis supports the claim. Table 5 gives the details of 2 sets of 5 models with respect to 2 strategies. We perform independent sample t-tests on the accuracies to test the significance of the differences between them. Levene’s test is used to examine the homogeneity of variance. When P>0.05, the variance is homogeneous, and when P ≤ 0.05, the variance is not homogeneous. The p-value of the t-test is employed to determine the significance of the mean of the accuracy. The results of the t-test are shown in Table 6. For the VGG16, the variance is homogeneous. The difference between strategy 1 and strategy 2 is significant (P = 0.039< 0.05). Since the mean of strategy 1 is 88.67% and that of strategy 2 is 89.74%, strategy 2 is better than strategy 1. For the ResNet164, the variance is homogeneous. The difference between strategy 1 and strategy 2 is significant (P =0.0< 0.0001). Since the mean of strategy 1 is 94.44% and that of strategy 2 is 96.11%, strategy 2 is better than strategy 1. For the DenseNet40, the variance is homogeneous. The difference between strategy 1 and strategy 2 is significant (P=0.045<0.05). Since the mean of strategy 1 is 96.62% and that of strategy 2 is 96.97%, strategy 2 is better than strategy 1. The above analyses indicate that, for VGG, ResNet and DenseNet, strategy 2 is a better choice than strategy 1.


Table 5 | Accuracy of 2 sets of 5 models w.r.t. 2 strategies.




Table 6 | Independent sample t-tests on accuracy w.r.t. 2 strategies.





Comparison with lightweight networks

It is a very popular method in plant disease recognition that directly trains a light-weight network as a classifier (Liu and Wang, 2020; Tahir et al., 2021; Chen et al., 2021). We carry out comparative experiments over SCDD with some popular light-weight networks, including MobileNetV2 (Sandler et al., 2018), MobileNetV3 (Howard et al., 2019), ShuffleNetV2_x_0 (Ma et al., 2018), EfficientNet-B0 (Tan and Le, 2019) and EfficientNetV2-S (Tan and Le, 2021). These networks are fine-tuned using transfer learning. The results are described in Table 7. It can be seen from the table that DenseNet40-80%-T has the highest accuracy and the smallest parameters and model sizes among these models. Our compressed model defeats the lightweight networks in the comparison. This result shows that, after proper compression and transfer learning, the large models usually have better performance than the lightweight networks and can meet the small size requirements of mobile/edge applications while retaining high accuracy.


Table 7 | Performance comparison of light-weight models and our compressed model.





Developing cotton disease recognition APP based on DenseNet40-80%-T

According to the previous results, we employ DenseNet40-80%-T to develop a cotton disease recognition APP based on the Android platform. Our model is deployed locally on the mobile phone. The development software of the APP is Android Studio (https://developer.android.google.cn/). The classification model import process includes: 1) model preparation, 2) model import and parameter modification, and 3) APP installation. The model preparation is mainly to get the nb file and the txt label file on the computer. The model compression is done under the Pytorch framework. The compressed model is deployed via paddle-lite under the PaddlePaddle framework (https://www.paddlepaddle.org.cn/ ). We convert the compressed Pytorch model to the Paddle model, and then use Paddle-lite to convert the pd file to the nb file for deployment. The model import and parameter modification are to open the Project view in Android Studio, define variables, initialize the interface, configure the corresponding (build gradle) version of the file, and put the nb file and txt file under app/src/main/assets. We port the installation package to the Android phone by wired means and clicked to install the APP on the Android phone. The user interface of the APP is shown in Figure 12. Users can upload a photo of any size by shooting and local uploading. We deploy the APP on OPPO A5 mobile phone. The disease recognition can be carried out in real time, with the average time of a single image being 87ms.




Figure 12 | User interface of our APP.






Conclusion

Early-stage disease identification can reduce crop losses. DCNN have shown good performance in the automation of the disease identification task. However, most DCNN have a large number of parameters and calculations, making them difficult to deploy on mobile/edge devices. At present, most of the core modules of the identification tasks in agricultural applications run on the server side, while mobile/edge devices only play the role of information collection and display results. This model is highly dependent on the communication network and does not work in the region of poor signal coverage. In response to the problem of cotton disease identification in the field, combined with transfer learning, we present a simple but effective pruning algorithm to compress several DCNN networks. The method is to judge the importance of the channel according to γ value and prune the channel with a small γ value. The results are promising that the parameters and FLOPs of the models compressed by the two strategies can be greatly reduced while maintaining the high accuracy of the big models. The DenseNet40-80%-T compressed by the strategy of transfer learning after compression has the smallest size and the highest accuracy among the compressed models, which can be easy to deploy on mobile or edge devices. To further verify the feasibility and validity of the compression strategy, we conduct experiments to compare the compressed model with some famous light-weight models over SCDD. Experimental results demonstrated the DenseNet40-80%-T, even under complex background conditions, the average accuracy reaches 97.23% and both recognition accuracy and model size are superior to other competitors. Finally, we adopt DenseNet40-80%-T as recognition model to develop the APP for cotton disease classification and the result shows that the APP can identify the cotton disease in real time.
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The frame of corn harvester is prone to vibration bending and torsional deformation due to the vibration caused by field road bumps and fluctuations. It poses a serious challenge to the reliability of machinery. Therefore it is critical to explore the vibration mechanism, and to identify the vibration states under different working conditions. To address the above problem, a vibration state identification method is proposed in this paper. An improved empirical mode decomposition (EMD) algorithm was used to decrease noise for signals of high noise and non-stationary vibration in the field. The support vector machine (SVM) model was used for identification of frame vibration states under different working conditions. The results showed that: (1) an improved EMD algorithm could effectively reduce noise interference and restore the effective information of the original signal. (2) based on improved EMD – SVM method identify the vibration states of the frame with the accuracy of 99.21%. (3) The corn ears in grain tank were not sensitive to low order vibration, but had an absorption effect on high order vibration. The proposed method has the potential to be applied for accurately identifying vibration state and improving frame safety.




Keywords: reliability of harvester, frame vibration, decrease noise, low order vibration, vibration frequency




1 Introduction

Vibration is the reciprocating motion of a mechanical or structural system near its equilibrium position. It often brings many serious hazards in engineering, and is usually the direct cause of mechanical and structural damage and failure. For example, due to vibration, the machining accuracy of machine tools is reduced, maintenance costs are increased, electronic equipment cannot work properly, and vehicle frames fail and fracture (Maia et al., 2003; Bin et al., 2018; Han et al., 2020). In addition, according to statistics, about 42% of total gas turbine failures have been caused because of vibration (Meher-Homji, 1995). For corn harvesters frame, the vibration caused by field road bumps and fluctuations leads to bending and torsional deformation (Su et al., 2011), and it poses a severe challenge to the reliability of the machine.

For vibration problems, a great deal of research has been done by domestic and foreign scholars. Frequency response function (FRF) is a common method and it represents the relationship between input and output when excitation and response signal are known (Cai and Hou, 2021). Particularly, FRF was indispensable in the field of structural dynamics which studies the characteristics of vibration systems (Allemang et al., 2022). By establishing the dynamic differential equation of the cab, Li et al. calculated the FRF and optimized the vibration isolation performance (Li et al., 2013). Chen et al. solved the analytical expression of the vibration response for the pedestrian bridge. The research results showed that the dynamic response can be easily calculated by using the simplified formula for the bridge structure (Chen et al., 2018). However, the calculation of FRF needs to know the input and output at the same time to establish the relationship model of the structure.

For the case that only the output signal is known, the output-only modal identification method is widely accepted in the field of vibration. This method could directly identify modal parameters from the structural response signals (Poulimenos and Fassois, 2009; Nagarajaiah et al., 2014). Blind source separation (BSS) was a powerful signal processing tool in the 1990s (Cardoso, 1998). Compared with the parametric modeling method, the main advantages of the BSS were simple technology, high computational efficiency, nonparametric, and no prior information of dynamic system (Yu, 2019; Naghsh et al., 2022). The working mode analysis method based on vibration response transmissivity has developed rapidly due to the unique dynamic characteristics of vibration response transmissivity. Sun et al. directly estimated the vibration mode of the structure by using the characteristic that the response transfer ratio was independent of the input at the system pole (Quin et al., 2017). However, only the output mode identification method requires that the number of test sensors should be more than the number of signal sources, and the amplitude of the separated signal is unstable.

In addition to the above methods, the identification of structural modal parameters by finite element software is also a universal method in vibration research. Modal parameters are the function of structural physical characteristics. Its modal parameters (vibration mode, damping ratio and frequency) will also change when the structure is damaged or the physical parameters (mass, stiffness and damping) change. Bum et al. used first order analysis technology to design a vehicle sub-frame and proposed an equivalent model of vehicle sub-frame composed only of beam elements (Kim et al., 2009). Shrinidhi et al. used ANSYS software to analyze the ladder frame and extracted the first six non-zero natural frequencies and their corresponding modes of vibration (Rao and Bhattu, 2019). In the research of harvester vibration, Li et al. constructed the parameterized models of the harvester chassis frame and the header frame respectively, then optimized them (Li et al., 2013; Li et al., 2014). Xu et al. analyzed the vibration of the engine, header and vibrating sieve respectively, then revealed the influence of main vibration source and feeding rate ( Li et al., 2014; Gao et al., 2017). Yao et al. adopted the method of combining finite element analysis with vibration to explore the corresponding relationship between vibration dominant frequency and modal shape, and optimized the header and frame to avoid the resonance dominant frequency (Yao et al., 2015; Yao et al., 2017). Chen et al. established a 7-degrees of freedom dynamic model of the harvester frame, and revealed the law of modal shape and frequency for the frame (Chen et al., 2020). However, the above method requires more meshes to obtain better accuracy, and it leads to a large amount of calculation in the whole analysis. On the other hand, the above researches focused on the interpretation of mechanical structure model and ignored the exploration of the key information contained in vibration signal.

Hence, this paper starts from the perspective of signals to study frame vibration states of corn harvester and explore the vibration mechanism. The absorption of vibration energy by corn ear is different for every transportation condition when the grain tank is full. On the micro level, it is reflected that corn ear may hinder a certain order or several orders of the signal but is not sensitive to other orders, making the original signal become the superposition of the remaining order signals. On the macro level, the original excitation signal is distorted, and it is different from the theoretical calculation value. It will lead to abnormal vibration of the frame and even resonance, which seriously affects the reliability of the machine. The vibration signal will show the characteristics of non-stationary and high noise caused by its many parts, complex structure, and the influence of field road fluctuation and turbulence for the corn harvester. The EMD has the advantages of adaptive decomposition of noisy and non-stationary signals without considering the basis function (Kedadouche et al., 2016). It can realize the secondary filtering of signals and restore the information of original vibration signals. Therefore, the EMD is used to process signals in this paper. However, mode mixing occurs directly using this method due to the lack of a complete theoretical basis for the EMD algorithms, i.e. a separate intrinsic mode function(IMF) signal may contain different time scales, affecting the synthesis of subsequent signals and the extraction of features. So original algorithm need to be improved before using EMD decomposition signals.

Deep learning is a special type of machine learning methods capable of extracting the optimal input representation directly from the raw data without user intervention [Dong et al., 2021]. It is popular because of its strong learning ability and wide coverage. However, deep learning needs to rely on a large number of sample data in practical application. For field vibration testing, it involves a variety of working conditions and machine models, which increases the complexity of data. Once the external conditions change, data needs to be collected again. Thus, the method of deep learning is not universal enough for the problems studied in this paper. On the other hand, the model design of deep learning is very complex. If the ready-made model is used, the final results will have a big deviation, and the final results may not be explained (Xu et al., 2020). On the contrary, SVM is a small sample learning method with solid theoretical basis. In essence, it avoids the traditional process from induction to deduction, and realizes efficient “transition inference” from training samples to prediction samples, which greatly simplifies the usual classification and regression problems (Li et al., 2019). At the same time, SVM is robust to the sample set, and the final result of its output is easy to interpret. Therefore, this paper adopts SVM method to identify the vibration states of the frame.

The main work of this research as follows:

	(1) For the non-stationary and high noise characteristics of field vibration signal, the improved EMD method could effectively reduce noise interference and restore the effective information of the original signal.

	(2) The SVM model based on power spectrum entropy (PSE) and standard deviation (SD) is established. Optimizing model parameters, and results are compared and analyzed.

	(3) The established model realizes the identification of frame vibration states for corn harvester under different working conditions.






2 Materials and methods



2.1 Experimental equipment

In this study, Yitong Manchu Autonomous County, Siping City, Jilin Province, located in northeast China, was selected as test area. The harvesting machine used was the self-propelled 4YZP-4Y harvester jointly developed by Jilin University and Shandong Juming Machinery Co., LTD., as shown in Figure 1A. MX1601 module of Hotingger Brüel & Kjær (HBK) and acceleration sensor of PCB were used in the data acquisition system. The specific parameters are shown in Table 1. Data test points were distributed on the harvester frame, and the wiring diagram and schematic diagram of the test instrument and equipment are shown in Figures 1B, C, respectively. The working conditions of experiment were that the engine runs at low speed, medium speed and high speed respectively when the grain tank was full, as shown in Table 2.




Figure 1 | Experimental machine and wiring diagram: (A) Experimental corn harvester; (B) Test system wiring diagram; (C) Test system schematic diagram.




Table 1 | Parameter values of the MX1601 module and acceleration sensor.




Table 2 | Engine speed under different working conditions.






2.2 Proposed vibration noise removal method

In this section, we first review the standard EMD algorithm, and then introduce the calculation process of the proposed algorithm in detail.



2.2.1 Standard EMD framework

The EMD performed signal decomposition according to the time scale characteristics of the data itself without setting any basis function in advance (Shen et al., 1998; Huang et al., 1998). It could decompose a complex signal into a limited number of IMF components, which contained local characteristic signals of different time scales for the original signal. The EMD decomposition method is based on the following assumptions:

	(1) The signal has at least two extreme points, a maximum and a minimum;

	(2) The characteristic time scale is defined by the length of time between two extreme points;

	(3) If the signal data lacks extremum points but there are deformation points, the extremum points can be obtained by differentiating the data once or several times, and then the decomposition results can be attained by integration.



The specific decomposition process of the EMD can be divided into the following steps, as shown in Figure 2:




Figure 2 | Standard EMD flow chart.






2.2.2 Proposed algorithm

The main limitation of the EMD was mode mixing (Dai et al., 2019). The root cause of this phenomenon was the influence of abnormal events in the signal, such as discontinuous signal, pulse interference and noise. Based on the theory above, the proposed EMD algorithm can be divided into the following steps (*)

Step1. Applying equations (1) to (7) to obtain the Hilbert marginal spectrum of the IMF1. Specifically, it can be described as:

(1) The original signal x(t) is decomposed by standard EMD to obtain IMF1. Hilbert transformation is performed on the IMF1 to obtain v(t), namely:

 

(2) Construct the analytic signal:

 

(*) If you need the source codes for this article, please contact the author at zrq@jlu.edu.cn

(3) The amplitude and phase functions are obtained:

 

 

(4) The instantaneous frequency is further calculated as follows:

 

(5) Continue to obtain Hilbert spectrum H(w,t):

 

(6) Hilbert marginal spectrum is obtained:

 

In equation (6), RP represents the real part, T represents the total length of the signal in equation (7).

Step2. The analytic signal y(t) is constructed by equation (8) to (9). It can be described as:

(1)The average instantaneous frequency of the IMF1 can be calculated by equation (8) according to the energy mean method (Deering and Kaiser, 2005).

 

Where a1(t) is the Hilbert envelope amplitude of the IMF1, f1(t) is the instantaneous frequency of the IMF1.

(2)Solve the analytic signal y(t):

 

Where fs is the sampling rate of the signal; As a rule of thumb, a0 is 1.6 times the average amplitude of the signal component.

Step3. The analytic signal y(t) is mixed with the original signal x(t) to obtain x1(t) and x2(t):

 

 

Step4. the EMD algorithm is used to decompose x1(t) and x2(t) respectively, and the intrinsic modal functions L1(t) and L2(t) are attained. The intrinsic modal function of x(t) is obtained as L(t).

 





2.3 Vibration states identification method

In statistics, the SD reflects the dispersion of a data set. In the time domain vibration signal, it could reflect the change of signal energy (Yao et al., 2010; Ji et al., 2018). The value of the SD will increase with the advance of frame vibration amplitude. The PSE was a dimensionless index, which could reflect the distribution of different frequencies in the frequency band (Cao et al., 2015). When the frequency component is widely distributed in the frequency band, the uncertainty of the distribution is high, leading to the increase of the PSE. On the contrary, when the frequency components are concentrated in a certain frequency band, the uncertainty of frequency distribution is low, resulting in the decrease of the PSE.

The SD is the root of the sum of the squares of the deviations. The exact value can be calculated by the equation (13):

 

where  , n is the length of the entire data x.

The PSE is the extension of Shannon entropy in the frequency domain, which is related to the distribution of frequency components. The calculation method of the PSE is as follows (Shen et al., 1998; Cao et al., 2015):

Step1. The power spectrum of signal x(t) can be attained by equation (14).

 

where N is the length of the data x(t). X(w) denotes the Fourier transform of x(t) by the fast Fourier transform (FFT).

Step2. According to equation (15), the probability density function of the spectrum is estimated by normalizing all frequency components:

 

where s(fi) is the spectral energy of the i-th frequency component fi, pi is the corresponding probability density, N is the total number of frequency components in FFT.

Step3. The corresponding PSE is defined as:

 

 

The PSE is a dimensionless index within the range of [0,1], where 1 represents the spectrum with relatively uniform and uncertain frequency component distribution, and 0 represents the least uncertain distribution.

The SVM was a kind of generalized linear classifier that classified data by supervised learning (Cortes and Vapnik, 1995). Its decision boundary was the maximum margin hyperplane to be solved for learning samples, and classification was achieved by establishing a mapping model between input feature vector and output label vector. That was, after a sample input was given, the estimated type of the corresponding output label under the mapping relationship could be obtained. The SVM established a model to convert the low-dimensional input x and output y into inner product of high-dimensional space through kernel function, as shown in Figure 3.




Figure 3 | Nonlinear SVM schematic diagram.







3 Experimental setup

The process of this study is introduced as follows. First, the original signal was decomposed after filtering to obtain a series of intrinsic mode functions (IMFs). Then, the relative energy ratio of each IMF was calculated, and several IMFs with high relative energy ratio were selected to combine into a new signal. In order to reduce the amount of calculation, the PSE and the SD were calculated for every 200 data, and 326*2 feature sets were obtained; Working conditions S1, S2, and S3 were labeled as Label1, Label2, and Label3 respectively; Secondly, a random function was used to scramble the ordinal matrix to get a number sequence again to avoid overfitting; Next, 1 to 250 rows were used as the training sets and 251 to the last rows were used as the test sets; Finally, the SVM was used to establish frequency recognition model.

For the SVM model, if the parameters c and γ are too small, it may be underlearned, and vice versa, it will be overlearned. All of these situations will affect the accuracy of model training. Hence, finding appropriate parameters is particularly critical to the learning ability of the model. In this study, we used particle swarm optimization (PSO), genetic algorithm and grid search to optimize both two parameters respectively. The whole algorithm is summarized in 
Algorithm 1. The identification flow diagram is shown in Figure 4.



Algorithm 1 | Algorithm 1 Proposed algorithm.






Figure 4 | The flow chart in this study.






4 Results and discussion



4.1 Signal decomposition and construction

After filtering, the decomposition of the original signal by improved EMD algorithm would generate a series of intrinsic modal functions and a residual signal, as shown in Figures 5, 6 (Take working condition S1 as an example).




Figure 5 | IMF1-IMF6.






Figure 6 | IMF7-IMF12.



According to Figures 5, 6, IMFs were arranged from high frequency to low frequency. The vibration amplitudes of IMF3, IMF4, and IMF5 were larger than that of other IMFs, which indicated that the vibration of the original signal was mainly the superposition of these three vibration components. On the other hand, by observing the images of IMF3, IMF4, and IMF5, it could be seen that the waveform showed regular periodic changes. Thus, it could be inferred that the excitation of a single component in the original signal also changed periodically. In addition, compared with standard EMD, the improved EMD algorithm could not completely eliminate mode mixing, but could reduce its interference to a certain extent.

For the purpose of reconstructing the essential signals, IMFs need to be selected for this work. IMFs with high relative energy ratio contained most of information for original signal (Li et al., 2007; Ji et al., 2018). Therefore, we calculated the relative energy ratio of decomposed signals to extract valuable components, as shown in Figure 7A. It could be seen that the relative energy ratios of the IMF3, IMF4, and IMF5 were much higher than that of other IMFs, which was consistent with the above analysis. Thus, IMF3, IMF4, and IMF5 were selected to be reconstructed as new signals. The new signal is shown in Figure 7B.




Figure 7 | (A).Relative energy ratio of the first six IMFs under Condition S1 Condition S2 Condition S3,respectively. (B).New signal based on the relative energy ratio.






4.2 Characteristic data analysis

In this section, we drew images of reconstructed signal, the SD, and the PSE under working conditions S1, S2 and S3 respectively, as shown in Figures 8, 9. In addition, in order to explain the change of frequency components more directly, we also performed local amplification and FFT on the original signal.




Figure 8 | In working condition S1, signal (A) time domain figure,(B) the SD,(C) the PSE,(D) the FFT,(E) local amplification figure.






Figure 9 | In working condition S2, signal (A) time domain figure, (B) the SD, (C) the PSE,(D) the FFT,(E) local amplification figure.



Figure 8B showed that the SD value of the signal was about 0.63 and the amplitude was relatively low. It could be indicated that the vibration energy at the measured point was low in the working condition S1. The FFT of the signal was shown in Figure 8C. It can be seen that the frequency components of the signal were 24Hz, 48Hz, 72Hz, and 96Hz, and the main frequency were 24Hz and 48Hz, which are about 5-10 times larger than 72Hz and 96Hz. It suggested that the vibration at the measured point was mainly transmitted from the engine. The frequency component was the ignition frequency of each order of the engine. In addition, it could be seen that the signal fluctuated greatly from the morphological characteristics of the signal in Figure 8E, which indicated that the signal contained many components. Looking further at Figure 8D, we can see that the PSE value of the signal was about 0.45.

It was obvious from Figure 9B that the SD value of signal in the working condition S2 was about 2.51, and the vibration amplitude increased by about 298% compared with working condition S1, indicating that the vibration was more intense than S1. Then we calculated FFT and the results are shown in Figure 9C. It can be seen that vibration frequency components at the measurement point were mainly 50Hz and 96Hz, and 50Hz was the main component, and its peak value was about 4 times of 96Hz, which revealed that the vibration was mainly the first-order combustion frequency of the engine. In addition, a component of 5.9Hz could be seen in the signal from the Figure 10C, showing that there was not only excitation from the engine but also low-frequency excitation from the road at the measurement point, which was consistent with the research of Yao et al. (Yao et al., 2017). The PSE of the signal was shown in Figure 9D. Compared with 0.45 of condition S1, the value of the PSE decreased by 20% to 0.36, which was caused by the reduction of frequency component. Accordingly, the signal curve was smoother than S1, as shown in Figure 9E.




Figure 10 | In working condition S3, signal (A) time domain figure, (B) the SD,(C) the PSE,(D) the FFT,(E) local amplification figure.



In working condition S3, it was clear from Figure 10B that the SD value of the signal was 4.15. Compared with working conditions S1 and S2, the amplitude increased by about 559% and 65% respectively. This means that the vibration at the frame was more severe than the first two working conditions and the signal contained more energy. According to Figure 10C, the frequency components of working condition S3 were mainly 36Hz and 73Hz, and they were frequency doubling relationship. It shows that the excitation source at the measurement point was still the engine. In addition, since the frequency division of the engine was very close to the second-order natural frequency (36.19Hz) (Yao et al., 2015), the second-order resonance of the frame might have occurred. As the frequency component in this condition was less than that in both S1 and S2, it can be seen from Figure 9D that the value of PSE decreased to 0.21, about 53% and 42% lower than the first two working conditions, respectively. The corresponding signal curve was also smoother, as shown in Figure 9E.




4.3 Comparative analysis of identification results based on the SVM

From the analysis in Section 4.2, we known that the energy and frequency components of the vibration signal were different when the frame was under the three working conditions. It was directly reflected in the changes of the value of SD and the PSE. Its coordinated distribution is shown in Figure 11. As can be seen from Figure 11, the vibration energy of the frame was low and the frequency distribution was wide when the harvester was in working condition S1. The combination coordinate points of characteristic values were densely distributed in the lower right corner of the coordinate graph. The frequency component of the frame decreased and the vibration energy increased when the harvester was in working condition S2, which made the combined coordinate points of characteristic values distributed in the middle of the coordinate graph. The frequency component was further reduced, and the vibration energy was further increased when the harvester was in working condition S3. It caused the combined coordinate points of the feature values to be distributed in the upper left corner of the coordinate graph. Hence, the combination of the two characteristic values could effectively distinguish the vibration states changes in different working conditions.




Figure 11 | Distribution of the SD and the PSE coordinates.



Based on the above analysis, the SVM models based on the SD and the PSE were established. For illustrating the influence of the SVM model with different parameters on the recognition accuracy, we used particle swarm optimization algorithm, genetic algorithm, and grid search method to optimize the SVM model respectively. The optimal parameters and accuracy of different algorithms were shown in Table 3. As can be seen from Table 3, the test accuracy was 99.21%, 98.68%, and 97.37%, respectively, when three different algorithms were used to optimize parameters. Therefore, the accuracy of particle swarm optimization algorithm was the highest. The value of penalty parameter c was 1, and the value of kernel function parameter γ was 0.1.


Table 3 | Optimal parameters and test accuracy by using different algorithms.






4.4 Discussion on generalisation capabilities

In order to illustrate the generalisation capabilities of the algorithm proposed in this paper, this section describes the applicability of the algorithm from different optimization methods, different machines and different crops.



4.4.1 Generalisation of different optimization methods

When using particle swarm optimization algorithm, genetic algorithm and grid search method to optimize the SVM model, the actual and predicted data obtained were shown in Figures 12A–C.




Figure 12 | Test actual and predicted classification of data sample sets: (A) Particle swarm optimization (accuracy=99.21%); (B) Genetic algorithm (accuracy=98.68%); (C) Grid search (accuracy=97.37%); (D) Test the self-propelled 4YZLP-2C frame under the same working conditions (accuracy-99.02%).



As shown in Figure 12A, two samples were wrongly classified when particle swarm optimization algorithm was used to search for optimal parameters. One S3 sample was wrongly classified as S2 and the other S2 sample was classified as S3. The reason for this phenomenon, on the one hand, the discrete optimization problem was not handled well due to the characteristics of the PSO algorithm (Bratton and Kennedy, 2007), resulting in local optimal. On the other hand, no matter the frequency component or energy of the vibration signal when the harvest was in working condition S2 and S3, the difference of the characteristic values calculated was much smaller than that in S1 (the PSE difference was 42%, the SD difference was 65%), therefore it was easy to misidentify the measurement points of S2 and S3.

When genetic algorithm was applied to parameter optimization, the S2 sample was incorrectly classified as S3, as shown in Figure 12B. Compared with the PSO algorithm, the accuracy of genetic algorithm was reduced. The main reason was that the length of the original vibration signals was inconsistent, and it led to the different length of the calculated characteristic values. Thus the accuracy of the PSO algorithm was lower than that of the genetic algorithm.

As can be seen from Figure 12C, one S3 sample was inaccurately classified as S2 and the other sample was classified as S3 when the grid search method was applied. The reason for this phenomenon might be that the penalty parameter c was too large when using the grid search method, which led to the over-fitting phenomenon, and the points of S2 and S3 were confused. In addition, the higher-order signal components were very close when the harvester was in working condition S2 and S3. It made the absorption of higher-order vibration energy by corn ear tend to be consistent, resulting in a small difference in the characteristic values of the two working conditions.




4.4.2 Generalisation of different machines

We also used the self-propelled 4YZLP-2C harvester to carry out the frame vibration test under the same working condition in this paper. PSE and SD were calculated after the obtained data was denoised, decomposed and reconstituted into a new signal, and then the feature vector matrix was imported into SVM and optimized by PSO. The recognition result was shown in Figure 12D. As shown in Figure 12D, two samples were wrongly classified when the self-propelled 4YZLP-2C harvester was used for testing. One S3 sample was wrongly classified as S2 and the other S2 sample was classified as S3. The reasons for this phenomenon were similar to the test of self-propelled 4YZP-4Y harvester. On the one hand, the characteristics of PSO algorithm led to local optimality; On the other hand, the difference of the feature values calculated in S2 and S3 working conditions was much smaller than that in S1 working conditions, thus it was easy to misidentify. Compared with the test of the self-propelled 4YZP-4Y harvester, the accuracy at this time is reduced by 0.19% to 99.02%, which indicates that the total error is within a reasonable range when the same method is applied to different machines.




4.4.3 Application in rice and wheat harvester

The rice and wheat combine harvester is similar to the self-propelled corn harvester in the main structure. It is composed of an engine, a header, a frame, etc., and their field operation environment is very similar, resulting in vibration bending and torsional deformation of the frame. Thus, the vibration states identification method proposed in this paper also has certain applicability to the rice-wheat combine harvester.





4.5 Discussion

In this paper, the improved EMD algorithm combined with the SVM was used to identify the vibration state changes of the frame under different working conditions. For the corn harvester, the measured vibration signal presented high noise and non-stationary characteristics caused by the vibration of field road bumps and fluctuations when walking in the field. If the characteristic values were directly extracted for recognition, the accuracy would be affected. Therefore, the EMD method was adopted to process the signals first. However, due to the phenomenon of mode mixing in the EMD algorithm, the original algorithm was improved to enhance the accuracy of decomposition before signal processing. Secondly, we decomposed the original vibration acceleration signal to obtain a series of IMFs, and selected several groups of IMFs according to the relative energy ratio to synthesize the new signal. Compared with the original signal, the new signal at this time has greatly reduced the interference of non-stationary and high-frequency noise, therefore it can better reflect the original vibration state of the harvester. Then we calculated the PSE and SD values of the new signal, and obtained the energy variation and frequency distribution of vibration under different working conditions. According to the combination of energy change and frequency distribution, we have analyzed the main excitation source and the change of vibration order under each condition. Finally, the feature vector matrix based on PSE and SD was constructed, and the model parameters of SVM were optimized. Through comparative analysis, the recognition accuracy of these three optimization methods is 99.21%, 98.68% and 97.37%, respectively.

We could see that most of the signal information was contained in the IMF3, IMF4, and IMF5 after the original signal was decomposed when the machine was in the working condition S1. From these three signal patterns we could see that the vibration form was regular periodic vibration. As can be seen from frequency domain analysis, the components in the signal were only low frequency excitations from the engine, and the first and second order vibration was the main component. The frequency components of each order were far away from the natural frequency of the frame. In addition, the value of the SD was very small compared with S2 and S3, thus the overall vibration was relatively stable and the reliability was high. Most of the signal information was contained in the IMF3 and IMF4 when the machine was working condition S2, where the frequency components were dominated by the engine first-order ignition frequency and the low frequency excitation of the road. The main reason for this phenomenon was that as the engine speed increased, so did its higher frequency component, and it was easier to absorb by the ears in the grain tank. Hence, it could be seen from the spectrum that the frequency component of the higher order was much smaller than that of the lower order. Most of the signal information was contained in the IMF2 when the machine was in working condition S3. Similar to working condition S1, the vibration form at the frame was regular periodic vibration. With the increase of engine speed, the absorption of energy by the corn ear did not change much. In addition, the frequency division of the engine was very close to the second-order natural frequency of the frame (Yao et al., 2015), so resonance might have occurred in working condition S3. If the machine works in condition S3 for a long time, its service life will be seriously reduced. Therefore, it should be considered to change the transmission ratio or optimize the structure of the frame to enhance the reliability of the machine. Compared with the traditional analysis methods, the method proposed in this paper does not require the placement of a large number of sensors and complex numerical calculations, and only needs to obtain response datas to build the recognition model, simple operation, and high accuracy of the recognition of vibration states. This paper provides a new research idea for the vibration analysis of corn harvesters.





5 Conclusions

This paper proposed a novel vibration states identification method based on the improved emd and the SVM. Following conclusions can be drawn from the results of proposed methods:

	(1) The improved emd algorithm can effectively reduce noise interference and restore the effective information of original signal. IMFs generated by decomposition can better reflect the change of the single component for the original excitation signal.

	(2) The corn ear in the grain tank can absorb the vibration of the frame, and the absorption of vibration signal varies with the order. It reflected that it is not sensitive to the lower order signal components, but has a strong absorption effect on the higher order signal components.

	(3) The proposed method can accurately identify the vibration states of the frame, and its accuracy can reach 99.21%.



However, there are still some limitations in this study: Firstly, the improved EMD algorithm still has mode mixing, and it may make IMFs lose its physical meaning and is not conducive to the later signal reconstruction. Secondly, the purpose of this study was to explore the vibration mechanism for the frame during the grain tank of corn harvester was in full load state, so other working conditions were not involved. Finally, compared with the traditional finite element analysis method, this paper did not concern the calculation of vibration mode and the damping ratio of structure. Thus, we will use mask signal method to reduce mode aliasing as much as possible in the future research. At the same time, the diversity of working conditions should be increased. Finally, we will consider identifying the parameters of the structure only from the output vibration response signal.





Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.





Author contributions

JF: conceptualization, methodology, data curation, and writing—original draft preparation. RZ: conceptualization, resources, writing—review and editing, funding acquisition, and formal analysis. CC: resources, methodology, software, and project administration. ZC and DL: validation, data curation, writing—review and editing, and project administration. YQ: formal analysis and proofreading. All authors contributed to the article and approved the submitted version.





Funding

This work was supported by the National Natural Science Foundation of China (No. 62103161), and by the Science and Technology Project of Jilin Provincial Education Department (No. JJKH20221023KJ), and by the Opening Project of the Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University (No. KF20211005).




Acknowledgments

We would like to thank Shandong Juming Company and the Experimental Base of Agriculture of Jilin University for providing the experimental equipment.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.





References

 Allemang, R. J., Patwardhan, R. S., Kolluri, M. M., and Phillips, A. W. (2022). Frequency response function estimation techniques and the corresponding coherence functions: A review and update. Mech. Syst. Sig. Process. 162, 21. doi: 10.1016/j.ymssp.2021.108100

 Bin, X., Changkai, W., and Zihan, Y. (2018). Structure optimization of frame for field vegetable power machinery based on measured load data. Transactions of the Chinese Society for Agricultural Machinery. 49S1, 463–469. doi: 10.6041/j.issn.1000-1298.2018.S0.063

 Bratton, D., and Kennedy, J. (2007). “Defining a standard for particle swarm optimization,” IEEE Swarm Intelligence Symposium, Honolulu, HI, USA: IEEE. 120–127. doi: 10.1109/sis.2007.368035

 Cai, Y., and Hou, A. (2021). Analysis on transformer vibration signal recognition based on convolutional neural network. J. Vibroengineering 232, 484–495. doi: 10.21595/jve.2020.21626

 Cao, H., Zhou, K., and Chen, X. (2015). Chatter identification in end milling process based on EEMD and nonlinear dimensionless indicators. Int. J. Mach. Tools Manuf. 92, 52–59. doi: 10.1016/j.ijmachtools.2015.03.002

 Cardoso, J.-F. (1998). Blind signal separation: statistical principles. Proc IEEE. 8610, 2009–2025. doi: 10.1109/5.720250

 Chen, Z., Yan, Q., Jia, B., and Yu, X. (2018). Simplified calculation on the vibration response of a footbridge under human walking loads. J. Harbin Eng. Univ. 3903, 483–489. doi: 10.11990/jheu.201609010

 Chen, S., Zhou, Y., Tang, Z., and Lu, S. (2020). Modal vibration response of rice combine harvester frame under multi-source excitation. Biosyst. Eng. 194, 177–195. doi: 10.1016/j.biosystemseng.2020.04.002

 Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20, 273–297. doi: 10.1023/A:1022627411411

 Dai, T., Zhang, Y., Zhang, K., He, B., Zhu, H., and Zhang, J. (2019). The research progress of empirical mode decomposition and mode mixing elimination. Appl. Electr. Tech. 453, 7–12. doi: 10.16157/j.issn.0258-7998.182560

 Deering, R., and Kaiser, J. F. (2005). The use of a masking signal to improve empirical mode decomposition. 30th IEEE International Conference on Acoustics, Speech, and Signal Processing. (Philadelphia, PA: IEEE). 485–488. doi: 10.1109/ICASSP.2005.1416051

 Dong, S., Wang, P., and Abbas, K. (2021). A survey on deep learning and its applications. Comput. Sci. Rev. 40, 22. doi: 10.1016/j.cosrev.2021.100379

 Gao, Z., Xu, L., Li, Y., Wang, Y., and Sun, P. (2017). Vibration measure and analysis of crawler-type rice and wheat combine harvester in field harvesting condition. Trans. Chin. Soc. Agric. Eng. 3320, 48–55. doi: 10.11975/j.issn.1002-6819.2017.20.006

 Han, F., Wang, H., Qiu, C., and Xu, Y. (2020). A Hybrid Prognostics Approach for Motorized Spindle-Tool Holder Remaining Useful Life Prediction. Advances in Asset Management and Condition Monitoring: COMADEM 2019. University of Huddersfield, UK. Springer. 1385–1400. doi: 10.1007/978-3-030-57745-2_114

 Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., et al. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A. 4541971, 903–95. doi: 10.1098/rspa.1998.0193.

 Ji, Y., Wang, X. B., Liu, Z. B., Wang, H. J., Jiao, L., Wang, D. Q., et al. (2018). Early milling chatter identification by improved empirical mode decomposition and multi-indicator synthetic evaluation. J. Sound Vib. 433, 138–159. doi: 10.1016/j.jsv.2018.07.019

 Kedadouche, M., Thomas, M., and Tahan, A. (2016). A comparative study between empirical wavelet transforms and empirical mode decomposition methods: Application to bearing defect diagnosis. Mech. Syst. Sig. Process. 81, 88–107. doi: 10.1016/j.ymssp.2016.02.049

 Kim, B. S., Spiryagin, M., Kim, B. S., and Yoo, H. (2009). Analysis of the effects of main design parameters variation on the vibration characteristics of a vehicle sub-frame. J. Mech. Sci. Technol. 23, 960–963. doi: 10.1007/s12206-009-0321-8

 Li, H. L., Deng, X. Y., and Dai, H. L. (2007). Structural damage detection using the combination method of EMD and wavelet analysis. Mech. Syst. Sig. Process. 211, 298–306. doi: 10.1016/j.ymssp.2006.05.001

 Li, Y., Li, Y., Xu, L., Hu, B., and Wang, R. (2014). Structural parameter optimization of combine harvester cutting bench. Transactions Chin. Soc. Agric. Eng. 3018, 30–37. doi: 10.3969/j.issn.1002-6819.2014.18.004

 Li, C., Luo, S., and Ma, W. (2013). Vibration isolation performance analysis of a HXN3 diesel locomotive cab based on frequency response functions. J. Vibration and Shock 3219, 210–215. doi: 10.13465/j.cnki.jvs.2013.19.025

 Li, Y., Sun, P., Pang, J., and Xu, L. (2013). Finite element mode analysis and experiment of combine harvester chassis. Transactions Chin. Soc. Agric. Eng. 293, 38–46. doi: 10.3969/j.issn.1002-6819.2013.03.006

 Li, K., Zhang, R., Li, F. C., Su, L., Wang, H. Q., and Chen, P. (2019). A new rotation machinery fault diagnosis method based on deep structure and sparse least squares support vector machine. IEEE Access 7, 26571–26580. doi: 10.1109/ACCESS.2019.2901363

 Maia, N., Silva, J., Almas, E., and Sampaio, R. (2003). Damage detection in structures: from mode shape to frequency response function methods. Mech. Syst. Sig. Process. 173, 489–498. doi: 10.1006/mssp.2002.1506

 Meher-Homji, C. B. (1995). Blading vibration and failures in gas turbines: Part B — compressor and turbine airfoil distress. ASME 1995 Int. Gas Turbine Aeroengine Congress Exposition. (Massachusetts: American Society of Mechanical Engineers). V004T011A015. doi: 10.1115/95-GT-419

 Nagarajaiah, S., Basu, B., and Yang, Y. (2014). Output only modal identification and structural damage detection using timefrequency and wavelet techniques for assessing and monitoring civil infrastructures. Sensor Technologies for Civil Infrastructures 56, 93–144. doi: 10.1533/9781782422433.1.93

 Naghsh, E., Danesh, M., and Beheshti, S. (2022). Unified left eigenvector (ULEV) for blind source separation. Electron Lett. 581, 41–43. doi: 10.1049/ell2.12346

 Poulimenos, A. G., and Fassois, S. (2009). Output-only stochastic identification of a time-varying structure via functional series TARMA models. Mech. Syst. Sig. Process. 234, 1180–1204. doi: 10.1016/j.ymssp.2008.10.012

 Qian, S., Wang-ji, Y., and Wei-xin, R. (2017). Operational modal analysis for bridge engineering based on the dynamic transmissibility measurements. Engineering Mechanics. 3411, 194–201. doi: 10.6052/j.issn.1000-4750.2016.07.0558

 Rao, S., and Bhattu, A. (2019). Dynamic Analysis and Design Optimization of Automobile Chassis Frame Using FEM. Machines, Mechanism and Robotics. (Singapore: Springer Singapore). 671–680. doi: 10.1007/978-981-10-8597-0_57

 Shen, J. L., Hung, J. W., and Lee, L. S. (1998). Robust entropy-based endpoint detection for speech recognition in noisy environments. Fifth international conference on spoken language processing. (Sydney, Australia: ISCA Archive). doi: 10.21437/ICSLP.1998-527

 Su, W.-G., Wen, J. M., Chen, J. Q., Bian, L. J., and Geng, K.-H.. (2011). Failure analysis and experimental study on truck's frame. Guangxi Daxue Xuebao(Ziran Kexue Ban). 365, 740–745. doi: 10.13624/j.cnki.issn.1001-7445.2011.05.029

 Xu, L., Li, Y., Sun, P., and Pang, J. (2014). Vibration measurement and analysis of tracked-whole feeding rice combine harvester. Trans. Chin. Soc. Agric. Eng. 308, 49–55. doi: 10.3969/j.issn.1002-6819.2014.08.006

 Xu, X. Z., Cao, D., Zhou, Y., and Gao, J. (2020). Application of neural network algorithm in fault diagnosis of mechanical intelligence. Mech. Syst. Sig. Process. 141, 13. doi: 10.1016/j.ymssp.2020.106625

 Yao, Y., Du, Y., Zhu, Z., Mao, E., and Song, Z. (2015). Vibration characteristics analysis and optimization of corn combine harvester frame using modal analysis method. Trans. Chin. Soc. Agric. Eng. 3119, 46–53. doi: 10.11975/j.issn.1002-6819.2015.19.007

 Yao, Z., Mei, D., and Chen, Z. (2010). On-line chatter detection and identification based on wavelet and support vector machine. J. Mater. Process Technol. 2105, 713–719. doi: 10.1016/j.jmatprotec.2009.11.007

 Yao, Y., Song, Z., Du, Y., Zhao, X., Mao, E., and Liu, F. (2017). Analysis of vibration characteristics and its major influenced factors of header for corn combine harvesting machine. Trans. Chin. Soc. Agric. Eng. 3313, 40–49. doi: 10.11975/j.issn.1002-6819.2017.13.006

 Yu, G. (2019). An underdetermined blind source separation method with application to modal identification. Shock Vib. 2019, 15. doi: 10.1155/2019/1637163




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2023 Fu, Chen, Zhao, Chen, Li and Qiao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




[image: image]


OPS/images/fpls-13-960103/fpls-13-960103-g010.jpg


OPS/images/fpls-13-960103/fpls-13-960103-g009.jpg


OPS/images/fpls-13-960103/fpls-13-960103-g008.jpg


OPS/images/fpls-13-960103/fpls-13-960103-g007.jpg


OPS/images/fpls-13-960103/fpls-13-960103-g006.jpg


OPS/images/fpls-13-960103/fpls-13-960103-g005.jpg


OPS/images/fpls-13-960103/fpls-13-960103-g004.jpg


OPS/images/fpls-13-960103/fpls-13-960103-g003.jpg


OPS/xhtml/Nav.xhtml


Contents



		Cover


		AI, sensors and robotics in plant phenotyping and precision agriculture, volume II

		Editorial: AI, sensors and robotics in plant phenotyping and precision agriculture, volume II

		Introduction


		Plant phenotyping


		Plant disease detection


		Robotics and UAVs in smart farming


		AI and sensors in agro-ecological environment


		Conclusions


		Author contributions


		Conflict of interest


		References







		An Industrial-Grade Solution for Crop Disease Image Detection Tasks

		Introduction


		Materials and Methods

		Based on YOLOV5 Crop Disease Detection Technology


		Model Compression and Deployment

		Neural Network Pruning


		Knowledge Distillation


		Quantitative Storage


		Activate Compression


		YOLO V5 With ActNN Integration


		Model Conversion


		Simplify Operator and Model Deployment







		Dataset

		PFD Dataset


		Building the Dataset


		Data Pre-processing


		Training Data Augmentation












		Experiment

		Experimental Setup and Training Parameters

		Evaluation Platforms


		Training Setting







		Results

		Evaluation of Model Training


		Analysis of Model Compression

		Model Prune Results


		Model Distillation Results


		ActNN Model Results







		Performance Evaluation of Model Deployment












		Conclusion


		Data Availability Statement


		Author Contributions


		Funding


		Acknowledgments


		References


		Appendix







		Fusing attention mechanism with Mask R-CNN for instance segmentation of grape cluster in the field

		Introduction


		Materials and methods

		Image preparation

		Image acquisition


		Images annotation







		Grape cluster instance segmentation based on improved Mask R-CNN

		Backbone network


		ECA module


		Dense Upsampling Convolution


		Grape cluster instance segmentation and loss function







		Model training


		Model evaluation metrics







		Results

		Overall test results of the improved Mask R-CNN model


		Grape segmentation results under different test sets


		Comparison of the improved Mask R-CNN model with SOTA models







		Discussion

		Effect of different natural environmental conditions on grape segmentation


		Analysis of grape segmentation results under different training datasets


		Effect of different grape varieties on grape segmentation







		Conclusions and future work


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Publisher’s note


		Acknowledgments


		References







		Fast and precise detection of litchi fruits for yield estimation based on the improved YOLOv5 model

		Introduction


		Materials and methods

		Materials

		Image data acquisition


		Building the dataset







		Methodologies

		YOLOv5 model


		Lightweight backbone network


		Convolution block attention module







		The improved YOLOv5s network structure

		Fine-tuning the lightweight backbone network


		Optimize the network structure







		Training of litchi object detection model







		Experimental results and comparative analysis

		Model evaluation indicators


		Experimental results and analysis

		Experimental results


		Detection effect of the improved model in different scenarios







		Ablation experiments


		Comparison with other deep learning models

		The deployment of model APP












		Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Publisher’s note


		Abbreviations


		References







		Flow velocity sensors arrangement for vegetated channels

		Introduction


		Materials and methods

		Location of sensor representative points: Smooth channel as an example


		Simplified flow velocity sensor placement in vegetated channels







		Experimental setup


		Results

		Cross-sectional flow velocity distribution based on test data


		Velocity distribution along normal line direction in channels







		Discussion

		Analysis of flow velocity along normal line directions


		A simplified algorithm for discharge estimation







		Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Publisher’s note


		References







		Cotton boll localization method based on point annotation and multi-scale fusion

		1. Introduction


		2. Related work


		3. Materials and methods

		3.1. Materials


		3.2. Methods

		3.2.1. Scene encoding and location decoding


		3.2.2. Localization map fusion


		3.2.3. Loss function












		4. Results and discussion

		4.1. Implementation details


		4.2. Evaluation metrics


		4.3. Model evaluation

		4.3.1. Comparison of different localization methods


		4.3.2. Comparative experiments under different density distributions


		4.3.3. Ablation study












		5. Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Publisher's note


		References







		Design and simulation of a gripper structure of cluster tomato based on manual picking behavior

		Introduction


		Manual picking behavior of clustered tomato

		Grasping methods of human hands


		The experiment of picking tomatoes by hand


		Picking experiment results

		Tomato geometry and mass


		The types of human hand grasping


		Manual picking strategy












		Design of the picking gripper

		Evaluation criteria for grippers


		Design of gripper structure


		Key parameters of the gripper


		Gripper picking strategy







		Gripper simulation experiment

		Force simulation experiment

		Force analysis of tomato


		Force analysis of single finger







		Motion state simulation experiment

		Motion state simulation


		Gripping state simulation












		Conclusion and outlook


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Publisher’s note


		Supplementary Material


		References







		Three-dimensional reconstruction and phenotype measurement of maize seedlings based on multi-view image sequences

		Introduction


		Materials and methods

		Experimental material


		Image acquisition


		Methods

		3D reconstruction based on SfM


		Point cloud preprocessing


		Euclidean clustering for image background removal


		Point cloud filtering based on color threshold


		Point cloud down sampling based on voxel filtering


		Maize phenotype calculation method







		Point cloud coordinate scale transformation


		Point cloud segmentation







		Results

		Point cloud reconstruction results


		Point cloud pre-processing results


		Maize point cloud segmentation recognition results


		3D point cloud accuracy analysis of maize phenotype


		Error analysis


		Results on the growth dynamics of maize seedlings based on 3D model







		Discussion


		Conclusion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Publisher’s note







		Deep semantic segmentation for the quantification of grape foliar diseases in the vineyard

		1. Introduction


		2. Materials and methods

		2.1. Data acquisition system


		2.2. Deep learning-based quantification of grape foliar disease infection

		2.2.1. Disease infection segmentation


		2.2.2. Canopy segmentation


		2.2.3. Overlapping area removal


		2.2.4. Infection severity quantification







		2.3. Case study demonstration and evaluation

		2.3.1. Downy mildew fungicide efficacy trial


		2.3.2. Powdery mildew fungicide efficacy trial







		2.4. Evaluation methods







		3. Result

		3.1. Downy mildew fungicide efficacy trial

		3.1.1. Performance of grape DM segmentation


		3.1.2. Performance of overlapping region removal


		3.1.3. Severity rate estimation evaluation







		3.2. Powdery mildew case study

		3.2.1. Performance of grape PM segmentation


		3.2.2. Severity rate estimation evaluation












		4. Discussion


		Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Publisher's note


		Supplementary material


		References







		Performance-guaranteed distributed control for multiple plant protection UAVs with collision avoidance and a directed topology

		Introduction


		Problem Formulation

		Problem statement


		Algebraic graph theory







		Main results

		Collision avoidance


		Filters design


		Control scheme


		Stability and performance analysis

		Proof












		Simulation study


		Conclusion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Publisher's note


		Supplementary material


		Footnotes


		References


		Nomenclature







		Identification lodging degree of wheat using point cloud data and convolutional neural network

		Introduction


		Materials and methods

		Data collection

		Acquisition wheat lodging angle and lodging area


		Determination of wheat lodging degree


		Acquisition and normalization of point cloud data












		Materials and methods

		Acquisition of dimensionality reduction image from point cloud


		Hotelling transform


		Grid division


		Spatial interpolation of point cloud


		Classification for lodging degree

		Technology roadmap


		Classification model


		Classification functions


		Evaluation index












		Results and analysis

		Generation of normalized point cloud


		Analysis of dimensionality reduction results in different periods


		Classification results of lodging degree based on point cloud

		Construction of dataset from point cloud


		Hyperparameter settings


		Classification results of wheat lodging degree based on MobileNetV2












		Discussion

		Comparison results of different interpolation methods


		Comparison of classification results using different models


		Dimensionality reduction result of point cloud for wheat field







		Conclusion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Publisher’s note


		References







		LettuceTrack: Detection and tracking of lettuce for robotic precision spray in agriculture

		1. Introduction


		2. Related work

		2.1. Crop detection


		2.2. Multiple object tracking







		3. Materials and methods

		3.1. Data acquisition


		3.2. Feature extraction and matching

		3.2.1. Feature extraction


		3.2.2. Data association












		4. Experimental results

		4.1. Implementation details


		4.2. Evaluation metrics


		4.3. Results and discussions


		4.4. Limitations







		5. Conclusions


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Publisher's note


		Footnotes


		References







		Forest fire monitoring via uncrewed aerial vehicle image processing based on a modified machine learning algorithm

		Introduction


		Improvement of forest fire identification algorithm

		Steps of the algorithm


		Modified machine learning algorithm based on backpropagation neural network


		Improved machine learning algorithm and support vector machine classifier







		Forest fire risk image recognition

		Image enhancement


		Image morphological processing







		Color segmentation model of forest fire insurance

		Pixel distribution characteristics of forest fire


		Distribution of flame pixels


		Color segmentation results and comparison







		Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Publisher’s note


		References







		Hyperspectral detection of fresh corn peeling damage using germinating sparse classification method

		1. Introduction.


		2. Experimental materials and data.

		2.1. Fresh corn materials.


		2.2. Hyperspectral image acquisition.


		2.3. Hyperspectral data preprocessing.







		3. Experimental methods.

		3.1. Related work.


		3.2. Proposed method.

		3.2.1. Algorithm framework.


		3.2.2. Sample refining.


		3.2.3. Dictionary learning.


		3.2.4. Sparse classification.


		3.2.5. Evaluation index.












		4. Experimental results and analysis.

		4.1. Refined samples and spectral characteristic.


		4.2. Experimental parameter selection.


		4.3. Classification results analysis.

		4.3.1. Results on overall classification accuracy.


		4.3.2. Results on average pixel prediction accuracy.


		4.3.3. Analysis of classification results on typical scenes.







		4.4. Discussion.

		4.4.1. Discussion on using HSI detection instead of traditional RGB image.


		4.4.2. Discussion on dimensionality reduction method.


		4.4.3. Discussion on comparison with existing methods.


		4.4.4. Discussion on the practical applications.












		5. Conclusions.


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		References







		Cotton aphid infestation monitoring using Sentinel-2 MSI imagery coupled with derivative of ratio spectroscopy and random forest algorithm

		1. Introduction.


		2. Materials and methods.

		2.1. Experimental study and materials.


		2.2. Data collection and processing.

		2.2.1. Ground survey data collection of aphid infestation.


		2.2.2. Ground spectrum acquisition and processing.


		2.2.3. Sentinel-2 satellite image processing.







		2.3. Method.

		2.3.1. Extraction of cotton areas.


		2.3.2. DRS algorithm.


		2.3.3. RF classification algorithm.


		2.3.4. Model construction and accuracy evaluation.












		3. Results.

		3.1. Extraction results and precision evaluation of cotton planting areas.


		3.2. Spectral feature analysis of cotton aphid infestation at different scales based on the DRS algorithm.

		3.2.1. Ground ASD hyperspectral spectral features.


		3.2.2. Ground ASD hyperspectral resampling spectral feature.


		3.2.3. Sentinel-2 multispectral imagery spectral features.


		3.2.4. Spectral feature extraction of cotton aphid infestation.







		3.3. Classification results and accuracy analysis based on the RF algorithm.


		3.4. Results and precision comparison of different classification algorithms for cotton aphid infestation.


		3.5. Effect evaluation of the DRS algorithm.


		3.6. Effect of VI features on classification accuracy.







		4. Discussion.


		5. Conclusions.


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		References







		Cotton disease identification method based on pruning

		Introduction


		Materials and methods

		Image collection and augmentation


		DCNN architectures


		Pruning algorithm


		Transfer learning and compression


		Model evaluation index







		Results and discussion

		Experimental setup


		Performance test results over PlantVillage


		Compression after transfer learning


		Transfer learning after compression


		Comparing two strategies using the t-test


		Comparison with lightweight networks


		Developing cotton disease recognition APP based on DenseNet40-80%-T







		Conclusion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		References







		Frame vibration states identification for corn harvester based on joint improved empirical mode decomposition - Support vector machine method

		1 Introduction


		2 Materials and methods

		2.1 Experimental equipment


		2.2 Proposed vibration noise removal method

		2.2.1 Standard EMD framework


		2.2.2 Proposed algorithm







		2.3 Vibration states identification method







		3 Experimental setup


		4 Results and discussion

		4.1 Signal decomposition and construction


		4.2 Characteristic data analysis


		4.3 Comparative analysis of identification results based on the SVM


		4.4 Discussion on generalisation capabilities

		4.4.1 Generalisation of different optimization methods


		4.4.2 Generalisation of different machines


		4.4.3 Application in rice and wheat harvester







		4.5 Discussion







		5 Conclusions


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		References


















OPS/images/fpls-13-1003243/math_4.gif


OPS/images/fpls-13-1003243/math_3.gif


OPS/images/fpls-13-1003243/math_2.gif


OPS/images/fpls-13-1003243/math_10.gif


OPS/images/fpls-13-954757/cross.jpg


OPS/images/fpls-13-1003243/math_9.gif


OPS/images/fpls-13-1003243/math_8.gif


OPS/images/fpls-13-1003243/math_7.gif


OPS/images/fpls-13-1003243/math_6.gif


OPS/images/fpls-13-1003243/math_5.gif


OPS/images/back-cover.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e015.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e014.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e013.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e012.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e011.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e010.jpg


OPS/images/fpls-13-954757/fpls-13-954757-g002.jpg


OPS/images/fpls-13-954757/fpls-13-954757-g001.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e017.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e016.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e004.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e003.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e002.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e001.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e000.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e009.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e008.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e007.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e006.jpg


OPS/images/fpls-13-954757/fpls-13-954757-e005.jpg


OPS/images/fpls-13-949857/math_37.gif


OPS/images/fpls.2023.1065209/M12.jpg


OPS/images/fpls-13-949857/math_36.gif


OPS/images/fpls.2023.1065209/M11.jpg


OPS/images/fpls-13-949857/math_35.gif


OPS/images/fpls.2023.1065209/M10.jpg


OPS/images/fpls-13-949857/math_34.gif


OPS/images/fpls.2023.1065209/M1.jpg


OPS/images/fpls-13-949857/math_33.gif


OPS/images/fpls.2023.1065209/im1.jpg


OPS/images/fpls-13-949857/math_32.gif


OPS/images/fpls.2023.1065209/fpls-14-1065209-g012.jpg


OPS/images/fpls-13-949857/math_31.gif


OPS/images/fpls.2023.1065209/fpls-14-1065209-g011.jpg


OPS/images/fpls.2023.1065209/fpls-14-1065209-g010.jpg


OPS/images/fpls.2023.1065209/fpls-14-1065209-g009.jpg


OPS/images/fpls-13-949857/math_4.gif


OPS/images/fpls-13-949857/math_39.gif


OPS/images/fpls-13-949857/math_38.gif


OPS/images/fpls.2023.1065209/M13.jpg


OPS/images/fpls-13-949857/math_27.gif


OPS/images/fpls.2023.1065209/fpls-14-1065209-g006.jpg


OPS/images/fpls-13-949857/math_26.gif


OPS/images/fpls.2023.1065209/fpls-14-1065209-g005.jpg


OPS/images/fpls-13-949857/math_25.gif


OPS/images/fpls.2023.1065209/fpls-14-1065209-g004.jpg


OPS/images/fpls-13-949857/math_24.gif


OPS/images/fpls.2023.1065209/fpls-14-1065209-g003.jpg


OPS/images/fpls-13-949857/math_23.gif


OPS/images/fpls.2023.1065209/fpls-14-1065209-g002.jpg


OPS/images/fpls-13-949857/math_22.gif


OPS/images/fpls.2023.1065209/fpls-14-1065209-g001.jpg


OPS/images/fpls.2023.1065209/crossmark.jpg


OPS/images/fpls.2022.1038791/table7.jpg


OPS/images/fpls-13-949857/math_30.gif


OPS/images/fpls-13-949857/math_3.gif


OPS/images/fpls-13-949857/math_29.gif


OPS/images/fpls.2023.1065209/fpls-14-1065209-g008.jpg


OPS/images/fpls-13-949857/math_28.gif


OPS/images/fpls.2023.1065209/fpls-14-1065209-g007.jpg


OPS/images/fpls-13-978761/math_5.gif


OPS/images/fpls-13-968479/fpls-13-968479-e007.jpg


OPS/images/fpls-13-978761/math_4.gif


OPS/images/fpls-13-968479/fpls-13-968479-e006.jpg


OPS/images/fpls-13-978761/math_3.gif


OPS/images/fpls-13-968479/fpls-13-968479-e005.jpg


OPS/images/fpls-13-978761/math_2.gif


OPS/images/fpls-13-968479/fpls-13-968479-e004.jpg


OPS/images/fpls-13-978761/math_1.gif


OPS/images/fpls-13-968479/fpls-13-968479-e003.jpg


OPS/images/fpls-13-978761/inline_8.gif


OPS/images/fpls-13-968479/fpls-13-968479-e002.jpg


OPS/images/fpls.2023.1065209/table4.jpg


OPS/images/fpls-13-978761/inline_7.gif


OPS/images/fpls-13-968479/fpls-13-968479-e001.jpg


OPS/images/fpls.2023.1065209/table3.jpg


OPS/images/fpls-13-968479/fpls-13-968479-e000.jpg


OPS/images/fpls.2023.1065209/table2.jpg


OPS/images/fpls-13-968479/cross.jpg


OPS/images/fpls.2023.1065209/table1.jpg


OPS/images/fpls.2023.1065209/M9.jpg


OPS/images/fpls.2023.1065209/M8.jpg


OPS/images/fpls-13-978761/math_8.gif


OPS/images/fpls-13-978761/math_7.gif


OPS/images/fpls-13-978761/math_6.gif


OPS/images/fpls-13-968479/fpls-13-968479-e008.jpg


OPS/images/fpls-13-949857/math_7.gif


OPS/images/fpls.2023.1065209/M7.jpg


OPS/images/fpls-13-949857/math_6.gif


OPS/images/fpls.2023.1065209/M6.jpg


OPS/images/fpls-13-949857/math_5.gif


OPS/images/fpls.2023.1065209/M5.jpg


OPS/images/fpls-13-949857/math_44.gif


OPS/images/fpls.2023.1065209/M4.jpg


OPS/images/fpls-13-949857/math_43.gif


OPS/images/fpls.2023.1065209/M3.jpg


OPS/images/fpls-13-949857/math_42.gif


OPS/images/fpls.2023.1065209/M2.jpg


OPS/images/fpls-13-949857/math_41.gif


OPS/images/fpls.2023.1065209/M17.jpg


OPS/images/fpls-13-949857/math_40.gif


OPS/images/fpls.2023.1065209/M16.jpg


OPS/images/fpls.2023.1065209/M15.jpg


OPS/images/fpls.2023.1065209/M14.jpg


OPS/images/fpls-13-949857/math_9.gif


OPS/images/fpls-13-949857/math_8.gif


OPS/images/fpls-13-949857/inline_101.gif


OPS/images/fpls-13-949857/inline_100.gif


OPS/images/fpls-13-968479/fpls-13-968479-g010.jpg


OPS/images/fpls-13-949857/inline_10.gif


OPS/images/fpls-13-968479/fpls-13-968479-g009.jpg


OPS/images/fpls-13-949857/inline_1.gif


OPS/images/fpls-13-968479/fpls-13-968479-g008.jpg


OPS/images/fpls-13-949857/fpls-13-949857-t002.jpg


OPS/images/fpls-13-968479/fpls-13-968479-g007.jpg


OPS/images/fpls-13-949857/fpls-13-949857-t001.jpg


OPS/images/fpls-13-968479/fpls-13-968479-g006.jpg


OPS/images/fpls-13-949857/fpls-13-949857-g011.gif


OPS/images/fpls-13-968479/fpls-13-968479-g005.jpg


OPS/images/fpls-13-949857/fpls-13-949857-g010.gif


OPS/images/fpls-13-968479/fpls-13-968479-g004.jpg


OPS/images/fpls-13-949857/fpls-13-949857-g009.gif


OPS/images/fpls-13-968479/fpls-13-968479-g003.jpg


OPS/images/fpls-13-968479/fpls-13-968479-g002.jpg


OPS/images/fpls-13-968479/fpls-13-968479-g001.jpg


OPS/images/fpls-13-949857/inline_102.gif


OPS/images/fpls-13-949857/fpls-13-949857-g006.gif


OPS/images/fpls-13-968479/fpls-13-968479-e018.jpg


OPS/images/fpls-13-949857/fpls-13-949857-g005.gif


OPS/images/fpls-13-968479/fpls-13-968479-e017.jpg


OPS/images/fpls-13-949857/fpls-13-949857-g004.gif


OPS/images/fpls-13-968479/fpls-13-968479-e016.jpg


OPS/images/fpls-13-949857/fpls-13-949857-g003.gif


OPS/images/fpls-13-968479/fpls-13-968479-e015.jpg


OPS/images/fpls-13-949857/fpls-13-949857-g002.gif


OPS/images/fpls-13-968479/fpls-13-968479-e014.jpg


OPS/images/fpls-13-949857/fpls-13-949857-g001.gif


OPS/images/fpls-13-968479/fpls-13-968479-e013.jpg


OPS/images/fpls-13-949857/crossmark.jpg


OPS/images/fpls-13-968479/fpls-13-968479-e012.jpg


OPS/images/fpls-13-978761/math_9.gif


OPS/images/fpls-13-968479/fpls-13-968479-e011.jpg


OPS/images/fpls-13-968479/fpls-13-968479-e010.jpg


OPS/images/fpls-13-968479/fpls-13-968479-e009.jpg


OPS/images/fpls-13-949857/fpls-13-949857-g008.gif


OPS/images/fpls-13-949857/fpls-13-949857-g007.gif


OPS/images/fpls-13-934450/fpls-13-934450-M43.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M42.jpg


OPS/images/fpls-13-949857/inline_120.gif


OPS/images/fpls-13-934450/fpls-13-934450-M41.jpg


OPS/images/fpls-13-949857/inline_12.gif


OPS/images/fpls-13-934450/fpls-13-934450-M40.jpg


OPS/images/fpls-13-949857/inline_119.gif


OPS/images/fpls-13-1003243/inline_11.gif


OPS/images/fpls-13-934450/fpls-13-934450-M39.jpg


OPS/images/fpls-13-949857/inline_118.gif


OPS/images/fpls-13-1003243/inline_10.gif


OPS/images/fpls-13-934450/fpls-13-934450-M38.jpg


OPS/images/fpls-13-949857/inline_117.gif


OPS/images/fpls-13-1003243/inline_1.gif


OPS/images/fpls-13-934450/fpls-13-934450-M37.jpg


OPS/images/fpls-13-949857/inline_116.gif


OPS/images/fpls-13-1003243/fpls-13-1003243-t003.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M36.jpg


OPS/images/fpls-13-949857/inline_115.gif


OPS/images/fpls-13-1003243/fpls-13-1003243-t002.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M35.jpg


OPS/images/fpls-13-949857/inline_114.gif


OPS/images/fpls-13-1003243/fpls-13-1003243-t001.jpg


OPS/images/fpls-13-949857/inline_113.gif


OPS/images/fpls-13-1003243/fpls-13-1003243-g009.gif


OPS/images/fpls-13-949857/inline_112.gif


OPS/images/fpls-13-1003243/fpls-13-1003243-g008.gif


OPS/images/fpls-13-1003243/fpls-13-1003243-g007.gif


OPS/images/fpls-13-1003243/fpls-13-1003243-g006.gif


OPS/images/fpls-13-934450/fpls-13-934450-M44.jpg


OPS/images/fpls-13-949857/inline_111.gif


OPS/images/fpls-13-949857/inline_110.gif


OPS/images/fpls-13-949857/inline_11.gif


OPS/images/fpls-13-1003243/fpls-13-1003243-g005.gif


OPS/images/fpls-13-949857/inline_109.gif


OPS/images/fpls-13-1003243/fpls-13-1003243-g004.gif


OPS/images/fpls-13-949857/inline_108.gif


OPS/images/fpls-13-1003243/fpls-13-1003243-g003.gif


OPS/images/fpls-13-949857/inline_107.gif


OPS/images/fpls-13-1003243/fpls-13-1003243-g002.gif


OPS/images/fpls-13-949857/inline_106.gif


OPS/images/fpls-13-1003243/fpls-13-1003243-g001.gif


OPS/images/fpls-13-949857/inline_105.gif


OPS/images/fpls-13-1003243/crossmark.jpg


OPS/images/fpls-13-949857/inline_104.gif


OPS/images/fpls-13-968479/fpls-13-968479-t003.jpg


OPS/images/cover.jpg


OPS/images/fpls-13-949857/inline_103.gif


OPS/images/fpls-13-968479/fpls-13-968479-t002.jpg


OPS/images/fpls-13-968479/fpls-13-968479-t001.jpg


OPS/images/fpls-13-968479/fpls-13-968479-i000.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M96.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M95.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M94.jpg


OPS/images/fpls-13-949857/inline_139.gif


OPS/images/fpls-13-934450/fpls-13-934450-M93.jpg


OPS/images/fpls-13-949857/inline_138.gif


OPS/images/fpls-13-934450/fpls-13-934450-M92.jpg


OPS/images/fpls-13-949857/inline_137.gif


OPS/images/fpls-13-934450/fpls-13-934450-M9.jpg


OPS/images/fpls-13-949857/inline_136.gif


OPS/images/fpls-13-934450/fpls-13-934450-M8.jpg


OPS/images/fpls-13-949857/inline_135.gif


OPS/images/fpls-13-934450/fpls-13-934450-M73.jpg


OPS/images/fpls-13-949857/inline_134.gif


OPS/images/fpls-13-934450/fpls-13-934450-M72.jpg


OPS/images/fpls-13-949857/inline_133.gif


OPS/images/fpls-13-934450/fpls-13-934450-M71.jpg


OPS/images/fpls-13-949857/inline_132.gif


OPS/images/fpls-13-949857/inline_131.gif


OPS/images/fpls-13-949857/inline_130.gif


OPS/images/fpls-13-934450/fpls-13-934450-M70.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M7.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M69.jpg


OPS/images/fpls-13-949857/inline_13.gif


OPS/images/fpls-13-934450/fpls-13-934450-M68.jpg


OPS/images/fpls-13-949857/inline_129.gif


OPS/images/fpls-13-934450/fpls-13-934450-M6.jpg


OPS/images/fpls-13-949857/inline_128.gif


OPS/images/fpls-13-1003243/math_1.gif


OPS/images/fpls-13-934450/fpls-13-934450-M55.jpg


OPS/images/fpls-13-949857/inline_127.gif


OPS/images/fpls-13-1003243/inline_9.gif


OPS/images/fpls-13-934450/fpls-13-934450-M54.jpg


OPS/images/fpls-13-949857/inline_126.gif


OPS/images/fpls-13-1003243/inline_8.gif


OPS/images/fpls-13-934450/fpls-13-934450-M53.jpg


OPS/images/fpls-13-949857/inline_125.gif


OPS/images/fpls-13-1003243/inline_7.gif


OPS/images/fpls-13-934450/fpls-13-934450-M52.jpg


OPS/images/fpls-13-949857/inline_124.gif


OPS/images/fpls-13-1003243/inline_6.gif


OPS/images/fpls-13-934450/fpls-13-934450-M51.jpg


OPS/images/fpls-13-949857/inline_123.gif


OPS/images/fpls-13-1003243/inline_5.gif


OPS/images/fpls-13-949857/inline_122.gif


OPS/images/fpls-13-1003243/inline_4.gif


OPS/images/fpls-13-949857/inline_121.gif


OPS/images/fpls-13-1003243/inline_3.gif


OPS/images/fpls-13-1003243/inline_2.gif


OPS/images/fpls-13-1003243/inline_12.gif


OPS/images/fpls-13-965425/fpls-13-965425-g005.jpg


OPS/images/fpls-13-965425/fpls-13-965425-g004.jpg


OPS/images/fpls-13-965425/fpls-13-965425-g003.jpg


OPS/images/fpls-13-949857/inline_157.gif


OPS/images/fpls-13-965425/fpls-13-965425-g002.jpg


OPS/images/fpls-13-949857/inline_156.gif


OPS/images/fpls-13-965425/fpls-13-965425-g001.jpg


OPS/images/fpls-13-949857/inline_155.gif


OPS/images/fpls-13-965425/fpls-13-965425-e001.jpg


OPS/images/fpls-13-949857/inline_154.gif


OPS/images/fpls-13-965425/fpls-13-965425-e000.jpg


OPS/images/fpls-13-949857/inline_153.gif


OPS/images/fpls-13-965425/cross.jpg


OPS/images/fpls-13-949857/inline_152.gif


OPS/images/fpls-13-934450/fpls-13-934450-t009.jpg


OPS/images/fpls-13-949857/inline_151.gif


OPS/images/fpls-13-934450/fpls-13-934450-t008.jpg


OPS/images/fpls-13-949857/inline_150.gif


OPS/images/fpls-13-949857/inline_15.gif


OPS/images/fpls-13-949857/inline_149.gif


OPS/images/fpls-13-934450/fpls-13-934450-t007.jpg


OPS/images/fpls-13-934450/fpls-13-934450-t006.jpg


OPS/images/fpls-13-934450/fpls-13-934450-t005.jpg


OPS/images/fpls-13-949857/inline_148.gif


OPS/images/fpls-13-934450/fpls-13-934450-t004.jpg


OPS/images/fpls-13-949857/inline_147.gif


OPS/images/fpls-13-934450/fpls-13-934450-t003.jpg


OPS/images/fpls-13-949857/inline_146.gif


OPS/images/fpls-13-934450/fpls-13-934450-t002.jpg


OPS/images/fpls-13-949857/inline_145.gif


OPS/images/fpls-13-934450/fpls-13-934450-t001.jpg


OPS/images/fpls-13-949857/inline_144.gif


OPS/images/fpls-13-934450/fpls-13-934450-M99.jpg


OPS/images/fpls-13-949857/inline_143.gif


OPS/images/fpls-13-934450/fpls-13-934450-M98.jpg


OPS/images/fpls-13-949857/inline_142.gif


OPS/images/fpls-13-934450/fpls-13-934450-M97.jpg


OPS/images/fpls-13-949857/inline_141.gif


OPS/images/fpls-13-949857/inline_140.gif


OPS/images/fpls-13-949857/inline_14.gif


OPS/images/fpls-13-960103/fpls-13-960103-e006.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e005.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e004.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e003.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e002.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e001.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e000.jpg


OPS/images/fpls-13-960103/cross.jpg


OPS/images/fpls-13-965425/fpls-13-965425-t006.jpg


OPS/images/fpls-13-965425/fpls-13-965425-t005.jpg


OPS/images/fpls-13-965425/fpls-13-965425-t004.jpg


OPS/images/fpls-13-965425/fpls-13-965425-t003.jpg


OPS/images/fpls-13-965425/fpls-13-965425-t002.jpg


OPS/images/fpls-13-949857/inline_166.gif


OPS/images/fpls-13-965425/fpls-13-965425-t001.jpg


OPS/images/fpls-13-949857/inline_165.gif


OPS/images/fpls-13-965425/fpls-13-965425-g011.jpg


OPS/images/fpls-13-949857/inline_164.gif


OPS/images/fpls-13-965425/fpls-13-965425-g010.jpg


OPS/images/fpls-13-949857/inline_163.gif


OPS/images/fpls-13-965425/fpls-13-965425-g009.jpg


OPS/images/fpls-13-949857/inline_162.gif


OPS/images/fpls-13-965425/fpls-13-965425-g008.jpg


OPS/images/fpls-13-949857/inline_161.gif


OPS/images/fpls-13-965425/fpls-13-965425-g007.jpg


OPS/images/fpls-13-949857/inline_160.gif


OPS/images/fpls-13-965425/fpls-13-965425-g006.jpg


OPS/images/fpls-13-949857/inline_16.gif


OPS/images/fpls-13-949857/inline_159.gif


OPS/images/fpls-13-949857/inline_158.gif


OPS/images/fpls-13-960103/fpls-13-960103-e026.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e025.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e024.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e023.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e022.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e021.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e020.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e019.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e018.jpg


OPS/images/fpls-13-960103/fpls-13-960103-g002.jpg


OPS/images/fpls-13-960103/fpls-13-960103-g001.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e016.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e015.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e014.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e013.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e012.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e011.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e010.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e009.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e008.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e007.jpg


OPS/images/fpls-13-960103/fpls-13-960103-e017.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M100.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M101.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M102.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M11.jpg


OPS/images/fpls-13-934450/fpls-13-934450-g010.jpg


OPS/images/fpls-13-934450/fpls-13-934450-g011.jpg


OPS/images/fpls-13-934450/fpls-13-934450-g012.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M10.jpg


OPS/images/fpls-13-934450/fpls-13-934450-g008.jpg


OPS/images/fpls-13-934450/fpls-13-934450-g009.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M20.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M21.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M34.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M16.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M17.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M18.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M19.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M12.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M13.jpg


OPS/images/fpls-13-934450/fpls-13-934450-M15.jpg


OPS/images/fpls-13-921057/math_6.gif


OPS/images/fpls-13-921057/math_7.gif


OPS/images/fpls-13-921057/math_25.gif


OPS/images/fpls-13-921057/math_3.gif


OPS/images/fpls-13-921057/math_4.gif


OPS/images/fpls-13-921057/math_5.gif


OPS/images/fpls-13-921057/math_21.gif


OPS/images/fpls-13-921057/math_22.gif


OPS/images/fpls-13-921057/math_23.gif


OPS/images/fpls-13-921057/math_24.gif


OPS/images/fpls-13-934450/fpls-13-934450-g007.jpg


OPS/images/fpls-13-934450/fpls-13-934450-g003.jpg


OPS/images/fpls-13-934450/fpls-13-934450-g004.jpg


OPS/images/fpls-13-934450/fpls-13-934450-g005.jpg


OPS/images/fpls-13-934450/fpls-13-934450-g006.jpg


OPS/images/fpls-13-921057/math_9.gif


OPS/images/fpls-13-934450/crossmark.jpg


OPS/images/fpls-13-934450/fpls-13-934450-g001.jpg


OPS/images/fpls-13-934450/fpls-13-934450-g002.jpg


OPS/images/fpls-13-921057/math_8.gif


OPS/images/fpls-13-921057/fpls-13-921057-g014.gif


OPS/images/fpls-13-921057/fpls-13-921057-g015.gif


OPS/images/fpls-13-921057/fpls-13-921057-t001.jpg


OPS/images/fpls-13-921057/fpls-13-921057-g010.gif


OPS/images/fpls-13-921057/fpls-13-921057-g011.gif


OPS/images/fpls-13-921057/fpls-13-921057-g012.gif


OPS/images/fpls-13-921057/fpls-13-921057-g013.gif


OPS/images/fpls-13-921057/fpls-13-921057-g007.gif


OPS/images/fpls-13-921057/fpls-13-921057-g008.gif


OPS/images/fpls-13-921057/fpls-13-921057-g009.gif


OPS/images/fpls.2022.1029529/fpls-13-1029529-g013.jpg


OPS/images/fpls.2022.1029529/fpls-13-1029529-g012.jpg


OPS/images/fpls.2022.1029529/fpls-13-1029529-g011.jpg


OPS/images/fpls-13-921057/fpls-13-921057-g001.gif


OPS/images/fpls-13-921057/fpls-13-921057-g002.gif


OPS/images/fpls.2023.1215899/fpls-14-1215899-g001.jpg


OPS/images/fpls-13-921057/crossmark.jpg


OPS/images/fpls-13-921057/fpls-13-921057-g005.gif


OPS/images/fpls-13-921057/fpls-13-921057-g006.gif


OPS/images/fpls-13-921057/fpls-13-921057-g003.gif


OPS/images/fpls-13-921057/fpls-13-921057-g004.gif


OPS/images/fpls.2022.1029529/M3.jpg


OPS/images/fpls.2022.1029529/M2.jpg


OPS/images/fpls.2022.1029529/M11.jpg


OPS/images/fpls.2022.1029529/M10.jpg


OPS/images/fpls.2023.1215899/crossmark.jpg


OPS/images/fpls.2022.1029529/M1.jpg


OPS/images/fpls.2022.1029529/im1.jpg


OPS/images/fpls.2022.1029529/fpls-13-1029529-g014.jpg


OPS/images/fpls.2022.1038791/fpls-13-1038791-g004.jpg


OPS/images/fpls.2022.1038791/fpls-13-1038791-g003.jpg


OPS/images/fpls.2022.1038791/fpls-13-1038791-g002.jpg


OPS/images/fpls.2022.1038791/fpls-13-1038791-g001.jpg


OPS/images/fpls.2022.1038791/crossmark.jpg


OPS/images/fpls-13-921057/inline_9.gif


OPS/images/fpls-13-921057/math_1.gif


OPS/images/fpls-13-921057/math_10.gif


OPS/images/fpls-13-921057/math_11.gif


OPS/images/fpls-13-921057/inline_5.gif


OPS/images/fpls-13-921057/inline_6.gif


OPS/images/fpls-13-921057/inline_7.gif


OPS/images/fpls-13-921057/inline_8.gif


OPS/images/fpls-13-921057/inline_3.gif


OPS/images/fpls-13-921057/inline_4.gif


OPS/images/fpls.2022.1038791/fpls-13-1038791-g009.jpg


OPS/images/fpls.2022.1038791/fpls-13-1038791-g008.jpg


OPS/images/fpls.2022.1038791/fpls-13-1038791-g007.jpg


OPS/images/fpls.2022.1038791/fpls-13-1038791-g006.jpg


OPS/images/fpls.2022.1038791/fpls-13-1038791-g005.jpg


OPS/images/fpls.2022.1029529/M7.jpg


OPS/images/fpls.2022.1029529/M6.jpg


OPS/images/fpls.2022.1029529/M5.jpg


OPS/images/fpls.2022.1029529/M4.jpg


OPS/images/fpls-13-921057/math_19.gif


OPS/images/fpls-13-921057/math_2.gif


OPS/images/fpls-13-921057/math_20.gif


OPS/images/fpls-13-921057/math_15.gif


OPS/images/fpls-13-921057/math_16.gif


OPS/images/fpls-13-921057/math_17.gif


OPS/images/fpls-13-921057/math_18.gif


OPS/images/fpls-13-921057/math_12.gif


OPS/images/fpls-13-921057/math_13.gif


OPS/images/fpls.2022.1029529/table4.jpg


OPS/images/fpls-13-921057/math_14.gif


OPS/images/fpls.2022.1029529/table3.jpg


OPS/images/fpls.2022.1029529/table2.jpg


OPS/images/fpls.2022.1029529/table1.jpg


OPS/images/fpls.2022.1029529/M9.jpg


OPS/images/fpls.2022.1029529/M8.jpg


OPS/images/fpls-13-949857/math_17.gif


OPS/images/fpls.2022.1038791/table3.jpg


OPS/images/fpls-13-949857/math_16.gif


OPS/images/fpls.2022.1038791/table2.jpg


OPS/images/fpls-13-949857/math_15.gif


OPS/images/fpls.2022.1038791/table1.jpg


OPS/images/fpls-13-949857/math_14.gif


OPS/images/fpls.2022.1038791/M9.jpg


OPS/images/fpls-13-949857/math_13.gif


OPS/images/fpls.2022.1038791/M8.jpg


OPS/images/fpls.2022.1038791/M7.jpg


OPS/images/fpls.2022.1038791/M6.jpg


OPS/images/fpls-13-921057/fpls-13-921057-t010.jpg


OPS/images/fpls-13-921057/fpls-13-921057-t011.jpg


OPS/images/fpls-13-921057/fpls-13-921057-t006.jpg


OPS/images/fpls-13-921057/fpls-13-921057-t007.jpg


OPS/images/fpls-13-921057/fpls-13-921057-t008.jpg


OPS/images/fpls-13-921057/fpls-13-921057-t009.jpg


OPS/images/fpls-13-921057/fpls-13-921057-t002.jpg


OPS/images/fpls-13-921057/fpls-13-921057-t003.jpg


OPS/images/fpls-13-921057/fpls-13-921057-t004.jpg


OPS/images/fpls-13-921057/fpls-13-921057-t005.jpg


OPS/images/fpls-13-949857/math_21.gif


OPS/images/fpls-13-949857/math_20.gif


OPS/images/fpls-13-949857/math_2.gif


OPS/images/fpls.2022.1038791/table6.jpg


OPS/images/fpls-13-949857/math_19.gif


OPS/images/fpls.2022.1038791/table5.jpg


OPS/images/fpls-13-949857/math_18.gif


OPS/images/fpls.2022.1038791/table4.jpg


OPS/images/fpls.2022.1038791/M10.jpg


OPS/images/fpls.2022.1038791/M1.jpg


OPS/images/fpls.2022.1038791/im1.jpg


OPS/images/fpls.2022.1038791/fpls-13-1038791-g012.jpg


OPS/images/fpls.2022.1038791/fpls-13-1038791-g011.jpg


OPS/images/fpls.2022.1038791/fpls-13-1038791-g010.jpg


OPS/images/fpls-13-921057/inline_2.gif


OPS/images/fpls-13-921057/inline_14.gif


OPS/images/fpls-13-921057/inline_15.gif


OPS/images/fpls-13-921057/inline_16.gif


OPS/images/fpls-13-921057/inline_17.gif


OPS/images/fpls-13-921057/inline_10.gif


OPS/images/fpls-13-921057/inline_11.gif


OPS/images/fpls-13-921057/inline_12.gif


OPS/images/fpls-13-921057/inline_13.gif


OPS/images/fpls-13-921057/inline_1.gif


OPS/images/fpls.2022.1038791/M5.jpg


OPS/images/fpls.2022.1038791/M4.jpg


OPS/images/fpls.2022.1038791/M3.jpg


OPS/images/fpls.2022.1038791/M2.jpg


OPS/images/fpls-13-949857/inline_171.gif


OPS/images/fpls-13-954757/fpls-13-954757-i005.jpg


OPS/images/fpls-13-949857/inline_170.gif


OPS/images/fpls-13-954757/fpls-13-954757-i004.jpg


OPS/images/fpls-13-949857/inline_17.gif


OPS/images/fpls-13-954757/fpls-13-954757-i003.jpg


OPS/images/fpls-13-949857/inline_169.gif


OPS/images/fpls-13-954757/fpls-13-954757-i002.jpg


OPS/images/fpls-13-949857/inline_168.gif


OPS/images/fpls-13-954757/fpls-13-954757-i001.jpg


OPS/images/fpls-13-949857/inline_167.gif


OPS/images/fpls-13-954757/fpls-13-954757-i000.jpg


OPS/images/fpls-13-954757/fpls-13-954757-g014.jpg


OPS/images/fpls-13-954757/fpls-13-954757-g013.jpg


OPS/images/fpls-13-949857/inline_20.gif


OPS/images/fpls-13-949857/inline_2.gif


OPS/images/fpls-13-949857/inline_19.gif


OPS/images/fpls-13-954757/fpls-13-954757-i007.jpg


OPS/images/fpls-13-949857/inline_18.gif


OPS/images/fpls-13-954757/fpls-13-954757-i006.jpg


OPS/images/fpls-13-954757/fpls-13-954757-g009.jpg


OPS/images/fpls-13-954757/fpls-13-954757-g008.jpg


OPS/images/fpls-13-954757/fpls-13-954757-g007.jpg


OPS/images/fpls-13-954757/fpls-13-954757-g006.jpg


OPS/images/fpls-13-954757/fpls-13-954757-g005.jpg


OPS/images/fpls-13-954757/fpls-13-954757-g004.jpg


OPS/images/fpls-13-954757/fpls-13-954757-g003.jpg


OPS/images/fpls-13-954757/fpls-13-954757-g012.jpg


OPS/images/fpls-13-954757/fpls-13-954757-g011.jpg


OPS/images/fpls-13-954757/fpls-13-954757-g010.jpg


OPS/images/fpls-13-949857/inline_37.gif


OPS/images/fpls.2022.1039110/im15.jpg


OPS/images/fpls-13-949857/inline_36.gif


OPS/images/fpls.2022.1039110/im14.jpg


OPS/images/fpls-13-949857/inline_35.gif


OPS/images/fpls.2022.1039110/im13.jpg


OPS/images/fpls-13-949857/inline_34.gif


OPS/images/fpls.2022.1039110/im12.jpg


OPS/images/fpls-13-949857/inline_33.gif


OPS/images/fpls.2022.1039110/im10.jpg


OPS/images/fpls-13-949857/inline_32.gif


OPS/images/fpls.2022.1039110/im1.jpg


OPS/images/fpls-13-949857/inline_31.gif


OPS/images/fpls.2022.1039110/fpls-13-1039110-g010.jpg


OPS/images/fpls-13-949857/inline_30.gif


OPS/images/fpls.2022.1039110/fpls-13-1039110-g009.jpg


OPS/images/fpls.2022.1039110/fpls-13-1039110-g008.jpg


OPS/images/fpls.2022.1039110/fpls-13-1039110-g007.jpg


OPS/images/fpls-13-949857/inline_39.gif


OPS/images/fpls-13-949857/inline_38.gif


OPS/images/fpls-13-949857/inline_27.gif


OPS/images/fpls.2022.1039110/fpls-13-1039110-g005.jpg


OPS/images/fpls-13-949857/inline_26.gif


OPS/images/fpls.2022.1039110/fpls-13-1039110-g004.jpg


OPS/images/fpls-13-949857/inline_25.gif


OPS/images/fpls.2022.1039110/fpls-13-1039110-g003.jpg


OPS/images/fpls-13-949857/inline_24.gif


OPS/images/fpls.2022.1039110/fpls-13-1039110-g002.jpg


OPS/images/fpls-13-949857/inline_23.gif


OPS/images/fpls.2022.1039110/fpls-13-1039110-g001.jpg


OPS/images/fpls-13-949857/inline_22.gif


OPS/images/fpls.2022.1039110/crossmark.jpg


OPS/images/fpls-13-949857/inline_21.gif


OPS/images/fpls-13-954757/fpls-13-954757-t002.jpg


OPS/images/fpls-13-954757/fpls-13-954757-t001.jpg


OPS/images/fpls-13-954757/fpls-13-954757-i008.jpg


OPS/images/fpls-13-949857/inline_3.gif


OPS/images/fpls-13-949857/inline_29.gif


OPS/images/fpls-13-949857/inline_28.gif


OPS/images/fpls.2022.1039110/fpls-13-1039110-g006.jpg


OPS/images/fpls-13-960592/fpls-13-960592-g001.gif


OPS/images/fpls-13-949857/inline_57.gif


OPS/images/fpls-13-960592/crossmark.jpg


OPS/images/fpls-13-949857/inline_56.gif


OPS/images/fpls-13-960103/fpls-13-960103-t004.jpg


OPS/images/fpls-13-949857/inline_55.gif


OPS/images/fpls.2022.1029529/crossmark.jpg


OPS/images/fpls-13-960103/fpls-13-960103-t003.jpg


OPS/images/fpls-13-949857/inline_54.gif


OPS/images/fpls.2022.1039110/table8.jpg


OPS/images/fpls-13-960103/fpls-13-960103-t002.jpg


OPS/images/fpls-13-949857/inline_53.gif


OPS/images/fpls.2022.1039110/table7.jpg


OPS/images/fpls-13-960103/fpls-13-960103-t001.jpg


OPS/images/fpls-13-949857/inline_52.gif


OPS/images/fpls.2022.1039110/table6.jpg


OPS/images/fpls-13-960103/fpls-13-960103-i001.jpg


OPS/images/fpls-13-949857/inline_51.gif


OPS/images/fpls.2022.1039110/table5.jpg


OPS/images/fpls-13-960103/fpls-13-960103-i000.jpg


OPS/images/fpls-13-949857/inline_50.gif


OPS/images/fpls.2022.1039110/table4.jpg


OPS/images/fpls-13-949857/inline_5.gif


OPS/images/fpls.2022.1039110/table3.jpg


OPS/images/fpls-13-949857/inline_49.gif


OPS/images/fpls.2022.1039110/table2.jpg


OPS/images/fpls.2022.1039110/table1.jpg


OPS/images/fpls.2022.1039110/M4.jpg


OPS/images/fpls-13-960592/fpls-13-960592-g003.gif


OPS/images/fpls-13-960592/fpls-13-960592-g002.gif


OPS/images/fpls-13-949857/inline_47.gif


OPS/images/fpls-13-949857/inline_46.gif


OPS/images/fpls.2022.1039110/M3.jpg


OPS/images/fpls-13-949857/inline_45.gif


OPS/images/fpls.2022.1039110/M2.jpg


OPS/images/fpls-13-949857/inline_44.gif


OPS/images/fpls.2022.1039110/M1.jpg


OPS/images/fpls-13-949857/inline_43.gif


OPS/images/fpls.2022.1039110/im8.jpg


OPS/images/fpls-13-949857/inline_42.gif


OPS/images/fpls.2022.1039110/im7.jpg


OPS/images/fpls-13-949857/inline_41.gif


OPS/images/fpls.2022.1039110/im6.jpg


OPS/images/fpls-13-949857/inline_40.gif


OPS/images/fpls.2022.1039110/im5.jpg


OPS/images/fpls-13-949857/inline_4.gif


OPS/images/fpls.2022.1039110/im4.jpg


OPS/images/fpls.2022.1039110/im3.jpg


OPS/images/fpls.2022.1039110/im2.jpg


OPS/images/fpls-13-949857/inline_48.gif


OPS/images/fpls-13-960592/inline_9.gif


OPS/images/fpls-13-960592/inline_8.gif


OPS/images/fpls-13-960592/inline_7.gif


OPS/images/fpls-13-949857/inline_75.gif


OPS/images/fpls-13-960592/inline_6.gif


OPS/images/fpls-13-949857/inline_74.gif


OPS/images/fpls-13-960592/inline_5.gif


OPS/images/fpls-13-949857/inline_73.gif


OPS/images/fpls-13-960592/inline_4.gif


OPS/images/fpls-13-949857/inline_72.gif


OPS/images/fpls-13-960592/inline_3.gif


OPS/images/fpls-13-949857/inline_71.gif


OPS/images/fpls-13-960592/inline_2.gif


OPS/images/fpls-13-949857/inline_70.gif


OPS/images/fpls-13-960592/inline_13.gif


OPS/images/fpls-13-949857/inline_7.gif


OPS/images/fpls-13-960592/inline_12.gif


OPS/images/fpls-13-949857/inline_69.gif


OPS/images/fpls-13-949857/inline_68.gif


OPS/images/fpls-13-949857/inline_67.gif


OPS/images/fpls-13-960592/inline_10.gif


OPS/images/fpls-13-960592/inline_1.gif


OPS/images/fpls-13-949857/inline_66.gif


OPS/images/fpls-13-960592/fpls-13-960592-t003.jpg


OPS/images/fpls-13-949857/inline_65.gif


OPS/images/fpls-13-960592/fpls-13-960592-t002.jpg


OPS/images/fpls-13-949857/inline_64.gif


OPS/images/fpls.2022.1029529/fpls-13-1029529-g010.jpg


OPS/images/fpls-13-960592/fpls-13-960592-t001.jpg


OPS/images/fpls-13-949857/inline_63.gif


OPS/images/fpls.2022.1029529/fpls-13-1029529-g009.jpg


OPS/images/fpls-13-960592/fpls-13-960592-g007.gif


OPS/images/fpls-13-949857/inline_62.gif


OPS/images/fpls.2022.1029529/fpls-13-1029529-g008.jpg


OPS/images/fpls-13-960592/fpls-13-960592-g006.gif


OPS/images/fpls-13-949857/inline_61.gif


OPS/images/fpls.2022.1029529/fpls-13-1029529-g007.jpg


OPS/images/fpls-13-960592/fpls-13-960592-g005.gif


OPS/images/fpls-13-949857/inline_60.gif


OPS/images/fpls.2022.1029529/fpls-13-1029529-g006.jpg


OPS/images/fpls-13-960592/fpls-13-960592-g004.gif


OPS/images/fpls-13-949857/inline_6.gif


OPS/images/fpls.2022.1029529/fpls-13-1029529-g005.jpg


OPS/images/fpls-13-949857/inline_59.gif


OPS/images/fpls.2022.1029529/fpls-13-1029529-g004.jpg


OPS/images/fpls-13-949857/inline_58.gif


OPS/images/fpls.2022.1029529/fpls-13-1029529-g003.jpg


OPS/images/fpls.2022.1029529/fpls-13-1029529-g002.jpg


OPS/images/fpls.2022.1029529/fpls-13-1029529-g001.jpg


OPS/images/fpls-13-960592/inline_11.gif


OPS/images/fpls-13-974456/fpls-13-974456-g011.jpg


OPS/images/fpls-13-974456/fpls-13-974456-g010.jpg


OPS/images/fpls-13-974456/fpls-13-974456-g009.jpg


OPS/images/fpls-13-949857/inline_93.gif


OPS/images/fpls-13-974456/fpls-13-974456-g008.jpg


OPS/images/fpls-13-949857/inline_92.gif


OPS/images/fpls-13-974456/fpls-13-974456-g007.jpg


OPS/images/fpls-13-949857/inline_91.gif


OPS/images/fpls-13-974456/fpls-13-974456-g006.jpg


OPS/images/fpls-13-949857/inline_90.gif


OPS/images/fpls-13-974456/fpls-13-974456-g005.jpg


OPS/images/fpls-13-949857/inline_9.gif


OPS/images/fpls-13-974456/fpls-13-974456-g004.jpg


OPS/images/fpls-13-949857/inline_89.gif


OPS/images/fpls-13-974456/fpls-13-974456-g003.jpg


OPS/images/fpls-13-949857/inline_88.gif


OPS/images/fpls-13-974456/fpls-13-974456-g002.jpg


OPS/images/fpls-13-949857/inline_87.gif


OPS/images/fpls-13-949857/inline_86.gif


OPS/images/fpls-13-949857/inline_85.gif


OPS/images/fpls-13-974456/fpls-13-974456-g001.jpg


OPS/images/fpls-13-974456/fpls-13-974456-e001.jpg


OPS/images/fpls-13-974456/fpls-13-974456-e000.jpg


OPS/images/fpls-13-949857/inline_84.gif


OPS/images/fpls-13-974456/cross.jpg


OPS/images/fpls-13-949857/inline_83.gif


OPS/images/fpls-13-960592/math_6.gif


OPS/images/fpls-13-949857/inline_82.gif


OPS/images/fpls-13-960592/math_5.gif


OPS/images/fpls-13-949857/inline_81.gif


OPS/images/fpls-13-960592/math_4.gif


OPS/images/fpls-13-949857/inline_80.gif


OPS/images/fpls-13-960592/math_3.gif


OPS/images/fpls-13-949857/inline_8.gif


OPS/images/fpls-13-960592/math_2.gif


OPS/images/fpls-13-949857/inline_79.gif


OPS/images/fpls-13-960592/math_1.gif


OPS/images/fpls-13-949857/inline_78.gif


OPS/images/fpls-13-949857/inline_77.gif


OPS/images/fpls-13-949857/inline_76.gif


OPS/images/fpls-13-974339/fpls-13-974339-M1.jpg


OPS/images/fpls-13-974339/fpls-13-974339-g009.jpg


OPS/images/fpls-13-974339/fpls-13-974339-g008.jpg


OPS/images/fpls-13-974339/fpls-13-974339-g007.jpg


OPS/images/fpls-13-974339/fpls-13-974339-g006.jpg


OPS/images/fpls-13-974339/fpls-13-974339-g005.jpg


OPS/images/fpls-13-974339/fpls-13-974339-g004.jpg


OPS/images/fpls-13-974339/fpls-13-974339-g003.jpg


OPS/images/fpls-13-974339/fpls-13-974339-g002.jpg


OPS/images/fpls-13-974339/fpls-13-974339-g001.jpg


OPS/images/fpls-13-974339/crossmark.jpg


OPS/images/fpls-13-974456/fpls-13-974456-t004.jpg


OPS/images/fpls-13-974456/fpls-13-974456-t003.jpg


OPS/images/fpls-13-949857/math_12.gif


OPS/images/fpls-13-974456/fpls-13-974456-t002.jpg


OPS/images/fpls-13-949857/math_11.gif


OPS/images/fpls-13-974456/fpls-13-974456-t001.jpg


OPS/images/fpls-13-949857/math_10.gif


OPS/images/fpls-13-974456/fpls-13-974456-g016.jpg


OPS/images/fpls-13-949857/math_1.gif


OPS/images/fpls-13-974456/fpls-13-974456-g015.jpg


OPS/images/fpls-13-949857/inline_99.gif


OPS/images/fpls-13-974456/fpls-13-974456-g014.jpg


OPS/images/fpls-13-949857/inline_98.gif


OPS/images/fpls-13-974456/fpls-13-974456-g013.jpg


OPS/images/fpls-13-949857/inline_97.gif


OPS/images/fpls-13-974456/fpls-13-974456-g012.jpg


OPS/images/fpls-13-949857/inline_96.gif


OPS/images/fpls-13-949857/inline_95.gif


OPS/images/fpls-13-949857/inline_94.gif


OPS/images/fpls-13-978761/fpls-13-978761-g011.gif


OPS/images/fpls-13-978761/fpls-13-978761-g010.gif


OPS/images/fpls-13-978761/fpls-13-978761-g009.gif


OPS/images/fpls-13-978761/fpls-13-978761-g008.gif


OPS/images/fpls-13-978761/fpls-13-978761-g007.gif


OPS/images/fpls-13-978761/fpls-13-978761-g006.gif


OPS/images/fpls-13-978761/fpls-13-978761-g005.gif


OPS/images/fpls-13-978761/fpls-13-978761-g004.gif


OPS/images/fpls-13-978761/fpls-13-978761-g003.gif


OPS/images/fpls-13-978761/fpls-13-978761-g002.gif


OPS/images/fpls-13-978761/fpls-13-978761-g012.gif


OPS/images/fpls-13-978761/fpls-13-978761-g001.gif


OPS/images/fpls-13-978761/crossmark.jpg


OPS/images/fpls-13-974339/fpls-13-974339-t003.jpg


OPS/images/fpls-13-974339/fpls-13-974339-t002.jpg


OPS/images/fpls-13-974339/fpls-13-974339-t001.jpg


OPS/images/fpls-13-974339/fpls-13-974339-M6.jpg


OPS/images/fpls-13-974339/fpls-13-974339-M5.jpg


OPS/images/fpls-13-974339/fpls-13-974339-M4.jpg


OPS/images/fpls-13-974339/fpls-13-974339-M3.jpg


OPS/images/fpls-13-974339/fpls-13-974339-M2.jpg


OPS/images/fpls-13-978761/inline_6.gif


OPS/images/fpls-13-978761/inline_5.gif


OPS/images/fpls-13-978761/inline_4.gif


OPS/images/fpls-13-978761/inline_3.gif


OPS/images/fpls-13-978761/inline_2.gif


OPS/images/fpls-13-978761/inline_1.gif


OPS/images/fpls-13-978761/fpls-13-978761-t002.jpg


OPS/images/fpls-13-978761/fpls-13-978761-t001.jpg


OPS/images/fpls-13-978761/fpls-13-978761-g013.gif


