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Editorial on the Research Topic
Innovative pharmacometric approaches to inform drug development and
clinical use

A successful Drug Development is driven by many factors, but ultimately it is often dependent
upon the weakest part. Therefore, it is necessary to utilize all tools available to support the complete
journey for a successful development program. Model-informed drug development (MIDD) in
which crucial information is generated from mathematical analysis or modeling, is rapidly
becoming a powerful tool in pharmaceutical R&D and in the regulatory environment.
Appropriate use of modeling can contribute to more rational and efficient decision-making in
drug development, leading to substantial resource savings and shortened timelines.

MIDD can broadly be divided in data- andmechanism-drivenmodeling and themanuscripts
in this Research Topic are good examples of the diversity of applied algorithms. In addition, the
large range of disease indications is testimony to the impact of these modeling techniques in
clinical drug development and clinical practice.

Data-driven approaches include more traditional statistical bio-informatics analyses of
large datasets or machine learning algorithms to derive predictive insights (Ribba et al.). The
quality of these predictions is heavily dependent upon the nature of the training sets and
issues of generalizability need to be addressed.

Two articles look to derive estimates of drug exposure using more advanced
Physiologically-based Pharmacokinetic models (PBPK) to predict drug exposure in
other populations (Zazo et al.). An interesting combination of traditional PopPK
modeling with machine learning aims to understand the role of covariates (Zhu et al.).
Finally, PK modeling can also be used to derive the quantitative pharmacokinetics
trajectory of biomarkers which can clarify the contribution of these biomarkers in
clinical development (Michelet et al.).
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Mechanism-driven modeling on the other hand can be helpful
in those cases where data are lacking or noisy. This is often the case
in CNS disorders, where robust quantitative biomarkers are scarce,
functional scales are often based on structured interviews and
biomarkers are often not strongly related to clinical outcomes.
This section includes a contribution, using computational
neuroscience to gain insights in the mechanisms of catatonia
(Roberts and Conour) and a position paper on computational
psychiatry, especially with regard to reward physiology (Ribba), a
field in full development. This underscores the power of combining
the academic discipline of computational neurosciences with
Quantitative Systems Pharmacology.

Another paper describes the powerful prediction capability for
combination therapy and virtual patient modeling in oncology
(Anbari et al.). Here the authors use a mechanistic modeling of
different therapeutic modalities, each calibrated with their own
clinical dataset, to explore the optimal conditions for
combination therapy and to estimate the variability that can
provide estimates for power calculations.

In summary, Model-Informed Drug Development (MIDD) is
rapidly becoming an essential tool for quantitatively assessing the
relevance of data- and knowledge-based information to support not
only clinical trial development but also clinical practice. From
estimation of effective doses over combination therapy to
personalized medicines, this approach has matured to the point
that they can make the difference between a successful and a failed
clinical development project.
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The pyroptosis-related gene
signature predicts prognosis and
reveals characterization of the
tumor immune
microenvironment in acute
myeloid leukemia

Tao Zhou1,2†, Kai Qian1,2†, Yun-Yun Li3†, Wen-Ke Cai4,
Sun-Jun Yin1, Ping Wang1 and Gong-Hao He1,5*
1Department of Clinical Pharmacy, 920th Hospital of Joint Logistics Support Force of People’s
Liberation Army, Kunming, China, 2College of Pharmacy, Dali University, Dali, China, 3Department of
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Cardiothoracic Surgery, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army,
Kunming, China, 5Research Center of Clinical Pharmacology, Yunnan Provincial Hospital of Traditional
Chinese Medicine, Kunming, China

Background: Pyroptosis is a novel inflammatory form of programmed cell

death and a prospective target for cancer therapy. Nevertheless, little is

known about the association between pyroptosis-related genes (PRGs) and

acutemyeloid leukemia (AML) prognosis. Herein, we systematically investigated

the specific functions and clinical prognostic value of multiple PRGs in AML.

Methods: Univariate and LASSO Cox regression analyses based on TCGA and

GTEx databases were used to generate the PRG signature, whose predictive

efficacy of survival was evaluated using survival analysis, ROC, univariate and

multivariate Cox analyses as well as subgroup analysis. The BeatAML cohort was

used for data validation. The association between risk score and immune cell

infiltration, HLA, immune checkpoints, cancer stem cell (CSC), tumor mutation

burden (TMB), and therapeutic drug sensitivity were also analyzed.

Results: Six -PRG signatures, namely, CASP3, ELANE, GSDMA, NOD1, PYCARD,

and VDR were generated. The high-risk score represented a poorer prognosis

and the PRG risk score was also validated as an independent predictor of

prognosis. A nomogram including the cytogenetic risk, age, and risk score was

constructed for accurate prediction of 1-, 3-, and 5-year survival probabilities.

Meanwhile, this risk score was significantly associated with the tumor immune

microenvironment (TIME). A high-risk score is characterized by high immune

cell infiltration, HLA, and immune checkpoints, as well as low CSC and TMB. In

addition, patients with low-risk scores presented significantly lower IC50 values

for ATRA, cytarabine, midostaurin, doxorubicin, and etoposide.

Conclusion:Our findings might contribute to further understanding of PRGs in

the prognosis and development of AML and provide novel and reliable

biomarkers for its precise prevention and treatment.
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Introduction

Acute myeloid leukemia (AML) is the second most common

type of leukemia diagnosed in adults and accounted for

approximately 30% of all adult leukemia cases (Perna et al.,

2017), which is primarily characterized by heterogeneity of

molecular abnormalities and aberrant accumulation of

immature myeloid progenitors in bone marrow and peripheral

blood owing to impaired differentiation of hematopoietic

progenitors (Sperlazza et al., 2015). The invasive infiltration of

AML is mainly represented by a malignant extramedullary

infiltration which involves the skin, lymph nodes, liver, spleen,

and even central nervous system, and shows poorer prognosis in

clinic (Stölzel et al., 2011). In recent years, although the survival

and prognosis of AML patients were relatively prolonged with

the development and application of molecular targeted therapy

and combination therapy in clinical practice, the 5-year survival

rate remained at 27% for AML patients over 20 years old and

even 69% for patients younger than 20 partially due to the

absence of reliable prognostic biomarkers (Ball and Stein,

2019; Schlenk et al., 2019; Zheng et al., 2020). Thus,

identifying novel and effective prognostic biomarkers is

crucial for improving the AML prognosis and better

understanding the pathogenesis of AML.

Recently, much attention was paid to the influences of the

tumor microenvironment (TME) on tumorigenesis and

development, and alterations in TME components were found

at every stage of malignant development in almost all carcinomas

(Wu and Dai, 2017; Arneth, 2019). As an important component

of TME, the tumor immune microenvironment (TIME) was also

found to play prominent roles in tumor cell proliferation,

invasion, and metastasis (Fu et al., 2019). Numerous studies

showed that TIME was a key determinant of diagnosis and

therapeutic response in tumor patients (Xu B. et al., 2021;

Yang et al., 2021; Zeng et al., 2021; Wang et al., 2022).

However, TIME is complex and variable mainly because of

the multiple interaction networks among tumor, immune,

stromal, and mesenchymal cells along with various soluble

factors and changes in extracellular matrix (ECM)

components as well (Wu and Dai, 2017; Xu B. et al., 2021).

Therefore, identification of certain potential biomarkers related

to TIME would eventually contribute to better understanding of

tumor development and further identification of candidate

therapeutic targets.

As a highly specific inflammatory programmed cell death,

pyroptosis was reported to be significantly cross-correlated

with TIME according to previous studies (Orning et al., 2019;

Erkes et al., 2020). When persistent inflammation is present,

initial activation and assembly of inflammasome started

within host cells (Balahura et al., 2020). Subsequently, the

caspase was further activated and produced inflammatory

cytokines, eventually resulting in pyroptotic cell death (Broz

et al., 2010; Moujalled et al., 2021). In recent years, a growing

number of studies demonstrated that pyroptosis played crucial

roles in pathogenesis and progression of various types of

cancers including AML. It was reported that activation of

NLR family pyrin domain containing 1 b (NLRP1b) by small

molecule inhibitors of serine dipeptidase 8/9 (DPP8/9)

induced caspase-1 dependent pyroptosis, which, in turn,

suppressed the development of AML (Johnson et al., 2018).

Meanwhile, pyridoxine was also found to induce death of

primary AML cell in AML patients and prevent disease

progression by activating caspase-3/8 and promoting the

release of inflammatory factors (Yang et al., 2020). These

findings suggested that pyroptosis provided a tumor-

suppressive microenvironment and played an

immunomodulatory role in AML. However, the prognostic

influence of pyroptosis on AML patients was still largely

unknown. Moreover, due to technical limitations, most

previous studies were limited to a small number of

pyroptosis-related genes (PRGs), whereas the involved

PRGs might be far more in numbers and their antitumor

effects were very likely to interact with each other in a highly

coordinated manner. Therefore, a comprehensive analysis

regarding the features of TIME cell infiltration mediated by

multiple PRGs may provide a relatively whole profile of the

function of PRGs and also further insights into the underlying

mechanisms of AML occurrence and progression, which,

however, has not been investigated so far as we know.

Based on these backgrounds, we, herein, systematically

analyzed the differential expression of PRGs and the

prognostic value of these genes in clinical practice between

AML and normal samples and established an independent

prognostic PRG signature. Subsequently, we also explored

the relationship between pyroptosis and TIME as well as

evaluated the sensitivity of therapeutic drugs for AML

patients according to PRG prognostic signature. This study

identified reliable prognostic biomarkers for AML patients and

provided a novel scientific basis for future immunotherapy

in AML.

Materials and methods

Acquisition of data

The specific analysis process of the present study is

illustrated in Supplementary Figure S1. The RNA

sequencing (RNA-seq) data of 151 AML patients’ bone

marrow (BM) samples and 755 normal peripheral whole
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blood samples were acquired from The Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov/) and the

Genotype-Tissue Expression (GTEx) database (https://www.

gtexportal.org/). Meanwhile, we obtained the corresponding

clinical features of 151 AML patients from TCGA and

eventually included 132 samples after excluding 19 samples

without survival time. Furthermore, the gene expression

profile and relevant clinical characteristic data of 91 AML

patients were downloaded from the BeatAML database (Tyner

et al., 2018) (http://www.vizome.org/aml/) as a validation

cohort. All patients’ clinical features are detailed in

Supplementary Table S1. The RNA-seq data of raw count

normalized from the aforementioned databases were utilized

for differential expression analysis. Then, the count values

were converted to transcripts per kilobase million (TPM)

values, which were further transformed to log2 (TPM + 1)

for subsequent analysis. In addition, the somatic mutation and

copy number variation (CNV) data were also retrieved from

TCGA database.

Pyroptosis-related genes

A total of 44 PRGs were retrieved from the GeneCards

(https://www.genecards.org/) and previously published

literature works (Man and Kanneganti, 2015; Wang and

Yin, 2017; Karki and Kanneganti, 2019; Xia et al., 2019),

all of which were protein-coding genes. The full details of

these genes are listed in Supplementary Table S2. However, as

the expression profile of GSDME and PTVK could not be

acquired from the GTEx database, we finally selected 42 PRGs

for further analysis. The location of PRGs on the

chromosome was plotted by the “RCircos” R package. The

“limma” R package was utilized to identify the differentially

expressed pyroptosis–related genes (DEPRGs) with a p

value <0.05 and |log2FC| > 0 between tumor and normal

tissues. The PRG somatic mutation landscape was presented

via the “maftools” R packages. The frequencies of genetic

amplification and deletion were also summarized. The

univariate Cox regression was performed to identify PRGs

significantly associated with overall survival (OS) in TCGA

cohort. Simultaneously, the Spearman correlation test was

applied to evaluate the associations across all PRGs and the

comprehensive results were visualized using the “igraph” R

package.

Consensus clustering

Consensus clustering was adopted to identify the distinct

pyroptosis-related patterns pertaining to the expression of

pyroptosis regulators using k-means algorithms (Hartigan and

Wong, 1979). The numbers and stability of clusters were

determined by the consensus clustering algorithms of the

“ConsensuClusterPlus” R package (Wilkerson and Hayes,

2010). We conducted 1,000 times repetitions to guarantee the

classification stability.

Construction and validation of a
prognostic gene signature by prognostic
DEPRGs

The significant prognostic-related DEPRGs were presented

via the “VennDiagram” R package. Subsequently, the least

absolute shrinkage and selection operator (LASSO) Cox

regression analysis using the “glmnet” R package was applied

to screen out the optimal candidate gene combination to

construct the prognostic gene signature (Tibshirani, 1997).

The optimal value of the penalty parameter λ was determined

by 10-fold cross-validation based on the minimum criteria.

According to the coefficient calculated by LASSO regression

and the standardized and normalized TCGA AML expression

level, the individual risk score of each AML patient could be

calculated using the following formula:

Risk score � ∑
n

i�1
Exp ipCoef i.

Simultaneously, the TCGA AML patients were separated

into high- and low-risk categories according to the median risk

score. The principal component analysis (PCA) and

t-distributed stochastic neighbor–embedding (t-SNE)

analysis were conducted using the “Rtsne” and “ggplot2” R

packages to investigate the distribution of various groups in

terms of gene expression levels in the constructed model.

Thereafter, we performed Kaplan–Meier analysis via the

“survminer” R package to assess the survival difference

between the two categories. The “survival” and “timeROC”

R packages were utilized to perform the time-dependent

receiver operating characteristic (ROC) curve analysis,

which was applied to evaluate the prognostic gene

signature’s predictive value. The prognostic significances of

gene signature and other clinical characteristics were further

investigated using univariate and multivariate Cox regression

analyses. Moreover, the same formula and statistical methods

were used to further validate the prognostic capacity of the

gene signature in the BeatAML cohort.

The chi-squared test was adopted to explore the

association of gene signature and clinicopathological

characteristics, which was visualized with a heatmap using

the “pheatmap” R package. TheWilcoxon signed-rank test and

Kruskal–Wallis H-test were utilized to compare the risk score

among various categories of these clinicopathological

characteristics, and the visualization of results was

presented via the boxplots.
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Establishment of the predictive
nomogram

The independent clinical features (cytogenetic risk, age,

and risk score) validated using univariate and multivariate

Cox regression analyses were enrolled to construct a predictive

prognosis nomogram using the “rms” and “survival” R

packages. Time-dependent ROC curves for 1, 3, and 5 years

were used to assess the performance of the nomogram. The

calibration curves for 1-, 3-, and 5-year prediction were

utilized to depict the consistency between predicted and

actual survival. Furthermore, an alluvial diagram was

drawn to show the changes in pyroptosis-related clusters,

risk score, age, and cytogenetic risk using the “ggalluvial” R

package.

Functional enrichment analysis of DEGs
based on the high- and low-risk groups

AML patients in TCGA cohort were batched into two

groups according to the median risk score, respectively. The

same approach was also performed in the BeatAML cohort.

Afterward, the differentially expressed genes (DEGs) were

extracted by utilizing the “limma” R package with the

criteria of FDR <0.05 and |log2FC| > 1. Gene ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analyses of the DEGs were

performed using the “clusterProfiler” R package (Wu et al.,

2021).

Assessment of the tumor immune
environment

We applied the ESTIMATE algorithm to calculate the

stromal, immune scores, and ESTIMATE scores of each

patient in TCGA and BeatAML cohorts (Yoshihara et al.,

2013). Furthermore, considering the significant roles of the

immune cell infiltration in the TIME, the infiltrating scores of

22 kinds of human immune cells in each AML sample were

computed by the CIBERSORT algorithm with

1,000 permutation. Furthermore, the single-sample gene set

enrichment analysis (ssGSEA) algorithm using the “gsva” R

package was utilized to calculate infiltration abundance of

29 immune signatures in the AML TIME. Subsequently, we

explored the association between the enrichment scores of

22 kinds of immune cells and the risk score or expression

levels of the aforementioned identified optimal candidate genes.

In addition, the Wilcoxon signed-rank test was applied to

estimate the differences in expression of human lymphocyte

antigen (HLA) signature and immune checkpoint genes

between high- and low-risk groups.

Analysis of CSC, TMB, and drug
susceptibility between high- and low-risk
groups

The gene expression–based stemness index was acquired

from the previous study (Malta et al., 2018). We explored the

correlation between risk score and cancer stemness cell (CSC).

Simultaneously, we also computed the tumor mutation burden

(TMB) score for each AML sample based on the “maftools” R

package and analyzed the differences in the TMB score between

high- and low-risk groups, as well as the associations between the

TMB score and risk score. To investigate the differences in

efficacy of therapeutic drugs in patients between high- and

low-risk categories, we calculated the semi-inhibitory

concentration (IC50) values of drugs commonly used for the

treatment of AML via the “pRRophetic” R package.

Statistical analysis

All statistical analyses were performed by R software (version

4.0.4). Association coefficients were calculated by the Spearman

correlation test. Log-rank tests were used for identifying the

significance of differences in Kaplan–Meier analysis curves. p

values of less than 0.05 were considered statistically significant

(*p < 0.05) in all analyses.

Results

Landscape of expression and genetic
alterations of PRGs in AML

This study first summarized the incidence of CNVs and

somatic mutations of 42 PRGs in AML. The exploration of

CNVs demonstrated prevalent CNV alterations in all 42 PRGs,

among which the CNV of TIRAP was significantly increased

while the CNVs of CEBPB, PLCG1, and VDR were significantly

decreased (Figure 1A). Furthermore, the location of CNV

variation in the PRGs on their respective chromosomes is

displayed in Figure 1B. In the following assessment of the

genetic mutation of PRGs in depth, only CASP3 (1%),

NLRC4 (1%), NLRP1 (1%), NLRP2 (1%), NLRP3 (1%),

TFAM (1%), and TXNIP (1%) showed the genetic mutation

in AML patients (Figure 1C). To determine whether these gene

variants influence the expression of PRGs in patients with AML,

we further calculated the mRNA expression levels of 42 PRG

between normal and tumor specimens and then identified the

statistically significant DEGs (p < 0.05) that correspond to

them. As a result, 19 downregulated and 16 upregulated

genes were observed in the tumor group (Figure 1D).

Subsequently, we discovered that the CNV alteration may be

a major factor resulting in perturbations on PRG expression
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levels. In comparison to normal samples, the expressions of

genes with deleted CNVs were found to be significantly

decreased in AML samples (such as CEBPB, PLCG1, and

VDR), and vice versa (such as TIRAP). Based on the

aforementioned results, the composite landscape of

interaction and correlation of the 42 PRGs and their

prognostic value for AML patients was further

comprehensively displayed in a pyroptosis network, which

showed that 12 pyroptosis genes exhibited a significant

prognostic value (Figure 1E; Supplementary Tables S3, S4).

Tumor classification based on the DEPRGs

To further investigate the expression features of the PRGs in

AML, we applied the consensus clustering algorithm to classify

the patients with AML according to the expression spectrums of

35 DEPRGs (Supplementary Figures S2A–H). We found that k =

3 seemed to be the optimum alternative for categorizing the

entire cohort into three subtypes (Figure 2A and Supplementary

Figures S2I–J), based on which satisfied separation across the

three clusters was achieved according to the PCA and t-SNE plots

(Figures 2B,C). The OS time was also compared between the

three groups, but no significant difference was observed (p = 0.11,

Figure 2D). Furthermore, the heatmap displayed the PRG

expression profile and clinicopathological characteristic such

as race, gender, age, FAB classification, cytogenetic risk, FLT3-

ITD mutation, and NPM1 mutation, with NPM1 mutation (chi-

squared test: p < 0.01) and FAB classification (p < 0.001)

demonstrating significant differences among the three groups

(Figure 2E).

Gene signature construction and
validation from prognostic DEPRGs

To further explore the prognostic value of the DEPRGs in

AML patients, the gene signature was constructed. As shown

FIGURE 1
Genetic and transcriptional alteration of PRGs in AML. (A) Frequencies of CNV gain, loss, and non-CNV for 42 PRGs in TCGA cohort. (B)
Locations of CNV alterations in PRGs on 23 chromosomes. (C)Mutation frequency of PRGs in TCGA cohort. (D) Heatmap of expression patterns of
PRGs in normal and tumor samples. (E)Network of correlations including PRGs in TCGA cohort. PRGs, pyroptosis-related genes; AML, acutemyeloid
leukemia; CNV, copy number variant; TCGA, The Cancer Genome Atlas.
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in Figure 3A, 12 of 42 PRGs showed a significant prognostic

value according to univariate Cox regression analysis, among

which 10 genes were overlapped between DEPRGs and

prognostic genes and were identified as the prognostic

DEPRGs. The specific prognostic value of 10 genes is

further depicted in Figure 3B and Supplementary Table S5

with five risk and five favorable factors, respectively.

Subsequently, based on 1,000 times 10-fold cross-validation

in LASSO Cox regression analysis, the minimum of the λ value

was selected as the optimum λ value (0.0278). Then, six of

10 genes with not-zero coefficients were screened to construct

the gene signature according to the optimum λ (Figures 3C,D).

The risk score of each patient is computed as follows: risk

score = (−0.0993153386641694 × expression of CASP3) +

(−0.0669072839409446 × expression of ELANE) +

(1.29694083393916 × expression of GSDMA) +

(−0.164405100033389 × expression of NOD1) +

(0.440274519545682 × expression of PYCARD) +

(0.00707428724075096 × expression of VDR). Then, the

patients were separated into the high-risk group (n = 66) and

low-risk (n = 66) group according to the median risk score

(Figure 4A). The distribution of the risk score indicated that the

OS status in the high-risk category was significantly worse than

that in the low-risk category (Figure 4B). Further PCA and t-SNE

analyses showed identifiable dimensions between the high-risk

and low-risk categories (Figures 4C,D). Meanwhile, the

Kaplan–Meier survival curves demonstrated significantly

superior OS in patients with low scores than those with high

scores (p < 0.0001; Figure 4E). Furthermore, time-dependent

ROC analysis also revealed that this gene signature exhibited a

favorable prognostic performance with AUCs of 0.736, 0.769,

and 0.815 at 1-, 3-, and 5-year, respectively (Figure 4F).

FIGURE 2
Tumor classification based on the DEPRGs. (A) 132 AML patients were classified into three clusters according to the consensus clusteringmatrix
(k = 3). (B) PCA and (C) t-SNE analysis exhibiting a remarkable difference in transcriptomes among three clusters. (D) Kaplan–Meier OS curves for
three clusters. (E)Heatmap and clinicopathological features of three clusters. DEPRGs, differentially expressed pyroptosis-related genes; AML, acute
myeloid leukemia; PCA, principal component analysis; t-SNE, t-distributed stochastic neighbor embedding; OS, overall survival.
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To verify the capability of the 6-gene signature, the

BeatAML dataset was downloaded as an external validation

cohort. We calculated the risk scores of patients with the same

formula and stratified patients into high-risk (n = 45) and low-

risk (n = 46) groups (Supplementary Figure S3A). Similarly,

patients in the two groups of the BeatAML cohort were

distributed in various directions based on the PCA and

t-SNE analyses (Supplementary Figures S2C–D). Similar to

the results of TCGA cohort, patients with low scores were

found to have significantly longer OS and a favorable

prognostic value (p = 0.0034) in the validation cohort

(Supplementary Figures S3B,E). In addition, the results of

1-, 3-, and 5-year ROC curves also possessed

relatively higher AUC values (0.654, 0.800, and 0.659),

indicating that the signature had excellent predictive

capability for survival of AML patients (Supplementary

Figure S3F).

Independent prognostic value of the 6-
gene signature and evaluation of clinical
characteristics

We performed univariate and multivariate Cox analyses to

assess the possibility of the risk score functioning as an

independent prognostic factor. The results of univariate

Cox regression analysis demonstrated that the risk score

was a significant independent predictor of poor survival in

both TCGA (p < 0.001, HR = 3.176, 95% CI = 2.122–4.754;

Figure 5A) and BeatAML cohorts (p = 0.005, HR = 3.108, 95%

CI = 1.407–6.867; Figure 5C). Multivariate analysis also

revealed that the risk score was a critical prognostic factor

for AML patients in both cohorts after accounting for other

confounders (p < 0.001, HR = 3.356, 95% CI = 1.958–5.753 for

TCGA cohort and p = 0.031, HR = 2.602, 95% CI =

1.092–6.201 for the BeatAML cohort; Figures 5B,D).

FIGURE 3
Construction of a PRG signature for AML in TCGA cohort. (A) Ten prognostic DEPRGswere identified via the Venn diagram. (B) Forest plots show
the results of univariate Cox analysis of OS for 10 prognostic DEPRGs. (C) LASSO regression of the 10 prognostic DEPRGs. (D) Cross-validation for
turning the parameter selection in the LASSO regression. PRG, pyroptosis-related gene; AML, acute myeloid leukemia; TCGA, The Cancer Genome
Atlas; DEPRGs, differentially expressed pyroptosis-related genes; OS, overall survival; LASSO, the least absolute shrinkage and selection
operator.
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FIGURE 4
Prognostic study of TCGA cohort via the PRG signature model. (A) Risk scores and (B) survival status of AML patients. (C) PCA and (D) t-SNE
analysis showing the different gene expression of samples. (E) Kaplan–Meier OS curves for high-risk and low-risk groups. (F) The 1-, 3-, and 5-year
ROC curve to predict the survival status. TCGA, The Cancer Genome Atlas; PRG, pyroptosis-related gene; PCA, principal component analysis; t-SNE,
t-distributed stochastic neighbor embedding; OS, overall survival; ROC, receiver operating characteristic.
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The chi-squared test of correlations between the risk

subgroups and clinicopathological features indicated that

NPM1 mutation (p < 0.05), cytogenetic risk (p < 0.001),

FAB classification (p < 0.001), and PRG clusters (p < 0.001)

were significantly associated with risk subgroups

(Figure 5E). Subsequently, the Wilcoxon signed-rank test

was applied to compare the differences in risk scores across

respective ;groups of the aforementioned

clinicopathological characteristics, also demonstrating a

remarkable relationshipof these clinicopathological

characteristics with risk scores (Supplementary Figures

S4A–D).

In addition, we further assessed whether the risk score

could still maintain a good prediction of survival

across different subgroups. The results showed that low-risk

patients also showed a better prognosis than high-risk

patients in all subgroups, with statistically

significant results in the following subgroups: race (white:

p < 0.0001), gender (male: p = 0.018; female: p = 0.0001),

age (≤55 years: p = 0.024; >55 years: p = 0.00045), FAB

classification (M0: p = 0.017; M2: p = 0.011), cytogenetic

risk (intermediate: p = 0.036), NPM1 mutation (positive:

p = 0.0051; negative: p = 0.0029), and FLT3-ITD mutation

(positive: p = 0.034; negative: p = 0.0019) (Supplementary

Figures S5A–R).

Development of a prognostic nomogram
for AML

In consideration of the fact that the risk score alone was not

sufficient to predict OS in AML patients, a nomogram

incorporating the risk score and clinicopathological features

was constructed to forecast 1-, 3-, and 5-year OS of AML

patients according to the significant results of multivariate

Cox regression analysis (Figure 6A). Furthermore, ROC

curves indicated that this nomogram exhibited a good

prognostic performance with AUCs of 0.738, 0.768, and

0.815 at 1-, 3-, and 5-year, respectively (Figure 6B). The

subsequent calibration plot showed the proposed nomogram

operated in a manner consistent with an ideal model

(Figure 6C). Moreover, the alluvial diagram was applied to

visualize variations in the aforementioned characteristics of

AML patients (Figure 6D).

Functional annotation of the 6-gene
signature

To further investigate the potential biological functions and

pathways of the 6-gene signature, the DEGs across the high-risk

and low-risk categories were applied to perform GO and KEGG

FIGURE 5
Univariate and multivariate Cox regression analyses for the risk score. (A) Univariate and (B) multivariate Cox regression of the risk score and
other clinical characteristics associated with OS in the TCGA cohort. (C) Univariate and (D) multivariate Cox regression of the risk score and other
clinical characteristics associated with OS in the BeatAML cohort. (E) Heatmap for association between clinicopathologic characteristics and risk
groups. OS, overall survival.
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analyses. The specific details of results were presented in

Supplementary Tables S6, S7. Furthermore, these DEGs of

TCGA cohort were significantly enriched in biological

processes and molecular functions with immunity, such as

neutrophil activation involved in the immune response,

leukocyte cell–cell adhesion, regulation of leukocyte

FIGURE 6
Construction and evaluation of a PRG signature-based nomogram. (A) Nomogram incorporating cytogenetic risk, age, and risk score was
constructed to predict 1-, 3-, and 5-year survival probabilities. (B) ROC curves for 1-, 3-, and 5-year were used to assess the performance of
nomogram. (C) Calibration curves for 1-, 3-, and 5-year prediction were utilized to depict the consistency between predicted and actual survival. (D)
Alluvial diagram of subgroup distributions with different risk scores and survival outcomes. PRG, pyroptosis-related gene; ROC, receiver
operating characteristic.
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FIGURE 7
GO and KEGG functional enrichment between high- and low-risk groups. Top 10 results of (A)GO and (B) KEGG pathway enrichment of DEGs
among high- and low-risk groups in TCGA cohort. Top 10 results of (C) GO and (D) KEGG pathway enrichment of DEGs among high- and low-risk
groups in the BeatAML cohort. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes.
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FIGURE 8
Immune characteristics analysis in TCGA cohort. (A) Associations between risk score and both immune and stromal scores. (B) Correlations
between the abundance of immune cells and six genes in the proposed signature. Comparison of the enrichment scores of (C) 22 kinds of immune
cells and (D) 29 types of immune signatures between high- and low-risk groups. (E) Expression of HLA in the high- and low-risk groups. (F)
Expression of immune checkpoints in the high- and low-risk groups. p values are shown as: ns, not significant. *p= < 0.05; **p= < 0.01; ***p= <
0.001. HLA, human lymphocyte antigen.
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proliferation, immune receptor activity, immunoglobulin

binding, and IgG binding (Figure 7A). Several of these

biological processes and molecular functions were

validated in the BeatAML cohort, including neutrophil

activation involved in the immune response, leukocyte

cell–cell adhesion, and immune receptor activity

(Figure 7C). The results of KEGG analysis also showed

enrichment of immune-related pathways, which included

cytokine–cytokine receptor interaction, phagosome, viral

protein interaction with cytokine and cytokine receptor,

intestinal immune network for IgA production, and

leukocyte transendothelial migration in both TCGA and

BeatAML cohorts (Figures 7B,D). Moreover, pathways

regarding B-cell receptor signaling and Th1 and Th2 cell

differentiation were also found in TCGA (Figure 7B) and

BeatAML cohorts (Figure 7D), respectively. In addition,

several cancer-related pathways were simultaneously

identified in both cohorts, such as transcriptional

misregulation in cancer, hematopoietic cell lineage, ECM-

receptor interaction, and proteoglycans in cancer. These

results revealed that the pyroptosis-related 6-gene

signature was significantly associated with cancer

progression and particularly possessed an important

influence on the immunoregulation of TME.

Tumor immune microenvironment
analysis of 6-gene signature

Next, we further explored the association between the

pyroptosis-related gene signature and tumor immune

microenvironment and observed that the low-risk patients

were significantly correlated with inferior immune and

ESTIMATE scores in the TCGA cohort (Figure 8A).

Subsequently, based on the CIBERSORT algorithm, we

compared the distribution of 22 kinds of immune cells in

diverse risk subgroups. A significant difference in the

distribution of immune cells was observed in high-risk

patients with superior infiltration of monocytes and

M2 macrophages, but inferior infiltration of plasma cells,

resting memory CD4+ T cells, follicular helper T cells,

activated mast cells, and resting mast cells (Figure 8C and

Supplementary Table S8). Concurrently, we analyzed the

connection between the risk score and the infiltration score

of immune cells, which further suggested that the risk score

was significantly associated with the six kinds of immune cells

(Supplementary Figure S6). We also evaluated the relationship

between the six pyroptosis-related genes in the proposed

signature and abundance of immune cells. The results

showed that partial immune cells were significantly

associated with the six genes (Figure 8B). Furthermore,

comparisons of 29 immune signatures provided by the

ssGSEA algorithm revealed that high-risk patients exhibited

higher infiltration scores of APC co-inhibition, APC co-

stimulation, B cells, CCR, checkpointa, DCs, HLA, iDCs,

increased inflammation , neutrophils, parainflammation,

pDCs, T-cell co-inhibition, T helper cells, Tfh, TIL, and

type I IFN response, whereas lower infiltration scores of

mast cells (Figure 8D and Supplementary Table S9)

indicated higher immune infiltration among high-risk AML

patients.

Considering that HLA-related genes play a critical role in

regulating the immune response, we then compared the

expression of HLA-related genes between different subgroups

and observed that most of the HLA-related genes were

upregulated in the high-risk group (Figure 8E). Furthermore,

we investigated the correlation between 33 immune checkpoints

and the 6-PRG signature. Figure 8F demonstrated that high-risk

patients exhibited significantly higher expression of PDCD1,

CD200R1, CAG3, and LGALS9 as well as lower expression of

CD160, NRP1, and TMIGD2 compared with low-risk patients. In

addition, similar results were also observed in the BeatAML

cohort (Supplementary Figures S7, S8; Supplementary Tables

S10, S11).

Analysis of CSC index, TMB, and drug
susceptibility

Considering that the CSC index and TMB play a critical role in

the pathogenesis and immunotherapy of AML (Eppert et al., 2011;

Snyder et al., 2014), we further explored the potential correlation

between them and the PRG signature. As shown in Figure 9A, the

risk score was negatively associated with the CSC index (R = −0.29,

p = 0.0011), suggesting that AML cells with a lower risk score

exhibitedmore significant stem cell characteristics and a lower degree

of cell differentiation.Meanwhile, we also found that TMBof the low-

risk group was significantly higher than that of the high-risk group

(p = 0.039; Figure 9B) and was negatively associated with the PRG

risk score (R = −0.25, p = 0.019; Figure 9C). Furthermore, the

Kaplan–Meier survival curve for combining the PRG risk score and

TMB revealed significant differences in survival outcomes and

patients with high TMB and low PRG risk scores exhibited a

more pronounced survival advantage (Figure 9D).

Moreover, given the impact of drug susceptibility on patients

with AML, we further selected the drugs currently used in the

treatment of AML to assess the sensitivity of these drugs to

patients in both high-risk and low-risk subgroups. Interestingly,

we observed that patients in the low-risk group presented

significantly lower IC50 values for ATRA, cytarabine,

midostaurin, doxorubicin, and etoposide than those in the

high-risk group (Figures 9E–I). Therefore, patients with a low

PRG risk score might exhibit better treatment benefits when

administrating these drugs. Nevertheless, the effect of these drugs

in the treatment of AML patients remains to be further proven in

future clinical studies.
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Discussion

AML is a rapidly progressive hematologic tumor with poor

prognosis, and its development can be influenced by multiple factors

(Coombs et al., 2016), among which genes associated with

programmed cell death (PCD), such as autophagy-related genes

and ferroptosis-related genes, were demonstrated to serve as

reliable prognostic biomarkers for AML (Fu et al., 2021; Shao

et al., 2021). However, studies regarding the role of PRGs in

AML are restricted to individual PRG and have never been

investigated systematically and comprehensively. In this study, we

detected the global alterations in PRGs at transcriptional and genetic

levels in AML and identified a total of 42 currently available PRGs,

themajority of whichwere differentially expressed betweenAML and

normal samples and were associated with prognostic of this disease.

Subsequently, we first constructed a reliable and valid PRG signature

for AML based on six PRGs. In both training and validation cohorts,

the PRG signature exhibited robust capabilities in predicting survival

outcomes in AML patients. Furthermore, patients with low and high

PRG scores showed significantly different clinicopathological

features. In addition, univariate and multivariate Cox regression

analyses also indicated that the PRG signature was an

independent prognostic factor. These findings confirm that the

present PRG signature can be used as a potentially reliable

prognostic biomarker in AML patients with various

clinicopathological features.

FIGURE 9
Comprehensive analysis of the risk score in AML. (A) Associations between the risk score and CSC index. (B)Comparison of TMB between high-
and low-risk groups. (C) Spearman correlation analysis of risk score and TMB. (D) Kaplan–Meier OS curves for different TMB and risk score
subgroups. (E–I)Relationships between risk score and therapeutic drugs of AML sensitivity. AML, acutemyeloid leukemia; CSC, cancer stemness cell;
TMB, tumor mutation burden; OS, overall survival.
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Pyroptosis, a novel form of PCD, is activated via the

classical caspase-1 inflammasome or non-classical caspase-4,

caspase-5, and caspase-11–mediated pathways (Tang et al.,

2020). Recently, the dual roles of pyroptosis in tumor

progression gained substantial attention. On one hand, it

was reported that inflammatory molecules released from

cancer cells underwent pyroptosis and gradually converted

the surrounding normal cells into cancer cells by altering the

microenvironment, which in turn promoted tumor

development. On the other hand, induction of tumor cell

pyroptosis was also found to inhibit tumor progression and

was demonstrated to be a potential therapeutic target for drug

development (Tang et al., 2020). This situation raised great

uncertainties regarding the exact functions of pyroptosis in

different kinds of tumors. Furthermore, as a matter of fact,

previous studies paid much more attention to the roles of

PRGs in solid carcinomas [e.g., hepatocellular carcinoma

(Deng et al., 2022), breast cancer (Xu D. et al., 2021), lung

adenocarcinoma (Lin W. et al., 2021), and colon

adenocarcinoma (Luo et al., 2021)] with few studies,

however, focusing on non-solid tumor such as AML.

Therefore, the present study provided a novel signature

featuring six PRGs (CASP3, ELANE, GSDMA, PYCARD,

VDR, and NOD1) that exactly and independently predict

OS in AML patients, which will further contribute to

driving the progress of individualized prevention and

treatment of AML.

Among these PRGs, caspase-3 (CASP3) is an important

member of the caspase family, whose activation degrades

structural and functional proteins within cells, thereby

inducing cell death (Yuan et al., 1993; Jiang et al., 2020). In

the present study, we further revealed that this gene was a

favorable predictor of survival outcome and was associated

with increased sensitivity to chemotherapeutic drug–induced

pyroptosis in AML, which was in accordance with the

previous study indicating that CASP3 activated by

chemotherapeutic drugs initiated pyroptosis (Wang et al.,

2017). Moreover, as one of the primary serine proteases

secreted by neutrophils, ELANE is another known promoter

of pyroptosis, which activates inflammatory factors such as

TNF-α, IL-1β, and IL-18, and induces neutrophils to develop

pyroptosis (Kambara et al., 2018; Mirea et al., 2020).

Consistently, our study demonstrated that the expression of

ELANE was significantly higher while the neutrophil

infiltration score was remarkably lower in the low-risk group

than that in the high-risk group, which was very likely to be

ascribed to its pyroptosis activating effect in neutrophils. In

addition, the following three genes (GSMDA, PYCARD, and

VDR) that were previously identified as possible executors of

pyroptosis and usually exhibited tumor-suppressive effects (Ding

et al., 2016; Šutić et al., 2019; Ling et al., 2022) were also identified

and included in the present PRG signature, further confirming its

reliability.

Interestingly, as a cytoplasmic pattern recognition

receptor, NOD1 was initially identified as a cancer-

promoting factor and might cause tumor recurrence and

metastasis, resulting in a poorer prognosis through

pyroptosis (Fernández-García et al., 2022; Nomoto et al.,

2022). However, in our research, NOD1 showed a

significant cancer suppressive effect and acted as a

protective factor against AML. This discrepancy may be

attributed to the specialized tumor microenvironment in

non-solid tumors and also the antitumor immune activity

generated by the combined action of multiple PRGs although

the exact mechanism still needs to be further explored.

Previous studies showed that the pro-inflammatory effects of

pyroptosis are strongly associated with the regulation of the

TIME (Tsuchiya, 2021). This study hence further evaluated

the association between the risk score of PRG signature and

TIME and found that patients in the high-risk group showed

significantly higher immune scores than those in the low-risk

group. The abundance of infiltration of tumor immune cells also

differed between the high- and low-risk groups. Compared to the

high-risk group, resting CD4+ memory T cells and follicular

helper T cells, both of which were well acknowledged to exert an

important antitumor immune response (Watanabe, 2021),

infiltrated at higher levels in the low-risk group; whereas

tumorigenesis-, angiogenesis- and immune suppressing-related

cell types, such as M2 macrophages, monocytes, antigen-

presenting cells, and dendritic cells (Nahas et al., 2019; Fu and

Song, 2021), showed higher infiltration levels in the high-risk

group. Furthermore, this study also found that patients with

high-risk scores showed a worse prognosis than those with low-

risk scores. These findings indicated that the immunosuppressive

microenvironment played important roles during the genesis and

development of AML. In fact, it was reported that the formation

of an immunosuppressive microenvironment usually prevented

the clearance of tumor cells by tumor killer cells, resulting in an

increased risk of malignant progression and death (Fridman

et al., 2022). Therefore, treatment targeting the

immunosuppressive microenvironment may be a more

effective and feasible strategy for patients with a poor

prognosis of AML.

In addition, we found thatmost HLA-related genes and PDCD1

expressed at higher levels in the high-risk group, which was in

accordance with the current increasing evidence regarding solid

tumors suggesting that more HLA presentation increased the

recognition of tumor-associated antigens in HLA and in turn

increased the success of immune checkpoint inhibitor therapy

(Rizvi et al., 2015; Lin W. Y. et al., 2021). Therefore, patients

with high-risk scores for AML might benefit more from

immunotherapy, especially with immune checkpoint inhibitors

PD-1.

Although we analyzed the effects of pyroptosis on the prognosis

of AML and the immune microenvironment as comprehensively as

possible, the following points remained inadequate. First, all analyses
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in this study were performed based on retrospective data from public

databases, and large prospective studies and additional in vivo and

in vitro experimental studies are still needed to confirm our findings.

Second, the proposed gene signature model was validated only

through public databases. Therefore, further clinical trials are still

necessary to confirm its clinical utility. In addition, the potential

mechanisms of the present six key genes used formodel construction

need to be further explored in order to better understand the

tumorigenesis and development of AML. Finally, subgroup

analyses for ethnicity were not performed in our study mainly

due to the limited availability of current original data, which

should also be validated in future studies based on additional risk

models.

In summary, we comprehensively analyzed the expression and

genetic changes of PGRs in AML, their prognostic value in the

clinic, their important role in TIME, and constructed a signature

consisting of six PRGs, which was confirmed to be an independent

predictor for OS in AML patients. The results of this study will

contribute to further understanding of the important role of

pyroptosis in the prognosis and development of AML and

provide novel and reliable biomarkers for its precise prevention

and treatment.
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PK model using the lumping
method with real cases
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Pharmacokinetic (PK) modeling is a useful method for investigating drug

absorption, distribution, metabolism, and excretion. The most commonly

used mathematical models in PK modeling are the compartment model and

physiologically based pharmacokinetic (PBPK) model. Although the theoretical

characteristics of eachmodel are well known, there have been few comparative

studies of the compatibility of the models. Therefore, we evaluated the

compatibility of PBPK and compartment models using the lumping method

with 20 model compounds. The PBPK model was theoretically reduced to the

lumped model using the principle of grouping tissues and organs that show

similar kinetic behaviors. The area under the concentration–time curve (AUC)

based on the simulated concentration and PK parameters (drug clearance [CL],

central volume of distribution [Vc], peripheral volume of distribution [Vp]) in

eachmodel were compared, assuming administration to humans. The AUC and

PK parameters in the PBPK model were similar to those in the lumped model

within the 2-fold range for 17 of 20 model compounds (85%). In addition, the

relationship of the calculated Vd/fu (volume of distribution [Vd], drug-unbound

fraction [fu]) and the accuracy of AUC between the lumped model and

compartment model confirmed their compatibility. Accordingly, the

compatibility between PBPK and compartment models was confirmed by

the lumping method. This method can be applied depending on the

requirement of compatibility between the two models.

KEYWORDS

pharmacokinetic modeling, physiologically based pharmacokinetic (PBPK) model,
lumping method, compartment model, compatibility
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1 Introduction

Pharmacokinetic (PK) modeling is a research technique for

quantifying and predicting the kinetics of drugs (Daryaee and

Tongee, 2019). This technique has contributed to a reduction in

failure rate and an increase in success rate in drug discovery

and development (Gobburu and Marroum, 2001; Garralda

et al., 2017). The main mathematical models used in PK

modeling are the compartment model and physiologically

based PK (PBPK) model (Lin et al., 2016). The

compartment model explains the fate of a drug in the body

through compartmentalization of the whole body on the

premise of kinetic homogeneity. The number of

compartments in the body is determined using the rate of

drug distribution in a model body. In general, one- and two-

compartment models are used. The compartment models are

relatively simple, but they can efficiently predict the

concentration of drugs in blood. However, the

physicochemical properties of the drug (e.g., solubility,

partition coefficient, protein binding) and the physiological

properties of tissue and organs (e.g., volume, blood flow)

cannot be reflected in the model (Khojasteh et al., 2011a;

Jones and Rowland, 2013; Ahmed, 2015; Southwood et al.,

2018). In contrast, the PBPK model associates the blood flow

with each tissue and organ in the body by expressing the

anatomical and physiological characteristics of the body as

well as the physicochemical properties of drugs to predict the in

vivo kinetics of the drug (Edginton et al., 2008; Jones et al.,

2009). The PBPK model describes the drug distribution rate

through each tissue and organ using models of perfusion rate

limited tissue and permeability rate limited tissue. In the

perfusion rate limited tissue model, the factors affecting the

time for drugs to reach steady state are tissue volume (VT),

tissue blood flow (QT), and tissue to plasma partition coefficient

(KPT). The permeability rate constant of the drug is a major

component to determine the time for drugs to reach steady

state in the permeability rate limited tissue model (Espie et al.,

2009; Khalil and Läer, 2011; Utembe et al., 2020). The PBPK

model allows prediction of the drug blood concentration and

tissue distribution for various conditions by reflecting the

physicochemical properties of the drug, the physiological

properties of tissues and organs, and the PK properties

related to the drug (e.g., metabolism, tissue distribution)

(Shin et al., 2015; U.S. Food and Drug Administration,

2020). However, the PBPK model is mathematically and

structurally more complex than the compartment model,

and therefore requires a large amount of varied data to

secure sufficient predictive power (Gerlowski and Jain, 1983;

Anderson, 1995; Charnick et al., 1995).

The lumped model, a version of the multi-compartment

PBPK model with fewer compartments and reduced

complexity, was developed to overcome these limitations of

the PBPK model. Several methods have been suggested to

reduce the complexity of the formulas and structures by

simplifying the PBPK model. A lumped model can be created

by grouping tissues and organs with similar dynamic patterns to

reflect the physiological characteristics of the body (Bernareggi

and Rowland, 1991). Alternatively, a mathematical

transformation method can be used that groups tissues of the

same eigenvalue by matrixing each tissue concentration to

ultimately calculate the eigenvalue (Okino and

Mavrovouniotis, 1998). It is possible to minimize the errors

and bias in the model by simplifying the PBPK model with a

mathematical transformation method (Coxson and Bischoff,

1987; Li and Rabitz, 1991). However, this is a simplified

method based on the mathematical theory that does not

reflect the physiological characteristics of the body and

dynamic factors of the drug (Kuo and Wei, 1969; Watson

et al., 1996).

Although a few previous studies attempted to enhance

model compatibility, including that between the PBPK and

lumped models, in terms of mathematical concepts (Coxson

and Bischoff, 1987; Li and Rabitz, 1991; Okino and

Mavrovouniotis, 1998), an approach to evaluate the

theoretical background across PBPK, lumped, and

compartment models is still lacking, and no study thus far

has shown its application to a real case. Therefore, we focused

on evaluating the compatibility of the PBPK and compartment

models using the lumping method and demonstrated with

20 real cases. The 20 model drugs were selected based on

various ranges of systemic clearance, volume of distribution,

therapeutic classification, and the biopharmaceutical drug

disposition classification system (BDDCS) (Supplementary

Table S1). Additionally, we selected some drugs using the

PBPK model code developed for simulation. Although it is

important to assess the concentrations of diverse compounds in

the tissues and blood, there have been few studies of the PK

characteristics of a wide range of compounds using different

models. The objective of this study was to simplify of the model

and verify of compatibility between the models for various

drugs (Figure 1).

2 Materials and methods

2.1 Drugs and software

We selected 20 previously approved drugs for this study.

PBPK models for these 20 model compounds were established as

described in the literature (Supplementary Tables S2, S3). The R

package mrgsolve (version 0.9.2, Metrum Research Group,

Tariffville, CT. United States) was used to simulate model

compounds, and non-compartment analysis (NCA) was

performed using Phoenix WinNonlin (version 8.1; Certara,

Princeton, NJ, United States) to calculate the area under the

concentration-time curve (AUC).
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2.2 PBPK modeling approach

This study applied the PBPK models to the model

compounds by dividing various tissues and organs into

compartments (Figure 2). In general, perfusion rate limited

tissue models have been used for the tissue distribution in

PBPK models. Therefore, this type of model was used (Jones

et al., 2006; Peters and Hultin, 2008; Chen et al., 2012; Sinha

et al., 2012). The physiological data (tissue volume, tissue blood

flow) and input parameters (hepatic clearance, renal clearance,

absorption rate constant, drug-unbound fraction, blood to

plasma ratio) used in the model compound PBPK models

are summarized in Supplementary Tables S2, S3,

respectively. Every model we used was confirmed its validity

by the sensitivity analysis and a goodness-of-fit (GOF),

reported on relevant literatures. References are listed in

Supplementary Table S3.

The following differential equations Eqs 1–3 were used to

describe the changes in drug concentrations in arterial blood,

venous blood, and lung, respectively:

VA ×
dCA

dt
� Qlu × ⎛⎝Clu

Kplu
BP

− CA
⎞⎠ (1)

VV ×
dCV

dt
� ∑

T
⎛⎝QT ×

CT
KpT
BP

⎞⎠ − Qlu × CV (2)

Vlu ×
dClu

dt
� Qlu × ⎛⎝CV − Clu

Kplu
BP

⎞⎠ (3)

where VA is the arterial volume, CA is the arterial drug

concentration, Qlu is the lung blood flow, Clu is the lung drug

concentration, KPlu is the lung to plasma partition coefficient, BP is

the blood to plasma ratio,VV is the venous volume,CV is the venous

drug concentration,QT is the tissue blood flow, CT is the tissue drug

concentration, KPT is the tissue to plasma partition coefficient, Vlu is

the lung volume, and Clu is the drug concentration in the lung. Note

that in Eq. 2 for drug concentration in the venous blood, lung tissues

that did not take up the drug through venous blood were excluded

from calculating the uptake drug concentration (Elmokadem et al.,

2019).

In tissues that do not eliminate drugs (e.g., adipose, bone,

muscle), drug concentrations can be expressed by differential

equations that show the differences between the uptake drug

concentrations reflecting the tissue blood flow and output drug

concentrations reflecting QT and KPT as follows (Elmokadem

et al., 2019):

VT ×
dCT

dt
� QT × ⎛⎝CA − CT

KpT
BP

⎞⎠ (4)

whereVT is the tissue volume,CT is the tissue drug concentration,

QT is the tissue blood flow, CA is the arterial drug concentration,

FIGURE 1
Schematic compatibility relationships among PBPK, lumped, and compartment models.
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KPT is the tissue to plasma partition coefficient, and BP is the

blood to plasma ratio.

The changes in drug concentrations in the tissues where

drugs are eliminated, such as the liver and kidney, are described

as follows (Yanni et al., 2010):

VT ×
dCT

dt
� QT × ⎛⎝CA − CT

KpT
BP

⎞⎠ − fu × CLT ×
CT
KpT
BP

(5)

where VT is the tissue volume, CT is the tissue drug

concentration, QT is the tissue blood flow, CA is the arterial

drug concentration, KPT is the tissue to plasma partition

coefficient, BP is the blood to plasma ratio, fu is the drug-

unbound fraction, and CLT is the total tissue clearance.

Hepatic clearance (CLhep) and renal clearance (CLki) were

obtained from the literature as described in Supplementary

Table S3.

2.3 Lumped modeling approach

Lumped models were developed as described previously

(Nestorov et al., 1998). All tissues and organs

compartmentalized in the PBPK model were grouped into six

compartments based on similar physiological characteristics

(Figure 2). Arterial blood, venous blood, and lungs were

lumped into the lumped central compartment (LCEN). The

tissues that did not eliminate drugs, such as adipose, bone,

brain, muscle, heart, rest of the body, and skin, were lumped

into the non-eliminating tissues compartment (NET). However,

the tissues that eliminated drugs, such as liver and kidney, as well

as the spleen and intestinal tract that are connected to the liver,

were not lumped.

As described in Eqs 1–4, the main factors determining

drug concentrations in blood and tissues in the PBPK model

are VT, QT, and KPT. These factors, therefore, were calculated

using the following equations and applied in the lumped

model. Volume (VLump) and blood flow (QLump) in the

lumped compartments were calculated as the sum of those

of the lumped tissues. For the tissue-to-plasma partition

coefficient (KLump) in the lumped compartments, the sum

of the partition coefficients reflecting the volume of tissues to

be lumped was divided by the volume of the lumped

compartment (Supplementary Tables S4, S5) (Nestorov

et al., 1998; Pilari and Huisinga, 2010):

FIGURE 2
Assignment of tissues of the PBPK model to the lumped compartments of the lumped model for 20 model compounds. The lumped central
compartment (LCEN) is represented by black circles and the non-eliminating tissues compartment (NET) is represented bywhite circles. The number
of different symbols for a given compound corresponds to the number of compartments in the lumpingmodel. Abbreviations ad, adipose; ar, arterial
blood; bo, bone; br, brain; gu, gut; he, heart; ki, kidney; li, liver; lu, lung; mu, muscle; re, rest of body; sk, skin; sp, spleen; ve, venous blood.
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VLump � ∑
T
VT (6)

QLump � ∑
T
QT (7)

KLump � 1
VLump

∑
T
(VT × KpT) (8)

where VLump is the volume in the lumped compartment, VT is the

tissue volume, QLump is the blood flow in the lumped

compartment, QT is the tissue blood flow, KLump is the tissue

to plasma partition coefficient in the lumped compartment, and

KPT is the tissue to plasma partition coefficient.

The drug concentrations in LCEN and NET were calculated

using Eqs 9, 10, respectively, as follows (Elmokadem et al., 2019):

VLCEN ×
dCLCEN

dt
� ∑

T
⎛⎝QT ×

CT
KpT
BP

⎞⎠ − QLCEN × CLCEN (9)

VNET ×
dCNET

dt
� QNET × ⎛⎝CLCEN − CNET

KpNET

BP

⎞⎠ (10)

where VLCEN is the volume in the LCEN, CLCEN is the drug

concentration in the LCEN, QT is the tissue blood flow, CT is the

tissue drug concentration, KPT is the tissue to plasma partition

coefficient, BP is the blood to plasma ratio, QLCEN is the blood

flow in the LCEN, VNET is the volume in the NET, CNET is the drug

concentration in the NET, QNET is the blood flow in the NET, and

KPNET is the tissue to plasma partition coefficient in the NET. Note

that in Eq. 9 for calculation of the drug concentration in the LCEN,

the systematic circulation tissues that did not receive blood supply

from the venous blood were excluded from the sum for

normalization using the VT, QT, and KPT of each tissue.

2.4 Compartment model approach

The one- or two-compartment model was used for model

compounds, whereas drug clearance (CL), central volume of

distribution (Vc), peripheral volume of distribution (Vp),

inter-compartmental clearance (Q), and absorption rate

constant (Ka) values were obtained from the literature, as

described in Supplementary Table S6. We performed model

validation, according to the relevant literature, by checking the

GOF plot and conducting a visual predictive check (VPC).

References are listed in Supplementary Table S6.

2.5 Theoretical considerations of
compatibility among PBPK, lumped, and
compartment models

Considering the origin of each PK model, PK models, what it

mentioned above, could be expected by compatibility based on

meaning of mathematical and biological assumptions.

For instance, the total clearance in the PK model could be

represented by Eq. 11 (Cao and Jusko, 2012).

CLT � CLhep + CLki + CLothers (11)

where CLT is the total tissue clearance, CLhep is the hepatic

clearance, CLki is the renal clearance, CLothers is the sum of

tissue clearances except liver and kidney.

Despite the difference of the way to CLT among PBPK,

lumped, and compartment model, CLT should be

approximated by theoretically true clearance regardless of way

of estimation. In general, CLT could be estimated based on blood

concentrations, so we could suppose that CLT, that is calculated

by sum of CLhep, CLki and CLothers obtained by PBPK or lumped

model, should be similar with estimation of CLT value from

compartment model.

In addition, abovementioned approaches could be acceptable in

case of drug distribution related with volume of distribution to

tissue. The rate of drug distribution to liver may be defined in the

PBPK and lumped models as Eq. 12 (Cao and Jusko, 2012).

Vli ×
dCli

dt
� Qli × ⎛⎝CA − Cli

Kpli
BP

⎞⎠ − fu × CLhep ×
Cli
Kpli
BP

(12)

whereVli is the liver volume,Cli is the liver drug concentration,Qli is

the liver blood flow, CA is the arterial drug concentration, KPli is the

liver to plasma partition coefficient, BP is the blood to plasma ratio,

fu is the drug-unbound fraction, and CLhep is the hepatic clearance.

Since the lumped model was focused on merging the

compartment where it has similar biological characteristics in

comparison with PBPK, the compatibility between them could be

easily explained.

Moreover, the theoretical compatibility among PBPK, lumped,

and compartment model could be explained by additional

assumption. For example, the well-stirred assumption of the

hepatic compartment may be also applicable. The PBPK and

lumped models with hepatic compartment can be related to

clearance concepts of compartment model, assuming the well-

stirred model as follows (Cao and Jusko, 2012):

CLhep � Qli ×
fu × CLint

fu × CLint + Qli
(13)

where CLhep is the hepatic clearance, Qli is the liver blood flow, fu

is the drug-unbound fraction, and CLint is the intrinsic clearance.

Therefore, CLT and apparent Vd of drugs, having mainly

distributed into liver and eliminated by liver, could be

approximately calculated with fu and CLhep.

2.6 Evaluation of compatibility among
PBPK, lumped, and compartment models

Simulations were performed 1,000 times to compare the

compatibility of the models. The therapeutic dose of each drug
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was administered orally in a single dose to adults having

similar weight, who were then followed up at various

simulation intervals (e.g., 0–48 h or 0–312 h) depending on

the drugs and their dosing amounts to determine the drug

concentrations under the same experimental conditions in the

three models. To compare the drug concentrations in the

blood and tissues between each model, the AUC using NCA

was utilized as the PK parameter for exposure (Scheff et al.,

2011). However, the maximum blood concentration (Cmax),

which is related to absorption, was excluded because this study

was performed to examine whether drug distribution,

metabolism, and excretion could be lumped. Moreover, it is

well known that the variation of Cmax is 50%–60% higher than

that of the AUC (Endrenyi and Yan, 1993). Therefore, key

parameters of PK, such as drug CL, Vc, and Vp, were

compared (Benet, 1984). To compare the AUC and PK

parameters, we used the 2-fold range criteria typically used

as the acceptance criteria for the PBPK model (Sager et al.,

2015). Additionally, we have performed statistical analysis to

compare the AUC and clearance among PBPK, lumped, and

compartment model. Those results are described in Tables

1–3. Comparison of AUC and PK parameters was performed

according to the following steps:

Step 1. Each model was built based on the parameters described

in the literature (e.g., CL, Vc, Vp).

Step 2. Comparison of AUC obtained from drug concentrations

in tissues and blood simulated using each model.

Step 3. Comparison of CL and Vc between models.

Step 4. Comparison of Vp between models (Vp in PBPK and

lumped models were calculated using Eqs 14, 15, respectively).

Vp in PBPK model � VT × KpT

Body weight
(14)

Vp in lumped model � VT × KpT

Body weight
(15)

where Vp is the peripheral volume of distribution, VT is the tissue

volume, and KPT is the tissue to plasma partition coefficient.

To further approach the compatibility among the three

models, we estimated the empirical relationship of the

calculated Vd/fu and the accuracy of the AUC between the

lumped and compartment models.

Step 5. Estimation of empirical relations between lumped and

compartment models for the ratio between the volume of

distribution (Vd, where Vd is typically assumed to be the sum

of Vc and Vp) and the drug-unbound fraction (fu). Note that the

descriptorsVc,Vp, and fu are shown in Supplementary Tables S3,

S7, S8, respectively.

Step 6. Estimation of the accuracy of the AUC as follows:

Theoritical AUClast at central compartment

� AUClast at LCEN ×
CLin lumped model

CLin compartment model
(16)

The accuracy of AUC � AUClast at central compartment

Theoritical AUClast at central compartment

(17)

3 Results

3.1 Comparison of AUCs

To confirm the model development steps, the performances

of all models were confirmed by comparison between simulated

and reported PK profiles. The distribution rate in PBPK model is

assumed to be governed by rapid equilibrium. Based on this

assumption, the average value of each tissue AUC in the PBPK

model was compared with each compartment in lumped and the

compartment model.

The AUCs in the central compartment of each model are

shown in Table 1. Those for arterial blood, venous blood, and

lungs in the PBPKmodel were similar to those in the LCEN of the

lumped model within a range of 2-fold for 18 of the 20 model

compounds (90%). For clozapine and amlodipine, however, the

values for differed considerably between the PBPKmodel and the

LCEN of the lumped model. The AUCs of clozapine and

amlodipine of the PBPK model were 130.033 mg h/L and

7.598 mg h/L, respectively. These results differed from the

estimates of 12.823 mg h/L and 0.505 mg h/L, respectively, in

the lumped model. Furthermore, the AUCs in LCEN of the

lumped model were similar to those of the compartment model

within the range of 2-fold for 14 of the 20 model compounds

(70%); the exceptions were midazolam, telmisartan, paracetamol,

artemether, fluoxetine, and theophylline.

The AUCs in the peripheral compartment are shown in

Table 2. In adipose, bone, brain, muscle, heart, rest of the body,

and skin, where the drugs were not eliminated, the AUCs after

lumping were included in the AUCs before lumping for 19 of the

20 model compounds (95%). In the case of metoprolol, however,

the AUC of the NET deviated from the 2-fold range between the

PBPK and lumped models with values of 5.476 mg h/L and

2.644 mg h/L, respectively. Furthermore, the AUCs in the

NET of the lumped model differed from those of the

compartment model for most two-compartment model

compounds (6 of 9, 66.7%).

3.2 Comparison of PK parameters

Next, we compared the CL, Vc, and Vp.
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CL is the sum of clearance in the liver and kidneys, which was

not significantly different within the 2-fold range between the

three models for 19 of the 20 model (95%), the exception being

alfentanil for which CL deviated from the 2-fold range between

the three models with values of 0.555 L/h/kg and 0.209 L/h/kg in

the PBPK/lumped models and the compartment model,

respectively (Table 3).

Vc where the drug is rapidly and homogeneously distributed

was equal to the total tissue volume and was similar between the

PBPK and lumped models. However, Vc of the lumped model

differed from that in the central compartment of the

compartment model for most two-compartment model

compounds (12 of 20, 60.0%) (Supplementary Table S7).

Vp where the drugs are distributed in a slow and

heterogeneous manner was similar within the 2-fold range

between the PBPK and lumped models for 19 of 20 model

compounds (95%), the exception being metoprolol for which

Vp deviated from the 2-fold range between the PBPK and lumped

models with values of 0.278 L/kg and 0.593 L/kg, respectively

(Supplementary Table S8). In addition, the volume of

distribution in the peripheral compartment of the lumped

model differed from that in the peripheral compartment of

the compartment model for most two-compartment model

compounds (8 of 9, 88.9%).

The empirical relations of the calculated Vd/fu between the

lumped and compartment models are shown in Figure 3

(Khojasteh et al., 2011b). The concept of this post hoc

analysis which compares with the Vd/Fu value between two

models was based on the fact that the apparent ideal volume

of distribution was close to that of the unbound drug fraction.

Furthermore, the protein binding effect on the volume of

distribution could be more significant in the peripheral

compartment than in the central compartment (Holford and

Yim, 2016). Therefore, we had to pay attention that the volume of

the peripheral can be distributed to the tissue in inverse

proportion to the value of the unbound drug fraction. Using

this analysis, the calculated Vd/fu in the lumped model was

correlated with the calculated Vd/fu in the compartment model.

The accuracy of the AUC between the lumped and

compartment models was assessed using Eqs 16, 17. The

TABLE 1 Comparison of AUC parameters of central compartment in PBPK, lumped, and compartment models for 20 compounds.

Model PBPK model Lumped model Compartment model

Tissue, compartment Lungs, arterial blood, venous blood Lumped central compartment (LCEN) Central compartment

Parameter (unit) Average of tissue AUClast (mg•h/L) AUClast at LCEN (mg•h/L) AUClast at central compartment (mg•h/L)
(2-fold range)Compound (2-fold range) (2-fold range)

Alfentanil 0.348 (0.174-0.697) 0.351 (0.175-0.702) 0.585 (0.293-1.171)

Amlodipine 7.598 (3.799-15.195) 0.505 (0.253-1.011)* 0.496 (0.248-0.993)#

Artemether 2.608 (1.304-5.216) 2.877 (1.438-5.754) 0.173 (0.087-0.346)+,#

Caffeine 1.349 (0.674-2.698) 1.482 (0.741-2.963) 0.953 (0.477-1.906)

Clozapine 130.033 (65.017-260.066) 12.823 (6.411-25.645)* 14.172 (7.086-28.344)#

Cyclosporine A 21.776 (10.888-43.552) 12.285 (6.143-24.571) 18.363 (9.181-36.726)

Digoxin 0.056 (0.028-0.111) 0.060 (0.030-0.120) 0.030 (0.015-0.060)

Fluoxetine 2.736 (1.368-5.471) 1.926 (0.963-3.851) 4.511 (2.256-9.022)

Metoprolol 0.987 (0.494-1.974) 1.074 (0.537-2.147) 0.630 (0.315-1.260)

Midazolam 1.005 (0.503-2.010) 0.977 (0.489-1.954) 0.098 (0.049-0.196)

Nevirapine 146.303 (73.151-292.605) 164.225 (82.113-328.450) 203.575 (101.787-407.150)

Ofloxacin 50.220 (25.110-100.440) 53.246 (26.623-106.492) 55.173 (27.586-110.345)

Paracetamol 28.650 (14.325-57.300) 33.827 (16.914-67.655) 67.964 (33.982-135.929)

Pioglitazone 2.368 (1.184-4.735) 3.201 (1.600-6.402) 5.529 (2.765-11.058)

Rifampicin 153.468 (76.734-306.937) 79.553 (39.777-159.106) 65.084 (32.542-130.168)

S-Warfarin 28.075 (14.037-56.150) 35.292 (17.646-70.584) 30.006 (15.003-60.012)

Telmisartan 760.097 (380.049-1,520.195) 986.822 (493.411-1973.643) 0.707 (0.353-1.414)+,#

Theophylline 468.329 (234.164-936.658) 554.051 (277.026-1,108.102) 65.239 (32.620-130.479)

Thiopental 1,688.083 (844.042-3,376.166) 1819.869 (909.935-3,639.738) 3,015.313 (1,507.657-6,030.626)

Voriconazole 43.587 (21.794-87.174) 46.360 (23.180-92.720) 63.400 (31.700-126.800)

AUC, area under the concentration-time curve. *,+, # marks are attached after compound name if the AUC, parameters among PBPK, model, lumped model, and compartment model are

significantly different (p < 0.05) (post-hoc analysis: *PBPK, model and lumped model, #PBPK, model and compartment model, +lumped model and compartment model).
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approach was based on the fact that the CL ratio between two

models is used for model-to-model conversion. The

compartmental AUC was theoretically calculated using Eq. 16,

and the accuracy of the AUC was estimated using Eq. 17. The

compatibility between the two models was confirmed when the

accuracy of the AUC was approximately one. The accuracy of

AUC was found to be within the 2-fold range for 15 of 20 model

drugs (75%) (Figure 4).

4 Discussion

Despite the availability of user-friendly software to resolve

the technical issues, the barriers to entry for building and

understanding full PBPK models have consistently posed

difficulties for beginners in pharmacometrics. Therefore, a

number of methods have been suggested to simplify full

PBPK models, such as simplified PBPK and lumped PBPK

modeling approaches. However, there is no precedent for

implying or connecting these various PBPK models to

traditional compartment models that have been used for

many years. Here, we attempted to confirm the relations

among the PBPK, lumped, and compartment models.

Therefore, in this study, we demonstrated that it is possible to

lump tissues and organs with similar physiological characteristics

into the PBPK model for 20 model compounds and that the

lumped and compartment models are compatible with the PBPK

model.

For comparison of compatibility between the models, the

AUC was compared between models as the PK parameter for

exposure. The AUC in central and peripheral compartments of

the PBPK model was similar to that of the lumped model within

the 2-fold range for 17 of 20 model compounds (85%), with the

exceptions being metoprolol, clozapine, and amlodipine. This

indicated that the two models were compatible with regard to

drug concentration. As shown in Tables 1, 2, however, the AUCs

of metoprolol, clozapine, and amlodipine deviated from the 2-

fold range between the PBPK and lumped models. Such AUC

TABLE 2 Comparison of AUC parameters of peripheral compartment in PBPK, lumped, and compartment models for 20 compounds.

Model PBPK model Lumped model Compartment model

Tissue, compartment Adipose, bone, brain, muscle, skin, heart,
rest of body

Non-eliminating tissues
compartment (NET)

Peripheral compartment

Parameter (unit) Average of tissue AUClast (mg•h/L)
(2-fold range)

AUClast at NET (mg•h/L)
(2-fold range)

AUClast at peripheral compartment (mg•h/L)
(2-fold range)

Compound

Alfentanil 1.772 (0.886-3.544) 0.994 (0.497-1.987) -

Amlodipine 9.979 (4.989-19.957) 11.920 (5.960-23.840) -

Artemether 27.217 (13.609-54.435) 19.090 (9.545-38.180) -

Caffeine 0.901 (0.450-1.801) 0.638 (0.319-1.276) -

Clozapine 142.308 (71.154-284.617) 134.485 (67.242-268.969) -

Cyclosporine A 17.777 (8.888-35.553) 12.601 (6.300-25.202) -

Digoxin 0.077 (0.039-0.154) 0.057 (0.028-0.113) 0.030 (0.015-0.059)

Fluoxetine 20.178 (10.089-40.356) 13.400 (6.700-26.799) -

Metoprolol 5.476 (2.738-10.952) 2.644 (1.322-5.288) -

Midazolam 8.860 (4.430-17.720) 5.189 (2.594-10.377) 0.100 (0.050-0.201)+,#

Nevirapine 315.957 (157.979-631.914) 208.837 (104.418-417,674) 202.734 (101.367-405.467)

Ofloxacin 34.537 (17.269-69.074) 29.840 (14.920-59.680) 55.224 (27.612-110.449)

Paracetamol 18.966 (9.483-37.931) 19.120 (9.560-38.240) 68.139 (34.070-136.278)+,#

Pioglitazone 0.348 (0.174-0.696) 0.312 (0.156-0.624) 3.002 (1.501-6.005)+,#

Rifampicin 139.803 (69.901-279.605) 163.653 (81.827-327.307) -

S-Warfarin 6.697 (3.348-13.394) 5.905 (2.953-11.810) -

Telmisartan 164.733 (82.367-329.466) 123.565 (61.783-247.130) 0.694 (0.347-1.388)+,#

Theophylline 291.616 (145.808-583.232) 279.114 (139.557-558.228) -

Thiopental 11,940.270 (5,970.135-23880.540) 7,818.454 (3,909.227-15636.908) 2,773.715 (1,386.858-5,547.430)

Voriconazole 260.225 (130.113-520.450) 273.008 (136.504-546.016) 63.054 (31.527-126.108)

AUC, area under the concentration-time curve. *,+, # marks are attached after compound name if the AUC, parameters among PBPK, model, lumped model, and compartment model are

significantly different (p < 0.05) (post-hoc analysis: *PBPK, model and lumped model, #PBPK, model and compartment model, +lumped model and compartment model).
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differences for metoprolol and clozapine have been reported

previously due to their high PK variability (Ågesen et al., 2019;

Lee et al., 2021). The AUC of central and peripheral

compartment differed between lumped and compartment

models for 9 of 20 model compounds (45%). This difference

may have been attributable to the differences in how these

methods reflect the volume of distribution. In the lumped

model, the volume of each tissue is an important factor for

predicting the drug concentration in tissues and blood. Overall,

this volume was accurately reproduced by the model. In contrast,

the volume of distribution is calculated based on the blood

concentration in the compartment model. In particular, the

distribution volume of the peripheral compartment may

exhibit greater differences in the AUC due to the difficulties

in reflecting the blood concentration. Moreover, the errors due to

the lack of inclusion of the tissue to plasma distribution

coefficients may also be responsible for these differences. Note

that for telmisartan, the difference in the AUC may have been

attributable to the non-linear PK characteristics and high

individual differences in response to the drug (Stangier et al.,

2000; U.S. Food and Drug Administration, 2009). In addition, the

difference of Cmax among the models were compared as well,

however, the Cmax were observed by the difference over 4-fold

among the models in comparison with AUC because of reasons

(e.g, large variation) as we stated in Section 2.6 (Supplementary

Tables S9, S10).

To confirm the compatibility of the models, CL, Vc, and

Vp, as the key parameters of PK, were compared between

models. CL was similar within the 2-fold range between the

three models for 19 of 20 model compounds (95%), with the

exception being alfentanil. Thus, the three models were

compatible for comparison of CL. However, the CL of

alfentanil deviated from the 2-fold range between the three

models (0.555 L/h/kg for PBPK model and lumped models

and 0.209 L/h/kg for the compartment model). This difference

may have been attributable to the high inter-individual

differences in clearance of alfentanil; alfentanil is

eliminated mainly by hepatic metabolism, and the clearance

varied by more than 4-fold, resulting in large inter-individual

differences probably due to variation in the hepatic metabolic

TABLE 3 Comparison of CL parameters in PBPK, lumped, and compartment models for 20 compounds.

Parameter (unit) CL (L/h/kg)

Model

Compound

PBPK
model (2-fold range)

Lumped
model (2-fold range)

Compartment model
(2-fold range)

Alfentanil 0.555 (0.278-1.111) 0.555 (0.278-1.111) 0.209 (0.104-0.417)

Amlodipine 0.408 (0.204-0.816) 0.408 (0.204-0.816) 0.255 (0.127-0.509)

Artemether 13.333 (6.667-26.667) 13.333 (6.667-26.667) 16.436 (8.218-32.873)

Caffeine 0.134 (0.067-0.268) 0.134 (0.067-0.268) 0.094 (0.047-0.189)

Clozapine 0.401 (0.201-0.803) 0.401 (0.201-0.803) 0.313 (0.156-0.626)

Cyclosporine A 0.420 (0.210-0.841) 0.420 (0.210-0.841) 0.459 (0.229-0.918)

Digoxin 0.136 (0.068-0.273) 0.136 (0.068-0.273) 0.222 (0.111-0.444)

Fluoxetine 0.351 (0.175-0.702) 0.351 (0.175-0.702) 0.208 (0.104-0.416)

Metoprolol 3.250 (1.625-6.500) 3.250 (1.625-6.500) 2.821 (1.411-5.643)

Midazolam 0.540 (0.270-1.080) 0.540 (0.270-1.080) 0.896 (0.448-1.791)

Nevirapine 0.022 (0.011-0.044) 0.022 (0.011-0.044) 0.015 (0.008-0.031)

Ofloxacin 0.160 (0.080-0.320) 0.160 (0.080-0.320) 0.132 (0.066-0.265)

Paracetamol 0.270 (0.135-0.540) 0.270 (0.135-0.540) 0.215 (0.108-0.430)

Pioglitazone 0.068 (0.034-0.137) 0.068 (0.034-0.137) 0.035 (0.018-0.071)

Rifampicin 0.142 (0.071-0.283) 0.142 (0.071-0.283) 0.163 (0.081-0.326)

S-Warfarin 0.003 (0.001-0.006) 0.003 (0.001-0.006) 0.002 (0.001-0.004)

Telmisartan 0.800 (0.400-1.600) 0.800 (0.400-1.600) 0.980 (0.490-1.960)

Theophylline 0.045 (0.023-0.091) 0.045 (0.023-0.091) 0.054 (0.027-0.108)

Thiopental 0.189 (0.095-0.378) 0.189 (0.095-0.378) 0.114 (0.057-0.229)

Voriconazole 0.106 (0.053-0.212) 0.106 (0.053-0.212) 0.088 (0.044-0.176)

CL, clearance. *,+, # marks are attached after compound name if the AUC, parameters among PBPK, model, lumped model, and compartment model are significantly different (p < 0.05)

(post-hoc analysis: *PBPK, model and lumped model, #PBPK, model and compartment model, +lumped model and compartment model).
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capacity. Furthermore, inter-individual differences in protein

binding may also influence clearance (Henthorn et al., 1985;

Persson et al., 1988). The volumes of distribution in the

central and peripheral compartments were similar between

PBPK and lumped models for 19 of 20 model compounds

(95%), with the exception being metoprolol for which the

volume of distribution in the peripheral compartment

deviated from the 2-fold range between the two models

(0.278 L/kg for the PBPK model and 0.593 L/kg for the

lumped model). As mentioned above, this difference may

have been attributable to the high variability of metoprolol

PKs (Ågesen et al., 2019). The volumes of distribution in the

central and peripheral compartment were different between

lumped and compartment models. In interpreting this

finding, it is necessary to consider that the deviation in the

volume of distribution may be greater than clearance.

Furthermore, the compatibility of volume of distribution

was not confirmed due to the differences in the tissue to

plasma partition coefficients and methods of reflecting blood

flow velocity of each tissue organ.

To further assess the compatibility among the three

models, we used the empirical relationship of the calculated

Vd/fu and the accuracy of AUC between lumped and

compartment models. According to these approaches, the

compatibility of PBPK, lumped, and compartment models

for 20 model compounds was examined. Although telmisartan

is outside the criteria range due to its non-linear PK

characteristics and individual differences, the overall results

indicated that the three models were compatible in terms of

PK parameters (Stangier et al., 2000; U.S. Food and Drug

Administration, 2009). Furthermore, the drug concentration

of each tissue in the PBPK model could be indirectly estimated

by using the drug concentration of the lumped and

compartment models when the three models were

compatible for drug concentration (e.g., voriconazole). In

the PBPK model, the drug movement was determined by

VT, QT, and KPT. These parameters were calculated using

the lumping equation and further applied to the lumped

and compartment models. The drug concentration in each

tissue of the PBPK model can be calculated using Eq. 18 (Pilari

and Huisinga, 2010).

CT � Cp ×
Vp in compartment model

Vp in lumped model
×

KpT

KLump
(18)

The drug concentration of each tissue in the PBPK model

could be predicted by applying Eq. 18. Overall, there were no

differences in the AUC of the PBPK model and AUC calculated

using Eq. 18 (Supplementary Table S11).

The following limitations must be taken into consideration in

interpretation of the findings of this study. Only lumping of the

perfusion rate limited tissue model was assessed in the PBPK

model based on a single dose of model compounds and a single

administration route. In future studies, other administration

routes and doses of model compounds, as well as other drugs

for permeability rate-limited tissue models, would elucidate new

pathways for the lumped model and would help to establish

better compatibility between the three models. Moreover,

simplification of the model and verification of compatibility

between the models for other drugs would facilitate the

prediction of drug profiles in tissues using a relatively simple

model.

In summary, we evaluated the compatibility between PBPK

and compartmental PK models using the lumping method. This

study suggested that this lumping method may be useful to

provide a simplified PBPK model. Construction of a lumped

model may also be possible that can be assessed relative to the

compartment model.

FIGURE 3
Relationship of the calculated Vd/fu between lumped and compartment models. The dashed line was fitted to the indicated relationship (y =
axb). Abbreviations fu, drug-unbound fraction; Vd, volume of distribution.
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5 Conclusion

This study evaluated the compatibility between the PBPK and

compartment models using the lumping method with 20 model

compounds, and further approaches were attempted to determine a

theoretical method to establish compatibility between the models.

The lumping method is considered to assess the models’

compatibility, suggesting the reliability of the PK parameters of

the PBPK and compartment models. The lumping method may be

further utilized to develop and extend the PBPK and compartment

models. Additionally, the lumping method approach with the PBPK

model uses a relatively small amount of data and facilitates access to

the compartment model. Hence, this approach could help for

pharmacometricians gain a deeper understanding of the

associations and alignments between the models.
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Each year, infections caused around the 25% of neonatal deaths. Early empirical

treatments help to reduce this mortality, although optimized dosing regimens

are still lacking. The aims were to develop and validate a gentamicin

physiologically-based pharmacokinetic (PBPK) model and then potentially

explore dosing regimens in neonates using pharmacokinetic and

pharmacodynamic criteria. The PBPK model developed consisted of 2 flow-

limited tissues: kidney and other tissues. It has been implemented on a new tool

called PhysPK, which allows structure reusability and evolution as predictive

engine in Model-Informed Precision Dosing (MIPD). Retrospective

pharmacokinetic information based on serum levels data from 47 neonates

with gestational age between 32 and 39 weeks and younger than one-week

postnatal age were used for model validation. The minimal PBPK model

developed adequately described the gentamicin serum concentration-time

profile with an average fold error nearly 1. Extended interval gentamicin

dosing regimens (6 mg/kg q36h and 6mg/kg q48h for term and preterm

neonates, respectively) showed efficacy higher than 99% with toxicity lower

than 10% through Monte Carlo simulation evaluations. The gentamicin minimal

PBPK model developed in PhysPK from literature information, and validated in

preterm and term neonates, presents adequate predictive performance and

could be useful for MIPD strategies in neonates.
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1 Introduction

Neonatal population is defined as newborns with less than

1 month of life or postnatal age (PNA). Despite of neonatal

mortality has been effectively reduced through early

interventions, globally 2.4 million of neonates died in 2019.

The 75% of neonatal mortality occurred during the first week

of life and around of the 25% of these deaths, both in resource-

rich and resource-poor settings, is caused by infections like

sepsis, pneumonia or meningitis (Chan et al., 2013; Author

Anonymous, 2020). However, there are few information about

the appropriate dosing regimens use in the clinical practice for

neonates (Lanao et al., 2004). Different physiological maturation,

related to the gestational age (GA), and rapid developmental

changes of physiological factors affect drug pharmacokinetics

(PK), thereby being a hindrance to reaching optimal drug

concentrations (Food and Drug Administration (FDA) USD

of H and HS, 2020).

Administration of aminoglycosides is recommended for

newborns at risk of early-onset sepsis, when it is manifested

within 72 h after birth. The empirical therapy recommended is

gentamicin, alone or in combination with β-lactam antibiotics,

due to the high susceptibility of both gram-positive and gram-

negative pathogens (National institute for health and care

excellence (NICE), 2021). Gentamicin exhibits a

concentration-dependent bactericidal effect and requires high

peak concentrations (Cmax) to exhibit post-antibiotic effect at

drug levels below the minimum inhibitory concentration (MIC).

Moreover, high trough concentrations (Cmin) are associated with

potential toxicity. Therefore, interactions between

pharmacokinetic and pharmacodynamic (PK/PD) parameters

should be taken into account for evaluating clinical

therapeutic outcomes. PK/PD indexes such as the ratio of

Cmax/MIC, the area under the drug concentration–time curve

to the MIC (AUC24/MIC) or the percentage of time of the dosage

interval the drug concentration remains above the MIC (T>MIC),

are considered the best descriptors of clinical efficacy of

antibiotics. For aminoglycosides, the most suitable indices are

the ratio Cmax/MIC and the T>MIC (Wicha et al., 2021). In fact,

treatment selection is diverging from standard dosing concepts

toward the used of PK/PD indexes of each antibiotic for optimal

dosing regimen selection, in order to avoid suboptimal drug

concentrations which also favour resistance development

(Abdul-Aziz et al., 2020). Extended and conventional

gentamicin intervals are defined as once-daily or twice-daily

in adults, respectively. However, in paediatrics larger dose

intervals are suggested due to the lower drug elimination

shown in this population (Lanao et al., 2004).

Clinical studies in newborns are rarely performed due to

ethical concerns. In fact, the use of in silico methods, such as the

Physiologically-based pharmacokinetic (PBPK) modelling

approach, is recommended for drug development and clinical

prescriptions for paediatric populations, in order to reduce the

number of child patients in clinical trials (EMA, 2018). PBPK

modelling provides the ability to combine maturation and

physiological age-related parameters and it has been shown

that the predictive performance of a PBPK model is superior

to that of empirical/traditional compartmental models (Jones

et al., 2006; Jones et al., 2011). Thus, PBPK modelling can be

useful for investigating clinical efficacy and safety of current adult

treatments in paediatric populations, with this assessment being

more accurate than a simple extrapolation based on body weight

(Lin et al., 2018). Moreover, model-informed precision dosing

(MIPD) is recommended for drugs like gentamicin where

adequate exposure is critical, cannot be controlled by easy-to-

measure clinical parameters and present large PK variability and

a narrow therapeutic index (Wicha et al., 2021). Thus, PBPK

models could also be helpful for dosage regimen decision-making

in this population.

The aims of this work were to develop a minimal PBPK

model of gentamicin in neonates to evaluate potential efficacy

and toxicity of the current conventional and extended interval

gentamicin dosage regimens in neonates, in order to support

MIPD strategies based on PK/PD criteria. This work differs from

the previous ones (Abduljalil et al., 2020; Neeli et al., 2021) in

several aspects, both in relation to the population study (preterm

and term neonates), the methodology and novel PBPKmodelling

and simulation (M&S) software used (PhysPK), and the used of

PK/PD indexes in order to be more comprehensive for clinicians.

2 Materials and methods

2.1 Physiologically based pharmacokinetic
model development

2.1.1 Model development
The PBPK model development was based on gentamicin

properties such as quickly extracellular water distribution,

minimal binding to plasma proteins and low intracellular

penetration. Moreover, taking into account that the kidney is a

pivotal organ related to gentamicin elimination, a minimal PBPK

model was adopted including two flow-limited compartments:

kidney and rest of tissues. Both tissues were connected by the

circulating blood system and heart chamber, and defined by tissue

volume, blood flow and partition coefficient. Since gentamicin

undergoes glomerular filtration and tubular reabsorption, this last

process has been included in the mathematical description of the

kidney compartment by a 21% correction of the initial drug filtered

by the kidney (Contrepois et al., 1985).

2.1.2 Model equations
The minimal PBPK model was defined by simulation

component relationships and mathematical equations of the

mechanism. The following sections define the mathematical

equations for each component.
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In the PhysPKmodel, the heart is not modelled as a tissue but

as the source of cardiac output (CO). That is, it does not address

ADME processes but only the cardiac flow pumping through a

well-stirred chamber, governed by Eq. 1:

Vhp
dCh

dt
� (QhpCb) − (QhpCh) (1)

where Vh is the heart chamber volume, Ch is the drug

concentration in the heart, Cb is the blood serum drug

concentration, and Qh is the heart flow rate (for which CO

value has been used). The equation describes the mechanistic

effect of the blood mix with the inertia (Ch tends to Cb with a

delay) related to the volume Vh.

Kidney tissue was considered as a flow-limited tissue and

gentamicin tissue concentration is derived from blood

concentration according to flow limited tissue (FLT)

assumption, which is provided by Eq. 2:

Vkp
dCk

dt
� (QkpCb) − (Qkp

Ck

Pk
) − (Qep

Ck

Pk
) (2)

where Vk is the kidney volume, Ck is the drug concentration in

the kidney, Cb is the blood serum drug concentration, Qk is the

kidney flow rate, Pk is the partition coefficient of this tissue and

Qe is the elimination flow rate.

Linear behaviour was assumed in order to model kidney

elimination of the drug through the kidney. Tubular reabsorption

has been considered in GFR adjustment while tubular secretion is

negligible in the case of gentamicin, so GFR x TBW is expressed

in mL/min, considering that 21% of the drug has tubular

reabsorption (Eq. 3):

Qe � TBWpGFRp0.79 (3)

where Qe is the elimination flow rate, GFR is the glomerular

filtration rate parameter expressed in mL/min/kg and TBW is the

total body weight.

Rest tissue includes the remaining body tissues not explicitly

considered. It is defined as a flow-limited tissue and gentamicin

tissue concentration is provided by Eq. 4:

Vrp
dCr

dt
� (QrpCb) − (Qrp

Cr

Pr
) (4)

where Vr is the volume of the rest tissues (all except heart and

kidney), Cb is the blood serum drug concentration, Cr is the drug

concentration in this compartment, Qr is the blood flow rate for

this compartment and Pr is the partition coefficient of this

compartment.

Serum is defined by the blood system, however, gentamicin

binding to plasmatic proteins or cells has not been considered

relevant since it was less than 10% (Burton, 2006). Thus, the cells

compartment has not been considered in the model development

and serum concentration is governed by Eq. 5:

Vdp
dCb

dt
� GpP(t) + (QhpCh) +∑Qi

Ci

Pi
− (QhpCb) (5)

where Vd is the volume distribution, Cb is the blood serum drug

concentration, Ch is the drug concentration in the heart, G is the

dose of gentamicin administered, P(t) is a unitary pulse

waveform with period T (equivalent to interval

administration) and pulse width of 30 min and Ci, Qi, Pi are

the drug concentration, flow rate and partition coefficient for

each compartmental tissue (kidney and rest), respectively.

2.1.3 Model parameters
General physiological parameters such as organ volumes,

blood flow rates and partition coefficient were already

implemented in the software (Table 1). Partition coefficient of

gentamicin in kidney was considered as an approach from

previous studies (Thibault et al., 1994). Physiological

parameters selected based on previous knowledge in preterm

and term neonates, and used during the model-building process

were: total body weight (TBW), cardiac output (CO), glomerular

filtration rate (GFR), gentamicin volume of distribution (Vd) and

kidney flow rate (Qk) (Table 2) (Izquierdo et al., 1992; Jackson

et al., 1999; Hayton, 2000; Ali et al., 2012; Encinas et al., 2013;

Sulemanji and Vakili, 2013). Monte Carlo simulation

methodology was used to take into account the variability of

these meaningful physiological parameters. It was assumed that

they follow a log-normal distribution, and have coefficients of

variation (CV) of 20% for TBW and Qk, 24% for CO and 40% for

GFR (Bouillon-Pichault et al., 2011; Wilhelm-Bals et al., 2020).

2.1.4 Model validation
Gentamicin minimal PBPK model-based predictions of

concentrations by Monte Carlo Simulation were compared to

retrospective gentamicin serum concentrations measured in

neonates treated at the University Hospital in Salamanca

(Spain). Predictions of drug clearance were compared to the

clearance values estimated by Maximum a Posteriori (MAP)

Bayesian forecasting routinely performed in the TDM (defined as

CL observed). For the prediction performance of the model, the

prediction error (PE; Eq. 6) and mean prediction error (MPE;

Eq.7) were calculated.

TABLE 1 General physiological parameters values implemented in the
gentamicin minimal PBPK model.

Kidney Rest of tissues

Organ volumes (ml) 0.03 0.87

Blood flow rates (ml/min/kg) 9.35 217

Partition coefficient 10.0 1.00
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PE (%) � PRED − OBS
OBS

× 100 (6)

MPE � 1
n
∑PE (7)

The overall predictability of this model was evaluated in

terms of bias and precision using the conventional metrics of

average-fold error (AFE; Eq. 8) and absolute average-fold error

(AAFE; Eq. 9), respectively.

AFE � 10
1
n∑ log (PRED

OBS )
(8)

AAFE � 10
1
n∑|log (PRED

OBS )|
(9)

If the model predictions reached the criteria of the AFE and

AAFE between 0.5 and 2-fold, its predictive performance would

be considered to be satisfactory (Puttrevu et al., 2020; Corral

Alaejos et al., 2022).

Visual predicted check (VPC) was carried out to evaluate

PBPK model performance based on simulations. Observed

concentrations were dose-normalized and expressed as the

standard dose considered in the Monte Carlo simulations for

each group (6 mg/kg q48h for preterm neonates and 6 mg/kg

q36h for term neonates). A total of 1,000 virtual patients of each

subpopulation were considered to calculate prediction intervals

(PI) of 90% and 50%. If observed concentrations were distributed

within the 90% PI, the model prediction capability was deemed to

be adequate (Rubinstein and Kroese, 2016). Finally, the VPC

plots were generated in R version 4.0.2 software from the output

of the simulations performed in PhysPK.

2.2 Software

Gentamicin minimal PBPK model was developed using the

commercially available PhysPK v.2.4.1 platform as part of

EcosimPro 6.2.0® (www.physpk.com). This software is based

on first-principles modelling of complex systems with

continuous and discrete time equations; which use the Multi-

Object-Oriented Modelling (MOOM) paradigm. EcosimPro

language is designed to model systems formulated through

differential-algebraic equations (DAE) and discrete events, by

means of a non-algorithmic code (acausal simulation language).

Any EcosimPro model is converted to algorithmic code (C++)

through the EcosimPro platform previously being executed.

PhysPK is a PBPK M&S software built by means of the

EcosimPro language. Simulation component parameters and

mechanism variables are defined in the International System

of Units (SI), although the user parameter values can be defined

with other units and converted to SI with internal functions of

PhysPK (Martí et al., 2014).

The gentamicin PBPK model has been created through two

categories of mathematical equations. The first one is defined by

the physical processes that occur inside each simulation

component. These processes are liberation, absorption,

distribution, metabolism and excretion (LADME) and other

mechanisms for the cardiac output source and drug

administrator. Mathematical equations in a simulation

component describe these processes through differential -

algebraic equations (DAE) to give mass conservation,

metabolism, absorption, distribution, excretion, and others

(inertial pumping or drug rate infusion) for each chemical

compound inside all the spatial regions that pertain to the

component (Roa and Prado, 2006). The second category refers

to the equations that describe the relationships among the

simulation components in the PBPK model. The last

equations define the blood convection through the vascular

system in our PBPK model. They are generated by PhysPK

according to the blood connections. Once a PhysPK model is

created, it may be used to predict the evolution of the system

starting from the initial conditions for a particular context

through a simulation experiment.

A second important issue is that the model’s equations are

represented by means of a non-algorithmic mathematical

formulation. That is, the model is defined in a balanced and

complete way (number of variables to solve are equal to number

of equations), but it must be previously converted to a flat and

algorithmic code in order to be executed in the simulation

experiment. The algorithmic code defines the order in which

variables are computed and which equations are used to solve

them. This methodology for DAE systems is more fully described

in the Wiley Encyclopedia of Biomedical Engineering (Roa and

Prado, 2006).

EcosimPro also supports Montecarlo simulations, generating

a range of possible outcomes considering the a priori likelihood

TABLE 2 Physiological parameters values implemented in the gentamicin minimal PBPK model.

Physiological parameter Preterm population [mean ±
SD]

Term
population [mean ± SD]

Total body weight (kg) 1.73 ± 0.35 3.56 ± 0.72

Cardiac output (ml/min/kg) 172 ± 50.6 172 ± 50.6

Glomerular filtration rate (ml/min/kg) 1.31 ± 0.53 1.72 ± 0.70

Gentamicin volume of distribution (L/kg) 0.52 ± 0.16 0.46 ± 0.14

SD, standard deviation.
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of different variables or scenarios. Moreover, the successive

productions of random numbers will also be the same using a

seed. The random numbers generated, for this PBPKmodel, have

log-normal probability density function.

2.3 Clinical data

The study was carried out using data from 47 newborn

patients admitted between 1999 and 2003 in the Neonatology

Unit of the University Hospital in Salamanca (Spain). These data

were obtained as part of routine therapeutic drug monitoring

(TDM) of aminoglycoside therapy in paediatric patients

suspected of suffering from infection due to Gram-negative

microorganisms, regardless of whether this had been

confirmed in the antibiogram. This data has also been used by

our group in a previous publication (Lanao et al., 2004). Patients

selected are characterized to be less than one-week of PNA and

with GA between 32 and 39 weeks. These patients were

subsequently divided into two subgroups due to their different

physiological maturation: preterm neonates with GA between

32 and 37 weeks, and term neonates with GA over 37 weeks.

Their concentration-time data were used for the model

validation.

2.3.1 Gentamicin dosing and sampling schedule
Gentamicin was administered in the form of an intravenous

(IV) infusion during 0.5 h, with an initial dose of 6 mg/kg and an

administration interval of 36 h or 48 h. Blood serum samples

were collected at 2 and 24 h from the start of drug infusion

(Lanao et al., 2004).

Serum gentamicin levels were measured by fluorescence

polarization immunoassay AXYM (Abbott Laboratories,

Chicago, IL, United States) The method was successfully

verified for the calibration range of 0.3–10 mg/L. Additional

details of the analytical method are provided in a previous

publication (Lanao et al., 2004).

2.4 Clearance estimation

In order to check the functionality of the software and the

suitability of GFR values selected from literature for the PBPK

model developed, this parameter was also estimated using the

PhysPK parameter estimation module.

This module allows for the estimation of population

parameters of non-linear physiological models. The iterative

two-stage (ITS) method was applied to estimate an initial

condition of population parameters for each individual

subject, without taking into account the population knowledge

(Davidian, 2010). After that, the population parameters were

estimated using a first-order conditional estimation (FOCE)

method, starting with values obtained in ITS.

2.5 Gentamicin standard dosage
evaluation based on PK/PD criteria

Based on PK/PD criteria, conventional and extended interval

dosage regimens were evaluated for each subpopulation. For

preterm neonates the dosage regimens evaluated were 4 mg/kg/

day (q24h) as a conventional regimen, and 6 mg/kg/day (q48h)

as an extended interval regimen; while for term neonates the

dosages selected were 4 mg/kg/day (q24h) and 6 mg/kg/day

(q36), respectively (Lanao et al., 2004). The PTA of different

PK/PD indexes were selected for treatment efficacy and toxicity

criteria evaluation.

Cmax/MIC ratio over 8–10 folds, keeping Cmax lower than

25 mg/L, are necessary to achieve post-antibiotic effect

warranting an adequate safety profile related to the

maximum drug exposure. Moreover, Cmin lower than 2 mg/

L has been suggested to minimize the potential toxic effects of

gentamicin, because it is associated with lower accumulation

in both the renal tubule and inner ear (Vučićević et al., 2014).

Therefore, the target PK/PD criteria for toxicity were

established at Cmin ≥2 mg/L and Cmax ≥25 mg/L.

Regarding efficacy criteria, Cmax/MIC ≥8 and T>MIC

(expressed as percentage of the dosing interval) equal to or

higher than 60% were selected for both dosage regimens (Zazo

et al., 2013). Based on the fact that gentamicin is the treatment

recommend against pathogens with MIC values between

0.5 and 2 (O’Connor et al., 2021), MIC value of 1 mg/L was

selected for PK/PD criteria calculations. For aminoglycosides,

the treatment response was defined as effective when the

PTA ≥90% for efficacy PK/PD criteria, and for safety when

PTA ≤10% for toxicity criterion (He et al., 2022).

FIGURE 1
Schematic diagram of the minimal PBPK model developed in
PhysPK. Black solid circles are Boolean components for activation/
deactivation of processes (i.e., dose administration); pink and blue
solid circles, are recording components of the system
(i.e., drug concentration in a specific region of the system such as
plasma, tissue, etc.,). Organ with an E inside means that it has
elimination. The purple T next to the syringe means that the
administration has a rate and it can be multiple.
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3 Results

The schematic diagram of the minimal PBPK model developed

in the interface of PhysPK is shown in Figure 1. It included the two

tissues modelled, kidney and rest of tissues, and the heart as the

source of CO. The relationships among simulation components are

given by the multilevel modelling schematic.

A total of 91 serum samples from 47 subjects, were used for

the minimal PBPK model development. Demographic

characteristics of patients evaluated are shown in Table 3.

Most of gentamicin observed concentrations (80.6% and

100% for the C2h and C24h, respectively for preterm neonates,

and 87.5% and 100% for the C2h and C24h, respectively for term

neonates) were within the 90% PI. Therefore, it can be assured

that the minimal PBPK model developed for gentamicin in

neonates adequately describes the drug concentration-time

profile observed, as well as its PK variability, in both the

preterm and term neonate populations studied (Figure 2).

Table 4 shows the mean of observed and predicted

concentration and clearance values, as well as the bias and

precision evaluation for the validation of the model-predictive

performance. Both, AFE and AAFE values for all the predictions

were between 0.5 and 2. In fact, all AFE values are nearly 1 which

is indicative of a lack of significant bias associated with model

predictions.

The GFR values obtained by optimization with the PhysPk

software were (mean ± SD) 1.176 ± 0.037 ml/min/kg and 1.324 ±

0.054 ml/min/kg for preterm and term neonates, respectively.

TABLE 3 Demographic baseline characteristics of neonates’ patients evaluated.

Parameter Preterm (GA ≤37 weeks) [mean ±
SD (min-max)]

Term (GA >37 weeks) [mean ±
SD (min-max)]

Number of patients 31 16

Gestational age (GA) (weeks) 33.7±1.56 (32-37) 38.9± 0.25 (38-39)

Postnatal age (PNA) (days) 3.03±1.02 (2-7) 2.94±0.85 (2-5)

Total body weight (kg) 1.96 ± 0.41 (1.16–3.00) 3.09 ± 0.23 (2.29–3.62)

Dose (mg/kg) 5.74 ± 0.80 (4.01–6.88) 6.64 ± 0.22 (6.99–6.21)

Serum concentration at 2 h 17.7 ± 4.28 (5.06–24.1) 13.8 ± 3.08 (8.17–20.1)

Since drug administration (mg/L)

Serum concentration at 24 h 2.92 ± 0.79 (1.84–5.50) 1.41 ± 0.41 (0.86–2.32)

Since drug administration (mg/L)

SD, standard deviation.

FIGURE 2
Visual Predicted Check (VPC) in preterm (left) and term (right) neonates. Dotted lines represent, from the bottom to the upper panel, the 10th,
25th, 75th, and 90th percentiles of the gentamicin concentrations simulated vs. time. Shaded areas represent, from outside to inside, the 90% and
50% prediction intervals. Solid lines represent the median gentamicin simulated concentration-time profile. Open blue circles represent the
observed gentamicin concentrations dose-normalized.
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Figure 3 shows that the PTA to reach a Cmax/MIC was

adequate with the extended interval regimen (6 mg/kg q48h

and 6 mg/kg q36h for preterm and term, respectively) while

PTA reached with the conventional regimen (4 mg/kg q24h)

was insufficient to achieve proper treatment efficacy, for any

MIC value considered (0–2 mg/L). In fact, the extended

interval regimens can be assumed to be effective

(PTA≥90%) up to MIC values nearly 2 mg/L (1.7 mg/L for

preterm and 1.6 mg/L for term neonates), while conventional

regimens can be considered effective until MIC values close to

0.6 mg/L (0.55 mg/L for preterm and 0.65 mg/L for term

neonates).

Table 5 show the PTA to reach the efficacy and toxicity

criteria (Cmax/MIC ≥8 and T>MIC ≥60% for efficacy and

Cmin ≥2 mg/L and Cmax ≥25 mg/L for toxicity) for each

gentamicin regimen considered in each specific population.

According to the PTA of PK/PD indexes studied, both

regimens presented PTA <10% for the toxicity criteria.

4 Discussion

M&S techniques in biomedicine have experienced great

advances and impact in drug development and evaluation in

recent decades. Consequently, specialized M&S software is now

necessary in the pharma, clinical and biomedical engineering

industries. Neonates are one of the most vulnerable populations

and also require more ethical considerations, so studies designed

with M&S methodologies have been highlighted as a useful

methodology in drug development, especially for dose

selection decision-making.

The software used in this work, PhysPK, is a novel PBPK

platform which has already been successfully applied in MIPD of

paediatric patients (Prado-Velasco et al., 2020). It is a robust and

potent M&S tool allowing easy and efficient implementation of

simulations, execution (such as parameter estimation) and

dosage optimization algorithms based on PK/PD criteria

(efficacy and/or toxicity), which supports the implementation

TABLE 4 Mean values and precision and bias errors of gentamicin minimal PBPK model developed.

Preterm Term

C 2 h
(mg/L)

C 24 h
(mg/L)

CL (L/h) C 2 h
(mg/L)

C 24 h
(mg/L)

CL (L/h)

Mean value observed 17.7 2.92 0.09 13.8 1.41 0.19

Mean value predicted 17.4 2.62 0.11 15.4 0.89 0.23

Mpe (%) 8.08 −5.04 26.5 16.3 −28.8 27.7

Afe 1.02 0.92 1.24 1.14 0.68 1.26

Aafe 1.22 1.23 1.26 1.20 1.47 1.29

C, concentration; CL, clearance; MPE, mean prediction error; AFE, average-fold error; AAFE, absolute average-fold error.

FIGURE 3
Probability of target attainment (PTA) to reach the Cmax/MIC ≥8 ratio for each gentamicin dosage regimen: conventional (4 mg/kg q24h) and
extended interval regimen (6 mg/kg q48h and 6 mg/kg q36h for preterm and term, respectively).
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of MIDP strategies in the clinical routine. PhysPK provides a

highly intuitive graphics environment that facilitates the PBPK

model development process based on object-oriented schematics

(Rodrigues Matos et al., 2013). It is based on different multi-flexi

libraries which let components’ development and reusability

(i.e., tissues, membranes, etc.,) increasing model complexity

and overcoming the useful of other PBPK tools, like Simcyp,

GastroPlus or PK-SIM (Reig-Lopez et al., 2020). The PhysPK

modeling approach let also to customized PBPK models, like

MATLAB/Berkeley Madonna, but without mathematical

causality requirements like others software, as NONMEM or

Winnonlin (Prado-Velasco, 2016) (Table 6). Moreover, models

and calculations can be encapsulated and encrypted in a

standalone application (deck), for example Shiny applications.

Then, user can only input any data from external well-known

applications like Excel, Matlab, C++, etc., and visualize the

outputs in real time.

This work is focused on a neonatal population with less than

1 week of life. This is a critical period of life for newborns where

the highest infection mortality rate has been observed (Author

Anonymous, 2020). Therefore, patients have been classified

based on gestational age (GA), in two important subgroups:

1) Preterm neonates with GA ≤37 weeks and 2) Term neonates

with GA >37 weeks. The main differences between these two

groups are whole blood volume, physiological maturation, and

total body water. Moreover, rapid developmental changes of

physiological factors in newborns affect drug PK, so different

parameters’ values have been used for each subpopulation. Thus,

a gentamicin PBPK model was developed and validated in term

and preterm neonates. Subsequently, the model was used to

evaluate the efficacy and safety, based on PK/PD criteria, of

current gentamicin dosages recommended for these population.

Extended interval aminoglycoside regimens are

recommended, rather than conventional multiple daily dose

regimens, because they allow achievement of higher Cmax and

lower Cmin, improving therapeutic efficacy and safety (Wicha

et al., 2021). These reasons, along with pharmacoeconomic

justification, are all sufficient grounds to select extended

interval dosing as the gold-standard regimens for gentamicin

in adults (Abdul-Aziz et al., 2020). In neonate populations, their

use has been suggested by various authors, even the British

Medical Association, despite this regimen being off-label

(Lanao et al., 2004; National institute for health and care

excellence (NICE), 2021; Rao et al., 2011; El-Chaar et al.,

2016). However, some guidelines still recommend a once-daily

dosage regimen for term neonates instead of extended-interval

such as in other populations like preterm ones (ANMF -

Australasian Neonatal Medicines Formulary, 2022; Comité de

TABLE 5 Probability of target attainment (PTA) for efficacy and toxicity criteria (%) (MIC = 1 mg/L).

PK/PD criterion Preterm Term

Conventional Reg. (q24h) Extended interval (q48h) Conventional Reg. (q24h) Extended interval (q36h)

Efficacy

Cmax/MIC ≥8 10.8 99.9 32.3 99.8

T>MIC ≥60% 87.9 70.7 61.2 54.9

Toxicity

Cmin ≥2 mg/L 5.0 5.9 0.4 1.8

Cmax ≥25 mg/L 0.0 6.9 0.0 6.5

Cmin, trough concentrations; Cmax, peak concentrations; MIC, minimum inhibitory concentration; PK/PD, pharmacokinetic-pharmacodynamic; T>MIC, percentage of time of the interval

the drug concentration remains above the MIC.

TABLE 6 Comparison of PhysPK and commonly used PBPK software programs.

PhysPK Simcyp GastroPlus NONMEM WinNonlin PK-Sim/MOBI

Company Empresarios Agrupados
Internacional

Certara
United States Inc.

Simulations
Plus Inc.

ICON plc Certara
United States Inc.

Bayer Technology
Services

User friendly software Yes Yes Yes Yes Yes Yes

Model creation and edition Yes No No Yes Yes Yes

Population estimation/
validation module

Yes Yes Yes Yes Noa Noa

Execution out-of-the-box Yes No No No No No

aEstimation/validation module by optimization.
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Medicamentos de la Asociación Española de Pediatríaá, 2022). In

fact, according to Neeli et al. 60% of term neonates in intensive

care units treated with a once-daily dosage regimen presented

potentially toxic concentrations but only around a quarter of

them were changed to an extended-interval dosage regimen

(Neeli et al., 2021). In order to be a more comprehensive

study that encourages clinicians to extended-interval regimen

for neonates, specially term ones, this research has been focused

on both kinds of neonates, preterm and term, unlike other

gentamicin PBPK models published which focus just on

preterm populations (Abduljalil et al., 2020; Idkaidek et al., 2020).

The PBPK model development follows a top-down modelling

approach. Gentamicin is a hydrophilic drug (logP = –3.1) that

mostly distributes in extracellular fluid, eliminating the need for the

full PBPK model [16]. It also has low intracellular penetration so it

was assumed that the drug distributes instantly in the whole volume

of the tissue from the incoming blood flow and a flow-limitedmodel

was selected. The kidney is a pivotal organ related to gentamicin

elimination. Indeed, 90% of the drug is renally excreted, and it is also

directly related to gentamicin nephrotoxicity (Johnson et al., 2006).

Thus, due to their PK and toxicity interest, this tissue was the only

one included in the minimal PBPK model.

Renal function matures slowly and depends on GA and PNA,

as indicated by diuresis, GFR and renal tubular activity

(Vučićević et al., 2014). In order to take into account kidney

maturation, the studied population has been divided into two

subgroups, preterm and term neonates, with different mean GFR

values selected for each subgroup based on the available

information in the scientific literature. Moreover, 21% of

gentamicin that is renally excreted undergoes tubular

reabsorption (Contrepois et al., 1985) and this was also

reflected in the minimal PBPK model proposed. This is an

important point of difference vs. other studies which used

adult GFR values (Gastine et al., 2022) or reflected the

absence of tubular reabsorption as a limitation (Abduljalil

et al., 2020; Neeli et al., 2021).

Based on the critical relevance of the GFR values observed

during the model-building stage, this parameter was also optimized

using the PhysPKparameter estimationmodule both in preterm and

term neonates. The GFR values obtained by optimization through

the PhysPK software (1.176 ± 0.037 ml/min/kg and 1.324 ±

0.054 ml/min/kg for preterm and term, respectively) were well in

agreement with those implemented in the PBPK model from the

literature [1.21 ml/min/kg and 1.59 ml/min/kg for preterm and

term, respectively (Izquierdo et al., 1992; Sulemanji and Vakili,

2013)]. In this way, both the selected values and the functionality of

the software has been verified.

In order to evaluate the appropriateness of the model-based

predictions, bias and precision metrics (AFE and AAFE) were

calculated with results between 0.5 and 2 in all of the cases

(Table 4). For concentrations at 2 h after start of drug

administration, the AFE value near 1 indicates a lack of bias

associated with model predictions. Despite of there are some

values under the 10th percentile and an outlier in preterm

population. Although, for concentrations at 24 h the MPE

results indicate that in the term population, what are lightly

underestimated (Table 4). Simulation-based diagnostics

(Figure 3) showed an adequate model prediction-capability of

the gentamicin minimal PBPK model in term and preterm

neonates. The large PK variability of the neonatal population

observed in these patients was in agreement with previous studies

(Nielsen et al., 2009; Bijleveld et al., 2017). This gentamicin PK

variability was also properly captured by the gentamicin minimal

PBPK model-based simulations.

PBPK models are useful both for predicting drug

concentrations and PK parameters which are difficult to

measure properly, such as the drug clearance in neonates. The

measurement of creatinine levels in neonates is not precise

because of the reflection of maternal creatinine levels and the

uncertainty about creatinine renal tubular handling. So, it makes

the use of serum creatinine levels unreliable and therefore the use

of the Schwarz Bedside equation is not recommended in patients

younger than 1 year old (Sulemanji and Vakili, 2013; Go et al.,

2018). According to the bias and precision results (Table 4), CL

values predicted with this gentamicin minimal PBPK model are

suitable.

Because the therapy usually starts empirically, the causative

pathogen and then its MIC value are commonly unknown at this

clinical stage, so MIC distributions from EUCAST reference

laboratories are typically used. The highest MIC breakpoint

for gentamicin is 2 mg/L. In such case that the pathogen

isolated presents a higher value, administration of a

concomitant antibiotic or a change to another treatment

would be advisable (Burton, 2006). Therefore, no MIC higher

than 2 mg/L was considered when evaluating Cmax/MIC efficacy

criterion (Figure 3) and a reference MIC of 1 mg/L has been

selected for PTA calculation as the most likely within the

standard MIC observed in the clinic for pathogens treated

with gentamicin.

The conventional dosing regimen recommended by the AEP-

SEIP has been compared with the extended interval dosage

regimen recommended by the University Hospital in

Salamanca. Figure 3 showed that both gentamicin dosage

regimens appear to be potentially effective and safe, according

to the PK/PD indexes considered. Peak serum concentrations of

gentamicin with the conventional regimen (4 mg/kg q24h for

both populations) were not sufficiently high enough to achieve

Cmax/MIC ratio over 8 necessary to achieve post-antibiotic effect,

in most cases (Figure 3). Moreover, it could bring on bacterial

resistance development despite eliciting a therapeutic response.

In contrast, extended interval gentamicin dosing regimens

(6 mg/kg q48h and 6 mg/kg q36h for preterm and term

neonates, respectively) showed adequate efficacy (PTA higher

than 90%) with acceptable safety (PTA for toxicity criteria ≤7%
in all cases) through Monte Carlo simulation evaluations

(Table 5). Indeed, extended interval regimens reached the
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main efficacy criteria (Cmax/MIC ≥8) up to MIC values of

1.55 mg/L and 1.65 mg/L for preterm and term neonates,

respectively (Figure 3). These results are in line with the

current clinical decisions of combining gentamicin with an

alternative antibiotic or even changing the drug selected to

treat a Gram-negative infection caused by pathogens with

MIC higher than 2 mg/L (O’Connor et al., 2021). However,

the conventional dosing regimen only reaches Cmax/

MIC ≥8 against pathogens with MICs lower than 0.5 mg/L

(Figure 3).

Findings in our study are consistent with other published

studies like Gastine et al. (2022) whose results show that the

conventional regimen would be insufficient to cover most

common Gram-negative Enterobacterales (MIC ≤2 mg/L)

responsible for many neonatal sepsis, with this regimen being

efficacious in only less than one-quarter of neonates treated.

Apart from the important usefulness and potential

applications of the gentamicin minimal PBPK model

presented in this work, some limitations must be

acknowledged such as: 1) The model has been validate with a

small sample size, just 2 concentration-time points and

retrospective data which might limit precise assessments and

additional evaluations of the model; 2) No correlations between

the physiological variables simulated were considered in the

Monte Carlo simulations (Franchetti and Nolin, 2020).

However, the impact of these correlations is not expected to

be relevant as most of the parameters were expressed per kg of

TBW and specific values observed in the literature were

considered for preterm and term neonates.

Finally, gentamicin treatment is limited mainly by its

potential toxicity. Thus, this minimal PBPK model will serve

as a starting point for future investigations regarding the

gentamicin concentrations reached in the kidneys. After a

refinement of the minimal PBPK model presented, it will be

able to evaluate the potential toxicity of gentamicin dosages

proposed in neonates and optimize these dosages based on

PK/PD criteria. Moreover, the model presented can be applied

to different aminoglycosides in similar populations after model

refinement. Similarly, additional information could be valuable

for extending the PBPK model applications such as physiological

changes in intensive care neonate patients (i.e., fluid shift due to

capillary leak and renal dysfunction), kidney and ear

accumulation (related to the most-likely drug side effects), or

bacteria growth models (considering potential drug resistance)

among others.

5 Conclusion

In summary, the gentamicin minimal PBPK model

developed in the PhysPK platform adequately described

preterm and term neonates’ gentamicin PK behaviour.

According to the PK/PD criteria, extended interval dosage

regimens reached the efficacy criterion with a reduced

probability of presenting toxicity even against pathogens with

a minimum inhibitory concentration near 2 mg/L. The minimal

gentamicin PBPK model presented in this work has shown an

adequate model predictive performance with acceptable

precision and lack of significant bias. Thus, it could be useful

for MIPD strategies in neonates based on PK/PD criteria.
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Machine learning advances the
integration of covariates in
population pharmacokinetic
models: Valproic acid as an
example

Xiuqing Zhu1,2†, Ming Zhang1,2†, Yuguan Wen1,2* and
Dewei Shang1,2*
1Department of Pharmacy, The Affiliated Brain Hospital of GuangzhouMedical University, Guangzhou,
China, 2Guangdong Engineering Technology Research Center for Translational Medicine of Mental
Disorders, Guangzhou, China

Background and Aim: Many studies associated with the combination of

machine learning (ML) and pharmacometrics have appeared in recent years.

ML can be used as an initial step for fast screening of covariates in population

pharmacokinetic (popPK) models. The present study aimed to integrate

covariates derived from different popPK models using ML.

Methods: Two published popPK models of valproic acid (VPA) in Chinese

epileptic patients were used, where the population parameters were

influenced by some covariates. Based on the covariates and a one-

compartment model that describes the pharmacokinetics of VPA, a dataset

was constructed using Monte Carlo simulation, to develop an XGBoost model

to estimate the steady-state concentrations (Css) of VPA. We utilized SHapley

Additive exPlanation (SHAP) values to interpret the prediction model, and

calculated estimates of VPA exposure in four assumed scenarios involving

different combinations of CYP2C19 genotypes and co-administered

antiepileptic drugs. To develop an easy-to-use model in the clinic, we built

a simplified model by using CYP2C19 genotypes and some noninvasive clinical

parameters, and omitting several features that were infrequently measured or

whose clinically available values were inaccurate, and verified it on our

independent external dataset.

Results: After data preprocessing, the finally generated combined dataset was

divided into a derivation cohort and a validation cohort (8:2). The XGBoost

model was developed in the derivation cohort and yielded excellent

performance in the validation cohort with a mean absolute error of 2.4 mg/

L, root-mean-squared error of 3.3 mg/L, mean relative error of 0%, and

percentages within ±20% of actual values of 98.85%. The SHAP analysis

revealed that daily dose, time, CYP2C19*2 and/or *3 variants, albumin, body

weight, single dose, and CYP2C19*1*1 genotype were the top seven

confounding factors influencing the Css of VPA. Under the simulated dosage

regimen of 500mg/bid, the VPA exposure in patients who hadCYP2C19*2 and/

or *3 variants and no carbamazepine, phenytoin, or phenobarbital treatment,
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was approximately 1.74-fold compared to those with CYP2C19*1/*1 genotype

and co-administered carbamazepine + phenytoin + phenobarbital. The

feasibility of the simplified model was fully illustrated by its performance in

our external dataset.

Conclusion: This study highlighted the bridging role of ML in big data and

pharmacometrics, by integrating covariates derived from different popPK

models.

KEYWORDS

machine learning, covariate, population pharmacokinetic, valproic acid, therapeutic
drug monitoring, XGBoost, shap, Monte Carlo simulation

1 Introduction

Model-informed precision dosing (MIPD), an emerging,

modern approach for individualizing drug therapy, involves

various mathematical modeling methods (e.g.,

pharmacometrics) to integrate multidimensional patient-level

data (Darwich et al., 2021). In particular, machine learning

(ML), as a new promising data-driven tool in MIPD, has

attracted considerable attention recently (Kluwe et al., 2021).

For example, a previous study by us proved the feasibility of ML

algorithms for predicting the dose-adjusted concentrations of

lamotrigine for personalized dose adjustment (Zhu et al., 2021a).

Although a lot of related work has been conducted to directly

predict drug concentration or drug dose using ML-based

strategies (Jovanović et al., 2015; Huang et al., 2021a; Zheng

et al., 2021), the integration of model-informed and data-driven

approaches is critical (Kluwe et al., 2021).

Fortunately, research collaborations among experts in

different fields are advancing the integration of these

approaches. Tang et al. (2021) reported a combined

population pharmacokinetic (popPK) and ML approach,

which had more accurate predictions of individual clearances

of renally eliminated drugs in neonates and could be used to

individualize the initial dosing regimen. Bououda et al. (2022)

also suggested that ML could be used in combination with

standard popPK approaches to increase confidence in the

predictions of vancomycin exposure. Ogami et al. (2021)

developed a model by applying artificial neural networks for

predicting the time-series pharmacokinetics of cyclosporine A,

which showed higher prediction accuracy than the conventional

popPK model. Woillard et al. (2021a) developed an eXtreme

gradient boosting (XGBoost) model allowing accurate estimation

of the area under the curve (AUC) of tacrolimus based on only

two or three concentrations with excellent performance, better

than that of deterministic pharmacokinetic models with Bayesian

estimation. However, the major limitation to developing such

accurate ML models is the availability of large databases on drug

concentration-time profiles, which can be solved by using

simulation methods such as Monte Carlo (MC) simulation

(Woillard et al., 2021b). MC simulation results in estimations

of the possible outcomes by expanding the sample size, in light of

probability distributions of the relevant parameters as inputs in a

model (Zhu et al., 2021b). This technique has been used for

popPK models to determine remedial dosing recommendations

for non-adherent patients (Wang et al., 2020; Liu et al., 2021).

Another study by Sibieude et al. (2021) appliedML as a fast initial

covariate screening strategy and then utilized more traditional

pharmacometrics approaches to build a final satisfying model to

assess the clinical relevance of selected covariates and make

predictions in different populations and scenarios. Thus,

pharmacometrics can partner with ML to advance clinical

data science by strongly decreasing computational costs for

analyzing clinical datasets (Koch et al., 2020; Sibieude et al.,

2021). Nevertheless, to the best of our knowledge, few studies

have explored integrating covariates derived from different

popPK models using ML. Our study, therefore, fills this gap.

Valproic acid (VPA) is a widely used drug for the treatment

of bipolar disorder, particularly for acute mania, and multiple

seizure types such as generalized tonic-clonic seizures (Hakami,

2021; Kishi et al., 2022). As a narrow therapeutic index drug, it is

characterized by high pharmacokinetic variability (Johannessen

and Johannessen, 2003). Various popPK models of VPA in

Chinese patients have been constructed in recent years, to

explore personalized VPA dosing and its variability patterns

(Xu et al., 2018; Zang et al., 2022a). However, the covariates

that influence the VPA pharmacokinetics varied between these

models. Therefore, it is necessary to investigate the

comprehensive impacts of these potential factors on VPA

pharmacokinetics using our established XGBoost model.

The XGBoost algorithm, one of the best-known ensemble

techniques, was originally developed by Chen and Guestrin

(2016). It is based on the basic idea of boosting and serves as

an extension to gradient boosted decision trees (GBDT),

where the decision trees are built serially and each tree

tries to minimize the error made by the previous one

(Yaman and Subasi, 2019). Several innovations have been

made to the XGBoost algorithm, including parallel tree

boosting and approximate greedy search (Chen and

Guestrin, 2016). Therefore, it can simultaneously reduce

the model bias and variance (Cao et al., 2010). This state-
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of-the-art ML algorithm has been gradually applied to deal

with predictions of therapeutic drug monitoring (TDM)

values, drug dose, and drug exposure to specific

medications (Huang et al., 2021a; Guo et al., 2021;

Bououda et al., 2022). The details of the differences

between the XGBoost and GBDT algorithms are given in

the section titled “An introduction to XGBoost algorithm.”

In this study, our objective was to integrate covariates derived

from different popPK models of VPA using the XGBoost

algorithm, interpret our proposed model based on the

SHapley Additive exPlanations (SHAP) analysis (Lundberg

and Lee, 2017), and evaluate the combined effects across

multiple covariates (i.e., CYP2C19 genotypes and co-

administered enzyme-inducing antiepileptic drugs) in terms of

VPA exposure by assuming four scenarios. Furthermore, for easy

clinical use, we built a simplified model by using only CYP2C19

genotypes and some noninvasive clinical parameters, and

omitting several features (similar to the practices in the

ablation experiment) that were infrequently measured during

TDM [e.g., albumin (ALB)], or whose clinically available values

were inaccurate [e.g., blood sampling time (t)]. We evaluated this

simplified model on our independent external dataset. An easy-

to-use web application based on the simplified model was then

designed as a real-time tool to support clinical decisions

for MIPD.

2 Materials and methods

2.1 Data source and dataset construction

Generally, the predictability of different popPK models

when extrapolated to other clinical centers might remain to be

compared (Lv et al., 2021). An external validation study based

on published VPA models by Zang et al. (2022b) suggested

that the absence of children, Asian ethnicity, one-

compartment models, and inclusion of the covariates body

weight (BW) and VPA dosage, were the most important

factors contributing to good performance in their Chinese

dataset. This indicates that the selection of published popPK

models of VPA is vital in our study, and priority may be given

to these models that include the abovementioned factors.

Moreover, glucuronidation and β-oxidation in the

mitochondria are the major routes of VPA metabolism in

humans (Ghodke-Puranik et al., 2013), and cytochrome P450

2C9 (CYP2C9) is the most significant cytochrome P450 (CYP)

enzyme that mediates the oxidation of VPA considered a

minor route of its metabolism (Ho et al., 2003; Ghodke-

Puranik et al., 2013). Nevertheless, cytochrome P450 2C19

(CYP2C19) also participates in VPA metabolism (Hiemke

et al., 2018; Song et al., 2022). Multiple studies reported

that CYP2C19 polymorphisms/genotypes significantly

influenced the pharmacokinetic variability of VPA in

Chinese Han subjects (Jiang et al., 2009; Guo et al., 2020;

Wang et al., 2021). Given the limitations of the genetic test

items in our hospital (no CYP2C9 genotype testing), the

reported references about the impact of CYP2C19

polymorphisms on VPA, and the goal of validation of the

simplified XGBoost model using our external dataset, we

selected two previously published popPK models of VPA in

Chinese epileptic patients for simulations [i.e., Model-A

including the covariate CYP2C19 genotypes (Guo et al.,

2020) and Model-B including the covariates BW and daily

dose of VPA (Daily Dose) (Lin et al., 2015)], both of which

involved one-compartment models and Chinese epileptic

patients aged 14 years and above. The detailed descriptions

of the two studies are listed in Table 1.

A general overview of our implementation of

pharmacometric models to ML models in this study is

shown in Figure 1. The population parameters, namely, the

rate of absorption (ka), the apparent volume of distribution

(Vd), and the total serum clearance (CL), of Model-A and

Model-B, were used to simulate the individual steady-state

concentrations (Css) of VPA, whose concentration-time

profiles have been described by a one-compartment model,

described as follows:

Css(kaj, tj, Vdj, CLj, X0j, τj) �
kaj · F ·X0j

Vdj · kaj − CLj
·⎛⎜⎜⎜⎜⎝ e

−CLj ·tj
Vdj

1 − e
−CLj ·τj

Vdj

− e−kaj ·tj

1 − e−kaj ·τj
⎞⎟⎟⎟⎟⎠

where Css(kaj, tj, Vdj, CLj, X0j, τj), kaj, Vdj, CLj, X0j, and τj are

the Css of VPA (mg/L) at the blood sampling time tj (h), the ka
(h−1), theVd (L), the CL (L/h), a single dose (mg), and the dosing

interval (h) for an individual j, respectively, F is the absolute

bioavailability (%).

To determine a clear relationship between the features and

the simulated outcomes without noise,Vdjand CLj are calculated

using the following formulas without considering their inter-

individual random effects (Mould and Upton, 2013):

Vdj � Vdpop

CLj � CLpop

where Vdpop and CLpop represent the typical population values of

Vd and CL, respectively.

The parameter ka is fixed at 2.38 h−1 and 1.90 h−1 in Model-A

and Model-B, respectively; that is to say, kaj equals ka. F is

assumed to be one because the absolute systemic availability of

VPA was found to be complete for all commonly used

formulations (Gugler and von Unruh, 1980; Romoli et al.,

2019). For Model-A, the covariates acting on Vdpop included

gender, those acting on CLpop included CYP2C19 genotypes and

ALB, while the covariates included in Model-B were BW, which
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influences both Vdpop and CLpop, the Daily Dose, and cotherapy

with enzyme-inducing antiepileptic drugs [including

carbamazepine (CBZ), phenytoin (PHT), and phenobarbital

(PB)] that influence CLpop. The related parameters in these

models for the dataset simulation process are summarized in

Table 2.

The constructed dataset combined two simulated datasets,

i.e., Dataset-A and Dataset-B, derived from Model-A and

Model-B, respectively. For Dataset-A, four scenarios

(i.e., CYP2C19*1/*1 + male, CYP2C19*1/*1 + female,

CYP2C19*1/*2 or *1/*3 or *2/*3 or *2/*2 or *3/*3 + male,

and CYP2C19*1/*2 or *1/*3 or *2/*3 or *2/*2 or *3/*3 + female)

were considered for simulating overall 20,000 virtual patients

(in equal proportion, namely, simulating 5,000 virtual patients

for each scenario). For each scenario, BW and ALB were

simulated using normal distributions with mean ± standard

deviation (SD) of (66.5 ± 12.1) kg and (38.9 ± 6.4) g/L,

respectively, obtained from Model-A (see Table 2). For

Dataset-B, a total of seven scenarios for different types of

concomitant medication were simulated, including

combinations with CBZ, PHT, PB, CBZ + PHT, CBZ + PB,

PHT + PB, and CBZ + PHT + PB, and for each type,

2,000 virtual patients were generated, whose BW (kg)

followed a normal distribution with 60.2 mean and an SD

of 12.5, taken from Model-B (see Table 2). Dosing regimens

were presumed to be the same in both models, as follows:

X0j ∈ {125, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900}(mg)

τj ∈ {6, 8, 12, 24}(h)

where X0j and τj were sampled at random with the probability

equal to 1/15 and 1/4, respectively. tj was assumed to have a

uniform distribution of values between 0 and τj h.

Subsequently, MC simulations resulted in 20,000 and

14,000 individual values of Css for Dataset-A and Dataset-B,

respectively. Notably, types of concomitant medication (i.e., co-

administered CBZ/PHT/PB) as a new feature, the values of which

were “None,” was added in the generated Dataset-A because drugs

that affect VPA concentrations had been excluded in Model-A;

similarly, CYP2C19 genotypes, as a new feature with values

“Unknown,” were added in the generated Dataset-B owing to the

unknown distributions of the values of this covariate (i.e., the

proportions of the genotypes CYP2C19*1/*1, CYP2C19*1/*2,

CYP2C19*1/*3, etc.). This was also not included in Model-B.

However, gender and ALB, both of which were not covariates for

Model-B, were set to null as new features in the generated Dataset-B

due to their missing value imputation. To obtain less noise, filters

were applied to both models to remove Css higher than 150mg/L to

obtain a range of values compatible with observed data reported in

the original articles (Woillard et al., 2021b), resulting in 14,509 and

11,664 Css values retained in the finally generated Dataset-A and

Dataset-B, respectively. Moreover, to ensure high-quality data

containing as much useful information as possible to facilitate the

TABLE 1 Descriptions of the two studies about Model-A and Model-B.

Items Model-A (Guo et al., 2020) Model-B (Lin et al., 2015)

Study design A prospective study A prospective study

Subjects Chinese patients with seizures aged ≥18 years old in General Hospital of
Taiyuan Iron and Steel (Group) Corporation (TISCO)

Chinese epileptic patients with normal liver and renal functions and
14 years of age or older in Huashan Hospital (Shanghai), Changzheng
Hospital (Shanghai), Children’s Hospital (Shanghai), Tiantan Hospital
(Beijing), and Brain Hospital (Nanjing)

Sample collection Steady-state VPA serum concentration data were collected from January
to December 2018

VPA serum samples at a steady state before the morning dose were
collected between 1 October 1998, and 31 October 2003

Model description One-compartment model One-compartment model

Number of patients 60 199

Number of
measurements

98 247

Age (years) 60 ± 11.8 (22–88) 26.6 ± 11.7 (14–66)

Gender (male/
female)

44/16 114/85

Daily dose of
VPA (mg)

500 (200–1,200) 884.5 ± 317.7 (250–1800)

VPA concentration
(mg/L)

<150 61.9 ± 26.8 (3.2–140.3)

Formulation of VPA Standard VPA dosing regimens (i.e., oral: 500 mg [immediate release
tablets/solutions], twice per day; intravenous: 400 mg, twice per day)

VPA was prescribed 1–4 times a day and was administered orally in the
forms of sustained-release tablets (Depakine, Sanofi-Aventis
Pharmaceutical Ltd., Hangzhou, China) or conventional tablets (Hunan
Xiangzhong Pharmaceutical Ltd., China)

Concomitant
medications

Other medications that affect VPA concentrations were excluded (e.g.,
phenobarbital, carbamazepine, meropenem, imipenem, etc.)

Carbamazepine, phenytoin, phenobarbital, topiramate, and clonazepam
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FIGURE 1
The workflow from pharmacometrics models tomachine learning (ML) models mainly involves three parts: 1) data acquirement from published
pharmacokinetic studies, 2) the construction of the combined dataset via Monte Carlo (MC) simulation and a series of data cleaning process, and 3)
ML-based predictive modelling based on the finally generated combined dataset.
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training and test of the ML models, for the combined dataset in

26,173 × 13 matrix format [i.e., 26,173 simulated input–output data

pairs (Dataset-A: Dataset-B = 14,509: 11,664)], we used the k-nearest

neighbor imputation for gender and ALB. Both had 44.57% (11,664/

26,173 × 100%) missing data (Beretta and Santaniello, 2016). We

used one-hot encoding for categorical variables (Lopez-Arevalo et al.,

2020), and min-max normalization for continuous feature variables,

and then omitted the features with attributes of “Unknown,” “None,”

and “Female” after one-hot encoding for theCYP2C19 genotypes, co-

administered CBZ/PHT/PB, and gender (considering the increased

dimensionality of the dataset and the issue of collinearity because one

of the categories could be completely generated from the others). We

also omitted the pharmacokinetics-related features that are not easily

available in the clinic (including ka, Vd, and CL). The combined

dataset was finally generated after data preprocessing, including

26,173 Css values and 16 features (i.e., Single Dose, BW, ALB, t,

τ, Daily Dose, CYP2C19*1/*1, CYP2C19*2 and/or *3 variants

(i.e., CYP2C19*1/*2 or *1/*3 or *2/*2 or *2/*3 or *3/*3), Male, Co-

administered CBZ, Co-administered PHT, Co-administered PB, Co-

administered CBZ + PHT, Co-administered CBZ + PB, Co-

administered PHT + PB, and Co-administered CBZ + PHT +

PB). Among these 16 features, the values of the categorical

variables were one (=yes) or zero (=no). The process of dataset

construction is shown in Figure 1.

2.2 An introduction to the XGBoost
algorithm

XGBoost, a gradient-boosting framework, was developed by

a team led by Chen Tianqi at the University of Washington

(Chen and Guestrin, 2016). It is an effective tool for tackling

classification and regression problems using tabular data.

Compared with GBDT, XGBoost uses a series of

optimizations (Li et al., 2019; Chen et al., 2020). An

important aspect is the application of an additional

regularization term to the loss function to prevent overfitting.

The objective function (L) of XGBoost is calculated as:

L � ∑
i

l( ŷi, yi) +∑
k

Ω(fk)

where l is the loss function representing the error between the

actual values (yi) and the predicted values (ŷi), and Ω(fk) is the
regularized term, defined as:

Ω(fk) � γT + 1
2
λ‖ω‖2

where Τ and ω represent the number of leaves in the tree and the

corresponding weight of different leaves of each tree, respectively,

and γ and λ are the regularized parameters that penalize Τ and ω,

respectively.

Moreover, the second-order Taylor expansion of L can more

efficiently fit the error. For the t-th iteration, L(t) is:T
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L(t) ≃ ∑
i

[l(yi, ŷ
(t−1)
i + gift(xi) + 1

2
hif

2
t(xi))] + Ω(ft)

where gi � zŷ(t−1)
i

l(yi, ŷ
(t−1)
i ) and hi � z2

ŷ(t−1)
i

l(yi, ŷ
(t−1)
i ) are the

first- and second-order gradients, respectively.

Subsequently, other calculations were used to determine

the optimal split node by using the information gain of L. This

is another algorithmic innovation. Gain denotes the gain for

each split of the tree. It is used to evaluate the candidate splits,

and is given by:

Gain � 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(∑i ∈ IL

gi)
2

∑i∈ILhi + λ
+ (∑i ∈ IR

gi)
2

∑i∈IRhi + λ
− (∑i ∈ Igi)

2

∑i∈Ihi + λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − γ

where IL and IR represent the instance sets of the left and right

nodes after the split, respectively, and I � IL ∪ IR.

XGBoost has a multitude of hyperparameters. The optimal

choice of the following key hyperparameters may yield the

best performance by the model:

1) n_estimators: This represents the total number of trees.

Too small or too large a value of n_estimators may lead to

underfitting or overfitting, respectively.

2) max_depth: It is the maximum depth of the tree. Increasing

max_depth will make the model more complex and lends it

a stronger fitting ability. However, a large value is likely to

cause it to overfit the data.

3) min_child_weight: It represents the minimum number of

samples that a node can represent in order to be

split further. We can increase this value to reduce

overfitting.

4) gamma: It is a regularization parameter that denotes the

minimum reduction in loss at every split. The

larger gamma is, the more conservative the algorithm is,

the smaller is the number of leaves that the tree has, and

therefore, the lower is the complexity of the model.

5) colsample_bytree: It denotes the subsample ratio of columns

(i.e., the rate of feature sampling) when constructing each

tree, and controls overfitting.

6) subsample: It is the subsample ratio of the training instances.

Increasing this value makes the algorithm more conservative

and the model more likely to underfit.

7) learning_rate: It is the shrinkage in step size used in updates to

prevent overfitting. Reducing the weight of each step makes

the model more robust.

2.3 Model development and evaluation

The finally generated combined dataset in 26,173 × 17 matrix

format was randomly divided into two parts, the derivation cohort

for model selection and the development of the XGBoost model, and

the validation cohort for its evaluation (an 8: 2 ratio). Before using

the XGBoost algorithm, 10-fold cross-validation was applied to the

derivation cohort to assess the performance of the XGBoost model,

and other tree-based and non-tree-based models, including random

forest regression (RFR), bagging regression (BR), gradient-boosted

regression (GBR), decision tree regression (DTR), AdaBoost

regression (ABR), and multiple linear regression (MLR). We used

their default settings for the hyperparameters.

K-fold cross-validation involves 1) splitting the derivation

cohort into K folds, 2) starting by using K-1 folds as the training

set and the remaining one fold as the test set, 3) training the

model on the training set and testing it on the test set, 4) saving

the test score, 5) repeating steps 2–4 for K iterations, and 6)

comparing the performance of the models by using the average

cross-validation score [mean absolute error (MAE), used as the

evaluation metric in this study] in the test sets across all K folds

(Kalagotla et al., 2021).

The metrics used to evaluate the performance of the

developed XGBoost model on the validation cohort were the

MAE, root-mean-squared error (RMSE), mean relative error

(MRE), and ideal rate (IR, i.e., percentages within ±20% of

actual values), defined as follows:

MAE � ∑N
i�1(ŷi − yi)

N

RMSE �
������������
∑N

i�1(ŷi − yi)
2

N

√

MRE(%) � ∑N
i�1(ŷi − yi)/yi

N
× 100%

IR(%) � Npredicted valueswithin±20% of actual vaules

Ntotal actual vaules
× 100%

where ŷi and yi denote the predicted and actual values,

respectively.

2.4 Model interpretation

The SHAP analysis was utilized to provide interpretability

to the proposed XGBoost model, which is generally criticized

as a ‘black-box’ model due to its complexity. The main

advantages of SHAP inspired by cooperative game theory

(Štrumbelj and Kononenko, 2014), are that it is model

agnostic, easy to use, and straightforward to interpret the

feature contributions at global and local levels, as well as the

interactions among these features (Li et al., 2020). The

contribution of each feature on the model output associated

with each predicted sample is allocated according to their

marginal contribution (Shapley, 1953), and can be determined

by the Shapley value, defined via the following formula (Yang

et al., 2021):
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ϕi(]) � ∑
S⊆{1,...,p}∖{i}

|S|!(p − |S| − 1)!
p!

(](S ∪ {i}) − ](S))

where ϕi(]) is the contribution of feature i, p is the number

of features, S is a subset of the features used in the model,

and ](S ∪ {i}) − ](S) represents the influence of feature i on

the improvement of the result (i.e., marginal contribution).

2.5 Applications of the integration of
pharmacometrics and ML models

2.5.1 Impacts of the integrated covariates on VPA
exposure

To assess the comprehensive impacts of different popPK

models-derived covariates–CYP2C19 genotypes and co-

administered enzyme-inducing antiepileptic drugs–on VPA

exposure, we used MC simulations to simulate 1,000 virtual

patients and 200 sampling times for a dosing interval (i.e., t,

uniformly distributed between 0 and 12 h) for each patient in

terms of a dosage regimen of 500 mg/bid in every assumed

scenario. A total of 16 predictors [Single Dose (set to 500 mg),

BW, ALB, t, τ (set to 12 h), Daily Dose (set to 1,000 mg),

CYP2C19*1/*1, CYP2C19*2 and/or *3 variants, Male, Co-

administered CBZ, Co-administered PHT, Co-administered PB,

Co-administered CBZ + PHT, Co-administered CBZ + PB, Co-

administered PHT + PB, and Co-administered CBZ + PHT + PB]

were simulated based on the proposed XGBoost model. Among

them, the BWandALBwere simulated as normal distributions, with

mean ± SD described in the finally generated combined dataset (see

Table 3), and the male and female patients were simulated with

equal probabilities (i.e., the probability of Male = 1 was 0.5).

A total of four scenarios were considered:

Scenario 1: Patients with CYP2C19*2 and/or *3 variants

(feature value = 1) and taking co-administered CBZ + PHT +

PB (feature value = 1).

Scenario 2: Patients with CYP2C19*1*1 genotype (feature

value = 1) and taking co-administered CBZ + PHT + PB (feature

value = 1).

Scenario 3: Patients with CYP2C19*2 and/or *3 variants

(feature value = 1) and NOT taking co-administered CBZ,

PHT, or PB (feature values of all co-administered drug

predictors = 0).

Scenario 4: Patients with CYP2C19*1*1 genotype (feature

value = 1) and NOT taking co-administered CBZ, PHT,

or PB (feature values of all co-administered drug

predictors = 0).

All predictors except for t were considered to be constant

for each virtual patient. Therefore, these static values were

replicated across t, resulting in tabular data in which each

scenario had 1,000 × 200 samples for predictions of Css by

using our proposed XGBoost model. The concentration-time

profiles were then plotted for all scenarios using the two

visualization libraries matplotlib and seaborn. The VPA

exposures [i.e., AUC0→12h (mg・h/L)] in the

aforementioned scenarios were obtained using the

trapezoidal rule by dividing the curve’s total area into small

trapezoids rather than dividing it into small rectangles

(Woillard et al., 2021b), and the average Css ( �Css) (mg/L)

was calculated as follows:

�Css � AUC0→12h/12

Both AUC0→12h and �Css were calculated in Python by using

the numpy package.

TABLE 3 Simulated patient characteristics in the finally generated combined dataset (N = 26,173).

Continuous data Value [(mean ± SD)
or median (min–max)]

Categorical data Distribution [n (%)]

Css (mg/L) 73.7 ± 37.2 Male 7,237 (27.65%)

BW (kg) 64.3 ± 12.4 CYP2C19*1/*1 8,358 (31.93%)

ALB (g/L) 37.9 ± 5.6 CYP2C19*2 and/or *3 variants 6,151 (23.50%)

Daily Dose (mg) 900 (125–3,600) Co-administered CBZ 1,636 (6.25%)

Single Dose (mg) 450 (125–900) Co-administered PHT 1,529 (5.84%)

t (h) 5.57 (0–24) Co-administered PB 1,421 (5.43%)

τ (h) 12 (6–24) Co-administered CBZ + PHT 1,854 (7.08%)

Co-administered CBZ + PB 1,735 (6.63%)

Co-administered PHT + PB 1,652 (6.31%)

Co-administered CBZ + PHT + PB 1,837 (7.02%)

Note: Css denotes the steady-state concentrations of VPA, t denotes the blood sampling time, and τ denotes the dosing interval.
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2.5.2 Model simplification to develop an easy-
to-use MIPD tool

In clinical practice, a balance needs to be struck between the

performance of the ML model and its ease of use. The ideal ML

models are those that have as few predictors as possible (and perhaps

should be easily available in the clinic) while delivering high

performance. In this study, we aimed to build a simplified

XGBoost model to develop an easy-to-use MIPD tool.

Considering that the values of some predictors were missing

owing to infrequent measurements during TDM (e.g., ALB) or

were inaccurate clinical data (e.g., inappropriate sampling time in

the TDM practice and irregular single doses or dosing intervals in

the prescriptions) (Jakobsen et al., 2017; Firman et al., 2021), we built

a simplified model by omitting these types of features (i.e., Single

Dose, ALB, t, τ) in the final, combined dataset. We developed an

easy-to-use model in the clinic by using only CYP2C19 genotypes

and some noninvasive clinical parameters as predictors, and

observed the influence of the omitted predictors on the

performance of the proposed XGBoost model. Finally, we

optimized the hyperparameters via the sklearn’s own grid search

approach using the evaluation metric of MAE and tenfold cross-

validation (Radzi et al., 2021), and verified this simplifiedmodel after

optimization in our independent external dataset, which consisted of

105 input-output data pairs retrospectively collected from our

routine TDM practice according to guidelines of the Ethics

Committee of the Affiliated Brain Hospital of Guangzhou

Medical University approval ([2021] NO.027). The inputs to the

external dataset were the same as those of the finally generated

combined dataset with Single Dose, ALB, t, and τ omitted. They

consisted of CYP2C19*1/*1, CYP2C19*2 and/or *3 variants, Daily

Dose, BW,Male, Co-administered CBZ, Co-administered PHT, Co-

administered PB, Co-administered CBZ + PHT, Co-administered

CBZ + PB, Co-administered PHT + PB, and Co-administered CBZ

+ PHT + pB. The external dataset is described in Table 4.

We designed an easy-to-use web application based on the

simplified optimum XGBoost model to realize real-time

estimations of values of Css of the VPA by automatically

crawling information on the model inputs from the electronic

health record (EHR) system.

2.6 Implementation

All the analyses were performed in Python using the Jupyter

notebook. Libraries sklearn, XGBoost, pandas, numpy, scipy,

matplotlib, seaborn, palettable, and shap, were used for

implementation.

TABLE 4 Descriptions of our external dataset.

Items Value

Number of patients 56

Total number of measured steady-state VPA concentrations 105

Average TDM measurements per patient 1.88

Age (years, mean ± SD) 34.48 ± 13.10

BW (kg, mean ± SD) 63.82 ± 11.48

Gender

Male 42

Female 14

The number of patients with the CYP2C19 genotype of

CYP2C19*1/*1 22

CYP2C19*1/*2 26

CYP2C19*1/*3 4

CYP2C19*2/*2 1

CYP2C19*2/*3 3

Daily dose [mg, median (min–max)] 1,000 (250–2000)

Css (mg/L) 87.3 ± 22.8

Note: All patients did not take co-administered CBZ/PHT/PB.

FIGURE 2
Histogram (A) and probability plot (B) of the simulated Css of VPA.
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3 Results

3.1 Simulation and data

Figure 2A shows the histogram of the simulated Css of VPA,

whose probability plot indicated a normal distribution (R2 =

0.9660) (Figure 2B). Figure 3 shows a heat map of the Pearson’s

correlation coefficients between the Css of VPA and features,

indicating that “Daily Dose” and “τ” were the most important

positive and negative predictors correlated with Css, respectively,

and no obvious multi-collinear relationships were observed

between the features. The characteristics of the simulated

patients in the finally generated combined dataset are shown

in Table 3.

3.2 XGBoost model

Table 5 shows the overall comparison of the regression

models in the derivation cohort. The lowest average MAE

value of the XGBoost model in the test sets indicated that it

was superior to the other tree-based and non-tree-based models

considered. As is presented in Table 6, the proposed XGBoost

model delivered excellent performance on the validation cohort,

illustrated by an MAE of 2.4 mg/L, RMSE of 3.3 mg/L, MRE of

0%, and IR of 98.85%, respectively.

3.3 SHAP analysis

Figure 4A shows the SHAP summary plot that orders all

predictors according to their feature importance to detect the

features which have high contributions to the Css of VPA.

Among these features, Daily Dose was ranked first, followed

by t, CYP2C19*2 and/or *3 variants, ALB, BW, Single Dose, and

CYP2C19*1/*1. Moreover, higher SHAP values of a feature

indicated higher Css of VPA, and vice versa. The colored dots

determined the direction of influence, i.e., the higher the input

value of a feature, the higher the Css of VPA, when red dots were

in the positive range of SHAP values. Likewise, Figure 4B shows

the hierarchical feature clustering of the SHAP bar plot that sorts

the feature importance values of each cluster and subcluster to

show the most important features at the top. The global

importance of the predictors was calculated according to the

FIGURE 3
Heat map of Pearson’s correlations between Css of VPA and features.
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TABLE 6 Comparisons of the performance of the proposed models on the validation cohort and the independent external dataset.

Datasets Models Descriptions of models Evaluation metrics

Selected features Hyperparameters MAE
(mg/L)

RMSE
(mg/L)

MRE
(%)

IR
(%)

Validation
cohort (N =
5,235)

XGBoost model Single Dose, BW, ALB, t, τ, Daily
Dose, CYP2C19*1/*1, CYP2C19*2
and/or *3 variants, Male, Co-
administered CBZ, Co-administered
PHT, Co-administered PB, Co-
administered CBZ + PHT, Co-
administered CBZ + PB, Co-
administered PHT + PB, and Co-
administered CBZ + PHT + PB

Default settings 2.4 3.3 0 98.85

Simplified
XGBoost model

BW, Daily Dose, CYP2C19*1/*1,
CYP2C19*2 and/or *3 variants, Male,
Co-administered CBZ, Co-
administered PHT, Co-administered
PB, Co-administered CBZ + PHT,
Co-administered CBZ + PB, Co-
administered PHT + PB, and Co-
administered CBZ + PHT + PB

Default settings 11.2 14.7 5 68.00

Simplified
XGBoost model
after optimization

BW, Daily Dose, CYP2C19*1/*1,
CYP2C19*2 and/or *3 variants, Male,
Co-administered CBZ, Co-
administered PHT, Co-administered
PB, Co-administered CBZ + PHT,
Co-administered CBZ + PB, Co-
administered PHT + PB, and Co-
administered CBZ + PHT + PB

n_estimators: 20, max_depth: 6,
min_child_weight: 5, gamma: 0,
colsample_bytree: 1.0, subsample: 1.0,
learning_rate: 0.3

11.0 14.4 5 69.11

External
dataset
(N = 105)

Simplified
XGBoost model
after optimization

BW, Daily Dose, CYP2C19*1/*1,
CYP2C19*2 and/or *3 variants, Male,
Co-administered CBZ, Co-
administered PHT, Co-administered
PB, Co-administered CBZ + PHT,
Co-administered CBZ + PB, Co-
administered PHT + PB, and Co-
administered CBZ + PHT + PB

n_estimators: 20, max_depth: 6,
min_child_weight: 5, gamma: 0,
colsample_bytree: 1.0, subsample: 1.0,
learning_rate: 0.3

16.5 20.1 13 60.00

TABLE 5 The mean absolute error (MAE) at 95% confidence interval (CI) for the prediction of the value of Css of VPA in the derivation cohort for the
XGBoost and other regression models.

Models Training set Test set

MAE (mg/L) (+/-) 95% CI of
MAE (mg/L)

MAE (mg/L) (+/-) 95% CI of
MAE (mg/L)

XGBR 1.7 0.1 2.5 0.1

RFR 1.2 0 3.1 0.2

BR 1.5 0 3.5 0.2

DTR 0 0 5.1 0.3

GBR 6.0 0.1 6.2 0.2

MLR 10.2 0 10.2 0.4

ABR 14.1 0.3 14.2 0.7
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mean absolute SHAP values [mean (|SHAP value|)] of each

feature over all instances (rows) of the finally generated

combined dataset. SHAP can also explain individual

predictions. Figure 4C shows the SHAP heat map of the top

1,000 instances extracted from the dataset. It ordered samples by

using supervised clustering, and this resulted in samples that had

the same model outputs, for the same reason for which they were

grouped together. Figure 4D shows the applicability of the

proposed XGBoost model on a single sample randomly

selected from these 1,000 instances, where the highest

contribution to the Css of VPA is the Daily Dose (feature

value = 0.338) and CYP2C19*2 and/or *3 variants (feature

value = 0), and was generally not in agreement with the

results of the global interpretations of the SHAP summary

plot analysis. It indicated the potential difference in the

rankings of the contributions of the features at the individual

level. The SHAP dependence plots of the top seven key features

are displayed in Figure 5, to show how a feature affected theCss of

VPA. Nonlinear associations between features (e.g., t) and theCss

of VPA were observed. The results showed that higher Daily/

Single Dose and ALB, lower BW, and CYP2C19*2 and/or *3

variants, were related to higher Css of VPA.

FIGURE 4
(A). SHAP summary plot. From it, we can get an initial sense of the relationship between the value of a certain feature and its impact on
prediction. Each point represents an instance and a Shapley value for a feature. Its position on this plot is determined by the feature on the y-axis
(ordered by feature importance) and the Shapley value on the x-axis, while its color is determined by the value of the feature. A higher SHAP value
corresponds to a higher Css of VPA, and vice versa. (B) SHAP bar plot obtained by using feature clustering, from which we can simultaneously
visualize the structure of the clustering and the importance of the features. The numbers on the histograms represent the mean (|SHAP value|) of a
feature. SHAP analysis can also explain individual predictions, illustrated by (C–D). (C) SHAP heat map, with the top 1,000 instances on the x-axis and
the model inputs on the y-axis. The SHAP values encoded on a color scale. The model outputs are shown above the heatmap matrix and centered
around the dotted gray baseline. The global importance of each feature is shown as a black bar plot on the right-hand side of the plot. (D)Waterfall
plot that explains a single prediction of the sample randomly selected from the 1,000 instances by visualizing how to obtain the final prediction with
the SHAP values of each feature. The bottom of the plot starts as expected, and then each row shows how the positive (red) or negative (blue)
contribution of each feature moves the value from the expected output of the model, under the background distribution of the dataset, to its final
prediction. The value of each feature for this sample appears in gray text before the feature name.
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3.4 Impacts of covariates on VPA exposure

Figure 6 shows the comprehensive impacts of CYP2C19

genotypes and co-administered enzyme-inducing

antiepileptic drugs on the Css of VPA under the dosage

regimen of 500 mg/bid, by simulating four scenarios using

the XGBoost model. The simulated AUC0→12h values at a

steady-state calculated by the trapezoidal rule and the

corresponding �Css values are listed in Table 7. Our results

showed that patients who had the CYP2C19*2 and/or *3

FIGURE 5
The SHAP dependence plots of features that ranked higher according to their importance ranking. From the scatter plots, we can see the exact
form of the relationships between a single feature and the predictions made by the model.

FIGURE 6
Simulated Css of VPA plotted by using four dosing intervals at the dosage regimen of 500 mg/bid in different scenarios based on the proposed
XGBoost model. The numbers of virtual patients at each time point is 1,000. The blue, orange, green, and red line denotes scenario 1 (patients with
CYP2C19*2 and/or *3 variants, and taking co-administered CBZ + PHT + PB), scenario 2 (patients with CYP2C19*1*1 genotype, and taking co-
administered CBZ + PHT + PB), scenario 3 (patients with CYP2C19*2 and/or *3 variants, and not taking co-administered CBZ, PHT, or PB), and
scenario 4 (patients withCYP2C19*1*1 genotype, and not taking co-administered CBZ, PHT, or PB), respectively. The shaded area represents the 95%
confidence interval.
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variants and did not receive CBZ, PHT, or PB, had more VPA

exposure [AUC0→12h: (1,187.5 ± 183.5) versus (683.4 ± 103.7)

mg·h/L, approximately 1.74-fold] and more �Css [(99.0 ± 15.3)

versus (56.9 ± 8.6) mg/L] than those of individuals with

CYP2C19*1/*1 genotype and co-administered CBZ +

PHT + PB.

3.5 Performance of the simplified models

The simplified XGBoost model by omitting the features of

Single Dose, ALB, t, and τ, yielded reduced performance on the

validation cohort, with an MAE of 11.2 mg/L, RMSE of 14.7 mg/

L, MRE of 5%, and IR of 68.00%, respectively; whereas, its

TABLE 7 Simulated steady-state area under the curve from time zero
to 12 h (AUC0→12h) and the corresponding average Css ( �Css) values
of VPA under the dosage regimen of 500 mg/bid in terms of four
different scenarios based on the XGBoost model.

Scenarios AUC0→12h (mg·h/L) �Css (mg/L)

Scenario 1 1,093.3 ± 170.2 91.1 ± 14.2

Scenario 2 683.4 ± 103.7 56.9 ± 8.6

Scenario 3 1,187.5 ± 183.5 99.0 ± 15.3

Scenario 4 765.4 ± 117.0 63.8 ± 9.8

Note: Scenario 1 denotes patients with CYP2C19*2 and/or *3 variants and taking co-

administered CBZ + PHT + PB), Scenario 2 denotes patients with CYP2C19*1*1

genotype and taking co-administered CBZ + PHT + PB, Scenario 3 denotes patients

with CYP2C19*2 and/or *3 variants and NOT taking co-administered CBZ, PHT, or PB,

and Scenario 4 denotes patients with CYP2C19*1*1 genotype and NOT taking co-

administered CBZ, PHT, or PB.

FIGURE 7
(A). Comparison of predicted and observed Css values of VPA on the independent external dataset based on the simplified optimum XGBoost
model. The range between red and green dotted lines represents +20~-20% relative errors, i.e., the predicted values within ±20% of the observed
values. (B) Residuals plot of residuals versus the predicted Css values. (C) Probability plot of the residuals. (D) Comparison of observed Css of VPA
between patients with CYP2C19*1*1 genotype and CYP2C19*2 and/or *3 variants at a dosage regimen of 500 mg/bid on our independent
external dataset. The green multiplication sign indicates the mean Css values of VPA.
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performance has since been upgraded after optimization

(Table 6). The simplified optimum XGBoost model also

obtained good performance on our independent external

dataset (Table 6). About 60.00% of predicted values fell

within ±20% of the empirical values (Figure 7A). Figure 7B

illustrates no clear patterns of the distribution of the residuals,

and Figure 7C shows the residuals were symmetrically

distributed, which meets the assumption of normality (R2 =

0.9930). In the external dataset (described in Table 4), the

mean measured Css values of VPA in scenarios 3 and 4 were

(91.4 ± 18.7) and (70.6 ± 11.3) mg/L, respectively (Figure 7D),

which were close to the predicted �Css of VPA in these scenarios

based on the XGBoost model (see Table 7). A snapshot of the

workflow of the designed web application based on the simplified

optimum XGBoost model is shown in Figure 8.

4 Discussion

ML can serve as a bridge between big data and

pharmacometrics by providing an efficient computational

approach, but the effective utilization of ML tools in

pharmacometrics modeling is still in its infancy (McComb

et al., 2022). Many attempts have been made to combine ML

and pharmacometrics to advance MIDP, such as the fast

screening of covariates in popPK models using ML. However,

the ML-based integration of covariates in different popPK

models, to our knowledge, is another potentially interesting

but unexplored application of ML in pharmacometrics.

In this work, we have first proposed an innovative approach

to integrate covariates in multiple previously published popPK

models of VPA in Chinese epileptic patients using MC

simulations to construct population-based large datasets for

ML modeling. However, several key points need to be

addressed before implementation. One is the choice of

published popPK models. As mentioned at the beginning of

the section “materials and methods,” it is important to select

suitable popPK models of VPA due to the differing predictability

within models. Another point that involves the size ratio of

simulated datasets from different popPK models, is also

noteworthy. Due to the potential differences in covariate types

in different popPK models, missing values of features are

inevitable when merging these simulated datasets from

different popPK models to construct the combined dataset for

the ML task. These features should usually occur in more than

50% of samples; otherwise, they need to be omitted (Meyer et al.,

FIGURE 8
The designed web application for real-time estimations of the value of Css of VPA based on the simplified optimum XGBoost model. The
database can be updated by integrating our simulated dataset with empirical data that are automatically crawled from the electronic health record
(EHR) system. This may enhance the self-learning and refinement of the ML model.
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2018). Hence, it is of crucial importance to determine the

partition ratio of different sub-datasets in the combined

dataset so as not to remove key covariates. Processing these

features with less than 50% missing values usually consists of

assigning “Unknown” to categorical variables, or setting them to

null for further imputation of the missing values. Furthermore,

the proportion of data simulated by using different models, as

well as the methods dealing with features with missing values,

may have an impact on explaining feature importance and the

patterns of influence. For example, an inappropriate proportion

of simulated datasets may lead to the learning of an insufficient

amount of information on the key factors by ML models.

Therefore, the appropriate construction of the combined

dataset requires incorporating expert knowledge into the ML

modeling process. In this study, we have tried to set the simulated

sub-datasets close to the same scale while considering the

percentages of missing values of features in the finally

generated combined dataset. We also have incorporated our

expert knowledge into the construction of the combined

dataset and well explained the influence of a predictor in the

XGBoost model based on the constructed combined dataset by

using explanation methods (e.g., the SHAP analysis). The last

point to consider is that, after the data cleaning process including

missing data imputation and one-hot encoding, we might have to

be concerned about multi-collinearity in features in the finally

generated combined dataset before ML modeling because

collinearity in the features may affect the performance of ML

models. The common method of dealing with this is to remove

collinearity from the feature set (Dormann et al., 2013).

Nevertheless, the decision regarding whether to retain the

features related to each other depends on their interpretation

meaning, the severity of multicollinearity, and the performance

of XGBoost models.

The ultimate prediction model established with XGBoost

achieved a good prediction precision and accuracy in the

validation cohort. The prediction behaviors of this “black-box”

model were illustrated by SHAP analysis. Our results

demonstrated that the daily dosage of VPA was the most

important variable. Other variables ranking among the top were

as follows: blood sampling time, CYP2C19*2 and/or *3 variants,

ALB, BW, single dosage of VPA, and CYP2C19*1/*1 genotype. The

SHAP dependent plots indicated the nonlinear relationships

between the Css of VPA and blood sampling time and daily/

single dosage of VPA. We intuitively found that the time to peak

plasma concentration was 1–2 h in line with previous clinical

pharmacokinetics reports of VPA (Gugler and von Unruh, 1980).

The positive influence of daily/single dosage of VPA on the Css of

VPA tended to be stable along with increased VPA dose, partly

explained by a saturable VPA protein binding status, along with a

subsequent increase in unbound VPA associated with increased CL,

as VPA is a high protein-binding drug (Lin et al., 2015; Gu et al.,

2021). The SHAP plots also showed that the Css of VPA was

positively correlated with ALB and CYP2C19*2 and/or *3 variants,

and negatively correlated with BW and CYP2C19*1/*1 genotype,

which was generally consistent with the results of our selected

popPK models (Lin et al., 2015; Guo et al., 2020). The increased

content of ALB in the blood results in less unbound VPA, thereby

decreasing the CL. CYP2C19*2 and/or *3 variants are associated

with the diminished catalytic activity of CYP2C19. Patients with

wild-type alleles forCYP2C19 are classified as extensivemetabolizers

associated with lower VPA concentrations, whereas non-extensive

metabolizers are those with loss-of-function alleles, resulting in

higher VPA exposure (Guo et al., 2020). Regarding the BW, our

finding was expected given its association with organ functionality

development responsible for drug elimination (Methaneethorn,

2018); this was in accordance with several previous studies that

reported an increase in CL and Vd with increasing BW (Correa

et al., 2008; Methaneethorn, 2017; Xu et al., 2018).

Furthermore, after covariate integration, it was necessary to

explore the comprehensive impacts of CYP2C19 genotypes and co-

administered enzyme-inducing antiepileptic drugs on VPA

exposure. Our simulations, which were well-verified by our

independent external dataset, showed that at the dosage regimen

of 500mg/bid, VPA exposure in patients withCYP2C19*2 and/or *3

variants and no co-administered CBZ, PHT, or PB, was

approximately 1.74-fold compared to those with CYP2C19*1/*1

genotype and co-administered CBZ + PHT + PB, who would

obtain �Css of (56.9 ± 8.6) mg/L, close to the lower limit of the

therapeutic reference range of VPA (50–100 mg/L) recommended

by the consensus guidelines for TDM in neuropsychopharmacology

(Hiemke et al., 2018). This indicated that in combination with CBZ

+ PHT + PB, the VPA concentration was decreased in patients with

wild-type alleles for CYP2C19, which may lead to the risk of

ineffective treatment.

We simplified the XGBoost model by omitting several

predictors that were infrequently measured during TDM (e.g.,

ALB), or whose clinical values were inaccurate (e.g., blood

sampling time), to develop a clinically easy-to-use model.

Compared with the initially proposed XGBoost model, the

reduced performance of our simplified XGBoost model indicated

the important influences of these features, particularly the blood

sampling time and ALB, on the model output. Nevertheless, a

60.00% IR of the simplified optimum XGBoost model on our

external dataset suggested its good forecasting performance,

considering the prediction accuracy of the predicted TDM

within ±30% of the actual TDM in many similar studies that

utilized XGBoost models, ranging from 40% to 75% (Huang

et al., 2021b; Guo et al., 2021; Zheng et al., 2021; Ma et al.,

2022). Based on the simplified optimum XGBoost model, we

designed an easy-to-use web application by using only CYP2C19

genotypes and some noninvasive clinical parameters as an MIPD

tool for personalized dosing adjustments. For instance, VPA is

known to have both metabolic and endocrinal side effects, and is

likely to induce weight gain, which may influence its value of Css

(Corman et al., 1997). Assuming that the effective therapeutic value

ofCss of VPAwas 80 mg/L under themaintenance of a daily dose of
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1,000 mg for a female patient with the ideal BW, adjusted dosing

regimens due to weight gain can be recommended by using our web

application to reach the target Css while ignoring the problems of

adherence and drug–drug interactions. Furthermore, compared

with the static pharmacometrics that requires new models, ML is

capable of dynamic learning and retraining (McComb et al., 2022).

The database can be updated by integrating our simulated dataset

with empirical data automatically crawled from the EHR system.

This promotes the self-learning and refinement of the model (see

Figure 8).

Despite these promising results, several limitations should be

considered. The first was the relatively small sample size of our

independent external dataset for performing model validation. In

particular, cases of co-administered CBZ/PHT/PB were lacking

due to rather few such cases. The second was that some

potential key covariates were not included owing to no related

published popPK literature. For example, combination with

carbapenems can substantially decrease serum VPA

concentrations with a mean difference of -43.98 mg/L (Chai

et al., 2021), which might cause a huge prediction bias in our

model. Future popPK research is needed to evaluate such covariates.

The third was that we could not be able to verify whether the

covariates from Model-A and Model-B were (partly) correlated or

not in the context of pharmacokinetics since they were not identified

in the same study. For example, low ALB concentrations have been

proved to be associated with weight gain (Basolo et al., 2021),

however, the exact relationship between ALB level and BW level

remains unclear among Chinese epileptic patients, thus it is difficult

to determine which level of ALB corresponds to which level of BW if

considering the covariance of the two covariates when creating a

virtual population with both covariates. Notably, our ML-based

integration approach assumes the covariates derived from different

popPK models are not correlated with each other in the context of

pharmacokinetic modeling, considering that this ML method

generally requires as many candidate influencing factors as

possible. The abundant feature information and the massive

volume of data can enhance the performance of the ML because

it is data intensive. Moreover, the weight of each feature which

presents the contribution of a feature to the final prediction can be

updated in the ML model’s self-learning and refinement processes

by integrating our simulated dataset with the real-world dataset from

the EHR system. Finally, as pharmacometrics data are typically

limited in size, the methods of model validation in ML are not

routinely used in pharmacometrics. There is also a lack of consensus

on the relevant definition and approaches (Sherwin et al., 2012;

McComb et al., 2022). Nevertheless, a comparison of the predictive

performance of the proposed XGBoost model and the two popPK

models may be worthy of further examination. Besides, it is difficult

to fairly evaluate and quantify the gain of using a combined dataset

to develop the XGBoost model compared to a dataset taken from a

single popPK model because both the feature dimensions of

different datasets and the predictability of different popPK

models are different. Whereas, a comparison of the predictive

performance of XGBoost models built by using the combined

dataset and a dataset derived from a single popPK model may

also deserve further research.

5 Conclusion

Various popPK models for VPA have been reported;

however, covariates affecting pharmacokinetic variability of

VPA varied considerably between different popPK models.

We innovatively proposed a method to integrate these

covariates from multiple previously published popPK

models using MC simulations to construct a large

combined dataset for ML modeling. Our proposed XGBoost

model exhibited excellent performance, the prediction

behaviors of which were well-explained by the SHAP

analysis. In short, our study highlighted the role of ML,

presented as a computational bridge between big data and

pharmacometrics, in integrating covariates derived from

different popPK models.
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Mechanistic modeling as an
explanatory tool for clinical
treatment of chronic catatonia

Patrick D. Roberts1* and James Conour2
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Mathematical modeling of neural systems is an effective means to integrate

complex information about the brain into a numerical tool that can help explain

observations. However, the use of neuralmodels to inform clinical decisions has

been limited. In this study, we use a simple model of brain circuitry, the Wilson-

Cowan model, to predict changes in a clinical measure for catatonia, the Bush-

Francis Catatonia Rating Scale, for use in clinical treatment of schizophrenia.

This computational tool can then be used to better understand mechanisms of

action for pharmaceutical treatments, and to fine-tune dosage in individual

cases. We present the conditions of clinical care for a residential patient cohort,

and describe methods for synthesizing data to demonstrated the functioning of

the model. We then show that the model can be used to explain effect sizes of

treatments and estimate outcomes for combinations of medications. We

conclude with a demonstration of how this model could be personalized for

individual patients to inform ongoing treatment protocols.

KEYWORDS

schizophrenia, Bush-Francis Catatonia Rating Scale, quantitative systems pharmacology,
antipsychotic, benzodiazepine, lamotrigine, Wilson-Cowan

1 Introduction

The treatment of severe and persistent mental illness has been a central challenge for

psychiatry. Individuals with the most debilitating forms of schizophrenia often derive

limited benefit from medications. Additionally, the efficacy of pharmacologic treatments

can be highly variable. A full response to a medical intervention may take weeks or

months to materialize. Moreover, it can be difficult to accurately assess the impact of a

specific medication. These challenges are compounded by the inconsistent history of care

for many psychiatric patients and the significant amounts of polypharmacy they have

been prescribed. Technical tools offer a promising augmentation to a psychiatrist’s

experience to design treatment plans and may help reduce the inconsistencies and

refine treatment for individual cases.

Catatonia manifests as a cluster of symptoms including rituals, repetitive movements,

perseveration, and withdrawal (Northoff 2002). There is common co-morbidity with both

psychiatric and medical illnesses (Bhati et al. 2007) and catatonia is often not recognized

in its chronic form because it can present subtly and idiosyncratically (Penland et al.

2006). In individuals with treatment resistant schizophrenia, chronic catatonic may be
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quite common, and direct treatment of catatonic symptoms

improves cognition (Wilcox and Reid Duffy 2015; Ungvari

et al. 2005). For this reason, we have focussed on using the

Bush-Francis Catatonia Rating Scale (BFCRS) (Bush et al. 1996)

as a measure of symptoms and then model pharmacological

mechanisms that explain how medications alleviate catatonic

symptoms.

The data in this study is based on a cohort of schizophrenia

patients admitted to Cascadia Behavioral Healthcare for

residential care. The clinical practice in treating these patients

has been to introduce a minimal set of medications with a known

effect of reducing psychiatric symptoms. For patients admitted

with a diagnosis of schizophrenia, antipsychotic medication was

transitioned to clozapine (if possible), and augmented

lamotrigine and a benzodiazepine based on functional status

and safety. Lamotrigine has been previously observed to reduce

symptoms in combination with clozapine (Gray and Risch, 2009;

Tiihonen et al. 2003). Benzodiazepines have shown a strong

therapeutic efficacy in reducing catatonia symptoms (Rosebush

and Mazurek (2010); Northoff et al. 2004) and are considered a

first-line treatment for acute or chronic catatonia (Ungvari et al.

2005). A significant reduction in catatonic symptoms, as

measured by BFCRS, was observed in the clinic with this

treatment along with a corresponding improvement in

psychiatric symptoms. However, a mechanistic understanding

of the action of this combination is desirable to improve

treatments and seek new strategies for psychiatric disease

maintenance.

1.1 Modeling as an explanatory tool

Physiological modeling of pharmacological systems can

provide insight into mechanisms of therapeutic treatments by

coupling molecular action to observable function. Explanatory

models require a balance between biological detail and

conceptional simplicity to express how specific treatments

result in observed functional changes. The psychomotor

abnormalities observed in catatonia can be conceptualized as a

seizing of motor patterns on a time scale long enough to result in

the clinical observations such as posturing and repetitive

movements. Clinical and imaging studies have suggested that

the physiological basis of catatonia symptoms are cortical in

origin (Northoff et al. 2004; Hirjak et al. 2019) resulting from an

over-excitation of circuitry and under-gating of movement

termination. The effective treatments also support the concept

of an imbalance of inhibition and excitation in cortical structures

because targets of lamotrigine reduce pyramidal cell excitation

(Poolos et al. 2002; Xie et al. 1995), and benzodiazepines increase

inhibition (Miller et al. 1987).

A neural model describing interactions of excitatory and

inhibitory neurons, with sufficient structure to couple

medication actions, is the Wilson-Cowan model (Wilson and

Cowan 1972). This model is interpreted as two interacting

populations of cortical neurons where a single variable for

each population represents the average spike rate (Figure 1A).

The Wilson-Cowan model is mathematically well-understood

(Cowan et al. 2016; Bressloff 2010; Benayoun et al. 2010; Buice

et al. 2010; Negahbani et al. 2015) with dynamics that can display

excitatory bursts and oscillations for different choices of

parameters. For the purposes of the current study, we select a

parameter range so that the dynamics represent two steady states

of spiking activity, a high-rate and low-rate, in two basins

separated by a barrier. The hight of the barrier is determined

by the parameters of the model and determines the perturbation

required to transition from the high-rate state to the low-rate

state. The transition from the high-rate state to the low-rate state

represents the termination of a cortical activity pattern. If the

barrier is high then the system becomes “stuck” in a functional

pattern and is interpreted to represent symptoms of catatonia

such as postering or perseveration. Parameters of the model

determine the synaptic coupling between populations of neurons

and internal neural excitability, and these parameters are affected

by medications.

In our model, we start with baseline parameter settings with a

high barrier to represent catatonia, then calculate the changes in

parameters based on the doses of medications in the clinical

treatment. We show that the change in the barrier can be

correlated with the change in BFCRS score to explain how

each medication is impacting symptoms of catatonia. By using

the model as a clinical guide to treatment, the clinician can

conceptualize the physiological effects of a treatment as

controlling cortical excitability to treat catatonia. This allows

guidance beyond the safety and efficacy of individual

medications to integrate polypharmacy into utilizing additive

effects maximize positive outcomes.

2 Materials and methods

2.1 Data synthesis

Clinical data on BFCRS scores and daily medication dosages

were collected and analyzed for clinical treatment purposes. For

demonstration purposes, we synthesized surrogate data based on

the statistics of the original data set (Conour, 2015). Using the

SVD (Patki et al. 2016) python package, we constructed a

Gaussian copula model based on the daily dosages of

medications, and BFCRS scores before and after changes in

medication for 12 individuals. The statistical reconstruction

method ensured that no personal patient data is present in

the published study. The copula model generated many

spurious data samples with unrealistic medication doses

because there were few individuals included in training the

model. To eliminate spurious data, we added rules determined

by JC to be unlikely under clinical conditions (see Data Selection
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Filter, Supplementary Data). The copula model generated

700 subjects and 58 subjects remained after filtering.

2.2 Wilson-Cowan model

The pharmaceutical treatments include three classes of

medications: anticonvulsants, benzodiazepines, and

antipsychotics. These medications operate via multiple

mechanisms of action, and our approach couples their action

to a model of cortical activity. In order to quantify the effects, we

developed a two-state model of cortical dynamics that can predict

how varying doses affect catatonic symptoms. We use a special

case of the Wilson-Cowan equations:

_x0 � −x0 + F0 w00x0 + w01x1( )
_x1 � −x1 + F1 w10x0 + w11x1( ) (1)

With the spike probability (rate) function:

Fa xa( ) � 1
1 + exp −μa xa − θa( )[ ]

(2)

We interpret x0 as the average rate of inhibitory interneurons

(parvalbumin positive) and x1 as the average rate of excitatory

neurons (cortical pyramidal cells). The parameters of the model

were initialized to express three fixed points, one stable fixed

point representing a low spike rate, one stable fixed point

representing a high spike rate, and a saddle point that is the

barrier between the two states. The initial synaptic parameters

were chosen to be: w11 = 8.65, w10 = 4, w01 = 13, and w00 = 9. The

parameters for the rate function are μ1 = 1.2, θ1 = 2.8, μ0 = 1.0,

and θ0 = 4.0. We modify these initial parameters to represent the

effects of medications in the system, but the effects are small

enough to restrict the model behavior to this special case of the

Wilson-Cowan model with two stable, and one unstable, fixed

points.

A simulation of the Wilson-Cowan equations (Eq. 1) is

shown in Figure 1B. The rates are initialized near the high-

rate fixed-point (x0 = 0.6, x1 = 0.9) and normally distributed

(mean = 0 and standard deviation = 0.19) perturbation is injected

into the each neural pool at each time-step to simulate noise. The

high-rate state is unstable under perturbations and when noise is

added, the system will spontaneously transition to the low-rate

state. The duration of the time in the high-rate state can be

interpreted as a form of working memory (Katori et al. 2011), but

here we consider the duration as a phase of activity (Bagi et al.

2022) that can lead to perseveration when the barrier is too high

and a large perturbation is required for a state transition.

Medications act on parameters of the model to raise or lower

the boundary and affect catatonia symptoms.

Figure 1C shows the phase plane for the initial parameters of

(Eq. 1). The barrier (B) is calculated by a cumulative summation

of the excitatory rate gradient ( _x1) along the x0-nullcline (NI )
from the high-rate fixed point to the barrier fixed point,

B � ∑
n∈NI

_x1 n( ) (3)

where the sum is over a lattice of 100 evenly spaced points. The

boundary as calculated here is proportional to the minimal

perturbation necessary to transition out of the high-rate state

basin, and will be compared with BFCRS score.

FIGURE 1
Wilson-Cowan model and dynamics. (A) Wilson-Cowan circuit with an inhibitory (I) and excitatory (E) neuron population. The model
parameters associated with each circuit element are show. (B) Sustained activity eventually decays due to random perturbations drawn from a
normal distribution with mean = 0 and standard deviation = 0.19. If the boundary is too high, then the sustained burst continues indefinitely.
Treatments reduce the boundary between the states and transitions becomemore fluid and interpreted as a reduction of catatonia symptoms.
(C) Phase plane of the Wilson-Cowan model with trajectories, nullclines and fixed points labeled.
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2.3 Coupling treatment doses to model
parameters

Clinical doses were converted to changes in the model

parameters through a series of calculations. First we

approximated the pharmacokinetics of each medication (see

Pharmacokinetic Parameters, Supplementary Data) to arrive at

a concentration in the cerebrospinal fluid (CSF). Next we

calculate the binding to a target, and finally approximate an

effect on the model parameters (Spiros et al. 2010; Geerts et al.

2013). The following provides details of the pharmacokinetics

and coupling for lamotrigine, lorazepam (and applies to other

benzodiazepines according to their affinities), and antipsychotics.

After the effects of medications are calculated, the parameters of

the Eq. 1, �p � [μ0, μ1, θ0, θ1,w00,w01, w10,w11] are transformed to
�p ′ � [μ0, μ1′, θ0′, θ1′,w00′ ,w01′ ,w10′ , w11′ ] (only μ0 is unaffected by

anymedication in this implementation).When the changes inmodel

parameters are calculated, we multiply by an overall factor of a · �p ′,
where a= 0.35 is an overallmedication response factor. This response

factor limits the dynamics of the system to maintain two stable fixed

points separated by an unstable barrier fixed-point and ensure that

the ground state of the system is the low-rate fixed point for all cases.

The value of the response factor a = 0.35 was found experimentally

for the range of doses and combinations of medications in the data.

For the personalization demonstration, we replaced this single

parameter with an independent value for each individual to

calibrate the response to the medications for each subject.

2.3.1 Pharmacokinetics
After patients are admitted for care at Cascadia Behavioral

Healthcare, they transition to the treatment over the course of

several months. Their BFCRS scores are tested on admittance

and after they stabilize on the new treatment, and daily variations

in behavior are not measured. Therefore, we base our model on

average daily concentrations in the blood and brain to predict the

long-term changes in the BFCRS score. To compute the average

CSF concentration, Cave, we apply the following function to the

clinical daily dose for the synthesized data:

Cave � F ·D
CL · τ · Kp ·M (4)

where F is the bioavailability, D is the daily dose (mg), CL is the

clearance (mg/hr), τ is the dose interval (hr), Kp is the brain/blood

transport ratio, andM is the molecular weight to convert (g/mol) to

(nM). A linear response of plasma concentration to dose has been

observed in individual patients for two of the medications in

treatments (clozapine and lamotrigine), suggesting that the use of

linear pharmacokinetics is allowed in our model.

2.3.2 Lamotrigine
There are three targets of lamotrigine in cortical pyramidal cells,

the Na+-current (Xie et al. 1995), the Ih-current (Poolos et al. 2002),

and glutamate release (Wang et al. 2001). The first two of these

reduce the excitability of pyramidal cells and the third reduces the

excitatory output of these neurons. We represent the reduction in

excitability in model parameters as an increase in the threshold, θ1.

The reduction in excitatory synaptic out put is represented as a

reduction in excitatory weights, w11 and w10.

2.3.2.1 Na+-current

Lamotrigine reduces Na+-current by blocking in Na+

channels in pyramidal cells (Xie et al. 1995). We calculate a

change in Na+-current, INa, with a binding equation following a

calculated lamotrigine concentration, CLTG,

ΔINa � 1 − CLTG

CLTG +KC( )n (5)

where KC = 513 uM, n = 0.9. To affect the rate in the model, we

reduce θ1 by calculating the effect, ENa = 1−pLam (1−ΔINa), where
pLam = 0.15. The reduction in the Na current increases the

threshold in excitatory neurons by multiplicative factor,

θ1′ � θ1/ENa, where the prime indicates the modified parameter.

2.3.2.2 Ih-current

Lamotrigine shifts the I-V activation curve of the Ih current

(Poolos et al. 2002) and decreased evoked firing rate, Δx1 =

1–0.004*CLTG, for Δx1 > 0 and where CLTG is the average

concentration of lamotrigine in CSF. To represent this effect

in our model parameters, we modify the threshold, θ1, in

pyramidal cells. The shift in based on the spike probability

function linearized near threshold F1 (x1) = 1/2 + (μ1/4) (x1 −

θ1), so that θ1 will be increased by the effect, Eh = 1 − pLam (1 −

Δx1), where pLam = 0.15. The reduction in the Na current

increases the threshold in excitatory neurons by, θ1′ � θ1/Eh.

2.3.2.3 Glutamate release

Lamotrigine reduces glutamate release from excitatory synapses

proportionally to the concentration CLTG (Wang et al. (2001)), ΔG =

1–0.004*CLTG for ΔG > 0. The excitatory synaptic parameters, w11

and w10, are affected by the effect, Eglu = 1 − pLam (1 − ΔG), where
pLam = 0.15. The reduction in the Glutamate release decreases the

excitatory synaptic parameters by,w11′ � w11Eglu andw10′ � w10Eglu.

2.3.3 Benzodiazepines
Benzodiazepines such as lorazepam increase GABAA

currents following binding at the BZD receptor site. The

increase in GABAA synaptic current is represented in the

model as an increase in the inhibitory synaptic weights, w01

and w00. To calculate the receptor occupation we follow results

reported in (Miller et al. 1987):

RBZD � CLor( )A
CLor( )A + B

(6)

where A = 1.4328, B = 73.89 (ng/gm), and CLor is the average

concentration of lorazepam in CSF. The inhibitory synaptic
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parameters, w01 and w00, are modified in the model by increasing

the inhibitory synaptic parameters proportionally to the receptor

occupation, Δw11′ � w11(1 + RBZD) and w10′ � w10(1 + RBZD).
All other benzodiazepines are treated in the same manner to

increase inhibitory synaptic parameters.

2.3.4 Antipsychotics
These medications bind competitively with endogenous

neurotransmitters to specific receptors. We use an exact form

of the competitive binding formula (Wang 1995):

a � KA + KB + CA + CB − 1
b � KB CA − 1( ) + KA CB − 1( ) +KAKB

c � −KAKB

δ � arccos
−2a3 + 9ab − 27c

2
���������
a2 − 3b( )3

√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

Roc � CA
2

������
a2 − 3b

√
cos(θ/3) − a

3KA + (2
������
a2 − 3b

√
cos(θ/3) − a)

(7)

where KA is the binding affinity of the endogenous

neurotransmitter, CA is the average concentration of the

endogenous neurotransmitter, KB is the binding affinity of the

medication, and CB is the average concentration of the

medication. Roc is the receptor occupation by the endogenous

neurotransmitter and will be used to estimate the activation level

of the receptor. In this study, endogenous levels of

neurotransmitters were dopamine (tonic) = 37 mM, dopamine

(burst) = 200 mM, serotonin = 3.9 mM, and acetylcholine =

10 mM (Dreyer et al. 2010; Paterson et al. 2010).

2.3.4.1 D1 activation effect

The endogenous concentration at dopamine synapses depend on

the firing pattering so that simulations estimate (Dreyer et al. 2010)

that tonic activity yields 37 ± 1.2 nM and bursts yield 100–300 nM.

According to data in (Lapish et al. 2007), D1 activation decreases the

slope parameter (μ1) of the rate function in excitatory neurons,

μ1′ � μ1(1 − (Roc − Rcon)/Rcon), where Rcon is the control level.

D1 activation decreases the threshold (θ0) in inhibitory

interneurons, θ0′ � θ0(1 − (Roc − Rcon)/Rcon). D1 activation

increases w11, and w10 because at low concentrations (< 50 uM)

by acting preferentially on D1-like receptors to increase NMDA

receptor-mediated transmission (Lee et al. 2002), and increases w01,

that we represent by wab′ � wab(1 + (Roc − Rcon)/Rcon) where (a,

b) = (1, 1), (1, 0), and (0, 1).

2.3.4.2 D2 activation effect

At high concentrations (≥100 uM) DA activates D2-like

receptors and suppress NMDA function (Kotecha et al. 2002),

that we represent by decreasing w11 and w10, that we represent by

wab′ � wab(1 − (Roc − Rcon)/Rcon) where (a, b) = (1, 1) and (1, 0).

D2 also Increases the slope parameter (μ1) of probability function

in excitatory neurons (pyramidal cells (Lapish et al. 2007), μ1′ �
μ1(1 + (Roc − Rcon)/Rcon).

2.3.4.3 5-HT1A activation effect

The effect of 5-HT1A receptor activation has been found to

increase the spike threshold in excitatory neurons (pyramidal

cells, (Foehring 1996), and wemodel the effect as a linear increase

in the threshold of excitatory neurons, θ1′ � θ1(1 + (Roc −
Rcon)/Rcon).

2.3.4.4 5-HT2A activation effect

The effect of 5-HT2A receptor activation has been found to

decreases the spike threshold in excitatory neurons (pyramidal

cells, (Carr et al. 2002), and we model the effect as a linear

decrease in the threshold of excitatory neurons, θ1′ � θ1(1 −
(Roc − Rcon)/Rcon).

2.3.4.5 M1 activation effect

The effect of M1 receptor activation has been found to

decreases the spike threshold in excitatory neurons (pyramidal

cells) (Perez-Rosello et al. 2005), and we model the effect as a

linear decrease in the threshold of excitatory neurons, θ1′ �
θ1(1 − (Roc − Rcon)/Rcon).

2.4 Statistical analysis

Statistical analysis was performed on simulated data and

model results using python SciPy v1.5.4 statistical functions

(Virtanen et al. 2020) and by direct calculations. The effect

sizes comparing before and after treatment were calculated as

the difference between means of the two groups divided by a

standard deviation for the data. The associated p-value is

calculated with the one-way ANOVA test. The relationship

between the clinical BFCRS scores and the barrier in the

model was measured with the Pearson correlation (r) using a

linear regression analysis.

3 Results

3.1 Synthesized data

A summary of the synthesized dataset used in this study is

shown in Figure 2, and the statistics of the medication

combinations and dose ranges are consistent with the clinical

patient data set. The mean BFCRS score before treatment is

17.3 ± 3.9 (std) and after treatment is 4.1 ± 2.8, resulting in an

effect size of 2.7 (p< 10−20) for the treatment (Figure 2A). The

treatment results in a reduction in the BFCRS score for all

subjects, with a minimum reduction of 9, and a maximum of 23.

In Figure 2B we show a histogram of the number of

medications for each subject to demonstrate that the patients

transition from a broad range of care to a more limited set of

medications. The distribution of doses for medications upon

admission (pre-treatment) and following stabilization of the
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treatment (post-treatment) are shown in Figures 2C,D. Again, we

see that the diversity of medications is reduced to focus treatment

on catatonia symptoms with the minimal set of medications to

simplify care.

3.2 Dose sensitivity

We visualize the change in the barrier in Figure 3A for the

case of lorazepam. At the dose = 0.0 mg (black line), there are two

minima in the potential of the model where the excitatory rate is

zero and near 90%. The maximum near 40% is the unstable fixed

point that is the boundary between the two states. As the dose

increases (lighter gray lines) the depth of the higher-rate state

decreases at a faster rate than the height of the unstable fixed

point, and the depth of the potential well is reduced. This

reduction in the depth (reduction of the boundary) is

interpreted as a reduction of symptoms of catatonia because

patients are less likely to become stuck in particular high-rate

activity patterns.

FIGURE 2
Summary of synthesized data. Note that the number of medications and distributions of doses is more restricted after treatment has stabilized.
(A) BFCRS score for 58 synthesized data subjects before and after treatment. (B) Distribution of medication doses across all subjects before
treatment. (C) Distribution of medication doses across all subjects after treatment. (D) Distribution of the number of medications for each subject
before and after treatment.

FIGURE 3
Dose response of the model barrier to medications. (A) Dose response of potential function (line integral of _x1 in Eq. 1 on the x0-nullcline) to
show how the barrier becomes smaller with increasing doses of lorazepam. The two stable fixed points are where the excitatory rate is 0 and ~0.85.
The peak of the barrier is the unstable fixed point where the excitatory rate is ~0.4. The vertical distance from the high-rate basin to the unstable peak
is the barrier. (B)Dose response of model parameters for clozapine, olanzapine, lamotrigine, clonazepam, and lorazepam. The barrier between
the high-rate state and the low-rate state for these medications is reduced in the treatment.
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To illustrate the effects of each medication in the post-

treatment cases, we calculated the model barrier height across

the range of doses from the clinical data and tested the model for

the change in the barrier for lamotrigine, two benzodiazepines,

and two antipsychotics (Figure 3B). Each of the medication in the

figure reduced the barrier in a nearly linear dose response in this

range as demonstrated by a linear regression analysis that finds

that r2 > 0.99 (p < 0.01) in all cases except clozapine where r2 >
0.98 (p < 0.01).

The three classes of medications, lamotrigine,

benzodiazepines, and antipsychotics, affect the system through

different mechanisms of action. Lamotrigine acts to reduce

excitation by both reducing the excitability of the excitatory

neuron population and reducing the excitatory synaptic

weights. The benzodiazepines act through increasing the

inhibitory synaptic weights to reduce the boundary between

states.

The antipsychotics have more complicated mechanisms of

action through dopamine, serotonin, and muscarinic receptors.

We model two types of dopamine receptors, D1 and D2. In our

model, D1 receptor activation decrease the excitability of the

excitatory neuron population and increase the excitability of the

inhibitory neuron population, both contributing to increasing

barrier when D1 receptors are blocked by antipsychotics.

However, D1 activation also increases excitatory synaptic

transmission to have the opposite effect on the barrier by

antipsychotics that block D1. The D2 receptor activation

reduces excitatory synaptic transmission and increases the

excitability of the excitatory neuron population leading to

opposite effects. Activation of the two serotonin receptors

included the model (5-HT1A and 5-HT2A) have opposite

effects on the excitability of the excitatory neuron population,

and M1 receptor activation increases their excitability. The affect

of each antipsychotic depends on the affinity of the molecule to

each receptor in competition with the background level of

neurotransmitter, and we find that there is a net decrease in

the barrier for increasing dose of both clozapine and olanizapine.

Clozapine has a more mixed effect on several parameters with the

largest effect on the threshold of excitatory neuron that reduces

their overall excitability.

To help untangle the competing effects of the medications,

we investigated the dose response of model parameters, as shown

in Figure 4. Lamotrigine reduces excitability of excitatory

neurons through the threshold by increasing θ1, and reduces

the excitatory synaptic weights, w10 and w11 (Figure 4A) The

benzodiazepine (clonazepam, Figure 4B) has the simplest action

and affects only the inhibitory synaptic weights (w00 and w01) in

the model. The increased inhibition in the system reduced the

overall excitability, weakening the high-rate state and reducing

the boundary. The antipsychotics affect multiple parameters

FIGURE 4
Dose response of model parameters for lamotrigine, clonazepam, clozapine, and olanzapine. (A) The dose response of themodel’s parameters
for lamotrigine shows that the threshold of excitatory neurons (θ1) increases with increasing dose leading to a decrease of the neurons’ excitability.
The excitatory synaptic parameters (w11 and w10) decrease leading to a reduced excitation of the system. (B) The dose response of the model’s
parameters for clozapine shows that several parameters are affected, but the largest effect is an increase of the threshold in excitatory neurons
(θ1) due to blockingM1 and 5-HT2A receptors reducing the excitation of the system. (C) The dose response of themodel’s parameters for olanzapine
shows less of a an increase in the threshold in excitatory neurons than clozapine, and a finer scale view of the other model parameters. (D) The dose
response of the model’s parameters for clonazepam show that only the inhibitory synaptic parameters are affected.
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(Figures 4C,D), but the cumulative effect is to reduce barrier

height. Clozapine has a stronger effect on the threshold θ1 than

olanzapine leading to a greater reduction of the barrier.

3.3 BFCRS clinical scale

We calculated the changes in the model parameter for

each synthesized subject caused by medications at admission,

and then after treatment was stabilized. With the modified

parameters we could calculated the barrier between the high-

rate state and the low-rate state to observe whether the barrier

was reduced. A reduction in the barrier is interpreted as an

improvement in catatonic symptoms. We find that the barrier

was reduced in all cases (mean reduction 0.80 ± 0.32, with

minimum reduction of 0.19), consistent with clinical

observations. We could then compare the BFCRS clinical

score with the barrier to visualize the effect of the treatment

(Figure 5).

There is a clear reduction in the barrier (effect size = 2.14,

p < 10−20), consistent with the reduction in BFCRS score.

However, there appears to be poor individual prediction

by the model as observed in the even distribution of the

changes across the subjects before and after treatment in

Figure 5, and a linear regression results in r2 = 0.53. To test

the reliability of the model in predicting changes in individual

cases, we compared the change in BFCRS score and barrier

and found a correlation of r2 = 0.11 (p < 0.01). We have

confirmed that this is not due to lost correlations in our

synthesized data, and may be attributed to individual

differences between subjects in both their pre-treatment

disease state and their response to the medications.

3.4 Combination efficacy

The combination of medications in the treatment has been

clinically observed to be additive, and this observation can be

explained by the parallel mechanisms of action. Lamotrigine and

the benzodiazepines act on different sites, excitatory neurons and

inhibitory synapses. Although the antipsychotics have some

overlap with these parameters in the model, they act through

different receptors. In the dynamic range of medication effects on

the barrier size, the dose response is nearly linear, and we find an

additive effect of the combination (Figure 6A). To relate the effect

back to the clinic, we can use a linear mapping between the

BFCRS score and the boundary to interpret the boundary as a

BFCRS score and predict the effect of each medication and their

combinations on the average subject. We calculate the mean

BFCRS score and mean barrier for the population, before and

after the treatment to obtain the mapping, and then plot the

BFCRS score in Figure 6B.

3.5 Personalization

The model is good at predicting large changes in BFCRS

score for the population as a whole, but more exact predictions of

individuals should be possible with further parametrization.

Ultimately, the model could then be used as a tool for

informing clinical care and refining treatments. Because the

model has few parameters to tune, then each subject could

have a personalized model for use in the clinic. We

personalized the model by calibrating the initial state with

model parameters, and then adjusted the dose response

parameter for each individual subject.

Thefirst adjustmentwas to tune individualWilson-Cowanmodel

based on the initial BFCRS score for each patient. The barrier size can

be adjusted in the Wilson-Cowan model so that patients with high

BFCRS scores will have a corresponding model with a high barrier.

We have attempted to tune the w01 model parameter to this end, but

no clear result could be seen in the correlation of the outcomes to

treatment. Further research will be needed to determine whether

different model parameters need to be tuned to be more

representative of the pathology underlying catatonia.

The second adjustment was to calibrate the individual dose

response with model coupling parameters to the effect on BFCRS

score. As patients are admitted to the residence, they transition

their medication to the new regimen, and measures of the BFCRS

score inform how each individual is affected by removing and

addingmedications. These changes in BFCRS score could be used

to calibrate individual mechanisms and how they couple to

model parameters. Such a tuning could create a model that

will adapt along with the patient, and improves in its

prediction power over time.

The results of these two modification are shown in Figure 7

where the new prediction of the barrier is compared with the

FIGURE 5
The synthesized BFCRS score versus the barrier calculated by
the model for subjects before and after treatment. The grey lines
associate the pre- and post-treatment scores for the same subject.
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BFCRS score. We find a higher correlation between the model

barrier and the clinical score (r2 = 0.97) and our comparison of

the change in BFCRS score and barrier across individual yields a

correlation of r2 = 0.92 (p< 10−30). These results give confidence
that the effects predicted by the model can guide further changes

in medication, and aid the psychiatrist in clinical decisions.

4 Discussion

The objective of this study was to demonstrate that a simple

cortical model, with excitatory and inhibitory neural populations,

is sufficiently descriptive to explain and predict clinical outcomes

in schizophrenia patients with catatonia. The pharmaceutical

coupling of the treatments to model parameters are based on

known mechanisms of action in cortical neurons: pyramidal cells

and parvalbumin positive inhibitory interneurons. We have

demonstrated the utility of the model for explaining the

observed clinical outcomes by tracing the action of

medications to changes in the model dynamics by interpreting

the change in the barrier between states as a change in a clinical

measure, the BFCRS score. The model supports the clinical

observation that the 3-medication combination, clozapine,

lamotrigine, and a benzodiazepine, is additive, and explains

how the pathways of action are independent on a mechanistic

level. Finally, we took a first step at personalization of the model

for individual subjects, with the goal of supporting individual

clinical decisions with mechanistic explanations.

FIGURE 6
Model results for combinations of lamotrigine, clozapine, and clonazepam demonstrating the additive effects. (A) Barrier for combinations of
medications in the treatment protocol. (B) Predicted BFCRS for combinations of medications in the treatment protocol.

FIGURE 7
Demonstration of personalization potential of the model for individualized clinical predictions. (A) Personalized model prediction of barrier and
the synthesized BFCRS score for subjects before and after treatment. The grey lines associate the pre- and post-treatment scores for the same
subject. (B) Scatter plot and histograms of the parameters used for personalization (Inhibitory weight factor to modify w00 and the medication
response factor). The scatter plot reveals no significant correlation between the personalization parameters (r2 = 0.001 and p>0.7).
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Augmenting psychiatric practice with a simple mechanistic

model encourages a conceptual shift to a focus on reducing

cortical excitability, either through reducing excitability of

pyramidal neurons, or increasing inhibition. Each of the three

medications are optimized on their own for safety and efficacy,

but since they act on the excitability of the system through different

mechanisms, they can have an additive effect on catatonic symptoms.

Further use of this approach can suggest other means of controlling

cortical excitability and inspire new treatment protocols.

Conceptualizing the action of this treatment as modifying

excitability and connectivity of neuron populations also suggests

mechanisms of observed clinical improvements. The clinical

observation that reduced chronic catatonic features lead to

meaningful improvements in social and cognitive function

suggests that reducing the barrier represents a physical

improvement in brain network connectivity and dynamical

processing. Bursts of neural activity that control behavioral

patterns become more flexible with a reduced barrier between

states of excitation, and that flexibility leads to more fluid

cognitive function and social behavior.

4.1 Extensions of the model

The model is based on cortical circuitry, in part because

catatonia is thought to have a cortical origin. However,

antipsychotics also target the striatum. Extending the model

to include a cortical-striatum-thalamic loop would include

additional dynamics that are presently missing. As yet, it is

unknown if such an extension will add a precision that is

visible in clinical usage, but this would be a rich area to explore.

One avenue to improve the model’s predictions is to further

personalize the model by individualizing the pharmacokinetics

for each patient. When clozapine is administered, safety

considerations require blood samples, and blood levels of

clozapine have been recorded from many patients in this

cohort. There is a wide variation in the dose response to

blood serum concentration of clozapine, and these variations

are not currently included in the model. We have tested the

robustness of our results to ensure this observed variance does

not affect the conclusions in this study, but clearly such an

addition to the model will help to refine individual cases.

Clinically the BFCRS score can be low in lower functioning

individuals and high in higher functioning individuals. There may be

a correlation with changes in score and functional status for a

population, but it is not yet clear with individual cases. Big

changes can lead to little benefit sometimes, small changes can

lead to large benefits. Additional neural circuitry in the model,

such as a striatal-thalamic loop may help to explain a separation

between BFCRS score and overall function. Such modification could

be aided by analysis with a larger subject pool that may help to

discern subgroups in responses to treatment.

Further clinical variables may provide new insights into how

model outputs can be interpreted. Although the BFCRS score has

provided a good clinical guidance for this cohort, the addition of

either cognitive or motor measures could augment the model’s

interpretation. Furthermore, additional clinical measures could

add constraints that require a more detailed model, such as

adding a striatum, that the BFCRS score alone will not capture.

Although further complications may degrade the causal

interpretability because of added complex dynamics, there are

likely parameter regions with simpler dynamics that may broaden

the applicability to other symptoms of psychiatric disease.
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Introduction:Hydrocortisone is the standard of care in cortisol replacement therapy
for congenital adrenal hyperplasia patients. Challenges in mimicking cortisol
circadian rhythm and dosing individualization can be overcome by the support of
mathematical modelling. Previously, a non-linear mixed-effects (NLME) model was
developed based on clinical hydrocortisone pharmacokinetic (PK) pediatric and adult
data. Additionally, a physiologically-based pharmacokinetic (PBPK) model was
developed for adults and a pediatric model was obtained using maturation
functions for relevant processes. In this work, a middle-out approach was
applied. The aim was to investigate whether PBPK-derived maturation functions
could provide a better description of hydrocortisone PK inter-individual variability
when implemented in the NLME framework, with the goal of providing better
individual predictions towards precision dosing at the patient level.

Methods: Hydrocortisone PK data from 24 adrenal insufficiency pediatric patients
and 30 adult healthy volunteers were used for NLME model development, while the
PBPK model and maturation functions of clearance and cortisol binding globulin
(CBG) were developed based on previous studies published in the literature.

Results: Clearance (CL) estimates from both approaches were similar for children
older than 1 year (CL/F increasing from around 150 L/h to 500 L/h), while CBG
concentrations differed across the whole age range (CBGNLME stable around 0.5 μM
vs. steady increase from 0.35 to 0.8 μM for CBG PBPK). PBPK-derived maturation
functions were subsequently included in the NLME model. After inclusion of the
maturation functions, none, a part of, or all parameters were re-estimated. However,
the inclusion of CL and/or CBG maturation functions in the NLME model did not
result in improved model performance for the CL maturation function (ΔOFV >
−15.36) and the re-estimation of parameters using the CBG maturation function
most often led to unstable models or individual CL prediction bias.
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Discussion: Three explanations for the observed discrepancies could be postulated, i)
non-consideredmaturation of processes such as absorption or first-pass effect, ii) lack
of patients between 1 and 12 months, iii) lack of correction of PBPK CL maturation
functions derived fromurinary concentration ratio data for the renal function relative to
adults. These should be investigated in the future to determine how NLME and PBPK
methods can work towards deriving insights into pediatric hydrocortisone PK.

KEYWORDS

hydrocortisone, congenital adrenal hyperplasia, population pharmacokinetics, middle-out
approach, pediatrics, physiologically-based pharmacokinetics (PBPK), non-linear mixed
effects modelling (NLME), maturation

1 Introduction

Congenital adrenal hyperplasia (CAH), a disease which leads to very
low to no cortisol synthesis, is the commonest cause of adrenal deficiency
in childhood. Patients have an increased morbidity and mortality in adult
life that may in part relate to suboptimal glucocorticoid therapy in their
early years of life (Finkielstain et al., 2012; Han et al., 2014; Bancos et al.,
2015; Bornstein et al., 2016). Lifelong glucocorticoid replacement therapy
with hydrocortisone is standard of care for CAH patients and
personalized replacement therapy through precision medicine is
essential in optimizing care (Merke and Bornstein, 2005; Hindmarsh,
2009; Kamoun et al., 2013). Hydrocortisone, which is chemically the same
as endogenous cortisol, is administered multiple times per day due to its
short terminal half-life and to approximate the physiological cortisol
circadian rhythm (Knutson et al., 1997; Hindmarsh and Charmandari,
2015). Therefore, treating pediatricians are constantly faced with the risk
of over- and under-dosing their patients, whichmay lead to complications
of excess steroid therapy (Falhammar et al., 2014) and adrenal crisis (El-
Maouche et al., 2018), respectively.

Mathematical models to investigate and quantify the sources of
intra- and inter-individual variability (IIV) in pharmacokinetics (PK) and
pharmacodynamics (PD) of drugs can help to support the choice of the
right dose at the right time for the right patient in the form of model-
informed precision dosing (Kluwe et al., 2020). This approach would be of
value in helping optimize and individualize hydrocortisone replacement
in neonates, infants and older children with CAH. To do this, a
mathematical model needs to be able to describe the underlying
processes in sufficient detail to capture the succinct parts while still
being able to quantify and explain sources of variability to apply model
predictions at the individual level. For the individualization of
hydrocortisone treatment in (especially young) children, this means
foremost an acceptable characterization of the PK of this endogenous
compound across the pediatric age range.

Recently, both non-linear mixed effects (NLME) modelling of
clinical data (the so-called ‘top-down’ approach) and physiologically-
based pharmacokinetic (PBPK) modelling (the so-called ‘bottom-up’
approach) were applied to describe the PK of hydrocortisone (Melin
et al., 2017; Michelet et al., 2020; Bonner et al., 2021). In the first
approach, the authors were able to use clinical pediatric
hydrocortisone PK data from CAH patients in combination with
adult data to inform an NLME model quantifying the IIV in
hydrocortisone PK across the pediatric age range (Melin et al.,
2017), which was then optimized and used to simulate possible
optimized dosing regimens (Michelet et al., 2020). However, the
available clinical data was too sparse to quantify an impact of age
on the PK parameters after taking body weight into consideration. In
the second approach, a PBPK model was developed and qualified for

hydrocortisone PK in adults, which was then combined with ontogeny
functions obtained from literature data for the relevant processes to
obtain a pediatric PBPK model (Bonner et al., 2021). These ontogeny
functions focused on the maturation of 5α-reductase, 11-β
hydroxysteroid dehydrogenase 2 (11-βHSD2), and cortisol binding
globulin (CBG), known to be influential on hydrocortisone PK
(Hadjian et al., 1975; Walker and Seckl, 2003; Wudy et al., 2007).
A third approach to describe PK variability based on both
aforementioned approaches, the so-called ‘middle-out’ approach
was recently applied in pediatric PK modeling as combining the
‘best-of-two-worlds’ but has thus far not been applied to pediatric
hydrocortisone PK (Tsamandouras et al., 2013; Michelet et al., 2018a;
Michelet et al., 2018b; Germovsek et al., 2018). The benefit of this
approach would be that the physiological insights coming from a
PBPK approach could be implemented within the hierarchical
variability quantification framework of an NLME approach,
allowing for individual predictions of hydrocortisone PK and the
application of stochastic simulations for evaluation of personalized
dosing strategies.

In this manuscript, we investigated whether using such a middle-
out approach by implementing the PBPK-derived insights regarding
maturation of hydrocortisone PK processes into an NLME-framework
based on available clinical data could better describe the
interindividual variability of hydrocortisone PK, paving the way for
model-based precision medicine dosing of hydrocortisone,
particularly in pediatric CAH patients.

2 Methods

2.1 Patient characteristics and study design

The patient populations used in this work has been described
elsewhere (Melin et al., 2017; Melin et al., 2020; Michelet et al., 2020).
In short, for the pediatric patients, cortisol concentrations were
collected in an open label, phase 3, single center clinical trial
conducted at the Institute of Experimental Paediatric
Endocrinology at Charité-Universitätsmedizin Berlin, CVK, Berlin
(EudraCT number: 2014–002265-30). Written informed consent was
given by parents/guardian and the study was approved by the relevant
independent ethics committee (Ethics committee of Berlin, No. 14/
0517- EK 12). Paediatric patients with adrenal insufficiency (23 with
congenital adrenal hyperplasia and 1 with hypopituitarism) aged from
birth to 6 years were included. One dose of individualized
hydrocortisone granules (Alkindi®, Diurnal Europe B.V.,
Netherlands), corresponding to the individual standard morning
dose (1–4 mg) was administered in the morning upon arrival to
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FIGURE 1
Comparison of individual apparent hydrocortisone clearance for neonates, infants, children and adults after administration of a pediatric formulation of
hydrocortisone. The closed circles represent the individual values taking body weight (non-linear mixed effects model) or body weight and age (maturation
function) into account. The lines represent Loess smoothers through the individual values. Age shown on a logarithmic scale.

FIGURE 2
Comparison of individual hydrocortisone terminal half-life for neonates, infants, children and adults after administration of a pediatric formulation of
hydrocortisone. The closed circles represent the individual values taking body weight (non-linear mixed effects model) or body weight and age (maturation
function) into account. The lines represent Loess smoothers through the individual values. Age shown on a logarithmic scale.
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the clinic after at least 2 h fasting. Patients were not allowed to eat
within 60 min post-dose (30 min for children below 1 year). All
patients underwent plasma sampling prior to dose, 1 and 4 h post-
dose. Three additional samples were retrieved per patient in cohort 1
(1–6 years), every individual was randomized into one of four groups
(n = 3) in which two extra samples were taken after approximately 30,
45, 90, 120, 150, and/or 180 min and for all an extra sample around the
expected minimum concentration (Tmin) was taken.

For the adult healthy volunteers, data from two independent
crossover studies (Infacort-001 and Infacort-002; EudraCT
Number: 2013–000260-28 and EudraCT Number: 2013–000259-42)
were included. For the arms considered in this work, healthy males
between 18 and 60 years were included and received either single
morning oral doses of 0.5, 2, 5, and 10 mg of individualized
hydrocortisone granules (study 1, n = 16) or a single dose of 20 mg
individualized hydrocortisone granules (study 2, n = 14). For both
groups, dexamethasone (1 mg) was administered to suppress the
endogenous cortisol synthesis. In study 1, plasma samples were
taken at pre-dose and 0.5, 1, 1.5, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7,
7.5, 8, 9, 10, 11, and 12 h post-dose and cortisol total concentrations
were measured. In study 2, total cortisol and CBG were measured in
plasma pre-dose, and 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10,
and 12 h post-dose/period start.

2.2 Modelling approaches

2.2.1 Non-linear mixed-effects model
The previously developed NLME model was a semi-mechanistic

model based on adult total and unbound hydrocortisone concentrations,

allometrically scaled to the pediatric population. The model was further
optimized based on the aforementioned data derived from a clinical trial
using a pediatric formulation of hydrocortisone that allows accurate
dosing in neonates, infants and children with adrenal insufficiency.
Using the pediatric body weight and CBG, the semi-mechanistic PK
model established on adult data could relatively well predict the observed
pediatric observations. However, observed pre-dose concentrations in the
pediatric CAH patients were often much higher than predicted by the
cortisol baseline based on dexamethasone-suppressed adults. This
discrepancy was hypothesized to result from the not-considered
maturation of the enzyme 11-βHSD2, causing cyclic resynthesis from
cortisone to cortisol (Martinerie et al., 2012). However, estimating the
parameters of a semi-mechanistic PK model including maturation of this
enzyme was not supported by the sparse pediatric data set, so an
allometrically scaled model with separate baselines based on the adult
and pediatric datasets was proposed as final model, resulting in good
parameter precision for both fixed-effect and variability parameters. In
this model, neonates had a lower andmore variable relative clearance (CL
per kg body weight) than infants, young children and adults, which can
potentially be explained by the lower activity of 11-βHSD2 (converting
cortisol to cortisone) (Martinerie et al., 2012) and 5α-reductase
(irreversible metabolism of cortisol to 5α-DHF (allodihydrocortisol))
(Thigpen et al., 1993) in this age group. Conversely, relative CL in
infants was predicted to be more variable than in children and adults,
potentially due to the high activity of 5α-reductase in infants relative to
their body size and incomplete maturation processes.

2.2.2 Physiologically-based pharmacokinetic model
The previously developed PBPK model (Bonner et al., 2021) was

constructed as follows: published adult studies describing the PK of

FIGURE 3
Comparison of individual cortisol-binding globulin concentrations for neonates, infants, children and adults. The closed circles represent the individual
values taking body weight (non-linear mixed effects model) or body weight and age (maturation function) into account. The lines represent Loess smoothers
through the individual values. Age shown on a logarithmic scale.
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intravenous (IV) hydrocortisone (Toothaker and Welling, 1982;
Derendorf et al., 1991) were used to establish the initial drug
parameters for distribution and elimination. The volume of
distribution was described using a minimal PBPK model, this is
akin to a 2-compartmental PK model plus liver compartment, this

model also allowed the simulation of changing fraction unbound (fu)
on volume of distribution. The fu was simulated based on binding to
both albumin and CBG, protein reference values and dissociation
constants are detailed in the original publication (Bonner et al., 2021).
Cortisol elimination input intrinsic clearance values for 11-βHSD2,

TABLE 1 Parameter estimates, objective function value (OFV) and condition number (CN) from the middle-out models exploring the inclusion of a maturation function
for cortisol clearance (CL).

Model Base
model

CL-maturation, no re-
estimation run 0

CL-maturation, PK-
estimation run 1

CL-maturation, MAT-
estimation run 2

CL-maturation, re-
estimation all’ run 3

Parameter Value
(rse, %)

Value (rse, %) Value (rse, %) Value (rse, %) Value (rse, %)

CL [L/h] 410 (8.1) 409 (-) 325 (ND) 409 (-) 484 (ND)

V2 [L] 10.6 (9.4) 10.6 (-) 10.4 (ND) 10.6 (-) 10.6 (ND)

Q [L/h] 160 (17.9) 160 (-) 147 (ND) 160 (-) 162 (ND)

V3 [L] 124 (16.3) 124 (-) 122 (ND) 124 (-) 127 (ND)

Km [nmol] 4,810 (21.2) 4,810 (-) 5,190 (ND) 4,810 (-) 4,830 (ND)

Vmax [nmol/h] 21,600 (11.0) 21,600 (-) 21,500 (ND) 21,600 (-) 21,600 (ND)

BASEAdult 15.4 (6.33) 15.4 (-) 15.4 (6.33) 15.4 (-) 15.4 (ND)

BASEChild 13.3 (1.94) 13.3 (-) 13.3 (1.94) 13.3 (-) 13.3 (ND)

IIVCL (CV%) 19.2 (17.8) 19.2 (-) 22.9 (ND) 17.2 (ND) 17.3 (ND)

IIVKm (CV%) 45.6 (36.3) 45.6 (-) 40.7 (ND) 43.0 (ND) 42.9 (ND)

IIVVmax (CV%) 43.7 (16.7) 43.7 (-) 42.9 (ND) 43.0 (ND) 43.0 (ND)

IIVBASE (CV%) 33.5 (22.3) 33.5 (-) 33.5 (ND) 33.5 (ND) 33.5 (ND)

IIVBIO (CV%) 34.9 (19.3) 34.9 (-) 36.5 (ND) 35.2 (ND) 35.2 (ND)

BASE1,5A 0.05 (-) 0.05 (-) 0.04 (ND) 0.003 (ND)

MAX1,5A 14.8 (-) 14.8 (-) 3.24 (ND) 2.54 (ND)

HILL5A 1.17 (-) 1.17 (-) 1.45 (ND) 1.66 (ND)

TM50,5A 0.17 (-) 0.17 (-) 0.04 (ND) 0.04 (ND)

BASE2,5A 1.56 (-) 1.56 (-) 1.51 (ND) 1.10 (ND)

MAX2,5A 9.22 (-) 9.22 (-) 51.1 (ND) 310 (ND)

DEC5A 1.78 (-) 1.78 (-) 59.8 (ND) 110 (ND)

INFP5A 0.16 (-) 0.16 (-) 0.29 (ND) 0.29 (ND)

BASE11B 0.02 (-) 0.02 (-) 0.01 (ND) 0.002 (ND)

MAX11B 1.52 (-) 1.52 (-) 0.58 (ND) 0.50 (ND)

HILL11B 0.15 (-) 0.15 (-) 143 (ND) 173 (ND)

TM50,11B 0.27 (-) 0.27 (-) 4.05 (ND) 4.38 (ND)

Residual variability
(CV%)

14.5 (8.0) 14.5 (-) 14.5 (ND) 14.5 (ND) 14.5 (ND)

Condition number 155.6 NA ND ND ND

OFV -3,907.90 -3,838.94 -3,894.65 -3,917.12 -3,917.24

CL: Apparent clearance, V2: apparent central volume of distribution, Q: apparent intercompartmental clearance, V3: peripheral volume of distribution, Km: amount in depot compartment resulting in

half of Vmax, Vmax: maximum absorption rate, BASEAdult: cortisol baseline of dexamethasone suppressed healthy adults, BASEChild: cortisol baseline of children with baseline measurement BLOQ, IIV:

interindividual variability, BASE1,5A: 5-alpha reductase activity at birth, MAX1,5A: maximum 5-alpha reductase activity during first 3 months of life, HILL5A, hill factor for the 5-alpha reductase

ontogeny function during the first 3 months of life, TM50,5A: age at which half of MAX1,5A is reached, BASE2,5A, 5-alpha reductase activity at 3 months of age, MAX2,5A: maximum 5-alpha reductase

activity after first 3 months of life, DEC5A: 5-alpha reductase activity decay rate, INFP5A: inflection point of the 5-alpha reductase activity ontogeny function, BASE11B: 11-β hydroxysteroid

dehydrogenase 2 activity at birth, MAX11B: maximum 11-β hydroxysteroid dehydrogenase 2 activity during life, HILL11B: hill factor for the 11-β hydroxysteroid dehydrogenase 2 ontogeny function,

TM50,11B: age at which half of MAX11B is reached. Parameters were allometrically scaled using a body weight of 70 kg and residual variability was estimated as additive error on a log scale.
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5α-reductase, CYP3A4 and additional CL (lumped 20β-oxoreductase
and 5β-reductase pathways) were calculated using a retrograde model
based on an IV clearance of 20 L/h and the literature derived fraction
eliminated by each pathway of 30, 31.5, 2.5%, and 36%, respectively,
Data from published studies describing immediate-release oral
hydrocortisone PK (Toothaker et al., 1982; Derendorf et al., 1991)
were then used to establish the absorption model parameters for the
immediate-release formulations of hydrocortisone, and to provide
further verification of the model. Once developed, clinical studies of
the immediate-release multi-particulate formulation in adults
(Infacort-001 and Infacort-002) were used to verify the final model
before performing simulations in the paediatric population.

The Sim-Paediatric population was used for the latter which
considers the relevant developmental physiology including the
ontogeny of albumin and CYP3A4 expression (Johnson et al.,
2006). For this study, further information was included on the
ontogeny of CBG (meta-analysis of multiple sources including
(Hadjian et al., 1975)), 11-βHSD2 and 5α-reductase. The ontogeny
of 11β-HSD2 was derived based on urinary cortisone to cortisol ratios
(Rogers et al., 2014), and that for 5α-reductase from urinary allo-
tetrahydrocortisol/tetrahydrocortisol ratios (meta-analysis of multiple
sources including (Wudy et al., 2007), equations are below. The final
model was able to capture the majority of clinical data for the ages 2 to

4.7, 0.3 to 1.8, and 0.044–0.071 years within the 5th and 95th
percentiles for the simulations.

2.2.3 Middle-out approach
As the maturation of different enzymatic processes was already

hypothesized during the development of the NLME model, and
formalized during the development of the PBPK model, the next
step was to implement the PBPK-derived maturation functions into
the NLME model. For this, the maturation of the CL and plasma-
protein binding related processes identified in the PBPK model were
considered: 5α-reductase (Equation ((1), (1) and (2)1-βHSD2 (Eq. 3)
and CBG (Eq. (4)). Similar as in the PBPK model, CYP3A4-related
metabolism was assumed to mature rapidly from birth onwards and,
due to its contribution to the metabolism of 2.5%, assumed to have a
negligible impact on the total CL (Kearns et al., 2003; Hines, 2007).

5α − reductase 0 − 0.25 y( ) � 0.05 + 14.82 − 0.05( )pAGE1.17

0.171.17 + AGE1.17( )

(1)
5α − reductase > 0.25 y( ) � 1.56 + 9.22p e−1.78* AGE−0.16( )( ) (2)

11 − βHSD2 � 0.02 + 1.52 − 0.02( )pAGE0.15

0.270.15 + AGE0.15( ) (3)

FIGURE 4
Normalized Distribution Prediction Errors (NPDE) of the 4 middle-out models incorporating the PBPK-derived clearance maturation function. Run 0: no
re-estimation of parameters, run 1: re-estimation of NLME-derived PK parameters, run 2: re-estimation of PBPK-derived clearancematuration function, run 3:
re-estimation of all parameters.
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The PBPK-derived maturation functions for the binding to CBG
was considered as it was originally derived (Bonner et al., 2021):

CBG µM( ) � 0.195 + 0.993 − 0.195( )pAGE0.348

2.330.348 + AGE0.348( ) (4)

Further details regarding Equations 1–4 can be found in the
original work describing the development of the hydrocortisone
PBPK model (Bonner et al., 2021).

The PBPK-derived maturation functions for the metabolic
enzymes were combined in a CL maturation function Eq. 5
following their proportional impact on the overall hydrocortisone
CL based on the PBPK-derived contribution to the metabolism: 30%
for 5α-reductase, 30% for 11-βHSD2 and 40% for other processes
assumed not to undergo relevant maturation (Bonner et al., 2021).

CLratio pediatric
adult

AGE( ) � 30%p5α − reductaseAGE

+ 30%p 11 − βHSD2AGE + 40% (5)

In order to investigate the utility of these maturation functions in
the middle-out NLME framework, a step-wise approach was taken.

1) Comparison of maturation function-derived CL and CBG
concentration to NLME-derived empirical Bayes estimates
(EBE): CLEBE and CBGEBE.

2) Implementation of CL or CBG maturation functions in NLME
model and re-estimation of none, parts of and full model. The
procedure was performed for both maturation functions separately
and then for both together.

3) Implementation of best-performing maturation functions into
NLME model.

For step 1, CLEBE were compared to CL values derived from PBPK
maturation function Eq. 5. For this, the age-dependent CL-ratio
calculated by the maturation function was multiplied with the
adult population CL/F value estimated by the NLME model and
corrected for body weight using allometric scaling as shown in Eq. 6.

CLPBPK � CLNLME, adult*CLratio pediatric
adult

AGE( )p BW kg( )
70 kg

( )
0.75

(6)

To lessen the impact of allometric scaling assumptions and
bioavailability, the elimination half-lives, defined as Eq. 7 for a
two-compartmental model, were also calculated and compared.

t1
2, β

� ln 2( )
0.5p Q

V1
+ Q

V2
+ CL

V1
−

��������������������
Q
V1

+ Q
V2

+ CL
V1

( )
2 − 4p Q

V2
*CLV1

√
( )

(7)

In step 2), PBPK-derived maturation functions were included in the
NLME model separately and then both at the same time. Under all three

FIGURE 5
Individual clearance parameter estimates (empirical Bayes estimate) for the 4 middle-out models incorporating the PBPK-derived clearance maturation
function. Run 0: no re-estimation of parameters, run 1: re-estimation of NLME-derived PK parameters, run 2: re-estimation of NLME-derived PK parameters,
run 2: re-estimation of PBPK-derived clearance maturation function, run 3: re-estimation of all parameters. The dotted line depicts the clearance for a typical
individual (i.e. without variability).
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scenarios, model performance was evaluated following one of four
estimation steps. First, the parameters from the NLME model and
the PBPK-derived maturation functions were not re-estimated
and the model was evaluated as such. Second, the NLME-derived
PK parameters were re-estimated while keeping the PBPK-
derived maturation parameters fixed. Third, the PBPK-derived
maturation parameters were re-estimated while keeping the
NLME-derived PK parameters fixed. Fourth and final, all
parameters were re-estimated based on the clinical dataset.

In general, model evaluation was performed based on predictive
performance assessed by goodness-of-fit (GOF) plots and model
stability assessed by condition number and parameter precision.
Significant differences in model fit were defined as the difference in
objective function value (OFV) being larger than 3.84*nparameters

estimated (p < 0.05). To avoid bias in residuals calculated based on
the M3 method, distributions of Normalized Prediction Distribution
Errors (NPDEs (Brendel et al., 2006)) rather than Conditionally
Weighted Residuals (CWRES) as a function of time and population
prediction were used to judge the model fit (Jaber et al., 2021).
Individual clearance estimates using empirical Bayes estimates were
plotted as a function of age group to investigate introduction of age-
dependent bias into the model. All estimations were performed using
the FOCE + I algorithm.

2.3 Software

Data handling and management were performed using R/
RStudio (version 4.0.1/1.3.1056), as well as data visualization.

Modelling activities in the middle-out NLME framework were
performed using NONMEM (version 7.5.0) and Pearl speaks
NONMEM (PsN, version 5.0.0).

3 Results

3.1 Comparison of individual parameters
derived by PBPK and NLME approach

The individually predicted CL and elimination half-lives are
presented in Figure 1 and Figure 2. A relatively large overlap
could be observed for children and adults older than 1 year.
However, for children younger than 1-year substantial
discrepancies in predicted elimination processes between the
approaches were shown, possibly indicating the relevance of
maturational processes in this age range.

For CBG, the PBPK-derived concentrations could be directly
compared to the NLME derived ones. The NLME model was
parametrized in a way that when a CBG measurement was
available for an individual, this measurement was used in the
model. When such a measurement was not available, the mean
CBG concentration (22.4 μg/mL/0.431 µM) from an earlier
developed CBG binding model was used (Melin et al., 2019),
which was only the case for 16 adult individuals.

As can be seen in Figure 3, the PBPK-derived maturation in
CBG concentrations was not represented in the NLME-based
approach, resulting in a discrepancy over almost the entire age
range.

FIGURE 6
Comparison of individual apparent hydrocortisone clearance for neonates, infants, children and adults after administration of a pediatric formulation of
cortisol using the NLME, PBPK or middle-out model (run 2). The closed circles and the lines represent the individual values and Loess smoothers through
them. Age shown on a logarithmic scale.
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3.2 Implementation of CL or CBG maturation
functions in NLME model

To investigate whether the discrepancies in individual parameters
between the NLME and PBPK approach had a significant impact on
the description of the observed clinical data and as such could provide
a possibility for model improvement using a middle-out approach, the
implementation of the PBPK-derived maturation functions within the
NLME modelling framework was carried out.

3.2.1 Implementation of CL maturation
In Table 1, the parameter estimates of the implemented CL

maturation functions within the NLME model are show. Inclusion
of the maturation function without re-estimation of any parameter but

including fitting of the individual profiles using empirical Bayes
estimates (option MAXEVAL = 0 in NONMEM) resulted in a
significantly worse fit as indicated by the OFV (ΔOFV = 34.48).
Estimation of the PK parameters while keeping the maturation
function constant also resulted in a worse fit (ΔOFV = 13.25) and
in an unstable model as indicated by failure in convergence of the
covariance matrix. Estimating the parameters of the maturation
function alone or together with the PK parameters resulted in a
non-significant improvement of the fit (ΔOFV = −9.22 > -15.36 for
run 2 and −9.34 > −46.08 for run 3), also indicating by the NPDE
distributions in Figure 4.

In Figure 5, the individual variance estimates for CL are shown as a
function of age group. Here, the distribution of the empirical Bayes
estimates per individual in order to describe the observed data post hoc

TABLE 2 Parameter estimates, objective function value (OFV) and condition number (CN) from the middle-out models exploring the inclusion of a maturation function
for cortisol binding globulin (CBG).

Model Base
model

CBG-maturation, no re-
estimation

CBG-maturation, PK-
estimation

CBG-maturation, MAT-
estimation

CBG-maturation, re-
estimation all

Parameter Value
(rse, %)

Value (rse, %) Value (rse, %) Value (rse, %) Value (rse, %)

CL [L/h] 410 (8.1) 409 (-) 612 (1.90) 409 (-) 995 (13.3)

V2 [L] 10.6 (9.4) 10.6 (-) 10.4 (12.3) 10.6 (-) 13.6 (9.27)

Q [L/h] 160 (17.9) 160 (-) 147 (21.5) 160 (-) 422 (22.0)

V3 [L] 124 (16.3) 124 (-) 122 (24.4) 124 (-) 348 (18.4)

Km [nmol] 4,810 (21.2) 4,810 (-) 5,190 (1.66) 4,810 (-) 8,820 (25.1)

Vmax [nmol/h] 21,600 (11.0) 21,600 (-) 21,500 (0.03) 21,600 (-) 32,800 (14.9)

BASEAdult 15.4 (6.33) 15.4 (-) 15.4 (6.38) 15.4 (-) 15.6 (6.54)

BASEChild 13.3 (1.94) 13.3 (-) 13.3 (1.27) 13.3 (-) 13.3 (2.82)

IIVCL (CV%) 19.2 (17.8) 19.2 (-) 22.9 (72.5) 23.2 (18.9) 22.4 (19.0)

IIVKm (CV%) 45.6 (36.3) 45.6 (-) 40.7 (51.5) 51.3 (24.0) 46.4 (33.7)

IIVVmax (CV%) 43.7 (16.7) 43.7 (-) 42.9 (23.8) 42.9 (14.5) 40.0 (17.8)

IIVBASE (CV%) 33.5 (22.3) 33.5 (-) 33.5 (22.0) 33.6 (22.4) 33.6 (22.2)

IIVBIO (CV%) 34.9 (19.3) 34.9 (-) 36.5 (20.4) 42.1 (18.4) 31.9 (17.2)

BASECBG 0.20 (-) 0.05 (-) 0.456 (23.3) 1.83 (26.0)

MAXCBG 0.99 (-) 14.8 (-) 0.643 (8.29) 0.71 (36.0)

TM50,CBG 2.33 (-) 1.17 (-) 0.76 (113) 0.0233 0)

HILLCBG 0.35 (-) 0.17 (-) 0.142 (251) 0.191 (45.8)

Residual variability
(CV%)

14.5 (8.0) 14.5 (-) 14.5 (8.0) 14.2 (7.32) 14.0 (7.71)

CN 155.6 NA 1.19 * 108 217.5 846.6

OFV -3,907.90 -3,934.75 -4,003.41 -3,961.00 -4,041.86

CL: Apparent clearance, V2: apparent central volume of distribution, Q: apparent intercompartmental clearance, V3: peripheral volume of distribution, Km: amount in depot compartment resulting in

half of Vmax, Vmax: maximum absorption rate, BASEAdult: cortisol baseline of dexamethasone suppressed healthy adults, BASEChild: cortisol baseline of children with baseline measurement BLOQ, IIV:

interindividual variability, BASECBG: CBG, concentration at birth, MAXCBG: maximum CBG, concentration, TM50,CBG: age at which half of MAXCBG, is reached; HILLCBG, hill factor for the CBG,

ontogeny function. Parameters were allometrically scaled using a body weight of 70 kg and residual variability was estimated as additive error on a log scale.
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is shown. The centering of these distributions around 0 indicates an
unbiased CL estimation. Inclusion of the maturation function without
re-estimation induces an age-dependent bias in the CL estimation
resulting in a skewed distribution of these individual estimates,
which is only resolved by estimation of the maturation function
parameters. In Figure 6, the CL maturation function based on only
the PBPK model, only the NLME model and the estimated
maturation function within the NLME framework are shown.
Here it can be seen that estimation of the maturation function
given the clinical datasets approaches the individual CL estimates
as a function of age as fitted by the NLME model without
maturation function.

3.2.2 Implementation of CBG maturation
In Table 2, the parameter estimates of the implemented CBG

maturation functions within the NLME model are show. Inclusion of
the maturation function without re-estimation of any parameter but
including fitting of the individual profiles using empirical Bayes
estimates (option MAXEVAL = 0 in NONMEM) resulted in a
significantly better fit as indicated by the OFV (ΔOFV = −26.85 <
15.36). Estimation of the PK parameters while keeping the maturation
function constant also resulted in a better fit (ΔOFV = −95.51 < 15.36)
but in an unstable model as indicated by the very large condition
number (1.19 * 108 > 1000) and the imprecision of some of the IIV-

related parameters becoming high (IIV CL = 72.5% > 50%).
Estimating the parameters of the maturation function alone or
together with the PK parameters resulted in a significant
improvement of the fit (ΔOFV = −53.1 < −15.36 for run
2 and −133.96 < −15.36 for run 3).

As indicated by the NPDE distributions in Figure 7 and the
individual variance estimates for CL in Figure 8, the inclusion of a
maturation function for CBG results in a biased estimate of the
neonatal PK. Estimation of the maturation function alone resolves
this bias at the cost of a biased adult CL. As can be seen in Figure 9,
estimation of the maturation function alone using the clinical data
approaches moves the CBG maturation function towards the
individual CBG estimates as a function of age as fitted by the
NLME model without maturation function. Estimation of all
parameters simultaneously leads to a better-fitting stable model,
using a strongly deviating maturation function (Figure 9) and CL-
estimate (Table 2), and an underprediction of neonatal CL (Figure 8).

3.3 Implementation of best-performing
maturation functions into NLME model

Ultimately, the inclusion of CL and/or CBG PBPK-derived
maturation functions resulted in similar, or worse, model

FIGURE 7
Normalized Distribution Prediction Errors (NPDE) of the 4 middle-out models incorporating the PBPK-derived cortisol-binding globulin (CBG)
maturation function. Run 0: no re-estimation of parameters, run 1: re-estimation of NLME-derived PK parameters, run 2: re-estimation of PBPK-derived CBG
maturation function, run 3: re-estimation of all parameters.
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performance and the re-estimation of parameters most often led to
unstable models or unrealistic parameter estimates.

4 Discussion

In this work, the maturation of different processes contributing to
the PK of hydrocortisone were investigated using a middle-out
approach, combining insights from clinical data analyzed using
NLME modelling with ontogeny data from a PBPK model. As a first
step, the conclusions of both techniques were compared to each other,
showing significant differences between the two approaches. Indeed, the
maturation of hydrocortisone CL was predicted differently between the
two models for children between 1 month and 1 year of age but similar
for the rest of the pediatric age range. For the maturation of CBG,
NLME approaches predicted that no significant maturation takes place
over the entire pediatric age range (Melin et al., 2017; Melin et al., 2019)
while a PBPK approach showed an increase in CBG concentration from
birth to adulthood (Bonner et al., 2021).

The insights from PBPK, based on an extensive review of the
literature sources available at the time, were implemented in an NLME
framework based on the model fitted to clinical data (Melin et al.,
2017; Michelet et al., 2020) and interrogated for their potential to
describe hydrocortisone PK data over the pediatric age range.

Inclusion of the CL maturation function did not result in a
significantly better description of the clinical data, and re-
estimation of the maturation function parameters was not
supported by the data. For the maturation of CBG, a better
description of the clinical data was suggested by the fit, but only
when the maturation function was either 1) re-estimated to
approximate a stable CBG concentration over the entire age range
or 2) estimated to be a decreasing function from birth on combined
with a deviating PK model. Furthermore, large differences in
parameter values were observed between the different re-estimation
steps, indicating a discrepancy between the modeling approaches or
their underlying data.

As neither the CL nor the CBG maturation function could show
convincing improvements in the description of the clinical pediatric
dataset, their implementation together in an optimal middle-out
model was not successful. Several reasons can be proposed for this
mismatch between the NLME and PBPK approach. First, a PBPK
model includes maturational processes in a mechanistic way,
modulating only the processes which are governed by the enzyme
of which the maturation is considered. An NLME model, in contrast,
lumps processes together into empirical compartments which consists
of an arbitrary number of the abovementioned processes. A
straightforward example of this is the maturation of the first-pass
effect and bioavailability, which would be considered in a carefully

FIGURE 8
Individual clearance parameter estimates (empirical Bayes estimate) for the 4 middle-out models incorporating the PBPK-derived cortisol-binding
globulin (CBG) maturation function. Run 0: no re-estimation of parameters, run 1: re-estimation of NLME-derived PK parameters, run 2: re-estimation of
NLME-derived PK parameters, run 2: re-estimation of PBPK-derived CBGmaturation function, run 3: re-estimation of all parameters. The dotted line depicts
the clearance for a typical individual (i.e. without variability).
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constructed PBPK model, but is not taken into account in the
maturation function of apparent CL (CL/F) in the NLME/middle-
out approach. Mechanistic investigation of the processes governing
the first pass processes of hydrocortisone PK would considerably help
to elucidate the maturation of bioavailability and absorption of
hydrocortisone in the pediatric population. In the current study, all
data was derived from individualized hydrocortisone granules which
are immediate release. However, a modified-release formulation
would have a more profound effect on bioavailability and
absorption, which would need to be characterized in order to
update the underlying structural PK model.

Second, the current findings are dependent on the nature of clinical
data which is available for hydrocortisone PK in CAHpediatric patients.
Our current clinical dataset is collected from clinical trials, where
different cohorts were selected, for regulatory and ethical reasons,
based on distinct age cut-offs. These cohorts were defined as
neonates (0–1 month), infants (1 month–2 years) and children
(2–6 years). In general it is difficult to recruit such young children,
especially for a rare disease, into the clinical trials and hence the overall
numbers of pediatric patients is low. This is further compounded by,
when children are recruited into the trial, they are often recruited
towards the upper end of these age groups–this is particularly evident
for the infant cohort where there are more patients towards 2 years of
age, resulting in a lack of data between 1 month and 12 months of age.
This makes the discrepancies between the PBPK and NLME approach
challenging to validate with the current dataset, because there is a large
gap in the data where, potentially, the most scientific interest lies in the
maturation functions of enzymes with early age.

Although the implementation of the PPBK-derived maturation
functions into the NLME framework show potential for better
description of the PK of hydrocortisone in children, clinical data

available to date do not support them formally. Thus, more PK data in
young infants would be very beneficial to further develop and refine
these modelling approaches. This sparsity of infant data also puts into
question the typical staggered approach of pediatric clinical trials
(although it is acknowledged that this needs to be balanced by the
regulatory and ethical requirements of running the clinical trial with
pediatric patients), as these age cut-offs will more likely recruit older
children per cohort (Manolis et al., 2011). Indeed, our new insigh can
contribute to the concrete design of next clinical trial.

Third, the maturation functions derived in the PBPK framework
also contain uncertainty. Both the 11-βHSD2 and 5α-reductase
maturation functions were derived from data on the ratio of urinary
concentrations, which might need to be corrected for the renal function
relative to adults. This correction was applied before to quantify the
maturation of CYP2D6 and CYP3A4 in the first year of life (Johnson
et al., 2008). Refitting the maturation functions for the metabolic
enzymes on the metabolic ratios considering relative renal function
might be a first step towards closing the gap between the two approaches
depicted in this work. The maturation function for CBG was fitted on
very variable data, with a lack of data for children over 12months of age,
indicating the need for further confirmation of this maturation function.

In this investigation the prior information of the PBPK-derived
maturation function was either taken at value or re-estimated, i.e., it
was taken as an uninformative or informative prior. Given more
information about the relevant age ranges as described above,
Bayesian approaches could be applied to explore the space of
models in between the extreme solutions presented in this work.
Furthermore, the impact of the explored models on dosing
recommendations was outside the scope of this work, but could be
explored once the gap between the two approaches depicted in this
work is closed. Indeed, an adequate description of HC interindividual

FIGURE 9
Comparison of individual cortisol-binding globulin concentrations for neonates, infants, children and adults using the NLME, PBPK or middle-out model
(CBG-run 2 and run 3). The closed circles and the lines represent the individual values and Loess smoothers through them. Age shown on a logarithmic scale.
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variability as a function of age would directly impact personalized
dosing, moving from body-weight based dosing to age- and body-
weight dosing (Melin et al., 2020).

5 Conclusion

The maturation of different PK processes impacts the treatment of
pediatric CAH patients with hydrocortisone. In current population
NLME PK and PK/PD models, often only body weight is considered
as covariate to explain the impact of age on hydrocortisone PK. In this
work, insights of a PBPK modelling approach into maturation of
hydrocortisone CL via 5α-reductase and 11-βHSD2 and cortisol
binding via CBG were introduced in a NLME model fitted to
pediatric clinical data. The discrepancies between the approaches show
the importance of applying multidisciplinary methodologies in the
analysis of pediatric data and of the balanced collection of clinical data
across the pediatric age range. Lastly, further investigation of the
maturation of 5α-reductase and 11-βHSD2 between 1 month and
12 months of age, and the maturation of CBG across the entire age
range, is warranted for further development of these modelling
approaches.
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Reinforcement learning as an
innovative model-based
approach: Examples from
precision dosing, digital health
and computational psychiatry

Benjamin Ribba*

Roche Pharma Research and Early Development (pRED), F. Hoffmann-La Roche Ltd, Basel, Switzerland

Model-based approaches are instrumental for successful drug development

and use. Anchored within pharmacological principles, through mathematical

modeling they contribute to the quantification of drug response variability and

enables precision dosing. Reinforcement learning (RL)—a set of computational

methods addressing optimization problems as a continuous learning

process—shows relevance for precision dosing with high flexibility for dosing

rule adaptation and for coping with high dimensional efficacy and/or safety

markers, constituting a relevant approach to take advantage of data from digital

health technologies. RL can also support contributions to the successful

development of digital health applications, recognized as key players of the

future healthcare systems, in particular for reducing the burden of non-

communicable diseases to society. RL is also pivotal in computational

psychiatry—a way to characterize mental dysfunctions in terms of aberrant

brain computations—and represents an innovative modeling approach

forpsychiatric indications such as depression or substance abuse disorders

for which digital therapeutics are foreseen as promising modalities.

KEYWORDS

pharmacometrics, digital health, reinforcement learning, precision dosing,
computational psychiatry

1 Reinforcement learning for precision dosing

Precision dosing, or the ability to identify and deliver the right dose and schedule (i.e.

the dose and schedule with highest likelihood of maximizing efficacy and minimizing

toxicity), is critical for public health and society. Precision dosing is not only important for

marketed drugs to reduce the consequences of imprecise dosing in terms of costs and

adverse events; but also for therapeutics in development to reduce attrition, often related

to the challenge of precisely characterizing the therapeutic window due to a suboptimal

understanding of drug-response variability. Achieving the benefit to society of precision

dosing requires the identification of the main drivers of response variability, as early as

possible in the drug development process, and the deployment into clinical practice
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through an infrastructure designed for real-time dosing decisions

in patients (Maxfield and Zineh, 2021; Peck, 2021).

Model-based approaches to clinical pharmacology, also

known as clinical pharmacometrics (PMX) play a critical role

in precision dosing. First, they contribute to the identification of

the determinants of response variability through quantitative

analysis of pharmacokinetic (PK) and pharmacodynamics (PD)

relationships, and second, they constitute a central part of the

infrastructure providing a simulation engine, predicting

individual patient’s response to a dose, and from which

optimal dosing is identified through reverse engineering.

Often this reverse engineering comprises two steps: first the

PMX model’s individual parameters are calculated through

Bayesian inference, i.e. through the calculation of the mode of

posterior distribution (maximum a posteriori or MAP); second,

an optimal dosing scheduling is calculated, often via an heuristic

approach through simulating various feasible dosing scenarios

on inferred individuals model’s instances.

Many examples exist in literature describing relevant PKPD

models for precision dosing. For instance, in oncology, a model

describing the time course of neutrophils following

chemotherapy treatment is an ideal candidate for optimizing

chemotherapy delivery (see (Friberg et al., 2002) as an example).

Studies have also reported clinical investigations of model-based

precision dosing approaches. For instance, the clinical study

“MODEL1” was a phase I/II trial and a clear clinical attempt

of a personalized dosing regimen of docetaxel and epirubicin

patients with metastatic breast cancer and was shown to lead to

improved efficacy-toxicity balance (Henin et al., 2016).

Reinforcement learning (RL) was also used for precision

dosing. Still in oncology, Maier et al. extended the classical

framework of model-driven precision dosing with RL coupled

or not with data assimilation techniques (Maier et al., 2021).

Previously, RL applications—although without clinical

confirmation—were developed for brain tumors (Yauney and

Shah, 2018) based on a model of tumor size response to

chemotherapy (Ribba et al., 2012). We have recently evaluated

the performance of RL algorithms for precision dosing of

propofol for general anesthesia and for which a meta-analysis

showed that the monitoring of the bispectral index (BIS)—a PD

endpoint—contributes to reduce the amount of propofol given

and the incidence of adverse reactions (Wang et al., 2021). In

(Ribba et al., 2022), we performed a theoretical analysis of

propofol precision dosing confronting RL to hallmarks of

clinical pharmacology problems during drug development, i.e.

the low number of patients and tested dosing regimen, the

incomplete understanding of the drivers of response and the

presence of high variability in the data.

While RL does not present as a universal solution for all types

of precision dosing problems, it is an interesting modeling

paradigm worth exploring. In comparison to the way PMX

traditionally addresses precision dosing, RL presents several

advantages. First, the possibility to take into account high

dimensional PKPD variables while classical model-based

approaches are often limited to a low number of variables

(plasma concentration and one endpoint). In doing so, it

represents an opportunity for the integration of digital health

data such as from wearable devices or digital health technologies

in general. Second, the definition of the precision dosing policy in

a dynamic and adaptable manner through the continuous

learning of the algorithm through real and simulated

experience (data). RL is an approach by which both the

underlying model and the optimal dosing rules are learnt

simultaneously while for classical approaches, these represent

two sequential steps: in other words, the consequence of the dose

does not influence the model structure. Recently, studies have

been published illustrating methodologies for adapting PKPD

model structures through data assimilation (Lu et al., 2021; Bram

et al., 2022). While high dosing frequency is not a prerequisite

condition for the applicability of RL to precision dosing, this

approach is well suited when the solution space of dosing is large,

making heuristic approaches to find optimal dosing solutions

inadequate. In our example on propofol, dosing could happen

every 5 s so over a short period of 2 min, the space of solutions to

explore when considering dichotomous dosing even is greater

than 16 million possibilities.

RL is at the crossroads between two scientific fields. First, the

field of learning by trial and error that started with the study of

the psychology of animal learning and second, the field of

optimal control (Sutton and Barto, 2018). RL are often

formally described with Markov Decision Process or MDP

which includes all important features a learning agent should

have, namely, being able to sense the environment, being able to

take action and have clarity on the goal. In RL, a learning agent

takes an action and, as a result, transitions from one state to

another. After each action taken, the interaction between the

agent and its environment produces a reward. The goal of the RL

problem is tomap actions to situations (state), i.e. knowing which

actions to take in each state to maximize the accumulated reward.

As long as the optimization problem can be formulated within

the MDP framework, RL can be applied and its efficiency

explored.

For precision dosing of propofol, the state can be represented

by a table, an approach also called tabular solution methods. In

the next two sections, the state will be defined by a continuous

function. The reward was determined based on the value reached

by the BIS as a direct consequence of the action taken: the closer

the BIS to the target, the higher the reward. Finally, given the

theoretical study, the true PKPD model (linking the dose

application to BIS) was used as an experience (data)

generator. The left column of Table 1 summarizes the

characteristics of the application of RL to the propofol

precision dosing problem.

The minimal set of RL characteristics makes it a very flexible

paradigm, suitable for a large variety of problems. Herein, we will

in fact illustrate this flexibility by illustrating how this framework
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can be viewed as a bridge between a priori distinct areas such as

precision dosing of pharmacological drugs, digital health and

computational psychiatry.

In the appendix, we propose to demystify how RL

algorithms—such as temporal difference Q-learning, repeatedly

mentioned here—work, taking a simple illustration from video

gaming.

2 Reinforcement learning in digital
health

For several years, many reports have indicated the key

importance of digital health for reducing the burden to society

of non-communicable diseases such as cardiovascular, diabetes,

cancer or psychiatric diseases, in part due to the aging of the

population and—paradoxically—the success of

pharmacologically-based interventions in increasing life

expectancy while being affected by pathological conditions

(Fleisch et al., 2021). Prevention and interventions targeting

lifestyle are essential tools to address this societal challenge of

ever-growing importance as our healthcare systems risk collapse

under cost pressure.

In 2008, it was estimated that physical inactivity causes 6% of the

burden of coronary heart disease, 7% of type II diabetes, 10% of breast

cancer and 10% of colon cancer and overall the cause of more than

5.3 million of the 57 million deaths which occurred that year (Lee

et al., 2012). In that study, the authors also estimated that with 25%

reduction of physical inactivity, 1.3 million of deaths could be averted

every year. Given the constant increase of smartphone coverage

worldwide, it is natural to think of mobile health technologies to

support healthy lifestyle habits and prevention. The thinktank

Metaforum from KU Leuven dedicated its position paper 17 on

the use of wearables and mobile technologies for collecting

information on individual behavior and physical status—combined

with data from individual’s environment—to personalize

recommendations (interventions) bringing the subject to adopt a

healthier lifestyle (Claes, 2022).

When the intervention is intended to have a therapeutic

benefit, it falls in the field of digital therapeutics when associated

with demonstration of clinical effectiveness and approved by

regulatory bodies (Sverdlov et al., 2018). This point of junction

TABLE 1 Main characteristics of RL algorithm implementation to the precision dosing of pharmacological interventions (left column); the precision dosing of
digital intervention (middle column); and computational psychiatry (right column). While there are multiple similarities between the precision dosing of
pharmacological and digital interventions, the application of RL in computational psychiatry shows as a paradigm shift. RL computational machinery is not
deployed as a technical approach to address the optimal control problem of precision dosing but is fitted to (cognitive task) data assuming the algorithm
itself presents mechanistic similarities with how brain’s participants functioned during the task.

Precision dosing of a
pharmacological intervention

Precision dosing of a digital
intervention

Computation psychiatry

Study case
[References]

Optimal dosing of propofol administration
(Ribba et al., 2022)

Just-in-time-adaptive-intervention for
HeartSteps, mobile app aimed at reducing
physical inactivity (Liao et al., 2020)

Population analysis of signal-detection task
in anhedonic subjects (Huys et al., 2013)

Type of RL solution Tabular Continuous

State Is directly linked to the state of the patient Is linked to the situation the participant to the
task is presented with and based on which an

action must taken

PK drivers and/or PD endpoint such as the BIS Contextual drivers (e.g. weather conditions,
time of the day) and patient-related status
derived from wearable device equipment

Belief of the correctness (weight) of each
stimuli present in the task

Action Dose or not Dose (walking suggestion message) or not Participant’s answer choice

Reward Defined to enable the algorithm converging to the optimal dosing solution Corresponds to whether the answer is correct
or wrong

Simple function of BIS leading to high reward
when actual BIS is close to its target

Step count in the 30 min window after each
decision time

Automatically derived from the answer as
per task design and setup

Use of simulated
experience?

Yes No

The true underlying PKPD model is used Linear model assimilating real data No need for simulated experience, RL
algorithm is mapped to the trial-by-trial data

Algorithm Temporal difference Q-learning Thomson Sampling Temporal difference Q-learning

Free parameters Used to calibrate model of patient’s response to dosing event Used to calibrate RL algorithm

Parameters of the PKPD model Parameters of the linear model for reward
prediction under alternative dosing scenarios

Learning rate and reward sensitivity
parameter
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between digital health applications and pharmacological drugs

represents a ground for attempting to reframe PMX—a

recognized key player in the development of the latter—as a

key support to the development of the former, in particular when

it comes to precision dosing for digital health.

The precision dosing of digital therapeutics overlaps with the

concept of just-in-time adaptive intervention or JITAI (Nahum-Shani

et al., 2018). In the mobile technology literature, JITAI has been

primarily considered as a critical topic for increasing adherence and

retention of users; but within a therapeutic perspective, it should

encompass both the topic of adherence and retention to the

therapeutic modality and the topic of its optimal dosing in order

to maximize clinical benefit. For clarity, these two different learning

problems should be distinguished as many existing applications focus

primarily on the first one. For example, a growing number of mobile

applications developed under the concept of virtual coaching aim to

optimize the design of the interventions (time and content, e.g.

messages sent by the app to the users with the form of a prompt

appearing on a locked screen) to incite the user to take actions.

HeartSteps was designed to encourage user to increase their physical

activity and where content delivery, such as tailored walking

suggestion messages, is optimized with an RL algorithm (Liao

et al., 2020). Here, RL is used to address the first learning

problem: How to deliver the content so that the user is doing

what is recommended. We each need different forms of

prompting and potentially different forms of exercise to increase

our physical activity. Overall, this problem is similar to that of

adherence to a pharmacological regimen. But a second problem is:

what is the right dose of the desired intervention? In other words:

How many steps is optimal for each patient? This is the usual

precision dosing problem for drugs and there is a clear

opportunity for digital health applications to extend the domain of

application of JITAIs to that problem as well.

One of the particularly interesting aspects of the research on

RL algorithms for HeartSteps is that, beyond the innovative

nature of the work purely related to the design of

personalized interventions, it also includes ways to objectively

evaluate its efficiency. An experimental design called micro-

randomized trial (MRT) is proposed as a framework to

evaluate the effectiveness of personalized versus non-

personalized interventions (Klasnja et al., 2015; Qian et al.,

2022). The principle of MRT is to randomize the

interventions multiple times for each subject. Statistical

approaches have been studied to leverage MRT-derived data

in order to inform treatment effects and the response variability

(Qian et al., 2020). In the theoretical propofol example described

in the previous section, we used the true PKPDmodel to simulate

experience. In the real-life RL application of HeartSteps, the

authors had the objective to design a method for learning quickly

and for accommodating noisy data (Liao et al., 2020). To address

these points, the authors used a simulation engine to enhance

data collected from real experience and this simulation engine

was built with simple linear models. Precisely, the authors

modeled the difference in reward function under alternative

dosing options with low dimensional linear models, which

features were selected based on retrospective analysis of

previous HeartSteps data and based on experts’ guidance. The

precision dosing problem was addressed using posterior

sampling via Thompson-Sampling, identified as performant in

balancing exploration and exploitation (Russo and Van Roy,

2014; Russo et al., 2018). The definition of the state was based on

several individual’s features including contextual information or

sensor data from wearable devices while the reward was defined

as the step counts within 30 min after the “dosing” event. The

middle column of Table 1 summarizes the main characteristic of

RL application to this problem.

3 Reinforcement learning in
computational psychiatry

Like mechanistic modelling, computational psychiatry refers

to a systems approach aimed at integrating underlying

pathophysiological processes. However, while mechanistic

modelling efforts typically use multiscale biological processes

as building blocks, some models that fall within the remit of

computational psychiatry (such as RL) use different types of

building blocks, and in particular brain cognitive processes.

Model-based approaches have shown relevance for

addressing major challenges in neuroscience (see (Conrado

et al., 2020) for an example for Alzheimer disease).

Quantitative systems pharmacology and mechanistic-based

multiscale modelling are, in particular, associated with major

hopes while acknowledging significant challenges such as the lack

of quantitative and validated biomarkers, the subjective nature of

clinical endpoints and the high selectivity of drug candidates not

reflecting the complex interactions of different brain circuits

(Geerts et al., 2020; Bloomingdale et al., 2021). These challenges

are equally valid for attempting to address psychiatric conditions.

This can partly explain the efficiency of non-pharmacological

interventions, such as targeted psychotherapy approaches,

recognized as one of the most precise and powerful

approaches (Insel and Cuthbert, 2015).

The efficiency of such interventions is a testimony of how the

brain’s intrinsic plasticity can alter neural circuits. Some

(discursive) disease models—with a focus on systems

dimensions–propose new perspectives in the understanding of

such conditions. For instance, it has been reported that emotion-

cognition interactions gone awry can lead to anxiety and

depression conditions; with anxious individuals displaying

attentional-bias toward threatening stimuli and have difficulty

disengaging from it (Crocker et al., 2013). Further data-driven

understanding—at the systems level—is key to increase the

likelihood of success of such non-pharmacological

interventions, as it is equally the case for research and

development of pharmaceutical compounds (Pao and Nagel,
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2022). Such data-driven understanding can be integrated in the

design of relevant non-pharmacological interventions, with some

of them known to be amenable to digital delivery through, for

instance, digital therapeutics (Jacobson et al., 2022).

A precision medicine initiative—precision psychiatry—has been

initiated for psychiatric indications, such as major depression or

substance abuse disorder, constituting a major part of non-

communicable diseases (Insel and Cuthbert, 2015). The core idea

of precision psychiatry lies in the reframing the diagnosis and care of

affected subjects by moving away from a symptom-based to a data-

driven categorization through a focus on system dimension via

integration of data from cognitive, affective and social

neuroscience, overall shifting the way to characterize these

conditions in terms of brain circuits (dys-)functioning. This

concept materialized in proposing the Research Domain Criteria

(RDoc) in 2010 (Insel et al., 2010) as a framework for research in

pathophysiology of psychiatric conditions.

Integrating into a multiscale modelling framework, data from

cognitive, affective and social neuroscience is an objective of

computational psychiatry, defined as a way to characterize

mental dysfunction in terms of aberrant computation in the

brain (Montague et al., 2012). Not surprisingly, by its mimicking

of human and animal learning processes, RL plays a key role in

computational psychiatry. RL in computational psychiatry

proposes to map brain functioning in an algorithmic language

offering then the possibility to explore, through simulations, the

dysfunctioning of these processes as well as the theoretical benefit

of interventional strategies. Two examples will be further

developed here and the readers can refer to (Seriès, 2020) for

an overview of more computational psychiatry methods, models

and study cases.

In a RL framework, actions by the learner are chosen according to

their value function, which holds the expected accumulated reward.

The value function is updated through experience using feedback

from the environment to the action taken. This update is also called

temporal difference. An analogy has been drawn between this

temporal difference and reward-error signals carried by dopamine

in decision-making. Temporal difference reinforcement learning

algorithms learn by estimating a value function based on temporal

differences. The learning stops as this different converges to zero (see

SupplementaryMaterial for further details). Such a framework can be

used to reframe addiction as a decision-making process gone awry.

Based on the observation that addictive drugs produce a transient

increase in dopamine through neuropharmacological mechanisms,

the proposed model assumes that an addictive drug produces a

positive temporal difference independent of the value function so

that the action of taking drug will be always preferred over other

actions (Redish, 2004). This model provides a tool to explore the

efficiency of public health strategies. For instance, the model proposes

some hypotheses to explain the incomplete success of strategies based

on offering money as an alternate choice from drug intake.

RL models are used for the analysis of data of cognitive tasks

and in particular tasks related to decision-making. Instead of

focusing on the summary statistics of such tests (e.g, total number

FIGURE 1
Illustration of the mutual benefits of increased permeability between model-based approaches to precision dosing and digital health, on one
hand, and computational psychiatry on the other hand.
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of errors), RL-based approaches allow for the integration of trial-

by-trial data similarly to what model-based approaches typically

do—with longitudinal data analysis—to better decipher response

variability via the characterization of PK and PD processes. In the

same way, trial-by-trial data can be leveraged to estimate RL-

model based parameters which, in turn, can be compared to

clinical endpoints such as measures of symptom severity to

disentangle the role of brain circuit mechanisms overall

contributing to a better understanding of response variability.

RL for cognitive testing data in psychiatric populations is a

complete paradigm change with respect to its application for

precision dosing problems. While–in the two previous

examples—RL was used to solve the problem of optimal

dosing, now the RL algorithm is mapped to neuro-cognitive

processes. Quantitatively characterizing these processes for each

patient (estimating parameters from RL algorithms) is proposed

as a methodology for extracting relevant information towards

disease characterization and thus, response variability.

In (Huys et al., 2013), the authors use RL models to analyse

population data of a behavioural test (signal-detection task) to study

aspects of anhedonia—a core symptom of depression—related to

reward learning. The authors proposed a RL model based on

Q-learning update integrating two parameters: the classical

learning rate and a parameter related to reward sensitivity

modulating the percentage of the reward value actually

contributes to the update of the Q value function. By performing

a correlation analysis of the inferred parameters with anhedonic

depression questionnaire, the authors found a negative correlation

between the reward sensitivity but no correlation with the learning

rate. Overall, these results led to the conclusion that the sensitivity to

the reward and not the learning rate could be the main driver

explaining why in anhedonic individuals, reward has less impact

than in non-anhedonic individuals. Unravelling these two

mechanisms is important for the planning of successful digital,

behavioural and pharmacological strategies. The right column in

Table 1 depicts the summary characteristics of RL applied to that

study.

4 Conclusion

In this perspective, we have illustrated the flexibility of RL

framework throughout the described applications in precision

dosing, digital health and computational psychiatry and with that

have demonstrated the benefit for the modeling community to

become familiar with these approaches. The contrary is also true,

and the field of precision digital therapeutics and computational

psychiatry can benefit much from a proximity to the PMX

community.

First, PMX methods could make RL even better. The field of

computational psychiatry could benefit from input from the

PMX community when it comes to statistical aspects related

to parameters inference and clinical endpoint modelling. Two

areas for which PMX has adopted as its state-of-the-art,

population approach (with powerful algorithms such as

stochastic approximation expectation-maximization algorithm

(Lavielle, 2014)) and joint modelling respectively.

Second, the field of digital health should benefit from what

constitutes one of the essential objectives of model-based drug

development approaches, namely: elucidating response

variability. It is particularly important for the successful

development of digital therapeutic interventions to know how

to characterize the efficacy and safety profiles and to know how to

develop personalization strategies based on this understanding.

The fact that it is about digital interventions should not prevent

developers from prioritizing research in understanding

underlying causal biological and (patho)-physiological

processes of response, which will always be a key factor of

successful therapy development, either pharmacological or

not. Figure 1 proposes an illustration of these mutual benefits.

5 Legend

Table 1: Main characteristics of RL algorithm

implementation to the precision dosing of pharmacological

interventions (left column); the precision dosing of digital

intervention (middle column); and computational psychiatry

(right column). While there are multiple similarities between

the precision dosing of pharmacological and digital

interventions, the application of RL in computational

psychiatry shows as a paradigm shift. RL computational

machinery is not deployed as a technical approach to address

the optimal control problem of precision dosing but is fitted to

(cognitive task) data assuming the algorithm itself present

mechanistic similarities with how brain’s participants

functioned during the task.
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Circulating tumor DNA:
Opportunities and challenges for
pharmacometric approaches
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To support further development of model-informed drug development approaches
leveraging circulating tumor DNA (ctDNA), we performed an exploratory analysis of
the relationships between treatment-induced changes to ctDNA levels, clinical
response and tumor size dynamics in patients with cancer treated with
checkpoint inhibitors and targeted therapies. This analysis highlights opportunities
for pharmacometrics approaches such as for optimizing sampling design strategies.
It also highlights challenges related to the nature of the data and associated variability
overall emphasizing the importance of mechanistic modeling studies of the
underlying biology of ctDNA processes such as shedding, release and clearance
and their relationships with tumor size dynamic and treatment effects.
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Introduction

Predicting long-term clinical benefit of anti-cancer drugs is notoriously difficult.
Nevertheless, such predictions can play a key role in reducing the attrition rate of anti-
cancer molecules in late phase clinical trials (Hutchinson and Kirk, 2011). Recently, circulating
tumor DNA (deoxyribonucleic acid) or ctDNA, which can be collected longitudinally, has been
shown to hold additional predictive power to imaging-based markers of response (Cescon et al.,
2020). Pharmacometric (PMX) approaches can take the advantage of longitudinal
measurements as demonstrated with tumor growth modeling approaches and, as such,
represent an opportunity for ctDNA to inform new molecular entity (NME) clinical trial
development with respect to identification of clinically most promising compounds, optimal
sampling design, combination partners, and precision dosing.

In this perspective, through the exploratory analysis of ctDNA data from nearly 500 cancer
patients treated with checkpoint inhibitors and targeted therapies, we dissect the relationships
between on-treatment ctDNA change over time from baseline and overall survival, clinical
response, and tumor size dynamics. We believe this effort is a required first step for the further
successful development of model-based approaches. The analysis also sheds light on
interconnected challenges related to the specific nature of the data, associated variability,
and complexity of underlying biology of ctDNA processes such as shedding, release, and
clearance (Avanzini et al., 2020) and their relationships with tumor size dynamics and
treatment effects (see Figure 1A).
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Problem statement

Traditionally, the rate of “best overall response” gives an indication
of patients’ early response to treatment based on repeatedly quantifying
the size of one or several cancer lesions by radiographic imaging. The
overall response rate (ORR) is the percentage of patients achieving a
complete or partial response through RECIST 1.1 at any time of the
treatment (Ruchalski et al., 2021). Observing a high ORR in early
clinical studies is encouraging and often ungates further studies and
investment. A lowORR, on the contrary, could amongst others, indicate
an absence of efficacy and can support the decision to stop development
of an experimental treatment. However, the correlation between ORR
and long-term clinical benefit is limited, in particular for cancer
immunotherapy which does not act directly by killing tumor cells
but rather stimulates an anti-tumor response (Gerwing et al., 2019;
Goulart et al., 2022). For tebentafusp, a T-cell bispecific cancer

immunotherapy approved recently for the treatment of metastatic
uveal melanoma, approval was based on the observed improvement of
overall survival in a randomized phase III trial. Early clinical trials had
shown many patients remaining on trial for a long time in stable
disease, however, with a radiological response rate (RR) of only 12%
(Carvajal et al., 2022). Such a low response rate could have led many
drug developers to stop the development of what is, in reality, an
efficacious medicine. This example indicates that while RR could be
associated with high specificity for identification of drugs that convey a
survival benefit, sensitivity might be low. As a consequence,
complementing RR information with data that can hold predictive
potential is key for decision-making in oncology development where
decisions to invest in large and costly confirmatory clinical trials
typically relies on the results of previously conducted clinical
studies (phase I - II) with a limited number of patients (Cannarile
et al., 2021).

FIGURE 1
(A) Illustration of the interconnected challenges inherent to the successful development of a model-based approach for leveraging longitudinal ctDNA
to support early clinical decision-making in oncology, namely, the access to highly longitudinal samples and the understanding of disease biology and
bioinformatic nature of the data. (B)Database description:Weber et al. (2021) clinical study published in 2021. The dataset was sharedwith the authors without
further obligations according to the policy of the Journal of Clinical Oncology Precision Oncology and according to the local patient-level sharing
privacy rules. The dataset is composed of 167 patients with non-small cell lung cancer. The ctDNA sample collection was performed between 2015 and 2018.
The Roche AVENIO assay was used for ctDNA measurements and reported as (average) mutant molecules per milliliter measured consistently at two time
points (baseline, i.e., cycle 1 1 and 28 days inmedian, SD = 10 days). For 15 patients, the ctDNA value at both baseline and on treatment was recorded 0,making
the calculation of change from baseline impossible. These patients were removed from the analysis. Patients suffered from stage IIIB (13.2%) or stage IV
(86.8%) NSCLC; all were treated with checkpoint inhibitors (nivolumab for more than 80%). The overall response rate was 26.3% (n = 44), and the mean
treatment duration was 13 cycles. Anonymized patient-level survival data were available. IMspire170: Roche sponsored study on patients with melanoma
(Gogas et al., 2021) Data consisted of 411 patients, of which 209 patients were treated with the checkpoint inhibitor atezolizumab with the tyrosine kinase
(MEK-) inhibitor cobimetinib and 202 patients with pembrolizumab. ctDNA measurements were reported as a ctDNA tumor fraction (cTF) based on
aneuploidy and variant allele fraction (VAF) and were available for 241 patients (122 in the group treated with atezolizumab and cobimetinib and 119 in the
group treated with pembrolizumab). Two time points were available: baseline (cycle 1 day 1) and cycle 2 day 1 (corresponding to 21 days for the
pembrolizumab cohort and 28 days for the atezolizumab/cobimetinib cohort). Tumor size (sum of longest diameters) was available longitudinally for
409 patients out of the 411 patients. Patient-level survival data were available. OAK: Roche sponsored the study on non-small cell lung cancer patients treated
with the checkpoint inhibitor atezolizumab or chemotherapy docetaxel (Rittmeyer et al., 2017). The study included 1,225 patients. ctDNA data were available
for a subset only (n = 94). Our analysis included only the data from the atezolizumab arm (n = 613 and 46 with ctDNA data). The data from the chemotherapy
armwere only used for developing the ctDNA time coursemodel with the treatment arm regarded as a covariate. The Roche AVENIO assay was performed for
ctDNAmeasurements and reported as mutant molecules per milliliter, and data at four time points were available: cycle 1 (baseline), cycle 2 (around 21 days),
cycle 3 (around 42 days), and cycle 4 (around 63 days). These data were used for longitudinal modeling using the Stein et al. model. OAK ctDNA data analysis
has been already published (Zou et al., 2021).
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The PMX community has been, for many years, contributing to
the question of how to improve early decision-making. It proposes to
leverage the time course of tumor size instead of relying on a
categorical score (RECIST 1.1) derived from the comparison of the
sum of the longest diameters (SLD) between baseline from up to five
measurable target lesions and one given time point (the one at which
the best response is observed) (Yates and Cheung, 2021). As such,
PMX approaches are ideally positioned to integrate informative data
collected longitudinally. In fact, efforts to complement the existing
state-of-the-art tumor size kinetic models with other relevant
biomarkers have been an important area of research for many
years (Netterberg et al., 2020).

Liquid biopsies enabling the measurement of ctDNA have
emerged as a promising technology to overcome some of the
limitations discussed previously (Zhang et al., 2020). When tumor
cells die from apoptosis or necrosis, their DNA is shed and released
into circulating blood (Heitzer et al., 2020). Technologies such as next-
generation sequencing (NGS) can detect somatic mutations and
quantify ctDNA in terms of variant allele frequency (VAF, ratio
between the number of mutated- and wild-type DNA copies) or
mutant tumor molecules per milliliter of plasma (MMPM) (Bos
et al., 2021). Numerous studies have now been published on the
potential of ctDNA for screening or for characterizing disease biology
(Cheng et al., 2016). Another application with a lot of potential with
respect to the opinions discussed previously is the use of ctDNA as a
measure of disease burden and with this, as a predictor of long-term
clinical benefit (Bratman et al., 2020). In the aforementioned example
of tebentafusp, ctDNA change from baseline within 9 weeks following
treatment start was associated with long-term clinical benefit. It was
also reported that the degree of ctDNA reduction correlated with
overall survival and that this association was largely independent from
the radiological response categorization (Shoushtari et al., 2021).

Circulating tumor DNA and overall
survival

To better understand the potential of model-based approaches to
explore ctDNA data, we built a dataset composed of 454 patients from
three published clinical studies (Rittmeyer et al., 2017; Gogas et al., 2021;
Weber et al., 2021). Two studies focused on non-small cell lung cancer
(n = 213 patients in total: 167 in one study and 46 in another) and one
on melanoma (n = 241). The studies involved different types of
treatment: immunotherapy with a checkpoint inhibitor (CPI:
atezolizumab, nivolumab, pembrolizumab, durvalumab, and
ipilimumab) alone (n = 332, pooling data from three studies) or in
combination with targeted therapy (atezolizumab + cobimetinib) (n =
122, from one study). Indication, treatment, and sampling design of
ctDNA and technology for its quantification were different between the
studies. A summary of the analyzed dataset is illustrated in Figure 1B.

Based on the data from Weber et al. (2021), which were shared
with us without further obligations according to the policy of the
Journal of Clinical Oncology Precision Oncology, we show in
Figure 2A Kaplan–Meier curves of patients’ overall survival as a
function of early change in ctDNA. We selected the commonly
used 50% ctDNA reduction from baseline as the cut-off (Nabet
et al., 2020; Weber et al., 2021; Zou et al., 2021). The two curves
separate, and the patients who achieve a 50% ctDNA reduction have a
larger probability to live longer than those who do not. We calculated

hazard ratios using varying cut-offs of ctDNA change from baseline
and showed that a higher degree of ctDNA decrease is associated with
a lower hazard ratio (i.e., longer survival), similar to what has been
reported for tebentafusp (Figure 2A, inset).

To further evaluate the impact of ctDNA dynamics on the long-
term clinical outcome (e.g., overall survival), we used the same dataset
to perform a simulation study using RECIST 1.1 response criteria as a
comparator. For RECIST, we defined response as complete response
(CR) or partial response (PR). For ctDNA, we kept the commonly used
threshold of 50% drop at week 4 from baseline. We generated overall
survival data using exponential distribution parameterized with the
observed hazard rates and performed simulations with a virtual
population of 10,000 patients, varying the percentage of responders
in the population from 10 to 90%, plotted corresponding
Kaplan–Meier curves, and derived median survival time as a
function of percentage of response for both ctDNA and RECIST
1.1 (Figure 2B). Finally, we selected a landmark of 6 months and
calculated survival at this time point. We found that with 10% of
responders in terms of ctDNA, 62% of patients would be alive at
6 months (56%when response is defined by RECIST 1.1), while 90% of
responders would translate into a survival for 81% of patients at the
landmark (89% with RECIST 1.1). From these data, we evaluate that
10% more ctDNA responders would translate into 1–2 months of
survival benefit. It is interesting to note that the increase in the median
survival time as a function of the percentage of responders is greater
with RECIST 1.1 than it is for ctDNA (Figure 2B, inset).

To evaluate if ctDNA holds predictivity independent of RECIST 1.1,
we performed amultivariate Cox proportional hazardmodel regression.
Hazard ratios (HRs) were estimated to be 0.12 and 0.6 for RECIST
1.1 and ctDNA, respectively. The lower HR obtained for RECIST 1.1 is
consistent with what is observed in the inset of Figure 2B. In this model,
no dependency could be detected supporting the hypothesis of the
independent predictive value of ctDNA. In addition to that, the
difference in the time of assessment of RECIST 1.1 and ctDNA
could contribute to the difference in the parameter estimates. Best
overall response (BOR) by RECIST 1.1 can be taken at any time with
first tumor size assessment typically occurring at week 6, while ctDNA
data were taken at week 4 in this dataset. Overall, these findings are in
line with the high sensitivity/low specificity of RECIST 1.1-based criteria
as discussed previously.

Circulating tumor DNA and clinical
response

We further looked into potential relationships between ctDNA
change and overall response with waterfall plots of ctDNA change
colored by BOR (Figure 2C). Given the presence of large variation in
the data, it is common to represent ctDNA change from baseline in
terms of (base 10) logarithmic change. We see a clustering of best
responses (lighter colors) within the negative ctDNA change from
baseline, i.e., reduction. The rate of RECIST 1.1 responders (complete
or partial response) was 35% (28/79) in patients with ctDNA decrease
from baseline. Among the 73 patients with ctDNA increase, less
patients were RECIST 1.1 responders (22%; 16/73). This clustering
was observed consistently in the two other datasets. For patients
treated with OAK (atezolizumab arm), 37% (7/19) of patients with
ctDNA decrease were RECIST 1.1 responders, compared to only 11%
(2/18) for patients with ctDNA increase. In IMspire170 (both arms
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together), 53% (125/238) of the patients experienced a decrease in
ctDNA. Among them, 52% (65/125) had a complete or partial
response compared to 32% (36/113) of patients who had ctDNA
increased or unchanged.

Also, similar to tebentafusp and other reported data, ctDNA
provides more granularity than overall response assessed through
RECIST 1.1 because in patients from the same response categories
(stable disease), a cut-off of ctDNA change can still separate patients in
terms of survival benefit (inset of Figure 2C).

Circulating tumor DNA and tumor size
change

The previous analysis was further extended by looking into
potential relationships between ctDNA change and quantitative

tumor size change (rather than the RECIST 1.1 response category)
in the studies where longitudinal tumor size data were available to us
(i.e., OAK and IMspire170). We calculated the maximal change in the
sum of the longest diameters each patient experienced across the whole
timewindow of tumor size data collection. This value can be negative (in
case of tumor size shrinkage) or positive (in case of tumor size increase).
We show in Figure 2D the result of the analysis for IMspire170
(atezolizumab + cobimetinib (red) and pembrolizumab (blue)) and
OAK atezolizumab datasets (green points). There was a relationship
between the magnitude of ctDNA decrease (x-axis) taken at a fixed time
point and the maximum tumor size change. The stronger the early
ctDNA drop, the more the tumor shrinkage observed.

To try to elucidate the relationships between ctDNA data and tumor
size, we jointly looked at the SLD and ctDNA time courses in the OAK
dataset for which we had several time point measurements of ctDNA.
Consistently at all cycles, we found that the majority of patients with

FIGURE 2
(A) From the Weber et al. dataset. Kaplan–Meier estimates of overall survival stratified by ctDNA change on treatment versus baseline: decrease >50%
(blue line) versus all other patients (purple line). Confidence intervals are shownwith thin lines. A: Data fromWeber et al., NSCLC patients treated with CPI. The
inset graphic shows the evolution of OS HR when reducing the ctDNA decrease cut-off (from left to right). The chosen cut-off values (20, 50, and 90% ctDNA
reduction) represent approximately the observed quartiles of ctDNA reductions. More reduction is associated with better HR. (B) Kaplan–Meier (KM)
curves are simulated using the exponential distribution parameterized according to the observed hazard rates of responders in terms of ctDNA drop from the
Weber et al. dataset. Each colored line is a KM curve for a given percentage of responders from 10 to 90%. The inset shows the evolution of themedian survival
time (time at which half of the population is still alive) as a function of the percentage of responders for both ctDNA (red) and RECIST 1.1 (blue). (C) From the
Weber et al. dataset. Waterfall plots of ctDNA colored by best overall response following RECIST 1.1 categorization. Complete response (green), partial
response (cyan), stable disease (blue), and progressive disease (red) are shown. The inset shows Kaplan–Meier curves using ctDNA decrease less (purple) or
more (blue) than 50% (like in panel (A)) in the patients within the same RECIST 1.1 category “stable disease.” (D) Median tumor change (y-axis) in patient
subgroups defined by the ctDNA decrease cut-off (x-axis) for atezolizumab + cobimetinib (red) and pembrolizumab (blue) for patients with melanoma in
IMspire170 and atezolizumab for patients with NSCLC in OAK (green). The length of the error bars corresponds to ± 1 SD. (E)OAK data: Tumor size (left) and
ctDNA (right) change from baseline over time. (F) Left/top: Model-based predictions of ctDNA time course in patients with NSCLC treated with atezolizumab
(OAK study) using the Stein et al. model, omitting the baseline term and using individual parameter estimates. Left/bottom: Scatter plot of predicted
exponential decay for ctDNA versus same parameter for tumor size (dots) (see equation 1). The line is a least square regression. Right: Individual fits for the
joined ctDNA–SLD model proposed in equation (2). The model can fit data when ctDNA and SLD time courses are positively correlated (top) or negatively
correlated (bottom). We here report individual fits as illustration only. The model can fit different types of profiles although parameters of the model were not
estimated with sufficient precision to use this model for any predictive purpose.
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ctDNA decrease have an early (week 6) tumor size decrease: 50% [(11/
22) at cycle 2 (week 3), 63% (12/19) at cycle 3 (week 6), and 65% (11/17)
at cycle 4 (week 9)]. The majority of patients with ctDNA increase have
an early tumor size increase [62% (13/21), 65% (11/17), and 64% (9/14)
at cycles 2, 3, and 4, respectively], altogether suggesting a link between
early ctDNA and tumor size change.

Optimal sampling strategy and the
challenge of variability

Circulating tumor DNA data collection and quantification come at
a significant cost (burden for patients, for study operations, and
financially). Therefore, designing methods for optimal sampling of
ctDNA is important.

We used an empirical approach where we modeled the ctDNA
time course using a bi-exponential model classically used to capture
tumor size dynamics, also called the Stein model (Stein et al., 2011):

y � y0 · exp −ks · t( ) + exp kg · t( ) − 1( ),

where ks is the decay parameter, kg is the regrowth parameter, and y0
is the initial value which was not estimated but fixed to the observed
baseline value.

All ctDNA data were expressed in terms of (average) mutant
molecule per ml (MMPM) and log(base 10)-transformed. Monolix
(version 2021 R1, Lixoft SAS, a Simulation Plus company) was used
to estimate the two parameters of the structural model and parameter(s)
of a constant error model within a population framework, allowing to
estimate variability in these parameters in the population. All population
parameters were estimated with a low or moderate standard error [RSE]:
30.1% and 27.4% for the growth and decay rate fixed effect, respectively;
25% and 20% for the inter-individual variability random effects; and less
than 5% for the residual error model parameter.

With this model, we reproduced the predicted time course of
ctDNA in patients treated with atezolizumab (Figure 2F, top left). For
patients with a decrease in ctDNA, we identified the time at which the
ctDNA time course achieved its nadir following the idea that this
would be the theoretical time at which the ctDNA measures hold the
highest information. The result of this analysis shows that 21 days or
cycle 2 might be too early for informative ctDNAmeasurements as the
majority of the simulated patients had their ctDNA nadir beyond cycle
4, i.e., 9 weeks.

However, large inter-individual variability parameters were
estimated, specifically for both decay and growth rates with an
estimate close to 100% (assessed through the standard deviation of
the random effects). These parameters were estimated with reasonable
precision, which overall indicates the high degree of inter- and intra-
individual variability (see Appendix for further details).

It is important to highlight that the nature of the data themselves,
being a summarized statistics based on a number of alleles which most
likely change from one time point to the other (not the same allele will
contribute to the final data readout), may have a large contribution to
the observed time course variability. Given the identified variability,
the collection of longitudinal sampling of ctDNA along the course of
the disease is needed to generate hypotheses on the optimal sampling
strategy. This also appears important given that optimal strategies
should not be “one size fits all”—as different drugs and mechanisms of
action could be associated with different optimal sampling times.

Joint modeling of ctDNA and tumor size
time course and the challenge of
biological complexity

When we applied the model by Stein et al. (Stein et al., 2011) to the
SLD time course, which was independent of the ctDNA data, we found
that the resulting parameter governing the decay slightly correlated
with the same parameter for ctDNA (Figure 2F bottom left) (r = 0.45),
supporting the hypothesis of the presence of a mechanical link
between ctDNA and tumor size.

To follow up, we tested a simple joint model of ctDNA and SLD
time course encoding the correlation between the two decay
phenomena:

SLD t( ) � SLD0 · exp −ksT · t( ) + exp kgT · t( ) − 1( ),

ctDNA t( ) � ctDNA0 · exp −ζ · ksT · t( ) + exp kg · t( ) − 1( ),

where SLD denotes the sum of the longest diameter and SLD0 its
baseline value. kgT is the SLD growth parameter and ksT is the
decay rate which we found again in the equation for ctDNA. The
parameter ζ links the time course dynamics of SLD and ctDNA
data. For data fitting, the population parameters were all fixed to
values obtained when fitting ctDNA and SLD data independently
(see Appendix for further details). Only the parameter ζ and its
variability were estimated. Consistent with the hypothesis of the
mechanical link between the two observations, its population
value was 1.94 (RSE of 37%) and variability was 0.86 (RSE
of 35%).

This model could reproduce patients’ ctDNA and SLD data
through its flexibility to capture both expected (Figure 2F, right
side top and middle row) and unexpected profiles (bottom row),
i.e., ctDNA increase and SLD decrease, or the contrary. We believe
that the ability of such a model to reproduce patient-level data is an
additional support to the hypothesis of a link between ctDNA and
SLD time course in the case of the checkpoint inhibitor and should
be viewed as an incentive for the development of further modeling
attempts.

However, proper joint modeling of ctDNA and SLD time
course will require an understanding of ctDNA shedding by
tumor cells, ctDNA release into blood, and clearance. These
processes could potentially differ from one indication to
another and from one therapeutic modality to another. Some
mechanistic modeling efforts have been already undertaken. For
example, Avanzini et al. (2020) modeled the mechanisms of
ctDNA shedding and release into circulation; they assumed that
ctDNA is shed by dying tumor cells with a certain shedding
probability and that the half-life of ctDNA in circulation is
around 30 min.

Conclusion

In many recent studies, ctDNA has shown potential to be used as a
powerful biomarker for long-term clinical benefit of patients receiving
anti-cancer treatment. ctDNA has obvious advantages over other
techniques such as imaging; it is less invasive and time-consuming
and can theoretically provide a high quality estimate of the total tumor
burden, while imaging-based techniques focus on a limited number of
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identified target lesions. Moreover, it could become less costly as
technology evolves.

From this perspective, we have compiled a large dataset of patients
(~500 patients) with varying tumor indications (non-small-cell lung
carcinoma (NSCLC) and melanoma), treatments (CPI ± targeted
therapy) and ctDNA panels (AVENIO and FMI), and sampling
times (longitudinal and static).

Our objective was neither to provide a holistic introduction to
ctDNA and associated technology nor to showcase a sophisticated
ctDNA data modeling framework. Clearly, much work remains to
be conducted to improve such models and what we reported should
serve as an introduction to this problem. Rather, through statistical
and empirical modeling of this dataset, we wish to contribute to
familiarize the PMX community with the opportunity that ctDNA
modeling can represent the early clinical development of anti-
cancer therapeutic agents and raise awareness of potential
challenges.

The presented analysis also sheds some light on the challenges to
be expected when it comes to using ctDNA data for decision-making.
First, we need to consider the nature of the data and their associated
variability: coming from bioinformatic readout, modelers will need
to closely work with bioinformaticians to effectively model the data.
Then, the accessibility to longitudinal data should be taken into
account notwithstanding the cost of these measurements.
Longitudinal assessments should offer the opportunity of a better
understanding given the potentially high level of variability in the
data. This should lead to more precise mathematical formulation of
the underlying biological processes which contributes to increase the
quality of modeling readouts, reduces variability, and in turn
contributes to optimal sampling strategies given an underlying
hypothesis between ctDNA shedding/release, treatment action,
and tumor dynamics.

In conclusion, our analysis, in agreement with published
literature, makes ctDNA an ideal candidate—based on its
predictive potential—for integration within a pharmacometric
framework to complement the current state-of-the-art tumor
growth kinetic models.

By focusing efforts on promoting collection of longitudinal data,
understanding of underlying biology and the nature of the data and
their variability, there is hope for the development of successful
modeling frameworks jointly describing ctDNA, tumor size, and
long-term clinical benefit, which overall can significantly contribute
to answering key questions around early identification of most
promising compounds and precision dosing.
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Although immune checkpoint blockade therapies have shown evidence of clinical
effectiveness in many types of cancer, the outcome of clinical trials shows that
very few patients with colorectal cancer benefit from treatments with checkpoint
inhibitors. Bispecific T cell engagers (TCEs) are gaining popularity because they
can improve patients’ immunological responses by promoting T cell activation.
The possibility of combining TCEs with checkpoint inhibitors to increase tumor
response and patient survival has been highlighted by preclinical and clinical
outcomes. However, identifying predictive biomarkers and optimal dose regimens
for individual patients to benefit from combination therapy remains one of the
main challenges. In this article, we describe a modular quantitative systems
pharmacology (QSP) platform for immuno-oncology that includes specific
processes of immune-cancer cell interactions and was created based on
published data on colorectal cancer. We generated a virtual patient cohort
with the model to conduct in silico virtual clinical trials for combination
therapy of a PD-L1 checkpoint inhibitor (atezolizumab) and a bispecific T cell
engager (cibisatamab). Using the model calibrated against the clinical trials, we
conducted several virtual clinical trials to compare various doses and schedules of
administration for two drugs with the goal of therapy optimization. Moreover, we
quantified the score of drug synergy for these two drugs to further study the role of
the combination therapy.

KEYWORDS

immune-oncology, quantitative systems pharmacology (QSP), immune checkpoint
inhibitor, bispecific T cell engager, virtual clinical trial, dose optimization

1 Introduction

Colorectal cancer (CRC) is the third most frequent cause of cancer-related death
worldwide (Bray et al., 2018). Surgery, chemotherapy, and radiotherapy—also used in
combination—have historically been the standard treatments for colorectal cancer.
Unfortunately, these treatments have a lot of adverse consequences since they are non-
specific and cytotoxic to all cells, including healthy cells (Johdi and Sukor, 2020). In recent
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years, cancer immunotherapy as a more effective alternative
approach has changed the area of cancer treatments (Morrissey
et al., 2016; Golshani and Zhang, 2018).

Immune checkpoint blockade therapies, including anti-PD-
L1 and anti-PD-1, have raised a lot of attention and have shown
a significant increase in the survival rate of patients with multiple
solid tumor types (Alsaab et al., 2017; Popovic, Jaffee, and Zaidi,
2018; Sharma and Allison, 2020; Sharma et al., 2021). Nonetheless,
the results of clinical trials show that only a small number of patients
with metastatic CRC (mCRC) benefit from checkpoint inhibitors
(Hegde and Chen, 2020). For example, the IMblaze370 study failed
to improve overall response in the PD-L1 inhibitor atezolizumab
monotherapy or even in combination therapy with the MEK
inhibitor cobimetinib when compared with regorafenib in
previously treated mCRC patients (Eng et al., 2019). It is
essential, however, to keep looking into the role of checkpoint
inhibitors, particularly in combination with other
immunotherapy methods for the treatment of colorectal cancer.

The T cell bispecific antibody, cibisatamab (CEA-TCB), is a
novel immunotherapy agent that guides T cells to tumor cells that
express the carcinoembryonic antigen (CEA) glycoprotein at the cell
surface regardless of their T cell receptor specificity (Bacac et al.,
2016; Lehmann et al., 2016; Gonzalez et al., 2019). Numerous
colorectal tumors exhibit an overexpression of CEA on their cell
surfaces, making cibisatamab a prospective candidate for the
treatment of colorectal cancer. Cibisatamab (RO6958688;
RG7802) has been used in monotherapy and in combination
with atezolizumab (anti-PD-L1) in clinical trials (NCT02324257,
NCT02650713). The results from these trials have shown promising
outcomes for the treatment of CRC with bispecific antibodies in
solid tumors (Tabernero et al., 2017).

Although the combination therapy of bispecific antibody with
PD-L1 inhibitors in solid tumors has shown significant promise,
there may be drawbacks down the road, including the inability to
pinpoint the cause of side effects, drug-drug interactions, cumulative
side effects, and greater costs. As a result, optimization of dose and
sequence for these combination therapies can be beneficial to reduce
the potential risk of combination therapies and enhance the
advantages.

Moreover, identifying the combination therapies with
synergistic effects, which enable dose reduction of individual
drugs and increase their efficacy, is desirable in clinical studies
specially for bispecific antibodies that show toxic behavior at higher
doses. Several synergy quantification methods have been proposed
to assess drug combination performance (Chou, 2010; Meyer et al.,
2020). The majority of synergy metric approaches are based on
either Loewe Additivity (LA) principle (Loewe, 1953) or Bliss
Independence (BI) method (BLISS, 1939; Berenbaum, 1978;
Greco et al., 1995). More recently, a synergy framework called
multi-dimensional synergy of combinations (MuSyC) has been
introduced (Meyer et al., 2019), which was used in this study to
quantify the synergy of combination therapy with atezolizumab and
cibisatamab. This method’s key benefit is its ability to distinguish
between synergetic potency and synergistic efficacy.

In this study, we have extended our previously developed QSP
model of T cell engager (TCE) and anti-PD-L1 antibody in CRC (Ma
et al., 2020a; Ma et al., 2020b) by incorporating the dynamics of
helper T cells (Th) and myeloid-derived suppressor cells (MDSCs)

from our study of triple-negative breast cancer (TNBC) (Wang et al.,
2021) and modified the binding dynamics of TCE to fit the in vitro
data of cibisatamab (Vyver et al., 2021). Using this model, we aim to
optimize the dose and sequence of cibisatamab and atezolizumab
and investigate their synergistic behavior in combination therapy.

2 Materials and methods

2.1 Model structure

The current QSP model is modified from our previously
published QSP platforms (Ma et al., 2020a; Wang et al., 2021)
built using SimBiology toolbox in MATLAB (MathWorks, Natick,
MA). The model is composed of four compartments, which includes
central, peripheral, tumor and tumor-draining lymph node
compartments. The model consists of connected modules that
describe the dynamics of molecular and cellular interactions
associated with different species shown in Figure 1. In summary,
the model simulates the dynamics of naïve CD4+ and CD8+ T cells,
taking into account their trafficking between the central, peripheral,
and lymph node compartments, as well as their proliferation in the
peripheral and lymph node compartments. A small number of
cancer cells are initially incorporated into the tumor
compartment, and their dynamics is modeled using a logistic
growth approach. Cancer cell death, or apoptosis, is modeled as a
first-order reaction, which results in the release of tumor-associated
neo-antigens and self-antigens into the tumor compartment.

Themodel considers the uptake of tumor-derived neo-antigens and
self-antigens by antigen-presenting cells (APCs), their subsequent
maturation, and their migration to the tumor-draining lymph node
compartment. The detailed mechanisms of antigen processing and
presentation, including the cleavage of proteins into peptides, binding of
peptides to MHC molecules, and transport to the cell surface, are all
incorporated into the model. The activation of naïve T cells is
dependent on the extent of T cell receptor ligation by peptide-MHC
on APCs, and is implemented as a Hill function. Following activation,
Tregs, cytotoxic T cells, and helper T cells infiltrate into the tumor.
Tumor-infiltrating cytotoxic T cells kill cancer cells, and their rate of
killing depends on the ratio of cytotoxic T cells and cancer cells. This
process also results in the enhanced release of tumor-associated
antigens. However, the model assumes that tumor-infiltrating
cytotoxic T cells and helper T cells become exhausted by the
interaction of PD-1 with ligands on cancer cells and the action of Tregs.

The model also includes the secretion of CCL2 by cancer cells,
which is assumed to mediate the recruitment of myeloid-derived
suppressor cells (MDSCs) into the tumor compartment. MDSCs are
assumed to release arginase-I (Arg-I) and nitric oxide (NO), which
inhibit the cytotoxic activity of T cells. TGF-β and Arg-I facilitate the
trans-differentiation of helper T cells to Tregs in the tumor.

Finally, the model incorporates the pharmacokinetics and
pharmacodynamics of two antibodies: the anti-PD-L1 antibody
atezolizumab and the T cell engager antibody cibisatamab. Both
antibodies are directly administered into the central compartment.
The pharmacokinetics of the antibodies incorporates their clearance
from the central compartment, their transport between the central
and peripheral/tumor compartments, and their transport from the
tumor to the tumor-draining lymph node compartment. The
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pharmacodynamics of the anti-PD-L1 antibody is modeled by its
binding to the PD-L1 on cancer cells and regulatory T cells, which
blocks the interactions of PD-1 with PD-L1. The subsequent
reduction in the amount of ligand-bound PD-1 decreases the
inhibitory action of PD-1 on T cell-mediated killing of cancer
cells, which is also modeled as a Hill function. The bispecific
T cell engager can bind to CD3 on T cells and CEA on cancer
cells, leading to the formation of CEA_TCE_CD3 molecule and
enhanced cancer killing by Teff cells. The details on TCE binding
module and the equations describing pharmacokinetic of both
cibisatamab and atezolizumab are elaborated in the
Supplementary Material.

In this study, dynamics of T cells, APCs, tumor-specific neoantigens
and tumor-associated self-antigens, immune checkpoints, MDSCs are
adapted from (Wang et al., 2021). The tumor growth dynamics with a
logistic growth rate and TCE model with binding modifications are
based on (Ma et al., 2020b) with modified hill function coefficient of T
cell activation fitted to in vitro data of cibisatamab, Figure 2. The
modules have a total of 131 ordinary differential equations (ODEs),
27 algebraic equations (i.e., repeated assignment rules), 211 parameters,
and were created using MATLAB scripts. The online Supplementary
Tables S2–S7 include complete listings of model parameters, reactions,
algebraic equations, and cellular andmolecular species, as well as details
on each module.

2.2 Virtual patient generation and virtual
clinical trial

To create a virtual patient cohort that resembles the clinical
population, a subset of model parameters is varied (Supplementary
Table S7) while others remain at the baseline level (Supplementary Table

S4). Both the baseline values and ranges of selected parameters are based
on experimental and clinical data, where available (see Supplementary
Table S4 notes for references). However, the distributions of some
parameters are not currently available. For those parameters, we have
estimated their ranges such that the 95% confidence interval of simulated
ORR rate would correspond to the results of the clinical trial (percentage
of PR/CR) per RECIST, for each therapy. The model is first initialized
with a small number of cells before performing a virtual clinical trial.
Using Latin Hypercube Sampling (LHS), the values of selected
parameters are randomly generated based on the calibrated
parameter distributions, with each parameter set representing a
potential virtual patient. If the tumor is able to reach the desired
initial tumor size, which corresponds to the pre-treatment tumor size
in actual clinical trials and varies among patients, the simulation will
proceed to estimate the response to therapy. To avoid generating
implausible patients due to uncertainty in parameter ranges, the
following physiological parameters were used to screen VPs: tumor
diameter, T cell density in the blood, and Teff to Treg ratio.

2.3 Statistical analysis

Latin Hypercube Sampling (LHS) and Partial Rank Correlation
Coefficient (PRCC) methods are used to perform global uncertainty
and sensitivity analyses (Marino et al., 2008) to investigate the effects
of varied parameter values on model observations. The virtual
patient population is resampled using bootstrap sampling in
order to compare model predictions and clinical data. The
95 percentile confidence intervals and bootstrap median are then
computed for comparison between model predictions and clinical
results. Statistical analyses are carried out via MATLAB 2020a
(MathWorks, Natick, MA).

FIGURE 1
QSP Model Diagram. The model is divided into of four compartments: central, peripheral, tumor, and tumor-draining lymph node, which describe
cycles of immune activation in lymph nodes, T cell trafficking to the tumor, killing of cancer cells, immune evasion, and antigen release and lymphatic
transport. nT, naïve T cell; aT, activated T cell; NO, nitric oxide; Arg-I, arginase I; Treg, regulatory T cell; Teff, effector T cell; Th, helper T cell; Texh,
exhausted T cell; MDSC, myeloid derived suppresser cells; mAPC, mature antigen presenting cell. Cytokine degradation and cellular clearance were
omitted in the diagram. Modified from (Ma et al., 2020b; Wang et al., 2021).
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2.4 Drug synergy quantification

Using the MuSyC technique (Meyer et al., 2019), the synergy of
combination therapy is evaluated for the median behavior of simulated
virtual patients. In summary, two parameters representing synergistic
potency, α, and synergistic efficacy, β, are quantified for a two-
dimensional space representative of response to two targeted drugs.
The parameter αmeasures how the presence of another drug affects the
effective dose of one drug. When two drugs have synergistic potency
(log(α) > 0), the EC50 value decreases due to the addition of the other
drug, corresponding to an increase in potency. The percent increase in
the effect of a drug combination over the most effective single drug is
referred to as the parameter β. For example, in the case of synergistic
efficacy (β> 0), themaximum effect (Emax) of combined drugs is greater
than the maximum effect of the individual drugs.

3 Results

3.1 In silico virtual clinical trial of
atezolizumab and cibisatamab

For this study, a virtual cohort of 500 patients was created by
LHS method, and those who did not reach the desired initial
tumor size or with implausible parameter values were regarded
as non-patients and excluded from the virtual trial. Filtered
virtual patients (VPs) were used for estimating overall response
rate (ORR) of colorectal cancer in mono- and combination

therapy using atezolizumab and cibisatamab. It is important
to note that the same VPs were used in all the cases. The
parameters with no experimentally reported values
(Supplementary Table S4) were fitted to the outcome of
clinical trials NCT02324257 and NCT02650713, with 60 mg
cibisatamab QW as a monotherapy treatment and 60 mg
cibisatamab QW plus 1200 mg atezolizumab Q3W for
combination therapy (Tabernero et al., 2017). The ORRs were
calculated for VPs following RECIST 1.1 (Eisenhauer et al.,
2009) after 400 days, as summarized in Table 1. In order to
compare the simulation results with the actual clinical trials, we
have calculated 95% percentile bootstrap confidence intervals
(95% CI) of the ORRs by randomly sampling 31 VPs
10,000 times in cibisatamab monotherapy and 25 VPs
10,000 times in combination therapy. MATLAB’s “bootci”
function was used for calculation of 95% CI and, the number
of selected VPs was chosen based on number of patients in
NCT02324257 (31 patients, cibisatamab monotherapy) and
NCT02650713 (25 patients, combination therapy). Since the
result of atezolizumab was not reported in these trials, the
result of atezolizumab monotherapy from the IMblaze370
(NCT02788279) trial with a 2% (95% CI: 0.3–7.8) response
rate was used to calibrate the model and compare with the
clinical trial results (Eng et al., 2019). Similar to cibisatamab
monotherapy, we have randomly sampled 31 patients for
calculation of CI in the case of atezolizumab monotherapy.

In order to visualize the dynamics of individual virtual patients
and compare different treatments, we plotted the rate of response for
all treatment cases as spider plots, showing both the individual
variabilities of patients by randomly selecting 100 VPs in Figure 3A,
and the median behavior of the virtual population in Figure 3B. In
addition, the best overall response is demonstrated by waterfall
plots, as shown in Figure 3C.

To determine the strength of the correlation between
parameters and tumor volume, global uncertainty and
sensitivity analysis was performed using PRCC (Figure 4).
Tumor volume was significantly positively associated with
initial tumor diameter and tumor growth rate in both
cibisatamab monotherapy and combination therapy. Moreover,
in both cases, neo-antigen specific T cell clones (TCC) were highly
negatively associated with tumor volume. To further explore the
results, we plot the time profile of tumor size and T cell densities in
the tumor compartment in Figure 5. As shown in this figure, the
median tumor size is significantly lower in responders, while Teff
cell density, Treg cell density and their ratio are higher in
responders as expected. Moreover, initial values of Teff cell
density is strongly correlated with responder/non-responder
status, suggesting that pre-treatment values of Teff density is a
predictive biomarker in monotherapies and combination therapy.

FIGURE 2
Fitting the Hill function coefficient (n) of T cell activation to
concentration on synapse formed per T cells. The blue circles are
extracted from (Vyver et al., 2021).

TABLE 1 Overall Response Rate of 60 mg cibisatamab monotherapy, 1200 mg atezolizumab monotherapy and their combination therapy.

Treatment Simulated ORR (%) 95% CI Clinical ORR References

Cibisatamab 8.2 0%–22.6% 6% Tabernero et al. (2017)

Atezolizumab 3.4 0%–12.9% 2% (IMblaze370 trial) Eng et al. (2019)

Combination Therapy 11.1 0%–28% 12% Tabernero et al. (2017)
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FIGURE 3
Rate of response in model-predicted tumor diameter of (A) 100 randomly selected virtual patients; (B) all VPs. Solid line represents the median and
shaded area stands for the median absolute error (mad); (C) best overall response represented by waterfall plots for all VPs. Response is assessed by
RECIST 1.1. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease.

FIGURE 4
The partial rank correlation coefficient, PRCC, between input parameters and tumor volume after treatment with (A) cibisatamab monotherapy and
(B) combination therapy.
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3.2 Optimization of dose regimen of
combination therapy with atezolizumab and
cibisatamab by sequential therapy
simulations

At the next step, we aim to investigate the possibility of dosage
optimization using the current QSP platform, which has been validated
by its efficacy prediction of the combination therapy with atezolizumab
and cibisatamab. To this end, we conducted 40 different virtual clinical
trials, using the same VPs from above, with various cibisatamab and
atezolizumab doses and schedules.We have kept the dose and frequency
of atezolizumab the same for all the cases, 1,200 mgQ3W, since this is an
established dose in clinical trials of colorectal cancer (Tapia Rico et al.,
2018). Atezolizumab administration was simulated starting on day 1,

week 2 or week 3 after reaching initial tumor diameter, in combination
with cibisatamab. Cibisatamab dose size and schedule were selected in
the range of 0–100mg and QW-Q3W, respectively. These selected dose
sizes and schedules are in agreement with the ranges used in clinical
trials. Themedian tumor volume at week 8 (the time of first follow up in
clinical trial after treatment) andORR for each combination at the end of
treatment are reported in Figure 6. We aimed to determine whether
treatment outcomes differed between early in treatment results and end-
point results. To achieve this, we primarily measured the median tumor
volume, as the overall response rate (ORR) may not fully reflect
individual patient dynamics until the end of the treatment.

Overall, by considering both ORR and median tumor volume,
the result shows that concurrent combination therapy has
slightly better response compared to sequential therapies.

FIGURE 5
Time profile of (A) tumor size; (B) Teff cell density; (C) Treg cell density; and (D) Teff to Treg cells ratio for responders vs. non-responders in
monotherapies and combination therapy. Thick line represents the median and shaded area stands for the standard error.
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Although the highest efficacy is observed for weekly
administration of cibisatamab, which is the same frequency
used in clinical trials, the result of simulation shows that
biweekly (Q2W) and triweekly (Q3W) administration of
cibisatamab can have similar efficacy, which may be beneficial
to reduce the toxicity associated with bispecific antibodies.

3.3 Quantification of drug synergy

Next, we used the QSP model to quantify the synergy of
combination therapy with atezolizumab and cibisatamab.
25 different simulations were conducted for various combinations
of drugs concentration, with cibisatamab in the range of 0–80 mg
and atezolizumab within the range of 0–1600 mg for the same VPs
in each simulation. For each combination, the ratio of final tumor
size to tumor size at the conditions with no drug at the end of
400 days, was calculated as the metric of response. Then, a two-
dimensional heatmap was plotted for the results, Figure 7.
Quantification of the synergy using multidimensional synergy of
combinations (MuSyC) technique suggests a small synergistic
efficacy βobs = 0.072, as well as a small synergistic potency log
(α2) = 0.064.

4 Discussion

TCEs have become an important part of the therapeutic
research strategy to treat cancer (Dahlén et al., 2018; Zhou

et al., 2021). They enable a powerful mode of action by
activating T cells through the creation of artificial immune
synapses (Morcos et al., 2020). Explorative preclinical and
emerging clinical data indicate a potential for enhanced
efficacy and reduced systemic toxicity. However, TCEs are a
complex modality with challenges to overcome in early clinical
trials, including the selection of relevant starting doses. “Dosing
strategy plays a crucial role in determining the therapeutic
window of TCEs because of the desire to maximize
therapeutic efficacy in the context of known mechanism-
related adverse events, such as cytokine release syndrome
(CRS) and neurological adverse events” (Betts and van der
Graaf, 2020). Moreover, other drug combinations with T cell
engagers have been a promising approach to treat cancers. While
comprehensive drug combination tests are effective for
identifying novel synergistic drug combinations, measuring all
possible combinations is challenging due to the size of potential
therapeutic agents and cell lines. Mechanistic modeling
approaches like quantitative system pharmacology (QSP)
models are powerful tools that can be used to integrate diverse
data to predict/refine clinical dosing regimens and design trials to
optimize efficacy (Jafarnejad et al., 2019; Hosseini et al., 2020;
Sové et al., 2020; Sové et al., 2022; Wang et al., 2022). Modeling
can be used to guide rational decision making, to inform
precision medicine strategies, and to increase overall efficiency
of the oncology clinical development process (Betts and van der
Graaf, 2020; Gibbs et al., 2020).

In this study, we extend our previously developed QSP platform
(Ma et al., 2020a) to study the combination therapy of an immune

FIGURE 6
Simulations of sequential therapies using various atezolizumab and cibisatamab dose and schedule. (A) represents the median tumor volume after
8 weeks; and (B) Overall response rate for each dose regimen.
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checkpoint inhibitor, atezolizumab, and a T cell engager,
cibisatamab. Following recent developments in kinetic modeling
of bispecific antibodies (Vauquelin and Charlton, 2013; Schropp
et al., 2019), we simplified the binding of cibisatamab to CEA, by
considering one binding arm with a newly added parameter to
account for the avidity of cibisatamab and thus modifying the
binding affinity between the second target and cibisatamab
bound to the first target. We calibrated the model by fitting the
model to the experimental data of level of T cell activation as a
function of average synapse per cell from (Vyver et al., 2021). We
have also adopted the dynamics of T cells, helper T cells, APCs,
tumor-specific neoantigens and tumor-associated self-antigens,
immune checkpoints and MDSCs from our study of TNBC
(Wang et al., 2021).

Using the model calibrated against clinical data, we performed a
series of in silico clinical trials to investigate the optimal dose schedule of
atezolizumab and cibisatamab for colorectal cancer. The results suggest
that concurrent combinations result in higher ORRs (and smaller
tumor size) than sequential combinations. Although the highest
efficacy is observed for weekly administration of cibisatamab, which
is the same frequency used in clinical trial, the results of simulations
show that biweekly (Q2W) and triweekly (Q3W) administration of
cibisatamab can have similar efficacy to weekly with potentially less
toxicity and adverse events associate with CRS in T cell engagers (Yu
and Wang, 2019).

To investigate how the presence of one drug would affect the
efficacy and potency of the other drug in combination therapy, we
investigated the drug synergy quantification using MuSyC method
developed by (Meyer et al., 2019). The results of our simulations
showed insignificant synergy of potency and efficacy for
combination therapy of atezolizumab and cibisatamab. This

could be due to the fact that these two drugs have independent
mechanisms of action. In this study, we have used the ratio of tumor
size at the end of simulation following treatment to tumor size at the
end of the simulation with no treatment as the metric of response.
However, other metrics like ORR, duration of response or T cell
densities might be other potential metrics to further investigate the
drug synergy in combination therapy. Moreover, the drug synergy
quantification based on these traditional statistical models may lack
high power and accuracy measurement due to small data size. In
future, and with availability of additional data the machine learning
techniques of drug synergy quantifications may bring many
advantages, including high accuracy, ability to model non-linear
effects, and robustness to parameter assumptions (Preuer and Lewis,
2018; Liu and Xie, 2021; Zhang et al., 2021; Tang and Gottlieb, 2022).

One of the major challenges in QSP models is the parameter
estimations due to high complexity of the models. Generation of virtual
patients with the goal of establishing a reliable and effective algorithm is
an ongoing research in the field of pharmacologymodeling (Allen et al.,
2016; Rieger et al., 2018). In this study, most of the parameters are
estimated using experimental data for colorectal cancer and validated by
comparing the results to response rate of patients in clinical trial.
However, the importance of some parameters like the rate of Teff
suppression by activated Tregs due to bispecific T cell engagers and their
influence on the result of combination therapy remains to be explored.

Here, we used QSP modeling to perform in silico clinical trials of
atezolizumab and cibisatamab to study optimization of dose and
schedule in combination therapy and drug synergy quantification.
This model can be extended to study other bispecific T cell engagers
and immune checkpoint inhibitors in colorectal and other cancers if
sufficient data for parameter recalibration and model validation are
available. Also, the QSP approach can be used in model-informed drug

FIGURE 7
A dose-response heatmap for atezolizumab within the range of 0–1600 mg and cibisatamab in the range of 0–80 mg.
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design (MIDD) and design of clinical trials and provide regulatory
assistance (Azer et al., 2021; Bai et al., 2021).
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