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ERA5 is the fifth-generation atmospheric reanalysis of the European Center for Medium-Range Weather Forecasts, with high spatiotemporal resolution and global coverage. However, the reliability of ERA5 for simulating extreme precipitation events is still unclear over China. In this study, 12 extreme precipitation indices and a comprehensive quantitative distance between indices of simulation and observation were used to evaluate ERA5 precipitation from three fundamental aspects: intensity, frequency, and duration. The geomorphological regionalization method was used to divide the subregions of China. The results showed that the ability of ERA5 to simulate annual total precipitation was better than that of daily precipitation. For the intensity indices, ERA5 performs well for simulating the PRCPTOT (annual total wet days precipitation) over China. ERA5 performs better on RX5day (max 5-days precipitation amount) and R95p (very wet days), especially in eastern China, than on RX1day (max 1-day precipitation amount) and R99p (extremely wet days). For the frequency indices, the ability of the ERA5 simulation increased as the amount of precipitation increased, except for northwestern China. However, the ability of ERA5 to simulate R50 mm (number of extreme heavy precipitation days) decreased. For the duration indices, ERA5 was better at simulating drought events than wet events in eastern China. Our results highlight the need for ERA5 to enhance the simulation of trend changes in extreme precipitation events.
Keywords: ERA5, reanalysis, extreme precipitation, DISO, China
1 INTRODUCTION
Precipitation is a key factor in the development of the Earth’s system (Zhang et al., 2013). Accuracy assessment of precipitation plays an essential role in helping to understand extreme weather and climate events and in disaster risk reduction, especially in regions with complex topography (Amjad et al., 2020). In a changing environment, the intensity, and frequency of extreme precipitation events have increased since the 1950s (Alexander 2016; Kim et al., 2020; IPCC 2021). As a direct source of precipitation observations, the uneven spatial distribution and the insufficient number of stations, as well as the discontinuity in recording sequences, usually lead to poor performance of the spatiotemporal features of precipitation (Rana et al., 2015; Duan et al., 2016; Yu et al., 2020). The increasing demands of the scientific community contradict the absence of observation stations (You et al., 2013), especially with regard to assessing extreme precipitation events (Donat et al., 2014; IPCC 2021). Therefore, precipitation data with long time series and high spatial resolution are necessary for climate change analysis.
In addition to the observation station data, the current precipitation datasets can be roughly divided into three types based on differences in the models and data sources: interpolated surface observation precipitation datasets, satellite-based datasets, and reanalysis datasets (Jiang et al., 2021). Interpolated datasets have depended on the density of the stations and the interpolation method, for example, HadEX3 and APHRODITE (Yatagai et al., 2012; Dunn et al., 2020). Satellite-based datasets have been obtained by the inversion of precipitation radar and microwave images (Amjad et al., 2020; Yu et al., 2020), such as the Tropical Rainfall Measuring Mission, Global Precipitation Measurement Integrated Multi-Satellite Retrievals. Reanalysis datasets such as the fifth-generation atmospheric reanalysis of the European Center for Medium-Range Weather Forecasts (ERA5) (Hersbach et al., 2020) were constructed using a large amount of measurement and remote sensing information, and the information was gathered via a retrospective analysis of past historical data (Tarek et al., 2020). Compared with the other two data categories, reanalysis datasets have been more widely used in various climatological applications because of their high spatiotemporal resolution, various data types, and global coverage (Gao et al., 2014; Gao et al., 2016; Zhu et al., 2017; Kim et al., 2020). However, the accuracy of the reanalysis data requires further evaluation because of systematic errors in the model and the complex topography of the regional scale (You et al., 2013; Yu et al., 2020). What also needs to be verified is whether the reanalysis data can capture the increased extreme precipitation events in a changing environment.
The applicability of ERA5 precipitation data has been evaluated (Xu et al., 2019; Dullaart et al., 2021). Jiang et al. (2021) found that ERA5 reanalysis data tended to underestimate moderate and higher daily precipitation events (above 10 mm/day) over mainland China. Amjad et al. (2020) found that ERA5 overestimates the observed precipitation for all wetness and performs better in lighter precipitation events than satellite-based products over Turkey. Hu and Yuan (2021) found that ERA5 overestimates the rainfall frequency and underestimates the intensity of precipitation from the Tibetan Plateau to the Sichuan Basin. Therefore, although bias in ERA5 precipitation data was less than that of the prior dataset ERA-Interim (Tarek et al., 2020), the applicability of ERA5 in China needs to be evaluated (Dong et al., 2020). Previous studies tried to investigate the performance of ERA5 precipitation data over China at daily scale and hourly scale precipitation events (Gao et al., 2018), monthly scale precipitation events (Jiang et al., 2021), and seasonal scale precipitation events (Tang et al., 2020). Moreover, most of these studies selected evaluation elements that did not include intensity, frequency, duration of extreme precipitation events [e.g., Extremely wet days (R99p), Number of extreme heavy precipitation days (R50 mm), Consecutive wet days (CWD)]. Additionally, studies have mostly used multiple evaluation indicators and have not proposed comprehensive quantitative indicators (Hu et al., 2019). Therefore, because of the increased extreme precipitation events in the context of global warming (Chen and Sun 2017; IPCC 2021), complex topography, and diverse climatic types, further research is necessary on the reliability of ERA5 precipitation data for assessing extreme precipitation events.
China has experienced a high incidence of extreme precipitation events since 1960s (Gao et al., 2017). Studies have shown that climate change and human activities have caused an increase in extreme precipitation events in China (Lu and Yong 2020; Zhou et al., 2021b ; Li and Chen 2021). In this study, we used a newly updated reanalysis precipitation dataset called ERA5 and observation station datasets (Obs) to assess the applicability of ERA5 for analyzing extreme precipitation events in different geomorphic subdivisions, based on extreme precipitation indices provided by the Expert Team on Climate Change Detection Monitoring and Indices (ETCCDMI). A comprehensive indicator named distance between indices of simulation and observation (DISO) was selected to evaluate ERA5 precipitation data. We attempted to the following three questions: 1) How do ERA5 precipitation data work in complex environments (Section 3.1)? 2) Can ERA5 capture extreme precipitation events (Sections 3.2, 3.3)? 3) Can ERA5 capture the trend of extreme precipitation events (Section 3.4)? Section 2 describes the data and methods used in this study. The conclusions are presented in Section 4.
2 DATA AND METHODS
2.1 Study Area
The geography of China includes mountains, hills, and alluvial plains, with high elevations in the western region and low elevations in the eastern region (Figure 1). The spatial distribution of mean annual precipitation in China decreases from the southeast coast to the northwest inland, which is due to the uneven distribution of monsoons in the country. Studying the applicability of ERA5 in China is necessary because the wide expanse of land with a complex topography and diverse climate.
[image: Figure 1]FIGURE 1 | Study area information. (A) Meteorological stations and topography. (B) Mean annual precipitation.
China can be divided into six regions based on geomorphological features (Cheng et al., 2019). The information for the six regions is listed in Table 1. The differences in elevation, area, and station number among the six regions are remarkable. The complex topography and extreme climate limit the number of stations in the region (Gao et al., 2018). Therefore, Regions-Ⅳ and Ⅵ have a large area but a low number of stations.
TABLE 1 | Geomorphological regionalization information.
[image: Table 1]2.2 Data Observations and European Center for Medium-Range Weather Forecasts
The data from a total of 666 stations, collecting long-term consecutive daily precipitation data, were selected to calculate extreme precipitation indices (Figure 1A); the data from 1979 to 2020 were provided by the China Meteorological Data Sharing Service System of the National Meteorological Information Center (http://data.cma.cn/). The provider rigorously tested the quality of the Obs. In addition, to ensure the authenticity and accuracy of the data, error analysis, and quality control of all data were performed before conducing the analysis. The selected stations had data gaps of less than 5%.
The fifth-generation atmospheric reanalysis data product, ERA5, has been released and compared with the first four generation products (FGGE, ERA-15, ERA-40, and ERA-Interim) (Hersbach et al., 2020; Jiang et al., 2021). ERA5 has a higher spatiotemporal resolution than the other versions, with a grid resolution of 31 km and temporal resolution of 1 h. Moreover, advanced assimilation systems and parameterization schemes have also improved reanalysis products. Another advantage of ERA5 over the prior four generation products is the number of parameters; more than 240 parameters fulfill the needs of different types of research.
In this study, we calculated the nearest ERA5 grids to the Obs stations by using Euclidean distance and then used this result to obtain ERA5 precipitation data corresponding to Obs stations. In addition, we converted the hourly scale ERA5 precipitation data to daily scale data by cumulation.
2.3 Methods
2.3.1 Extreme Precipitation Indices
Extreme precipitation indices are widely used in assessments of extreme precipitation events (Zhu et al., 2017; Dong et al., 2020; Kim et al., 2020; Lei et al., 2021a), which are based on daily precipitation data. The extreme precipitation indices used in this study were provided by the ETCCDMI (Zhang et al., 2011). To improve the characterization of regional extreme precipitation, Rnn was modified to R1 mm and R50 mm in this study (Table 2). R1 mm and R50 mm were used to illustrate the ability of ERA5 to capture wet days and the number of extremely heavy precipitation days, respectively.
TABLE 2 | Definition of extreme precipitation indices.
[image: Table 2]Extreme precipitation indices are classified by different classification criteria. For example, according to the definition, thresholds are divided into absolute indices and relative threshold indices, while based on the length of the time series, these are divided into monthly and annual extreme precipitation indices. In this study, we divided the 12 extreme precipitation indices into three categories based on their characteristics (Alexander et al., 2019; Yao et al., 2020): 1) intensity indices, namely PRCPTOT, SDII, RX5day, RX1day, R99p, and R95p; 2) frequency indices, including R50 mm, R20 mm, R10 mm, and R1 mm; and 3) duration indices, including CWD and CDD. However, due to regional climate differences, the 12 extreme precipitation indices were not applicable to the whole country. For example, the mean annual precipitation at many stations in northwestern China (Regions-Ⅳ and Ⅵ) was less than 200 mm, and RX1day did not exceed 20 mm. Therefore, R20 mm and R50 mm were not applicable to these two regions. The number of extreme precipitation indices for the six regions in China are listed in Table 3.
TABLE 3 | Extreme precipitation indices for six regions over China.
[image: Table 3]2.3.2 Trend Analysis
In the application process, the autocorrelation of hydrological and meteorological elements often causes the elements with nonsignificant trends to become significant. Therefore, many studies have used the prewhitening procedure before trend detection (Das and Scaringi 2021; O’Brien et al., 2021; Shin et al., 2021; Wu et al., 2021). The prewhitening Mann–Kendall (PWMK) test has been used to test the ability of ERA5 to assess the trend of extreme precipitation indices (Mann 1945; Kendall 1975; Yue and Wang 2002).
2.3.3 Evaluation Criteria
Conducting a quantitative and comprehensive assessment of the applicability of reanalysis data is important for improving the predictive capability of reanalysis data. A single statistical metric can only provide a one-sided description of the limitations of the dataset and cannot quantitatively describe the accuracies of the models from different perspectives (Hu et al., 2019). Moreover, existing evaluation metrics, such as Taylor diagrams (Taylor 2001), do not allow for a quantitative assessment (Zhou et al., 2021a).
Therefore, we used a new indicator, DISO, to quantitatively and comprehensively evaluate ERA5 precipitation data (Hu et al., 2019; Kalmár et al., 2021). We selected four continually statistical metrics (Lu and Yong 2020) normalized root mean square error (NRMSE), normalized mean absolute error (NMAE), relative bias (RB), and Pearson correlation coefficient (CC) as input variables for DISO (Table 4). NRMSE indicates the mean error of ERA5. NMAE eliminates the effect of positive and negative offsetting of ERA errors. RB accurately describes whether ERA5 underestimates or overestimates extreme precipitation. The CC is a crucial indicator of the correlation between ERA5 and Obs. The statistical metrics used in this study and their formulas are listed in Table 4. DISO is greater than 2.0 when the values of input variables (NRMSE, NMAE, RB, and CC-1) are greater than 1.0. However, if DISO is greater than 2.0, the reliability of ERA5 for simulating extreme precipitation will be extremely low. In addition, when the values of the input variables are less than 0.5, DISO is less than 1.0, which means that ERA5 can capture extreme precipitation. Therefore, we used 1.0 as the dividing line for the simulation effect (Hu et al., 2019). DISO greater than 1.0 indicates a poor simulation (worst if greater than 2.0), and less than 1.0 indicates a good simulation (best if close to 0.0).
TABLE 4 | Evaluation criteria used in this study.
[image: Table 4]3 RESULTS AND DISCUSSION
3.1 Validation of ERA5 precipitation
Figure 2 illustrates the spatial distribution of DISO for ERA5 over China on two timescales (daily and monthly). ERA5 performs poorly on the daily scale and well on the monthly scale. In other words, ERA5 captures the variation in monthly precipitation but performs poorly on wet days. The number of days and magnitude of precipitation had a significant impact on the accuracy of the simulation.
[image: Figure 2]FIGURE 2 | Performance of DISO over China from 1979 to 2020. (A) daily precipitation ≥1 mm. (B) monthly total precipitation.
For the daily scale (daily precipitation ≥1 mm), DISO for all stations was greater than 1.0, and approximately 90% of stations showed DISO between 1.2 and 1.6 (Figure 2A). Regions-Ⅱ and Ⅴ showed larger errors than did the other regions. Both regions (mean annual precipitation ≥1000 mm) had the highest wet days and precipitation in China, based on regional precipitation characteristics (Figure 1B). Similarly, the southern part of Regions-Ⅰ and Ⅲ showed high DISO. In wetter regions, some wet days led to a larger DISO.
ERA5 performed better in terms of monthly precipitation than daily precipitation (Figure 2B). Half the stations (approximately 57%) showed DISO between 0.6 and 1.0. The overall trend showed a gradually increasing trend from the southeast to northwest. This finding suggests that ERA5 better captures the variability of monthly precipitation in the wetter regions (Region-Ⅱ) than in the arid regions (Regions-Ⅳ and Ⅵ).
3.2 Validation of ERA5 Extreme Precipitation
3.2.1 Overall China
To further evaluate the applicability of ERA5 to extreme precipitation events, nine extreme precipitation indices were selected, based on the geomorphological features of different regions. DISO for extreme precipitation indices in different regions was calculated using the Thiessen polygon method (Şen 1998; Lei et al., 2021b). According to the data in Table 5, ERA5 performs well in eastern China (Regions-Ⅰ and Ⅱ) and poorly in western China (Regions-Ⅳ and Ⅵ). ERA5 is better at simulating CDD and SDII than other extreme precipitation indices. Moreover, ERA5 showed poor simulation capability for RX1day, R99p, and R95p.
TABLE 5 | DISO for extreme precipitation indices over China.
[image: Table 5]For the different regions, DISO for the extreme precipitation indices for Regions-Ⅰ, Ⅱ, and Ⅲ are lower than 1.0, accounting for 80.96%. DISO in Region-Ⅰ illustrates that ERA5 simulates extreme precipitation very well in Region-Ⅰ. However, ERA5 exhibits a lower ability to capture extreme precipitation events (especially the intensity and frequency of extreme precipitation) in Regions-Ⅳ and Ⅵ. DISO of Region-Ⅴ is concentrated in the range of 0.8–1.2. In general, with the increase in mean annual precipitation, the capability of ERA5 to simulate extreme precipitation events increases.
Figure 3 shows the spatial distribution of DISO for nine extreme precipitation indices of ERA5 over China from 1979 to 2020. For the intensity of extreme precipitation indices, PRCPTOT, SDII, and RX5day show that DISO in eastern China, especially in Regions-Ⅰ and Ⅱ, is mainly below 1.0. However, ERA5 shows poor simulation ability for RX1day and only tends to detect annual maximum precipitation events in the north of Region-Ⅰ. In addition, compared with RX5day (28.98%), RX1day in 64.11% of stations has values greater than 1.0. Similarly, the reliability of ERA5 for R95p is better than that of R99p; the DISO is marginally higher over Regions-Ⅲ, Ⅳ, and Ⅵ. These results imply that the ability of ERA5 to capture extreme precipitation increases as the amount of precipitation increases.
[image: Figure 3]FIGURE 3 | Spatial distribution of DISO for extreme precipitation indices of ERA5 over China.
For the frequency indices, the result of R1 mm displays the poor simulation ability of ERA5 for wet days, except in the south of Region-Ⅰ and north of Region-Ⅱ. ERA5 provide high quality precipitation for R10 mm, especially in eastern and northern China (Regions-Ⅰ, Ⅱ, and Ⅲ). Moreover, ERA5 has improved simulation capability for R10 mm in eastern Region-Ⅵ.
For the duration indices, DISO for 66.22% of stations in China is below 1.0, and most stations are concentrated in Regions-Ⅰ, Ⅱ, and Ⅲ. Additionally, ERA5 performs better for CDD in the west of Region-Ⅳ. In general, DISO of CDD is in the range of 0.6–1.0.
Geographically, these results illustrate that ERA5 simulates well in regions with sufficient precipitation but performs poorly in mountainous and high-altitude regions. Simulating precipitation in mountainous and high-altitude regions, especially in the Tibetan Plateau, is difficult (Zhang et al., 2020; Hu and Yuan 2021). Moreover, ERA5 performs poorly on wet days and extremely wet days. Studies have shown that extremely heavy precipitation has complex mechanisms and variable processes (Dai and Nie 2020). In addition, the reanalysis datasets show significantly uncertainties for extremely heavy precipitation (Huang et al., 2016).
Notably, DISO is unable to indicate whether ERA5 overestimates or underestimates extreme precipitation. Therefore, using RB to assess the applicability of ERA5 to extreme precipitation events is necessary (Figure 4).
[image: Figure 4]FIGURE 4 | Spatial distribution of RB (%) for extreme precipitation indices of ERA5 over China.
Regarding intensity indices, the ERA5 precipitation data are obviously overestimates PRCPTOT and underestimates SDII. The RB of RX5day concentrates in the range of −0.2–0.2 (84.83%), suggesting that ERA5 can better simulate persistent extreme precipitation events than temporary extreme precipitation events. Similar to PRCPTOT, ERA5 underestimates R99p and R95p in most regions. For the frequency indices, ERA5 shows overestimation at more than 95% of stations, especially for R1 mm (100%). Additionally, ERA5 precipitation has a wet bias, although the error of R10 mm is small. However, the duration indices showed that ERA5 underestimates the CDD at all the stations. Similar to R1 mm, ERA5 has poor applicability in western China.
Generally, ERA5 overestimates the intensity of extreme precipitation in western China but underestimates annual maximum precipitation. ERA5 overestimates and underestimates the frequency and duration of extreme precipitation indices. Based on the results in Figures 4, 5, the highest value of DISO is caused by overestimation (e.g., R99p). Singh et al. (2021) found that ERA5 underestimated all extreme precipitation categories over India and failed to capture the variation in hilly topography. However, Bandhauer et al. (2021) found that ERA5 was overestimated the mean precipitation in Europe. Therefore, assessing ERA5 before its application is essential.
[image: Figure 5]FIGURE 5 | Spatial distribution of DISO for the regional extreme precipitation indices of ERA5 in six regions.
3.2.2 Subregion Validation
Each region has different geomorphological and climatic characteristics, which leads to different regional extreme precipitation indices. In addition to the extreme precipitation indices over China, we used the regional indices (Figure 5). We found that the differences between national and regional indices are the aggregated characteristics of the regional indices. In other words, the regional indices show a similar applicability to ERA5 precipitation because of their similar geomorphological and climatic characteristics. The six regions can be divided into two categories based on the mean annual precipitation and the number of regional indices: 1) those with mean annual precipitation greater than 400 mm (Regions-Ⅰ, Ⅱ, and Ⅴ) and three regional indices (R50 mm, R20 mm, and CWD) and 2) those with mean annual precipitation of less than 400 mm and regional indices below three (Regions-Ⅲ, Ⅳ, and Ⅵ).
The regions in the first category experience temperate monsoon climate and subtropical monsoon climate. The mean annual precipitation at most stations is concentrated in the range of 600–1600 mm. Different from Region-Ⅰ, which mostly belongs to hilly plains, Region-Ⅱ is primarily low-middle mountains. Region-Ⅴ shows higher elevation than Regions-Ⅰ and Ⅱ. However, the performance differences among Regions-Ⅰ, Ⅱ, and Ⅴ are small. Regarding the frequency of extreme precipitation, R20 mm performs the best, and R50 mm performs the worst. Compared with Figure 3, the applicability of ERA5 increases as the precipitation amount increases, except for R50 mm. These results show that the ERA5 is good at simulating light and moderate rainfall, but poor at simulating extremely heavy precipitation. For the duration of extreme precipitation, most stations’ CWD exceeds 1.0.
The regions in the second category are characterized by high altitudes with low mean annual precipitation. The number of observation stations in the second category is relatively low, and the regions experience a temperate grassy climate and an alpine climate. For the frequency of extreme precipitation, ERA5 performs poorly for R20 mm in Region-Ⅲ. Regarding the duration of extreme precipitation, ERA5 performs poorly for CWD.
In general, these results demonstrate that with regard to the simulation ability of R20 mm, ERA5 performs well, and DISO is lower than 1.0, especially in eastern China. However, ERA5 shows poor performance for R50 mm and CWD.
3.3 Validation of ERA5 monthly and seasonal extreme precipitation
To investigate the ability of ERA5 to simulate monthly extreme precipitation and seasonal differences in the seasons, we used RX1day and RX5day to calculate the DISO. The overall performance of ERA5 monthly precipitation data for RX1day and RX5day are shown in Figures 6, 7, respectively. In addition, many regions receive a large amount of precipitation in summer (June, July, and August) and autumn (September, October, and November), and less precipitation in spring (March, April, and May), and winter (December, January, and February). Studies have shown that ERA5 precipitation data performs very well on a monthly timescale (Xu et al., 2019; Nogueira 2020); however, there is a lack of assessment considering the rainy and non-rainy seasons. Therefore, we also focus on the differences between rainy seasons and non-rainy seasons. Notably, the duration of the rainy season varies among regions because of their different climatic characteristics. In this study, the rainy season is from May to October and the non-rainy season is from November to April.
[image: Figure 6]FIGURE 6 | Spatial distribution of DISO for RX1day of ERA5 over China from spring to winter. spring (March, April, and May), summer (June, July, and August), autumn (September, October, and November), and winter (December, January, and February).
[image: Figure 7]FIGURE 7 | Spatial distribution of DISO for RX5day of ERA5 over China from spring to winter. spring (March, April, and May), summer (June, July, and August), autumn (September, October, November), winter (December, January, and February).
Figure 6 illustrates that ERA5 performs well in summer and autumn for RX1day, except for the month of November. For the spring, ERA5 has the best performance in Region-Ⅱ with DISO in the range of 0.8–1.2. For the summer, most stations range from 0.8 to 1.2, except for Region-Ⅳ. In autumn, precipitation begins to decrease over the country. ERA5 performs the best and the worst in October (69.67% stations with DISO in the range of 0.0–1.0) and November (78.53% stations with DISO lager than 1.0), respectively. These 2 months usually represent the end of the rainy season and the beginning of non-rainy season. Therefore, the ability of ERA5 to estimate extreme precipitation is closely related to the total precipitation. For winter, the differences in performance among the six regions are remarkable when DISO is greater than 1.0, except for Region-Ⅱ and the south of Region-Ⅰ.
Monthly DISO clearly demonstrates low value with respect to monthly maximum 1-day precipitation in the rainy season. However, ERA5 performs poorly in non-rainy season. From May to October, DISO decreases from southern to northeastern China because of the movement of the rain belt (Jiang et al., 2021). In other words, ERA5 performs increasingly better as the number of days of the rainy season increases. Notably, the rainy season starts in May, and the non-rainy season ends in November, for both of which, ERA5 shows large errors. Geographically, DISO is greater than 1.0 in northwestern China during the whole year but ranges from 0.0 to 1.0 in southeastern China.
Figure 7 demonstrates that the ability of ERA5 to estimate RX5day is better than its ability to estimate RX1day, and also shows clear seasonal characteristics. For the spring, ERA5 has the best DISO for Region-Ⅱ, with value from 0.6 to 1.0. For summer, DISO at most stations is in the range of 0.6–1.2, except for Region-Ⅳ. Notably, ERA5 has good estimation capability for extreme precipitation in the eastern Tibetan Plateau during the summer. For autumn, similar to RX1day, the ability of ERA5 to estimate extreme precipitation is significantly different between October and November. DISO values of Regions-Ⅰ, Ⅲ, and Ⅴ change from less than 1.0 to greater than 1.0. In winter, DISO of more than 60% of the sites is DISO greater than 1, except for Region-Ⅱ and southern Region-Ⅰ.
ERA5 performs better for RX5day, especially in Region-Ⅱ, than for RX1day. For temporal distribution, the applicability of ERA5 in the rainy season is better than that in the non-rainy season, with the best performance in October. For spatial distribution, ERA5 performs very well in southeastern China, especially in the non-rainy season. ERA5 has poor simulation capability for extreme precipitation in northwestern China.
3.4 Climatology and Trends of ERA5 Extreme Precipitation
Figure 8 illustrates that ERA5 cannot simulate the trend of extreme precipitation indices and differs significantly from the Obs. Most Obs show an increasing trend in the intensity of extreme precipitation, while ERA5 shows a decreasing trend. Regarding the frequency of extreme precipitation, ERA5 performs poorly with respect to R10 mm and R1 mm. ERA5 simulates extreme precipitation at many stations with nonsignificant decreasing trends as significant, especially for R1 mm. Regarding the duration of extreme precipitation, ERA5 simulates extreme precipitation approximately half of the stations incorrectly as increasing trends.
[image: Figure 8]FIGURE 8 | Box plots of the PWMK test value of DISO for the Obs (A) and ERA5 (B) for extreme precipitation indices over China from 1979 to 2020.
4 CONCLUSION
In this study, 12 extreme precipitation indices were used to evaluate the applicability of ERA5 under complex environmental conditions. We used DISO to perform a comprehensive assessment of the capability of ERA5 simulating extreme precipitation at different spatial and temporal scales. The climatology and trends of ERA5 assessing extreme precipitation were also investigated.
This study shows that ERA5 is better for total simulations than daily precipitation. For the intensity indices, ERA5 has the best simulation for PRCPTOT, with DISO of 81.3% stations below 1.0. ERA5 performs better for RX5day and R95p than RX1day and R99p, especially in eastern China. For the frequency indices, the ability of the ERA5 simulation increases as the amount of precipitation increases, except for northwestern China. For example, the number of stations with DISO below 1.0 increases from R1 mm to R20 mm. However, the ability of ERA5 to simulate extremely heavy rainfall (e.g., R50 mm) decreases. For the duration indices, ERA5 is better at simulating drought events than precipitation events in the eastern China. Moreover, ERA5 overestimates the extreme precipitation intensity and frequency, whereas it underestimates the duration of extreme precipitation.
For the different time scales, ERA5 performs the best and the worst in October and November, respectively. ERA5 has the best ability simulating extreme precipitation in summer, and DISO values of 58.8% of stations below 1.0. In addition, ERA5 shows the worst ability to capture the variation of extreme precipitation in winter, with more than 55% of stations having DISO values lager than 1.0. Moreover, we found that ERA5 performs better in the rainy season than the non-rainy season. The amount of precipitation can explain the differences in the ERA5 performance.
For the different spatial scales, ERA5 performs best in Region-Ⅱ and performs second best in Regions-Ⅰ and Ⅲ. However, ERA5 performs poorly in the remaining regions, especially in northwestern China. Precipitation in high-altitude areas (e.g., the Tibetan Plateau) was difficult to simulate. Moreover, ERA5 cannot simulate changes in extreme precipitation trends. Therefore, the ability of ERA5 to simulate long-term trend changes needs to be improved.
In summary, this study evaluates the ability of ERA5 capture the extreme precipitation events in China. The capturing of the frequency and duration of extreme precipitation in southeastern China is better than the intensity. The ability of ERA5 to simulate precipitation increases as precipitation amounts increases, except for R50 mm. Similar to the reports in many previous studies that the performance of ERA5 was greatly influenced by altitude. This study assessed the performance of ERA5 considering only precipitation, and further research is required to investigate the causes of errors in the future.
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The fifth-generation atmospheric reanalysis of the European Center for Medium-Range Weather Forecasts (ERA5) is the latest reanalysis product. However, the reliability of ERA5 to capture extreme temperatures is still unclear over China. Hence, based on conventional meteorological station data, a new criterion (DISO) was used to validate the ERA5 capturing extreme temperature indices derived from the Expert Team on Climate Change Detection and Indices (ETCCDI) across the six subregions of China on different timescales. The conclusions are as follows: the original daily temperatures (mean temperature, maximum temperature, and minimum temperature) can be well reproduced by ERA5 reanalysis over China. ERA5 tends to exhibit more misdetection for the duration of extreme temperature events than extreme temperature intensity and frequency. In addition, ERA5 performed best in the summer and worst in the winter, respectively. The trend of absolute indices (e.g., TXx and TNx), percentile-based indices (e.g., TX90p, TX10p, TN90p, and TN10p), and duration indices (e.g., WSDI, CSDI, and GSL) can be captured by ERA5, but ERA5 failed to capture the tendency of the diurnal temperature range (DTR) over China. Spatially, ERA5 performs well in southeastern China. However, it remains challenging to accurately recreate the extreme temperature events in the Tibetan Plateau. The elevation difference between the station and ERA5 grid point contributes to the main bias of reanalysis temperatures. The accuracy of ERA5 decreases with the increase in elevation discrepancy.
Keywords: ERA5, reanalysis, extreme temperature, DISO, China
1 INTRODUCTION
Global warming is unequivocal. Global surface temperature data show that the temperature in 2011–2020 was 1.09 (0.95–1.20)°C warmer than in 1850–1900 (IPCC, 2021). Climate change has resulted in the strengthening of extreme weather and climate events in every region worldwide. Many scholars have observed significant changes in extreme cold and warm weather at global or regional scales (Zhang et al., 2019; Sheridan et al., 2020; Lei et al., 2021a). Extreme high-temperature events can cause heatwaves and droughts, which directly affect human survival, health, and crop growth (Alexander et al., 2006; Donat et al., 2014; Jiang et al., 2019; Zhan et al., 2020; Watts et al., 2021). A recent report by the World Meteorological Organization (WMO) has shown that the high-temperature heatwaves in Russia killed approximately 55,736 people in 2010, which is described as one of the top ten disasters causing the most casualties in 1979–2019 (World Meteorological Organization, 2021).
It is well established that three main types of data sources have been used in extreme weather and climate event research: conventional observation data, atmospheric reanalysis datasets, and satellite-based datasets (Best et al., 2004; Gao C. et al., 2012, 2018; Diamond et al., 2013; He and Zhao, 2018). Atmospheric reanalysis dataset is a global data resource, which has the advantages of comprehensive spatial coverage, a continuous long-term timescale, and a higher spatial and temporal resolution. It can compensate for the disadvantages of the limited and uneven station data (Kistler et al., 2001; Uppala et al., 2005; Gao C. et al., 2012; Gao L. et al., 2012, 2014, 2016b, 2018; Turner et al., 2021). Hence, reanalysis datasets have gradually become an indispensable foundation and reference for climate impact and variability assessment research (IPCC, 2021).
With the rapid development of reanalysis data, the current extensively used reanalysis data include reanalysis products released by the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) (Kalnay et al., 1995), the CFSR and CFSv2 produced by the NCEP and Department of Energy (Kanamitsu et al., 2002; Saha et al., 2010), Japan reanalysis JRA-25 (Onogi et al., 2007) and JRA-55 (Onogi et al., 2015), the European Centre for Medium-Range Weather Forecasts (ECMWF) FGGE (Boer, 1986), ERA-15 (Sprenger and Wernli, 2003), ERA40 (Uppala et al., 2005), ERA-Interim (Berrisford et al., 2011), and ERA5 (Hersbach et al., 2020). Among them, ERA5 is the latest generation of reanalysis data, which has wider assimilation data sources, greater spatial-temporal resolution, and more advanced four-dimensional variational analysis (4DVAR) than other reanalysis datasets (Hersbach et al., 2020). Many studies have demonstrated that the ability of the ERA5 dataset in describing the real atmospheric condition is better than that of the other reanalysis datasets (Albergel et al., 2018; Olauson, 2018; Urraca et al., 2018; Tarek et al., 2020a). However, reanalysis data are a non-independent dataset, which has errors due to observing systematic errors, the changing of the numerical prediction model, and different assimilation systems. Therefore, the objective evaluation for the credibility and accuracy of reanalysis datasets before the application of reanalysis products plays a crucial role in climate change research (Gao L. et al., 2012; Pappenberger et al., 2015).
Numerous studies have focused on the applicability of reanalysis data in the temperature field. On the global scale, Poli et al. (2016) compared the temperature data on the ERA-20C with the observation and demonstrated that the reanalysis data was 1K colder than the night observational data within 65° north-south latitude. Kozubek et al. (2020) indicated that the trend of temperature from ERA5 data has good consistency with observations data. Liu et al. (2021) confirmed that the land surface temperature data on ERA5 products are highly consistent with the trend derived from satellite data in 2003–2017. On the regional scale, the research of evaluating the credibility of reanalysis data over China has received extensive attention. You et al. (2013) evaluated the ability of NCEP/NCAR and ECMWF reanalysis data to simulate extreme temperature events and found that two reanalysis products have substantial differences in reproducing the long-term trend of the extreme temperature indices. Gao L. et al. (2012), Gao et al. (2014), and Gao et al. (2016a) demonstrated that reanalysis datasets can reproduce China’s temperature fields well and deduced that the altitude difference can cause significant temperature deviation. Zou et al. (2022) investigated the performance of ERA5-Land in southeast coastal China and concluded that ERA5-Land can capture daily and monthly temperature variations well. Huang et al. (2021) found that ERA5-Land temperature performed better than the Global Land Data Assimilation System (GLDAS) but worse than the China Meteorological Administration Land Data Assimilation System (CLDAS) over China.
Overall, most of the current reanalysis data applicability research focuses on the performance of original data and hardly emphasizes the accuracy of identifying extreme weather events (Sheridan et al., 2020). Regarding evaluation methods, the research usually applied single indicator such as the root mean square error (RMSE), correlation coefficient (CC), absolute error (AE), relative bias (RB), and the standard deviation (STD) (Gleixner et al., 2020; Jiang et al., 2020; Zheng 2020). However, it probably happens that individual indicators perform well, while others perform relatively poor, making it impossible to judge directly. Accordingly, the distance between indices of simulation and observation (DISO) combined with the CC, NRMSE, NMAE, and RB was used to evaluate the applicability of ERA5. The best advantage of DISO is that it can represent the performance of simulation at different stations after normalizing the reanalysis data and observational data (Hu et al., 2019; Deng et al., 2021). In addition, further research is required to determine the credibility of the latest ERA5 reanalysis dataset in capturing extreme temperature events at different timescales over various Chinese regions, which is not limited to the analysis of heatwave event trends or spatial distribution characteristics (Albergel et al., 2018; Kozubek et al., 2020; Awasthi 2021). China is one of the most climate-sensitive and ecologically fragile areas worldwide because of its sophisticated geographic environment and unique multi-climate conditions (Cheng et al., 2019). Extreme weather events such as heatwaves and drought disasters are frequent under the joint influence of summer monsoon circulation and mid-high latitude circulation. Therefore, clarifying the deviation and correlation between the ERA5 data and the observational data in recognizing extreme temperature events is influential to developing global atmospheric reanalysis products and regional climate change analysis.
The structure of this article is as follows: Section 2 introduces the data and methods applied in this study. The validation of ERA5 original data is presented in Section 3.1. The applicability of ERA5 data in capturing extreme temperature events in six subregions of China at different timescales is shown in Sections 3.2 and 3.3. The comparison of the trend of extreme temperatures computed from ERA5 and meteorological station data is described in Section 3.4, and the analysis of possible bias is discussed in Section 3.5. The conclusions are summarized in Section 4.
2 DATA AND METHODS
2.1 Study Area
The terrain of China is high in the west and low in the east and includes mountains, plateaus, hills, basins, and plains. Mountains and plateaus are the main components of China’s topography. The undulations and differences in landforms and various complex climate characteristics substantially affect the spatial distribution of the surface temperature. Consequently, the country is classified into six major regions, according to the latest geomorphologic division to evaluate the applicability of ERA5 temperature data in different regions of China (Cheng et al., 2019). Table 1 shows the information on six subregions of China.
TABLE 1 | Geomorphological regionalization information.
[image: Table 1]Figure 1 shows the ground meteorological stations and annual mean temperature distribution over China. There are numerous, evenly distributed observations in eastern China (regions I, II, III, IV, and V) and few observations in western China (regions IV, and VI). The annual mean temperature gradually decreases from the southeast coast to the inland. The annual mean temperature of regions II and V is approximately 15.00°C, and the annual mean temperature in the north of regions I, III, and VI is approximately 0.00°C.
[image: Figure 1]FIGURE 1 | Study area information. (A) Meteorological stations and topography. (B) Mean annual temperature.
2.2 Observations and ERA5
The meteorological stations are from the China Meteorological Data Network (http://data.cma.cn/); an amount of 666 meteorological observational data in China were selected in a common time series with ERA5 in the period of 1979–2020. The observational data (daily mean temperature, the daily maximum temperature, and the daily minimum temperature data) were subject to rigorous quality inspection. Moreover, the missing daily data from the observations are ignored in the calculation of extreme temperature indices.
ERA5 is the latest reanalysis product from the ECMWF (Hersbach et al., 2020). The complete ERA5 data released so far start in 1979 and extend forward in near real-time, with a three-month lag. ERA5 provides hourly estimates of many atmospheric, land, and oceanic climate variables. The data cover the Earth on a 31-km grid and resolve the atmosphere using 137 levels from the surface up to a height of 80 km (https://confluence.ecmwf.int/display/CKB/ERA5). ERA5 has a more advanced 4DVAR assimilation system and higher spatial and temporal resolution than other reanalysis products (Hersbach et al., 2020). ERA5 has also been enhanced in terms of data selection, quality control, bias correction, and performance monitoring techniques (Albergel et al., 2018; Gleixner et al., 2020). The Euclidean distance is used to calculate the nearest ERA5 grid to the Obs stations to obtain the ERA5 temperature data corresponding to the Obs stations. The coordinated universal time of ERA5 is converted to a daily scale to remain consistent with the Obs stations in this study.
2.3 Methods
2.3.1 Extreme Temperature Indices
The WMO and the World Climate Research Program (WCRP) jointly defined representative climate change detection indices to create consistency of extreme event indicators and thresholds in all countries (Alexander et al., 2006; Donat et al., 2014; You et al., 2013). The indices include extreme temperature indices and extreme precipitation indices, which are currently widely used in extreme climate research. The extreme temperature indices can represent extreme event changes in intensity, frequency, and duration, which are divided into 5 categories: 1) absolute indices (TXx, TXn, TNn, and TNx), 2) threshold indices (ID0, FD0, TR20, and SU25), 3) percentile-based indices (TX10p, TX90p, TN10p, and TN90p), 4) duration indices (CSDI, WSDI, and GSL), and 5) other indices (DTR) (Table 2) (Alexander et al., 2006). In addition, TXx and TNx have also been calculated on monthly timescales to evaluate the performance of ERA5 for capturing the extreme temperature indices at monthly and seasonal scales.
TABLE 2 | Definition of extreme temperature indices.
[image: Table 2]Notably, climate characteristics among regions in China are substantially different. Individual indices do not apply to all regions. For instance, the Tibetan Plateau has a high altitude and low annual temperature, which rarely has a daily minimum temperature of >20°C. Thus, the TR20 index (annual count when the daily minimum is >20°C) is not applicable for region VI to evaluate the reliability of ERA5. Similarly, the daily maximum temperature is always greater than 0.00°C in southern China, and the ID0 index (annual count when the daily maximum is <0°C) is also not appropriate. Therefore, regional indices are selected based on the regional-specific climate feature to conduct a greater accuracy analysis of the extreme indices for each region (Table 3).
TABLE 3 | Extreme temperature indices for six regions over China.
[image: Table 3]2.3.2 Trend Analysis
The Mann–Kendall (MK) test is a nonparametric statistical test method used extensively in meteorological statistical research (Machiwal et al., 2019; Lei et al., 2021b). Yue and Wang (2002) proposed “prewhitening” before the MK test to eliminate the effect of the serial correlation in trend detection so that the trend of series has improved credibility. Many scholars (Burn and Hag Elnur, 2002; Mirdashtvan and Mohseni Saravi, 2020; Lei et al., 2021a; Shin et al., 2021) have used the prewhitening Mann–Kendall (PWMK) trend test method to describe the trend variation of relative humidity, surface temperature, and other hydrological and meteorological variables in various climatic zones and argued that the trend of prewhitening correction has greater accuracy than the MK. This study used the PWMK to calculate the trend of extreme temperature indices in ERA5 data and station data.
2.3.3 Evaluation Criteria
Table 4 demonstrates the evaluation criteria used to quantitatively assess the applicability of ERA5, comprising the NRMSE, NMAE, RB, and CC. In addition, this study adopted a new comprehensive indicator DISO, with the advantage of evaluating the simulation accuracy of data more comprehensively than other indicators, instead of a single indicator limited to describing unilateral performance (Hu et al., 2019; Deng et al., 2021). The DISO had been confirmed more flexible to express the quality of models or datasets than the Taylor diagram (Xu and Han, 2020; Zhou et al., 2021).
TABLE 4 | Evaluation criteria used in this study.
[image: Table 4]The main distribution range of the DISO is between 0.0 and 1.0 in this study. Generally accepted is that the smaller the value of DISO, the more accurate are the data (Xu and Han, 2020). Therefore, the value of DISO is divided into two groups: 0.0–0.5 and above 0.5 to investigate the capabilities of ERA5 for each region. It is implied that ERA5 can capture extreme temperature events well when DISO is less than 0.5 (Hu et al., 2019). Moreover, RB was divided into two groups: less than 0.0 and greater than 0.0. The RB less than 0.0 or above 0.0 was considered to mean that ERA5 relatively underestimates or overestimates the observational data, respectively.
3 RESULTS AND DISCUSSION
3.1 Validation of ERA5 Temperatures
Figure 2 demonstrates the DISO distribution of original temperature data (mean temperature, maximum temperature, and minimum temperature) at daily timescales based on ERA5 and observations in 1979–2020. Three types of temperature data all have above 50% stations with the DISO value less than 0.5, indicating that the original temperature data of ERA5 have a good agreement with observational data.
[image: Figure 2]FIGURE 2 | DISO performance over China from 1979 to 2020 for Tmean (A), Tmax (B), and Tmin (C).
The average DISO of Tmean is 0.74. There are 562 stations with a DISO value smaller than 0.5, accounting for 84.38% of total stations in China. It can be seen that Region VI, the northern part of Region I, and Region III show higher DISO than the other regions. In other words, the mean temperature data from ERA5 have large deviations in these regions. The DISO values of Tmax are very small, with an average of 0.28. There are approximately 90.00% of stations with a DISO less than 0.5. More than half of the stations even have lower DISO values (less than 0.2). Only 28 stations have a DISO value above 1.0, which are located in Region VI. The performance of Tmin is worse than that of other data types. There are more than 20% of stations with a DISO greater than 1.0 over China, which are mainly distributed in Regions III, IV, VI and the northern part of Region I. DISO presents a “southeast-northwest” distribution, increasing from the southeast coastal area to the northwest inland area.
Generally, the performances of ERA5 for mean temperature and maximum temperature data are more ideal than those for the minimum temperature. ERA5 tends to misdetect the minimum temperature. From the respective spatial distribution, the reliability of ERA5 original temperature data in southeast China is higher than in other regions. ERA5 performs poorly in the Tibetan Plateau, which is common for other reanalysis products in previous studies (Gao C. et al., 2012; Gao et al., 2016a; Huang et al., 2021; Jiang et al., 2021).
3.2 Validation of ERA5 Extreme Temperatures
3.2.1 Overall China
To further quantitatively evaluate the ability of ERA5 data to reproduce extreme temperature events, DISO was calculated by ERA5 and observations of extreme temperature indices. Table 5 summarizes the specific performance of ERA5 data for extreme temperature indices in each subregion. DISO ranges from 0.16 to 1.21 with an average of 0.48 for all stations. Figure 3 demonstrates the spatial distribution of DISO for extreme temperature indices over China. There are discrepancies in various regions for ERA5 to capture different extreme temperature indices.
TABLE 5 | DISO for extreme temperature indices over China.
[image: Table 5][image: Figure 3]FIGURE 3 | Spatial distribution of DISO for extreme temperature indices of ERA5 over China.
The results showed that ERA5 has an ideal simulation for maximum and minimum temperatures within a year. The average values of DISO in the whole of China for TXx and TNx are 0.44 and 0.45, respectively. The cumulative percentage of stations with the lower DISO value (less than 0.5) is above 70.00%. According to specific spatial distribution, ERA5 shows the best performance in Regions I and III, with a correlation of 0.77 and 0.68, respectively. The higher DISO stations are concentrated in Regions II, V, and VI, especially for TNx. There are approximately half of the stations that had the DISO greater than 0.5 for TNx index in Regions II, V, and VI. It indicates that the ability of ERA5 in northern China is better than that in southern China for reproducing the intensity of extreme temperature events.
Another interesting finding is that the mean DISO of TX10p (cool days) and TX90p (warm days) in China is 0.30 and 0.32, respectively. Yet, the average of DISO for TN10p (cool nights) and TN90p (warm nights) is higher than TX10p and TX90p, which are 0.53 and 0.40, respectively. It is distinct that ERA5 simulates diurnal temperature better than nocturnal temperature. Spatially, TX10p and TN10p demonstrate analogous spatial distribution characteristics. DISO gradually increases from the southeast coast to the northwest inland regions. However, the spatial distribution of TX90p and TN90p shows a different north-south distribution; higher DISO stations are concentrated in the southern part of Regions II, V, and VI. This difference illustrates that the credibility of the southeast coast is higher than in other regions in China when ERA5 simulates cool nights (TN10p) and cool days (TX10p), whereas ERA5 is more precise in the north than in the south when retrieving warm nights (TN90p) and warm days (TX90p).
ERA5 shows a good performance in capturing the GSL index. Stations with a DISO of less than 0.5 account for more than 80.00% of the total stations in China, of which more than 40.00% of stations have a correlation coefficient (CC) that exceeds 0.9. However, the performances of CSDI and WSDI are both disappointed. The average values of DISO for CSDI and WSDI are 0.83 and 0.82, respectively. There are approximately 90.00% of stations that have a DISO greater than 0.5. Among them, 102 and 144 stations show a higher DISO (above 1.0) in CSDI and WSDI, respectively. The conclusion showed that ERA5-simulating CSDI and WSDI indices are worse than other indices. Concerning to diurnal temperature range (DTR), the DISO value is mainly concentrated in the range of 0.3–0.6. Stations with a DISO of less than 0.5 account for 64.11% of total stations. Regarding spatial distribution, ERA5 performs better in Regions II and V than in other regions for DTR. The cumulative percentages of stations with the DISO less than 0.5 in Regions II and V reach 76.10% and 83.90%, respectively. The higher DISO (greater than 0.5) stations are mainly distributed in Regions I, III, IV, and VI, which show a weak performance.
Generally, ERA5 performs well in capturing absolute indices (TXx and TNx) and percentile-based indices (TX10p, TX90p, TN10p, and TN90p) but performs poorly in capturing duration indices (CSDI and WSDI) except for GSL. In other words, the reliability of ERA5 to reproduce extreme temperature intensity and frequency is higher than that for extreme temperature duration. For the subregions, Region I performs best and Region VI performs worst.
To further confirm the specific deviations between ERA5 and the observational data concerning extreme temperature indices, Figure 4 shows the spatial distribution of RB for extreme temperature indices over China. For the absolute indices, ERA5 underestimates the warmest day (TXx) and warmest night (TNx) in the southern part of Region VI. In addition, RB values are mostly concentrated near 0, and only five stations are remarkably overvalued. It also demonstrates that ERA5 can capture the intensity of extreme temperature events well, coinciding with the conclusions obtained in the DISO indicator.
[image: Figure 4]FIGURE 4 | Spatial distribution of RB for extreme temperature indices of ERA5 over China.
It also should be noted that TN10p and TX10p have 97.60% and 84.68% of the stations with RB above 0, respectively. The results indicated that ERA5 overestimated the 10th percentile indices (TN10p and TX10p). However, the performance of ERA5 in capturing TN90p and TX90p is the opposite. There are 95.20 and 84.23% of the total stations with RB smaller than 0 for TN90p and TX90p, respectively. It illustrates that ERA5 has misdetected more cool nights (TN10p) and cool days (TX10p) but fewer warm days (TX90p) and warm nights (TN90p) in comparison to the observations.
About the duration indices, stations with RB greater than 0 account for approximately 60.00% of CSDI and WSDI, which are mainly located in Regions I, II, III, and V. It is distinct that ERA5 tends to overestimate extreme high-temperature and low-temperature consecutive days over China. Moreover, ERA5 underestimates the observational data in the southern part of Region VI for the GSL. There are 91.22% of stations that have an RB less than 0 in Region VI. The RB of other regions is mainly concentrated in the range of -10–10%. It is considered to be a slight overestimation or underestimation within a reasonable range.
The RB value is mainly distributed between -20% and 0 for DTR. The cumulative percentage of stations with RB less than 0 reaches 91.59%. This finding shows that ERA5 slightly underestimates the DTR compared with the observational data over China. In summary, ERA5 tends to underestimate the frequency of extreme high-temperature events and overestimate the frequency of extreme low-temperature events. Also, the duration of warm and cold days has been overestimated by ERA5 over China.
3.2.2 Subregion Validation
Furthermore, there are substantial differences in terrain and climate characteristics of the six subregions in China. Some indices were not applicable in each region. For example, the Tibetan Plateau has a unique plateau climate, which rarely has a daily minimum temperature >20°C. The evaluation of the TR20 index (tropical nights) is not applicable in Region VI. Hence, it is necessary to exclude unsuitable indices in specific regions before evaluation to ensure the accuracy of the evaluation of ERA5. Figure 5 demonstrates the DISO of selected extreme temperature indices in six subregions.
[image: Figure 5]FIGURE 5 | Spatial distribution of DISO for selected extreme temperature indices of ERA5 in six regions.
TXn, TNn, and ID0 display similar spatial distribution characteristics of DISO in Region I. Three indices all present a north-south differentiation. The higher DISO stations are located in the northern part of Region I, and stations with a lower DISO are concentrated in the south. It indicates that the reliability of ERA5 in the north is greater than that in the southern part Region I for TXn, TNn, and ID0. It is noteworthy that TR20 displays an opposite spatial distribution characteristic with ID0. The accuracy of ERA5 in the southern part of Region I is greater than that in the northern part for TR20. This difference may be due to the relatively high latitude of the northern part in Region I, where a minimum temperature warmer than 20.0°C is rare. It is also rare that the annual maximum temperature is colder than 0.0°C in the southern part of Region I. Hence, there is a large discrepancy in the spatial distribution of DISO for the two indices, which is due to the local climate condition. Furthermore, the FD0 and SU25 of ERA5 show the best performance in Region I, and the average of DISO is 0.30 and 0.26, respectively. Stations with a DISO of less than 0.5 account for more than 80.00% of all stations. For Region II, the cumulative percentages of stations with the DISO less than 0.5 for SU25 and TR20 are 95.60 and 96.85%, respectively. It implied that ERA5 can identify the number of summer days (SU25) and tropical nights (TR20) well in Region II.
ERA5 also performs well for capturing the FD0 index in Region III, which shows a similar performance with Region I. The percentage of stations with the DISO less than 0.5 reaches 88.46% for all stations. Additionally, the spatial distribution characteristics of DISO for TXn, TNn, and ID0 in Region III are also similar to those in Region I. The simulation effect of ERA5 in the northern part of the region was better than that in the southern part. There is no denying that the range of latitude is similar in Region I and Region III. Therefore, the results demonstrate that the reliability of ERA5 for TXn, TNn, and ID0 is related to latitude location. There is a higher accuracy in the north of 40°N but a lower accuracy in 30–40°N for TXn, TNn, and ID0. Also, in Region IV, the same condition occurs for TXn, TNn, and ID0, which is in accordance with the conclusion obtained. The most reliable index for Region IV is FD0 too. There are 95.74% of stations with a DISO value less than 0.5, followed by SU25 with approximately 80.00% of stations showing a DISO smaller than 0.5.
For Region V, stations with the lower DISO are mainly located in the middle and southeast of the region where the Sichuan Basin is. Stations with higher DISO are mainly in the southwestern region, where the Hengduan Mountains are located. This phenomenon also demonstrated that the accuracy of reanalysis data in basins is better than that in mountainous areas. This is consistent with the findings from Region VI. FD0 performed poorer in Region VI than in other regions, and the average of the DISO was 0.68. This larger deviation is due to the high altitude of the Tibetan Plateau, the complex terrain, and the lack of observations leads to more difficulty in simulation (Kistler et al., 2001; Minder et al., 2010; Holden et al., 2016; Ma et al., 2018).
Generally, there is a substantial difference in the reliability of ERA5 to capture the extreme temperature events in various subregions of China. ERA5 performs worse in mountainous areas, especially in the Tibetan Plateau. In addition, the accuracy of ERA5 to simulate some indices (TXn, TNn, TR20, and ID0) demonstrates a north-south distribution, which is due to the local climate condition.
3.3 Validation of ERA5 Monthly and Seasonal Extreme Temperatures
To further evaluate the applicability of ERA5 to capture the extreme temperature indices at a seasonal scale, Figure 6 and Figure 7 present the spatial distribution of DISO for TXx and TNx from spring to winter over China. The four seasons include spring (March, April, and May), summer (June, July, and August), autumn (September, October, and November), and winter (December, January, and February). Table 6 summarized the DISO for TXx and TNx for each month and season.
[image: Figure 6]FIGURE 6 | Spatial distribution of DISO for TXx of the ERA5 over China from spring to winter. Spring (March, April, and May), summer (June, July, and August), autumn (September, October, and November), and winter (December, January, and February).
[image: Figure 7]FIGURE 7 | Spatial distribution of DISO for the TNx of ERA5 over China from spring to winter. Spring (March, April, and May), summer (June, July, and August), autumn (September, October, and November), and winter (December, January, and February).
TABLE 6 | Monthly and seasonal DISO for TXx and TNx over China.
[image: Table 6]The average values of DISO for warmest days (TXx) in spring, summer, autumn, and winter are 0.28, 0.28, 0.27, and 1.20, respectively. Notably, DISO in winter is higher than that in the other seasons. The stations with DISO greater than 0.5 in winter account for approximately 40.00% of all stations. In addition, the spatial pattern of distribution in spring, summer, and autumn are similar. Stations with higher DISO are mainly distributed in Region VI. However, the spatial distribution of DISO shows a “southeast-northwest” distribution in winter. More than 100 stations with a DISO higher than 1.0 are concentrated in the northern part of Regions I and III and Regions IV and VI.
ERA5 also works better in spring, summer, and autumn than in winter for TNx (Figure 7). However, TNx is slightly distinct in November and March. The performance of TNx in the late fall (November) and early spring (March) during the transition of winter is worse. The cumulative percentage of stations with the DISO greater than 0.5 exceeded 35.00%. In terms of spatial distribution, the ability of ERA5 to simulate the TNx in summer displays a different north-south characteristic, with DISO gradually increasing from north to south. The DISO greater than 0.5 stations are located in Regions II, V, and VI, which demonstrates that the ERA5 reanalysis has better simulation ability for the north than the south of China in summer. This finding may be due to the southeastern part of China being affected by the East Asian monsoon and accompanying precipitation in summer (Ding, 2007), resulting in unstable accuracy in Regions II and V. Furthermore, there is a spatial discrepancy of DISO for TXx and TNx in December and January. Stations with higher DISO (above 1.0) are located in the central part of Region I and the southern part of Regions III and VI.
In summary, the results demonstrated that ERA5 captured the intensity of extreme temperature events in spring, summer, and autumn with higher reliability than in winter. The possible reason may be due to the air temperature being more changeable and complex in winter (Zhao et al., 2020). Additionally, the low simulation accuracy of snow cover and snow depth resulted in large uncertainty of temperature modeling in winter (Kanamitsu et al., 2002; Ma et al., 2008). Previous studies have also found that the accuracy of reanalysis to capture air temperature is better in summer, whereas worse in winter (Zhao et al., 2008; Zhao et al., 2020; Yu et al., 2021). Furthermore, there is a large discrepancy of the climate and topography characteristics in various subregions of China. Therefore, a certain model always failed to capture all climate features across seasons over such a large area (Gao et al., 2016a).
3.4 Climatology and Trends of ERA5 Extreme Temperatures
The PWMK trends of ERA5 and observations for extreme temperature indices in 1979–2020 are shown in Figure.8. TXx (warmest day), TNx (warmest night), TX90p (warm days), TN90p (warm nights), and GSL (growing season length) show a significant positive trend. This result shows that the frequency and intensity of extreme high-temperature events are gradually increasing as global warming in China. Also, ERA5 can capture the trend of extreme high-temperature indices well. WSDI and CSDI do not demonstrate an overall increase or decrease trend. Additionally, TX10p (cool days) and TN10p (cool nights) calculated from ERA5 and observations both have a negative trend. In other words, the frequency of extreme low-temperature events tends to decrease in China. Nevertheless, there is a discrepancy in the trend of the diurnal temperature range (DTR) by ERA5 and observations. The average of the trend of observations DTR is decreasing, whereas the DTR of ERA5 has a slightly increased tendency. It is indicated that ERA5 fails to capture the trend of DTR. Overall, there is agreement among the trend of extreme indices of ERA5 data with observations, except for DTR. ERA5 data can be used for predicting the tendency of extreme temperature events over China, except for DTR.
[image: Figure 8]FIGURE 8 | Box plots of the PWMK test value of DISO for Obs (A) and ERA5 (B) for extreme temperature indices over China from 1979 to 2020.
3.5 Possible Bias Analysis of ERA5 Temperature
Many studies have reported that the elevation difference is the principal reason leading to the error of the reanalysis data (Gao L. et al., 2012, 2014; Zhou et al., 2018; Tarek et al., 2020b). Gao et al. (2016b) concluded that the altitude difference between meteorological stations and ERA-20CM led to the temperature bias. Zhao et al. (2020) found the bias increases with the elevation difference between ERA5-Interim and observation temperature data. Figure 9 demonstrates the distribution of elevation gaps between stations and ERA5 data (ERA5 original grid point height minus Obs elevation) to further explore the reasons for the deviation of ERA5 temperature data. There are 67 stations with an elevation gap above 500 m, which are mainly located in the southeast part of Region III, the northeast and western part of Region V, and the southeast part of Region VI. Among these stations, 10 stations have elevation gaps above 1000 m in Region VI. The Emei mountain station shows the maximum elevation gap of 1765.40 m in Sichuan Province.
[image: Figure 9]FIGURE 9 | Distribution of elevation gaps between stations and ERA5 data.
Figure 10 shows the relationship of the elevation gap and the RMSE between ERA5 and the stations. The RMSE ranges from 0 to 13.50°C. The R2 of mean temperature, max temperature, and min temperature is 0.70, 0.73, and 0.52, respectively. The correlation coefficient (CC) is 0.84, 0.85, and 0.72, respectively. It is implied that the performance of ERA5 is related to the elevation gap between ERA5 and observations. The simulation accuracy of ERA5 decreases with the increase in the elevation gap. Therefore, this is also responsible for the weak simulation effect in the Tibetan Plateau with the higher elevation difference. It must be pointed out that the number of stations used in this study is limited, especially in the Tibetan Plateau. However, previous studies have concluded that limited stations can also accurately evaluate the bias of reanalysis data. It is generally believed that the elevation difference between the reanalysis grid point and the ground station is the main error source (Gao et al., 2014, 2018, 2021; Zhou et al., 2018; Zhao et al., 2020).
[image: Figure 10]FIGURE 10 | Linear regression of the RMSE and elevation gaps between stations and ERA5 reanalysis. Shading shows the prediction bands at the 95% confidence level.
4 CONCLUSION
This study is based on the comparison of ERA5 reanalysis data and observational data during 1979–2020. The applicability of ERA5 to identify temperatures and reproduce extreme temperature events in six subregions of China at different timescales has been evaluated. Conclusions are summarized as follows:
ERA5 performs well for capturing the original temperature field over China. The maximum temperature and mean temperature reproduced by ERA5 are more ideal than the minimum temperature. However, the performance of ERA5 in the Tibetan Plateau is worse. Additionally, ERA5 has a good agreement in simulating extreme temperature absolute indices and percentile-based indices. In other words, ERA5 performs well in identifying the intensity and frequency of extreme temperature events. Nevertheless, ERA5 tends to underestimate the frequency of extreme high-temperature events and overestimate the frequency of extreme low-temperature events. Moreover, the reliability of ERA5 reanalysis to reproduce extreme temperature duration is disappointed. The duration of warm days and cold days has been overestimated by ERA5.
Spatially, the reproducibility of ERA5 to capture extreme temperature events in different geomorphological regions has a spatial discrepancy, which is manifested in that the performance of ERA5 in plains and basins is superior to that in mountainous areas. The southeastern part of China performs best, and the Tibetan Plateau performs worst. This result may be due to the substantial differences resulting from the uneven distribution of stations, the absence of long-term, high-quality climate station data, and the elevation gaps between the ERA5 grid and the observed station in the Tibetan Plateau.
Based on the simulation of extreme indices at a seasonal scale, the accuracy of ERA5 in reproducing the intensity of extreme temperature indices in spring, summer, and autumn is significantly better than that in winter, especially in Regions I, III, IV, and VI. Furthermore, the results confirmed that ERA5 is reliable for capturing the trend of absolute indices, percentile-based indices, and duration indices, except for DTR. In summary, ERA5 data are ideal for temperature data simulation and identification of extreme temperature events, which can be used as important reference data for temperature changes and extreme climate research.
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Both moist heatwaves (HWs) and heavy precipitation events (HP) have increased in both frequency and magnitude over China in recent decades. However, the relationship between HW and HP and changes in the lagged coincidence of events (i.e., the occurrence of an HP event several days after an HW event, noted HWHP) remain unknown. We show here that HWHP events account for nearly one-third of HP events over China in summer, with high values in North China, Northeast China, and the East arid zone. HWHP events assessed using the heat index and the wet-bulb temperature methods increased by 45.25 and 23.97% from 1961 to 2019, respectively. These concurrent HWHP events tend to be spatially clustered, and the areas affected simultaneously have grown significantly. The increase in HW is the major driver of these changes in HWHP events, except in the western arid zone and North China. Our findings provide an understanding of the spatiotemporal changes in HWHP events over China and their implications for disaster mitigation.
Keywords: heatwaves, heavy precipitation, lagged concurrent extremes, spatial clustering, China
HIGHLIGHTS

• In China, one-third of heavy precipitation events in summer are preceded by a moist heatwave event.
• Sequential heatwave–heavy precipitation (HWHP) events have increased by 45.25 and 23.97% from 1961 to 2019, as measured by heat index and wet-bulb temperature, respectively.
• HWHP events tend to cluster in space and the areas affected have grown significantly.
INTRODUCTION
Human-induced warming intensifies extreme weather events (Rogelj et al., 2016; Diffenbaugh et al., 2017; Gillett et al., 2021). As two of the most common and destructive weather extremes, heatwaves (HWs) and heavy precipitation (HP) have long been major concerns (Fischer and Knutti, 2015; Donat et al., 2016; Alizadeh et al., 2020; Shiogama et al., 2021) because both have caused significant losses to society, economy, and human health (Fischer and Knutti, 2015; Wahl et al., 2015; Butler, 2020; Vicedo-Cabrera et al., 2021). HWs characterized by extreme air temperature over a prolonged period of time have been observed and projected to increase rapidly (Perkins et al., 2012; Chen et al., 2018; Perkins-Kirkpatrick and Lewis, 2020; Zhang and Zhou, 2020). For example, the probability of mega-heatwaves in Europe has increased five-fold (Schiermeier, 2019). Extreme heat stress, on the other hand, which integrates temperature and humidity, is more closely related to human health and has a faster rising rate than temperature-based HWs (Li et al., 2018, Li C et al., 2020; Freychet et al., 2020; Zhang et al., 2021). In addition to HWs, HP is becoming heavier and more frequent under climate change (Fischer and Knutti, 2016; Hu et al., 2016; Hu et al., 2017; Hu et al., 2019; Myhre et al., 2019; Kirchmeier-Young and Zhang, 2020). For example, 100-years intense precipitation events over North America, as assessed over the period 1961–2010, are expected to occur every 2.5 years on average with +3°C of warming (Kirchmeier-Young and Zhang, 2020).
Although changes in HWs and HP have been investigated individually at global and regional scales, few studies have focused on sequential heatwave–heavy precipitation (HWHP) events (i.e., an HP event occurring within several days after an HW event) (Lombardo and Ayyub, 2015; Zhang and Villarini, 2020; Chen et al., 2021; Liao et al., 2021; Wu et al., 2021; You and Wang, 2021; Gu et al., 2022; Ning et al., 2022). In the last decade, rare rainstorms tightly following the record-breaking HWs have been reported in some areas. On June 29, 2012, Washington DC in America experienced a record-breaking hot–humid HW in the daytime followed by a rare rainstorm in the nighttime. This HWHP event killed at least 13 people (https://en.wikipedia.org/wiki/2012_North_American_heat_wave). On July 10, 2017, a record-breaking rainstorm hit Paris, France, with rainfall equivalent to 27-days amount falling in 2 hours, followed by a HW event, which swept across Europe (https://www.bbc.com/news/world-europe-40554842). On May 27, 2019, a record-breaking HW lasting for several days in northeastern China ended with heavy precipitation (http://www.china.org.cn/china/2019-05/23/content_74813919.htm). Given that both HWs and HP are becoming more extreme and more frequent, the increased risk of HW accompanied by HP is expected to rise. Thus, these HWHP events have been the topic of recent studies (Lombardo and Ayyub, 2015; Zhang and Villarini, 2020; Chen et al., 2021; Liao et al., 2021; Wu et al., 2021; You and Wang, 2021; Gu et al., 2022; Ning et al., 2022).
In recent decades, China has experienced numerous deadly HWs and severe HP events (Yu et al., 2022). The number of HW-related deaths in China has increased four-fold from 1990 to 2019, and the extreme wet-bulb temperature with consideration of humidity in North China is projected to exceed the threshold that people may tolerate during the period 2070–2100 (Kang and Eltahir, 2018). Zhang and Zhou (2020) indicated that HP in China would increase by 6.52% per 1°C warming. Since both HWs and HP over China occur mostly in summer (June–August), joint events are highly likely. Although recent studies have investigated compound flooding and hot extremes over China (Wu et al., 2021; You and Wang, 2021; Gu et al., 2022; Ning et al., 2022), the following questions remain unknown:
• Do sequential HWHP events cluster in space, and if so, do these clusters expand or contract?
• Are the changes in HWHP events driven by changes in HWs, HP events, or both?
DATA AND METHODS
In Situ Weather Observations and Homogenous Climate Regions
The National Meteorological Information Center of China Meteorological Administration provides in situ daily weather observations at 2,481 stations since 1951. This observation dataset has been quality-controlled before it was released. First, the instruments and methods to measure these observations conform to the demands of Specifications for Surface Meteorological Observation (GB/T 35,221–2017) set by China Meteorological Administration. Second, the data quality is systematically checked and validated, such as checking outliers in climatology, stations, and regions, and internal, temporal, and spatial consistencies of time series, according to the Guidelines on the quality control of surface climatological data (Ren et al., 2015; Cao et al., 2016). These stations measure precipitation (units: mm), surface air temperature (SAT, units: °C), and relative humidity (RH, units: %). We use the following criteria to select stations for the following analyses: 1) data availability covers 1961–2019; 2) the percentage of missing data during the summer of 1961–2019 is no more than 0.5%; and 3) the maximum consecutive missing days are no more than 31 days during 1961–2019. A total of 1,776 stations are selected for our analyses based on these criteria. If the consecutive missing days are no more than 2 days, the missing values are filled by the mean of their adjacent values. If the consecutive missing days are more than 2 days, the missing values are linearly interpolated based on the neighboring stations (Zhang et al., 2011). We expect the gap filling has limited impacts on the analyses because most of these 1,776 stations have few missing values in precipitation, SAT, and RH as shown in Figure 1. It should be noted that inhomogeneity exists in these observed values, especially in RH (Li Z. et al., 2020; Freychet et al., 2020). We used the RHtestsV4 software package (https://github.com/ECCC-CDAS/RHtests) to homogenize the daily observations (Xu et al., 2013; Kong et al., 2020).
[image: Figure 1]FIGURE 1 | Missing rate and maximum annual missing days of daily precipitation (A,B), surface air temperature [SAT; (C,D)], and relative humidity [RH; (E,F)] at 1,776 stations over China during 1961–2019.
Considering the complex topography and diverse climate types, we apply the region divisions from Zhang and Lin (1985) to subdivide China into eight regions. The homogenous climatic regions were determined based on heat and moisture and have been widely used in previous studies (Xiao et al., 2013; Gu et al., 2017). The eight regions are West arid zone (WAZ), East arid zone (EAZ), Northeast China (NEC), North China (NC), Central China (CC), South China (SC), Southwest China (SWC), and Qinghai–Tibet Plateau (QTP) (Figure 3A). Each region shares a homogenous climatic feature.
Identification of HW and HP Events
The heat index (HI, in °C) and wet-bulb temperature (TW, in °C) are the two most widely used indicators to evaluate moist heat stress (Kang and Eltahir, 2018; Li et al., 2018; Luo and Lau, 2018; Kong et al., 2020; Zhang and Villarini, 2020; Vicedo-Cabrera et al., 2021). HI is calculated based on the Rothfusz regression (https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml):
[image: image]
When [image: image] and [image: image], Equation 1 is adjusted as:
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When [image: image] and [image: image], Equation 1 is adjusted as:
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When [image: image] calculated as mentioned before is less than [image: image], Equation 1 is adjusted as:
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It should be noted that the HI and SAT in Eqs. 1–4 are in Fahrenheit degrees ([image: image]). The estimated HI is then converted to °C.
The TW is calculated as follows (Stull, 2011):
[image: image]
In Eqn. 5, TW and SAT are in °C. Both HI and TW include temperature and humidity. Hot and humid conditions lead to high HI and TW [Figure 2; (Li et al., 2018; Luo and Lau, 2018)]. Compared with TW, HI is more sensitive to change in SAT, especially under high humidity conditions (Figure 2).
[image: Figure 2]FIGURE 2 | Relations between heat index [HI; (A)]/wet-bulb temperature [TW; (B)] and SAT under different RH levels. The relations are computed from our data and are also shown in previous studies (Li et al., 2018; Luo and Lau, 2018).
The 95th percentile of daily HI/TW during the period 1961–1990 is used as the threshold for HW identification. A day with HI/TW above the threshold is defined as a hot and humid day, and consecutive hot and humid days (>= 3 days) are defined as an HW event. HW events identified in HI/TW are noted as HW_HI/HW_TW. Both HW_HI and HW_TW mainly occur in summer (June–August; Supplementary Figures S1, S2). Therefore, we focus on the HWHP events in summer.
HP events in China are defined as the days with total 24-h precipitation above 50 mm in the China Meteorological Administration (http://www.cma.gov.cn/2011xzt/kpbd/rainstorm/2018050901/201805/t20180509_468007.html). However, this definition would lead to few HP events identified in northwestern China. Considering the regional differences in precipitation amounts, we take the 95th percentile of non-zero precipitation during the period 1961–1990 as the threshold and identify HP events in the same way that we used to identify HW events.
Identification of Sequential Heatwave–Heavy Precipitation Events
An HW_HI/HW_TW event occurring prior to an HP event, within a given time window, is defined as an HWHP event (noted as HWHP_HI and HWHP_TW, respectively) (Lombardo and Ayyub, 2015; Zhang and Villarini, 2020; Chen et al., 2021; Liao et al., 2021; Wu et al., 2021; You and Wang, 2021; Gu et al., 2022; Ning et al., 2022). The window is chosen as 3 days in this study, which is the same as previous studies (Lombardo and Ayyub, 2015; Zhang and Villarini, 2020; Chen et al., 2021; Liao et al., 2021; Wu et al., 2021; You and Wang, 2021; Gu et al., 2022; Ning et al., 2022). In the following analyses, we also examine whether our results are sensitive to the choice of the time window (e.g., 2, 4, and, 7 days).
The co-occurrence of HW and HP can occur by chance and be described as a Poisson process. We use event coincidence analysis (ECA) to test whether the encounter of both event types is by chance or not (He and Sheffield, 2020; Zhang and Villarini, 2020):
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where [image: image] and [image: image] are the number of HP and HW events within a time window [image: image], respectively; T is the length of the summer days (i.e., 92 days); K is the number of HWHP events; [image: image] is a certain temporal window that represents time uncertainty of HWHP; [image: image] is the time window (set as 3 days in this study); P is the probability density and is given by a binomial distribution with [image: image] trials. The p-value of an empirically observed number of [image: image] can be estimated as (He and Sheffield, 2020; Zhang and Villarini, 2020):
[image: image]
The lagged coincidence between HW and HP is significantly different from a Poisson process if the p-value is less than 0.05.
Spatial Autocorrelation, Temporal Trend, and Distribution Test
Moran’s I index is used to examine the spatial autocorrelation of HW, HP, and HWHP events (Moran, 1948; Moran, 1950; Alizadeh et al., 2020). The value of Moran’s I is between -1 and 1. Positive/negative Moran’s I values indicate a spatial clustering of similar/dissimilar values. The non-parametric modified Mann-Kendall method (Hamed and Ramachandra Rao, 1998) is used to test the presence of trends in the frequency of these events. The two-sample Kolmogorov–Smirnov (K–S) test is used to detect whether there is a significant difference in the empirical cumulative distribution functions (CDFs) of these events between two periods (Alizadeh et al., 2020).
Attribution of Changes in Sequential HWHP Events
The relative contributions of HW and HP to changes in HWHP events are estimated by using partial least squares regression (PLSR) (Wold et al., 2001; Luedeling et al., 2009; Guo et al., 2013). The variable importance in the projection (VIP) in PLSR indicates the relative importance of HW and HP to the changes in HWHP. Variables with a VIP value >1 are more important for HWHP changes. The PLSR model goodness of fit is evaluated by the coefficient of determination (R2).
RESULTS AND DISCUSSION
Contributions of HWHP Events to Total HP Events
We identify HWHP events during the summer of 1961–2019 by setting the lagged time as 3 days (Figure 3). About one-third of HP events are preceded by HWs over China (i.e., 33.30% for HWHP_HI and 32.38% for HWHP_TW; Figures 3A,C). This percentage is generally consistent with the percentage found in the Central United States, where 28.9% of floods on average are preceded by HWs (Zhang and Villarini, 2020). One HWHP event for every three HP events on average indicates that the potential disaster risks of these “preconditioned” events are unneglectable in China. The ECA method indicates that the occurrences of HWHP_HI/HWHP_TW events are not due to chance in 48.25%/60.19% of stations at the 0.05 significance level, suggesting that the lagged coincidence of HW and HP events is statistically associated at a fair number of stations. These stations are mainly found in northern China, including North China, Northeast China, and the East arid zone. Supplementary Figures S3, S4 reveal that the spatial patterns of HWHP events are consistent when setting the time lag between events as 2, 4, or 7 days, and when choosing 50 mm as the threshold to define HP events.
[image: Figure 3]FIGURE 3 | Fractional contributions of heatwave–heavy precipitation (HWHP) events to total heavy precipitation (HP) events in summer during 1961–2019. Heat index-based HWHP events are noted as HWHP_HI (A,B); wet-bulb temperature-based HWHP events as HWHP_TW (C,D). In (A) and (C), colored dots indicate the fractional contributions, and large dots indicate that lagged coincidence between HW and HP is significantly different from a Poisson process (p < 0.05). In (B) and (D), “[image: image] contribution” indicates the total fractional contribution change from 1961 to 2019 (i.e., the slope of the trend in annual fractional contributions multiplied by 59, the length of the period). China is subdivided into eight regions [Zhang and Lin, 1985]: western arid zone (WAZ), East arid zone (EAZ), Northeast China (NEC), North China (NC), central China (CC), South China (SC), Southwest China (SWC), and Qinghai–Tibet Plateau (QTP). The bar plots in a and c are the average fractional contributions in China and in each region.
Fractional contributions of HWHP to HP events are unevenly distributed in space. Stations with high fractional contributions are mainly located in North China (43%/37% for HWHP_HI/HWHP_TW), Northeast China (40%/34%), and the East arid zone (39%/34%), while low values are found in central China (23%/24%), South China (28%/30%) and the West arid zone (22%/22%) (Figures 3A,C). The spatial patterns of fractional contributions are consistent with those shown in previous studies (Wu et al., 2021; You and Wang, 2021; Ning et al., 2022). The linkage between hot–humid HW and HP events is preliminarily explained as follows: HWs warm the atmosphere (characterized by high sensible heat) and provide abundant vapor (high specific humidity), and then enhance the atmospheric instability (large convective available potential energy), which favors the formation of HP (Zhang and Villarini, 2020; You and Wang, 2021). In northern China, rainstorms are usually tied to the local concentration of humidity caused by non-uniform saturation (Yang et al., 2007; Gao et al., 2010). Warm–wet moisture gradually accumulates in the low-level atmosphere during HW events, and dry–cold air intrusions in the middle and upper levels enhance the vertical movement and cause strong convection (Shuai and Shou-Ting, 2006; Shuai et al., 2009), resulting in moisture convergence at the bottom and divergence at the top (Yu et al., 2011; Shouting et al., 2018). The rainstorms in central China and South China are associated with different generation mechanisms from northern China (Shouting et al., 2018). In South China, tropical cyclones play an important role in causing HP events (Zhang et al., 2017; Wang et al., 2020), and in central China, HP events are mainly caused by the Meiyu front (Ding and Chan, 2005). The two weather systems reduce the association between HW and HP events, leading to lower fractional contributions of HWHP to HP events in the two regions. You and Wang (2021) compared the convective available potential energy (CAPE), convective inhibition (CIN), and vertically integrated moisture divergence (VIMD) in the 1 day prior to the HP events between with HW and without HW. They found that both northeastern and southeastern parts of China experienced higher CAPE in HP with HW events than that without HW events, while the CIN in southeastern China is also higher, suppressing the moist convection in this region despite higher CAPE. Because rainstorm generation mechanisms vary in different regions of China, the physical processes explaining the HWHP events should be further explored by considering local weather conditions. We should also keep in mind that a HWHP event may also rise by chance, an HP event may coincidently occur after an HW event (without cause and effect), such as the events that occurred at the stations not passing the ECA test (Figures 3A,C).
In comparison with the spatial pattern of the fractional contributions, more striking is the significantly increasing trends, showing that more and more HP events are linked with HW events in each year over the past 6 decades (Figures 3B,D). Specifically, the fractional contribution of HWHP_HI/HWHP_TW in China increased from 27%/29% to 40%/36% during 1961–2019, respectively. These increasing trends are detected in all sub-regions, especially for HWHP_HI, and in the western arid zone (from 12%/15% to 33%/29%) and the Qinghai–Tibet Plateau (from 26%/28% to 50%/42%).
Spatiotemporal Changes in HWHP Events
We therefore examine temporal trends in the frequency of HW, HP, and HWHP events (Figure 4; Table 1). China is experiencing more frequent moist heat stress extremes (0.32 event/decade and 0.14 event/decade for HW_HI and HW_TW, respectively, correspondingly, p < 0.05 and p < 0.1) (see inset panels with trend line in Figures 4A,B); and also see (Luo and Lau, 2018; Kong et al., 2020). However, this increase is not significant in North China (0.11/-0.01 event/decade) and central China (0.13/−0.08 event/decade) (Figures 4A,B), and the increase is weaker in TW-based HWs. This difference in North and central China may be associated with the slight increase in air temperature and the significant decrease in relative humidity in summer in the two regions (Supplementary Figure S5). The widespread decreases in relative humidity (Supplementary Figure S5) mean that the increases in HW_TW are not as intense as the increases in HW_HI since TW is more sensitive to these decreases in relative humidity than HI (see the exponential/linear relations between HI/TW and SAT under different relative humidity levels; Figure 2). HP events have become more frequent over China (0.048 event/decade, p < 0.05; Figure 4C). Central China, South China, and the western arid zone have witnessed increasing frequencies of HP events of 0.17, 0.09, and 0.11 event/decade, respectively, (p < 0.05, 0.1, and 0.05), while North China and the East arid zone on the contrary have seen decreases (of −0.05 and −0.01 event/decade, respectively). The spatial pattern of change in HP events is consistent with the pattern found in previous studies (Ren et al., 2015; Ren et al., 2016; Gu et al., 2017).
[image: Figure 4]FIGURE 4 | Maps showing trends in the frequency of heat index-based HWs (HW_HI) (A), wet-bulb temperature-based HWs (HW_TW) (B), HP (C), HWHP_HI (D), and HWHP_TW (E). In (A–E), the line charts indicate the temporal changes in the frequency of these events over China. Correspondingly, the slopes of the trends are shown as bar plots in panel F.
TABLE 1 | Trends in the frequency of HW_HI, HW_TW, HP, HWHP_HI, and HWHP_TW in each region during 1961–2019.
[image: Table 1]Alongside these increases in the number of HWs and HP events over China, both HWHP_HI and HWHP_TW events have also significantly increased by 0.08 event/decade (i.e., 45.25% from 1961 to 2019) and 0.05 event/decade (23.97%), respectively, (p < 0.05). The regions with widespread increases in HWHP events are the western arid zone (0.09/0.08 event/decade; 117.98%/94.61%), Qinghai–Tibet Plateau (0.18/0.12 event/decade; 70.31%/49.07%), Northeast China (0.08/0.02 event/decade; 51.61%/27.67%), Central China (0.01/0.07 event/decade; 71.35%/50.91%), and South China (0.10/0.09 event/decade; 59.35%/48.67%) (Figures 4D,E; Table 1). The spatial pattern of changes in HWHP events is consistent with that of HW events (Figures 4D,E), implying that trends in HWs play a more important role in the changes in HWHP over China. However, HWs are not always the dominant driver of changes in HWHP events. For example, central China has no changes in HWs but faces increasing threats of HWHP events because of the increase in HP events. The most prominent increases of HWHP events in central China are found in the Yangtze River Delta, a highly urbanized area (Figures 4D,E). Urbanization on the one hand enhances rainstorms (Jiang et al., 2020; Wang et al., 2021) and on the other hand accelerates the increases in intense heat stress (Luo and Lau, 2018; Kong et al., 2020), resulting in an increased probability of lagged coincidence between HW and HP. Wu et al. (2021) further quantified the contribution of urbanization to increased HWHP events in South China and indicated that the contribution of urbanization is 40.91%.
We also notice that the temporal evolution of HW, HP, and HWHP events is not a monotonous trend but exhibits a step-like change (see the line graphs in Figures 4D,E). The frequency of these events fluctuates at a higher level after the year 2000. Therefore, we evaluate the changes of average frequencies during 2000–2019 relative to 1961–1980 (Figure 5). The spatial change patterns of these events are consistent between Figures 4, 5, indicating that the increases in these events are not sensitive to the methods of detection.
[image: Figure 5]FIGURE 5 | Maps showing changes in average frequencies of HW_HI (A), HW_TW (B), HP (C), HWHP_HI (D), and HWHP_TW (E) during 2000–2019 relative to 1961–1980. In (A–E), large dots indicate that the changes are significant at the 95% level, as detected by the Student’s t test. Red and blue curves are the empirical cumulative distribution functions (CDFs) of the percentage of stations experiencing an event (HWs/HP/HWHP) synchronously during 2000–2019 and 1961–1980, respectively. Correspondingly, trends in the annual percent of stations during 1961–2019 are shown as bar plots with a blue border in panel (F). Trends in Moran’s I index of these events are shown as bar plots with a red border.
Spatial Clustering and Changes in the Extent of HWHP Events
In addition to the frequency of these events, any spatial clustering and/or changes in the extent of HWHP events is likely to affect the extent of associated disasters (Fischer et al., 2013). Changes in the spatial extent of these events during 2000–2019 relative to 1961–1980 are estimated by changes in the empirical CDFs of the percentages of stations that have an event (HW, HP, or HWHP) synchronously on the same day; (see Figures 5A–E). The upper tail of the CDF for HW and HWHP events moves significantly to the right during 2000–2019, suggesting that China has witnessed spatial expansions of HWs and HWHP events in recent 20 years. These spatial expansions are confirmed by the significantly increasing trends in the annual percentage of stations experiencing a given type of event (Figure 5F; Table 2). These spatial expansions can be observed in most regions, except for North China (Figures 6b1–b8).
TABLE 2 | Trends in the percent of stations in concurrent HWs/HP/HWHP synchronously in each region during 2000–2019.
[image: Table 2][image: Figure 6]FIGURE 6 | Changes in HWs, HP, and HWHP events in each region during 1961–2019. Temporal evolutions of the regional average frequency of HW_HI, HW_TW, HP, HWHP_HI, and HWHP_TW are shown in (A1–A8). Panels (B1–B8) are the same as Figure 5F but for each region.
The spatial clustering of these events is evaluated by Moran’s I index (Figure 5F; Table 3). China and most regions show no trend in Moran’s I for HP events. However, the spatial clustering of HW_HI and HWHP_HI shows significantly positive trends with increases in Moran’s I index of 0.07 and 0.03 from 1961 to 2019, respectively. This implies that HI-based HWs are the major contributor to the spatial clustering of HWHP_HI events. We also notice that there are stark differences in the changes of Moran’s I index among the different regions of China (Figures 6b1–b8). The western arid zone and the Qinghai–Tibet Plateau are the two regions where changes in Moran’s I index are consistent with those found in China. Overall, the areas with concurrent HWHP events occurring simultaneously are expanding and tend to be clustering, especially for HI-based HWHP events.
TABLE 3 | Trends in Moran’s I index of HW_HI, HW_TW, HP, HWHP_HI, and HWHP_TW in each region during 1961–2019.
[image: Table 3]Since both HWs and HP affect the spatial and temporal features of HWHP events, we employ the PLSR method to quantify the relative contributions of HWs or HP events to HWHP changes in each region (Table 4). The attribution results show that HWHP changes can be classified into three categories: HWHP events driven by HWs, events driven by HP, and events driven by both HWs and HP. In the West arid zone, changes in HWHP_HI/HWHP_TW events are mainly driven by HP events with a relative contribution of 57.02%/54.60%, respectively, (Table 4; also see Figure 6a1 for significant increases in both HP and HWHP events in recent decades). In North China, there are no trends in HW and HP; they jointly lead to slight changes in HWHP events (Figure 6a4), and their relative contributions are almost half–half. In the other regions, HW tends to play a more important role in driving the HWHP events. South China for example is a typical region where HW is the dominant driver of the increases in HWHP events (Figure 6a6) with a relative contribution of more than 60% (Table 4). Chen et al. (2021) found the increased sequential flood-heatwave events across China and indicated that increased HW events dominate the increased compound events. Gu et al. (2022) projected increases in bivariate compound flood-heatwave hazards globally under future warming and attributed these increases to enhancing HW events.
TABLE 4 | Attribution of the changes in HWHP events to HW and HP based on the partial least squares regression (PLSR) method.
[image: Table 4]CONCLUSION
Sequential heatwave–heavy precipitation (HWHP) events can amplify the damages caused by individual heatwaves (HWs) and heavy precipitation (HP) events. Herein, we show that HP events preceded by moist HWs [identified from the heat index (HI) and wet-bulb temperature (TW), respectively] account for one-third of all summer HP events over China. The fractional contribution of HWHP to HP events is increasing both in China and in all sub-regions during 1961–2019. High (low) fractional contributions are found in North China, Northeast China, and East arid zone (central China and South China). China is experiencing significant increases in HWHP events with increasing rates of 45.25 and 23.97% for HI- and TW-based events, respectively. The most prominent increases in HWHPs are found in central China (with increases of 71.35 and 50.91% over 1961–2019 as measured by HWHP_HI and HWHP_TW, respectively). In the last 2 decades, the areas with concurrent HWHP events occurring synchronously have been expanding. In addition, we find the spatial clustering of concurrent HWHP events has increased; further work could assess changes in the contiguous spatial extent of individual events, and how they might evolve in the future with climate change. As HWHP events can put social system services and public health at risk, mitigation measures could be developed to alleviate the potential damages caused by increasing HWHP events.
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Background: Existing evidence suggests that mumps epidemics, a global public health issue, are associated with meteorological factors and air pollutants at the population scale. However, the interaction effect of meteorological factors and air pollutants on mumps remains underexplored.
Methods: Daily cases of mumps, meteorological factors, and air pollutants were collected in Ningxia, China, from 2015 to 2019. First, a distributed lag nonlinear model (DLNM) was employed to assess the confounding-adjusted relationship between meteorological factors, ambient air pollutants, and mumps incidences. According to the results of DLNM, stratification in both air pollutants and meteorological factors was adopted to further explore the interaction effect of particulate matter less than or equal to 2.5 μm in aerodynamic diameter (PM2.5) and ground-level ozone (O3) with temperature and relative humidity (RH).
Results: We reported significant individual associations between mumps incidences and environmental factors, including temperature, relative humidity, PM2.5, and O3. Evident multiplicate and additive interactions between meteorological factors and PM2.5 were found with interaction relative risk (IRR) of 1.14 (95%CI: 1.01, 1.29) and relative excess risk due to interaction (RERI) of 0.17 (95%CI: 0.02, 0.32) for a moderate level of temperature at 12°C, and IRR of 1.37 (95%CI: 1.14, 1.66), RERI of 0.36 (95%CI: 0.11, 0.60) for a high level of temperature at 20°C, respectively. These results indicated that PM2.5 and temperature have a significant synergistic effect on the cases of mumps, while no interaction between relative humidity and PM2.5 is observed. Regarding O3 and meteorological factors (temperature = 12°C, 20°C), IRR and RERI were 1.33 (95%CI: 1.17, 1.52) and 0.30 (95%CI: 0.16, 0.45), 1.91 (95%CI: 1.46, 2.49) and 0.69 (95%CI: 0.32, 1.07), respectively. And IRR of 1.17 (95%CI: 1.06, 1.29), RERI of 0.13 (95%CI: 0.04, 0.21) for a middle level of relative humidity at 48%.
Conclusion: Our findings indicated that meteorological factors and air pollutants imposed a significantly lagged and nonlinear effect on the incidence of mumps. The interaction between low temperature and O3 showed antagonistic effects, while temperature (medium and high) with PM2.5 and O3 presented synergistic effects. For relative humidity, the interaction with O3 is synergistic. These results provide scientific evidence to relevant health authorities for the precise disease control and prevention of mumps in arid and semi-arid areas.
Keywords: meteorological factors, pollutant, mumps, interactive effects, China
1 INTRODUCTION
Mumps is an acute respiratory infection caused by the mumps virus (MuV), which occurs in children and adolescents characterized by swelling of the parotid or other salivary glands (Hviid et al., 2008). The onset of mumps presents a definite seasonal variation, with two peaks in April–July, and November–January (Hu et al., 2014; Su et al., 2016). The seasonality of mumps suggests that meteorological factors possibly affect the occurrence of the disease. Several studies have also indicated a strong association between mumps and meteorological factors (Hu et al., 2018; Yu et al., 2018; Wu et al., 2020; Zhou et al., 2020). For example, an investigation in Guangzhou in 2014 (Yang et al., 2014) applied DLNM to estimate the non-linear and lagged effects simultaneously to explore the influence of meteorological factors on the onset of mumps and found a non-linear relationship between meteorological factors and the occurrence of mumps, except for sunshine hours. A study in Taiwan discovered that there is an inverse V-shaped relationship between the incidence curve of mumps and temperature as a whole (Ho et al., 2015). Yu et al. (2018) found that temperature and wind speed exerts a significant impact on the incidence of mumps in Guangzhou. In addition, recent studies showed that oxidative stress and inflammation may be the mechanisms of air pollution-induced health effects on respiratory diseases. Oxidative stress can trigger redox-sensitive pathways that lead to different biological processes such as inflammation and cell death (Maura and Elisabetta, 2011). Some results found that the meteorological factors were significantly associated with the incidence of Mumps in Guangzhou (Lu et al., 2019), and the authors explained that for relative humidity, water in the droplets evaporates quickly if the relative humidity is low. The longer the droplet with mumps viruses remains airborne, the easier it is for the mumps infection. These findings demonstrated that the onset of mumps is heterogeneous across cities due to the differences in meteorological and demographic factors.
In recent years, air pollution and climate change were becoming major environmental issues that threaten the health of people throughout the world. Existing epidemiological studies have shown that meteorological factors or air pollution are associated with mumps epidemics. For instance, a study in Wuhan found that exposure to nitrogen dioxide (NO2) and sulfur dioxide (SO2) was significantly associated with a higher risk of developing mumps (Hao et al., 2019). A study of multiple provinces in China indicates that there is a positive relationship between particulate matter (PM) and the incidence of mumps (Zhang and Zhu, 2021). World Health Organization (WHO) reported that around seven million people have been influenced by air pollution during the year worldwide, and almost 99% of the people are breathing air with pollutant levels which exceed the upper limit of WHO standards (WHO (World Health Organization), 2022). Despite the remarkable achievements of Chinese air pollution prevention and control, there are still more than 40% of cities where ambient air quality exceeds the standard (Ministry of Ecology and Environment of China, 2021) and leading to a progressive increase in associated morbidity and mortality of respiratory system disease (Song et al., 2017). Therefore, it is urgent for public health to explore the health influence of air pollution and the interaction effect with other meteorological factors on mumps.
Despite growing literature on the exposure of ambient air pollutants or meteorological factors and their individual associations with mumps, fewer studies explored the interaction between meteorological factors and air pollutants as well as the impacts on mumps (Du et al., 2019; Mokoena et al., 2020). Moreover, it is worth to be mentioned here that the related studies were most from plains, coastal, and tropics (subtropics) areas, and more efforts are needed to assess the association in different geographical regions such as arid and semi-arid areas. In this study, we evaluate the individual and interactive associations between air pollutants and meteorological factors on the risk of mumps using the daily time series data in Ningxia, China, from 2015 to 2019. These results may provide epidemiological evidence for understanding the patterns and environmental-associated risks of mumps in arid and semi-arid areas and may inform health authorities about the disease control and prevention of mumps in similar settings.
2 MATERIALS AND METHODS
2.1 Setting and Data
Ningxia is one of the provinces located in northwest China, with a resident population of 7.2 million as of 2020. In this study, surveillance data of mumps cases in Ningxia from 1 January 2015 to 31 December 2019 were collected from the information management system of infectious diseases reports in China. The province-level daily meteorological data during the same period were collected from the National Meteorological Information Center (http://data.cma.gov), including daily average temperature, daily air pressure, daily mean relative humidity, and daily wind speed. The daily average of the concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ground-level ozone (O3), particulate matter less than or equal to 10 μm in aerodynamic diameter (PM10), and particulate matter less than or equal to 2.5 μm in aerodynamic diameter (PM2.5) in Ningxia from January 2015 to December 2019 were collected from the China Meteorological Science data sharing Service system (http://hz.hjhj-e.com/home). Meteorological and pollutant data were obtained from the average of four areas in Yinchuan, Shizuishan, Zhongwei, Wuzhong, and Guyuan cities, with missing rates of 3 and 1%, respectively, which were filled by using the average value of the same period, the spatial distribution of meteorological stations and pollutant monitoring stations were depicted in Supplementary Appendix Figure S1.
2.2 Statistical Analysis
2.2.1 Distributed Lag Nonlinear Model
As one of the widely adopted approaches in environmental epidemiology (Ge et al., 2018; Xu et al., 2019; Lu et al., 2020), DLNM is employed to assess the lagged and nonlinear association between environmental factors and the incidence of mumps by adjusting for the effects of known confounding variables, long-term trends, and seasonality. The Akaike information criteria (AIC) is used to choose the optimal degrees of freedom (df) (Gasparrini et al., 2010; Hu et al., 2019). The model is described as follows:
[image: image]
where [image: image] denotes the daily number of mumps cases diagnosed on the day [image: image], [image: image] is the intercept of the model, [image: image] is the cross-basis function modeling the non-linear lagged effects of the daily independent variable, [image: image] is the variable of interest, that is, the meteorological factor (temperature or relative humidity) or ambient air pollutant (PM2.5 or O3), which was considered in each model, and thus four different models were constructed, respectively. The term [image: image] is the effect of covariates, [image: image] is a natural cubic spline with three df, and [image: image] is the ith corresponding confounding factors that were not selected in [image: image] (wind speed, atmospheric pressure, sulfur dioxide, carbon monoxide, nitrogen dioxide, and particulate matter less than or equal to 10 μm in aerodynamic diameter). The [image: image] is a natural cubic spline function and [image: image] is the dummy variable to control long-time trend and seasonality, and the degree of freedom per year for time term was set as seven (Gasparrini et al., 2010; Hu et al., 2018; Hao et al., 2019). The term [image: image] is an indicator of the day of the week and holiday effect, which is included in the model to adjust for the effect of the weekly cycle and [image: image] is the regression coefficient. The term [image: image] denotes an indicator variable accounting for the school term effect. On a cross-basis, B-splines with three degrees of freedom were used to explore the effects of meteorological factors and ambient air pollutants. The median value of meteorological variables and the second level of China Environmental Quality Standard (GB3095-2012) (http://kjs.mee.gov.cn/hjbhbz/) as the reference value. Due to the lag effects, mumps cases for a given day [image: image] may be influenced by the meteorological and ambient air pollutants factors from prior days, thus, the term [image: image] is the maximum lag days, which is used to model the lagged effects of meteorological and air pollutants on the incidence of mumps. Considering the incubation period (Richardson et al., 2001) and illness progress (Hviid et al., 2008) of mumps, a time lag of up to three weeks was chosen in this study.
The model with the smallest AIC value was selected to establish the cumulative association of environmental parameters for mumps. The lags of meteorological factors and the lags of air pollutants (PM2.5 and O3) were both 21 days.
2.2.2 Interaction Analysis
Prior to fitting the Poisson regression, air pollutants (PM2.5, and O3) were dichotomized into binary variables from the DLNM model based on the turning points, which is lower than the turning point and higher than the turning point (Du et al., 2019; Mokoena et al., 2020; Pan et al., 2020). Consequently, PM2.5 and O3 were transformed as PM2.5 = 0 (if PM2.5<=turning point) and PM2.5 = 1 (if PM2.5 > turning point), O3 = 0 (if O3>turning point) and O3 = 1 (if O3<=turning point). Similarly, the meteorological factors including temperature (T), relative humidity (RH) were divided into binary variables according to quartiles (low quartile, Median, and upper quartile). The interaction model was constructed as follows:
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According to Poisson regression, we calculated the relative risk from the regression coefficient estimates, which are denoted by RR01, RR10, and RR11 for the relative risk when T (or RH) = 0 and PM2.5 (or O3) = 1, the relative risk when T (or RH) = 1 and PM2.5 (or O3) = 0, and the relative risk when T (or RH) = 1 and PM2.5 (or O3) = 1, respectively. Then, the IRR (interaction relative risk) and RERI (relative excess risk due to interaction) were calculated based on the multiplicative and additive.
Model of interaction theory (Austin et al., 2013) as follows:
[image: image]
No interaction was observed when IRR = 1 or RERI = 0, synergistic interaction when IRR > 1 or RERI > 0, and antagonistic interaction when IRR < 1 or RERI < 0.
To further examine the interactive effect of the meteorological and pollution variables, the response surface methodology (RSM) was conducted to evaluate the combined effects of meteorological and air pollutants on the mumps cases based on the generalized additive model (GAM) (Myers et al., 2004; Du et al., 2019).
All statistical analyses were carried out using R software (version 4.0.4) (The R Foundation for Statistical Computing, Vienna, Austria) with packages of “ggpairs”, “splines”, “dlnm”, “glm”, “epiR”, and “mgcv”. All p-values were two-sided, and statistical significance was claimed when p < 0.05.
2.2.3 Subgroup Analysis
Studies have shown that people under age of 15 are at high risk of mumps, and schools and nurseries are the main places for mumps outbreaks, age was previously reported to be a risk factor for mumps (Leah et al., 2021). Thus, subgroup analysis by 0–4 years, 5–14 years and over 15 age of years was performed to examine the effect of age disparities on the interaction effect of meteorological factors and ambient air pollutants on mumps incidences.
2.3 Sensitivity Analysis
To check the sensitivity of DLNM statistics results, we performed the following sensitivity analysis respectively. First, we changed the degree of freedom for meteorological factors (relative humidity, temperature), air pollutants (PM2.5, O3), and time from 2 to 9.
3 RESULTS
3.1 Descriptive Analysis
Tables, 1, 2 present the characteristics of environmental factors and mumps cases from January 2015 through December 2019. According to GB3095-2012 standards, the annual average concentrations of PM2.5 (40.78 μg/m3) and PM10 (98.62 μg/m3) exceeded China’s ambient air quality secondary standards (35 μg/m3, 75 μg/m3), while the other pollutants (SO2, NO2, O3, CO) are within the permissible limits (60 μg/m3, 40 μg/m3, 160 μg/m3 and 4 mg/m3). The daily average values of temperature, relative humidity, wind speed, air pressure, and a number of cases in the Ningxia area were 10.39 °C, 49.66%, 1.99 m/s, 869.90 hpa, and 3.63, respectively.
TABLE 1 | Descriptive analysis of environmental factors in Ningxia, 2015–2019.
[image: Table 1]TABLE 2 | Descriptive analysis of mumps cases in Ningxia, 2015–2019.
[image: Table 2]Supplementary Appendix Figure S2 shows the time series of daily cases of mumps, meteorological factors, and air pollutants from 1 January 2015 to 31 December 2019. We observed that mumps cases were distributed annually in each season, with a slightly higher incidence during summer than in winter. The concentrations of air pollutants had seasonality and were significantly higher in winter than that in summer, and presented a marked downward trend over time. Moreover, Supplementary Appendix Figure S3 presents the correlation coefficient matrix and scatter plot between mumps cases and part of the environmental variables of concern.
3.2 Distributed Lag Non-linear Models
As shown in Figure 1, the relationship between meteorological factors (temperature and relative humidity) and air pollutants (PM2.5 and O3) in relation to mumps cases. The association between risk of mumps and temperature has a gradual upward trend. Meanwhile, though not statistically significant, a U-shaped curve with a trough (50%) was observed for relative humidity. For PM2.5 and O3, approximate inverted shape S were observed, with the first minimum at 47µg/m3 and 86 μg/m3, respectively. Accordingly, we divided meteorological factors (temperature and relative humidity) and pollutants (PM2.5, O3) into binary variables based on quartiles or DLNM turning points as cutoff. One group is composed of three levels of temperature (low, moderate, high), which combined with two levels (low and high) for two air pollutants (PM2.5 and O3), generated 12 categories (3 [image: image] 2 [image: image] 2). Another 12 categories (3 [image: image] 2 [image: image] 2) were also defined, representing the combinations of relative humidity exposure (low, moderate, high) and PM2.5 exposure (low and high) as well as relative humidity exposure (low, moderate, and high) and O3 (low and high).
[image: Figure 1]FIGURE 1 | Plot of cumulative RR of mumps by environmental factors in Ningxia, 2015–2019. (A) For PM2.5; (B) for O3; (C) for temperature; and (D) for relative humidity.
3.3 Interaction Analysis
Table 3 shows the results of the interaction effect between air pollutants and meteorological factors on mumps. For PM2.5 and O3, the first minimum at 47µg/m3 and 86µg/m3 were taken as the turning points based on DLNM results. The multiplicative and additive interaction effects were generally consistent among for the same pair of meteorological factor and pollutant. Evident multiplicative and additive interactions between meteorological factors and PM2.5 were found with IRR of 1.14 (95%CI: 1.01, 1.29) and RERI of 0.17 (95%CI: 0.02, 0.32) for moderate level of temperature at 12°C, and IRR of 1.37 (95%CI: 1.14, 1.66), RERI of 0.36 (95%CI: 0.11, 0.60) for high level of temperature at 20°C, respectively. These results indicated that PM2.5 and temperature have a significant synergistic effect on the cases of mumps, while no interaction between relative humidity and PM2.5 is observed. Regarding O3 and meteorological factors (temperature = 12°C, 20°C), IRR and RERI were 1.33 (95%CI: 1.17, 1.52) and 0.30 (95%CI: 0.16, 0.45), 1.91 (95%CI: 1.46, 2.49) and 0.69 (95%CI: 0.32, 1.07), respectively. And IRR of 1.17 (95%CI: 1.06, 1.29), RERI of 0.13 (95%CI: 0.04, 0.21) for middle level of relative humidity at 48%. This demonstrated that temperature and relative humidity interact with O3 on the risk of mumps synergistically.
TABLE 3 | Additive and multiplicative interactive analysis between meteorological variables and air pollutants on mumps.
[image: Table 3]In addition, as shown in Figure 2, the estimated number of mumps served as the response variable, bivariate response surface analysis appeared nonlinearly that was also verified that the interactive effect of air pollutants (PM2.5, O3) and meteorological factors (relative humidity, temperature) were non-linear and joint association with mumps.
[image: Figure 2]FIGURE 2 | Bivariate response surfaces of meteorology and air pollutants in Ningxia, China, 2015–2019. (A) For temperature and PM2.5; (B) for relative humidity and PM2.5; (C) for temperature and O3; and (D) for relative humidity and O3.
From the sensitivity analysis, our findings were consistent in similar scale and same sign, including the alternative degree of freedom of PM2.5 and O3 from 2 to 9 (see Supplementary Appendix Figure S4) and alternative degree of freedom of time variable (for long-term trend and seasonality) from 2 to 9 (see Supplementary Appendix Figure S5). The non-linear associations between PM2.5 (O3, temperature and relative humidity) and Mumps appeared consistent across a wide range of model assumptions, which implies the robustness of our main findings. In addition, these results were still clear and robust when change the time to character the long-time trend and seasonality.
4 DISCUSSION
This study explored the effects of meteorological factors and air pollutants on mumps by constructing a DLNM model. The time-series plots indicated that meteorological factors and air pollutants showed evident seasonality, and the scatterplot matrix suggested mild but significant pairwise correlations between these variables. The results of the DLNM model showed a nonlinear relationship between all environmental factors and the cases of mumps, with some variability in the effect on the cumulative effect of mumps. We found that the exposure-response curves for temperature and mumps were approximately S-shaped, which was similar to previous studies (Yang et al., 2014). Compared with the low temperature, the risk of morbidity is higher at high temperatures, some epidemiological studies indicated that the participation of adolescents in physical activities decreases during cold periods and increases with warmer temperatures (Belanger et al., 2009), which increases the risk of mumps infection through more frequent contact among children and adolescents because of the appropriate temperature.
In terms of relative humidity, we found that lower relative humidity increased the risk of mumps, which differs from studies in Jining (Li et al., 2016) and Fujian (Hu et al., 2018). Some studies have shown that the survival of enveloped viruses is higher at low relative humidity. It may be attributed to the fact that viruses are more stable in dry conditions and can be easily preserved for a long time (Aguilera and Karel, 1997; Morgan et al., 2006).
In addition to meteorological factors, we included PM2.5 and O3 for exploring the potential impact of atmospheric pollutants on mumps and observed that the risk of morbidity was higher at high levels of PM2.5 while it decreased gradually with further increasing concentrations, whereas the risk of morbidity was found higher at lower O3 levels and declined progressively as concentration increased. Zhang et al.(Zhang and Zhu, 2021) found a positive association between PM2.5 and mumps cases. Pulmonary macrophages play an important role in binding and clearing of inhaled particulate matter (Arredouani et al., 2004; Arredouani et al., 2006), whereas exposure to PM2.5 decrease the antimicrobial activity of pulmonary macrophages (Migliaccio et al., 2013), which probably increased the body’s susceptibility for respiratory tract infections. Xie et al. (Xie et al., 2021) reported that Ozone exposure can increase the risk of mumps infection. A possible reason is that environmental pollutants can impair ciliary structure and function to impact mucociliary clearance, and can result in lower respiratory tract disease (Cao et al., 2020).
Regarding the interactive and subgroup analysis, we found significant interactions between PM2.5 and O3 with meteorological factors. Moderate and high temperatures increased the risk of mumps from high PM2.5. Regarding the lower level of O3, both moderate relative humidity and moderate and high temperatures increase the risk of mumps. The significant age disparities in the interaction effect of meteorological and air pollutants factors on mumps incidences were found in Table. 4, which was consistent with the result in Guangzhou (Lu et al., 2019). The 5–14 years age group is more susceptible to pollutants and meteorological factors than the other age groups. Thus, protective measures and health education for children and adolescents of 5–14 years may be an advantage to reduce the risks of Mumps. Some reasonable mechanisms may be responsible for this. On the one hand, high temperatures increase thermoregulatory as well as immune system stress (Garrett et al., 2009; Dittmar et al., 2014), which probably increases susceptibility to air pollution (Gordon, 2003). In contrast, the relative humidity could moderate the area of the air-liquid interface for virus accumulation, and the size and surface area of the aerosol is larger with increasing relative humidity, which might enhance the exposure of virus on the air-liquid interface area, in response to these mechanisms (surface tension, shear stress, and hydrophobically driven conformational rearrangements), the viruses partition on the surface of aerosols may be damaged (Casanova et al., 2010; Yang and Marr, 2012). On the other hand, the interaction of heat stress and air pollutants worsened respiratory distress (McCormack et al., 2016). Additionally, particulate matter and ozone can induce oxidative stress leading to apoptosis (Jaspers et al., 2005; Wang et al., 2010), and people with enhanced oxidative stress are more susceptible to virus infection (Ciencewicki et al., 2008). Nevertheless, it was argued that O3 could reduce the risk of respiratory infection that might be attributed to O3 exposure induced protective immunity of interleukin (IL)-33 against viral infection (Ali et al., 2018) while enveloped viruses probably lose infectivity after exposure to O3 by undergoing lipid peroxidation (Murray et al., 2008).
TABLE 4 | Subgroup interactive analysis between meteorological variables and air pollutants on mumps.
[image: Table 4]Although we explored some new aspects of the relationship between mumps and ambient factors. The study also contained several limitations. First, we selected the specific pollutants (PM2.5 and O3) in this study, while similar effects of other pollutants may be explored in further investigations. Second, due to the insufficient number of daily cases in each city for modeling analysis, we pooled the number of daily cases by province-level to achieve sufficient statistical power. Third, the new index should be considered to evaluate the optimal model in environmental epidemiology (Zhou et al., 2021). Finally, environmental factors were used for our analysis, which inadequately represents the real exposure levels of individuals, resulting in ecological fallacies.
This study possesses notable strengths, with the exploration of the interaction between air pollution and meteorological factors with mumps cases. Furthermore, differing from previous studies, we targeted specific pollutants rather than AQI for analysis to explore the interaction of different concentrations of pollutants and meteorological factors as well as the impact on mumps. It is crucial for further understanding of the impact of meteorological factors and air pollution on human health.
CONCLUSION
Higher temperature and lower relative humidity were found associating with higher incidence rate of mumps as well as high concentration of PM2.5 and low concentration of O3. Our study brought insights into the interactive association of air pollution and meteorological factors in relation to the risk of mumps. Simultaneously, understanding the interaction of air pollution and meteorological factors on mumps is essential for implementing precise and effective public health intervention strategies to predict the impact of changes in environmental factors in arid and semi-arid areas.
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Objective: This study aimed to predict the spatial and temporal distribution pattern of Oncomelania hupensis (O. hupensis) on a fine scale based on ecological niche models, so as to provide insights into O. hupensis surveillance.
Methods: Geographic distribution and environmental variables of O. hupensis in Suzhou City were collected from 2016 to 2020. Five machine learning algorithms were used, including eXtreme gradient boosting (XGB), support vector machine (SVM), random forest (RF), generalized boosted (GBM), and C5.0 algorithms, to predict the distribution of O. hupensis and investigate the relative contribution of each environmental variable. The accuracy of the five ecological niche models was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) with ten-fold cross-validation.
Results: Five models predicted that the potential distribution of O. hupensis was in southwestern areas of Wuzhong, Wujiang, Taichang, and Xiangcheng counties. The AUC of RF, XGB, GBM, SVM, and C5.0 algorithms were 0.8233, 0.8051, 0.7938, 0.7897, and 0.7282, respectively. Comparing the predictive results and the truth of O. hupensis distribution in 2021, XGB and GBM models were shown to be more effective. The six greatest contributors to predicting potential O. hupensis distribution included silt content (13.13%), clay content (10.21%), population density (8.16%), annual accumulated temperatures of ≥0°C (8.12%), night-time lights (7.67%), and average annual precipitation (7.23%).
Conclusions: Environmental factors play a key role in the spatial and temporal distribution pattern of O. hupensis. The XGB and GBM machine learning algorithms are effective and highly accurate for fine-scale prediction of potential O. hupensis distribution, which provides insights into the surveillance of O. hupensis.
Keywords: spatial and temporal distribution, ecological niche model, Oncomelania hupensis, Suzhou City, environmental factors
INTRODUCTION
Schistosomiasis japonica, a zoonotic parasitic disease caused by infection of the Schistosoma species, seriously endangers human health and socioeconomic development, which is one of the major global public health concerns (Song et al., 2016). China once bore the world’s highest burden of Schistosomiasis japonica (Zhou et al., 2021). Following concerted efforts for more than 70 years, remarkable achievements have been made in the national schistosomiasis control program of China (Cao et al., 2020; Yang et al., 2020). There were 74.89% of the total 450 schistosomiasis-endemic counties which achieved schistosomiasis elimination, 21.78% achieved transmission interruption, and 3.33% achieved transmission control by 2020 (Qian et al., 2019; Zhang et al., 2021). The shift moving toward schistosomiasis elimination suggests that the schistosomiasis control emphasis shifting from controlling the source of S. japonicum infections to risk monitoring, and the surveillance of the intermediate host O. hupensis distribution is the most important part for the monitoring of the schistosomiasis control risk (Gong et al., 2017).
Suzhou City was once highly prevalent for schistosomiasis in China with accumulative O. hupensis habitats of 414.33 km2. Following the long-term implementation of integrated interventions targeting schistosomiasis, including O. hupensis survey, O. hupensis control with chemical treatment and environmental improvements, the transmission of schistosomiasis has been effectively interrupted in Suzhou City, with more than 95% reduction in the area of O. hupensis habitats (Zhang, 2018; Li et al., 2019). Ecological environments play a key role in the distribution of O. hupensis snails, so there are still O. hupensis habitats found in local areas of the city, since the ecological environments have not completely changed. During the period from 2011 to 2020, a total of 0.683 km2 of O. hupensis habitats have been identified in Suzhou City, suggesting the long-term potential schistosomiasis transmission risk. O. hupensis survey is an important part of schistosomiasis control. The currently used massive sampling survey or census is time-consuming and high in cost, which is difficult for timely and accurate identification of the schistosomiasis transmission risk. Therefore, a rapid, accurate, and low-cost approach is urgently needed for the O. hupensis survey during the early stage of O. hupensis population spread, which may provide a valuable basis for O. hupensis control.
The ecological niche model, which combines environmental variables with known biological distribution, is effective in quantitatively describing the environmental factors associated with biological distribution and recognizing the environmental similarity with known distribution areas in the study regions through modeling based on machine learning algorithms, thus speculating the potential species distribution (Samy et al., 2018; Hu et al., 2020b). As an important tool in ecology and biogeography (Wang and Qiao, 2020), ecological niche models show a high ability for prediction of the geographical distribution of species, and have been widely used to map the temporospatial distribution of species (Mulieri and Patitucci, 2019; Wang et al., 2020; Gong Y. et al., 2021; Liu C. Y. et al., 2021; Ta et al., 2021; Yang et al., 2021), forecast the invasion of alien species (Wang et al., 2018), evaluate the effect of climate changes on species distribution (Liu et al., 2020), and identify the disease transmission risk (Alkishe et al., 2021). Liao’s study based on 16 ecological niche models found that climate changes were predicted to pose a great impact on the distribution of O. hupensis snails, resulting in north expansion and south shrinkage of the ecologically suitable O. hupensis habitats (Liao, 2011). Hu’s study based on 10 ecological niche models suggested that the areas at a high risk of schistosomiasis transmission were predicted to be mainly distributed in northern Heqing County, eastern Eryuan County, central Dali City, northeastern Weishan County, and northern Midu County (Hu et al., 2020a). This study aimed to predict the spatial and temporal distribution pattern of O. hupensis in Suzhou City using ecological niche models based on multiple environmental factors, so as to provide a basis for O. hupensis survey and control and assessment of the potential schistosomiasis transmission risk.
MATERIALS AND METHODS
Study Area
Suzhou City is located in the lower reaches of the Yangtze River, in which there are plenty of rivers and lakes, and the area of rivers, lakes, and marshlands consists of 36.6% of total land areas in the city. In addition, Suzhou City has a moderate climate, abundant rainfall, fertile soil, and widespread vegetation, which is very suitable for O. hupensis breeding (Wang and Qiao, 2020).
Data Collection
O. hupensis distribution data, which were retrieved from O. hupensis habitat report cards in Suzhou City from 2016 to 2020, were provided by the Suzhou Center for Disease Control and Prevention (SZCDC), including the longitude, latitude, and area of O. hupensis habitats. There were 32 O. hupensis habitats found from 2016 to 2020, and all data were managed using the software Microsoft Excel 2013.
The datasets of factors affecting O. hupensis distribution in Suzhou City were collected, including five categories of geographical and environmental factors, climatic factors, socioeconomic factors, soil index, and vegetation index (Table 1), and 19 variables: altitude (ALT), distance from watercourse (DST), gradient, annual accumulated temperature of ≥0°C (AAT0), annual accumulated temperature ≥10°C (AAT10), aridity (AR), moisture index (MI), average annual precipitation (Pa), average annual temperature (Ta), gross domestic product (GDP), night-time lights (NTL), population density (PD), clay content, sand content, silt content, normalized difference vegetation index for the 1st quarter (NDVI01), normalized difference vegetation index for the 2nd quarter (NDVI02), normalized difference vegetation index for the 3rd quarter (NDVI03), and normalized difference vegetation index for the 4th quarter (NDVI04). Climatic data, socioeconomic status, soil index, and vegetation index were captured from the Resource and Environment Science and Data Center, Chinese Academy of Sciences (CAS) (https://www.resdc.cn/), and the geographical and environmental data were retrieved from the WorldPop Data Portal (https://www.worldpop.org). The administrative division map of Suzhou City was downloaded from the National Geomatics Center of China (http://www.ngcc.cn/ngcc/). All raster data were re-sampled to the resolution of 500 m × 500 m using the software ArcGIS version 10.2 and cut to match the map of Suzhou City for the subsequent analysis.
TABLE 1 | Variables included for using the five ecological niche models for prediction of potential Oncomelania hupensis distribution in Suzhou City from 2016 to 2020.
[image: Table 1]Ecological Niche Modeling
Ecological niche models were used based on five machine learning algorithms using the Classification and Regression Training (CARET) package in the R version 3.6.1, including eXtreme gradient boosting (XGB), support vector machine (SVM), random forest (RF), generalized boosted (GBM), and C5.0 algorithms. O. hupensis habitats detected in Suzhou City from 2016 to 2020 and all background data were included in ecological niche models, and 80% were randomly selected as a training dataset, with 20% as a test dataset. The probability of O. hupensis distribution in each grid was estimated. The settings with a 0–30% probability of O. hupensis distribution were defined as non-suitable habitats, 30.1%–50% as low-probability suitable habitats, 50.1%–70% as moderate-probability suitable habitats, and 70.1%–100% as high-probability suitable habitats. The relative contribution of each variable to the prediction of potential O. hupensis distribution was estimated using the CARET package.
Assessment of the Predictive Accuracy of Ecological Niche Models
The accuracy of the five ecological niche models for the prediction of potential O. hupensis distribution was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) with ten-fold cross-validation. The mean values of AUC were calculated with a 95% confidence interval. The AUC mean value, ranging from 0 to 1, indicates the predictive accuracy of the ecological niche models, and an AUC value approaching 1 indicates higher accuracy (Hu, 2020).
Field Validation
A cross-sectional survey was conducted by means of systematic sampling and environmental sampling according to the Technical Guidelines for O. hupensis in China in Suzhou City in 2021, to investigate the longitude and latitude of O. hupensis habitats and O. hupensis density. The O. hupensis survey results were recorded in O. hupensis habitat report cards, and managed using the software Microsoft Excel 2013. The degree of concordance between the prediction results by ecological niche models and actual O. hupensis distribution was examined.
RESULTS
Current Distribution of O. hupensis Habitats
A total of 0.659 km2 of O. hupensis habitats were found in Suzhou City during the period from 2016 to 2020, which peaked in 2018 (0.499 km2). During the 5-year study period, the highest mean density of O. hupensis was seen in 2017 (0.068 O. hupensis snails/0.1 m2), followed by 2016 (0.044 O. hupensis snails/0.1 m2), and O. hupensis habitats were predominantly identified in three townships of Huqiu, four townships of Wuzhong, two townships of Xiangcheng, and one township of Taicang (Figure 1).
[image: Figure 1]FIGURE 1 | Distribution of Oncomelania hupensis in Suzhou City from 2016 to 2020.
During the 5-year period from 2016 to 2020, the largest O. hupensis habitats were identified in Wuzhong (0.252 km2), followed by in Xiangcheng (0.218 km2), Huqiu (0.183 km2), and Taichang (0.007 km2) (Table 2). O. hupensis habitats were found in Guangfu and Jinting townships of Wuzhong in each of the 5 years, and O. hupensis habitats were found in the Zhenhu Township of Huqiu and Dongshan Township of Wuzhong in 4 years, while O. hupensis habitats were detected in the Dongzhu Township of Huqiu during the past 3 years.
TABLE 2 | Distribution of Oncomelania hupensis in Suzhou City from 2016 to 2020.
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Fine-scale ecological niche models were used based on five machine learning algorithms to predict the probability of O. hupensis distribution in Suzhou City. Suitable habitats of O. hupensis were predicted in Wuzhong, Wujiang, Taicang, and southwestern Xiangcheng by all five ecological niche models, and high-probability suitable habitats were found in central Wuzhong (Dongshan and Jinting townships) (Figure 2). The SVM and C5.0 algorithms predicted high-probability suitable habitats of O. hupensis in northern Wuzhong (Guangfu Township) and southwestern Xiangcheng (Wangting Township), and GBM and XGB models predicted high-probability suitable habitats in northern Wuzhong (Guangfu, Xukou, Xiangshan, and Hengjing townships) and central Huqiu (Jinghu and Dongzhu townships). Overall, the suitable habitats of O. hupensis predicted by GBM and C5.0 algorithms were predominantly located in the southern half of Suzhou City, and across the city by XGB, SVM, and RF models.
[image: Figure 2]FIGURE 2 | Prediction of suitable habitats of Oncomelania hupensis using five ecological niche models.
The C5.0 algorithm predicted the largest suitable habitats of O. hupensis (8.71% of total areas in Suzhou City), followed by RF (5.09%), GBM (5.06%), XGB (3.31%), and SVM models (2.2%), and the XGB model predicted the largest high-probability suitable habitats (0.7% of total areas in Suzhou City), followed by GBM (0.69%), C5.0 (0.26%), SVM (0.12%), and RF models (0.11%) (Table 3).
TABLE 3 | Proportion of the predicted by low-, moderate-, and high-probability suitable habitats by five algorithms in total suitable habitats in Suzhou City (%).
[image: Table 3]Accuracy of Ecological Niche Models for Prediction of Potential O. hupensis Distribution
According to the ROC curve (Figure 3), the performance of prediction accuracy of these five models all showed a high accuracy (the AUC mean values > 0.7). The AUC mean values of RF, XGB, GBM, SVM, and C5.0 algorithms were 0.8233, 0.8051, 0.7938, 0.7897, and 0.7282, respectively. For the prediction performance of O. hupensis potential distribution in Suzhou City, the RF, XGB, and GBM indicated a higher accuracy among these five ecological niche models for the prediction of potential O. hupensis distribution.
[image: Figure 3]FIGURE 3 | Area under the receiver operating characteristic curve (ROC) of five ecological niche models. C5.0, C5.0 algorithm; GBM, generalized boosted model algorithm; RF, random forest algorithm; SVM, support vector machine algorithm; XGB, eXtreme gradient boosting algorithm.
Among the 19 variables, the six greatest contributors to the prediction of O. hupensis distribution included the silt content in soil, clay content, population density, annual accumulated temperatures of ≥0°C, night-time lights, and average annual precipitation (Figure 4).
[image: Figure 4]FIGURE 4 | Contributors to potential Oncomelania hupensis distribution.
The results from the response-curve analysis showed that the silt content of more than 40%, clay content of less than 28%, population density between 2000 and 3000 persons/km2, annual accumulated temperatures of ≥0°C between 55,500 and 56,500°C days, night-time lights of more than 10 nW/cm2/sr, and average annual precipitation between 11,250 and 12,000 mm3 were the most suitable habitats for O. hupensis breeding (Figure 5).
[image: Figure 5]FIGURE 5 | Response curve of the six greatest contributors to potential Oncomelania hupensis distribution.
O. hupensis survey was performed in current O. hupensis habitats and potential O. hupensis habitats predicted by ecological niche models in Suzhou City in 2021, and covered 83 townships (streets) and 1021 villages (communities) (Table 4). The O. hupensis survey covered an area of 14.825 km2, including 1.973, 1.856, 1.734, 0.171, 1.402, 0.582, 3.210, 0.050, 2.043, and 1.804 km2 in Huqiu, Wuzhong, Xiangcheng, Gusu, Wujiang, Industrial Park Region, Changshu, Zhangjiagang, Kunshan, and Taicang, respectively. A total of five O. hupensis habitats were found, which were located in Guangfu, Jinting, and Xiangshan townships of Wuzhong and Dongzhu and Zhenhu townships of Huqiu (Figure 2).
TABLE 4 | O. hupensis snail survey in 2021.
[image: Table 4]The forecast result of the C5.0 algorithm covered all these five habitats; however, only one habitat was located in the predicted high-probability suitable habitats, and the other four habitats were all located in predicted low- and moderate-probability suitable habitats. The predicted result of the XGB model covered four habitats, which were all located in the predicted high-probability suitable habitats. Three habitats were located in the predicted high-probability suitable habitats of the GBM model, with another approaching the predicted high-probability suitable habitats. In addition, RF and SVM models predicted only two habitats.
DISCUSSION
O. hupensis is the only intermediate host of S. japonicum (Burton et al., 2019), and the O. hupensis survey is the most important part of schistosomiasis transmission risk monitoring (Gong et al., 2017; Huang et al., 2021). O. hupensis population expansion presents a specific pattern, widely influenced by climate factors such as ambient temperature, precipitation, and distribution of the river system. It may peak 2–3 years after colonization of O. hupensis populations after invading a new environment with a comfortable climate. It is very difficult to accurately identify the distribution of O. hupensis populations using conventional O. hupensis survey methods, which requires a large number of manpower and material resources. Therefore, precise prediction of suitable O. hupensis habitats is of great significance for O. hupensis surveys.
In this study, using climatic and environmental variables, five machine learning algorithm models GBM, C5.0, XGB, RF, and SVM algorithms, predicted the potential distribution of O. hupensis in Suzhou City accurately, which may be used to guide and optimize O. hupensis surveys. The climatic and ecological variables, including temperature and precipitation, were usually considered to be the most important impact factors for the snail distribution and they play a decisive role in many big-scale studies (Gong et al., 2022). However, considering the difference in the microenvironment and it may affect the survival of the snail in a fine-scale study (Liu M.-M. et al., 2021), more environmental variables were picked up into machine learning algorithm models, including the silt content in soil, clay content in soil, population density, and night-time lights (Zheng et al., 2014; Gao et al., 2015), and they show a significant contribution role for the O. hupensis distribution prediction in this study. These variables may have a direct or indirect effect on snail survival in a small-scale environment (Lackey and Horrall, 2021), and therefore, the prediction of five ecological niche models all showed AUC values of >0.7 for the prediction of potential O. hupensis distribution in Suzhou City, indicating a high predictive accuracy.
In the present study, based on the prediction of potential O. hupensis distribution by ecological niche models, conducting more surveys in high-probability suitable habitats of O. hupensis and fewer surveys in low-probability suitable habitats may allow the greatest likelihood for identification of O. hupensis habitats with the least workload. The predicted moderate- and high-probability suitable habitats were predominantly located in central and northern Wuzhong (Dongshan, Jinting, Guangfu, Xukou, Xiangshan, and Hengjing townships), southwestern Xiangcheng (Wangting Township) ,and central Huqiu (Zhenhu and Dongzhu townships). According to the 2021 O. hupensis survey in Suzhou City, C5.0, XGB, and GBM models were found to have the greatest accuracy for the prediction of potential O. hupensis distribution. However, the C5.0 algorithm predicted the largest suitable habitats of O. hupensis (8.71% of total areas in Suzhou City), and only one of the five habitats with O. hupensis was located in the predicted high-probability suitable habitats. XGB and GBM models, which were also accurate in predicting the potential distribution of O. hupensis snails, seem more effective to improve the detection of O. hupensis and save manpower, material, and financial resources than the C5.0 algorithm. To compare the efficiency of six ecological niche models for the prediction of potential O. hupensis distribution Zheng (2021) calculated the AUC, accuracy, Kappa value, sensitivity, and specificity of the models, and the XGB model was found to show high accuracy, sensitivity, and specificity. In a recent study to estimate the AUC and true skill statistic (TSS) values of 10 ecological niche models, GBM, multivariate adaptive regression splines (MARS), and RF models were found to have better performance than other models (Hu, 2020). InGong’s study, to predict the transmission risk of visceral leishmaniasis in the extension region of Loess Plateau, China, nine ecological niche models were used and RF and GBM models were reported to have higher predictive values (Gong Y. F. et al., 2021). In addition, GBM and RF models were found to present the greatest accuracy for fine-scale mapping of O. hupensis diffusion in Shanghai, and the prediction results by GBM and RF models were almost in agreement with field O. hupensis surveys during the recent years, which is consistent with our findings. Besides the AUC, Kappa value, a new statistical metric named DISO (Distance between Indices of Simulation and Observation) was developed to evaluate the overall performance of different models (Hu et al., 2019; Zhou et al., 2021). DISO will be employed in our future study to measure the different models' performance.
The high-probability suitable habitats of O. hupensis predicted by the five ecological niche models all covered Jinting and Dongshan townships of Wuzhong County, and these two high-probability suitable habitats are located in Xishan Island in Taihu Lake and along the margin of Taihu Lake in Dongshan Township. Previous studies have shown that ecological restoration projects may cause the re-breeding of O. hupensis (Mulieri and Patitucci, 2019; Wang et al., 2020; Gong Y. et al., 2021). Therefore, these two high-probability suitable habitats of O. hupensis should be given much attention. Even though no O. hupensis were detected along the margin of Taihu Lake in Dongshan Township in 2021, much attention should be paid during the 2022 O. hupensis survey. In addition, the five ecological niche models all predicted large suitable habitats of O. hupensis in Wujiang. There are plenty of lakes and rivers in Wujiang, and the water regions cover 267 km2, accounting for 22.69% of total areas in Wujiang. On October 12, 2021, Wujiang was designated as a demonstration region of national ecological cultivation construction by the Ministry of Ecology and Environment of the People’s Republic of China. Although low-probability suitable habitats of O. hupensis were predicted in Wujiang, high attention should be given to O. hupensis breeding. In terms of other infection diseases, with the global warming, the environment has been changed significantly, which plays a key role for the occurrence, transmission and outbreak of the infection disease (Wang et al., 2021). One health theory was proposed to develop a new system including human health, environmental health and animal health (Yang 2021; Lu 2021; Yang 2022). It provides a new approach to investigate the infection diseases according to the one health concept in future.
This study has three innovations. First, there have been few reports pertaining to fine-scale prediction of potential O. hupensis distribution based on ecological niche modeling. Second, field O. hupensis surveys were performed to validate the predictive accuracy of ecological niche models in this study. Therefore, our study offers more real and objective assessment. Third, our data may provide insights into the optimization of O. hupensis surveys. However, the current study has some limitations. The impact of geographical barriers on O. hupensis diffusion was not included in ecological niche models. Currently, the definition of ecological niche is mainly based on the BAM diagram, where B indicates biotic niche, A indicates abiotic niche, and M indicates movement (Liao, 2011; Alkishe et al., 2021). The biotic niche and abiotic niche jointly determine the suitable habitats of species; however, geographical barriers may restrict species diffusion (Hu, 2020). For example, GBM and XGB models predicted the high-probability suitable habitats of O. hupensis in Pingjiang, Guanqian, and Taohuawu of Gusu. Although there are lots of rivers in these blocks, concrete hardening is given along the river banks and vegetation is scattered along the streets, which forms barriers to directly affect O. hupensis diffusion. The inclusion of river modification and urbanization construction into ecological niche models may improve the accuracy of prediction of potential O. hupensis habitats, which deserves further investigation. Further studies to include geographical barriers data into ecological niche models seem justified.
CONCLUSION
In this study, ecological niche models were used based on five machine learning algorithms, including eXtreme gradient boosting (XGB), support vector machine (SVM), random forest (RF), generalized boosted (GBM), and C5.0 algorithms, to predict the 2021 potential distribution of O. hupensis with data from 2016 to 2020 in Suzhou, China. Comparing the predictive results and the truth, XGB and GBM models showed more effectiveness in the fine-scale prediction of potential O. hupensis distribution, which provides insights into the surveillance of O. hupensis snails. Based on the results, conducting more surveys in high-probability suitable habitats of O. hupensis and fewer surveys in low-probability suitable habitats may allow the greatest likelihood for identification of O. hupensis habitats with the least workload.
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Extreme rainfall can be affected by various climatic factors such as the large-scale climate patterns (LCPs). Understanding the changing LCPs can improve the accuracy of extreme rainfall prediction. This study explores the variation trend of extreme rainfall in the middle and lower reaches of the Yangtze River Basin (MLRYRB) and the telecorrelation with four LCPs, namely WPSHI (Western Pacific Subtropical High Index), EAMI (East Asia Monsoon Index), ENSO (El Niño-Southern Oscillation) and PDO (Pacific Decadal Oscillation), through modified Mann-Kendall (MMK) analysis, Pearson correlation coefficient, wavelet coherence analysis (WTC) and improved partial wavelet analysis (PWC). Previous studies have ignored the interdependence between these climate indices when analyzing their effects on precipitation. This study introduces the improved PWC, which can remove the correlations between them and reveal the influence of a single LCP. The results show that: 1) extreme rainfall in the MLRYRB has an obvious increasing trend and has a significant correlation with the LCPs; 2) the LCPs have a significant cyclical relationship with extreme rainfall, which can be significantly affected by the intergenerational variation of the LCPs; and 3) the improved PWC can accurately reveal the influence of a single LCP. EAMI is the main influencing factor in the 1-year cycle, while WPSHI is the main influencing factor in the 5-year cycle. ENSO and PDO can always influence extreme rainfall by coupling WPSHI or EAMI.
Keywords: extreme rainfall, large-scale climate patterns, partial wavelet analysis, yangtze river, driving factor
1 INTRODUCTION
Due to climate change, the frequency and intensity of extreme weather events have increased. Extreme weather events will change the local characteristics of temperature and rainfall, posing a threat to natural systems. Rainfall is one of the most important climate variables, and its changes have an important impact on the local hydrological process and water resources management (Grimm and Tedeschi, 2008; Zhang et al., 2018; Ashcroft et al., 2019; Liu and Shi, 2019; Rao et al., 2020). The frequency increase in extreme rainfall often leads to more floods, which is one of the most serious water-related natural disasters. Since the 20th century, extreme rainfall has shown a significant and widespread increasing trend in most parts of the world (Chang et al., 2012; Syafrina et al., 2015; Shi et al., 2016), and more than 60% of floods are caused by extreme rainfall (Teegavarapu, 2012; Agilan et al., 2021). Extreme rainfall will have a huge impact on the local ecology, industry, and social economy, which has motivated more and more studies to emphasize the importance of extreme rainfall. However, the temporal and spatial distributions of extreme weather events in different regions are quite different (Sridhar et al., 2013; Weldegerima et al., 2018), normally, with different impact ranges, frequencies, durations, and severities (Swain et al., 2019; Fagnant et al., 2020; Tong et al., 2020; Ndlovu et al., 2021). Therefore, it is of great significance to investigate the spatiotemporal variations of extreme rainfall and its potential driving factors for different regions.
The middle and lower reaches of the Yangtze River Basin (MLRYRB) is located in the east of China, which is one of China’s important industrial and economic centers and also one of the most vulnerable areas threatened by heavy rainfall and floods. The floods in the MLRYRB are often attributed to the frequent occurrence of extreme rainfall (Jain and Lall, 2001; Su et al., 2005; Su et al., 2009; Chen et al., 2021). The characteristics of spatiotemporal distribution of extreme rainfall can be affected by many factors, such as the changes of large-scale climate patterns (LCPs), evaporation and underlying surface conditions (Fernández-Montes et al., 2014; Wang et al., 2017; Li et al., 2021; Zhou et al., 2021). Studies on its driving factors will help to conduct better flood disaster forecasting. Among all climatic and non-climatic factors, the LCPs are considered as important factors affecting extreme rainfall, and a number of studies have been focusing on the relationships between extreme rainfall and the LCPs (Ward et al., 2016; Wi et al., 2016; Liu et al., 2020). For example, East Asian monsoon has a significant variability on interannual and interdecadal time scales in the Yangtze River Basin (YRB), and has a unique impact on precipitation (Ding & Chan, 2005). Villarini and Denniston, 2016 illustrated that ENSO (El Niño-Southern Oscillation) has a significant control effect on extreme rainfall in Australia. Limsakul and Singhruck (2016) showed that PDO (Pacific Decadal Oscillation) is an important factor affecting extreme rainfall changes in Thailand. The results of Fu et al. (2013) indicated that ENSO activities have affected China’s extreme rainfall trends and changes. Zhang (2020) and Liu et al. (2019) have shown that WPSHI (Western Pacific Subtropical High Index) is one of the important drivers of extreme rainfall in summer in eastern China. Ayala (2019) supposed that AO (Arctic Oscillation) is one of the important causes of rainfall in Puerto Rico.
Most studies have used wavelet coherence and correlation coefficient methods to understand the distant link between the LCPs and extreme rainfall. However, it should be pointed out that none of these studies ever considered the correlations among the LCPs when assessing their effects on rainfall, which might lead to misinterpretation of the teleconnection (Huang et al., 2015; Wang et al., 2021; Zhou et al., 2020a, 2020b; Shi et al., 2020). The independent relationships between extreme rainfall and climate signals at the different time scales are rarely reported. Therefore, it is very important to find out the effect of an individual LCP on rainfall. Mihanovic et al. (2009) proposed the concept of partial wavelet coherence (PWC), providing a statistical method to estimate the dependence of two variables after removing the influence of one other potentially influencing variable. Hu and Si (2021) improved the PWC method so that the improved PWC could reveal the relation of two variables after removing the influence of multiple variables. Wavelet analysis also facilitates multi-scale signal analysis. Therefore, this study aims to understand the teleconnection between a given LCP and extreme rainfall with the improved PWC and cooperate with wavelet decomposition to understand their correlation at different scales. This will help to understand the effects of the LCPs on extreme rainfall in the MLRYRB.
The purpose of this study is to explore the spatiotemporal distribution of extreme rainfall in the MLRYRB from 1960 to 2020, and to study the teleconnection between extreme rainfall and the LCPs by wavelet analysis. The improved PWC method is used to explore the teleconnection relationship between extreme rainfall and individual LCP. This study mainly focused on the following aspects: 1) to analyze the characteristics of temporal variations and spatial distributions of extreme rainfall in the MLRYRB from 1960 to 2020; 2) to use wavelet coherence analysis to explore the temporal influences of multiple LCPs on extreme rainfall; and 3) to introduce the improved PWC method to quantify the interactions between different LCPs and their impacts on extreme rainfall.
2 DATA AND METHODS
2.1 Study area
The Yangtze River is the longest and largest river in China, which originates in the Tanggula Mountains, flows through 19 provinces from west to east, and eventually flows into the East China Sea. The YRB (24–35° N, 90–122° E), with a drainage area of about 1.8 million km2, is located in the subtropical and temperate climate zones dominated by the southeast monsoon. In this study, the MLRYRB (25–34° N, 108–122° E; Figure 1) are selected as the study area. The MLRYRB is one of the important water sources and economic centers in East China. The average annual temperature is between 14 and 18°C, and the average annual precipitation is between 1,000 and 1,400 mm. Affected by factors such as subtropical monsoons and typhoons, the MLRYRB is one of China’s heavy rain-prone areas and areas with the highest flood intensity.
[image: Figure 1]FIGURE 1 | Location and topography of the MLRYRB in China.
2.2 Research data
The meteorological data used in this study are obtained from the China Meteorological Data Service Center (http://data.cma.cn/), and there are 62 meteorological stations with the complete sequence of daily rainfall from 1960 to 2020 in the MLRYRB (Figure 1). Stations with missing data for more than 15 days were deleted, and missing data for less than 15 days were interpolated with relevant neighboring stations to ensure the consistency and completeness of rainfall data. Missing rainfall data for 1–2 days were filled in with the average values of adjacent days. In addition, missing data for consecutive days were interpolated with the long-term average of the same day in other years. To find out the impacts of climate change in the MLRYRB, the correlations between the extreme rainfall indices and the LCPs are studied. The LCPs data can be obtained from Earth System Research Laboratory of the Physical Sciences Division of the National Oceanic and Atmospheric Administration in the United States (https://www.esrl.noaa.gov/psd/data/climateindices/list/). The WPSHI data can be obtained from the National Climate Center of China Meteorological Administration (https://cmdp.ncc-cma.net/Monitoring/cn_stp_wpshp.php) (Liu et al., 2019; Zhang, 2020). The East Asia Monsoon Index (EAMI) is based on the calculation method of EAMI given by China Meteorological Administration of (http://cmdp.ncc-cma.net/Monitoring/monsoon.php). Data such as sea level pressure (SLP) and wind vector are from NCAR (Kanamitsu et al., 2002). The specific calculation process can refer to Zhu et al. (2005).
2.3 Methods
2.3.1 Extreme rainfall indices
Various extreme rainfall indices are defined to better understand the changing laws of extreme rainfall, according to the World Meteorological Organization (WMO) and the fifth assessment report of Intergovernmental Panel on Climate Change (IPCC, 2013). Previous studies have made different changes to the indices given by the WMO (Zhang et al., 2011; Lestari et al., 2016; Costa et al., 2020), and this study selected seven of them for analysis (Table 1). Data quality control and homogeneity testing for extreme rainfall index calculation refer to the RClimDex package provided by CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices (ETCCDI) (http://etccdi.pacificclimate.org/software.shtml).
TABLE 1 | Definition of extreme rainfall indices.
[image: Table 1]2.3.2 Modified Mann-Kendall trend test method
The original Mann-Kendall (MK) method is based on the assumption of random independence of sequences, but does not take into account the errors caused by sequence correlation. Hamed and Rao (1998) added a correction factor to the original MK method, and then, Hamed (2008) and Khaliq et al. (2009) further considered the lag-1 sequence relationship. The MMK method compensates for the influence of sequence correlation on the MK statistics by modifying the MK statistics. This study uses a modified Mann-Kendall (MMK) trend test method (Mann, 1945; Kendall, 1948; Hamed and Rao, 1998) to evaluate the trend of extreme rainfall in the MLRYRB. For the specific calculation process, please refer to Khaliq et al. (2009).
2.3.3 Pearson correlation analysis
Pearson correlation analysis describes the degree of closeness by analyzing the linear relationship between two variables. When the correlation coefficient value is greater than zero, the two variables are positively correlated, when the correlation coefficient is less than zero, they are negatively correlated. The absolute value of the correlation coefficient close to 1 indicates that the correlation between the two variables is significant, and the correlation coefficient value close to zero indicates that the correlation is not significant. A correlation coefficient of zero means that there is no linear relationship between the two variables.
2.3.4 Wavelet coherence and improved partial wavelet coherence
Wavelet Transform can perform wavelet decomposition of signals on multiple scales and the wavelet transform coefficients obtained from the decomposition on each scale represent the information of the signal at different resolutions. Wavelet coherence (WTC) can extend the time series to the time-frequency space, and find the local intermittent and periodic characteristics. This can be used to evaluate the correlation of two time series in the time-frequency domain, and find the significant differences between the two time series. WTC is widely used in the fields of hydrology and meteorology (Tan et al., 2016; Nalley et al., 2019; Zhou et al., 2021). For two time series x and y, the WTC (Hudgins et al., 1993; Torrence and Compo, 1998) of the two time series can be defined as follows:
[image: image]
where [image: image] is the cross wavelet power spectrum, [image: image] and [image: image] are the wavelet transform of the time series x and y. The value range of [image: image] is 0–1. The value closer to 1 indicates the greater correlation between the two sequences (Liu et al., 2018). The smoothing operator S is defined as:
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where [image: image] denotes smoothing along the wavelet scale axis and [image: image] smoothing in time.
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where c1 and c2 are normalization constants and [image: image] is the rectangle function. The factor of 0.6 is the scale decorrelation length for the Morlet wavelet. Detailed introductions of the WTC can refer to Torrence and Compo (1998) and Grinsted et al. (2004). Wavelet decomposition is the inverse transformation of cross wavelet.
Partial wavelet coherence (PWC) evaluates the correlation between two variables in the time-frequency (time series) domain by excluding the influence of other variables. It is more similar to partial correlation analysis, but it adds wavelet coherence analysis. Compared with the usual partial correlation analysis, it can reveal the time-frequency relationship between two variables more deeply, finding the interaction in the local time-frequency space and eliminating it. The PWC can be defined as follows:
[image: image]
Among them, the absolute value of Ryx,z is the PWC of x and y after removing the control variables, γ is the complex wavelet coherence between the two variables, Ry,z and Rx,z are the Bivariate wavelet coherency of the two variables. A more specific calculation process can refer to Hu and Si (2021) and Aguiar-Conraria and Soares (2014). The original PWC was limited to excluding one variable. Hu and Si (2021) modified the previous PWC and developed the improved PWC. The improved PWC between y and x after excluding variables Z at scale s and location [image: image] can be written as:
[image: image]
where symbol • is the notation for excluding variables. For the calculation of [image: image], [image: image], and [image: image], refer to Hu and Si, 2020. Unlike the PWC, the Z value in the improved PWC can be more than two-dimensional. The improved PWC can achieve higher and more accurate PWC values than the original PWC, and it can also exclude the influence of multiple variables. Hu and Si (2021) provided a code and toolbox of improved PWC.
Daubechies Wavelet is a wavelet decomposition method based on continuous wavelet transform, which can decompose the oscillation modes in different frequency bands. This study decomposes the LCP signals and rainfall sequences based on the Daubechies Wavelet and discusses their correlations in different frequency bands to help understand the results of the improve PWC. The 5th order Daubechies Wavelet (db5) will decompose the object signal into 7 bands. When the decomposed frequency band is greater than 7, the signal is very weak, and when it is less than 7, it cannot reflect the situation of all frequency bands. So db5 is selected to analyze the mutual interference of extreme rainfall and the LCPs in different frequency bands (Kumar & Foufoula-Georgiou, 1993).
3 RESULTS
3.1 Extreme rainfall changes in the MLRYRB
Climate change and human activities led to changes in extreme rainfall events in the MLRYRB. Figure 2 shows the spatial distributions of the average values of RX1day, RX3days, SDII, R90D, R95D, CWD and CDD from 1960 to 2019. In addition, the temporal and spatial variation trends of rainfall in the MLRYRB were analyzed by the MMK trend test method. It illustrates that extreme rainfall was on the rise and had obvious regional characteristics in spatial distribution. The multi-year average values of RX1day, RX3days, SDII, R90D, and R95D were 102.12, 146.25, 9.43 mm/day, 14.45 days, and 4.91 days, respectively. These highest values all appeared in the Poyang Lake basin. This might be because of the climatic characteristics of the Poyang Lake that could be easily affected by the monsoon. Since the Poyang Lake area is closer to the Pacific Ocean, the East Asian monsoon will bring a large amount of water vapor to the coastal areas. At the same time, due to the combined effect of the Western Pacific Subtropical High in summer. The rainfall and humidity increase in the areas near the coast in summer, which in turn affects the annual average rainfall value. The mean values of the MMK statistics for RX1day, RX3days, SDII, R90D, and R95D are 1.43, 1.05, 2.88, 1.32, and 1.34, respectively, showing significant upward trends. The increase in extreme rainfall has led to an upward trend in the indicator of extreme rainfall in this region. Most of the stations showing a downward trend were concentrated in areas close to the middle reaches. It might be due to that the construction of the Three Gorges Reservoir and Gezhouba Reservoir has caused changes in the climate characteristics of these areas, thereby changing the trend of extreme rainfall. The multi-year average values of CWD and CDD were 10.61 and 21.92 days, respectively. For CWD, the mainstream of the Yangtze River was almost the dividing line. The difference between the north and the south was significant. The CWD in the north of the Yangtze River was significantly lower than the average value, and the CWD in the south was significantly higher than the average value. Both CWD and CDD showed downward trends in the MLRYRB, and the average values of their MMK statistics were −1.01 and −1.33, respectively. In the lower reaches of the Poyang Lake, the CWD showed an upward trend, almost overlapping with areas where extreme rainfall was significantly higher than the average value. In other regions, the CWD showed a downward trend. For CDD, upward trends could only be found in the southwestern part.
[image: Figure 2]FIGURE 2 | The trends and mean values of RX1day, RX3days, SDII, R90D, R95D, CWD and CDD across the MLRYRB.
Figure 3 shows the MMK trend test results of RX1day, RX3days, SDII, R90D, R95D, CWD and CDD from 1960 to 2019. In general, the results show a clear trend of increasing extreme rainfall in the MLRYRB over the past 60 years with five extreme rainfall indices (RX1day, RX3days, SDII, R90D, R95D) showing a clear upward trend. RX1day and RX3days fluctuated before 1990 and rose steadily after 1990, while R90D, R95D, SDII showed an increasing trend after 1970. RX1day, RX3days, R95D and SDII were mutated around 1990, while the mutation point of R90D was concentrated during 1970–1980. There were clear downward trends in CWD and CDD and no obvious mutation point could be found.
[image: Figure 3]FIGURE 3 | The MMK trend test results of RX1day, RX3days, SDII, R90D, R95D, CWD and CDD from 1960 to 2019.
3.2 Correlations between extreme rainfall indices and the large-scale climate patterns
To explore the correlations between extreme rainfall and the LCPs, Pearson correlation analysis was used for a preliminary analysis. Figure 4 shows the Pearson correlation coefficients between extreme rainfall indices and the LCPs, and the asterisk represents significant at the 95% confidence level. The results show that WPSHI, which had significant positive and the highest correlation with extreme rainfall. Most of the correlation coefficients between WPSHI and extreme rainfall indices exceed 0.3. Both ENSO and PDO had significant negative correlations with extreme rainfall and the correlation between PDO and extreme rainfall is slightly higher than ENSO. In comparison, EAMI and extreme rainfall also had a negative correlation, but the correlation coefficient and significance were lower. Among them, the correlation coefficients of WPSHI and PDO with 5 extreme rainfall indices all passed the 95% confidence level test. WPSHI and PDO had the largest correlations with extreme rainfall, followed by EAMI and ENSO, and AO had the smallest correlation with extreme rainfall. The correlation coefficients of CWD and CDD with extreme rainfall were low and failed the significance test, indicating that CWD and CDD were less relevant to the LCPs. In general, SDII, R90D, R95D, RX1day and RX3days had relatively consistent responses to the LCPs, but were significantly different from CWD and CDD.
[image: Figure 4]FIGURE 4 | Pearson correlation coefficients between extreme rainfall indices and the LCPs. Note: the asterisk represents significant at the 95% confidence level.
3.3 Wavelet coherence analysis
The LCPs can directly or indirectly affect the occurrence and change of extreme rainfall, and are closely related to extreme rainfall. Exploring the teleconnection relationships between the LCPs and extreme rainfall helps to find out the response of extreme rainfall to changes in the LCPs, which is of great significance to extreme rainfall prediction. The previous section has shown the results of the Pearson correlation analysis between the LCPs and extreme rainfall. WTC was further used to find out the responses of extreme rainfall to the LCPs and their resonant frequencies and phase shifts in the time-frequency domain. Results with less relevance were not listed. Therefore, Figure 5 only presents the WTC analysis results between five selected extreme rainfall indices (i.e., SDII, R90D, R95D, RX1day, and RX3days) and four LCPs (i.e., WPSHI, EAMI, ENSO and PDO). The color bar represents the energy density, and the 95% confidence level of the red noise is shown as a thick outline. The relative phase relationship is expressed as an arrow (i.e., the opposite phase points to the left, and the same phase points to the right).
[image: Figure 5]FIGURE 5 | Wavelet coherence analysis results between the five selected extreme rainfall indices and four LCPs (i.e., WPSHI, EAMI, ENSO, and PDO).
In general, from the perspective of wavelet spectrum, the periodic correlations between WPSHI, EAMI and extreme rainfall were obvious, and the periodic signals of ENSO and extreme rainfall were significantly different for the periods before and after 2000. Although the correlation coefficient between PDO and extreme rainfall was high, the periodic signals were not significant. For WPSHI, it had a periodical signal of 8–16 months with RX1day, RX3days, R90D, and R95D, and the discontinuities were around 1975-1985 and 1995. WPSHI also had a periodical signal of about 32–64 months with RX1day and RX3days around 1970 and 1980-2000; however, the periodical signal around 1980-2000 was relatively weak for RX3days. The signal performances of WPSHI with R90D and R95D were similar, both having a periodical signal of 32–120 months from 1965 to 2019. The only difference was that the 32–64 months signal of WPSHI with R95D was interrupted around 1990. The signal performance of WPSHI with SDII was similar to that of WPSHI with R95D, but the signal period was shorter in the period of 32–64 months. For EAMI, the performance of different extreme rainfall indices was basically the same. All had 8–16 months of continuous uninterrupted periodic signals, 32 months periodic signals during 1970–1980, and 32–64 months periodic signals during 1990–2000. There were subtle differences in signal strength and duration between different extreme rainfall indicators.
ENSO had a negative correlation with extreme rainfall before 2000, but a positive correlation after 2000. The change in the positive-negative phase may be caused by the phase transition of ENSO around 2000. The periodical relationships of ENSO with the extreme rainfall indices were not as good as that of WPSHI. The difference was that, before 1990, there was a continuous cycle of 8–16 months between ENSO and extreme rainfall. After 1990, there were still some intermittent signals in the 8–16 months cycle, but the significant area of the signal decreased significantly. ENSO had periodical signals of about 20 months with RX1day around 1990-1995, 16–32 months with R90D, R95D, and SDII around 2000-2010, and 64 months with SDII around 2000-2020. Similar to ENSO, the relationships between PDO and the extreme rainfall indices were not as good as that of WPSHI. There was no long-term continuous signal between PDO and the extreme rainfall indices. PDO had significantly more periodical signals of 8–16 months with RX1day and RX3days after 1990, and 32 months periodical signals around 2000-2005. Moreover, the performance of PDO and the other 3 extreme rainfall indices (R90D, R95D, and SDII) did not change significantly.
Overall, it can be considered that WPSHI and EAMI had a major impact on extreme rainfall. The periodic relationships between the LCPs and extreme rainfall were not significant and had no obvious regularity in the periodic region of less than 8 months. During the 8–16 months cycle, EAMI played a leading role. In the cycles more than 32 months, different LCPs had different signal regions and less overlapping parts; however, the periodic relationship between WPSHI and extreme rainfall was significant.
3.4 Partial wavelet coherence analysis
In most cases, the impacts on rainfall are the results of the interaction among multiple LCPs; however, different LCPs may interfere with each other (Hu et al., 2017; Nalley et al., 2019; Su et al., 2019). Improved PWC can exclude multiple other influencing factors, and then find the main influencing factors. In this study, to explore the time domain of the impact of a single LCP on extreme rainfall, four LCPs with the greatest impacts on extreme rainfall of the MLRYRB were screened. For each LCP, PWC was used to eliminate the interaction of the other three LCPs (Figure 6). Table 2 shows the proportional change of the significant area in the cone region before and after the use of PWC, which is used to assist the judgment of the PWC results.
[image: Figure 6]FIGURE 6 | Partial wavelet coherence analysis results between a single LCP and extreme rainfall after removing other three LCPs impact.
TABLE 2 | Significant area changes in the partial wavelet coherence map before and after using improved PWC.
[image: Table 2]For WPSHI, the influence of the other three LCPs is eliminated. The continuous periodicity of WPSHI and extreme rainfall in the WTC disappeared, and the signals in the 16–128 months cycle were also significantly weakened, and the proportion of significant areas decreased by 6–11%. The continuous signal in the 8–16 months cycle disappeared completely, and the periodic signal in the 16–64 months cycle was also split into shorter cycles. The performance of different extreme rainfall indices on WPSHI was relatively consistent. For EAMI, the WTC results are similar to the PWC results. Although there was a decrease in signal continuity after using PWC, a continuous periodic signal in the 8–16 months cycle could still be found. There was a relatively small annual change in the medium and long periods other than 8–16 months, and the area of significant areas decreased by 2–5%. The areas with significant decrease in the signal area from 8 to 16 months were concentrated between 1980 and 1990 and around 2005, and the performance of different extreme rainfall indicators was basically the same. In the 16–64 months cycle, the 1970-1980 signal weakened and the 1990-2000 signal shifted to around 2010. The signal between ENSO and extreme rainfall indicators was significantly weakened after using the PWC, with a significant area reduction of about 4%. However, relationship between ENSO and RX1Day (as well as RX3Days) increased the signal at the edges of the impact cone, which were concentrated in 16–32 months. The long-period continuous signal almost completely disappeared, leaving only scattered small period signals. Most of these 16–32 months small period signals were concentrated around 1980 and 2005. The performance of PDO is abnormal. After using PWC, the area of the significant region was basically the same as that of WTC or slightly increased. However, the position of the significant area had great changes. The short 8–16 months cycle basically disappeared and was replaced by the longer 32–64 months cycle, which was distributed around 2000.
WPSHI and EAMI both played important roles in the periodicity impact of extreme rainfall in the MLRYRB. Since the MLRYRB is located in the area affected by East Asian monsoon, EAMI has maintained a relatively consistent oscillation cycle of about 1 year. After the use of PWC, the periodic effect of WPSHI on extreme rainfall has changed greatly, indicating that the performance of WPSHI would be affected by other LCPs.
3.5 Reconstruction of extreme rainfall and the large-scale climate patterns
In previous section, correlations between extreme rainfall and the LCPs were analyzed with WTC and improved PWC. At different times and frequency bands, there were different relationships and oscillation periods. To further understand these results, we used db5 wavelet to reconstruct extreme rainfall and the LCPs in different frequency bands. The reconstruction included 7 frequency bands, i.e., 0-2, 2-4, 4-8, 8-16, 16-32, 32-64, and 64–128 months. Taking SDII as an example, Figure 7 shows the reconstruction of SDII and four LCPs (i.e., ENSO, WPSHI, PDO and AO) based on wavelet coefficients. Table 3 shows the correlation coefficients of extreme rainfall and the LCPs in different frequency bands. The correlation coefficients in bold indicated that they could pass the 95% significance test.
[image: Figure 7]FIGURE 7 | Wavelet reconstruction of SDII and the LCPs (i.e., ENSO, WPSHI, PDO and AO) in different frequency bands.
TABLE 3 | Correlations between the LCPs and extreme rainfall in different frequency bands.
[image: Table 3]WPSHI was positively correlated with extreme rainfall in all frequency bands, while other LCPs had either positive or negative correlations with extreme rainfall in different frequency bands. The correlation between EAMI and extreme rainfall was mainly reflected in the 4–32 months, of which the correlation coefficients of the 4-8 and 8–16 months frequency bands both exceeded 0.5. Although the correlation of the 16–32 months frequency band was significant, the correlation coefficient was lower. PDO was positively correlated in the 0–2 months and 8–16 months frequency bands, and significantly negatively correlated in other frequency bands. ENSO was negatively correlated between 0-8 months and 32–64 months, but positively correlated in other frequency bands. The wavelet reconstruction again proved that AO had no significant effect on extreme rainfall in the MLRYRB.
In the frequency band of 0–4 months, the correlations between extreme rainfall and the LCPs were basically insignificant. In the 4–16 months band, the combined effect of WPSHI and EAMI was considered as the main driver. In the frequency band of 16–32 months, the main influencing factors were WPSHI and PDO. In the frequency band of 32–64 months, the effect of EAMI on extreme rainfall disappeared significantly, while the effects of other LCPs on extreme rainfall were all significant. In the 64–128 months frequency band, the signal strength began to weaken due to the characteristics of the db5 wavelet, so the correlation was very high. The reconstruction analysis results after wavelet decomposition were basically consistent with those of WTC and improved PWC. In the low frequency region (4–16 months), EAMI and WPSHI had the greatest correlations with extreme rainfall, and the correlation coefficient between EAMI and extreme rainfall was higher than that of WPSHI. For other LCPs, ENSO and PDO had some impacts on rainfall peaks in the 8–32 months band, but less on rainfall frequency and duration. In the frequency band over 32 months, ENSO and PDO had high correlations with the frequency and duration of extreme rainfall, possibly related to their long-term periodic oscillations.
Through the analysis of different frequency bands, it is found that there was a certain resonance period between the extreme rainfall indices and the LCPs. However, there were obvious differences in different time domains (Cheng et al., 2019; Yang and Li, 2020). These observations confirmed the complex nonlinear relationships between extreme rainfall and the LCPs. The influence of AO on extreme rainfall in the MLRYRB was almost negligible, while WPSHI and EAMI had great effects on extreme rainfall. These findings were consistent with the previous PWC results.
4 DISCUSSION
The intergenerational variation of the LCPs had important impacts on the climate of the MLRYRB. Cross wavelet and partial wavelet correlations were used to analyze the relationships between extreme rainfall and the LCPs. The results show that even though the correlation coefficient between EAMI and extreme rainfall was not significant, there was a clear periodic correlation. At the scale of 8–16 months, EAMI and WPSHI had significant and stable cyclical effects on extreme rainfall. For ENSO, although the correlation coefficient could pass the significance test, the periodic impact of ENSO on extreme rainfall around 1990 had a completely different performance. The results of the MK test also showed that most of the extreme rainfall indicators produced significant variation points around 1990 and corresponded to the results of WTC and PWC, confirming that the LCPs are indeed important factors affecting regional extreme rainfall.
The correlation between WPSHI and extreme rainfall changed greatly around 1990, and it is currently believed that WPSHI had a 2–3-year and around 5-year periodic oscillation before 1990. After 1990, the oscillation period was shortened from a quasi-5-year period to a 2–3-year oscillation (Gao et al., 2014; Huang et al., 2018, 2020). Therefore, the periodic signal on the 32–64 months scale around 1990 which could be seen in the WTC results was significantly weakened. The relationship between ENSO and extreme rainfall changed greatly around 1990. In the WTC results, ENSO and extreme rainfall also had a relatively stable periodic correlation of about 1 year before 1990. In contrast, after 1990, the correlations for the 1-year period or so weakened sharply, while the significance on the 32 months scale increased. The weakened signal of ENSO and extreme rainfall may be due to the change in the pattern of WPSHI, leading to the change in the correlation between ENSO and extreme rainfall around 1990. Around 1990, WPSHI significantly weakened and shifted. The change of WPSHI affected the interannual oscillation of ENSO, and ENSO had a phase change around 1990. So, after 1990 the periodic signal of ENSO and extreme rainfall changed into a higher frequency band but decreased the intensity. Combined with the PWC results, the effects of ENSO on extreme rainfall were coupled with WPSHI.
The advance and retreat of East Asian monsoon had significant correlations with the passage of the rainband and would have significant impacts on the rainfall of the MLRYRB together with WPSHI (Liu et al., 2013; Xu et al., 2021). In the WTC and PWC results, EAMI maintained a period of about 1 year on extreme rainfall, which corresponded to the inter-annual variation of East Asian monsoon. It significantly affected the rainy season of the MLRYRB from May to August and each annual cycle had a 10–20 weeks oscillation so EAMI and extreme rainfall in both WTC and PWC had a stable 8–16 months cycle correlation. The anomaly of East Asian monsoon would affect the drought and flood conditions in the MLRYRB so there would be scattered periodic signals in the 32–64 months frequency band.
The effects of WPSHI and EAMI on extreme rainfall were reflected at different signal scales. In the PWC results, the relationship between WPSHI and extreme rainfall completely disappeared at 8–16 months after excluding other LCPs, and other significant signals were found on the 32–64 months scale. This is consistent with the WPSHI’s own oscillation cycle of about 5 years, which confirmed the correctness of the PWC. In a cycle of about 1 year, the annual change and intensity of EAMI were the main factors affecting the rainfall of the MLRYRB (Li et al., 1991; Ding, 1992). WPSHI and EAMI could influence each other in summer, leading to the 8–16 months period of WPSHI in the WTC and the small-scale signal discontinuity of 8–16 months of EAMI in the PWC. So, it is considered that EAMI had the greatest impact on extreme rainfall in the 8–16 months cycle, while WPSHI played a major role in the 32–64 months cycle. ENSO and PDO had significant correlations with extreme rainfall; however, the PWC results suggested that the interannual oscillations of ENSO and PDO had no longer-term periodic effects on extreme rainfall. PDO and ENSO had certain coupling effects with WPSHI and EAMI in summer, when extreme rainfall was most likely to occur (Chan and Zhou, 2005; Matsumura and Horinouchi, 2016). Considering the results of wavelet reconstruction, the correlations between ENSO, PDO and extreme rainfall may come from the abnormal performances of ENSO and PDO.
5 CONCLUSION
A detailed understanding of the changing laws and driving factors of extreme rainfall is of great significance for future rainfall prediction and its corresponding response. This study used 7 extreme rainfall indices to examine the 60-year rainfall time series of the MLRYRB. Improved PWC was introduced to explore the correlations between extreme rainfall and the LCPs for the first time, which provided new ideas for subsequent extreme rainfall studies. The main findings of this study are summarized as follows:
1) The extreme rainfall in most areas of the MLRYRB was increasing, and the extreme values were mostly concentrated in the Poyang Lake area. A simple correlation analysis indicated that extreme rainfall had significant correlations with WPSHI, EAMI, ENSO, and PDO.
2) Analyzing the cyclical correlations between the LCPs and extreme rainfall using the WTC, the intergenerational variation of the LCPs had a significant impact on extreme rainfall in the MLRYRB. Even though the correlation coefficient between EAMI and extreme rainfall was not significant, EAMI had strong periodic impacts on extreme rainfall. On the 8–16 months scale, EAMI and WPSHI both had significant and stable periodic effects on extreme rainfall.
3) After the WTC analysis, the improved PWC was used to explore the influence of a single LCP on extreme rainfall after excluding other LCPs, and the WTC and PWC results were confirmed by wavelet decomposition. Using the improved PWC, it is found that the impact of WPSHI on extreme rainfall was mainly concentrated on the 32–64 months scale, and the impact of EAMI was mainly concentrated on the 8–16 months scale. There was a coupling between EAMI and WPSHI in the 1-year cycle. ENSO and PDO had no significant periodic effects on extreme rainfall, and the abnormal effects of ENSO or PDO would have greater impacts on extreme rainfall.
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Changes in lake water resources and regional hydrological processes in response to climate change and human activity necessitates timely and accurate access to lake change information to monitor water cycles and water security. The Ebinur Lake Basin has experienced a serious ecological crisis in recent years, which is majorly due to excess use of its water. Therefore, in this study, we used Ebinur Lake as a research object, and used Geographic Information System and remote sensing technology, Landsat, Sentinel, and MODIS images, the Google Earth Engine platform, and the water body index method to determine the changes in lake area from April to October of 2011–2020. Daily data from the Alashankou and Jinghe meteorological stations from 2011 to 2020 were collected. The center of gravity-geographically and temporally weighted regression model was used to analyze the factors changes in surface area. The results showed obvious spatial and temporal heterogeneities for the surface area. Except for 2016, which had unusual/extreme weather, in the last decade, the lake surface area generally showed a monthly decreasing trend from April to October. When Ebinur Lake is one water body, the surface area ranges between 530 and 560 km2. We concluded that the spatio-temporal characteristics of Ebinur Lake can be divided into two levels. When the southeast and northwest regions of the lake merge, it represents the largest possible surface area of Ebinur Lake; this was called the “water storage level”. Historically, Ebinur Lake has lost significant amounts of water, and there is no water body connecting the two main parts of the lake (thereby dividing the lake into two areas); this was called “water demand level”. The trajectory of the center of gravity of the lake is linear, with a slope of 45° and a direction of northwest to southeast. The lake gravity center has different aggregation states. According to the season, it can be divided into spring gathering and autumn gathering. The variation in the surface area of Ebinur Lake is highly correlated with the meteorological and hydrological variation during the year. The highest correlation was observed between lake surface area and wind speed. This study aimed to supplement other studies that explore the lake annually and provide a reference for future water resources management and planning.
Keywords: lake area change, drivers, google garth engine, center of gravity shift, geographically and temporally weighted regression
1 INTRODUCTION
The uneven spatial and temporal distribution of water resources caused by global climate change has a huge impact on natural ecology and the development of human society (Guo et al., 2012; Hu et al., 2022). Moreover, the sustainability of ecosystems is greatly threatened (Yu et al., 2018). Alongside economic development, water demand for agricultural, industrial, and domestic use in arid zones is increasing, and water shortages have become a prominent problem which hinders societal development (Yao et al., 2019; Peng et al., 2022). Xinjiang is located in the center of the Eurasian continent and is a key region for arid zone research. It is sensitive to changes in water resources (Wang et al., 2019; Yao et al., 2022). Most of the water sources in arid zones originate in high mountain environments (Ke et al., 2021), and climate change has led to dramatic changes in water supply in high mountain rivers (Liu et al., 2011), causing several ecological problems (Williams, 1991; Stanev et al., 2004; Cretaux et al., 2009). Therefore, timely and accurate information on the changes in water bodies is necessary for monitoring water cycles and water security (Zhu et al., 2015).
Remote sensing (RS) images and hydrological records are effective tools for studying large geographic areas (Ysa et al., 2022). Owing to the development of RS technology, various types of satellite images (especially high-resolution optical satellite images) can be used for different purposes. These have become important sources of data for geological and meteorological studies (Hong et al., 2010; Li et al., 2012). Numerous scholars have used RS images to observe water bodies and discuss their spatial and temporal variability in various characteristics. Pickens et al. (2022) used Landsat and Sentinel-2 images to identify areas of surface water and ice and generated global ice phenology maps to predict future climate change. Hu et al. (2021) explored water resource distribution in Central Asia using multi-source satellite datasets and global hydrological models. Zhu et al. (2022) used Landsat images to observe the Inner Mongolian plateau over a long time series and concluded that the plateau wetlands were severely degraded. These studies have shown that RS images have utility at various regional scales; thus, RS images can be used to monitor the dynamic changes in watershed lakes. The causes of lake wetland degradation can be categorized as follows: 1) climate warming-associated drying up of the lake (Yan and Zheng, 2015), and 2) increased human activity leading to drying up of the lake (Wang et al., 2017; Bakr and El-Kawy, 2020; Zhang et al., 2022). Therefore, numerous scholars have conducted in-depth studies to determine the causes of changes in lake dynamics. Many scholars believe that these changes are mainly influenced by factors such as precipitation, temperature, and runoff into the lake (Bhasang et al., 2012; Yan et al., 2019; Wei, 2019; Wang et al., 2019). Some scholars have also analyzed the relationship between changes in lake surface area and changes in human activities (Cui et al., 2017; Sun et al., 2020; Mfa et al., 2021; Dang et al., 2022). Their study results suggest that establishment of water facilities in the upper branches of rivers for agricultural irrigation leads to decreased amount of water entering the lake, thereby causing changes in lake surface area. The causes of changes in lakes differ for each watershed; therefore, lake monitoring of the Ebinur Lake Basin is necessary.
The Ebinur Lake Basin is the most important area along the Belt and Road Initiative, and its water security is of national strategic importance (Ding et al., 2021). The Ebinur Lake Basin is currently facing several ecological problems including reverse succession of the basin ecosystem, soil salinization, severe sanding, and increased landscape fragmentation (Ge et al., 2016; Wang et al., 2020; Ding et al., 2021). Therefore, the degradation of Ebinur Lake wetland has attracted research attention (Zhang et al., 2018; Jing et al., 2019). Ding et al. (2021) explored the spatial and temporal variation in the surface area of Ebinur Lake using a random forest classification model on a seasonal time scale and found that, in the past 30 years, the largest transformation of salt marsh and lake in Ebinur Lake occurs between seasons every year. Wang et al. (2021) used drone imagery and a method that estimates historical discharge to reveal that the water level of the Ebinur Lake has been declining rapidly for nearly 5,000 years. These studies indicate that Ebinur Lake is facing a serious ecological crisis and a scientifically sound solution is urgently needed. However, these aforementioned studies analyzed changes on a quarterly or annual time scale, which have a large time span and cannot aid the evaluation of changes in water bodies in a precise or timely manner. Therefore, monthly monitoring of the lake surface area is necessary. Researchers have focused on factors, such as precipitation, runoff, and temperature, to explore the causes of the changes in Ebinur Lake (Ge et al., 2016; Jwa et al., 2021; Hao et al., 2018; Han et al., 2021; Nigemare et al., 2021). However, few studies have analyzed wind speed. For the analyses of hydrological dynamics, Gan et al. (2022) analyzed the contribution of climate change and human activities to lake changes using a degree-day model. However, the model was more suited for glacial-related changes (Zhang et al., 2006) and was not optimal for assessing changes in lake surface area, which is influenced by multiple factors. Hu et al., (2022) used gray correlation analysis to predict the impact of climate change on permafrost. However, this method can only qualitatively analyze the relationship between the dependent and independent variables (Wang et al., 2019) and cannot provide explanations for the spatial variations. The geographically and temporally weighted regression (GTWR) model can better describe the spatio-temporal relationship between the independent and dependent variables (Zhang and Lu, 2022). Therefore, this study proposes a center of gravity-GTWR model to investigate the drivers of changes in Ebinur Lake.
In this study, we aimed to answer the following questions: 1) How has the lake area of Ebinur Lake changed in the past 10 years? 2) Is the center of gravity-GTWR model proposed in this study applicable to the study area? 3) What is the magnitude of the influence of each driver on Ebinur Lake? 4) How does wind speed influence the changes in surface area of Ebinur Lake? We used the MODIS, Landsat, and Sentinel-2 datasets to generate a 10-year time series data corresponding to the monthly surface area of the Ebinur Lake Basin. The center of gravity-GTWR model for the study area was then applied and its validity was investigated. Finally, meteorological and hydrological data were used to explore the causes of variation in the surface area on a spatio-temporal scale using the center of gravity-GTWR model.
2 DATA AND METHODS
2.1 Study area
Ebinur Lake is located in the southwestern part of the Junggar Basin (44°74′∼ 45°13′N, 82°58′∼ 83°16′E), which is within Bortala Autonomous Prefecture of the Xinjiang Uyghur Autonomous Region, China (Figure 1). The Kuitun, Jing, and Bortala Rivers flow into the lake. The topography of the basin is complex. It is surrounded by mountains on three sides. Alashankou region is northwest of the lake and on high terrain. The southeast of Ebinur Lake Basin is a plain area. In the northwest of Ebinur Lake is Alashankou region. Alashankou region is a well-known wind outlet in China, with northwest wind blowing all year round. The basin area has an arid and northern temperate continental climate, with low precipitation, abundant sunshine, and high surface water evaporation throughout the year. The average annual temperature of the lake is 6.6–7.8°C, and the average annual precipitation and evaporation is approximately 116–170 mm and 1,315 mm, respectively. In the context of a changing climate and increased human activities, water resources have changed dramatically, and conflict over water is becoming increasingly prominent.
[image: Figure 1]FIGURE 1 | Geographical location of the study area.
2.2 Data sources
Google Earth Engine (GEE) is a cloud-based platform that provides easy access to high-performance computing resources to process very large geospatial datasets, which is more efficient and simpler than traditional software for processing RS images. Therefore, we used the GEE platform to obtain the “Landsat 7/8”, “COPERNICUS/S2,” and “MODIS/006/MOD09GQ” dataset, and selected a total of 4,633 images from April to October of 2011–2020 to calculate the surface area of Ebinur Lake.
The daily climate data collected by two meteorological stations, Alashankou and Jinghe, were downloaded from the National Meteorological Science Data Sharing Service Platform1, and the runoff data of Ebinur Lake were obtained from four inlet stations as the background data of the area change of Ebinur Lake and meteorological and hydrological response. Ebinur Lake surface area data collected on a monthly basis in 2020 were obtained from the Jinghe hydrological station to assess the accuracy of lake surface area.
2.3 METHODS
2.3.1 Water index method
We used RS technology to determine the lake surface area using the normalized difference water index (NDWI) method (Mcfeeters, 1996). This method is sensitive to soil characteristics, dry lake bodies, and presents the water body boundary closest to the actual boundary of the water body (Zhu et al., 2019; Yang et al., 2020). The modified normalized difference water index (MNDWI) method focuses more on the spectral information in the imaging systems using the short-wave infrared band of the building (Tian et al., 2017). As can be seen from Figure 1, the relatively empty area around the lake does not affect the determination of buildings from the water body. Several studies have shown that the NDWI method shows higher accuracy in Ebinur Lake extraction (Liu et al., 2020; Wang et al., 2020; Xiang et al., 2022). Considering the above, the NDWI method for water body extraction was used in this study as follows:
[image: image]
where Green and NIR represent the surface reflectance at green and near-infrared bands in images, respectively.
2.3.2 Otsu algorithm
The Otsu method, also known as the Big Law algorithm, was proposed by the Japanese Big Law in 1979 (Otsu, 2007). The Otsu method is an algorithm where the user does not need to set parameters, and it does not require supervised classification for threshold selection. It is based on one-dimensional grayscale image segmentations. This is computationally simple, not affected by image brightness or contrast, and is widely used in image processing. The calculation formula is as follows:
[image: image]
where β0 is the ratio of the number of foreground color pixel points to the pixel points of the whole image, α0 is the average grayness of the foreground color pixel points, β1 is the ratio of the number of background color pixel points to the number of pixel points of the whole image, α1 is the average grayness of the background points color pixels, and t is the optimal threshold value when the variance between the current view and the background color is at its maximum. The variance was calculated as follows:
[image: image]
In this study, we used the Otsu algorithm to obtain the threshold value when extracting the water body, and then used the normalization method to eliminate the outliers.
2.3.3 Calculation formula of meteorological parameters
Ebinur Lake is located downwind of Alashankou. The data from the two meteorological stations was combined, and the weighted average method was selected. Then, to determine the wind speed at the lake, we used the following equation.
[image: image]
where, [image: image] is the weighted wind speed of the two stations, W1 is the measured wind speed value at Jinghe weather station, W2 is the measured wind speed value at Alashankou weather station, d1 is the weighted distance from Jinghe weather station to the center of Ebinur Lake, and d2 is the weighted distance from Alashankou weather station to the center of Ebinur Lake.
The weighted values were calculated as follows:
[image: image]
where D1 is the distance from Jinghe weather station to the center of Ebinur Lake, D2 is the distance from Alashankou weather station to the center of Ebinur Lake, and Di is the distance from weather station point i to the center of Ebinur Lake.
2.3.4 Center of gravity GTWR model
In geography, the term “center of gravity” represents the equilibrium point of a regional space. The location (coordinates) of the center of gravity is an essential factor in geographical studies, as it clearly and objectively reflects the trajectory of the spatial and temporal distribution of the research object (Zheng et al., 2022). For the study of lakes, since the surface area varies significantly throughout the year, the lake’s center of gravity shift trajectory can reflect the trends in spatial changes in the lakes during different time periods, thereby enabling visualization of water movement in the lakes (Wang et al., 2022). The lake’s center of gravity is calculated using the following formula.
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where Cti is the center of mass of the lake distribution in month i of year t, Xt, Yt are longitude and latitude coordinates, respectively, Sti is the lake area in month i of year t, and Xti, Yti are its longitude and latitude coordinates in month i of year t, respectively.
The common regression models in geography are the ordinary least squares, the geographically weighted regression (GWR), and GTWR models. The traditional geographically weighted regression model is a two-dimensional data model, that is, used to describe geospatial location coordinates without the introduction of temporal latitude. The GTWR model (Wang et al., 2018) is an extension of the geographically weighted regression model, with the addition of temporal latitude, to form a three-dimensional model. GTWR models have been widely applied in climate studies (Guo et al., 2020; Shi et al., 2021; Karimi and Ghajari, 2022). Moreover, it has also been applied for the analysis of water bodies (Chu et al., 2018). Using the GTWR model requires the research object to have different spatial coordinates at different time periods; therefore, combining the lake center of gravity shift model with the GTWR model can better reveal the drivers of spatial changes in the lake. The following is the mathematical expression used in the GTWR model.
[image: image]
where: ([image: image], [image: image], Ti) are the spatial and temporal coordinates of the ith sample data, Xik and Yi are the explanatory variables of the ith sample data, λ0 ([image: image], [image: image], Ti) is the intercept term, λk is the estimated coefficient of the kth explanatory variable, δi is the residual of the function, n is the number of explanatory variables, and [image: image] and [image: image] are the longitude and latitude coordinates of the center of gravity point, respectively.
3 RESULTS
3.1 Spatial and temporal variation characteristics of the Ebinur Lake surface area
3.1.1 Verification of spatiotemporal change results of the Ebinur Lake surface area
Ebinur Lake’s freezing period extends from November to March every year; therefore, performing surface area extraction during this period is not possible. On the basis of RS image analysis, we concluded that the lake’s ice-free period extends from April to October every year during which surface area extraction can be performed. Based on the seasons, the ice-free period comprises spring (April–May), summer (June–August), and autumn (September–October). To verify the accuracy of the extracted data, we performed a correlation analysis between the monthly measured surface area and the extracted surface area of the lake in 2020. For April and May, we used MODIS data; June and July, Landsat 7/8 data; and August and October, Sentinel-2 data. The correlation coefficient between the measured and extracted surface area of the lake in 2020 and their comparison results reached 0.99 (Figure 2). The difference between the extracted and measured surface area ranged from 0.32 to 18.78 km2, with an average value of 9.32 km2. The results showed that the data extracted using the NDWI method accurately represented the monthly change in the lake surface area from 2011 to 2020.
[image: Figure 2]FIGURE 2 | Results of change and comparison of Ebinur Lake surface area in 2020, from measured and extracted data. (A) Ebinur Lake area in 2020 (B) Area comparison (in the Supplementary Material).
3.1.2 Analysis of temporal variation characteristics of the Ebinur Lake surface area
Results (Figure 3) showed that the surface area of Ebinur Lake ranged from 335.17 to 882.56 km2 from 2011 to 2020, with the maximum value occurring in April 2018 and the minimum value occurring in October 2020. In 2016, the surface area showed a decreasing and then an increasing trend. However, in all the other years, the monthly changes in surface area showed a decreasing trend from April to October. Using the meteorological data from Alashankou and Jinghe weather stations (Figures 4, 5, respectively), we concluded that the high rainfall in the summer of 2016 increased the runoff into the lake (Figure 6). Therefore, during that time period, lake recharge was greater than the loss of water from the lake, thereby increasing the lake volume and surface area.
[image: Figure 3]FIGURE 3 | Results of the change in Ebinur Lake surface area (April–October, 2011–2020).
[image: Figure 4]FIGURE 4 | Temperature and wind speed results for Alashankou meteorological station.
[image: Figure 5]FIGURE 5 | Temperature and wind speed results for Jinghe meteorological station.
[image: Figure 6]FIGURE 6 | Average monthly flow of each lake inlet station.
Results of the surface area analysis (Figure 3) and flow rate measured at each inlet station (Figure 6) showed that, except for the years with unusually high or low flow rates. The largest surface area was observed in spring (April–May), the highest rate of decrease in surface area was observed in summer (June–August), and smallest surface area was observed in autumn (September–October).
Figure 7 shows a schematic diagram representing the monthly changes in the surface area of the lake (shown in blue) from 2011 to 2020. Ebinur Lake is comprised of two main areas which are connected through a thin water body. The two main areas are, the larger, southeastern area and the smaller, northwestern area. This variation occurs in a regular pattern. Using the extracted surface area data (Figure 3), we determined that the surface area of Ebinur Lake ranges from 530 to 560 km2 (critical surface area at connection range). In September and October of the years 2012, 2013, 2014, 2015, and 2020, the northwestern area of the lake dried up completely and only the southeastern part of the lake was present. When the lake was not at its critical surface area at connection range, it indicates that the water level had dropped.
[image: Figure 7]FIGURE 7 | Schematic diagram of Ebinur Lake area from April to October 2011–2020.
From the above conclusion, the surface area of Ebinur Lake can be represented in two ways. When the southeast and northwest areas of the lake marge, representing the largest surface area of the lake; this was called the “water storage level.” When Ebinur Lake has lost a sufficient amount of water to where there is no water body connecting the two main areas (thereby splitting the lake into two areas); this was called the “water demand level”.
3.1.3 Analysis of spatial variation characteristics of the Ebinur Lake surface area
Mostly, changes in lakes are measured by their surface area and water volume. From the results in section 3.1.2, we found that the change in the lake surface area was closely related to the directional shift of the water body. Therefore, studying the directional shift of the center of gravity of Ebinur Lake should reflect the spatio-temporal characteristics of the area more accurately. Using ArcGIS and the raster images of the lake from April to October (2011–2020), we obtained the vector boundary of the lake. This boundary was then converted into points to obtain the center of gravity of the lake for each month (Figure 8). The center of gravity of the Ebinur Lake was analyzed according to the center of gravity shift using Eq. 6.
[image: Figure 8]FIGURE 8 | Center of gravity shift trajectory of Ebinur Lake from 2011 to 2020.
Every year, the monthly shift in center of gravity of Ebinur Lake is linear, with a slope of 45°, indicating a clear regularity in its shift in center of gravity. From 2011 to 2015 and 2017 to 2020, the lake shows a shift from northwest to southeast. Additionally, the faster the water body shrinked in the northwestern part of the Ebinur Lake, the greater the center of gravity shift. The difference in the center of gravity and surface area of the lake is largest between April and October each year. The shift of the center of gravity also reflects the water level of the lake, as water flows to the part of the lake with a lower elevation. The northwestern part of Ebinur Lake has a higher elevation and lower water level than the southeastern part. In 2016, the lake received unusually high rainfall, which caused the center of gravity to take a different trajectory compared to that in the other years (the center of gravity did not show the regular shift from northwest to southeast). Rather, it showed a shift to the southeast from April to June, to the northwest from July to August, and to the northwest from September to October.
In 2011–2014 and 2016–2020, the center of gravity of the lake showed different degrees of aggregation. The Ebinur lake changes slightly within the scope of the accumulation heap. According to the season, it can be divided into spring gathering and autumn gathering. Spring shows the largest lake area every year. In spring, the temperature was low and the amount of water entering the lake was high. Additionally, the loss of water in spring was less than that observed in summer or autumn. Therefore, the change in area is small. Each year, autumn showed the greatest shrinkage in lake surface area. The part of the lake water loss in autumn is the southeast main part of Ebinur Lake where the water level is deeper and the water volume is large. When the loss of lake water per unit area is the same, the change of area reduction is slower, so the lake changes less every autumn.
3.2 Analysis of driving factors of the Ebinur Lake surface area change
The change in lake surface area is related to several meteorological factors. In this study, four factors were selected to evaluate the surface area change of Ebinur Lake: temperature, precipitation, wind speed, and runoff into the lake. These factors were selected because they showed high correlation and represent the drivers of natural factors and human activities. The values of the meteorological elements at the location of Ebinur Lake were extracted by interpolating the data from the weather stations using ArcGIS (ESRI, version 10.3). The correlation and collinearity with the surface area of Ebinur Lake were calculated separately for each element. Table 1 shows that the correlation between each element and the average monthly surface area of the lake is strong. The variance inflation factor value was close to 1, and there was no problem of multicollinearity between the elements.
TABLE 1 | Correlation and collinearity between monthly meteorological elements and monthly average area of Ebinur lake from 2011 to 2020.
[image: Table 1]This analysis showed a clear regularity in the temporal and spatial variation of the surface area changes of Ebinur Lake. The relationship between the drivers and monthly changes in surface area was obtained by analyzing the drivers (Figure 9). The results show that the causes of surface area variation are different for each month, and the largest driving factor is runoff into the lake, followed by wind speed, temperature, and precipitation. Runoff and precipitation have a combined effect that leads to an increase in the surface area, whereas wind speed and temperature showed the opposite effect. When analyzing monthly results, we concluded that the most notable changes in the surface area were due to: runoff in April and May (spring), temperature in June (at the beginning of summer), wind speed in April and May (spring), and precipitation in August (summer). The validation result obtained through the model was: R2 = 0.9. The observed and simulated surface area for each month are shown in Figure 10. The difference between the observed and simulated value ranged between 0 and 138 km2, and the average difference was 3.17 km2. The results indicate a good fit between the observed and simulated values; therefore, the model prediction was accurate, except for some outliers, which were individual values with large errors.
[image: Figure 9]FIGURE 9 | Schematic diagram of influencing factors of monthly average wind speed, monthly precipitation, and average temperature of the lake.
[image: Figure 10]FIGURE 10 | Monthly lake surface area calculated based on the GTWR modelSch.
Through the study of each of the drivers, we concluded that among the monthly meteorological elements, wind had the highest correlation with the change in monthly average surface area of Ebinur Lake; therefore, it was analyzed separately. The wind speed data of Alashankou was studied (Figure 11), and we concluded that northwesterly winds prevail in Alashankou throughout the year. Additionally, there are gusts of magnitude 8 (17.2–20.8 m/s) and above, accounting for approximately one third of the days of the year, with the highest number of these gusts occurring in spring and summer.
[image: Figure 11]FIGURE 11 | Schematic diagrams of annual wind speed and direction of Alashankou station ( 2011 to 2020).
Wind speed influences the changes in lake area by inducing evaporation at the lake surface. When the wind speed is higher, the turbulence on the lake surface is higher, which accelerates the movement of water molecules on the lake surface. The weights of Alashankou and Jinghe meteorological stations were determined using Eq. 7 (Figure 12). The monthly wind speed at Ebinur Lake was calculated using Eq. 6 correlation analysis of the calculated wind speed with the lake surface area was performed. The correlation coefficient was determined to be 0.7. The correlation analysis of the wind speed data obtained from the two weather stations was performed separately. The correlation coefficients of the wind speed of Alashankou and Jinghe weather stations were 0.71 and 0.28, respectively. Therefore, the area of Ebinur Lake is influenced by the wind speed at Alashankou to a greater extent than that at Jinghe station. A linear fit of wind speed to the surface area was performed; the confidence interval was 0.05, and the R2 value was 0.48. The linear fit results (Figure 13) showed that higher wind speed correlated with larger area of the lake. On the basis of the relationship between time, wind speed, and lake area (Figure 14), we calculated that the months with high wind speed and largest surface area are April and May. Wind speed continuously affects the surface of the lake. The RS image obtained corresponds to lake surface area on a particular day of a month. Therefore, the change in lake surface area shows a lag, the higher the wind speed during a month, the more the lake area decreases in the next month. Since the lake surface area is related to several meteorological factors, it is inaccurate to consider only the wind speed. Combining the lake area and meteorological data (Figures 3–6), the analysis showed that the lake area shrinks fastest in the month following a month of high temperatures and wind speeds. From the geographical map of the study area (Figure 1), we concluded that the wind influx from Alashankou acts exactly on the northwestern part of Ebinur Lake, which is the part of the lake that shows the largest annual change in surface area.
[image: Figure 12]FIGURE 12 | Weighted diagram of Jinghe and Alashankou Stations.
[image: Figure 13]FIGURE 13 | Linear fitting between wind speed and lake surface area.
[image: Figure 14]FIGURE 14 | Relationship between time, wind speed and lake surface area.
4 DISCUSSION AND CONCLUSION
4.1 Discussion
With the immense amount of data accumulated through satellite RS imagery over time, the use of traditional software for processing remote sensing data has become time-consuming, costly, and inefficient (Sur et al., 2021). RS cloud computing, with its high-performance computing efficiency, enables effective solutions to geographic research problems in vast areas and over long periods of time. The GEE is a cloud-based platform that can efficiently process RS data to analyze lake areas over significant time periods through the use of relevant algorithms.
Due to climate change and increasing water demand, surface water resources in both arid and semi-arid regions are facing depletion (Hu et al., 2019). Ebinur Lake is a typical tailwater lake in an arid zone and is facing the same shortages. In this study, we found that the water storage in Ebinur Lake was affected by climate change and increased human activities. These results are consistent with those of the study by Hu et al. (2021), where the authors proposed possible causes of water depletion in Central Asia. The lake area was the largest in spring followed by summer, and it was the smallest in autumn, which is consistent with the gradual decrease in lake area within the year obtained from the study of spatial connectivity of wetlands in Ebinur Lake by Ding et al. (2021). In the last decade, intra-annual variation of the Ebinur Lake’s surface area has shown a consistent pattern; however, the surface area fluctuates during the year. A minor increase in the temperature of Ebinur Lake was observed, possibly due to the effects of climate change (Wang et al., 2014; Hu et al., 2018; Hu et al., 2019; Dilinuer et al., 2021). The low precipitation in the region makes maintaining the balance between evaporation in the lake and precipitation difficult, generally resulting in a decrease in the lake area (Gan et al., 2022). The prevailing westerly zone shows a greater regulation of water, which is consistent with the results of the study by Zhao et al. (2022). Therefore, establishment of corresponding protective forests at the upwind end of the lake to counter the negative impact of the wind from Alashankou on the lake may be considered. Land use is one of the most important factors influencing runoff (Gu et al., 2021) and most directly reflects human activities associated with water resources. The results of the analysis showed that the largest driver of the changes in the lake surface area was the runoff entering the lake. The lake area is lowest in the summer, mainly because the river passes through arable land and is used for irrigating crops, resulting in a decrease in the volume of water entering the lake. This shows that agricultural water use in the middle and lower reaches of the rivers entering the lake has a significant effect on the runoff entering Ebinur Lake. Therefore, rational optimization of agricultural water use can effectively aid the mitigation the shrinkage of the Ebinur Lake.
In this study, we analyzed the driving factors of changes in the surface area of Ebinur Lake and find the area range which is divided into two lake areas. The relationships between natural factors and changes in the surface area of the lake were analyzed. However, the influence of human activities was only indicated through changes in runoff (Yilinuer et al., 2020) and was not quantitatively analyzed. Therefore, the effect of human activity should be further explored in the future. The center of gravity-GTWR model used in the study achieved high accuracy. Moreover, the results estimated the magnitude of the influence of each driver on the variation in lake surface area. This suggests that the results of the extended gravity-GTWR model in explaining spatio-temporal heterogeneity and monthly variability are remarkable (Du et al., 2018). However, the explanatory factors of the model can only be variables that are highly correlated and free of covariates; therefore, the model may have limited applications.
The large intra-annual variation in the Ebinur Lake area is only a snapshot of the water resource problem in arid zones. Runoff from Ebinur Lake is supplemented by a combination of glacial meltwater, precipitation, and groundwater (Wang et al., 2014). The runoff characteristics of Jinghe River and Bortala River (Gan et al., 2022) are also different; therefore, the contribution of different rivers to Ebinur Lake should be further explored. Moreover, the spatial distribution of water resources in a larger region throughout the GEE platform may be a topic for future research.
4.2 Conclusion
In this study, we determined the lake surface area for the period April–October for the years 2011–2020 using GIS and RS technology. Additionally, we analyzed the intra- and inter-annual variation trends and influencing factors of the surface area of Ebinur Lake by integrating meteorological and hydrological data.
There is an evident spatial and temporal heterogeneity in the variation of the surface area of Ebinur Lake. The monthly variation showed a decreasing trend, except for 2016, which received an unusually high amount of rainfall. Each year, spring (April–May) is the season with the largest lake area, summer (June–August) is the season with the fastest shrinking lake area, autumn (September– October) is the season with the smallest lake area. By determining the lake surface area from the 10 years of remote sensing data, we concluded that when the Ebinur Lake area is sufficiently dry to decrease and split into two parts, the surface area of the southeastern area is between 530 and 560 km2 (critical surface area at connection range). Based on the fluctuation between the two, the spatial and temporal characteristics of Ebinur Lake were divided into two levels, the water storage level and the water demand level. The overall trajectory of Ebinur Lake appears as a straight line with a slope of 45°, with its center of gravity shifting from northwest to southeast. The faster the water body shrinks in the northwestern part of Ebinur Lake, the greater the shift in the center of gravity. The center of gravity of Ebinur Lake has different degrees of aggregation status, and the variation within the range of the aggregation pile is small. In terms of the season of accumulation, it can be approximately divided into spring and autumn aggregation.
There are many driving factors affecting the change in the surface area of Ebinur Lake, including runoff, wind speed, temperature, and precipitation. Our study results showed that the change in surface area and these driving factors were highly correlated. The GTWR model analysis showed that volume of runoff entering the lake has the greatest influence on the change in lake area, followed by wind speed, precipitation, and finally, the least influential factor was temperature. Of these factors, wind speed is the most relevant natural factor because the incoming wind from Alashankou acts directly on the northwestern part of the lake. This study provides a theoretical basis for understanding the changes of water resources in the Ebinur Lake basin and is beneficial to the rational development and utilization of its water resources.
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This study projected the future climate changes in the Poyang Lake Basin (PLB) of China under various global warming targets (1.5–3°C), based on the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) and 4 statistical downscaling methods, including Quantile Mapping (QM), Daily Translation (DT), Delta, and Local Intensity Scaling (LOCI). The RMSE, R2 and KGE indicators were used to evaluate the competency of the aforementioned methods applied to daily precipitation (Pre), daily mean temperature (Tas), daily maximum temperature (Tasmax), and daily minimum temperature (Tasmin). The global warming of 1.5, 2 and 3°C will occur around 2040, from 2045 to 2080 and around 2075, respectively, for the emission scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. The results demonstrated that under the 1.5, 2 and 3°C global warming targets, the projected annual precipitation declined by 14.82, 11.92 and 8.91% relative to the reference period (1986–2005), respectively. The Tas increased significantly by 0.43, 0.94 and 1.92°C and the Tasmax increased by 0.58, 1.11 and 2.09°C. The Tasmin decreased by 0.29°C under the 1.5°C warming target, while it increased by 0.19 and 1.18°C under the 2 and 3°C warming targets. The spatial distributions of future annual precipitation in the PLB were relative consistent. However, the regional variability was significant, which the southern and eastern regions experienced more precipitation than the northern and western regions. The south-central part of the Ganjiang basin was the high-value area while the northeastern part was the low-value area. The Tas, Tasmax and Tasmin had a consistent spatial variation characteristic that the high latitude areas were warmer than the low latitude areas, and the western regions were warmer than the central and eastern regions while the northeastern regions were cooler than the remaining regions.
Keywords: Poyang Lake Basin of China, CMIP6, statistical downscaling, global warming, climate change
1 INTRODUCTION
Climate change research has attracted great attention from the international community, and the catastrophic consequences of climate change not only disrupt the balance of natural ecosystems but also seriously limit the sustainable development of human society. The Sixth Assessment Report (AR6) released by the IPCC (Intergovernmental Panel on Climate Change) in 2021 showed that the globe is experiencing more pronounced warming than the historical period, with the global average surface temperature from 2011 to 2020 has alone risen by 1.09°C (0.95–1.20°C) compared to the pre-industrial period (1850–1900) (IPCC 2021). Global warming has become an indisputable fact. To actively respond to the tremendous risks posed by global climate change, many countries unanimously adopted the Paris Agreement at the 21st United Nations Climate Change Conference, which set the goal of limiting the global average temperature rise to well below 2°C (and striving to limit it less than 1.5°C) by 2100 compared to pre-industrial levels (Schleussner et al., 2016). As global warming intensifies, sea levels would rise dramatically, and extensive areas of permafrost would melt, which potentially paralyzes the natural ecosystems. Simultaneously, global warming would heighten the risk of flooding, and the global food security and water scarcity problems threaten human lives significantly (Schleussner et al., 2016). Therefore, projecting the future global and regional climate change under different global warming targets is of great practical significance. Accurately grasping the future climate change trend will help to scientifically formulate countermeasures against climate change.
Global Climate Models (GCMs) are powerful tools for climate simulation and future climate change projection. The Coupled Model Intercomparison Project (CMIP) developed by WCRP (World Climate Research Program) provides a more comprehensive understanding of the past, present, and future climate change, which is a primary basis for the Assessment Reports compiled by IPCC and is presently in its sixth phase (CMIP6) (Eyring et al., 2016). The Scenario Model Intercomparison Project (ScenarioMIP) was authorized by CMIP6 as one of 23 sub-programs designed and organized by various countries, which is a rectangular combination of different Shared Socioeconomic Pathways (SSPs) and the Representative Concentration Pathways (RCPs) (O'Neill et al., 2016; Riahi et al., 2017; Su et al., 2021). For this study, four ScenarioMIP core experiment (Tier-1) scenarios were selected, the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively.
Since the establishment of the global warming target of the Paris Agreement and the strengthening of the global warming trend, many scholars have used GCMs to explore the global or regional climate mean states or extreme climate change characteristics under different future warming scenarios. More studies have been conducted to analyze global or regional future climate change under global warming based on CMIP5, and both found that the future temperature and precipitation, as well as extreme climate events were projected to increase significantly with the rising global warming targets (Guo et al., 2016a; Guo et al., 2016b; Li et al., 2018; Nkemelang et al., 2018; Nangombe et al., 2018; Ullah et al., 2020). However, CMIP5 was used in the research mentioned above, while CMIP6 was more complex in the experimental setting and had a higher model resolution than CMIP5. Zhu et al. (2021) comparatively analyzed the ability of CMIP5 and CMIP6 to capture future extreme climate events in China under global warming. They pointed out that CMIP6 had higher accuracy in simulating temperature and precipitation. According to Zhuang et al. (2021), the major land regions of the Belt and Road Initiative would continue to warm in the future, with stronger warming amplitude in the high latitude regions than the low latitude regions. As the global warming target intensified, Kim and Bae. (2021) predicted the area of warm and arid climate zones in the Asian monsoon region would expand, while the cold and polar climate zones would shrink. Kamal et al. (2021) and Mondal et al. (2021) discussed the future climate change of Bangladesh and the Indus river basin under the 1.5 and 2°C global warming targets, and they concluded that future climate change would seriously threaten the local agricultural production. Zhang et al. (2021) pointed out that when global warming amplitude reached 5°C, the land area of overheating zone in China would up to 70% under the high emission scenario (SSP5-8.5). Nashwan and Shahid (2022) predicted that the future annual precipitation in northern Egypt would increase by 37% and 54% under SSP1-1.9 and SSP1-2.6 scenarios, respectively. However, the spatial distribution would be more uneven and the risk of hydrological hazards would increase. The majority of the studies mentioned above mainly predicted future climate change at large scales under various global warming targets. However, a few studies have been conducted at local scales, especially for large basins. Actually, the basin is close related to human production and livelihood, which is an indispensable condition for the origin of human civilization (Hu et al., 2022). Therefore, future climate change at the basin scale deserves more attention.
China is one of the most sensitive areas of global climate change over the world. The warming amplitude in China is large than the global average level during the same period, leading to frequent occurrence of climate extremes (Wu et al., 2020; Zhang et al, 2020). The Poyang Lake is the largest freshwater lake in China. The Poyang Lake Basin (PLB) is also an important ecological function reserve and internationally important wetland in China. The PLB which plays a crucial role in food security, water conservation, flood storage, climate regulation and ecological protection. However, some previous studies revealed that the risk of climate extremes and the frequency of droughts and floods in the PLB increased in the last 20 years, which has resulted in water resources problems and ecological problems under the background of global warming (Shankman et al., 2006; Guo et al., 2008; Lei et al., 2021a).
Currently, the climate change studies in the PLB were mainly focused on simulating precipitation or extreme precipitation changes, and the effects of climate change on the basin runoff, evapotranspiration or meteorological drought (Li and Hu, 2019; Lei et al., 2021a), since only a few studies concentrate on predicting future climate change. Thus, quantitative and scientific prediction of the future climate change of the PLB under different global warming targets is projected by the multi-model ensemble (MME) based on 17 CMIP6, which provides scientific guidance for water resources management, agricultural activity planning, flood and drought disaster prevention and ecological environment management of the PLB.
2 MATERIALS AND METHODS
2.1 Study area
The Poyang Lake (113.74–118.47°E, 24.57–30.01°N) is located in the northern region of Jiangxi Province and on the south bank of the middle and lower reaches of the Yangtze River. It receives water from Ganjiang, Fuhe, Xinjiang, Raohe and Xiushui after regulation and storage flows down into the Yangtze River. The basin is about 620 km from north to south and 490 km from east to west (Ye et al., 2011). The drainage area is approximately 16.22 × 104 km2, covering 94% of Jiangxi Province and 9% of the Yangtze River Basin (Lei et al., 2021b). The Poyang Lake Basin (PLB) has a typical subtropical monsoon humid climate with an annual precipitation of ∼1680 mm and an average annual temperature of around 17.6°C (Zhang et al., 2014). The northern PLB is the lower Poyang plain, while the southern part is dominated by the Gannan mountains. The overall topography is higher in the south than the north. The PLB is densely populated, socio-economical developed area and it has abundant natural resources which makes it an important biodiversity conservation area.
2.2 Datasets
24 meteorological stations distributed general evenly across the PLB were obtained from the China Surface Meteorological Daily Dataset (V3.0) provided by the China Meteorological Data Service Center (http://data.cma.cn/). The fifth-generation atmospheric reanalysis dataset (ERA5) released by the European Centre for Medium-Range Weather Forecasts (ECMWF) was also used in this study (https://www.ecmwf.int), with a temporal-spatial resolution of 0.25° × 0.25° and 6-hourly. A common time series from 1980 to 2020 were extracted from two datasets. The distribution of the 24 meteorological stations and ERA5 grid points over the PLB was shown in Figure 1.
[image: Figure 1]FIGURE 1 | Distribution of meteorological stations and ERA5 grid points over the PLB.
The latest production of 17 GCMs from CMIP6 were selected to predict the future climate changes under 1.5–3°C global warming targets over the PLB. The basic information of GCMs was listed in Table 1, and more detailed information can be found at the website (https://esgf-node.llnl.gov/search/cmip6/). The GCMs of CMIP6 covered the historical simulation period from 1980 to 2014 as well as the future period from 2030 to 2099. Four emission scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) were chosen for each GCM to predict future climate changes in the PLB. The dataset used in this study includes daily precipitation (Pre), daily mean temperature (Tas), daily maximum temperature (Tasmax) and daily minimum temperature (Tasmin).
TABLE 1 | Basic information of 17 CMIP6 global climate models.
[image: Table 1]2.2 Methods
2.2.1 Delta
Delta method defines the difference between future and historical periods as a climate change signal, which is used for historical observations for a specific region to generate future climate change scenarios. This method was widely used in hydro meteorological studies because it was relatively simple and requires limited computational parameters (Immerzeel et al., 2012; Chen et al., 2013). The equations are as follows:
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Where [image: image] and [image: image] represent temperature and precipitation; The subscripts of [image: image] and [image: image] represent temporal resolution (day and month), respectively. [image: image] and [image: image] are the temperature and precipitation data after downscaling, respectively. [image: image] and [image: image] are the observed temperature and precipitation in the PLB, respectively. [image: image], [image: image], [image: image], and [image: image] indicate monthly average data of temperature and precipitation for CMIP6 and ERA5.
2.2.2 Daily Translation (DT)
Daily Translation is a quantile-based deviation correction method, assuming future and historical climate events have consistent deviations in all quantile levels. The distribution of temperature or precipitation is downscaled by revising the time series quantile (Chiew and Mpelasoka, 2009; Chen et al., 2013), using formulas as follows:
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Where the subscript of [image: image] represents the percentile for a specific month. [image: image] and [image: image] are the temperature and precipitation of CMIP6, respectively. [image: image], [image: image], [image: image], [image: image] represent the percentile of temperature and precipitation of observations and ERA5.
2.2.3 Quantile Mapping (QM)
Quantile Mapping is a statistical conversion method that directly corrects GCMs or RCMs, which can correct future period precipitation based on the range in the historical period. The QM method has been shown to be effective in reducing the bias of meteorological data (Jakob Themeßl et al., 2011; Themeßl et al., 2011; Chen et al., 2013). The following are the specific equations:
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Where [image: image] is the station precipitation. [image: image] is the calibration period.[image: image] indicates the ERA5 precipitation that is not downscaled and used for validation.[image: image] is the cumulative distribution function of [image: image]. [image: image] and [image: image] are the inverse cumulative distribution function of observed and ERA5 precipitation.
2.2.4 Local Intensity Scaling (LOCI)
LOCI is a reliable method for directly correcting GCMs or RCMs, despite the low resolution of GCMs or RCMs, the data still contain reliable precipitation information (Schmidli et al., 2006). The LOCI method is based on scaling factors for scaling, which are calculated in the following manners:
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Where [image: image] and [image: image] are the same as for Eqs. 5, 6 above. [image: image] and [image: image] are the precipitation of the stations and ERA5, respectively.[image: image] and [image: image] are the precipitation threshold of the stations and ERA5, respectively.
2.2.5 Evaluation criteria
The root mean square error (RMSE), coefficient of determination (R2), and Kling-Gupta efficiency (KGE) were used to analyze the bias between the downscaled CMIP6 and the observations (Gupta et al., 2009). The KGE is an improvement of NSE (Nash-Sutcliffe efficiency), which can comprehensively evaluate the mean and error between observed and simulated values, and has been widely used in current research.
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Where [image: image] is the correlation coefficient. [image: image] is the mean ratio of simulated temperature/precipitation to observed temperature/precipitation.[image: image] indicates the ratio of the variance of the simulated temperature/precipitation to observed temperature/precipitation.
A perfect match between observed and simulated temperature and precipitation would return a KGE of 1. Whereas, using the average level of observed data as simulated result will return a KGE of 0. If the KGE is less than 0, the downscaled result is not credible.
3 RESULTS
3.1 Validation of the downscaling methods in the PLB
Table 2 indicates that the QM method can effectively reduce the RMSE of monthly precipitation. The R2 demonstrates that the QM method appeared to outperform the other methods, with a 0.80 or higher values for most of the models. The KGE of the QM method was approximately 0.49, which was significantly higher as compared to the other three methods. Overall, the QM method delivered the best performance in downscaling precipitation in the PLB.
TABLE 2 | Comparison of downscaling methods of the historical monthly precipitation from CMIP6.
[image: Table 2]The RMSEs of the downscaled historical temperature and the observed temperature of the basin fell within the range of 3°C, and the RMSE of monthly Tas was less than the monthly Tasmax and Tasmin (Table 3). The QM method markedly decreased the RMSE of the downscaled monthly Tas and increased the R2 and KGE apparently. As opposed to Delta and QM, the DT method appeared to increase the RMSE for the monthly Tasmax and Tasmin simulated by CMIP6 models. In contrast, the Delta method could effectively reduce the RMSE and even result in a higher R2 in comparison to DT and QM. There was no discernible difference among the KGE of the three downscaling methods, but the Delta method showed a slightly better performance overall. Generally, the QM method was found to be more effective in downscaling the Tas of the PLB, while the Delta method could optimally downscale the Tasmax and Tasmin.
TABLE 3 | Comparison of downscaling methods of the historical monthly Tas, Tasmax, and Tasmin of the CMIP6.
[image: Table 3]3.2 Applicability evaluation of CMIP6 models in the PLB
Taylor diagram (Taylor, 2001) was used in this study to further test and evaluate the simulation performance of 17 CMIP6 global climate models for precipitation and temperature in the historical period (1980–2014) of the PLB (Figure 2). It showed the simulation effect of multiple models intuitively and concisely in the form of graphics. Simultaneously, the spatial correlation coefficient, standard deviation (SD) and root mean square error (RMSE) between the simulation results and the observed data can also be displayed in a single figure. The SD and RMSE were normalized as normalized standard deviation (NSD) and normalized root mean square error (NRMSE). Briefly, the closer the distance to the OBS site in the diagram, the better the model simulated the observed data. As Figure 2A illustrated, the 17 CMIP6 global climate models showed relatively strong performance to simulate precipitation in the PLB from 1980 to 2014. Spatial correlation coefficients of most models with the observed data were above 0.79, and the NRMSEs were controlled between 0.4 and 0.8, which can basically simulate the spatial pattern of precipitation in the basin. For the Tas, Tasmax and Tasmin of the PLB (Figures 2B–D), the spatial correlation coefficients between each CMIP6 climate model and the observed data were large than 0.98, and the NRMSEs of most models were less than 0.2, and the simulation results of each model were more concentrated. It is remarkable that CMIP6 showed the best simulation performance on the Tasmin of the basin. Summarily, the CMIP6 global climate models can simulate the spatial distribution of temperature in the basin from 1980 to 2014.
[image: Figure 2]FIGURE 2 | Taylor diagrams for precipitation and temperature by CMIP6 of the PLB. (A–D) are the precipitation, Tas, Tasmax and Tasmin of the PLB.
Furthermore, the spatial correlation coefficients of historical precipitation and temperature with observed data for the PLB simulated by the MME were higher than those of most models, with precipitation was about 0.93 and the Tas, Tasmax and Tasmin were all above 0.99. The NRMSEs were significantly reduced, the precipitation was about 0.4, the NRMSEs of temperature were far less than 0.2. This indicated that the simulation performance of the CMIP6 MME was superior to the majority of single models, better reproducing the spatial and temporal characteristics of precipitation and temperature for the PLB from 1980 to 2014. It is noteworthy that both single models and the MME had much better simulation performance for the temperature than precipitation.
Figure 3 showed the simulation of CMIP6 MME precipitation and temperature on the observed data at annual scale after downscaling in the PLB from 1980 to 2014. The results indicated that the annual precipitation, Tas, Tasmax and Tasmin of MME simulation maintained relatively consistent trends with the observed data in the same period, respectively. The CMIP6 MME can well reflect the inter-annual variation pattern of observed data. For time series, the precipitation, Tas, Tasmax and Tasmin of MME simulation all underestimate the observed to some extent, particularly the Tasmin.
[image: Figure 3]FIGURE 3 | CMIP6 multi-model ensemble precipitation and temperature time series simulation of observation data. (A–D) are the precipitation, Tas, Tasmax and Tasmin of the PLB.
Furthermore, the spatial distribution of precipitation and temperature from 1980–2014 observed data and MME simulation in the PLB (Figure 4) demonstrated that, despite the spatial distribution of both observed precipitation and MME simulation precipitation showed a decreasing trend from the east to west, the regional differences were significant (Figures 4A,B). The maximum precipitation occurred in the Xinjiang basin, while the minimum precipitation appeared in the Ganjiang basin and the Xiushui basin. Comparatively, MME simulation precipitation underestimated what was actually observed in the PLB, especially in the Raohe basin. The spatial mean of MME simulation precipitation was 1407 mm/a (Figure 4B), whereas the observed precipitation was 1697 mm/a (Figure 4A), with a difference of 290 mm/a.
[image: Figure 4]FIGURE 4 | CMIP6 multi-model ensemble precipitation and temperature spatial distribution simulation of observation data. (A,C,E,G) are the observed precipitation, Tas, Tasmax and Tasmin of the PLB. (B,D,F,H) are the simulated precipitation, Tas, Tasmax and Tasmin of the CMIP6.
The spatial distribution of the Tas, Tasmax and Tasmin of observed and MME simulation in the PLB both showed a high consistency with a gradual decrease from the south to north (Figures 4C–H). The maximum value occurred in the south-central part of the Ganjiang basin, where the Tas exceeded 19°C. However, the temperature (Tas, Tasmax and Tasmin) simulated by MME significantly underestimated the observed temperature in the northeast of the basin and overestimated the temperature in Xiushui Basin. In comparison, the Tas, Tasmax and Tasmin of the MME simulation were lower than those observed in the PLB. The spatial means of MME simulation temperature were 16.84°C/Tas (Figure 4D), 21.58°C/Tasmax (Figure 4F) and 12.50°C/Tasmin (Figure 4H), while the observed data were 17.99°C/Tas (Figure 4C), 22.85°C/Tasmax (Figure 4E) and 14.50°C/Tasmin (Figure 4G), with a difference of 1.15°C/Tas, 1.27°C/Tasmax and 2°C/Tasmax, respectively.
3.3 Projection of the future climate change in PLB under global warming
3.3.1 Spatiotemporal variations of the future annual precipitation in the PLB
IPCC based on the longest global surface temperature dataset available, found that the global average surface temperature has increased by 0.61 (0.55–0.67°C) since 1986–2005 compared to the pre-industrial period (1850–1900) in the AR5 (IPCC 2013). However, the warming value were revised by the AR6 (IPCC 2021), which the global average surface temperature was higher by 0.08 (−0.01 to 0.12°C) than in the AR5. That was the global average surface temperature has increased by 0.69°C since 1986–2005 compared to the pre-industrial period. The reference period was unanimously approved by many scholars (Su et al., 2018; Su et al., 2017; Zhang et al., 2017; Chen et al., 2017; Sun et al., 2017). Accordingly, if the Tas in the PLB was calculated for the future period 2030–2099 and the Tas increased by 0.81°C as compared to the reference period, i.e., 1986-2005, it will reach the global warming target of 1.5°C. An increase of 1.31°C will reach the global warming target of 2°C, and an increase of 2.31°C will reach the global warming target of 3°C.
To avoid the uncertainty in selecting a single warming year, the year in which the global warming target was first achieved would be the center year, extrapolating 10 years forward and 9 years backward for a total of 20 years as the warming period. The global warming time series for each emission scenario simulated by MME were listed in Table 4. The global warming of 1.5, 2 and 3°C will occur around 2040, from 2045 to 2080 and around 2075, respectively, for the emission scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. Whereas, the SSP1-2.6 and SSP2-4.5 did not reach the 3°C global warming target. The occurrence time of the high emission scenario was earlier than that of the low emission path under the same global warming target.
TABLE 4 | Period of CMIP6 multi-model ensemble reaching different temperature warming targets from 1986 to 2005.
[image: Table 4]The boxplot diagrams of temperature and precipitation change show the climatic change characteristics in the PLB under various global warming targets and emission scenarios (Figures 5A, 7A, 9A, 11A). Each box includes the 5%, 25%, 75%, and 95% quartiles of the meteorological data points, where the short black horizontal line in the middle of the box represents the 50% quartile of the data points. The long horizontal line indicates the median value of the data sequence. Results showed that although the annual precipitation would increase as global warming intensifies, which was lower than that of the reference period and the increasing amplitude was smaller, as well as the interannual variation would be greater (Figure 5A). Specifically, the annual precipitation of SSP1-2.6 was the highest and the SSP3-7.0 was the lowest under the same global warming target. Summarily, the annual precipitation increased with the rise of the global warming targets under the same emission scenario.
[image: Figure 5]FIGURE 5 | Boxplot diagram of precipitation change under different scenarios (A) and the error bar plot of precipitation change relative to the reference period (B) in the PLB. Ref denotes the reference period (1986–2005). The black vertical line indicates the standard deviation of 17 CMIP6 models.
This study further analyzed temperature and precipitation change trends under different global warming targets relative to the reference period (Figures 5B, 7B, 9B, 11B). As shown in Figure 5B, under the 1.5°C global warming target, the annual precipitation was anticipated to decline by 12.47, 14.68, 16.90, and 15.22% under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, respectively. At the global warming level of 2°C, the reduction would be 8.35, 12.54, 14.47, and 12.32%, respectively. The amplitude was significantly smaller than that of the 1.5°C global warming target and would further reduce at the 3°C global warming target. The reduction of the annual precipitation under SSP3-7.0 and SSP5-8.5 would be 12.02 and 5.80%, respectively.
As global warming from 1.5°C to 2°C, annual precipitation would increase by 4.12, 2.14, 2.44, and 2.90% under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, respectively. When the global warming target increased from 2°C to 3°C, the annual precipitation of SSP3-7.0 and SSP5-8.5 would increase by 2.44 and 6.52%, respectively, which SSP5-8.5 showed the most significant change, followed by SSP1-2.6. After averaging the four emission scenarios, the rates of precipitation change for 1.5, 2 and 3°C were −14.82, −11.92, and −8.91%, respectively. These results indicated that an additional global warming level of 0.5°C would increase the annual precipitation across the basin by an average of 2.90%, and further warming of 1°C would result in an increase of 4.48%.
Under the global warming targets of 1.5, 2 and 3°C, the standard deviations corresponding to the four emission scenarios between 17 CMIP6 models were 16.97 and 17.01% (SSP1-2.6), 16.16 and 16.43% (SSP2-4.5), 16.31, 16.35, and 16.51% (SSP3-7.0), as well as 16.03, 16.15, and 16.76% (SSP5-8.5), respectively. The standard deviations of the averaged emission scenarios were 16.37%/1.5°C, 16.48%/2°C, and 16.64%/3°C. Obviously, the standard deviations between 17 models increased slightly as the global warming target rose (Figure 5B). There was large uncertainty in predicting future precipitation, which was mainly related to the influence of internal variability of the climate system, model uncertainty and natural and anthropogenic aerosol emission uncertainty (IPCC 2021).
The spatial distribution of annual precipitation under different global warming targets in the PLB shows that the spatial distribution pattern of the future annual precipitation simulated by the CMIP6 MME was relatively consistent but with significant regional variability. Figure 6 and Table5 both indicate that he future total annual precipitation in the whole PLB and each sub-basin decreased relative to the reference period (1986–2005). Regarding the regional variability, the southern part of the basin received more precipitation than the northern part as well as the eastern regions fell more precipitation than the western regions. Such spatial distribution pattern may be mainly related to the topography characteristics and the influence of monsoon in the basin. The northern part of the basin is dominated by the Poyang Lake Plain, while the eastern and southern mountains block the summer humid airflow and lack the orographic rain, which is the area with lower precipitation in the PLB. The Raohe basin showed the least annual precipitation compared to other sub-basins, followed by the Xiushui basin. Except for SSP3-7.0 under the global warming targets of 1.5 and 2°C (Figures 6C,H), the future annual precipitation in the south-central Ganjiang basin showed a noticeable increasing trend with a maximum amplitude of variation about 15–20% (Figure 6F), which was the high-value area of precipitation in the PLB. Conversely, the lowest precipitation values were found in the areas from west-central Raohe basin to the northwestern of Ganjiang basin, where the maximum annual precipitation would significantly drop by −35–30% (Figure 6C). Table 5 further manifests that without respect to consider emission scenarios, the future annual precipitation in the Raohe basin dramatically decreased by 26.18, 23.29 and 20.03% from the reference period under 1.5, 2 and 3°C warming targets.
[image: Figure 6]FIGURE 6 | Spatial distribution of precipitation in the PLB relative to the reference period (1986–2005). (A–E) are the 1.5°C global warming target. (F–J) are the 2°C global warming target. (K–M) are the 3°C global warming target. (E,J,M) are the emission scenarios averaging results.
TABLE 5 | Variations of precipitation in sub-basins of the PLB relative to the reference period (1986–2005).
[image: Table 5]Under the global warming level of 1.5, 2 and 3°C, the average annual precipitation was projected to 1464, 1514 and 1566 mm, respectively (Figures 6E,J,M). Despite the annual precipitation during the future warming periods was less than the reference period, the reduction was moderated with the enhancement of the global warming targets (Table 5). Thus, the overall future annual precipitation in the whole basin and the 5 sub-basins would increase with the rising global warming targets. The drought conditions in the northern part of the basin will be relieved to some extent, while the south-central part of the Ganjiang basin will continue to face with wet conditions, increasing the risk of flooding events.
3.3.2 Spatiotemporal variations of future Tas in the PLB
As seen in Figure 7A, the PLB will continuously keep warming in the future under all emission scenarios. Obviously, the highest Tas value was found in the SSP3-7.0 scenario under the global warming level of 2°C, while it was achieved the highest in the SSP5-8.5 scenario among 1.5 and 3°C warming targets. Under the same emission scenario, the future Tas in the PLB increased as the global warming target rose. At 1.5°C global warming target, an increase of the Tas was expected by 0.37, 0.42, 0.41, and 0.53°C under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, respectively, with respect to the reference period. At 2°C global warming target, the Tas of the four emissions scenarios would rise by 0.74, 0.93, 1.07 and 1.02°C, respectively. Whereas the global warming level rose to 3°C, the Tas increase amplitude under SSP3-7.0 scenario would exceed the safety threshold of 1.5°C set by the Paris Agreement, reaching 1.70°C, while the warming under the high emission scenario of SSP5-8.5 remarkably reached 2.14°C. Notably, the warming amplitude increased dramatically with the rise of the global warming targets. Under the global warming target of 1.5°C, 2°C, and 3°C, the PLB would warm up by 0.43°C, 0.94°C, and 1.92°C respectively. The warming amplitude under 2°C was nearly twice that of 1.5°C and the warming amplitude under 3°C was roughly about 4.5 times as much as that of 1.5 and twice that of 2°C. Global warming from 1.5°C to 2°C would increase the Tas by 0.51°C, with the strongest increase occurring at SSP3-7.0, while global warming from 2°C to 3°C will heighten the basin’s future Tas by 0.87°C, and SSP5-8.5 showed a significant increase (Figure 7B).
[image: Figure 7]FIGURE 7 | Boxplot diagram of Tas change under different scenarios (A) and the error bar plot of Tas change relative to the reference period (B) in the PLB. Refer denotes the reference period (1986–2005). The black vertical line indicates the standard deviation of 17 CMIP6 models.
Figure 7B shows that under the global warming targets of 1.5, 2 and 3°C, standard deviations relevant to the four emission scenarios among 17 CMIP6 models were 1.22 and 1.24°C (SSP1-2.6), 1.15 and 1.16°C (SSP2-4.5), 1.10, 1.11 and 1.13°C (SSP3-7.0), as well as 1.19, 1.20 and 1.27°C (SSP5-8.5), respectively. After averaging all emission scenarios, the standard deviations were 1.16°C/1.5°C, 1.17°C/2°C and 1.20°C/3°C. Consequently, the uncertainty between 17 CMIP6 models was larger for the 3°C global warming target than for the 1.5 and 2°C targets.
Under four future emission scenarios, the spatial variation of future Tas in the PLB simulated by the CMIP6 MME possessed a high consistency compared to the reference period, demonstrating that the whole basin will persist to warm in the future. But the regional variability is substantial and thus need to be considered (Figure 8). Under all global warming targets, the warming of the future Tas of the basin roughly followed a trend of increasing from south to north and from east to west, with the Xiushui basin in the northwest being the area of higher warming, while the northeast of the basin (i.e., the Raohe basin and Xinjiang basin) and the central Ganjiang basin being the areas of lower warming. That was further demonstrated in Table 6. Irrespective of the scenarios used in this study, i.e. SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, the warming of Xiushui basin would be significantly greater than the global average warming level. Clearly, when global warming was 1.5, 2 and 3°C, the Tas in the Xiushui basin warmed by 1.97, 2.55 and 3.56°C. The descending order of future Tas of each sub-basin was the Xiushui, Ganjiang, Fuhe, Xinjiang and Raohe.
[image: Figure 8]FIGURE 8 | Spatial distribution of Tas in the PLB relative to the reference period (1986–2005). (A–E) are the 1.5°C global warming target. (F–J) are the 2°C global warming target. (K–M) are the 3°C global warming target. (E,J,M) are the emission scenarios averaging results.
TABLE 6 | Same as Table 5 but for Tas in the PLB.
[image: Table 6]It must be pointed out that the increasing range in the future Tas under the 2°C global warming target would be stronger than the 1.5°C. Likewise, such an increase at the 3°C global warming target was more powerful than 1.5 and 2°C. For example, under the high emission scenario of SSP5-8.5, the warming in the lower latitudes of the basin generally exceeded 1°C at the 3°C global warming target (Figure 8L) and the warming was only above 0°C at the global warming of 2°C (Figure 8I), whereas the southern part of the basin showed a cooling tendency at the 1.5°C global warming target (Figure 8D). The Tas in the southern Raohe basin, the Xinjiang basin and the central Ganjiang basin decreased at 1.5 and 2°C global warming targets compared to the reference period, but the cooling amplitude retained within 1°C. Nevertheless, the cooling range under the 2°C global warming target was less than that of the 1.5°C warming target. At the global warming level of 3°C, the whole basin manifested continuous warming.
Under 1.5, 2 and 3°C global warming targets, the basin’s future Tas would be 18.40, 18.92 and 19.88°C, respectively (Figures 8E,J,M), showing an overall noticeable rising trend with the rising global warming targets, particularly in northwestern part of the basin, where the risk of drought disasters is projected to increase.
3.3.3 Spatiotemporal variations of future Tasmax in the PLB
Under various emission scenarios, the future Tasmax in the PLB varied between 22 and 27°C, showing an obvious rule of interannual variation in warming (Figure 9A). The Tasmax of SSP5-8.5 was higher than that of the other scenarios at 1.5°C global warming target, while the Tasmax of SSP3-7.0 was slightly warmer than that of SSP5-8.5 at the global warming of 2°C. Under the same emission scenario, the Tasmax in the basin increased obviously with the rising global warming targets, which followed the same variation as the Tas. Relative to the reference period, the Tasmax of SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 increased by 0.57, 0.56, 0.55 and 0.63°C respectively at the 1.5°C global warming target. When global warming reached 2°C, the four emission scenarios changed by 0.94, 1.10, 1.24, and 1.15°C respectively. At the 3°C global warming target, the Tasmax changes of SSP3-7.0 and SSP5-8.5 were elevated by 1.94 and 2.24°C respectively. After averaging four emission scenarios, the Tasmax in the PLB rose by 0.58, 1.11 and 2.09°C under the 1.5, 2 and 3°C global warming targets respectively, with remarkable warming amplitude than the Tas of the basin. The increasing range in the future Tasmax of the basin under the 2°C global warming target was twice as high as 1.5°C, and the increasing range under the 3°C global warming target was about four times as high as the 1.5°C and about twice as high as 2°C. Global warming from 1.5°C to 2°C would increase the future Tasmax of the basin by 0.53°C, while a global warming from 2 to 3°C would increase it by 0.90°C (Figure 9B).
[image: Figure 9]FIGURE 9 | Boxplot diagram of Tasmax change under different scenarios (A) and the error bar plot of Tasmax change relative to the reference period (B) in the PLB.
Figure 9B further indicated that under the global warming scenarios of 1.5, 2 and 3°C, standard deviations of Tasmax simulated by 17 CMIP6 models relevant to the four emission scenarios were 1.75 and 1.77°C (SSP1-2.6), 1.70 and 1.71°C (SSP2-4.5), 1.67, 1.68 and 1.71°C (SSP3-7.0), as well as 1.68, 1.69 and 1.73°C (SSP5-8.5). After averaging emission scenarios, the standard deviations of Tasmax were 1.70°C/1.5°C, 1.71°C/2°C, and 1.72°C/3°C. Accordingly, the standard deviation of Tasmax was larger than the Tas, and the uncertainty of the prediction results was consistent with the variation of the Tas, which would increase with the rising global warming targets.
Compared to the reference period, the spatial distribution of the future Tasmax in the PLB was roughly like the Tas, with all of them showing significant warming, which the warming amplitude being generally larger in the high latitude regions than the low latitude regions, as well as in the western margin of the basin than in the central and eastern parts of the basin (Figure 10). Combined with Figure 10 and Table 7 to consider the regional variability, the center of warming was located in the Xiushui basin and the western part of the Ganjiang basin, while the Xinjiang basin was the main low-value warming area, followed by the south-central part of the Ganjiang basin. When global warming was 1.5, 2 and 3°C, the Tasmax in the Xiushui basin warmed by 2.01, 2.50 and 3.51°C. The rate of increase approximated the Tas, with the descending order of future Tasmax was the Xiushui, Ganjiang, Fuhe, Raohe and Xinjiang.
[image: Figure 10]FIGURE 10 | Spatial distribution of Tasmax in the PLB relative to the reference period (1986–2005). (A–E) are the 1.5°C global warming target. (F–J) are the 2°C global warming target. (K–M) are the 3°C global warming target. (E,J,M) are the emission scenarios averaging results.
TABLE 7 | Same as Table 5 but for the Tasmax in the PLB.
[image: Table 7]When the global warming reached 1.5°C, the Tasmax of all sub-basins was lower than the reference period except for the areas from the Xiushui basin to the western part of the Ganjiang basin, as well as the southern Raohe basin, where the cooling amplitude in the Xinjiang basin was the most dramatic, ranging between −0.5 and −1°C, average cooling about 0.39°C. When the global warming was 2°C, most areas of the Xinjiang basin continued to cool down but the cooling rate was retained within 0.5°C. Nonetheless, other sub-basins began to warm up by varying degrees. When the global warming achieved 3°C, the increasing rate in the northwestern regions of the basin and the western part of the Ganjiang basin were above 3°C, in local regions with values above 4°C. All remaining regions generally exceeded 1°C warming rates.
After averaging various emission scenarios, the Tasmax under the 1.5, 2 and 3°C global warming targets were different amounting to 23.40, 23.95 and 24.91°C (Figures 10E,J,M), increasing remarkably with the rising global warming targets and emission scenarios. In conclusion, extreme high temperature events were predicted to occur frequently in the PLB, threatening local agricultural production to some extent, especially in the northwestern part of the basin and the western part of the Ganjiang basin.
3.3.4 Spatiotemporal variations of future Tasmin in the PLB
Figure 11A shows that future Tasmin in the PLB fluctuated between 13 and 17°C. At the global warming level of 1.5°C, the Tasmin of each emission scenario was lower than the reference period, but the cooling amplitude reduced with the increasing emission scenario, where the descending order was SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. At the global warming level of 2°C, except for SSP1-2.6, the Tasmin of SSP2-4.5, SSP3-7.0 and SSP5-8.5 began to increase with the order of SSP3-7.0, SSP5-8.5, SSP2-4.5 and SSP1-2.6. Figure 11B indicates that under the 1.5°C warming target, the Tasmin of SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 decreased by 0.44, 0.32, 0.28 and 0.13°C with respect to the reference period, respectively. When global warming reached 2°C, the temperature changes were −0.09, 0.18, 0.35 and 0.30°C. And for the global warming target of 3°C, SSP3-7.0 and SSP5-8.5 warmed by 0.93 and 1.43°C respectively. On average, the future Tasmin changes in the PLB were separately for −0.29, 0.19 and 1.18°C under the global warming targets of 1.5, 2 and 3°C, which the temperature increasing amplitude under the 3°C global warming target was much higher than that of 1.5 and 2°C. The global warming target rose from 1.5°C to 2°C would increase the future Tasmin of the basin by 0.48°C and the target rose from 2°C to 3°C would increase the Tasmin by 0.86°C in the future.
[image: Figure 11]FIGURE 11 | Boxplot diagram of Tasmin change under different scenarios (A) and the error bar plot of Tasmin change relative to the reference period (B) in the PLB.
When the global warming scenarios of 1.5, 2 and 3°C, standard deviations relevant to the four emission scenarios among 17 CMIP6 models were separately for 1.18 and 1.20°C (SSP1-2.6), 1.11 and to 1.13°C (SSP2-4.5), 1.07, 1.08 and 1.09°C (SSP3-7.0), as well as 1.06, 1.14 and 1.22°C (SSP5-8.5). After averaging emission scenarios, the standard deviations were 1.10°C/1.5°C, 1.14°C/2°Cand 1.16°C/3°C. In conclusion, the standard deviation of the Tasmin was lower than the Tas and Tasmax, the uncertainty in the prediction of future Tasmin for the basin increased with the rising warming amplitude.
Figure 12 demonstrates that the spatial variation of future Tasmin in the PLB was similar with the spatial distribution of the Tas, in which the high-value area of warming was still located in the Xiushui basin in the northwest, while the eastern part of the Poyang Lake, including the Xinjiang basin and the southern Raohe basin, were the low-value areas of warming, followed by the south-central part of the Ganjiang basin.
[image: Figure 12]FIGURE 12 | Spatial distribution of Tasmin in the PLB relative to the reference period (1986–2005). (A–E) are the 1.5°C global warming target. (F–J) are the 2°C global warming target. (K–M) are the 3°C global warming target. (E,J,M) are the emission scenarios averaging results.
It can be concluded from Table 8, the Tasmin of all sub-basins except the Xiushui basin decreased obviously at the 1.5°C global warming target, and the cooling rate in the eastern part of the Poyang Lake can reach 2°C, but the dimension of cooling gradually shrunk with the elevation of emission scenarios. The descending order of the average cooling amplitude was Raohe, Xinjiang, Fuhe and Ganjiang. Nevertheless, the warming amplitude of the Tasmin in the Xiushui basin was obviously lower than that of the Tas and Tasmax, ranging from 0.5 to 1.5°C, averaging 0.99°C. At the global warming level of 2°C, the warming range in the Xiushui Basin increased between 1.5 and 2.5°C, averaging 1.56°C, while the eastern part of the Poyang Lake, the Xinjiang basin, the Fuhe basin and the southern Raohe basin continued to cool down, but the cooling rate was lower than 1.5°C.
TABLE 8 | Same as T Table 5 but for the Tasmin in the PLB.
[image: Table 8]On average for each emission scenario, the Tasmin under 1.5, 2 and 3°C global warming targets were 14.15, 14.65 and 15.61°C (Figures 12E,J,M), respectively, which the warming degree at the 3°C warming target was greater than 1.5 and 2°C. At 3°C global warming target, the overall warming in the northwestern part of the basin reached more than 2.5°C, and up to 4°C in the Xiushui basin under the high emission scenario of SSP5-8.5 (Figure 12L). Despite the overall future Tasmin in the PLB obviously decreased at 1.5°C global warming target, it will keep increasing as global warming intensifies. It is predicted that the future Tasmin in the PLB will increase with the rising emission scenarios and global warming targets, which not only reduces the impact of low-temperature frost damage to crops to a certain degree, but also increases the risk of drought emergence.
Furthermore, although the time to reach the global warming targets in the PLB was different under the four emission scenarios, the spatial distribution of surface temperature changes (Tas, Tasmax and Tasmin) in the basin under different global warming levels showed consistency among the emission scenarios (Figures 8–12). For the spatial scale, whether Tas, Tasmax or Tasmin, warming was mainly shown to intensify from the south to north, and more specifically from southeast to northwest, which was consistent with the spatial pattern of temperature change in China or other regions of the world in the context of global warming (Li et al., 2018; Xu et al., 2017; Zhuang et al., 2021). The future warming center of the basin was located in the Xiushui basin in the northwest, and this high temperature center would be strengthened gradually with the increasing global warming and emission scenarios. Therefore, it can be considered as the most sensitive area of global warming in the PLB, which was consistent with the study of Zhan et al. (2013).
4 CONCLUSION
Four statistical downscaling methods were used in this study to correct the bias of 17 CMIP6 models based on the observation data from 24 meteorological stations and ERA5 reanalysis data in the PLB. The future climate change characteristics of the PLB under the 1.5–3°C global warming targets were projected by the multi-model ensemble (MME). The main conclusions are summarized as follows:
The RMSE, R2 and KGE evaluation metrics were used to assess the efficacy of QM, Delta, and LOCI in downscaling the 17 CMIP6 products, including the precipitation, Tas, Tasmax and Tasmin. The Taylor diagram (Figure 2) and spatiotemporal distribution of temperature and precipitation simulation (Figures 3, 4) further demonstrated that simulation performance of the CMIP6 MME was superior to the majority of single models and can be adopted in this research. By calculating the Tas of the basin for the future projection period (2030–2099), it was determined that under the emission scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, the years when the PLB reached the 1.5°C global warming target were 2048, 2048, 2048 and 2037 respectively. The years when it reached the 2°C global warming target were 2077, 2066, 2066 and 2048 respectively. Notably, SSP1-2.6 and SSP2-4.5 did not reach the 3°C global warming target, but SSP3-7.0 and SSP5-8.5 reached the target in 2077 and 2071, respectively.
Under 1.5, 2 and 3°C global warming targets, the future annual precipitation decreased by 14.82, 11.92 and 8.91% relative to the reference period (1986–2005). Emphatically, as global warming rising from 1.5 to 2°C, the annual precipitation would increase by 2.90%, while it increased from 2 to 3°C, the annual precipitation will significantly increase by 4.48%. Although the annual precipitation in the future warming periods of the basin were lower than the reference period, the reduction would decrease with the rising global warming targets (1.5°C–3°C), which indicated that the annual precipitation in the future still shows an overall trend of increasing with the intensification of global warming. That was mainly related to the rising radiative forcing level in the future, especially drove by higher greenhouse gas concentration in the future. In addition, the atmospheric water-vapour content and oceanic evaporation will increase with the intensification of global warming, resulting in the increase of precipitation in the future of the basin. Furthermore, the standard deviations between 17 CMIP6 models were different, amounting to 16.37/1.5°C, 16.48/2°C and 16.64%/3°C. Spatially, the distribution characteristics of future annual precipitation in the PLB were relatively consistent, but the regional variability is significant. The annual precipitation was higher in the southern regions than in the northern regions as well as the eastern part experienced more precipitation than the western part. Such spatial distribution pattern may be mainly related to the topography characteristics and the influence of monsoon in the basin.
The interannual trend of future temperature in the PLB indicated that the basin will continuously warm up in the future. Under the 1.5, 2 and 3°C global warming targets, the projected Tas increased significantly by 0.43, 0.94 and 1.92°C and the Tasmax increased by 0.58, 1.11 and 2.09°C. The Tasmin decreased by 0.29°C under the 1.5°C warming target, while it increased by 0.19 and 1.18°C under the 2 and 3°C warming targets. The standard deviations were 1.16/1.5°C, 1.17/2°C and 1.20°C/3°C (Tas), 1.70/1.5°C, 1.71/2°C and 1.72°C/3°C (Tasmax), as well as 1.10/1.5°C, 1.14/2°C and 1.16°C/3°C (Tasmin), respectively. Spatially, the future Tas, Tasmax and Tasmin indicated more consistent spatial variation, which the warming degree overall showed that the high latitude areas were larger than the low latitude areas, and the western part of the basin was larger than the central and eastern parts of the basin.
Regardless of the precipitation, Tas, Tasmax or Tasmin increased with the rising global warming targets under the same emission scenario. And the warming amplitude of the 3°C global warming target was much larger than that of the 1.5 and 2°C. In summary, the PLB should strengthen the early warning and forecasting of flooding, develop flood prevention measures, and establish an emergency system for flood prevention and rescue to reduce flood losses (Zhang et al., 2018).
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Tropical cyclone precipitation (TCP) can cause serious floods and urban waterlogs as well as cause various secondary disasters, such as landslides and debris flows, which negatively affect human lives and the sustainable development of the economy. This study applied the prewhitening Mann-Kendall test, empirical orthogonal function, and continuous wavelet transform to investigate the long-term trend, spatiotemporal pattern, and periodicity of TCP at monthly, interannual, and interdecadal timescales over China. The recurrence risks of extreme TCP were analyzed using the return period estimation model. The results showed that 1) TCP displayed a significant increasing trend, especially in eastern China, inland areas, and Guangxi Province. The TCP periodicities were 2.5 and 4.9 years across all of China. However, TCP cycles had large discrepancies in the time and frequency domains in different subregions. 2) Monthly TCP demonstrated a decreasing trend in May and an increasing trend from June to October in all of China. The TCP in northeastern China and southern China tended to decrease in July and August, respectively. 3) TCP demonstrated a decreasing tendency from the 1960s–1980s followed by a rebounding trend in the 1990s–2010s. In addition, TCP showed a dipole mode in the 1970s and 2000s. 4) There was an increasing recurrence risk of extreme TCP in the Yangtze River Delta, Hainan Province, southeastern Guangxi Province, and southwestern Guangdong Province. It is therefore necessary to improve forecasting of extreme TCP events to improve risk management and prevention capacity of natural disasters, especially in regions with high population and economy exposure.
Keywords: tropical cyclone precipitation, return period, trend, spatial and temporal heterogeneity, China
1 INTRODUCTION
Tropical cyclones (TCs) are catastrophic weather systems often accompanied by severe rainfall (Ren et al., 2007; Gu et al., 2017; Zhang et al., 2019). The sixth assessment report from the Intergovernmental Panel on Climate Change (IPCC) indicated that the proportion of intense TCs and the intensity of tropical cyclone precipitation (TCP) are projected to increase with the intensification of global warming (high confidence) (Masson-Delmotte et al., 2021). TC hazards such as storm surges, rainstorms, and strong winds severely affect human lives and the sustainable development of the economy (Jonkman et al., 2009; Czajkowski et al., 2013; Rappaport, 2014; Zhang et al., 2018). The World Meteorological Organization (WMO) announced that TC hazards led to a daily average of 43 deaths and 78 million USD in losses from 1970 to 2019 (WMO, 2021). China is one of the countries that are most frequently and severely affected by TC hazards due to its unique geographical environment and multiple climate conditions. The six highest records of cumulative 24-h precipitation over China were all the result of TCs (Chen et al., 2010). The Blue Book on Climate Change in China 2021 showed that the average intensity of TCs making landfall in China has increased since the late 1990s (CMA Climate Change Center 2021). TCP can cause various, long-lasting, secondary disasters in China, such as urban waterlogs, floods, mudslides, and landslides (Jonkman et al., 2009; Mendelsohn et al., 2012; Zhang et al., 2018; Liu et al., 2020; Qi and Gao, 2020; Yan et al., 2021). Thus, an in-depth study of the spatiotemporal heterogeneity of TCP over China is of significant importance for regional disaster prevention and mitigation.
Many studies have focused on TCP variation in different regions (Chen and Fu, 2015; Zhang et al., 2018; Feng et al., 2020; Ma et al., 2020). Cavazos et al. (2008) indicated that extreme TCP showed a significant increasing trend in northwest Mexico. Lau and Zhou (2012) implied that TCP displayed an increasing trend over the North Atlantic but a downward trend over the northeast and northwest Pacific. Khouakhi et al. (2017) demonstrated that extreme TCP occurred more frequently in Australia and along the eastern coast of the US during La Ni[image: image]a. TCP has also attracted considerable attention in China due to the improvement of the TCP observation network (Chen et al., 2010). Li and Zhou (2015) pointed out that TCP contributes 20–40% of the total precipitation in southeastern China during the summer, with significant interdecadal variations. Jiang et al. (2018) observed that the frequency of maximum daily TCP reached between 100 and 250 mm on Hainan Island increased between 1969 and 2014. Wang et al. (2020a) confirmed that winter sea surface temperature (SST) anomalies in the tropical eastern Pacific (TEP) caused regional triple pattern abnormality, which had a significant impact on TCP by influencing the paths of TCs impacting mainland China.
Nevertheless, there are some limitations to these previous studies. Most of these studies are based on precipitation from landfalling TCs while ignoring sideswiping TCs (STCs), i.e., storms that did not create landfall. However, STCs also generate cloud systems on their periphery that contribute substantially to TCP over China (Feng et al., 2020). Furthermore, previous studies have only focused on specific regions where TCs are most frequent, such as the southeastern coastal area of China (Li and Zhou, 2015; Jiang et al., 2018; Qiu et al., 2019; Ye et al., 2020). Few studies have been conducted for other regions affected by TCP. However, northeastern China was affected by a trio of TCs within half a month during 2020, which led to severe urban waterlogging and large-scale crop loss (Dai et al., 2021). The largest historically observed TCP event occurred in southern Henan Province and was caused by super tropical cyclone (Nina) stalling over the region (Tao, 1980; Ding, 2015). The death toll caused by the rainstorm exceeded 26,000, and the direct economic loss was greater than 10 billion RMB (Ding, 2015; Yang et al., 2017). At the same time, many studies only focused on months when TCs were active and omitted other months. Additionally, there is currently a lack of in-depth research into understanding and comprehensively comparing interannual and monthly TCP periodicity in different regions of China. Thus, this study applied the prewhitening Mann-Kendall test (PWMK), empirical orthogonal function (EOF), and continuous wavelet transform (CWT) to clarify the spatiotemporal heterogeneity of TCP at monthly, interannual, and interdecadal timescales in various subregions of China based on daily TCP data from 1959 to 2018. This work established a return period estimation model using the Gumbel distribution function to investigate the recurrence risk of the extreme TCP threshold. This study provides a substantial reference for regional rainstorm disaster prevention and mitigation.
This paper is organized as follows. The study area information and data are described in Section 2.1. Section 2.2 introduces the methods used in this study. The interannual spatiotemporal pattern of TCP variability over China is presented in Section 3.1. Section 3.2 investigates the monthly changes in TCP. The interdecadal variability of TCP is discussed in Section 3.3. Section 3.4 further estimates the recurrence risk of extreme TCP in various regions of China. The conclusions are summarized in Section 4.
2 DATA AND METHODS
2.1 Study area and observations
The daily TCP dataset used in this study is derived from observations made between 1949 and 2018 from 183 meteorological stations provided by the China Meteorological Administration Tropical Cyclone Data Center (http://tcdata.typhoon.org.cn) (Ying et al., 2014; Lu et al., 2021). Rainfall caused by a combination of TCs and other weather systems is also included in the dataset. Additionally, the number of meteorological stations increased over the years due to the successive construction of stations from 1949 to 1958. Accordingly, the study period, 1959–2018, was chosen to ensure data consistency. Stations missing more than 50% of the TCP records during the study period were excluded. Figure 1A shows the 115 selected meteorological stations for this analysis.
[image: Figure 1]FIGURE 1 | Study area information. (A) Meteorological stations and topography. (B) Distribution of the mean annual TCP over China.
There are substantial discrepancies between the different regions affected by TCP over China due to the complex terrain and various climate characteristics (Yue et al., 2015; Qiu et al., 2019). Previous studies have pointed out that mountainous terrain can increase the intensity of TCP (Jiang et al., 2018; Chen et al., 2019). The urban heat island effect also impacts local convection (Liang et al., 2013). Therefore, it is of great significance to classify TCP by specific regions in order to investigate regional TCP variability (Cheng et al., 2019). Figure 1 and Table 1 display the information of the four subregions in China. The average annual TCP distribution over China is given in Figure 1B. There were more TCP concentrated in Hainan Province and along the coastal areas of southeastern China, which recorded an average annual TCP amount exceeding 500 mm. TCP decreased from the southeastern coastal regions to the northwestern inland regions.
TABLE 1 | Regionalization information.
[image: Table 1]2.2 Methods
2.2.1. Prewhitening mann-kendall test
The Mann-Kendall (MK) test is a widely used method to detect the trend of long-term data (Henry B, 1945; Kendall, 1975; Song et al., 2015; Shiru et al., 2019; Xu et al., 2021, 2022; Lei et al., 2022). However, many studies have confirmed that the autocorrelation of hydrological and meteorological data will seriously interfere with trend tests and cause certain errors (Hamed and Ramachandra Rao, 1998; Lei et al., 2021b, 2021c; Hu et al., 2022). Yue and Wang (2002) put forward a “prewhitening” before the MK test method to eliminate this autocorrelation issue. Numerous studies have noted that the PWMK test can identify a more accurate time series trend (Burn and Hag Elnur, 2002; Mirdashtvan and Mohseni Saravi, 2020; Lei et al., 2021b, 2021a). The PWMK test was used to analyze the trend of TCP over China in this study.
2.2.2. Empirical orthogonal function
EOF is an analysis method that separates matrix data by space and time and extracts the main structural features of the data (Lorenz, 1956; Richman, 1986; Briggs, 2007). EOF can simplify the original eigenvector field and reflect apparent climate characteristics (Lian and Chen, 2012; Chang et al., 2020). In this study, EOF is used to make the periodic TCP signal more apparent prior to continuous wavelet analysis and to disentangle the dominant TCP mode in each decade. The first eigenvectors of the original TCP data indicate the most dominant spatial distribution type of TCP over China. The first eigenvectors of TCP anomalies represent the drought and flood areas of TCP over China.
2.2.3. Continuous wavelet transforms
Wavelet transforms are a method that can reveal the multiple change cycles in a time series by decomposing the time series into the time-frequency domain (Mallat and Zhong, 1989), which is widely used in atmospheric science, signal analysis, and other areas (Wang et al., 2007; Liu et al., 2019; Raman Kumar and Vaegae, 2020; Xu et al., 2020; Zhang et al., 2020).
Wavelet transforms can be divided into continuous wavelet transform (CWT) and discrete wavelet transform (DWT). It has been shown that CWT is more suitable for the extraction of signal characteristics, whereas DWT is more commonly used for data denoising and compression (Grinsted et al., 2004). Hence, CWT is applied in this study to investigate the cycles of TCP over China during the past 60 years. Red noise was used as the background spectrum to test the significance of the wavelet spectrum.
2.2.4. Return period analysis
The return period is an indicator that represents the likelihood of recurrence and is generally a relative period for the occurrence of events above a certain intensity threshold (Gumbel, 1958). It has been widely used in the fields of climate analysis and climate change research (Gao et al., 2017, 2018; Naseef and Kumar, 2020; Lei et al., 2021b; Guo et al., 2021). This study calculated different TCP return period thresholds by developing a return period estimation model. The widely applicable Gumbel distribution function is selected as the algorithm for estimating the return period because it is capable of estimating a large area (Gumbel, 1958).
3 RESULTS AND DISCUSSIONS
3.1 Interannual tropical cyclone precipitation
Figure 2A demonstrates the annual total TCP and typhoon cyclone frequency (TCF) from 1959 to 2018. The scatterplot of TCF and TCP is also displayed in Figure 2B to further investigate the relationship between TCF and total TCP. It must also be mentioned that TCF represents the number of TCs that produced precipitation over China. The interannual variation in TCF had large fluctuations due to the phases of the El Niño-Southern Oscillation (ENSO). Over the study period, there was an average of 14 TCs affecting China per year. The lowest TCF was seven in 1969, whereas the highest TCF was 23, which occurred in 2013 (Li and Zhou, 2015; Zhang et al., 2018; Wang et al., 2020b). The scatterplot of TCF and TCP shows that the R2 value between TCF and TCP is 0.42, which is statistically significant. TCF is also related to the path of TCs and the effect of aerosols, which influence TCP variability over China (Chan and Liu, 2022). Additionally, terrain affects the distribution and intensity of typhoon precipitation at regional scales (Jiang et al., 2018). The average total TCP was 9,630.43 mm, with large fluctuations and an upward trend over the past 60 years. This upward trend became more pronounced, especially after 2004. The total TCP reached a maximum of 21940.30 mm in 2018. This result indicated that the intensity of TCP had gradually increased over all of China.
[image: Figure 2]FIGURE 2 | (A) Annual total TCP and TCF over China from 1959 to 2018. (B) Scatterplot of TCF and TCP.
TCP have substantial discrepancies due to the different terrain and various climate characteristics in different subregions. The total TCP and TCF for the four subregions are shown in Figure 3 to further demonstrate the TCP variability in the different regions. The regions most frequently and severely affected by TCP are southern and eastern China. Eastern China was affected by 8–9 TCs per year, resulting in an average total TCP of 3,085.18 mm. TCP displayed an upward trend, with the amount of TCP reaching a maximum of 7,593.60 mm in 2018. Southern China was the region affected by the most TCP. The annual TCF was 6–7 from 1959 to 2018, with the average total TCP being 4,986.80 mm. It should be noted that although the average TCF in southern China was less than that in eastern China, southern China’s TCP amount was higher than that of eastern China. This indicated that the intensity of TC rainstorms in southern China was greater than that in eastern China. The average total TCP was 520.73 mm, and the TCF was 1–2 each year on average in northeastern China. Northeastern China was unaffected by TCP for 17 of the years during the study period. The average total TCP was 1,037.72 mm and was augmented by 6–7 TCs every year in the inland area. Inland area TCP has shown an upward trend over the last 60 years. Additionally, the R2 values of TCF and TCP are 0.65, 0.34, 0.41, and 0.47 in the four subregions. This implies that the relationship between TCP and TCF is statistically significant.
[image: Figure 3]FIGURE 3 | Annual total TCP and TCF in subregions from 1959 to 2018 (A) northeastern China, (B) eastern China, (C) southern China, and (D) inland areas.
In brief, there was more TCP in eastern China and southern China, whereas there was less TCP in the northeast and inland areas from 1959 to 2018. The frequency of TCs affecting the four subregions did not change over the past 60 years. However, the trend of TCP showed regional divergence. The TCP trend increased in eastern China and the inland areas. However, there was no significant TCP trend in northeastern and southern China.
The distribution of the PWMK test for TCP is presented in Figure 4 to further investigate the spatial distribution of the trend in TCP variability trend. Spatially, 87 stations, mainly distributed in Region II, Region IV, and the west of Region III, reported an upward trend. Twenty-five of these stations showed a significant positive trend that passed the 95% level of significance, and the increasing trend of 15 stations was statistically significant at a 99% confidence level. In other words, TCP in Region II and the middle of Region IV demonstrated the most significant upward trend. Eastern Region III displayed no significant increasing tendency. Nevertheless, Region I and western Region III exhibited a decreasing trend. Fifteen stations showed a decreasing trend in Region I, which accounted for 75% of the total stations. In summary, TCP in eastern China, the inland area, and Guangxi Province displayed a positive trend, whereas northeastern China and eastern southern China had a decreasing tendency.
[image: Figure 4]FIGURE 4 | Spatial distribution of the PWMK test for TCP over China from 1959 to 2018.
The time coefficient of the first eigenvector field was obtained by the EOF to resolve the various cycles of TCP over the past 60 years. CWT was conducted for the first EOF time coefficient. Table 2 summarizes the oscillation cycles and the corresponding periods of TCP from 1959 to 2018. Figure 5 displays the wavelet power spectrum and global wavelet spectrum of TCP in China. Figure 5 shows that TCP had five oscillation cycles: 2.5, 4.9, 8.3, 16.5, and 27.8 years. The cycles of 2.5 and 4.9 years passed the 95% significant red noise test. The principal cycle of TCP variation was 4.9 years due to the highest peak wavelet variance. Throughout the time domain, the energy density was concentrated from 1959 to 1975 and 1979 to 2014. There were generally 2.0–4.0 years between oscillation cycles from 1964 to 1975. There was also an oscillation cycle of 2.0–7.8 years from 1979 to 2014. Both oscillation cycles passed the 95% significance level of the red noise test.
TABLE 2 | Oscillation cycles and corresponding periods of TCP in each region.
[image: Table 2][image: Figure 5]FIGURE 5 | Wavelet power spectrum and global wavelet spectrum of TCP over China. (The thick black coil demonstrates that the wavelet transform has passed the standard red noise test at the 95% significance level. Below the inverted cone, which is impacted by the edge effect, the periodic characteristics are uncertain. The dashed line indicates the 95% confidence level. The corresponding cycle is significant if the peak of the solid line exceeds the dashed line.)
CWT was applied to the time coefficient of the first EOF mode in each region to explore the oscillation cycles of TCP in those regions (Figure 6). It is important to note that the time and frequency domains of TCP in southern China were similar to those in all of China. In other words, the oscillation cycles of TCP in southern China were synchronous with those in all of China. TCP also occurred in a 2.0–4.0 years oscillation cycle from 1964 to 1978 and existed in a 2.0–7.8 years cycle after 1980. TCP had four cycles of approximately 3.5, 5.8, 11.7, and 27.8 years in northeastern China. The statistically significant cycle was 3.5 years, which passed the 0.05 level of significance.
[image: Figure 6]FIGURE 6 | Wavelet power spectrum and global wavelet spectrum of TCP in the four subregions between 1959 and 2018: (A) northeastern China, (B) eastern China, (C) southern China, and (D) inland areas.
Eastern China had the greatest number of cycles, which were 2.5, 5.1, 8.1, 14.2, and 27.8 years. The statistically significant cycles controlling TCP variability were 2.5 and 5.1 years. This is in contrast to the inland areas where only two TCP cycles of 5.8 and 9.8 years were observed. The oscillation cycle in the time domain was localized compared to other regions. There was an oscillation cycle of approximately 2–8 years between 1984 and 1991, and 2000 and 2014. Overall, the time and frequency domains of TCP variability were uneven across the different regions, which had obvious local characteristics and regional discrepancies. TCP cycles were more significant in eastern China and southern China than in northeastern China and inland areas.
3.2 Monthly tropical cyclone precipitation
The monthly variations in TCF and total TCP are illustrated in Figure 7. TCP and TCF both showed a single-peaked distribution and had significant monthly changes, which had been explored by other studies (Li and Zhou, 2015; Wei et al., 2021). TCs mainly occurred from the beginning of May to the end of November, accounting for 98.48% of the total TCF and 99.79% of the TCP. TCP progressively increased in May, with the most active TCs occurring in July–September. A total of 69.54% of the TCs occurred from July to September and accounted for 80.64% of the precipitation between 1959 and 2018. The maximum monthly TCP occurred in August, with an average of 3–4 TCs occurring in August each year, resulting in an annual average of 3,545.91 mm of TCP. After August, as the TCF decreased, so did TCP. In particular, TCs had less impact from December to April, accounting for only 0.21% of TCP from 1959 to 2018.
[image: Figure 7]FIGURE 7 | Monthly total TCP and TCF variations over China from 1959 to 2018.
Figure 8 displays the radar map of the monthly TCF and TCP in the four subregions. The maximum monthly total TCP and TCF in each region occurred in August, which was the same across China. However, there were large discrepancies in the timing of TCP occurrence in each region. TCP in northeastern China was mainly concentrated from July to September, which accounted for 97.80% of the total TCP. This TCP was the result of approximately 1–2 TCs bringing 509.30 mm of precipitation in July–September each year. Eastern China was influenced by TCP over a longer time each year than northeastern China. TCP began in April and ended in November. The TCP from May to October accounted for 98.62% of the total TCP. The maximum monthly TCF occurred in August, with 2–3 TCs occurring in that month each year, which resulted in a TCP of 1,207.93 mm on average.
[image: Figure 8]FIGURE 8 | Monthly variations in total TCF and TCP in subregions from 1959 to 2018: (A) northeastern China, (B) eastern China, (C) southern China, and (D) inland areas.
In addition, TCP occurred from January to December in southern China. However, there was little precipitation from December to April. The TCP of May–November comprised 98.62% of the total TCP. The TCP in inland areas was mainly centralized from June to October. Although inland areas were frequently affected by TCs, they produced less precipitation. August was affected by 2–3 TCs on average, which generated only a 471.47 mm average TCP. In summary, the beginning and ending months of TC influence were different in each region. TCP occurred early, ended late, and lasted longer in eastern China and southern China than in northeastern China and the inland areas. Furthermore, TC-driven precipitation over China was mainly concentrated from May to October. Therefore, this study focuses on the characteristics of TCP cycles and trends from May to October for the following analysis.
The PWMK test was conducted on the monthly TCP of each station to further explore the monthly trends in the various subregions. Figure 9 shows the spatial distribution of PWMK for TCP over China from May to October. There was essentially no trend for most stations in Regions I and IV in May. Other stations displayed a decreasing tendency and were mainly located in the south of Region II and the east of Region III. After that, 55.65% of stations had a positive trend, and four stations passed the 90% level of significance in June. In Region II and Region III, more than 90% of stations displayed an upward trend. Decreasing trends were detected at five and seven stations in the middle of Region I and the southwest of Region IV, respectively. For July, Region I mainly showed a decreasing tendency across 90% of the total stations. A decreasing trend was also observed in the northern part of Region II and Region VI, which was similar to Region I. The south-central region of Region II and the east-central region of Region IV displayed a positive increase. Region III showed an east-west distribution of TCP trends in July. Approximately 50% of the stations noted that TCP tended to increase in the west, and 50% of the stations in the east showed a marginally decreasing trend.
[image: Figure 9]FIGURE 9 | Spatial distribution of the PWMK test for TCP over China from May to October.
Additionally, it is noteworthy that more than 85% of stations had an increasing trend in August. A total of 36.67% of stations in Region II increased at a significance level of 0.10. However, Region III exhibited a decreasing tendency. Concerning September, stations with an increasing trend accounted for 50% of the total stations in Region I, and there was a station that passed the 90% level of significance. The overall positive trend of Region II and Region IV was similar to that in August. Region III showed an east-west distribution in September, which was the same as the distribution in July. There was an upward trend in the west, whereas there was a decreasing tendency in the east. Additionally, some stations located in Region I and the northwestern area of Region IV observed no trend in October. Other stations mainly observed a rising tendency, especially six stations in the north-central region of Region II, which passed the 90% level of significance. In summary, TCP had a decreasing trend in May. From June to October, most stations showed an increase in TCP, except for northeastern China in July and southern China in August, which tended to decrease.
CWT was conducted to investigate the oscillation cycles of monthly TCP variability over China. Figure 10 displays the wavelet power spectrum and global wavelet spectrum of monthly TCP over China. Table 3 shows the significant cycles and corresponding periods of monthly TCP. There were 3–4 TCP cycles detected each month. However, there were discrepancies in the number of TCP cycles that passed the 95% significance test.
[image: Figure 10]FIGURE 10 | Wavelet power spectrum and global wavelet spectrum of monthly TCP over China from 1959 to 2018.
TABLE 3 | Oscillation cycles and corresponding periods of monthly TCP from 1959 to 2018.
[image: Table 3]For the month of May, only the 2.9-years cycle passed the red-noise significance test. The oscillation cycles of May were weak and localized compared to other months. June had two significant cycles, 3.5 and 4.9 years. The oscillation cycles of June were approximately 2–5 years and were concentrated for 1968–1980, 1984–1999, and 2006–2014. July had the greatest number of cycles that passed the 95% significance test. These were 2.5, 4.1, and 6.9 years. The dominant cycle was 6.9 years with the highest peak wavelet variance. The frequency domain in July showed greater variability in the analysis period.
The number of significant cycles decreased from July to October. August only had two significant cycles with 2.9 and 5.8 years. The dominant cycle controlling TCP variation was 5.8 years in August. TCP in September had some cyclical characteristics similar to those in May. The change in TCP also existed at 2.9, 8.3, and 13.9 years cycles in September. The 2.9-years cycle passed the 95% significance test, which was the same as in May. Only one cycle passed the red-noise significance test in October, which was 4.1 years. TCP exhibited a 2.4–3.9 years oscillation cycle from 1992 to 1998. There was an approximately 2.0–6.0 years oscillation cycle that occurred in 1963–1988 and 2005–2014.
3.3 Interdecadal tropical cyclone precipitation
In this section, the study period was divided into 6 decades, 1960–1969, 1970–1979, 1980–1989, 1990–1999, 2000–2009, and 2010–2018, to analyze the interdecadal variations in TCP. Figures 11, 12 plot the interdecadal variation in TCF and TCP. It is worth mentioning that TCP showed a decreasing tendency from the 1960s to the 1980s, followed by a significant rebounding trend in the 1990s–2010s. Climatologically, the increasing phenomenon after the 1990s corresponded to the intensification of anthropogenic global warming. Many studies have confirmed that sea surface temperature (SST) and atmospheric water vapor significantly increased after the Industrial Revolution (Goh and Chan, 2010; Jia et al., 2020; Wang et al., 2019). In the context of global warming, higher atmospheric water vapor content leads to more TCP. The 9-year moving average of TCP also showed a significant increase after 1999. Moreover, this is supported by the interdecadal variations in regional TCP over China. Eastern China and southern China showed a positive tendency from the 1990s to the 2010s. Nevertheless, northeast China’s 9-year moving average of TCP did not show a similar upward trend.
[image: Figure 11]FIGURE 11 | (A) Boxplot of interdecadal TCF and TCP over China from the 1960s to the 2010s (B) The 9-year moving mean of TCP and TCF over China from 1959 to 2018.
[image: Figure 12]FIGURE 12 | Interdecadal TCF and TCP in subregions over China: (A) northeastern China, (B) eastern China, (C) southern China, and (D) inland areas.
To further examine the interdecadal distribution of TCP in each subregion, Figure 13 shows the spatial distribution of TCP in each decade across China. Spatially, there was a double higher TCP center pattern in the 1960s, 1970s, 1980s, and 1990s. One of these centers is in the southeast of southern China, and another is in the mid-east of eastern China. Moreover, the magnitude of TCP in the southeastern coastal area significantly increased. The areas where TCP was more than 2000 mm increased 60.18% from the 1960s to the 2010s and showed an increasing trend. The area where the annual TCP reached 3,000 mm expanded from the southeastern part of Region III to the eastern part of Region II. This was due to the increased land-sea thermodynamic difference between Eurasia and the Pacific as the globe warmed, and resulted in a northward expansion of the rainfall range (Wu et al., 2005; Wang et al., 2014; Yang et al., 2018).
[image: Figure 13]FIGURE 13 | Interdecadal distribution of TCP over China from the 1960s–2010s.
The first eigenvectors of the TCP anomalies from the 1960s–2010s calculated by EOF are demonstrated in Figure 14. There was a similar major pattern of spatial distribution for TCP in the 1960s, 1980s, and 1990s. The eigenvalues gradually decreased from southeast to northwest, reflecting the reduction in TCP from southeast to northwest. The eigenvalues for the stations were all positive in the 2010s, indicating that the TCP trend was consistent in all of China between 2000 and 2018. It should also be mentioned that the dominant pattern of TCP demonstrated a dipole mode over eastern China and southern China in the 1970s and 2000s. The positive centers of this distribution pattern mainly occurred in southern China and the negative centers in eastern China, which showed an inverted north-south distribution pattern. Previous studies have noted that this interdecadal variability is related to the East Asian summer monsoon. Between the 1970s and 2000s, the East Asian summer monsoon significantly weakened, which inhibited northward water vapor transport and convergence and led to a lack of water vapor availability in northern China (Ding et al., 2008, 2009; Goh and Chan, 2010; Li and Zhou, 2015). However, the Pacific Decadal Oscillation, aerosol forcing, and Tibetan Plateau forcing were all factors that influenced the interdecadal variation in the East Asian summer monsoon. It remains challenging to disentangle the complex interactions of the systems impacting TCP.
[image: Figure 14]FIGURE 14 | The first eigenvectors of TCP anomalies from the 1960s–2010s.
3.4 Recurrence risk of tropical cyclone precipitation
The occurrence and intensity of extreme weather events, such as TCP, are both stochastic and inevitable. Gumbel extreme value distribution theory is used to further estimate the recurrence risks of daily extreme TCP. Table 4 summarizes the daily maximum TCP of the five return periods. The TCP of the 10-years return period was 381.5 mm in all of China, while for the 100-years return period, TCP reached 538.2 mm. In addition, there were significant differences in the recurrence risk of TCP in the subregions. Region III has the most serious disaster risk of TCP. The TCP of the 10-years return period was 372.4 mm. TCP increased by 276.6 mm from the 10-years to the 500-years return period. This was followed by the TCP of the 10-years return period reaching 283.3 mm in Region II, which also faced a higher risk of rainstorms.
TABLE 4 | Daily extreme TCP of 10-, 20-, 50-, 100-, and 500-years return periods.
[image: Table 4]Figure 15 illustrates the spatial distribution of the daily extreme TCP for different return periods. The recurrence risk of TCP is characterized by “higher in the southeast and lower in the northwest” over China. The spatial discrepancy was greater when the frequency of return periods was lower. There were also differences in the recurrence risk of TCP in coastal areas. The highest risk of the 5-years return period TCP was located in the southeast of Region III and the east and south of Region II, which are the densely populated and economically developed areas in China. In other words, these areas had higher exposure that could be prone to more casualties and property damage when affected by extreme TCP. The range of high risk gradually expands as the return period increases. Areas with daily extreme TCP above 300 mm were concentrated in the Yangtze River Delta, Hainan Province, southeastern Guangxi Province, and southwestern Guangdong Province. Accordingly, southern and eastern China had a greater recurrence risk of extreme TCP. There was also a positive trend for TCP in eastern China, which is discussed in Section 3.1.2. Therefore, eastern China is at an increasing risk of TC rainstorm disasters in the future. It is necessary to strengthen flood disaster prevention and emergency management, construct water conservation projects, and improve the capacity of reservoir storage to prevent TC rainstorm disasters driven by global warming.
[image: Figure 15]FIGURE 15 | Distribution of the daily extreme TCP of the (A) 20-, (B) 100-, and (C) 500-years return periods.
4 CONCLUSION
This study applied the prewhitening Mann-Kendall test, empirical orthogonal function, and continuous wavelet transform to investigate the long-term trend, spatiotemporal heterogeneity, and oscillation cycle characteristics of TCP at monthly, interannual, and interdecadal timescales across China. The recurrence risks of the extreme TCP threshold were analyzed using the return period estimation model. The results showed the following:
1) China is impacted by an average of 14 TCs each year that deliver a total of 9,630.43 mm of TCP. The intensity of TCP displayed a significant increasing trend. Spatially, the increasing trend of TCP was concentrated in eastern China, inland areas, and Guangxi Province. The significant cycles of TCP variability were 2.5 and 4.9 years in China. However, there were large discrepancies in the time and frequency domains of TCP cycles in different subregions. TCP demonstrated more significant cycle characteristics in eastern China and southern China than in northeastern China and inland areas.
2) On a monthly timescale, TCP decreased during May, whereas it exhibited an increasing trend in June–October. However, the TCP in northeastern China and southern China tended to decrease in July and August, respectively. In terms of the cycle characteristics, July had the most number of significant cycles, followed by June and then August. The fewest number of TCP cycles occurred in May, September, and October.
3) The interdecadal TCP displayed a decreasing tendency from the 1960s to the 1980s, followed by a rebounding trend in the 1990s–2010s, which was related to the continued intensification of global warming following the Industrial Revolution. Global warming also led to the northward expansion of TCP areas that exceed 3,000 mm of rainfall. In addition, TCP demonstrated a significant inverse dipole mode over eastern China and southern China in the 1970s and 2000s, which has been linked to the weakening of the East Asian summer monsoon.
4) Southern and eastern China have a greater risk of substantial TCP, with the 100-years return period delivering 536.4 and 418.4 mm of rainfall, respectively. In addition, there is an increasing recurrence risk of extreme TCP in the Yangtze River Delta, Hainan Province, southeastern Guangxi Province, and southwestern Guangdong Province. It is necessary to enhance the ability to forecast extreme TCP in order to minimize the risks and improve the capacity to prevent natural disasters, especially in high population and economy exposure regions.
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The extreme precipitation threshold is fundamental to extreme precipitation research, directly affecting the cognition of extreme characteristics. Based on the daily precipitation data of 62 meteorological stations from 1985 to 2005, this study uses parametric and non-parametric approaches to determine the extreme precipitation threshold in Central Asia, analyzes the statistics and spatial distribution of different threshold criteria, and discusses the trend of extreme precipitation. The capability of the grid dataset of APHRODITE and GPCC in the extreme precipitation analysis in Central Asia is evaluated from the threshold perspective. The results are as follows: 1) Contrary to the parametric approach, the threshold determined by the percentile indices in the warm season is slightly higher than in the cold season. The mean threshold of the warm (cold) season in Central Asia is defined by the 95th percentile index and the 10-year return period, which are 14.0 mm (13.5 mm) and 24.2 mm (25.7 mm), respectively. 2) The spatial distribution of extreme precipitation threshold in Central Asia is higher in the southeast and lower in the north during the cold season; In the warm season, it is high in the north and southwest and low in the center. 3) Although both APHRODITE and GPCC datasets can basically reproduce the spatial distribution of extreme precipitation threshold, they underestimate the magnitude of the threshold, especially APHRODITE. 4) There is no obvious extreme precipitation trend in Central Asia during the study period. Furthermore, the trend in characteristics of extreme precipitation based on different thresholds shows a consistent trend in time but not spatially. We suggest that the threshold selection should adjust the balance between sufficient samples and extreme values according to actual conditions. The results of this study can provide a reference for extreme precipitation threshold criteria under specific application conditions in Central Asia.
Keywords: extreme precipitation threshold, Central Asia, parametric approach, nonparametric approach, APHRODITE dataset, GPCC dataset
1 INTRODUCTION
Central Asia is a strongly heterogeneous area where mountains, basins, and oases coexist with deserts; it has a complex climate pattern and vulnerable environment (Chen et al., 2013; Hu R. et al., 2014), and is sensitive to climate change. Previous studies have indicated that Central Asia is one of the specific regions strongly affected by global warming (Solomon et al., 2007). It displays a clear warming trend over the last century and is more sensitive to the second warming period following the 1970s (Wang et al., 2008). From 1979 to 2011, it exhibited a warming rate of about 0.36–0.42°C/10a, much faster than the global land average (Hu Z. et al., 2014). Precipitation is an essential source of water resources in Central Asia (Chen et al., 2013). The amount of precipitation will affect the regional water cycle and is critical for ecosystems and society (Lu et al., 2021; Hu et al., 2022). Influenced by global warming, inter-decadal and inter-annual precipitation in Central Asia has increased abnormally in recent decades (Chen et al., 2011; Guan et al., 2022a, 2022b). Total annual precipitation has increased significantly (1.39 mm/10a) from 1949 to 2018, higher than the global mean (1.225 mm/10a) (Yan et al., 2021). In the summer and winter, the seasonal tendency is more pronounced (Chen et al., 2011, 2018; Bothe et al., 2012; Ma et al., 2020; Zhang and Fan, 2022). There has been a notable increase in precipitation over mountainous areas (Hu et al., 2017; Xu et al., 2022). Furthermore, some studies found that extreme precipitation in Central Asia has been increasing since the 20th century (Zhang et al., 2017; Yao et al., 2020) and that the intensity and frequency of extreme precipitation have increased significantly (Hu et al., 2016; Hu et al., 2019a; Lai et al., 2020; Yao et al., 2020). Moreover, these trends will likely continue in the future (Zhang et al., 2019; Yao et al., 2020). The increased extreme precipitation may lead to flooding and disaster, especially in arid areas. Extreme precipitation changes will impact the development of the natural environment, ecosystems, and society of Central Asia. In contrast to the monsoon areas, the total precipitation in Central Asia will consist of a few extreme events, and more information needs to be considered.
Threshold criteria are the core research issue on precipitation extremes; they directly impact on the cognition of characteristics and variations in extreme events. Several methods have been applied to determine extreme precipitation thresholds, and they can generally be divided into parametric and non-parametric approaches (Wang Z. et al., 2020). The parametric approach describes the extreme using probability distribution functions fitted on the series constructed with the annual maximum method or the peaks-over-threshold method (Zhang et al., 2017; Wang Z. et al., 2020). Some researchers have used this approach to analyze extreme precipitation in Xinjiang (Jiang et al., 2017; Yang et al., 2018; Shan et al., 2021). The non-parametric approach typically utilizes the fixed-value method and percentile indices. The extreme is defined as the precipitation that exceeds a specific value or percentile index, in absolute values such as 50 mm and percentile indices such as the 95th percentile. The fixed-value method is simple to use; hence, it is commonly employed in meteorological services. Percentile indices, on the other hand, allow for spatial comparison across a vast expanse, which is the most popular comparison in extreme precipitation analyzes (Zhai et al., 2005, 2020; Wang Q. et al., 2020; Lai et al., 2020; Ma et al., 2021; Zou et al., 2021). Other methods or criteria are also used in extreme precipitation research. Xu et al. (2022) used regional mean daily precipitation as an extreme criterion. Typical extreme events, defined as record-breaking events, have been applied in recent studies (Shan et al., 2021). All these methods have advantages and disadvantages, and there are no universal criteria for selecting an extreme threshold.
Different datasets and threshold selections create significant uncertainty in the knowledge of extreme precipitation extremes in Central Asia. It hinders comparisons and connections between different findings. Due to the difficulty of obtaining observational data in Central Asia, the former studies about extreme precipitation depended on gridded datasets. The assessment of gridded datasets is usually carried out from a precipitation perspective, with less mention of extreme precipitation. In this study, we aimed to gain relatively comprehensive knowledge of extreme precipitation thresholds in Central Asia by computing commonly used extreme precipitation threshold criteria using observation and grid datasets. And assess the capability of grid datasets in Central Asia from the perspective of extreme precipitation threshold. In particular, we aimed to answer the following questions: 1) What are the characteristics of different extreme precipitation threshold criteria in Central Asia? 2) Are the trends of characteristics by the different threshold criteria consistent? 3) Is the distribution of the grid dataset under different threshold criteria consistent with the observations? This information will help provide a more accurate and reliable standard for extreme precipitation thresholds in Central Asia. Furthermore, it allows for comparison between findings applying different threshold criteria.
2 DATA AND METHODS
2.1 Study area
Central Asia in this paper denotes five countries: Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan (hereinafter, “CA5”); their total area is nearly 4.0 × 106 km (Hu R. et al., 2014). This region is located in the hinterland of the Eurasian continent, which is an important part of the Central Asian arid zone. The geographical topography of Central Asia is complex and unique, including the mountains (Turgayskoye Plato, Pamirs Plateau, Tianshan Mountains), basins (Fergana Valley), deserts (Kyzylkum Desert, Karakum Desert), and oasis (Figure 1). Central Asia is vast with complex climate conditions and is influenced by prevailing westerly and stationary waves (Chen et al., 2011; Chen et al., 2013; Dai and Wang, 2017). It is a typical temperate continental climate. Precipitation is an essential water source for society and ecology in Central Asia (Chen et al., 2013). However, it is deficient and concentrated in mountainous areas, for the water vapor from the ocean is blocked by the giant mountains. Regional differences in annual precipitation are evident in Central Asia. It is fairly even in the northern regions, while mainly in winter and spring in southern regions (Chen et al., 2011). In this paper, we consider (May-October) as the warm season and (November-April) as the cold season to assess the extreme precipitation.
[image: Figure 1]FIGURE 1 | Topography map of Central Asia with the location of meteorological stations.
2.2 Data
The meteorological observation dataset used in this study was obtained from the Global Historical Climatology Network - Daily (GHCN-D, Menne et al., 2012), which is available from the NCDC (ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/) and has more than 500 station records covering Central Asia. Owing to the breakdown of the Soviet Union, most meteorological observations stopped in the 1990s, making it challenging to access long-term observational data in Central Asia. The scarcity and uneven distribution of meteorological datasets are disastrous for characterizing climate change, especially extremes. To increase the number of samples, we referred to the NMIC dataset from the Chinese Meteorological Administration (CMA, http://data.cma.cn). This dataset refers to 10 daily datasets from Russia, South Korea, and other countries after standardized processing by data quality control and homogeneous tests. In addition, some selections were applied to the data records in this study. A missing data rate of no more than 1 month per year was required, selecting a period as close to the current climate status as possible. For comparing the differences in extreme precipitation in different regions of Central Asia, the data obtained as extensive a spatial coverage as possible while ensuring that each station had long-term observation records (more than 20 years). Finally, 62 station records from 1985 to 2005 for Central Asia were used in this study.
However, the weakness of meteorological observations to assess climate change in Central Asia forced us to use the gridded data more in previous research. Earlier studies on the evaluation of grid datasets (Hu et al., 2016,2018; Yu et al., 2020; Dilinuer et al., 2021) found that the Global Precipitation Climatology Centre (GPCC) and Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) datasets have a better capability to represent the changes in precipitation across Central Asia. The GPCC dataset was constructed based on a combination of observations from meteorological and hydrological services. The GPCC dataset (Schneider et al., 2017; Yu et al., 2020) used in this study was the GPCC Full Data Daily Product Version 2018, with a spatial resolution of 1° and a period from form1982 to 2016. The APHRODITE dataset (Yatagai et al., 2012) was created using rain gauge observations of the entire Asian continent from 1951 to 2007. Daily datasets at 0.5° were applied. Gridded datasets were used over the same period of 1985–2005 in this paper.
2.3 METHOD
2.3.1 Extreme threshold criteria
Two approaches were applied to define the extreme precipitation threshold: parametric and non-parametric. The non-parametric approach utilized the fixed-value method and percentile indices. Owing to the similarity in climatic conditions between Xinjiang and CA5, the selection of fixed-value criteria was referred to the local precipitation standards of Xinjiang (Xiaokaiti et al., 2011). The local precipitation standards of Xinjiang define 6–12 mm/day as medium rain, 12–24 mm/day as heavy rain, and 24–48 mm/day as torrential rain. Hence, this study defined 12 mm (R12) and 24 mm (R24) as the fixed value criteria of extreme precipitation in CA5. The percentile indices were defined as the 90th, 95th, and 99th percentiles (R90p, R95p, and R99p) of the precipitation of wet days. A wet day is defined as a day with total rainfall greater than 0.1 mm. The percentile indices depend on the station observation records and are distributed inconsistently and meaningfully in regions.
The parametric approach calculates the precipitation threshold based on the extreme value theory, often used in hydrometeorology. It is based on the precipitation sequence and uses a statistical distribution function, such as the generalized extreme value, to fit the outputs of precipitation extremes with different return periods. This study constructed a precipitation sequence using the annual maximum method (AM). Owing to the relatively short record of precipitation in Central Asia (21 years), the complementary sequence was defined as the 30 largest precipitation events, except for the AM of each station, to enlarge the precipitation sequence. The optimum fitting model for each station was selected from 43 extreme value fitting models (Supplementary Table S1) by the Kolmogorov-Smirnov test. The threshold of the given return period was calculated using the optimal fitting models based on the precipitation sequences. The return periods of the parametric approach were selected 5 years (5-year) and 10 years (10-year) (Zhang et al., 2017).
2.3.2 Extreme characteristic and trends calculation
The extreme precipitation day is defined as the day with daily precipitation amount greater than the extreme threshold. To assess the characteristics of extreme precipitation by different threshold criteria across Central Asia from 1985 to 2005, we calculated the intensity, frequency and extent trend. The frequency is the extreme precipitation days of all stations (grids). The intensity is defined as the ratio of extreme precipitation amount to total precipitation amount. And the ratio of stations (grids) where extreme precipitation occurred to all stations, is referred to as the extent of extreme precipitation. The trends of intensity, frequency and extent of extreme precipitation are estimated using the Mann-Kendall test (MK test) (Mann, 1945; Kendall, 1975). The statistical significance of the trend was assessed at the 10% level.
2.3.3 Distance between indices of simulation and observation index
In this study, we used a new index to quantify the performance of the simulations of gridded datasets, termed Distance between Indices of Simulation and Observation (DISO), proposed by Hu et al., (2019). The DISO is a combination of multiple statistical metrics and gives a single normalized result for a comprehensive judgment of simulation capability. The statistical combination was flexible and can be selected according to the research needs. It effectively overcomes the limitations of a single indicator. The further advantage of DISO is that the overall performance of the different simulations is quantified by a simple normalized value. It makes complex comparisons simple, intuitive, and understandable.
In this study, DISO is composed of four widely used statistical metrics: correlation coefficient (R), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE); the R, RMSE, MAE, and DISO are calculated as follows:
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Where Mi and Oi are the simulated precipitation values from gridded datasets and observed precipitation values respectively; [image: image] and [image: image] are the mean values of simulations and observations, respectively; n is the number of days; RM, MAEM, RMSEM, and MAPEM are the statistic metrics for simulation; RO,MAEO, RMSEO, and MAPEO are the statistic metrics for observation. The statistical metrics in DISO can be replaced by others, the calculation of DISO index as Zhou et al. (2021). According to the definition, the model that has the lowest DISO value among all models performs the best.
3 RESULTS
3.1 Precipitation climatology
Understanding the regional differences in precipitation is essential to develop an appropriate extreme threshold criterion for different regions. Figure 2 illustrates the spatial distribution of the annual and wet daily mean precipitation in Central Asia, respectively. In the warm season (Figure 2A), annual precipitation in Central Asia prevails less. It was found that the stations in central and southwestern CA5 record less than 100 mm/year and that 20 stations around the Kyzylkum Desert and the Karakum Desert in Uzbekistan and Turkmenistan records less than 50 mm/year. In contrast, the stations record more than 200 mm in northern Kazakhstan. Compared with the warm season, precipitation in the cold season (Figure 2B) is more concentrated in mountainous areas. There are 18 stations in the Tianshan Mountains across Uzbekistan, Tajikistan, and Kyrgyzstan that record precipitation greater than 200 mm/year, and seven stations with precipitation greater than 300 mm/year. The stations located south of the desert and north of Kazakhstan record precipitation ranging from 100 to 200 mm/year. The mean precipitation of the entire area in the cold season is greater than that in the warm season; the lower annual mean precipitation is less than 100 mm/year in central CA5, and no stations record precipitation less than 50 mm/year. Notably, the station in the 45°N-50°N latitudinal area is different from other stations and records uniform precipitation in the cold and warm seasons, between 50 and 100 mm/year.
[image: Figure 2]FIGURE 2 | Spatial distribution of annual mean precipitation (A,B) and wet-day mean precipitation (C,D) in warm and cold season over Central Asia.
The spatial distribution of wet-day mean precipitation is shown in Figures 2C,D, which provides detailed information on the stations’ precipitation. The wet-day mean precipitation of the stations overall is less than 10 mm, with a maximum of 6.9 mm/day in the warm season and 6.1 mm/day in the cold season. The spatial distribution of daily precipitation is relatively evenly in the warm season (Figure 2C); 69% of the stations’ record wet-day mean precipitation between 3 and 5 mm/day, and 13% of stations record more than 5 mm/day in southeastern CA5 around the Tianshan Mountains. In addition, 18% of the stations’ daily record precipitation is less than 3 mm, mainly located in southwest Central Asia. In contrast, there is a spatial distribution pattern with an apparent difference between the north and south in the cold season (Figure 2D). Kazakhstan stations in northern Central Asia record less than 3 mm/day. In southern CA5, the stations in the west record between 3 and 5 mm/day, and those in the east record more than 5 mm/day. The spatial pattern of precipitation in Central Asia shows higher values in the south during the cold season and higher in the north during the warm season. And the precipitation in the southeast is greater than that in the southwest. The wet-day mean precipitation shows this more clearly.
3.2 Daily extreme precipitation threshold in observations
3.2.1 Statistics of multi-station threshold
Firstly, we overview the threshold across Central Asia during the cold and warm seasons using percentile indices. The extreme thresholds in CA5 are 9.4, 13.6, and 23.9 mm in the 90th, 95th, and 99th percentile indices, respectively. In the warm season, they are 9.9, 14.6, and 27.7 mm. The magnitude of the thresholds was evaluated by taking the absolute value as the criterion; the value of the 90th percentile was less than 12 mm, and the intensity was equal to that of medium rain. R95p was greater than 12 mm, equivalent to heavy rain, and the 99th percentile was at the torrential rain level. Moreover, the thresholds calculated using the annual series with R90p, R95p, and R99p were 9.6, 14.0, and 25.2 mm, respectively; they were nearly equivalent to the mean of the cold and warm seasons.
The extreme precipitation thresholds for each of the 62 meteorological stations in Central Asia based on different threshold methods were calculated. The statistics of the distribution are shown in Figure 3. The mean and median thresholds of multi-station are lower than those calculated by the entire Central Asia series mentioned above. More specifically, the results for R90p and R95p were relatively concentrated, with little difference in the precipitation thresholds among the observation stations. In contrast, the threshold selections of the R99p, 5-year, and 10-year indices were more dispersed and had a wide range. The R90p values were generally less than 12 mm, equal to medium rain levels. The median and average values were 8.7 and 9.1 mm (9.1 and 9.6 mm), respectively, in the cold (warm) season. The threshold determined using R95p classified half the stations as having recorded heavy rain in the cold season and more than 67% in the warm season, with medians of 11.9 and 13.5 mm, respectively. The distribution of R99p for the warm and cold seasons was clearly different. In the cold season, 48% of the stations had less than 24 mm (heavy rain), whereas 60% had thresholds of more than 24 mm (torrential rain) in the warm season. The 5-year distribution was mainly concentrated in the heavy rainfall level, with the 10-year values being classified as heavy and torrential rainfall levels close to 50%. Detailed information regarding the statistics of the multi-station extreme thresholds is presented in Table 1.
[image: Figure 3]FIGURE 3 | Statistics of the different threshold distribution for each station (Red line: median of the thresholds at multiple stations, X: the mean, Point: the outlier, black line: the fixed-value of 12mm, 24 mm respectively).
TABLE 1 | Statistic of multi-stations extreme thresholds.
[image: Table 1]The statistics results indicate that the concentration is higher when the extreme threshold is relatively small. The dispersion increased when the threshold value was larger, and the number of outliers increased. A higher concentration indicates a lower disparity among the multi-station threshold magnitudes, opposite to dispersion. The dispersion of the thresholds was generally greater in the cold than in the warm season. The distribution of the different threshold criteria was right-skewed in both the cold and warm seasons, with a slightly larger mean than the median. The coefficient of variation (Table 1) shows that both maximum and minimum dispersion appear in the warm season and that the R99p and 10-year dispersion are the largest in the warm season. This was inconsistent with the relatively uniform spatial pattern of wet-day mean precipitation in the warm. Moreover, for the different threshold criteria, the dispersion was lower in the warm than cold seasons according to the percentile indices, and the disparity was not apparent in the parametric approach. In addition, the dispersion of the parametric approach was higher than that of the non-parametric approach, as revealed by the standard deviation (SD), interquartile range (IQR), and coefficient of variation (CV).
The outliers appear in the thresholds defined using the R90p, R99p, and 10-year indices, as shown by the blue points in Figure 3. Outliers were defined as the values with gaps from the upper (lower) quartile more than 1.5 times the IQR. Notably, extreme precipitation thresholds defined by R99p appeared as outliers much larger than three times the IQR. This indicates that the threshold calculated using R99p at some stations is the daily precipitation of record-breaking events that deviate far from the precipitation distribution for those stations. The extreme defined by this criterion significantly constrained the sample of extreme precipitation events, with reduced generalizability and increased specificity. For stations with low mean annual precipitation and frequent extreme precipitation events in recent years, the characteristics of extreme precipitation events captured based on these thresholds were peculiar.
3.2.2 Spatial distribution of different extreme precipitation threshold criteria
A higher threshold concentration indicates that the thresholds have a slight variability in the spatial distribution. Figure 4 represents the spatial distribution of the extreme precipitation thresholds calculated using percentile indices and the parametric approach for the 62 stations in Central Asia; the fixed-value thresholds did not exhibit any difference in spatial distribution and were not considered. For a clearer analysis of the threshold spatial distribution, the threshold magnitudes were divided into four classes, starting at six and going up to 24 mm with 6 mm steps. It refers to the local precipitation criteria in Xinjiang Province, as shown in the legend.
[image: Figure 4]FIGURE 4 | Spatial distribution of non-parametric (A–C,F–H) and parametric (D,E,J,K) approaches threshold criteria in warm (A–E) and cold (F–H,J,K) season over Central Asia.
Whether the season was cold or warm, all threshold criteria revealed a non-uniform spatial distribution of the threshold. In the cold season, the spatial pattern of the parametric and non-parametric approaches shows a clear divergence between the north and south; meanwhile, a divergence between the east and west occurred in southern CA5. This pattern was apparent with the 90th percentile indices. The maximum value was for the Tianshan Mountains over southeastern Central Asia, followed by the stations around the Karakum and Kyzylkum Deserts in southwestern CA5; the minimum value was observed at the stations north of the 45°N latitudinal zone. There are four stations located in the Kazakhstan Hills that always exhibit a lower threshold and marked differences from surrounding stations. More specifically, the magnitude of R90p has a clear spatial distribution, with differences between the north and south (Figure 4F). The threshold of less than 6 mm was at the latitudinal zone north of 45°N, except for three stations belonging to class 2 (6–12 mm). The south of the 45°N latitudinal zone was divided into two parts around 66°E, with the east having high threshold values of greater than 12 mm (class 3), while most western areas have threshold values ranging from 6 to 12 mm (class 2). For the R95p indices, the divided line of the value magnitude moved towards south to latitude 42°N.The value belonged to class 2 (6–12 mm) in the north area, whereas four stations had a threshold value of less than 6 mm in the Kazakhstan Hills; the values ranged from 12 to 24 mm (class 3) in the south. A similar spatial distribution was detected for the R99p indices. No station exhibited thresholds less than 6 mm; the threshold values were raised into the next class, greater than 12 mm (except for five stations), and 43.5% of the values were higher than 24 mm in southeast CA5. The spatial distribution of the parametric approach was closely approximated that of R99p, showing a pattern like higher thresholds in the southeast and lower in the north and southwest. The disparity between the north and southwest was slight. Both the 5-year and 10-year indices indicated no stations with thresholds lower than 6 mm; 8.1% of the stations had a threshold value magnitude of class 2, 58.1% of class 3, and 33.9% of class 4 based on the 5-year indices. The percentages of the 10-year indices changed to 3.2%, 45.2%, and 51.6%, respectively.
Unlike the cold season, the high-value areas in the warm season are in northern and southeastern Central Asia, with lower values in central and southwestern CA5. In the warm season, a relatively even spatial pattern was displayed by R90p, with threshold values of 87.1% belonging to class 2, except for two stations in deserts lower than 6 mm and six stations in the Tianshan Mountains exceeding 12 mm. However, the spatial distribution patterns of the R95p, R99p, 5-year, and 10-year indices are approximately the “high-low-high” pattern from north to south. The thresholds in northern Central Asia were higher, approximately more than 24 mm, as calculated using R99p and the parametric approach. They were lower in central CA5; the thresholds were to class 2 based on R95p and class 3 based on the R99p, 5-year, and 10-year indices. The threshold of southern CA5 was higher in the southeast, with the value of extreme precipitation being more than 12 mm (R95p and 5-year) or 24 mm (R99p and 10-year), and lower in the southwest, with values ranging from 6 to 24 mm.
In general, the extreme precipitation threshold in Central Asia showed a spatial distribution pattern of “higher in the south and lower in the north” during the cold season. While in the warm, it exhibited an approximately “higher-lower-higher” pattern from north to south. The spatial distributions of the parametric and non-parametric methods are generally consistent. In particular, R90p shows a clear pattern difference between the north and south in the cold season and a region-wide consistency in the warm season, which is inconsistent with other threshold criteria.
3.2.3 Trends of extreme precipitation characteristics by different thresholds
To compare the performance of different threshold criteria in Central Asia, we computed the intensity, frequency, and extent of extreme precipitation and explored its temporal and spatial trends. Figure 5 shows the interannual variability and trends of intensity, frequency, and extent of extreme precipitation in Central Asia from 1985 to 2005 using seven different threshold criteria. The result indicates a slightly increasing trend, albeit insignificant, in the intensity, frequency, and extent of extreme precipitation during the warm and cold seasons from 1985 to 2005. And the trend determined by different threshold criteria was generally consistent. It is interesting that, as shown in Figure 5B, the intensity determined by seven threshold criteria was divided into three groups. R90p is the minor threshold and captures the largest intensity values; the R95p and R12 capture medium values; R24, R99p, 5-year, and 10-year were almost identical and were lower than that of other thresholds. And the intensity value gap among the larger threshold group (R24, R99p, and 10-year), the medium threshold group (R95p and R12), and the lower threshold group (R90p) is noticeable. The warm season also has a similar pattern (Figure 5A), but the intensity magnitude gap of groups is lower than that in the cold. Similar features were also observed for the frequency (Figures 5C,D) and extent (Figures 5E,F) of extreme precipitation. The magnitude gap between the lower and medium threshold groups is small in the extent and frequency of extreme precipitation. And extent determined by R90p shows extreme precipitation occurring over a large range (even the whole area) during the cold season in some years. This information need to be considered when selecting the threshold.
[image: Figure 5]FIGURE 5 | The variation (solid line) and trend (dotted line) of intensity (A,B), frequency (C,D) and extent (E,F) of extreme precipitation by seven threshold criteria in Central Asia from 1985 to 2005.
However, the characteristics of extreme precipitation at each station did not exhibit a consistent trend in spatial. Figure 6 reflects the trend of intensity (a, b) and frequency (c, d) at each station in Central Asia from 1985 to 2005. Most stations in Central Asia show no obvious trend in intensity and frequency. For the intensity of extreme precipitation, MK trend test results indicate that only six stations exhibited increase trends and three stations showed decrease trends in the warm. While there were16 stations that showed an increase, three stations showed a decreasing trend in the cold season. The results of frequency showed that only 4 (9) stations exhibited a positive trend and 3 (3) stations exhibited a negative trend in the warm (cold) season. The significance of the trend was assessed at the 10% level. The pie chart in Figure 6 displayed the threshold criteria that exhibited the same significant trend and its amounts in each station. Most stations could only show significant increasing or decreasing trends under one or two threshold criteria. None of the stations showed a consistent significant trend across all seven threshold criteria. The choice of thresholds will influence the conclusion of extreme precipitation spatial trends.
[image: Figure 6]FIGURE 6 | Spatial map for intensity (A,B) and frequency (C,D) of extreme precipitation trend with significance in Central Asia from 1985 to 2005. (The pie: threshold criteria that exhibited the same significant trend and its amounts; trend: at a significance level of 10% by the MK test).
3.3 Daily extreme precipitation threshold in gridded datasets
3.3.1 Threshold in gridded datasets
Before the calculation of extreme threshold, we evaluated the performance of the APHRODITE and GPCC gridded datasets from an annual and daily precipitation perspective using the four statistic metrics (R, MAE, RMSE and MAPE) and DISO index (Table 2). The gridded data were interpolated to 62 stations. The DISO values for daily precipitation of the APHRODITE and GPCC datasets are 0.27 and 0.34, respectively. It is clear that both datasets exhibit good simulation capabilities in the precipitation of Central Asia.
TABLE 2 | The statistical metrics and DISO index of gridded datasets.
[image: Table 2]Figure 7 illustrates the spatial distribution of percentile indices in Central Asia from 1985 to 2015, based on two grid datasets (APHRODITE and GPCC). The first (a, b, and c) and third rows (g, h, and i) represent the APHRODITE dataset, and the second (d, e, and f) and fourth rows (j, k, and l) represent the GPCC dataset. In the warm season, the spatial distribution pattern for APHRODITE shows high values in the northern and southeastern mountainous regions of Central Asia, mainly in the Tianshan Mountains, Altai Mountains, Turgay Plato, and West Siberian Plain. The lower-value areas were located around the Aral Sea and the Karakum Desert in central and southwestern Central Asia. Furthermore, the extreme precipitation threshold value in Central Asia based on the R90p was small; the value was less than 6 mm for 79% of the region, and the maximum was greater than 12 mm only for 0.2% of the region. The threshold of R90p, R95p, and R99p across Central Asia were calculated based on the APHRODITE dataset to be about 4.7, 7.0, and 13.11 mm, respectively, and they were nearly 52.3% lower on average than the observations. A relatively uniform spatial distribution was displayed with the GPCC dataset in the warm season, especially with the R95p and R99p criteria, which classified more than 70% of the area in the same precipitation threshold class. This dataset exhibited a peak value for the Tianshan Mountains of southeastern Central Asia. The threshold values for the percentile threshold of the GPCC dataset were about 6.9, 10.1, and 18.7 mm using threshold criteria of R90p, R95p, and R99p, respectively, which were about 31.1% lower on average than the observations. In the cold season, the threshold calculated by the APHRODITE dataset showed a distinct spatial distribution, with a high-value region located in the mountainous areas of southeastern Central Asia. There also has a peak value in southeastern Central Asia in the GPCC dataset, but a sub-large region occurs in the southwest. The threshold values across Central Asia for R90p, R95p, and R99p are 3.9, 5.9, and 11.8 mm, respectively, based on the APHRODITE grid dataset; they were about 55% lower on average than the observations. The GPCC values (5.3, 7.9, and 15.5 mm) were about 40% lower on average than the observations.
[image: Figure 7]FIGURE 7 | The threshold spatial distribution of APHRODITE (A–C,G–I) and GPCC (D–F,J–L) datasets by the percentile indices in warm and cold season over Central Asia.
Figure 8 shows the spatial distribution of the extreme precipitation threshold by the parametric approach. The spatial distribution pattern of the APHRODITE dataset obtained using the parametric approach was similar to that obtained using the percentile method. However, the distinction between high- and low-value regions was more apparent. In Turgayskoye Plato, northeast of CA5, the 10-year criterion reveals a sub-high-value area in the cold season, which did not appear for other threshold criteria. The spatial distribution of the parametric approach and percentile indices for the GPCC dataset were approximate. The parametric approach distribution showed more evidence of the low-value area in the southwest during the warm season than that in percentile indices. The 5-year and 10-year extreme thresholds of the APHRODITE dataset were 12.5 and 15.1 mm (10.6 and 12.6 mm) in the warm (cold) season, respectively, which are 39.4% (50.1%) lower than the observed average. The thresholds for the GPCC dataset in the warm (cold) season were17.4 and 21.4 mm (13.6 and 16.5 mm), which were about 16.5% (33.8%) lower than the observed values on average. Detailed information regarding the statistics of extreme thresholds by APHRODITE and GPCC datasets is presented in Table 3.
[image: Figure 8]FIGURE 8 | The threshold spatial distribution of APHRODITE (A,C,G,H)and GPCC (B,D,J,K) datasets by the parametric apporach in warm and cold season over Central Asia.
TABLE 3 | The statistic of different extreme threshold creteria by APHRODITE and GPCC datasets.
[image: Table 3]In summary, both the APHRODITE and GPCC grid datasets appropriately describe the spatial distribution of extreme precipitation thresholds in Central Asia, both in the cold and warm seasons. The APHRODITE dataset was more precise and realistic than the GPCC dataset because of its higher resolution. However, the threshold value of the gridded datasets is underestimated compared to the observations, and the APHRODITE dataset underestimates more. The magnitude of the threshold value based on the GPCC dataset under the same criteria was higher than that of the APHRODITE dataset, especially in the central and southwestern regions of Central Asia. The DISO index (Table 3) for each extreme precipitation threshold gives an intuitive comparison of the two datasets. The GPCC dataset was superior at reproducing all the extreme precipitation thresholds to APHRODITE dataset, whether in cold or warm seasons. Additionally, both datasets perform relatively best in simulating the percentile indices.
3.3.2 Trends of extreme precipitation in gridded datasets
Based on the APHRODITE and GPCC datasets, we calculated the intensity, frequency, and extent of extreme precipitation in Central Asia using different threshold criteria. As shown in Figure 9, there have been no significant trends in intensity, frequency, and extent of extreme precipitation from 1985 to 2005. Opposite to observations, APHRODITE shows a weak decreasing trend in intensity and frequency in the warm season. Furthermore, smaller values of extreme precipitation characteristics were obtained for all thresholds except R90p and R95p. The absolute value of R24 does not apply to extreme precipitation for the APHRODITE dataset due to its difficulty obtaining valid information. The GPCC datasets show a weak increase trend in both the cold and warm seasons, which is consistent with observations. The extent by R90p both exhibited a high proportion of both APHRODITE and GPCC dataset, whether warm or cold season.
[image: Figure 9]FIGURE 9 | The variation (solid line) and trend (dotted line) of intensity (A–D), frequency (E–H), and extent (I–L) of extreme precipitation by seven threshold criteria based on APHRODITE and GPCC datasets over Central Asia from 1985 to 2005.
The spatial distribution of extreme precipitation intensity and frequency trends is shown in Figure 10. A grid is drawn in red (blue), which means that there is at least one threshold for a significant increase (decrease)trend in this grid. And it has a consistent trend in seven threshold criteria when the grid is drawn with shadow. For the APHRODITE dataset, the spatial distribution of intensity trends is generally similar to frequency. There were 7.62% (9.05%) areas with an increasing trend and 15.28% (11.98%) with a decreasing trend in intensity (frequency) in the warm season. The decrease was mainly in the mountainous areas in southeastern CA5 and Kazakhstan Hills in the east. The growth trend is mainly in the Turgayskoye Plato for frequency, with no clear regional trend of increase in intensity. In the cold season,12.12% (10.99%) areas showed an increase, most in the eastern CA5 in intensity (frequency), and the decreased trend is mainly located in northwestern and southeastern CA5, with 13.34% (10.75%). Moreover, the decreased area in the mountainous regions of Tajikistan detects a consistent trend, but the number is scarce (less than 1%).
[image: Figure 10]FIGURE 10 | Spatial distribution for intensity and frequency of extreme precipitation trend with significance by APHRODITE (A,B,E,F) and GPCC(C,D,G,H) datasets over Central Asia from 1985 to 2005. (The trend: at a significance level of 10% by the MK test; grid with shadow: a grid with a consistent significant trend in different threshold criteria).
The GPCC dataset shows a more dispersed spatial trend than the APHRODITE dataset. In the warm season, there is an increasing trend of about 20.21% (17.17%) for intensity (frequency) mainly located in the central and southeastern CA5. While the decreasing trend has no obvious regional signal, with portion about 8.05% and 6.08% for intensity and frequency. In the cold season, a significant increasing trend was depicted in the southeastern part of Central Asia, and it was 19.5% and 17.71% for intensity and frequency; the decreasing trend with the portion about 19.5% and 17.71%. GPCC only detected a consistent decreasing trend of intensity during the warm season, with only two grids in the southeastern CA5. Different thresholds still cannot show a uniform trend in spatial distribution. Different threshold selection criteria will bring different spatial trend results. The choice of precipitation thresholds and grid datasets affects the results when analyzing the trends of precipitation characteristics in Central Asia.
4 DISCUSSION
The determination of extreme precipitation thresholds is the beginning of extreme precipitation research. Threshold selection is generally based on the researcher’s experience and is highly subjective. In this paper, we discuss the performance of parametric and non-parametric approaches for analyzing extreme precipitation in Central Asia. Percentile indices tend to examine the moderate extremes (Zhang et al., 2011; Schär et al., 2016); the extreme thresholds defined by the parametric approach are closer to the “extremes” but are complex. We have referred to the research work of Anagnostopoulou and Tolika (2012) to briefly discuss the selection of extreme precipitation thresholds for Central Asia.
Extreme precipitation events should meet the “rare” criterion and require a sufficient sample size for subsequent analysis of such events. There are two criteria for the threshold selection in this part: a sample rate of less than 10% and a sample size larger than 21 (1 event per year). The 21 sample size was equal to the average sample rate of 7.3% and 2.4% in the warm and cold season, respectively. As shown in Figure 11, almost all the threshold criteria met the requirement of a sample rate of less than 10%, except R90p, which had an average sample rate of 10.3% (10.5%) in the cold (warm) season. On the other hand, the R24, R99p, 5-year, and 10-year criteria did not meet the requirement of a sample size greater than 21 in both cold and warm seasons. R12 and R95p were met by all stations in the cold season, whereas 58% and 45.16% of stations met in the warm season. In summary, R95p was comparatively more suitable for extreme precipitation threshold selection at most stations since it combined the spatial expression and sample size. It was consistent with the findings of Wang Z. et al (2020) which was suggested that the 93–96th percentile is optimal for determining extreme precipitation in Central Asia. Lai et al. (2020) and Ma et al. (2020) also used R95p to analyze extreme precipitation characteristics in Central Asia. Nevertheless, Schär et al. (2016) showed that the wet-day percentile index has some limitations and can underestimate heavy rainfall events. The choice of the percentile index for wet days and full days requires further detailed study.
[image: Figure 11]FIGURE 11 | The distribution for the sample rate of different threshold criteria in multi-stations (Blue bar: histogram of sample rate; red line: distribution fit by normal function).
The shortage of long-term meteorological observation data in Central Asia has resulted in significant limitations to this study. The observation data used in this study were from 1985 to 2005. The extreme precipitation threshold cannot fully and accurately reflect the actual conditions of current extreme precipitation. However, Yao et al. (2021) indicated the stability of total precipitation and annual maximum 1-day precipitation (R1Xday) in Central Asia during a historical period based on the longest meteorological observations (1881–2006) and tree-ring reconstructed series (1756–2012 and 1760–2015). This suggests that the results of this study can be used as a reference for extreme precipitation threshold selection in Central Asia over different periods to a certain extent.
Meanwhile, we calculated the extreme precipitation thresholds for Central Asia based on the GPCC dataset using the parametric and non-parametric approaches for the period of 1982–2016 and 2006–2016, as shown in Table 4. Relative to the extreme precipitation thresholds from 1985 to 2005, the percentile method precipitation thresholds for 1982–2016 increased by approximately 8.3% (1.3 mm) in the warm season and 10.5% (1.5 mm) in the cold season. The parametric method was more extreme than percentile indices, with a higher increment. It was 15.9% (3.1 mm) in the warm season and 15.8% (2.4 mm) in the cold season. Due to global warming, heavy precipitation events have increased and intensified in Central Asia (Hu et al., 2016; Hu et al., 2019b; Lai et al., 2020; Yao et al., 2020). There is an evident increase in precipitation thresholds in the latter decade (2006–2016). Despite that, they are still much smaller than observed.
TABLE 4 | Threshold in different period by GPCC dataset and observations.
[image: Table 4]The underestimation of the threshold by the APHRODITE gridded dataset is consistent with the results of Lai et al. (2020). It may be because some stations with strong extreme events were excluded by the quality control of the APHRODITE dataset. Distribution-based interpolation (Yatagai et al., 2012) also makes the APHRODITE dataset underestimate precipitation and extreme events in Central Asia. The GPCC dataset also exhibited a systematic underestimation, resulting in low extreme precipitation thresholds. This underestimation of the daily extreme threshold values is in agreement with the underestimation of the monthly and annual precipitation of the CRU (Hu et al., 2018).
5 CONCLUSION
Central Asia is strongly affected by global warming, and the number of extreme events has increased significantly. The extreme threshold is the core of extreme event studies. This study determined extreme precipitation thresholds using parametric and non-parametric approaches based on daily rain records and two grid datasets (APHRODITE and GPCC) for Central Asia from 1985 to 2005. The statistical and spatial distributions of the different threshold criteria were analyzed, the trend of extreme precipitation has been discussed, and an assessment of the grid dataset from an extreme threshold perspective. The main conclusions are summarized as follows.
There are apparent differences in precipitation between the cold and warm seasons in Central Asia, with an apparent disparity in spatial distribution. Cold season precipitation is dominant in the south, warm precipitation is dominant in the north, and precipitation is uniform throughout the year at the 45°N-50°N latitudes. The problem of extreme precipitation in Central Asia should be discussed seasonally and zonally. The mean thresholds across Central Asia in the cold (warm) season are 9.1, 13.5, 26.5, 19.2, and 25.2 mm (9.6, 14.0, 30.9, 19.3, and 26.8 mm), as determined using the non-parametric approach (90th, 95th, and 99th percentile indices) and parametric approach (return periods of 5 and 10 years), respectively. The threshold determined by the percentile indices in the warm season is slightly higher than in the cold season. The parametric approach is the opposite. The spatial distribution of the extreme precipitation threshold was similar to that of precipitation. The maxima of the extreme precipitation threshold values were distributed along the mountains in Central Asia in both the observations and the two grid datasets. Northern and southeastern Central Asia are two large-value areas, whereas central and southwestern Central Asia are low-value areas. The APHRODITE and GPCC datasets well characterized the spatial distribution of extreme thresholds in Central Asia. But the threshold value was significantly underestimated, and the APHRODITE dataset underestimated it more. There is no significant trend in the intensity, frequency, and extent of extreme precipitation in Central Asia from 1985 to 2005. The different threshold criteria showed consistent trends in time but not in spatial. This feature is confirmed by both the observations and the two gridded datasets. The study showed that the choice of extreme precipitation thresholds affects the conclusion of extreme precipitation spatial trends. In general, extreme precipitation thresholds should be determined using different approaches, depending on the objectives of each study. The choice of thresholds requires adjusting the balance between sufficient samples and extremes. For Central Asia, it is evident from the present analysis that parametric and non-parametric approaches have proved effective in achieving this objective.
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The increased climate change is having a huge impact on the world, with the climatic change sensitive and vulnerable regions at significant risk particularly. Effective understanding and integration of climate information are essential. It helps to reduce the risks associated with adverse weather conditions and to better adapt to the impacts of climate variability and change. Using the hindcast data from Japan Meteorological Agency/Meteorological Research Institute (JMA/MRI) coupled prediction system version 2 (JMA/MRI-CPS2), National Centers for Environmental Prediction (NCEP) Climate Forecast System model version 2 (CFSv2), and Canadian Centre for Climate Modeling and Analysis (CCCma) Coupled Climate Model, versions 3 (CanCM3) seasonal prediction model systems, the performance of seasonal prediction for global surface temperature in boreal summer and winter is comprehensively evaluated and compared for 1982–2011 from the perspective of deterministic and probabilistic forecast skills in this study, and a partial regression correction (PRC) method is introduced to correct seasonal predictions. The results show high prediction skills in the tropics, particularly in the equatorial Pacific, while poor skills on land. In general, JMA/MRI-CPS2 has slightly better prediction performance than CFSv2 and CanCM3 in the tropics. CFSv2 is generally superior to JMA/MRI-CPS2 and CanCM3 in the extratropical northern hemisphere and East Asia, especially for the abnormal low winter temperature prediction in East Asia. CanCM3 shows good deterministic forecast skills in extra-tropics but performs slightly worse in probabilistic forecasting. Based on the respective strengths of each seasonal prediction model, an ensemble forecast correction with observational constraint is implemented by partial regression, and the improvement of skills in ensemble predicting has been analyzed. Compared to the simple multi-model ensemble (MME), the correction improved the global-average temporal correlation coefficient and multi-year mean anomaly correlation coefficient by about 0.1 and 0.13, respectively. The validation tests indicate that the corrected ensemble forecast has higher ranked probability skill scores than that of the MME, which is improved by more than 0.06 in the tropics. Meanwhile, when the training period is sufficiently long, it may have the potential for future seasonal temperature predictions from the perspective of stable zonal partial regression coefficients.
Keywords: surface temperature, seasonal prediction, deterministic forecast skill, probabilistic forecast skill, partial regression correction method
1 INTRODUCTION
Surface temperature is one of the most important variables of climate change, which can directly affect climate, ecosystems, food security, and human health (IPCC, 2013; Ye et al., 2013). The studies show that the strengthening of the zonal gradient of tropical sea surface temperature (SST) or temperature gradient between Eurasia and the tropical ocean has led to significant changes in the Asian monsoon system and regional precipitation in different time scales (D'Arrigo et al., 2006; Sheng et al., 2021; Yun et al., 2014). In addition, increased temperature is also the main cause of the increase of evaporation trend (Helfer et al., 2012; Mahyavanshi et al., 2021), which would affect the global hydrological cycle and energy balance through thermal forcing (Caloiero, 2017). Therefore, accurate temperature prediction can help to provide effective predictions of atmospheric circulation, runoff, evaporation and energy changes. This can also make a positive contribution to hydrological risk assessment, planning, and prevention of meteorological disasters (Mishra et al., 2019; Shukla et al., 2019; Hu et al., 2022), and provide reliable climate information for corresponding climate decision-making and services to further improve the adaptability to climate change.
With the background of global warming, the anomalous change of climate is occurring frequently and has caused great losses to the society and economy. The numerical models have gradually become an important means of weather and climate prediction (Palmer et al., 2004; Raftery et al., 2005; Kumar et al., 2012; IPCC, 2013). Seasonal prediction model systems have been developed as useful tools for short-term climate prediction research. However, the predictability of the model is still limited by such factors as the systematic error of the models, the imperfection of the physical parameterization scheme, and the uncertainty of the initial conditions (Charney et al., 1950; Lorenz, 1963, 1965; Leith, 1974; Mu et al., 2010; Kalnay, 2019). Therefore, various methods have been proposed to reduce model prediction errors or improve prediction skills. On the one side, adding assimilation data or model coupling, increasing model resolution, and advancing physical parameterization are used to improve the capability of the model prediction (Barkmeijer et al., 1999; Qiu et al., 2007; Deshpande et al., 2010; Kirtman et al., 2012; Rubin et al., 2017; Meehl et al., 2019). On the other side, the prediction accuracy can also be improved by providing multiple ensemble members with different initial perturbations or initial times (Toth and Kalnay, 1997; Fritsch et al., 2000; Gneiting and Raftery, 2005; Kalnay, 2019). Therefore, multi-model ensemble (MME) methods are widely used to reduce prediction error, and numerous studies have shown that the MME is more reliable than the individual model, and the prediction skills are significantly improved (Fritsch et al., 2000; Goerss, 2000; Peng et al., 2002; Palmer et al., 2004; Raftery et al., 2005; Wang et al., 2008; Lee et al., 2010; Kumar et al., 2012; Yang et al., 2016).
Several methods are currently available for MME. One is linear, such as the simple composite method with equal weight (SCM), linear regression, and multiple linear regression with different weights (Fraedrich and Smith, 1989; Krishnamurti et al., 1999; Fritsch et al., 2000; Yun et al., 2003; Palmer et al., 2004; Doblas-Reyes et al., 2005; Min et al., 2014). Prediction skills can also be achieved by choosing the relatively good models in MME and then performing calculations with these better models. Lee et al. (2011) proposed the concept of “climate filter”, which graded the individual model based on the reproduction of the strong association between Walker circulation and the tropical Pacific rainfall; Devineni and Sankarasubramanian (2010) classified and detected the performance of multi-model predictions based on the accuracy of the forecasted Nino3.4 index, which is a strategy for adjusting the model weight according to the predictability of important climate predictors. Moreover, the MME can be improved using dynamic statistical downscaling methods (Shukla and Lettenmaier, 2013; Kang et al., 2014; Tang et al., 2016), like the stepwise pattern projection method (Kug et al., 2008; Min et al., 2014), and the synthetic superensemble method combining multiple regression and empirical orthogonal function method (Yun et al., 2005). These methods are intended to promote the usage of models with better dynamic diagnostic performance rather than a composite of all available models. Post-processing of MME based on probability distributions to calibrate ensemble predictions is also available (Raftery et al., 2005; Tebaldi et al., 2005; Greene et al., 2006; Sloughter et al., 2007; Liu and Xie, 2014; Scheuerer, 2014; Khajehei et al., 2018; Li et al., 2021). In addition, non-linear methods have been introduced into model ensembles due to the non-linear characteristics of the climate system and physical processes. For example, Ahn and Lee (2016) applied the genetic algorithm to the multi-model ensemble method to effectively improve the forecasting skills of winter temperature and precipitation in high latitudes, and reduce errors in model members and ensemble results; and Kumar et al. (2012) used neural networks for multi-model ensemble predictions of Indian monsoon seasonal rainfall.
Generally, the prediction skills of MME are enhanced by offsetting the systematic deviation of each climate model (Yang et al., 2016), but this improvement comes at the cost of overestimating the fractional variance of the main mode (Wang et al., 2008). Some studies have pointed out that MME methods still have some shortcomings: for example, SCM is only available when all individual models are similar and reasonable (Ahn and Lee, 2016); the multiple regression method may lack robustness to obtain stable weighted estimates when the time series are short (Peng et al., 2002; Doblas-Reyes et al., 2005), and it fails to address the problem of collinearity among multiple variables. However, the partial least squares regression (PLSR) method could solve the above problems more effectively (Li, 2020; Hu et al., 2021; Qian et al., 2021). Consequently, based on a systematic assessment of seasonal temperature predictions from different model systems, this study uses the PLSR as a correction method with observational constraints to correct model hindcast results and improve seasonal predictabilities. The paper is organized as follows: Section 2 introduces model hindcast data and the reanalysis data used for verification, evaluation metrics, and the PLSR method. Section 3 describes the systematic evaluation of the 1-month lead forecast for JMA/MRI-CPS2, CFSv2, and CanCM3, and the comparison of deterministic forecast performance for the SCM (namely MME) and the ensemble corrected with the partial regression (PRC) method. In addition, the validation tests of the PRC method for the probabilistic forecast, and the predictability potential of the PLSR equation are involved in this section. Finally, Section 4 provides a discussion and summary.
2 DATA AND METHODS
2.1 Data
JMA/MRI-CPS2 is an atmosphere-land-ocean-sea ice coupled prediction system version 2 developed by the Japan Meteorological Agency/Meteorological Research Institute (JMA/MRI). It consists of the JMA Global Spectral Model with the horizontal resolution TL159, and the oceanic component MRI community ocean model version 3 at the horizontal resolution of 1° in the longitudinal direction and 0.3°–0.5° in the meridional direction. JMA/MRI-CPS2 is initialed every month, with an integration period of 11 months, and covers the period from January 1979 to June 2015. 10 members are carried out every initial month, comprising two groups of five members starting from two initial dates (15 days apart). The five sets of initial conditions on each initial date include two perturbations in the tropics, and two perturbations in the northern extratropics (Takaya et al., 2017; Takaya et al., 2018).
CFSv2 is the National Centers for Environmental Prediction’s (NCEP’s) Climate Forecast System, version 2, a fully coupled atmosphere-ocean-sea ice-land model for seasonal prediction. CFSv2 uses the atmospheric model NCEP’s Global Forecast System at T126 in the horizontal, the Modular Ocean Model version 4 coupled with an interactive three-layer sea ice model, and the four-level Noah land surface model. CFSv2’s seasonal prediction is out to 9 months, with initial conditions of the 0000, 0600, 1,200, and 1800 UTC cycles for every fifth day, over the retrospective forecast period 1982–2010 and the operational forecast 2010–2018. There is an ensemble size of 24 forecasts for each month with different initial conditions, except November, which has 28 forecasts (Saha et al., 2014).
CanCM3 is the Canadian Centre for Climate Modeling and Analysis (CCCma) Coupled Climate Model, version 3, which combines version 4 to form the Canadian Seasonal to Interannual Prediction System (CanSIPS). In CanCM3, the atmospheric component is CCCma’s third-generation atmospheric general circulation model CanAM3 (T63/L31), and the ocean component is CanOM4. It includes 10 ensemble members of different forecast initial conditions and is initialed at 0000 UTC on the first of every month over the period 1981–2011, with an integration period of 12 months (Merryfield et al., 2013).
The monthly mean surface air temperature reanalysis data used for verification is from the fifth generation European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis of the global climate (ERA5), with a resolution of 0.5° latitude ×0.5° longitude, and back extension from 1950 to 1978 (preliminary version) and from 1979 onwards (hereafter referred to as observation). ERA5 uses ECMWF Integrated Forecasting System Cy41r2, which is significantly improved (temporal, horizontal, and vertical) compared with Cy31r2 used by its predecessor ERA-Interim. And it improves the data assimilation system, now it is based on a hybrid increment 4D-Var system, which can provide the background-error estimates through one control and nine perturbed members, and can provide more output variables (Hersbach et al., 2020; Bell et al., 2021). The comparison shows that ERA5 better characterizes global surface temperature change than other reanalysis data since 1958 (Yang et al., 2022). Although different reanalysis data may have some uncertainties for prediction skills in model evaluation, this dependence is small in terms of the multi-year mean correlation coefficient of global temperature (Kim et al., 2012).
In this study, the model assessment period is 1982–2011. For each model, the ensemble means of all the members equally weighted for each month is employed. The analysis focuses on seasonal predictions for the boreal summer (JJA, June-July-August) and winter (DJF, December-January-February). For the JJA (DJF) mean, the 0-month lead forecast is the forecast initialized in June (December), and the predictions of 1-month lead time are mainly evaluated in this study. For comparison, all the model hindcast results and the observation are re-interpolated to the same 2.5 ° × 2.5 ° grid using the bilinear interpolation method. This paper focuses primarily on global assessment, considering the distribution characteristics of the model prediction skills and some operational focus areas, and also evaluates the performance of some regions, such as East Asia, the different regional ranges are shown in Table 1.
TABLE 1 | The evaluation area range and abbreviation.
[image: Table 1]2.2 Evaluation metrics
In this study, the skill of model seasonal predictions is evaluated by widely used deterministic (Temporal Correlation Coefficient, TCC; Anomaly Correlation Coefficient, ACC) and probabilistic (Ranking Probabilistic Skill Score, RPSS; Brier Skill Score, BSS) metrics.
2.2.1 Deterministic skills
TCC describes the prediction capability of the model at each grid point and obtains the spatial distribution of prediction skill. Firstly, the variance and covariance of each grid point are calculated, which are defined as follows:
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where [image: image] represents the observed or reanalysis temperature, and [image: image] denotes the model prediction. [image: image] and [image: image] are corresponding temporal averages, respectively. [image: image] represents the number of grid points and [image: image] represents the time series. TCC ranges between -1 and 1, and the closer it is to 1, the higher the prediction skill. The 3-month averages of JJA and DJF are first calculated for 1982–2011, and applied a 9-year high-pass filter to extract interannual variability, and then calculated the TCC between the seasonal average of each model and the observation. Statistical significance is computed using the Student’s t-test.
ACC measures the spatial similarity between prediction and observation, and requires the time average and anomaly for each grid point, as defined below:
[image: image]
where [image: image] is the observed anomaly, [image: image] indicates the temperature anomaly calculated from a forecast and the corresponding model climatology, [image: image] and [image: image] represents the spatial average of the observed and model temporal anomaly of all grid points, respectively.
2.2.2 Probabilistic skills
RPSS and BSS are widely used to assess probabilistic forecasts skills (Goddard et al., 2003; Kusunoki and Kobayashi, 2003; Wilks, 2007; Shukla and Lettenmaier, 2013; Yang et al., 2016). The RPSS is used to evaluate ensemble forecasts for multiple categories of events (Weigel et al., 2007; Wilks, 2007). In general, threshold values are estimated based on the theoretical probability distributions of temperature, both for model hindcasts and observation, events above or below the thresholds are categorized to the upper or lower tercile categories, respectively, and correspondingly regarded as above normal (AN), near normal (NN) and below normal (BN) event. Therefore, the forecast probabilities for different categories can be constructed based on the proportion of ensemble members that fall into the given category, and the observed probability of a certain event is either 0 or 1. In addition, using climatological forecasts as reference forecasts and calculating cumulative probabilities of climate is 0.33, 0.67 and 1, respectively, the same as (Goddard et al., 2003). The PRSS of 0 indicates no skill when compared to the reference forecast, and the PRSS of 1 is considered a “perfect forecast”. It measures the improvement of a multi-category probabilistic forecast relative to a reference forecast (usually a long-term or sample climate), and it is defined as:
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where [image: image] is the number of forecast categories, [image: image] and [image: image] denotes the cumulative probability at the [image: image]-th forecast category of the model and the observed, respectively, i.e., [image: image], and [image: image] and [image: image] indicates the corresponding probabilistic forecast value at the [image: image]-th forecast category, respectively. When the [image: image]-th forecast category occurs in observation [image: image] and vice versa. [image: image] denotes the cumulative probability of climate at the [image: image]-th forecast category.
While the RPSS reflects the overall probabilistic forecast performance of the different model predictions, the BSS is simpler and more effective for the respective forecasting skills for a particular event (e.g. cold and warm anomalies). The BSS is a special case of an RPSS with two categories (Weigel et al., 2007; Wilks, 2007), and it is used to assess the accuracy of probability forecasts for dichotomous events, that is, for the two categories of probability with [image: image] and [image: image]. Its formula is as follows:
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2.3 The multi-model ensemble correction method
The partial least squares regression (PLSR) method is developed to build the linear regression model of multiple dependent variables to one or several independent variables. Rather than directly considering the relationship between the independent and dependent variables, it extracts the components of the variables that are more explanatory for the system and uses these component variables for modeling (Wold et al., 2001). First, standardizing the independent and dependent variables, and then extracting the pairs of principal components that could carry as much variability information as possible of the variables and have the greatest correlation from the standardized matrix. Second, the regression model is established to calculate the regression coefficient matrix and the residual matrix between the principal component of the independent variable and the independent or dependent variable. Finally, judging whether the residual meets the accuracy requirements. If not, use the residual matrix to replace the original data matrix, and repeat the above steps until the residual meets the accuracy requirements. The model is formulated as follows:
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where [image: image] and [image: image] denote the normalized matrix of the independent and the dependent variable, respectively, [image: image], and [image: image]. [image: image] stands for the number of components extracted from the original variables, [image: image] denotes the [image: image]-th principal components of the matrix of independent variables and [image: image] is loading matrix, [image: image] represents the regression coefficient matrix, [image: image] and [image: image] are the residual matrixes.
Since [image: image] can be expressed as a linear combination of [image: image], so Eqs. 8, 9 can be returned to the regression of standardized dependent variable [image: image] and the standardized independent variable [image: image], and its expression is:
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[image: image] represents the standardization coefficient of the [image: image]-th independent variable for the [image: image]-th dependent variable, (*) indicates standardized variables.
In this study, the PLSR is applied to a multi-model ensemble correction. Using hindcast data derived from different seasonal prediction models as independent variables and corresponding observation as the dependent variable to build the PLSR equation at all grid points. Leave-one-out cross-validation is used within all training periods. The advantages of the PLSR method are that it takes the widespread multi-correlation (collinearity) between the individual model forecasts into account and allows the time length less than the number of models, thus creating a more robust regression equation. In addition, because the regression equation takes observation as the dependent variable, the PLSR could be regarded as observational constraints on the multimodel ensemble to improve the deterministic and probabilistic skills of the ensemble prediction.
3 RESULTS
3.1 Deterministic forecast skill
Figure 1 shows TCC spatial distributions for the JJA and DJF temperature prediction from JMA/MRI-CPS2, CFSv2 and CanCM3. As shown, tropical marine areas possess a high skill level both in summer and winter, particularly in the central and eastern equatorial Pacific with the TCC greater than 0.70. High deterministic skill in the extratropical Northern Hemisphere (NET) is extend from the tropical marine continent to the northeast and southeast Pacific. Compared with the skills on the sea, the prediction skill over the land is generally lower. However, there are some regions such as most of South America, Africa, and parts of Australia, Southeast Asia, and North America, where the TCC skill appears moderately good. A similar spatial distribution is also described in some previous studies (Wang et al., 2009; Kim et al., 2012; Materia et al., 2014). It indicates that tropical SST anomalies are the most important source of climate predictability on the seasonal-interannual scale, most of the skillful predictions over the above regions are from the influence of ENSO through teleconnection and local air-sea interaction (Wang et al., 2009; Yang et al., 2016). In JJA, the prediction skills over Eurasia are quite limited, all models only show skillful prediction in Southeast Asia, but most other regions show statistically insignificant skills. During the DJF, CFSv2 and CanCM3 show significant correlations in reaching above 0.30 in central and northern Eurasia, respectively. The global averaged TCC prediction skills of the three models are generally comparable in summer and winter, the variation range is 0.44–0.50 and 0.47–0.52, respectively, with the CFSv2 having a slightly lower skill in JJA (0.44), primarily influenced by the lower skill in the tropics (Figure 1B).
[image: Figure 1]FIGURE 1 | Spatial distributions of Temporal Correlation Coefficient (TCC) for JMA/MRI-CPS2 (A,D), CFSv2 (B,E) and CanCM3 (C,F) of temperature in JJA (A–C) and DJF (D–F) season for the period 1982–2011. The global-averaged scores are also displayed in the upper right corner of the plot. The dotted areas indicate statistical significance at the 95% level using the Student’s t-test.
A visual comparison of the deterministic skill TCC between the 3 models in different regions for JJA and DJF is displayed in Figure 2. In general, the prediction skills of the three models are more than 0.6 in the tropics, which is larger than that in the extratropical. The skills in the extratropical Southern Hemisphere (SET) are slightly higher than those in NET because most of the regions of SET are marine areas. The prediction skills in South Asia are also high, reaching more than 0.52. The prediction skills in East Asia are low. Except for the winter prediction skills of CFSv2 (0.36), the rest are within 0.30. In terms of different models, JMA/MRI-CPS2 is slightly better than CFSv2 and CanCM3 models in tropics and South Asia; the TCC prediction skill of CFSv2 in East Asia is slightly higher than that of the other two models, especially the TCC is about 0.10 larger than the other two models in DJF; CanCM3 has the best forecasting skills over the extratropical.
[image: Figure 2]FIGURE 2 | The area-averaged TCC in different regions for JMA/MRI-CPS2, CFSv2 and CanCM3 of temperature in JJA (solid) and DJF (shaded) season for the period 1982–2011.
3.2 Probabilistic forecast skill
Figure 3 exhibits the probabilistic skill RPSS of the three models. As seen, probabilistic skills are relatively smaller than TCC. The spatial patterns of the RPSS are characterized by a high skill in the tropical oceans, especially in the central and eastern equatorial Pacific where the RPSS forecast skill can even reach above 0.40 in DJF, while the extratropical marine skill is within 0.20. Nonetheless, features of the probabilistic skill are still possible to find that extend from the tropical Pacific to the central and northern Pacific. In addition to CanCM3 in DJF, probability skills are also shown in the North Atlantic. Instead, the RPSS is much smaller over land, some regions present meaningless negative values. In JJA, JMA/MRI-CPS2 exhibits some skills in central and northern Africa, southern Europe, Southeast Asia, the eastern coast of North America and Greenland; in addition to the above regions, CFSv2 also achieves RPSS skill of 0.10 or more in parts of northern East Asia, South America and Australia; while CanCM3 performs slightly worse in probabilistic forecasts over land, and has small positive skills in central Africa and Greenland. During the winter JMA/MRI-CPS2 exhibits skillful RPSS in most of Africa and South America; besides these areas, the probabilistic skills of CFSv2 in the Arabian Peninsula, the Mongolian Plateau, Greenland and parts of China are about 0.10; while the distribution of CanCM3 skill areas on land remains poor.
[image: Figure 3]FIGURE 3 | Spatial distributions of Ranked Probability Skill Scores (RPSS) for JMA/MRI-CPS2 (A,D), CFSv2 (B,E) and CanCM3 (C,F) of temperature in JJA (A–C) and DJF (D–F) season for the period 1982–2011.
As mentioned above, when the RPSS is larger than 0, it indicates an improvement in prediction skills relative to the climate probability. Therefore, the percentages of grid points with RPSS greater than 0 out of the global field for the three models are also calculated. Figure 4 displays regional averaged RPSS skills and the annual variation of its global average. The annual variations of global averaged RPSS during JJA and DJF seasons show higher skills in strong El Niño years than normal years, such as 1997/2009 (Figures 4A,B). Although there are still negative skills in some years, which may remain skillful predictions in specific regions such as the tropical region. The RPSS skill of JMA/MRI-CPS2 performs above 0.1 in the tropics, which is considerably higher than the other two models. CFSv2 has the highest skill of the three models in the extratropical, East Asia, and South Asia (in DJF), although sometimes with negative skill. It shows that CFSv2 is slightly better than JMA/MRI-CPS2 and CanCM3 in probability prediction except in the tropics. The RPSS skill for different regions of CanCM3 is positive only in the tropics during DJF, indicating that due to the low probability prediction skills of tropical CanCM3 performs slightly worse for probabilistic prediction in global and regional temperature (Figures 4E,F).
[image: Figure 4]FIGURE 4 | Time series of the global-averaged RPSS (A,B); and the percentage of grid cells where the RPSS is >0 out of the global grid cells (C,D); the area-averaged RPSS in different regions (E,F) for JMA/MRI-CPS2, CFSv2 and CanCM3 of temperature in JJA (left panel) and DJF (right panel) season for the period 1982–2011.
In terms of the fraction of area where the prediction is skillful (Figures 4C,D), the percentages of grids in the globe where RPSS is greater than 0 are generally above 50% in the three models. The multi-year mean of this fraction is about 58% in JJA and DJF for JMA/MRI-CPS2, comparable to CFSv2 (57% and 59%) and CanCM3 (57% and 58%). However, the percentages of the year when the largest fraction is detected from different models during individual years, reach 40% for JMA/MRI-CPS2 and CFSv2 in JJA, and correspondingly reach 30% and 43% in DJF, respectively. The multi-year mean of global averaged RPSS for JMA/MRI-CPS2 and CFSv2 respectively are 0.03 and 0.02 in JJA, 0.05 and 0.06 in DJF, while the values for CanCM3 are less than 0 in both seasons. It also shows that the probabilistic forecasting of JMA/MRI-CPS2 and CFSv2 is slightly better than that of CanCM3.
While RPSS reflects prediction skills for the probability of multiple category events, BSS can further reflect improved skills for a specific event relative to climate probability. As with the classifications of abnormal events for RPSS, BSS skills are examined for the AN, BN, and NN events. As shown in Figure 5, the regions with high prediction skills for the AN event are also mainly distributed in the tropical ocean in JJA and DJF, and also show some prediction skills in the North Atlantic for JJA. On land, the BSS of JMA/MRI-CPS2 in northern Africa, southern Europe, the Arabian Peninsula, Southeast Asia, and southern North America are 0.20–0.40 in summer; CFSv2 has skills with a varied range of 0.20–0.40 in Europe, most parts of Siberia and northern Africa, and about 0.20 in part regions of North America and South America; CanCM3 still performs low skills on land. In winter, the prediction skills of the three models are high in northern South America, which can reach more than 0.40, and all models show some skills in southern Africa. In general, the spatial patterns of BSS for the BN event are largely similar to that for normal events, but the prediction skills in tropical areas are increased (Supplementary Figure S1). The prediction skills of the model for AN and BN events are higher than those for the NN event, the mean BSS over the different regions of the normal event are both below 0 (Figure 6). The BSS for abnormal events of JMA/MRI-CPS2 in the tropics can reach 0.20 in DJF, but the corresponding skills of CanCM3 are only 0.10 or less, which is significantly lower than the other two models, and the skills in other regions are mainly negative. It is worth noting whether it is for the prediction of AN and BN events, CFSv2 shows higher skills in NET and East Asia than those of the other two models. It shows that CFSv2 has certain advantages in probabilistic prediction in NET and East Asia, especially for the below-normal in East Asia in DJF, that is, CFSv2 has a good ability to predict abnormal low temperatures in winter.
[image: Figure 5]FIGURE 5 | Spatial distributions of Brier Skill Scores (BSS) for the above normal (AN) event for JMA/MRI-CPS2 (A,D), CFSv2 (B,E) and CanCM3 (C,F) of temperature in JJA (A–C) and DJF (D–F) season for the period 1982–2011.
[image: Figure 6]FIGURE 6 | The area-averaged BSS in different regions for the above normal (AN), near normal (NN) and below normal (BN) event for JMA/MRI-CPS2 (A,B), CFSv2 (C,D) and CanCM3 (E,F) of temperature in JJA (upper panel) and DJF (below panel) season for the period 1982–2011.
3.3 Comparison of the model ensemble schemes
According to the previous analysis, JMA/MRI-CPS2, CFSv2 and CanCM3 have their own advantages in deterministic and probabilistic predictions. If the prediction result of the ensemble means is corrected, is there any significant improvement in ensemble forecasting skills? Therefore, taking the ensemble mean of multi members of three models as the independent variables, the PRC method is used for the ensemble correction, and the deterministic metrics TCC and ACC are also used to test the correction results. As can be seen from Figures 7B,D, the TCC after PRC ensemble correction is improved, and the global averaged TCC is increased by at least 0.09 in JJA and DJF, compared with the results of the individual model (Figure 1). Relative to the MME (SCM), the TCC is also improved, such as in the equatorial east-central Pacific and parts of North America in summer, and in northern East Asia, central North America and Australia in winter. Furthermore, it is notable that the corrected results of the PRC ensemble are facilitated to capture the prediction advantages of individual models. For example, TCC skill presents to be significant in parts of northern Asia for CFSv2 and CanCM3 during DJF, whereas it is small and insignificant by the MME, but increases after the PRC ensemble and turns to significant. The same is true for North America, with significant TCC skills only for JMA/MRI-CPS2 in DJF. TCC remains insignificant in southern North America after the MME, but changes to be statistically significant across North America after the PRC method. Possibly due to the methodological advantages of the PLSR of combining principal components analysis and linear regression.
[image: Figure 7]FIGURE 7 | Spatial distributions of TCC for simple averaged multi-model ensemble (MME) (A,C) and the ensemble corrected with partial regression (PRC) (B,D) of temperature in JJA (upper panel) and DJF (below panel) season for the period 1982–2011. The global-averaged scores are also displayed in the upper right corner of the plot. The dotted areas indicate statistical significance at the 95% level using the Student’s t-test.
Statistics on the averaged TCC skill for different regions (Figures 8A,B) show that the global averaged TCC markedly increases after the PRC. TCC of the different regions increases by about 0.10 compared to the MME, except for the tropics (TP) and South Asia where the skill increases by about 0.07. Compared with the results of the individual models, TCC after the PRC method is about 0.15 higher than CFSv2 and CanCM3 over the globe, TP, NET and SET, and about 0.18 higher than JMA/MRI-CPS2 and CanCM3 in East Asia in JJA. During DJF, the PRC corrected TCC improved about 0.14 over the global average of the three models, by more than 0.16 over CanCM3 in the SET, and by about 0.17 and 0.26 over JMA/MRI-CPS2 and CanCM3 in East Asia, respectively. As shown in the time series of ACC (Figures 8C,D), the corrected ACC skill is noticeably higher than the MME. Except for a few years, the ACC with the PRC method is also larger than that of the individual model. The corrected multi-year mean ACCs for JJA and DJF are 0.57 and 0.55, respectively, which are about 0.13 higher than the MME and much higher than the mean ACC of the three models (0.30 and 0.29 for JJA and DJF, respectively). It is suggested that the PRC method is not only effective in reducing the mean errors between model temperature and the observation, but also in improving the spatial similarity of the model and the observation.
[image: Figure 8]FIGURE 8 | The area-averaged TCC (A,B) and time series of anomaly correlation coefficient (ACC) (C,D) for simple averaged multi-model ensemble (MME) and the ensemble with partial regression (PRC) of temperature in JJA (upper panel) and DJF (below panel) season for the period 1982–2011. The dashed line indicates the average ACC of the multi-model, and the gray marks present the ACC of the individual model.
3.4 PRC method for probabilistic forecast skill
To further explore the improvement of the PRC ensemble method on probabilistic forecasting, multiple PRC ensemble results are constructed for probability calculations. As the three models contain 10 (JMA/MRI-CPS2), 24 (CFSv2), and 10 (CanCM3) members, respectively, if one member from each model is selected as the independent variable for PRC calculation, then it would be generated 2400 PRC ensemble results, which may lead to excessive computation. Both the Taylor diagram (Taylor, 2001; Huang et al., 2022) and the DISO (Hu et al., 2019; Zhou et al., 2021) can be used to assess the performance of different climate models. Here the best 3 members in each model are selected through the Taylor diagram (Supplementary Figure S2) and used to construct multiple PRC ensemble results. For the multi-member ensemble, the probabilistic skill RPSS is calculated directly using these 9 members, while for the PRC ensemble, the RPSS is assessed by obtaining 27 PRC ensemble results from different combinations of these best 3 members in each model. The results show that the RPSS is noticeably improved in the equatorial region after the PRC ensemble compared to the multi-member ensemble, especially in some parts of the equatorial east-central Pacific where the skill can reach 0.80 in DJF. Besides, skilled areas on land have increased significantly, such as parts of North America and Asia, where the RPSS can reach about 0.20 shifting from no skill to skillful (Supplementary Figure S3). From the annual variation in global averaged RPSS (Figures 9A,B), except for a few years, the RPSS skill of PRC ensemble results is distinctly higher than that of the multi-member ensemble, particularly in years with positive skill. The global annual averaged RPSS increases by approximately 0.05 and 0.04 in JJA and DJF, respectively. In different regions, the RPSS skill of the PRC ensemble method is also higher, which is more improved in tropics and South Asia, up to more than 0.06, and about 0.05 in NET, but not much improved in SET and East Asia (about 0.01 and 0 respectively) (Figures 9C,D).
[image: Figure 9]FIGURE 9 | Time series of the global-averaged RPSS (A,B) and the area-averaged RPSS in different regions (C,D) for simple averaged multi-model ensemble (MME) and the ensemble with partial regression (PRC) of temperature in JJA (left panel) and DJF (right panel) season for the period 1982–2011.
3.5 Predictability potential of PLSR equation
In the PLSR equation, the dependent variable is the actual observation. Therefore, the partial regression equation is theoretically an observation constraint correction to the model predictions based on observations that are known. To examine the robustness of the PLSR model, 10-, 15- and 20-year training periods are selected as sliding windows for calculation, and the PLSR coefficients are statistically analyzed. Taking the results of the different training periods in JJA as an example, it can be seen that the zonal mean of regression coefficients from each seasonal prediction model varies little with the growing training period, whereas the variance of coefficients decreases significantly at the same latitude (Figure 10). It implies that the zonal mean of regression coefficients from the PLSR model remains broadly stable across latitudes regardless of the length of the training period, and its dispersion decreases significantly as the training period increases. Moreover, the variation range (variance) of the coefficients is smallest at low latitudes, but increases with latitude in the southern hemisphere and even reaches above 1.0 at the 10-year training, while increases first and then decreases with latitude in the northern hemisphere. It may be related to the slightly low predictability over land at high latitudes in the southern hemisphere and mid-latitudes in the northern hemisphere. However, for all models, the variance variation tends to be gentler as the training period increases (with the variance of the coefficients remaining within 0.20 at the 20-year training period). The regression coefficients vary similarly in DJF (Supplementary Figure S4). It suggests that for both JJA and DJF, the variation in the regression coefficients from the PLSR equation at each latitude becomes smaller and smaller as the training period increases, implying that the observation in the year of the forecast (which is usually not known at the time of building the partial regression model) becomes less and less important in the partial regression equation. Thus, by choosing the appropriate length of the training period (sufficiently long), the partial regression model would have increasingly smaller biases at different latitudes and have forecasting potential for seasonal temperature predictions.
[image: Figure 10]FIGURE 10 | The zonal mean of regression coefficients of JMA/MRI-CPS2 (A,D), CFSv2 (B,E) and CanCM3 (C,F) which obtained in the different training periods for the ensemble with partial regression of temperature in JJA season for the period 1982–2011: the multi-year average (left panel) and the variance (right panel) of regression coefficients.
4 DISCUSSION AND CONCLUSION
The sub-seasonal, seasonal and interdecadal climate prediction is helpful for decision-makers and relevant producers to understand and identify the short-term or future long-term climate change, evaluate the possible risks caused by climate change, and formulate corresponding guarantee strategies and adaptive services (Acharya et al., 2021). Several studies have evaluated the values of using seasonal climate prediction information in climate decision-making and services, but have also pointed out that the selection of evaluation metrics in seasonal prediction systems and the improvement of seasonal prediction skills and quality still need to be explored and solved (An-Vo et al., 2021; Streefkerk et al., 2022).
In this study, the capacity of three seasonal prediction models (JMA/MRI-CPS2, CFSv2 and CanCM3) and their ensemble mean in forecasting global temperature were comprehensively evaluated with deterministic and probabilistic metrics using hindcast data covering a 30-year period from 1982 to 2011. The global averaged prediction skills for the three models are generally similar, but each also shows its superiority. JMA/MRI-CPS2 presents better prediction skills in the tropics than the other two models. CFSv2 is superior for probabilistic forecasts in the NET and East Asia, especially for abnormal low winter temperatures in East Asia. CanCM3 provides better forecasting skills in the extratropical than JMA/MRI-CPS2 and CFSv2. These results quantified the deterministic skills of the models and provided quantile-based probabilistic skills that help users to compare and choose the valuable model forecasts for the concerned area, as well as extract predictive information for the abnormal events.
Following this, the PLSR method is introduced to correct the ensemble results of the above three models with observational constraints. It is found that the prediction skills after ensemble correction are obviously improved, compared with that of the individual models, and it is also better than that of MME. The PRC ensemble method through observational constraints can reduce the mean errors and enhance the spatial similarity between the observation and model forecasts, and also strengthen the consistency between them for abnormal events. It is worth noting that the PRC is yet only able to correct model prediction under observational constraints for known observations, and it still is a challenge for forecasting seasonal variation of climate in the future.
The ensemble validation test results show that the PLSR coefficients tend to be stable and their dispersion gradually decreases as the training period increases, especially at the middle and high latitudes. It suggests that the PRC ensemble method has certain forecasting potential over a sufficient length of the model training period, and could provide a useful tool for more accurate seasonal prediction. In other words, although the regression model is established based on observation and model hindcast datasets, the validation across different training periods shows that the regression coefficients of the PLSR model exhibited relative stability, which gives some potential to this PRC method for future temperature prediction. Here we mainly focus on the global prediction evaluation, but for specific regions, the PRC method can still improve relevant forecasting skills, give strategic forecasts in a targeted manner, and provide more accurate and effective forecasting services to specific users.
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Non-stationarity of extreme climate events has been reported worldwide in recent decades, and traditional stationary analysis methods are no longer sufficient to properly reveal the occurrence probability of climate extremes. Based on the 0.25°C × 0.25°C gridded precipitation data (i.e., CN05.1), stationary and non-stationary models of generalized extreme value (GEV) and generalized Pareto (GP) distributions are adopted to estimate the occurrence probability of extreme precipitation over China during 1961–2018. Low-frequency oscillation (LFO) indices, such as El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), Southern Annular Mode (SAM), and Pacific Decadal Oscillation (PDO), are included as time-varying covariates in the non-stationary GEV and GP models. Results illustrate that the occurrence probability of extreme precipitation estimated from the stationary GEV and GP distributions shows a significant increasing trend in northwestern and southeastern China, and the opposite trend in southwestern, central, and northeastern China. In comparison with stationary model, the fitness of extreme precipitation series is improved for both the GEV and GP distributions if these LFO indices are used as time-varying covariates. Positive ENSO, IOD and PDO tend to cause negative anomalies in the occurrence probability of extreme precipitation in northeastern China and Tibet Plateau, and positive anomalies in southern China. Positive NAO and SAM phases mainly tend to cause positive anomalies in southern China. The circulation patterns of extreme precipitation anomalies associated with these LFO indices are discussed from aspects of precipitable water, vertical integrated moisture transport, 500-hPa geopotential height and 850-hPa wind field.
Keywords: extreme precipitation, GEV distribution, GP distribution, low-frequency oscillations, non-stationary frequency analysis
HIGHLIGHTS

• Non-stationary frequency analysis for both AM- and POT-sampled extreme precipitation events.
• A framework for non-stationary frequency analysis models by taking the LFO indices as covariates.
• Circulation patterns of the LFO indices impact on occurrence probability of extreme precipitation over China are discussed.
1 INTRODUCTION
Global warming can aggrandize atmospheric water vapor amounts (Liu et al., 2021), which in turn has led to increased extreme precipitation (O’Gorman and Schneider, 2009; Yu et al., 2022). Extreme precipitation can induce disasters such as floods, slope landslides and mudslides, causing casualties and property damage (Cazelles and Hales, 2006; Gu et al., 2020; Lai et al., 2020; 2021; Liu et al., 2019; Salinger and Griffiths, 2001). Therefore, more and more attention has been focused on the variation in extreme precipitation events (Gu et al., 2017a; Zhang et al., 2018). Although climate change does not necessarily lead to an increase in total precipitation, it exacerbates the frequency and magnitude of extreme precipitation (Ibrahim, 2019). Hydrological frequency analysis is a scientific criterion for natural disasters assessment, especially water disasters caused by extreme hydrological events (Bodini and Klotz, 2002). We use hydrologic frequency analysis to build the relations between the hydrological design values and the return period based on flood data or flow data, or indirectly using precipitation data. It is the scientific basis for the planning, design and management of hydraulic engineering (Li et al., 2019). Therefore, frequency analysis is essential for relating the severity of extreme precipitation events to their frequency.
The current frequency analysis on extreme events requires that the series satisfy the stationary assumption, assuming that the frequency of extreme events is not time-varying. That is, the probability distribution or statistical law of extreme events remains constant in the past, present and future, and there are no trends or abrupt changes in the extreme value series (Klein Tank and Zwiers, 2009; Wang et al., 2015). However, the climatic mechanisms underlying the occurrence probability of extreme precipitation events are constantly changing, leading to disruptions in the stationarity of the time series of extreme precipitation events. Thus, the reliability of the probability estimation for extreme precipitation events based on the stationary assumption has been strongly questioned (Hejazi and Markus, 2009; Held and Soden, 2006; Tan and Gan, 2017; Yang and Tian, 2009), and many recent studies have shown that the stationary assumption does not conform to the reality (Giraldo Osorio and García Galiano, 2012; Wagesho et al., 2012; Ishak et al., 2013). For example, Wi et al. (2016) found an increasing trend of extreme precipitation in Korea; Tan and Gan (2017) pointed out the temporal non-stationarities in extreme precipitation across Canada. Therefore, it is necessary to construct a non-stationary frequency analysis framework for extreme precipitation events, study the changing characteristics of occurrence probability of extreme precipitation events, and explore the circulation patterns behind the variation in the occurrence probability of extreme precipitation events.
To consider the effects of low-frequency climate variability, many studies have analyzed extreme precipitation frequency analysis through non-stationary generalized extreme value (GEV) and generalized Pareto (GP) distributions (Gao and Xie, 2016; Tan and Gan, 2017; Stojkovic and Simonovic, 2019). In such models, the parameters of GEV and GP distributions depend on the covariates, which are usually Low-frequency oscillation (LFO) indices representing climate variability (Cheng et al., 2014; Mondal and Mujumdar, 2015; Nasri et al., 2016; Zhang et al., 2010). It can be seen that extreme precipitation are influenced by LFO indices in previous studies. For instance, Mallakpour and Villarini (2016) analyzed the relations between the frequency of extreme precipitation and five LFO indices, found that the Pacific-North American Model (PNA) plays a major role in changes in extreme precipitation events overAmerica. Duzenli et al. (2018) showed that the North Atlantic Oscillation (NAO) is the most effective driver of extreme precipitation variability in winter in Turkey. Tan and Gan (2017) used four LFO indices as covariates with non-stationary probability distributions to analyze their effects on extreme precipitation in Canada.
Extreme precipitation in China is strongly impacted by several LFO indices, including El Niño-Southern Oscillation (ENSO) (Fu et al., 2013; Lv et al., 2019; Zhang et al., 2017), Indian Ocean Dipole (IOD) (Saji and Yamagata, 2003; Xiao et al., 2016; Gao et al., 2017), NAO (W. Gu et al., 2009), Pacific Decadal Oscillation (PDO) (Gao et al., 2017; Sang et al., 2020), and Southern Annular Mode (SAM) (Gao et al., 2022). Precipitation in China is basically constrained by the East Asian monsoon, under the significant influence of ENSO (Chen et al., 2013). Many studies have shown an association between seasonal precipitation and the positive/negative phase of ENSO in China (Gong and Wang, 1999; Chan and Zhou, 2005; Xiao et al., 2015; Gao et al., 2022). Gu et al. (2017a) showed that SOI, NAO, PDO and IOD had certain effects on the incidence of intense precipitation. The precipitation affected by NAO appear in northwestern China and the Tibet Plateau (Ding and Wang, 2005; Cuo et al., 2013). SAM will cooperate with NAO to influence precipitation in southern China in summer (Li et al., 2017). The main rain belt (such as precipitation magnitude and location) over the monsoon areas of China are significantly influenced by PDO (Li et al., 2010; Xu et al., 2015; Zhu et al., 2011).
Following the framework built by Tan and Gan (2017), we construct a non-stationary analytical model of extreme precipitation events based on GEV and GP distributions to detect the variation in the occurrence probability of extreme precipitation events in China. We select ENSO, IOD, NAO, PDO and SAM as influencing factors, and attempt to address the following two scientific questions: 1) has the occurrence probability of extreme precipitation events changed significantly in China over the past few decades? 2) does the LFO indices have a significant moderating effect on the change of the occurrence probability of extreme precipitation events?
2 DATA
2.1 Gridded daily precipitation data
The daily precipitation is collected from a 0.25°C×0.25°C gridded dataset CN05.1. This dataset was built by Wu et al. (2013) based on observations from more than 2,400 ground-based weather stations and interpolated by the “distance level approximation” method. The CN05.1 dataset covers the period 1961–2018, including daily precipitation, and other meteorological elements; this dataset is widely used to analyze climate characteristics in China (He et al., 2021; Li et al., 2021; Wei et al., 2021; Wu et al., 2017).
2.2 Low-frequency oscillation indices
LFO indices impact significantly on precipitation processes in China. Numerous studies have confirmed the importance of ENSO (Fu et al., 2013; Lv et al., 2019; Zhang et al., 2017), IOD (Saji and Yamagata, 2003; Xiao et al., 2016; Gao et al., 2017), NAO (Gu et al., 2009), SAM (Gao et al., 2017), and PDO (Sang et al., 2020) on precipitation variability in China. Therefore, in this study, ENSO, IOD, NAO, SAM, and PDO are selected as the LFO indices (time-varying covariates) that affect the occurrence probability of extreme precipitation in China. We obtain the monthly time series of ENSO, NAO, IOD, SAM, and PDO during 1961–2018 from the United States National Climate Center.
2.3 Large-scale environmental variables
The large-scale environmental variables (e.g., geopotential height, meridional and zonal winds, precipitable water, and meridional and zonal water vapor transport) are used to analyze the circulation patterns that how LFO indices modulate occurrence probability of extreme precipitation events in China. These large-scale environmental variables are obtained from the JRA-55 reanalysis data of Japan Meteorological Agency. This six-hours reanalysis dataset covers the period 1961–2018, with a spatial resolution of 1.25°C × 1.25°C. The six-hours data are converted into daily values.
3 METHODOLOGY
3.1 Identification of extreme precipitation events
We use the annual maximum (AM) and peak-over-threshold (POT) methods to identify extreme precipitation events (Smith, 2002; Khaliq et al., 2006). The AM series consist of the annual maximum daily precipitation, that is, the maximum value is extracted annually to form the AM time series (a total of 58 values per grid cell during the period 1961–2018). There may be multiple extreme precipitation events in the rainy year and no intense precipitation events in the dry year, resulting in the problem of omission or inclusion of false information in the AM series. Therefore, in addition to AM series, extreme precipitation series are constructed using the POT series (Tan and Gan, 2017). For the POT series, the 95% quantile value of all daily precipitation larger than 0.1 mm is taken as the threshold, and the values above the threshold (i.e. the 95% quantile value) are identified as heavy precipitation. Consecutive heavy precipitation days are taken as one heavy precipitation event. The POT series consist of all identified heavy precipitation events during the period 1961–2018.
3.2 Stationary and non-stationary GEV distribution
The AM series is fitted by the GEV distribution (Smith, 2002; Tan and Gan, 2017):
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Where [image: image] is the annual maximum extreme precipitation and [image: image] is the non-exceeding probability in [image: image]; [image: image], [image: image], and [image: image] represent the location, scale, and shape parameters, respectively. [image: image] determines the upper tail characteristics of the GEV distribution curve. [image: image], GEV distribution has no upper boundary; [image: image], GEV distribution has the upper boundary [image: image]. When [image: image] tends to 0, GEV distribution becomes Gumbel distribution, and has the thin tail without boundary (Gu et al., 2017b). When theparameters of the GEV distribution are constant, it is a stationary GEV model.[image: image] and [image: image] can be defined by a linear function of the covariates as follows:
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where [image: image], …, [image: image] are the time-varying covariates and [image: image], …, [image: image] are their corresponding coefficients. When [image: image] and/or [image: image] of the GEV distribution vary with the covariates, it is a non-stationary GEV model.
3.3 Stationary and non-stationary GP distribution
The extreme precipitation series obtained from POT sampling can be fitted by the GP distribution (Tan & Gan, 2017; Ibrahim, 2019):
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[image: image] and [image: image] represent the scale and shape parameters of the GP distribution, respectively; [image: image] is the POT extreme precipitation and [image: image] is the non-exceeding probability in [image: image]; [image: image] is the threshold in the POT sampling. When the scale parameter of the GP distribution does not change with covariates, it is a stationary GP model.
3.3 1 Non-stationary GP models
Similar to the GEV model, the GP distribution scale parameter can be defined by a linear function of the covariates as follows:
[image: image]
When [image: image] of the GP distribution varies with the covariates, it is a non-stationary GP model.
3.4 Model performance tests
The Kolmogorov-Smirnov (K-S) test is used to assess the goodness-of-fit of GEV/GP distribution (Santos et al., 2015; Tan and Gan, 2017; Romali et al., 2018). The null hypothesis is that the stationary GEV/GP distribution is suitable to fit the observed extreme precipitation series. The likelihood ratio test is used to evaluate whether the non-stationary model has a better performance than the stationary model (Xavier et al., 2020; Zakaria et al., 2021). The null hypothesis is that there is no difference between non-stationary and stationary models in fitting the observed extreme precipitation series. The false discovery rate (FDR) test is employed to assess whether the improvement of the non-stationary model can be considered as field-significant across China (Wilks, 2006). The null hypothesis is that the improvement of the non-stationary model is not field-significant. The above null hypotheses are rejected when the corresponding p-value is smaller than 0.05.
3.5 Detection of changes in probability index and occurrence rate
For AM time series, the non-exceeding probability (i.e., [image: image]) based on the stationary GEV distribution is used as the probability index (PI) to quantify the variation in the occurrence probability of extreme precipitation (Min et al., 2011; Zhang et al., 2013). The PI is a standardized index within the range of 0–1. The higher PI value corresponds to a larger occurrence probability and greater magnitude (i.e. return level) of extreme precipitation. For example, a 50-year event means that its occurrence probability is 0.02, that is, the non-exceeding probability is 0.98 (i.e., PI = 0.98). We estimate the return level of each the AM value based on the stationary GEV distribution, and calculate the corresponding PI value.
For POT time series, we use a Poisson distribution to estimate the change in occurrence rate of extreme precipitation events (Thiombiano et al., 2018):
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Where, [image: image] is the incidence of the occurrence rate of heavy precipitation events (Min et al., 2011; Zhang et al., 2013). Higher occurrence rate means larger frequency of heavy precipitation events.
4 RESULTS AND DISCUSSION
4.1 Modeling extreme precipitation with stationary distribution
The distribution of extreme precipitation thresholds in China during 1961–2018 (Figure 1A) shows that extreme precipitation thresholds in China generally exhibit higher in southeast than in northwest, and the highest precipitation thresholds (with values up to 28 mm or more) appear in southern China. This is in consistant with the results obtained by Jin et al. (2021). The variance distribution is consistent with the mean distribution (Figures 1B,C). Both the mean and variance of precipitation decrease from south to north in China (also see Xie et al., 2022). The large variance in southern China (Figure 1C) indicates that precipitation in these areas is highly dispersed. To evaluate the degree of dispersion, the coefficient of dispersion is calculated (Figure 1D). According to the distribution of dispersion coefficients (Figure 1D), most of the grid points (about 89.4%) have a significant performance of dispersion coefficients (ratio of variance to mean > 1). Heavy precipitation in China exhibits non-stationary behavior of point process of occurrences, which is indicated by these over-dispersion characteristics (Tan and Gan, 2017).
[image: Figure 1]FIGURE 1 | Information of peak-over-threshold (POT) sampling for extreme precipitation: (A) 95th percentile of non-zero precipitation as the threshold in POT sampling; (B) annual average days with precipitation exceeding this threshold; (C) the variance of annual number of days with precipitation exceeding this threshold; and (D) the coefficient of dispersion (i.e., the variance divided by the mean).
The stationary GEV/GP simulations are carried out for the AM/POT series respectively, and the K-S test was adopted to assess the models’ goodness of fit (Figure 2) (Santos et al., 2015; Tan and Gan, 2017; Romali et al., 2018). From Figures 2A,D, almost all grid points accept the null hypothesis that the time series can be fitted by the stationary GEV/GP distribution, demonstrating that the AM series satisfies the stationary GEV distribution and the POT series satisfies the stationary GP distribution. The spatial distribution of the parameters of the stationary GEV and GP models shows that the location (Figures 2A,D) and scale (Figures 2B,E) parameters decrease from southeastern China to northwestern China and from coastal areas to inland areas, with the highest values located in southern and east-central coastal regions of China. The shape parameters do not have a clear spatial distribution (Figures 2C,F), but almost all grid points have non-zero shape parameters, indicating that the AM series can be modeled by a GEV distribution with heavy tail behavior (Eq. 1, [image: image]) and the POT series can be modeled by a GP distribution (Eq. 3, [image: image]).
[image: Figure 2]FIGURE 2 | Spatial distributions of location, scale, and shape parameters in GEV distribution (A–C) and GP distribution (D–F). The black dots in a and d indicate that the time series of extreme precipitation reject the null hypothesis at 0.05 significance level. The null hypothesis is that the time series can be fitted by the stationary GEV/GP distribution.
The AM and POT series are selected to estimate precipitation magnitude at different return period levels (10-, 20-, and 50- years) through the stationary GEV and GP distributions, respectively (Figure 3). Overall, the spatial distribution of precipitation magnitudes among different recurrence levels remains consistent and is similar to the spatial distribution of the location and scale parameters, showing decreases from southeastern China to northwestern China. Furthermore, the spatial distribution of the 10-, 20- and 50- year return period precipitation estimated by the GEV and GP distributions is also very similar, but the 10-, 20- and 50-year return period precipitation estimated by the GEV distribution is less than that estimated by the GP distribution. In general, the 10-, 20- and 50-year return period precipitation estimated by the GEV distribution is 36%, 30%, and 25% smaller than that estimated by the GP distribution, respectively (the right column in Figure 3).
[image: Figure 3]FIGURE 3 | Return period (value occurs once in n years on average) of extreme precipitation estimated by the stationary GEV/GP distribution. (A–C/D–F) are the 10-, 20-, and 50-year value estimated by the stationary GEV/GP distribution based on the extreme precipitation time series during 1961–2018. (G–I) are the corresponding difference in 10-, 20-, and 50-year value between GEV and GP distribution.
4.2 Modelling extreme precipitation with non-stationary distribution
Based on the stationary GEV distribution, we estimate the probability index of AM extreme precipitation and detect their trends in each grid during 1961–2018 (Figure 4A). Decreasing probability index is found in northeastern China and eastern Tibet plateau, while increasing probability index occurs in northwestern and southeastern China. These results indicate extreme precipitation become more (less) intense and have a higher (lower) occurrence probability in northwestern and southeastern China (northeastern China and eastern Tibet Plateau).
[image: Figure 4]FIGURE 4 | Changes in probability index (A) and occurrence rate (B) during 1961–2018 over China. The probability index is estimated based on the GEV distribution and the occurrence rate is estimated based on the Poisson distribution (see Section 3). The black dots indicate the change at 0.05 significance level.
We also detect changes in occurrence rate of extreme precipitation events obtained from POT sampling (Figure 4B). The spatial pattern of changes in occurrence rate (Figure 4B) is highly consistent with that of changes in probability index (Figure 4A). We notice that occurrence rate of extreme precipitation events shows significantly increasing trends in northwestern China. Increasing trends in both probability index and occurrence rate are found in northwestern China and southeastern China, meaning that the two regions have experienced more intense and frequent extreme precipitation events [similar results also see Zhai et al. (2005)]. Zhai et al. (2005).
The increase of probability index and occurrence rate in southeastern China may be prompted by the change of East Asian summer monsoon (EASM) (Huijun, 2001). After 1970s, the East Asian monsoon circulation weakened and the rain belt lacked the power to jump northward, and stayed in southern China, increasing the extreme precipitation here (Zhai et al., 2005). In northwestern China, with the westward extension of the West Pacific Subtropical High (WPSH) and the strengthening of the Mongolian anticyclone, the southwest airflow is enhanced, resulting in an anomalous increase in southwest water vapor transport, and increasing the precipitation (Chen et al., 2021).
Figure 5 shows the difference in the occurrence probability of 20-year extreme precipitation between the five years with the largest positive values and the lowest negative values of given LFO indices. LFO indices are used as covariates for the location and scale parameters of the GEV distribution. The dotted area is the grids that show a significant improvement in the non-stationary GEV distribution through the likelihood ratio and FDR tests (Wilks, 2006). Table 1 lists the percentage of these grid points. By modeling AM series using time to build the non-stationary GEV distribution, the first and the last 5 years of the period 1961–2018 (i.e., 1961–1965 and 2014–2018) for each grid point. To avoid the influence of abrupt change, the precipitation data were detrended.
[image: Figure 5]FIGURE 5 | Change in the occurrence probability of 20-year extreme precipitation estimated by the non-stationary GEV distribution. The six covariates in the non-stationary GEV distribution are time (A), ENSO (B), IOD (C), NAO (D), SAM (E) and PDO (F). For example, the ENSO is taken as the covariate, and the change is the difference in occurrence probability estimated from the maximum and minimum five ENSO values. The blue/red areas indicate the occurrence probability of 20-year extreme precipitation is higher/lower during extreme ENSO positive than negative phase. Black dots indicate that the non-stationary model has better performance than the stationary model at 0.05 significance level.
TABLE 1 | Percentage (%) of stations showing statistically significant improvements with the inclusion of covariates compared to consistent stationary models.
[image: Table 1]Figure 6 shows the difference between the estimated occurrence probability of 20-year extreme precipitation, conditional on the positive and negative phases of the covariates with the climate indices as the scale parameter of the GP distribution. The result of GP distribution based on the POT series with time, ENSO, IOD, NAO, SAM and PDO as the covariate are similar to the GEV distribution (Figure 5).
[image: Figure 6]FIGURE 6 | The same as Figure 5 but for the non-stationary GP distribution.
When only taking the time as the covariate for the location parameter, approximately 15.6% of the AM time series fit to the GEV distribution showing a significantly better fit to the stationary distribution (Table 1). The percentage of AM series with a good fit to the GEV distribution increased to about 21.7% when the time is included as a covariate for location and scale parameters. With time as the covariate for the scale parameter of the GP distribution, about 23.1% of POT series fitted the GP distribution significantly better than the stationary GP distribution (Table 1). The regions where the occurrence probability of 20-year extreme precipitation increases significantly are mainly located in southeastern China, and northwestern China also shows an increase (Figures 5A, 6A). While there is a decrease trend in the occurrence probability, especially in northeastern and east-central China and the eastern Tibet Plateau (Figures 5A, 6A). This is consistent with the results of J. Sun & Zhang (2017). In addition, Ma et al. (2015) also pointed an increase of intense precipitation events in southeastern China.
When ENSO is used as a covariate of GEV distribution location parameter, about 25.5% of the regions showed significant improvement. With ENSO as the covariate of location and scale parameters, the good fitting region between AM series and GEV distribution is about 28.8%. When ENSO is used as the covariate for the scale parameter of the GP distribution, the significant improvement area was about 28.6% (Table 1). Figures 5B, 6B show the effect of ENSO on the occurrence probability of 20-year extreme precipitation, where positive ENSO events imply El Niño and negative ENSO events imply La Niña. In the summer when El Niño develops, China shows negative precipitation anomalies except the southeastern China. The results of Li et al. (2020) are consistent with our study showed that during El Niño (La Niña) phases, positive (negative) precipitation anomalies occur in southern China, while the opposite in northern China and the Tibet Plateau. Sun et al. (2017) pointed out that during El Niño years, southeastern China has an increased risk of extreme precipitation, while most areas in northern China experience drier conditions during El Niño.
More AM series show significantly better fit to the stationary GEV distribution with IOD as the covariate for the location parameter (12.9%) or the location and scale parameters (17.3%). Using IOD as the scale parameter for the GP distribution, the POT series are also more suitable for the GP distribution, improving about 22.0% (Table 1). Li and Zhao (2019) showed that positive IOD events cause a decrease of extreme precipitation in southwestern and northeastern China. This is consistent with our findings (Figures 5C, 6C). In addition, there is a certain synergy between IOD and ENSO, positive (negative) IOD events always accompany the occurrence of positive (negative) ENSO events (Ashok et al., 2003). The combined effects of ENSO and IOD contribute to increased precipitation in summer in southern China (Xiao et al., 2015; Xu et al., 2016). Therefore, IOD has important effects on the occurrence probability of extreme precipitation over the China monsoon region, and the significant area of GP distribution is more concentrated in the northwest than the GEV distribution.
When NAO is included as the covariate of the location (location and scale) parameters of the GEV distribution, the fit was improved for 7.8% (11.2%) of the AM series. And 12.7% of the POT series are also better fitted with NAO as the covariate for the scale parameter of the GP distribution (Table 1). The distribution of the effect of NAO on the occurrence probability of extreme precipitation (Figures 5D, 6D) shows that most of the regions in China show positive correlations with NAO, except for parts of northwestern, southwestern and northeastern China, which showed negative anomalies. Linderholm et al. (2011) showed that summer NAO has a positive correlation with precipitation in southeastern China, while negative summer NAO events tend to lead to drought in southeastern China.
About 20.9% (24.4%) of the stations fits are significantly improved with SAM as the covariate for the location (position and scale) parameters of the GEV distribution, and up to 26.7% when SAM is used as the covariate for the scale parameter of the GP distribution (Table 1). Many studies show that spring SAM is positively correlated with summer precipitation in southeastern China. During positive SAM, summer precipitation in southeast China increases because of the change of EASM (Li et al., 2017; Nan and Li, 2003; Wu et al., 2009). Wang and Fan (2005) analyzed the temporal variation of the Antarctic Atmospheric Oscillation (AAO) and precipitation in central-northern China during summer and found precipitation in this region is significantly negatively related to the AAO. The AAO is an alias for SAM (Limpasuvan and Hartmann, 1999, 2000; Baldwin, 2001). And we also found that positive SAM phase tends to cause increasing extreme precipitation in most areas of China, while it demonstrated a non-significant decreasing trend in the central, central-north and northeastern regions (Figures 5E, 6E).
Using PDO as the covariate for the location (location and scale) parameters of the GEV distribution, about 21.5% (26.6%) of the AM series have an improved fit to the GEV distribution. When PDO is used as a covariate of GP distribution scale parameter, the improvement even reached about 30.1% (Table 1). The interannual relationship between ENSO and the climate can be regulated by PDO, and the impact of ENSO on wet and dry changes varies with PDO (Library et al., 2016; S. Wang et al., 2014; Xue et al., 2018; Yang et al., 2017). Therefore, PDO and ENSO have strong synergistic effects, and the distributions of their impacts on the occurrence probability of extreme precipitation in China are relatively consistent (Figures 5B,F). From Figures 5F, 6F, significant negative (positive) correlation between PDO and the occurrence probability of extreme precipitation is found in northern (southeastern) China. Zeng et al. (2021) found that during positive PDO, summer precipitation increase in the southeast and decrease in the north. Zhu et al. (2011) found that in negative PDO, precipitation increase and decrease were distributed in east-central and southeast China, respectively. There are also many findings of decreased summer precipitation in east-central Chinaduring positive PDO (Lin et al., 2016; Yang et al., 2017).
4.3 Large-scale circulation patterns associated with the low-frequency oscillation indices
The date when extreme precipitation events occur in China (Julian Date) is identified as the seasonal characteristics (Son et al., 2017). The 80% interval of the empirical cumulative distribution of AM and POT series is used to select the respective Julian Date (Figure 7). The annual maximum precipitation events are mainly concentrated on days 143–244, and strong precipitation events are also concentrated around days 146–249, and their overlapping dates are taken as the Julian Date of extreme precipitation events (146–244). Extreme precipitation over China is concentrated in summer (May–August).
[image: Figure 7]FIGURE 7 | Intra-annual distribution of extreme precipitation events obtained from annual maximum (AM; (A) and POT sampling (B).
To further understand the regional influence of the positive/negative ENSO, IOD, NAO, SAM, and PDO on the occurrence probability of extreme precipitation events over China, we extract the anomalies of large-scale climate variables during Julian Date (146–244), based on the data of atmospheric precipitable water, vertically integrated moisture transport (VIMT), 500 hPa geopotential height and 850 hPa wind field. Furthermore, the atmospheric circulation patterns of LFOs affecting the occurrence probability of extreme precipitation events are analyzed. Figure 8 explains the thermodynamic factor of the precipitation driving mechanism and Figure 9 explains the dynamical factor.
[image: Figure 8]FIGURE 8 | Composite patterns of precipitable water (shadows) and water vapor flux (arrows) anomalies in the days (Julian days 146–244) that extreme precipitation frequently occurred in. The anomalies are obtained from the most five positive and negative phases of ENSO (A–B), IOD (C–D), NAO (E–F), SAM (G–H), and PDO (I–J), respectively.
[image: Figure 9]FIGURE 9 | The same as Figure 8 but for 500-hPa potential height (shadows) and 850-hPa wind field (arrows) anomalies.
When ENSO is in the negative phase, that is, La Niña occurs, a cyclonic water vapor circulation anomaly appears on the east direction of China (Figure 8B). The positive geopotential height anomaly in the northeast direction of China and the negative anomaly over Japan accompanied by the easterly wind anomaly (Figure 9B), which transports more water vapor to most parts of China. Therefore, a precipitation configuration opposite to the positive ENSO is generated.
Li and Mu (2001) pointed out that IOD affects precipitation of southern China mainly by influencing the Indian summer monsoon. In IOD positive phase, there are anomalous southeasterly winds over the equatorial eastern Indian Ocean (EIO) (Hong et al., 2008), anomalous westerly winds over the Indian Peninsula, anomalous westerly winds over the Bay of Bengal to the South China Sea (SCS) (Li and Mu, 2001) (Figure 9C). There are cyclone anomalies in the Tibet Plateau and southwestern China, and a positive anomaly center of precipitable water in the SCS (Figure 8C). This circulation anomaly enhances the humid southwesterly winds blowing from the Bay of Bengal into southern China, promoting precipitation in southern China (Qiu et al., 2014). The anomalous southerly winds over the Indian peninsula also deliver wet summer monsoon to northwest China, increasing precipitation in the northwest. In addition, positive pressure anomalies exist in most of China, particularly in the north (Weng et al., 2011) (Figure 9C), and the water vapor lacks the power to continue northward after reaching the south, leading to the decrease of precipitation in northern China.
Positive and negative IOD events are asymmetrical (Qiu et al., 2014). In IOD negative phase, there is a weak westerly wind anomaly over the equatorial EIO (Hong et al., 2008) (Figure 9D), which means that the Indian summer monsoon is weak, and the northern hemisphere is mostly in a state of water vapor scarcity (Figure 8D). Moreover, due to the interaction of the positive pressure anomaly in Central Siberia and the negative pressure anomaly in Eastern Siberia (Figure 9D), the less vapor in the northwestern China is taken away, making the northwest extremely dry during negative IOD.
Positive (negative) NAO causes negative (positive) geopotential height anomaly in northeastern Asia, which affects precipitation in eastern China. When NAO is in a positive phase, low geopotential height anomalies are located in southeastern Russia and southeastern China, which are consistent with positive precipitation anomalies. Positive NAO corresponds to negative precipitation anomaly in western China (Linderholm et al., 2011). A negative pressure anomaly exists in eastern Tibet plateau, producing a low-level northward (southward) airflow anomaly over northern (southern) China (Figure 9E). The anomalous northward and southward winds convergence enhance the summer precipitation in east-central China (Wang et al., 2018). In addition, there is a negative pressure anomaly covering the SCS and southern China. This cyclone anomaly brings sufficient water vapor from the middle and low latitudes of the Pacific (Figure 8E) to southern China and into central China, causing increased precipitation in these regions.
Negative NAO may be the driving factor of drought in northern China. When NAO is in the negative phase, the easterly extension of the North Atlantic jet could be enhanced by the cyclonic vortex-driven jet, and the excited Ross by wave energy anomaly spreads to the Mongolia and northern China, enhancing the anticyclonic anomaly in northern China and making the precipitation in northeastern China decrease (Du et al., 2020). In southern China, due to the negative pressure anomaly advancing inland China, accompanied by the anticyclonic anomaly in northern China (Figure 9F), water vapor went deep into the inland China and accumulated there (Figure 8F), so the precipitation in western China increased.
SAM can affect precipitation in southern China by impacting the Maskelyne high pressure and Australian high pressure, thus causing changes in the Somali Rapids and the SCS trans-equatorial flow. These air flows cause East Asian summer wind anomalies and WPSH intensity and position anomalies, and affect precipitation in southern China through the Indian Ocean and the Pacific Ocean channel (Li, 2016; Li et al., 2017). In positive, mid-latitude Eurasia is controlled by an anomalous anticyclonic circulation. And there is a weak cyclonic anomaly in eastern China, allowing the anomalous northerly flow to extend from mid-latitudes along the East Asian coast to southern China (Figure 9G). The prevailing northerly anomalous meridional airflow in the mid-latitude westerlies in Asia promotes the ability of cold air mass from higher latitudes to reach the middle and lower latitudes, generating abundant convective conditions and promoting precipitation in southern China (Nan and Li, 2003; Dou et al., 2020). At the same time, the position of the WPSH is to the west and south, which provides favorable circulation conditions for more summer precipitation in southern China (J. Li, 2016). In addition, the negative pressure anomaly in eastern China also brings abundant water vapor from the northwest Pacific Ocean (Figure 8G) into northwest China, contributing to increased precipitation there.
When SAM is in the negative phase, the water vapor and air pressure configuration are nearly opposite to the positive SAM (Figures 8H, 9H). Cyclonic circulation anomalies over Japan and anticyclonic circulation anomalies over the SCS are manifested in eastern China as anomalous southerly winds. The weak meridional airflow in subpolar westerlies is not favorable to the cold air southward movement, and convective conditions are attenuated, making precipitation in southern China decrease (Nan & Li, 2003).
The interannual relationship between ENSO and global climate can be regulated by PDO (S. Wang et al., 2014). PDO and ENSO affect SST and cyclic patterns in a very similar way (Gershunov and Barnett, 1998). During the positive PDO phase, anomalous cyclones in the extratropical North Pacific and anomalous strengthening of the westerly wind in the tropical Central Pacific (Figure 9I) favor the formation of El Niño events (Song & Wang, 2020). Since the Asian summer monsoon mainly originates from the heat difference between land and sea in the north, there are positive pressure anomalies over the Asian continent, which weakens the Asian summer monsoon, and is not conducive for the water vapor transport from low latitudes to eastern and northeastern China (Dong, 2016). Consequently, precipitation increases in southeastern China, while it decreases in northeastern and inland areas (Hu et al., 2011; Qian and Zhou, 2014). However, when PDO is in the negative phase, the cyclonic anomaly in southeastern Russia accompanied by the positive pressure anomaly in northeastern China leads to the easterly wind anomaly (Figure 9J), which brings sufficient water vapor in the North Pacific Ocean (Figure 8J) to northern and inland China, and promotes increased precipitation in the region.
5 CONCLUSION
Stationary and non-stationary GEV/GP distributions are used to estimate the occurrence probability of extreme precipitation over China during 1961–2018. ENSO, IOD, NAO, SAM and PDO are selected as covariates of the non-stationary GEV/GP distribution.
The location and scale parameters of the stationary GEV distribution fitted by the AM series and the stationary GP distribution fitted by the POT series showed a decreasing trend from southeast to northwest, consistent with the spatial distribution of extreme thresholds. The 10-, 20-, and 100-year extreme precipitation return values estimated by the GEV distribution are 36%, 30%, and 25% smaller than those of the GP distribution, respectively. The GEV distribution mainly underestimates the extreme precipitation in east-central, northeastern and northwestern China.
The fit of AM/POT series is improved by the non-stationary GEV/GP distributions obtained using LFO indices as time-varying covariates. ENSO and PDO have a synergistic effect, and the impact on the occurrence probability of extreme precipitation over China mainly results in significantly decreasing in northeastern, central China and Tibet Plateau, and increasing in southeastern China. IOD is supposed to have similar impact to ENSO, but the active southwestern airflow from the Indian Ocean into northwestern China makes it show a significant increase. The influence of NAO on the occurrence probability of extreme precipitation over China is less significant, which mainly shows an increase in central China and a decrease in northwestern and southwestern China. SAM has contributed to the development of precipitation and a large range of increasing occurrence probability of extreme precipitation occurred in China, with northwestern and southern China being the main significant regions.
The effects of the five LFO indices on extreme precipitation over China are mainly regulated by the summer monsoon. El Niño occurs when the EASM weakens because of the strengthening of the WPSH and cyclonic anomalies over the East Asia-North Pacific. The same effect is produced by the anomaly of positive pressure in the Asian continent during positive PDO, which gives rise to an increase in southeast and a decrease in northeast. Cyclonic anomalies exist over the Tibet Plateau at the time of positive IOD, so the Indian summer monsoon carrying moist southwesterly airflow is strengthened and the precipitation increases in northwestern China. The cyclonic anomalies over the SCS extend into southern China at positive NAO and anticyclonic anomalies in north have increased precipitation in southeastern and east-central China. The positive SAM occurs when widespread anticyclonic anomalies over Asia and Europe, as well as negative pressure anomalies in eastern China, and provides sufficient power for water vapor transport, resulting in increased precipitation over a wide area of China.
Many previous studies have investigated spatio-temporal changes in extreme precipitation (such as magnitude and frequency) in China during the past decades, and explored the circulation patterns behind these changes in extreme precipitation. Our study built stationary and non-stationary frequency analysis models to detect changes in occurrence probability (i.e. return level) of extreme precipitation, and explore the dependence between the occurrence probability and LFO. In comparison with directly analyzing the variation in magnitude and frequency of extreme precipitation shown in previous studies, the occurrence probability (i.e. return level) analysis has closer relations with the design of hydraulic engineerings, such as sewerage engineering. By taking the LFO indices be the covariates to build the non-stationary frequency analysis model, we further quantify the impacts of LFO indices on the occurrence probability of extreme precipitation. Strong regional patterns of dependence between the occurrence probability and given LFO index are found in China. These regional patterns indicate that these LFO indices could be taken as a predictor for the risk evaluation of hydraulic engineering under extreme precipitation.
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In recent years, drought frequency has gradually increased, which has reduced vegetation growth and development. The response of grassland to meteorological drought is more sensitive than other vegetation types and can differ substantially among grassland types. In this study, the response of vegetation change to meteorological drought at different time scales was evaluated using data from the normalized difference vegetation index (NDVI) and the standardized precipitation evapotranspiration index (SPEI) to analyze the spatial and temporal variation trends and correlations of the NDVI and SPEI of three grassland types in Xinjiang from 1982 to 2015. Over this 34-year period, the NDVI of meadow, steppe, and desert grassland in Xinjiang increased, with growth rates of 0.002, 0.002, and 0.0003 per decade, respectively, although the increase was insignificant (p > 0.05). The most obvious vegetation improvement areas of the three grassland types were mainly distributed in the Tianshan Mountains. The SPEI-12 of meadow, steppe, and desert grassland in Xinjiang indicated an extremely significant drying trend (p < 0.01), with change rates of −0.31, −0.38, and −0.34 per decade, respectively. The overall pattern was the gradual drying from the northwest to southeast, and the degree of aridification was the largest in eastern Xinjiang. On the annual scale, the correlation between the NDVI and SPEI-12 of the three grassland types was significantly different between northern and southern Xinjiang. The degree to which the vegetation of the three grassland types responded to drought was higher in northern Xinjiang than in southern Xinjiang, and most responses were significant. On the monthly scale, the response of meadow to the SPEI-12 was the highest in autumn (September) (r = 0.53; p < 0.05), the response of steppe to the SPEI-3 was the highest in summer (August) (r = 0.49; p < 0.05), and the response of desert grassland to the SPEI-12 was the highest in summer (June) (r = 0.44; p < 0.05). The results can provide a scientific basis for natural grassland drought response, ecological environmental improvement, and disaster prevention and mitigation.
Keywords: natural grassland, grassland types, NDVI, SPEI, Xinjiang
1 INTRODUCTION
Drought is one of the most serious meteorological disasters, having the characteristics of high frequency, long duration, and large scope (Grayson, 2013). According to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC), as the global average temperature continues to rise, the possibility of global drought events increases (IPCC, 2013). The regions most affected by climate change are the middle and high latitudes (Carrer et al., 2019). For example, the rate of temperature increase in the arid area of northwest China is 2.62 times that of the average global rate of the temperature increase (Yao et al., 2013). Because climate change is also the driving factor of vegetation change (Zhang et al., 2011), vegetation is an indicator of response to climate change and a feedback indicator of the impact of drought (Wang et al., 2012). Xinjiang is located in the hinterland of Central Asia; grassland is the most widely distributed vegetation type in Xinjiang (Zhao et al., 2020), which is of great significance in maintaining the ecological environment balance and climate regulation (Zhou et al., 2017). Drought may have many negative impacts on vegetation, such as hindering regreening and vegetation growth and development, which leads to a reduced vegetation coverage and carbon sink capacity. These changes affect the sustainable development of terrestrial ecosystems and the economy. Some studies have shown that the grassland is more sensitive to drought than other vegetation types (Chen et al., 2016; Kong et al., 2016), and the resistance and resilience of different grassland types to climatic drought differ substantially. Therefore, exploring the response of different grassland types to drought is of great significance for the protection and rational use of grassland resources (Liu et al., 2019a).
At present, in the study of drought characteristics and change trends (Su and Li, 2012), the most widely used is the standardized precipitation evapotranspiration index (SPEI) proposed by Vicente Serrano. The SPEI not only considers precipitation and evapotranspiration factors but also combines the advantages of the standardized precipitation index (SPI) and the Palmer drought severity index (PDSI) (Wang et al., 2014). Many scholars use the normalized difference vegetation index (NDVI) to research the response of vegetation to drought at regional scales (Luo et al., 2020), and the NDVI is the most effective and extensive index to reflect vegetation coverage and growth (Liu et al., 2019b). In recent years, there have been studies on the spatial and temporal dynamics of the NDVI in grasslands in China, different vegetation types in northern China, and the response of vegetation changes in northwest China to multi-scale drought (Xu et al., 2018; Zhang et al., 2020; Liu et al., 2022). The NDVI and SPEI have different degrees of correlation due to different vegetation types (Rajpoot and Kumar, 2019; Wang et al., 2020; Qi et al., 2021), and in arid and semi-arid areas, the two show a strong positive correlation (Wang et al., 2016). However, the larger SPEI value is not more conducive to the growth and development of vegetation (Luo et al., 2020). Some studies have also found that in forest areas with abundant precipitation in China, the NDVI of vegetation is negatively correlated with the SPEI, indicating that areas with abundant water are less affected by drought (Kong et al., 2016). The correlation between the NDVI and SPEI at different time scales is also different, and the response between the seasons changes (Liu et al., 2015). In one study, the correlation between the vegetation NDVI and SPEI in the Mediterranean Basin gradually changed from a negative to a positive relationship, and the months corresponding to the correlation coefficients of the SPEI and NDVI between seasons were also very different (Gouveia et al., 2017). Some scholars have also studied the characteristics of temporal and spatial changes in the vegetation in Ningxia and their coupling relationship with the arid climate. They found that the vegetation growth in Ningxia is significantly affected by spring and summer precipitations, while higher summer temperatures further inhibit vegetation growth (Zong and Wang, 2014). Therefore, when studying the response of vegetation to drought, it is necessary to consider the vegetation type and season.
Xinjiang, the location for this study, is in the middle latitudes and is a typical arid and semi-arid region. With the implementation of the national “One Belt, One Road” initiative, Xinjiang has become the core area of the “Silk Road Economic Belt.” Because of the region’s economic importance, changing drought conditions have received extensive attention (Xie et al., 2017; Hu et al., 2019a). The ecological environment in Xinjiang is fragile and sensitive to climate change (Hu et al., 2014; Hu et al., 2017). The shortage of water resources caused by drought is the key factor that affects the ecological balance of the region and restricts the sustainable development of grassland resources. Since 1980, the temperature and precipitation in Xinjiang have trended upward, and the climate in Xinjiang has gradually changed from warm–dry to warm–wet (Shi et al., 2007; Hu et al., 2016). The climate transition in Xinjiang has significantly impacted the local ecosystem and water cycle. Most studies have focused on the spatial and temporal variations of the NDVI in Xinjiang and its relationship with climatic factors (temperature and precipitation), but there is relatively little research on the response of the NDVI in Xinjiang natural grassland to multi-scale drought. In addition, how different grassland types in Xinjiang respond to multi-scale meteorological drought is still unclear (Tao et al., 2014; Luo et al., 2016), and further research is still needed.
Therefore, the following main issues were studied: 1) what were the spatial and temporal characteristics of vegetation and meteorological drought in different grassland types? 2) What was the response relationship between the vegetation of different grassland types and meteorological drought? 3) What was the adaptive capacity of different grassland types to drought at different time scales?
2 MATERIALS AND METHODS
2.1 Study area
The study area is in the Xinjiang Uygur Autonomous Region (73°32'∼96°21 ′E, 34°22'∼49°33 ′N) (Figure 1). Xinjiang is characterized by “three mountains and two basins:” the Altai Mountains in the north, the Kunlun Mountains in the south, and the Tianshan Mountains in the middle, and the Junggar Basin and the Tarim Basin. Rich and diverse grassland types are formed due to the complex and diverse landforms in the region. Xinjiang is mainly divided into three grassland types: meadow, steppe, and desert grassland (Zhao et al., 2020). Xinjiang has a typical temperate continental arid climate. The average annual temperature is 4–8°C in northern Xinjiang and 10–13°C in southern Xinjiang. The annual precipitation is 100–200 mm in northern Xinjiang and 80–100 mm in southern Xinjiang. The annual evaporation is 1,500–2,300 mm in northern Xinjiang and 2,100–3,400 mm in southern Xinjiang. Xinjiang has a total area of 166.49 × 104 km2, of which 5,725.88×104 hm2 is natural grassland, particularly distributed in mountainous areas, basin margins, and riverbanks. The available grassland area is 4,800.68×104 hm2, the third highest grassland area in China. Meadow, steppe, and desert grassland account for 23.6%, 29%, and 46.9% of the total grassland area and 25.2%, 31.6%, and 42.6% of the available grassland area, respectively. The ecological environment of natural grassland in Xinjiang is affected by climate and terrain and is extremely fragile.
[image: Figure 1]FIGURE 1 | Study area information. (A) Location of the study area. (B) Topography. (C) Grassland types.
2.2 Data
The NDVI data come from the dataset released by the Global Inventory Monitoring and Modeling Systems (GIMMS) of NASA (https://ecocast.arc.nasa.gov). The time resolution is 15 days, the spatial resolution is 1/12°, and the time span is from January 1982 to December 2015. The data were preprocessed by geometric correction and atmospheric correction to eliminate the influence of volcanic eruption, solar altitude angle, and sensor sensitivity changes with factors such as time. The maximum value composite (MVC) was used to obtain monthly data, and then, annual data and growing season data were obtained. Seasons were classified into the growing season (April–October), spring (April–May), summer (June–August), and autumn (September–October) (Tan et al., 2015). The digital elevation model (DEM) data were obtained from the Data Center for Resources and Environmental Sciences of the Chinese Academy of Sciences (http://www.resdc.cn), with a spatial resolution of 250 m.
The SPEI index was derived from SPEI base v. 2.6 products (https://digital.csic.es/handle/10261/202305) with a time resolution of January, a spatial resolution of 0.5°, and a time span of 1901–2015, including the scale of 1–48 months. In this study, the data from January 1982 to December 2015 were selected.
The Penman–Monteith method recommended by the Food and Agriculture Organization (FAO) of the United Nations was adopted to calculate the potential evapotranspiration ([image: image]) by comprehensively considering temperature, precipitation, wind speed, sunshine, and other factors as follows:
[image: image]
where [image: image] represents the potential evapotranspiration ([image: image]); [image: image] represents the gradient of the saturation vapor pressure curve ([image: image]); [image: image] represents net radiation ([image: image]); [image: image] represents the heat flux density ([image: image]); [image: image] represents the psychometric constant ([image: image]); [image: image] represents the daily average temperature ([image: image]); [image: image] represents the wind speed at a height of 2 m ([image: image]); [image: image] represents the vapor pressure of saturated air ([image: image]); [image: image] represents air vapor pressure ([image: image]); and the detailed calculation and value of each parameter was referred to as a reference (Allen et al., 1998).
The difference between evapotranspiration and monthly precipitation ([image: image]) was calculated using the following equation:
[image: image]
where [image: image] represents the water profit and loss ([image: image]); [image: image] represents the precipitation of the [image: image] th month ([image: image]); and [image: image] represents the potential evapotranspiration of the [image: image] th month ([image: image]).
To normalize the difference between precipitation and potential evapotranspiration, the log-logistic probability distribution function was used, and the probability density was standardized to calculate the corresponding [image: image].
The formula for the log-logistic probability distribution function is expressed as follows:
[image: image]
where [image: image], [image: image], and [image: image] are fitted by the linear moment method, and the detailed calculation and value of each parameter were referred to as a reference (Vicente-Serrano et al., 2010).
The standardized values of [image: image] were then calculated with the following formula:
[image: image]
If [image: image],
[image: image]
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If [image: image]
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where [image: image] represents the cumulative probability function value of the evapotranspiration precipitation derivation function; [image: image].
For the climate drought grade (GB/T20481-2006) (General Administration of Quality Supervision, 2006), the SPEI value was divided into grade 8. The dry and wet classification of the SPEI is shown in Table 1.
TABLE 1 | Wet and dry classification based on the standardized precipitation evapotranspiration index (SPEI).
[image: Table 1]2.3 Methods
2.1.1 Trend analysis and F-test
Based on unary linear fitting regression analysis, the spatio-temporal change rates of the NDVI and SPEI at a pixel scale were studied (Gang et al., 2018). The calculation formula is expressed as follows:
[image: image]
where [image: image] represents the slope; [image: image] represents 34 (34 years from 1982 to 2015); [image: image] represents the research period; and [image: image] represents the research variable of the [image: image] th year, especially the NDVI and SPEI. If [image: image], the research variable has an increasing trend; otherwise, it has a decreasing trend. When the F-test was performed on [image: image] values of different pixels, the change trend was divided into six grades: extremely significant decrease ([image: image]); significant decrease ([image: image]); insignificant decrease ([image: image]); insignificant increase ([image: image]); significant increase ([image: image]); and extremely significant increase ([image: image]).
2.1.2 Mann–Kendall test
The Mann–Kendall (M–K) test is a non-parametric statistical test that requires the climate series to be stable and randomly independent (Yue et al., 2002; Fensholt et al., 2013). For time series variables [image: image], [image: image] is the length of the sequence, which is in defined statistics:
[image: image]
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Assuming random independence of time series, the defined statistics are as follows:
[image: image]
where [image: image].
[image: image] is a standard normal distribution with a given significance level [image: image]; if [image: image], there is an obvious trend change in the series. Time series [image: image] is arranged in a reverse order and then calculated according to the aforementioned formula, meanwhile making
[image: image]
In the aforementioned formulas, [image: image]
If the [image: image] value is greater than 0, the sequence [image: image] is an upward trend; otherwise, it is a downward trend. If [image: image] exceeds the critical threshold, there is a significant upward or downward trend in the sequence [image: image]. When [image: image] and [image: image] intersect at the critical boundary, the point at which the two curves intersect is the point at which the mutation begins.
2.1.3 Correlation analysis
The spatial analysis of each pixel was conducted to obtain the correlation coefficient between the NDVI and SPEI (Hu et al., 2019b; Zhou et al., 2021). The formula is expressed as follows:
[image: image]
where [image: image] represents the correlation coefficient of [image: image] and [image: image] variables; [image: image] represents 34 (from 1982 to 2015); [image: image] represents the NDVI value of the [image: image] th year; [image: image] represents the SPEI value of the [image: image] th year; [image: image] represents the average NDVI values over many years; and [image: image] represents the average SPEI values over many years.
3 RESULTS
3.1 Vegetation change characteristics of natural grassland in Xinjiang
According to the interannual variation trend of the NDVI during the study period in Xinjiang, the average NDVI value was the highest for meadow (0.2962), the second highest for steppe (0.2617), and the lowest for desert grassland (0.1833) (Figure 2). Moreover, although the NDVI of meadow, grassland, and desert grassland increased, with a growth rate of 0.002, 0.002, and 0.0003 per decade, respectively, the increase was insignificant (p > 0.05). The M–K test showed that the NDVI of meadow had a significant increasing trend from 1998 to 2005 (p < 0.05) (Figure 2A). As shown in Figure 2B, the NDVI of steppe showed a significant increasing trend from 1999 to 2003 (p < 0.05), while the NDVI of desert grassland showed an increasing trend that was insignificant during the entire study period (Figure 2C). In addition, the average NDVI value of meadow and steppe mutated after 1983 and that of the desert grassland mutated after 1982.
[image: Figure 2]FIGURE 2 | Interannual variation trend and the Mann–Kendall test of the NDVI of meadow (A), steppe (B), and desert grassland (C) in Xinjiang. (Note: if the UF value is greater than 0, it indicates that the NDVI sequence has an upward trend; otherwise, it has a downward trend. When UF exceeds the critical line, it indicates that the trend of the sequential NDVI has a significant increase or decrease. When UF and UB intersect at the critical boundary, the point at which the two curves intersect is the point where the mutation begins. The critical line is the 0.05 significant level.)
As shown in the spatial distribution of the meadow NDVI (Figure 3A), the areas where the meadow NDVI averaged greater than 0.4 were mainly distributed in the Yili River Valley, some mountainous areas of the Tianshan Mountains, and some mountainous areas of the Altai Mountains, accounting for about 29.1% of the total meadow area. The vegetation coverage at the margin of the Tarim Basin was extremely low. The average NDVI value in the Yili River Valley and the Tianshan Mountains was generally greater than 0.4 (Figure 3B); the valley and mountains belonged to the high-value NDVI steppe area, accounting for 23.1% of the total steppe area. However, the Pamir Plateau, the Kunlun Mountains, and the Altai Mountains had a poor vegetation coverage and belonged to the low-value steppe NDVI area. Desert grassland was mainly in the Junggar Basin and some mountainous areas of the Tianshan Mountains and the Kunlun Mountains. In terms of spatial distribution, the desert grassland was concentrated in northern Xinjiang (Figure 3C), but it covered a small area. In southern Xinjiang, the desert grassland was scattered, but it covered a large area. From the perspective of spatial change (Figures 3D–F), the areas with an NDVI change rate greater than zero accounted for 58.4%, 63.6%, and 52.9% of the total area of meadow, steppe, and desert grassland, respectively. The areas with an extremely significant increase and significant increase in the meadow NDVI were mainly located in some mountainous areas of the Tianshan Mountains and the southwest margin of the Tarim Basin, accounting for 33.1% of the total meadow area (Figure 3G). The areas with an extremely significant increase and significant increase in the steppe NDVI accounted for 30.2% of the total steppe area and were mainly distributed in some mountainous areas of the Altai Mountains, the Tianshan Mountains, and the Kunlun Mountains (Figure 3H). The areas with extremely significant increase and significant increase in the desert grassland NDVI accounted for 24.9% of the total desert grassland area and mainly occurred in some mountainous areas of the Tianshan Mountains, some mountainous areas of the Kunlun Mountains, and the northern and southern margins of the Junggar Basin (Figure 3I).
[image: Figure 3]FIGURE 3 | Spatial distribution pattern of the annual average NDVI and change rate and significance test of meadow, steppe, and desert grassland in Xinjiang. [Annual average NDVI of meadow (A), steppe (B), and desert grassland (C) in Xinjiang; the NDVI change rate of meadow (D), steppe (E), and desert grassland (F) in Xinjiang; and the significance test of meadow (G), steppe (H), and desert grassland (I) in Xinjiang.]
3.2 Variation characteristics of meteorological drought in natural grasslands in Xinjiang
The change rules and distribution of the SPEI at different time scales were relatively consistent. Taking the change trend of the SPEI-12 as an example (Figure 4), the average value of the SPEI-12 during the study period was as follows: steppe (0.0043) > desert grassland (−0.0580) > meadow (−0.0932). The SPEI-12 of meadow, steppe, and desert grassland all showed an extremely significant drying trend (p < 0.01), and its growth rate per decade was −0.31, −0.38, and −0.34, respectively. During the 34 years of the study period, SPEI-12 of the three grassland types reached the maximum value in 1988, the wettest year, and the minimum value in 2008, the driest year. According to the M–K test, the SPEI-12 of the three grassland types showed a significant drying trend after 2009 (p < 0.05) (Figures 4A–C). In addition, the average SPEI-12 value of meadow and steppe indicated a sudden change in the drought trend after 2001, and the regional climate changed from drought to wetness. However, the regional climate of meadow and steppe reverted from wetness to drought in 2004 and 2005, respectively. The average SPEI-12 value of desert grassland showed a sudden change in the drought trend after 2004, and the regional climate changed from wetness to drought.
[image: Figure 4]FIGURE 4 | Interannual variation trend and Mann–Kendall test of the SPEI-12 of meadow (A), steppe (B), and desert grassland (C) in Xinjiang. (Note: if the UF value is greater than 0, it indicates that the SPEI sequence has an upward trend; otherwise, it has a downward trend. When UF exceeds the critical line, it indicates that the trend of the sequential SPEI has a significant increase or decrease. When UF and UB intersect at the critical boundary, the point at which the two curves intersect is the point where the mutation begins. The critical line is the 0.05 significant level.)
As shown in the spatial distribution of the meadow SPEI-12 (Figure 5A), the areas where the average value of the meadow SPEI-12 was greater than 0.2 were mainly distributed in some mountainous areas of the Tianshan Mountains and the Altai Mountains. The eastern margin of the Tarim Basin had the strongest degree of aridification. In the steppe area (Figure 5B), the average value of the SPEI-12 in some mountainous areas of the Tianshan Mountains and the northern margin of the Junggar Basin was generally greater than 0.2, while the degree of aridification was strong in some mountainous areas of the Kunlun Mountains and the northern margin of the Hami Basin. In the desert grassland area (Figure 5C), some mountainous areas of the Tianshan Mountains and the Kunlun Mountains were relatively dry, and the average of the SPEI-12 was generally less than 0.2. The meadow, steppe, and desert grassland all showed a trend of drying gradually from the northwest to southeast, especially in the eastern part of Xinjiang. From the perspective of spatial change (Figures 5D–F), the areas with an SPEI-12 change rate of less than zero accounted for 98.1%, 93.4%, and 98.6% of the total area of meadow, steppe, and desert grassland, respectively. Among them, the areas with extremely significant drying and significant drying in the meadow SPEI accounted for 49.4% of the total meadow area and were mainly distributed in some mountainous areas of the Tianshan Mountains, some mountainous areas of the Altai Mountains, and the eastern margin of the Tarim Basin (Figure 5G). The areas with extremely significant drying and significant drying in the steppe SPEI accounted for 43.1% of the total steppe area and were mainly distributed in some mountainous areas of the Altai Mountains, the Tianshan Mountains, and the Kunlun Mountains (Figure 5H). The areas with extremely significant drying and significant drying in the desert grassland SPEI accounted for 64.8% of the total desert grassland area and were mainly distributed in some mountainous areas of the Altai Mountains, the Tianshan Mountains, and the Kunlun Mountains, and the eastern margin of the Junggar Basin (Figure 5I).
[image: Figure 5]FIGURE 5 | Spatial distribution pattern of the annual average SPEI-12 and change rate and significance test of meadow, steppe, and desert grassland in Xinjiang. [The annual average SPEI of meadow (A), steppe (B), and desert grassland (C) in Xinjiang; the SPEI change rate of meadow (D), steppe (E), and desert grassland (F) in Xinjiang; and the significance test of meadow (G), steppe (H), and desert grassland (I) in Xinjiang.]
3.3 Response of natural grassland vegetation to meteorological drought in Xinjiang
3.1.1 Response of the annual vegetation status to annual meteorological drought
The SPEI-12 data representing the interannual drought status were selected for analysis; there were significant spatial differences in the correlation between the NDVI and SPEI-12 of different grassland types (Figure 6). In general, the area of positive correlation between the NDVI and SPEI-12 was significantly larger than the area of negative correlation in the three grassland types. The grassland type with the largest proportional area of positive correlation was desert grassland (accounting for 76% of the total desert grassland area), followed by steppe (accounting for 70.1% of the total steppe area). Meadow had the smallest proportional area of positive correlation (accounting for 63.4% of the total meadow area). The proportion of the grassland type with a significant positive correlation was the highest (32.6%) in desert grassland, which was mainly distributed in some mountainous areas of the Tianshan Mountains and the eastern and western margins of the Junggar Basin. The next highest proportion of the significant positive correlation was steppe (21.2%), which was mainly distributed in some mountainous areas of the Tianshan Mountains and the northern margin of the Junggar Basin. The meadow had the smallest proportion of the significant positive correlation area (19.2%), where it was mainly distributed in some areas of the Yili River Valley, some mountainous areas of the Altai Mountains, and the northern margin of the Tarim Basin.
[image: Figure 6]FIGURE 6 | Correlation coefficient and significance test between the NDVI and SPEI-12 of meadow, steppe, and desert grassland in Xinjiang. (The correlation coefficient between the NDVI and SPEI-12 of meadow (A), steppe (B), and desert grassland (C) in Xinjiang and the significance test between the NDVI and SPEI-12 of meadow (D), steppe (E), and desert grassland (F) in Xinjiang.)
3.1.2 Response of the vegetation status to meteorological drought at different time scales during the growing season
In different months of the growing season, different grassland types had different responses to meteorological drought. The NDVI was used to characterize the monthly vegetation growth. Based on the monthly scale, the correlation coefficients between the NDVI of the same month and the SPEI of the corresponding pixel at the scale of 1, 3, 6, and 12 months were calculated, respectively, in the growing season from 1982 to 2015. Through calculation, 84 spatial distribution maps of correlation coefficients were obtained. Through statistical analysis (Figure 7), it was found that in spring (April–May), in April, the SPEI of meadow and steppe in each time scale were significantly negatively correlated, of which meadow had the largest negative correlation coefficients, −0.72, −0.74, −0.63, and −0.43. The SPEI of desert grassland was insignificant at all scales; in summer (June–August); the meadow and steppe were not significantly affected by drought in June. There was a significant positive correlation between desert grassland and the SPEI-6 and SPEI-12, and the response to the SPEI-12 was stronger, with a correlation coefficient of 0.44. In August, the SPEI-3, SPEI-6, and SPEI-12 had a significant impact on the NDVI of three grassland types, of which the steppe correlation coefficient was the highest, with correlation coefficients of 0.49, 0.48, and 0.47, respectively. In autumn (September–October), meadow and steppe showed a significant positive correlation in the SPEI-3, SPEI-6, and SPEI-12 in September. The meadow response was stronger, with correlation coefficients of 0.45, 0.50, and 0.53. Desert grassland only showed a significant positive correlation in the SPEI-12 in September–October. In general, the response of meadow to the SPEI-12 was the highest in autumn (September) (r = 0.53; p < 0.05), the response of steppe to the SPEI-3 was the highest in summer (August) (r = 0.49; p < 0.05), and the response of desert grassland to the SPEI-12 was the highest in summer (June) (r = 0.44; p < 0.05).
[image: Figure 7]FIGURE 7 | Correlation coefficients between the NDVI and SPEI at different time scales of meadow, steppe, and desert grassland in Xinjiang.
4 DISCUSSION
Frequent drought strongly impacts the vegetation growth and distribution patterns in grassland ecosystems. Drought occurrence in different grassland types is variable, and the response mechanism of grassland types to drought also differs (Bai and Alatengtuya, 2022). In terms of temporal changes, the NDVI of different grassland types in northern China and the Yili Region of Xinjiang showed a weak increasing trend (Cao et al., 2016; Qin et al., 2021). This study found that the NDVI of meadow, steppe, and desert grassland in Xinjiang also showed a weak increasing trend that was insignificant (p > 0.05); the NDVI growth rate was 0.002 per decade for meadow and steppe and 0.0003 per decade for desert grassland. In terms of spatial change, the NDVI of meadow increased significantly in some mountainous areas of the Tianshan Mountains and the southwest margin of the Tarim Basin. The steppe regions with a significant increase in the NDVI were mainly distributed in some mountainous areas of the Altai Mountains, the Tianshan Mountains, and the Kunlun Mountains. The desert grassland regions with a significant increase in the NDVI were mainly distributed in some mountainous areas of the Tianshan Mountains, some mountains of the Kunlun Mountains, and the northern and southern margins of the Junggar Basin. These results were similar to those of other scholars in China and northern China (He et al., 2020; Geng et al., 2022). The ecological environment of meadow, steppe, and desert grassland in Xinjiang is constantly improving, and the vegetation of different grassland types shows a benign development trend. Since the state initiated the vegetation restoration project of returning farmland to grassland in 1999, Xinjiang has carried out a series of ecological restoration projects such as fence enclosure and grassland improvement, which has improved the grassland growth environment and generally increased the area covered by grassland. In addition, the implementation of the “livestock reduction project” has also played a positive role in grassland restoration (Dong et al., 2009). In the past 34 years, the SPEI-12 of meadow, steppe, and desert grassland in Xinjiang showed an extremely significant drying trend (p < 0.01). The main climate factor affecting the interannual change of the water cycle of the terrestrial ecosystem is precipitation (Hu et al., 2022). Although precipitation has increased in Xinjiang, since it is in an arid and semi-arid region, the rising temperature has led to the strengthening of evapotranspiration, and the climate is still drying (Guo et al., 2019).
The degree of vegetation change in response to meteorological drought differed among grassland types. On an annual scale, the correlation between the NDVI and SPEI-12 of the three grassland types was significantly different between north and south Xinjiang. The response of vegetation to drought was higher and more significant in north Xinjiang than in south Xinjiang. This may be due to the uneven distribution of precipitation in north and south Xinjiang. Unique landforms in the Yili River Valley and the Altai Mountain area in north Xinjiang make humid air flow from the north Atlantic and the Arctic Ocean enter. As a result, vegetation growth is more easily restricted by the water conditions in the three grassland types in northern Xinjiang (Zhang et al., 2009; Wang et al., 2017; Chen et al., 2021). To reduce water loss and adapt to physiological stress during drought, vegetation generally adopts methods such as reducing respiration, photosynthesis, and growth rate (Liu, 2016). Due to different structures and functions across types of vegetation, vegetation’s adaptability to climate change also varies (Vicente-Serrano et al., 2013). Affected by the humid air flow, the temperature in northern Xinjiang was relatively low, the precipitation was higher, and the vegetation was more sensitive to drought stress than southern Xinjiang. Drought reduces the soil water content, which reduces vegetation roots’ capacity to absorb water. Therefore, the grassland vegetation in northern Xinjiang is greatly affected by drought. However, the southern Xinjiang region is obstructed by the Tianshan Mountains. The temperature was relatively high, the precipitation was very low, and the vegetation had a stronger adaptability to drought stress, which improved the water storage capacity during drought. Therefore, the grassland vegetation in southern Xinjiang had a weak response to drought.
On the monthly scale, the response of the three grassland types to the SPEI was the most sensitive in summer, followed by autumn, and the weakest in spring; this pattern was consistent with the research results from the central part of the Inner Mongolia Plateau (Deng et al., 2022). With warming temperatures, the melting of ice and snow increases the soil water content. However, insufficient effective accumulated temperature inhibits the physiological activities of grassland vegetation, and water consumption is limited, reducing the sensitivity of grassland vegetation to drought in the spring (Deng et al., 2022). In summer, most grassland vegetation is in the critical period of growth and development and is extremely vulnerable to drought (Huang et al., 2009). In autumn, grassland vegetation begins to wither and turns yellow, and the impact of water on it is weakened, especially in October. The response of meadow to the SPEI-12 was the highest in autumn (September) (r = 0.53; p < 0.05), the response of steppe to the SPEI-3 was the highest in summer (August) (r = 0.49; p < 0.05), and the response of desert grassland to the SPEI-12 was the highest in summer (June) (r = 0.44; p < 0.05), which indicate that the drought resistance of grassland types differed. When summer drought occurred over a short time scale, steppe was more sensitive to drought changes; however, meadow and desert grassland were sensitive to long-term summer and autumn drought changes; these findings were similar to the research results from northeast China (Luo et al., 2020). This was not only related to the water absorption capacity of the root system of different grassland types but also to the different distribution ratios of soil water in the shallow and middle layers of the soil in the area where the vegetation was located.
In addition, this study assumes that the distribution of different grassland types is stable during the study period, but climate change and human activities will change the distribution of grassland vegetation (Liu and Yu, 2017; Xue et al., 2019). Other factors such as soil humidity and extreme climate will also play a certain role in the growth grassland vegetation growth (Girardin et al., 2016; Li et al., 2018). This study only considers the impact of the SPEI on the grassland vegetation. Because of this limitation, the various factors affecting the NDVI change in grassland vegetation will be incorporated into the next research study to better reflect the response of different grassland vegetation to meteorological drought.
5 CONCLUSION
In the past 34 years, the NDVI of meadow, steppe, and desert grassland in Xinjiang has shown an increasing trend that was insignificant (p > 0.05), with a growth rate of 0.002, 0.002, and 0.0003 per decade, respectively. The SPEI-12 has shown an extremely significant drying trend (p < 0.01), with a change rate of −0.31, −0.38, and −0.34 per decade, respectively. The areas with the most obvious vegetation improvement of the three grassland types were mainly distributed in the Tianshan Mountain area. The overall meteorological drought trend was gradually drying from the northwest to southeast, with the degree of aridification in the eastern Xinjiang region being the most obvious. On the annual scale, the response of vegetation of the three grassland types in northern Xinjiang to drought was higher and more significant than that in southern Xinjiang; on the monthly scale, the response of meadow to the SPEI-12 was the highest in autumn (September) (r = 0.53; p < 0.05), the response of steppe to the SPEI-3 was the highest in summer (August) (r = 0.49; p < 0.05), and the response of desert grassland to the SPEI-12 was the highest in summer (June) (r = 0.44; p < 0.05). Thus, when summer drought occurred over a short time scale, steppe was more sensitive to drought changes; however, meadow and desert grassland were sensitive to long-term summer and autumn drought changes.
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Changes in crop water consumption in Xinjiang of China from 1989 to 2018: A Logarithmic Mean Divisia Index decomposition analysis
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Xinjiang, located in Northwestern China, is the important production base of various crops with high water consumption. The quantitative contribution of driving factors to crop water consumption has not been investigated in Xinjiang. In this study, the Logarithmic Mean Divisia Index method is used to quantitatively analyze the effect of five factors (population, planting structure, agricultural economics, water intensity, and industrial structure) to crop water consumption during 1989–2018. The results show that 1) crop water consumption has increased from 10.363 to 37.226 billion m3 with a rate of 0.932 billion m3/a in 1989–2018. Its increased trend can be divided into two stages: a slow increase at a rate of 0.425 million m3/a in 1989–2003 and a quick expansion at a rate of 1.310 million m3/a in 2004–2018. 2) The increase of population and agricultural economics both promote crop water consumption, whereas changes in planting structure and water intensity both inhibit crop water consumption. Their contributions are 0.213, 2.068, −0.007, and −0.134 billion m3, respectively. The increased agricultural economics and the decreased water intensity more significantly changed crop water consumption in 2004–2018 than in 1989–2003. 3) The total effects of five factors on crops varied at each stage. All crops (except wheat) have a promoting effect on an increase in crop water consumption with the largest value in cotton (0.378 million m3) in 1989–2003. The effect of the five factors on crops (except soybean and medicago) is positive (1.404 million m3), and the highest value is shown in cotton during 2004–2018. The results illustrate the contribution of the five factors of crop water consumption and provide references for local agricultural water saving in Xinjiang.
Keywords: crop water consumption, agricultural water management, Xinjiang, cotton, logarithmic mean divisia index
INTRODUCTION
The global surface temperature in 2011–2020 is 1.09°C warmer than in the period from 1850 to 1900, which is a level not seen since the past 125000 years (IPCC AR6, 2021). The similar warming (0.30°C/10a) has been recorded in the arid Xinjiang of China during 1961–2018 (Yao et al., 2022). During this period, the annual mean precipitation experienced a rapid increasing trend with a rate of 9.9 mm/10a (Chen et al., 2017; Zhang Y. et al., 2022). In the context of warming and wetting climate, regional water resources have been significantly affected in two aspects: 1) regional temperature has increased with high-frequency oscillation in recent decades, which makes the glacier and snow melt and reduces the snowfall rate in the mountains (Chen et al., 2017; Zhang QF. et al., 2022). Observations have shown that the snowfall rate in the Tianshan Mountains of Xinjiang has decreased from 11 to 24% before the 20th century to 9–21% at the beginning of the 21st century, and ∼97.52% of mountain glaciers are in rapid retreat (Chen et al., 2017; Li et al., 2022). 2) The significant rise of temperature has an impact on the patterns of basin production and river flow through changing the characteristics of transport and circulation of water vapor in Xinjiang, which greatly increases the uncertainty of regional water resources at the spatial scale (Yao et al., 2022).
As an important agricultural production base in China, Xinjiang produces 65% of cotton, 56% of sugar beet, 20% of grape, 6% of pear, and 2% of grain (Zhang and Anadon, 2014). The vast planting area makes Xinjiang the base of various agricultural products with high water consumption (Li and Deng, 2021). Agricultural water in Xinjiang has accounted for more than 95% of total water consumption, but also continued to increase because of the expanding planting area after entering the 21st century (Shen et al., 2013; Li et al., 2020). The increasing agricultural water consumption has inevitably reduced the water used for ecology, directly threatening regional ecological security and bringing potential threat to agricultural water use in the future (Fang et al., 2018; Long et al., 2020). Therefore, it is vital to calculate the amount of crop water consumption and to investigate its influencing factors in Xinjiang. Shen et al. (2013) estimated irrigation water demand in the Tarim Basin, Junggar Basin, and Hexi Corridor and found that the total water consumption reached 44.2 billion m3 and irrigation water demand in the Tarim and Junggar basins reached 20.46 billion m3 and 17.22 billion m3, respectively. Wang et al. (2019) pointed out that the irrigation water requirement was 35.9 billion m3 in 2010 and 47.2 billion m3 in 2015 in the Tarim Basin. Li et al. (2020) found the irrigation water consumption in Xinjiang reached 38.99 billion m3 in 2017 and blue water deficit expanded from −11.51 billion m3 in 2004 to +13.26 billion m3 in 2018. The driving factors of agricultural water consumption were also investigated in Xinjiang (Fang et al., 2018; Wang et al., 2019; Zhang et al., 2019, 2020; Li et al., 2020). For example, Fang et al. (2018) proposed the planting structure in the Tarim Basin would lead to the increase rate of crop water requirement as high as 7.1 mm/a, while all climatic factors (wind speed, maximum humidity, sunshine duration, and minimum temperature) would only result in an increased rate of 1.9 mm/a. Li et al. (2020) pointed out that the expansion of the cotton planting area contributed 72.17% to the increase of irrigation water demand, while temperature only contributed 19.28% in Xinjiang.
Although many researchers have calculated crop water consumption based on the water footprint theory and revealed the possible influencing factors in Xinjiang (Fang et al., 2018; Wang et al., 2019; Zhang et al., 2019, 2020; Li et al., 2020), few studies have used the method to calculate the quantitative contribution of each factor to crop water consumption. Logarithmic Mean Divisia Index (LMDI) proposed by Ang (2004, 2005) has the profound theoretical foundation and high adaptability and also has significant advantages of removing residuals, modulating cross-sectional time series of data, and handling non-positive data in decomposition calculations (Gao and Wang, 2007). The LMDI method has been extensively utilized to quantitatively identify the effects of different factors on agricultural water demand in other regions of China (Xu et al., 2015; Zhang et al., 2015; Zhang S.L. et al., 2018; Li et al., 2021; Zhang C.J. et al., 2021), but has not been fully used in Xinjiang.
In this study, we investigated the quantitative contributions of five factors to crop water consumption in the interval of 1989–2018 by decomposing the factors into population, planting structure, agricultural economics, water intensity, and industrial structure via the LMDI method in Xinjiang. Three aspects were carried out in this study. First, the general trend of crop water consumption and the changeable characters of five factors were analyzed during 1989–2018. Second, the LMDI method was applied to quantitatively decompose the effects of the five factors influencing crop water consumption. Third, the effect of each driving factor on 11 crops was analyzed in two stages (1989–2003 and 2004–2018). Our work provides an important link between the selected factors for the water resource studies and provides the forward-looking information for policymakers to improve water use efficiency and alleviate water pressure of agriculture in Xinjiang.
MATERIALS AND METHODS
Study area
Xinjiang is the largest province in China with an area of about 166 × 104 km2 (Figure 1). The regional mean annual precipitation is less than ∼200 mm, and the mean annual temperature is ∼9.1°C (Li and Deng, 2021). The oases are mainly situated in the piedmont plains, and their water resources primarily result from rivers originating from precipitation and melt water of glacial and snow in the mountainous regions (i.e., Tianshan, Altai, and Kunlun Mountains). The cultivated lands are distributed in the oasis regions. More than 90% of freshwater is used for agricultural irrigation in Xinjiang, which is much higher than the average level of China (Li and Deng, 2021). The primarily planting crops in Xinjiang are cotton, maize, wheat, rice, soybean, oil crops, sugar beet, vegetable, melons, potato, and medicago.
[image: Figure 1]FIGURE 1 | Distribution of farmlands and meteorological stations in Xinjiang, China.
Data description
A total of 66 meteorological stations (Figure 1) for Xinjiang were collected from the China Meteorological Administration (http://data.cma.cn/). The selected parameters include daily maximum temperature, daily minimum temperature, mean daily temperature, mean daily precipitation, wind speed, air pressure, relative humidity, and sunlight duration. The land use/cover data were downloaded from the National Land Use/Cover Dataset (NLCD) and from the Earth System Science Data Sharing Infrastructure of the Chinese Academy of Sciences (http://www.resdc.cn). The NLCD maps (1 km) were produced by the visual interpretation of Landsat Thematic Mapper (TM) images (Yang et al., 2018). The population, crop types, planting areas, crops yields, and regional GDP in 1989–2018 were compiled from the Xinjiang Statistics Yearbook (China).
DECOMPOSITION ANALYSIS OF CHANGES IN WATER FOOTPRINT
Calculation of water footprint
The water footprint (WF) includes the blue, green, and grey water (Chapagain et al., 2006) and is calculated separately for 11 crops in Xinjiang. The grey water is not included because the amount of fertilizer use for each crop is not getting.
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where [image: image] is the surface and ground water consumed by the production of a commodity and [image: image] is the consumption of green water during the growing period of crops.
To calculate [image: image] and [image: image], the reference crop evapotranspiration [image: image] is calculated through meteorological elements and crop evapotranspiration [image: image] is calculated through crop regulation coefficient (Kc) (Allen et al., 1998). Crop evapotranspiration includes the evaporation of soil surface and transpiration of crop. The specific formula is as follows (Allen et al., 1998)
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In Equation 2, [image: image] is the crop evapotranspiration (mm/day), [image: image] is the evapotranspiration of crop blue water, [image: image] represents the evapotranspiration of crop green water, Kc is the crop regulation coefficient (dimensionless), ET0 is the reference crop evapotranspiration (mm/day), factor 10 is the conversion of the depth unit mm to the volume unit m3 of water, A is the crop planting area, [image: image] is the total evapotranspiration in the growing period of crops from the sowing date (the first day) to the harvest date, and lgP represents the number of days in the growing period.
[image: image] is determined through comparing the [image: image] and effective precipitation [image: image] in the growing period. When [image: image], [image: image] and [image: image]. When [image: image], [image: image] and [image: image].
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Decomposition analysis of changes in water footprint
The LMDI approach is used to separate the effect of different factors on the changes in crop WF in Xinjiang. The population, planting structure, agricultural economics, water intensity, and industrial structure are selected as the driving factors of crop water consumption. The index decomposition of water consumption (Ang, 2005) is given by
[image: image]
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In Equation 6, Wtot is the total change in crop water consumption (m3); GDPi is the real output value of crop i in Xinjiang (Yuan); p represents the rural population in Xinjiang; ADP is the total output value of agriculture, forestry, animal husbandry, and fishery in Xinjiang (Yuan); A is the per capita agricultural output value (Yuan per person); Ii is the percentage of crop i output value to the total agricultural output value (%), representing the adjustment of industrial structure; Ci is the percentage of the output value of crop i to total agricultural output value (%), representing the adjustment of planting structure; and Si is the water consumption divided by the output value of crop (m3/104 Yuan). Equation 7 gives the effect of five factors (WP, WA, WI, WC, and WS) contributing to changes in water consumption over 30 years.
According to the additive decomposition model, the relevant equation for crop water decomposition of Xinjiang can be summarized as follows:
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In Equations 8-12, if the effect is a positive value, it means the factors promote crop water use. If the effect is a negative value, it means the factors inhibit crop water use.
RESULTS AND DISCUSSION
Changes in crop water consumption and their driving factors
The WF in Xinjiang increased from 10.363 billion m3 to 37.226 billion m3 with a rate of 0.932 billion m3/a during 1989–2018 (Figure 2). The increased WF comes from a growing contribution of [image: image] and [image: image]. In detail, it significantly increased from 8.451 billion m3 to 32.252 billion m3 for [image: image] and from 1.912 billion m3 to 4.974 billion m3 for [image: image]. The ratios of [image: image] and WFgreen are also changeable in the study interval: the ratio of [image: image] increased from 87.99% to 89.85%, and that of WFgreen decreased from 12.01% to 10.15%. The WF during 1989–2018 can be divided into two stages: 1989–2003 and 2004–2018 (Figure 2). In 1989–2003, the WF experienced a gradual upward trend and reached the peak at 16.661 million m3 in 2003 with a rate of 0.425 million m3/a. The WF witnessed a significant and faster increase at a rate of 1.310 million m3/a during 2004–2018.
[image: Figure 2]FIGURE 2 | Changes in WF of crop in Xinjiang from 1989 to 2018: the overall trend accumulated by blue and green WF.
In terms of water consumption of different crops (Figure 3), the water consumption of cotton is the highest and enhanced significantly from 2.323 billion m3 (20.23%) to 21.063 billion m3 (54.82%), which plays the most important role in increasing crop water consumption during 1989–2018. The second largest increases of water consumption are maize and wheat. Their water consumption increased from 2.074 to 6.245 billion m3 and from 3.997 to 4.564 billion m3, respectively. However, their ratios both decreased from 18.06% to 16.25% for maize and from 34.81% to 11.88% for wheat in the study interval. The changeable portions of water consumption for cotton, maize, and wheat lead to a decrease of other crops (rice, soybean, oil crops, sugar beet, vegetable, melons, potato, and medicago) from 26.91% to 17.04%.
[image: Figure 3]FIGURE 3 | Different trends in crop water use in Xinjiang from 1989 to 2018.
Figure 4 shows the crop planting scale in Xinjiang expanded by 121.42% from 1989 to 2018. Due to the increased needs for cotton and higher benefits for maize and other crops (except oil crops) than that for wheat, more cotton, maize, and other crops have been planted during 1989–2018 in Xinjiang. The planting scales of cotton, maize, and other crops are significantly expanded, while those of wheat and oil crops are slightly reduced. The planting proportion of crops has changed accordingly (Figure 5). The proportion of cotton consistently increased from 13.89% to 44.48% in the study period. The proportion of maize reduced from 16.43% to 13.25% during 1989–2008 and increased from 13.25% to 17.33% during 2008–2018. The proportion of wheat significantly decreased from 45.05% to 19.19% in the study interval. The decreased proportions of other crops from 24.46% to 19.01% are also observed in the study interval. The changes of crop planting scale directly affect the output value of crops (Figure 6). Specifically, the percentage of cotton output shows an increased trend from 26.00% to 54.55% in the study interval, whereas that of maize slightly decreases from 10.31% to 9.46% and that of wheat significantly reduces from 30.30% to 10.01%. The ratio of output of vegetable, melons, and potato increases from 13.87% to 21.56% at the expense of other crops (rice, soybean, oil crops, sugar beet, and medicago).
[image: Figure 4]FIGURE 4 | Crop planting scale trends in Xinjiang from 1989 to 2018.
[image: Figure 5]FIGURE 5 | Percentages of crop planting scale in Xinjiang from 1989 to 2018.
[image: Figure 6]FIGURE 6 | Percentages of crop output in Xinjiang from 1989 to 2018.
Being different with crop water use and crop planting scale, water footprint per output value (S) of each crop in Xinjiang experiences a decreasing trend during 1989–2018 (Figure 7). The water footprint per output value of sugar beet is the largest and decreases significantly by −80.71%. The biggest drop of water footprint per output value is found in oil crops from 60036.73 m3/104 Yuan to 3888.90 m3/104 Yuan, whereas the smallest reduction of water footprint per output value is observed in potato from 455.01 m3/104 Yuan to 195.88 m3/104 Yuan. The water footprint per output value of Xinjiang quickly decreases from 227925.02 m3/104 Yuan to 65043.19 m3/104 Yuan in 1989–2003 and then is followed by a slowly reduced trend from 75000.64 m3/104 Yuan to 31672.45 m3/104 Yuan in 2004–2018.
[image: Figure 7]FIGURE 7 | Trends of crop water footprint per output value in Xinjiang from 1989 to 2018.
Figure 8A shows the rural population (p) in Xinjiang increases from 9.63 million to 13.27 million with a rate of 0.12 million/a during 1989–2018. The obvious decline of population in 2005 should be related with the reform of China’s rural household registration system [the Xinjiang Statistics Yearbook (China)], which caused a part of the rural population to become urban population. The changeable trend of per capita agricultural output value (Ai) is totally similar with that of crop planting scale in the study interval (Figure 8B). The Ai slowly increases from 1172.18 Yuan to 6548.25 Yuan in 1989–2003 and quickly increases from 7972.42 Yuan to 26,511.53 Yuan in 2004–2018. Figure 8C indicates that from 1989 to 1998, the percentage of the crop output value to the total agricultural output value (Ii) slightly increases from 64.29% to 75.91%. From 1998 to 2003, the Ii decreases from 75.91% to 61.53%. In the remaining interval (2004–2018), the Ii keeps a stable level (mean 64.14%).
[image: Figure 8]FIGURE 8 | Trends of population (Pi), per capita agricultural output value (Ai), and the percentage of crop output value to the total agricultural output value (Ii) in Xinjiang from 1989 to 2018.
Decomposition of the change in crop water consumption during 1989–2018
The quantitative contributions of each driving factor to increases in crop water consumption are shown in Figure 9, and the factors are population (WP), planting structure (WC), agricultural economic (WA), water intensity (WS), and industrial structure (WI). During 1989–2018, the overall trend of crop water consumption presented fluctuating increases by 0.79 billion m3/a in Xinjiang. The population effect results in an increase in crop water consumption of 0.21 billion m3. The agricultural economics is the most important promoting effect on the increase of crop water consumption, and only shows the negative values in 1993, 1999, and 2017. Its contribution and ratio are 2.07 billion m3 and 29.35% with the obvious changes in the study interval. Specifically, the effect of agricultural economics decreases rapidly from 2.47 billion m3 in 1989 to −2.41 billion m3 (the lowest value) in 1999 and then slowly increases to 4.40 billion m3 (the highest value) in 2010 followed by a decreasing trend to 0.54 billion m3 in 2018.
[image: Figure 9]FIGURE 9 | Contributions of driving factors to changes in agriculture water use in Xinjiang from1989 to 2018.
The most important inhibitor of crop water consumption is water intensity with an average contribution of −1.21 billion m3. Its total effect on crop water consumption reduction accounts for 14.18% (Figure 9). The planting structure shows an inhibiting effect with a value of −0.13 billion m3 and 2.13%. The inhibition and promotion effect of the industrial structure appears mutually during 1989–2018 and shows an inhibition effect (−0.07 billion m3) on the whole, accounting for 1.02% decrease in crop water consumption.
Decomposition of the change in crop water consumption in two stages
Based on the changeable feature of crop water consumption in Xinjiang during 1989–2018, the study interval is classified into two stages (1989–2003 and 2004–2018). Through the analysis of the LMDI method, the effects of five driving factors for each crop are analyzed in two stages (Figure 10 and Figure 11).
[image: Figure 10]FIGURE 10 | Decomposition analysis of changes in WF of different crops from 1989 to 2003. Note: the explored pie chart represents contribution of different crop WF; the table lists the results of LMDI factor decomposition for different crops.
[image: Figure 11]FIGURE 11 | Decomposition analysis of changes in WF of different crops from 2004 to 2018. Note: the explored pie chart represents contribution of different crop WF; the table lists the results of LMDI factor decomposition for different crops.
Figure 10 presents the crop water consumption slowly raised from 10.363 billion m3 to 16.661 billion m3 in 1989–2003. According to the result of the LMDI analysis, population and agricultural economics are the main determinations that promote crop water consumption, while planting structure, water intensity, and industrial structure mainly inhibit an increase of crop water consumption in this stage. The effect values of population and agricultural economics are 0.216 and 1.579 billion m3 in this stage, and these two factors show a promoting effect on 11 crops. Cotton, wheat, and maize have the highest effect of population and agricultural economics and their values are 0.078 and 0.551 billion m3 for cotton, 0.051 and 0.366 billion m3 for wheat, 0.043 and 0.243 billion m3 for maize, respectively. The inhibited effects of planting structure, water intensity, and industrial structure are −0.074, -0.106, and -1.176 billion m3, respectively. It should be noted that the three factors have significant different effects on 11 crops in this stage. Specifically, the industrial structure has an inhibitory effect on all crops (except wheat) and the maximum effect is −0.045 billion m3 in cotton. The planting structure shows an inhibitory effect on corn, wheat, rice, sugar beet, and vegetables, and the maximum inhibitory effect is found in wheat (−0.226 billion m3). The promoting effect of planting structure is showed in other crops and the maximum value is 0.262 billion m3 for cotton. The water intensity also plays an inhibitory role on all crops except vegetables and the maximum effect also appeared in cotton with a value of −0.469 billion m3. An intimate calculation of 11 crops indicates that most crops (except wheat: 0.126 million m3 and −18.25%) result in an increase in crop water consumption with the largest value in cotton (0.378 million m3 and 54.70%). To sum up, the combined effects of five factors for 11 crops lead to a slow increase in crop water consumption during 1989–2003.
Figure 11 shows that the crop water consumption in Xinjiang quickly increases by 16.649 million m3 during 2004–2018. A comparison of five driving factors in this interval indicates that population and agricultural economics still promote an increase of crop water consumption. The contribution of population and agricultural economics is 0.211 and 2.525 million m3. The contribution of population in this stage is basically consistent with that in 1989–2003, while the contribution of agricultural economics in 2004–2018 is more significant than that in 1989–2003. Being different with the interval of 1989–2003, the industrial structure in 2004–2018 turns to a promoting factor on crop water consumption and its contribution is 0.055 million m3. The planting structure and water intensity also play an inhabiting factor in 2004–2018. The effect of water intensity (−1.245 billion m3) is higher than that of the planting structure (−0.160 billion m3), both being higher than that in 1989–2003. Therefore, agricultural economics and water intensity of crops play an important role in promoting and inhibiting crop water consumption in Xinjiang. In terms of five effects on 11 crops, population and agricultural economics also have promoting effects on 11 crops. Cotton, maize, and wheat have the highest effects of population and agricultural economics and their effects for three crops are 0.1 and 1.163 billion m3 for cotton, 0.032 and 0.384 billion m3 for maize, 0.033 and 0.374 billion m3 for wheat, respectively. The maximum promoting contribution of industrial structure appears in cotton and its effect is 0.029 billion m3. The inhibitory effects of planting structure and water intensity on crop types are significantly different. In detail, the planting structure only promotes cotton and potato with values of 0.454 billion m3 and 0.002 billion m3, respectively. The planting structure inhibits water consumption for other crops with higher values in wheat (−0.177 billion m3), corn (−0.110 billion m3), oil crops (−0.129 billion m3), and vegetables (−0.139 billion m3). The water intensity has inhibitory effects on other crops (except vegetables and melons) and its effect on other crops (cotton, maize, wheat, rice, soybean, oil crops, sugar beet, potato, and medicago) are −0.849, −0.064, −0.084, −0.023, −0.014, −0.007–0.017, −0.014, and −0.125 billion m3, respectively. The total effect of five driving factors on crops (except soybean and medicago) is positive and the highest value is showed in cotton. These factors lead to a rapid increase of crop water consumption in 2004–2018. We can see from the effects of five driving factors on 11 crops in two stages (1989–2003 and 2004–2018), the most obvious feature is an increased proportion of cotton (54.70%–63.06%) and maize (4.25%–17.63%). Conversely, the proportion of wheat decreases significantly from 18.25% to 10.94% (Figure 10 and Figure 11).
DISCUSSION
Based on the aforementioned analysis, agricultural economics is an important promoting factor for increasing crop water consumption in Xinjiang. Because there is a positive correlation between agricultural GDP and crop water consumption, the rapid growth of agricultural economy will inevitably consume a lot of water resources. Water intensity has a moderate inhibiting effect on crop water consumption, indicating an increase of agricultural machinery input in the study period promotes the rational use of crop water consumption. The effects of agricultural economics and water intensity are more dramatic in 2004–2018 than in 1989–2003 (Figure 9). Population has a promoting effect on crop water consumption in the study period, and the reform of household registration system in China does not affect its effect. The rapid growth of rural population in Xinjiang results in the increasing demand of crops and water in the study interval (Davies and Simonovic, 2011; Xu et al., 2015). The contribution of industrial structure shifts from a moderate inhibiting effect in 1989–2003 to a promoting effect in 2004–2018, which indicate the percentage change of planting industry in the total output value of agriculture, forestry, animal husbandry, and fishery which promotes water resource consumption in Xinjiang. The effect of industrial structure on crop water resources is relatively weak during 1989–2018, being consistent with the similar study in Urumqi city (Zhang et al., 2015). The crop planting structure also has a weak and inhibitory effect on water resource consumption. It means that the crop planting structure is relatively reasonable due to the adjustment of planting area in different prefectures in the condition of expanded planting area of Xinjiang. Overall, the LMDI decomposition approach is proved to be convincing to investigate the driving factors of crop water consumption in Xinjiang during 1989–2018.
Our results are consistent with the similar studies in the Hexi Corridor (Hei, Shiyan, and Shule River) by Han (2017) who found agricultural economics and water intensity significantly promotes and inhibits the increase of agricultural water demand during 1991–2013. The population is the factor that contributes the least absolute value. The industrial structure effect contributed to increasing crop water demand is shown not only in Xinjiang, Shiyang, and the Hei River Basin (Han, 2017) but also in whole China (Li et al., 2021). The effect of crop planting structure contributed to saving crop water in Xinjiang and the Hexi Corridor (Han, 2017), which was confirmed by Li et al. (2021) and Xu et al. (2015) using the LMDI method and Zhang et al. (2012) via the structural decomposition analysis (SDA). Although the crop planting structure had a relatively low contribution to saving water in current studies (Han, 2017; Li et al., 2021), studies have shown that planting structure may be the main driving force for increasing food demand (Kastner et al., 2012) and water demand for agriculture in the future. Therefore, there is great potential to decrease agricultural water demand by adjusting the planting structures converting the crops with high-water consumption into the crops with low-water consumption (Li et al., 2021). In addition, one important shortcoming is shown from the analysis of driving factors of crop water consumption in Xinjiang and other regions of China (Xu et al., 2015; Han, 2017; Li et al., 2021). The LMDI method is mainly based on the correlation analysis and the specific processes of crop water consumption are not clear. Subsequent research should distinguish the respective influence of grain crops and commercial crops on agricultural water consumption to reveal the internal driving factors of agricultural water consumption more comprehensively. The specific content of each driving factors and the related mechanism can be taken into account to further explore the driving factors for agricultural water consumption in Xinjiang (Li et al., 2021).
CONCLUSION AND IMPLICATION
In this study, we investigated the changeable trend of crop water consumption in 1989–2018 and applied the LMDI method to quantitatively identify the contribution of main factors (population, planting structure, agricultural economics, water intensity, and industrial structure) for 11 crops. The underlying effects on crop water consumption were further explored, and the related results are totally consistent with the actual situation in Xinjiang. Our finding is of significance to water resource management and also proves the LMDI method is effective to quantify contributions of determined factors affecting water consumption of crops in Xinjiang of China.
Considering the agricultural economics promoting the crop water consumption, it is not feasible to reduce crop water consumption by lowering the agricultural GDP. The contribution of industrial structure is not notable. We should pay more attention on the planting structure to reduce crop water consumption. However, its effect is relatively weak in the modern planting structure. The government should take measures to optimize crop planting structure within a reasonable range to slow the increase in crop water consumption. Our results provide a scientific basis for farmer and government management to select the suitable planting crops.
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Owing to global warming, extreme precipitation events in the arid regions of Central Asia have increased, resulting in significant consequences for water resources and ecosystems. Hence, to address the features and corresponding physical mechanisms of these rainstorms, we examined the rainstorm that occurred in Hotan, Xinjiang in June 2021 as a case study. We employed multiple datasets, including meteorological stations, sounding observations, satellite precipitation data, and reanalysis datasets. The results indicate that the Global Precipitation Measurement satellite precipitation product accurately captured the temporal and spatial variations in this rainstorm, as verified against hourly in situ observation data. Some meteorological stations recorded values greater than twice their historical records, such as Luopu, Pishan, Moyu, and Hotan. Moreover, the duration of the precipitation was longer than 2 days. For the physical mechanisms of this rainstorm, the water vapor in this rainstorm is sourced from the 45°–65°N region of the North Atlantic Ocean crosses the Ural Mountains and the West Siberian Plain to southern Xinjiang. The low-pressure levels (e.g., 700 hPa and 850 hPa) have the more water vapor flux and specific humidity than the high-pressure levels. Our findings can aid the understanding of extreme precipitation events in Central Asia and provide a reference for dealing with meteorological disasters, including extreme precipitation, in the context of global climate change.
Keywords: hotan rainstorm, heavy rainfall, synoptic process, spatial and temporal characteristics, physical mechanism
1 INTRODUCTION
Rainstorms are a common weather disaster and often lead to soil erosion and flooding (Wang et al., 2020; Wu et al., 2021), resulting in casualties and property loss. Thus, mechanistic investigations and numerical forecasts regarding rainstorms have received extensive attention over the past few decades. Moreover, owing to global warming, extreme weather phenomena, including severe droughts and heavy precipitation, have occurred more frequently and with greater intensity during the past decade (Kunkel et al., 2013; Duan et al., 2015); furthermore, extreme precipitation has begun to occur in arid and semi-arid areas (Rinat et al., 2019, 2021; Dayan et al., 2021). The arid regions of Central Asia, which are in the hinterland of Eurasia, have complex terrain, geomorphic features, and an arid and semi-arid climate system controlled by westerly circulation (Lioubimtseva and Cole, 2006; Chen and Zhou, 2015; Hu et al., 2018; Hu et al., 2021a). In these regions, moisture fluxes are mainly sourced from the Atlantic and Arctic Oceans (Schiemann et al., 2008; Chen et al., 2018). Evaporation is much higher than precipitation, causing vulnerability in ecosystems and lake water resources, which is exacerbated by changes in temperature and precipitation (Hu et al., 2021b; Hu et al., 2022a).
In recent decades, the temperature has shown a significant positive trend, and precipitation has increased overall (Hu et al., 2014; 2016a, 2017). Variations in precipitation in Central Asia have been proven to significantly impact terrestrial water resources (Hu et al., 2021a; 2021b; 2022a; Zhou et al., 2022) and the spatiotemporal patterns in vegetation coverage and biomass (Yin et al., 2016; Zhang et al., 2016). However, owing to global warming, extreme climate events, including extreme precipitation, are increasing (Tank et al., 2006; Gessner et al., 2014; Hu et al., 2016b). Therefore, investigating the characteristics and factors contributing to extreme precipitation events, including rainstorms, is necessary to gain a better understanding of the water circulation and ecosystems.
Xinjiang Province in China is an important part of the arid regions along the Silk Road in Central Asia (Hu et al., 2019a). It is located inland and far from any oceans, has complex mountains and basins, is adjacent to the Qinghai-Tibet Plateau, and receives minimal precipitation. Southern Xinjiang is particularly dry all year because the potential evaporation is much higher than precipitation (Hu et al., 2021b). Owing to global warming, extreme weather events, including severe droughts and heavy precipitation, have become more frequent and intense during the past decade, and extreme precipitation has begun to occur in arid areas (Zhang et al., 2012; Wang et al., 2013). Yang et al. (2022) examined the characteristics of warm-season rainstorms in southern Xinjiang over the past 60 years, and their results showed increased frequencies, expanded ranges, and strengthened intensities.
In the past decade, approximately 36% of meteorological disasters in Xinjiang were caused by local rainstorms, which annually resulted in as many as 45 flood disasters on average (Xie et al., 2018). In the desert ecosystems of Xinjiang, extreme precipitation primarily increases the above-ground net primary production by increasing the density, rather than the height and species richness, of the ephemeral community (Zang et al., 2021).
Recent studies have explored the characteristics of rainstorms in Xinjiang Province and their corresponding physical mechanisms. Generally speaking, synoptic systems that cause rainstorms in Xinjiang include the “two-ridge-and-one-trough” circulation background in middle and high latitudes (Zhang et al., 2018; Huang et al., 2020) and the “double-high” South Asian High in the upper troposphere (Huang et al., 2019, 2020; Feng et al., 2021; Li et al., 2022), while necessary water vapor primarily originates from the Caspian Sea, Aral Sea, and Lake Balkhash (Zhang et al., 2018; Huang et al., 2019; Xirenayi et al., 2020Li et al., 2022). A study of three different rainstorms (Yang et al., 2012) indicated an non-negligible role played by the low-level easterly jet (LLEJ) blowing from Gansu Province, the coverage and strength of which contributed to various features of those precipitation cases by controlling the horizontal vapor transportation. Similar conclusions were summarized in the comparative analysis of two extreme storms at Kunlun Mountains (Li et al., 2022), as well as in the research of different rainstorms in southern Xinjiang during warm seasons (Yang et al., 2022). In contrast, two events investigated by Zhang et al. (2018) were triggered under the low-level westerly jet (LLWJ) which strengthened the upward vapor transportation on the windward slope, while the easterly jets on low and middle levels enhanced the moist convergence during one of those events. Upper-level jets have also been proved capable of creating dynamically favorable conditions (Zhuang et al., 2022), and their coupling with low-level jets is another interesting mechanism for rainstorm occurrence, where enhanced upper-level atmospheric suction apparently fastens low-level convergence (Feng et al., 2021). Low-level wind shear could dynamically boost moist convergence and convection as well (Huang et al., 2020; Zeng et al., 2020). Xirenayi et al. (2020) also described positive influences of earlier local precipitation that moistened the air and led to stronger vapor exchange. As stated above, however, a comprehensive and systematic analysis of rainstorms in Xinjiang has not been conducted, meanwhile complex topography and underlying surfaces in this province could generate various impacts during different events (Zeng and Yang, 2020).
Therefore, this study comprehensively investigated the characteristics and corresponding physical mechanisms of a rainstorm that occurred in the southern Taklimakan Desert on June 15 and 16, 2021, which covered most of Hotan and parts of Kashgar. The mesoscale synoptic processes leading to this extreme rainstorm were analyzed, including detailed investigations concerning the synoptic features, temporal distribution of the maximum precipitation rate, spatial distribution of precipitation, development of precipitation rate, correspondence between moisture convergence and precipitation, contributions of various isobaric levels, water vapor flux and its convergence at 700 hPa and 500 hPa, and relationships among moisture, temperature, pressure, and heavy rainfall. The remainder of this paper is organized as follows. The second section introduces the study area, datasets, and methodologies. The third section details the characterization of the results and analysis of the rainstorm process, including the corresponding physical mechanisms. In the last section, conclusions are presented.
2 MATERIALS AND METHODS
2.1 Study area
Xinjiang, an important area within Central Asia, has an arid to semi-arid climate. Its complex topography includes three mountain ranges: the Altain Mountains in the north, Tianshan Mountains in the middle, and Kunlun Mountains in the south. Two basins are situated between the mountain ranges which are, from north to south, the Junggar Basin and Tarim Basin (Figure 1, Hu et al., 2021b).
[image: Figure 1]FIGURE 1 | Study area, topography, and the major weather stations therein. The mountains and basins are marked as follows: Altain Mountainous (ATM), Junggar Basin (JGB), Tianshan Mountainous (TSM), Tarim Basin (TRB), and Kunlun Mountainous (KLM). The weather stations are marked with red circles and blue text.
The dominant arid and semi-arid climate includes very low precipitation and strong evaporation. The average annual precipitation is less than 200 mm, which accounts for less than 25% of the annual precipitation in China (Chen et al., 2012). Large-scale temporal and spatial distributions of precipitation are notable, specifically, increased precipitation during spring and summer and in mountainous areas. This precipitation has a significantly positive impact on the terrestrial water resources in Xinjiang (Hu et al., 2019b; Zhou et al., 2022). Southern Xinjiang is generally defined as the southern region of the Tianshan Mountains, and the annual precipitation is less than 100 mm with 65% precipitation falling from May to August (Wang and Wang, 2021).
2.2 Datasets and methods
This study used meteorological observations from the Hotan meteorological station, Global Precipitation Measurement (GPM) satellite precipitation products, and the European Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric Reanalysis 5 (ERA5) to investigate the features of the Hotan rainstorm, including the precipitation intensity, spatial and temporal distributions of precipitation, and development of the related synoptic processes and meteorological elements, as shown in Table 1. Daily precipitation during 2021, together with hourly and daily precipitation from June 15 to 16 June 2021, at the nine national meteorological stations located in the area covered by the Hotan rainstorm, were used to describe its characteristics and provide references for future rainstorm forecasts in Hotan.
TABLE 1 | Datasets used in this study.
[image: Table 1]The GPM precipitation satellite was developed after the Tropical Rainfall Measuring Mission (TRMM) satellite and has better performance regarding precipitation observations, including higher observation accuracy and higher spatial and temporal resolutions than TRMM. The sensing load in the GPM is extended compared with that in the TRMM and contributes to its improved capabilities. The dual-frequency radar carried by the GPM Core Observatory can detect very weak echoes (Ku band) and use high-sensitivity staggered sampling (Ka band). In addition, the microwave radiometer in the GPM has four more high-frequency bands than that in the TRMM, which enhances its ability to detect minimal and solid precipitation. Thus, compared with TRMM satellites, which focus on observing normal-to-heavy precipitation in the tropics and subtropics, GPM satellites can capture light precipitation (<0.5 mm h−1) and solid precipitation more accurately, both of which are non-negligible components of precipitation in middle and high latitudes. Therefore, GPM observations are critical for studying precipitation in Hotan (Li et al., 2021; Pradhan et al., 2022). In this study, the spatial distribution of hourly GPM precipitation in Hotan was analyzed to investigate the development of precipitation centers and precipitation intensity throughout the rainstorm.
Prior to utilizing the GPM data to describe the rainstorm process, the nine weather stations were used to evaluate its accuracy. The correlation coefficient (CC), absolute error (AE), and root-mean-square error (RMSE) were employed to quantify the accuracy. Previously, we proposed a novel comprehensive index, Distance between Indices of Simulation and Observation (DISO) (Hu et al., 2019c; Zhou et al., 2021; Hu et al., 2022b), which has been widely used (Cui et al., 2020; Hu et al., 2020; Wang et al., 2021). Therefore, in this study, DISO was employed to describe the comprehensive performance of the GPM. The equations for CC, AE, RMSE, and DISO are as follows:
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In the DISO equation, [image: image] is the relative bias, and [image: image] is the normalized [image: image]. The details of DISO can be founded in Hu et al. (2022b).
The ERA5 data is the fifth generation ECMWF (European Centre for Medium-Range Weather Forecasts) atmospheric reanalysis of the global climate, which was assimilated multi-source observations with high-resolution. The horizontal and temporal resolutions of the ERA5 products are 0.25 ° × 0.25 ° and 1 h, respectively. The ERA5 products include diverse variables, such as geopotential height, surface pressure, vorticity, and wind, and are commonly used for weather analysis and mechanism research (Hoffmann et al., 2019; Li et al., 2021) This study utilized them to further analyze the features of critical variables related to heavy precipitation in Hotan.
3 RESULTS
3.1 Rainstorm process and corresponding weather conditions
The general distribution of the Hotan rainstorm was determined via in situ observations at various weather stations. The Hotan area, where the heavy precipitation occurred, is located on the northern slope of the Kunlun Mountains and to the south of the Tarim Basin.
Based on observations from the national meteorological weather stations (Table 2 and Figure 2), the heavy precipitation began at 12:00 on June 15 and lasted approximately 12 h (in Beijing time). Table 2 lists nine national meteorological weather stations with a total rainfall of more than 20 mm from June 15 to 16 June 2021; for half of them, the total rainfall exceeded 39 mm. Furthermore, among the nine meteorological stations, the rainfall at two stations, Luopu and Cele, primarily occurred during 19:00–23:00 on June 15, whereas the rainfall at the other stations primarily occurred during 00:00–19:00 on June 16.
TABLE 2 | Precipitation from June 15 to 17 June 2021, at weather stations in Hotan and Kashgar region.
[image: Table 2][image: Figure 2]FIGURE 2 | Hourly precipitation (mm) in Hotan during June 15–17, 2021 (A)∼(B).
Daily precipitation measurements of 58.3 mm in Luopu weather station on June 15, 53.1 mm in Pishan weather station and Moyu weather station on June 16, and 46.3 mm in Hotan weather station, broke the historical records for largest daily precipitation at these stations and exceeded their annual averages. In particular, the precipitation recorded in Luopu weather station was approximately 1.3 times its annual average (43.5 mm). Moreover, the precipitation in Pishan weather station broke the historical record values for the spring and summer precipitation at that station.
According to the accuracy evaluations, the CC values were larger than 0.6, and the average bias value was 0.2 mm. The average DISO value was 0.79. The smallest DISO value was 0.45 at Cele station, and the largest was 1.11 at Shache station (Table 3). Therefore, the GPM satellite precipitation data accurately reflects the spatial and temporal characteristics of the Hotan rainstorm with high spatial and temporal resolutions.
TABLE 3 | Distance between Indices of Simulation and Observation (DISO) for GPM data and meteorological station observations.
[image: Table 3]The half-hourly GPM precipitation data were accumulated to obtain hourly and daily precipitation data. The spatial distribution of the daily precipitation (Figure 3) revealed that the heavy precipitation on June 15 and 16 was concentrated near Hotan and Kashi on the northern slope of the Kunlun Mountains, and it was more concentrated and severe on June 16.
[image: Figure 3]FIGURE 3 | Daily precipitation (mm) in Hotan on June 15 (A) and 16 (B) June 2021.
Apparent continuous precipitation at Hotan and Kashgar began at approximately 18:00 on June 15 and gradually strengthened. At 23:00, the intensity and extent expanded significantly. During 02:00–06:00 on June 16, the hourly rate increased to its maximum, exceeding 10 mm h−1 at the center of the precipitation area. Subsequently, the spatial extent increased minimally. However, rainfall intensity continued to vary with time, decreasing rapidly after 07:00 on June 16 and finally falling to nearly 0 mm h−1 at approximately 15:00 on June 16, indicating the end of the rainstorm (Figure 4 and Figure 5).
[image: Figure 4]FIGURE 4 | Hourly precipitation (mm) from 18:00 to 23:00 (A–F) on 15 June 2021.
[image: Figure 5]FIGURE 5 | Hourly precipitation (mm) from 00:00 to 15:00 (A–H) on 16 June 2021.
3.2 Physical mechanism analyses: Energy variations
Meteorological stations commonly use T-lnP diagrams in meteorology investigations to analyze the vertical distribution of local meteorological elements (such as pressure, temperature, and humidity), to determine the stability of atmospheric stratification, determine the height of the tropopause by analyzing cloud layers, and examine the characteristics of temperature and humidity data. In the T-lnP diagrams in this paper, a dark black solid line (state profile) depicts the variations in temperature with height for an air mass that rises adiabatically. The first intersection of the state profile and the temperature stratification profile is the lifting condensation level, which is defined as the height at which the moist air rising adiabatically will become saturated and begin to condense.
The T-lnP diagram was used to analyze the atmospheric stratification during the rainstorm in Hotan based on twice-daily (08:00–20:00) sounding observations at Hotan and Kashgar on June 15 and 16, 2021. The T-lnP diagrams display the vertical distribution of meteorological elements, such as temperature and humidity. Atmospheric stability directly affects convection strength. The convective available potential energy (CAPE) is the work done by buoyancy on an air mass that rises adiabatically to the level of free convection and is a parameter for basic evaluations of atmospheric instability. CAPE is positively related to the probability and intensity of convection and is therefore an important indicator of convection development. The sounding observations and CAPE calculations at Hotan and Kashgar on June 15 and 16, 2021, show that instability began to increase prior to the precipitation. On June 15, the CAPE values at Hotan and Kashgar were 24 J kg−1 and 57 J kg−1, respectively, at 08:00 and 89 J kg−1 and 18 J kg−1, respectively, at 20:00. At 08:00 on June 16, CAPE had increased to 179 J kg−1 and 23 J kg−1, respectively; however, by 20:00, it had decreased to 113 J kg−1 and 0 J kg−1, respectively, indicating the decay of the unstable energy and convective system and the end of the precipitation (Figure 6 and Figure 7).
[image: Figure 6]FIGURE 6 | The T-lnP diagrams at 08:00 and 22:00 for the sounding stations at (A,C) Hotan (ID 51828) and (B,D) Kashgar (ID 51709) on 15 June 2021. The dark black solid lines indicate state profiles. The red solid lines are temperature stratification profiles. The green solid lines are dew point stratification profiles. The blue dashed lines are wet adiabatic profiles. The orange dashed lines are dry adiabatic profiles. The green dashed lines are iso-saturated specific humidity profiles. The gray sloping solid lines are isothermal profiles.
[image: Figure 7]FIGURE 7 | The T-lnP diagrams at 08:00 and 22:00 for the sounding stations at (A,C) Hotan (ID 51828) and (B,D) Kashgar (ID 51709) on 16 June 2021. The dark black solid lines indicate state profiles. The red solid lines are temperature stratification profiles. The green solid lines are dew point stratification profiles. The blue dashed lines are wet adiabatic profiles. The orange dashed lines are dry adiabatic profiles. The green dashed lines are iso-saturated specific humidity profiles. The gray sloping solid lines are isothermal profiles.
Figures 6, 7 show that the environmental temperature profile fits well with the dew point profile at 850 hPa, indicating the saturation of low-level atmospheric vapor. Several structures between 900 hPa and 300 hPa indicate that the upper air was drier and, therefore, heavier than the lower air, creating favorable conditions for low-level moist air to rise and release unstable energy, which thereby strengthened the entire convective system. The 200 hPa dew point depression was 5 K at minimum, reflecting generally high moisture, even over 300 hPa. The differences among 850 hPa weak southeasterly, 550 hPa weak westerly, and 300 hPa strong southwesterly winds indicated a generally clockwise vertical shear in the low-level atmosphere, thereby signaling warm advection with high thickness where the unstable energy decreased with height.
3.3 Physical mechanism analyses: Atmosphere circulation
Generally, the atmosphere circulation can describe the water vapor source and water transportation path. In this section, the wind field, geopotential height and specific humidity are discussed in Figures 8–10. Specifically, the wind field variations on 500  h Pa from 12:00 15 June 2021 to 00:00 16 with 4 hours interval June 2021 show the similar transportation paths of the Atlantic Ocean → Ural Mountains → West Siberian Plain → southern Xinjiang (Figure 8), which can illustrate the water vapor source and water transportation of this rainstorm.
[image: Figure 8]FIGURE 8 | Wind field on 500 hPa from 12:00 15 June 2021 to 00:00 16 June 2021 (BJT).
Moreover, the geopotential height, wind field and specific humidity on 500 hPa, 600 hPa, 700 hPa and 850 hPa pressure level at 00:00 16 June 2021 are provided in Figure 9. According to the geopotential height, there are consistent high-pressure center in West Siberian and low-pressure region in southern Xinjiang for the four pressure levels. For the specific humidity, the lower pressure levels have the larger values than the upper pressure levels, which suggest that the water vapor of this rainstorm focus on the lower pressure levels.
[image: Figure 9]FIGURE 9 | Geopotential Height, Wind field and specific humidity on 500 hPa, 600 hPa, 700 hPa and 850 hPa pressure level at 00:00 16 June 2021 (BJT).
3.4 Physical mechanism analyses: Water vapor transformation
A sufficient water vapor supply and strong upward motion are necessary for the occurrence and development of rainstorms. The profiles of the atmospheric moisture and vertical wind during the Hotan rainstorm were analyzed using the ERA5 data to investigate the water vapor flux and its convergence. Specific humidity is the ratio of the mass of water vapor to the total moist air, which remains constant without mass exchange between moist air and the surrounding environment and phase changes of water vapor. It is given in units of g g−1 or g kg−1 and is commonly less than 40 g kg−1. In numerical analysis, downward vertical motion is usually described as positive, and vice versa. If the water vapor content remains unchanged, an air mass can bring low-level water vapor to the upper levels through upward motion. Low-level moist convergence typically corresponds with precipitation; upward transportation from low levels due to low-level heating or upper-level cooling increases water vapor condensation and contributes to heavy rainfall. Additionally, near-surface vertical transportation can extend upward to the tropopause owing to significantly strengthened low-level moist convection.
Water vapor flux, also known as water vapor transport volume, refers to the mass of water vapor along a vertical velocity vector in units of time and cross-sectional area. It indicates the strength and direction of water vapor transport. A region with positive water vapor flux represents outward divergence and is considered a water vapor source; these conditions are unfavorable for precipitation. In contrast, a region with negative flux indicates the convergence of water vapor from the surrounding regions, which is termed a water vapor sink, and is favorable for precipitation. The formula is as follows:
[image: image]
where [image: image] is the horizontal water vapor flux (g cm−1 s−1 hPa-1), [image: image] is the three-dimensional wind vector [image: image] (m s−1), q is the specific humidity (g g−1 or g kg−1), and g is gravitational acceleration (m s−2).
Figure 10 shows the height-time cross section of specific humidity (g Kg−1) between 900 hPa and 200 hPa at Hotan from 00:00 on June 15 to 23:00 on June 16, and indicates the variations in atmospheric water vapor content with time. The vapor was primarily concentrated under 500 hPa (approximately 5,500 m above sea level); this was the main water vapor source for the precipitation. In contrast, the humidity above 500 hPa was less than 3 g kg−1 and, therefore, was beyond the focus of this study. The humidity began to increase at 00:00 on June 15 and reached its maximum between 20:00 on June 15 and 03:00 on June 16. It reached a moisture concentration of approximately 10 g kg−1 at 800 hPa, which is consistent with heavy rainfall. The humidity decreased rapidly after 18:00 on June 16, and the precipitation decreased.
[image: Figure 10]FIGURE 10 | Height-time cross section of specific humidity (g kg−1) between 900 hPa and 200 hPa at Hotan from 00:00 on June 15 to 23:00 on 16 June 2021.
Figure 11 shows the height–longitude cross section of the relative humidity (%) and wind vector between 900 hPa and 200 hPa near Hotan (37°N) at 01:00 on June 16. Apparent vertical transportation from low to upper levels was present at 75°E–85°E; this was supplied by westward water vapor transportation from the east, which was induced by downward moisture motion under 500 hPa. Therefore, continuous water vapor convergence provided favorable conditions for the rainstorm.
[image: Figure 11]FIGURE 11 | Height-longitude cross section of relative humidity (%) and wind vector between 900 hPa and 200 hPa around Hotan (37°N) at 01:00 16 June 2021. (A) (left) has larger longitude range than (B) (right) which mainly covers the heay rainfall area.
Water vapor supply is necessary for rainstorm occurrence; however, local evaporation alone was insufficient to develop such a severe convective system. Thus, the water vapor flux and its divergence were analyzed for convergence, which could have enabled heavy rainfall to occur.
Figure 12 shows the total water vapor flux and its total divergence at 00:00 and 05:00 (Beijing time) on June 16 from 200 hPa to 850 hPa. In particularly, convergence of water vapor occurred along the Kunlun Mountains in a west-east orientation, which continuously provided water vapor for the rainstorm (Figures 12A,B). Moreover, the water vapor flux divergence had reached its maximum, covering central Kashgar and most of Hotan. The direction of the water vapor transportation was consistent with that of the horizontal wind (Figures 12C,D). The total water vapor flux of the rainstorm area at 05:00 are larger than the total water vapor at 00:00, which indicates the rainstorm becomes strong with time (Figures 12C,D and Figure 5). This reflects the source of the water vapor and the intensity of the water vapor transportation and is consistent with the spatial and temporal distributions of the rainfall (Figures 3–5). The increase in water vapor flux indicates increased water vapor convergence and matches the intensity of the rainfall, and the decrease in water vapor flux and its divergence matches the decay of the rainfall.
[image: Figure 12]FIGURE 12 | Total water vapor flux divergence at 00:00 16 June 2021 (A) and 05:00 16 June 2021 (B) (BJT) and Total water vapor flux at 00:00 16 June 2021 (C) and 05:00 16 June 2021 (D) (BJT).
To have a further investigation the impacts of the water vapor flux divergence and water vapor flux on this rainstorm, we analyze the water vapor flux divergence and water vapor flux at the single pressure level with 500 hPa, 600 hPa, 700 hPa and 850 hPa (Figure 13 and Figure 14). The water vapor convergence mainly occurred on the lower pressure level (e.g., 700 hPa and 850 hPa) (Figures 13C,D), and the corresponding water vapor flux reached the larger magnitude than the upper pressure level (Figure 14C).
[image: Figure 13]FIGURE 13 | Water vapor flux divergence on 500 hPa (A), 600 hPa (B), 700 hPa (C) and 850 hPa (D) pressure level at 00:00 16 June 2021 (BJT).
[image: Figure 14]FIGURE 14 | Water vapor flux on 500 hPa (A), 600 hPa (B), 700 hPa (C) and 850 hPa (D) pressure level at 00:00 16 June 2021 (BJT).
4 CONCLUSION
To address the features and physical mechanisms of rainstorms in the arid regions of Central Asia, we comprehensively investigated the temporal and spatial characteristics and corresponding substance and energy variations of a rainstorm that occurred on June 15 and 16, 2021, in the Hotan region of Xinjiang. Multiple datasets were used, including meteorological observations, sounding observations, satellite precipitation data, and reanalysis data. The precipitation amounts, locations, and durations were analyzed using various observation data. The energy variations and water vapor transformations were described to illustrate the physical mechanisms of this rainstorm. Our major findings are as follows.
The GPM satellite precipitation product accurately captured the temporal and spatial variations of this rainstorm compared with the in situ observation data at an hourly scale based on the statistical indexes. This rainstorm had the largest precipitation values among historical extreme precipitation events according to the in situ observations at some meteorological stations. Precipitation amounts were larger than twice the historical values at Luopu, Pishan, Moyu, and Hotan. The precipitation duration of this rainstorm was longer than 2 days, and the precipitation centers, from east to west, were Pishan and Hotan.
The water vapor was primarily concentrated from 700 hPa to 850 hPa, according to the height-longitude cross section. Moreover, from the atmosphere circulation anlysis, we obtain that the water vapor resource of the rainstorm of southern Xinjiang are from the 45°–65°N region of the North Atlantic Ocean. The water vapor transportation path is the Atlantic Ocean → Ural Mountains West Siberian Plain → southern Xinjiang. Sufficient water vapor and favorable thermal and dynamic conditions resulted in this rainstorm. Specifically, clockwise wind shear and the change in wind vectors from weak southeasterly to strong westerly winds in the middle-low atmosphere indicated warm advection, which provided favorable thermal conditions for the development of convective systems and convective instability. Strong divergence at the upper levels and strong convergence at the lower levels contributed to strengthened vertical transportation, which was dynamically favorable for atmospheric convection.
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This study analyzes trends in historical (1989–2018) and projected (2041–2060) temperature and precipitation maxima in the Swat River Basin, Pakistan. This basin has a history of climate-related disasters that directly affected livelihood and personal safety in local communities and are becoming more intense and more frequent due to changing climate. Major economic sources of this basin are agriculture and tourism, both highly sensitive to extreme climate events. Therefore, it is very important to assess future trends in extremes of temperature and precipitation. Non-parametric tests were employed for currently acquired data, while future projections were assessed using the statistical downscaling model (SDSM) with CanESM2 GCM under three scenarios: representative concentration pathways (RCPs) of 2.6, 4.5, and 8.5. The R2 value between monthly observed and simulated temperatures varied from 0.82 to 0.91 and 0.92 to 0.96 for training and confirmation periods, respectively. For areal precipitation, an R2 value of 0.49 was noted for calibration and 0.35 for validation. Observed temperatures showed a decreasing trend at all stations except Saidu Sharif, but the differences were not significant. Precipitation showed an increasing trend at two stations, Kalam and Malam Jabba, and a decreasing trend at two other stations, Dir and Saidu Sharif. A >2°C rise was noted for the annual projected maximum temperature (2041–2060) at areal and Dir, while Kalam, Malam Jabba, and Saidu Sharif showed a 1°C rise. For precipitation, an approximately 12% increase in annual maximum (areal) and seasonal precipitation (summer and autumn) was seen under all scenarios except RCP 4.5 in which there was a 20% and 32% increase in summer and autumn, respectively. The performance of SDSM in simulating maximum temperature and precipitation was satisfactory.
Keywords: climate change, downscaling, precipitation, Swat River Basin, SDSM, trend, temperature
1 INTRODUCTION
Climate change is a continuous and occasionally irreversible movement in the prolonged patterns of atmospheric variables in a particular area and in the whole world (Ikram et al., 2016). The majority of climate experts are of the opinion that climate is varying because of anthropogenic influences and will continue changing unless sufficient mitigation measures are adapted (Anderegg et al., 2010). Climate change is mostly due to variations in the amount of greenhouse gases in the atmosphere (Alexander et al., 2013). This change in the radiative energy budget of the climatic system either by human or natural disturbance is called “climate forcing” or “radiative forcing” (IPCC First assessment report, 1990). Changes in climate forcing affect the quantity and quality of ground water, the frequency and intensity of droughts and floods, and ultimately, the water resource management practices, especially at local scales (Amell, 2003). Thus, studying the effects of climate change on water has been an important area for research and has attained a paramount focus in recent years (Scanlon et al., 2007). From accurate investigations of climate variables measured by weather stations, it is possible to get a clearer picture of how powerful the impacts of climate change are at a regional scale. These trend analysis studies which are normally focused at the country level or in a part of a particular country have been carried out around the globe with outstanding results (Reiter et al., 2012).
By linking hydrological and atmospheric processes, precipitation acts as a critical element of the water cycle (Li et al., 2021) and its variations in terms of floods and droughts have direct effects on water resources and ecosystem services (Wu et al., 2013). The frequency and magnitude of precipitation are strongly linked to changes in climate (Pal and Al-Tabbaa, 2011). Hydrological patterns can be varied mainly by precipitation, which may further influence a society and its environment (Gajbhiye et al., 2016). Hence, accurately predicting precipitation trends is imperative for water resource management and economic development in a region (Ahmad et al., 2018). A warmer atmosphere tends to increase the evaporation rate, leading to more moisture spreading throughout the troposphere which can cause extreme events of precipitation and severe, prolonged droughts (Xu et al., 2006; Zhang et al., 2010). Warming can cause more precipitation as rain rather than snow, which may not only increase flood risks in spring, but also drought probability in summer particularly in snow-fed basins (Trenberth, 2011). Drought accounts for 59% of economic losses caused by climate extremes worldwide (Dong et al., 2022), and Pakistan is facing drought every 6 years and floods every 3 years (Ahmad et al., 2018). Pakistan suffered the worst drought in its history during 1998–2002 and a flood in 2010 due to the greater variability in precipitation in the Upper Indus Basin (Ahmad et al., 2018). Warming of the climate system also affects the sea level by melting snow and ice and thermal expansion of oceans, while increase in the average annual temperature warms the sea surface (IPCC 2007, 2013). The Hindukush glaciers are melting faster and the area will face extreme climatic events (IPCC, 2013). Studies showed that less snow and the recession of glaciers will have a severe impact on downstream areas if warming continues at 0.01°C/year in northern Hindukush areas (Fang et al., 2018).
To address these changes, there is a dire need for qualitative and quantitative evaluation of the impact of climate change on hydrological resources at regional scales. Till now, the general circulation models (GCMs) have been the principal tools for climate projection under various scenarios (Chu et al., 2010). Because of their coarse resolution and ineffectiveness in sorting out prominent features like topography and clouds at sub-grid scales, the current versions of GCMs cannot be directly used for local climate studies (Wilby et al., 2002; Xu et al., 2019). The performance of GCM simulations has been unsatisfactory at regional scales, and to overcome this, downscaling techniques have been developed as tools for connecting atmospheric predictors with local variables. Downscaling can be mainly categorized into dynamic and statistical types. In the dynamic method, the output of a GCM is utilized as the boundary conditions to derive a regional model and local-scale information at a resolution of 5–50 km, which responds in compatible ways to external forcing. However, dynamic downscaling involves high computational costs and mainly relies on GCM boundary conditions. Conversely, statistical downscaling produces regional/station-scale time series by suitable statistical relationships with predictors, which is computationally less expensive, readily transferable, and applicable for evaluation of climate risks. The disadvantage of statistical downscaling is that establishing the appropriate empirical relationships requires collecting data on a sufficiently long timescale (Wilby et al., 2002) of at least 30 years as mentioned in the SDSM user manual (version 4.2). Up to now, there have been certain models, among which the SDSM is prominent and freely available (Wilby et al., 2002). Several studies reported on its ease of use, and its superior capability makes it widely acceptable (Hashmi et al., 2011; Huang et al., 2011; Al-Mukhtar and Qasim, 2019; Saddique et al., 2020).
The study area is highly vulnerable to flooding because of monsoon rain, melting snow and ice, rough terrain, and human-induced factors (Malik and Ahmad, 2014). The area suffered calamitous floods in 1973, 1992, 1993, 1994, 1995, 1996, 2001, 2005, and 2010 (Bahadar et al., 2015). The 2010 flood was highly disastrous in the history of Swat which caused 86 fatalities, damaged 4,000 houses, killed 9,800 head of livestock, destroyed many bridges, and damaged the Amandara as well as the Munda headworks (Rahman and Khan, 2011). Similarly, the river is pivotal for the current and upcoming development of the country, with its three hydroelectric power plants with total capacity of approximately 123 MW, and a future potential of about 1000 MW, which could supply about 25% of the total energy shortage of the country. For that purpose, the government launched the Mohmand Dam project on the same river about 5 km upstream of the Munda headworks. The key objectives of the dam project are flood mitigation, irrigation of 16,737 acres of agricultural land, hydropower generation, and socio-economic uplift of the local people (Sabir et al., 2014). The area is also important for tourism as it is known throughout the country as “eastern Switzerland”. About 38% of the economy of the area relies on tourism and 31% on agriculture, each of which are adversely affected by extreme climatic events. In view of the sensitivity of the lives and livelihoods of the people to climate change and the immense environmental and socio-economic importance of the area, it is crucial to investigate the maximum temperature and precipitation predictions of the area in the context of climate change.
Several studies have been carried out by different researchers like (Archer and Fowler, 2004; Srinivas and Kumar, 2006; Ahmad et al., 2014; Hartmann and Buchanan, 2014; Ahmad et al., 2018; Anjum et al., 2019), but they have discussed only the observed hydro-climatic variables. The novelty of our study lies in the fact that no study has been carried out on the effects of observed and projected maximum temperature and precipitation trends simultaneously in the Swat River Basin. The SDSM using CanESM2 GCM has not been applied, even in the entire Indus Basin; hence this study aims to fill that gap in the research. The objectives of the study are to analyze the trends of observed (1989–2018) maximum temperatures and precipitation and to predict the trends of temperature and precipitation maxima by the middle of this century (2041–2060). The mid-century (near-term) climate projections were chosen because they have been acknowledged as especially significant by policymakers in industry and government, there has been an increase in global research on understanding near-term climate projections, and because of an acceptance of the fact that these climate projections are normally less sensitive to differences between future emission scenarios than long-term projections (IPCC, 2013).
2 STUDY AREA
The Swat River is the right bank branch of the Indus River which originates in the high mountains of Swat-Kohistan in northwestern Pakistan. Two rivulets Gabral and Ushu from corresponding glaciers meet at Kalam to form the Swat River. Downstream, it also receives input from perennial streams such as Deolai, Daral, and Harnoi. The Swat River is fed by glaciers, snow, and rain on a north-to-south slope. From Kalam to Mingora, the river runs southward and then turns west until it reaches the greater right-tributary of the Panjkora River. As a whole, the river flows through Kalam, Swat, and Lower Dir, through the districts of Mardan and Malakand and empties into the Kabul River at Nisatta. Seasonally, Swat is affected by the monsoon, altitude, latitude, and the winter wind waves of the Mediterranean Sea. The general climate of the region can be split into sub-humid, humid, and semi-arid (Bahadar et al., 2015). The region is part of the strip influenced by the monsoon and western disturbances with a short mild summer and a long cool winter (Anjum et al., 2016). The warmest month of the year is June with average maximum/minimum temperatures of 33 and 16°C, respectively. The coldest month is January with frequent snowfalls and an average highest and lowest temperature of 11 and −2°C, respectively (Ahmad et al., 2014). The summer season in the area lasts from May till September while winter varies between September and March. The mean precipitation in summer is 246.4 mm and that of winter is 815.3 mm (Khan and Hasan, 2016), while the annual average rainfall fluctuates between 700 mm and 1630 mm (Ahmad et al., 2014). Figure 1 gives details of the study area and Table 1 gives description of the weather stations used in this study.
[image: Figure 1]FIGURE 1 | Study area map showing the weather stations used in the research.
TABLE 1 | Details of weather stations used in study.
[image: Table 1]Swat is positioned almost 160 km northwest of the capital, Islamabad, and is encircled by hills on all sides except the southwest, which offers a channel for the Swat River. To the north of the valley are the Chitral and Ghizar districts, to the east lie Kohistan and Shangla, Malakand and Buner are located in the south, while to the west are the Upper and Lower Dir (Rahman and Khan, 2011). The most prominent vegetation (natural) in the study area is forest composed primarily of conifers in the higher elevations, with patches of weeds and wild species at lower elevations. The area covered by forest is a little larger than the cultivable region. Agriculture, handicrafts and tourism are the chief sources of livelihood. The area is also known for walnuts, citrus fruits, apples, apricot, almonds, and pears (Sultan-i-Rome 2005).
3 MATERIALS AND METHODS
3.1 Data
Historical data of daily temperature and precipitation from 1989 to 2018 at stations in Dir and Saidu Sharif was provided by the Pakistan Meteorological Department in Islamabad, while data of the same time period at the other two stations (Kalam and Malam Jabba) was obtained from the Regional Meteorological Center in Peshawar. This time period was chosen because it had the fewest missing values. There were no missing temperature or precipitation values from the Kalam and Malam Jabba stations. However, some missing values from the Dir and Saidu Sharif stations were extrapolated by taking the mean of the preceding 2 days and the succeeding 2 days (Owolabi et al., 2020). A Pettit test was employed to check the homogeneity of data. The NCEP/NCAR reanalysis dataset downloaded from National Center of Environmental Prediction (https://climate-scenarios.canada.ca/?page=pred-canesm2) was used in this study. It is a daily time series from 1961 to 2005 at a spatial resolution of 2.5° (long.) * 2.5° (lat.) including 26 variables, like mean sea level pressure, near surface relative humidity, 2-m air temperature, near surface specific humidity, etc. The CMIP5-ESMs climate model for high emission (RCP 8.5), intermediate (RCP 4.5), and low emission (RCP 2.6) scenarios at a grid resolution of 2.8125°× 2.8125° was downloaded from the Canadian Centre of Climate Modeling/Analysis for the periods 1961–2005 and 1961–2099. These variables were then used in the SDSM for calibration and validation as well as projection.
3.2 Methods
3.2.1 Trend analysis of the observed data
The basic purpose of trend analysis is to determine whether the observed time series is decreasing, increasing or trendless (Ahmad et al., 2018). A rank-based, non-parametric Mann-Kendall test was used to determine trends in the annual maximum time series of temperature and precipitation. The “null hypothesis” and “alternative hypothesis” implies that the time series is trendless or there is a decreasing/increasing trend, respectively. Since serial correlations affected the results of this test, the trend free “prewhitening” approach of Yue et al. (2002) was used. This technique is widely applied to overcome the effects of autocorrelation and serial correlation. The mathematical equations for calculating MK statistics are given below:
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where m represents the observation numbers and xi and xj are the ith and jth observations, respectively. The sign function sgn can be calculated by:
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The S statistic variance may be calculated as:
[image: image]
where q denotes tied group numbers while tp represents the pth group observations. The MK Z statistics can be estimated as:
[image: image]
Another rank-based non-parametric test, Spearman’s rho (Lehmann, 1975; Sneyers, 1990), was used in comparison with the Mann Kendall test. The null hypothesis indicates no trend and the alternative hypothesis means an increasing/decreasing trend over time. The Rsp and Zsp statistics of the test are defined as following.
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where Di denotes the ith observation rank, i indicates the number of the sequential order and n is the complete length of data.
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and Zsp represents the Student’s t distribution with (n-2) degree of freedom, while negative and positive values of Zsp correspond to decreasing and increasing trends, respectively. Using the method of Sen (1968), the magnitude of the slope was calculated as:
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where Yi and Yj denote the data at points (time) i and j, respectively. If the entire number of points in the time-series is n, this implies that [image: image] and bSen will be the estimated slope and median of all slopes, respectively. A negative value of the test describes a decreasing trend, while a positive value shows an increasing trend.
3.2.2 Climate projection and the SDSM
Climate change projection was done with the Canadian Earth System Model Second Generation (CanESM2) developed by the Canadian Centre for Climate Modeling and Analysis which is comprised of the fourth-generation atmospheric general circulation model (CGCM4) and the fourth-generation ocean general circulation model (OGCM4). It is a climate simulation performed within the framework of the climate model inter-comparison project phase 5 (CMIP 5) which was in the fifth assessment report of the IPCC (Khadka and Pathak, 2016). The statistical downscaling was carried out using the SDSM downloaded from http://www.sdsm.org.uk (Wilby et al., 2002), which is a combination of multiple linear regression and stochastic weather generator. The multiple linear regressions establish an empirical relationship between predictors and local variables and produce regression parameters. The purpose of multiple linear regressions is to establish an empirical relationship between large-scale and local-scale variables and generate regression parameters from the present data. These parameters combined with NCEP/GCM predictors are then used by the weather generator to simulate around 100 daily time series to generate a finer correlation with the observed data (Wilby et al., 2002). The ordinary least squares calculation was used as an optimization method that not only gave comparable results but was also faster than the dual simplex method (Huang et al., 2011). An annual sub-model was used for temperature while a monthly sub-model was chosen for precipitation projection, because it gave maximum values of the coefficient of determination, R2, between observed and simulated data during model calibration and validation. The unconditional model was employed for the independent variable, temperature, and the conditional model for precipitation (Wilby et al., 2002), since precipitation data is normally skewed. A fourth root transformation was employed for precipitation to render it normal (Huang et al., 2011). For mathematical details, readers should consult (Wilby et al., 1999). Figure 2 illustrates the overall methodology of SDSM.
[image: Figure 2]FIGURE 2 | Methodology adopted by SDSM for downscaling and scenario generation.
The pivotal step in statistical downscaling is identifying the effective predictors, which is known as ‘screening of predictors’. In this study, the correlation coefficient, R, between predictors and predictand, was determined outside the SDSM to bring the values to an acceptable limit (Hashmi et al., 2011). The value of R has been calculated according to Equation 8:
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where R is the correlation coefficient, xi is a value of the x variable in the sample, [image: image] is the mean of the x values, yi is a value of the y variable in the sample, and [image: image] is the mean of the y values.
Predictor screening for temperature was straightforward, but for precipitation, certain values of SDSM parameters such as “variance inflation” and “event threshold” were tried. Simultaneously, sets of predictors were kept changing until the maximum coefficient of determination between monthly observed and simulated data was obtained (Hashmi et al., 2011). The mathematical equation for R2 is given as Equation 9:
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where Xi is a measured value, Xav is the mean of the measured values, Yi is a simulated value, and Yav is the mean of the simulated values. Data were divided into two parts: 1989 to 2000 was used for calibration while 2001 to 2005 was used for model validation. The stochastic weather generator was employed to produce 20 ensembles of weather series and the mean of those ensembles was compared with time series of the confirmation period. The calibrated model was then used for projection of temperature and precipitation over the selected period (2041–2060). The variation in precipitation and temperature was acquired from the percent change/absolute difference of the projected predictand with respect to the monthly mean of the observed period.
4 RESULTS AND DISCUSSION
4.1 Observed data
Table 2 shows a mixed result of nonsignificant increasing and decreasing trends in annual maximum temperature and precipitation. Among the nonsignificant temperature trends, all the stations showed decreasing levels (with Dir being the highest and Kalam the lowest) except for Saidu Sharif. This agrees with the study of Chaudhry et al., 2009, which reported that the northwestern part of the country had negative temperature trends, similar to the conclusions of Srinivas and Kumar (2006) who observed temperatures decreasing to −26°C in the northern hilly regions of the country. This is also in agreement with Anjum et al. (2019) who found no significant decreasing or increasing temperature trends in any of the zones of Swat.
TABLE 2 | Results of Man-Kendall and Spearman’s rho tests at 5% significance level.
[image: Table 2]Similar to the findings with regard to temperature, precipitation showed mixed results of nonsignificant decreasing and increasing trends. Two stations Dir and Saidu Sharif (with Dir being higher) showed a nonsignificant decreasing trend while Kalam and Malam Jabba (Kalam being higher) revealed a nonsignificant increasing trend. Similar results were revealed by the study of Ali and Iqbal (2012) that concluded there was no obvious trend in annual maximum rainfall at different stations of K.P including D.I. Khan, Peshawar, Parachinar, and Dir. This was further supported by Chaudhry et al. (2009) who stated that the precipitation trend was highly variable in spatio-temporal terms across Pakistan. Research conducted by Ahmad et al. (2014) showed that for annual precipitation, no significant trends were noted in the entire Swat River Basin which supported the findings of the current study. Similar conclusions were reached in the study of Ahmad et al. (2018) who claimed that annual precipitation exhibited an increasing trend at four stations in the northeastern region and a decreasing trend at two stations in the southeastern parts of the Upper Indus Basin. This also matched with (Khattak et al., 2011) where there were indefinite patterns of precipitation in the Upper Indus Basin. These changes in precipitation could cause Pakistan to suffer disasters like floods and droughts in the near future. Changing precipitation trends can be attributed to increasing aerosols from anthropogenic activities, deforestation, decreasing global monsoon circulation, global climate shifts, and changes in land use practices (Ahmad et al., 2014).
4.2 Projection of temperature and precipitation
4.2.1 Screening of predictors
This step is supposed to identify suitable sets of predictors from NCEP/NCAR reanalysis datasets based on maximum correlation. Selection of predictors varies depending on geography of the area and the characteristics of the predictand (Anandhi et al., 2009). Details of all NCEP predictors are given in Table 3 (Al-Mukhtar and Qasim, 2019). The ones in bold text were chosen for calibration of temperature, those in bold, erect text for calibration of precipitation, while bold, erect, and underlined text (nceps500-gl) was used in calibration of both temperature and precipitation. These sets of predictors were obtained through the use of maximum correlation coefficients and coefficients of determination between observed and simulated data. The shortlisted predictors for areal and station temperature included ncepp1-fgl, ncepp500-gl, ncepshumgl, nceps500-gl, nceps850-gl, and nceptempgl. The temperature predictors selected in this study were the same (excluding the first two) as in (Al-Mukhtar and Qasim, 2019), where the differences in two predictors could be ascribed to the difference between terrain and climate of the two areas. The relationship between these predictors is rational because they are correlated with the variation in temperature properties by thermal advection (Al-Mukhtar and Qasim, 2019).
TABLE 3 | Description of all NCEP variables (those in bold were chosen for model calibration).
[image: Table 3]The coefficient of determination between NCEP predictors and precipitation at individual stations was not favorable, so areal precipitation (the average of daily precipitation of all stations) was used; a similar approach was adopted by (Hashmi et al., 2011). Shortlisted predictors for areal precipitation included ncepp1-ugl, ncepp1-vgl, ncepp1-thgl, ncepp5-fgl, ncepp5-vgl, ncepp5-zgl, ncepp5-zhgl, ncepp8-ugl, ncepp8-vgl, ncepprcpgl, and nceps500-gl. Hessami et al. (2008) claimed that these parameters were linked with precipitation as their synchronous variation relied on the saturation phase of water vapor in the earth’s atmosphere.
4.2.2 Calibration and validation
The model having the maximum coefficient of determination and somewhat similar standard deviations between observed and simulated time series was considered as successfully calibrated and validated (Hashmi et al., 2011). Figure 3 shows comparisons between observed and simulated precipitation (areal) and the standard deviation. It is obvious that there is negligible variation between the observed and simulated standard deviations except in December for which the model slightly overestimated the observed precipitation. Similar results were found between observed and simulated temperatures (areal and station-wise).
[image: Figure 3]FIGURE 3 | SDSM calibration of observed and simulated areal precipitation characteristics.
Figure 4 indicates that during the validation period, the SDSM overestimated the simulated precipitation for the months of February and October because of the extreme precipitation events in those months. Downscaling models are mostly assumed to be less capable of modeling the variance and standard deviation of the historical precipitation data with significant accuracy (Wilby et al., 2004; Hashmi et al., 2011). These models are often calibrated in ways not specifically intended for handling extreme events about which limited information is available (Wilby et al., 2004). Model calibration and validation of areal temperature as well as individual stations were performed in the same way and quite similar results were produced. Calibration and confirmation of the model was also verified in terms of the R2 value between the monthly observed and simulated data (Table 4).
[image: Figure 4]FIGURE 4 | SDSM validation of observed and simulated areal precipitation characteristics.
TABLE 4 | Details of monthly coefficient of determination for calibration/validation periods.
[image: Table 4]4.2.3 Downscaling future climate scenarios
Based on RCP scenarios generated from CanESM2 GCM, the SDSM was run for projection of precipitation and temperature for the period 2041 to 2060. Figure 5 shows the change in projected temperature compared to the observed temperature and a significant change was noted for Dir, a 2.8°C rise under RCP 2.6, a 2.5°C increase under RCP 4.5, and a 2.98°C increase against RCP 8.5. The minimum increase in future temperatures has been observed at Saidu Sharif: 0.61°C, 0.35°C and 0.77°C under RCP 2.6, 4.5 and 8.5, respectively. The temperatures at Kalam (RCP 2.6_ 1.03°C RCP 4.5_0.69°C, RCP 8.5_1.37°C) and Malam Jabba (RCP 2.6_ 0.77°C, RCP 4.5_0.67°C, RCP 8.5_1.22°C) showed minimal differences between them. The minimum increase in temperature of all stations was noted with RCP 4.5, while the maximum increase occurred under RCP 8.5. Similar to the Dir station, the areal temperature also showed a remarkable increase in projected temperature of 2.2°C, 2.3°C, and 2.5°C under RCP 2.6, 4.5, and 8.5, respectively. Unlike station temperatures, the minimum temperature was observed by RCP 2.6, then 4.5 and finally by RCP 8.5. This is consistent with the study of Maida and Ghulam (2011) that determined the frequency of extreme precipitation and temperature in Pakistan, and found that the magnitude of the minimum and maximum temperatures was increasing, especially in Balochistan, Punjab, Azad Kashmir, and northern areas.
[image: Figure 5]FIGURE 5 | Changes in projected annual maximum temperatures.
The seasonal variation in temperatures was also quite alarming. Figure 6 shows that for areal temperatures in spring, summer, and autumn, there has been a rise almost exceeding 2°C under all RCPs except RCP 4.5, which experienced an increase of 1.3°C in summer. Furthermore, winter temperatures have exhibited a surge of 1.9°C, 1.8°C, and 2.7°C under RCP 2.6, 4.5, and 8.5, respectively. Dir is the only station that had an increasing trend in seasonal temperatures under all RCPs (Figure 7A). Under RCP 4.5, all seasons showed increases >2°C. RCP 2.6 revealed a rise of 2.2°C, 2.7°C, 4.1°C, and 3.2°C in winter, spring, summer and autumn, respectively. It is evident from Figure 7B that Kalam station experienced a remarkable increase in winter and autumn temperatures under all RCPs. RCP 4.5 in the summer season showed a decrease of 1.6°C, while RCP 2.6 and 8.5 of spring experienced a rise of 1.4°C and 1.2°C, respectively. Temperatures at Malam Jabba and Saidu Sharif exhibited significant increases in winter and notable declines in summer (Figure 7C, D).
[image: Figure 6]FIGURE 6 | Changes in seasonal maximum areal temperatures.
[image: Figure 7]FIGURE 7 | Changes in maximum seasonal temperatures of Dir (A), Kalam (B), Malam Jabba (C), and Saidu Sharif (D).
Figure 8 shows percent changes in the annual and seasonal maximum precipitation time series by the middle of this century and the variation in precipitation was 12% for RCP 2.6 and 4.5, and 11% for RCP 8.5. This is compatible with the study of Hartmann and Buchanan (2014) who found increasing trends in extreme precipitation indices in the Indus Basin. The same was acknowledged by Rahman et al. (2018) who studied the spatio-temporal changes in rainfall and drought in Khyber Pakhtunkhwa, and all stations revealed positive skewness excluding Balakot while the major change was found at the Parachinar and Balakot stations. On a seasonal scale, the greatest increase in maximum precipitation was observed in summer (RCP 2.6_11%, RCP 4.5_20%, RCP 8.5_12%) and autumn (RCP 2.6_11%, RCP 4.5_32%, RCP 8.5_14%), while the rise in maximum precipitation in winter (RCP 2.6_11%, RCP 4.5_6%, RCP 8.5_6%), and spring (RCP 2.6_15%, RCP 4.5_1%, RCP 8.5_9%), was minor compared to autumn and summer. This agrees with the results of Archer and Fowler (2004) who investigated the spatio-temporal changes in precipitation in the Upper Indus Basin, and a remarkable increase in summer, winter and annual precipitation at certain stations was observed. This is also supported by the study of Hussain and Lee (2013) who analyzed the regional/seasonal changes in precipitation extremes in Pakistan and found that in all seasons, a rising trend in extreme precipitation occurred in the northeastern part, while a decreased tendency prevailed in the southwestern portion of the country.
[image: Figure 8]FIGURE 8 | Changes in projected annual and seasonal maximum precipitation.
Figure 9 shows that the maximum wet spell length has increased annually by12%, 11%, and 34% under RCP 2.6, 4.5, and 8.5, respectively, and on a seasonal scale except for winter, where a decrease of 3%, 8%, and 1% occurred for RCP 2.6, 4.5, and 8.5, respectively. A greater than 12% increase in the maximum wet spell in spring was seen for all RCPs, while the summer season had an increase of 15%, 7%, and 20% under RCP 2.6, 4.5, and 8.5, respectively. Because winter had a downward trend in maximum wet spell, an upward trend in the dry spell occurred in the same season (Figure 10). Similarly, the spring and autumn seasons revealed a decreasing trend in the length of the dry spell and an upward trend in the wet spell in the same seasons. Similar results were presented by Salma et al. (2012) who studied rainfall variation in different climate zones of the country, and their results showed a declining trend of −1.18 mm/decade around the country.
[image: Figure 9]FIGURE 9 | Percent change in maximum wet spell length.
[image: Figure 10]FIGURE 10 | Percent change in maximum dry spell length.
Prolonged periods with high or low temperature, extensive or no rainfall may cause stress on flora, fauna and humans. These periods have other hydrological and ecological consequences. They can influence growth and yield of plants and crops, production of milk in animals, conception in cows, reproduction of dairy bulls, and modifications in the growing seasons of crops, with serious effects on the water cycle and damage to the economy of a region (Anandhi et al., 2016).
5 CONCLUSION
This study aimed to investigate the variations in maxima of temperature and precipitation in the Swat River Basin using observed data from four weather stations to evaluate the vulnerability of the watershed to climate change. The SDSM, which is a popular statistical downscaling tool, was used to generate local scale future climate data of four selected stations in the study watershed based on the outputs of selected GCM (CanESM2) under three representative concentration pathways: RCP 2.6, 4.5, and 8.5. Screening for the most suitable predictors for SDSM calibration in precipitation simulation was the major challenge of this study due to the complex topography of the basin and the stochastic nature of precipitation.
Data from four available climate observation stations in the basin were analyzed in terms of seasonal and annual maxima to determine current and future trends of climate extremes. A mixed result of nonsignificant increasing and decreasing trends in annual maximum temperatures and precipitation was found in the observed data (all stations showed decreasing temperature trends except Saidu Sharif). For precipitation, the northwestern areas showed nonsignificant decreasing trends while the northeastern regions revealed increasing trends. The projected maximum temperature (annual and seasonal) showed a rising trend while the maximum precipitation revealed increasing trends on an annual and seasonal time series, particularly in summer and autumn. On the whole, the results revealed that increases in maximum temperature lead to increased numbers of dry days and extreme precipitation events.
Data were scarce in the study area because of the few and unevenly distributed meteorological stations; still, the results are important for current as well as future economic development of the country in terms of agriculture, tourism and hydropower. The outcomes of our study will help researchers to appreciate the sensitivity of the Swat River Basin to extreme climatic events and will serve as a source for evaluating the impact of climate change on environment, agriculture, human health, tourism, and water resources in the area, and for strengthening local decision-making, adaptive capacity, and strategic planning.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding authors.
AUTHOR CONTRIBUTIONS
MH conceptualized and supervised the research, AJ contributed in data collection and designing methodology, and HI helped in model calibration and validation. The formal analysis and write up of the original draft was done by WA, data curation by SA, and SR reviewed and edited the manuscript.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
REFERENCES
 Ahmad, I., Tang, D., Wang, T., Wang, M., and Wagan, B. (2014). Precipitation trends over time using mann-kendall and spearman’s rho tests in Swat River Basin, Pakistan. Adv. Meteorology 2015, 1–15. Article ID 431860. doi:10.1155/2015/431860
 Ahmad, I., Zhang, F., Tayyab, M., Anjum, M. N., Zaman, M., Liug, J., et al. (2018). Spatiotemporal analysis of precipitation variability in annual, seasonal and extreme values over upper Indus River basin. Atmos. Res. 213, 346–360. doi:10.1016/j.atmosres.2018.06.019
 Al-Mukhtar, M., and Qasim, M. (2019). Future predictions of precipitation and temperature in Iraq using the statistical downscaling model. Arab. J. Geosci. 12 (2), 25. doi:10.1007/s12517-018-4187-x
 Alexander, M. A., Scott, J. D., Mahoney, K., and Barsugli, J. (2013). Greenhouse gas induced changes in summer precipitation over Colorado in NARCCAP regional climate models. J. Clim. 26, 8690–8697. doi:10.1175/jcli-d-13-00088.1
 Ali, M., and Iqbal, M. (2012). A probabilistic approach for estimating return periods of extreme annual rainfall in different cities of Khyber Pakhtunkhwa (KPK), Pakistan. Nucl. 49 (2), 107–114. 
 Amell, N. W. (2003). Relative effects of multi-decadal climatic variability and changes in the mean and variability of climate due to global warming: Future streamflows in britain. J. Hydrol. X. 270, 195–213. doi:10.1016/s0022-1694(02)00288-3
 Anandhi, A., Hutchinson, S., Harrington, J., Rahmani, V., Kirkham, M. B., and Rice, C. W. (2016). Changes in spatial and temporal trends in wet, dry, warm and cold spell length or duration indices in Kansas, USA. Int. J. Climatol. 36 (12), 4085–4101. doi:10.1002/joc.4619
 Anandhi, A., Shrinivas, V. V., Nanjundiah, R. S., and Kumar, D. N. (2009). Role of predictors in downscaling surface temperature to river basin in India for IPCC SRES scenarios using support vector machine. Int. J. Climatol. 29 (4), 583–603. doi:10.1002/joc.1719
 Anderegg, W. R. L., Prall, J. W., Harold, J., and Schneider, S. H. (2010). Expert credibility in climate change. Proc. Natl. Acad. Sci. U. S. A. 107, 12107–12109. doi:10.1073/pnas.1003187107
 Anjum, M. N., Ding, Y., Shangguan, D., Ijaz, M. W., and Zhang, S. (2016). Evaluation of high resolution satellite-based real-time and post-real-time precipitation estimates during 2010 extreme flood event in Swat River Basin, Hindukush Region. Adv. Meteorology 2016, 1–8. doi:10.1155/2016/2604980
 Anjum, M. N., Ding, Y., Shangguan, D., Liu, J., Ahmad, I., Ijaz, M. W., et al. (2019). Quantification of spatial temporal variability of snow cover and hydro-climatic variables based on multi-source remote sensing data in the Swat watershed, Hindukush Mountains, Pakistan. Meteorol. Atmos. Phys. 131 (3), 467–486. doi:10.1007/s00703-018-0584-7
 Archer, D. R., and Fowler, H. J. (2004). Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol. Earth Syst. Sci. 8, 47–61. doi:10.5194/hess-8-47-2004
 Bahadar, I., Shafique, M., Khan, T., Tabassum, I., and Ali, M. Z. (2015). Flood hazard assessment using hydro dynamic model and GIS/RS tools: A case study of babuzai kabal tehsil swat basin. J. Himal. Earth Sci. 48 (2), 29–138. 
 Chaudhry, Q. U. Z., Mahmood, A., Rasul, G., and Afzaal, M. (2009). Climate change indicators of Pakistan. Technical Report No. PMD 22/2009. Islamabad: Pakistan Meteorological Department, 1–43. 
 Chu, J. T., Xia, J., Xu, C. Y., and Singh, V. P. (2010). Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theor. Appl. Climatol. 99, 149–161. doi:10.1007/s00704-009-0129-6
 Dong, Z., Liu, H., Baiyinbaoligao, H., Hu, H., Khan, M. Y. A., Wen, J., et al. (2022). Future projection of seasonal drought characteristics using CMIP6 in the Lancang-Mekong River Basin. J. Hydrology 610, 127815. doi:10.1016/j.jhydrol.2022.127815
 Fang, J., Kong, F., Fang, J., and Zhao, L. (2018). Observed changes in hydrological extremes and flood disaster in yangtze River Basin: Spatial–temporal variability and climate change impacts. Nat. Hazards (Dordr). 93, 89–107. doi:10.1007/s11069-018-3290-3
 Gajbhiye, S., Meshram, C., Singh, S. K., Srivastava, P. K., and Islam, T. (2016). Precipitation trend analysis of Sindh River basin, India, from 102-year record (1901-2002). Atmos. Sci. Lett. 17, 71–77. doi:10.1002/asl.602
 Hartmann, H., and Buchanan, H. (2014). Trends in extreme precipitation events in the Indus River Basin and flooding in Pakistan. Atmosphere-Ocean 52 (1), 77–91. doi:10.1080/07055900.2013.859124
 Hashmi, M. Z., Shamseldin, A. Y., and Melville, B. W. (2011). Comparison of SDSM and LARS- WG for simulation and downscaling of extreme precipitation events in a watershed. Stoch. Environ. Res. Risk Assess. 25, 475–484. doi:10.1007/s00477-010-0416-x
 Hessami, M., Gachon, P., Ouarda, T. B. M. J., and St-Hilaire, A. (2008). Automated regression based statistical downscaling tool. Environ. Model. Softw. 23 (6), 813–834. doi:10.1016/j.envsoft.2007.10.004
 Huang, J., Zhang, J., Zhang, Z., Xu, C., Wang, B., and Yao, J. (2011). Estimation of future precipitation change in the Yangtze River basin by using statistical downscaling method. Stoch. Environ. Res. Risk Assess. 25 (6), 781–792. doi:10.1007/s00477-010-0441-9
 Hussain, M. S., and Lee, S. (2013). The regional and the seasonal variability of extreme precipitation trends in Pakistan. Asia. Pac. J. Atmos. Sci. 49 (4), 421–441. doi:10.1007/s13143-013-0039-5
 Ikram, F., Afzaal, M., Bukhari, S. A. A., and Ahmed, B. (2016). Past and future trends in frequency of heavy rainfall events over Pakistan. Pak J. Met. 12, 57–78. 
 IPCC (2013). Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 1535. 
 IPCC First assessment report (1990). Climate change: The IPCC scientific assessment. Cambridge: Cambridge University Press. 
 IPCC (2007). Summary for policymakers. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom: Cambridge University Press. 
 Khadka, D., and Pathak, D. (2016). Climate change projection for the marsyangdi river basin, Nepal using statistical downscaling of GCM and its implications in geodisasters. Geoenvironmental Disasters 3 (1), 15. doi:10.1186/s40677-016-0050-0
 Khan, S., and Hasan, M. (2016). Climate change impacts and adaptation to flow of Swat River and glaciers in hindu kush ranges, swat district, Pakistan (2003-2013). Int. J. Econ. Environ. Geol. 7 (1), 24–35. 
 Khattak, M. S., Babel, M. S., and Sharif, M. (2011). Hydro-meteorological trends in the upper Indus River basin in Pakistan. Clim. Res. 46, 103–119. doi:10.3354/cr00957
 Lehmann, E. L. (1975). Nonparametrics, statistical methods based on ranks. San Francisco, Calif, USA: Holden Day. 
 Li, K., Tian, F., Khan, M. Y. A., Xu, R., He, Z., Yang, L., et al. (2021). A high-accuracy rainfall dataset by merging multiple satellites and dense gauges over the southern Tibetan Plateau for 2014–2019 warm seasons. Earth Syst. Sci. Data 13, 5455–5467. doi:10.5194/essd-13-5455-2021
 Maida, Z., and Ghulam, R. (2011). Frequency of extreme temperature and precipitation events in Pakistan 1965-2009. Sci. Int. (Lahore) 23 (4), 313–319. 
 Malik, M. I., and Ahmad, F. (2014). Flood inundation mapping and risk zoning of the Swat River Pakistan using HEC-RAS model. J. Sci. Technol. l3, 45–52. 
 Owolabi, S. T., Madi, K., and Kalumba, A. M. (2020). Comparative evaluation of spatio-temporal attributes of precipitation and streamflow in buffalo and tyume catchments, eastern cape, south Africa. Environ. Dev. Sustain. 23, 4236–4251. doi:10.1007/s10668-020-00769-z
 Pal, I., and Al-Tabbaa, A. (2011). Assessing seasonal precipitation trends in India using parametric and non-parametric statistical techniques. Theor. Appl. Climatol. 103, 1–11. doi:10.1007/s00704-010-0277-8
 Rahman, A. U., and Khan, A. N. (2011). Analysis of flood causes and associated socio economic damages in the Hindukush region. Nat. Hazards (Dordr). 59 (3), 1239–1260. doi:10.1007/s11069-011-9830-8
 Rahman, G., Rahman, A., Samiullah, , and Dawood, M. (2018). Spatial and temporal variation of rainfall and drought in Khyber Pakhtunkhwa Province of Pakistan during 1971-2015. Arab. J. Geosci. 11, 46. doi:10.1007/s12517-018-3396-7
 Reiter, A., Weidinger, R., and Mauser, W. (2012). Recent Climate Change at the Upper Danube A temporal and spatial analysis of temperature and precipitation time series. Clim. Change 111, 665–696. doi:10.1007/s10584-011-0173-y
 Sabir, M. A., Rehman, S. S., Umar, M., Waseem, A., Farooq, M., Fariduulah, , et al. (2014). Assessment of hydro power potential of swat, kohistan himalayas: A solution for energy shortfall in region. Water Resour. 41 (5), 612–618. doi:10.1134/s0097807814050091
 Saddique, N., Khaliq, A., and Bernhofer, C. (2020). Trends in temperature and precipitation extremes in historical (1961–1990) and projected (2061–2090) periods in a data scarce mountain basin, northern Pakistan. Stoch. Environ. Res. Risk Assess. 34, 1441–1455. doi:10.1007/s00477-020-01829-6
 Salma, S., Rehman, S., and Shah, M. (2012). Rainfall trends in different climate zones of Pakistan. Pak J. Met. 9 (17). 
 Scanlon, B. R., Jolly, I., Sophocleous, M., and Zhang, L. (2007). Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resour. Res. 43, W03437. doi:10.1029/2006WR005486
 Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63 (324), 1379–1389. doi:10.1080/01621459.1968.10480934
 Sneyers, R. (1990). On the statistical analysis of series of observations. Technical Note 143, WMO no. 415. Geneva, Switzerland: World Meteorological Organization. 
 Srinivas, K., and Kumar, P. K. D. (2006). Atmospheric forcing on the seasonal variability of sea level at Cochin, southwest coast of India. Cont. Shelf Res. 26, 1113–1133. doi:10.1016/j.csr.2006.03.010
 Sultan-i-Rome (2005). Forestry in the princely state of swat and Kalam (north-west Pakistan): A historical perspective on norms and practices. IP6 Working Paper No. 6. North-south Dialogue: Swiss National Centre of Competence in Research, 126. 
 Trenberth, K. E. (2011). Changes in precipitation with climate change. Clim. Res. 47, 123–138. doi:10.3354/cr00953
 Wilby, R. L., Dawson, C. W., and Barrow, E. M. (2002). SDSM-a decision support tool for the assessment of regional climate change impacts. Environ. Model. Softw. 17, 145–157. doi:10.1016/s1364-8152(01)00060-3
 Wilby, R. L., Charles, S. P., Zorita, E., Timbal, B., Whetton, P., and Mearns, L. O. (2004). Guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting material of the Intergovernmental Panel on Climate Change, 27. Available from the DDC of IPCC TGCIA. 
 Wilby, R. L., Hay, L. E., and Leavesley, G. H. (1999). A comparison of downscaled and raw GCM output: Implications for climate change scenarios in the san juan River basin, Colorado. J. Hydrol. X. 225, 67–91. doi:10.1016/s0022-1694(99)00136-5
 Wu, P., Christidis, N., and Stott, P. (2013). Anthropogenic impact on Earth's hydrological cycle. Nat. Clim. Chang. 3, 807–810. doi:10.1038/nclimate1932
 Xu, C. Y., Gong, L., Jiang, T., Chen, D., and Singh, V. P. (2006). Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J. Hydrol. X. 327, 81–93. doi:10.1016/j.jhydrol.2005.11.029
 Xu, R., Hu, H., Tian, F., Li, C., and Khan, M. Y. A. (2019). Projected climate change impacts on future streamflow of the Yarlung Tsangpo Brahmaputra River. Glob. Planet. Change 175, 144–159. doi:10.1016/j.gloplacha.2019.01.012
 Yue, S., Pilon, P., Phinney, B., and Cavadias, G. (2002). The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 16, 1807–1829. doi:10.1002/hyp.1095
 Zhang, Q., Xu, C.-Y., Tao, H., Jiang, T., and Chen, Y. D. (2010). Climate changes and their impacts on water resources in the arid regions: A case study of the tarim River basin, China. Stoch. Environ. Res. Risk Assess. 24, 349–358. doi:10.1007/s00477-009-0324-0
Conflict of interest: HI was employed by the Rawalpindi Waste Management Company.
The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Ali, Hashmi, Jamil, Rasheed, Akbar and Iqbal. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 04 January 2023
doi: 10.3389/fenvs.2022.1080810


[image: image2]
Sensitivity of river ecological baseflow to climate change in arid areas
Keke Hu1,2,3, Jiancun He4, Sulitan Danierhan1,2* and Yiliyasi Tuerxun5
1State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
2Aksu National Station of Observation and Research for Oasis Agro-ecosystem, Aksu, China
3College of Resources and Environment, University Chinese Academy of Sciences, Beijing, China
4Water Resources Planning and Research Institute of Xinjiang Water Resources Department, Urumqi, China
5Xinjiang Uygur Autonomous Region Water Resources Science and Technology Promotion Station, Urumqi, China
Edited by:
Zengyun Hu, Chinese Academy of Sciences (CAS), China
Reviewed by:
Mohammed Magdy Hamed, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Egypt
Tongbi Tu, Sun Yat-sen University, China
Junqiang Yao, China Meteorological Administration, China
* Correspondence: Sulitan Danierhan, sulitan@ms.xjb.ac.cn
Specialty section: This article was submitted to Atmosphere and Climate, a section of the journal Frontiers in Environmental Science
Received: 26 October 2022
Accepted: 16 December 2022
Published: 04 January 2023
Citation: Hu K, He J, Danierhan S and Tuerxun Y (2023) Sensitivity of river ecological baseflow to climate change in arid areas. Front. Environ. Sci. 10:1080810. doi: 10.3389/fenvs.2022.1080810

River ecological baseflow is key to river ecosystem health and stability and has become particularly important with global climate change aggravation. By considering the Niya River Basin in Xinjiang, based on meteorological data from 1958 to 2021 and hydrological data from 1978 to 2018, the Tennant method was determined to be the best basin ecological baseflow calculation method, the M–K test was used to analyze the abrupt ecological baseflow and climate change characteristics, and the ecological baseflow regression response and sensitivity coefficient models concerning climate change were established. The results showed that 75% of the ecological baseflow in the Niya River Basin ranged from 15 to 31 m3•s−1 in 1978–2018, the average annual temperature increased by 1.6°C at a 0.22°C•(10a)−1 rate, and the annual precipitation increased by 6.3 mm at a 0.98 mm•(10a)−1 rate. The prediction accuracy of the regression model was good, R2 exceeded 0.7, the ecological baseflow response to climate change lagged, and precipitation greatly impacted ecological baseflow. The basin sensitivity coefficient showed a decreasing trend from upstream to downstream, with the annual maximum value in 2010, the minimum value in 1984, the monthly maximum value in April and the monthly minimum value in November. Based on the climate change trend and the social water use of the basin, the ecological baseflow protection targets and measures were proposed according to the season and the hydrological period for actual water resource management and scheduling of the river in this and similar regions.
Keywords: arid area, Niya River Basin, ecological baseflow, climate change, sensitivity 2
1 INTRODUCTION
Global climate change, which is characterized by temperature rise and precipitation change, is increasingly apparent and exhibits a continuous impact on the changes in the Earth’s system (Bates et al., 2008; IPCC, 2022). Arid and semiarid regions have fragile and sensitive climate environments, which are more responsive to global climate change (Huang et al., 2016; Zhou et al., 2022). The Sixth IPCC report (AR6) points out that in 2020, the global land and ocean surfaces warmed by 1.59°C and 0.88°C, respectively (IPCC, 2021). Under the influences of various temperatures, precipitation fluctuates to different degrees (Hu et al., 2018; Liu et al., 2020). For every decade since the 1970s, global river and lake temperatures have increased by an average of 1°C and 0.45°C, respectively. Therefore, river and lake ecosystems have become direct and obvious areas affected by global climate change. Methods to deal with climate change have become common and crucial areas in river and lake research (Yang et al., 2020; Hu et al., 2022).
Under the influence of climate change, the contradiction between the supply and demand of river water resources has become increasingly prominent, especially in the area of ecological environment water demand (Xin et al., 2008; Chen et al., 2014). To ease the contradiction between human and ecological environment water use and to achieve a balance between water supply and demand, the concept of ecological baseflow has risen at this historic moment (Yan et al., 2007). Ecological baseflow refers to the requirement that the minimum flow of a river should meet under the condition that the basic structure and function of the river system are stable, by taking the health of the water ecosystem as the highest goal of river health (Xu et al., 2016). If the river discharge is lower than this value, the discharge has serious and irreversible short-term impacts on the health and stability of the river ecosystem (Ji et al., 2021). Therefore, it is very important to conduct relevant research on river ecological baseflow.
Xinjiang is located in the middle of the Eurasian continent, which is a typical arid region with scarce precipitation and uneven spatial and temporal distributions of water resources; ecological environment is very fragile and the problem of river ecological water use is serious (Hu et al., 2021; Zuo et al., 2021). The Niya River Basin is located in southern Xinjiang. The northern part is affected by the Karakoram Mountains, and the southern part is affected by the Taklimakan Desert. The water resources in the basin are extremely scarce. The annual precipitation is under 50 mm, and it is difficult to guarantee river ecological water (Hu et al., 2022). Previous studies on water resources in arid areas have rarely explored the relationship between river ecological baseflow and climate change (Li et al., 2019; Ostad et al., 2021). To date, no study has clearly revealed the change process and sensitivity of river ecological baseflow under the influence of climate change. Therefore, it is necessary to study the sensitivity of river ecological baseflow to climate change in arid areas.
In this study, we analyze the characteristics of ecological baseflow and climate change in the Niya River Basin; additionally, we discuss the sensitivity of ecological baseflow to climate change by using the measured hydrological data from 1978 to 2018 and meteorological data from 1958 to 2021 from four hydrological monitoring sections in the Niya River Basin, including the Niya Reservoir, 818 Canal, Niya Station and Niya Canal. This study is expected to provide a reference for river ecological water use scheduling and ecological restoration under the conditions of climate change.
2 DATA AND METHODS
2.1 Study area
The Niya River Basin is located in the central and western parts of Minfeng County (82°36' ∼ 82°50′E, 36°32' ∼ 37°48′N), Hotan Region, Xinjiang Uygur Autonomous Region, China (Figure 1). This basin begins at the Lushtagh Peak at the northern foot of the Kunlun Mountains. The basin is adjacent to Qiemo County, with Bazhou to the east, Yutian County to the west, the Taklamakan Desert to the north, and the Kunlun Mountains as a barrier to the south. The basin is 210 km long from north to south and 40–90 km wide from east to west, with a total area of 10,160.96 km2.
[image: Figure 1]FIGURE 1 | Geographical location of the study area.
The terrain of the Nya River Basin is high in the south and low in the north, which is roughly divided into three parts: mountain area, plain area and desert. The south is a mountainous area with an altitude of 5,600–1,500 m. The mountainous area is 5,764.33 km2, accounting for 56.73% of the total area, including a glacial area of 73.06 km2 and an ice reserve volume of 4.224 billion m3. The middle part of the basin is the plain area, with an altitude of 1,500–1,300 m and an area of 3,894.96 km2, accounting for 38.34% of the total area. The terrain slopes from south to north; there are natural eupopulus forests, shrubs and lowland meadows, forming oases of different sizes and forming the oasis agricultural area of Minfeng County. The north is desert with an altitude below 1,300 m and an area of 500.67 km2, accounting for 4.93% of the total area. Sparse vegetation is distributed among compound dunes.
The Niya River is fed by melting water, seasonal snowmelt and rainfall. In the dry season, the river seeps along the channel from the mountain pass and almost stops flowing at the Niya station. The flood season water flows to the desert edge downstream of the irrigation area, with an average annual runoff of 239.5 million m3. The headwaters of the river are dendritic, with Qiakeda tributaries flowing into it approximately 42 km from the upper end and no tributaries flowing into it at the lower end. Along the river from the mountain pass to the end of the river, there are four hydrological monitoring sections—the Niya Reservoir, 818 Canal, Niya Station and Niya Canal—which are used to monitor the flow changes in the river out of the mountain pass, upstream, midstream and downstream.
2.2 Data sources
2.2.1 Hydrological data
The hydrological data of the four hydrological monitoring sections of the Niya Reservoir, 818 Canal, Niya Station, and Niya Canal from 1978 to 2018 are selected to explore the change characteristics in the ecological baseflow of the basin. The specific data, including daily, monthly, and annual average flows and runoffs, are derived from the hydrological data of the Tarim River Basin in the hydrological yearbook of the People’s Republic of China.
2.2.2 Meteorological data
The measured meteorological data of the Minfeng Meteorological Station from 1958 to 2021, which is the only station with long time series meteorological data in the Niya River Basin, are selected to analyze the climate change in the basin. The data include daily, monthly and yearly average temperature and precipitation data, which are all from the China Meteorological Data Network (http://data.cma.cn/). The temperature is automatically monitored and recorded through standard thermometers, and the precipitation is recorded manually with a 20-cm standard rain gauge.
2.3 Methods
2.3.1 Hydrological method
There are many methods to calculate the ecological baseflow. This study considers the method that is easy to operate and obtain data in practice, and refers to the relevant requirements in the Supplementary Technical Rules for Investigation and Evaluation of Ecological Water Quantity of National Water Resources Investigation and Evaluation of the People’s Republic of China. (Trial) (April 2018). So, we finally selected the methods of calculating the ecological baseflow as follows:
2.3.1.1 Tennant method
The Tennant method, also called the Montana method, was proposed by Tennant, 1976. The method requires taking 10%–30% of the average annual flow of the river as the ecological baseflow, which is suitable for rivers with long hydrological data series; it is the most commonly used method to estimate the river ecological baseflow to date (Huang et al., 2019). As the Niya River is a typical seasonal river, the Tennant method is appropriately improved in this study by changing the flood season to April to October and the dry season to November to March of the following year to obtain the ecological baseflow standard of the river (Table 1).
TABLE 1 | Ecological baseflow criteria recommended by the Tennant method.
[image: Table 1]The calculation formula is as follows:
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where Qi is the ecological baseflow (m3•s-1) in month i, Mi is the mean runoff of month i (m3•s-1), and Ni is the percentage of the corresponding ecological baseflow in month i.
2.3.1.2 DM method
The DM method is the multiyear average of the driest monthly average flow. The average flow of the driest month in the past 10 years is used as the ecological baseflow. Although the hydrological observation data series required by this method is short, 41 years of hydrological data from 1978 to 2018 are selected in this study to ensure consistency with the time scale of other calculation methods (Su et al., 2022). The calculation formula is as follows:
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where Qi is the ecological baseflow of month i (m3•s-1) and Mij is the average flow of day j of month i (m3•s-1).
2.3.1.3 QP method
This method is improved by the American 7Q10 method for water pollution monitoring and ecological baseflow calculations in China (Stanlnaker, 1994). According to the natural monthly average flow frequency of the driest month, the actual situation of the river and the existing hydrological data, the hydrological frequency curve is constructed, and the monthly average flow of a specific frequency is taken as the ecological baseflow. The calculation formula is as follows:
[image: image]
where Qi is the ecological baseflow (m3•s-1) at frequency i, f represents the frequency curve function, q is the monthly average flow (m3•s-1), and qi is equal to the frequency i. According to the Code for Calculation of Water Demand for Rivers and Lakes Ecological Environment (Ministry of Water Resources of the People’s Republic of China, 2015), frequency i is set as 95% in this study.
2.3.1.4 Texa method
By calculating the monthly flow frequency, the specific percentage of the monthly average flow corresponding to a 50% guarantee rate is taken as the ecological baseflow (Gippel and Stewardson et al., 1998). We referred to the research results of other relevant scholars in China (Wu et al., 2011; Gao et al., 2021). In this study, 20% of the corresponding monthly average flow with a design assurance rate of 50% is selected as the ecological baseflow value.
2.3.2 Mathematical method
2.3.2.1 Statistical analysis
The main statistical methods used in this paper are the F test, trend analysis, correlation analysis and regression analysis, among which regression analysis is used to determine the specific response relationship between climate change and ecological baseflow change. We consider the hysteresis of the impact of climate change on the ecological baseflow, the average temperature and precipitation values of the last month are added for multivariate fitting to improve the accuracy of the regression model. The establishment of a multiple linear regression model is as follows:
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where Qi is the ecological baseflow in month i (m3•s-1), T is temperature (°C), P is precipitation (mm), i is the average temperature and precipitation of the month, i-1 is the average temperature and precipitation of the previous month, α and β are the coefficients of temperature and precipitation, respectively, and ε is a constant.
2.3.2.2 Mutation analysis
The Mann–Kendall (M–K) method was used for the mutation test, which was originally proposed by Mann and Kendall (Mann, 1945; Kendall, 1990). This method was implemented based on MATLAB and has been widely used for analyzing climate and hydrological series, and it has been constantly improved. Referring to the latest research (Salehie et al., 2022), the principle of this analysis technique is to construct a rank sequence Sk for time series X to reflect the cumulative number of values at time i greater than those at time j. Its expression is as follows:
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where UFk is the statistic of the time series in the M–K test, UF1 = 0, E(Sk) and Var(Sk) are the mean and variance of Sk, respectively, and UBk = -UFK. When the UF or UB value exceeds zero, the series shows an upward trend. Otherwise, it shows a downward trend. If UF and UB exceed the significance interval (the significant level is 0.05 and the critical value is ± 1.96), the upward or downward trend is significant. If the two curves UF and UB intersect and the intersection is within the significant interval, it is the mutation point.
2.3.2.3 Sensitivity analysis
According to the Intergovernmental Panel on Climate Change (IPCC), sensitivity is defined as the degree to which a system is affected by climate change-related stimuli, both adverse and beneficial (IPCC, 2007). In this study, the sensitivity of ecological baseflow to climate change refers to the response of the minimum water demand of watershed ecosystems to known or assumed climate change scenarios. Based on the above definition, the sensitivity model of river ecological baseflow to climate change is established as follows:
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where S is the sensitivity coefficient (%) of river ecological baseflow to climate change, QT,P is the ecological baseflow value (m3•s-1) under the present temperature and precipitation conditions, and QT+ΔT,P+ΔP is the ecological baseflow value (m3•s-1) when temperature changes ΔT and precipitation changes ΔP. When S > 0, climate change promotes ecological baseflow. Otherwise, it plays an inhibitory role. The greater│S│is, the greater the promotion or inhibition of ecological baseflow by climate change.
3 RESULTS
3.1 Characteristics of ecological baseflow
3.1.1 Determination of ecological baseflow
Four hydrological methods are used to calculate the annual average monthly ecological baseflow values of four hydrological monitoring sections in the Niya River Basin (Figure 2).
[image: Figure 2]FIGURE 2 | Four methods are used to calculate the multiyear average monthly ecological baseflow of the four sections. (A) Niya Reservoir. (B) 818 Canal. (C) Niya Station. (D) Niya Canal.
The results show that the annual average monthly ecological baseflow values of the four sections calculated by the four methods are as follows: the QP method has the highest calculation result, followed by the DM method, the Tennant method and the Texa method. According to the actual river ecosystem composition and the temperature and precipitation of the Niya River Basin, we referred to the ecological baseflow of the same type of watershed in the arid area (Yang et al., 2014; Cheng et al., 2021). By comprehensively comparing the calculation results of the above four methods, we find that the calculation results of the QP and DM methods are too large, and it is difficult to meet the actual ecological baseflow in arid areas. Although the calculation result of the Texas method is the lowest and can be guaranteed, it can only temporarily meet the basic needs of various components of the river ecosystem in this case, and it cannot develop stably for a long time due to poor resilience. The calculation result of the Tennant method is between the above three, meaning it can guarantee the basic development demand of river ecosystems and enable their long-term development, which is in agreement with the ecological and hydrological characteristics of the Niya River as an inland river in an arid area. Therefore, by comprehensively comparing the above calculation and analysis results, the Tennant method is finally selected as the most suitable calculation method for ecological baseflow in the Niya River Basin.
3.1.2 Trend characteristics of ecological baseflow
According to the monthly ecological baseflow values of the annual average, the Tennant method was used to calculate the annual ecological baseflow values and analyze the annual ecological baseflow characteristics of the four sections (Figure 3).
[image: Figure 3]FIGURE 3 | Distribution characteristics of the annual ecological baseflows of the four sections.
In the Niya River Basin, 75% of the ecological baseflow values of the four sections from 1978 to 2018 ranged from 15 to 31 m3•s-1. The annual ecological baseflow values of the Niya Reservoir ranged from 18 to 28 m3•s-1, those of the 818 Canal ranged from 22 to 31 m3•s-1, and those of the Niya station and Niya Canal ranged from 16 to 23 m3•s-1 and 15–23 m3•s-1, respectively. The maximum value of the annual ecological baseflow occurred at the 818 Canal, which was 48.26 m3•s-1. The minimum value occurred at the Niya hydrological station, which was 12.56 m3•s-1. The overall trend of the basin was stable, and the value of ecological baseflow was relatively low, but there were abrupt changes across different years.
3.1.3 Mutation characteristics of ecological baseflow
We further analyzed the mutation characteristics for the ecological baseflow of the Niya River Basin and used the M–K test to explore the mutation results of the four sections (Figure 4).
[image: Figure 4]FIGURE 4 | Abrupt change test results of the ecological baseflow of the four sections. (A) Niya Reservoir. (B) 818 Canal. (C) Niya Station. (D) Niya Canal.
The UF and UB curves of the Niya Reservoir, 818 Canal and Niya Canal sections all had two intersecting points within the 0.05 confidence interval, which appeared in 1989 and 2005. This phenomenon indicated that the mutation points appeared in 1989 and 2005. The UF and UB curves of Niya Station had three intersecting points that appeared in 1988, 1990 and 2005, indicating that mutations occurred in 1988, 1990 and 2005. In addition, although the variation trends of the ecological baseflow in the four sections were complex, they all showed the following characteristics. From 1978 to 1980, the UF curve was < 0, indicating that the ecological baseflow values in the Niya River Basin exhibited a downward trend. The UF curve was > 0 from 1981 to 1995, indicating that the value of the ecological baseflow showed an upward trend during this period. From 1996 to 2004, the UF curve was < 0, indicating that the ecological baseflow of the watershed exhibited a downward trend. The UF curve from 2005 to 2018 was > 0, indicating an upward trend that began in 2005.
3.2 Characteristics of climate change
3.2.1 Mutation characteristics of climate change
The Niya River Basin is located in the hinterland of the Eurasian continent; due to its distance from the ocean and the back of the Taklimakan Desert, precipitation is rare, and the climate is extremely dry. According to the measured average annual temperature and precipitation data from meteorological stations in the basin from 1958 to 2021, an M–K test was conducted on climate change in the Niya River Basin, the results are shown in Figure 5.
[image: Figure 5]FIGURE 5 | Analysis results of the abrupt changes in the temperature and precipitation in the basin. (A) Temperature. (B) Precipitation.
The results show that there is only one intersecting point in the UF and UB curves of the annual average temperature of the basin from 1958 to 2021, which occurs in 1987. This finding suggests that the annual average temperature of the Niya River Basin suddenly changed in 1987. The UF curve fluctuates significantly from 1958 to 1978 without a fixed trend. Since 1980, the UF curve has been > 0, indicating an upward trend. The UF and UB curves of annual precipitation in the basin from 1958 to 2021 have only one intersecting point in 1987, indicating that the temperature and precipitation changes synchronized. The UF curve fluctuates greatly from 1958 to 1987, and it has exceeded zero since 1988 and continued to increase, indicating that the precipitation begins to rise after 1987.
3.2.2 Trend characteristics of climate change
We analyzed the interannual variation characteristics of temperature and precipitation in the basin and used 1987 as a dividing line to conduct subsection fitting to obtain the annual variation characteristics and growth trends of the annual average temperature and precipitation in the Niya River Basin (Figure 6).
[image: Figure 6]FIGURE 6 | Annual variation characteristics and piecewise fittings of the temperature and precipitation in the basin. (A) Temperature. (B) Precipitation.
From 1958 to 2021, the average annual temperature in the basin generally fluctuated and increased by 1.6°C at a rate of 0.22°C•(10a)-1. Among this data, 1958–1987 exhibited a slow growth stage of 0.6°C at a rate of 0.20°C•(10a)-1.1988–2021 exhibited a rapid growth stage, with a growth rate of °C•(10a)-1, there was a total increase of 1°C. The maximum annual average temperature in 2016 was 13.41°C, and the minimum in 1967 was 10.1°C. During the study period, the annual precipitation in the basin showed an increasing trend in fluctuation, but the fluctuation range was larger and the increasing trend was smaller than those of the annual temperature in the basin. From 1958 to 2021, the annual precipitation of the basin increased by 6.3 mm at a speed of 0.98 mm•(10a)-1. The period from 1958 to 1987 was a rapid increase stage, with an increase of 82.6 mm at a speed of 27.53 mm•(10a)-1.1988–2021 was a decline stage, with a decrease of 48.4 mm at a rate of 14.24 mm•(10a)-1. The maximum annual precipitation was 136.9 mm in 2010, and the minimum was 4.7 mm in 1976. The general increasing trends of temperature and precipitation in the Niya River Basin were related to the gradual warming and humidification of the climate in Xinjiang, causing this phenomenon locally and affecting the ecological baseflow of the river.
3.3 Sensitivity of ecological baseflow to climate change
3.3.1 Regression analysis
To explore the specific response relationship of ecological baseflow to climate change and understand the change relationships among ecological baseflow, temperature and precipitation, the regression model of the ecological baseflow response to temperature and precipitation established in Eq. 5 was used. The Niya River Basin was considered for verification and analysis. The multiple linear regression equations of ecological baseflow for the average monthly temperature and precipitation in four sections of the Niya River Basin were obtained (Table 2).
TABLE 2 | Regression equation of the ecological baseflow on the temperature and precipitation of the four sections.
[image: Table 2]Through the regression model, the responses of the ecological baseflow of the four sections in the Niya River Basin to climate change were clarified, and they showed obvious positive correlations. With increasing temperature and precipitation, the ecological baseflow exhibited a synchronous response change. The R2 of each equation exceeded 0.7. Referring to the latest model evaluation system DISO (Hu et al., 2022), R2 is only a one-dimensional special case (Zhou et al., 2021). The closer its value is to 1, the more reliable the evaluation result is (Hu et al., 2019). So, the regression model in this study has relatively good accuracy. In terms of time, it could be seen from the regression equation that the influences of temperature and precipitation in the last month on ecological baseflow were greater than those in the recent month, and there was a certain lag in the influence of climate change on ecological baseflow. In terms of proportion, precipitation had a greater impact on the ecological baseflow, and the ecological baseflow had a more significant response to changes in precipitation.
3.3.2 Sensitivity analysis
To further explore the specific degree of the response relationship between ecological baseflow and climate change to analyze the sensitivity of ecological baseflow to climate change, the model established by Eq. 6 was used for calculating the annual sensitivity coefficient of the ecological baseflow in the Niya River Basin to climate change, and the results are shown in Figure 7.
[image: Figure 7]FIGURE 7 | Annual variation characteristics of the sensitivity coefficients of the four sections. (A) Niya Reservoir. (B) 818 Canal. (C) Niya Station. (D) Niya Canal.
The sensitivity degree of the ecological baseflow to the temperature and precipitation characteristics in the four sections in the Niya River Basin fluctuated greatly, and the variation amplitude and trend of each section were roughly the same. The positive and negative changes in the sensitivity coefficients were obvious, indicating that climate change did not change the positive and negative effects on the ecological baseflow in the basin. When the sensitivity coefficient was positive, climate change had a promoting effect on ecological baseflow. In contrast, when the sensitivity coefficient was negative climate change had an inhibitory effect on ecological baseflow. Specifically, in terms of time, the highest sensitivity coefficient occurred in 2010 (117.20%), and the lowest sensitivity coefficient occurred in 1984 (−46.22%). The increasing and decreasing trends for the sensitivity coefficients of different sections were consistent with the trends of temperature and precipitation, and the interannual variations in the same sections were quite different. In terms of space, the sensitivity coefficients of the four sections were related to the overall climate environment of the basin rather than the location of the river; the sensitivity coefficients generally showed decreasing trends from upstream to downstream, especially during the wet years. From 1979 to 2018, the sensitivity coefficient of the ecological baseflow of all hydrological sections in the Niya River Basin to climate change increased from −10.89% to 19.44%, indicating that climate change played an overall role in promoting ecological baseflow.
4 DISCUSSION
4.1 Annual sensitivity
The above analysis results show that the ecological baseflow in the Niya River Basin is sensitive to climate change, and the interannual variation fluctuates significantly. To ensure the stability of the river ecosystem, the reasonable management and scheduling of river discharge should be conducted. Therefore, we further discuss the sensitivity of monthly ecological baseflow to climate change, and we determine the response of ecological baseflow to temperature and precipitation in each month by using the monthly sensitivity coefficient and taking the maximum value of each month as the trendline (Figure 8).
[image: Figure 8]FIGURE 8 | Monthly variation characteristics of the sensitivity coefficients of the four sections. (A) Niya Reservoir. (B) 818 Canal. (C) Niya Station. (D) Niya Canal.
The variation trends of the sensitivity coefficients of the monthly ecological baseflows to the temperature and precipitation characteristics of the four sections in the Niya River Basin are roughly the same, with the maximum values occurring in April. This phenomenon is related to the fact that the Niya River is seasonal and the recharge source is mainly snow and ice melt water. The sensitivity coefficients are all negative from August to January of the following year, and the change in the temperature and precipitation inhibits the development of ecological baseflow during this period. The minimum value appears in November because the inhibitory effects of temperature and precipitation on the ecological baseflow peak in November; in the dry season, its effect was small. The ecological baseflow shows a downward trend from May to November and an upward trend from November to April of the following year. Therefore, the key to ecological baseflow control is to ensure that the ecological baseflow is satisfied in the dry season; reasonable scheduling in the flood season allows the river ecosystem to constantly develop and enrich to maintain stability.
4.2 Ecological baseflow guarantee
Through the above analysis and discussion, the change characteristics of ecological baseflow, temperature and precipitation in the Niya River Basin were understood. The response relationship and sensitivity degree of ecological baseflow in the Niya River Basin to climate change were further determined. On this basis, combined with the relevant data of social water use in the basin (In supplementary material), ecological baseflow guarantee targets were proposed for different seasons and hydrological periods (Table 3).
TABLE 3 | Ecological baseflow guarantee objectives of 4 sections. Unit: m3·s−1.
[image: Table 3]Each section shows that in different seasons, winter has the smallest values, followed by spring, autumn and summer, which is consistent with the changes in temperature and precipitation characteristics for facilitating the timeliness of river flow control. In the flood season, the range of the ecological baseflow support target fluctuates greatly. This phenomenon does not occur in the dry season to conform to the change trend of actual runoff volume and to achieve the rationality of ecological baseflow control. In the same season or period, the guarantee targets all show the phenomenon of 818 Canal > Niya Reservoir > Niya Station > Niya Canal, which is consistent with the change characteristics of the actual size of the ecological baseflow at each section of the Niya River.
In order to ensure that the management and control objectives of the watershed ecological baseflow can be achieved, specific safeguard measures are proposed according to the actual situation as follows. Firstly, strengthen the unified management and scientific regulation of regional water resources, comprehensively consider the characteristics of different sections, and take into account the common ground of the Niya River ecological restoration and environmental protection. Secondly, strictly supervise and control, establish a legal system for water ecology, and regularly supervise and inspect river leaders at all levels and relevant departments to complete Niya River ecological protection tasks. Last, increase technical research, conduct comprehensive research on hydrological, chemical and biological processes of the Niya River, and strengthen the use of ecological monitoring technologies.
5 CONCLUSION
With the intensification of global climate change, the stabilities of river ecosystems are increasingly threatened, especially in inland arid areas. Ensuring that river ecological baseflow is satisfied is a key to maintaining the health and stability of river ecosystems. Based on the measured temperature, precipitation and runoff data in the Niya River Basin, Xinjiang, we analyzed the response relationship and specific sensitivity of the ecological baseflow to climate change. The main conclusions were as follows:
By comparing four methods based on the hydrological data from 1978 to 2018, the Tennant method was determined to be the most suitable for this study area. The variation trends of the ecological baseflows in the four sections of the basin were consistent, with 75% of them concentrated in the range of 15–3 31 m3•s−1, and abrupt changes occurred in 1989 and 2005. Based on meteorological data from 1958 to 2021, the trend analysis showed that the annual average temperature in the basin increased by 1.6°C at a rate of 0.22°C•(10a)−1, the annual precipitation increased by 6.3 mm at a rate of 0.98 mm•(10a)−1, and abrupt changes all occurred in 1987.
The regression model of the response of the ecological baseflow to the temperature and precipitation characteristics were established and verified by taking the Niya River Basin as an example. The R2 values all exceeded 0.7, indicating that we obtained the response relationship of the ecological baseflow to climate change and further established the sensitivity model of ecological baseflow to climate change. In the study period, the sensitivity coefficient of each section of the basin showed a decreasing trend from upstream to downstream; the largest trend was 117.20% in 2010, and the smallest trend was −46.22% in 1984.
The variation trends of the monthly sensitivity coefficient of the ecological baseflow to the temperature and precipitation characteristics in the four sections were approximately the same; the maximum value occurred in April, and the minimum value occurred in November. In the future, with the continuous development of the trends of warming and humidification in Xinjiang, the ecological baseflow of the Niya River Basin would respond to changes. On this basis, ecological baseflow guarantee targets and measures were proposed according to the seasons and hydrological periods by comprehensively considering the social water use in the basin.
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Climate comfort is a significant factor in analyzing the effects of climate change on tourism, and considerable research has used multidimensional climate indices to evaluate climate comfort. In particular, the index of clothing (ICL) is recognized as one of the most popular climate indices and has been widely applied in many studies. While few studies focused on the calculation method of the index of clothing model’s surface solar radiation (Ract), the computed value was greater than that observed at ground stations. Thus, this study tried to improve solar radiation energy calculation on the Earth’s surface in the index of clothing model with the method recommended by the International Food and Agriculture Organization (FAO), and then validated the new model based on the meteorological data of 31 provincial capitals in mainland China during 1980–2019. Results showed that: 1) The value of Ract calculated by the International Food and Agriculture Organization (FAO) method was close to the site observations (Pbais < 15%), and was suggested to be used in enhancing the estimate approach for Ract in the index of clothing; 2) Different from the original index of clothing, ICL-new is significantly more effective in evaluating climate comfort in middle and low latitude regions; 3) Climate change had a considerable influence on the climate comfort of cities in mainland China. Since 1980, the climate comfort of cities in eastern China had increased in spring, while that of cities in western China had declined, and most cities had a decreasing trend in summer. Finally, our findings revealed that ICL-new can realistically and precisely depicts the actual scenario than the original index of clothing, and it is more suitable to provide scientific impact assessment and tourism management for government agencies and destination management.
Keywords: index of clothing (ICL), tourism climate comfort, solar radiation, urban climate, China
INTRODUCTION
Climatic elements, as significant factors for the seasonal shifts in tourism (Feng et al., 2014; Scott et al., 2019), also affect the local tourism industry (Becken et al., 2020). Under the global warming scenario, climate change has posed significant challenges to international tourism development (Pintassilgo et al., 2016; Willibald et al., 2021), and some vulnerable areas worldwide have taken measures to deal with the consequences of climate change. Meanwhile, there is a growing focus on assessing climate comfort in tourism, geography, and meteorology (Liu et al., 2019; Loehr and Becken, 2021; Yu et al., 2021). Although the majority of studies have adopted multidimensional climate indices to evaluate tourism comfort in different regions (Dubois et al., 2016; Atzori et al., 2018; Zhong and Chen, 2019), there remains a lack of cases for their accuracy verification. Therefore, it is important to develop a scientific climate comfort model to assess climate comfort, which can be helpful to both tourism destination management and tourists’ travel decisions.
Climate comfort refers to the condition of comfort and suitability in which people experience normal physiological processes and feel comfortable without taking any additional thermal measures (Ma et al., 2009). This condition includes a comprehensive effect of external meteorological environment factors, such as the temperature, humidity, wind speed, and sunshine (Sun and Li, 2015; Yu et al., 2021), and it is a crucial indicator for evaluating the climate resources and habitat environment of tourism destinations. A favorable climate appeals to and attracts tourists. Since it was proposed in the early 20th century, the climate comfort evaluation model has been widely used in urban planning (Costa et al., 2019; Lopes et al., 2021), habitat environment (Ma et al., 2014), tourism climate (Yan et al., 2013), and other disciplines (Fontan and Rusticucci, 2021). Models for assessing climate comfort may be divided into two types: empirical models and mechanistic models (Yan et al., 2013; Sun and Li, 2015). The empirical models, based on the subjective human experience or physiological reaction (Yan et al., 2013; Li et al., 2016), have the advantages of a simple structure and easy data availability; representative indices include the Thermal Humidity Index (THI) (Zhang, 2019), Wind Effect Index (WEI) (Terjung, 1966), and Effective Temperature (ET) (Wu et al., 2017), etc. The mechanistic models are based on the heat balance of the human body, which has physical meaning and universality; representative indices are Physiological Equivalent Temperature (PET) (Höppe, 1984), Index of Clothing (ICL) (Deng and Bao, 2020), Universal Thermal Climate Index (UTCI) (Blazejczyk et al., 2012), etc. With the advancement of theoretical study and practical applications, climate comfort evaluation has gradually evolved from basic empirical models into mechanistic models (Yan et al., 2013), from “multi-element modeling” to “multi-model combination” assessment, while objective and universal mechanistic models become an essential development path for climate comfort evaluation (Sun and Li, 2015).
The ICL is a model that reflects how people change their clothes according to the external environment. This model considers human activity level parameters from the perspective of the thermal balance of the human body surface and has been widely used in climate comfort evaluation studies (Ma and Sun, 2009; Zhao and Wang, 2021). In 1955, Burton and Edholm. (1955) defined the quantity of insulation necessary to maintain a thermal balance between the human body and the surrounding environment as the clothing resistance thermal unit (cl), and proposed a conceptual index of clothing. In 1976, based on this conceptual model, Auliciems and De Freitas. (1976) constructed a mechanical model (Eq. 1) that might be applied to numerous geographical and temporal scales. In 1979, De Freitas. (1979) increased the generalizability of the index of clothing, which is now widely used in regional climate comfort assessment, by simplifying the mechanistic model’s approach to the influence of cloudiness on surface solar radiation (De Freitas and Grigorieva, 2015; Li et al., 2016). The equation for this model is as follows:
[image: image]
where [image: image] is the heat transfer resistance of the clothing, namely the index of clothing (ICL); Ts is the comfort temperature of the skin, typically 33°C (De Freitas, 1979); Ta is the air temperature(°C); Ia is the resistance to heat loss from the surface of the clothing; R is the net solar radiation heat load on the human body surface; and H is the rate of dry heat transfer to the surroundings, representing 75% of the human metabolic rate (W/m2).
The core calculation of the ICL lies in the assessment of the net solar radiation heat load (R) on the human body surface, which depends on the quantity of solar radiation on the surface solar radiation (Ract). Significant latitudinal and seasonal differences characterize the variation of Ract However, the approach to calculating Ract in the ICL model overlooked Ract variation features (Auliciems and De Freitas, 1976; De Freitas, 1979). At the same time, researchers assessed the solar declination too macroscopically when using the ICL to determine climatic comfort (Auliciems and De Freitas, 1976; Cao et al., 2015), which caused some inaccuracies that resulted in an overestimation of solar radiation at the Earth surface in summer while an underestimation in winter.
Therefore, our study was designed to improve the uncertainty of the original ICL model, and then explained it with an examination. In particular, a new method was proposed to calculate Ract in the original ICL model, and then to acquire the new index of clothing (ICL-new); secondly, we applied the ICL-new model to assess the climate comfort and its variations in 31 provincial capitals of mainland China during 1980–2019. Section 2 describes the data sources and methods. Section 3 focuses on the results and analysis. Broader implications of these findings are discussed in Section 4, and Section 5 presents our conclusions.
MATERIALS AND METHODS
Data sources
In this study, we used daily meteorological observation data, including temperature (°C), precipitation (mm), wind speed (m/s), and sunshine hours h), from the “Daily Value Dataset of Climate Information from Ground-based International Exchange Stations in China (V3.0) (excluding data from Hong Kong, Macao, and Taiwan)" provided by the National Meteorological Science Data Center (http://data.cma.cn/). We selected 31 provincial capital city stations in mainland China, with the study period from 1980 to 2019. The basic information of station serial numbers, city names, provinces, latitude, longitude, temperature, precipitation, and wind speed of 31 provincial capitals were shown in Table 1. Considering that four urban observation stations in Shijiazhuang, Hebei, Lhasa, Tibet, Chengdu, Sichuan, and Chongqing were not contained in this dataset. In this study, we adopted neighboring stations instead, such as Shijiazhuang, Hebei referred to Xingtai station (53798), Lhasa, Tibet referred to Dangxiong station (55493), Chengdu, Sichuan referred to Wenjiang station (56187) and Chongqing referred to Jiangjin station (57517).
TABLE 1 | Basic information for 31 provincial capitals in mainland China.
[image: Table 1]The ground-level solar radiation Ract observational data were obtained from the Monthly Data Set of Basic Elements of China Meteorological Radiation International Exchange Stations, provided by the China Meteorological Data Sharing Network. This dataset included monthly-scale Ract observation data, and there were nine stations located in provincial capitals, namely Harbin, Urumqi, Shenyang, Beijing, Chengdu, Wuhan, Shanghai, Kunming, and Guangzhou. Therefore, we used the Ract data observed at nine sites to evaluate the accuracy of the Ract calculated by the ICL versus the Ract obtained based on the FAO algorithm.
Methods
Development of the ICL model
A heat balance between the human body surface and the surrounding environment is the theoretical foundation of the ICL model (De Freitas, 1979). This model considered the meteorological parameters commonly used in empirical models, such as temperature, wind speed, and radiation, which has achieved a fair balance between the model concept’s mechanics and the measurement method’s simplicity. In Eq. 1, H represents the heat transmission rate from the human body surface to the surrounding environment, accounting for 75% of the human metabolic rate (W/m2). We took the human body’s metabolic rate during light activity to be 116 W/m2 (Auliciems and De Freitas, 1976), which gives H = 116*0.75 = 87 W/m2. The physical meaning of a unit index of clothing (clo) is the heat transmission of 1 W/m2 at the boundary between the inside and outside of the clothes, accompanied by a temperature gradient of 0.155°C (Auliciems and De Freitas, 1976; De Freitas, 1979). The heat loss resistance Ia of the surface layer of the clothing in Eq. 1 can be expressed as follows:
[image: image]
where V is the wind speed (cm/s). The wind speed value obtained from meteorological observation stations was 10 meters from the ground (m/s), which needs to be converted to wind speed at a height of 2 m. Meanwhile, the unit m/s should be converted to cm/s. Therefore, Eq. 1 can be expressed as follows: 
[image: image]
where Ta and V are both accessible from daily observation data at meteorological stations; therefore, the R is critical to calculating the ICL:
[image: image]
where Ract is the quantity of solar radiation that reaches the Earth’s surface locally, arb is the absorption coefficient of solar radiation by the human body; referring to the results of De Freitas. (1979), the mean value in this study is taken as .6.
The method for estimating Ract in the ICL model is as follows:
[image: image]
where R0 is the solar constant, it represents the amount of solar radiation per unit area perpendicular to solar radiation at the top of the atmosphere, taking the value of 1,390 W/m2; α is the solar altitude angle at 14:00 Beijing time; pm is the attenuation coefficient of solar radiation through the atmosphere, where the p is equal to .9 (Auliciems and De Freitas, 1976; De Freitas, 1979; De Freitas and Grigorieva, 2015), and m = 1/sinα.
In this study, we found some limitations in the calculation of Ract in the ICL model: firstly, Ract is estimated based on R0 in Eq. 5, while Eq. 5 fails to reflect the latitudinal change and seasonal change of Ract; secondly, the Ract in Eq. 5 only considers the Ract when the daily temperature is the highest (at 14:00) but fails to reflect the change in Ract throughout the day; thirdly, the cosα in Eq. 5 should be sinα, because that the Ract value in the ICL model is based on the maximum daily temperature in a day. As shown in Figure 1, when the model takes cosα in Eq. 5, the Ract at 14:00 h will be the lowest, which is inaccurate.
[image: Figure 1]FIGURE 1 | The altitude angle (α) and the zenith angle ([image: image]) of the sun when viewed from point P, and α+ [image: image] = 90°.
Therefore, we adopted the method recommended by the Food and Agriculture Organization of the United Nations (FAO) to estimate Ract, and then to improve the estimation method of the quantity of solar radiation at ground level.
According to the Angstrom formula (Allen et al., 1998), Ract is calculated as follows:
[image: image]
where n represents the actual sunshine hours, N is the maximum possible sunshine hours, then n/N is the relative sunshine hours; and Ra is the solar radiation per unit area at the top of the atmosphere, namely the solar constant (MJ/m2/day); as is the regression constant, the fraction of solar radiation per unit area at the top of the atmosphere reaching the ground in cloudy weather conditions; as + bs is the fraction of solar radiation per unit area at the top of the atmosphere in clear weather conditions. The values of the two parameters (De Freitas, 1979) are as = 0.25 and bs = 0.5, respectively.
Ra is calculated by the following equation:
[image: image]
Ra is the solar radiation per unit area at the top of the atmosphere (MJ/m2/day); Gsc is the solar constant (.082 MJ/m2/min); and dr is the inverse of the relative distance between the Sun and the Earth; [image: image] is the solar time angle in radians; [image: image] is the local latitude in radians; δ is the solar magnetic declination in radians. The equation for dr and [image: image] are as follows:
[image: image]
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where J is the number of day sequences for a day of the year, between 1 (1 January) and 365 or 366 (31 December).
[image: image]
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where J is the number of day sequences for a day of the year, mth is the month, D is the specific date, and fix() is rounded.
The solar radiation per unit area at the top of the atmosphere Ra (MJ/m2/day) can be calculated based on Eq. 7, which needs to be converted to W/m2 with a conversion factor of 11.6 provided by the FAO (Food and Agriculture Organization), therefore, based on Eq. 6, Ract (W/m2) can be obtained as follows:
[image: image]
Therefore, ICL-new was obtained by combining Eqs 3, 4, 12. Theoretically, the ICL-new considers the impacts of seasonal and daily variations in solar activity on Ract and is more realistic than the original ICL. In this study, we used 31 provincial capitals in mainland China as research cases to compare the original ICL and ICL-new and determine the impact of applying the revised model.
The precision calculation of Ract
The simulated values of Ract include three types: Ract acquired using the FAO method, Ract obtained from the sine and cosine functions in the original ICL. The actual values of Ract are calculated using observed data from ground stations. Three evaluation indices, Nash–Sutcliffe efficiency coefficient (NSE), distance of indices between simulation and observation (DISO) (Zhou et al., 2021; Hu et al., 2022), and percentage deviation (Pbias), were selected to assess the precision of Ract estimated by the three methods. The three evaluation indices are expressed as follows:
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where [image: image] and [image: image] are the observed and simulated values of Ract at month i, respectively, [image: image] is the average value of the corresponding monthly Ract, and n is the length of time (months). NRMSE, RB and R are the normalized root mean square error, relative bias and Pearson correlation coefficient, respectively, which are described by the Hu et al. (2019).
The evaluation results can be categorized on a scale of very excellent, good, satisfactory, and unsatisfactory (Table 2). When the Nash–Sutcliffe efficiency (NSE) is closer to 1, and the absolute value of percentage deviation (Pbias) is more closer to 0, the simulation is better.
TABLE 2 | Grading criteria based on the assessment of Ract in the ICL models.
[image: Table 2]Grading criteria for the ICL
Depending on the comfortable level of the clothing, the ICL is divided into five categories: extremely unsuitable, unsuitable, less suitable, more suitable, and most suitable. According to Ma et al. (2009), the grading symbolizes (i.e., A, B, b, C, c, D, d, E, e) the relative suitability of clothing and sensation of the human body corresponding to the various ICL values can be obtained (Table 3). When .5 < ICL ≤ 1.5, it means that the climate is neither too hot nor too cold, such that the human body feels comfortable, and the grading symbols are A, B, and b; when ICL ≤ .5, it indicates that the climate is hot, and the human body needs to clothes to cool off, and the grading symbols are C, D, and E; when ICL > 1.5, it means that the climate is cold, and the human body requires clothing to maintain a constant temperature, indicated by the grading symbols are c, d, and e.
TABLE 3 | Grading standards and appropriate clothing level for ICL (Ma et al., 2009).
[image: Table 3]RESULTS AND ANALYSIS
Evaluating the accuracy of Ract based on three methods
In the study, we used the monthly Ract obtained from nine ground-based solar radiation stations as observation data (noted as Ract-obs), which were used to assess the accuracy of Ract calculated using three different methods. Ract (noted as Ract-revised) was computed using the FAO algorithm, Ract (noted as Ract-sin) was calculated with the sine function based on Eq. 5, and Ract (noted as Ract-cos) was calculated using the cosine function. Results in Figure 2 indicated that the Ract-obs and Ract-revised values were extremely closely matched, with a similar distribution pattern within the year (Figure 2). Ract-cos calculations were modest in summer while prominent in winter, and they did not correspond to the annual cycle solar radiation change in the northern hemisphere. Although the Ract-sin calculations were compatible with the intra-annual fluctuation of solar radiation in the northern hemisphere, the values were excessive and significantly greater than the Ract-obs value. The Ract-cos and Ract-sin obtained from the ICL model greatly overestimated the solar radiation arriving at the Earth surface, mainly due to the method’s failure to account for latitudinal variation, seasonal and daily changes in surface solar radiation. Unlike the original ICL model, the Ract estimated by the FAO algorithm was more accurate.
[image: Figure 2]FIGURE 2 | Comparative results of monthly Ract calculated by three methods. Lables (A–I) represent nine cities, Harbin, Urumqi, Shenyang, Beijing, Chengdu, Kunming, Wuhan, Shanghai, Guangzhou, respectively.
Meanwhile, we utilized the NSE and Pbais as assessment metrics, and the accuracy of Ract achieved by the three methods was quantitatively analyzed (Table 4). Based on the NSE assessment, the Ract-revised results indicated that excellent for six cities, good for one city, and two cities were unsatisfactory. Results based on the Pbais assessment showed that the precision of the Ract-revised was graded as excellent for four cities, good for two cities, satisfactory for three cities, and no cities were unsatisfactory results were produced. Results based on DISO assessment showed that the precision of the Ract-revised was graded as excellent for six cities, good for two cities, and no cities were unsatisfactory results were produced. Combining the findings of Figure 2 and Table 4, the Ract calculated by the Ract-sin and Ract-cos methods were dissimilar from the actual observed values, and their NSE, DISO and Pbais evaluations were also unsatisfactory. Consequently, the Ract-revised method produced results closer to the actual observed values than the Ract-sin and Ract-cos algorithms, which might be used to estimate Ract.
TABLE 4 | The effectiveness assessment of the Ract is calculated by three methods.
[image: Table 4]Comparing the ICL calculated by three methods
To further confirm the reasonableness of the Ract-revised method, we calculated the multi-year monthly averages of three kinds of ICL for each of the nine cities using the Ract generated in the three ways described above. The ICL was produced using the Ract-revised, Ract-sin, and Ract-cos recorded as ICL-new, ICL-sin, and ICL-cos, respectively.
ICL-new (Figure 3) closely matches the intra-annual variation in temperature shown in Figure 4. As can be seen from the graphs of average monthly temperatures for each city over a multi-year period, the results of ICL-cos were inconsistent with reality, particularly in cities located at lower latitudes (Figure 3). The ICL-new and ICL-sin graphs (Figure 3) were similar, with good agreement in three cities Harbin (Figure 3A), Urumqi (Figure 3B), and Shenyang (Figure 3C), while values of ICL-sin were generally small in other cities. For example, the ICL-sin value for Beijing in January was approximately 1.5 (Figure 3), indicating that January is suitable for tourism. However, the average temperature in Beijing is below 0°C (Figure 4), which is not suitable for tourism. Furthermore, Chengdu’s ICL-sin in winter was below 0 (Figure 3), suggesting it is too hot although the monthly temperature (Figure 4) in winter is a reasonably comfortable 8°C–10°C, which is suitable for tourism. Therefore, this method was less appropriate for assessing climate change in the middle and low latitudes since the ICL-sin value was small. ICL-new produced more accurate results than ICL-sin and ICL-cos, which were generally consistent with intra-annual temperature changes.
[image: Figure 3]FIGURE 3 | Comparison of multi-year monthly average ICL calculated by three methods in nine cities from 1981 to 2010. Lables (A–I) represent nine cities, Harbin, Urumqi, Shenyang, Beijing, Chengdou, Kunming, Wuhan, Shanghai, Guangzhou, respectively.
[image: Figure 4]FIGURE 4 | Multi-year monthly average temperature for nine cities during 1981–2010. Lables (A–I) represent nine cities, Harbin, Urumqi, Shenyang, Beijing, Chengdou, Kunming, Wuhan, Shanghai, Guangzhou, respectively.
A case study based on the improved ICL
To validate the ICL-new model, we evaluated the climate comfort of 31 provincial capitals in mainland China with ICL-new from 1980 to 2019 (Table 5). Results indicated the northern part of 33°N was comfortable in spring (March–May) and autumn (September–November) but uncomfortable in winter (December, January, February) and summer (June–August). The three capitals of Northeast China (Harbin and Changchun) were pleasant to visit during April–May and September–October. The climate comfort of those cities in the arid northwest (Urumqi, Xining, Lanzhou, and Yinchuan) varies widely, with Urumqi being ideal in April, September, and October, Xining in March-May and September-October, Lanzhou in February–March and November–December, and Yinchuan in March, April, and October. In the Loess Plateau region, Hohhot and Taiyuan were comfortable in April and October, whereas Xi’an was comfortable in March–April and October–November. The best times to visit cities North China (Beijing, Tianjin, Shijiazhuang, Jinan, and Zhengzhou) were March–April and September-October. Lhasa was suitable for tourists on the Qinghai-Tibet Plateau during May–September. Most southern cities were ideal in February–March and November–December (Table 5), while temperatures in the summer and autumn were unpleasant. High temperatures made the months of June, July, and August uncomfortable. Climate comfort cannot be fully interpreted by the ICL alone, as the ICL-new model indicated that the climate comfort in most southern Chinese cities was not high in April, while the weather in these cities was fine.
TABLE 5 | Characteristics of the climate comfort in 31 mainland Chinese cities during 1980–2019 using ICL-new.
[image: Table 5]China’s annual average surface temperature has risen significantly since the mid-20th century, with a warming rate of .26°C/10a (Climate Change Center of China Meteorological Administration, 2021) which exceeds the global average over the same time frame. According to an analysis of the average ICL over the past 40 years, mainland China has experienced significant warming that has impacted the ICL and climate comfort. In terms of its physical meaning, an increase or decrease in the ICL reflects changes in climate comfort. Increasing or decreasing in the ICL corresponds to improves or deteriorates of climate comfort when the monthly ICL is less than .5. However, when the ICL is greater than 1.5, the increase or decrease in the ICL corresponds to deterioration or improvement of climate comfort. We used the Mann-Kendal non-parametric trend test method (Hamed, 2008) to calculate the trend in ICL for each month for all 31 cities from 1980 to 2019 (Figure 5). We found significant differences between the eastern and western cities in January, with a decreasing trend in ICL in the eastern cities and an increasing trend in the western cities (Figure 5), and a corresponding deterioration in climate comfort. The ICL of most cities in the middle and lower reaches of the Yangtze River (Changsha, Nanchang, Hefei, Nanjing, Zhejiang, Shanghai, etc.), North China (Zhengzhou, Jinan, Shijiazhuang, Beijing, and Tianjin) and Northeast China (Shenyang, Changchun, and Harbin) showed a decreasing trend in February (Figure 5), March (Figure 5) and April (Figure 5). According to Table 5, we could get higher values of the ICL in February, March, and April in these regions. Therefore, the descending trend suggests that climate comfort has improved over time. The ICL of most cities showed a decreasing trend for May–September (Figures 5E–I), and the climate comfort of most cities also deteriorated (Table 5). In October, ICL decreased in the middle and lower reaches of the Yangtze River indicating a deterioration in climate comfort (Figure 5J), while the decline in ICL in the northeast region indicated the climate comfort had improved over time. Changes in November and December were similar to those in January; the climate comfort in the eastern cities tended to improve, while the western cities tended to get worse.
[image: Figure 5]FIGURE 5 | Spatial distribution of monthly changes of ICL-new during 1980–2019, the positive triangle indicates an upward trend, the inverted triangle indicates a decreasing trend, and the black dots indicate that the change in the ICL was significant at p = .05 level. Labels (A–L) represent January, February, March, April, May, June, July, August, September, October, November, December, respectively.
DISCUSSION
The ICL calculation depends on the estimation of surface solar radiation. However, in the original ICL model, the estimation of surface solar radiation ignored seasonal variation and daily variation at the same location, resulting in an overestimation of surface solar radiation. We used the FAO surface solar radiation calculation method to improve the ICL model’s solar radiation estimation. Results showed that the FAO method’ simulated solar radiation were very close to the measurements, which can be used to improve the original ICL model. At the same time, the ICL-new has improved the shortcomings existed in evaluating climate comfort with the original dressing index model: Firstly, the overly macroscopic judgment of solar declination leads to overestimating estimated surface solar radiation in summer and underestimation in winter (Zhang et al., 2013; Cao et al., 2015; Sun and Yu, 2017); Secondly, a problem of wind speed unit conversion, which has been studied in cases where the wind speed (m/s) is directly substituted into the equation (Cao et al., 2015; Cao et al., 2019), ignoring that the wind speed unit in the original ICL model is cm/s, which should be converted from m/s to cm/s before substituted into the model. Therefore, we proposed a method to correct these two defects in the original ICL model, adopting the ICL-new model for an application.
Meanwhile, there are four urban observation stations in Shijiazhuang (Hebei), Lhasa (Tibet), Chengdu (Sichuan), and Chongqing (Chongqing) were not contained in the V3.0 dataset. For Shijiazhuang, we adopted Xingtai station; for Lhasa, we adopted Dangxiong station; for Chengdu, we adopted Wenjiang station; for Chongqing, we adopted Jiangjin station. Because the locations of the stations and cities do not match, there could be some uncertainty. For example, the index in Shijiazhuang uses other stations 100 km away, as there exists an urban island effect for big cities. There might be uncertainty in the results of Ract calculations at these stations, which in turn affects the accuracy of the ICL-new. This is one of the limitations of this study.
Temperatures have increased substantially in China since 1980s (Yu et al., 2015), and a warmer summer will result in a decreased in ICL (a worse climate comfort in summer) and the opposite is for a warmer winter. Meanwhile, the ICL model changed significantly under global warming, indicating that the static assessment of climate comfort used in the past (Hamed, 2008; Cao et al., 2019) is unsuitable. Thus, changes in the ICL model should be considered from the perspective of dynamic changes, which will help interpret climate comfort changes more comprehensively. We showed that global climate change significantly impacted climate comfort in 31 province capitals in mainland China. Of course, some limitations exist in evaluating climate comfort only by the ICL. For example, A (most comfortable) in April and E (extremely uncomfortable) in July for northeastern cities such as Harbin, Changchun, and Shenyang; A (most comfortable) in April and October and E (extremely uncomfortable) in July for northwestern cities, such as Xining and Urumqi; E in June, D (unsuitable) in September and A in October for Beijing; and A in March, April and November, D in May and C (less suitable) in October for Shanghai. For these cities, the ICL results did not match the temperature of the corresponding month. Therefore, for a comprehensive assessment of climate comfort, it is necessary to consider additional climate comfort indices (such as the Thermal Humidity Index and Wind Effect Index).
CONCLUSION
To improve the uncertainty of the original ICL, we recalculated solar radiation energy on the Earth’s surface by using the method recommended by the FAO, and validated the model based on meteorological data for 31 provincial capitals in mainland China. The main conclusions were as following.
1) The surface solar radiation derived from the improved method is significantly better than that in the original ICL model (NSE > .80, DISO < .25, and Pbais < 15%), and matches the seasonal variation of surface solar radiation. Surface solar radiation estimated by Ract-sin and Ract-cos method differed significantly from that observed; their NSE, DISO and Pbais were unsatisfactory. According to the Ract-revised calculations, values are very close to the actual observed values and can be used to estimate the amount of solar radiation reaching the ground.
2) The improved ICL model (ICL-new) is superior to the original ICL model (ICL-cos). The agreement between ICL-new and ICL-cos was only reasonable for three of Harbin, Urumqi, and Shenyang cities considered, while the values of ICL-cos in other cities are relatively small. The ICL-new model was more accurate than the original ICL-cos model particularly for mid to low latitudes in China.
3) In this study, the improved ICL-new was adopted to examine the climate comfort of 31 provincial capitals in mainland China from 1980 to 2019, results showed that climate comfort was lower in summer and became better in spring and autumn. Meanwhile, climate comfort improved over time for February–April, but it deteriorated between May and September. Climate comfort was worsened in China’s southern cities in October between 1980 and 2019, enhanced in northern cities, and further exacerbated in western cities in November, December and January.
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The surface air temperature (SAT) over the Tibetan Plateau (TP) not only affects the physical processes such as local evaporation, snow melting, and glacier ablation, but also has a great impact on the downstream regions and even the global climate change. The development of reanalysis data has gradually overcome the problem of sparse stations over the TP, but there are still some deficiencies. Therefore, the distance between indices of simulation and observation (DISO) method is used to calculate the distance between five reanalysis datasets (ERA5, JRA-55, ERA-Interim, MERRA2, NCEP2) and the CMFD to evaluate the abilities of different reanalysis datasets to capture the SAT over the TP in different seasons. The results indicate that ERA-Interim has a higher ability to reproduce the SAT over the TP in spring and summer, while it is ERA5 in autumn and winter. It should be noted that although the optimal reanalysis has a better performance in capturing the SAT of the TP, there are still a certain degree of deviations in their spatial fields. We further show the spatial deviation fields of SAT over the TP corresponding to the optimal reanalysis data in different seasons, and analyze the possible reasons. The result implies that the SAT deviation field is mainly related to the snow in winter and spring, while the summer SAT deviation field is mainly related to the water vapor, and the autumn is related to both the snow and the water vapor fields. Overall, the quality of reanalysis data needs to be further improved in the future.
Keywords: surface air temperature, DISO, reanalysis, CMFD, Tibetan Plateau
1 INTRODUCTION
The Tibetan Plateau (TP) with an average elevation of more than 4,000 m is close to the middle of the troposphere (Qiu, 2008; Yao et al., 2012; Kuang and Jiao, 2016), which locates the first level of terrain in China and also called as “Asian Water Tower” (Xu et al., 2008; Xu et al., 2019; Xue et al., 2021). Covering an area of about 2.5 million square kilometers, the TP is crisscrossed by mountains and dotted with lakes and known as a typical region of the multi-sphere interactions in the Earth’s climate system (Lei et al., 2013; Lei et al., 2017; Yao et al., 2015; Chen et al., 2021). Due to its special geographical location and topographic distribution, small environmental disturbances and changes can result in the “butterfly effect” of the climate system and ecological environment in this region, thus the TP is also the sensitive and the amplifying area of the global climate change (Yang et al., 2013; You et al., 2020; Tang et al., 2022; Wang et al., 2022).
In the context of global warming, the surface air temperature (SAT) over the TP has increased substantially (Duan and Xiao, 2015; Duan et al., 2020; You et al., 2021; Zhou and Zhang, 2021), and the resultant thermal forcing changes have a significant impact on regional and global climate. For example, the increase of the spring SAT over the TP will influence the surface sensible heat flux (SSHX), and the change of the SSHX will further affect the downstream East Asian summer monsoon precipitation and North Pacific sea surface temperature (Duan et al., 2011; Wang et al., 2014; Sun et al., 2019; Liu et al., 2020); meanwhile, the warming of the TP can enhance the intensity and frequency of the warmest day and night over it (You et al., 2008; 2021); on the other hand, drastic changes have also occurred in its cryosphere, such as the accelerated melting of snow and glaciers, which reduces the surface albedo and forms a positive feedback to promote the TP warming (Li et al., 2016; Li et al., 2017; Dai et al., 2017; Xu et al., 2017; Zhang et al., 2021). All these changes may accelerate the pace of the TP to become a global tipping point (Liu et al., 2023)
However, due to the complex terrain characteristic of the TP, most conventional meteorological observation stations are located in the valleys and relatively low-altitude areas in the central and eastern plateau, and there are few stations in its western region (Duan et al., 2018; Duan et al., 2022a), where there exist a large number of glaciers and permafrost (Yang et al., 2019; Wang et al., 2020). Therefore, the sparse and uneven distribution of observational stations is the primary difficulty in accurately understanding the climate change on the TP.
The gridded reanalysis datasets are generated by assimilating the observational data obtained by ground stations, satellite remote sensing, aircraft and ships into the numerical model, which has the advantages of long time and wide coverage area (Dee et al., 2011; Rienecker et al., 2011; Kobayashi et al., 2015; Hersbach et al., 2020), providing us important database for understanding atmospheric circulation and global and regional climate change (Simmons et al., 2004; Yi et al., 2011; Lei et al., 2017; Liu et al., 2021; Tang et al., 2022). The development of reanalysis data overcomes the problem of sparse stations and has been widely used in the study of climate change on the TP (Chen et al., 2019; 2020; Chen et al., 2021; Sheng et al., 2021; 2022). Nonetheless, due to differences of the observational data, numericalmodels and assimilation methods used in the different reanalysis datasets, the results obtained from different reanalysis datasets may be different particularly in mountain areas (Wang et al., 2020; Liu et al., 2021; Peng et al., 2021; Yang et al., 2021). Therefore, the purpose of this paper is to use the DISO (distance between indices of simulation and observation) method (Hu et al., 2019; 2022; Zhou et al., 2021) to evaluate the ability of capturing the SAT over the TP among different reanalysis datasets in different seasons, so as to lay a foundation for better research on the temperature change of the TP.
2 DATA AND METHODS
2.1 Research data
The observational data used in this paper are monthly average surface air temperature named as China Meteorological Forcing Dataset (CMFD) and daily average snow depth in China provided by A Big Earth Data Platform for Three Poles. The spatial resolution of CMFD data is 0.1° × 0.1° and the period covers from 1979 to 2018. This dataset is merged into remote sensing products, reanalysis datasets, and meteorological station data (He et al., 2020), and has a good performance over the TP (Lun et al., 2021; Peng et al., 2022), which can be regarded as observational data. In addition, the daily average snow depth in China, with the spatial resolution of 0.25 ° × 0.25 ° and a time range of 1979–2019 (Che et al., 2008; Dai et al., 2015), is widely used over the TP (Duan and Xiao, 2015; Bao and You, 2019). The domain of the TP is defined as the region above 2500 m within the range of 25°–40°N and 70°–105°E.
The atmospheric reanalysis datasets include ERA-Interim (Dee et al., 2011) and ERA5 (Hersbach et al., 2020) provided by the European Center for Medium-Range Weather Forecast (ECWMF). The ERA5 dataset is the fifth-generation reanalysis product developed by ECMWF. Compared with ERA-Interim data, the ERA5 data has the advantages of higher spatial-temporal resolution and longer covered time. The variables including the monthly average surface air temperature, snow depth and three-dimensional specific humidity from 1979–2019 provided by ERA-Interim and ERA5, with the spatial resolution is 1° × 1° and 0.25° × 0.25°, respectively. Furthermore, we also use the monthly mean surface air temperature datasets from JRA-55 (Kobayashi et al., 2015), MERRA2 (Rienecker et al., 2011; Gelaro et al., 2017) and NCEP2 (Kalnay et al., 1996), which are provided by the Japan Meteorological Agency (JMA), National Aeronautics and Space Administration (NASA) and National Centers for Environmental Prediction (NCEP), respectively. The coverage time of the JRA-55 and NCEP2 datasets are 1979–2019, while MERRA2 is 1980–2019 and the spatial resolutions are 1.25° × 1.25°, 2.5° × 2.5°, and 0.5° × 0.625°, respectively. The detailed information about the reanalysis datasets is listed in Table 1.
TABLE 1 | The reanalysis datasets used the study.
[image: Table 1]Considering the consistency of data coverage time, the comparison period between the SAT of the reanalysis datasets and the CMFD is 1980–2018. All the observational and reanalysis data are uniformly interpolated to the spatial resolution of 0.5° × 0.5°.
2.2 Methods
The DISO (distance between indices of simulation and observation) method is a means of evaluating data quality. Its essence is to calculate the distance between the simulated and observed data. The smaller the distance, the higher the quality of simulated data (Hu et al., 2019; Hu et al., 2022; Zhou et al., 2021). The advantage of this method is that it is simple, convenient and flexible, reflecting the idea of Da Dao Zhi Jian (Hu et al., 2022). Researchers can choose the corresponding evaluation index according to their own needs, and the calculation of DISO value can be extended to multi-dimensional space. Therefore, the method is able to evaluate the data comprehensively and can be applied to many disciplines, such as meteorological and disease studies (Cui et al., 2020; Hu et al., 2020; Deng et al., 2021; Wang et al., 2021; Xu et al., 2022; Yin et al., 2022).
In this paper, three metrics (trend, climatology, and interannual variability) are selected to calculate the deviations between the reanalysis datasets and the CMFD by the DISO method. Given that the different magnitudes of the deviations, the deviation of each metric should be normalized before calculating the DISO value. The equation for calculating the DISO value is as follows:
[image: image]
where [image: image] represents the absolute value of the deviation between the reanalysis data and observation. The smaller the DISO value, the smaller the difference between the reanalysis data and the observation, and the higher the data quality.
Taking the year 1980 as an example, the spring mean value is defined as the average of March, April, and May, the summer mean value is defined as the average of June, July, and August, the autumn mean value is defined as the average of September, October, and November and the winter mean value is defined as the average of December 1980, January and February 1981.
3 RESULTS
Figure 1A implies that the TP has the most intense warming of 0.7°C/decade in winter, followed by 0.55°C/decade in autumn, and about 0.3°C/decade in spring and summer. Although the reanalysis datasets capture the characteristics of severe warming over the TP in winter, the amplitude of the warming trend is underestimated relative to the observation. The winter warming trend of 0.5°C per decade in ERA5 is the closest to the observation, and the deviation is the largest for the MERRA2 data, which is only 0.27°C/decade. In autumn, the warming trends displayed by the five sets of reanalysis datasets are still weak. The result of ERA5 is the closest to the CMFD, while the NCEP2 has the strongest bias. In spring and summer, except for NCEP2, the deviation of the warming trends presented by other reanalysis data have weakened compared with the counterpart in autumn and winter, and are closer to the observation (Figure 1A). In terms of climatology (Figure 1B), the CMFD shows that the winter temperature over the TP is about −13°C, and the ERA5 and NCEP2 have cold biases, while other reanalysis data have warm biases. Compared with the results of the trend, the reanalysis datasets present a smaller deviation of the winter temperature climatology. In summer, except for JRA-55, the climatology presented by the other reanalysis data are almost consistent with the observed values. In spring and autumn, the ERA5 and NCEP2 have weaker cold biases, and the ERA-Interim and MERRA2 have weaker warm biases, while the JRA-55 has stronger warm biases. For the interannual variability, the CMFD data displays the strongest interannual variability in winter, and all the reanalysis datasets reproduce this feature, among which the ERA5 and NCEP2 are the closest to observation, while the MERRA2 is the worst. In other seasons, the results of the ERA5 exhibit stronger interannual variability relative to the observations, and the JRA-55, MERRA2, and ERA-Interim exhibit weaker interannual variability, while the interannual variability given by the NCEP data is stronger in spring and weaker in summer and autumn (Figure 1C).
[image: Figure 1]FIGURE 1 | (A) Trends (°C/decade), (B) climatology (°C), and (C) interannual variability (°C) of surface air temperature (SAT) over the Tibetan Plateau (TP) among the different datasets for four seasons. The color of red, light blue, blue, green, orange, and yellow represents the observational data CMFD, ERA5, JRA-55, ERA-Interim, MERRA2, and NCEP2 data, respectively.
Clearly, the five sets of reanalysis data have different ability in reproducing the trend, climatology and interannual variability of SAT over the TP in different seasons. Therefore, we select three factors to comprehensively evaluate the ability of the reanalysis datasets to capture the SAT over the TP in different seasons by the DISO method. According to the DISO values, the ability of the reanalysis data to reproduce the winter temperature over the TP from strong to weak is: ERA5, NCEP2, JRA-55, ERA-Interim, MERRA2 (Figure 2A). The ranking is ERA-Interim, MERRA2, ERA5, JRA-55, NCEP2 in spring (Figure 2B), while it is ERA-Interim, MERRA2, ERA5, NCEP2, JRA-55 in summer (Figure 2C) and ERA5, ERA-Interim, NCEP2, MERRA2, JRA-55 in autumn (Figure 2D).
[image: Figure 2]FIGURE 2 | The ability of different reanalysis datasets to capture the SAT over the TP in winter (A), spring (B), summer (C) and autumn (D). The smaller the DISO value, the better quality of the data.
Generally, the ERA-Interim has the highest quality among these reanalysis data in spring and summer, while it is ERA5 in autumn and winter. It is worth noting that although the capturing ability of the ERA-Interim in spring and summer and the ERA5 in autumn and winter is better than other reanalysis data, the DISO values are about 0.3 and 0.8 respectively, indicating that there still exist some deviations with the observation even for the optimal reanalysis data. Figure 3 shows the spatial distribution of spring surface air temperature over the TP from the CMFD and ERA-Interim. The ERA-Interim shows that the spring warming is weaker over the most parts of the TP (Figure 3B) relative to the observation (Figure 3A), and the bias field also reflects this feature (Figure 3C). For the climatology, the SAT fields of the ERA-Interim and the observation are generally consistent (Figure 3D; Figure 3E), while the deviation field implies that the ERA-Interim has a warm bias in most areas of the TP (Figure 3F). Figure 3I demonstrates that the interannual variability given by ERA-Interim on the TP is weaker compared with the observation (Figure 3G). Considering the ERA5 is the improved version of the ERA-Interim, we also further analyzed the SAT bias field of the ERA5 dataset. Supplementary Figure S1C reveals that the spring SAT trend deviation field in ERA5 is similar to that in Figure 3C, and there is a cold bias over the most parts of the TP. The difference is that the ERA5 data has a cold bias for climatology (Supplementary Figure S1F) and the strong interannual variability (Supplementary Figure S1I) over the most areas of the TP. The previous study pointed out that the temperature change over the TP in spring was mainly related to the surface albedo (Gao et al., 2019). Figure 4 and Supplementary Figure S2 present the variation of snow depth for the observations, ERA-Interim and ERA5. It can be found that compared with observations, the snow depth decline trends captured by the ERA-interim and ERA5 are weaker (Figure 4C and Supplementary Figure S2C). However, the ERA-Interim has less snow (Figure 4F) and the ERA5 has more snow (Supplementary Figure S2F) than the observation (Figure 4D) in terms of climatology. Therefore, the deviation of the spring snow depth could explain the deviation field of the spring SAT to a certain extent.
[image: Figure 3]FIGURE 3 | The spring SAT spatial distribution in CMFD and ERA-Interim. (A–C) represent the CMFD temperature trend field, the ERA-Interim temperature trend field, and the difference field (°C/decade) between the ERA-Interim and CMFD, respectively; (D–F) are similar to (A–C) but represent the climatology fields (°C); (G–I) are similar to (A–C) but represent interannual variability fields (°C). The TP domain is outlined by the black curve with height above 2,500 m.
[image: Figure 4]FIGURE 4 | Spatial distribution of the spring snow depth over the TP in observational and ERA-Interim data. (A) the observational trend (cm/decade) of spring snow depth; (B) is similar to (A) but for the ERA-Interim data (cm/decade); (C) the difference of snow depth trend field (cm/decade) between ERA-Interim and observation data; (D–F) are similar to (A–C) but represent the climatology fields (cm). The TP domain is outlined by the black curve with height above 2,500 m.
Figure 5 is the spatial distribution of summer SAT over the TP from the observations and ERA-Interim. The ERA-Interim shows a weaker warming over the TP relative to the CMFD in summer, and the deviation field also reflects this feature (Figures 5A–C). For the climatology of summer SAT, the ERA-Interim and observation are relatively consistent, while the bias field indicates that ERA-Interim has a warm bias over the eastern region of the TP and a cold bias over the western region of the TP (Figures 5D–F). Moreover, Figure 5I demonstrates that the summer SAT presented by the ERA-Interim displays weaker interannual variability over the TP. Supplementary Figure S3 implies that the results of ERA5 are basically consistent with the ERA-Interim, but the summer DISO value of ERA5 is about 0.7. This is because the bias of the ERA5 summer SAT is stronger than that of the ERA-interim in terms of the trend and interannual variability. The previous studies concluded that the SAT changes are mainly related to water vapor over the TP in summer (Gao et al., 2019; 2021). Therefore, we calculate the ERA-Interim and ERA5 summer water vapor trend fields. Both the ERA-Interim and ERA5 show a significant increase of water vapor in summer, which corresponds to the warming of the TP (Figures 6A,B). This result also reflects that the temperature deviation over the TP in summer may be mainly related to water vapor that induces atmospheric downward long-wave radiation.
[image: Figure 5]FIGURE 5 | The summer SAT spatial distribution in CMFD and ERA-Interim. (A–C) represent the CMFD temperature trend field, the ERA-Interim temperature trend field, and the difference field (°C/decade) between the ERA-Interim and CMFD, respectively; (D–F) are similar to (A–C) but represent the climatology fields (°C); (G–I) are similar to (A–C) but represent interannual variability fields (°C). The TP domain is outlined by the black curve with height above 2,500 m.
[image: Figure 6]FIGURE 6 | The summer water vapor fields (g/kg/decade) integrated from 600 hPa to 200 hPa over the TP in ERA-Interim (A) and ERA5 (B), respectively; (C,D) are similar to (A,B) but represent the autumn water vapor fields. The TP domain is outlined by the black curve with height above 2,500 m. Stippled areas indicate regions exceeding the 90% statistical confidence level.
In autumn, we present the spatial distribution of SAT over the TP from the observations and ERA5. Figure 7B shows that the plateau warming in autumn given by ERA5 is weaker than the observation (Figure 7A), and the deviation field also displays this feature (Figure 7C). As for the climatology, the spatial distribution of ERA5 and observation is relatively consistent (Figures 7D,E), while the bias field reveals that the ERA5 data overall presents a cold bias (Figure 7F). Moreover, the interannual variability of ERA5 over the TP is stronger than the observation for the autumn SAT (Figures 7G,I). Previous study indicated that the temperature changes over the TP are mainly related to water vapor and snow in autumn (Gao et al., 2019). Figure 6D reveals that the water vapor of ERA5 shows a significant increase in autumn, which indicates that it has a certain contribution to the autumn warming of the TP. However, Figures 8A–D imply that the ERA5 reproduces a weaker snow decline trend and has more snow than the observation. The above analysis demonstrates that the autumn SAT deviation field in ERA5 may be mainly related to its snow deviation and water vapor field.
[image: Figure 7]FIGURE 7 | The autumn SAT spatial distribution in CMFD and ERA5. (A–C) represent the CMFD temperature trend field, the ERA5 temperature trend field, and the difference field (°C/decade) between the ERA5 and CMFD, respectively; (D–F) are similar to (A–C) but represent the climatology fields (°C); (G–I) are similar to (A–C) but represent interannual variability fields (°C). The TP domain is outlined by the black curve with height above 2,500 m.
[image: Figure 8]FIGURE 8 | Spatial trends and time series of autumn snow depth over the TP from the observational and ERA5 data. (A) The observational trend (cm/decade) of autumn snow depth over the TP; (B) is similar to (A) but for the ERA5 data (cm/decade); (C) difference in snow depth trend field (cm/decade) between ERA5 and observation data; (D) time series of autumn snow depth changes (cm) in the observation and ERA5 data. The TP domain is outlined by the black curve with height above 2,500 m.
Although the ERA5 presents the characteristics of the winter warming over the TP, the overall trend is weak (Figures 9A–C). As for the climatology of winter SAT, the spatial distribution of the ERA5 and observation are relatively consistent (Figures 9D,E), while the deviation field shows that ERA5 has a cold bias in the southeast of the plateau and a warm bias in the northwest region (Figure 9F), and the overall is the cold bias (Figure 2B). The interannual variability captured by the ERA5 is stronger in the southeastern plateau and weaker in the northwest region relative to the observation (Figures 9G–I). The previous study demonstrated that the winter temperature change over the TP is mainly related to the surface albedo (Gao et al., 2019). Figures 10A–D reveal that the ERA5 reproduces a weaker snow trend and exhibits more snow than the observation. Hence the bias of winter snow in ERA5 data contributes to its temperature bias field to a certain extent.
[image: Figure 9]FIGURE 9 | The winter SAT spatial distribution in CMFD and ERA5. (A–C) represent the CMFD temperature trend field, the ERA5 temperature trend field, and the difference field (°C/decade) between the ERA5 and CMFD, respectively; (D–F) are similar to (A–C) but represent the climatology fields (°C); (G–I) are similar to (A–C) but represent interannual variability fields (°C). The TP domain is outlined by the black curve with height above 2,500 m.
[image: Figure 10]FIGURE 10 | Spatial trends and time series of winter snow depth over the TP in observational and ERA5 data. (A) The observational trend (cm/decade) of winter snow depth over the TP; (B) is similar to (A) but for the ERA5 data (cm/decade); (C) difference in snow depth trend field (cm/decade) between ERA5 and observation data; (D) time series of winter snow depth changes (cm) in the observation and ERA5 data. The TP domain is outlined by the black curve with height above 2,500 m.
4 CONCLUSION AND DISCUSSION
This paper selects three indicators including the trend, climatology, and interannual variability to comprehensively assess the ability of the five sets of reanalysis data to capture the SAT over the TP in different seasons by the DISO method. Results indicate that in spring and summer, the DISO values of ERA-interim are the smallest, which are 0.3 and 0.2, respectively. However, the DISO values of ERA5 are the smallest in autumn and winter, which are 0.8 and 0.7, respectively. Although the ERA-Interim and ERA5 are better than other reanalysis data in the corresponding seasons, there are still some deviations from the observed data. Therefore, we further analyze the spatial differences in the SAT field between the optimal and observed data in different seasons. The results show that the spring warming trend of the TP captured by the ERA-Interim is weaker than the CMFD, and there is a warm deviation in most regions in terms of climatology, which may be mainly related to the snow deviation existed in the ERA-Interim. In summer, the warming trend presented by the ERA-Interim over the TP is weak, and there is a warm deviation in the eastern part of the plateau and a cold deviation in the western part of the plateau for the climatology, which may be mainly related to the water vapor field in this data. Compared with the CMFD, both the warming trend and climatology captured by the ERA5 in autumn are cold deviations, which may be mainly related to the water vapor field and the larger snow bias existed in the data. The winter warming trend displayed by the ERA5 is weaker than the CMFD, while the climatological bias field indicates that the ERA5 has a cold bias in the southeast of the plateau and a warm bias in the northwest region. The results show that the deviation of winter snow depth has a certain contribution to the deviation of the surface air temperature in ERA5.
In addition, the deviations of the SAT exist in the different reanalysis datasets over the TP are essentially due to the differences in the numerical models used by the development institution, assimilated observational data, assimilation methods, and parameterization schemes. Therefore, it is necessary to conduct a more detailed analysis for the deviation reasons existing in these reanalysis datasets to promote the improvement of the data in the future.
Besides the drastic warming and the strongest interannual variability over the TP in winter as shown in Figure 1, we also find that the winter SAT of the TP has an interdecadal transition from a negative phase to a positive phase in 1999 (Figures 11A–C). The further analysis demonstrates that the winter sea ice concentration (SIC) over the Barents-Kara Sea also has an interdecadal transition from a positive phase to a negative phase in 1999 (Figures 11B,C). The recent studies have concluded that the sea ice loss over the Barents-Kara Sea can aggravate the warming of the TP in winter (Duan et al., 2022b) and explaining 61.4% of the winter cooling over China in the past 2 decades (Li et al., 2019). Furthermore, it shows that the interdecadal variability of the winter SIC over the Barents-Kara Sea is an important factor affecting the interdecadal transition of the cold surge path over East Asia (Yang et al., 2020). The previous studies also reveal that the interannual variability of the winter SIC over the Barents-Kara Sea has a great impact on the Asian climate system (Wu et al., 2016; Mori et al., 2019; Li et al., 2020; Chen et al., 2021; Sun et al., 2022). Therefore, will the winter Barents-Kara SIC loss also have an impact on the SAT of the TP on the interdecadal and interannual time scale? Further exploration of this interesting scientific question is needed in the future.
[image: Figure 11]FIGURE 11 | (A) Time series of winter temperature anomalies (°C) over the TP during 1979–2019 in the ERA5 data. The green vertical line corresponds to the year 1999, which represents the decadal abrupt point of winter temperature over the TP (passing the 99% confidence level). The red dashed lines represent the averaged temperature anomalies of the two periods, respectively; (B) is similar to (A) but for the winter Barents-Kara sea ice concentration anomalies (%) during 1979–2019 from the National Snow and Ice Data Center (NSIDC). (C) The 11 years moving t-test values for the winter temperature anomalies over the TP (red solid line) and Barents-Kara sea ice concentration anomalies (purple solid line), and the blue dashed line represents the 99% confidence level.
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Rainfall erosivity is one of the important factors leading to soil and water erosion, affecting the intensity of soil erosion and the variation of river sediment load. This work aimed to explore the distribution and variation characteristics of rainfall erosivity in the Nandu River Basin in tropical China and to clarify the effect of rainfall erosivity on sediment load variation. The daily rainfall data of 13 meteorological stations in the Nandu River Basin during 1971–2020 were used to calculate the rainfall erosivity of the river basin by using the rainfall erosivity model based on the daily rainfall. The analyses were conducted using the Mann-Kendall non-parametric trend/abrupt test, wavelet analysis, inverse distance weighted interpolation and other research methods to determine the temporal and spatial fluctuation patterns of rainfall erosivity and sediment load. The annual mean rainfall erosivity in the Nandu River Basin during 1971–2020 was 16,497.67 MJ mm·ha−1·h−1, which showed an upward trend. The distribution of rainfall erosivity was concentrated from July to September. Except spring, the variation of rainfall erosivity in summer, autumn and winter showed an upward trend. Spatially, rainfall erosivity showed a decreasing trend from south to north. The variation coefficient of each meteorological station ranged from 0.24 to 0.43, showing high regional variability. The correlation between rainfall erosivity and erosive rainfall in the basin was the highest, followed by altitude and latitude. From 1980 to 2020, the sediment load in the Nandu River Basin showed an overall upward trend, with obvious periodic changes. The main change period was 25 years, and the sediment load had a large inter-annual variation. Taking the period before the inflection point of the double accumulation curve of sediment load and rainfall erosivity as the base period, since 2009, the river sediment load increased by 46.36% compared with the base period. The influence of the variation of rainfall erosivity on sediment load is −22.23%, and that of human activities on sediment load is 122.23%. These findings can provide a scientific reference for soil erosion model prediction, soil and water conservation and environmental management in tropical basins of China.
Keywords: rainfall erosivity, sediment load, temporal and spatial variation, soil and water loss, tropical basin, erosive rainfall
1 INTRODUCTION
Soil and water erosion reduces soil nutrients, organic matter, water holding capacity and infiltration rate, thus threatening the balanced development of an ecosystem, and erosion has become one of the most serious ecological environmental problems in the world (Diodato and Bellocchi, 2009; Panos et al., 2015). The influencing factors of soil and water erosion mainly include rainfall, soil, vegetation, topography and human activities, among which rainfall is the most fundamental driving force to induce soil and water erosion (Vrieling et al., 2014). The main manifestations of rainfall on worsening soil and water erosion are raindrop splashing and runoff denudation, which damage soil structure, leading to the separation of soil particles and transport of these soil particles by runoff (Xin et al., 2011; Wang et al., 2013; Stumpf et al., 2017). Rainfall time, rainfall intensity and rain pattern characteristics directly affect the degree and risk of soil and water erosion, and rainfall erosivity is a key indicator used to characterize rainfall erosion intensity (Liu et al., 2018; Jia et al., 2022); thus, its dynamic changes have a significant impact on both runoff and sediment yield processes in a basin. In recent years, with the change in global climate, the problem of soil and water erosion caused by rainfall has become increasingly serious, especially in low-latitude tropical areas, which are more affected by extreme hydrological events such as rainstorms and typhoons. Therefore, monitoring and analyzing the dynamic changes in rainfall erosivity in these areas is of great significance for soil and water erosion prevention and control.
Rainfall erosivity is an important parameter for estimating soil erosion in the Universal Soil Loss Equation (USLE) and the Revised USLE (RUSLE), which can quantitatively reflect the potential risk of water and soil erosion caused by rainfall (Lee and Heo, 2011; Vrieling et al., 2014; Xie et al., 2016). The calculation model of rainfall erosivity first requires the hourly rainfall data model proposed by Wischmeier and Smith (1978). The calculation formula of the model is E [image: image] I30, where E represents the rainfall kinetic energy and I30 is the maximum rainfall intensity within 30 min. This model can obtain high-precision calculation results. However, the long series of 30-min scale rainfall data required for its calculation is difficult to obtain in many research areas globally, and the steps in the process of data calculation are tedious and time-consuming (Lee and Heo, 2011). Based on the above, scholars have proposed rainfall erosivity estimation models at different time scales based on the E [image: image] I30 model, including the annual rainfall calculation model (Bonilla and Vidal, 2011), the monthly rainfall erosivity calculation model (Fu et al., 2010), and the widely verified and used method in different regions of China by Zhang et al. (Zhu et al., 2019; Zhang et al., 2021), who proposed a daily rainfall calculation model and estimated rainfall erosivity using meteorological satellite monitoring methods. The daily rainfall model calculates rainfall erosivity by daily rainfall, which not only greatly improves the feasibility of data acquisition and simplifies the calculation process of rainfall erosivity but also ensures the calculation accuracy of annual average rainfall erosivity and its seasonal distribution compared with annual and monthly rainfall models (Jia et al., 2022).
Many studies have investigated the changes in rainfall erosivity in different areas to reveal the influence of rainfall on soil and water erosion. Wang W. et al. (2022) studied the changes in rainfall erosivity in the Yellow River Basin of China using the data from 98 meteorological stations and found that the annual rainfall erosivity of 80% of stations in the region showed an increasing trend in the past 50 years. From 1951 to 2010, the variation in rainfall erosivity in different regions of China showed great heterogeneity. During this period, the fluctuation of rainfall erosivity in the southwestern karst area increased, while the rainfall erosivity in the northwestern Loess Plateau area, northeastern black soil area and northern soil and rocky mountain area showed a significant downward trend (Qin et al., 2016; Zhu et al., 2021). In addition, Shiono et al. (2013) assessed the impact of future climate change on the rainfall erosivity of farmland in Japan and believed that climate change in Japan would lead to an increase in rainfall erosivity and that the soil erosion of farmland in Japan would gradually increase at an average rate greater than 20% in the future.
The change of sediment load is related to river erosion and the stability of river ecosystem. Domestic and foreign scholars have carried out relevant studies on several rivers in the world, and found that the sediment load of Asian rivers changes significantly (Beechie et al., 2010; Wang et al., 2016; Li et al., 2020). River sediment load has an important impact on waterway operation and biological habitat protection (Xu et al., 2016). Therefore, it is of great significance to study the variation of river sediment load for regional environmental development, river development and protection. In recent years, sediment loads of many rivers in mainland China have changed dramatically (Li et al., 2018; Yang et al., 2022), but there are few studies on the influencing factors of sediment load change. Rainfall is an important factor that causes soil erosion and sediment load changes in rivers. Climate change intensifies the water cycle, produces more rainfall, and leads to the occurrence of erosive rainfall events such as heavy rain (Han et al., 2017; IPCC, 2021), but there are few studies on the impact of rainfall erosivity on river sediment load. Therefore, it is necessary to explore how rainfall erosivity affects the variation of river sediment load under the background of rainfall erosivity change, especially in areas with particularly high rainfall erosivity.
Hainan Island is located in the southernmost part of China and is located in the tropics. It is characterized by abundant annual rainfall, long a duration of the rainy season and a heavy rainfall intensity, which increase the potential risk of soil and water loss in this region. The Nandu River Basin is the largest basin on Hainan Island, and the Nandu River provides the main water resources for production and life in northern and northeastern Hainan Province. Meanwhile, the Songtao Reservoir, where the Nandu River upstream runoff enters, is an important source of drinking water and agricultural irrigation water in western Hainan Province (Cao et al., 2022). The water and soil erosion in this basin is directly related to the water security and agricultural production safety of most areas of Hainan Province. Since the end of the last century, with the civil engineering of Hainan Province and the increase in human activities such as large-scale agricultural farming, the original tropical rainforest in the Nandu River Basin has been destroyed, and the large-scale planting of rubber trees and other artificial forests has resulted in a sharp reduction in the area of natural forests (Lei et al., 2020), greatly reducing the ecological function of soil and water conservation in the forest system and accelerating the occurrence of soil and water erosion in this region, resulting in increasing ecological security risks. In view of this, based on the data from 13 meteorological stations and one hydrological observation in the Nandu River Basin and its adjacent areas, this study explored the spatiotemporal distribution and variation characteristics of rainfall erosivity in the Nandu River Basin at various time scales and analyzed the impact of rainfall erosivity on river sediment load. This study provides an important scientific basis for the monitoring and control of soil erosion in tropical basins of China and is of great significance for the risk prediction, assessment and early warning of the Nandu River Basin and its typical soil erosion areas.
2 MATERIALS AND METHODS
2.1 Study area characterization
The Nandu River basin lies between 109°36'∼ 110° 34′E, 19°09'∼ 19°55′N in the north-central region of Hainan Island. This river basin is the largest basin in Hainan Island, covering an area of 5333km2, with an elevation of 2–1379 m. The terrain is low in the southwest and high in the northeast. The climate type of the study area is tropical monsoon climate, with obvious wet and dry seasons. The average annual temperature is 23.5°C and the average annual rainfall is 2137 mm. Rainfall presents a pattern of more in the south and less in the north. The annual rainfall is mainly concentrated from May to October, accounting for about 80% of the annual rainfall.
2.2 Study data
In this study, we collected and processed various rainfall erosivity estimation data. The first type was the fundamental geographic data of the 30 m digital elevation model (DEM), which was obtained from the Resource and Environmental Science and Data Center, Chinese Academy of Sciences (https://www.resdc.cn); and the river spatial distribution data and basin boundaries, which were extracted from the DEM through the ArcGIS platform.
The second type of data was the meteorological data, including the daily precipitation from 1971 to 2020 from 13 meteorological stations, and these are presented in Table 1. The data were provided by the Hainan Hydrology and Water Resources Survey Bureau.
TABLE 1 | Information about the weather stations and basic statistics of annual rainfall for all stations.
[image: Table 1]The third type of data is hydrological data, including the measured data of annual suspended sediment load of Longtang Hydrology Station on Nandu River from 1980 to 2020. The hydrographic station is located at the downstream outlet of the river basin, as shown in Figure 1. And the data comes from the Hainan Hydrology and Water Resources Survey Bureau. Due to the different initial recording times of data from different sites and the lack of measurement of some data, the criteria adopted by the European Climate Assessment dataset were followed in the data screening process (Klein et al., 2002): (1) the data timing sequence was no less than 40 years; (2) the missing data of a single site accounted for less than 10%; and (3) each site was not allowed to have more than 20% missing data per year or more than 3 consecutive months. For the partial missing data of a single station, the average value of data from two or more nearby observation stations was used to make up the value to obtain the complete series of rainfall data.
[image: Figure 1]FIGURE 1 | Location map of the study area. The comprehensive station has meteorological observation data and hydrological observation data.
2.3 Calculation of rainfall erosivity
The temporal resolution of rainfall data required for calculating rainfall erosivity includes hour, day, month and year. Different calculation models of rainfall erosivity are selected according to the data accuracy obtained. Due to the lack of hourly rainfall data in the study area, a rainfall erosivity calculation model based on daily rainfall was selected in this study according to the principle of optimal data accuracy. Currently, there are three commonly used calculation models of rainfall erosivity based on daily rainfall:
Model A. This model is based on the rainfall erosivity model proposed by Wischmeier and Smith (1978) and revised by Zhang et al. (Xie et al., 2016). The specific calculation formula is as follows:
[image: image]
where
[image: image]
[image: image]
where REi is the rainfall erosivity of the i half month (MJmm·ha-1·h-1), m is the number of days with erosive rainfall in the half month period, Pk is the erosive rainfall on the k day in the semilunar period, Pd12 is the average daily rainfall (mm) if the daily rainfall amount exceeds 12 mm, and Py12 is the average annual rainfall amount (mm) if the daily rainfall amount is > 12 mm. The daily erosive rainfall standard for this model is 12 mm.
Model B. CREAMS model (Knisei, 1980). The specific calculation formula is as follows:
[image: image]
where RE is the rainfall erosivity, Pt is the daily rainfall on the t day (mm). The daily erosive rainfall standard for this model is 12.7 mm.
Model C. This model is a modified model based on daily rainfall established by Shi et al. (2006). The specific calculation formula is as follows:
[image: image]
where REj is the rainfall erosivity of the j month (MJmm·ha-1·h-1); Pk is the daily rainfall (mm) on the k day of the j month. The daily erosive rainfall standard for this model is 12 mm.
2.4 Temporal variation analysis
This study mainly used three methods to analyze temporal changes, including trend changes, abrupt years and periodic changes in time series. The specific methods were as follows:
Mann-Kendall trend test. When this method analyzes the change trend of a time series, it determines a time series (X1,…,Xn) and whether the change trend is significant.
For any sequence Xt (t = 1,…,n) to be checked, n is the length of the sequence to be checked. The statistic S can be defined as follows:
[image: image]
where Xj and Xk are the corresponding year data of the time series, n is the length of the time series, and sgn (Xj - Xk) is the sign function. When Xj > Xk, the sgn value is 1; when Xj < Xk, the sgn value is −1; and when Xj is equal to Xk, the sgn value is equal to 0.
When n ≥ 10, the statistic S approximately follows a normal distribution, and its expectation and variance are as follows:
[image: image]
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The standardized test statistic Z can be constructed according to the following equation:
[image: image]
In the bilateral inspection, for a given level of significance of alpha, if |Z| ≥ Z1-α/2, the null hypothesis is not acceptable, which meets the significance level, so the sequence has an obvious trend up or down. Since the α confidence level was chosen as 0.05 in this study, Z1-α/2 = 1.96. When Z is positive, it shows an upward trend; when Z is negative, it shows a downward trend. The Mann-Kendall test can also be used to judge the abrupt time of a series, mainly through two variables: UF and UB in chronological order, and their intersection point is the time of abrupt occurrence (Grinsted et al., 2004; Nyikadzino et al., 2020).
Wavelet analysis. When analyzing the problem of time series, the basic analysis of the time domain and frequency domain often cannot meet some phenomena affected by many factors, so it is necessary to analyze through wavelet analysis, i.e., combining the time domain and frequency domain, to analyze the change of its period on the change of time to meet the needs of analysis. In this study, the Morlet wavelet transform, cross wavelet and coherent wavelet methods were used to analyze the periodic changes in rainfall erosivity and river sediment load in the Nandu River Basin.
The temporal scale characteristics of annual rainfall erosivity and annual river sediment load can be further obtained by the Morlet wavelet transform. The Morlet wavelet transform is as follows:
[image: image]
where n represents time, and ω0 is the dimensionless frequency. For a given energy finite signal f(t) ϵ L2(R), its continuous wavelet transform is as follows:
[image: image]
where a and b represent parameters in the frequency domain, a reflects the period length of the wavelet, b reflects the translation length in time, Wf (a,b) is the wavelet transform coefficient for the continuous wavelet, and [image: image] (t) is the wavelet function. Finally, the square value of the wavelet coefficient is integrated in the b domain to obtain the wavelet variance formula:
[image: image]
The wavelet variance diagram reflects the change process of scale a, which can determine the energy intensity and time scale distribution of fluctuations. Therefore, the wavelet variance diagram can be used to determine the main time scale in a hydrological sequence, that is, the main period.
Cross wavelet transform and the wavelet coherence spectrum can be used to research the correlation between two time series at multiple time scales. However, the cross wavelet transform method has some shortcomings; that is, it can analyze only the common high energy region of two time series but not the low energy region, and a coherent wavelet can solve this problem (Lokenath and Firdous, 2015).
The formula of cross wavelet conversion is as follows:
[image: image]
where [image: image] is the coherent spectral density of the cross wavelet; “*” denotes the conjugate operator; and the higher the value is, the greater the correlation between signals x and y.
Double cumulative curve analysis method. The double cumulative curve analysis method is used to determine the abrupt change point of sediment load in the Nandu River Basin. The double cumulative curve analysis method is widely used in the consistency of hydrometeorological elements, the long-term evolution trend and the analysis of the role of two main controlling factors. In this method, the cumulative values of two variables are plotted in a coordinate system to generate a double cumulative curve, and if the relationship between the two variables does not change systematically, the double cumulative curve will be a straight line; otherwise, the double cumulative curve will deflect. And the time corresponding to the inflection point is the time of abrupt of hydrometeorological elements (Aryal and Zhu, 2020).
Assessment of the influence of changes in sediment loads. Linear regression method was used to quantitatively evaluate the influence of rainfall erosivity variation and anthropogenic activities on sediment load variation. This method is based on abrupt analysis, with the period before abrupt as the base period and the period after abrupt as the change period. The linear relationship between sediment load and rainfall erosivity in the base period is as follows:
[image: image]
Where a and b are regression parameters.
The calculated sediment load (SL′) during the changing period can be obtained by substituting the rainfall erosivity (RE′) into formula (12).
[image: image]
The formula of the influence of rainfall erosivity variation on sediment load (SLRE) is as follows:
[image: image]
The formula of the influence of human activities on rainfall erosivity (SLHuman) is as follows:
[image: image]
Where [image: image] is the difference between the average measured sediment load in the change period and the base period.
2.5 Spatial change analysis
The spatial variation is mainly analyzed by inverse distance-weighted interpolation. Inverse distance-weighted interpolation works by assuming things close to each other are more similar than things that are far apart. In the calculation of this method, the observation closer to the observer will be given a greater weight, while the distant observation is given a lower weight. Therefore, the weight decreases with distance.
2.6 Model suitability evaluation method
In this study, effectiveness coefficient (Ef) and relative deviation coefficient (Er) proposed by Nash and Sutcliffe (1970) were used to evaluate the suitability of different rainfall erosivity models. The calculation formula is as follows:
[image: image]
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where [image: image] is the annual rainfall erosivity calculated by the model, [image: image] is the rainfall erosivity of base year. Similarly, [image: image] is the annual mean rainfall erosivity calculated by the model, [image: image] is the mean value of rainfall erosivity in base year.
The annual base rainfall erosivity is the average of annual rainfall erosivity calculated by three rainfall erosivity models, and the annual mean base rainfall erosivity is the average of multi-year rainfall erosivity calculated by each model. The closer the model effectiveness coefficient (Ef) is to 1, the higher the calculation accuracy of the model is. The closer the relative deviation coefficient (Er) is to 0, the more accurate the model calculation results will be.
3 RESULTS
3.1 Model suitability evaluation
The standard deviation, coefficient of variation (Cv), effectiveness coefficient (Ef) and relative deviation coefficient (Er) of the calculated results of the three models were calculated (Table 2). Among the three models, the average annual rainfall erosivity calculated by model B is the highest, reaching 18,765.12 MJ mm·ha−1·h−1, while the average annual rainfall erosivity calculated by model C is the least, reaching 13,968.90 MJ mm·ha−1·h−1. The results of rainfall erosivity calculated by these models are quite different. In order to improve the reliability of calculation results, it is necessary to evaluate the suitability of each calculation model when calculating rainfall erosivity with simple algorithm. Among the standard deviations of the calculated results of each model, the dispersion of model B is the highest and that of model C is the lowest. Among the coefficients of variation (Cv) of the calculated results of each model, model B has the largest fluctuation range, while model A has the smallest fluctuation range, indicating that the rainfall erosivity calculated by model A has good stability. The effectiveness coefficient (Ef) of the settlement result of model A reached 0.82, which was the highest among the three models, indicating that model B had the highest accuracy among the three models. At the same time, the relative deviation coefficient (Er) of the calculated results of model A is the smallest among the three models, only 0.06, which indicates that model A has a relatively good suitability in the study area. To sum up, model A was adopted in this study to calculate rainfall erosivity.”
TABLE 2 | Evaluation on suitability of different rainfall erosivity calculation models.
[image: Table 2]3.2 Temporal variation characteristics of rainfall erosivity
3.2.1 Interannual variation in rainfall erosivity
`The average annual rainfall erosivity of the Nandu River Basin from 1971 to 2020 was 16,497.67 MJ mm·ha−1·h−1. During the 50 years, the maximum value of rainfall erosivity was 23,692.14 MJ mm·ha−1·h−1, and the minimum value was 11,841.33 MJ mm·ha−1·h−1. The years of the maximum and minimum values were 2000 and 1983, respectively. The average annual erosive rainfall was 1,692.41 mm, the maximum was 2,217.36 mm, and the minimum was 1,392.67 mm. The occurrence year was consistent with rainfall erosivity, which verified the effect of erosive rainfall on rainfall erosivity. The maximum value of rainfall erosivity was 2.01 times the minimum value, and the maximum value of erosivity of rainfall was 1.59 times the minimum value. The analysis of the dispersion degree of the annual rainfall erosivity and annual erosivity of rainfall in the basin showed that the coefficient of variation of the former was 0.29 and that of the latter was 0.21, both of which indicate medium variation. However, the variation in annual rainfall erosivity was greater than that of annual rainfall erosivity. This result indicates that the annual variation in rainfall erosivity was more severe than that of erosivity rainfall during the study period.
According to the analysis in Figure 2, the variation trend of annual rainfall erosivity in the basin was generally consistent with that of annual erosive rainfall. From 1971 to 2020, the rainfall erosivity in the basin showed an upward fluctuating trend, which was generally divided into four stages. The first stage was from 1971 to 1983, and the rainfall erosivity showed a downward fluctuating trend; the second stage was from 1984 to 2001, during which rainfall erosivity fluctuated and increased; the third stage was from 2002 to 2013, and the rainfall erosivity turned to an upward trend after a steep drop in 2005, and the whole stage showed a fluctuating upward trend; finally, the fourth stage was from 2014 to 2020, and the rainfall erosivity in this stage showed a downward trend.
[image: Figure 2]FIGURE 2 | Interannual variation in erosive rainfall and rainfall erosivity in the Nandu River Basin.
3.2.2 Intra-annual variation in rainfall erosivity
According to Figure 3, the rainfall erosivity in the Nandu River Basin was mainly concentrated from July to September, accounting for 51.26% of the annual rainfall erosivity. The maximum rainfall erosivity occurred in August, which was 2,789.75 MJ mm·ha−1·h−1, accounting for 17.20% of that of the whole year. The minimum value occurred in January, which was 221.01 MJ mm·ha−1·h−1, accounting for only 1.36% of that of the whole year. The erosivity of rainfall varied significantly between months.
[image: Figure 3]FIGURE 3 | Distribution of monthly erosive rainfall and rainfall erosivity in the Nandu River Basin.
The seasonal distribution of rainfall erosivity is shown in Figure 4. Except for spring (from March to May), rainfall erosivity showed a downward trend, while it showed an upward trend in summer (from June to August), autumn (from September to November) and winter (from December to the following February). The rainfall erosivity was mainly concentrated in summer and autumn, and the summer rainfall erosivity was the highest, at 6,877.23 MJ mm·ha−1·h−1, accounting for 42.28% of the annual rainfall erosivity. The winter rainfall erosivity was the lowest, at 406.76 MJ mm·ha−1·h−1, accounting for 2.50% of the whole year.
[image: Figure 4]FIGURE 4 | Seasonal variation in rainfall erosivity in the Nandu River Basin.
3.2.3 Analysis of rainfall erosivity change
According to the results of wavelet analysis of rainfall erosivity in the Nandu River Basin (Figure 5), the annual average rainfall erosivity in the study area had significant periodic changes in the evolution process, and there were two periods of 4–7 years and 28–33 years in the whole time series, which were stably distributed from 1971 to 2020. The peak value in the wavelet variance diagram was the periodic value in the evolution process of the rainfall erosivity series. According to the figure, the peak values of the wavelet variance diagram were at 6 years and 30 years, and the peak value at 30 years was the highest, indicating that the periodic oscillation of the annual average rainfall erosivity series was the strongest at approximately 30 years. Therefore, 30 years was the main variation period of rainfall erosivity, within which there was a 6-year sub-variation period.
[image: Figure 5]FIGURE 5 | Periodic variation in annual rainfall erosivity based on wavelet analysis.
According to the results of the Mann-Kendall abrupt test (Figure 6), there were five intersection points between the positive series UF and the reverse series UB curves of rainfall erosivity within the confidence interval. The first intersection of the two curves occurred during 1971–1972, with UF > 0 at the intersection point. However, the UF curves of the positive series were all within ±1.96, which did not pass the significance level of 0.05, indicating that there was no significantly abrupt occurrence in rainfall erosivity during the study period.
[image: Figure 6]FIGURE 6 | Mann-Kendall abrupt analysis of annual rainfall erosivity.
3.3 Spatial variation characteristics of rainfall erosivity
3.3.1 Spatial distribution of rainfall erosivity
The average annual rainfall erosivity of each meteorological station varied from 12,340.72 to 22,890.31 MJ mm·ha−1·h−1, with the maximum value occurring at Jiabao station and the minimum value occurring at Jialai station, with the maximum value being 1.85 times the minimum value. There were great differences in rainfall erosivity among the stations (Figure 7).
[image: Figure 7]FIGURE 7 | Average rainfall erosivity of meteorological stations in the Nandu River Basin.
The spatial distribution of annual erosive rainfall and rainfall erosivity in the Nandu River Basin from 1971 to 2020 was obtained by inverse distance-weighted interpolation based on the data of average erosive rainfall and rainfall erosivity (Figure 8). The maximum rainfall erosivity was distributed in the southeastern and southwestern parts of the basin, and the overall trend gradually decreased from the south to north, which was consistent with the distribution rule of annual erosivity rainfall. Because of the regional difference in rainfall erosivity, the Nandu River Basin was divided into three regions. The southern and southeastern regions included Jiabao, Dafeng, Nankun, Dalupo and Tangwei, and the rainfall erosivity of these stations reached more than 17,000 MJ mm·ha−1·h−1. The central region included Nanfeng, Kunlun, Dingan and Xinde, and the rainfall erosivity of these stations was generally distributed in the range of 15,000–17000 MJ mm·ha−1·h−1. The northern and northwestern regions included Jialai, Jiatan, Meting and Longtang, with rainfall erosivity below 15,000 MJ mm·ha−1·h−1.
[image: Figure 8]FIGURE 8 | Spatial distribution of erosive rainfall and rainfall erosivity in the Nandu River Basin.
Since rainfall erosivity varies greatly in different seasons, the spatial characteristics of rainfall erosivity in the Nandu River Basin in different seasons were analyzed, and the results are shown in Figure 9. The spatial distribution of rainfall erosivity in each season was consistent with the annual rainfall erosivity, showing a decreasing trend from south to north. The rainfall erosivity in summer accounted for the largest proportion of the whole year, and the range of rainfall erosivity in different regions was 5,049.13–10,706.87 MJ mm·ha−1·h−1. The highest rainfall erosivity in summer occurred in the southern and southeastern regions, and the lowest rainfall erosivity occurred in the northwestern region. Autumn rainfall erosivity as a percentage of the year was second only to summer. The distribution of rainfall erosivity in different areas in autumn ranged from 3,765.97 to 9,058.60 MJ mm·ha−1·h−1, and the maximum area distribution was consistent with that in summer. The lowest proportion of rainfall erosivity occurred in winter, and the range of rainfall erosivity was 154.43–634.65 MJ mm·ha−1·h−1, with the highest value only in the southeastern region and the lowest value in the northwestern region.
[image: Figure 9]FIGURE 9 | Spatial distribution of seasonal rainfall erosivity in the Nandu River Basin.
3.3.2 Spatial variation trend of rainfall erosivity
By inverse distance-weighted interpolation of the CV value of the rainfall erosivity variation coefficient and the Z value of the Mann-Kendall statistic, the spatial distribution of the characteristic parameters of rainfall erosivity interannual variation in the Nandu River Basin was obtained (Figure 10). The variation coefficient of rainfall erosivity of each meteorological station ranged from 0.24 to 0.43, and the regional difference was obvious. The variation coefficient of the northern region was relatively large, the variation coefficient of the southern region was relatively small, and the variation coefficient showed a gradual decreasing trend from north to south. Due to the abundant rainfall and stable annual erosive rainfall in the southern part of the basin, the interannual variation in rainfall erosivity is relatively small, and the coefficients of variation were all lower than 0.28. According to the distribution of the Z value of the Mann-Kendall statistic of rainfall erosivity, except for the Dafeng, Nanfeng and Longtang stations, all stations in the study area showed an upward trend, indicating that the construction of soil and water conservation measures should be strengthened in these areas to prevent the aggravation of soil and water erosion.
[image: Figure 10]FIGURE 10 | Spatial distribution of the coefficient of variation and Mann-Kendall Z value of rainfall erosivity in the Nandu River Basin.
3.3.3 Variation in rainfall erosivity under different terrain conditions
According to the topographic characteristics of the Nandu River Basin, it was divided into plain areas and mountain areas. The plain areas included the eastern and northern parts of the basin, and the mountain areas included the western and southern parts of the basin (with 400 m elevation as the division standard). The distribution of rainfall erosivity in plain and mountain areas and its correlations with erosive rainfall, latitude and longitude and altitude were analyzed (Table 3).
TABLE 3 | Rainfall erosivity and influencing factors under different terrain conditions in the Nandu River Basin.
[image: Table 3]As shown in Table 3, the erosive rainfall and rainfall erosivity in the western and southern mountain areas were higher than those in the eastern and northern plain regions. In terms of the coefficient of variation, the eastern and northern plains > the whole basin > the western and southern mountainous areas. Under the influence of the Pacific Southeast monsoon, the warm and humid air mass blowing to the land from the eastern part of the basin will cause air flow uplift when it encounters the mountain regions in the southwest part of the basin, resulting in more rainfall and more erosive rainfall events. This is consistent with the average annual erosive rainfall distribution of the basin, and thus shows that the rainfall erosivity in the mountainous area is greater and more stable than that in the plain area. The Z value of the plain regions was negative, so the rainfall erosivity of the area was decreasing, the Z value of the mountain regions was positive, the rainfall erosivity was increasing, and the |Z| of the mountain regions was higher than that of the plain regions, which indicated that the change trend of the mountain regions was more obvious. Rainfall erosivity was significantly positively correlated with erosive rainfall and altitude in plain and mountain regions. The correlation with erosive rainfall passed the 0.01 significance test, and the correlation with altitude passed the 0.05 significance test. The correlation between rainfall erosivity and longitude was not obvious in the plain regions but it was the mountain regions. However, there was a certain correlation between rainfall erosivity and latitude in the two terrains. The correlation coefficients between latitude and plain regions and mountain regions were 0.76 and 0.42, respectively, and both passed the 0.01 significance test.
3.4 Variation trend of sediment load in the basin
From 1980 to 2020, the sediment load in the Nandu River Basin showed an overall upward trend, which was divided into four stages: (1) the sediment load fluctuated and increased from 1980 to 2000; (2) the sediment load decreased from 2000 to 2004; (3) it increased from 2004 to 2010; and (4) it fluctuated and decreased from 2010 to 2020 (Figure 11). The average annual sediment load in the Nandu River Basin was 256,200 tons. The maximum sediment load was 68.2 million tons in 2010, and the minimum sediment load was 4.17 million tons in 2020, which was only 6.11% of the maximum. This result indicated that the annual average sediment load in the basin varied greatly.
[image: Figure 11]FIGURE 11 | Annual variation in the sediment load and anomalies in the Nandu River Banner.
According to the results of wavelet analysis of the annual sediment load in the Nandu River Basin (Figure 12), the annual sediment load in the study area had significant periodic changes during its evolution. The sediment load had two variation periods of 10–15 years and 20–30 years in the whole time series, and it was stably distributed from 1980 to 2020, which was a global trend. The peak value of the wavelet variance diagram represents the periodic value in the evolution process of the rainfall erosivity sequence. The peaks in the figure were at 11 years and 25 years, respectively, and the peak value at 25 years was the highest, indicating that the annual average sediment load sequence had the strongest oscillation at approximately 25 years. Therefore, 25 years was the main variation period of the sediment load, and there were 11-year sub-variation periods in the main period.
[image: Figure 12]FIGURE 12 | Periodic variation in the annual sediment load based on wavelet analysis.
3.5 Influence of rainfall erosivity on sediment load
The influencing factors of river sediment load mainly include rainfall and underlying surface change. The influence of rainfall is quantitatively represented by rainfall erosivity, and the influence of underlying surface change is represented by human activities. The double accumulation curve of sediment load and rainfall erosivity in Nandu River Basin (Figure 13) showed an inflection point in 2009. The period before the inflection point (1980–2008) is the base period, and the period after the inflection point (2009–2020) is the change period. Taking the data fitting trend line of the base period as reference, the data points of the change period appear above the fitting trend line. By fitting the relationship between sediment load and rainfall erosivity in different periods (Figure 14), it is found that the slope of the relationship line in the change period is higher than that in the base period (Table 4), indicating that the sediment load has been increasing since 2009 and the sediment production capacity per unit rainfall erosivity has been rising.
[image: Figure 13]FIGURE 13 | Double accumulation curve analysis between the sediment load and rainfall erosivity in the Nandu River Basin.
[image: Figure 14]FIGURE 14 | Linear fitting of sediment load and rainfall erosivity at different periods in Nandu River Basin.
TABLE 4 | Linear relationship between sediment load and rainfall erosivity at different periods in Nandu River Basin.
[image: Table 4]Most of the data points were distributed in quadrants I and III, and only 10% of the data points were distributed in quadrants II and IV, indicating that sediment load and rainfall erosivity had the same trend and a strong correlation before the abrupt change year, and these trends passed the 0.05 significance test (Figure 15). The river sediment load in the basin increased by 46.36% in the change period compared to that before 2009, while the rainfall erosivity decreased by 9.24% in this stage, indicating that the change of rainfall erosivity promoted the reduction of sediment load. After 2009, the increase in sediment load was entirely due to human activities. The influence of the variation of rainfall erosivity on sediment load is −22.23%, and that of human activities on sediment load is 122.23%.
[image: Figure 15]FIGURE 15 | Linear relationship between the annual variations in the sediment load and rainfall erosivity before abrupt change years in the Nandu River Basin.
The analysis of the cross-wavelet power spectrum of the Nandu River Basin (Figure 16) showed that there was a resonance period of 3 years between rainfall erosivity and sediment load from 1996 to 2003, a resonance period of 10 years from 2004 to 2011, and a resonance period of 1–11 years from 2013 to 2018. By observing the phase angle, it was found that rainfall erosivity and sediment load showed a significant positive correlation in the above three stages and passed the significance test at the 95% confidence level.
[image: Figure 16]FIGURE 16 | Cross-wavelet power spectra of annual sediment load and annual rainfall erosivity. The 95% confidence level of significance for red noise is indicated by a thick outline, and the relative phase relationship is indicated by an arrow (in-phase points to the right, anti-phase refers to the left).
There was a 2–11 years resonance period between rainfall erosivity and sediment load in the Nandu River Basin in the coherent wavelet high energy region from 1985 to 2011 and a 2–3 years resonance period in 2013–2017. In the above two stages, the rainfall erosivity and sediment load showed a significant positive correlation and passed the 0.05 significance level test (Figure 17).
[image: Figure 17]FIGURE 17 | Coherent wavelet power spectra of the annual sediment load and annual rainfall erosivity. The 5% significance level against red noise is shown as a thick contour. All significant sections show in-phase behavior.
4 DISCUSSION
Quantifying the spatial and temporal distribution and changes in rainfall erosivity is crucial for accurately assessing the effect of soil and water conservation measures and identifying the risk of soil and water loss (Zhang et al., 2008). This study analyzed the spatiotemporal distribution and variation trend of rainfall erosivity in the Nandu River Basin from 1971 to 2020 and concluded that the average annual rainfall erosivity in the Nandu River Basin was 16,497.67 MJ mm·ha−1·h−1. According to the classification standard of Huang et al. (2013), an average rainfall erosivity ≥ 10,000 MJ mm·ha−1·h−1 is considered high rainfall erosivity. The study area was classified as an area with high rainfall erosivity levels. The rainfall erosivity of the Nandu River Basin was higher than that of the Pearl River Basin (Lai et al., 2016), Huaihe River Basin (Wei et al., 2022) and Yangtze River Basin (Huang et al., 2013), which was mainly due to the differences in the latitude and monsoon zone of each study area. The Nandu River Basin belongs to the northern edge of the tropical zone, which makes the intra-annual rainfall erosivity peak from July to September. Affected by the tropical monsoon climate, typhoons and rainstorms occur frequently in the study area in summer and autumn, when erosive rainfall is most concentrated.
From 1971 to 2020, the rainfall erosivity in the basin showed an increasing trend of fluctuation, which was consistent with the trend of rainfall erosivity in southern China (Zhang et al., 2008). Rainfall erosivity was highest in southern China. The spatial distribution of erosive rainfall and rainfall erosivity in the basin was similar, which was consistent with the research results of Huaihe River Basin (Xu et al., 2019) and middle Yellow River Basin (Chang et al., 2022), further indicating that erosive rainfall is a key factor affecting rainfall erosivity. Long-term rainfall erosivity is a stable environmental index that can reflect future scenarios and provide an important reference value for soil and water conservation and regional environmental management.
Due to the differences in geographical location and rainfall characteristics, rainfall erosivity showed different trends under different terrain conditions. Xu et al. (2022) found that there was a strong correlation between rainfall erosivity and elevation in the Dawen River Basin, and the rainfall erosivity in the mountainous regions was significantly higher than that in the plain regions. Wang J. H et al. (2022) established a regression equation between rainfall erosivity and topographic indicators in the Baiyangdian Basin and concluded that rainfall erosivity was negatively correlated with latitude and altitude and positively correlated with longitude in this region. In this study, the correlation between rainfall erosivity and elevation in the Nandu River Basin was the most significant, followed by latitude. This result was different from other studies, which may be influenced by the differences in atmospheric circulation and geographical location. The Nandu River Basin has a great topographic difference, with an overall trend of being high in the southwest and low in the northeast. When the tropical monsoon blows from the ocean to the land in the eastern part of the basin, the rainfall erosivity in the northern part of the basin gradually decreases from east to west. However, the elevation of the terrain in the southern part of the basin makes the warm and humid air flow rise, resulting in the increase in rainfall and rainfall erosivity. Moreover, due to the more complex terrain in the southern part of the basin, the risk of soil erosion increases. Therefore, the prevention and treatment of soil erosion in the western and southern mountain areas should be strengthened.
Rainfall erosivity reflects the potential ability of rainfall to cause soil erosion. The spatial and temporal distributions of rainfall erosivity are different, so rainfall erosivity will have an impact on erosion and sediment yield in the basin. Anthropogenic factors, soil texture and vegetation factors are also important driving forces of the variation in the sediment load in the basin, among which anthropogenic factors were dominant (Lu et al., 2013). At the beginning of the 21st century, due to the rapid economic benefits of crops such as betel nut, the original tropical rainforest in the study area was replaced by betel nut and other forest species by local residents, which negatively affected the soil conservation function of the ecosystem and aggravated soil erosion. This may have directly led to the abrupt change in the sediment load in 2009 (Figure 11). The above contents further highlight the direct effect of human activities on the variation in the sediment load in the basin, which is supported by the research results of Guo et al. (2019) in the Yellow River Basin.
The results showed that the influence of rainfall erosivity and human activities on sediment load is −22.23% and 122.23%, respectively, taking the period before the abrupt change of sediment load as the base period. The increase in sediment during the period of change is entirely due to human activities. In other studies, the contribution rate of rainfall in the Yellow River Basin to the reduction in sediment load was 20% (Peng et al., 2010), and the contribution rate of climate in the upper reaches of the Yangtze River to the change in sediment load was 7%–36% (Huang and Wei, 2015), which was basically consistent with the results of this paper. In addition, large-scale soil and water conservation measures and the construction of water conservancy projects will affect changes in the sediment load (Zhao et al., 2020; Zheng et al., 2021).
The Nandu River Basin is located on a tropical island, and the frequent occurrence of typhoons and rainstorms is a special factor leading to soil loss and sediment load changes in the study area. Therefore, it is necessary to pay attention to the increase in rainstorm events under the condition of climate change, which will lead to the frequent occurrence of high rainfall erosivity and increase the risk of regional soil and water loss.
5 CONCLUSION
In this study, the distribution and variation trend of rainfall erosivity in the Nandu River Basin in the last 50 years were analyzed, and the variation in sediment load in the last 40 years was described. The abrupt years of sediment load and the influence of rainfall on the variation in sediment load were clarified. The following conclusions can be drawn:
(1) The average annual rainfall erosivity in Nandu River Basin from 1971 to 2020 ranged from 11,841.33 to 23,692.14 MJ mm·ha−1·h−1, and the average was 16,497.67 MJ mm·ha−1·h−1. Rainfall erosivity had a 30-year main variation period, and within the main cycle, there was a 6-year period of sub-variation, and rainfall erosivity had no significantly abrupt occurrence. Compared with erosive rainfall, rainfall erosivity had a more dramatic interannual variation. The rainfall erosivity in the Nandu River Basin was the most prominent in July, August and September, and the distribution of rainfall erosivity in these 3 months was concentrated and stable. In addition, except for spring, the rainfall erosivity in summer, autumn and winter showed an upward trend.
(2) The spatial distribution characteristics of rainfall erosivity in the Nandu River Basin were basically consistent with those of erosive rainfall, showing a gradual decreasing trend from the southern region to the northern region. The centers of high and low values of rainfall erosivity were basically consistent with the centers of high and low values of erosive rainfall. The variation trend of rainfall erosivity at each station had obvious variability, and the overall spatial trend gradually decreased from south to north.
(3) The rainfall erosivity in the plain regions and mountain regions of the Nandu River Basin was positively correlated with erosive rainfall and altitude, and the erosive rainfall passed the 0.01 significance level, while the altitude passed the 0.05 significance level. Rainfall erosivity in plain regions and mountain regions had no obvious correlation with longitude but had a certain correlation with latitude, and the correlation coefficients were 0.76 and 0.42, respectively, which passed the 0.01 significance test.
(4) From 1980 to 2020, the sediment discharge in the Nandu River Basin showed an overall upward trend, and the annual average sediment discharge in the basin showed a large interannual difference. The sediment load on the time series had a 25-year main variation period and an 11-year sub-variation period. The sediment load changed significantly in 2009. Before the abrupt change year, the trends of sediment load and rainfall erosivity were consistent and strongly correlated, and these trends passed the significance test of 0.05. The influence of the variation of rainfall erosivity on sediment load is −22.23%, and that of human activities on sediment load is 122.23%. The results of this study provide an important reference value for the monitoring and risk assessment of soil and water erosion in the same type of erosion area in tropical China. However, in this study, rainfall erosivity was calculated and evaluated only from the daily scale, and the variation in event-based rainfall erosivity was not analyzed. In addition, the influence of extreme climate in the tropics on the variation in sediment load needs further in-depth analysis.
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Soil moisture is an important factor affecting the change of land surface hydrological processes and the distribution of material and energy exchanges between the land and atmosphere and vegetation’s temporal and spatial distributions, especially in arid and semi-arid regions. This paper focuses on soil moisture features across Northwest China, the core region of the Silk Road Economic Belt. Six soil moisture datasets from the period 1981–2020 were employed, which included ERA5 (the European Centre for Medium-Range Weather Forecasts Atmospheric Reanalysis 5), ESA-CCI (European Space Agency Climate Change Initiative), GLDAS (Global Land Data Assimilation System), MERRA-2 (The Modern-Era Retrospective Analysis for Research and Applications, Version 2), RSSSM (A Remote Sensing-based global 10-day resolution Surface Soil Moisture dataset), and SSM-Feng (Regional multimodal fusion of surface soil moisture data in China). The temporal and spatial variation of the linear trend and abrupt change characteristics at seasonal and annual scale were explored. The results are as follows: 1) ESA-CCI, GLDAS, and MERRA-2 showed a slow increase in annual soil moisture tendency at a rate of less than 0.001 m3/m3/year, while ERA5 and SSM-Feng showed a significant decreasing linear trend at a rate of 1.31 × 10−4 m3/m3/year and 1.01 × 10−4 m3/m3/year (p < 0.05), respectively. 2) In autumn and winter, only GLDAS and MERRA-2 showed significant increasing trends. In the growing season (i.e., from April to October), the soil moisture of ESA-CCI, GLDAS, and MERRA-2 significantly increased at the rates of 3.29 × 10−4 m3/m3/year, 3.30 × 10−4 m3/m3/year, and 6.64 × 10−4 m3/m3/year (p < 0.05), respectively. 3) ERA5 and ESA-CCI have frequent abrupt changes in 1984, 1987, and 2006 for ERA5, 2010–2012 and 2019–2020 for ESA-CCI. 4) In terms of spatial variations, most datasets show that soil moisture has increased across most regions. The ERA5, ESA-CCI, GLDAS, MERRA-2, and SSM-Feng datasets show decreased soil moisture in the Tarim Basin. The conclusions of this study deepen the understanding of temporal and spatial variation in soil moisture in arid areas of Northwest China. Through these conclusions, a certain theoretical basis can be provided for the complex water cycle process in the arid region.
Keywords: soil moisture, microwave remote sensing data, lobal hydrological model, reanalysis data, spatiotemporal characteristics
1 INTRODUCTION
Soil moisture is one of the essential components in land–atmosphere interaction, which affects the physical properties of soil (such as surface albedo and soil heat capacity). Soil moisture directly or indirectly participates in the water and heat exchange and material exchange between the surface and atmosphere to interact with the near-surface climate and affect or change the water cycle process and the temporal and spatial distribution characteristics of vegetation (Seneviratne et al., 2010; Zhou et al., 2021a). Moreover, as an indicator of climate change, soil moisture is widely used to measure drought characteristics on regional and global scales (McColl et al., 2017; Seneviratne and Orth, 2017; Zhao and Dai, 2021). Therefore, soil moisture analysis has become one of the most significant and vital scientific issues attracting increasing attention (Gu et al., 2019a; Deng et al., 2019; Deng et al., 2020; Yao et al., 2021).
Influenced by temperature, precipitation, wind speed, and vegetation cover, soil moisture shows significant temporal differences and spatial heterogeneities at regional and global scales (Das and Mohanty, 2006). According to the basic parameters of soil moisture data from the essential climate variable satellites, The Global Land Data Assimilation System (GLDAS), Coupled Model Intercomparison Project Phase 5 (CMIP5), and several kinds of reanalysis soil moisture data, the change characteristics of global surface soil moisture during 1980–2005 were analyzed (Gu et al., 2019a). All datasets showed a drying trend in global soil moisture (Gu et al., 2019a). Quantification of global hydroclimate and drought changes in the 21st century using 25 CMIP6 models showed that surface soil moisture is generally reduced in most parts of the United States of America, Southeast Asia, and North Asia (Zhao and Dai, 2021). At the regional scale, in Eurasia, over the past 63 years, soil moisture has generally decreased during the warm season (Gu et al., 2019b). The soil moisture data of the root zone (0–100 cm) were estimated using the ESA-CCI (European Space Agency Climate Change Initiative), as well as surface soil moisture data (0–5 cm), to understand the spatial and temporal distribution characteristics in the root zone of East Asia. The variation trend of soil moisture in the root zone was different in different climatic regions. From 1982 to 2014, 53% of the study area was dry land in East Asia (Zohaib et al., 2017).
The in situ observation data account for the most accurate soil moisture data. However, due to their low temporal and spatial resolution and small coverage time range, it is difficult to adapt to practical applications in the field of hydrometeorology (Bárdossy and Lehmann, 1998). With the rapid development of remote sensing technology, this problem has gradually been solved. Microwave sensors on satellites can observe soil moisture daily and worldwide; thus, they are widely used (Peng and Loew, 2017). For example, soil moisture products from the ESA-CCI have attracted considerable attention (Dorigo et al., 2017). However, satellite remote sensing of soil moisture has the disadvantages of measuring soil moisture in the root zone, temporal and spatial discontinuity of coverage, and limited historical data (Ford et al., 2020). In contrast, the land surface models and reanalysis products have the advantages of global coverage, high spatial and temporal resolution, long time series, spatial and temporal continuity, etc. Therefore, they can be used to study the spatial and temporal variation characteristics of soil moisture in a refined time scale. Therefore, many scholars have compared satellite remote sensing, land surface simulation, and reanalysis products at different regional scales (Peng et al., 2017; Bai et al., 2018; Deng et al., 2019; Deng et al., 2020). Although model outputs are spatially and temporally continuous, there is uncertainty in model-simulated soil moisture products because of the physical model structure, input parameters, input datasets, and other factors (Schellekens et al., 2017; Chew and Small, 2018; Gruber et al., 2019). Hence, multiple sources of soil moisture data are needed to investigate soil moisture variations and to overcome the disadvantages and uncertainties of single data.
The arid region of Northwest China plays a vital role in the Silk Road. The fragile ecosystem in Northwest China is susceptible to climate change and soil moisture. Recent studies have shown that this region has experienced a significant warming trend (Hu et al., 2014), wetting trend (Hu et al., 2017, 2019a), and decreasing terrestrial water storage (Hu et al. (2019b); Zhou et al., 2022) and groundwater. Furthermore, it has been shown that under the long-term influence of climatic drought, insufficient water supply, and substantial water consumption by plants, the phenomenon of soil moisture negative balance frequently occurs in the arid region of Northwest China. Therefore, soil desiccation becomes increasingly severe (Yan et al., 2015). Climate change, terrestrial water storage variations, and the response of soil moisture to climate and plants have substantial regional disparities. A previous study detected an increased soil moisture trend in Xinjiang during 2000–2017 using six GLDAS models (Hu et al., 2021a). Nevertheless, remote sensing and reanalysis data were not considered.
Based on this analysis, it is essential to address the following three questions regarding the arid region of Northwest China: 1) Do the different sources of soil moisture datasets have consistent spatiotemporal feature results? 2) Does soil moisture undergo abrupt changes? 3) Do soil moistures have evident regional disparities? In this paper, the soil moisture content in Northwest China was studied using satellite remote sensing, global land surface modeling, and reanalysis data. The second part is mainly about the research scope, data, and research methods. Next, we present our research results in the third section. A discussion is provided in the fourth section. The last section concludes this paper.
2 STUDY AREA, DATASET, AND METHODOLOGY
2.1 Study area
The arid area in Northwest China is in the center of Eurasia and the core area of the Silk Road Economic Belt, located at 34°–50° N and 72°–107° E. It includes the Xinjiang Uygur Autonomous Region, the Hexi Corridor in Gansu Province, the Alxa Plateau to the west of Qilian Mountain in Inner Mongolia, a part of the northern Qilian Mountain in Qinghai Province, and a small part of Ningxia (Li et al., 2022). Affected by its topography and complex climate system, the study area has arid and semi-arid climate characteristics throughout the year, with precipitation less than 400 mm. The annual average potential evapotranspiration is high, up to 1216.39 mm, and its fragile ecosystem is extremely sensitive to climate change and human activities (Li and Sawada, 2022). The soil moisture observation stations are sparsely distributed in the arid region of Northwest China and are mainly concentrated near the Tian shan and Qilian Mountains (Figure 1). Based on the topography and climate characteristics, the study area was divided into nine sub-regions: the Altay Prefecture of Xinjiang, Junggar Basin, northern Tian shan Mountains, southern Tian shan Mountains, Tuha Basin, Tarim Basin, Kunlun Mountains, Hexi Corridor, and Alxa Plateau.
[image: Figure 1]FIGURE 1 | Study area and the station distribution in Northwest China, (Ⅰ) Altay Mountains, (Ⅱ) Alxa Plateau, (Ⅲ) Hexi Corridor, (Ⅳ) Junggar Basin, (Ⅴ) Kunlun Mountains, (Ⅵ) Tarim Basin, (Ⅶ) northern Tian shan Mountains, (Ⅷ) southern Tian Shan Mountains, and (Ⅸ) Tuha Basin, Figure number: GS(2019)1822.
2.2 Datasets
In this study, site soil moisture data were analyzed based on the gravity method, ERA5 reanalyzed soil moisture data, ESA-CCI active–passive satellite remote sensing soil moisture data, GLDAS land simulation soil moisture data, MERRA-2 reanalyzed soil moisture data, global surface soil moisture decade-based remote sensing dataset (RSSSM, 2003–2020), and China regional multi-mode fusion surface soil moisture data (SSM-Feng) (Table 1). The unit of all soil moisture data is soil volumetric water content (m3/m3), except that of MERRA-2 soil moisture data, which is ground wetness values (GWET). The details of data are in the Supplementary materials.
TABLE 1 | Six soil moisture datasets used in this study.
[image: Table 1]2.3 Methodologies
This study analyzed the linear trend, mutation characteristics, and main spatial modes of soil moisture in the arid region of Northwest China. Linear least squares, Mann–Kendall abrupt test, Mann–Kendall trend analysis, and empirical orthogonal function (EOF) analysis were used. Considering the difference in the applicability of satellite remote sensing data, GLDAS data, and reanalysis data in different regions, the accuracy was evaluated using data from 41 stations. The accuracy evaluation methods include the correlation coefficient (CC), relative error (RE), root mean square error (RMSE), distance between indices of simulation and observation (DISO) and the triple collocation (TC) method. The DISO index is widely used in many fields, such as climate change, medicine, and economics (Hu et al., 2019; Hu et al., 2020; Zhou et al., 2021b; Hu et al., 2022; Liu et al., 2022; Yin et al., 2022; Zhang et al., 2022). TC (Stoffelen, 1998; Gruber et al., 2016) is a statistical method used to estimate the random error variance of three independent datasets. The specific method is described in the Supplementary Materials.
2.3.1 Seasonal and annual scales in this study
In order to study the dynamic change of soil moisture, the time scales were divided into annual and seasonal scales. Among them, the seasonal scales are divided into spring [from March to May (MAM)], summer [from June to August (JJA)], autumn [from September to November (SON)], winter [from December to February (DJF)], and growing season. The growing season is defined as April–October (Yin et al., 2016).
3 RESULT
This section mainly discusses the accuracy in evaluating multiple datasets and the temporal and spatial variation characteristics of soil moisture. The precision evaluation included statistical metrics and the TC method. The temporal variation characteristics included inter-annual and seasonal linear variation trends and abrupt change characteristics. Spatial variation includes linear trends, abrupt changes, and spatial modes. Moreover, we analyzed the spatiotemporal variations in nine sub-regions to address more detailed spatial differences.
3.1 Accuracy assessment of the six different soil moisture datasets
The accuracy of ERA5, ESA-CCI, GLDAS, MERRA-2, RSSSM, and SSM-Feng soil moisture datasets from 1992 to 2013 was evaluated using the soil moisture data of 41 ground observation stations in the arid area of Northwestern China. The statistical indices RE, RMSE, and DISO were calculated. The TC method was used to compare the statistical index results. Table 2 describes the assessment results derived from the three statistical indices. Supplementary Tables S1, S2 describe the TC results.
TABLE 2 | Evaluation results of the six soil moisture datasets.
[image: Table 2]ERA5, ESA-CCI, and RSSSM underestimate the soil moisture, and the other three datasets ( GLDAS, MERRA-2, and SSM-Feng) slightly overestimate the observed data. GLDAS and SSM-Feng had the smallest RE with the same value of 0.002 m3/m3; the corresponding RMSE values were 0.084 m3/m3 and 0.065 m3/m3. The DISO values of the six datasets were approximately 1, with the smallest value of 0.823 for the ESA-CCI (Table 2).
The correlation coefficient was calculated between the datasets and combinations with a correlation coefficient greater than 0.5 were excluded, as shown in Table 3. The triple collocation method was used to calculate the errors among the multi-source soil moisture datasets, and the following conclusions were obtained (Supplementary Table S2). The error ranges of ERA5, ESA-CCI, and SSM-Feng were 0–0.12, 0–0.08, and 0–0.05, respectively. ERA5 had better precision throughout the entire study area, and the area with an error between 0 and 0.02 is the largest. The dataset’s accuracy in the eastern part of the arid region of Northwest China was higher than that in the northwestern part. The accuracies of ERA5, GLDAS, and SSM-Feng were similar, with error ranges of 0–0.15, 0–0.12, and 0–0.15, respectively. From the spatial scale, an area with an error smaller than 0.05 accounts for more than 90% of the total area (Supplementary Figure S1), and the areas with poor accuracy for the three datasets are the Kunlun Mountains and west of the southern slope of the Tian shan Mountains. The soil moisture product with the highest accuracy was in the combination ERA5 data. Among the three datasets, ESA-CCI had the smallest overall error range, with the average of error being 0.0112, and GLDAS had the higher overall error, with the average of error being 0.0122 (Supplementary Figure S2).
TABLE 3 | Linear trends of the six soil moisture datasets in Northwest China.
[image: Table 3]The previously mentioned analysis shows that GLDAS, SSM-Feng, and ESA-CCI datasets have higher precision in the arid area of Northwest China. In contrast, accuracy evaluation using the TC method showed that the ERA5 and ESA-CCI datasets had higher accuracy than the different combinations. The difference between the two methods may be due to the need for more soil moisture data and the different depths of the soil surface layer in the multi-source soil moisture datasets.
3.2 Temporal variations of soil moisture
3.2.1 Linear trends and abrupt changes of the annual soil moisture
Because of the lack of data in the RSSSM, calculating the annual SM linear trend was challenging. The inter-annual variation trends of the five soil moisture products differed from 1981 to 2020 in the arid region of Northwest China (Figures 2, 3, 5), in which the soil moisture of ESA-CCI, GLDAS, and MERRA-2 showed an increasing trend. ESA-CCI and GLDAS showed a significant increasing tendency (p < 0.05). The annual SM of ERA5 and SSM-Feng decreased significantly at rates of 1.31 × 10−4 m3/m3/year and 1.01 × 10−4 m3/m3/year, respectively (p < 0.05).
[image: Figure 2]FIGURE 2 | Temporal variations of annual and seasonal soil moisture in Northwest China (ERA5, ESA-CCI, GLDAS, RSSSM, and SSM-Feng), (A) ANN, (B) MAM, (C) JJA, (D) SON, (E) DJF, (F) Grow.
[image: Figure 3]FIGURE 3 | Temporal variations of annual and seasonal soil moisture in Northwest China (MERRA-2). (A) ANN, (B) MAM, (C) JJA, (D) SON, (E) DJF, (F) Grow.
For the abrupt changes, the Mann–Kendall results showed that abrupt changes in ERA5 and ESA-CCI data were frequent; the abrupt change in ERA5 data was concentrated in 1984, 1987, and 2006. The abrupt change years of ESA-CCI data were concentrated in 2000, 2001, 2011, 2012, 2019, and 2020 (Table 4). The abrupt change years of the GLDAS and MERRA-2 were concentrated in 2007 and 2015, respectively.
TABLE 4 | Abrupt change years in the arid region of Northwest China from 1981 to 2020.
[image: Table 4]3.2.2 Linear trends and abrupt changes of the seasonal soil moisture
For the seasonal variations, the six datasets exhibited different linear trends (Figures 2, 3; Table 5). The GLDAS showed that soil moisture increased significantly (p < 0.05) in all seasons, with the smallest increase rate in summer (2.56×10-4 m3/m3/year) and the most significant increase rate in winter (7.07 × 10−4 m3/m3/year). The soil moisture drying rate was fastest in autumn (−1.31 × 10−4 m3/m3/year), while the RSSSM dataset did not have enough data for summer (3.66 × 10−4 m3/m3/year). In spring, ERA5 and SSM-Feng datasets showed a significant trend of soil moisture drying (p < 0.05), which were −2.18 × 10−4 m3/m3/year and −7.1 × 10−5 m3/m3/year, respectively. In contrast, ESA-CCI and MERRA-2 showed no significant trend. In summer, the variation trends of ERA5 and MERRA-2 were not significant. The ESA-CCI data showed that soil moisture increased significantly at a rate of 5.33 × 10−4 m3/m3/year (p < 0.05) in Northwest China. SSM-Feng showed a significant trend of soil moisture drying (p < 0.05), with a rate of change of −9.38 × 10−5 m3/m3/year. In autumn, the variation trends in ERA5 and ESA-CCI were not significant. The MERRA-2 dataset showed that soil moisture increased significantly (p < 0.05) at 8.82 × 10−4 m3/m3/year. In contrast, SSM-Feng showed a significant increase in soil moisture (p < 0.05) at 1.31 × 10−4 m3/m3/year. In winter, the changing trend of ERA5, ESA-CCI, and SSM-Feng datasets was insignificant, while the changing trend of MERRA-2 was significantly (p < 0.05) reduced, with a change rate of 8.86 × 10−4 m3/m3/year.
TABLE 5 | Variance contribution rate (VCR) and time-coefficient standard deviation (TCSD) of EOF-1, EOF-2, and EOF-3.
[image: Table 5]During the growing season (from April to October), the soil moisture of ESA-CCI, GLDAS, and MERRA-2 increased significantly (p < 0.05) at rates of 3.29 × 10−4 m3/m3/year, 3.30 × 10−4 m3/m3/year, and 6.64 × 10−4 m3/m3/year, respectively.
Mann–Kendall abrupt change detection was used to analyze the soil moisture change characteristics in the arid area of Northwest China (Figure 5). The ERA5 data are frequently abrupt in summer, autumn, and winter. The abrupt years are concentrated in 1992–2004, consistent with the inter-annual mutation of soil moisture. The MERRA-2 dataset also showed frequent abrupt changes during winter, mainly from 2009 to 2017.
3.3 Spatial variations of soil moisture
The spatial variations in soil moisture at annual and seasonal scales were calculated by linear regression, and the variation characteristics of soil moisture in different seasons were analyzed. The spatial variation trends of soil moisture were different between datasets, and the spatial variation of soil moisture in the same dataset was also different at different time scales. Spatial trends were tested using Mann–Kendall trend analysis.
The conclusion was consistent with the linear regression analysis. Unfortunately, the spatial analysis of the RSSSM is not provided because of serious missing data in space.
3.3.1 Spatial variations of the linear trends of the annual soil moisture
The spatial distributions of linear trends derived using the linear least-squares approach are shown in Figures 4, 5. For further analysis, the area percentages with a significantly increasing trend of annual soil moisture were calculated, as shown in Figure 5. As per ERA5, most areas had decreased annual soil moisture from 1981 to 2021 (Figure 4A). ESA-CCI, GLDAS, and MERRA-2 had similar spatial distributions of annual soil moisture, with significantly increased areas of 67% and 53%, respectively (Figures 4, 6). The significantly increased areas of the annual soil moisture were distributed over the Tian shan Mountains, southern areas of the Tarim Basin and the Kunlun Mountains, the Hexi Corridor and Alxa Plateau from GLDAS (Figure 4C), and most areas of the Altay Mountains and Tarim Basin for Hexi Corridor and Alxa Plateau from MERRA-2 (Figure 4D). SSM-Feng showed a significantly decreasing trend in annual soil moisture across the study area (Figure 4E).
[image: Figure 4]FIGURE 4 | Spatial distributions of linear trends of annual soil moisture, (A) ERA5, (B) ESA-CCI, (C) GLDAS, (D) MERRA-2, (E) SSM-Feng.
[image: Figure 5]FIGURE 5 | Spatial distributions of linear trends of annual soil moisture, (A) ERA5, (B) ESA-CCI, (C) GLDAS, (D) MERRA-2, (E) RSSSM, (F) SSM-Feng.
[image: Figure 6]FIGURE 6 | Percentages of significantly increased soil moisture (p < 0.05).
3.3.2 Spatial variations of the linear trends of the seasonal soil moisture
Figure 5 shows the spatial distributions of the linear trends in the growing season surface soil moisture from ERA5, ESA-CCI, GLDAS, MERRA-2, and SSM-Feng during 1981–2020. The spatial distributions of the linear trends for the four seasons (i.e., MAM, JJA, SON, and DJF) are shown in Supplementary Figure S3–S6. The growing season soil moisture data from ERA5, ESA-CCI, GLDAS, and MERRA-2 had similar spatial distributions of linear trends (Figure 7) to that of the annual soil moisture as illustrated in Figure 4. The SSM-Feng dataset showed positive linear trends over the northern and eastern parts of the study area, except the areas with the most decreased soil moisture (Figure 7E), which differ from the decreasing trends of the annual soil moisture (Figure 4F).
[image: Figure 7]FIGURE 7 | Spatial distributions of linear trends of annual soil moisture, (A) ERA5, (B) ESA-CCI, (C) GLDAS, (D) MERRA-2, (E) SSM-Feng.
The five datasets for the four seasons had significantly different linear trends (Supplementary Figures S3-S6). Specifically, for MAM (Supplementary Figure S2), ERA5 dataset showed that soil moisture decreased in most areas, and there was a significant drying trend in the Tarim Basin and Hexi Corridor. ERA5, GLDAS, and MERRA-2 showed significantly increased soil moisture in the western Tian shan Mountains. For JJA (Supplementary Figure S2), ERA5 dataset showed the soil moisture in the Tarim Basin had a significant decreasing trend; ESA-CCI dataset showed the soil moisture has significantly increasing trends in most areas, except the Tarim Basin and Altay Mountains. The GLDAS dataset showed that the soil moisture in western Tian shan and Kunlun Mountains increased significantly, and the southeast of Xinjiang showed a drying trend. The MERRA-2 dataset showed a significant increasing trend in the northern part of the arid region in Northwest China. The soil moisture trends in the SSM-Feng dataset in the northern part of the arid region in Northwest China showed a drying–wetting–drying trend from west to east in the horizontal direction.
[image: Figure 8]FIGURE 8 | Spatial distributions of linear trends of annual soil moisture, (A) ERA5, (B) ESA-CCI, (C) GLDAS, (D) MERRA-2, (E) RSSSM, (F) ESA-CCI.
For SON and DJF (Supplementary Figure S5, S6), GLDAS and MERRA-2 showed a larger increasing trend in areas than MAM and JJA. The areas with increasing trend values of GLDAS and MERRA-2 are mainly distributed in the Tian shan Mountains, Tarim Basin, and Hexi Corridor. The ERA5 data showed that the soil moisture in the northern and southwestern parts of the arid region of Northwest China decreased slowly in winter. The GLDAS data showed that the soil moisture in winter increased considerably, and the increasing speed gradually slowed down from west to east. The MERRA-2 surface soil moisture products showed a significant increasing trend in the Tian shan Mountains, Turpan–Hami Basin, southeastern Tarim Basin, Hexi Corridor, and Alxa Plateau.
3.3.3 EOF results of annual soil moisture
The variance contribution rate of the first EOF mode (EOF-1) was much higher than that of the other modes, with variance contributions of 23.76% (ERA5), 32.37% (ESA-CCI), 56.28% (GLDAS), 59.27% (MERRA-2), and 46.48% (SSM-Feng) (Table 5). At the 95% confidence level, the variance contribution rate of MERRA-2 was the largest, indicating that EOF-1 can reveal the most spatial variations in soil moisture. However, the spatial variations of the EOF first-mode performance of different data are different. The ERA5 and SSM-Feng data showed that the soil moisture in most areas shows a drying trend. The center of variation is in the east of the Kunlun Mountains. The GLDAS and MERRA-2 data showed that soil moisture in most areas of the arid region of Northwest China increases, and the change rate gradually decreases from west to east. The ESA-CCI and RSSSM datasets had missing data that could not show the spatial variation trend of soil moisture in Northwest China (Figure 9).
[image: Figure 9]FIGURE 9 | Spatial distributions of linear trends of annual soil moisture, (A,B) ERA5; (C,D) GLDAS; (E,F) MERRA-2; (G,H) SSM-Feng.
The variance contribution rate of the second EOF mode (EOF-2) was much higher than that of the other modes, with variance contributions of 20.19% (ERA5), 21.73% (ESA-CCI), 10.96% (GLDAS), 10.17% (MERRA-2), and 16.95% (SSM-Feng) (Table 5). The variance contribution rate of the third EOF mode (EOF-3) was much higher than that of the other modes, with variance contributions of 7.77% (ERA5), 5.91% (ESA-CCI), 7.28% (GLDAS), 5.44% (MERRA-2), and 8.11% (SSM-Feng) (Table 5).
3.3.4 Characteristics of soil moisture variation in different sub-regions
The linear trends of the six annual soil moisture datasets in the nine sub-regions also differed (Figure 10). In the Altay Mountains, the ESA-CCI and MERRA-2 showed significant increase (p < 0.05). In the Alxa region, the six datasets showed a slow wetting trend, where GLDAS and MERRA-2 showed significant (p < 0.05) wetting trends of 1.53 × 10−4 m3/m3/year and 1.04 × 10−3 m3/m3/year, respectively. The GLDAS, MERRA-2, and RSSSM datasets show an increasing trend in the Hexi Corridor, which are significant for GLDAS and MERRA-2 (p < 0.05), with values of 5.53 × 10−4 m3/m3/year and 8.23 × 10−4 m3/m3/year, respectively. In the Kunlun Mountains, the GLDAS dataset showed a significant increase (p < 0.05) at a rate of 6.25 × 10−4 (m3/m3/year), but the SSM-Feng dataset showed an opposite trend. The ERA and SSM-Feng datasets showed a significant decreasing trend in the Tarim Basin (p < 0.05). All datasets showed the same increasing trends in the northern and southern Tian shan Mountains at different magnitudes (Figure 10). In the Turpan–Hami Basin, only MERRA-2 showed a decreasing trend of soil moisture. In contrast, in the Junggar Basin, the ESA-CCI, GLDAS, and MERRA-2 datasets showed a significantly increasing trend. In expressing the annual soil moisture change trend, the ERA5 and SM-Feng datasets showed the same trend; ESA-CCI, GLDAS, and MERRA-2 showed the same trend; RSSSM only had enough data pertaining to Alxa, Hexi Corridor, Kunlun, and northern Tian shan, and the trend was the same as that of ESA-CCI, GLDAS, and MERRA-2.
[image: Figure 10]FIGURE 10 | Annual linear trend of soil moisture in sub-regions, (A) Altay region, (B) Alxa Plateau, (C) Hexi Corridor, (D) Junggar Basin, (E) Kunlun Mountains, (F) Tarim Basin, (G) northern Tian shan Mountains, (H) southern Tian Shan Mountains, and (I) Tuha Basin.
Regarding seasonal soil moisture, the variation trends of the sub-regions in different seasons differed. In spring, ERA5 (Supplementary Table S3) dataset showed that only soil moisture in the Turpan–Hami Basin showed a weak, increasing trend, with a growth rate of 7.45 × 10−5 m3/m3/year, while other sub-regions showed a decreasing trend. The ESA-CCI dataset (Supplementary Table S4) show that the Alxa Plateau, Junggar Basin, Kunlun Mountains, and Tarim Basin showed a weak decreasing trend, whereas the other regions showed an increasing trend, among which the Altay Mountain Range, Tian shan Mountain Range, and Turpan–Hami Basin showed a significant increasing trend (p < 0.05). The growth rates were 7.75 × 10−4 m3/m3/year, 1.24 × 10−4 m3/m3/year, 2.55 × 10−4 m3/m3/year, and 1.39 × 10−4 m3/m3/year. GLDAS dataset (Supplementary Table S5) showed that soil moisture on the southern slope of the Tian shan Mountains decreased at a rate of 6.18 × 10−4 m3/m3/year. The MERRA-2 dataset (Supplementary Table S6) showed only a drying trend for soil moisture in the Turpan–Hami Basin. The SSM-Feng dataset (Supplementary Table S8) showed a weak trend of soil moisture increase in the Alxa Plateau and the Turpan–Hami Basin. In summer, the ERA5 (Supplementary Table S3) dataset showed a decreasing trend in all sub-regions and a significant decreasing trend in the Altay Mountains, Junggar Basin, and the north slope of Tian shan Mountains (p < 0.05). The ESA-CCI (Supplementary Table S4) dataset showed that soil moisture increased significantly in all nine sub-regions (p < 0.05), and the region with the fastest growth rate was Kunlun Mountains, with a growth rate of 8.83 × 10−4 m3/m3/year. In the Altay Mountains and Alxa Plateau, the GLDAS dataset (Supplementary Table S5) showed a drying trend. MERRA-2 (Supplementary Table S6) showed a decreasing trend in the Turpan–Hami Basin. The SSM-Feng dataset showed an increasing trend in the Alxa Plateau, Kunlun Mountains, and Turpan–Hami Basin but a decreasing trend in other areas. In autumn, the ERA5 (Supplementary Table S3) dataset showed that soil moisture in the Alxa Plateau increased at a rate of 1.9 × 10−4 m3/m3/year. In contrast, soil moisture in other regions showed a decreasing trend, but only in the Tarim Basin, it showed a significant decreasing trend (p < 0.05), with a rate of 2.89 × 10−4 m3/m3/year. In the ESA-CCI dataset (Supplementary Table S4), only the Altay Mountain Range and the northern slope of Tian shan Mountain showed significant changes (p < 0.05). The Altay Mountain Range showed a significantly increasing trend at a rate of 3.29 × 10×10−4 m3/m3/year, while the northern slope of Tian Shan Mountains showed a significantly increasing trend at a rate of 1.24 × 10−4 m3/m3/year. The GLDAS dataset (Supplementary Table S5) showed that soil moisture in the Hexi Corridor, Tarim Basin, and northern Slope of Tian Shan Mountains increased significantly (p < 0.05), and the growth rates were 5.11 × 10−4 m3/m3/year, 4.79 × 10−4 m3/m3/year, and 9.63 × 10−4 m3/m3/year, respectively. However, soil moisture on the southern slope of Tian shan gradually decreased. The MERRA-2 (Supplementary Table S6) dataset showed that soil moisture in the Turpan–Hami Basin showed a decreasing trend. As per the SSM-Feng data (Supplementary Table S8), only the southern slope of Tian shan Mountains showed a significant change trend (p < 0.05), and soil moisture decreased at a rate of 7.1 × 10−5 m3/m3/year. In winter, a small amount of ESA-CCI (Supplementary Table S4) data was missing in the partial region due to snow and ice. The ERA5 (Supplementary Table S3) and SSM-Feng datasets showed similar variation trends of soil moisture in the Altay Mountains, Hexi Corridor, the northern and southern slopes of the Tian shan Mountains and the Turpan–Hami Basin. The MERRA-2 dataset (Supplementary Table S6) showed a decreasing trend in the Turpan–Hami Basin, with a rate of 1.12 × 10−5 m3/m3/year. During the growing season (April–October), the ERA5 dataset (Supplementary Table S3) showed a decreasing trend of soil moisture in all sub-regions. However, they only showed a significant decreasing trend in four regions: the Altay Mountain Range, Kunlun Mountain Range, and the northern and southern slopes of the Tian shan Mountains. The corresponding rate of change is 3.18 × 10−4 m3/m3/year, 2.07 × 10−4 m3/m3/year, 3.17 × 10−4 m3/m3/year, and 3.83 × 10−4 m3/m3/year, respectively. The ESA-CCI dataset (Supplementary Table S4) showed a significant growth trend in mountainous regions (p < 0.05), and the fastest growth rate was 7.15 × 10−4 m3/m3/year on the northern slope of the Tian shan Mountains. The GLDAS (Supplementary Table S5) dataset showed that soil moisture decreased slowly at a rate of 2.39 × 10−4 m3/m3/year in the Altay Mountains but increased in other areas. The MERRA-2 (Supplementary Table S6) dataset still showed a decreasing trend in the Turpan–Hami Basin, with a rate of change of 4.92 × 10−5 m3/m3/year.
In addition, the soil moisture variation trends of different data at the growing season and inter-annual scales were similar.
4 DISCUSSION
4.1 Uncertainties of the soil moisture variations from multi-source soil moisture datasets
In this study, we employed six gridded datasets to analyze spatiotemporal variations in soil moisture across arid regions of Northwest China. Large uncertainties exist in the different soil moisture variations, which may be caused by different factors, such as different input data and model structures in GLDAS and ERA-5 and different soil moisture depths for all gridded datasets. Moreover, these factors are the primary reasons for the different performances of the gridded datasets against the OBS and the highly uneven distribution of meteorological stations. The detailed reasons of the uncertainties of the soil moisture variations for each gridded dataset are as follows.
The ESA-CCI and RSSSM are soil moisture datasets based on microwave remote sensing monitoring, which are affected by the atmosphere detection process and can produce atmospheric errors. Because of the limited microwave penetration, vegetation and snow cover will affect microwave remote sensing monitoring data, resulting in inaccurate data (Kerr, 2006). In addition, the ESA-CCI soil moisture product selected here is an active–passive combination product, and Dorigo et al. (2017) found a low correlation for the combination product. Beck et al. (2021) found poor applicability of ASCAT satellite data; the overall poor applicability of ESA-CCI may be due to the inclusion of ASCAT satellite data. Moreover, owing to the limited number of remote sensing satellites and the revisit cycle, many missing remote sensing data may be related to the poor correlation of remote sensing soil moisture products.
The GLDAS land model simulated soil moisture, ERA5 reanalysis data, MERRA-2 reanalysis data, and the SSM-Feng dataset also showed large deviations. To calculate soil moisture, the model needs to input relevant auxiliary data such as soil temperature, surface roughness, and vegetation index. Different model algorithms have different sensitivities to auxiliary data, and the uncertainties of the auxiliary data are the primary error sources in the calculation process of the model (Hu et al., 2021b).
In the absence of ground observation data, the TC method can be used to evaluate the accuracy of multiple soil moisture datasets, but the accuracy evaluation results are affected by the data itself and the correlation between the datasets.
4.2 Comparison with the soil moisture variations over other regions
Berg et al. (2017) conducted a study using CMIP5 data. The results showed that the surface soil moisture in Central Asia showed a downward trend in the context of global warming during 1976–2005. Gu et al. (2019b) showed that under the effect of global warming, the drying trend of soil moisture in Eurasia during the warm season intensified, and the dry area of soil moisture expanded. A dry soil moisture trend was identified in 69.2% of Eurasia, and the area with a significant drying trend accounted for 40% of the total area. The soil moisture decrease rate in the warm season of Eurasia was 0.008 kg/m2/year. The result is consistent with the trend of soil moisture change shown by the ERA5 and SSM-Feng datasets, and the decreasing rate of soil moisture is 1.31 × 10−4 m3/m3/year and 1.01 × 10−4 m3/m3/year.
According to the CPC soil moisture data from the NOAA Physical Sciences Laboratory (https://psl.noaa.gov/data/gridded/data.cpcsoil.html), Northwest China showed a significant wetting trend from 1950 to 2015 with centers in mountainous areas (Hu et al., 2019a), which is consistent with GLDAS and MERRA-2 in our study. Furthermore, the wetting results of the GLDAS were similar to those of a previous study (Hu et al., 2021a).
4.3 Factors affecting soil moisture
Soil moisture is affected by temperature, precipitation, evapotranspiration, and other meteorological factors (Seneviratne et al., 2010; Wang et al., 2020; Li et al., 2021). In the past 50 years, the temperature in the arid region of Northwest China has been increasing at a rate of 0.34 °C/10 a, which is significantly higher than the global average. In addition, potential evapotranspiration showed an increasing trend after 1993, with an increasing rate of 10.7 mm yr−1 (Chen and Small, 2018).
Potential evapotranspiration (PET), precipitation (PRE), and temperature (TMP) were analyzed by unitary linear regression, which showed an increasing trend at the inter-annual scale, among which PET and TMP showed a significant increasing trend, with a change trend of 1.75 mm/year and 0.0357°C/year, respectively (Supplementary Figure S9). At the growing season scale, PET, PRE, and TEM also showed an increasing trend, among which potential evapotranspiration and air temperature showed a significant increasing trend, with a change trend of 1.46 mm/year and 0.0386°C/year (Supplementary Figure S9), respectively. The correlation between soil moisture datasets and three meteorological elements was calculated, and it was found that most soil moisture datasets were negatively correlated with PET, positively correlated with PRE, and positively correlated with TMP, irrespective of the inter annual or growing season. Detailed data are given in Supplementary Tables S9, S10. It can be concluded that the increase of PET will lead to the decrease of soil moisture, and PRE has a positive influence on soil moisture, while TMP is positively correlated with soil moisture.
There are seasonal and spatial differences in the temperature variation in Northwest China. The change rate of precipitation in Northwest China increases from southeast to northwest regions. Hence, most soil moisture data show that soil moisture is increasing significantly in the northwest of the arid region of Northwest China. In addition, the soil moisture trends of mountain ranges, basins, and plateaus are different, and the trends of the northern and southern slopes of the Tian shan Mountains are also different; therefore, the soil moisture change may have a specific relationship with topography. The relationship will be explored in a future analysis.
5 CONCLUSION
In this study, the arid area of Northwest China was taken as the research area. Six soil moisture datasets, namely remote sensing inversion of soil moisture dataset ESA-CCI, land simulation soil moisture dataset GLDAS, ERA5 soil moisture dataset, MERRA-2 reanalysis soil moisture dataset, RSSSM soil moisture dataset, and SSM-Feng soil moisture dataset, were used. The spatiotemporal variations in soil moisture at seasonal and annual scales during 1981–2020 were analyzed, including linear trends, abrupt changes, and spatial modes. The main conclusions are as follows.
(1) According to the ESA-CCI, GLDAS, and MERRA-2 datasets, the annual soil moisture in the arid region of Northwest China increased slowly from 1981 to 2020, with annual change rates of 8.35 × 10−5 m3/m3/year, 4.86 × 10−4 m3/m3/year, and 6.93 × 10−4 m3/m3/year, respectively. In contrast, according to the ERA5 and SSM-Feng data, the soil moisture in the arid region of Northwest China decreased, with annual change rates of −1.31 × 10−4 m3/m3/year and −1.01 × 10−4 m3/m3/year, respectively.
(2) Seasonal soil moisture changes in the arid areas of Northwest China from 1981 to 2020 were different. In spring and summer, most soil moisture products showed a slow increase in soil moisture, whereas in autumn and winter, only the GLDAS and MERRA-2 data showed a significant increasing trend. ESA-CCI, GLDAS, and MERRA-2 datasets for the growing season showed a significantly increasing trend. RSSSM could not describe the soil moisture change trend in the growing season in the arid region of Northwest China due to missing data; the ERA 5 and SSM-Feng datasets showed a significant decreasing trend.
Most of the data show that the spatial variation of soil moisture shows a slowly increasing trend. The rate of soil moisture gradually increases from west to east and south to north, such as in GLDAS and MERRA-2. According to most datasets, the Tarim Basin shows a slow drying trend. Soil moisture is always used to detect drought variations as a drought index and has been widely used to reveal dry and wet changes over regional and global scales (Hu et al., 2019b; Zhao et al., 2021). Moreover, the correlation between soil moisture and climate factors and the impacts of soil moisture on the vegetation in this study area still require further analysis. This study provides a scientific basis for soil moisture variations and other hydroclimate studies in Northwest China, which may play a key role in understanding water resource circulation in arid regions.
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Asthma is a chronic respiratory disease resulting from a complex interaction between genetic and environmental factors. Many environmental factors have been associated with incidence or prevalence of asthma although there is still limited knowledge of major environmental causes of asthma in the general population. This study, for the first time, investigated the effects of climatic and geographical variability on asthma hospitalization among an adult population living in Fars province, southwest Iran. During the study period, the home addresses of patients hospitalized with acute asthma from 2016 to 2019 were mapped. The effects of geo-climatic factors including temperature, rainfall, humidity, evaporation, number of rainy and frosty days, slope, and land covers were assessed on adult asthma hospitalization by Geographical Information System (GIS). Data were analyzed using univariate and multivariate binary logistic regression. A total of 349 patients were recruited, including 157 (44.98%) males and 192 (55%) females. The mean age was 57.77 ± 18.84 years, ranging from 19 to 98 years. Asthmatic patients came from a total of 82 points including villages, towns, and cities. In the univariate analysis, urban setting (OR = 13) and Mean Annual Rainy Days (OR = 1.03) were identified as the factors associated with increased asthma hospitalization, while Mean Annual Temperature (MAT) (OR = 0.927), MinMAT (OR = 0.933), MaxMAT (OR = 0.925), Mean Annual Evaporation (MAE) (OR = 0.999), and slope (OR = 0.925) negatively affected asthma hospitalization. Urban setting was considered the only significant factor in multivariate analysis (OR = 11.026). The major risk zones for adulthood acute asthma in southwest Iran were urban settings and areas with higher numbers of rainy days, lower temperatures, and evaporation at lower slopes.
Keywords: asthma hospitalization, climatic changes, geographical factors, land cover, GIS
1 INTRODUCTION
Asthma is a chronic respiratory condition affecting about 300 million people worldwide (Stern et al., 2020). Its prevalence, severity, and mortality vary globally. Environmental and genetic factors, atopic comorbidities, and social determinants influence the disease’s incidence, prevalence, and mortality (Stern et al., 2020).
Meteorological determinants such as temperature, rainfall, or humidity play a prominent role in asthma occurrence. Research is undertaken to evaluate the global association between asthma prevalence and global meteorological variability (Cong et al., 2017; Xing et al., 2018). The impact of climatic factors on the pollen season, associated with the incidence and severity of asthma exacerbation, has been studied, and the relationship with airway infectious diseases and air pollution (D'Amato et al., 2015; Campbell-Lendrum and Prüss-Ustün, 2019). Geographical variation across different areas has also been determined as the main factor for asthma emergencies (Newson et al., 2014; Simunovic et al., 2021).
Different methods are used to evaluate the association between asthma hospitalization and geo-climatic variability. In this way, the Geographical Information System (GIS), a computer system that analyzes and displays geographically referenced information, can be helpful for health scientists to determine the effects of geo-climatic parameters on disease prevalence and occurrence (Aghajani et al., 2017; Ghatee et al., 2020a; Pande et al., 2021; Gautam et al., 2022). In the context of asthma, there are limited GIS-based studies showed a direct association between asthma occurrence and vegetation land cover (Khan et al., 2010), allergens (Keddem et al., 2015), plant pollens (Maya-Manzano et al., 2017), pollution (Gorai et al., 2014) and urban settings (Kanannejad et al., 2022). For acute asthma, remote-sensing and GIS methods help researchers to show nitrogen dioxide (NO2), Normalized Difference Vegetation Index (NDVI), and near-surface air temperature (Ta) as the main determinants of hospital admission due to asthma (Almeida et al., 2017).
In Iran with adult asthma prevalence about 8.9% in 2018 (Fazlollahi et al., 2018), some studies have been performed to investigate the environmental risk factors of asthma (Rabiee et al., 2018; Dastoorpoor et al., 2021; Idani et al., 2021). In some cases, this approach was developed using GIS method, especially in the Tehran and Esfahan provinces (Central of Iran), while there is no GIS-based study in south of Iran (Rashidi et al., 2013; Alizadeh et al., 2016; Khasha et al., 2018; Kaffash-Charandabi et al., 2019; Faraji et al., 2022). Most of these studies were performed to discover the association between air pollution and asthma prevalence, while geo-climatic factors were less under consideration. Only one study in Tehran, the capital of Iran, develop a Mobile GIS-based study based on air pollution and meteorological data to generate predictive algorithms for asthma attack (Khasha et al., 2018).
In this study, for the first time, we evaluated the geo-climatic risk factors of adult asthma hospitalization using GIS method in Fars province, southwest Iran. A better understanding of asthma hospitalization by geo-climatic areas can inform future policy development for managing asthma hospitalization in Fars province.
2 MATERIALS AND METHODS
2.1 Study area
Fars province is located in the southwest of Iran, between longitude 27°31′N and 31° 42′N and latitude 50° 37′E and 55° 38′E. It covers an area of about 122,608 km2 with a total population of 4.6 million and male to female ratio of 1: 1.03. It comprises 24 counties and 8,191 residential places including small and large villages, with Shiraz as the capital city (Figure 1).
[image: Figure 1]FIGURE 1 | Location of the study.
Fars province has three distinct climatic regions with an average temperature of 16.8°C, ranging between 4.7°C and 29.2°C. Its mountainous area has moderately cold winters and mild summers in the north and northwest while the central regions have been identified with relatively rainy mild winters and hot dry summers. The third region located in the south and southeast has cold winters and hot summers. Due to the geo-climatic variation of the province, the region has different land covers from dense forests to bare plains and elevations of 115–3,115 m above sea level (Ghatee et al., 2020b).
2.2 Study population
This retrospective study collected the medical data of 349 patients hospitalized with acute asthma at the Nemazee hospital of Shiraz, Iran, during 2016–2019. Nemazee is the leading respiratory hospital in Fars province admitting people from all parts of the province with varied socioeconomic statuses. Patients whose spatial information was incomplete or related to provinces other than Fars were excluded from the study. Some patients were contacted randomly to ensure the spatial information of patients. This study was approved by the Ethics Committee of Shiraz University of Medical Sciences (IR.SUMS.MED.REC.1400.297).
2.3 Geo-climatic data
The point residence of all patients was extracted from their medical records and recorded on the map based on the latitudes and longitudes of each point. The land cover vector layers and Digital Elevation Model (DEM) raster layer were acquired from the Department of Natural Resources in Fars province. The slope raster map was drawn through the spatial analyst tool, based on DEM, by computing the maximal rate of variation in value between each cell and its adjacent cells. The land cover layer showed spatial data on the different physical characteristics of the surface of the province.
The meteorological and rainfall data including temperature, maximum and minimum temperature, humidity, evaporation, number of rainy and frosty days, sunny hours, and rainfall from 18 synoptic meteorological and 86 rain-gauge stations were acquired from the Fars Province Weather Bureau. The mean values of each data related to the period of study were calculated. The generated variables were including Mean Annual Temperature (MAT), Minimum Mean Annual Temperature (MinMAT), Maximum Mean Annual Temperature (MaxMAT), Mean Annual Evaporation (MAE), Mean Annual Humidity (MAH), Mean Annual Rainfall (MAR), Mean Annual Frosty Days (MAFD), Mean Annual Rainy Days (MARD), and Mean Annual Sunny Hours (MASH). The annual iso-hydral, iso-humid, and frost days’ raster layers were generated using the Kriging interpolation method, and iso-thermal, iso-evaporation, and rainy days’ raster layers using the tension-based Spline interpolation model with a resolution grid of 2 × 2 km.
2.4 Geospatial analysis
Geospatial and climatic data were analyzed using Arc GIS version 10.1. The provincial villages and cities’ point shape file layer was extracted with the raster layers. The identity tool was used to compute the geometric intersection of the layer obtained from the extraction of all raster layers with NTR hazard (polyline) and land cover (polygonal) vector layers to develop the final layer in which each point represented the properties of all the overlapped identity features from the above-mentioned raster and vector layers. The attribute of this layer was converted to an excel format for statistical analysis.
2.5 Statistical analysis
Statistical analysis was based on the presence or absence of patient in each point. The effect of geo-climatic factors on acute asthma was assessed after the spatial description of patients in Fars province. In this regard, residential points data including asthma reported and non-reported villages and cities were extracted from final province villages/cities point layer and comparison of environmental and climatic factors was done between asthma reported and non-reported points using univariate and multivariate logistic regression models. The statistical analyses were performed using SPSS version 21.
3 RESULTS
In this study, 349 patients with acute asthma living in 82 points in Fars province were recruited, including 44.98% (n = 157) males and 55% (n = 192) females; while no hospitalized patient were reported from 8,109 residential places. Their mean age was 57.77 ± 18.84 years, ranging from 19 to 98 years. The mean number of days for hospitalization and duration of hospitalization were 1.77 ± 1.76 and 5.09 ± 13.36, respectively.
3.1 Geo-climatic distribution of points with acute asthma in adults
Adult cases with acute asthma were recruited from different areas of Fars province with varied climatic and geographical features. The climatic factors including MAT, MinMAT, MaxMAT, MAE, MAH, and MAR of 3 years ranged from 13.53°C to 27.38°C, 6.65°C–18.87°C, 20°C–31.79°C, 1659.5–3,308.2°mm, 31.66%–41.93%, and 133.57–607.58°mm, respectively, among the points with acute asthma in adults (Figures 2, 3). MARD, MAFD, and MASH were 16.77–60.04 days, 0.19–87.01 days, and 2482.51–3,602.52 h for these points, respectively (Figure 4). The range of DEM and slope varied from 349 to 2233 m and 0–28.37°, respectively (Figure 5).
[image: Figure 2]FIGURE 2 | Isothermal raster models. Points with acute adult asthma (triangle symbol) located in areas with varied range of MinMAT (A), MaxMAT (B), and MAT (C).
[image: Figure 3]FIGURE 3 | Points with acute adult asthma (triangle symbol) located in areas with varied range of MAE (A), MAH (B), and MAR (C).
[image: Figure 4]FIGURE 4 | Points with acute adult asthma (triangle symbol) located in areas with varied range of MARD (A), MAFD (B), and MASH (C).
[image: Figure 5]FIGURE 5 | Patient distributions (triangle symbol) among areas with varied elevation (A), slope (B), and land covers (C).
3.2 Univariate analysis
3.2.1 Climatic factors
The analysis showed MAT, MinMAT, MaxMAT, MAE, and MARD as significant climatic factors related to acute asthma occurrence. MARD was a factor (p = 0.025, OR = 1.030, CI = 1.004–1.058) increasing the probability of acute asthma by 3%/day, whilst there was a decreasing trend for MaxMAT (p = 0.008, OR = 0.925, CI = 0.873–0.980), MAT (p = 0.014, OR = 0.927, CI = 0.873–0.985), MinMAT (p = 0.035, OR = 0.933, CI = 0.875–0.995), and MAE (p = 0.013, OR = 0.999, CI = 0.999–1.000). Other climatic factors were not significant (Table 1). Max-MAT, MAT, MinMAT, and MAE decreased the probability of acute asthma occurrence by 0.075%, 0.073%, 0.067%, and 0.001%, respectively.
TABLE 1 | Univariate analysis of the effect of climatic factors on asthma hospitalization.
[image: Table 1]3.2.2 Environmental factors
Urban setting was a significant variable, increasing the odds of acute asthma by 13 folds (p = 0.000, OR = 13, CI = 4.951–34.471) (Table 2). Other land covers were not associated with acute asthma.
TABLE 2 | Univariate analysis of the effect of environmental factors on asthma hospitalization.
[image: Table 2]Each degree increase in slope significantly reduced acute asthma by 7.5% (p = 0.008, OR = 0.925, CI = 0.873–0.979).
3.3 Multivariate analysis
Multivariate binary logistic regression analysis was performed to reveal the concomitant effects of significant variables detected by univariate analysis. Urban setting (p = 0.000, OR = 11.026, CI = 3.808–31.928) was the only significant factor detected by multivariate analysis while other variables lost their significance (Table 3).
TABLE 3 | Multivariate analysis of geo-climatic factors associated with asthma hospitalization.
[image: Table 3]4 DISCUSSION
Asthma is a complex disease with multiple environmental factors suggested to contribute to etiology. Geographical analyses can shed light on the determinants of asthma. For the first time, this study was performed to investigate the geo-climatic risk factors of adult asthma hospitalization in Fars province, southwest Iran. We found that asthma hospitalization was affected mainly by significant climatic and environmental variables, including MAE, MaxMAT, MinMAT, MAT, MARD, slope, and urban settings.
4.1 Climatic factors
MARD was a significant factor related to acute asthma in adults in the current study. The rainy days create humid and wet conditions resulting in homes being damp. Such conditions favor the growth of allergens like dust mites, mold, and fungi. Evidence supports that exposure to such indoor allergens is causally related to asthma incidence (Ghosh et al., 2018; Campo et al., 2019). Home dampness and molds are essential elements influenced by humidity levels and are associated with asthma symptoms (Williamson et al., 1997; Cox-Ganser, 2015). In addition, on rainy days, people prefer to stay at home, increasing exposure to these allergens. Similar to our study, Akpinar-Elci. et al. showed an increase in asthma visits during rainy months, while an inverse relationship was found by Wen-Chao Ho et al. (Ho et al., 2007; Akpinar-Elci et al., 2015). They explained that rainy days might interact with particulate matter (PM10), creating a washout effect (Ho et al., 2007; Akpinar-Elci et al., 2015).
A negative association between high temperature and asthma hospitalization was detected in our study. These results are consistent with some research in the field of asthma. A study by Son JY et al. in eight major cities in Korea found a significant association between asthma hospitalization and low temperature (Son et al., 2014). Similar results for childhood asthma were reported by Guo et al. in Shanghai (Guo et al., 2012). An increase in respiratory bacterial and viral infections associated with infiltration of inflammatory factors and mucus secretion has often followed a cold temperature, which may explain the effect of low temperature on asthma exacerbation (Li et al., 2011). However, some studies have demonstrated increased asthma hospitalization in high temperatures (Lin et al., 2009; Yamazaki et al., 2013). These different patterns of association between temperature and asthma geographically may be related to the effects of temperature on some asthma risk factors that differ in prevalence and seasonality by region (Buckley and Richardson, 2012). The impact of temperature on asthma exacerbation may also be related to differences in the levels of exposure, public health interventions, health and social care services, and susceptibility of subpopulations (Michelozzi et al., 2006; Anderson and Bell, 2011).
Evaporation was another significant factor negatively affecting asthma occurrence in this study. To our knowledge, this was the first evaluation of this factor in the literature. The rate of water evaporation depends on climatic factors such as temperature, solar radiation, wind, and relative humidity. Sunny, hot, dry, and windy conditions produce higher evaporation rates. This is consistent with our data that showed low acute asthma incidence in warm and low humidity conditions associated with increased evaporation. However, we failed to find a statistically significant value for humidity.
4.2 Environmental factors
The urban setting was the most critical factor affecting asthma in this study. Previous asthma studies reported that urban lifestyle could affect individual health through industrial emissions, occupation, and daily use of products (Khan et al., 2010). Global urbanization is associated with increased environmental pollution caused by the combustion of fossil fuels, biomass, emissions from agriculture, and windborne mineral dust and organic matter. Higher PM2.5 and PM10 levels are associated with increased use of asthma medication, GP consultations, and hospitalization by activating cytokine pathways and inflammation in the airway (Nel et al., 1998; Nel, 2005; Brandt et al., 2015; Clifford et al., 2017). In addition to air pollution, the socioeconomic difference between urban and rural environments could affect the quality and access to healthcare and, finally asthma hospitalization. Urban locations generally tend to have a prototype environment that predisposes individuals to asthma, but it can be decreased if socioeconomic issues are addressed. Similar to our results, Solé et al. (2007) reported higher asthma prevalence among adolescents living in urban areas compared to the rural ones in Brazil. We previously found increased asthma hospitalization occurrences in urban regions of Fars province compared with rural areas (Kanannejad et al., 2022). The farming environment of rural areas is one explanation for lower asthma prevalence in such places (Strachan, 1989). Consumption of unpasteurized cow milk, exposure to farm animals, and fodder in rural areas may have a protective effect on asthma (Pechlivanis and von Mutius, 2020). Increased exposure to farm animals results in higher microbial exposures through which the protective effect might be mediated. Also, the consumption of unpasteurized milk can modulate cytokine production patterns toward the Th-1 (T helper-1) response, which could be responsible for the observed protective effect. One study reported that increased endotoxin exposure at birth was associated with a lower risk of allergic sensitization and eczema (Simpson et al., 2006). On the other hand, some studies have shown higher asthma occurrences in rural areas due to low-quality healthcare services, lower socioeconomic statuses, and cultural barriers to access to medicine compared with urban ones (Pesek et al., 2010; Roy et al., 2010).
The slope was another significant environmental factor affecting acute asthma occurrence in Fars province, where more asthma hospitalization was detected in areas with a lower pitch. Our previous study on childhood populations showed the powerful effect of slope on asthma hospitalization (Kanannejad et al., 2022). It may be related to higher population density in regions with a downward slope that usually is connected with increased air pollutants, nanoparticles, and transmissible infectious viral agents (Bröms et al., 2009). This study is the first of its kind which reflects slope effect on adult asthma, worldwide.
There are some limitations in this study. Poor adherence to prescribed medication is a cause of asthma exacerbation, which was not considered in this study. Therefore, the applied models do not predict factors responsible for individual-level hospitalization. In addition, daily mean concentrations of air pollutants as another leading cause of asthma attacks should be considered in future studies.
5 CONCLUSION
This retrospective study disclosed that major risk zones for acute asthma include urban settings and areas with higher numbers of rainy days, lower temperatures, and evaporation at lower slopes. GIS and spatial analysis techniques allow healthcare policy to understand the spatial distribution of asthma risk factors and develop surveillance strategies to protect asthmatic patients from the effects of risk factors.
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Under the background of global warming, the thermal comfort in summer in historical conservation areas in China has also been significantly negatively affected. How to optimize the spatial pattern of the street space of historical conservation areas to improve the thermal comfort in summer in these areas undoubtedly deserves the consideration of scholars. In this study, Taiping Street, a historical conservation area in Changsha, China was taken as an example. Combined with the actual conditions of Taiping Street, the models with different street interface densities, different sizes and positions of open space, and different D/H (the ratio between the width of a street and the height of its surrounding buildings) were built through ENVI-met. The measured meteorological data from 10:00 to 20:00 on July 12, 2022 in Changsha are used as the initial meteorological data for simulation. The effects of the difference in the above factors on the thermal comfort of street space of historical conservation areas were explored through simulation analysis and comparison of the thermal comfort in different models. In the study, it was found that the thermal comfort of street space in such a historical street space with narrow roads was significantly affected by architectural shadows. As a result, among the simulated models, the higher the street interface density in the street in the east-west direction is, the better the overall thermal comfort of the area is. The lower the street interface density of the street in the north-south direction is, the better the overall thermal comfort of the area is. by adding a small open space in the middle of the north-side of the building, the thermal comfort of the area can be improved. The higher the D/H ratio is, the better the thermal comfort of the model is. During the renewal of historical conservation areas, people should make full use of the architectural shadows in such historical blocks to improve the thermal comfort of the area. Besides, the commonly-used method of constructing ventilation corridors to improve the thermal comfort of the block did not have an obvious effect in this study and might not make obvious improvements in similar street spaces of historical conservation areas.
Keywords: historic conservation area, street space form, microclimate, local renewal, ENVI-met, simulation
1 INTRODUCTION
During the urbanization of China in the past, there existed an unignorable contradiction between urban development and the conservation of historic conservation areas; the preservation of these areas had been ignored to some extent amidst the rapid development of cities. New construction of buildings had been carried out inside and outside of the historic conservation areas. As a consequence, the internal texture and historical style of these areas had been negatively influenced. In recent years, China has paid increasing attention to the preservation and inheritance of history and culture. Preserving and activating historic conservation areas have become one of China’s primary focuses, but preservation does not mean fully preserving the current conditions as they are (Wan, 2017).
Climate change is one of the most important global environmental phenomena faced by mankind in this century (Seto and Shepherd, 2009). Global surface temperature has increased by 0.99°C since the beginning of the 21st century and by 1.09°C since 2011 compared to the 1960s to the end of the 20th century, and the global surface temperature increasing from year to year makes the human body increasingly uncomfortable (IPCC, 2021; Qiao et al., 2022). Meanwhile, outdoor comfort is of great importance for historic conservation areas that serve as important activity places for urban residents and tourists. A good outdoor microclimate can attract flow of personnel, increase the vitality of historic conservation areas, and perpetuate urban cultural connotations. In existing reconstruction of these areas, more emphasis is placed on the activating styles and functions of historic conservation areas than on the comfort of an outdoor microclimate. Therefore, it is necessary to carry out the micro-reform of historic conservation areas, aiming to continue the city’s vitality, by adapting and activating these areas to the needs of the times.
Most of the existing research has paid more attention to the impact of urban buildings, city underlying surface, greenery, interactions between buildings and trees and other factors on urban surface temperature. At a city or larger regional scale, much research has been conducted on how surface temperature can be influenced by retrieving surface temperature through remote sensing and analyzing some surface features, in particular, the differences between green space and building-related features. For example, research was conducted on the optimization of green space form by analyzing the correlation between green space landscape layout index and surface temperature (Fan et al., 2015; Masoudi and Tan, 2019; Gherraz et al., 2020). The influence of urban land coverage changes on surface temperature was also investigated (Ashwinian Sil, 2022; Hashim et al., 2022; Moisa et al., 2022). When studying the microclimate in small areas such as plazas, parks, and residential communities, some researchers conducted research based on the measured data and proposed suggestions for improving thermal comfort (Liu et al., 2020; Jiang et al., 2022). Some scholars have explored how to optimize urban spaces to improve urban thermal comfort at the micro-level by Urban canopy models, Urban energy balance models, combined advection-diffusion equations, and Navier-Stokes equations (Bruse and Fleer, 1998; Huttner, 2012; Wang et al., 2013; Wang et al., 2021). Ansys Fluent, ENVI-met, and other software developed based on computational fluid dynamics have been widely used in microclimate simulation at small and micro scales in urban settlements. The spatial layout, ground materials, vegetation coverage, water body, and other factors were considered to simulate the impact on the microclimate environment (temperature, humidity, wind direction, wind speed, radiant temperature, etc.). Based on relevant microclimate simulation research, many researchers have put forward targeted improvement strategies for spatial layout, vegetation coverage, water body, different impervious/permeable surfaces and interactions between buildings and trees in different microenvironments within a city to improve thermal comfort of microenvironments (Tsoka et al., 2018; Jänicke et al., 2021; Liu et al., 2021; Hu et al., 2022).
Many researchers have attached importance to improving the thermal comfort in historic buildings while protecting them (Stolow, 1994; Silva, and Henriques, 2014; Marcelli et al., 2020; Hu et al., 2022). However, few of them have focused on the thermal comfort of streets in historic conservation areas. At the same time, although they have highlighted the thermal comfort of old residential communities and explored the optimization of the microclimate of old urban areas by changing the spatial form of these communities during the process of urban renewal (Gaspari and Fabbri, 2017; Renard et al., 2019; Wang and Sun, 2020; Nardino et al., 2021), very few of them have focused their research on historic conservation areas. Historic conservation areas tend to have longer histories and stricter preservation requirements than ordinary old communities. Street spaces are the most important outdoor space in historic conservation areas. Great importance should be attached to researching the microclimate of the street space of these areas. This study on the microclimate in the street space of historic conservation areas focuses on spatial layouts of buildings and street spaces.
2 MATERIALS AND METHOD
2.1 Research object
Changsha is an important central city in central China and the capital of Hunan Province, located at latitude 27°51′to 28°40′N and longitude 111°53′to 114°15′E. By the end of 2021, the total land area of Changsha was 11,815.96 square kilometers, of which the built-up area was 700 square kilometers. The population of Changsha has reached 10.2393 million (Changsha Bureau of Industry and Information Technology, 2022). Changsha has a typical climate characterized by hot summers and cold winters. Some researchers have conducted studies on how to optimize the spatial pattern of Changsha to reduce summer temperatures in the city (Li, et al., 2019; Xiong and Zhang, 2021; Tang et al., 2022; Xiang and Zheng, 2022; Chen et al., 2023). Changsha is one of the first 24 famous historic and cultural cities announced by the State Council of China, and Taiping Street is the only historic conservation area that has been preserved to date (Long, 2021). For this reason, Taiping Street is studied in this paper. The Taiping Street Area is situated in the Wuyi Business District, the center of the bustling Changsha City, and borders Wuyi Avenue to the north, Jiefang West Road to the south, Weiguo Street to the west, and Sanxing Street to the east.
A simplified study of the texture relationship of the Taiping Street Area revealed that it has an architectural layout of the plate layout. This means that the street interfaces along streets are short, forming many branch streets (Cui, 2020). The fishbone-shaped streets are composed of Taiping Street, Majia Lane, Fujia Lane, Jinxian Street, Xipailou Road, Taifuli Lane, and several other branch streets (Figure 1).
[image: Figure 1]FIGURE 1 | Taiping street area.
2.2 Research indicators and software
In view of the fact that Changsha’s summer has a very high temperature and lower number of tourists than the other three seasons, it was selected as the season for research in this paper, and the research indicator selected is the physiological equivalent temperature (PET), which can be used to estimate the human body’s feeling in summer.
PET is defined as the air temperature at which the core temperature and skin temperature of the human body reach equilibrium, in typical indoor conditions and under complex outdoor conditions that need to be evaluated. The higher the PET value, the hotter the weather. Indoor reference climates are made based on the following assumption: Mean Radiant Temperature equal air temperature, Air velocity(v) = 0.1, Water vapor pressure (VP) = 12 hPa。 It is an indicator of thermal comfort that describes body feelings and can be used to evaluate the thermal environment in a physiological sense. It is derived using the Munich Energy Balance Model for Individuals (MEMI) and takes into account the impact of various meteorological indicators, human activities, human clothing, and personal body parameters on environmental comfort (Höppe, 1999; Lee et al., 2016; Hang et al., 2021). The principle of the MEMI model is based on the human heat balance equation (Eq. 1), the equation for heat transfer from the core of the body to the skin (Eq. 2), and the equation for heat transfer from the skin surface to the clothing surface (Eq. 3). The combination of these three equations can be used to solve the three key indicators that determine human thermal sensation: clothing surface temperature, skin surface temperature, and core body temperature, and thus predict human thermal sensation (Höppe, 1999; Krüger and Drach, 2017; Ji et al., 2022).
[image: image]
In the equation, [image: image] represents the metabolic rate, [image: image] is the physical work output, [image: image] represents the net radiation of the body, [image: image] represents the convective heat flow, [image: image] represents the latent heat flow to evaporate water into water vapour diffusing through the skin, [image: image] is the sum of heat flows for heating and humidifying the inspired air, [image: image] the heat flow due to evaporation of sweat, and [image: image] is the storage heat flow for heating or cooling the body mass.
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In Eq. 2, [image: image] represents the heat flow from the core of the body to the skin, [image: image] is the blood flow rate from the core of the body to the skin, [image: image] is the density of blood, [image: image] is the specific heat of blood, [image: image] is the core body temperature, and [image: image] is the skin surface temperature.
[image: image]
In Eq. 3, [image: image] represents the heat flow from the skin surface to the clothing surface, [image: image] is the clothing thermal resistance, [image: image] is the skin surface temperature, and [image: image] is the clothing surface temperature. Matzarakis et al. (1999) summarized PET, ranges of PET for different grades of thermal sensation by human beings and physiological stress on human beings. This index is measured on a nine-level scale, as shown in Table 1.
TABLE 1 | Thermal sensation and physiological reaction corresponding to PET (Jendritzky et al., 1990; Matzarakis and Mayer, 1997; Matzarakis et al., 1999).
[image: Table 1]ENVI-met is a dynamic numerical simulation software designed by German scholars Bruse et al. in the 1990s based on hydrodynamics, thermodynamics, urban meteorology, and other related theories to reproduce the overall impact factors of the urban microclimate environment and is widely used for calculating outdoor microclimate research indicators (Yu and Hien, 2006; Li and Wang, 2016). The research time segment selected by researchers is from 10:00 to 20:00 on 12 July 2022. The initial conditions required for software simulation are derived from the China Meteorological Data Network (http://data.cma.cn), as listed in Table 2. Researchers input the hourly temperature and humidity as indicated in Table 2 as the original weather parameters for initial simulation per hour. With regard to the wind direction and speed, researchers chose the average wind direction and speed of the 11 h as the feature of the initial wind environment, of which the wind direction is 178° and the wind speed is 3.7 m/s. The prevailing wind direction of Changsha city in summer is south wind (Ministry of Housing and Rural-Urban Development of the People’s Republic of China, 2014), while the simulated wind direction is south wind which is in line with the actual summer prevailing wind. The wind direction is typical and can properly reflect the wind environment feature of Changsha city in summer.
TABLE 2 | Initial simulation conditions (Source: China Meteorological Data Network).
[image: Table 2]2.3 Research content and method
The measured meteorological data used as input in the modeling process came from the Changsha Station (No. 57687) of the China National Meteorological Science Data Center, and the data measured from 10:00 to 20:00 on 12 July 2022 were used for simulation. The temperature, humidity, and average wind direction and speed for 11 h (from 10:00 to 20:00 on July 12) were input as relevant meteorological parameters for the simulation. The researchers collected hourly data using a JT2020 multifunctional tester from Beijing JANTYTECH (BJJT) in an area of Taiping Street between 10:00 and 20:00 on 12 July 2022. The temperature and humidity sensor component of this instrument was used to measure the temperature and humidity of the environment on an hourly basis. The temperature range of the sensor is from −20°C to 125°C, with an accuracy of ±0.5°C, and the humidity range is from 0% to 100% RH, with an accuracy of ±3% RH. The researchers constructed an actual model based on the actual conditions in an area of Taiping Street and used meteorological data from the Changsha Station of the China National Meteorological Science Data Center for simulation. The number of grids in the Taiping Street model was 252 (length) × 213 (width) × 25 (height), with a length, width, and height of 2 m for each grid. The actual volume simulated by the model was 504 m (length) × 426 m (width) × 50 m (height). The researchers compared simulated values of temperature and humidity for each hour in the study area with measured values to analyze the errors in the simulation data.
The researchers mainly analyzed the simulated values for each time period between 10:00 am and 8:00 pm on 12 July 2022. The idealized model grid for the east-west street was 136 (length) × 86 (width) × 15 (height), with each grid measuring 2 m in length, width, and height. The actual volume of the east-west street idealized model simulated was 272 m (length) × 172 m (width) × 30 m (height). The idealized model grid for the north-south street was 91 (width) × 211 (length) × 15 (height), with each grid measuring 2 m in length, width, and height. The actual volume of the north-south street idealized model simulated was 181 m (width) × 422 m (length) × 30 m (height). Because there was sufficient distance between the buildings in the east-west and north-south street models and the model boundaries, the model did not produce negative effects on the entire simulation result due to the buildings being too close to the boundaries. In both models, the researchers did not add nested grids to the boundaries of the models.
When simulating using ENVI-met, the temperature and humidity distribution within the study area are simulated based on the combined advection-diffusion equation (Bruse and Fleer, 1998; Huttner, 2012)
[image: image]
where [image: image] represents the temperature inside the atmosphere. [image: image] represents turbulent exchange coefficient for heat and humidity. [image: image] links heat and vapor exchange at plant surface.
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In which [image: image] represents the humidity inside the atmosphere respectively, [image: image] represents turbulent exchange coefficient for humidity, [image: image] links heat and vapor exchange at plant surface.
Wind speed and wind direction is caculated based on Navier-Stokes Equations 6–8 (Bruse and Fleer, 1998; Huttner, 2012).
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In which f is Coriolis parameter, [image: image]. [image: image] is the potential air temperature at level z. [image: image] represent local pressure perturbation. [image: image] is the reference temperature, which represents the larger scale meteorological condition. It is calculated as the average temperature of all grid cells except those occupied by buildings at a height of z.
In ENVI-met, the soil is treated as a vertical column, and its temperature and humidity are calculated using the following equation (Bruse and Fleer, 1998; Huttner, 2012):
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In which T represents heat, [image: image] represents soil volumetric moisture content, [image: image] represents its saturation volume. [image: image] represents the hydraulic connectivity, [image: image] represents the hydraulic diffusivity. [image: image] is water uptake by vegetation root.
The turbulent fluxes of momentum, vapor, heat at the wall and ground surface are calculated based on the similarity law from Monin and Obhukov (Asaeda and Ca, 1993; Stull, 1994; Bruse and Fleer, 1998; Huttner, 2012):
[image: image]
Where [image: image] is scaling velocities of momentum, [image: image] represents heat; [image: image] represents vapor.
Temperature and humidity at surface and wall are calculated from (Deardorff, 1978; Stull, 1994):
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Where [image: image], [image: image] represents the net shortwave and longwave radiation absorbed by the surface, [image: image] is the shielding factor, [image: image] is the surface humidity, [image: image] is the field capacity of the soil at level z = −1.
Researchers simulated the microclimate of various idealized models using ENVI-met and then calculated the PET values of each model using Bio-met in ENVI-met. The principle of PET calculation is explained in detail in Section 2.2, including formulas (1), formulas (2), formulas (3) and related text descriptions. The height at which PET is simulated is usually chosen to be the centroid height of a person whose height equals the average height. This better reflects the overall thermal comfort of the human body (Matzarakis et al., 1999). According to the average height of Chinese men and women, which is 171.8 cm and 159.7 cm, respectively, and the fact that the center of gravity of the human body is located at around 56% of the height (Chi and Dan, 2016; NCD Risk Factor Collaboration, 2016; Guo, 2017; Lu et al., 2022), the simulated height of PET in this study is 1 m. The human factors in the study include gender, age, height, weight, Total Metabolic Rate, and clothing parameters, which are male, 35 years old, 175 cm tall, 70 kg, 86.21 W/m2, and 0.9 clo, respectively.
The ENVI-met model includes a one-dimensional boundary model and a three-dimensional boundary model. The one dimensional model includes vertical profile of different meteorological parameters like temperature, humidity, wind speed and wind direction. In addition, the ENVI-met model also includes a three-dimensional co-model which consists atmosphere, soil and buildings. At its bottom, the 3-dimensional model links to a 3-dimensional soil model. The one-dimensional model generates one-dimensional profile for meteorological parameters. The boundary model extends to a height of 2,500 m (average height of the planetary boundary layer). With simple forcing, the values of one-dimensional model are coped to the border (Bruse, 2004; Huttner, 2012; ENVI-met, 2023).
The parameters used in studying the relationship between buildings and streets in this paper are primarily street interface density (length of buildings along the street/street length), the open space of the street, and D/H; the indicator system composed of these three parameters can better reflect the form characteristics of the street space in historic conservation areas. The street length, average street width, average building height, the length of buildings along the street, and the average length of building blocks were obtained through the extraction of the form elements of main streets in the Taiping Street Area. Then, the idealized model was extracted to study the microclimate environment characteristics of different street street interface densities, space layouts, and D/H values.
It was found through field observation that the flow of personnel is mainly gathered on the main street Taiping Street and secondary streets Majia Lane, Fujia Lane, Jinxian Street, Xipailou Road, and Taifuli Lane, with less flow of personnel on the branch streets. Researchers established different idealized scenario models according to the street characteristics summarized in the table below to explore how different street characteristics influence the street microclimate.
The main street Taiping Street measures 364 m in length, and since the majority of buildings on both sides of the street are not aligned horizontally, resulting in an uneven street width, has an average width of 12.4 m. The D/H value of the street ranges from 0.77 to 3.75, and the density of the street interface is 90% on the east of the street and 89.01% on the west. Secondary streets include Majia Lane, Fujia Lane, Jinxian Lane, Xipailou Road, and Taifuli Lane. These streets range in length from 57 m to 216 m, with an average value of 156.2 m; in width from 6 m to 11.6 m, with an average value of 7.86 m; in D/H values from 0.52 to 2.17; in density of the frontage interfaces of streets from 86.77% to 100%. In the Taiping Street Area, the main street runs from the north to south, while the secondary streets run predominantly from the east to west; the different street directions result in varying relationships between building shadows and streets, and different microclimate environments of streets. To comprehensively explore the microclimate environment of the street space, the main street in the north-south direction and the secondary streets in the east-west direction were studied separately in this paper. Based on the relevant conditions of Taiping Street in Mainland China as described in Table 3, researchers constructed idealized scenario models. After determining the street length, width, building length, width, and height in the idealized model based on the actual length, width, and characteristics of buildings along the streets of Taiping Street, researchers reserved enough space between the building and the model boundary to ensure that the simulation results were not negatively affected by the building model being too close to the model boundary. All north-south model sizes are set to 181 m (width) × 422 m (length) × 30 m (height). The buildings on both sides of Taiping Street are mostly three stories high (about 9 m). To better study the different effects of D/H values on the microclimate of the neighborhood, the building height in the scenario model is uniformly set to 9 m. The distance between the buildings on both sides of Taiping Street is about 12 m. The width of all scenario models is set to 12 m. The density of the street interface in the current Taiping Street area is between 86.77% and 100%. Researchers first set the density of the street interface as a single variable and created four scenario models with densities of 85%, 90%, 95%, and 100%, respectively. Researchers attempted to explore the impact of increasing the open space area within different areas of the historic district by demolishing some buildings on the thermal comfort of the neighborhood. They created three groups of models: increasing the open space area at both ends of the street, increasing the open space area in the middle of the street, and increasing the open space area in both the middle and ends of the street. Using 9-m-tall buildings, 12-m-wide streets, and a streetstreet interface density of 85% as the microclimate baseline conditions, the microclimate environment characteristics of open spaces under different conditions were studied. According to Table 3, the D/H values in the Taiping neighborhood range from 0.52 to 3.75. Researchers have attempted to explore the differences in street thermal comfort under different street aspect ratios. Using 12-m-wide street and a street interface density of 85% as the baseline conditions, the microclimate environment characteristics when D/H was 0.5, 1.0, 1.5, 2.0, and 3.0, as well as when there is a combination of multiple D/H values were studied. Figure 2 shows the diagrams of the models.
TABLE 3 | Form element extraction results of streets in the Taiping Street Area.
[image: Table 3][image: Figure 2]FIGURE 2 | A diagram of the models. (A) North-south streets with different street interface densities, (B) North-south streets with different open spaces, (C) North-south streets with different building heights, (D) East-west streets with different street interface densities, (E) East-west streets with different open spaces and (F) East-west streets with different building heights.
Based on the conditions of the Taiping neighborhood and the five east-west streets within, as described in Table 3, and ensuring sufficient distance between the building and model boundaries, all east-west models were set to a size of 272 m (length) x 172 m (width) x 30 m (height). Since there are many 6-m-tall buildings in the east-west streets, the idealized scenario model had a uniform building height of 6 m. The east-west street width is mostly around 7 m, so the street width was uniformly set to 7 m. According to the density of the street interface in the Taiping neighborhood, which ranges from 86.77% to 100%, scenario models were created with street interface densities of 85%, 90%, 95%, and 100%, respectively. Then, using 6-m-tall buildings, 7-m-wide streets, and a street interface density of 85% as the microclimate baseline conditions, different scenario models were constructed by increasing the open space area in different areas of the street (Figure 2), and the differences in thermal comfort among different scenario models were compared. As shown in Table 3, the D/H values for the east-west streets in the study area range from 0.52 to 2.17. The researchers tried to explore the impact of different D/H on the thermal comfort. Using 7-m-wide street and a street interface density of 85% as the baseline conditions, the microclimate environment characteristics when D/H was 0.5, 1.0, 1.5, and 2.0, as well as when there is a combination of multiple D/H values were studied. Figure 2 shows the diagrams of the models.
3 RESULTS AND DISCUSSIONS
3.1 Research validation
The measured temperature and humidity values and their corresponding simulated temperature and humidity values at a fixed observation point in the study area between 10:00 and 20:00 on July 12, 2022 are as shown in Table 4 below. By analyzing the measured and simulated temperature and humidity data at a fixed location on Taiping Street during the hours of 10:00–20:00 on 12 July 2022, researchers found that the coefficient of determination (R2) between the two sets of data was 0.91, the root mean square error (RMSE) was 1.68, and the index of agreement (d) was 0.75 for temperature, while the R2 was 0.92, the RMSE was 3.2, and the d was 0.86 for humidity. Typically, an R2 greater than 0.5 is considered reasonable (Santhi et al., 2001; Balany et al., 2022). The RMSE values for air temperature and relative humidity are within the range reported in many related studies (RMSE of relative humidity ranging from 2.04% to 11.12% and air temperature ranging from 0.52°C to 4.30 °C) (Tsoka et al., 2018). The closer the index of agreement is to 1, the higher the consistency between the simulated and measured values. The d values for temperature and humidity are both greater than or equal to 0.75, indicating a high level of consistency between the simulated and measured values. Therefore, the range of simulation errors in this study is reasonable.
TABLE 4 | Temperature and humidity values were measured and simulated at various time points between 10:00 am and 8:00 pm on 12 July 2022.
[image: Table 4]3.2 Microclimate characteristics corresponding to the street interface density
3.2.1 Microclimate characteristics corresponding to the north-south street interface density
The model with a street interface density of 85% has seven rows of buildings on both sides of the street separated by a 7.5-m-wide street, with each row measuring 36.4 m in length. The model with a street interface density of 90% has five rows of buildings on both sides of the street separated by a 7.5-m-wide street, with each row measuring 54 m in length. The model with a street interface density of 95% has three rows of buildings on both sides of the street separated by a 7.5-m-wide street, with each row measuring 95 m in length. The model with a street interface density of 100% is full of buildings that are not separated by any street on both sides of the street. The schematic diagrams of the four models are shown in the row A of Figure 2.
By conducting a variance analysis (two-way ANOVA without replication) of the PET values in the study area under different street interface densities and time conditions based on the simulation results of the north-south street model shown in Figure 3, it was found that the p-values for the significant difference tests between each group of data when time and street interface densities were used as sources of variation were both less than 0.01. This indicates that significant differences in PET values within the study area under different street interface densities and the same time are unlikely to be caused by sampling errors.
[image: Figure 3]FIGURE 3 | Temporal variation of PET at a height of 1.0 m in the street under different street interface densities.
Figure 3 shows the average PET values within the study area for each scenario model at each hour between 10:00 and 20:00. Figure 8 shows the simulation results of each model at 14:00. A comparison and analysis of the average PET values of the 12-m-wide north-south streets between 10:00 and 20:00 under different street interface densities (Figure 3) show that a higher value indicates a poor microclimate and vice versa. When only the density of the street interface is changed, the microclimate environment characteristics do not change significantly; the difference between the average PET values under the street interface densities of 85% and 100% is less than 0.1. In terms of thermal sensation, the PET values of these streets are within the range of “warm”. From 10:00 to 11:00, the PET value reaches its minimum when the street interface density is 100%, and the lower the street interface density, the higher the PET value. At 12:00, the PET value is minimum when the street interface density is 90%. From 13:00 to 20:00, the PET value reaches its minimum when the street interface density is 85%, and the higher the street interface density, the higher the PET value.
The PET simulation results of the four models (Figure 4) at 14:00 were analyzed. Changsha is located north of the Tropic of Cancer, and the position of building shadows relative to buildings changes constantly throughout the day, following a general pattern of moving from the west side of the buildings to the north side of the buildings and then to the east side of the buildings. At noon, shadows always face due north (CGZDL, 2022). In Figure 4, different colors represent different ranges of PET values. As the street interface density value decreases in the four models, the number of narrow east-west streets between buildings increases. The buildings on the north and south sides of these narrow streets can shade the sunlight and create shaded areas. In the models with higher street interface densities, the area of streets with better thermal comfort in the narrow historic blocks is larger. In addition, narrow streets between buildings can also facilitate the formation of ventilation corridors for ventilation and heat dissipation (Peng, 2016).
[image: Figure 4]FIGURE 4 | PETs at a height of 1.0 m at 14:00.
3.2.2 Microclimate characteristics corresponding to the east-west street interface density
The model with a street interface density of 85% has three rows of buildings on both sides of the street separated by a 11.25-m-wide street, with each row measuring 42.5 m in length. The model with a street interface density of 90% has three rows of buildings on both sides of the street separated by a 7.5-m-wide street, with each row measuring 45 m in length. The model with a street interface density of 95% has three rows of buildings on both sides of the street separated by a 3.75-m-wide street, with each row measuring 47.5 m in length. The model with a street interface density of 100% is full of buildings that are not separated by any street on both sides of the street. The schematic diagrams of the four models are shown in the first row of Figure 2.
By conducting a variance analysis (two-way ANOVA without replication) of the PET values in the study area under different street interface densities and time conditions based on the simulation results of the east-west street model shown in Figure 5, it was found that the p-values for the significant difference tests between each group of data when time and street interface densities were used as sources of variation were both less than 0.01. This indicates that significant differences in PET values within the study area under different street interface densities and the same time are unlikely to be caused by sampling errors.
[image: Figure 5]FIGURE 5 | Temporal variation of PET at a height of 1.0 m in the streets under different street interface densities.
A comparison and analysis of the average PET values of the 12-m-wide east-west streets between 10:00 and 20:00 under different street interface densities (Figure 5) show that the PET values of these streets are within the range of “warm” in terms of thermal sensation. The PET value reaches its maximum when the street interface density is 85%, and the higher the street interface density, the lower the PET value; the gap is the most obvious between 14:00 and 16:00.
From Figure 6, it can be seen that at 14:00, the temperature at the north-south streets between buildings is higher in the model with a street interface density of 85%. The main reason is that there are no buildings on the north and south sides of these streets to shade the sunlight and create shaded areas. The prevailing wind direction in Changsha in the summer is from the south. Even if the north-south streets form ventilation corridors, the lack of building shading makes the wind passage area less thermally comfortable. At 14:00, the building shadows are located northeast of the buildings, and the width of the north-south streets in the model with a street interface density of 95% is narrower than those in the models with street interface densities of 85% and 90%. The shaded areas created by the buildings on the east and west sides of the street under the sunlight have also contributed to the improved thermal comfort of the north-south streets. Overall, in the four models, the PET value reaches its minimum when the street interface density is 100%.
[image: Figure 6]FIGURE 6 | PETs at a height of 1.0 m at 14:00.
The simulated wind direction selected is south wind, with the wind speed of 3.7 m/s. The north-south streets form ventilation corridors, which helps increase the thermal comfort of the study area. However, the thermal comfort of the north-south street in the picture is poor. On the contrary, affected by the building shadow, the east-west street is generally better in thermal comfort. This also shows that, in the idealized models, building shadow is more effective in improving microclimate.
Taking into account the information presented in Figures 2–6, it is suggested that in cities located north of the Tropic of Cancer, such as Changsha, China, in historic districts with shorter buildings and narrower streets, it would be advantageous to demolish some buildings on both sides of the north-south streets to create narrower east-west streets. This would help to create street areas with relatively better thermal comfort. This is mainly due to the fact that during the hot morning, noon, and afternoon periods of the day, shadows cast by buildings form on the east-west streets, which provide better thermal comfort in shaded areas. In contrast, considering that the dominant wind direction in Changsha during the summer is southerly, if some buildings are demolished on the north and south sides of the east-west streets, even if it creates a ventilation corridor, there will be no buildings on the north and south sides of the north-south streets to provide shade, making the north-south streets hotter in the historic district.
3.3 Analysis of microclimate environment characteristics in the open space
3.3.1 Analysis of microclimate environment characteristics in open spaces of north-south streets
Researchers explored how to increase open space to improve thermal comfort in historic districts. Three open space models were developed based on the model with a street interface density of 85% in Figure 2 by demolishing some buildings and increasing the open space area. The three models are shown in the row B of Figure 2 as open space 1, 2, and 3. The open space studied by the researchers is located in an area with one north-south street and six east-west streets. The total area of open space increased by demolishing buildings is the same in all three models. In open space model 1, no open space was added at the ends of the north-south street, and open space was only increased by demolishing some buildings where the east-west and north-south streets intersect. In open space model 2, some buildings were demolished and larger open spaces were added only at the ends of the street. No open space was added where the east-west and north-south streets intersect. In open space model 3, buildings were demolished and open space was added at the ends of the streets and at some intersections of the north-south and east-west streets. The open space area added at the intersection of the six east-west streets and one north-south street in model 3 was smaller than that in model 1. The open space area added at the ends of the north-south street in model 3 was smaller than that in model 2. Model 2 did not increase the open space area at the intersection of the east-west and north-south streets.
By conducting a variance analysis (two-way ANOVA without replication) of the PET values in the study area under different open spaces and time conditions based on the simulation results of the north-south street model shown in Figure 7, it was found that the p-values for the significant difference tests between each group of data when time and street interface densities were used as sources of variation were both less than 0.01. This indicates that significant differences in PET values within the study area under different street interface densities and the same time are unlikely to be caused by sampling errors.
[image: Figure 7]FIGURE 7 | Temporal variation of PET at a height of 1.0 m in the streets in the case of different open spaces.
Figure 7 shows the mean PET (physiological equivalent temperature) values in the study area for each scenario model at each hour between 10:00 and 20:00. A comparison and analysis of the average values of PET from 10:00 to 20:00 in the one north-south street and six east-west streets of three different open space models (Figure 7) found that, among the three open space models, open space model 2 has the best thermal comfort (lowest PET values) for 10:00 and 20:00. Open space model 1 has the best thermal comfort for all other time periods. However, open space model 3 has the worst thermal comfort (highest PET values) for all time periods except for 10:00 and 20:00. Overall, model 1 has the best thermal comfort (lowest PET values), while model 3 has the worst. This suggests that removing smaller buildings with a smaller footprint and adding open space is the most effective way to improve thermal comfort at street intersections. However, removing larger buildings and adding open space at the ends of streets has the worst effect on thermal comfort.
[image: Figure 8]FIGURE 8 | PETs at a height of 1.0 m at 14:00.
The simulation time is 14:00 and when the building shadow is located in the northeast direction, the open space added to the south of the street becomes an area with poor thermal comfort because it is not covered by the shadow. Removing smaller buildings with a smaller footprint and adding open space to historic streets can create more areas covered by building shadows during the day, resulting in better thermal comfort in these areas. This explains why model 1 has the lowest PET values and model 2 has the highest PET values at 14:00 in Figure 7.
3.3.2 Analysis of microclimate environment characteristics in open spaces of east-west streets
Based on the east-west street model with a street interface density of 85% in Figure 2, researchers constructed three models with different scenarios of demolishing parts of buildings and adding open space to explore which one has the best thermal comfort. Open space model 1 involves removing parts of the buildings on one side of the street away from the historic district and adding open space. Open space model 2 involves demolishing parts of buildings at the intersection of north-south and east-west streets and adding open space. Open space model 3 involves removing parts of the buildings in the middle of the side of the buildings close to the historic street and adding open space.
By conducting a variance analysis (two-way ANOVA without replication) of the PET values in the study area under different open spaces and time conditions based on the simulation results of the east-west street model shown in Figure 9, it was found that the p-values for the significant difference tests between each group of data when time and street interface densities were used as sources of variation were both less than 0.01. This indicates that significant differences in PET values within the study area under different street interface densities and the same time are unlikely to be caused by sampling errors.
[image: Figure 9]FIGURE 9 | Temporal variation of PET at a height of 1.0 m in the streets in the case of different open spaces.
According to Figure 9 and the corresponding PET values of each model at each whole hour, it can be seen that between 10:00 and 20:00, open space model 3 has the lowest PET values and the best thermal comfort among the three models. From 10:00 to 11:00 and from 17:00 to 20:00, model 1 has the highest PET values and the worst thermal comfort. Between 11:00 and 17:00, model 2 has the highest PET values and the worst thermal comfort.
Researchers comprehensively considered the PET values of each model in each period in Figure 9 and the simulation results of each model at 14:00 in Figure 10. In Model 3, additional open space was added in the middle area between the buildings on both sides of the historic street. Due to the rotation of the Sun, the direction of the movement of the building shadows in Changsha City north of the Tropic of Cancer is from the west side of the buildings to the north side of the buildings and then to the east side of the buildings, from sunrise to sunset. In Scenario Model 3, the newly added open space is surrounded by buildings on three sides, and the open spaces are easily covered by the building shadows when they are in different orientations. In Model 1, the newly added open space is on the south side of the building. When the building shadows are on the north side of the building, the open space is more affected by the sunlight and becomes a relatively hotter area. In Model 2, some buildings were demolished at the intersection of the east-west and north-south streets to form open space. In some periods of the morning, afternoon, and evening, especially when the building shadows are on the west or east side of the building, the overall thermal comfort of Model 2 is inferior to that of Model 3.
[image: Figure 10]FIGURE 10 | PETs at a height of 1.0 m at 14:00.
3.4 Microclimate characteristics for streets with different D/H values
3.4.1 Microclimate environment characteristics of north-south streets with different D/H values
The building heights and street widths adopted in the study above are typical sizes of real historic conservation areas. Through previous research in which the density of the street interface of the building or the microclimate environment characteristics of the open-space street were changed, instead of the building height and street width, it was found that the microclimate improving effect of this micro-renovation under these microclimate conditions is not obvious. To find a more effective strategy to improve microclimate, in this paper, the building height or the street D/H was changed without changing the street width in this paper to study the microclimate environment characteristics under different D/H values without changing the street width.
By conducting a variance analysis (two-way ANOVA without replication) of the PET values in the study area under different D/H and time conditions based on the simulation results of the north-south street model shown in Figure 11, it was found that the p-values for the significant difference tests between each group of data when time and street interface densities were used as sources of variation were both less than 0.01. This indicates that significant differences in PET values within the study area under different street interface densities and the same time are unlikely to be caused by sampling errors.
[image: Figure 11]FIGURE 11 | Temporal variation of PET at a height of 1.0 m in streets with different D/H values.
The north-south streets in all six models are 12 m wide, but have different building heights. The building height is 24 m for the D/H = 0.5 model, 12 m for the D/H = 1 model, 8 m for the D/H = 1.5 model, 6 m for the D/H = 2 model, and 4 m for the D/H = 3 model, and has a combination of heights in a D/H mix model, which has five combinations of D/H values in each row of buildings from the south to the north; the D/H of the first row of buildings from the south is 0.5, 1, 1.5, 2, and 3, and that of the second row of buildings is 3, 2, 1.5, 1, and 0.5, and so on. When building height is the only variable, it can better explore the impact of building shadows on the microclimate of the block while excluding the influence of the different layouts of building space on winding paths.
A comparison and analysis of the average values of PET of the streets with a width of 12 m at the central section of the street from 10:00 to 20:00 under six different D/H values (Figure 11) reveal that the order of the microclimate environment quality of north-south streets from 10:00 to 11:00 is D/H = 0.5 > D/H = 1 > D/H = mix > D/H = 1.5 > D/H = 2 > D/H = 3; that from 12:00 to 19:00 is D/H = 0.5 > D/H mix > D/H = 1 > D/H = 1.5 > D/H = 2 > D/H = 3; that at 20:00 is D/H = 0.5 > D/H = 1 > D/H = mix > D/H = 1.5 > D/H = 2 > D/H = 3.
Considering the information in Figures 11, 12, overall, the PET value is lowest and the thermal comfort is best when D/H = 0.5. In all models, the width of the north-south street is the same, and in this model, the building height is the highest, the area covered by building shadows is the largest, and the thermal comfort in the area covered by building shadows is the best. When D/H = 3, the PET value is highest, and the thermal comfort in the research area is the worst. In this model, the building height is the shortest, the area covered by building shadows is the smallest, and the research area is most affected by sunlight, resulting in the worst thermal comfort.
[image: Figure 12]FIGURE 12 | PETs at a height of 1.0 m at 14:00.
3.4.2 Analysis of microclimate environment characteristics of east-west streets with different D/H values
The east-west streets in all five models are 7 m wide, with different building heights. The building height is 14 m for the D/H = 0.5 model, 7 m for the D/H = 1 model, 4.5 m for the D/H = 1.5 model, and 3.5 m for the D/H = 2 model, and has a combination of heights in a D/H mix model. In the D/H mix model, which has four combinations of D/H values in each row of buildings from the east to the west; the D/H of the first row of buildings from the west is 2, 1.5, 1, and 0.5, that of the second row of buildings is 0.5, 1, 1.5, and 2, and that of the third row of buildings is 2, 1.5, 1, and 0.5.
By conducting a variance analysis (two-way ANOVA without replication) of the PET values in the study area under different D/H and time conditions based on the simulation results of the east-west street model shown in Figure 13, it was found that the p-values for the significant difference tests between each group of data when time and street interface densities were used as sources of variation were both less than 0.01. This indicates that significant differences in PET values within the study area under different street interface densities and the same time are unlikely to be caused by sampling errors.
[image: Figure 13]FIGURE 13 | Temporal variation of PET at a height of 1.0 m of streets with different D/H values.
A comparison and analysis of the average values of PET of the streets with a width of 7 m at the central section of the street from 10:00 to 20:00 under five different D/H values (Figure 13) reveal that the order of the microclimate environment quality of east-west streets is D/H = 0.5 > D/H = 1 > D/H = mix > D/H = 1.5 > D/H = 2.
It was found by comparing the PETs of the model in Figure 14 that the microclimate change rule of the east-west streets with different D/H values is similar to that of the north-south streets. This means that the larger the D/H, the worse the microclimate environment. Due to the diversity of building height in the D/H mix model, the comfort of the microclimate environment is moderate, which is related to the area and degree of buildings on both sides of the streets to avoid direct sunlight on the streets.
[image: Figure 14]FIGURE 14 | PETs at a height of 1.0 m at 14:00.
3.5 Local renewal strategy of street space
3.5.1 Controlling street interface density
According to the simulation result in Part 3.4 and the features of the historical block with lower architectures and narrower streets, architectural shadows have obvious effect on improving the thermal comfort in the historical block. On the contrary, airway increment has unobvious effect on improving the thermal comfort of the historical block. In overall consideration of the fact that Changsha city is geologically located to the north of the Tropic of Cancer and the directions of the architectural shadows relative to the architectures in different time periods around a year, particularly during the relatively hot months in spring, summer and autumn, the researchers first proposed suggestions on how to reach the purpose of optimizing the microclimate in the historical block by changing the street interface density of east-west streets and north-south streets. Figure 15 is a schematic diagram of controlling street interface density. What Picture 15-a shows is the scenario model of a historical block where all the architectures are 9 m high, the main north-south street is 10 m wide, other north-south streets are 4 m wide and the east-west streets are 4 m wide. It is preferred to build new architectures on both ends of north-south streets, so that the architectural shadows may be fully used to cover the Sun from the north-south streets, especially at noon or around when the temperature is the highest in a day. Picture 15-b is the scenario model after architectures are added on both ends of north-south streets on the basis of Picture 15-a. If the said deduction is right, Picture 15-b will perform better than Picture 15-a in the general thermal comfort simulation under the weather parameters condition of July 12. The result is in line with the deduction after relevant simulations are finished and compared, with the process and relevant data neglected hereby. The east-west streets in the historical block are narrower in width and are obviously impacted by architectural shadows in a whole day. For reconstructing the historical block, city planners may consider to add new east-west streets to increase zones with good thermal comfort in a whole day, especially at noon and around, under the influence of architectural shadows, so as to reach the purpose of optimizing the entire by improving the part. Picture 15-c is the model after a east-west street as an open space is added on the basis of the historical block model shown in Picture 15-b. After simulating the average PET from 10:00 to 20:00 in the research areas in two different scenarios and making comparison, it was found that the result of simulation is in line with the said deduction.
[image: Figure 15]FIGURE 15 | Schematic diagram of controlling street interface density. (A) The model before the transformation, (B) Increase the street interface density of east-west streets, (C) Decrease the street interface density of north-south streets.
3.5.2 Reasonably setting open spaces in the base
When reconstructing the historical block, planners sometimes need increase the open space to relieve the jam problem of the historical block in some time segments due to relative high visitors flow. Considering the historical block features narrower architectures and streets and to meet the need of expanding the open space at the intersections between east-west streets and north-south streets, it is preferred to dismantle part of the architectures at many intersections to increase many open spaces with relatively small area, rather than dismantle part of the architectures at few intersections to increase few open spaces with relatively large area. It is mainly because increasing more relatively small open spaces is beneficial for increasing small open spaces in more areas which enjoy better thermal comfort in different time segments on the condition of reducing overall negative impact on the intersections. For the architecture height and road width vary in different historical blocks, this finding may not necessarily apply to any situation, but undoubtedly guide planners to give priority to relatively small rather than big open spaces. In consideration of the direction of the architectural shadows relative to the architectures in the daytime, setting more relatively small open spaces in the middle of the north-side of the architectures can make full use of architectural shadows in different time segments around the day and thereby create an area with good thermal comfort. Figure 16 is a schematic diagram for the demolition of corner buildings. As shown in Picture 16, the architectures are 9 m high, the main north-south streets in the middle is 10 m wide, other north-south street are 4 m wide and the east-west streets are 4 m wide (The street width does not include the length or width of the increased open space). Pictures 16-a, 16-b and 16-c separately refer to adding fewer and larger open spaces, adding more and smaller open spaces and adding more and smaller open spaces in the middle of the north-side of the architectures. After the PET simulation and analysis and comparison of average PET in the research areas of all time segments based on the weather parameters of Changsha city from 10:00 to 20:00 on 12 July 2022, it was found that the overall thermal comfort of 16-c is better than 16-b and 16-a. The simulation result can strongly support the said finding.
[image: Figure 16]FIGURE 16 | Schematic diagram for the demolition of corner buildings. (A) Demolish fewer buildings with larger floor space at intersections, (B) Demolish more buildings with smaller floor space at intersections. (C) Demolish more buildings with smaller floor space in the middle of the north-side of the buildings.
3.5.3 Appropriately changing the building height
From the perspective of architectural shadows, the higher the architectures are, the larger the architectural shadows are in most time segments of a day. When the historical block is located to the north of the Tropic of Cancer, the architectural shadows are at some position on the northwest, due west or southwest of their corresponding architectures at the sunrise time; from then on, the architectural shadows generally move to the northeast relative to their positions then, until they reach on the due north of their architectures at 12:00. After 12:00, the architectural shadows generally move to southeast relative to their positions at 12:00, until the Sun sets.
Figure 17 is a schematic diagram for the optimising of building heights. In overall consideration of the position changing situation of the architectural shadows relative to their architectures in the areas to the north of the Tropic Cancer in a whole day, increasing either the architectural height on both sides of east-west streets or that on both sides of north-south streets will increase the area of architectural shadows in some time segments of a day, so as to increase the area of the zones with good thermal comfort and further optimize the thermal comfort of the historical block. Picture 17-a is the base-case scenario where the architectural height is as indicated on the picture, the main north-south streets in the middle is 10 m wide, other north-south streets are 4 m wide and the east-west streets are 4 m wide. Picture 17-b is the model after the height of some architectures on both sides of north-south streets are changed on the basis of the base-case scenario. Picture 17-c only changes the height of some architectures on both sides east-west streets. According to the simulation as per the weather parameters from 10:00 to 20:00 on 12 July 2022, the general thermal comfort of 17-b and 17-c is superior than 17-a. The general thermal comfort can be effectively improved by increasing the architectural height in this scenario model of the historical block.
[image: Figure 17]FIGURE 17 | Schematic diagram of the building heights. (A) All buildings are 9 m high (B) Some buildings on the north and south sides are 15 m high and the rest is 9 m high, (C) Some buildings on the east and west sides are 15 m high and the rest is 9 m high.
4 CONCLUSION
The historic conservation area is composed of linear street spaces, and its internal street space form is closely related to the characteristics of the microclimate environment. The activation and renewal of the historic conservation area for the purpose of microclimate improvement can be realized by studying the characteristics of street form. In this paper, Taiping Street in Changsha is selected as the historic conservation area studied. The linear street spatial form formed by the enclosure of buildings on both sides of the area was extracted, and the street spatial form in summer was studied through field survey, field measurement, and software simulation.
5 Historical blocks are generally narrow, with lower buildings on both sides of the street. By properly renovating historical buildings to make full use of their advantages in blocking sunlight at different times and forming building shadows, the overall thermal comfort of the block can be effectively improved. Based on the specific situation of Changsha City located north of the Tropic of Cancer, the researchers fully considered the orientations of building shadows at all times of the day and fully utilized the specific feature of building shadows that can form areas of better thermal comfort by blocking sunlight. The study takes the historical blocks of Taiping Street in Changsha City as the research object and proposed optimization strategies that are beneficial to improving thermal comfort. This undoubtedly helps guide relevant scholars, especially urban planners, to fully consider the situation where thermal comfort is better in building shadow areas during the process of renovating historical blocks and to renovate historical blocks specifically to improve thermal comfort. Based on the specific situation of Taiping Street, the researchers explored the relationship between different values of street interface density and the thermal comfort of the area from the perspective of street interface density and found that increasing the street interface density of east-west streets is beneficial to fully utilizing building shadows to improve thermal comfort. Reducing the street interface density of north-south streets and forming new east-west streets can fully utilize building shadows to block sunlight, form shades, and improve thermal comfort. Removing some buildings and adding smaller open spaces in the middle of the north side of the building is also beneficial for using building shadows to improve thermal comfort. When adding open spaces, priority should be given to adding more smaller open spaces at the intersections of east-west and north-south streets rather than fewer larger open spaces. This is beneficial for forming many new small open spaces with better thermal comfort during the day while minimizing the negative impact on the thermal comfort of intersections. Increasing building height on both sides of east-west and north-south streets and reducing the D/H ratio is also beneficial for improving the thermal comfort of the block by increasing the area of building shadows during certain periods of the day. Our findings are beneficial for guiding researchers to think about fully utilizing building shadows and improving the thermal comfort of historical blocks from the three aspects of street interface density, open space, and D/H ratio. In our study, the effect of wind passages on improving the thermal comfort of historical blocks is not significant, which also helps guide planners to think about whether it is a suitable choice to blindly increase wind passages in historical blocks at a high cost without considering the role of building shadows.
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Deforestation is the accelerating factor of climate change in developing countries. The German Watch Report 2020 had rated Pakistan number seventh most affected country due to adverse impacts of climate change. The problem of deforestation poses an existential danger to the forest-depleted country. It is of utmost importance to predict the main drivers to control deforestation. This study was conducted from October 2021 to August 2022 in dry temperate forests of the Chilas to investigate the current condition, causes of deforestation, and predicted the main drivers by using a binary regression model. Stratified random sampling techniques and fixed area plot method were used and taken ground measurements during field inventory to access current situation of deforestation. While a non-probability quota sampling technique and semi-structured questionnaire were utilized for the determination of main drivers of deforestation through respondent’s survey. The forest inventory result showed that most trees fall in immature and sub-mature (mainly in 10–20 and 20–30 cm) diameter classes while the binary logistic regression model predicted dominating four primary drivers (unsustainable fuel wood extraction, unsustainable timber extraction and urban crawling and rural expansion/habituation, and free and uncontrolled livestock grazing) and one secondary driver (wood for energy needs). To address the underlying causes of deforestation, the government must supply alternate energy sources, as well as other economic possibilities to reduce dependency on forests.
Keywords: deforestation, climate change, causes of deforestation, binary logistic regression model, dry temperate forest, Gilgit Baltistan
1 INTRODUCTION
Forest ecosystems have an essential role in protecting water supplies, providing economic goods, maintaining biodiversity, and mitigating climate change, in addition to providing money, food, and medicine to many of the world’s poorest people (Shehzad et al., 2015). Forests are a valuable natural resource for any country. Forests are significant in Pakistan for two reasons: first, they play a vital part in keeping the environment clean, and second, they directly assist the rural economy of the country. In Pakistan, deforestation has become a social issue as well as a policy one. Despite ranking 135th on the Global Greenhouse Gases (GHS) index, Pakistan is recognized as the seventh most impacted country by climate change (Aslam et al., 2021).
Time-series decadal forest cover change maps for 3 decades (1990, 2000, and 2010) employed by (Qamer et al., 2016) highlighted severe deforestation in Gilgit Baltistan province with 1,707 km2 of forest area lost over 20 years or 0.38 percent per year. Despite efforts to develop plans and policies to maintain the remaining forests in the north, notably in Gilgit-Baltistan, these forests continue to be managed in an unsustainable way, with deforestation being a significant concern (Yusuf, 2009). In light of this, a thorough evaluation of the Gilgit Baltistan government policy response is necessary because the issue of deforestation no longer just affects the local area but also has global consequences. The country is on a knife-edge due to its susceptibility to climate change risks.
Forest Inventory for the forests of Skardu district was done by the Gilgit Baltistan Forest and Wildlife Department under the project of Reducing Emission through Deforestation and Forest Degradation (REDD+) which indicate that approximately 85% of forests were young (Anwar et al., 2015). Similarly, the forest inventory report for Gilgit Baltistan 2017 under the project of REDD + also indicated that 63% of forests were young in the whole region of Gilgit Baltistan (Ismail et al., 2018). Land cover changes in Gilgit-Baltistan are extremely dynamic, according to research. Between 2000 and 2010, the Chilas subdivision had the highest rate of deforestation, totaling almost 3,500 ha. Between 2000 and 2010, Darel/Tangir had the second greatest rate of deforestation, with almost 2,000 ha lost. Astore had the third greatest rate of deforestation, which was much lower than Chilas and Darel/Tangir (Qamer et al., 2016).
The Ten-Billion Tsunami Afforestation Project (10-BTAP), a component of the Green Growth Initiative of the Government of Pakistan, has captured the interest of both the general public and academics. It is hailed as a revolutionary step toward a sustainable environment and forest management in all of the provinces including Gilgit Baltistan. Few people have seriously questioned the success of 10-BTAP’s plantation, its socioeconomic impact, the species it chose, or its overall effectiveness as the driver of the green revolution, even though the project’s progress in restoring the forests has been duly acknowledged by independent sources. However, because the root causes of deforestation have rarely been addressed, it fell far short of igniting a green revolution.
There are several primary and secondary drivers which increase the rate of deforestation. It is of utmost importance to predict the main drivers to control deforestation. The factors of deforestation in Gilgit-Baltistan, as well as the dominant notion of Himalayan environmental degradation, have been the subject of several pieces of research. Unsustainable commercial harvesting and mismanagement were the primary causes of deforestation across 3 decades in the Basho valley of Gilgit-Baltistan (Ali and Benjaminsen, 2004). In the Darel/Tangir and Chilas valleys, sectarian conflicts and increasing access to forest resources have been highlighted as further indirect drivers of deforestation (Gohar, 2002). Forest resources had been overexploited since forest-dependent populations regularly practice cutting trees to get timber and fuelwood in the Dayan Valley Astore district of Gilgit-Baltistan (Ali et al., 2014). Quantitative research was conducted on forest vegetation in the three districts of Gilgit-Baltistan and found illegal cutting as the main cause in Rama and Skardu districts (Akbar et al., 2011). Anthropogenic disturbances including grazing, cutting, sliding, and burning have had an impact on the quality of the forest stand structure of Gilgit-Baltistan (Akbar et al., 2013). Deforestation was further accelerated by the development of the Karakorum Highway (KKH), which connects Pakistan and China. The KKH made it easier and less expensive to move timber to other places, as well as opening up formerly closed forested areas (Ali et al., 2005). The dry temperate forest of Ganji Valley in Skardu district Gilgit-Baltistan contains few seedlings, or young trees, or shows no evidence of seedling establishment, and is vulnerable to anthropogenic disturbances (Akbar et al., 2015). Chilghoza forest in Goharabad District Diamer division of Gilgit-Baltistan has few seedlings and young trees or shows no indication of seedling establishment. The poor recovery was attributed to both human (nut harvesting, cutting, grazing, burning, etc.,) and natural (land sliding, floods) causes (Khan et al., 2015).
Therefore, this research study was conducted to investigate the causes of deforestation and predicted the main drivers by using a binary regression model in Gilgit Baltistan, especially in the dry temperate forests of Diamer district (High Forest area percentage as compared to other nine districts). This paper also provided possible strategies to tackle the phenomena of deforestation in the province.
2 MATERIALS AND METHODS
2.1 Location of study area
Gilgit-Baltistan is a region in Pakistan’s far northwestern corner with ten districts (administrative units). This area in the north has a total area of 72,971 km2. The region’s importance may be seen in its physical location, as it sits at the crossroads of Central Asia, China, and South Asia. When compared to the other nine districts of Gilgit-Baltistan, the Diamer district’s dry temperate forests have a higher forest area proportion. Diamer district has been separated into two subdivisions in terms of forest management: Chilas and Darel-Tangir. The research was carried out in the Chilas subdivision’s dry temperate forests. The elevation of the Chilas subdivision ranges from 1829 to 3,506 m. The area’s coordinates are 35′23′07″N and 74′34′07″E, with a total forest area of 0.1 million hectares. The vegetation of the area is classified as dry temperate coniferous forest dominated by Cedrus deodara (Roxb. ex D. Don) G. Don (Diar/Deodar), Pinus wallichiana (Kail) A.B. Jacks., Abies pindrow (Royle ex D. Don) Royle (Fir), Picea simithiana (Wall.) Boiss (Spruce), Pinus gerardiana Wall. ex D. Don (Chilgoza) and broadleaved species are Betula utilis D. Don (Birch), Quercus incana Roxb. (Oak) and Taxas baccata L. (Yew).
2.2 Ground measurement
The Chilas Forest Division has divided into four forest ranges. From each forest range, 09 plots were selected using stratified random sampling as dense mix, dense pure, sparse pure, and sparse mix forest areas. With the Vertex Hypsometer, a circular plot having a radius 17.84 m was marked on the ground. This device works well for laying out plots in steep terrain without the need for slope adjustment variables. In each sample plot, the diameter at breast height (DBH) of all trees was measured at 1.37 m. On the uphill side, DBH was measured at 1.37 m above the ground. Those trees which had a minimum diameter at breast height (DBH) of 5 cm and a minimum height of 2 m were measured.
2.3 Determination of diameter size classes
The DBH tap was used to measure the diameters at breast height (DBH) of each tree species in a sample plot, which was then divided into 13 size classes (10 cm DBH) and tree size structures were computed using the MS Excel 2007 Package. Following the investigations, size classes were split into four categories: immature (less than 25 cm), sub-mature (26–50 cm), mature (51–75 cm), and over-mature (more than 75 cm) (Wahab, 2011; Ahmed et al., 2012; Akbar et al., 2014).
2.4 Survey based data collection
A semi-structured questionnaire served as the data-gathering tool. The respondents were given the questionnaire along with an interview guide. To boost the respondents’ trust and data quality, interviews were conducted by locally educated six forestry graduates (three males and three females forestry graduates) to address local language bearers and filled the questionnaire by the interviewers after interview of the respondents. For a respondent’s survey of the Chilas forest region, a non-probability quota sampling approach was utilized as an appropriate sample technique. All four forest ranges of Chilas were chosen for a present sampling frame of 200 respondents (50 respondents for each forest range). The study area included all 200 accessible households. Interviews were taken from the main male or female head of each household. Both local males and females equally participated in the interview but the size of household vary in size.
The demographic features of the local respondents are shown in Table 1. An equal number of male (n = 100) and female (n = 100) respondents were selected for interviewed and age was also categorized into two categories (i.e., young age (≤40 years) and old age (≥40 years). The majority of the respondents (60%) were uneducated as compared to educate (a person who could read and write). Most of the respondents (56%) were farmers.
TABLE 1 | Demographic features of the local participants.
[image: Table 1]2.5 Statistical analysis
To arrange and code the data for quantitative data analysis, a statistical tool (SPSS version 21.0) and Microsoft Excel 2007 were utilized. Both forest inventory and respondents survey data were entered into the excel sheet to organize the raw data and then shift into the SPSS software for descriptive and inferential statistical test. to examine the quantitative data. Descriptive statistics such as frequency and percentage counts were applied on the forest inventory data to describe and highlight the current situation of deforestation in the study area. While the logit regression model was applied on the respondents survey data to predict main primary and secondary drivers of deforestation.
The logistic regression model, as employed by (Hishe et al., 2015; Ullah et al., 2020) was used to examine the main primary and secondary drivers of deforestation. The binary dependent variable in this study was “deforestation in the Chilas forest,” which was assigned a value of “1” if deforestation occurred in the forest and “0” if it did not (scale: yes “1” or No “0”). The independent variables in the case of primary drivers are Unsustainable fuelwood extraction, Unsustainable timber extraction, Forest Fires (Intentional), Forest Fires (natural), Infrastructure Development, Free and uncontrolled livestock grazing, Urban and rural expansion, Agricultural expansion for subsistence, Floods, Landslides, heavy Snowfall, Pests, Weak governance while in case of secondary drivers independent variables are Wood energy needs, Food security, Lack of alternate livelihoods in rural areas, poor extension services, No demarcation of boundaries, Unsustainable forest management, Poor implementation of laws and Political pressure on forest officers for relaxing the laws which discourage full enforcement of the law. These are the independent variables (socio-economic factors) influencing deforestation in the study area. The logistic regression model equation is presented below:
In case of Primary Drivers:
[image: image]
Where, SE = socio-economic factors; β1x1 = Unsustainable fuel wood extraction; β2x2 = Unsustainable timber extraction; β3x3 = Forest Fires (Intentional); β4x4 = Forest Fires (natural); β5x5 = Infrastructure Development; β6x6 = Free and uncontrolled livestock grazing; β7x7 = Urban and rural expansion; β8x8 = Agricultural expansion for subsistence; β9x9 = Floods, Landslides, heavy Snowfall; β10x10 = Pests; β11x11 = Weak governance.
In case of Secondary Drivers:
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Where, SE = socio-economic factors; β1x1 = Wood energy needs; β2x2 = Food security; β3x3 = Lack of alternate livelihoods in rural areas; β4x4 = Poor extension services; β5x5 = No demarcation of boundaries; β6x6 = Unsustainable Forest management; β7x7 = Poor implementation of laws; β8x8 = Political pressure on forest officers.
3 RESULTS AND DISCUSSION
3.1 Occurrence of tree species
The tree species sampled during inventory consisted of six conifers Deodar (C. deodara), Kail (P. wallichiana), Fir (A. pindrow), Spruce (P. smithiana), Juniper (Juniperus excelsa M. Bieb.), Chilgoza (P. gerardiana), and three broadleaved species Birch (B. utilis), Oak (Q. incana) and Yew (Taxus baccata) as given in (Figure 1). Spruce is the dominant species (35.4%) followed by Kail (21.5%) and deodar (19.4%). Oak, Chilgoza, Juniper, Yew, Fir, and Birch are also present in the area but in a very small proportion.
[image: Figure 1]FIGURE 1 | Percentage of tree species.
3.2 Strata-wise occurrence of trees
A total of 855 trees were tallied in all 36 plots. Thus, the average number of trees was estimated as 237 per ha. The highest number of trees (70.2%) was found in the sparse pure coniferous forest which indicated that deforestation has happened in the past years at a high rate. In Dense mixed forest, sparse mix, and dense pure forest 16.3%, 6.9%, and 6.7% of trees were found. The detail is given in Table 2.
TABLE 2 | Strata-wise occurrence of trees.
[image: Table 2]3.3 Diameter class distribution
The distribution of DBH size classes in different species reveals the current state and future trajectory of these forests. (Figure 2). depicts the diameter class distribution of the trees sampled during the inventory. Almost all diameter classes are well represented. However, there are more trees in the 11–20 cm, 21–30 cm, and 30–40 cm diameter groups. The proportion of trees in the next higher classifications is decreasing, indicating a positive trend. For regular and sustainable forest stands, more trees should exist in the younger classes and fewer in the older classes, as seen in the study area. However, the number of trees with a diameter of 10 cm is rather low, indicating some gaps in regeneration.
[image: Figure 2]FIGURE 2 | Diameter class distribution pf sample trees.
3.4 Stand structure
The inventory findings demonstrate that all developmental phases are well represented in the target area. The stand structure is nearly young, with the majority of trees in immature (46.1%) and sub-mature (35.7%t) growth stages. In contrast, 12.4% of the trees are mature, and 5.8% are above mature, for a total of 18.2 percent. As a result, about one-fifth of the total trees are ready to be harvested as shown in Table 3. Leaving these mature trees in the forests without harvesting may undermine the economic value that might be reaped from harvesting them. These older trees also restrict regeneration, which is severely inadequate in the majority of mature stands.
TABLE 3 | Stand structure.
[image: Table 3]3.5 Development stages of different species
The development stages of different tree species are given in (Figure 3). 23.1%, 21.3%, 21.7%, and 10% of Kail fall in an immature, sub-mature, mature, and over-mature stage. Similarly, 36%, 35.1%, 31.1%, and 42% of Spruce fall in an immature, sub-mature, mature, and over-mature stage. While in the case of Deodar 8.1%, 21%, 43.4%, and 48% fall in an immature, sub-mature, mature, and over-mature stage. In Birch almost equal proportions of trees, i.e., 1.3% and 1.3% are in immature and sub-mature stages respectively. On the other hand, Birch, Juniper, Chilgoza pine, Oak, and Yew are totally in immature and sub-mature stages and no trees are found in mature and over-mature stages.
[image: Figure 3]FIGURE 3 | Graphical representation of developmental stages of species.
3.6 Factual data based on binary logistic model
The Binary Logistic Regression (BLR) model was employed in this research work. The BLR model evaluated the association between the demographic features of the local participant’s and deforestation, which is a driving force behind climate change. Table 4 displays the outcomes. In this BLR model, a total of four main variables were employed, i.e., age, occupation, education, and gender because these are the main demographic characteristics of the respondents. Out of the four variables, three significantly contributed to the model. Significant factors were occupation, education, and gender. There is a significantly positive relationship observed between gender (B = .637, Wald = 1.145, p < 0.05) and the dependent variable (i.e., deforestation is the accelerating factor of climate change) followed by education (B = .542, Wald = 1.145, p < 0.05) and occupation (B = .467, Wald = .966, p < 0.05). Females are more worry about deforestation and climate change as compared to males. Educated people are more concerned about the negative consequences of deforestation and climate change as compared to the uneducated people. Local farmers and educated peoples working in different professions perceived that deforestation and climate change have adverse effects on the local and world climatic conditions.
TABLE 4 | Respondents’ characteristics and factual data based on model.
[image: Table 4]3.7 Main drivers of deforestation
The number of reasons that contribute to deforestation is very significant, and these factors are similar to the global deforestation trend. Primary and secondary drivers causing deforestation in the dry temperate forest of the Chilas sub-division are given in (Figure 4).
[image: Figure 4]FIGURE 4 | Percentage of primary and secondary drivers of deforestation. Where (UFWE = Unsustainable fuel wood extraction; UTE = Unsustainable timber extraction; FFI = Forest Fires (Intentional); FFN = Forest Fires (natural); ID = Infrastructure Development; FULG = Free and uncontrolled livestock grazing; URE = Urban and rural expansion; AES = Agricultural expansion for subsistence; FLLHS = Floods, Landslides, heavy Snowfall; WG = Weak governance; WEN = Wood energy needs; FS = Food security; LALRA = Lack of alternate livelihoods in rural areas; PES = Poor extension services; NDB = No demarcation of boundaries; UFM = Unsustainable forest management; PIL = Poor implementation of laws; PPFO = Political pressure on forest officers).
3.7.1 Primary drivers and secondary drivers
The BLR model was also employed to assess the main predicting primary and secondary drivers of deforestation. The outcomes of the model are displayed in Tables 5, 6.
TABLE 5 | Factual data based on model and primary drivers.
[image: Table 5]TABLE 6 | Factual data based on model and secondary drivers.
[image: Table 6]3.7.2 Primary drivers
Eleven primary drivers were used in this BLR model. Four primary drivers showed significant contributions to the model out of eleven drivers. Unsustainable fuel wood extraction, Unsustainable timber extraction, Urban and rural expansion/habituation, and free and uncontrolled livestock grazing were significant predictors. Unsustainable timber extraction has showed significant positive relation (B = .761, Wald = 1.195, p < 0.05) followed by Unsustainable fuelwood extraction (B = .641, Wald = 1.183, p < 0.05), free and uncontrolled livestock (B = .532, Wald = 1.764, p < 0.05), and Urban and rural expansion/habituation (B = .402, Wald = 1.106, p < 0.05).
3.7.3 Secondary drivers
A total of eight secondary drivers were used in this BLR model. Out of eight drivers, only one secondary driver showed a significant contribution to the model. Wood energy needs had shown significant positive relation (B = .621, Wald = 1.147, p < 0.05) with the dependent variable (i.e., Deforestation).
The non-zero Wald statistical results demonstrate the link between the dependent and explanatory variables. As a result of the findings of this analysis, it is concluded that primary and secondary drivers are a substantial source of deforestation in the study area with a 95 percent confidence interval (p = 0.05).
4 DISCUSSION
The tree species sampled during inventory consisted of six conifers Deodar (C. deodara), Kail (P. wallichiana), Fir (A. pindrow), Spruce (P. smithiana), Juniper (J. excelsa), Chilgoza (P. gerardiana), and three broadleaved species Birch (B. utilis), Oak (Q. incana) and Yew (T. baccata). Spruce is the dominant species (35.4%) followed by Kail (21.5%) and deodar (19.4%). Oak, Chilgoza, Juniper, Yew, Fir, and Birch are also present in the area but in a very small proportion. A similar result was also documented by other research studies conducted in the Gilgit Baltistan province (Raqeeb et al., 2014; Anwar et al., 2015; Ismail et al., 2018).
A total of 855 trees were tallied in all 36 plots. Thus, the average number of trees was estimated as 237 per ha. The highest number of trees (70.2%) was found in the sparse pure coniferous forest which indicated that deforestation has happened in the past years at a high rate. A research study (Raqeeb et al., 2021) findings are also similar to our results. He found that the forest area of diamer division has continuously declined since 1979. Figures 5–7 showed the land use changes for 3 decades, i.e., 1979–1990, 1990–1999 and 1999–2012 (Raqeeb et al., 2021). Anthropogenic activities may be responsible for changes in the distribution pattern of size classes and density (Akbar et al., 2014).
[image: Figure 5]FIGURE 5 | Land use changes from 1979–1990 in Daimer division especially in Chilas district. Source (Radeeb et al., 2021).
[image: Figure 6]FIGURE 6 | Land use changes from 1990–1999 in Daimer division especially in Chilas district. Source (Radeeb et al., 2021).
[image: Figure 7]FIGURE 7 | Land use changes from 1999–2012 in Daimer division especially in Chilas district. Source (Radeeb et al., 2021).
The BLR model evaluated the association between the demographic features of the local participant’s and deforestation. In this BLR model, a total of four variables were employed. Out of the four variables, three significantly contributed to the model. Significant factors were occupation, education, and gender. There is a significantly positive relationship observed between gender (B = .637, Wald = 1.145, p < 0.05) and the dependent variable (i.e., deforestation is the accelerating factor of climate change) followed by education (B = .542, Wald = 1.145, p < 0.05) and occupation (B = .467, Wald = .966, p < 0.05).
The number of reasons that contribute to deforestation is very significant, and these factors are similar to the global deforestation trend. Primary and secondary drivers causing deforestation in the dry temperate forest of the Chilas sub-division are given in (Figure 4). Four primary drivers showed significant contributions to the model out of eleven drivers. Unsustainable fuel wood extraction, Unsustainable timber extraction, Urban and rural expansion/habituation, and free and uncontrolled livestock grazing were significant predictors. Unsustainable timber extraction has showed significant positive relation (B = .761, Wald = 1.195, p < 0.05) followed by Unsustainable fuelwood extraction (B = .641, Wald = 1.183, p < 0.05), free and uncontrolled livestock (B = .532, Wald = 1.764, p < 0.05), and Urban and rural expansion/habituation (B = .402, Wald = 1.106, p < 0.05). A total of eight secondary drivers were used in this BLR model. Out of eight drivers, only one secondary driver showed a significant contribution to the model. Wood energy needs had shown significant positive relation (B = .621, Wald = 1.147, p < 0.05) with the dependent variable (i.e., Deforestation). These reasons were previously listed by various researchers for other forested areas of Pakistan (Akbar et al., 2011; Akbar et al., 2013; Akbar et al., 2014; Raqeeb et al., 2014; Anwar et al., 2015; Ismail et al., 2018; Ullah et al., 2020). According to the findings of this study, the dry temperate forest of Chilas is unstable with a wide size distribution. The majority of the forests had few seedlings, young trees, or no evidence of seedling recruitment. Another researcher found (Akbar et al., 2014) a similar result in the Chilgoza forest in the Goharabad district of Diamer, Gilgit Baltistan. The divide between the middle and upper classes is attributable to human perturbations. The existing practices are both dangerous and concerning for the future of these forests.
5 RECOMMENDATIONS AND DIRECTIONS OF FUTURE RESEARCH
The findings of the both inventory and survey highlighted that deforestation in the study area occurred at a high rate. The responses of the local respondents were assessed through a regression model which indicated that there are four main primary drivers and one main secondary driver of deforestation in the study area. Therefore, following possible strategies were drawn based on the results to overcome deforestation in the study area.
• The first dominating primary driver is the cutting of trees by local people to collect fuel wood/firewood for cooking and heating purpose. Government should provide alternate energy sources for local inhabitants.
• The second dominating primary driver is the illegal cutting of trees for timber extraction. Green felling completely bans in the study area therefore the government should impose laws strictly and punish the offenders who are involved in illegal timber extraction.
• The third dominating primary driver is urban and rural expansion. Population growth is the root cause of urban and rural expansion. Government should control the population. Planned urbanization is also a proven method to reduce the attenuation of population growth. The fourth dominating primary driver is free and uncontrolled livestock grazing in the forest area due to which natural regeneration is almost none. Government should involve local people in the decision-making process and must be taken them in a confidant before making a management plan. It is also necessary to clarify the rights of the local inhabitants related to livestock grazing in the forest area.
• The only dominating secondary driver among others highlighted in this study is wood energy needs. The local peoples of the study area are fully dependent on the forest trees to fulfill their energy needs due to non-availability of alternate options. The government departments did not have a more active and clear policy. Unfortunately, even many forest areas of the country are managed without any proper management plan. Most laws and policies are outdated and must be revised. Government should provide electricity and gas facilities to the local inhabitants to reduce the burden from the forest area. A biogas plant scheme at the household level is one of the best options for the government to address the problem of wood energy needs.
6 LIMITATIONS OF THE RESEARCH STUDY
The findings of this study have to be seen in light of some limitations. The present study highlights the main drivers of deforestation by using respondents’ survey-based data and the current situation of deforestation by using forest inventory-based data in the study area. It provides a base for future sustainable forest management. However, due to limited financial and technical resources and time constraints were not able to conduct both forest inventory and respondents survey at the provincial and national level which will give more insight into the problem at a large scale. Future research should be conducted at the provincial or national level by involving international organizations especially Reducing Emissions from Deforestation and Forest Degradation in developing countries (REDD+), the Ministry of climate change at the national level, and provincial forest departments to address the problem at large scale and make a change in a current forest policy to reduce deforestation and its impact on human beings.
7 CONCLUSION
This research study concluded that the dry temperate forest of the Chilas subdivision has a high rate of deforestation. Most trees of the forest fall in immature and sub-mature (mainly in 10–20 and 20–30 cm) diameter classes and a little number of trees fall in mature and over-mature diameter classes which indicated deforestation occurred in the past. Results also depicted that the young seedlings of less than 10 cm in diameter are low in percentage due to slow natural regeneration because different anthropogenic factors influence it. After analyzing the perception of the local community participants by using the binary regression model (scale: yes “1” or No “0”) it is concluded that four primary drivers (unsustainable fuel wood extraction, unsustainable timber extraction and Urban and rural expansion/habituation, and free and uncontrolled livestock grazing) and one secondary driver wood for energy needs are the dominating drivers of deforestation as compared to other drivers. Government provision of alternative energy sources to the domestic population is advised to combat deforestation in the research area. Government officials should enforce laws and regulations aggressively and penalize anyone who participates in illicit timber extraction. Before creating a management plan, the government should consult the locals and engage them in the decision-making process. The rights of the locals regarding grazing livestock in the forest area must also be made clear. The local population should have access to electricity and gas services from the government to lessen the pressure on the forest area. One of the finest solutions for the government to deal with the issue of wood energy demands is a bio-gas plant program at the home level.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.
ETHICS STATEMENT
Ethical review and approval was not required for the study on human participants in accordance with the local legislation and institutional requirements. Written informed consent from the participants was not required to participate in this study in accordance with the national legislation and the institutional requirements.
AUTHOR CONTRIBUTIONS
Conceptualization, EA and MFA; Data curation, EA and EdA; Formal analysis, EA; Data and Funding acquisition, ARMTI, EdA, WZ and AA; Investigation, EA, MFA and ZR; Methodology, EA; Data Analysis through Software, SU and PM; Supervision, MFA; Writing-original draft, EA; Writing-review and editing, AA, WZ, PM and MJ. All authors contributed to the article and approved the submitted version.
ACKNOWLEDGMENTS
Authors thanks to the Ministry of Climate Change, REDD + office, Islamabad, Pakistan for support during the study under the National internship program on REDD+ 2021.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fenvs.2023.1151320/full#supplementary-material
REFERENCES
 Ahmad, S. S., Abbasi, Q., Jabeen, R., and Shah, M. T. (2012). Decline of conifer forest cover in Pakistan: A GIS approach. Pak. J. Bot. 44 (2), 511–514. 
 Akbar, M., Ahmed, M., Hussain, A., Zafar, M. U., and Khan, M. (2011). Quantitative forests description from Skardu, Gilgit and Astore districts of gilgit-baltistan, Pakistan. FUUAST J. Bio. 1 (2), 149. 
 Akbar, M., Ahmed, M., Shaukat, S. S., Hussain, A., Zafar, M. U., Sarangzai, A. M., et al. (2013). Size class structure of some forests from Himalayan range of Gilgit Baltistan. Sci., Tech. Dev. 32 (1), 56–73. 
 Akbar, M., Ali, S., Hyder, S., Ali, M., Begum, F., and Raza, G. (2015). Seedling age and growth rate of a gymnospermic tree species (Pinus wallichiana) from Ganji valley District Skardu Gilgit-Baltistan, Pakistan. Int. J. Adv. Res. 3 (4), 1057–1061. doi:10.21474/IJAR01
 Akbar, M., Shaukat, S. S., Ahmed, M., Hussain, A., Hyder, S., Ali, S., et al. (2014). Characterization of diameter distribution of some tree species from Gilgit-Baltistan using weibull distribution. J. Bio. Env. Sci. 5 (4), 2220. 
 Ali, J., and Benjaminsen, T. A. (2004). Fuelwood, timber and deforestation in the himalayas: The case of Basho valley, baltistan region, Pakistan. Mt. Res. Dev. 24 (4), 312–318. doi:10.1659/0276-4741(2004)024[0312:ftadit]2.0.co;2
 Ali, J., Benjaminsen, T. A., Hammad, A. A., and Øystein, B. D. (2005). The road to deforestation: An assessment of forest loss and its causes in Basho Valley, Northern Pakistan. Glob. Environ. Change Part A 15 (4), 370–380. doi:10.1016/j.gloenvcha.2005.06.004
 Ali, R., Ali, B. K., Khan, M. Z., Khan, G., Abbas, S., and Ali, E. H. (2014). Baseline study of vegetation in doyan valley district Astore, gilgit-baltistan, Pakistan. Int. J. Emerg. Trends Sci. Techno. 1 (01), 7–19. 
 Anwar, A. S., Muhammad, Z., Hussain, K., Abbas, M., and Kiramat, H. (2015). Estimation of growing stock in dry temperate forests of Skardu, baltistan. Pak. J. For. 65 (1), 9–16. 
 Aslam, B., Gul, S., and Asghar, M. F. (2021). Evaluation of environmental degradation as an unprecedented threat to human security in Pakistan. Lib. Ar. Soc. Sci. Int. J. 5 (1), 197–211. doi:10.47264/idea.lassij/5.1.14
 Gohar, A. (2002). “Competing interests and institutional ambiguities: Problems of sustainable forest management in the Northern Areas of Pakistan,” (England: University of Bath). PhD Diss. 
 Hishe, H., Giday, K., Haile, M., and Raj, A. (2015). The influence of socioeconomic factors on deforestation: A case study of the dry A fromontane forest of desa’a in tigra y region, northern Ethiopia. Int. J. Agri. Sci. Res. 5 (3), 339–348. 
 Ismail, I., Sohail, M., Gilani, H., Ali, A., Hussain, K., Hussain, K., et al. (2018). Forest inventory and analysis in gilgit-baltistan: A contribution towards developing a forest inventory for all Pakistan. Int. J. Clim. Chang. Strateg. Manag. 10 (4), 616–631. doi:10.1108/IJCCSM-05-2017-0100
 Khan, H., Akbar, M., Zaman, M., Hayder, S., Khan, M., Nafees, M. A., et al. (2015). Diameter size class distributions of Pinus gerardiana Wall. Ex D. Don from gohar abad valley district diamer, gilgit-baltistan. Pak. J. Biodivers. Environ. Sci. 6 (2), 50–56. 
 Qamer, F. M., Shehzad, K., Abbas, S., Murthy, M. S. R., XI, C., Gilani, H., et al. (2016). Mapping deforestation and forest degradation patterns in western Himalaya, Pakistan. Remote Sens. 8 (5), 385. doi:10.3390/rs8050385
 Raqeeb, A., Nizami, S. M., Saleem, A., and Hanif, M. (2014). Characteristics and growing stocks volume of forest stand in dry temperate forest of Chilas Gilgit-Baltistan. Open J. For. 4 (3), 231–238. doi:10.4236/ojf.2014.43030
 Raqeeb, A., Saleem, A., Ansari, L., Nazami, S. M., Muhammad, M. W., Malik, M., et al. (2021). Assessment of land use cover changes, carbon sequestration and carbon stock in dry temperate forests of Chilas watershed, Gilgit-Baltistan. Braz. J. Biol. 84. doi:10.1590/1519-6984.253821
 Shahzad, N., Saeed, U., Gilani, H., Ahmad, S. R., Ashraf, I., and Irteza, S. M. (2015). Evaluation of state and community/private forests in Punjab, Pakistan using geospatial data and related techniques. For. Ecosyst. 2 (1), 7–13. doi:10.1186/s40663-015-0032-9
 Ullah, S., Gang, T., Rauf, T., Sikandar, F., Liu, J. Q., and Noor, R. S. (2020). Identifying the socio-economic factors of deforestation and degradation: A case study in Gilgit baltistan, Pakistan. Geo J. 87, 1657–1670. doi:10.1007/s10708-020-10332-y
 Wahab, M. (2011). Population dynamics and dendro chronological potential of pine tree species from district Dir (Doctoral dissertation. Pakistan: Federal Urdu University of arts, science and technology, gulshan-e-iqbal campus Karachi-75300. 
 Yusuf, M. (2009). Legal and institutional dynamics of forest management in Pakistan. McGill Int'l J. Sust. Dev. L. Pol'y. 5, 45. 
Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2023 Ali, Azhar, Alam, Rehman, Ullah, Ahmad, Towfiqul Islam, Zaman, Javed and Mittal. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.


[image: image]


OPS/images/fenvs-10-985145/inline_24.gif


OPS/images/fenvs-10-985145/inline_23.gif


OPS/images/fenvs-10-985145/inline_22.gif


OPS/images/fenvs-10-985145/inline_21.gif


OPS/images/fenvs-10-985145/inline_20.gif


OPS/images/fenvs-10-985145/inline_2.gif


OPS/images/fenvs-10-985145/inline_19.gif


OPS/images/fenvs-10-985145/inline_18.gif


OPS/images/fenvs-11-1146801/math_6.gif


OPS/images/fenvs-11-1146801/math_5.gif


OPS/images/fenvs-11-1151320/fenvs-11-1151320-g004.gif


OPS/images/fenvs-11-1151320/fenvs-11-1151320-g003.gif


OPS/images/fenvs-11-1151320/fenvs-11-1151320-g002.gif


OPS/images/fenvs-11-1151320/fenvs-11-1151320-g001.gif


OPS/images/fenvs-11-1151320/crossmark.jpg


OPS/images/fenvs-11-1146801/math_9.gif


OPS/images/fenvs-11-1146801/math_8.gif


OPS/images/fenvs-11-1146801/math_7.gif


OPS/images/fenvs-11-1151320/math_qu2.gif


OPS/xhtml/Nav.xhtml


Contents



		Cover


		Impact of climate change on the human living environment

		How Well Does the ERA5 Reanalysis Capture the Extreme Climate Events Over China? Part I: Extreme Precipitation

		1 Introduction


		2 Data and Methods

		2.1 Study Area


		2.2 Data Observations and European Center for Medium-Range Weather Forecasts


		2.3 Methods







		3 Results and Discussion

		3.1 Validation of ERA5 precipitation


		3.2 Validation of ERA5 Extreme Precipitation


		3.3 Validation of ERA5 monthly and seasonal extreme precipitation


		3.4 Climatology and Trends of ERA5 Extreme Precipitation







		4 Conclusion


		Data Availability Statement


		Author Contributions


		Funding


		Publisher’s Note


		References







		How Well Does the ERA5 Reanalysis Capture the Extreme Climate Events Over China? Part II: Extreme Temperature

		1 Introduction


		2 Data and Methods

		2.1 Study Area


		2.2 Observations and ERA5


		2.3 Methods







		3 Results and Discussion

		3.1 Validation of ERA5 Temperatures


		3.2 Validation of ERA5 Extreme Temperatures


		3.3 Validation of ERA5 Monthly and Seasonal Extreme Temperatures


		3.4 Climatology and Trends of ERA5 Extreme Temperatures


		3.5 Possible Bias Analysis of ERA5 Temperature







		4 Conclusion


		Data Availability Statement


		Author Contributions


		Funding


		Publisher’s Note


		References







		Substantial Increase in Heavy Precipitation Events Preceded by Moist Heatwaves Over China During 1961–2019

		Highlights


		Introduction


		Data and Methods

		In Situ Weather Observations and Homogenous Climate Regions


		Identification of HW and HP Events


		Identification of Sequential Heatwave–Heavy Precipitation Events


		Spatial Autocorrelation, Temporal Trend, and Distribution Test


		Attribution of Changes in Sequential HWHP Events







		Results and Discussion

		Contributions of HWHP Events to Total HP Events


		Spatiotemporal Changes in HWHP Events


		Spatial Clustering and Changes in the Extent of HWHP Events







		Conclusion


		Data Availability Statement


		Author Contributions


		Funding


		Publisher’s Note


		Supplementary Material


		References







		Interactive Effects of meteorological Factors and Ambient air Pollutants on Mumps Incidences in Ningxia, China Between 2015 and 2019

		1 Introduction


		2 Materials and Methods

		2.1 Setting and Data


		2.2 Statistical Analysis


		2.3 Sensitivity Analysis







		3 Results

		3.1 Descriptive Analysis


		3.2 Distributed Lag Non-linear Models


		3.3 Interaction Analysis







		4 Discussion


		Conclusion


		Data Availability Statement


		Author Contributions


		Funding


		Publisher’s Note


		Supplementary Material


		References







		Spatial and Temporal Distribution Pattern of Oncomelania hupensis Caused by Multiple Environmental Factors Using Ecological Niche Models

		Introduction


		Materials and Methods

		Study Area


		Data Collection


		Ecological Niche Modeling


		Assessment of the Predictive Accuracy of Ecological Niche Models


		Field Validation







		Results

		Current Distribution of O. hupensis Habitats


		Ecological Niche Modeling and Prediction


		Accuracy of Ecological Niche Models for Prediction of Potential O. hupensis Distribution







		Discussion


		Conclusion


		Data Availability Statement


		Author Contributions


		Funding


		Publisher’s Note


		References







		Investigating the spatiotemporal variations of extreme rainfall and its potential driving factors with improved partial wavelet coherence

		1 Introduction


		2 Data and methods

		2.1 Study area


		2.2 Research data


		2.3 Methods







		3 Results

		3.1 Extreme rainfall changes in the MLRYRB


		3.2 Correlations between extreme rainfall indices and the large-scale climate patterns


		3.3 Wavelet coherence analysis


		3.4 Partial wavelet coherence analysis


		3.5 Reconstruction of extreme rainfall and the large-scale climate patterns







		4 Discussion


		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		References







		Meteorological driving factors effecting the surface area of Ebinur Lake and determining associated trends and shifts

		1 Introduction


		2 Data and methods

		2.1 Study area


		2.2 Data sources







		2.3 Methods

		2.3.1 Water index method


		2.3.2 Otsu algorithm


		2.3.3 Calculation formula of meteorological parameters


		2.3.4 Center of gravity GTWR model







		3 Results

		3.1 Spatial and temporal variation characteristics of the Ebinur Lake surface area


		3.2 Analysis of driving factors of the Ebinur Lake surface area change







		4 Discussion and conclusion

		4.1 Discussion


		4.2 Conclusion







		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		Supplementary material


		Footnotes


		References







		Projection of future climate change in the Poyang Lake Basin of China under the global warming of 1.5–3°C

		1 Introduction


		2 Materials and methods

		2.1 Study area


		2.2 Datasets


		2.2 Methods







		3 Results

		3.1 Validation of the downscaling methods in the PLB


		3.2 Applicability evaluation of CMIP6 models in the PLB


		3.3 Projection of the future climate change in PLB under global warming







		4 Conclusion


		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		References







		Spatial and temporal heterogeneity of tropical cyclone precipitation over China from 1959 to 2018

		1 Introduction


		2 Data and methods

		2.1 Study area and observations


		2.2 Methods







		3 Results and discussions

		3.1 Interannual tropical cyclone precipitation


		3.2 Monthly tropical cyclone precipitation


		3.3 Interdecadal tropical cyclone precipitation


		3.4 Recurrence risk of tropical cyclone precipitation







		4 Conclusion


		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		References







		Central Asia daily extreme precipitation in observations and gridded datasets: A threshold criteria perspective

		1 Introduction


		2 Data and methods

		2.1 Study area


		2.2 Data







		2.3 Method

		2.3.1 Extreme threshold criteria


		2.3.3 Distance between indices of simulation and observation index







		3 Results

		3.1 Precipitation climatology


		3.2 Daily extreme precipitation threshold in observations


		3.2.2 Spatial distribution of different extreme precipitation threshold criteria


		3.2.3 Trends of extreme precipitation characteristics by different thresholds


		3.3 Daily extreme precipitation threshold in gridded datasets







		4 Discussion


		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		Supplementary material


		References







		Multi-model seasonal prediction of global surface temperature based on partial regression correction method

		1 Introduction


		2 Data and methods

		2.1 Data


		2.2 Evaluation metrics


		2.3 The multi-model ensemble correction method







		3 Results

		3.1 Deterministic forecast skill


		3.2 Probabilistic forecast skill


		3.3 Comparison of the model ensemble schemes


		3.4 PRC method for probabilistic forecast skill


		3.5 Predictability potential of PLSR equation







		4 Discussion and conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		Supplementary material


		References







		The role of teleconnection in the occurrence probability of extreme precipitation over China based on extreme value theory

		Highlights


		1 Introduction


		2 Data

		2.1 Gridded daily precipitation data


		2.2 Low-frequency oscillation indices


		2.3 Large-scale environmental variables







		3 Methodology

		3.1 Identification of extreme precipitation events


		3.2 Stationary and non-stationary GEV distribution


		3.3 Stationary and non-stationary GP distribution


		3.4 Model performance tests


		3.5 Detection of changes in probability index and occurrence rate







		4 Results and discussion

		4.1 Modeling extreme precipitation with stationary distribution


		4.2 Modelling extreme precipitation with non-stationary distribution


		4.3 Large-scale circulation patterns associated with the low-frequency oscillation indices







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		Response of the natural grassland vegetation change to meteorological drought in Xinjiang from 1982 to 2015

		1 Introduction


		2 Materials and methods

		2.1 Study area


		2.2 Data


		2.3 Methods







		3 Results

		3.1 Vegetation change characteristics of natural grassland in Xinjiang


		3.2 Variation characteristics of meteorological drought in natural grasslands in Xinjiang


		3.3 Response of natural grassland vegetation to meteorological drought in Xinjiang







		4 Discussion


		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		References







		Changes in crop water consumption in Xinjiang of China from 1989 to 2018: A Logarithmic Mean Divisia Index decomposition analysis

		Introduction


		Materials and methods

		Study area


		Data description







		Decomposition analysis of changes in water footprint

		Calculation of water footprint


		Decomposition analysis of changes in water footprint







		Results and discussion

		Changes in crop water consumption and their driving factors


		Decomposition of the change in crop water consumption during 1989–2018


		Decomposition of the change in crop water consumption in two stages







		Discussion


		Conclusion and implication


		Data availability statement


		Author contributions


		Acknowledgments


		Publisher’s note


		References







		Characteristics and physical mechanisms of a rainstorm in Hotan, Xinjiang, China

		1 Introduction


		2 Materials and methods

		2.1 Study area


		2.2 Datasets and methods







		3 Results

		3.1 Rainstorm process and corresponding weather conditions


		3.2 Physical mechanism analyses: Energy variations


		3.3 Physical mechanism analyses: Atmosphere circulation


		3.4 Physical mechanism analyses: Water vapor transformation







		4 Conclusion


		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		References







		Mid-century change analysis of temperature and precipitation maxima in the Swat River Basin, Pakistan

		1 Introduction


		2 Study area


		3 Materials and methods

		3.1 Data


		3.2 Methods







		4 Results and discussion

		4.1 Observed data


		4.2 Projection of temperature and precipitation







		5 Conclusion


		Data availability statement


		Author contributions


		Publisher’s note


		References







		Sensitivity of river ecological baseflow to climate change in arid areas

		1 Introduction


		2 Data and methods

		2.1 Study area


		2.2 Data sources


		2.3 Methods







		3 Results

		3.1 Characteristics of ecological baseflow


		3.2 Characteristics of climate change


		3.3 Sensitivity of ecological baseflow to climate change







		4 Discussion

		4.1 Annual sensitivity


		4.2 Ecological baseflow guarantee







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		Supplementary material


		References







		The index of clothing for assessing tourism climate comfort: Development and application

		Introduction


		Materials and methods

		Data sources


		Methods







		Results and analysis

		Evaluating the accuracy of Ract based on three methods


		Comparing the ICL calculated by three methods


		A case study based on the improved ICL







		Discussion


		Conclusion


		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		Supplementary material


		References







		Evaluation of the surface air temperature over the Tibetan Plateau among different reanalysis datasets

		1 Introduction


		2 Data and methods

		2.1 Research data


		2.2 Methods







		3 Results


		4 Conclusion and discussion


		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		Supplementary material


		References







		Variation characteristics of rainfall erosivity in tropical China and its impact on river sediment load

		1 Introduction


		2 Materials and methods

		2.1 Study area characterization


		2.2 Study data


		2.3 Calculation of rainfall erosivity


		2.4 Temporal variation analysis


		2.5 Spatial change analysis


		2.6 Model suitability evaluation method







		3 Results

		3.1 Model suitability evaluation


		3.2 Temporal variation characteristics of rainfall erosivity


		3.3 Spatial variation characteristics of rainfall erosivity


		3.4 Variation trend of sediment load in the basin


		3.5 Influence of rainfall erosivity on sediment load







		4 Discussion


		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Publisher’s note


		Supplementary material


		References







		Spatiotemporal features of the soil moisture across Northwest China using remote sensing data, reanalysis data, and global hydrological model

		1 Introduction


		2 Study area, dataset, and methodology

		2.1 Study area


		2.2 Datasets


		2.3 Methodologies







		3 Result

		3.1 Accuracy assessment of the six different soil moisture datasets


		3.2 Temporal variations of soil moisture


		3.3 Spatial variations of soil moisture







		4 Discussion

		4.1 Uncertainties of the soil moisture variations from multi-source soil moisture datasets


		4.2 Comparison with the soil moisture variations over other regions


		4.3 Factors affecting soil moisture







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Publisher’s note


		Supplementary material


		References







		Geo-climatic variability and adult asthma hospitalization in Fars, Southwest Iran

		1 Introduction


		2 Materials and methods

		2.1 Study area


		2.2 Study population


		2.3 Geo-climatic data


		2.4 Geospatial analysis


		2.5 Statistical analysis







		3 Results

		3.1 Geo-climatic distribution of points with acute asthma in adults


		3.2 Univariate analysis


		3.3 Multivariate analysis







		4 Discussion

		4.1 Climatic factors


		4.2 Environmental factors







		5 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Publisher’s note


		Supplementary material


		References







		Simulation study of summer microclimate in street space of historic conservation areas in China: A case study in Changsha

		1 Introduction


		2 Materials and method

		2.1 Research object


		2.2 Research indicators and software


		2.3 Research content and method







		3 Results and discussions

		3.1 Research validation


		3.2 Microclimate characteristics corresponding to the street interface density


		3.3 Analysis of microclimate environment characteristics in the open space


		3.4 Microclimate characteristics for streets with different D/H values


		3.5 Local renewal strategy of street space







		4 Conclusion


		Data availability statement


		Author contributions


		Publisher’s note


		References







		Deforestation perspectives of dry temperate forests: main drivers and possible strategies

		1 Introduction


		2 Materials and methods

		2.1 Location of study area


		2.2 Ground measurement


		2.3 Determination of diameter size classes


		2.4 Survey based data collection


		2.5 Statistical analysis







		3 Results and discussion

		3.1 Occurrence of tree species


		3.2 Strata-wise occurrence of trees


		3.3 Diameter class distribution


		3.4 Stand structure


		3.5 Development stages of different species


		3.6 Factual data based on binary logistic model


		3.7 Main drivers of deforestation







		4 Discussion


		5 Recommendations and directions of future research


		6 Limitations of the research study


		7 Conclusion


		Data availability statement


		Ethics statement


		Author contributions


		Acknowledgments


		Publisher’s note


		Supplementary material


		References


















OPS/images/fenvs-11-1151320/fenvs-11-1151320-g007.gif


OPS/images/fenvs-11-1151320/fenvs-11-1151320-g006.gif


OPS/images/fenvs-11-1151320/fenvs-11-1151320-g005.gif


OPS/images/fenvs-11-1151320/math_qu1.gif


OPS/images/fenvs-11-1151320/fenvs-11-1151320-t006.jpg


OPS/images/fenvs-11-1151320/fenvs-11-1151320-t005.jpg


OPS/images/fenvs-11-1151320/fenvs-11-1151320-t004.jpg


OPS/images/fenvs-11-1151320/fenvs-11-1151320-t003.jpg


OPS/images/fenvs-11-1151320/fenvs-11-1151320-t002.jpg


OPS/images/fenvs-11-1151320/fenvs-11-1151320-t001.jpg


OPS/images/fenvs-10-992503/fenvs-10-992503-g001.gif


OPS/images/fenvs-10-992503/crossmark.jpg


OPS/images/fenvs-10-1080810/math_6.gif


OPS/images/fenvs-10-1080810/math_5.gif


OPS/images/fenvs-10-992503/fenvs-10-992503-t002.jpg


OPS/images/fenvs-10-992503/fenvs-10-992503-t001.jpg


OPS/images/fenvs-10-992503/fenvs-10-992503-g005.gif


OPS/images/fenvs-10-992503/fenvs-10-992503-g004.gif


OPS/images/fenvs-10-992503/fenvs-10-992503-g003.gif


OPS/images/fenvs-10-992503/fenvs-10-992503-g002.gif


OPS/images/back-cover.jpg


OPS/images/fenvs-10-992503/math_12.gif


OPS/images/fenvs-10-992503/math_11.gif


OPS/images/fenvs-10-992503/math_10.gif


OPS/images/fenvs-10-992503/math_1.gif


OPS/images/fenvs-10-992503/inline_9.gif


OPS/images/fenvs-10-992503/inline_8.gif


OPS/images/fenvs-10-992503/math_2.gif


OPS/images/fenvs-10-992503/math_15.gif


OPS/images/fenvs-10-992503/math_14.gif


OPS/images/fenvs-10-992503/math_13.gif


OPS/images/fenvs-10-992503/inline_2.gif


OPS/images/fenvs-10-992503/inline_1.gif


OPS/images/fenvs-10-992503/fenvs-10-992503-t005.jpg


OPS/images/fenvs-10-992503/fenvs-10-992503-t004.jpg


OPS/images/fenvs-10-992503/fenvs-10-992503-t003.jpg


OPS/images/fenvs-10-992503/inline_7.gif


OPS/images/fenvs-10-992503/inline_6.gif


OPS/images/fenvs-10-992503/inline_5.gif


OPS/images/fenvs-10-992503/inline_4.gif


OPS/images/fenvs-10-992503/inline_3.gif


OPS/images/fenvs-10-1069002/math_8.gif


OPS/images/fenvs-11-1146801/inline_27.gif


OPS/images/fenvs-10-1069002/math_7.gif


OPS/images/fenvs-11-1146801/inline_26.gif


OPS/images/fenvs-10-1069002/math_6.gif


OPS/images/fenvs-11-1146801/inline_25.gif


OPS/images/fenvs-10-1069002/math_5.gif


OPS/images/fenvs-11-1146801/inline_24.gif


OPS/images/fenvs-10-1069002/math_4.gif


OPS/images/fenvs-11-1146801/inline_23.gif


OPS/images/fenvs-10-1069002/math_3.gif


OPS/images/fenvs-11-1146801/inline_22.gif


OPS/images/fenvs-10-1069002/math_2.gif


OPS/images/fenvs-11-1146801/inline_21.gif


OPS/images/fenvs-11-1146801/inline_20.gif


OPS/images/fenvs-11-1146801/inline_2.gif


OPS/images/fenvs-10-1046882/fenvs-10-1046882-g001.gif


OPS/images/fenvs-10-1046882/crossmark.jpg


OPS/images/fenvs-10-1069002/math_9.gif


OPS/images/fenvs-11-1146801/inline_28.gif


OPS/images/fenvs-10-1069002/inline_9.gif


OPS/images/fenvs-11-1146801/inline_17.gif


OPS/images/fenvs-10-1069002/inline_8.gif


OPS/images/fenvs-11-1146801/inline_16.gif


OPS/images/fenvs-10-1069002/inline_7.gif


OPS/images/fenvs-11-1146801/inline_15.gif


OPS/images/fenvs-10-1069002/inline_6.gif


OPS/images/fenvs-11-1146801/inline_14.gif


OPS/images/fenvs-10-1069002/inline_5.gif


OPS/images/fenvs-11-1146801/inline_13.gif


OPS/images/fenvs-10-1069002/inline_4.gif


OPS/images/fenvs-11-1146801/inline_12.gif


OPS/images/fenvs-11-1146801/inline_11.gif


OPS/images/fenvs-11-1146801/inline_10.gif


OPS/images/fenvs-10-1069002/math_12.gif


OPS/images/fenvs-10-1069002/math_11.gif


OPS/images/fenvs-10-1069002/math_10.gif


OPS/images/fenvs-11-1146801/inline_19.gif


OPS/images/fenvs-10-1069002/math_1.gif


OPS/images/fenvs-11-1146801/inline_18.gif


OPS/images/fenvs-10-1036006/inline_3.gif


OPS/images/fenvs-10-1046882/inline_3.gif


OPS/images/fenvs-10-1036006/inline_29.gif


OPS/images/fenvs-10-1046882/inline_2.gif


OPS/images/fenvs-11-1146801/inline_9.gif


OPS/images/fenvs-10-1036006/inline_28.gif


OPS/images/fenvs-10-1046882/inline_1.gif


OPS/images/fenvs-11-1146801/inline_8.gif


OPS/images/fenvs-10-1036006/inline_27.gif


OPS/images/fenvs-10-1046882/fenvs-10-1046882-t003.jpg


OPS/images/fenvs-11-1146801/inline_7.gif


OPS/images/fenvs-10-1036006/inline_26.gif


OPS/images/fenvs-10-1046882/fenvs-10-1046882-t002.jpg


OPS/images/fenvs-11-1146801/inline_6.gif


OPS/images/fenvs-10-1036006/inline_25.gif


OPS/images/fenvs-10-1046882/fenvs-10-1046882-t001.jpg


OPS/images/fenvs-11-1146801/inline_5.gif


OPS/images/fenvs-10-1036006/inline_24.gif


OPS/images/fenvs-10-1046882/fenvs-10-1046882-g014.gif


OPS/images/fenvs-11-1146801/inline_41.gif


OPS/images/fenvs-10-1046882/fenvs-10-1046882-g013.gif


OPS/images/fenvs-11-1146801/inline_40.gif


OPS/images/fenvs-10-1046882/fenvs-10-1046882-g012.gif


OPS/images/fenvs-11-1146801/inline_4.gif


OPS/images/fenvs-11-1146801/inline_39.gif


OPS/images/fenvs-11-1146801/inline_38.gif


OPS/images/fenvs-10-1036006/inline_32.gif


OPS/images/fenvs-10-1036006/inline_31.gif


OPS/images/fenvs-10-1036006/inline_30.gif


OPS/images/fenvs-10-1046882/inline_4.gif


OPS/images/fenvs-10-1046882/fenvs-10-1046882-g009.gif


OPS/images/fenvs-11-1146801/inline_37.gif


OPS/images/fenvs-10-1046882/fenvs-10-1046882-g008.gif


OPS/images/fenvs-11-1146801/inline_36.gif


OPS/images/fenvs-10-1046882/fenvs-10-1046882-g007.gif


OPS/images/fenvs-11-1146801/inline_35.gif


OPS/images/fenvs-10-1046882/fenvs-10-1046882-g006.gif


OPS/images/fenvs-11-1146801/inline_34.gif


OPS/images/fenvs-10-1046882/fenvs-10-1046882-g005.gif


OPS/images/fenvs-11-1146801/inline_33.gif


OPS/images/fenvs-10-1046882/fenvs-10-1046882-g004.gif


OPS/images/fenvs-11-1146801/inline_32.gif


OPS/images/fenvs-10-1046882/fenvs-10-1046882-g003.gif


OPS/images/fenvs-11-1146801/inline_31.gif


OPS/images/fenvs-10-1046882/fenvs-10-1046882-g002.gif


OPS/images/fenvs-11-1146801/inline_30.gif


OPS/images/fenvs-11-1146801/inline_3.gif


OPS/images/fenvs-11-1146801/inline_29.gif


OPS/images/fenvs-10-1046882/fenvs-10-1046882-g011.gif


OPS/images/fenvs-10-1046882/fenvs-10-1046882-g010.gif


OPS/images/fenvs-10-1036006/math_2.gif


OPS/images/fenvs-10-1036006/math_10.gif


OPS/images/fenvs-10-973759/fenvs-10-973759-t002.jpg


OPS/images/fenvs-10-1036006/math_1.gif


OPS/images/fenvs-10-973759/fenvs-10-973759-t001.jpg


OPS/images/fenvs-10-1036006/inline_9.gif


OPS/images/fenvs-10-973759/fenvs-10-973759-g010.gif


OPS/images/fenvs-10-1036006/inline_8.gif


OPS/images/fenvs-10-973759/fenvs-10-973759-g009.gif


OPS/images/fenvs-10-1036006/inline_7.gif


OPS/images/fenvs-10-973759/fenvs-10-973759-g008.gif


OPS/images/fenvs-10-1036006/inline_6.gif


OPS/images/fenvs-10-973759/fenvs-10-973759-g007.gif


OPS/images/fenvs-10-1036006/inline_5.gif


OPS/images/fenvs-10-973759/fenvs-10-973759-g006.gif


OPS/images/fenvs-10-1036006/inline_42.gif


OPS/images/fenvs-10-973759/fenvs-10-973759-g005.gif


OPS/images/fenvs-10-973759/fenvs-10-973759-g004.gif


OPS/images/fenvs-10-973759/fenvs-10-973759-g003.gif


OPS/images/fenvs-10-1036006/math_3.gif


OPS/images/fenvs-10-1036006/inline_4.gif


OPS/images/fenvs-10-973759/fenvs-10-973759-g002.gif


OPS/images/fenvs-10-1036006/inline_39.gif


OPS/images/fenvs-10-973759/fenvs-10-973759-g001.gif


OPS/images/fenvs-10-1036006/inline_38.gif


OPS/images/fenvs-10-973759/crossmark.jpg


OPS/images/fenvs-11-1146801/math_4.gif


OPS/images/fenvs-10-1036006/inline_37.gif


OPS/images/fenvs-10-1046882/math_qu5.gif


OPS/images/fenvs-11-1146801/math_3.gif


OPS/images/fenvs-10-1036006/inline_36.gif


OPS/images/fenvs-10-1046882/math_qu4.gif


OPS/images/fenvs-11-1146801/math_2.gif


OPS/images/fenvs-10-1036006/inline_35.gif


OPS/images/fenvs-10-1046882/math_qu3.gif


OPS/images/fenvs-11-1146801/math_15.gif


OPS/images/fenvs-10-1036006/inline_34.gif


OPS/images/fenvs-10-1046882/math_qu2.gif


OPS/images/fenvs-11-1146801/math_14.gif


OPS/images/fenvs-10-1036006/inline_33.gif


OPS/images/fenvs-10-1046882/math_qu1.gif


OPS/images/fenvs-11-1146801/math_13.gif


OPS/images/fenvs-10-1046882/inline_6.gif


OPS/images/fenvs-11-1146801/math_12.gif


OPS/images/fenvs-10-1046882/inline_5.gif


OPS/images/fenvs-11-1146801/math_11.gif


OPS/images/fenvs-11-1146801/math_10.gif


OPS/images/fenvs-11-1146801/math_1.gif


OPS/images/fenvs-10-1036006/inline_41.gif


OPS/images/fenvs-10-1036006/inline_40.gif


OPS/images/fenvs-10-951468/fenvs-10-951468-g003.gif


OPS/images/fenvs-10-951468/fenvs-10-951468-g002.gif


OPS/images/fenvs-10-1013636/inline_11.gif


OPS/images/fenvs-10-951468/fenvs-10-951468-g001.gif


OPS/images/fenvs-10-1013636/inline_10.gif


OPS/images/fenvs-10-951468/crossmark.jpg


OPS/images/fenvs-10-1013636/inline_1.gif


OPS/images/fenvs-10-1080810/fenvs-10-1080810-g005.gif


OPS/images/fenvs-10-942183/fenvs-10-942183-t004.jpg


OPS/images/fenvs-10-1013636/fenvs-10-1013636-t001.jpg


OPS/images/fenvs-10-1080810/fenvs-10-1080810-g004.gif


OPS/images/fenvs-10-942183/fenvs-10-942183-t003.jpg


OPS/images/fenvs-10-1013636/fenvs-10-1013636-g009.gif


OPS/images/fenvs-10-1080810/fenvs-10-1080810-g003.gif


OPS/images/fenvs-10-942183/fenvs-10-942183-t002.jpg


OPS/images/fenvs-10-1013636/fenvs-10-1013636-g008.gif


OPS/images/fenvs-10-1080810/fenvs-10-1080810-g002.gif


OPS/images/fenvs-10-942183/fenvs-10-942183-t001.jpg


OPS/images/fenvs-10-1013636/fenvs-10-1013636-g007.gif


OPS/images/fenvs-10-1080810/fenvs-10-1080810-g001.gif


OPS/images/fenvs-10-942183/fenvs-10-942183-g005.gif


OPS/images/fenvs-10-1013636/fenvs-10-1013636-g006.gif


OPS/images/fenvs-10-1080810/crossmark.jpg


OPS/images/fenvs-10-1013636/fenvs-10-1013636-g005.gif


OPS/images/fenvs-10-973759/math_9.gif


OPS/images/fenvs-10-1013636/fenvs-10-1013636-g004.gif


OPS/images/fenvs-10-973759/math_8.gif


OPS/images/fenvs-10-973759/math_7.gif


OPS/images/fenvs-10-973759/math_6.gif


OPS/images/fenvs-10-951468/fenvs-10-951468-g004.gif


OPS/images/fenvs-10-1013636/fenvs-10-1013636-g003.gif


OPS/images/fenvs-10-1013636/fenvs-10-1013636-g002.gif


OPS/images/fenvs-10-1013636/fenvs-10-1013636-g001.gif


OPS/images/fenvs-10-973759/math_5.gif


OPS/images/fenvs-10-1013636/crossmark.jpg


OPS/images/fenvs-10-973759/math_4.gif


OPS/images/fenvs-10-1036006/math_9.gif


OPS/images/fenvs-10-973759/math_3.gif


OPS/images/fenvs-10-1036006/math_8.gif


OPS/images/fenvs-10-973759/math_2.gif


OPS/images/fenvs-10-1036006/math_7.gif


OPS/images/fenvs-10-973759/math_1.gif


OPS/images/fenvs-10-1036006/math_6.gif


OPS/images/fenvs-10-973759/inline_3.gif


OPS/images/fenvs-10-1036006/math_5.gif


OPS/images/fenvs-10-973759/inline_2.gif


OPS/images/cover.jpg


OPS/images/fenvs-10-1036006/math_4.gif


OPS/images/fenvs-10-973759/inline_1.gif


OPS/images/fenvs-10-973759/fenvs-10-973759-t004.jpg


OPS/images/fenvs-10-973759/fenvs-10-973759-t003.jpg


OPS/images/fenvs-10-951468/math_3.gif


OPS/images/fenvs-10-951468/math_2.gif


OPS/images/fenvs-10-951468/math_1.gif


OPS/images/fenvs-10-1013636/inline_3.gif


OPS/images/fenvs-10-951468/inline_9.gif


OPS/images/fenvs-10-1013636/inline_29.gif


OPS/images/fenvs-10-951468/inline_8.gif


OPS/images/fenvs-10-1013636/inline_28.gif


OPS/images/fenvs-10-951468/inline_7.gif


OPS/images/fenvs-10-1013636/inline_27.gif


OPS/images/fenvs-10-951468/inline_6.gif


OPS/images/fenvs-10-1013636/inline_26.gif


OPS/images/fenvs-10-951468/inline_5.gif


OPS/images/fenvs-10-1013636/inline_25.gif


OPS/images/fenvs-10-951468/inline_4.gif


OPS/images/fenvs-10-1013636/inline_24.gif


OPS/images/fenvs-10-951468/inline_3.gif


OPS/images/fenvs-10-1013636/inline_23.gif


OPS/images/fenvs-10-1013636/inline_22.gif


OPS/images/fenvs-10-1013636/inline_21.gif


OPS/images/fenvs-10-951468/inline_2.gif


OPS/images/fenvs-10-951468/inline_11.gif


OPS/images/fenvs-10-951468/inline_10.gif


OPS/images/fenvs-10-1013636/inline_20.gif


OPS/images/fenvs-10-951468/inline_1.gif


OPS/images/fenvs-10-1013636/inline_2.gif


OPS/images/fenvs-10-951468/fenvs-10-951468-t003.jpg


OPS/images/fenvs-10-1013636/inline_19.gif


OPS/images/fenvs-10-1080810/math_4.gif


OPS/images/fenvs-10-951468/fenvs-10-951468-t002.jpg


OPS/images/fenvs-10-1013636/inline_18.gif


OPS/images/fenvs-10-1080810/math_3.gif


OPS/images/fenvs-10-951468/fenvs-10-951468-t001.jpg


OPS/images/fenvs-10-1013636/inline_17.gif


OPS/images/fenvs-10-1080810/math_2.gif


OPS/images/fenvs-10-951468/fenvs-10-951468-g007.gif


OPS/images/fenvs-10-1013636/inline_16.gif


OPS/images/fenvs-10-1080810/math_1.gif


OPS/images/fenvs-10-951468/fenvs-10-951468-g006.gif


OPS/images/fenvs-10-1013636/inline_15.gif


OPS/images/fenvs-10-1080810/fenvs-10-1080810-t003.jpg


OPS/images/fenvs-10-951468/fenvs-10-951468-g005.gif


OPS/images/fenvs-10-1013636/inline_14.gif


OPS/images/fenvs-10-1080810/fenvs-10-1080810-t002.jpg


OPS/images/fenvs-10-1013636/inline_13.gif


OPS/images/fenvs-10-1080810/fenvs-10-1080810-t001.jpg


OPS/images/fenvs-10-1013636/inline_12.gif


OPS/images/fenvs-10-1080810/fenvs-10-1080810-g008.gif


OPS/images/fenvs-10-1080810/fenvs-10-1080810-g007.gif


OPS/images/fenvs-10-1080810/fenvs-10-1080810-g006.gif


OPS/images/fenvs-10-994260/inline_55.gif


OPS/images/fenvs-10-994260/inline_1.gif


OPS/images/fenvs-10-994260/fenvs-10-994260-t001.jpg


OPS/images/fenvs-10-1047818/fenvs-10-1047818-g007.gif


OPS/images/fenvs-10-994260/fenvs-10-994260-g014.gif


OPS/images/fenvs-10-1047818/fenvs-10-1047818-g006.gif


OPS/images/fenvs-10-994260/fenvs-10-994260-g013.gif


OPS/images/fenvs-10-1047818/fenvs-10-1047818-g005.gif


OPS/images/fenvs-10-994260/fenvs-10-994260-g012.gif


OPS/images/fenvs-10-1047818/fenvs-10-1047818-g004.gif


OPS/images/fenvs-10-994260/fenvs-10-994260-g011.gif


OPS/images/fenvs-10-1047818/fenvs-10-1047818-g003.gif


OPS/images/fenvs-10-994260/fenvs-10-994260-g010.gif


OPS/images/fenvs-10-1047818/fenvs-10-1047818-g002.gif


OPS/images/fenvs-10-994260/fenvs-10-994260-g009.gif


OPS/images/fenvs-10-1047818/fenvs-10-1047818-g001.gif


OPS/images/fenvs-10-994260/fenvs-10-994260-g008.gif


OPS/images/fenvs-10-1047818/crossmark.jpg


OPS/images/fenvs-10-1013636/math_5.gif


OPS/images/fenvs-10-1013636/math_4.gif


OPS/images/fenvs-10-994260/fenvs-10-994260-g007.gif


OPS/images/fenvs-10-994260/fenvs-10-994260-g006.gif


OPS/images/fenvs-10-994260/fenvs-10-994260-g005.gif


OPS/images/fenvs-10-1013636/math_3.gif


OPS/images/fenvs-10-994260/fenvs-10-994260-g004.gif


OPS/images/fenvs-10-1013636/math_2.gif


OPS/images/fenvs-10-994260/fenvs-10-994260-g003.gif


OPS/images/fenvs-10-1013636/math_1.gif


OPS/images/fenvs-10-994260/fenvs-10-994260-g002.gif


OPS/images/fenvs-10-1013636/inline_9.gif


OPS/images/fenvs-10-994260/fenvs-10-994260-g001.gif


OPS/images/fenvs-10-1013636/inline_8.gif


OPS/images/fenvs-10-994260/crossmark.jpg


OPS/images/fenvs-10-1013636/inline_7.gif


OPS/images/fenvs-10-951468/math_5.gif


OPS/images/fenvs-10-1013636/inline_6.gif


OPS/images/fenvs-10-951468/math_4.gif


OPS/images/fenvs-10-1013636/inline_5.gif


OPS/images/fenvs-10-1013636/inline_4.gif


OPS/images/fenvs-10-1013636/inline_30.gif


OPS/images/fenvs-10-985145/fenvs-10-985145-g007.gif


OPS/images/fenvs-10-985145/fenvs-10-985145-g006.gif


OPS/images/fenvs-10-985145/fenvs-10-985145-g005.gif


OPS/images/fenvs-10-985145/fenvs-10-985145-g004.gif


OPS/images/fenvs-10-985145/fenvs-10-985145-g003.gif


OPS/images/fenvs-10-985145/fenvs-10-985145-g002.gif


OPS/images/fenvs-10-985145/fenvs-10-985145-g001.gif


OPS/images/fenvs-10-985145/crossmark.jpg


OPS/images/fenvs-10-994260/math_7.gif


OPS/images/fenvs-10-994260/math_6.gif


OPS/images/fenvs-10-994260/math_5.gif


OPS/images/fenvs-10-994260/math_4.gif


OPS/images/fenvs-10-994260/math_3.gif


OPS/images/fenvs-10-1047818/inline_17.gif


OPS/images/fenvs-10-994260/math_2.gif


OPS/images/fenvs-10-1047818/inline_16.gif


OPS/images/fenvs-10-994260/math_1.gif


OPS/images/fenvs-10-1047818/inline_15.gif


OPS/images/fenvs-10-994260/inline_60.gif


OPS/images/fenvs-10-1047818/inline_14.gif


OPS/images/fenvs-10-994260/inline_59.gif


OPS/images/fenvs-10-1047818/inline_13.gif


OPS/images/fenvs-10-994260/inline_58.gif


OPS/images/fenvs-10-1047818/inline_12.gif


OPS/images/fenvs-10-994260/inline_57.gif


OPS/images/fenvs-10-1047818/inline_11.gif


OPS/images/fenvs-10-994260/inline_56.gif


OPS/images/fenvs-10-1047818/inline_10.gif


OPS/images/fenvs-10-1047818/inline_1.gif


OPS/images/fenvs-10-1047818/fenvs-10-1047818-t001.jpg


OPS/images/fenvs-10-985145/inline_15.gif


OPS/images/fenvs-10-985145/inline_14.gif


OPS/images/fenvs-10-985145/inline_13.gif


OPS/images/fenvs-10-985145/inline_12.gif


OPS/images/fenvs-10-985145/inline_11.gif


OPS/images/fenvs-10-985145/inline_10.gif


OPS/images/fenvs-10-985145/inline_1.gif


OPS/images/fenvs-10-985145/fenvs-10-985145-t008.jpg


OPS/images/fenvs-10-985145/fenvs-10-985145-t007.jpg


OPS/images/fenvs-10-985145/inline_17.gif


OPS/images/fenvs-10-985145/inline_16.gif


OPS/images/fenvs-10-985145/fenvs-10-985145-t005.jpg


OPS/images/fenvs-10-985145/fenvs-10-985145-t004.jpg


OPS/images/fenvs-10-985145/fenvs-10-985145-t003.jpg


OPS/images/fenvs-10-985145/fenvs-10-985145-t002.jpg


OPS/images/fenvs-10-985145/fenvs-10-985145-t001.jpg


OPS/images/fenvs-10-985145/fenvs-10-985145-g012.gif


OPS/images/fenvs-10-985145/fenvs-10-985145-g011.gif


OPS/images/fenvs-10-985145/fenvs-10-985145-g010.gif


OPS/images/fenvs-10-985145/fenvs-10-985145-g009.gif


OPS/images/fenvs-10-985145/fenvs-10-985145-g008.gif


OPS/images/fenvs-10-985145/fenvs-10-985145-t006.jpg


OPS/images/fenvs-10-937450/inline_4.gif


OPS/images/fenvs-10-937450/inline_5.gif


OPS/images/fenvs-10-937450/inline_6.gif


OPS/images/fenvs-10-937450/inline_7.gif


OPS/images/fenvs-10-937450/inline_19.gif


OPS/images/fenvs-10-937450/inline_2.gif


OPS/images/fenvs-10-937450/inline_20.gif


OPS/images/fenvs-10-937450/inline_3.gif


OPS/images/fenvs-10-937450/inline_17.gif


OPS/images/fenvs-10-937450/inline_18.gif


OPS/images/fenvs-10-942183/fenvs-10-942183-g002.gif


OPS/images/fenvs-10-942183/fenvs-10-942183-g003.gif


OPS/images/fenvs-10-942183/fenvs-10-942183-g004.gif


OPS/images/fenvs-10-937450/math_2.gif


OPS/images/fenvs-10-937450/math_3.gif


OPS/images/fenvs-10-942183/crossmark.jpg


OPS/images/fenvs-10-942183/fenvs-10-942183-g001.gif


OPS/images/fenvs-10-937450/inline_8.gif


OPS/images/fenvs-10-937450/inline_9.gif


OPS/images/fenvs-10-937450/math_1.gif


OPS/images/fenvs-10-937450/fenvs-10-937450-t001.jpg


OPS/images/fenvs-10-937450/fenvs-10-937450-t002.jpg


OPS/images/fenvs-10-951392/math_7.gif


OPS/images/fenvs-10-937450/crossmark.jpg


OPS/images/fenvs-10-937450/fenvs-10-937450-g001.gif


OPS/images/fenvs-10-937450/fenvs-10-937450-g002.gif


OPS/images/fenvs-10-951392/math_3.gif


OPS/images/fenvs-10-951392/math_4.gif


OPS/images/fenvs-10-951392/math_5.gif


OPS/images/fenvs-10-951392/math_6.gif


OPS/images/fenvs-10-937450/inline_16.gif


OPS/images/fenvs-10-937450/inline_12.gif


OPS/images/fenvs-10-937450/inline_13.gif


OPS/images/fenvs-10-937450/inline_14.gif


OPS/images/fenvs-10-937450/inline_15.gif


OPS/images/fenvs-10-937450/fenvs-10-937450-t004.jpg


OPS/images/fenvs-10-937450/inline_1.gif


OPS/images/fenvs-10-937450/inline_10.gif


OPS/images/fenvs-10-937450/inline_11.gif


OPS/images/fenvs-10-937450/fenvs-10-937450-t003.jpg


OPS/images/fenvs-10-921659/fenvs-10-921659-g002.gif


OPS/images/fenvs-10-921659/fenvs-10-921659-g003.gif


OPS/images/fenvs-10-921659/fenvs-10-921659-g004.gif


OPS/images/fenvs-10-921658/fenvs-10-921658-t004.jpg


OPS/images/fenvs-10-921658/fenvs-10-921658-t005.jpg


OPS/images/fenvs-10-921659/crossmark.jpg


OPS/images/fenvs-10-921659/fenvs-10-921659-g001.gif


OPS/images/fenvs-10-921658/fenvs-10-921658-t001.jpg


OPS/images/fenvs-10-921658/fenvs-10-921658-t002.jpg


OPS/images/fenvs-10-921658/fenvs-10-921658-t003.jpg


OPS/images/fenvs-11-1164895/crossmark.jpg


OPS/images/fenvs-11-1084503/math_9.gif


OPS/images/fenvs-11-1084503/math_8.gif


OPS/images/fenvs-10-921658/fenvs-10-921658-g003.gif


OPS/images/fenvs-10-921658/fenvs-10-921658-g004.gif


OPS/images/fenvs-10-921658/fenvs-10-921658-g001.gif


OPS/images/fenvs-10-921658/fenvs-10-921658-g002.gif


OPS/images/fenvs-10-921658/fenvs-10-921658-g007.gif


OPS/images/fenvs-10-921658/fenvs-10-921658-g008.gif


OPS/images/fenvs-10-921658/fenvs-10-921658-g005.gif


OPS/images/fenvs-10-921658/fenvs-10-921658-g006.gif


OPS/images/fenvs-11-1164895/fenvs-11-1164895-g007.gif


OPS/images/fenvs-11-1164895/fenvs-11-1164895-g006.gif


OPS/images/fenvs-11-1164895/fenvs-11-1164895-g005.gif


OPS/images/fenvs-11-1164895/fenvs-11-1164895-g004.gif


OPS/images/fenvs-10-921658/crossmark.jpg


OPS/images/fenvs-11-1164895/fenvs-11-1164895-g003.gif


OPS/images/fenvs-11-1164895/fenvs-11-1164895-g002.gif


OPS/images/fenvs-11-1164895/fenvs-11-1164895-g001.gif


OPS/images/fenvs-11-1085103/fenvs-11-1085103-t001.jpg


OPS/images/fenvs-11-1085103/fenvs-11-1085103-g005.gif


OPS/images/fenvs-11-1085103/fenvs-11-1085103-g004.gif


OPS/images/fenvs-11-1085103/fenvs-11-1085103-g003.gif


OPS/images/fenvs-11-1085103/fenvs-11-1085103-g002.gif


OPS/images/fenvs-10-951392/inline_12.gif


OPS/images/fenvs-10-951392/inline_13.gif


OPS/images/fenvs-10-951392/inline_14.gif


OPS/images/fenvs-10-951392/inline_15.gif


OPS/images/fenvs-10-951392/fenvs-10-951392-t004.jpg


OPS/images/fenvs-10-951392/inline_1.gif


OPS/images/fenvs-10-951392/inline_10.gif


OPS/images/fenvs-10-951392/inline_11.gif


OPS/images/fenvs-10-951392/fenvs-10-951392-t002.jpg


OPS/images/fenvs-10-951392/fenvs-10-951392-t003.jpg


OPS/images/fenvs-11-1146801/fenvs-11-1146801-g002.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-g001.gif


OPS/images/fenvs-11-1146801/crossmark.jpg


OPS/images/fenvs-11-1085103/fenvs-11-1085103-t003.jpg


OPS/images/fenvs-11-1085103/fenvs-11-1085103-t002.jpg


OPS/images/fenvs-11-1164895/fenvs-11-1164895-t001.jpg


OPS/images/fenvs-11-1164895/fenvs-11-1164895-g010.gif


OPS/images/fenvs-11-1164895/fenvs-11-1164895-g009.gif


OPS/images/fenvs-11-1164895/fenvs-11-1164895-g008.gif


OPS/images/fenvs-10-951392/inline_9.gif


OPS/images/fenvs-10-951392/math_1.gif


OPS/images/fenvs-10-951392/math_2.gif


OPS/images/fenvs-10-951392/inline_5.gif


OPS/images/fenvs-10-951392/inline_6.gif


OPS/images/fenvs-10-951392/inline_7.gif


OPS/images/fenvs-10-951392/inline_8.gif


OPS/images/fenvs-10-951392/inline_2.gif


OPS/images/fenvs-10-951392/inline_3.gif


OPS/images/fenvs-11-1085103/fenvs-11-1085103-g001.gif


OPS/images/fenvs-10-951392/inline_4.gif


OPS/images/fenvs-11-1085103/crossmark.jpg


OPS/images/fenvs-11-1164895/fenvs-11-1164895-t005.jpg


OPS/images/fenvs-11-1164895/fenvs-11-1164895-t004.jpg


OPS/images/fenvs-11-1164895/fenvs-11-1164895-t003.jpg


OPS/images/fenvs-11-1164895/fenvs-11-1164895-t002.jpg


OPS/images/fenvs-10-1069002/inline_21.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-t002.jpg


OPS/images/fenvs-10-1069002/inline_20.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-t001.jpg


OPS/images/fenvs-10-1069002/inline_2.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-g017.gif


OPS/images/fenvs-10-1069002/inline_19.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-g016.gif


OPS/images/fenvs-10-1069002/inline_18.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-g015.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-g014.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-g013.gif


OPS/images/fenvs-10-921659/fenvs-10-921659-t003.jpg


OPS/images/fenvs-10-921659/fenvs-10-921659-t004.jpg


OPS/images/fenvs-10-921659/fenvs-10-921659-g009.gif


OPS/images/fenvs-10-921659/fenvs-10-921659-g010.gif


OPS/images/fenvs-10-921659/fenvs-10-921659-t001.jpg


OPS/images/fenvs-10-921659/fenvs-10-921659-t002.jpg


OPS/images/fenvs-10-921659/fenvs-10-921659-g005.gif


OPS/images/fenvs-10-921659/fenvs-10-921659-g006.gif


OPS/images/fenvs-10-921659/fenvs-10-921659-g007.gif


OPS/images/fenvs-10-921659/fenvs-10-921659-g008.gif


OPS/images/fenvs-10-1069002/inline_3.gif


OPS/images/fenvs-10-1069002/inline_25.gif


OPS/images/fenvs-10-1069002/inline_24.gif


OPS/images/fenvs-11-1146801/inline_1.gif


OPS/images/fenvs-10-1069002/inline_23.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-t004.jpg


OPS/images/fenvs-10-1069002/inline_22.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-t003.jpg


OPS/images/fenvs-11-1146801/fenvs-11-1146801-g008.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-g007.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-g006.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-g005.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-g004.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-g003.gif


OPS/images/fenvs-10-951392/fenvs-10-951392-t001.jpg


OPS/images/fenvs-10-951392/fenvs-10-951392-g003.gif


OPS/images/fenvs-10-951392/fenvs-10-951392-g004.gif


OPS/images/fenvs-10-951392/fenvs-10-951392-g005.gif


OPS/images/fenvs-10-951392/fenvs-10-951392-g006.gif


OPS/images/fenvs-10-921659/fenvs-10-921659-t006.jpg


OPS/images/fenvs-10-951392/crossmark.jpg


OPS/images/fenvs-10-951392/fenvs-10-951392-g001.gif


OPS/images/fenvs-10-951392/fenvs-10-951392-g002.gif


OPS/images/fenvs-10-921659/fenvs-10-921659-t005.jpg


OPS/images/fenvs-11-1146801/fenvs-11-1146801-g012.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-g011.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-g010.gif


OPS/images/fenvs-11-1146801/fenvs-11-1146801-g009.gif


OPS/images/fenvs-10-1047818/inline_22.gif


OPS/images/fenvs-11-1152129/fenvs-11-1152129-g010.gif


OPS/images/fenvs-10-1047818/inline_21.gif


OPS/images/fenvs-11-1152129/fenvs-11-1152129-g009.gif


OPS/images/fenvs-10-1047818/inline_20.gif


OPS/images/fenvs-11-1152129/fenvs-11-1152129-g008.gif


OPS/images/fenvs-10-1047818/inline_2.gif


OPS/images/fenvs-11-1152129/fenvs-11-1152129-g007.gif


OPS/images/fenvs-10-1047818/inline_19.gif


OPS/images/fenvs-11-1152129/fenvs-11-1152129-g006.gif


OPS/images/fenvs-10-1047818/inline_18.gif


OPS/images/fenvs-11-1152129/fenvs-11-1152129-g005.gif


OPS/images/fenvs-11-1152129/fenvs-11-1152129-g004.gif


OPS/images/fenvs-11-1152129/fenvs-11-1152129-g003.gif


OPS/images/fenvs-10-1047818/inline_26.gif


OPS/images/fenvs-10-1047818/inline_25.gif


OPS/images/fenvs-10-1047818/inline_24.gif


OPS/images/fenvs-11-1152129/fenvs-11-1152129-t001.jpg


OPS/images/fenvs-10-1047818/inline_23.gif


OPS/images/fenvs-11-1152129/fenvs-11-1152129-g011.gif


OPS/images/fenvs-10-992503/math_9.gif


OPS/images/fenvs-10-992503/math_8.gif


OPS/images/fenvs-10-992503/math_7.gif


OPS/images/fenvs-10-992503/math_6.gif


OPS/images/fenvs-10-992503/math_5.gif


OPS/images/fenvs-10-992503/math_4.gif


OPS/images/fenvs-10-992503/math_3.gif


OPS/images/fenvs-11-1152129/fenvs-11-1152129-g002.gif


OPS/images/fenvs-11-1152129/fenvs-11-1152129-g001.gif


OPS/images/fenvs-11-1152129/crossmark.jpg


OPS/images/fenvs-10-1047818/inline_42.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-g017.gif


OPS/images/fenvs-10-1047818/inline_41.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-g016.gif


OPS/images/fenvs-10-1047818/inline_40.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-g015.gif


OPS/images/fenvs-10-1047818/inline_4.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-g014.gif


OPS/images/fenvs-10-1047818/inline_39.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-g013.gif


OPS/images/fenvs-10-1047818/inline_38.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-g012.gif


OPS/images/fenvs-10-1047818/inline_37.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-g011.gif


OPS/images/fenvs-10-1047818/inline_36.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-g010.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-g009.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-g008.gif


OPS/images/fenvs-10-1047818/inline_44.gif


OPS/images/fenvs-10-1047818/inline_43.gif


OPS/images/fenvs-10-1047818/inline_32.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-g006.gif


OPS/images/fenvs-10-1047818/inline_31.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-g005.gif


OPS/images/fenvs-10-1047818/inline_30.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-g004.gif


OPS/images/fenvs-10-1047818/inline_3.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-g003.gif


OPS/images/fenvs-10-1047818/inline_29.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-g002.gif


OPS/images/fenvs-10-1047818/inline_28.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-g001.gif


OPS/images/fenvs-10-1047818/inline_27.gif


OPS/images/fenvs-11-1084503/crossmark.jpg


OPS/images/fenvs-11-1152129/math_qu1.gif


OPS/images/fenvs-11-1152129/inline_1.gif


OPS/images/fenvs-10-1047818/inline_35.gif


OPS/images/fenvs-10-1047818/inline_34.gif


OPS/images/fenvs-10-1047818/inline_33.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-g007.gif


OPS/images/fenvs-10-985145/inline_31.gif


OPS/images/fenvs-10-1047818/inline_62.gif


OPS/images/fenvs-10-985145/inline_30.gif


OPS/images/fenvs-10-1047818/inline_61.gif


OPS/images/fenvs-10-985145/inline_3.gif


OPS/images/fenvs-10-1047818/inline_60.gif


OPS/images/fenvs-11-1084503/math_15.gif


OPS/images/fenvs-10-985145/inline_29.gif


OPS/images/fenvs-10-1047818/inline_6.gif


OPS/images/fenvs-11-1084503/math_14.gif


OPS/images/fenvs-10-985145/inline_28.gif


OPS/images/fenvs-10-1047818/inline_59.gif


OPS/images/fenvs-11-1084503/math_13.gif


OPS/images/fenvs-10-985145/inline_27.gif


OPS/images/fenvs-10-1047818/inline_58.gif


OPS/images/fenvs-11-1084503/math_12.gif


OPS/images/fenvs-10-985145/inline_26.gif


OPS/images/fenvs-10-1047818/inline_57.gif


OPS/images/fenvs-11-1084503/math_11.gif


OPS/images/fenvs-10-985145/inline_25.gif


OPS/images/fenvs-10-1047818/inline_56.gif


OPS/images/fenvs-11-1084503/math_10.gif


OPS/images/fenvs-10-1047818/inline_55.gif


OPS/images/fenvs-11-1084503/math_1.gif


OPS/images/fenvs-10-1047818/inline_54.gif


OPS/images/fenvs-11-1084503/inline_9.gif


OPS/images/fenvs-11-1084503/inline_8.gif


OPS/images/fenvs-11-1084503/inline_7.gif


OPS/images/fenvs-10-985145/inline_33.gif


OPS/images/fenvs-10-985145/inline_32.gif


OPS/images/fenvs-10-1047818/inline_52.gif


OPS/images/fenvs-10-1047818/inline_51.gif


OPS/images/fenvs-11-1084503/inline_6.gif


OPS/images/fenvs-10-1047818/inline_50.gif


OPS/images/fenvs-11-1084503/inline_5.gif


OPS/images/fenvs-10-1047818/inline_5.gif


OPS/images/fenvs-11-1084503/inline_4.gif


OPS/images/fenvs-10-1047818/inline_49.gif


OPS/images/fenvs-11-1084503/inline_3.gif


OPS/images/fenvs-10-1047818/inline_48.gif


OPS/images/fenvs-11-1084503/inline_2.gif


OPS/images/fenvs-10-1047818/inline_47.gif


OPS/images/fenvs-11-1084503/inline_1.gif


OPS/images/fenvs-10-1047818/inline_46.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-t004.jpg


OPS/images/fenvs-10-1047818/inline_45.gif


OPS/images/fenvs-11-1084503/fenvs-11-1084503-t003.jpg


OPS/images/fenvs-11-1084503/fenvs-11-1084503-t002.jpg


OPS/images/fenvs-11-1084503/fenvs-11-1084503-t001.jpg


OPS/images/fenvs-10-1047818/inline_53.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-g001.gif


OPS/images/fenvs-10-984395/crossmark.jpg


OPS/images/fenvs-10-985145/math_9.gif


OPS/images/fenvs-10-1047818/math_13.gif


OPS/images/fenvs-10-985145/math_8.gif


OPS/images/fenvs-10-1047818/math_12.gif


OPS/images/fenvs-10-985145/math_7.gif


OPS/images/fenvs-10-1047818/math_11.gif


OPS/images/fenvs-10-985145/math_6.gif


OPS/images/fenvs-10-1047818/math_10.gif


OPS/images/fenvs-10-985145/math_5.gif


OPS/images/fenvs-10-1047818/math_1.gif


OPS/images/fenvs-10-985145/math_4.gif


OPS/images/fenvs-10-1047818/inline_9.gif


OPS/images/fenvs-10-985145/math_3.gif


OPS/images/fenvs-10-1047818/inline_8.gif


OPS/images/fenvs-10-985145/math_2.gif


OPS/images/fenvs-10-1047818/inline_74.gif


OPS/images/fenvs-10-1047818/inline_73.gif


OPS/images/fenvs-10-1047818/inline_72.gif


OPS/images/fenvs-10-985145/math_1.gif


OPS/images/fenvs-10-985145/inline_9.gif


OPS/images/fenvs-10-1047818/inline_71.gif


OPS/images/fenvs-10-985145/inline_8.gif


OPS/images/fenvs-10-1047818/inline_70.gif


OPS/images/fenvs-10-985145/inline_7.gif


OPS/images/fenvs-10-1047818/inline_7.gif


OPS/images/fenvs-11-1084503/math_7.gif


OPS/images/fenvs-10-985145/inline_6.gif


OPS/images/fenvs-10-1047818/inline_69.gif


OPS/images/fenvs-11-1084503/math_6.gif


OPS/images/fenvs-10-985145/inline_5.gif


OPS/images/fenvs-10-1047818/inline_68.gif


OPS/images/fenvs-11-1084503/math_5.gif


OPS/images/fenvs-10-985145/inline_4.gif


OPS/images/fenvs-10-1047818/inline_67.gif


OPS/images/fenvs-11-1084503/math_4.gif


OPS/images/fenvs-10-985145/inline_35.gif


OPS/images/fenvs-10-1047818/inline_66.gif


OPS/images/fenvs-11-1084503/math_3.gif


OPS/images/fenvs-10-985145/inline_34.gif


OPS/images/fenvs-10-1047818/inline_65.gif


OPS/images/fenvs-11-1084503/math_2.gif


OPS/images/fenvs-10-1047818/inline_64.gif


OPS/images/fenvs-11-1084503/math_19.gif


OPS/images/fenvs-10-1047818/inline_63.gif


OPS/images/fenvs-11-1084503/math_18.gif


OPS/images/fenvs-11-1084503/math_17.gif


OPS/images/fenvs-11-1084503/math_16.gif


OPS/images/fenvs-10-985145/math_10.gif


OPS/images/fenvs-10-1007365/crossmark.jpg


OPS/images/fenvs-10-984395/inline_1.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-t004.jpg


OPS/images/fenvs-10-1069002/fenvs-10-1069002-g010.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-t003.jpg


OPS/images/fenvs-10-1069002/fenvs-10-1069002-g009.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-t002.jpg


OPS/images/fenvs-10-1069002/fenvs-10-1069002-g008.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-t001.jpg


OPS/images/fenvs-10-1069002/fenvs-10-1069002-g007.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-g015.gif


OPS/images/fenvs-10-1069002/fenvs-10-1069002-g006.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-g014.gif


OPS/images/fenvs-10-1069002/fenvs-10-1069002-g005.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-g013.gif


OPS/images/fenvs-10-1069002/fenvs-10-1069002-g004.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-g012.gif


OPS/images/fenvs-10-1069002/fenvs-10-1069002-g003.gif


OPS/images/fenvs-10-1069002/fenvs-10-1069002-g002.gif


OPS/images/fenvs-10-1069002/fenvs-10-1069002-g001.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-g011.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-g010.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-g009.gif


OPS/images/fenvs-10-1069002/crossmark.jpg


OPS/images/fenvs-10-984395/fenvs-10-984395-g008.gif


OPS/images/fenvs-10-1047818/math_9.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-g007.gif


OPS/images/fenvs-10-1047818/math_8.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-g006.gif


OPS/images/fenvs-10-1047818/math_7.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-g005.gif


OPS/images/fenvs-10-1047818/math_6.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-g004.gif


OPS/images/fenvs-10-1047818/math_5.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-g003.gif


OPS/images/fenvs-10-1047818/math_4.gif


OPS/images/fenvs-10-984395/fenvs-10-984395-g002.gif


OPS/images/fenvs-10-1047818/math_3.gif


OPS/images/fenvs-10-1047818/math_2.gif


OPS/images/fenvs-10-1047818/math_14.gif


OPS/images/fenvs-10-1007365/math_3.gif


OPS/images/fenvs-10-1007365/math_2.gif


OPS/images/fenvs-10-1007365/math_1.gif


OPS/images/fenvs-10-1007365/inline_2.gif


OPS/images/fenvs-10-1007365/inline_1.gif


OPS/images/fenvs-10-1007365/fenvs-10-1007365-t004.jpg


OPS/images/fenvs-10-1007365/fenvs-10-1007365-t003.jpg


OPS/images/fenvs-10-1007365/fenvs-10-1007365-t002.jpg


OPS/images/fenvs-10-1007365/fenvs-10-1007365-t001.jpg


OPS/images/fenvs-10-1007365/fenvs-10-1007365-g011.gif


OPS/images/fenvs-10-1007365/fenvs-10-1007365-g010.gif


OPS/images/fenvs-10-1007365/fenvs-10-1007365-g009.gif


OPS/images/fenvs-10-1007365/fenvs-10-1007365-g008.gif


OPS/images/fenvs-10-1069002/inline_17.gif


OPS/images/fenvs-10-1007365/fenvs-10-1007365-g007.gif


OPS/images/fenvs-10-1069002/inline_16.gif


OPS/images/fenvs-10-1007365/fenvs-10-1007365-g006.gif


OPS/images/fenvs-10-1069002/inline_15.gif


OPS/images/fenvs-10-1007365/fenvs-10-1007365-g005.gif


OPS/images/fenvs-10-1069002/inline_14.gif


OPS/images/fenvs-10-1007365/fenvs-10-1007365-g004.gif


OPS/images/fenvs-10-1069002/inline_13.gif


OPS/images/fenvs-10-1007365/fenvs-10-1007365-g003.gif


OPS/images/fenvs-10-1069002/inline_12.gif


OPS/images/fenvs-10-1007365/fenvs-10-1007365-g002.gif


OPS/images/fenvs-10-1069002/inline_11.gif


OPS/images/fenvs-10-1007365/fenvs-10-1007365-g001.gif


OPS/images/fenvs-10-1069002/inline_10.gif


OPS/images/fenvs-10-1069002/inline_1.gif


OPS/images/fenvs-10-1069002/fenvs-10-1069002-g011.gif


OPS/images/fenvs-10-1036006/inline_14.gif


OPS/images/fenvs-10-1036006/inline_13.gif


OPS/images/fenvs-10-1036006/inline_12.gif


OPS/images/fenvs-10-1036006/inline_11.gif


OPS/images/fenvs-10-1036006/inline_10.gif


OPS/images/fenvs-10-1036006/inline_1.gif


OPS/images/fenvs-10-1036006/fenvs-10-1036006-t001.jpg


OPS/images/fenvs-10-1036006/fenvs-10-1036006-g010.gif


OPS/images/fenvs-10-1036006/fenvs-10-1036006-g009.gif


OPS/images/fenvs-10-1036006/fenvs-10-1036006-g008.gif


OPS/images/fenvs-10-1036006/inline_15.gif


OPS/images/fenvs-10-1036006/fenvs-10-1036006-g007.gif


OPS/images/fenvs-10-1036006/fenvs-10-1036006-g006.gif


OPS/images/fenvs-10-1036006/fenvs-10-1036006-g005.gif


OPS/images/fenvs-10-1036006/fenvs-10-1036006-g004.gif


OPS/images/fenvs-10-1036006/fenvs-10-1036006-g003.gif


OPS/images/fenvs-10-1036006/fenvs-10-1036006-g002.gif


OPS/images/fenvs-10-1036006/fenvs-10-1036006-g001.gif


OPS/images/fenvs-10-1036006/crossmark.jpg


OPS/images/fenvs-10-1007365/math_5.gif


OPS/images/fenvs-10-1007365/math_4.gif


OPS/images/fenvs-10-1036006/inline_23.gif


OPS/images/fenvs-10-1036006/inline_22.gif


OPS/images/fenvs-10-1036006/inline_21.gif


OPS/images/fenvs-10-1036006/inline_20.gif


OPS/images/fenvs-10-1036006/inline_2.gif


OPS/images/fenvs-10-1036006/inline_19.gif


OPS/images/fenvs-10-1036006/inline_18.gif


OPS/images/fenvs-10-1036006/inline_17.gif


OPS/images/fenvs-10-1036006/inline_16.gif


