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Editorial on the Research Topic

Computational pathology for precision diagnosis, treatment, and

prognosis of cancer

Histopathology is considered the gold standard in determining the presence and nature

of tumors. Technological advances in automated high-speed and high-resolution whole-

slide imaging have laid the foundation for a digital revolution in microscopy. Digital

histopathological images can be analyzed efficiently with image analysis and machine

learning techniques. These techniques have shown great potential for extracting sub-visual,

quantitative, and valuable features from whole-slide images to characterize tumors and

support clinical decision (1, 2). Besides histopathological images, other data modalities,

such as radiological images and multi-omics data, are also used to assist the decision-

making process for cancer diagnosis, treatment, and prognosis (3, 4). At present, it is not

clear how these macroscopic, microscopic, and molecular features are related. Exploring the

association between different data modalities can give new insights into diseases.

This Research Topic is to highlight some latest developments in computational

pathology that use either classical image analysis or state-of-the-art deep learning solutions

for improved clinical decisionmaking. A brief summary of the articles in this Research Topic

is provided below.

Segmentation of regions of interest is usually an important step in the workflow of

computer-aided diagnosis. Shi et al. collected a new enteroscope biopsy histopathological

image dataset for image segmentation tasks and submitted it to a public data repository.

This dataset contains 2,228 colorectal tissue images and their corresponding ground-

truth annotations with the size of 224 × 224 pixels. To cover the transition process

from normal to cancerous tissue, this dataset includes six tumor differentiation stages:

normal, polyp, low-grade intraepithelial neoplasia, high-grade intraepithelial neoplasia,

serrated adenoma, and adenocarcinoma. In this work, they compared the segmentation
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performance of five classical machine learning methods and three

deep learning methods. Generally, the deep learning methods

outperformed the classical machine learning methods by a large

margin in all six tissue types. This study and the released dataset can

serve as a good benchmark for colorectal histopathological image

segmentation. Zhao et al. proposed a deep segmentation network

to distinguish cancerous and intestinal metaplasia regions from

normal gastric tissue. The segmentation results of multiple whole

slide images from a specimen were mapped to the macroscopic

image of the specimen. For a convenient use, they developed

a software to automate the construction of mucosal recovery

maps, which can expedite the learning process of early gastric

cancer diagnosis.

Annotating pathological images requires professional

knowledge and is time-consuming and costly. The annotations

of most existing public datasets focus on the ground truth labels

about what the diseases and lesions are, rather than why and

how they are discovered and decided. Therefore, these datasets

are not directly applicable for clinical use. To address this issue,

Zhang et al. proposed a new annotation form, PathNarrative,

which includes a hierarchical decision-to-reason data structure,

a narrative annotation process, and a multimodal interactive

annotation tool. PathNarrative can help collect both decision-to-

reason labels and multimodal information on vision, language,

voice, and behavioral trajectories. To verify the efficacy of this

new annotation tool for human-AI collaborative diagnosis,

they experimented on a colorectal pathological dataset with

classification and captioning tasks. The experimental results

show that the classification and captioning tasks achieve better

performance with refined annotations, provide explainable details

for doctors to make clinical decisions, and thus enhance doctors’

trustworthiness and confidence to collaborate with artificial

intelligence models.

Hu et al. performed a comparative study of gastric pathological

image classification. They used a publicly available dataset,

GasHisSDB, which contains three sub-datasets with different image

sizes (80 × 80, 120 × 120, and 160 × 160 pixels). Seven classical

machine learning classifiers and four deep learning classifiers

were tested. For the classical machine learning classifiers, five

feature extraction methods were used, including color histogram,

luminance histogram, histogram of oriented gradient, local binary

patterns, and gray-level co-occurrence matrix. Overall, the deep

learning classifiers achievedmuch higher accuracy than the classical

machine learning classifiers, no matter what kinds of features were

used. In addition, they found that the deep learning classifiers

misclassified different samples, implying that it is possible to use

ensemble learning to obtain better predictive performance. Fully

supervised methods require a sufficient quantity of images with

annotations. However, in medical field it is difficult to collect and

label data, which needs to be performed by experts. Wang et al.

proposed a self-supervised learning method to classify malignant

and non-malignant pathological images in eyelid melanoma. This

method took advantage of a relatively abundant quantity of

unlabeled data and a limited quantity of labeled data to learn

features. In the self-supervised setting with a subset of images

labeled, the proposed method achieved the best performance

compared with five fully supervised methods.

Another popular research interest in computational pathology

is to predict cancer survival based on quantitative image features

and associate these features with molecular data. In a study

by Couetil et al., interpretable histopathological features were

extracted fromwhole slide images to predict 5-years survival and 5-

years metastasis of melanoma. They used themorphological feature

set described in a previous study (2) and introduced additional

features to describe lymphocytes and other small, hyperchromatic

cells. In total, 135 morphological features were extracted. Four

classical machine learning models were implemented, including

random forest, support vector machine, k-nearest neighbors,

and logistic regression. This approach yielded a maximum F1

score of 0.72 and 0.73 for predicting survival and metastasis,

respectively. Tumor-stroma reaction (TSR) is a critical feature

in many solid tumors. Jiang et al. trained a serial of deep

learning models to identify tumor vs. stroma regions and

predict three types of TSR scores (fibrosis, stromal cellularity,

and orientation of stromal cells) in ovarian carcinoma. Within

the tumor-stroma interface region, they found that the TSR

fibrosis scores were strongly associated with patient survival.

Correlating the TRS fibrosis scores with gene expression data,

they further found that the positively correlated genes were

enriched in 14 KEGG pathways that are mostly associated

with cancer signaling aberrations. This genotype-phenotype

association analysis enables discovering the molecular basis of

tissue morphological changes.
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Background: As one of the key criteria to differentiate benign vs. malignant

tumors in ovarian and other solid cancers, tumor-stroma reaction (TSR) is

long observed by pathologists and has been found correlated with patient

prognosis. However, paucity of study aims to overcome subjective bias or

automate TSR evaluation for enabling association analysis to a large cohort.

Materials and methods: Serving as positive and negative sets of TSR studies,

H&E slides of primary tumors of high-grade serous ovarian carcinoma

(HGSOC) (n = 291) and serous borderline ovarian tumor (SBOT) (n = 15) were

digitally scanned. Three pathologist-defined quantification criteria were used

to characterize the extents of TSR. Scores for each criterion were annotated

(0/1/2 as none-low/intermediate/high) in the training set consisting of 18,265

H&E patches. Serial of deep learning (DL) models were trained to identify

tumor vs. stroma regions and predict TSR scores. After cross-validation and

independent validations, the trained models were generalized to the entire

HGSOC cohort and correlated with clinical characteristics. In a subset of cases

tumor transcriptomes were available, gene- and pathway-level association

studies were conducted with TSR scores.

Results: The trained models accurately identified the tumor stroma tissue

regions and predicted TSR scores. Within tumor stroma interface region,

TSR fibrosis scores were strongly associated with patient prognosis. Cancer

signaling aberrations associated 14 KEGG pathways were also found positively

correlated with TSR-fibrosis score.
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Conclusion: With the aid of DL, TSR evaluation could be generalized to large

cohort to enable prognostic association analysis and facilitate discovering

novel gene and pathways associated with disease progress.

KEYWORDS

tumor-stroma reaction, high-grade serous ovarian carcinoma, digital pathology,
prognostic fibrosis, molecular signature

Introduction

Ovarian cancer (OC) is one of the leading causes of
mortality among cancers in women. Pathologically, ovarian
cancer is divided into high-grade and low-grade carcinomas,
and the high-grade carcinomas can be further classified
into various histological subtypes, most commonly serous,
endometrioid and clear cell. Among them, high-grade serous
ovarian carcinoma (HGSOC) is the prevalent histotype and
accounts for vast majority of ovarian cancer associated mortality
(1). These patients often present with rapid clinical progression,
disseminated peritoneal metastasis, distant metastasis, and
resistance to treatments. On the other hand, low-grade ovarian
carcinomas usually present with slow-progressing diseases and
are associated with much lower mortality but protracted clinical
courses. Diagnostically, low-grade ovarian carcinomas can be
difficult to distinguish from ovarian borderline tumors with
much more indolent clinical behavior, while sometimes may
share overlapping histological features with aggressive high-
grade carcinomas. While all malignant OCs regardless histology
types are treated similarly using platinum-based front-line
chemotherapies, different surgical resections and chemotherapy
treatments options could be applied to different histologic
subtypes. In clinical diagnosis, recognizable histological features
play a critical role in differentiating these subtypes.

Although histological diagnosis of HGSOC has been well-
established, many studies have shown highly heterogenous
clinical courses in these patients (2–4). Interestingly,
pathologists have long observed the high variability of
tumor associated stroma reaction in HGSOCs in daily practice
(4, 5). Similar to a process of normal wound healing, the
tumor-stroma reaction (TSR) in cancer has been associated
with increased extracellular matrix and production of growth
factors to facilitate recovery growth of injured tissues (6).
In ovarian tumors, histopathological examination of tumor-
stroma reaction is critical to differentiate low-grade serous
carcinoma from serous borderline serous tumor (SBOT),
with the latter lacking tumor triggered stroma reaction.
More importantly, tumor-stroma reaction has been reported
to facilitate tumorigenesis and associated with prognostic
differences in many solid cancers such as cholangiocarcinoma,
pancreatic cancer, melanoma, and OC (7–10). Though

numerous studies have demonstrated that the interactions
between tumor cells and stroma play a critical role in cancer
progression and metastasis across multiple cancer types (11–
13), the association of histological feature of stromal reaction
with molecular mechanism is still underexplored. One of major
reasons responsible for this gap is the lack of quantitative
evaluation of TSR in solid tumors. In daily pathology practice
and many research studies, TSR were examined by manually
reviewing H&E-stained slides by individual pathologist, which
is highly subjective and labor-intensive. Interobserver variability
remains a main challenge thus limiting large-scale investigation
of TSR. More importantly, evaluation of TSR by pathologist
relies on personal experience, while an unbiased quantification
becomes unrealistic which may cause heterogenous quality of
the TSR scoring data with poorly reproducibility.

With the advancement of digital pathology, there has
been substantial interest in exploring the role of quantitative
attributes computationally extracted from H&E-stained whole
slide images (WSI). Li et al. (14) introduced a digital pathology-
based pipeline to early-stage estrogen receptor-positive invasive
breast cancers for association analysis. Their results suggested
that the orientation disorder of collagen fiber is prognostic
for early-stage breast cancer (14). Geessink et al. (15) trained
a deep learning model to segment relevant tissue types in
rectal cancer histology and subsequently calculate tumor-stroma
ratio for intra-tumoral stroma. Their results showed that
tumor-stroma ratio is an independent prognosticator in rectal
cancer when assessed automatically in user-provided stroma
hot-spots (15). Failmezger et al. (16) introduced topological
features extraction method to quantify stromal recruitment
for immunosuppression in melanoma histology using graph
based spatial model. This research revealed that tumors with
high stromal clustering and barrier had reduced expression of
pathways involved in naïve CD4 signaling, MAPK, and PI3K
signaling, and indicated that computational histology-based
stromal phenotypes within the tumor microenvironment are
significantly associated with prognosis and immune exclusion
in melanoma (16).

In this paper, we present a digital pathology-based pipeline
that is able to prognosticate patient survival by estimating
degree of TSR directly from multiple aspects of digitized H&E
images. Specifically, the automated pipeline consists of image
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FIGURE 1

Overview of our research workflow. (A) Slide scanning and annotation. (B) Tumor-stroma segmentation and TSR score estimation. (C) Tumor
stroma interface area identification. (D) Tissue-level feature summarization. (E) Association analysis.

processing techniques combined with several machine learning
models trained from pathologists’ annotations. Serving as the
cores of the pipeline, the trained models were used to identify
tumor-associated stroma regions, from which we subsequently
predicted TSR scores with H&E images as inputs. As shown in
Figure 1, the developed pipeline was applied to our research
cohort to establish associations between tissue-level features,
prognosis, and molecular pathways of HGSOC.

Materials and methods

Cohort summary

Our research cohort consists of 291 HGSOC and 15 serous
borderline ovarian tumor (SBOT) cases ascertained at the Mayo
Clinic between 1994 and 2009. The SBOT cases should not have
significant TSR by definition, therefore served as the negative
control in both TSR score prediction and evaluation. As the
cohort selection criteria, all the cases had retrievable clinical,
molecular, and tissue blocks. Survival data were obtained from
the Mayo Clinic Tumor Registry, electronic medical records.
Gene expression profiles and histological information, including
tissue sites (primary or metastasis) and tumor stage, were
collected from the EHR system in Mayo Clinic. The cohort
characteristics were summarized in Table 1. All the slides
were scanned in Pathology Research Core at Mayo Clinic
with a digital whole-slide scanner (Aperio Scanscope XT). To

preserve cell and tissue details, the slides were scanned with 40×
resolution (pixel size: 0.25 um). Imaging quality was manually
checked by histology technicians when the slides were scanned.
All patients provided informed consent for use of their tissues
and data in research; all protocols were approved by the Mayo
Clinic Institutional Review Board.

Pathologist-guided image annotation

According to the consensus of three pathologists, three
types of histopathological evaluation metrics (sub-scores) were
defined as criteria to characterize the extent of TSR: (i) increased
fibrosis, characterized by collagen deposition, (ii) increased
stromal cellularity due to fibroblastic and/or myofibroblastic
proliferation, and (iii) orientation of stromal cells (14). Based
on histopathologic examination of H&E-stained slide areas, the
sub-TSR scores were assessed as 0 (none/weak), 1 (intermediate)
or 2 (strong) (Supplementary Figure 1). The criteria were
chosen to reflect the histopathologic changes commonly
observed and evaluated in the clinical practice. With regard
to the criterion of stromal cellularity, a minimal density of
(myo)fibroblasts was assigned a score of 0, while a score of 2
was given if the area occupied by (myo)fibroblasts exceeded
the area occupied by the acellular stroma in a given field. As
for the fibrosis criterion, minimal deposition of fine collagen
fibers with significant fiber spacing was assigned a score of 0,
whereas dense collagen deposition with sclerosis was classified
as 2. In terms of orientation of stromal cells, a relatively
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TABLE 1 Research cohort statistics.

Overall (N = 291)

Histology*

High grade serous 291 (100.0%)

Age at diagnosis

Mean (SD) 63.337 (11.231)

Median 64.000

Q1, Q3 56.000, 71.000

Range 24.000 - 89.000

Age at diagnosis (group)

[20,50] (premenopausal) 32 (11.0%)

(50,90] (postmenopausal) 259 (89.0%)

Stage

3 217 (74.6%)

4 74 (25.4%)

Grade

2 1 (0.3%)

3 290 (99.7%)

Vital status at Last Follow-up

Alive 34 (11.7%)

Deceased 257 (88.3%)

Months from Diagnosis to Enrollment

Mean (SD) 0.989 (8.425)

Median 0.000

Q1, Q3 0.000, 0.082

Range 0.000 - 107.664

Months from Diagnosis to Last Follow-up

Mean (SD) 50.358 (43.148)

Median 37.072

Q1, Q3 17.763, 70.197

Range 0.263 - 196.711

Median Time to Last Follow-up (months)

Events 257

Median Survival 37.434

Debulking Status

Missing 1

Optimal 220 (75.9%)

Suboptimal 70 (24.1%)

Suboptimal 70 (24.1%)

*Since the SBOT cases were only included in training deep learning models for providing
negative controls, the characteristics of SBOT cases were not included in this table.

linear, unidirectional orientation was assigned a score of 2,
while a haphazard orientation without appreciable directionality
was scored as 0.

To create an annotated dataset for model training, five
HGSOC slides were randomly selected. Within each slide,
five most representative regions of interest (ROIs) were
circled by pathologists in tumor-stroma interface regions,
which were areas where the borders of the tumor islands
came into close proximity with the surrounding stromal
areas and the stroma exhibited morphologic characteristics

different than the non-neoplastic ovarian stroma (Figure 1A).
Two experienced pathologists were invited to annotate three
TSR scores using an interactive tool named QuPath (17).
In each slide, five most representative ROIs were circled
by pathologists in tumor-stroma interface regions. The
size of each ROI was at least 1,024∗1,024 pixels. Within
each ROI, polygons were used to annotate homogeneous
regions with the same TSR scores. Sub-regions with
the same TSR scores were labeled to the same category
(Supplementary Figure 1B).

Dataset preprocessing

Using a framework developed in our previous work (18),
TSR annotations were parsed using Groovy script within
QuPath and converted into a pair of image and annotation mask
for each annotated ROI. For the convenience of visualization,
annotation masks were encoded from dark to light R/G/B colors
for each TSR scoring metric (Supplementary Figures 1D–
F). To extract regular size of images and annotation masks
for model training and evaluation, a 256∗256 pixel sliding
window was applied to the ROIs. Taking full capacity of
pathologists’ annotations, the sampling stride was set to 128
for the aim of creating augmented/enlarged dataset. In total,
11,240 image patches with TSR annotations were obtained
from HGSOC cases.

Considering that SBOT confirmed cases were free of
significant TSR, we proposed to train the TSR prediction model
with image samples from SBOT WSIs as negative controls.
Thus, image patches from SBOT cases were also prepared and
labeled to TSR score zero. We randomly selected five slides from
our previous research (18), from which 1,405 image patches
from stroma regions were randomly extracted and added into
“annotated” dataset. In total, 7,025 image patches were obtained
from SBOT cases.

To identify tumor-stroma interface areas and quantify
TSR inside these regions, we repurposed TSR annotations for
tumor-stroma segmentation modeling. The stroma region is
defined as all the tissue region except the tumor region. Within
each annotated ROI, overall stroma regions were obtained by
merging all three different TSR score regions, while the tumor
regions were defined as the remaining tissue regions inside the
ROIs. The same sliding-window sampling strategy was used to
extract image patches for segmentation modeling.

Tumor-stroma tissue segmentation

In order to identify tumor-stroma interface areas where
TSR occurs, tumor and stroma regions were segmented using
a deep learning neural network named Mask-RCNN (19),
as shown in Figure 1B. Mask -RCNN was preferred in
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this study as it has been used in many histological image
processing tasks (20, 21) and was reported to be more
robust than the U-Net for image segmentation (22, 23).
The hyperparameters of Mask-RCNN, such as the dimension
of convolutional layers (input dimension = 256 × 256),
learning rate (lr = 0.01) and RPN anchor scales (RPN = [8,
16, 32, 64, 128]) were modified to adapt to our image
segmentation task. Taking annotated dataset described in
Data Preprocessing section, images from HGSOC cases were
shuffled and divided into training, validation, and testing groups
(3,317:1,105:1,110). From the training subset, the input layers
of Mask-RCNN took both original images and tumor-stroma
multilabel masks as training samples. In the training process,
tumor and stroma areas were iteratively proposed by a sub-
structure of Mask-RCNN named Region Proposal Network
(RPN). Fully connected network layers were concatenated to
the forehead layers to identify differences between ground
truth (annotations) and proposed segmentation masks. By
minimizing the differences, Mask-RCNN was trained to
segment tumor and stroma within WSIs. To facilitate training
convergence, weights from the model pretrained with Coco
dataset (24) were loaded to our model as initial settings and fine-
tuned on our training dataset. Specifically, the model trained
at the 315th epoch reached the lowest loss in the validation
set.

In the testing phase, tumor stroma regions were segmented
and saved as multilabel masks for each image patch from
the hold-out testing dataset using trained tumor-stroma
segmentation models. Three commonly used evaluation metrics
for image segmentation tasks (25, 26) were calculated to measure
concordance between model prediction and ground truth,
including DSC (Dice similarity coefficient), IoU (intersection of
union) and AP (averaged precision).

Tumor-stroma reaction scoring
modeling

In our work, TSR score estimation was formulated into
an image classification problem. In other words, different TSR
scores corresponded to different image categories. We employed
a commonly used DL network architecture named VGG16
(27) as our image classification model, as this model also
achieved an encouraging performance on identifying tumor
infiltrating lymphocytes (TIL) (28). To estimate three TSR
scores, three VGG16 models (Figure 1B) were trained with
the combinational dataset (from both HGSOC and SBOT
cases) established in data preprocessing steps. The annotated
dataset was divided into training, validation, and testing subsets
(12,743:2,247:2,249, 6,000 training samples were from SBOT
as negative control). During the training phase, the training
dataset was divided into batches (32 samples per batch) to
meet the computational resource limitations. The maximum

training epoch was set to 30. At the end of each training epoch,
training loss was calculated on the validation dataset. To avoid
overfitting, the training process was set to stop when the loss
variation is less than 10−3 within four epochs. To increase
generalizability and avoid bias from different H&E-staining
conditions, training image dataset was augmented using linear
image transformation, such as rotation and flipping. With the
same training strategy, three VGG16 image classification models
were trained independently to estimate fibrosis, cellularity,
and orientation TSR scores, respectively (Figure 1B). During
the testing phase, three TSR scores were estimated for each
input image from the hold-out testing dataset using the three
trained VGG16 models. The performances of the three models
were evaluated by comparing the concordance between model
estimation and human annotation.

Extrinsic model evaluation

Before applying our models to the entire research cohort,
it was essential to evaluate model performances on an
independent dataset (extrinsic) as our DL models were trained
and evaluated using annotated images from ROIs (intrinsic).
To this end, we developed an interactive evaluation tool
(Supplementary Figure 2) for the assessment on a dataset
that was independent of annotated ROIs and WSIs. For
the sake of pathologists’ convenience, the original image
as well as corresponding tumor-stroma segmentation and
TSR scores predicted by the trained models were loaded
into this evaluation tool. With the original image in the
center, eight neighborhood image patches were also shown
in the user interface as additional references for pathologists
to make an accurate judgment. The concordance (average
precision) between pathologists’ evaluations and predictions
were recorded as pathologists proceeded reviewing by clicking
buttons and checking boxes.

To create an independent dataset for extrinsic evaluation,
image patch-level TSR score distribution was calculated for each
slide. Slides with ultra-high (TSR = 2) or low (TSR = 1) TSR
score ratio were selected to epitomize the performances of our
trained models. Unannotated cases were selected based on TSR
score ratio distribution, only the upper 5% quantile and low
5% quantile were included for manual evaluation. To limit the
number of images to be evaluated, we randomly selected at least
10 but less than 30 images from each slide within tumor stroma
interfacing regions.

Applying deep learning models to
research cohort

Trained DL models were generalized to the research cohort
according to the following procedures.
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Tissue detection and patch extraction
To cut down the computational cost, only the tissue regions

(foreground of WSIs) were included in the testing phase. Tissue
regions were detected within a down-sampled whole slide
image (down-sample rate = 128), and then image patches were
extracted from tissue regions accordingly. To detect foreground
within down-sampled whole slide images, the color space was
converted from RGB to LAB, and then threshold method was
applied to L channel for tissue detections. As a commonly used
foreground detection method for bright field whole slide images,
feasibility of this method has been proved in our previous
research (18, 29). By mapping the coordinates of pixels within
detected tissue regions back to original WSI, image patches
(256∗256 pixels) were extracted in a tiling manner. With the
same threshold-based method, foreground within the original
resolution of image patches was detected. If more than 50% of
the patch is background, it was excluded from our study. In the
end, the extracted images were fed into our trained models for
patch-level predictions.

Tumor-stroma interface area identification
To investigate TSR in invasive tumor front, tumor-

stroma interface areas were identified based on tumor-stroma
segmentation results. By down-sampling (r = 1/128) and
stitching patch level results back to their original locations,
slide level tissue segmentation (tumor vs. stroma) were
reconstructed. Within slide level tumor-stroma segmentation
results, tumor-stroma interface areas were identified using
serials of image morphological and logical operations
(Figure 1C and Supplementary Figure 5). The calculation
process can be formulated as follows:

Tumorcore = C (IT, S)

Stromacore = C (IS, S)

ROIinterface = and
(
xor
[
D
(
Stromacore, S

)
,E
(
Stromacore, S

)]
,

Stromacore,D
(
Tumorcore, S

))
,

in which, IT and IS denotes the tumor and stroma multilabel
image from slide level segmentation, respectively. S denotes
the structural elements for morphological operations, including
closing C(I, S), erosion E(I, S) and dilation D(I, S) (30).

To evaluate the accuracy of this automatic tumor-stroma
localization method, the multilabel masks of interface areas and
the counterpart WSIs were shown side-by-side and reviewed
by our pathologists. Specifically, top five largest connected
components were detected as the representative sub-regions for
detailed reviews (31). The misidentifications were recorded for
quantitative assessment metrics calculation.

Slide level feature summarization
To enable association analysis, TSRs were summarized to

abstract slide level descriptors (Figures 1D,E). Since the ROI
(tumor-stroma interface area) size varies from case to case,
we used mean and standard deviation to denote slide level
characteristics. Normalized distributions of TSR scores were
calculated by counting TSR scores of each image patch within
tumor-stroma interface regions. The entire assembled workflow
was generalized to all the slides in our cohort. The summarized
features were prepared for association analysis.

Downstream association analysis

The summarized TSR characteristics were associated with
clinical and molecular information. In our work, only HGSOCs
were included for downstream analysis.

Clinical associations

In HGSOC cases, for each TSR score (Fibrosis, Cellularity,
and Orientation), median split was used to divide patients into
two groups (i.e., score-high and low) to facilitate categorical
comparisons. For univariate and multivariable [adjusted for
age, FIGO stage (IV vs. III), and residual tumor after primary
debulking surgery] survival analysis, a Cox proportional hazards
regression model was used, and hazard ratios (HRs) and
associated 95% confidence intervals (CIs) were estimated. All
statistical tests were two-sided, and a P-value of less than 0.05
was considered statistically significant.

Molecular associations

Tumor gene expression profiles were measured using
Agilent Whole Human Genome 4x44K Expression Arrays
and processed as previously described (2, 4). For gene-level
association analysis, normalized expression levels of each gene
were correlated with each TSR score from the same tumors using
Spearman Rank correlation. For over-representation pathway
analysis purposes, genes with positive and negative correlations
with each TSR score (nominal p-value < 0.05) were analyzed
using DAVID bioinformatics tool (32, 33), to reveal pathways
statistically enriched in correlated gene sets. False discovery rates
were computed to correct for multiple hypothesis testing.

Results

Tumor-stroma segmentation

The developed tumor stroma segmentation model identified
the tumor vs. stroma region within both HGSOC and
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SBOT WSIs (Figure 2A). Figure 2B demonstrates the
whole slide level segmentation results by stitching patch-level
segmentation results together according to patch locations.
Different tissue types were colored according to predicted
categories. More examples of slide-level segmentations were
shown in Supplementary Figure 3.

In the hold-out testing subset (N = 1,110) reserved for
segmentation accuracy assessment, DSC, IoU and AP achieved
93.5, 88.65, and 95.34%, respectively (Figure 3A). Moreover,
we observed that IoU and DSC dramatically decreased if there
was a tissue type misdetection (Figure 3B). Our evaluation
also suggested that IoU and DSC were highly correlated to
each other (Figure 3C), and AP could be a more suitable
metric for measuring our segmentation accuracy. Since the
hold-out testing set is from annotated ROIs, our evaluation
results suggested that the trained tumor-stroma segmentation
model performed well in intrinsic cases.

Based on the criteria mentioned in the methods, 15
unannotated slides were identified, from which 615 image
patches were sampled for independent tumor-stroma
segmentation and TSR score evaluation. By analyzing the review
records from the extrinsic evaluation tool (Supplementary
Figure 2), our model achieved 90.6% accuracy, indicating
that pathologists generally agreed with our tumor-stroma
segmentation performance within independent WSIs. It is
noteworthy that our trained model can be applied to the entire
research cohort to generate tumor-stroma segmentation across
the whole slide for the downstream analytical steps.

Based on our tumor-stroma segmentation results, some
WSIs with low stroma tissue areas were identified. By
checking the original images of these cases within QuPath, the
pathologists confirmed that our tumor-stroma segmentation
results were accurate, as the tumor islands occupied the
majority of these slides, while the stromal areas consisted of a
significant number of adipocytes, necrosis, and/or hemorrhage,
with minimal collagenous and cellular stroma [Supplementary
Figure 4 case (4)].

Tumor-stroma reaction scoring and
evaluations

Using our trained models, three TSR scores were predicted
for each patch inside the stroma regions based on the tumor
stoma segmentation results. The spatial overview of slide-level
TSR was reconstructed by mapping three TSR scores to different
colors with ranked saturation (Figure 2C). More examples
of slide level segmentations are shown in Supplementary
Figure 4. More zoomed in results can be found in our GitHub
repository.

Our qualitative results suggested that the predicted TSR
scores were not even in stroma regions of all HGSOC.
Heterogeneity between regions and cases were high, as shown

in Figure 2C and Supplementary Figure 4. Confusion matrices
were calculated to quantitatively evaluate model performances
on the hold-out testing dataset (N = 2,249). The results indicated
that our model achieved accurate TSR score estimation,
especially in predicting fibrosis (>90%), as shown in Figure 4A.
In the extrinsic evaluation, with an average precision over
82.8%, the results suggested that the trained model can
be generalized to our research cohort for objective TSR
scoring.

We also observed false positives (TSR scores > 0) in some
region from three SBOT cases, as illustrated Supplementary
Figure 4 case (3). By mapping the TSR scores back to the
WSIs and observing with high resolution, we identified that
these false-positive predictions were presumably due to these
slides having mostly non-neoplastic ovarian stroma, which
inherently has a relatively cellular and fibrotic composition.
Since our model is mainly trained on annotated HGSOC
regions, the trained model did not capture texture patterns
within normal SBOT regions.

Violin plots illustrated the distributions of TSR score ratios
per case. Figure 4B indicates that the majority of image patches
had low TSR scores (TSR = 0), regardless of the diagnosis
being SBOT or HGSOC. However, compared to SBOT cases,
HGSOC cases were more likely to have higher TSR scores
(>1), especially for fibrosis score. We observed a significant
proportion of image patches from HGSOC cases had fibrosis
TSR scores of 1. After checking the training dataset, we
confirmed that half (3,339 out of 6,743) of the annotated
images of HGSOC cases had moderate fibrosis TSR scores,
indicating that the ambiguity of fibrosis scores could be high,
and our TSR scoring model was trained to match pathologists’
interpretations.

Identification of tumor-stroma
interface regions

Our tumor-stroma interface region identification strategy
identified five regions within each testing slide (Supplementary
Figure 5). The proposed interface regions were localized and
overlayed to the WSIs. According to pathologists’ manual
review, 83.4% (207 out of 250) proposed tumor-stroma regions
were confirmed to be tumor-stroma interface area. After
checking the falsely proposed tumor-stroma interface regions,
we found flaws of tumor-stroma segmentation in those regions
to be responsible for the failure, indicating that the tumor-
stroma interface identification relies heavily on tumor-stroma
segmentation results. To facilitate replication of our work,
all the code for this paper is public available on GitHub.1

The pretrained models for tumor-stroma segmentation

1 https://github.com/smujiang/TumorStromaReaction
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FIGURE 2

Examples of tumor-stroma segmentation and TSR scoring results. (A) Original WSIs, with HGSOC and SBOT each; (B) tumor-stroma
segmentation, tumor and stroma were encoded with cyan and yellow; (C) TSR scores measured from three metrics, including fibrosis (Red),
cellularity (Green) and orientation (Blue). Each metric was encoded from dark to light color, denoting TSR score from low to high. *For better
visualization, TSR scores within all stroma regions were shown, but only the tumor-stroma interface regions were included for analysis.

and tumor-stroma reaction prediction can be obtained via
contacting authors.

Tumor-stroma reaction clinical and
molecular associations

All three TSR scores were significantly elevated in HGSOC
cases vs. SBOT cases (p < 0.001, Figure 5A). Moreover, in
HGSOC cases, higher fibrosis score (>median) was significantly
associated with worse survival (p = 0.02; Figure 5B), and
the prognostic association remained significant (p = 0.04;
Figure 5C) after multivariate adjusting for other established
prognostic factors (age at diagnosis, stage, and residual tumor
after surgical debulking). In order to gain further insight
into possible molecular mechanisms associated with each TSR
score, gene-level correlations were computed between mRNA
level of each gene and TSR score from the same tumors;
and significant associations were found in two correlations:
(1) correlation between fibrosis and molecular findings, and
(2) correlation between cellularity and molecular findings
(Figure 5D). Further genetic analysis suggested different
molecular bases between the three TSR scores. Through
pathway enrichment analysis, genes positively correlated with
TSR-fibrosis score were found to be enriched in 14 KEGG
pathways [FDR (false discovery rate) < 5%], which are mostly
associated with cancer signaling aberrations. On the other
hand, genes positively correlated with the TSR-orientation score

were enriched in 79 KEGG pathways, with leading significant
pathways implicated with immune response (Supplementary
Table 1). In contrast, genes having positive correlations with
TSR-cellularity score were only significantly enriched with one
KEGG pathway (hsa01100: Metabolic pathways; FDR = 0.04).
Detailed molecular association results including gene- and
pathway-level results were shown in Supplementary Table 1.

Discussion

In this study focusing on digital analysis of reactions
between tumor and stroma, combined with a critical pathology
review using subjective scoring systems, we demonstrated
highly concordant computational prediction based on VGG16
DL structure with training annotations and independent
validations by multiple pathologists in HGSOC. Conventionally,
TSR is often lumped as an overall subjective assessment
by pathologists. Herein we further dissected it into three
essential aspects of TSR and examined their individual and
combined significance by digital detection. With a series
of digital detection and quantification procedures including
tumor-stroma interface area detections, the trained DL model
has been successfully generalized to a large OC cohort from
a single institution consisting of nearly 300 patients with
long-term clinical follow-up and tumor transcriptome data.
Interestingly, among the three aspects of TSR, the data
revealed significant prognosis association only with fibrosis
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FIGURE 3

Tumor-stroma segmentation evaluation. (A) Boxplot of three evaluation metrics, including IoU, AP and DSC. (B) Examples of segmentation. Red
arrows point to missed targets in segmentation. (C) Correlation of three evaluation metrics. Each dot represents an image sample. Linear
regression was used to calculate correlation.

score. This is the first study demonstrating the outstanding
significance of fibrosis over other TSR pathological features
in HGSOC, indicating these features did not carry the equal
weight regarding clinical significance. At the design phase of
this study, the orientation score was selected as one of the
three quantification criteria, mainly to further characterize
the fibroblastic and/or myofibroblastic proliferation. In fact,
collagen fiber organization has been associated with prognosis
in breast cancer in the literature and DL approaches have
been employed to quantify this as a histomorphometric feature
(14, 34). However, our team observed this criterion to be
a highly subjective one. In addition, the orientation score
did not reveal any significant prognosis associations in our
transcriptome association analysis, calling the usefulness of

this criterion with regard to ovarian cancer TSR assessment
into question. These observations warrant further study on
individual components of the TSR, as well as aberrant
gene- and pathway-level activities associated with different
digital TSR scores.

Of note, the design of the TSR scoring in our study was
not specific or limited to HGSOC, and the same histological
principle can be applied to in majority types of solid cancers.
Therefore, the digital platform developed by our study can
be potentially generalized and applied to various tumor types.
These findings highlight potentials of powerful DL approaches
to generalize digital pathology-based predictions for large-scale
translational research and enable molecular discoveries to better
understand tumorigenesis and cancer progression.
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FIGURE 4

Tumor-stroma reaction (TSR) scoring evaluation. (A) Confusion matrix of intrinsic evaluation. (B) Violine plot for three TSR metrics within
HGSOC vs. SBOT. Majority of SBOT images have low TSR score, no matter in which metric.

To consolidate our discoveries, we considered including
other pre-existing cases into our research cohort. However,
we found that images scanned at different times could be
dramatically different in hue even if they were from the
same patient, same institution (Mayo Clinic) and shared
the same staining and image acquisition protocol. This
inconsistency may be due to multiple technical variables,
including scanner settings and/or age of the H&E-stained
slides. Since these batch effects in pathology image data
could be hidden variables in deep learning digital pathology
that compromise the accuracy of classification systems (35,
36), we opted for not including our previous HGSOC data
into this research. Many previous studies introduced color
normalization methods to minimize staining inconsistencies
(29, 37). Though it is hard to measure the preservation of
diagnostic information after image transformation, many
integrative studies investigating cancer subtype classification
and prognosis association achieved optimistic performances
by introducing image normalization (38, 39). From this
point of view, color normalization could be beneficial

for assorted research cohort from miscellaneous data
sources, especially from multiple institutions. Meanwhile,
we also noticed that some investigators improved their
model performance by synthesizing images using generative
adversarial network (GAN) (40, 41), which could be another
potential way to enhance the generalizability of our TSR
estimation model.

Although our tumor-stroma interface region detection
relies on patch-level tumor-stroma segmentation, the strategy
we introduced (Supplementary Figure 5) could partially
offset this limitation. To generate a slide-level overview of
tissue context (tumor vs. stroma) for image morphological
manipulations, patch-level tumor-stroma segmentation
results were down-sampled and stitched back to their
original locations. In this process, the tissue type (tumor
or stroma) in slide-level was determined by the dominated
component of patch-level segmentation. In other words,
for tumor-stroma interface region detection task, tumor-
stroma segmentation results were not required to achieve
pixel-level accuracy.

Frontiers in Medicine 10 frontiersin.org

1617

https://doi.org/10.3389/fmed.2022.994467
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-994467 August 30, 2022 Time: 17:23 # 11

Jiang et al. 10.3389/fmed.2022.994467

FIGURE 5

Prognosis and molecular associations of fibrosis score. (A) Tumor-stroma reaction (TSR) score boxplots for HGSOC and SBOT groups.
(B) Overall survival differences between fibrosis high vs. low. (C) The prognostic association for other established prognostic factors (age at
diagnosis, stage and residual tumor after surgical debulking). (D) Correlation between fibrosis/cellularity/orientation and molecular findings.

We observed that our TSR scoring models highlighted some
regions with a potentially high TSR in five SBOT cases, for
example, case (3) in Supplementary Figure 4. The main reason
contributing to this flaw is that our models were not trained to
differentiate normal vs. abnormal ovarian stroma. We anticipate
that our TSR scoring pipeline can achieve a better estimation
if models can be trained using extra normal vs. abnormal
ovarian stroma annotations. Meanwhile, we acknowledge that
using TSR as the sole measurement is not enough to describe
the complex tumor micro-environment (TME). It has been
reported that TILs can also be assessed with the aid of
digital pathology in advanced-stage, HPV-negative head and
neck tumors (42). We will introduce more interpretable
measurements for pathology image metadata summarization,
which will bring more opportunities for novel discoveries.
To integrate cellular level features into large cohort analysis,
we also plan to introduce more advanced cell segmentation
modules to our workflow for better cell level representations
(43). As reported in our previous work (44), over- and under-
segmentations lead to inaccurate downstream analysis impute
to erroneous features calculated based on them.

Another imperfection of our study is way we summarize
predicted TSR score to slide level for association analysis.
For the sake of simplicity, we employed simple statistics and
assigned equal weights to patch level TSR predictions. However,
the relative importance of tissue regions contributing to the
diagnosis could be dramatically different depending on tissue
context. In this study, we introduced tumor-stroma interface
area identification methods that were aimed at mimicking
pathologists’ diagnoses. This strategy is simple and works well
in most cases; however, it highly depends on the tumor-stroma
segmentation accuracy. We noticed that some studies proposed
to introduce multi-resolution analysis for capturing subtle tissue
features within different WSI scales (45, 46). Attention based
deep neural networks (47) are also tangible options for locating
diagnostically relevant regions and assign those regions with
higher weights in automatic analysis. We will consider these
solutions to fill the gaps in our current work.

Further limitations of the current study include that all
the samples were from a single institution, requiring further
validations in external cohorts. H&E imaging-based digital
pathology studies as such may be also affected by paraffin block
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preservation protocols and digital scanning parameter settings,
which could lead to model differences when generalizing to WSI
samples collected and scanned following different protocols.
Computational developments and evaluations will be made to
address these challenges.

Conclusion

Our developed system achieved encouraging performances
in tissue segmentation and TSR score predictions and
generalized successfully to a large single-institution OC cohort,
resulting in novel discoveries of clinical prognosis associations
and molecular findings implicated in different TSR scores.
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SUPPLEMENTARY FIGURE 1

Tumor-stroma reaction (TSR) annotation. (A) Original image within ROI
selected for annotation. (B) Annotated ROIs. Polygons were used to
label regions with different TSR scores. (C) Legend of three TSR score
measurements. (D–F) Parsed annotations. TSR scores were encoded
into R/G/B colors to represent three measurements (fibrosis, cellularity,
and orientation), respectively; Panels (G,H) are two zoom in examples.
Panel (G) was annotated as Fibrosis = 2, Cellularity = 1, Orientation = 1;
Panel (H) was annotated as Fibrosis = 1, Cellularity = 2, Orientation = 2.

SUPPLEMENTARY FIGURE 2

Interactive tool for extrinsic evaluation. Source code available in our
GitHub. Buttons and checkboxes on the right are clickable, pathologists’
interactions were recorded for extrinsic evaluation.

SUPPLEMENTARY FIGURE 3

Extra examples of tumor-stroma segmentation results, including five
HGSOCs, five SBOTs and their tumor stroma segmentation results.

SUPPLEMENTARY FIGURE 4

Extra examples (two HGSOC and two SBOT) of TSR scoring results. TSR
scores measured with fibrosis (Red), cellularity (Green), and orientation
(Blue). From dark to light, TSR scores were encoded into R/G/B colors.
∗For better visualization, TSR scores within all stroma regions were
shown, but only the tumor-stroma interface regions were
included for analysis.

SUPPLEMENTARY FIGURE 5

Tumor-stroma interface area identification. (A) Original WSI and
tumor-stroma segmentation results. (B) Morphological and logical
operations were conducted on tumor-stroma segmentation for
localizing tumor-stroma interface regions. (C) Proposed ROIs (red
rectangles) for TSR score summarization.

SUPPLEMENTARY TABLE 1

Detailed molecular association results, including top 10 genes
positively/negatively associated with TSR-Fibrosis score, and pathways
positively associated with Fibrosis and Orientation scores, respectively.
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Bone metastasis is a common and devastating consequence of several

major cancer types, including breast and prostate. Osteocytes are the

predominant bone cell, and through connexin (Cx) 43 hemichannels

release ATP to the bone microenvironment that can be hydrolyzed to

adenosine. Here, we investigated how genes related to ATP paracrine signaling

are involved in two common bone-metastasizing malignancies, estrogen

receptor positive (ER+) breast and prostate cancers. Compared to other sites,

bone metastases of both cancer types expressed higher levels of ENTPD1

and NT5E, which encode CD39 and CD73, respectively, and hydrolyze

ATP to adenosine. ADORA3, encoding the adenosine A3 receptor, had a

similar expression pattern. In primary ER+ breast cancer, high levels of the

triplet ENTPD1/NT5E/ADORA3 expression signature was correlated with lower

overall, distant metastasis-free, and progression-free survival. In ER+ bone

metastasis biopsies, this expression signature is associated with lower survival.

This expression signature was also higher in bone-metastasizing primary

prostate cancers than in those that caused other tumor events or did not lead

to progressive disease. In 3D culture, a non-hydrolyzable ATP analog inhibited

the growth of breast and prostate cancer cell lines more than ATP did. A3

inhibition also reduced spheroid growth. Large-scale screens by the Drug

Repurposing Hub found ER+ breast cancer cell lines were uniquely sensitive
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to adenosine receptor antagonists. Together, these data suggest a

vital role for extracellular ATP degradation and adenosine receptor

signaling in cancer bone metastasis, and this study provides potential

diagnostic means for bone metastasis and specific targets for treatment

and prevention.
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Introduction

Bone is the most common site for distant metastasis by
breast and prostate cancers and has devastating impacts on
patients (1, 2). Complications include severe pain, pathologic
fractures, life-threatening hypercalcemia, and spinal cord
compression (3, 4). Furthermore, patients with bone metastases
have poor overall prognosis and lower life expectancies (5–
7). Understanding the process that permits breast and prostate
cancer bone metastasis and knowing how to derail it is
critical for improving patient outcomes for the second-leading
cause of cancer deaths in women and men, respectively. The
microenvironment of distant organs plays a vital role in the
process of metastasis to that site (8). Despite this, few drugs
specifically target metastatic sites. Bisphosphonates induce
osteoclast apoptosis, promote osteocyte Cx43 hemichannel
activity (9, 10), and are used to treat bone metastases of various
types, including prostate and breast (11, 12). More uniquely,
they were clinically validated to prevent breast cancer metastasis
to bone in postmenopausal women (13).

Osteocytes comprise roughly 90% of bone cells and are
dominant regulators of the local microenvironment (14).
In normal bone physiology, they coordinate the actions of
bone-building osteoblasts and bone-degrading osteoclasts (14).
Osteocytes are rich in Cx43 hemichannels, through which
small paracrine signaling molecules such as prostaglandins and
ATP are released and influence both normal bone cells and
metastatic cancer cells (15, 16). Our previous study found
osteocytes expressing Cx43 with impaired hemichannel and
gap junction activity promoted the growth of triple-negative
breast cancer in bone, while osteocytes with impaired Cx43 gap
junction but retained hemichannel function had no such effect
(17). Further investigation showed that a stable extracellular
ATP (eATP) analog decreased triple-negative breast cancer cell
migration, while extracellular adenosine (eADO) increased it,
and thus preventing eATP degradation to eADO can enhance
the inhibitory effect of eATP on cancer cell migration (16).

A recent surge of interest in purinergic signaling in cancer
is primarily on its role in immunology. In tumors, eATP is
elevated and generally stimulates the immune system (18).

This eATP can be hydrolyzed to AMP by CD39, encoded
by the gene ENTPD1, and further degraded to adenosine by
CD73, encoded by the gene NT5E (18). The immunosuppressive
function of eADO is in part mediated by binding to T cell
adenosine 2A receptors (A2ARs) (18). This rationale has led
to interest in inhibiting eADO production in tumors as a way
of improving outcomes alone or combined with PD1-PDL1
inhibition (19, 20). However, much less attention has been
given to the non-immunologic functions of eATP and eADO
in cancer development and progression. Our studies on ATP
release by osteocytic hemichannels in bone and the effects of
eATP and eADO signaling on triple-negative breast cancer led
us to investigate whether tumor cells increase eATP hydrolysis
to promote bone metastasis. We focused on estrogen receptor-
positive (ER+) breast cancer, which accounts for 77% of breast
cancer bone metastases (1), and prostate cancer, which also
primarily metastasizes to bone (2, 7).

Materials and methods

Materials

Spheroid culture plates were purchased from Corning
(Corning, NY, United States; cat. 4515). ATP was purchased
from Sigma Aldrich (St. Louis, MO, United States; cat.
A2383). ATPγS was purchased from Fisher (Hampton, NH,
United States; cat. 40-801-0). Both were dissolved in Dulbecco’s
phosphate buffered saline (Gibco cat. 14190). MRS-1220 (cat.
12-175) was purchased from Fisher and dissolved in dimethyl
sulfoxide (Fisher cat. 67-68-5). The rest of the reagents were
purchased either from Fisher or Sigma.

Cell culture, 3D culture, and
quantification

MCF-7 cells were a gift from Dr. Michael Brattain
maintained in Dulbecco’s Modification of Eagle’s Medium
(DMEM) with 10% fetal bovine serum (FBS). 22Rv1 cells were a
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gift from Dr. Tim Huang at University of Texas Health Science
Center at San Antonio and were maintained in RPMI-1640 with
10% FBS. Cells were kept in a 5% CO2 incubator.

For 3D culture, 2,000 cells per well were seeded in ultra-
low adherent U-bottom 96-well plates with drug or vehicle
in DMEM with 2.5% FBS (MCF-7) or RPMI-1640 with 2.5%
FBS (22Rv1). Photos were taken using a Keyence BZ-X710
microscope (Keyence, Osaka, Japan) using a 20X phase contrast
objective (Nikon, Tokyo, Japan). Sphere cross-sectional area
was measured using ImageJ, (21) which was used to determine
volume. Statistical comparisons were made using t-test or
two-way ANOVA with the Geisser-Greenhouse correction and
Tukey’s post-test. EC50 values were calculated in Graphpad
Prism v9 using a four-parameter logistical model.

Ribonucleic acid expression in
metastases, and comparison with
primary tumor

Microarray datasets GSE74685, GSE14020, GSE32269,
and GSE47561 were downloaded from the Gene Expression
Omnibus. GSE14020 raw fluorescence CEL files were processed
using BART (22). Datasets were chosen based on clinical
characteristics (Supplementary Table 1), using workflow as
shown in Supplementary Figure 1. Differential gene expression
analysis for Supplementary Table 2 was performed using
the limma bioinformatics package (23). We compared log2-
transformed data in metastatic locations containing at least
5 samples using one-way ANOVA and Dunnett’s multiple
comparisons test. Expression between primary and metastatic
tumors was compared using a t-test. For breast cancer, the
Robust Microchip Array (RMA) function in Bioconductor was
used to process primary and metastatic data.

Survival analysis

Distant metastasis-free survival analysis in ER+ breast
cancers was performed on microarray data using KMPlot (24,
25). We used ER+ patients because the first distant metastasis in
these patients is usually located in bone (1). Expression data was
used to predict ER status when not histologically determined.
Patients were separated into high- and low-expressing tumors
by median, as evenly as possible. Overall and disease-specific
survival were performed using data from the TCGA BRCA
(26) cohort accessed through Xena browser (27) and analyzed
through KMPlot (24). Signatures were calculated by the average
expression [log2(norm_count + 1)] of the three genes when
noted in Figures 1B, 2. Survival analysis for samples taken from
established bone metastases used GSE124647 and cohorts were
separated by median expression. Significance was determined by
p < 0.05.

Gene signature and Gleason score
correlation

Signature correlation was performed on ER+ tumors in the
TCGA BRCA cohort using a previously published gene set (26,
28). TCGA PRAD (29) data (counts) were downloaded through
Xena browser (27). DKFZ data (counts) were downloaded from
cBio Cancer Genetics Portal (30, 31). Expression signatures
were the average expression of the three genes in each sample.
Pearson method was used for correlation analysis. One-way
ANOVA with a test for linear trend was used to find increasing
averages with increasing Gleason scores and Kruskall-Wallis test
with multiple comparisons for comparing signature expression
between primary tumors with or without bone metastases and
other events. Significance was determined by p < 0.05.

Drug sensitivity determination

Drug screen was performed using PRISM technique (32)
by the Drug Repurposing Hub, as reported (33). Analyses were
performed on the 19Q3 screen. Data were analyzed on DepMap
(34) portal, which uses the Limma R statistical package (23).
Significance was determined by p < 0.0005.

Statistics

Statistical analyses were performed on Graphpad Prism
v9 unless otherwise noted. Graphs reflect mean ± SD,
except DepMap screen in which boxes represent median ± 1
interquartile range and whiskers represent 5th and 95th
percentiles. ∗p< 0.05; ∗∗p< 0.01, ∗∗∗p< 0.001, ∗∗∗∗p< 0.0001,
except for DepMap screen where p < 0.0005 is significant.

Results

ENTPD1, NT5E, and ADORA3 show
higher expression in bone metastases
than in other sites of metastasis or in
primary tumors

We previously identified ATP released by active
hemichannels as a potential inhibitor of triple-negative breast
cancer growth in bone (16, 17). Because hemichannels are rare
in most tissues but are well established in bone, we hypothesized
that downregulating one or more ATP receptors would
enable bone metastasis, and this receptor would have lower
expression levels in bone metastases compared to metastases
at other locations. We investigated this in microarray gene
expression data from patients with metastatic breast cancer

Frontiers in Medicine 03 frontiersin.org

2324

https://doi.org/10.3389/fmed.2022.965429
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-965429 September 10, 2022 Time: 15:10 # 4

Shropshire et al. 10.3389/fmed.2022.965429

A

B

FIGURE 1

ENTPD1, NT5E, and ADORA3 expression in primary ER+ breast cancer correlates with poor outcomes. (A) Kaplan Meier plots of distant
metastasis-free survival in ER+ breast cancer. The high-expression groups for ENTPD1 (HR = 1.66), NT5E (HR = 1.4), and ADORA3 (HR = 1.96) all
have a significantly greater chance of distant metastasis or death. Analysis was made using KMPlot (24). (B) Kaplan Meier plots of overall and
disease-specific survival of ER+ breast cancer patients in the TCGA BRCA cohort based on ENTPD1/NT5E/ADORA3 signature expression
(calculated by the average expression [log2(norm_count + 1)] of the three genes, and separated by median). In this separate cohort than (A), the
high-expression group had significantly lower overall and disease-specific survival (HR = 1.68 and 2.23, respectively). ∗p < 0.05; ∗∗p < 0.01.

(GSE14020). Surprisingly, none of the ATP receptors was
differentially expressed between bone and other metastatic
sites (Supplementary Table 2). However, ENTPD1 and NT5E,
which encode genes that degrade eATP to eADO, were more
highly expressed in bone metastases than in metastases to other
sites (Figure 3A),top. We next investigated which receptors
are activated by the excess eADO formed by eATP hydrolysis
and found increased expression of ADORA3, encoding A3R,
in bone metastases (Figure 3A),top. We also analyzed gene
expression in metastatic prostate cancer (GSE74685) and
found a similar expression pattern, with ENTPD1, NT5E,
and ADORA3 upregulation in bone metastases than in other
metastases (Figure 3A), bottom.

After determining that these three genes are more highly
expressed in bone metastases than in other metastases, we
further compared their expression between bone metastases and
primary tumors. ENTPD1, NT5E, and ADORA3 showed higher
expression in bone metastases than in primary breast cancers
(Figure 3B),top, GSE47561. Similarly, castrate-resistant bone

metastases had higher expression of these three genes than did
primary prostate cancer (Figure 3B), bottom, GSE32269. Taken
together, we demonstrated that the expression of two genes that
hydrolyze eATP to eADO and the eADO receptor ADORA3
are more highly expressed in bone metastases than in other
metastases or in primary tumors.

High expression of ENTPD1, NT5E, and
ADORA3 in primary ER+ breast cancer
is correlated with lower distant
metastasis-free survival, overall
survival, and disease-specific survival

Next, we investigated whether primary tumors with higher
expression of these genes are more likely to metastasize to
bone. Since bone is the site of first metastasis for the majority
of patients with ER+ breast cancer, (35) distant metastasis-
free survival in these patients should largely reflect bone
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A B

FIGURE 2

ENTPD1/NT5E/ADORA3 signature is correlated with breast cancer osteotropic signature and lower survival in bone patients with established
bone metastases. (A) A previous study (28) found 25 genes to be upregulated in circulating breast cancer cells from patients with bone
metastases compared to patients with extraskeletal metastases, forming a putative bone metastasis-specific signature. We compared
ENTPD1/NT5E/ADORA3 expression signature to the 25-gene osteotropic signature in the ER+ TCGA BRCA cohort. A strong Pearson correlation
(r = 0.5303) was observed. Individually, ENTPD1, NT5E, and ADORA3 were each correlated r > 0.2. These data imply that the 3-gene signature is
not an overall metastasis marker in ER+ breast cancer and is specifically associated with bone metastasis. (B) Kaplan Meier plots displaying
overall and progression-free survival in patients with ER+ breast cancer bone metastasis. In GSE124647, gene expression was measured in bone
biopsy samples. We split this cohort into high- and low-expressing ENTPD1/NT5E/ADORA3 signature (calculated by the average expression
[log2(norm_count + 1)] of the three genes, and separated by median). In this n = 13 cohort, high 3-gene signature expression was associated
with lower overall (HR = 6.75) and progression-free (HR = 3.718) survival, further suggesting ectonucleotidase and ADORA3 expression enables
breast cancer growth in the bone microenvironment. *p < 0.05; **p < 0.01; ****p < 0.0001.

metastasis. Primary breast cancer microarray expression studies
that reported this outcome were normalized and pooled by
KMPlot (24). We found the high-expression cohort for each
of ENTPD1, NT5E, and ADORA3 had significantly lower
distant metastasis-free survival (Figure 1A). None of the other
adenosine receptors was significantly correlated with distant
metastasis in patients with ER+ breast cancer (Supplementary
Figure 2A). To further explore how gene expression in primary
tumors might be related to prognosis, we analyzed overall
and disease-specific survival among those with ER+ tumors
among the TCGA BRCA cohort. The top half of the 3-
gene expression signature (calculated by the average expression
[log2(norm_count + 1)] of the three genes, and separated
by median) fared more poorly in both outcomes, with an
especially strong relationship with disease-specific survival
(Figure 1B). Additionally, there was generally a stronger
relationship with the signature than each individual gene
(Supplementary Figure 2B). The ENTPD1/NT5E/ADORA3
expression signature was not correlated with either outcome
in ER−, HER2-enriched, or basal breast cancers, which do
not share the same metastatic behavior (Supplementary
Figure 3A), nor were signatures combining expression of the
ectonucleotidases with any of the other aADO receptors in ER+

tumors (Supplementary Figure 3B).

Because these outcomes do not measure bone metastasis
specifically, we compared the 3-gene signature to an osteotropic
breast cancer gene signature (28). To determine this signature,
targeted RNA-Seq was performed on circulating cancer cells
of patients with metastatic breast cancer. There were 25 genes
upregulated in patients with bone metastases compared to
patients with extraskeletal metastases. The expression signature
combining these 25 genes exhibited a strong correlation with
the 3-gene ENTPD1/NT5E/ADORA3 signature in ER+ breast
cancers in the TCGA BRCA cohort, and this relationship is also
observed with each of the three genes individually (Figure 2A).
Because these genes are associated with metastasis to bone, but
not to other locations, this suggests that our data are specifically
reflective of bone metastasis and not of the overall metastatic
ability or aggressiveness.

ENTPD1/NT5E/ADORA3 gene
signature in breast cancer bone
metastases can predict poor prognosis

If the higher expression of these genes facilitates breast
cancer growth in bone, then their elevated expression in
already established bone metastases may promote further tumor
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progression. We compared overall survival and progression-
free survival in ER+ breast cancer bone metastases based on
the median expression of the three-gene signature. Patients
whose tumors were above the median expression level had
a significantly lower overall survival and progression-free

survival than patients below the median expression (Figure 2B).
Notably, expression of none of these genes was individually
correlated with overall survival (Supplementary Figure 4,
top) and only ADORA3 was significantly correlated with
progression-free survival (Supplementary Figure 4, bottom).
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FIGURE 3

ENTPD1, NT5E, and ADORA3 expression are much higher in bone metastases than in other metastases or primary tumors. (A) Relative
expression of ENTPD1, NT5E, and ADORA3 in metastatic breast and prostate tumors in various organs in GEO datasets GSE14020 and
GSE74685. We found that ENTPD1, NT5E, and ADORA3 tend to be more highly expressed in breast and prostate cancer bone metastases (red)
than in metastases to other sites (black). (B) We found significantly higher expression of ENTPD1, NT5E, and ADORA3 in bone metastases (red)
than in primary breast (black, GSE47561) or prostate (black, GSE32269) cancers. One-way ANOVA with Dunnett’s post-test was used in (A) and
unpaired Student’s t-test was used in (B). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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FIGURE 4

ENTPD1/NT5E/ADORA3 expression level is higher in primary prostate tumors that metastasize to bone. Gleason scores reflect the
undifferentiation of prostate tumors. Tumors are given two scores that are often added together such as in TCGA PRAD dataset. Tumors with
higher scores are more likely to metastasize to bone and other poor outcomes (36). (A) An increasing Gleason score is associated with higher
ENTPD1/NT5E/ADORA3 expression signature in the DKFZ but not the TCGA PRAD cohort. (B) 3-gene expression signature is higher in tumors
that form bone metastases, than in tumors that do not progress or cause other events. (A) One-way ANOVA with test for trend, (B)
Kruskal–Wallis test with multiple comparisons. ∗p < 0.05.
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This analysis provides further support for the hypothesis that
the eATP to eADO hydrolysis might be directly linked to the
process of breast cancer bone metastases and overall survival.

Higher expression of
ENTPD1/NT5E/ADORA3 gene
signature in primary prostate cancer is
associated with bone metastasis, but
not other progression

We first compared their expression levels across Gleason
scores, a measure of tumoral undifferentiation where
tumors are given two scores for the dominant and non-
dominant phenotype that are often combined into one
score. Higher Gleason scores are associated with a worse
prognosis and a greater likelihood of recurrence, bone
metastasis, and mortality (36–38). There was a significant
trend of increasing signature expression with increasing
Gleason scores in the German Cancer Research Center
cohort (Deutsches Krebsforschungszentrum, DKFZ), (39)
but not TCGA PRAD cohort (Figure 4A). Thus, the
ENTPD1/NT5E/ADORA3 signature does not have a strong
relationship with undifferentiation. Notably, most patients
who present with localized disease and high Gleason scores
do not suffer from bone metastasis in the next 15 years (40).
Further, Gleason score and the National Comprehensive Cancer

Network combined clinicopathologic score are outperformed
by the FDA approved Decipher R© Genomic Classifier (41, 42).
In the TCGA PRAD cohort, bone-event-causing primary
tumors had higher 3-gene signature expression than did those
that did not progress, and those that caused other new tumor
events, which in this cohort comprise biochemical recurrence,
new primary tumor, locoregional metastasis, and distant
metastasis to other locations (Figure 4B). This suggests that the
ENTPD1/NT5E/ADORA3 expression signature is specific for
bone metastasis and not of other disease progressions.

Extracellular ATP and A3R antagonist
MRS-1220 inhibit breast and prostate
cancer cell growth in 3D culture, and
non-hydrolyzable ATP analog ATPγS
causes stronger reduction

We next used relevant in vitro models to determine whether
these data reflect a confounding variable or if higher expression
of these genes may facilitate bone metastasis. We first compared
the effects of ATP and its non-hydrolyzable analog ATPγS on
MCF-7, (43) an ER+ breast cancer cell line and 22Rv1, (44)
a prostate cancer cell line that originated from the primary
tumor of a patient with bone metastasis (45) and that generates
mixed osteoblastic and osteolytic tumors in bone (46). In 3D
culture conditions ATPγS strongly inhibited growth of MCF-7

FIGURE 5

Extracellular ATP (eATP) inhibits MCF-7 and 22Rv1 breast cancer cell growth in 3D culture and non-hydrolyzable ATP analog ATPγS causes
stronger reduction. We cultured 2000 MCF-7 (A) or 22Rv1 (B) cells in 3D culture conditions for 1 week with 1mM ATP, ATPγS or vehicle before
acquiring images using a Keyence BZ-X710 microscope and determining sphere volume. ATP significantly inhibited the sphere size compared to
vehicle, and its non-hydrolyzable analog significantly further reduced sphere size. One-way ANOVA with Tukey’s post-test was used for pairwise
comparisons. ∗p < 0.05; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001. Scale bar = 200 µm.
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cells compared to ATP, which is subject to hydrolysis by CD39
and CD73 encoded by ENTPD1 and NT5E genes, respectively.
Both conditions inhibited growth compared to PBS vehicle
control (Figure 5A). Similar results were obtained in 22Rv1
cells (Figure 5B). These data show that eATP signaling inhibits
the growth of breast and prostate cancer cells and that eATP
hydrolysis is a mechanism that averts these effects. We also
investigated how inhibition of A3R, encoded by the ADORA3
gene, affects growth in 3D culture using MRS-1220, a specific
A3R inhibitor. We found dose-dependent growth inhibition in
both MCF-7 and 22Rv1 cells in 3D culture with an EC50 of
39 nM in MCF-7 cells and 13 nM in 22Rv1 cells (Figure 6).
Together, these data demonstrate the importance of eATP
hydrolysis and the reliance on A3 signaling for ER+ breast
cancer and prostate cancer cells.

ER+ breast cancer cell lines are
uniquely sensitive to non-xanthine
adenosine receptor antagonists in the
drug repurposing Hub

The Drug Repurposing Hub measures differential sensitivity
of numerous cell lines to pharmacologic agents (33). We
analyzed non-xanthine A3 antagonists CGS-15943, SCH-58261,
and MRS-1220 because of their ability to block adenosine

receptors without phosphodiesterase inhibition (47). The results
strongly supported our hypothesis. Breast cancer cells, especially
ER+ ones, are uniquely sensitive to these three drugs at 2.5
µM (Figure 7). Furthermore, 22Rv1 cells displayed similar
sensitivity as ER+ breast cancer cells, though there were too few
prostate cancer cell lines to draw conclusions about prostatic
cell lines as a whole. It should be noted, that using this
technique, there is a limitation in the lack of connection of this
data with the metastatic potential and targeting of the cancer.
However, given the prevalence of bone metastasis in breast and
prostate cancer, coupled with our other results, we generalize
that treatment could lead to far-reaching impact. These data
suggest that A3R inhibition may be a new therapeutic avenue for
the treatment or prevention of ER+ breast and prostate cancer
bone metastases and further highlights the importance of eADO
signaling in cancer.

Discussion

Metastasis is an inefficient process, and few disseminated
cells successfully become overt metastases (48). Bone is a highly
vascularized tissue (49) easily accessible by circulating cancer
cells. An overwhelming majority of cancer deaths are caused by
metastasis (50, 51) and bone is the most common metastatic
site for ER+ breast and prostate cancers (1, 2). Understanding

FIGURE 6

Adenosine A3 receptor antagonist MRS-1220 inhibits MCF-7 and 22Rv1 cells in a dose-dependent manner. We incubated 2000 MCF-7 (A) and
22Rv1 (B) cells in 3D culture conditions for 1 week before determining sphere volume. A dose-dependent inhibition was observed in both cell
lines, with EC50 values of 39 nM (95% CI 11.27–110 nM) in MCF-7 cells and 13 nM (95% CI = 8.629–18.39 nM) in 22Rv1 cells. Scale bar = 200 µm.
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FIGURE 7

Breast cancer cell lines, especially ER+ ones, are uniquely sensitive to non-xanthine adenosine receptor antagonists in large-scale PRISM screen
performed by The Drug Repurposing Hub. In the Drug Repurposing Hub, numerous different cell lines are barcoded, pooled, and relative
barcode frequency is collected after drug treatment. Non-xanthine A3 antagonists CGS-15943, SCH-68261, and MRS-1220 each decreased
relative quantities of ER+ breast cancer cell lines relative to other cell lines. Data were analyzed on DepMap portal using the limma R statistical
package. Significant differences were considered by p < 0.0005.

the factors that prevent most breast and prostate cancer cells
from colonizing this new environment and how some cells
bypass these barriers is vital for preventing and treating bone
metastases, and also determining which tumors may be low
risk. Despite advances in bone metastasis treatment, clinical
outcomes after bone metastases remain poor (5, 7, 52, 53).
Prevention of breast cancer bone metastases by bisphosphonates
is a rare example of a drug targeting a potential metastatic site,
effectively reducing metastasis there (13).

Bisphosphonates have long been known to induce apoptosis
of osteoclasts (54). We and others have reported that
bisphosphonates also promoted osteocytes, the predominant
bone cell, to release ATP to the extracellular environment

through Cx43 hemichannels and that this decreases triple-
negative breast cancer growth in bone (15–17, 55). We further
found that eATP signaling inhibits and eADO promotes growth
and migration in these cell lines. The present study provides
new findings in several ways. We showed that expression of a
three-gene expression signature comprising ENTPD1, NT5E,
and ADORA3 in primary ER+ breast and prostate cancers
was correlated with bone metastases. The fact that these genes
were much more highly expressed in bone metastases than in
other locations or in primary tumors lends further support
for their role in metastasizing bone, a tissue rich in Cx43
hemichannels that release ATP. The growth inhibitory effect of
the non-hydrolyzable ATP analog ATPγS compared to eATP
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on 3D cultures of prostate (22Rv1) and ER+ breast (MCF-
7) directly showed the importance of these cells’ ability to
evade their environment from eATP. We also found that A3R
inhibition by MRS-1220 inhibits growth in 3D culture of
both cell lines and a wide range of ER+ breast cancer cell
lines. Altogether, our data may support a model shown in
Figure 8. Osteocytes release ATP to the bone microenvironment
that inhibits colonization of ER+ breast and prostate cancers
through the activation of one or more ATP receptors. However,
in cells that have a greater ability to hydrolyze eATP to eADO
through ENTPD1 and NT5E expression, there is less eATP-
mediated inhibition. Instead, the generated eADO activates A3
receptor, enabling bone colonization. Future studies should be
done, utilizing technology such as siRNA or CRISPR-KO/KD,
to determine the direct role of ENTPD1, NTSE, and ADORA3
in cancer cell behavior.

There is a striking difference between breast and prostate
cancer bone metastases, with tumors from breast usually
displaying an osteolytic, bone destructive phenotype, while
tumors from prostate usually adopting an osteoblastic
phenotype with increased localized bone density (56). With

our data consistent between two very different phenotypes, it
is possible that skeletal metastases from other primary tumors
share some of the same vulnerabilities and mechanisms.

Bone metastasis is a usually fatal complication that can
occur with many cancer types. Unlike other locations, there
are treatments that target bone rather than the cancer cells.
So far, prophylactic bone metastasis trials have reported
mixed results (13, 57, 58). However, these drugs may not be
targeted at the right cohort of patients. Because of the long
time span in which a metastasis can occur, many available
genomic classifiers were designed to predict recurrence (59,
60). These often have limited predictive value for other
outcomes. Our data suggest that there may be gene(s)
in bone metastasis expression shared between cancers of
multiple primary sites. Thus, the ENTPD1/NT5E/ADORA3
signaling axis has the potential to be used as a biomarker
or therapeutic target to predict, prevent, or treat bone
metastases from multiple sites. Future work should focus on
the collection and analysis of this gene signature from primary
and bone metastatic cancer sites as well asfrom a broader
set of patients.

FIGURE 8

A proposed model of the role of purinergic signaling in breast and prostate cancer bone colonization. An estimated 42 billion human osteocytes
reside in a lacuna-canalicular network with an estimated surface area of 215 m2 and an extracellular volume of 24 ml (70). Connexin 43
hemichannel activity is promoted by bisphosphonate treatment and in response to shear stress such as seen in exercise, through which ATP is
released that usually inhibits breast and prostate cancer growth in bone through ATP receptor stimulation. However, CD39 and CD73 (encoded
by ENTPD1 and NT5E) work in concert to hydrolyze the extracellular ATP in the bone microenvironment to ADO, where it is able to activate A3
receptors and promote growth. Figure was made using BioRender.
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Inhibiting antibodies against CD39 (encoded by ENTPD1)
and CD73 (encoded by NT5E) have recently been developed
and are in clinical trials in an immunotherapeutic context
(19). Adenosine receptor antagonism, especially of A2A, is also
a promising immune stimulator (61, 62). Our data suggests
that a separate mechanism inhibiting CD39 and CD73 may be
particularly effective in treating or preventing bone metastasis
if used in combination with an A3 inhibitor. These classes
of drugs may have further enhancement in combination with
bisphosphonate treatment.

Preventing bone metastasis may also reduce metastases to
other locations. In the overwhelming majority of patients with
metastatic ER+ breast cancer, the initial presentation includes
bone (35), and most patients who first present with skeletal
metastases later develop metastases at other locations (63).
Genetic evidence of bone metastases seeding other metastases
has been found for both breast (64) and prostate (65–
67) cancer. The bone microenvironment has been shown in
experimental models to enhance the plasticity of ER+ breast
cancer cells (68) and strongly increase the ability of breast
and prostate cancer cells to colonize in the lung and other
organs from leg tumors (69). Thus, the importance of studying
and preventing bone metastasis may be even higher than is
currently appreciated.

Conclusion

A 3-gene signature composed of ENTPD1, NT5E, and
ADORA3 is associated with a greater chance of bone metastasis
in ER+ breast and prostate cancers. These genes are more
highly expressed in bone metastases than in other metastases
or primary tumors. These genes encode enzymes that hydrolyze
eATP to eADO, and an eADO receptor. In 3D culture, eATP
decreased spheroid sizes of MCF-7 and 22Rv1 ER+ breast
and prostate cancer cell lines. ATPγS, which is resistant to
hydrolysis, further decreased spheroid sizes. These cell lines are
sensitive to MRS-1220, a specific A3R inhibitor. ER+ breast
cancer cell lines are sensitive to adenosine receptor inhibition.
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Purpose: The lack of finely annotated pathologic data has limited the

application of deep learning systems (DLS) to the automated interpretation

of pathologic slides. Therefore, this study develops a robust self-supervised

learning (SSL) pathology diagnostic system to automatically detect malignant

melanoma (MM) in the eyelid with limited annotation.

Design: Development of a self-supervised diagnosis pipeline based on a public

dataset, then refined and tested on a private, real-world clinical dataset.

Subjects: A. Patchcamelyon (PCam)-a publicly accessible dataset for the

classification task of patch-level histopathologic images. B. The Second

Affiliated Hospital, Zhejiang University School of Medicine (ZJU-2) dataset –

524,307 patches (small sections cut from pathologic slide images) from

192 H&E-stained whole-slide-images (WSIs); only 72 WSIs were labeled

by pathologists.

Methods: Patchcamelyon was used to select a convolutional neural network

(CNN) as the backbone for our SSL-based model. This model was further

developed in the ZJU-2 dataset for patch-level classification with both

labeled and unlabeled images to test its diagnosis ability. Then the algorithm

retrieved information based on patch-level prediction to generate WSI-level

classification results using random forest. A heatmap was computed for

visualizing the decision-making process.

Main outcome measure(s): The area under the receiver operating

characteristic curve (AUC), accuracy, sensitivity, and specificity were used to

evaluate the performance of the algorithm in identifying MM.
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Results: ResNet50 was selected as the backbone of the SSL-based model

using the PCam dataset. This algorithm then achieved an AUC of 0.981 with an

accuracy, sensitivity, and specificity of 90.9, 85.2, and 96.3% for the patch-level

classification of the ZJU-2 dataset. For WSI-level diagnosis, the AUC, accuracy,

sensitivity, and specificity were 0.974, 93.8%, 75.0%, and 100%, separately. For

every WSI, a heatmap was generated based on the malignancy probability.

Conclusion: Our diagnostic system, which is based on SSL and trained with

a dataset of limited annotation, can automatically identify MM in pathologic

slides and highlight MM areas in WSIs by a probabilistic heatmap. In addition,

this labor-saving and cost-efficient model has the potential to be refined to

help diagnose other ophthalmic and non-ophthalmic malignancies.

KEYWORDS

artificial intelligence - assisted bioinformatic analysis, self-supervised deep learning,
pathology, tumor diagnosis, melanoma

Introduction

Malignant melanoma (MM) is an intractable cutaneous
cancer originating from melanocytes with an extremely high
mortality rate (65% of all skin cancer deaths) (1). Although
eyelid melanoma accounts for only ∼1% of all cutaneous
melanomas, it can camouflage melanocytic nevus (the most
common benign eyelid tumor) both in the naked eye and under
a microscope. Its primary diagnosis and management fall within
the realm of ophthalmology. Despite the similar appearance,
these two tumor types have markedly different biological
behaviors, corresponding to distinct prognoses and treatments.
Therefore, it is critically important to distinguish between the
two diseases (2, 3). Like other types of tumor, the gold standard
for MM diagnosis still relies on manual histopathological
interpretation, which is subjective, laborious, tedious, and
challenging for pathologists and ophthalmologists lacking
experience encountering eyelid melanoma (3). Computer-aided
diagnosis (CAD) in eyelid melanoma cases is urgently needed to
make a comprehensive and objective pathological diagnosis (4).

The advancement of artificial intelligence (AI) technology
has cast light both on natural images and medical areas.
Compared with other fields, the automatic diagnosis based
on histopathological images confronts more challenges due to
the uniqueness of pathological data. Firstly, the digitization of
traditional glass slides needs additional scanning equipment.
Secondly, most pathological images are gigapixels, which are
tremendously large: about 470 whole slide images (WSIs)
scanned at 20×magnification (0.5 µm pixel−1) contain roughly
the same number of pixels as the entire ImageNet dataset
(5). The diagnosis of pathology highly depends on its cellular
characteristics, which means we need to annotate and analyze
at the patch (a small tile cutting from WSI) level first.

Such a procedure requires tremendous annotations by expert
pathologists. Thirdly, based on the incidence of ocular tumors,
the pathology slides are more valuable than fundus images or
optical coherence tomography (OCT) images, which could be
obtained in a routine follow-up. The lack of expertise to make
high-quality annotations further restricted the number of usable
pathology slides.

However, the availability of medical specialists to annotate
digitized images and free text diagnostic reports does not
scale with the need for large datasets required to train robust
computer-aided diagnosis methods that can target the high
variability of clinical cases and data produced. Most previous
attempts in computational pathology are fully supervised
learning studies. The automated system of pathological images
requires a sufficient quantity of images with annotations (6–9).
There are several drawbacks to this procedure. First, collecting
unlabeled digitized slides only needs technicians to scan, but
labeled images need extra experts with many years of medical
education. If unlabeled medical images could be used in deep
learning analysis, the usable datasets could be significantly
expanded. Moreover, the laborious annotation has the potential
to introduce manual label errors, as most current annotations
were carried out at lower magnification.

Moreover, some boundaries of the tumor area are
ambiguous with normal mixed cells and cancer cells, which
even perplexes the annotation process. Last but not least, the
unlabeled images by themselves may still include substantial
clinical information. From the view above, generating a
diagnostic system that can utilize labeled and unlabeled images
may greatly benefit the diagnosis and treatment of the disease.

Self-supervised learning (SSL) is a new type of unsupervised
learning algorithm to extract and analyze features of given data
automatically. SSL has been applied to input data in various
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models, including RGB image (10), videos (11), medical image
(12), mass spectrometry data (13), or multimodal data (14). The
high efficiency of SSL makes it suitable for auxiliary medical
uses. SSL requires only a limited quantity of labeled data and
a relatively abundant quantity of unlabeled data for the machine
to learn features. This perfectly meets the clinical conditions
in which annotating pathological images is laborious, time-
consuming, and probably inaccurate. We generate a diagnostic
system based on Bootstrap Your Own Latent (BYOL), a
new approach to SSL proven to achieve better performance
compared to contrastive methods of other SSL algorithms (15).
Generally, an original gigapixel-level pathological image is too
complex for a deep learning system (DLS) to analyze. Therefore,
we divided images into small patches. After pretreating these
patch-level images, we input the patches of unlabeled images
into the SSL network for extracting features as a pretraining
task. Subsequently, combined with other labeled images, these
learned features are repurposed to improve the classification
of the network and thus increase data utilization. Using a
random forest model, we extrapolated patch-level classification
to whole-slide-image-level classification. Apart from the above,
we also generate a heatmap of pathologic images to interpret the
decision-making process.

This study aims to apply an SSL network to diagnose
and classify MM and non-malignant areas from digital H&E
stained pathological slides. To our knowledge, no other SSL
networks have been used in detecting eyelid melanoma; we
demonstrate the feasibility of using limited labeled data to
establish a reliable eyelid MM detection model and describe a
strategy for highlighting specific areas of concern.

Methods

This study was approved by the Second Affiliated Hospital,
Zhejiang University School of Medicine (ZJU-2) Ethics
Committee (No. Y2019-195) and the study adhered to the
Declaration of Helsinki. In this study, we applied self-supervised
learning to make eyelid melanoma identification. Our algorithm
was first developed and tested in PatchCamelyon and then in
the ZJU-2 dataset. Digitized pathologic images of slides were
cut into small patches. The classification was based on these
patch-level images and then extrapolated to WSIs. Besides, the
algorithm also generated a heatmap to highlight the exact lesion
area in WSI and improve the interpretability of the decision-
making process of our model. The whole study workflow is
summarized in Figure 1.

Datasets

A. PatchCamelyon (PCam): a publicly accessible dataset
containing 327680 annotated color images (96 × 96 pixels)
extracted from histopathologic scans of lymph node sections

(16). The dataset uses agreed-upon metrics widely to compare
different convolutional neural networks (CNNs) as the
backbone. In this study, we used PCam as the benchmark for
our model and compared the performance of our model to
other CNNs or algorithms. The original data of PCam is shown
in Figure 2A. The images were divided into training, validation,
and testing.

B. ZJU-2 dataset: 192 whole-slide images (WSIs) from
formalin-fixed paraffin-embedded (FFPE) pathological slices
(Table 1). We retrospectively included 160 patients from
the Second Affiliated Hospital, Zhejiang University School of
Medicine, between January 2005 and December 2017, without
other types of special selection. All slides were diagnosed by
a minimum of two board-certified pathologists using H&E
staining (if necessary, additional immunohistochemical staining
was used) and traditional microscopy. There was no divergence
in the diagnosis of all samples in this study. A separate
technician working within the pathology department then
scanned the selected slides and digitized these slides into
WSIs at 400-fold magnification using a KF-PRO-005 (KFBio,
Zhejiang, China). The WSIs were divided into four sets:
pretraining, training, validation, and testing set. Besides the
WSIs in the pretraining set, images from the other three
sets were reviewed and labeled by an additional independent
pathologist (>10 years of experience). By using window sliding,
192 whole slide images (WSIs) were cut into a total of 524,307
patches (256 × 256 pixels) for analysis (Figure 2B). The
detailed image data partition is shown in Table 1. It’s worth
noting that only delineated tumor areas of MM slides were
defined as malignant, and other patches were defined as non-
malignant.

Self-supervised learning approach

We used Bootstrap Your Own Latent (BYOL) for learning
features from unlabeled WSIs in this study (15). The study
workflow was shown in Figures 1A–C. The architecture is
shown in Figure 1C. In detail, it consists of two neural
networks: online networks and target networks. It produces two
augmented views (v and v’) from a single image by applying
two different distributions of image augmentations: one with a
random horizontal flip and another with a random horizontal
flip and gaussian blur (t and t’). Two identical CNNs with a
different set of weights then output the representation (y and
y’) and projection (z and z’) through a multilayer perceptron
(MLP). On the online branch, we output the prediction p,
making the architectural asymmetry. After normalizing p and
z’, we defined the mean squared error between normalized
predictions and target projections, thereby generating the loss
(LSSL−linear

θ,ξ ). By reversely feeding t to the target network and
t’ to an online network, we computed the loss (LSSL−linear

θ,ξ ′ ) and

minimized the L2 loss =LSSL−linear
θ,ξ +LSSL−linear

θ,ξ ′ with a stochastic
optimization step, as depicted by the unidirectional gradient in
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FIGURE 1

Study workflow. (A) Pathologic slides were acquired from eyelid tumors and transformed into digitized whole-slide images (WSIs). An
experienced pathologist labeled ∼25% WSIs by delineating the tumor areas in WSIs. (B) Diagnostic system. (a) Pretraining is based on Bootstrap
Your Own Latent (BYOL), a new approach to SSL. Patches from unlabeled WSIs were input into two identical convolutional neural networks
(CNNs) with two different sets of weights for learning features and comparing the outputs with each other as pretraining. A load of learned
image representation was then generated. (b) Training for patch-level classification. Patches from labeled WSIs (training and validation sets)
were input into a CNN for training together with the load from the pretraining round, and training weights were acquired. The diagnostic ability
of patch-level images was evaluated in the testing set. A value of the malignancy probability of every patch is then generated (not shown). (c)
Extrapolation to image-level classification. Patches were embedded back into the corresponding WSIs, and by feeding back the malignancy
probability of every patch, a probabilistic heatmap for WSIs was generated. Based on the predicted patch value, the threshold transformation
was used to extract 31 features. The WSI-level classification based on random forest (RF) was then assigned. (C) BYOL architecture. In 2 CNNs
(fθ and fξ ) with a different set of weights, θ are the trained weights, and ξ is an exponential moving average of θ. At the end of the training,
parameter θ is acquired with the minimum of L2 loss, and y is used as the learned representation—Val, validation; MLP, multilayer perceptron;
MM, malignant melanoma; NMM, non-malignant melanoma.
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FIGURE 2

Data distribution. (A) Detailed data of PatchCamelyon (Pcam). (a) Examples of images in PatchCamelyon. (b) The data of original image
grouping. (B) Dataset of ZJU-2. (a) Examples of pathological digitized WSIs with or without annotations and patches from WSIs. (b) Patches are
divided into four sets: pretraining, training, validation, and testing sets.

Figure 1C. The Adam optimizer is used, and the learning rate
is set as 3e-4. The learning rate of SSL-linear is 0.01, and the
momentum is set at 0.9. Four NVIDIA TITAN Xp GPUs were
used for model training.

Self-supervised learning-linear for
patch-level classification

The self-supervised algorithm needs to use a CNN model
as its base algorithm or backbone. When choosing the
backbone candidates, we took the size of our datasets and
the depth, stability, and memory cost of different CNNs
into consideration when choosing the backbone candidates.
So, we started with five commonly used CNNs (VGG16,
ResNet18, ResNet50, DenseNet121, EfficientNetB7) for initial
fully supervised learning tests in PCam (17, 18). After choosing
the CNN with the best performance as the backbone to
generate the SSL-linear, we moved on to the next experiment
stage–comparing different self-supervised algorithms. The SSL-
linear (No Pre) and SSL-linear (Frozen) methods were used
as control groups to prove that both stages are necessary for
the SSL-linear method. SSL-linear (No Pre) did not undergo a
pretraining process, and SSL-linear (Frozen) froze the backbone
CNN model’s parameters during the training process, which
is a traditional way of self-supervised learning. By comparing

SSL-linear to the traditional classifiers, including ResNet50, SSL-
linear was proved to be valid and feasible for pathological
images. The algorithm was then applied to learn features and
make classifications from patch-level images in four sets of
the ZJU2 dataset.

Model performance was evaluated by accuracy (Acc),
sensitivity (Sen), specificity (Spe), and the κ statistic (Cohen’s
kappa coefficient). For every patch, malignancy probability was
calculated between 0 and 1 (1 refers to definitively malignant
and is presented in red on the heatmap, while 0 refers to
completely NM and is presented in blue) before feeding this
estimate back into the WSI and generating the probabilistic
heatmap for the full WSI.

Feature extraction and
whole-slide-image-level classification
using random forest

The original probabilistic heatmap was reprocessed, and 31
features were extracted, including the number of tumor areas;
the proportion of tumor areas in the whole tissue; the largest
area of the tumor; the longest axis of the largest tumor area; the
prediction value across the tumor areas; the number of positive
pixels; max, mean, variance, skewness, and kurtosis of pixel
numbers in all tumor areas; perimeter, eccentricity, and solidity
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07 in tumor areas (6). These features were then used for WSI-level

classification. The probabilistic input heatmap was a single-
channel image the same size as the original WSI. Each pixel was
refilled based on the prediction results (malignancy probability
between 0 and 1). The 31 tumor features were encompassed
with a threshold of 0.5. For all input objects, pixels greater
or equal to the threshold value were assigned a pixel value of
255, while those below the threshold were set to 0. Following
the extraction of these 31 features, WSI-level classification was
applied. The random forest classifier shared the same training
sets as SSL-linear, but SSL-linear analyzed patch-level images
while the random forest classifier analyzed WSIs. The extracted
31 features with label information were sent into the random
forest model for prediction.

Statistical analysis

In this study, we plotted receiver operating characteristic
(ROC) curves to evaluate the performance of different
classification algorithms. Classification metrics were calculated,
including Acc, Sen, Spe, κ score (Cohen’s kappa), balanced
accuracy (B_Acc), and the area under the receiver operating
characteristic curve (AUC) for each model. B_Acc is more
sensitive to imbalanced data and can be used to address the
inequality between malignant and NM data sets. All statistical
analyses were conducted using the programming language
Python (V.3.5.4).

Results

Classification ability in
PatchCamelyon – the public dataset

In the PCam dataset, ResNet 50 outperformed the other
four commonly used CNNs (VGG16, ResNet18, DenseNet121,
and EfficientNetB7) in the supervised study task (Table 2,
Group 1) and was chosen as the backbone to generate the
SSL-linear algorithm. In the supervised study, among these
5 CNNs, ResNet50 had the highest AUC, 0.950, spe 90.1%,
indicating the best performance. EfficientNetB7 had the highest
Acc 88.4%; B_Acc 88.4%; κ score 0.767; Spe 92.0%. However,
the training time of EfficientNetB7 (83.6 h) is approximately 5.5
times longer than ResNet50 (14.7 h). The volume of parameters
of EfficientNetB7 (63.8 M) is 2.7 times larger than ResNet50
(23.5 M). The long training time and high demand for the
memory capacity of graphical processing units (GPUs) make
it impractical to use EfficientNetB7 in clinical settings. The
comparison experiments of various networks also verified the
rationality of the selection. Second, in a self-supervised study,
we evaluated and compared the performance of SSL-linear and
ResNet50 with different proportions of unlabeled pretraining
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TABLE 2 Results of classification task in Patchcamelyon (PCam).

Pretrain: Train Method Acc (%) B_Acc (%) κ score Sen (%) Spe (%) AUC

Ratio

0:10 (Group 1) VGG16 87.8 87.8 0.755 88 87.5 0.949

ResNet18 85.9 85.9 0.718 82 90 0.929

ResNet50 88.2 88.2 0.765 86.3 90.1 0.950

DenseNet121 87.8 87.8 0.756 85.4 90.2 0.947

EfficientNetB7 88.4 88.4 0.767 84.7 92.0 0.941

Veeling et al. (17) 89.8

Mohamed et al. (18) 89.2

5:5 (Group 2) ResNet50 (No Pre) 84.2 84.2 0.685 84.1 84.4 0.923

SSL-linear (No Pre) 84.8 84.8 0.697 78.4 91.2 0.925

SSL-linear (Frozen) 75.7 75.7 0.514 81.7 69.7 0.828

SSL-linear 86.1 86.1 0.723 82.3 89.9 0.939

7:3 (Group 3) ResNet50 (No Pre) 83.2 83.2 0.664 75 91.3 0.921

SSL-linear (No Pre) 83.8 83.8 0.677 75.4 92.3 0.931

SSL-linear (Frozen) 74.6 74.6 0.493 82.8 66.5 0.82

SSL-linear 85.4 85.4 0.709 82.6 88.3 0.932

The bold term represents the highest score within the same group.

and labeled training sets (Table 2, Group 2 and Group 3).
Notably, the pretraining set was derived from the original
training set in PCam. The single ResNet50 could not perform
self-supervised learning from the pretraining set, so when
we compared ResNet50 with SSL algorithms, ResNet50 only
learned features from the training set, which was identical to
patches in the training sets of other SSL algorithms. The results
presented that in both the 5:5 and 7:3 proportions we used
in this task, SSL linear achieved the best overall performance.
The AUC, Acc, B_Acc, κ score were 0.939, 86.1%, 86.1%,
0.723 for the 5:5 proportion and 0.932, 85.4%, 85.4%, 0.709
for the 7:3 proportion, which were higher than other groups.
It was worth noting that AUC, Acc, B_Acc, κ score, and spe
of SSL-linear in the 7:3 proportion group were higher than
ResNet50 in the 5:5 proportion group, indicating that SSL-linear
utilized less labeled patches but achieved a better performance
than ResNet50. Although the performance of SSL-linear didn’t
exceed that of the other four state-of-the-art supervised learning
algorithms, SSL-linear utilized only half or even less labeled data
to achieve accuracy with a gap smaller than 5%. The results
proved that SSL-Linear was both valid and feasible for patch-
level classification in pathological slide images, even with a
limited amount of labeled data. Detailed information is reported
in Table 2.

Patch-level classification of ZJU-2

The dataset distribution is summarized in Table 1. The
whole set contained 422,168 patches from 120 unlabeled images
and 102139 patches from 72 labeled images. The Acc, B_Acc,
κ score, Spe, Sen, and AUC were calculated to evaluate and

compare SSL-linear and five CNNs (Figure 3). After pretraining,
SSL-linear achieved the best performance compared to five
CNNS with identical training set, indicating the positive effect of
the pretraining round. The Acc, B_Acc, κ score, Sen, and AUC
were 90.9%, 90.7%, 0.817%, 85.2%, and 0.981 for SSL-linear,
higher than other groups. Detailed information is reported in
Figure 3.

Whole-slide-image-level classification
of ZJU-2

In a real-world clinical setting, clinicians worry about the
diagnosis of a certain slide instead of the small patches. Thus,
we evaluated the WSI classification ability of our algorithm
and compared it to five CNNs (Figure 4). The ROC curve was
plotted, and AUC was calculated. The AUCs for SSL-linear,
VGG16, ResNet18, and ResNet50 were 0.964, 0.935, 0.891, and
0.938, indicating that SSL-linear achieved the best performance
in the WSI-level classification task. For 32 WSIs in the testing
set of ZJU-2, SSL-linear failed to diagnose two malignant cases.
Other metrics were calculated: Spe 100%; Sen 75%; Acc 93.8%;
and κ score 0.818.

Visualization heatmap

To address the clinical scenario and increase the
interpretability of the diagnosis results of our algorithm,
we generated a probabilistic heatmap by integrating the
corresponding patches. The melanoma area in the slides was
highlighted red and indicated whether the surgical margin
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FIGURE 3

Comparison of different metrics for SSL-linear and 5 CNNs at the patch-level testing set of ZJU-2. κ, unweighted Cohen’s kappa; Acc, accuracy;
AUC, area under the receiver operating characteristic curve; B_Acc, balanced accuracy; CNN, convolutional neural network; ZJU-2, The
Second Affiliated Hospital, Zhejiang University School of Medicine.

FIGURE 4

The receiver operating characteristic (ROC) curves of SSL-linear and 5 CNNs. Performance of SSL-linear, VGG16, ResNet18, and ResNet50 for
melanoma detection for WSIs from ZJU-2. AUC, the area under the receiver operating characteristic curve; ZJU-2, The Second Affiliated
Hospital, Zhejiang University School of Medicine.
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FIGURE 5

Visualization heatmap of pathological slides based on SSL. (A) The original pathological slide with tumor area delineated (H&E staining, ×40
scanned). (B) Probabilistic heatmap of the tumor slides generated by the algorithm. Red indicates higher malignancy. (C) Overlap of the tumor
slide image and probabilistic heatmap.

was negative. Figure 5 demonstrates how our algorithm
suggests melanoma areas by heightening the malignant zone.
Figures 5A–C represent the original tumor slide image,
the corresponding probabilistic heatmap and the overlap
image, respectively. The overlapping image indicates that the
prediction area of our algorithm corresponds to the delineation
area.

Discussion

In this study, we trained a self-supervised learning model
with a limited number of labeled images and developed a
diagnostic system to detect eyelid MM in pathological slides.
By comparing the classification ability of VGG16 ResNet18 and
Resnet50 in PCam, ResNet50 was selected as the backbone
for our pathologic diagnosis algorithm to generate SSL-linear.
SSL-linear is based on BYOL and requires two identical CNNs
(ResNet50 in this study) with a different set of weights in the
pretraining round. In the patch-level classification task, SSL-
linear displayed higher diagnostic accuracy even with fewer
labeled images than the traditional ResNet50 classifier. We also
introduced two state-of-the-art fully supervised algorithms (17,
18) to compare the performance of PCam. While the algorithms
are closed source and utilize a training set 2 or 3 times larger than
SSL-linear, the performance gap in Acc is relatively acceptable
(< 5%). It is valid and feasible for SSL-linear to make patch-level
classifications in pathological slides. When applying to the ZJU-
2 dataset, SSL-linear also demonstrated high diagnostic ability

with the approximate 4:1 proportion of pretraining (unlabeled)
and training (labeled) set in the patch-level and gigapixel WSI-
level classification tasks. The computing systems that are used
to solve problems in AI are opaque (19). This makes the
diagnosis provided by the algorithm hard to convince both
doctors and patients. To address this issue, we engineered our
system to design a probabilistic heatmap highlighting malignant
areas for pathologists. The emphasis on the area merits extra
attention, and the indication of the negative margin is especially
meaningful in highly lethal cancers like melanoma in our case.

Recently, there has been constant progress in self-
supervised learning methods, such as contrastive learning,
clustering, Simple Siamese networks, BYOL, etc., optimizing the
performance of SSL algorithms and allowing transfer learning
for different tasks (15, 20–22). In the medical field, SSL
has been used to solve different problems with the type of
input data (12, 13, 23, 24). Among these studies, pathological
images have uniqueness for the following reasons. First, the
pathology department encounters a huge quantity of slides,
most of which won’t be scanned to transfer into WSIs. Second,
WSIs are at a gigapixel level with enormous information.
Therefore, making annotations of pathologic slides is laborious,
time-consuming, and requires a strong medical background.
Although some slides were transferred into WSIs, most WSIs
were not labeled; third, histopathological interpretation remains
the gold standard for diagnosing some diseases. Currently,
most research groups focus on improving the accuracy in the
field of automatic pathological diagnosis, and different kinds
of pathological images have been utilized. For instance, Ström
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et al. used labeled biopsy for algorithms to diagnose and grade
prostate cancer (24); Kather et al. used deep learning to predict
whether patients with gastrointestinal cancer respond well to
immunotherapy (25).

Despite various motivations, most studies relied on
sufficient ground truth labels of WSIs, which is difficult to attain
in clinical scenarios. SSL does not require as many labeled WSIs
as fully supervised learning and thus demonstrates the natural
advantages of dealing with WSI’s diagnosis. Some algorithms
based on SSL have been applied to pathology. For example,
Wataru et al. used their SSL-based algorithm to predict the
pathological diagnosis of patients with interstitial lung disease.
The algorithm achieved an AUC of 0.90 in the validation set and
0.86 in the testing set in diagnosing usual interstitial pneumonia
with an approximate 1:2 proportion of pretraining and training
set (4:1 proportion of pretraining and training set in the ZJU-
2 dataset) (26, 27). However, due to the difference in task and
labeling strategies, we cannot directly compare the performance
of our algorithm to other studies.

Moreover, most studies in this field have focused on
predicting common diseases. However, compared with
common diseases, which are more unlikely for pathologists
to misdiagnose, eyelid MM, the less common and dangerous
cancer, presents a more urgent need for automated diagnosis or
auxiliary diagnosis due to the lack of experience in encountering
MM. Besides, our algorithm SSL-linear makes good use
of unlabeled WSIs in reducing the burden of annotation
and enhancing data utilization while achieving considerable
performance in diagnosis.

To the best of our knowledge, it is the first study to
apply self-supervised learning algorithms to ocular pathological
research. With the approximate 4:1 proportion of pretraining
and training set, SSL-linear achieved high accuracy at detecting
MM area both in a patch (98.1%) and at WSI level (93.8%), out-
competing the other five traditional CNNs. SSL-linear shows
considerable diagnostic ability with limited labeled input data,
not only easing the burden of annotating many gigapixel images
but also providing relatively reliable diagnostic support for
pathologists, especially those less experienced. Additionally, our
diagnostic system takes only minutes to generate the output
prediction results together with a clear probabilistic heatmap.
For patients with MM, our diagnostic system can potentially
reduce the probability of misdiagnosis and diagnostic omission,
thus promoting the early treatment of MM. For clinicians, they
could take advantage of telemedicine for rapid intraoperative
consultation feedback. For pathologists, the highly malignant
area indicated by the heatmap is also helpful in writing the
pathological report and confirming the diagnosis.

Furthermore, it could raise the doctors’ awareness of
eyelid MM, a relatively less common cancer with a high
mortality rate, and prioritize samples with higher malignant
potential for senior pathologists. Despite the advantages of
the automatic diagnostic system, human pathologists’ work

is still irreplaceable and has its own superiority. In a real
clinical setting, the challenging cases will be reviewed by
multiple pathologists with the help of immunohistochemistry,
molecular information, or even genetic information in addition
to H&E staining, while the algorithms only make classifications
from the presentation of pathological slides. The primary
purpose of developing a computer-aided diagnosis system is
to assist human pathologists. The implementation of a self-
supervised algorithm not only reduces the annotation burden
and need for pathological expertise but also, which is more
important, increases the data availability of future AI studies.
The self-supervised design makes previously useless unlabeled
data useful in the pretraining stage. It has the potential to
be used in the broadening of disease types (e.g., basal cell
carcinoma, squamous cell carcinoma, etc.) and task types (e.g.,
semantic segmentation of tumor areas in pathologic images
based on SSL). From the technical aspect, the combination
and comprehensive analysis of multimodal data (H&E staining,
immunohistochemical staining, and non-image data like omics
data) will be the future research focus.

Limitations

This study still had several limitations. First, the
performance of the algorithm needed improvement as
there is still a gap when compared to the state-of-the-art
fully supervised learning algorithms. However, to the best
of our knowledge, there has been no previous implied SSL
algorithm to PCam as a benchmark. When SSL-linear was
compared to closed-source fully supervised learning on a
public data set, the performance gap was greatly affected by
the disparity in training set size. In addition, to prove that
SSL-linear achieves better performance than the traditional
CNN, more groups with different proportions of pretraining
and training sets could be organized both in the ZJU-2 data
set and PCam. Second, this study did not include external
validation, partly due to the lack of related case slides and
difficulties in acquiring such pathological images from external.
In the future, the diagnostic ability would be tested on data sets
from independent sources (with different races, ages, etc.) to
prove the generalization ability.

Additionally, the performance difference of the algorithm
could be further investigated based on the above-mentioned
different groups, not just malignant or non-malignant groups.
Third, this study’s total sample size of eyelid MM was relatively
small compared with deep learning studies of other image types.
This is limited by the inherent low incidence of eyelid MM.
Despite this, all pathological slides are at gigapixel size with
large information density and are different from each other;
in other words, a total of 524,307 patches as input is relatively
sufficient for SSL-linear to achieve considerable performance.
Therefore, our sample size is acceptable for a pathological study.
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Finally, our algorithm can only make a binary classification in
this study. In the future, more disease types, including basal cell
carcinoma or squamous cell carcinoma, will be introduced to
validate the expendability.

In conclusion, SSL-linear was generated and demonstrated
considerable performance with higher accuracy than traditional
CNNs in distinguishing between benign and malignant eyelid
lesions. With less labeled input data and an SSL framework,
developing such a diagnostic system is relatively labor-saving
and cost-efficient. The implementation of refined algorithms
could be further applied to help diagnose various ophthalmic
and non-ophthalmic malignancies.
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Introduction: This study aimed to construct a radiomics-based machine

learning (ML) model for differentiation between non-clear cell and clear cell

renal cell carcinomas (ccRCC) that is robust against institutional imaging

protocols and scanners.

Materials and methods: Preoperative unenhanced (UN), corticomedullary

(CM), and excretory (EX) phase CT scans from 209 patients diagnosed

with RCCs were retrospectively collected. After the three-dimensional

segmentation, 107 radiomics features (RFs) were extracted from the tumor

volumes in each contrast phase. For the ML analysis, the cases were

randomly split into training and test sets with a 3:1 ratio. Highly correlated

RFs were filtered out based on Pearson’s correlation coefficient (r > 0.95).

Intraclass correlation coefficient analysis was used to select RFs with excellent

reproducibility (ICC ≥ 0.90). The most predictive RFs were selected by the

least absolute shrinkage and selection operator (LASSO). A support vector

machine algorithm-based binary classifier (SVC) was constructed to predict

tumor types and its performance was evaluated based-on receiver operating

characteristic curve (ROC) analysis. The “Kidney Tumor Segmentation 2019”

(KiTS19) publicly available dataset was used during external validation of

the model. The performance of the SVC was also compared with an

expert radiologist’s.

Results: The training set consisted of 121 ccRCCs and 38 non-ccRCCs, while

the independent internal test set contained 40 ccRCCs and 13 non-ccRCCs.
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For external validation, 50 ccRCCs and 23 non-ccRCCs were identified

from the KiTS19 dataset with the available UN, CM, and EX phase CTs.

After filtering out the highly correlated and poorly reproducible features, the

LASSO algorithm selected 10 CM phase RFs that were then used for model

construction. During external validation, the SVC achieved an area under the

ROC curve (AUC) value, accuracy, sensitivity, and specificity of 0.83, 0.78,

0.80, and 0.74, respectively. UN and/or EX phase RFs did not further increase

the model’s performance. Meanwhile, in the same comparison, the expert

radiologist achieved similar performance with an AUC of 0.77, an accuracy

of 0.79, a sensitivity of 0.84, and a specificity of 0.69.

Conclusion: Radiomics analysis of CM phase CT scans combined with ML can

achieve comparable performance with an expert radiologist in differentiating

ccRCCs from non-ccRCCs.

KEYWORDS

renal cell carcinoma, computed tomography, radiomics analysis, texture analysis,
machine learning, artificial intelligence

Introduction

Kidney cancers are one of the most common malignancies
in the world accounting for approximately 2.2% of annual
cancer diagnoses (431 thousand/year) and 1.8% of cancer-
related mortality (179 thousand/year) worldwide. It is almost
twice as common in males than in females making it the 11th
highest incidence of cancer in men and the 16th in women (1).

Due to the increasing accessibility of non-invasive
diagnostic procedures nowadays up to 50% of renal neoplasms
are incidentally discovered (2). Many of these small renal masses
are benign, but because of their size, they are hard to characterize
using imaging modalities increasing the importance of biopsy
to select low-risk patients for active surveillance (3). At the
time of diagnosis, approximately 15% of patients already have
distant metastases (4). Accurate preoperative staging is crucial
for making an appropriate treatment decision. For accurate
staging – including the assessment of local invasiveness, lymph
node involvement, and presence/absence of distant metastases –
, contrast-enhanced thoraco-abdominopelvic CT examination
is mandatory in patients with indeterminate renal mass (2, 5).

The histologic classification and grading of renal tumors are
also important, as the prognostic and therapeutic implications
vary among histologic subtypes. The current 2016 World Health
Organization (WHO) classification differentiates between
numerous types of kidney tumors including mesenchymal,
metanephric, nephroblastic, neuroendocrine, and renal cell
tumors among others (3).

Renal cell carcinoma (RCC) is the most common among
the neoplastic diseases of the kidney, with approximately 90%
of them being diagnosed as RCC (6). RCC is a collective

term defining a heterogenous group of neoplasms including
14 subtypes (3) with drastically different histologic appearance,
genetics, and prognosis, all originating from the renal tubular
epithelium (6). The most common subtypes of RCC are clear cell
renal cell carcinoma (ccRCC), papillary cell renal cell carcinoma
(pRCC), and chromophobe cell renal cell carcinoma (chRCC),
respectively, accounting for about approximately 75, 15, and 5%
of all RCC cases (7).

Previous studies proved that the histologic subtype is an
independent predictor of patient survival, and patients with
ccRCC have a poorer prognosis compared to those with pRCC
or chRCCs (8, 9), also patients with ccRCC are most likely to
have distant metastasis at the time of radical nephrectomy (10).
Due to the markedly higher biological aggressiveness of ccRCC
compared to other subtypes, recent practice guidelines divide
RCCs into two main groups as ccRCC and non-ccRCC (2, 11).

In the case of advanced RCC, treatment options have
been rapidly expanded in the past decades. High-dose bolus
interleukin-2 therapy has brought continued good results since
approval for the treatment of metastatic RCC in 1992 (12)
followed by the era of molecularly targeted therapies and
more recently, the era of immunotherapeutic agents (13).
Molecularly targeted therapies including Vascular Endothelial
Growth Factor (VEGF) targeted tyrosine-kinase inhibitors
such as bevacizumab, sunitinib, and pazopanib have been
used with great success in patients with metastatic ccRCC,
which is currently the recommended first-line standard-
of-care treatment according to the European Society for
Medical Oncology (ESMO) in patients with good risk (2).
Then, novel immunotherapeutic agents revolutionized the
treatment of advanced ccRCC (14). The ESMO guidelines

Frontiers in Medicine 02 frontiersin.org

4748

https://doi.org/10.3389/fmed.2022.974485
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-974485 October 7, 2022 Time: 14:15 # 3

Budai et al. 10.3389/fmed.2022.974485

recommend combined immune-checkpoint inhibitor antibody
therapy (ipilimumab + nivolumab) as first-line treatment
in patients with intermediate or poor-risk (2), and since
the same results can be achieved using combined immune
checkpoint inhibitors with lower toxicity, the usage of
cytokine monotherapy diminished (14). Even though there
is ample evidence available for the efficiency of sunitinib
as a treatment for metastatic ccRCC, other less common
renal carcinomas are less researched since they are most
often excluded from the controlled phase III trials. Smaller
prospective studies, however, suggest that VEGF inhibitors
and mammalian target of rapamycin inhibitors are also
beneficial in these cases (2). However, pRCCs show a
worse response to VEGF-targeted antiangiogenic agents than
ccRCCs (15).

Therefore, the non-invasive, imaging-based differentiation
between tumor subtypes could facilitate the prediction of
patient prognosis and guide clinicians in therapeutic decision-
making and follow-up strategies (16). It has been proved
that the different subtypes of RCCs have different contrast
enhancement dynamics, ccRCCs have peak enhancement on
the corticomedullary phase, meanwhile, pRCCs and chRCCs
reach the peak during the nephrographic phase (17). Previous
studies showed that, relative contrast enhancement of kidney
tumors to the renal cortex (18) and CT imaging traits
such as heterogeneous contrast enhancement, enhancement
degree in corticomedullary phase, the presence of necrosis,
and the presence of calcification show association with RCC
subtypes (19). However, the morphology-based, conventional
radiological evaluation of CT scans is subjective, has low
specificity in differentiating RCC subtypes (20), and is highly
dependent on the expertise of the radiologists (21).

In 2012, the term radiomics was introduced by Lambin
et al. which refers to the automated analysis of medical images
by the extraction of an extensive number of quantitative
features that can objectively describe the given region of
interest (ROI) (22). Radiomics as per definition is the mining
and analysis of quantitative features from radiologic images,
to improve clinical decision-making by identifying predictive
imaging biomarkers and constructing different diagnostic and
prognostic models. This novel technique has the potential to
detect subtle differences in tissue texture that may not be
detected by the human eye (22).

A typical radiomic study comprises the following main
steps: medical image acquisition, image pre-processing,
segmentation, feature extraction, feature selection, exploratory
analysis, and model building and evaluation (23). Conventional
radiomics analysis requires lesion segmentation in order to
compute hand-crafted radiomics features. The segmentation
can be performed either manually by using semi-automatic
tools, or fully automatically with the help of convolutional
neural networks. In radiomics studies of kidney tumors, the
most widely used method is still the manual segmentation (24).

Radiomics analysis allows the extraction of a huge number
of quantitative features from the selected volume of interest
(VOI) that refer to the intensity histogram, the shape, or the
texture of a certain lesion. The definitions and the mathematical
formulas of radiomics features can differ between studies,
therefore the Imaging Biomarker Standardization Initiative
(IBSI) was established as an independent international
collaboration aiming to standardize the extraction of
quantitative imaging biomarkers to improve the reproducibility
of radiomics studies. For a more detailed description of
radiomics features, we refer the readers to the Reference Manual
of the IBSI updated in 2020 (25). Radiomics analysis is most
commonly applied to CT scans given its wide availability.
CT texture analysis (CTTA) on contrast-enhanced CT scans
also provides a quantitative description of the tissue contrast
enhancement distribution after contrast-agent injection.

Radiomics is usually combined with machine learning
algorithms for prediction model building. However, the usage of
a large number of radiomics features often results in overfitting
of the prediction model; therefore the number of features
must be effectively reduced before model building (26). As an
initial feature-selection step, it is recommended to filter out
highly correlated, redundant features (23, 26). The most popular
supervised feature selection methods are the model-based
wrappers including the so-called recursive feature elimination
algorithm that is used to select the optimal subset of predictive
features that maximize the prediction performance; and the
embedded algorithms such as the least absolute shrinkage and
selection operator (LASSO) regression that allows selecting
the most predictive features based on the feature importance
score (23).

The most widely used conventional machine learning
algorithms for prediction model building are logistic regression,
LASSO, random forest (RFC), and support vector machine
(SVC) classifiers (27).

Previously published studies have focused mainly on
distinguishing between benign and malignant renal lesions (28–
30) or on identifying aggressive tumor features of ccRCCs
(31–37), and only a minority of studies have sought to
distinguish between subtypes of RCC (20, 38–41). A few studies
also showed that radiomics analysis combined with machine
learning could facilitate the non-invasive diagnostics of kidney
cancers including both classification of renal tumors, prediction
of nuclear grade, identification of patients with poor prognosis,
and prediction of treatment response (42, 43). However, most of
the previously published studies had a single-center study design
and used only internal validation for model evaluation and have
not validated their results on external test cases (24, 43).

Yu et al. were among the first who used CT texture analysis
for distinguishing between RCC subtypes (41). The authors
performed radiomics analysis on 10 selected cross-sectional
areas of the tumors in the nephrographic (NG) phase and
extracted 43 features. Their SVC trained by all the 43 radiomics
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features achieved AUCs of 0.91, 0.92, and 0.85 in differentiating
between ccRCCs vs. pRCCs, chRCCs and oncocytomas; pRCCs
vs. ccRCCs, chRCCs and oncocytomas, and chRCCs vs. pRCCs,
ccRCCs, and oncocytomas, respectively. Yu et al. demonstrated
the ability of first-order statistics and texture features to
predict RCC subtypes (41). By analyzing triphasic CT scans
of 143 ccRCCs and 54 non-ccRCCs, Chen et al. illustrated
that the radiomics features extracted from the corticomedullary
(CM) phase have similar diagnostic ability compared to those
extracted from the NG phase in differentiating between ccRCCs
and non-ccRCCs (38). In their recent study, Wang et al.
analyzed 147 ccRCCs and 43 non-ccRCCs and built a RFC,
an SVC, and a logistic regression algorithm-based machine
learning model from four selected radiomics features. The
models achieved good to excellent results on the internal test
dataset with AUC of 0.841–0.909 (20), and the authors also
demonstrated that these radiomics-based machine learning
models can overperform the diagnostic performance of an
expert radiologist (AUC of 0.69). However, in these single-
center studies, the machine learning prediction models were not
validated on independent external test cases.

External validation of the machine learning models was
completed in a two-center study by Li et al., who performed
3D texture analysis on both the unenhanced (UN), CM, and
NG phase CT scans of 170 patients (40). In this study,
either the Boruta or the minimum redundancy maximum
relevance ensemble (mRMRe) algorithms were used to select
the most relevant radiomics features. RFC models built in this
study were tested on 85 independent external test cases from
another hospital. The Boruta-based RFC achieved excellent
performance with an AUC of 0.949 while the mRMRe-based
RFC achieved an AUC of 0.851. The two sets of selected
radiomics features differed significantly, suggesting that there
is a huge difference in the performance of the feature selection
algorithms, which significantly affects the performance of the
machine learning classifier. These results also indicate that the
CM features have higher diagnostic ability compared to NG
phase features in the differentiation of ccRCCs from non-
ccRCCs (40).

Kocak et al. were among the first, who validated their
machine learning models’ performance on publicly available
datasets (39). In their retrospective study, the authors collected
48 ccRCCs, 13 pRCCs, and 7 chRCCs and performed CT
texture analysis on UN and CM phase CT scans to differentiate
between RCC subtypes. For external validation 26 cases (13
ccRCCs, 7 pRCCs, and 6 chRCCs) were selected from the
TCGA public datasets including The Cancer Genome Atlas-
Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) (44, 45), the
TCGA-Kidney Renal Papillary Cell Carcinoma (TCGA-KIRP)
(44, 46), and the TCGA-Kidney Chromophobe (TCGA-KICH)
(44, 47). The authors performed radiomics analysis on the
largest cross-sectional areas of the tumors by extracting 275
radiomics features from both the UN and the CM phases.

After feature selection, artificial neural network (ANN)-based
and SVC-based prediction models were constructed for the
differentiation between ccRCC and non-ccRCCs. The ANN
algorithm-based model trained on CM phase features achieved
an AUC of 0.822, while the SVC reached an AUC of 0.793 on the
external test set (39).

Our study aimed to construct a 3D CTTA-based
machine learning model for differentiating ccRCC from
non-ccRCC that is generalizable and robust against
different institutional imaging protocols. We aimed
to demonstrate that our radiomics-based machine
learning model can achieve comparable results with
an expert radiologist. And the final aim of this study
was to validate our prediction models on external
test cases of a publicly available dataset to prove the
models’ reliability.

Materials and methods

Patient population

The institutional ethics committee of our university has
approved the present study based on the World Medical
Association guidelines and the Declaration of Helsinki, revised
in 2000 in Edinburgh. As this is a retrospective study, the need
for written patient consent was waived by the ethics committee.
All patient data were analyzed anonymously.

Preoperative contrast-enhanced abdominal CT scans were
retrospectively collected from patients who had undergone
either radical or partial nephrectomy between 2008 January
and May 2021 at our institution. Out of the patients who had
undergone nephrectomy, 551 had available preoperative CT
scans. The preoperative unenhanced UN, CM, and excretory
(EX) phase CT scans in this study were obtained from
the picture archiving and communication system (PACS) of
our hospital. 346 cases were excluded due to the following
exclusion criteria: diagnosed with benign kidney tumor (n = 33),
diagnosed with other types of malignant kidney tumor (n = 107),
nephrectomy due to other reason than tumor (n = 75), no
available histopathologic report (n = 30), dual-phase (UN,
CM, and EX) CT scan was not available (n = 61), underwent
radiofrequency ablation (n = 2), damaged DICOM file (n = 44),
incomplete coverage of the tumor (n = 1).

The final patient cohort included 209 patients diagnosed
with either ccRCC, pRCC, or chRCC. The final histopathological
diagnosis of RCC subtypes served as the reference standard.
After nephrectomy, the whole tumor specimens were
transferred to histological processing. The official pathology
reports were retrospectively collected from the hospital
information system. Three patients had two histologically
proven tumors, therefore, the final dataset consisted of 161
ccRCCs, 34 pRCCs, and 17 chRCCs.
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FIGURE 1

Manual segmentation of kidney tumors. The manual segmentation of the kidney tumors was completed on the corticomedullary phase axial CT
scans (A). The entire lesion volume was delineated slice-by-slice (B) in order to perform a three-dimensional radiomics analysis.

Imaging protocols

We examined the patients according to our routine
diagnostic protocols with either a 16-slice Brilliance or a 64-
slice Ingenuity Core 64 CT scanner (Philips Healthcare, Best,
the Netherlands). The following acquisition parameters were
used: tube voltage of 100–140 keV; automatic tube current
modulation in the range of 105–977 mAs in CM, 93–918
mAs in UN, and 80–910 mAs in EX phase; collimation of
16 mm × 1.5 mm or 64 mm × 0.625 mm for the 16 and 64-
slice scans, respectively. The 16-slice acquisitions were routinely
reconstructed with filtered back projection (FBP) and 64-slice
scans with the iDose4TM hybrid iterative reconstruction kernel.
The reconstructed slice thickness was 1.25–5 mm. A non-
ionic, iodinated contrast agent (range of concentration: 350–
370 mg/ml) was administered intravenously using a power
injector with an injection rate of 1.5–3.5 ml/s, while the amount
of the injected contrast media was adjusted to the body weight
(0.5 g iodine/kg). After contrast agent administration, the CM
phase was scanned at 30–45 s, and the EX phase at 300–480 s.

External test set

For the external validation of our machine learning
prediction model, we included cases from the 2019 Kidney
and Kidney Tumor Segmentation Challenge (KiTS19) public
database (48, 49) that had available dual-phase (UN, CM, and
EX phase) CT scans. We identified 75 cases with dual-phase CT
scans, from those 69 cases were diagnosed with either ccRCC,
pRCC, or chRCC. One case was excluded because the patient’s
position on the EX phase scan was prone instead of supine. The
CT scans were performed by a variety of scanners including 19
different models from four vendors. The slice thickness varied
between 1 and 7 mm, the tube voltage was between 100 and
140 keV, and the tube current varied between 95 and 747 mAs
in the CM, 80–667 mAs in the UN, and 80–664 mAs in the

EX phase scans. One patient had three tumors, and three had
two tumors, therefore the final external test set consisted of 73
lesions. According to the available metadata, 50 of those were
ccRCCs, 13 were pRCCs, and 10 were chRCCs. In the KiTS19
dataset, the binary segmentation masks were also available to all
the tumors. The results shown here are in whole or part based
upon data from the C4KC-KiTS dataset of The Cancer Imaging
Archive (TCIA) (44, 48, 49).

Subjective classification

For the subjective, imaging feature-based analysis, an expert
radiologist with over 10 years of experience in urologic imaging
classified all the lesions of both internal and external test sets
according to the RCC subtypes blinded to the patients’ history,
medical records, and to the results of tumor segmentation.

Image processing and radiomics
analysis

Preoperative axial CT scans were anonymized and
exported from the institutional PACS in Digital Imaging and
Communications in Medicine (DICOM) format. The DICOM
files were then converted to NIfTI file format for further
image processing and analysis. The image processing and
segmentation steps were completed by using the 3D Slicer
software v.4.10.2 (50).

The entire volume of the tumors was segmented slice-by-
slice on the CM phase scans. The segmentation of kidney
tumors was performed by a trainee with 4 years of experience
in tumor segmentation under the supervision of an expert
radiologist with over 15 years of experience in abdominal and
urologic imaging (Figure 1). The segmentation was performed
by avoiding the edge of the tumor to avoid the inclusion of
peripheral fat and partial volume effect. The UN and EX phase
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FIGURE 2

Results of the image co-registration. The manual segmentation of the kidney tumors was completed on the corticomedullary phase CT scans
(A). A non-rigid image co-registration was performed to fit the unenhanced (B) and excretory (C) phase CT scans to the corticomedullary phase
as reference (D).

CT scans were coregistered to the CM phase scans by using the
Elastix extension of 3D Slicer (Figure 2).

To minimize the individual patient factors, the inter-scanner
differences, and the difference between institutional imaging
protocols, the voxel density values of the CM phase CT scans
were normalized to the cortical density. In each case, the density
of the renal cortex was measured by using 3–3 circular region
of interests (ROI), then the mean cortical density was obtained
by calculating the average value of the three measurements. In
each case, the mean cortical density value was subtracted from
the individual voxel intensity values.

For the radiomics analysis, the images were resampled
to an isotropic voxel size of 1 mm × 1 mm × 1 mm to get
rotation invariant radiomics features and to improve the
robustness and reproducibility of the extracted features. The
radiomics analysis was performed with the pyRadiomics
package (51). A fixed bin width of 16 was used during the
calculation of texture features. Altogether, 107 radiomics
features were calculated from each phase scan, including

18 first-order histogram-based statistical features, 14 shape-
based features, 24 gray-level co-occurrence matrix-based
features (GLCM), 16 gray-level run-length matrix-based
features (GLRLM), 16 gray-level size zone matrix-based
features (GLSZM), 14 gray-level dependence matrix-based
features (GLDM), and 5 neighboring gray-tone difference
matrix-based features (NGTDM). Data is available in
Supplementary Table 1.

Feature selection

Our feature selection method included three steps, all of
which were completed by using solely the training set. First,
highly correlated features were filtered out based on Pearson’s
correlation coefficients (r > 0.95). Then, reproducibility analysis
was performed by using intraclass correlation coefficient (ICC)
analysis. For the reproducibility analysis, the area of the
segmented tumor masks was eroded by 1–1 voxel in each
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FIGURE 3

Flowchart of the data analysis steps. ccRCC, clear cell renal cell carcinoma; pRCC, papillary cell renal cell carcinoma; chRCC, chromophobe
renal cell carcinoma; KiTS, kidney tumor segmentation dataset; UN, unenhanced; CM, corticomedullary; EX, excretory; LASSO, least absolute
shrinkage and selection operator; ICC, intraclass correlation coefficient.

direction as proposed previously (52, 53), and the radiomics
feature extraction was repeated. The ICC was calculated
for each radiomics feature based on a 2-way, single-rater,
absolute agreement model. Only the features with excellent
reproducibility defined as ICC value ≥0.90 were included
in the wrapper-based feature selection step. The final step
included either a least absolute shrinkage and selection operator
(LASSO) algorithm, or a tuned ReliefF (TuRF) algorithm
which selected the most relevant features based on their
feature importance score. The optimal hyperparameter (λ)
for LASSO feature selection was automatically determined
on the training dataset by using the grid search method
with 5-times repeated 5-fold stratified cross-validation. During
hyperparameter tuning, negative mean squared error was
used as a performance metric that the grid search tried to
maximize.

Machine learning – Model building

For the machine learning-based analysis, the cases were
randomly split into training and test sets with a 3:1 ratio. The
radiomics features of the training dataset were standardized by
centering around the mean with a unit standard deviation (SD).
The test dataset was transformed using the hyperparameters
from the training dataset. From the features selected by
LASSO, SVC-based machine learning models were constructed
to differentiate ccRCCs from non-ccRCCs. From the radiomics
features selected by the TuRF algorithm, random forest
classifier-based models were constructed. The hyperparameters
of the classifiers were optimized with the grid search method
based on the accuracy score during five-times repeated 5-fold
stratified cross-validation on the training set. To overcome
the class imbalance issue, balanced class-weights were used
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while fitting the models. The diagnostic performance of the
models was evaluated on both the training set, the internal test
set, and the external test set based on the receiver operating
characteristic curve (ROC) analysis. During ROC analysis, the
ccRCC data were set as the positive class, while the non-
ccRCC as the negative class. The sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and
area under curve (AUC) values were calculated. A two-tailed
p-value < 0.05 indicated statistical significance. Figure 3 shows
the main steps of the data analysis.

Statistical analysis

The continuous variables in ccRCC and non-ccRCC patient
groups were checked for homogeneity of variance with the
F-test and normal distribution with the Shapiro-Wilk’s test.
Categorical variables were compared between the two groups
with the chi-squared test and continuous variables with the
Mann-Whitney U-test. The 95% confidence interval (CI) of the
AUC values were calculated based on DeLong’s method. The
best threshold was determined based on the “closest top left”
method; the point on the ROC curve closest to the top left
corner of the plot was defined as min[(1-sensitivities)2 + (1-
specificities)2]. The statistical comparisons between the ROC
curves were performed according to the DeLong test. The
threshold of p < 0.05 was applied to determine significance in
all comparisons.

The statistical analysis was completed with “sklearn,”
“skrebate,” “statmodels,” and “scipy” packages written in Python
(v.3.7.11.) computer language, and with “dplyr,” “stats,” “pROC,”
and “irr” packages written in R (v.3.6.3.) computer language.

Results

Patient population

The final study population contained 209 patients with
212 tumors (161 ccRCCs and 51 non-ccRCCs). There were
no differences in patient age (p = 0.079) or sex (p = 0.9782)
comparing ccRCCs with non-ccRCCs (Table 1). For the
machine learning-based analysis, the cases were randomly split
into training and test sets with a 3:1 ratio. The distribution
of RCC subtypes in the training dataset was ccRCC in 121
cases and non-ccRCC in 38 cases (25 pRCC and 13 chRCC),
meanwhile the internal independent test set contained 40
ccRCCs and 13 non-ccRCCs (9 pRCC and 4 chRCC).

From the KiTS19 public dataset 68 cases with 73 tumors
were included in this study as an external test set. In the ccRCC
group 33 (66.0%) patients were male and 17 (34.0%) were
female, while in the non-ccRCC group, 10 (43.5%) were male
and 13 (56.5%) were female (p = 0.069). The median age and

interquartile range were 60.5 (23.2) years for ccRCCs and 53
(13.0) years for non-ccRCCs (p = 0.556).

Feature selection

During radiomics analysis, 107 radiomics features were
extracted from both CM, EX, and UN phase scans. After
filtering out the highly correlated and non-robust features,
39 CM, 38 EX, and 35 UN phase features remained. During
hyperparameter tuning of the LASSO algorithm, the grid search
defined 0.01 as the optimal λ value. In all three cases, an
optimized LASSO algorithm (λ = 0.01) was used to select
the most predictive radiomics features based on the feature
importance score, which selected 10 CM phase, 5 EX phase,
and 9 UN phase features. The selected radiomics features
included both shape-based features, first-order statistics, and
texture features in each case. The selected features are listed in
Table 2.

Machine learning

The optimized SVC model (kernel: rbf, C: 500, gamma:
0.005) trained on the CM phase radiomics features achieved
the highest prediction performance in differentiating ccRCCs
from non-ccRCCs. During ROC analysis, its performance on the
training set was AUC of 0.951 [95% CI: 0.913–0.989], accuracy
of 0.925, sensitivity of 0.926, and specificity of 0.921 at threshold
0.655, it also achieved very good prediction rate on the internal
independent test set with AUC of 0.873 [95% CI: 0.774–0.973],
accuracy of 0.811, sensitivity of 0.90, and specificity of 0.539, and
its diagnostic accuracy proved to be robust during validation
on external test cases with AUC of 0.834, accuracy of 0.781,
sensitivity of 0.800, and specificity of 0.739 (Figure 4). We also
compared the diagnostic value of this model against the accuracy
of an expert radiologist, which showed comparable results with
no significant difference on either the internal (p = 0.866) or
the external (p = 0.256) test sets (Table 3). On the internal test
set, the expert radiologist achieved slightly better performance
with an AUC of 0.886 (vs. 0.873), accuracy of 0.906 (vs. 0.811),
sensitivity of 0.925 (vs. 0.90) and specificity of 0.846 (vs. 0.539),
while on the external test set, the SVC slightly overperformed
the expert radiologist, who achieved an AUC of 0.768 (vs.
0.834), accuracy of 0.795 (vs. 0.781), sensitivity of 0.84 (vs. 0.80),
specificity of 0.696 (vs. 0.739) (Figure 4).

The optimized RFC model (criterion: entropy, n_estimators:
50) trained on the 10 CM phase radiomics features selected by
the TuRF algorithm was able to distinguish between ccRCC vs.
non-ccRCCs with an AUC of 1.000 on the training set, and also
overperformed the SVC model on the internal test set (AUC of
0.874 vs. 0.811), however, showed poor results during external
validation with an AUC of 0.663, which indicates overfitting and
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TABLE 1 Distribution of demographics and tumor types in the patient cohorts.

Study population External test set

ccRCC non-ccRCC P-value ccRCC non-ccRCC P-value

Number of cases (n) 161 51 – 50 23 –

Male, n (%) 107 (66.5%) 34 (66.7%) 0.978 33 (66.0%) 10 (43.5%) 0.069

Age, median (IQR) years 64.2 (15.6) 66.8 (16.6) 0.079 60.5 (23.2) 53 (13.0) 0.556

IQR, interquartile range; ccRCC, clear cell renal cell carcinoma.

TABLE 2 List of the selected radiomics features.

Corticomedullary phase Excretory phase Unenhanced phase

Shape-based Flatness; sphericity Sphericity; SurfaceVolumeRatio Sphericity; SurfaceVolumeRatio

First-order 10th percentile; energy; mean Energy; median Entropy; InterquartileRange;Median

Texture feature GLCM_Correlation;
GLRLM_GrayLevelNon-Uniformity;

GLRLM_LongRunEmp;
GLDM_DependenceNon-

UniformityNorm;
NGTDM_Coarseness

GLDM_DependenceEntropy GLCM_InverseVariance;
GLDM_DependenceEntropy;
GLSZM_LargeAreaEmphasis;

GLSZM_SizeZoneNon-
UniformityNormalized

GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matrix; GLDM, gray-level dependence matrix; NGTDM, neighboring gray-
tone difference matrix.

FIGURE 4

Receiver operating characteristic curves for distinguishing ccRCCs from non-ccRCCs. The performance of our support vector classifier (A) was
similar to that of a radiologist specializing in urological imaging (B). The radiomics-based machine learning model achieved an AUC of 0.951,
0.873, and 0.834 on the training set, internal test set, and external test set, respectively. Meanwhile, the expert radiologist reached an AUC of
0.886 on the internal test set, and an AUC of 0.768 on the external test set. ROC, receiver operating characteristic curve; SVC, support vector
classifier; ccRCC, clear cell renal cell carcinoma.

demonstrates that the LASSO + SVC model can overperform the
TuRF + RFC model in this task.

The optimized SVC (kernel: rbf, C: 75, gamma: 0.05) trained
by the EX phase radiomics features showed worse performance
on both the internal and external test sets with AUC of 0.719
and 0.64, respectively. As expected, the optimized SVC (kernel:
linear, C:200) trained on the UN phase features showed even
poorer performance with an AUC of 0.725 on the internal test set
and AUC of 0.598 on the external test set. The UN and EX phase
features were not able to increase the diagnostic performance
of the SVC trained on CM phase features, the combined model

(kernel: rbf, C: 500, gamma: 0.005) achieved an AUC of 0.862
and 0.711 on the internal and external test sets, respectively.

In Supplementary Table 2, we compare the results of our
machine learning models with those reported in previously
published studies.

Discussion

In this study, we constructed an externally validated
radiomics-based machine learning prediction model for the
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TABLE 3 Diagnostic performance of the machine learning models compared to that of an expert radiologist.

AUC Threshold Accuracy Sensitivity Specificity PPV NPV

SVC - Training set 0.951 [0.913–0.989] 0.655* 0.925 0.926 0.921 0.974 0.796

SVC - Internal test set 0.873 [0.774–0.972] 0.655 0.811 0.900 0.539 0.857 0.636

SVC - External test set 0.834 [0.730–0.938] 0.655 0.781 0.800 0.739 0.870 0.630

RFC - Training set 1.000 [1.000–1.000] 0.500* 1.000 1.000 1.000 1.000 1.000

RFC - Internal test set 0.874 [0.755–0.993] 0.500 0.868 0.950 0.615 0.884 0.800

RFC - External test set 0.663 [0.529–0.796] 0.500 0.685 0.900 0.217 0.714 0.500

Expert – Internal test set 0.886 [0.776–0.996] 0.500 0.906 0.925 0.846 0.949 0.786

Expert – External test set 0.768 [0.659–0.877] 0.500 0.795 0.840 0.696 0.857 0.667

*The optimal threshold was determined based on the point closest to the top left corner of the graph.
AUC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value; RFC, random forest classifier; SVC, support vector classifier.

differentiation of ccRCC from non-ccRCC. Our SVC algorithm-
based machine learning model trained by CM phase features
achieved very good performance on the independent test cases
from our institute with an AUC of 0.87 and its diagnostic ability
also proved to be reproducible with an AUC of 0.83 during
validation on external test cases from the KiTS19 dataset. In
addition, we evaluated the accuracy of our SVC against that of
an expert radiologist, which showed that the performance of
the machine learning model is comparable (accuracy of 0.79 vs.
0.78 on the external dataset) which further supports the current
literature and demonstrates the potential of CT texture analysis
in this application.

The majority of the previously published studies focused
on differentiating between benign and malignant kidney lesions
(28–30) or identifying aggressive tumor features of ccRCCs (31–
37), and only a handful of studies aimed to distinguish between
the RCC subtypes (20, 38–41). It is important to highlight that
previous studies used different softwares for radiomics feature
extraction including both in-house developed algorithms (40,
41), and open-source tools such as the MaZda software (39)
and the pyRadiomics package (38) which complicates the
direct comparison of the previously published results. More
importantly, most of the previous studies had a single-center
study design and their models had not been validated on
independent, external cases.

Yu et al. were among the first who used CT texture
analysis for distinguishing between RCC subtypes (41). The
authors performed radiomics analysis on 10 selected cross-
sectional areas of the tumors in the NG phase and extracted
43 features. In each case, the average of the 10 values per
feature was calculated. A 5-fold cross-validated, linear SVC
was built to differentiate RCCs from oncocytomas for each
radiomics feature separately. In distinguishing between ccRCCs
vs. pRCCs, chRCCs and oncocytomas, first-order statistics
“geometric mean” achieved the best predictive value with an
AUC of 0.809. In the task of distinguishing between pRCCs
vs. ccRCCs, chRCCs and oncocytomas, first-order statistics
“median” reached the highest performance with an AUC of
0.811. While in the prediction of chRCCs vs. pRCCs, ccRCCs,

and oncocytomas none of the features achieved good diagnostic
performance: the highest AUC was 0.757. The SVC trained
by all the 43 radiomics features achieved AUCs of 0.91, 0.92,
and 0.85 in the three tasks, respectively, which may indicate
that the prediction performance of the combination of the
radiomics features is superior compared to the diagnostic value
of individual features. Yu et al. demonstrated the ability of first-
order statistics and texture features to predict RCC subtypes,
however, in this single-center study all the scans were performed
on the same CT scanner and the results were not validated
on an independent test set (41). Yu et al. built SVC models
from NG phase radiomics features, while in our study, we built
an SVC prediction model from the combination of the most
predictive CM features that proved to be reproducible when
tested on independent external test cases (41). Our prediction
model achieved comparable results compared to those reported
by Yu et al. (AUC of 0.87 on the internal test set vs. AUC
of 0.91 during cross-validation), which may indicate that the
performance of CM features and NG features is comparable
in predicting ccRCCs, although Yu et al. also included 10
oncocytomas in their dataset (41).

Chen et al. retrospectively collected triphasic CT scans from
patients with RCCs (38). The final cohort in this study included
143 ccRCCs and 54 non-ccRCCs. To extract non-textural
features, the authors calculated 13 different absolute and relative
enhancement and attenuation ratios and values. After radiomics
analysis, LASSO was used to select the most important features
and to calculate texture-score with the linear combination of the
selected features. Finally, three different prediction models were
built, one logistic regression-based model from non-texture
features, one model from texture features, and a third, combined
logistic regression model. Among both the non-textural and the
texture-feature-based models, the CM phase models achieved
the highest performance with AUC = 0.823 and 0.887, while
the performance of the combined model showed similar results
in the CM and NG phases with AUCs of 0.891 and 0.900. The
results of this study showed that adding non-texture features can
improve the prediction performance of the texture feature-based
model and that the CM phase and the NG phase radiomics
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features have similar diagnostic ability in differentiating between
ccRCCs and non-ccRCCs. However, these models were not
validated on an independent test set in this manuscript (38). The
results of this study are comparable with the results of our SVC
model trained on the CM phase radiomics features, especially
with the results we reported on the training set (AUC = 0.951),
however, we also validated the performance of our model on
both independent internal (AUC = 0.873) and external test
cases (AUC = 0.834).

In their recent study, Wang et al. analyzed 147 ccRCCs
and 43 non-ccRCCs and built a RFC, an SVC, and a logistic
regression algorithm-based machine learning model from four
selected radiomics features (20). The authors reported very
good results on the internal test dataset for each machine
learning algorithm. Their RFC achieved the highest diagnostic
performance with an AUC of 0.909 followed by the logistic
regression classifier with an AUC of 0.906, while the SVC
showed slightly worse results with an AUC of 0.841 (20). These
results on the independent internal test set (AUC = 0.841–0.909)
are very similar to the results of our SVC (AUC of 0.88) on the
independent internal test set. However, all patients were scanned
with the same CT scanner in this single-center study, and the
models were not validated on external test cases. The diagnostic
performance of an expert radiologist was also reported in
this study, and the authors successfully demonstrated that
radiomics-based machine learning models can overperform the
accuracy of an expert radiologist. Although, the radiologist’s
performance reported in this manuscript was slightly inferior to
that of our study (AUC of 0.69 vs. 0.76–0.88, sensitivity of 0.85
vs. 0.84–0.93, and specificity of 0.58 vs. 0.70–0.85).

In a two-center study by Li et al., external validation of the
machine learning models was also completed (40). The authors
performed 3D texture analysis on both the UN, CM, and NG
phase CT scans of 170 patients. After the extraction of 3 × 52
texture features from the tumors, either the Boruta algorithm
or the minimum redundancy maximum relevance ensemble
(mRMRe) was used to select the most relevant features. Two
RFCs were trained, one with the 8 CM phase features selected
by the Boruta algorithm, and one by the combination of 7
nephrographic and one CM phase features selected by the
mRMRe algorithm. The machine learning models were tested
on 85 independent external test cases from another hospital. The
Boruta-based model achieved an AUC of 0.949 and an accuracy
of 92.9%, which significantly overperformed the mRMRe-based
model which reached an AUC of 0.851 and an accuracy of
81.2%. Their results suggest that there is a huge difference
between the performance of feature selection algorithms, as the
two sets of selected features were markedly different. These
results also indicate that the CM features have higher diagnostic
ability compared to NG phase features in the differentiation of
ccRCCs from non-ccRCCs (40). In our study, we extracted not
just second-order texture features, but also first-order statistical
parameters and shape-based features from the tumor volumes

in the CM phase. The LASSO algorithm selected two shape-
based, three first-order, and five texture features as the most
important ones, which may indicate the importance of first-
order statistics and shape-based features in addition to texture
features. Although our results on the external test set are slightly
worse than those reported by Li et al. (AUC of 0.834 vs. 0.949),
it could be at least partly due to the fact that our independent
test sets contained a significant number of atypical cases which
is supported by that the accuracy of our SVC model proved to be
comparable with that of an expert radiologist (accuracy of 0.78
vs. 0.79) (40).

Kocak et al. were among the first, who validated their
machine learning models’ performance on publicly available
datasets (39). In their retrospective study, Kocak et al. collected
48 ccRCCs, 13 pRCCs, and 7 chRCCs and performed CT
texture analysis on UN and CM phase CT scans to differentiate
between RCC subtypes. For external validation, the authors
selected 13 ccRCCs, 7 pRCCs, and 6 chRCCs from three
publicly available datasets including The Cancer Genome Atlas-
Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) (44, 45), the
TCGA-Kidney Renal Papillary Cell Carcinoma (TCGA-KIRP)
(44, 46), and the TCGA-Kidney Chromophobe (TCGA-KICH)
(44, 47). After manual segmentation, the authors performed
texture analysis on the largest cross-sectional areas of the
tumors by extracting 275 radiomics features from both the
UN and the CM phases. After feature selection, the authors
constructed artificial neural network (ANN)-based and SVC-
based prediction models, that were evaluated based on ROC
curve analysis and Matthews correlation coefficient (MCC)
values. In the differentiation between ccRCC and non-ccRCCs,
the ANN algorithm-based model combined with adaptive
boosting trained on CM phase radiomics features, achieved an
AUC = 0.870, accuracy of 86.7%, and MCC = 0.686 during
internal validation, and AUC = 0.822, accuracy of 84.6%, and
MCC = 0.728 on the external test set. Meanwhile, the SVC
combined with adaptive boosting achieved an AUC = 0.852,
accuracy of 89.7%, and MCC = 0.745 during internal validation,
and AUC = 0.793, accuracy of 65.3%, and MCC = 0.426 on
the external test set (39). Our results can be compared with
those reported by Kocak et al., our SVC achieved slightly
better performance both during internal validation (AUC 0.873
vs. 0.852 and external validation (AUC of 0.834 vs. 0.793),
however, it is important to note that for external validation, we
used 73 tumors from the KiTS19 dataset, while Kocak et al.
validated their results on 26 selected cases from the TCGA
datasets (39).

We confirmed the results of previous studies that the CM
phase radiomics features are superior compared to the EX phase
ones (29, 38). Interestingly, contrary to the results of Raman
et al. (29), we were unable to prove that the addition of UN
and/or EX phase radiomics features increase the predictive
performance of the model, however, we did not analyze NG
phase scans as these were not available in the KiTS19 dataset.
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The limitation of our study is the relatively low number
of patients, and that only the three most common RCC
subtypes were studied, however, the other subtypes are rare.
The distribution of the RCC subtypes was unbalanced, reflecting
the unequal distribution in the global population. To handle
unbalanced datasets, instead of using synthetic sampling
methods, we used class-weight optimization during “training”
and then we tested the model on independent cases from
different institutions. Since the inclusion criteria in this study
were not strict to avoid selection bias, the internal and external
test datasets were also slightly unbalanced reflecting real-
world conditions. We decided not to use synthetic sampling
techniques to balance the groups of test sets, as we wanted our
results on test sets to illustrate how the model would work in the
daily clinical practice. The distribution of patients by sex in the
training and test datasets were also slightly imbalanced, but it is
well known that in the general population men are more likely to
be affected by kidney cancer than women and that kidney cancer
is about twice as common in men as in women. Accordingly, the
number of male patients in our own study was slightly higher
than the number of female patients in both our own dataset
and the external test set. However, the distribution did not reach
a significant level, i.e., the imbalance was similar between the
ccRCC and non-ccRCC groups. Finally, nephrographic phase
CT scans were not included in our study, as those were not
available in the KiTS19 dataset.

In conclusion, we successfully built a support vector
classifier-based machine learning model from CM phase
radiomics features that was able to differentiate between ccRCCs
and non-ccRCCs with good accuracy. The performance of our
model was validated on both cases from our own institute
during internal validation (AUC = 0.87), and cases from
the KiTS19 dataset during external validation (AUC = 0.83),
which proved our machine learning model’s reliability and
generalizability. We also compared the accuracy of the SVC with
that of an expert radiologist (accuracy of 0.79 vs. 0.78 on the
external dataset), which showed non-inferior results. Therefore,
we conclude that radiomics analysis combined with machine
learning could facilitate the non-invasive diagnosis of RCCs in
clinical practice in an objective and automated way.
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Background: Due to the limited diagnostic ability, the low detection rate

of early gastric cancer (EGC) is a serious health threat. The establishment

of the mapping between endoscopic images and pathological images can

rapidly improve the diagnostic ability to detect EGC. To expedite the learning

process of EGC diagnosis, a mucosal recovery map for the mapping between

ESD mucosa specimen and pathological images should be performed in

collaboration with endoscopists and pathologists, which is a time-consuming

and laborious work.

Methods: 20 patients at the Zhejiang Provincial People’s Hospital, Affiliated

People’s Hospital of Hangzhou Medical College from March 2020 to July

2020 were enrolled in this study. We proposed the improved U-Net to obtain

WSI-level segmentation results, and the WSI-level results can be mapped to

the macroscopic image of the specimen. For the convenient use, a software

pipeline named as “Pathology Helper” for integration the workflow of the

construction of mucosal recovery maps was developed.

Results: The MIoU and Dice of our model can achieve 0.955 ± 0.0936 and

0.961 ± 0.0874 for WSI-level segmentation, respectively. With the help of

“Pathology Helper”, we can construct the high-quality mucosal recovery maps

to reduce the workload of endoscopists and pathologists.

Conclusion: “Pathology Helper” will accelerate the learning of endoscopists

and pathologists, and rapidly improve their abilities to detect EGC. Our work

can also improve the detection rate of early gastric cancer, so that more

patients with gastric cancer will be treated in a timely manner.

KEYWORDS

mucosal recovery map, artificial intelligence, endoscopic submucosal dissection,
early gastric cancer, Pathology Helper
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Core tip: In this article, we present a new approach to
construct the high-quality mucosal recovery maps. We use
approximately 20,000 patches to train a deep segmentation
network to distinguish cancerous and intestinal metaplasia
regions from normal ones. We also develop a mucosal recovery
software tool to generates high-quality mucosal recovery maps.
In clinical application, this technique can greatly reduce the
workload of endoscopists and pathologists and rapidly improve
their abilities to detect EGC.

Introduction

Gastric cancer (gastric carcinoma) is a malignant tumor
originating from the gastric mucosal epithelium. In 2018, there
were 1,033,701 new cases and 782,685 deaths due to gastric
cancer, making it the 6th most commonly diagnosed and 3rd
most fatal cancer worldwide (1). In 2015, 42% of the new cases
of gastric cancer in the world occurred in China, representing
a heavy disease burden of gastric cancer in the country (2).
The prognosis of gastric cancer depends largely on the tumor
stage. The 5-year survival rate for patients with early gastric
cancer is 85–100% with endoscopic submucosal dissection
(ESD) operation, while the 5-year survival rate for advanced
gastric cancer is <10% (3). However, the early detection rate
of gastric cancer is very low. Early detection, diagnosis, and
treatment can effectively reduce the mortality of gastric cancer
and improve the prognosis after timely treatment. In recent
years, with the growth of public health awareness and the
popularity of gastroscopy, there was an increase in the number
of early gastric cancer detections, but not in the rate of EGC
detection. The low rate of diagnosis of EGC may be due to the
limited abilities in EGC diagnosis (4).

To expedite the learning process of EGC diagnosis, a
mucosal recovery map for the mapping between ESD mucosa
specimen and pathological images should be performed in
collaboration with endoscopists and pathologists. The mucosal
recovery map can show the size, boundary, depth of infiltration,
and lymphatic vascular invasion of the lesion. However, it is
a time-consuming and laborious work to prepare a mucosal
recovery map. To finish a mucosal recovery map, the tumor area
should be marked in each slide, and the tumor area should be
mapped to the ESD mucosa specimen. If the lesions are large
and irregular, it can take many hours to reconstruct a case (5, 6).

Fortunately, the rapid development of deep learning
technology provides new ideas to construct mucosal recovery
map. Recently, deep learning has been widely used in medical
applications, such as computed tomography denoising (7),
cell segmentation (8), COVID-19 diagnosis (9), histopathology
image classification (10), and breast cancer diagnosis (11). Deep
learning can automatically learn task-specific features directly
from the data, which can dramatically shorten the time for data
processing. In this study, a novel method is proposed for the

construction of mucosal recovery maps based on deep learning
which can reduce the work intensity of pathologists.

Materials and methods

This study was approved by the Ethics Committee of
the Zhejiang Provincial People’s Hospital, Affiliated People’s
Hospital of Hangzhou Medical College with the informed
consent waived. The proposed method for the construction
of mucosal recovery maps can be broken down into the
following steps: (1) ESD postoperative specimens processing,
(2) Pathological Image Segmentation, and (3) Sections mapping.
The workflow was shown in Figure 1.

Endoscopic submucosal dissection
postoperative specimens processing

A total of 20 patients at the Zhejiang Provincial People’s
Hospital, Affiliated People’s Hospital of Hangzhou Medical
College from March 2020 to July 2020 were enrolled in this
study. All patients were diagnosed with EGC and treated with
ESD resection. After ESD resection, all resected specimens
were processed according to the guidelines of ESD (12). This
procedure included stretching of the fresh specimen, fixation
in formalin, sectioning of the fixed specimen, and macroscopic
photography before and after sectioning. Firstly, the fresh
specimen was stretched and pinned at outer borders upon a
cork plate with standard pins, and a macroscopic image of the
specimen was taken. Then the specimen was immediately fixed
through immersion in 10% formalin for 24∼48 h and a second
macroscopic image was taken. Finally, the fixed specimen was
cut and sectioned into small sections at intervals of 2.0∼3.0 mm
and a third macroscopic image was taken. After the pathological
section made, all the sections are scanned into digital WSIs with
a Motic scanner. The complete procedure is shown in Figure 2.

Pathological image segmentation

When a WSI is prepared properly, pathological image
segmentation is the most critical step for the construction of
mucosal recovery maps. In this study, a novel segmentation
network is proposed for pathological image segmentation. The
segmentation network can be broken down into the following
steps: (1) Data annotation and preprocessing, and (2) Network
construction and training.

Data annotation and preprocessing

The annotation work was carried out according to the
Japanese classification of gastric carcinoma: 3rd English edition
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FIGURE 1

Work flow of the segmentation model. The whole slide images are split into patches (far left). Then the patch-level annotation is obtained with
the trained segmentation model (near left). The patch-level annotation is mapped back to the WSI-level annotation based on their original
location (near right). Finally, these WSI-level annotations are shown on an image of the entire specimen.

A B C D E

FIGURE 2

Processing flow of endoscopic submucosal dissection specimen: (A) Stretching and fixation; (B) macroscopic photography on a cork plate; (C)
sectioning of the fixed specimen; (D) scanning; (E) annotation.

(13). All WSIs were manually labeled by a group of surgical
pathologists by drawing around the cancerous regions (CR)
and intestinal metaplasia regions (IR) with red and blue
masks, respectively (Figure 3). These masks were modified,
confirmed, and verified by another group of pathologists. In the
corresponding mask generated, the cancerous regions, intestinal
metaplasia regions, and normal mucosa regions (NR) were
shown as red, blue, and green, respectively. Then, all annotated
WSIs was divided into a training set and a testing set. The
training set contained 112 WSIs from 11 patients, and the testing
set contained 48 WSIs from 9 patients. Due to the limitations of
GPU memory, all WSIs and corresponding masks were split into
512 × 512 pixel patches at 10x magnification (see as Figure 4),
and all blank images were removed from the training set. There
were 21,799 patches left in the training set and 9,784 patches
left in the testing set. The overview of the dataset was shown in
Table 1. Random oversampling was adopted for overcome the
unbalance between the lesion area and normal area.

Network construction and training

Our segmentation network incorporates an SE block (14)
into U-Net (15) as shown in Figure 5. U-Net is one of the famous

Fully Convolutional Networks (FCNs) (16) used in biomedical
image segmentation. The image-label pairs in the training set are
fed into the segmentation network for training.

The ResNet-34 framework is employed as the backbone
of U-Net. The architecture of our segmentation network is
shown in Figure 6. The special residual blocks (Figure 6B)
in ResNet are made up of several convolutional layers with
the same number of output channels. Each convolutional layer
is followed by a batch normalization layers and a rectified
linear unit (ReLU). Then, a shortcut connection and element-
wise addition is performed between input and output layers
of the block, which make the network easier to optimize (17).
Further, a Squeeze-and-Excitation (SE) block is incorporated
into U-Net to boost the segmentation performance with
increased generalization ability by exploiting adaptive channel-
wise feature recalibration (14).

The loss function of our segmentation network is the
combination of Jaccard distance loss (18) and cross-entropy loss
(8). The loss function can be formulated as follows:

l = lJaccard distance + lcross entropy (1)
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FIGURE 3

Whole slide image annotation. (Above and lower left) Endoscopic submucosal dissection specimen with cancerous regions outlined in red, and
intestinal metaplasia regions in blue. (Lower right) Corresponding masks for using in deep learning.

FIGURE 4

Split dataset: (A) Intestinal metaplasia region patches; (B) cancerous region patches; (C) normal region patches.
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TABLE 1 The overview of the dataset for network training.

Training set Testing set

Cases 11 9

WSIs 112 48

Patches 21,799 9,784

lJaccard distance = 1−
Intersection

Union
= 1−

1
N

N∑
i=1

pi × yi
pi + yi − pi × yi

(2)

lcross entropy = −

N∑
i

pilog (yi) (3)

In the formula (2) and (3), yi and pi are the i-th pixels of
the labels and predictions, respectively, and N is the number
of image pixels.

The network was trained using Adam optimizer with
learning rate 3 × 10−4 for 50 epochs with a batch size of
4. The input size of our network was 512 × 512 pixels.
To prevent overfitting, data augmentation was operated on
all image-label pairs including rotation (rotation angle range
0∼359◦), cropping (vertical and horizontal shift range in
0∼50 pixels), and vertical and horizontal flips. The network is
implemented with Keras (TensorFlow backend) and trained on
single GTX 1080Ti GPU.

Sections mapping

For each WSI in one case, the WSIs are split into 512 × 512
pixel patches. Then the patch-level annotation with the trained

segmentation model, and map the patch-level annotation back
to the WSI-level annotation based on their original location.
Finally, the WSI-level annotation should be mapped back to the
ESD specimens (see in Figure 7). Considering that pathological
sections may be deformed and atrophied during processing, it
was difficult to construct a perfect mucosal recovery map by
simple stitching. In this study, GloFlow (19) was employed for
slide stitching. GloFlow was a two-stage method for the fusion of
pathological image using optical flow-based image registration
with global alignment using a computationally tractable graph-
pruning approach.

Results

Specimen preparation standard

To successfully complete the construction of mucosal
recovery maps, the specimen needs to meet the following
criteria: (1) The edge of the fixed ESD specimen should not
be curly, (2) the surface of specimen should be dry and free of
mucus, and (3) the photographs of specimen should be without
reflections, and micro-structures should be clearly visible.

Data and result analysis

We have compared the performance of our model with
U-Net on the testing set with 9,784 of patch images. The
performance was quantified by using mean intersection over
union (MIoU) and Dice Coefficient. MIoU is a standard metric
for segmentation purposes, which computes the ratio between
the intersection and the union of prediction and ground truth.

FIGURE 5

Training flow of CNN. The specimen (left) is photographed; the resulting whole slide images are annotated (middle); image-label pairs are fed
into the segmentation network (right), which consists of the U-Net and the Squeeze and Excitation (SE) Block.
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FIGURE 6

Architecture of U-Net: (A) U-Net-like architecture build with pre-trained ResNet-34; (B) residual Block.

FIGURE 7

Whole slide image-level thumbnail results of 13 ESD specimens. Blue mark: Intestinal metaplasia. Red mark: Cancerous.

The Dice Coefficient is two times the Area of Overlap divided by
the total number of pixels in both prediction and ground truth.

As shown in Table 2, the segmentation performance
of our model and U-Net was listed. From the result in
Table 2, our model can achieve better performance than
U-Net. This is mostly due to the fact that a Squeeze-and-
Excitation (SE) block can boost the segmentation performance
with increased generalization ability by exploiting adaptive
channel-wise feature recalibration. Some segmentation results
and corresponding ground truth are shown in Figure 8.

The development of “Pathology
Helper”

For the convenient use, a software pipeline named as
“Pathology Helper” for integration the workflow of the

TABLE 2 The segmentation performance of our model and U-Net.

Methods MIoU Dice

Our model 0.955± 0.0936 0.961± 0.0874

U-Net 0.921± 0.1761 0.932± 0.1585

construction of mucosal recovery maps was developed. The
interface of “Pathology Helper” is shown as Figure 9.

Conclusion

In the clinical diagnosis and treatment of early gastric
cancer, the detection rate (i.e., the number of early gastric
cancers as a percentage of the total number of diagnosed
gastric cancers) is an important index measuring the level of
an endoscopic center. The detection rate varies from place to
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FIGURE 8

Example of segmentation result in patch-level. (A) Whole slide image patches; (B) annotation masks; (C) deep learning model prediction results.

place in China: It can reach 40% in developed cities along
the southeast coast, but is less than 10% in remote areas. The
overall detection rate in China is about 15%. Therefore, it is very
important to improve the detection rate of early gastric cancer.

Mucosal recovery maps can help pathologists and
endoscopists improve their understanding of endoscopy
and pathomorphology. However, given a specimen of
6 cm × 5 cm × 0.2 cm and lesion area about 3 cm × 2 cm, it
will take about 60 min for a skilled subspecialist in pathology
to complete a finely made mucosal recovery map. If the
histological classification of the cancer is complex, it may take
even longer to complete the task. As a result, many endoscopists
are unable to obtain high-quality mucosal recovery maps. In
recent years, deep learning has been widely applied in the
field of pathological diagnosis, thanks to the popularization of
pathological section digitization. In 2017, Esteva et al. (20) used
a convoluted neural network to analyze 129,450 pathological
images of skin lesions and trained the model to distinguish skin

squamous cell carcinoma from seborrheic keratosis, malignant
melanoma, and benign nevus with the same accuracy as
doctors. In 2019, Kather et al. (21) used a deep residual learning
algorithm to identify microsatellite instability (MSI) directly
from pathological slices. The accuracy of MSI recognition
of colorectal cancer was 84%. There have also been artificial
intelligence-assisted diagnostic studies on histopathology,
including glioma grade (20), lymphoma classification (21),
colorectal cancer polyp classification (22), and prostate cancer
diagnosis (23). All these works matched or even went beyond
the diagnostic level attained by human pathologists.

In this study, we design a novel segmentation network for
pathological image segmentation. Starting with WSIs labeled by
surgical pathologists in early gastrointestinal cancer, we trained
a novel segmentation network for the automatical annotation
of WSIs. Our segmentation network incorporates an SE block
(14) into U-Net (15), one of the famous Fully Convolutional
Networks (FCNs) (16) used in biomedical image segmentation.
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FIGURE 9

Whole slide image-level results mapping flow: (A) Mapping with Pathology Helper software; (B) specimen photo; (C) mapping result.
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U-Net has had many successful applications, such as brain
image segmentation (24), liver image segmentation (25), and
cell counting, detection, and morphometry (26). However, it
fails to take the differentiate between channel-wise features. In
general, the SE block was proposed to be placed in InceptionNet
(27) and ResNet (17) for boosting performance in classification
and object detection via feature recalibration. Accordingly,
we incorporate it into U-Net to boost the segmentation
performance with increased generalization ability by exploiting
adaptive channel-wise feature recalibration. The experiments
show that our proposed network has better performance than
U-Net alone. After pathological image segmentation, the WSI-
level segmentation result is mapped back to the ESD specimen
with the help of a mucosal recovery software tool “Pathology
Helper”.

“Pathology Helper” can help in the production of high-
quality mucosal recovery maps. This will accelerate the learning
of endoscopists and pathologists, and rapidly improve their
abilities to detect EGC. Our work can also improve the detection
rate of early gastric cancer, so that more patients with gastric
cancer will be treated in a timely manner. However, this software
tool still had several limitations. For example, the pathological
image segmentation network was developed and trained on
the dataset from a single large academic institution, which
lacked multi-center or external data validation. Future research
is required to determine if the same model trained can achieve
high performance on larger or multi-institutional datasets.
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Introduction: Gastric cancer is the fifth most common cancer in the world.

At the same time, it is also the fourth most deadly cancer. Early detection

of cancer exists as a guide for the treatment of gastric cancer. Nowadays,

computer technology has advanced rapidly to assist physicians in the diagnosis

of pathological pictures of gastric cancer. Ensemble learning is a way to

improve the accuracy of algorithms, and finding multiple learning models with

complementarity types is the basis of ensemble learning. Therefore, this paper

compares the performance of multiple algorithms in anticipation of applying

ensemble learning to a practical gastric cancer classification problem.

Methods: The complementarity of sub-size pathology image classifiers when

machine performance is insu�cient is explored in this experimental platform.

We choose seven classical machine learning classifiers and four deep learning

classifiers for classification experiments on the GasHisSDB database. Among

them, classical machine learning algorithms extract five di�erent image virtual

features to match multiple classifier algorithms. For deep learning, we choose

three convolutional neural network classifiers. In addition, we also choose a

novel Transformer-based classifier.

Results: The experimental platform, in which a large number of classical

machine learning and deep learning methods are performed, demonstrates

that there are di�erences in the performance of di�erent classifiers on

GasHisSDB. Classical machine learning models exist for classifiers that classify

Abnormal categories very well, while classifiers that excel in classifying Normal

categories also exist. Deep learningmodels also exist withmultiplemodels that

can be complementarity.

Discussion: Suitable classifiers are selected for ensemble learning, when

machine performance is insu�cient. This experimental platform demonstrates

that multiple classifiers are indeed complementarity and can improve the
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e�ciency of ensemble learning. This can better assist doctors in diagnosis,

improve the detection of gastric cancer, and increase the cure rate.

KEYWORDS

gastric histopathology, sub-size image, robustness comparison, algorithmic

complementarity, image classification

1. Introduction

Gastric cancer is a serious threat to human health as a

global killer disease. According to themost recent Global Cancer

Statistics Report, gastric cancer has become the fifth most

common cancer and the fourth leading cause of death (1).

Histopathological examination of gastric cancer constitutes the

gold standard for the detection of gastric cancer and is a

prerequisite for its management (2).

Histopathological examinations begin by staining the

sections with Hematoxylin and Eosin (H&E), which are used

to visualize the nuclei and cytoplasm of tissue sections,

highlighting the fine structure of cells and tissues for physician

observation (3). The pathologist finds the diseased area by gross

observation of the pathological slides with the naked eye. The

pathologist then observes and diagnoses the diseased area of

the pathological section using the low-power microscope of

the microscope. Pathologists can use high-power microscopes

for careful observation and judgment (4). For the entire

pathological slice diagnosis process (5), the following problems

can be found: slice information is easy to ignore (6). This shows

that there is subjectivity throughout the process. The workload

of pathologists is huge and the working hours are long, which is

highly likely to lead to misdiagnosis (7). Therefore, there is an

urgent need to address the issues more intensively.

However, computer-aided diagnosis technology has

advanced rapidly in recent years, and the emergence of medical

image classification technology in computer vision technology

can achieve fast and efficient help for doctors to examine gastric

cancer tissue sections (8). Image classification techniques have

brought new breakthroughs to discriminate between benign

and malignant cancer, distinguish between stages of tumor

differentiation and differentiate tumor subtypes, as image

classification techniques can provide valid information for

pathologists to refer to during the diagnostic process (9). In

addition, the development direction of image classification

technology is mainly to enhance the accuracy of classification

algorithms and improve the anti-interference ability, ensemble

learning becomes an effective solution, and it becomes especially

important to find multiple efficient classification algorithms

with complementarity properties (10). Moreover, there is a lack

of computer performance in practical work, and computer-

aided medical image analysis often crops full-slice images

into sub-size pictures (11). Therefore, we compare the image

classification performance of a large number of algorithms

on sub-size images in order to expect to find algorithms with

complementarity properties for ensemble learning to improve

medical image classification performance.

The database used in this study is GasHisSDB (12),

containing 245,196 images, of which there are 97,076 abnormal

images and 148,120 normal images. GasHisSDB is a database

containing three sub-databases, including sub-database A (160

×160 pixels), Sub-database B (120 ×120 pixels.), Sub-database

C (80×80 pixels). GasHisSDB provides the ability to distinguish

between classical machine learning classifier performance and

deep learning classifier performance (13). Details are given in

Section 2.1.

Classical machine learning methods still have excellent

classification results in the field of image classification (14).

Existing methods can extract different features of images

and supply different performance of classifiers for image

classification (15). Exploring different features using appropriate

classifiers to obtain efficient classification results is the basis of

using ensemble learning for medical images (16). Therefore,

in this study, five different image features including two color

features and three texture features are extracted for GasHisSDB.

After extracting the features seven different classifiers are used

for classification. Details are given in Sections 2.2 and 2.3.

In the field of medical image classification, deep learning

algorithms are the most effective algorithms, and Convolutional

Neural Network (CNN) is a widely used model for image

classification, which can extract information from original

medical images and classify normal and abnormal case

images (17). Recently, Visual Transformer, which is originally

applied to Natural Language Processing tasks, have become

popular in computer vision, and Vision Transformer (ViT) have

effective classification results when trained on large amounts

of data and can significantly reduce the computer hardware

and software resources required for training (18). CNN-based

deep learning models, this study used VGG6, Inception-V3

and ResNet50. Visual transformer-based deep learning models

in this study used VIT. The above four deep learning models

use the same parameters with the same database: GasHisSDB.

Details are given in Section 2.4.

This study makes the following contributions to the field of

sub-size pathology image classification:
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TABLE 1 Dataset scale of GasHisSDB.

Sub-database name Cropping size Abnormal Normal

Sub-database A 160× 160 pixels 13,124 20,160

Sub-database B 120× 120 pixels 24,801 40,460

Sub-database C 80× 80 pixels 59,151 87,500

Total 97,076 148,120

• Extensive testing is done and the complementarity of

different classification methods is found.

• According to the complementarity, it can provide a basis

for future ensemble learning research.

This paper is structured as follows: In Section 2, we detail the

dataset used, classical classification methods, and deep learning

methods. In Section 3, we show the comparative experimental

setup, evaluation metrics and experimental results. In Section

4, we compare the experimental results and analyze them.

In Section 5, we summarize the research and suggest future

research directions.

2. Materials and methods

2.1. Dataset: GasHisSDB

The publicly available dataset GasHisSDB is used in this

study to compare the performance of various learning models,

expecting to discover the complementarity of various models

in ensemble learning (12). The database contains three sub-

datasets with a total of 245,196 images, and the size and number

are shown in Table 1. The database is a sub-size gastric cancer

pathology H&E staining image database, which contains two

categories of images: normal and abnormal. The abnormal

image contains more than 50% of the cancerous area, and the

normal image is the image of the normal pathological slice

tissue. Some examples of the GasHisSDB database are shown in

Figure 1.

GasHisSDB contains images in png format acquired using

electron microscopy. GasHisSDB contains two categories and

the details of the two categories are shown below:

• Normal: each normal image does not contain cancerous

regions. Each cell is almost free of anisotropy. In addition,

the nuclei of the cells in the images have almost no

mitosis and are arranged in a regular layer. Therefore, when

observed under the light microscope, if no elimination of

any cells and tissues is observed and the characteristics

of a normal image are met, it can be judged as a normal

image (19).

• Abnormal: Each abnormal image contains more than 50%

of gastric cancer images. The general morphology of gastric

cancer is mostly ulcerative. As the disease progresses,

the cancer nest infiltrates from the mucosal layer to the

muscular layer and plasma layer. The texture is hard and

the cross-section is often grayish white. Under microscopic

observation, the cancer cells can be arranged in nest-

like, glandular vesicle-like, tubular or cord-like, and the

boundary with the interstitium is usually clear. However,

when cancer cells infiltrate the stroma, the borders between

them are not clear. Based on these facts, abnormal

pathological images can be judged when cells are observed

to form unevenly sized, irregularly shaped, and irregularly

arranged glandular or adenoid structures (19).

2.2. Methods of feature extraction

To extract a variety of virtual features of GasHisSDB is a

prerequisite for classification using classical machine learning

classifiers. In the comparison experiments, five methods are

used to extract visual features from the database, including

Color histogram, Luminance histogram, Histogram of Oriented

Gradient (HOG), Local Binary Patterns (LBP), and Gray-level

Co-occurrence Matrix (GLCM).

2.2.1. Color histogram

Among the different methods of feature extraction, the most

common method to describe the color features of an image

is the color histogram. The color histogram clearly represents

the color spread in the image. The color histogram has the

characteristic of being unaffected by image rotation and shift

changes and by further normalization of image scale changes.

It is especially applicable to describe images that are resistant

to automatic segmentation and images that do not require

consideration of the spatial location of subjects. However, the

color histogram does not characterize the partial spread of

colors in an image, the spatial location of each color, and

specific objects. In this experiment, the luminance histogram

is used as the luminance feature. The luminance feature is

expressed as a histogram of the average of the three color

components.

2.2.2. Texture features

The texture is a visual feature that reflects homogeneous

phenomena in an image (20). That reflects the structure and

arrangements of the surface structures on the surface of an object

with slow or periodic changes (21). A texture feature is not a

pixel-based feature. It requires statistical computation of regions

containing multiple pixels, such as the grayscale distribution

of pixels and their surrounding spatial neighbors, and local

texture information. In addition, the global texture information

is reflected as the repetition degree of local texture information.
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FIGURE 1

Example of GasHisSDB.

In this experiment, three texture features are extracted, which

are HOG, LBP, and GLCM.

HOG is a feature descriptor commonly used in image

processing for object detection. Features are constructed by

computing a histogram of the gradient direction of local regions

of an image. HOG has the property of operating on the local

units of the image. So it has the advantage of maintaining

excellent invariance in terms of geometric and optical distortion

of the image. LBP has advantages such as gray invariance

and rotation invariance, and the features are easy to compute.

GLCM is defined by the joint probability density of pixels at

two locations and is a second-order statistical feature about

the variation of image brightness. It not only reflects the

distribution of luminance. It also reflects the distribution of

positions between pixels with the same or similar luminance.

The main statistical values are: Contrast, Correlation, Energy,

and Homogeneity.

2.3. Classical classification models

After the feature extraction step, complementarity

comparison tests for image classification are performed

using seven classical machine learning methods, including

Linear Regression, k-Nearest Neighbor (kNN), naive

Bayesian classifier, Random Forest (RF), linear Support

Vector Machine (linear SVM), non-linear Support Vector

Machine (non-linear SVM), and Artificial Neural Network

(ANN).

Classical machine learning methods perform image

classification by using virtual features. Linear Regression is a

method to get a linear model as much as possible to accurately

predict the real value output label. In Linear regression, the

least square function is used to establish the relationship

between one or more independent variables (22). An easy

and commonly used supervised learning method is kNN. The
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main idea of kNN is to first find the nearest k samples based

on the distance and then vote for the prediction result (23).

The naive Bayesian classifier based on Bayesian decision

theory in probability theory (24). RF is a parallel integrated

learning method based on a decision tree learner. RF adds

random attribute selection to the training process of decision

trees (25). SVMs are divided into linear and non-linear. The

difference between the two is mainly that the kernel functions

of both are different (26). Linear SVM maps training examples

to points in space to maximize the gap between the two

categories. Then, the new examples are mapped to the same

space and predicted to belong to a category based on which

side of the gap they fall on. In addition to performing linear

classification, SVM can also use a kernel function to perform

non-linear classification effectively, thereby implicitly mapping

its input to a high-dimensional feature space. The ANN is a

classification algorithm composed of a structure that simulates

human brain neurons and is trained through a propagation

algorithm (27).

2.4. Deep learning models

Complementarity comparison experiments use deep

learning models for the classification of gastric cancer

pathology images (28). First, the model is trained using

training and validation sets generated from three sub-datasets

of GasHisSDB. The test set is used in this experiment to

evaluate the models’ performance (29). Comparative analysis

of multiple classification results is performed using the

obtained evaluation metrics to determine if the classifiers

would be complementarity in Ensemble learning (30). This

experiment uses four deep learning models. Three of the

models are based on CNNs, including VGG16, Inception-V3,

and ResNet50. One more model corresponds to VT, which is

ViT (31).

VGG is a convolutional neural network (CNN) improved

by AlexNet, developed by Visual Geometry Group and Google

DeepMind in 2014, and the most commonly used one in image

classification is VGG16 (32). In 2014, Google’s InceptionNet

made its debut at the ILSVRC competition. Several versions of

InceptionNet have been developed, with Inception-V3 being one

of the more representative versions of this large family (33). He

et al. proposed ResNet to address the difficulty of training deep

networks due to gradient disappearance. The most commonly

used in the field of image classification is ResNet50 (34). In

recent years, Dosovitskiy et al. have proposed the ViT model

using transformer. This model is not only very effective in the

field of natural language processing, but also provides good

results in the field of image classification. Effectively reduces the

dependence of computer vision on CNN (35).

3. Experiment

3.1. Comparative experimental setup

The main process of complementarity experiments is

divided into two parallel parts: The classification results of

classical models and deep learningmodels are both analyzed and

evaluated. The experimental flow is shown in Figure 2.

The various settings of the experimental platform are as

follows:

1. Hardware configuration: The complementarity comparison

experiment is conducted on a local computer with theWin10

operating system. The computer has 32 GB of running

memory and is equipped with an 8 GBNVIDIAQuadro RTX

4000.

2. Data set partitioning: In this experiment, the training set,

validation set and test set are divided in the ratio of 4:4:2.

3. Classical machine learning software configuration: The

classical programming software use for machine learning is

Matlab R2020a (9.8.0.132 350 2).

4. Deep learning software configuration: The Pytorch version

1.7.1 framework in Deep Learning Python 3.6 is very mature,

and the code for this part of the experiment is done using

them.

5. Classical machine learning parameter settings: The same

parameters are used for all classification comparison

experiments. In kNN, k is set to 9. The number of trees in

RF is set to 10. The kernel function of the non-linear SVM is

a Gaussian kernel. The ANN uses a 2-layer network with 10

nodes in the first layer and 3 nodes in the second layer. The

number of epochs for ANN training is set to 500, the learning

rate is set to 0.01, and the expected loss is set to 0.01.

6. Deep learning parameter settings: This part of the experiment

focuses on classifying GasHisSDB using four deep learning

methods to observe model complementarity. A learning rate

of 0.00002 is used for each model, and the batch size is set

to 32. One hundred epochs of experiments are performed to

observe the classification results of this database on different

models.

3.2. Evaluation metrics

The selection of evaluation indicators is important in

complementarity comparison papers. In the experiments of this

thesis, Accuracy (Acc) is the most significant metric, but also

Precision (Pre), Recall (Rec), Specificity (Spe), and F1-score (F1)

are selected. These selected metrics are very commonly used in

comparison papers to analyze classifiers and thus better identify

their complementarities to enhance and improve ensemble

learning (36).
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FIGURE 2

Workflow of the complementarity comparison experiment.

In the case of positive-negative binary classification,

true positives (TP) correspond to the number of positive

samples that are accurately predicted. The number of

negative samples predicted to be positive is called false

positive (FP). The number of positive samples predicted

to be negative samples is called false negative (FN). True

Negative (TN) is the number of negative samples predicted

accurately (37).

The five evaluation indicators are described below and the

formulas are shown in Table 2.

1. Acc: Accuracy is the ratio of the number of correct

predictions to the total number of samples.

2. Pre: Precision is a measure of accuracy, indicating the

proportion of examples classified as positive that are actually

positive.

3. Recl: Recall is a measure of coverage, a measure of the

number of positive examples classified as positive examples,

indicating the proportion of all positive examples classified as

pairs, which measures the ability of the classifier to identify

positive examples.

4. Spe: Specificity indicates the proportion of all negative cases

that were scored correctly, andmeasures the classifier’s ability

to identify negative cases.

TABLE 2 Evaluation metrics.

Assessment Formula

Accuracy (Acc) (TP + TN)/(TP + TN + FP + FN)

Precision (Pre) TP/TP + FP

Recall (Rec) TP/TP + FN

Specificity (Spe) TN/TN + FP

F1-score (F1) 2× (Pre×Rec)/(Pre + Rec)

5. F1: F1-Score combines Precision and Recall. Accuracy is the

ratio of the number of correct predictions to the total number

of samples.

3.3. Experimental results

We set up an experimental platform to conduct various

classification experiments on three sub-databases of the

GasHisSDB. A large amount of experimental data is obtained for

our experiments in order to investigate the complementarity of

different methods (38).
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The comparative results of classical machine learning

methods are shown in Tables 3–5.

Table 6 show the comparison results of the deep learning

methods.

4. Evaluation of results

4.1. Evaluation of classical machine
learning methods

4.1.1. On 160 × 160 pixels sub-database

This section focuses on the classification results of

classical machine learning methods for the 160 ×160 sub-

database.

The color histogram has the highest number of items among

all features. According to Table 3, the classical machine learning

classifier on the color histogram, the best performer is RF with

an accuracy of 85.99%. In addition, in color histogram, the

classification accuracy of the three classifiers reached around

80%, which are LR, kNN, and ANN. All SVM classifiers perform

poorly on color histogram features. However, color histogram

on GasHisSDB, the naive Bayesian classifier, cannot get the

classification effect because of the existence of a large number

of low luminance statistics with zero values in the three color

channels.

The luminance is the average of the colors. Its histogram

does not yield better classification accuracy as a feature.

Because of this, luminance histogram also has the above

problem on the naive Bayesian classifier. The classification

results of the naive Bayesian classifier for these two color

features are therefore not presented in the Table 3. RF shows

robustness in two features and obtains the highest accuracy

rate of 79.13% using luminance histogram for classification.

However, the LR, kNN, and ANN classifiers that perform

better on color histogram significantly drop on luminance

histogram.

The classification effect of HOG on all classifiers is not very

effective and the accuracy is very close. The difference is not

much distributed between 53 and 62%.

On the contrary, the distribution of LBP image classification

accuracy is particularly scattered, with the highest Linear

Regression classifier reaching 74.29%, followed by ANN

reaching 71.84%. The lowest linear SVM classification effect is

<50%.

The classification effect of the four statistic values of GLCM

is 71.39% only for RF, and other classifiers are also above 60%. It

is worth noting that the accuracy of non-linear SVM with other

features except color histogram and GLCM has not changed at

all, which is 60.58%. The accuracy of non-linear SVM classifier

with color histogram is 56.09% and the accuracy of GLCM’s

non-linear SVM classifier is 67.76%.

4.1.2. On 120 × 120 pixels sub-database

Here, we focus on the comparison of the experimental

results of the 120 × 120 pixels sub-database. The experimental

results are shown in Table 3. In general, compared with 160×160

pixels sub-database classification results, 120 × 120 pixels sub-

database classification results except for color histogram, the rest

of the best classifiers remain unchanged.

The four better-performing classifiers on color histogram

feature still perform better, and the accuracy rate fluctuates

slightly, resulting in the kNN classifier reaching the best accuracy

rate of 86.32%. The classification performance of the two SVM

classifiers on the features of color histogram is still not ideal.

Naive Bayesian classifier is still not suitable for color histogram

and luminance histogram features. The linear SVM effect of

luminance histogram classifier has been greatly improved in the

classification of the 120× 120 pixels sub-database. The accuracy

of other classifiers on the features of luminance histogram has

little change. The HOG feature still does not perform well in

every classifier. The highest accuracy rate is only 62.35% of ANN.

The classification results of LBP and GLCM features are similar

to the classification effect on the 160 × 160 pixels sub-database.

The best accuracy rate on LBP is a linear regression with a

precision rate of 73.34%. The best accuracy rate on GLCM is

that the RF reaches 71.15%. Similarly, the non-linear SVM of

120 × 120 pixels sub-database also has the problem of constant

accuracy of multiple features.

4.1.3. On 80 × 80 pixels sub-database

The classification results of the 80 × 80 pixels sub-database

are shown in Table 4. The overall best classifier on each feature

remains the same as that of the best classifier for each feature

corresponding to the 120 × 120 pixels sub-database except for

HOG features that have a small gap between each classifier.

Compared with the classification results of the other two

sub-databases, the classification effect of each classifier on color

histogram and luminance histogram has no particularly large

fluctuations. It confirms the consistency of the three databases

of GasHisSDB.

The classification accuracy of color histogram is still

polarized. The four excellent classifiers reach about 80%, and

the other two are about 60%. The RF still showed robustness

in the luminance histogram classification task. RF was the best

classifier with an accuracy of 75.10%. The classification accuracy

distribution of HOG features is denser than that of the other two

sub-databases. The highest is only 59.87%. Due to the reduced

sample size, each classifier has different degrees of accuracy

reduction in addition to the naive Bayesian classifier for LBP

features and GLCM features. The best classifier for LBP feature

is still linear regression which reaches 70.92%. The highest

accuracy rate of LBP feature has become 68.84% of kNN. In

the classification results of the 80 × 80 pixels sub-database,

the naive Bayesian classifier of color histogram and luminance
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TABLE 3 Classification results of five image features using di�erent classifiers in the 160 × 160 pixels sub-database of GasHisSDB [In (%)].

Freatures Methods Acc Abnormal Normal

Pre Rec Spe F1 Pre Rec Spe F1

LR 83.29 81.32 80.42 85.54 80.87 84.80 85.54 80.42 85.17

kNN 85.52 82.95 84.35 86.43 83.64 87.58 86.43 84.35 87.01

RF 85.99 81.65 87.83 84.55 84.63 89.88 84.55 87.83 87.13

Color histogram Linear SVM 41.12 33.92 35.96 45.16 34.91 47.40 45.16 35.96 46.25

Non-linear SVM 56.09 Null 0.00 100.00 0.00 56.09 100.00 0.00 71.87

ANN 78.89 77.78 72.68 83.75 75.14 79.67 83.75 72.68 81.66

LR 70.97 67.95 49.92 84.67 57.56 72.21 84.67 49.92 77.95

kNN 77.10 70.30 72.60 80.03 71.43 81.78 80.03 72.60 80.90

RF 79.13 72.17 76.60 80.78 74.32 84.14 80.78 76.60 82.42

Linear SVM 42.34 40.50 98.67 5.68 57.43 86.74 5.68 98.67 10.66

Luminance histogram Non-linear SVM 60.58 Null 0.00 100.00 0.00 60.58 100.00 0.00 75.45

ANN 71.23 64.74 59.34 78.97 61.92 74.90 78.97 59.34 76.88

HOG

LR 60.46 48.96 7.20 95.11 12.56 61.16 95.11 7.20 74.45

kNN 61.42 51.31 41.65 74.28 45.98 66.17 74.28 41.65 69.99

Naive Bayesian 54.43 45.11 71.84 43.11 55.42 70.17 43.11 71.84 53.40

RF 60.85 50.33 53.01 65.95 51.63 68.32 65.95 53.01 67.11

Linear SVM 53.28 44.82 80.14 35.79 57.49 73.47 35.79 80.14 48.13

Non-linear SVM 60.58 Null 0.00 100.00 0.00 60.58 100.00 0.00 75.45

ANN 61.54 54.30 15.40 91.57 23.99 62.45 91.57 15.40 74.26

LBP

LR 74.29 69.32 62.42 82.02 65.69 77.03 82.02 62.42 79.45

kNN 70.21 66.11 50.11 83.28 57.01 71.95 83.28 50.11 77.20

Naive Bayesian 57.71 47.78 78.28 44.32 59.34 75.82 44.32 78.28 55.94

RF 70.27 62.16 62.84 75.10 62.50 75.64 75.10 62.84 75.37

Linear SVM 48.17 36.83 44.02 50.87 40.10 58.27 50.87 44.02 54.32

Non-linear SVM 60.58 Null 0.00 100.00 0.00 60.58 100.00 0.00 75.45

ANN 71.84 67.38 55.41 82.54 60.81 73.99 82.54 55.41 78.03

GLCM

LR 67.73 59.71 55.75 75.52 57.67 72.40 75.52 55.75 73.93

kNN 69.26 62.30 55.79 78.03 58.87 73.06 78.03 55.79 75.46

Naive Bayesian 61.99 51.12 82.01 48.96 62.98 80.70 48.96 82.01 60.94

RF 71.39 63.16 65.85 75.00 64.48 77.14 75.00 65.85 76.06

Linear SVM 66.50 55.89 71.27 63.39 62.65 77.22 63.39 71.27 69.63

Non-linear SVM 67.76 58.77 61.05 72.12 59.89 73.99 72.12 61.05 73.05

ANN 68.69 60.64 58.65 75.22 59.63 73.65 75.22 58.65 74.43

The bold text in the table indicates the highest value of the classification result of different classifiers for the same feature.

histogram is not applicable, and, except for the GLCM feature,

the problem that the accuracy of the non-linear SVM classifier

does not change still exists.

4.2. Evaluation of deep learning methods

4.2.1. On 160 × 160 pixels sub-database

According to Table 5, on 160 × 160 pixels sub-database,

all deep learning models have better classification results than

classical machine learning methods. The VGG model with the

longest training time and the largest model size has an accuracy

above 95%. Inception-V3 and ResNet50 have better model size

and training time than VGG16. However, Inception-V3 has

lower accuracy than VGG16, and ResNet50 has the highest

accuracy of 96.09%, which is the highest among all models. ViT

is a Transformer-based classifier with an accuracy of 86.21%.

However, it is still higher than the classification accuracy of

all traditional machine learning methods on this sub-database.

Significantly, ViT achieves such accuracy with only 1/4 of the
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TABLE 4 Classification results of five image features using di�erent classifiers in the 120 × 120 pixels sub-database of GasHisSDB [In (%)].

Freatures Methods Acc
Abnormal Normal

Pre Rec Spe F1 Pre Rec Spe F1

LR 83.46 80.01 75.28 88.47 77.57 85.38 88.47 75.28 86.90

kNN 86.32 82.28 81.55 89.24 81.92 88.75 89.24 81.55 88.99

RF 86.08 80.36 83.87 87.43 82.08 89.84 87.43 83.87 88.62

Color histogram Linear SVM 46.28 39.48 77.62 27.06 52.34 66.36 27.06 77.62 38.45

Non-linear SVM 62.00 Null 0.00 100.00 0.00 62.00 100.00 0.00 76.54

ANN 81.20 78.14 70.14 87.98 73.93 82.78 87.98 70.14 85.30

LR 71.28 66.89 48.39 85.32 56.15 72.95 85.32 48.39 78.65

kNN 76.43 68.19 71.17 79.65 69.65 81.84 79.65 71.17 80.73

RF 77.60 69.36 73.57 80.08 71.40 83.17 80.08 73.57 81.60

Linear SVM 58.54 47.45 84.62 42.55 60.80 81.86 42.55 84.62 55.99

Luminance histogram Non-linear SVM 62.00 Null 0.00 100.00 0.00 62.00 100.00 0.00 76.54

ANN 71.18 62.97 58.65 78.86 60.73 75.68 78.86 58.65 77.23

HOG

LR 61.78 33.72 0.58 99.30 1.15 61.97 99.30 0.58 76.31

kNN 62.02 50.04 39.56 75.79 44.18 67.17 75.79 39.56 71.22

Naive Bayesian 54.83 44.29 73.06 43.66 55.15 72.56 43.66 73.06 54.52

RF 60.55 48.15 49.62 67.25 48.87 68.53 67.25 49.62 67.88

Linear SVM 50.91 39.90 57.60 46.81 47.14 64.30 46.81 57.60 54.18

Non-linear SVM 62.00 Null 0.00 100.00 0.00 62.00 100.00 0.00 76.54

ANN 62.35 54.37 5.77 97.03 10.43 62.69 97.03 5.77 76.17

LBP

LR 73.34 67.20 58.29 82.56 62.43 76.35 82.56 58.29 79.34

kNN 70.27 64.05 49.64 82.92 55.93 72.87 82.92 49.64 77.57

Naive Bayesian 57.39 46.41 78.43 44.49 58.31 77.09 44.49 78.43 56.42

RF 70.13 60.88 59.90 76.41 60.39 75.66 76.41 59.90 76.03

Linear SVM 46.21 29.70 30.40 55.89 30.05 56.71 55.89 30.40 56.30

Non-linear SVM 62.00 Null 0.00 100.00 0.00 62.00 100.00 0.00 76.54

ANN 71.19 64.72 53.19 82.23 58.39 74.13 82.23 53.19 77.97

GLCM

LR 67.54 58.21 51.65 77.27 54.74 72.28 77.27 51.65 74.69

kNN 69.79 61.98 53.04 80.05 57.16 73.56 80.05 53.04 76.67

Naive Bayesian 61.40 49.52 80.77 49.53 61.39 80.77 49.53 80.77 61.41

RF 71.15 61.42 64.72 75.09 63.03 77.64 75.09 64.72 76.34

Linear SVM 66.66 55.02 67.30 66.28 60.54 76.78 66.28 67.30 71.14

Non-linear SVM 69.43 60.08 58.27 76.27 59.16 74.88 76.27 58.27 75.57

ANN 68.10 58.45 55.56 75.79 56.97 73.56 75.79 55.56 74.66

The bold text in the table indicates the highest value of the classification result of different classifiers for the same feature.

training time and 1/3 of the model size compared to ResNet.

Also, the accuracy curve is still trending upward and the loss

function is still not fully converged.

4.2.2. On 120 × 120 pixels sub-database

According to the Table 5, the classification results are

excellent on the sub-database of 120× 120 pixels. Due to a large

number of training samples, VGG16 is the classifier with the

highest accuracy of 96.47% on this sub-database. However, the

training time is doubled compared to that on the 160× 160 sub-

database. The accuracies of 95.83 and 95.94% are obtained for

Inception-V3 and ResNet50, respectively. Due to the increase

in the amount of training data, ViT also gained an accuracy

improvement, rising to 89.44%.

4.2.3. On 80 × 80 pixels sub-database

According to Table 5, the classification results of the 80× 80

subdatabase can be seen. It is the sub-database with the largest

number of samples, and the accuracy of the four classifiers
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TABLE 5 Classification results of five image features using di�erent classifiers in the 80 × 80 pixels sub-database of GasHisSDB [In (%)].

Freatures Methods Acc
Abnormal Normal

Pre Rec Spe F1 Pre Rec Spe F1

LR 82.22 78.17 77.59 85.35 77.88 84.93 85.35 77.59 85.14

kNN 85.24 80.60 83.52 86.41 82.03 88.58 86.41 83.52 87.48

RF 83.27 77.14 83.15 83.34 80.03 87.98 83.34 83.15 85.60

Color histogram Linear SVM 60.81 50.86 83.58 45.41 63.24 80.36 45.41 83.58 58.03

Non-linear SVM 59.67 Null 0.00 100.00 0.00 59.67 100.00 0.00 74.74

ANN 79.28 76.60 70.03 85.54 73.17 80.85 85.54 70.03 83.13

LR 70.16 66.79 51.77 82.60 58.33 71.70 82.60 51.77 76.76

kNN 74.65 67.67 71.11 77.04 69.35 79.78 77.04 71.11 78.38

RF 75.10 67.77 72.94 76.55 70.26 80.71 76.55 72.94 78.58

Linear SVM 54.58 46.58 85.81 33.47 60.38 77.72 33.47 85.81 46.79

Luminance histogram Non-linear SVM 59.67 Null 0.00 100.00 0.00 59.67 100.00 0.00 74.74

ANN 70.17 63.19 62.38 75.43 62.78 74.79 75.43 62.38 75.11

HOG

LR 59.87 53.42 3.96 97.67 7.37 60.07 97.67 3.96 74.39

kNN 59.63 49.95 42.22 71.40 45.76 64.64 71.40 42.22 67.85

Naive Bayesian 55.91 46.97 72.35 44.79 56.96 70.56 44.79 72.35 54.79

RF 59.08 49.31 51.88 63.95 50.56 66.28 63.95 51.88 65.10

Linear SVM 53.47 44.46 61.60 47.98 51.64 64.89 47.98 61.60 55.17

Non-linear SVM 59.70 90.91 0.08 99.99 0.17 59.68 99.99 0.08 74.75

ANN 59.67 50.08 2.49 98.32 4.75 59.87 98.32 2.49 74.42

LBP

LR 70.92 65.32 59.49 78.65 62.27 74.17 78.65 59.49 76.34

kNN 68.48 63.20 52.32 79.41 57.24 71.13 79.41 52.32 75.04

Naive Bayesian 59.09 49.55 77.69 46.52 60.51 75.52 46.52 77.69 57.57

RF 68.16 60.13 62.49 71.98 61.29 73.95 71.98 62.49 72.95

Linear SVM 43.10 27.68 25.48 55.01 26.53 52.20 55.01 25.48 53.56

Non-linear SVM 59.67 Null 0.00 100.00 0.00 59.67 100.00 0.00 74.74

ANN 68.57 62.75 54.32 78.21 58.23 71.69 78.21 54.32 74.81

GLCM

LR 65.56 57.32 57.24 71.19 57.28 74.65 71.21 64.23 72.89

kNN 68.84 62.32 57.53 76.49 59.83 72.71 76.49 57.53 74.55

naive Bayesian 62.12 51.96 80.87 49.45 63.27 79.27 49.45 80.87 60.91

RF 68.39 60.13 64.23 71.21 62.11 74.65 71.21 64.23 72.89

Linear SVM 66.82 57.14 71.04 63.97 63.33 76.57 63.97 71.04 69.71

Non-linear SVM 68.31 61.03 59.26 74.42 60.13 72.99 74.42 59.26 73.70

ANN 65.52 56.70 61.40 68.30 58.96 72.36 68.30 61.40 70.27

The bold text in the table indicates the highest value of the classification result of different classifiers for the same feature.

only changes slightly. VGG16 performs stably with an accuracy

of 96.12%, which is the classification model with the highest

accuracy. The lowest accuracy is still the ViTmodel with the least

training time, at 90.23. It is worth noting that the training time

of ViT is 13.26% of that of the highest accurate VGG16 on this

sub-database.

4.3. Additional experiment

As stated in Section 4.2.1, ViT did not converge completely

within 100 epochs. Experiments are added in this section to

explore the performance of ViT, and the results are reflected in

the last row of each sub-database in Table 5. The same parameter

conditions were maintained for all additional experiments. In

the additional experiments for the 160 × 160 sub-database,

the control training time was similar to that of Inception-V3

and ResNet running 100 epochs. ViT runs 400 epochs and the

accuracy reaches 92.23%. In the other two sub-databases with

larger amount of data, again when controlling for the same

training time as Inception-V3 and RseNet50. At this time, the

accuracy of ViT models for the 120×120 pixel sub-database and

the 80 × 80 pixel sub-database improves to 94.59 and 94.57%,

respectively. The model size of ViT has a great advantage.

Moreover, these image classification results reach the general

level of medical image classification.
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TABLE 6 Classification results of four deep learning classifiers on GasHisSDB [In (%)].

Sub-database size Model Quantity of epoch Model size (MB) Best eopch Training time(s) Acc Category Pre Rec Spe F1

160× 160 pixels

VGG16 100 268.16 100 13,873 95.90
Abnormal 93.8 96.0 95.9 94.9

Normal 97.3 95.9 96.0 96.6

Inception-V3 100 89.69 92 10,296 94.57
Abnormal 94.1 92.0 96.2 93.0

Normal 94.9 96.2 92.0 95.5

ResNet50 100 83.12 84 10,023 96.09
Abnormal 94.6 95.6 96.4 95.1

Normal 97.1 96.4 95.6 96.7

ViT

100 31.17 97 2,587 86.21
Abnormal 83.8 80.6 89.9 82.2

Normal 87.7 89.9 80.6 88.8

400 31.17 399 10,014 92.23
Abnormal 92.1 87.8 95.1 89.9

Normal 92.3 95.1 87.8 93.7

120× 120 pixels

VGG16 100 268.16 100 26,105 96.47
Abnormal 96.7 94.0 98.0 95.3

Normal 96.4 98.0 94.0 97.2

Inception-V3 100 89.69 98 19,719 95.83
Abnormal 94.6 94.4 96.7 94.5

Normal 96.6 96.7 94.4 96.6

ResNet50 100 83.12 94 19,087 95.94
Abnormal 96.2 93.0 97.8 94.6

Normal 95.8 97.8 93.0 96.8

ViT

100 31.17 100 4,077 89.44
Abnormal 87.0 84.9 92.2 85.9

Normal 90.9 92.2 84.9 91.5

500 31.17 496 20,410 94.59
Abnormal 93.5 93.4 95.3 93.2

Normal 95.4 95.9 92.5 95.6

80× 80 pixels

VGG16 100 268.16 90 62,152 96.12
Abnormal 94.2 96.3 96.0 95.2

Normal 97.4 96.0 96.3 96.7

Inception-V3 100 89.69 99 43,926 95.41
Abnormal 95.5 93.0 97.0 94.2

Normal 95.3 97.0 93.0 96.1

ResNet50 100 83.12 97 41,992 96.09
Abnormal 96.2 94.0 97.5 95.1

Normal 96.0 97.5 94.0 96.7

ViT

100 31.17 89 8,247 90.23
Abnormal 86.3 90.1 90.3 88.2

Normal 93.1 90.3 90.1 91.7

500 31.17 496 41,135 94.57
Abnormal 93.1 93.4 95.3 93.2

Normal 95.6 95.3 93.4 95.4

The bold text in the table indicates the maximum value or the best index of the classification results of different categories.

4.4. t-SNE method analysis

To explore the possibility of ensemble learning between deep

learning classifiers, we conducted a TSNE analysis of the top

performing deep learning classifiers. the t-SNE method analysis

was performed using the 160 × 160 pixels sub-database as an

example and the results are shown in Figure 3.

This experimental platform use the t-SNE method to

downscale the features extracted by the four deep learning

methods into two-dimensional scatters displayed in the image.

Representative images from the test set are selected in the

figure, where the abnormal image suffers from misclassification

in ViT, and its points after feature downscaling fall in the

image normal population. This image performs well in the other

three classifiers, and its feature-descended points fall in the

image abnormal population. However, it can be observed that

the selected normal image it performs well in Inception-V3,

ResNet50, ViT, with the reduced points falling in the normal

population, but performs poorly in VGG16.

5. Discussion

This chapter compares the classification results of different

classifiers from the Linear Regression to Visual Transformer on

the 160 × 160, 120 × 120, and 80 × 80 pixels sub-databases of

the GasHisSDB. The classification performance of each method

on GasHisSDB reflects complementarity.

Classical machine learning methods have a rigorous

theoretical foundation. Their simplified ideas can show

good classification results on some specific features and

algorithms (39).
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FIGURE 3

Plot of results from t-SNE analysis of four deep learning classification models.

This experimental platform shows that seven classifiers for

GLCM classification on three sub-databases with little difference

in accuracy, where the naive Bayesian classifier has significantly

higher Rec than Spe for the abnormal category, and the linear

SVM has slightly higher Rec than Spe. It shows that these

two classifiers are better in classifying the abnormal category.

However, the Spe of the other classification models are higher

than the Rec, indicating that they aremore effective in classifying

the normal category. The same phenomenon occurs for every

feature of every sub-database. There exist classifiers with high

Rec values or high Spe values in the same condition. Such

a result can be a powerful indication of the existence of this

complementarity of these classifiers.

However, deep learning methods are still far ahead

of classical machine learning methods in terms of image

classification accuracy and experiment workload (40).

By analyzing the deep learning methods using the t-

SNE method, there is a clear classification performance for

their feature extraction. In Figure 3 it can also be seen that

there is an aggregation of normal and abnormal images

in the four classifiers. However, there is still inconsistency

in the classification results and it can be understood that

these methods can exist to some extent in a complementary

manner (41).

The evaluation metrics for deep learning models are

generally high, but complementarity in the field of machine

learning also occurs in the field of deep learning (42). For

example, the Spe of Inception-V3 and ResNet50 on sub-database

C for abnormal category classification is high, but the high Rec

of VGG16 can be well performed to the complementarity of the

above two models.

The selection of suitable classifiers is the primary problem

of ensemble learning, and after relevant experiments in

the complementarity comparison experimental platform,

it can be observed that these classifiers exhibit different

performances (43). The complementarity possessed by

these classifiers can adequately meet the needs of ensemble

learning (44).

6. Conclusion and future work

In practice, machine performance often limits model

training for large-size images, and finding multiple classification

models with complementarity types is the basis for ensemble

learning. For sub-sized images, this experiment tries a large

number of classification models to find their complementarity

and thus improve the efficiency of ensemble learning.
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The experimental results show that complementarity in

machine learning does exist for different classifiers of the

same feature. Different classifiers for the same feature include

classifiers that classify the abnormal category well and classifiers

that classify the normal category well. This is a powerful

indication of the complementarity among classifiers.

The evaluation metrics of the deep learning models are

both very excellent. There are models that are less effective in

classifying the abnormal category than the normal category. In

this case, selecting the appropriate model that performs well

for the abnormal category can contribute to ensemble learning.

Complementarity can also be demonstrated in this situation.

There are still many excellent methods that have not

been added to the experimental platform. Moreover, the

recently popular ViT excels in the field of image processing,

but ViT does not show significant experimental results

on sub-size images. In the future, we will add more

models to explore the complementarity nature of ensemble

learning on sub-size images to improve the efficiency of

ensemble learning.
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Introduction: Melanoma is the fifth most common cancer in US, and the

incidence is increasing 1.4% annually. The overall survival rate for early-stage

disease is 99.4%. However, melanoma can recur years later (in the same region

of the body or as distant metastasis), and results in a dramatically lower survival

rate. Currently there is no reliable method to predict tumor recurrence and

metastasis on early primary tumor histological images.

Methods: To identify rapid, accurate, and cost-effective predictors of

metastasis and survival, in this work, we applied various interpretable machine

learning approaches to analyze melanoma histopathological H&E images. The

result is a set of image features that can help clinicians identify high-risk-of-

metastasis patients for increased clinical follow-up and precision treatment.

We use simple models (i.e., logarithmic classification and KNN) and “human-

interpretable” measures of cell morphology and tissue architecture (e.g., cell

size, staining intensity, and cell density) to predict the melanoma survival on

public and local Stage I–III cohorts as well as the metastasis risk on a local

cohort.

Results: We use penalized survival regression to limit features available to

downstream classifiers and investigate the utility of convolutional neural

networks in isolating tumor regions to focus morphology extraction on only

the tumor region. This approach allows us to predict survival and metastasis

with a maximum F1 score of 0.72 and 0.73, respectively, and to visualize several

high-risk cell morphologies.

Discussion: This lays the foundation for future work, which will focus on using

our interpretable pipeline to predict metastasis in Stage I & II melanoma.

KEYWORDS

computational pathology, histopathology, biomedical image processing, melanoma,
neoplasm metastasis, survival prognosis, metastatic prognosis
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1. Introduction

Melanoma is the fifth most common cancer, with about
110,000 new cases in the US alone in 2021, and its incidence
is increasing approximately 1.4% each year. Most melanoma
patients are considered cured when their superficial, thin,
primary melanoma (Stage I) is surgically removed, resulting in
a 99.4% 5-years survival rate (1). However, melanoma can recur
as a locoregional disease or distant metastases in 6% of Stage I
patients where cancer is limited to the superficial dermis, and
in 20% of Stage II patients where cancer has invaded the deeper
dermis and subcutis (2). Currently, clinicians still do not have
accurate and cost-effective ways to predict tumor recurrence and
metastasis from the primary tumor histopathological images
of early-stage patients. In addition, current melanoma staging
systems depend primarily on histopathologic features, and
sometimes involve invasive sentinel lymph node biopsies. These
procedures have not been shown to improve prognosis for early-
stage patients (tumor invasion < 1 mm) and therefore expose
patients to unnecessary morbidity (3).

Currently, prognostication of localized melanoma (i.e., no
distant metastases) relies on several histopathological criteria
established by pathologists’ examination of hematoxylin and
eosin (H&E) stained tissue sections. These include Breslow
depth and the presence of ulceration and microsatellitosis.
Moreover, it also depends on the identification of tumor
deposits in sentinel lymph nodes in cases where such procedure
is performed. Tumor ulceration is the loss of full-thickness
epithelium above the growing tumor and is an independent
prognostic factor. Integrating these histopathologic findings
with clinical information like the site of origin for tumors is
important: acral (non-sun-exposed regions) and lentigo maligna
melanomas both could have fusiform cells, but the prognoses
are different, with thickness-matched acral melanoma being
more aggressive (4). Moreover, prognosis varies by histologic
subtype, where nodular and acral have generally worse outcomes
than thickness-matched superficial spreading and desmoplastic
subtypes (5, 6). However, personalized prognostication of early-
stage melanoma (< 0.75 mm) remains suboptimal. Ulceration,
the hallmark of poor prognostic feature, is not a common
finding for early-stage melanoma, and though most literature
suggests that lymphocyte infiltration is an important marker for
better prognoses, this relationship is uncertain for lesions under
0.75 mm depth of invasion (7).

Because histopathologic features remain suboptimal in
predicting melanoma prognosis in early-stage patients, and
early-stage patients make up about 80% of all newly diagnosed
cases of melanoma (8), there is an pressing need for developing
a machine learning based computational pathology pipeline
to stratify patients. Rigorous measurement of cellular/nuclear
morphological features of primary tumor pathological images
may provide consistent performance across the heterogenous
landscape of melanoma. Currently, published machine learning

models using H&E images to study melanoma prognosis are
mostly “black-box” models based on deep neural networks,
specifically Convolutional Neural Networks (CNNs) (9). For
instance, Forchhammer et al. applied CNNs trained on whole
slide images to establish a model that stratified patients by their
10-years survival rates; however, improving risk classification
beyond the existing staging guidelines has proven difficult
for early-stage patients (10). CNN-based approaches have also
been used to predict survival using locoregional/metastatic
biopsies (11), which applies to less than 20% of all melanoma
patients (12). Furthermore, these deep learning-based models
identified abstract features that are neither visible nor directly
associated with human-interpretable cell morphology and tissue
structure, which is a major barrier for clinical adoption and
generation of new hypotheses for research. It is imperative
that pathologists and researchers understand the mechanisms
behind the disease progression. In this paper, we present a
pipeline with more interpretable machine learning methods that
can be used alongside the very accurate, but less interpretable
deep learning techniques.

Kulkarni and Robinson (13) published the only
histopathology-based melanoma metastasis model to date.
They achieved impressive accuracy (88–90%) for high/low
risk stratification based on their deep learning models. Due
to the lack of interpretability of the neural network, ablation
studies were adopted to show that the ratio of lymphocyte
area over tumor cell area was crucial for model accuracy. The
individual contributions of the rest of the morphology feature
set were not readily apparent. When it is difficult to understand
what information the neural networks rely on to make their
prediction, it is more difficult for pathologists, clinicians, and
researchers to investigate further. This is a bottleneck for
effective translational application of these neural networks. In
addition, this work provided very accurate classification for
patients with more advanced disease (skewed toward Stages
II–III). However, Stage I patients comprise the majority of the
general melanoma population, and metastasis is most likely to
be missed in these individuals.

The work we present herein focuses on developing
a machine learning pipeline to identify the reliable and
interpretable H&E histopathology image features to predict 5-
years survival and metastasis using the primary site biopsies
from Stages I, II, and III melanoma patients. We have
demonstrated that simple machine learning models (i.e., logistic
regression, k-Nearest Neighbors, support vector machines, and
random forest classifiers) using extracted interpretable features
of cellular and nuclear morphology can generated accurate,
sensitive, and specific prediction for 5-years survival and
metastasis risks. We first applied deep learning methods (14)
to identify tumor regions with CNN models, and extracted
interpretable morphological features from only the tumor
regions, and understand how this impacts downstream classifier
performance. Because some of the morphological descriptors we
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used can be correlated to each other, we applied LASSO Cox
regression to reduce the number of image features available to
downstream classifiers to reduce the likelihood of overfitting
and improve ease of interpretation by a pathologist.

One of the challenges for our study is that samples
from large cancer databases, such as The Cancer Genome
Atlas (TCGA), Clinical Proteomic Tumor Analysis Consortium
(CPTAC), provide almost only survival information, without
any metastasis information for Stages I and II patients. To
tackle this challenge, we approached our work in two steps: (1)
Training machine learning models for survival prediction with a
merged cohort form the TCGA, CPTAC, and our own curated,
high-quality local IU School of Medicine (IUSM) cohort; and
(2) further refining it to predict melanoma metastasis on
the IUSM cohort.

We demonstrated that our identified H&E image features
can serve as accurate, rapid, and low-cost predictors of
metastasis. Further, this approach can be seamlessly integrated
into clinical workflows, given that digitized biopsies are an
approved diagnostic tool (15) and interpretation of biopsies by
a pathologist is standard of care in melanoma. To summarize,
our work begins to bridge a significant clinical and research gap:
the need for an adoptable and interpretable cell morphology
machine learning pipeline to work alongside deep-learning
approaches in the study of melanoma metastasis.

2. Data and materials and methods

2.1. Data description

To maximize sample size and test the model generalizability,
we applied our pipeline to three melanoma cohorts: The Cancer
Genome Atlas (TCGA) cohort, the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) cohort (16), and the Indiana
University School of Medicine (IUSM) cohort. For all three, we
restrict our analyses to Stages I, II, and III melanoma patients.
Stage IV patients, who already have distant metastases, were
excluded. Further, slides that are misdiagnoses, microsatellite

metastases, and those that cannot be confirmed as primary site
biopsies due to lack of visible intact epidermis were removed.
This rigorous quality control resulted in a sample size of 81
whole slide images (WSI) from 71 patients in the TCGA cohort,
and 45 WSI from 19 patients in the CPTAC cohort. The TCGA
and CPTAC cohorts only contain survival information, with no
metastasis information. The IUSM cohort had 92 WSIs from
70 patients with both metastasis and survival information. This
information is summarized in Table 1.

2.2. Feature extraction pipeline

Predicting metastasis and survival are two distinct but
related tasks. Herein, we use the same feature extraction
pipeline to predict 5-years metastasis for IUSM patients, and
5-years survival in the IUSM, TCGA, and CPTAC datasets
(Figure 1). We modified the morphological feature set described
in (17) by focusing on the morphological features and
introducing two additional features (quantity and density) to
describe lymphocytes and other small, hyperchromatic cells
(e.g., pyknotic nuclei), each with 10 bins and five distribution
statistics. We call this category Small-Hyperchromatic cells.
In total, we have 135 morphological features extracted from
WSIs to quantify the cell size and shape, as well as Small-
Hyperchromatic cell density and counts, as well as statistics
describing the distribution for each of these image features
within each WSI (i.e., mean, standard deviation, skewness,
kurtosis, and entropy).

2.2.1. H&E whole slide image pre-processing
Before image normalization and feature extraction, we first

rescaled WSIs from different cohorts to the same resolution.
The TCGA and the CPTAC images are scanned using different
resolutions, so all image patches were resized to match the
IUSM cohort resolution of 0.25 microns-per-pixel (mpp), which
corresponds to a 400x magnification. For the TCGA and CPTAC
cohorts, we tiled images into squares with dimension of 512px
∗ 0.25/mpp, and then rescaled them into 512 × 512 pixels. To
filter out black and white background patches from the WSI,

TABLE 1 Clinical follow up and slide quality among Stages I–III patients in three patient cohorts.

Cohort; # patients (# slides)

Survival Metastasis

TCGA CPTAC IUSM IUSM

Stages I, II, and III patients 129 (145) 63 (117) 70 (92) 70 (92)

Adequate quality slides 71 (81) 19 (45) 70 (92) 70 (92)

Follow up information (patients)

Low risk–no event before 5 years 3 0 43 30

High risk–event before 5 years 7 8 7 26

Non-informative censoring before 5 years 61 11 20 14
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FIGURE 1

Interpretable cell morphology and machine learning pipeline. Whole slide images are tiled into 512 × 512 pixel patches and then rescaled for
differences in resolution between datasets, background patches are removed by manually engineered color features, and tumor/normal regions
are identified using a convolutional neural network that was trained with pathologist annotations. Tiles then normalized for hematoxylin and
eosin (H&E) staining, and cells segmented with StarDist. Cell masks are analyzed with MATLAB to generate measures of cell morphology (e.g.,
area), tissue architecture (i.e., Delaunay distance), and identify small, hyperchromatic cells. 50 processed slides are randomly pooled, and
k-means clustering (k = 10) is used to bin the distribution of each image feature and five distribution statistics are calculated (e.g., skew, kurtosis,
mean). Finally, every cell of every slide is assigned the “bins” to generate a final dataset of N patients × 135 features.

we removed patches where the mean intensity of RGB channels
together was greater than or equal to 230, less or equal to 40,
or with a standard deviation less than 20. This removed both
black and white background patches. IUSM images required
further processing, using the following criteria to remove black
and white patches: red channel mean intensity being 90% or
less than the blue channel mean intensity, red channel mean
intensity being less than 170, and green channel mean intensity
being greater than 210. The results of these criteria were
visually inspected for accuracy and consistency among the three
datasets. We then applied the color normalization algorithm
proposed by Macenko, Neithammer (18) to avoid batch-effects
both within and across datasets. This algorithm is unsupervised
and based on singular value decomposition of opacity density
values. Cells in the WSI from all three cohorts are segmented
using StarDist, which uses all three RGB color channels to
segment cells (19). StarDist was better suited to this task than
hierarchical multilevel thresholding based on our evaluation
(Supplementary Figure 1). We further removed background
patches by filtering out those that had fewer than certain number
of cells segmented by StarDist. For the CPTAC and IUSM
slides, the cutoff is 15 cells, and for the TCGA, the cutoff is
10. The results of this preprocessing were visually verified by
our pathologist.

2.2.2. Identification of tumor regions with
convolutional neural networks

Tumor biopsies contain variable amounts of normal tissue,
therefore using the entire WSI to predict clinical outcomes may
introduce additional bias. To study this, we focused our analysis
on regions of the bulk tumor by using a CNN to triage tumor

vs. normal image patches, and then applied our interpretable
feature extraction pipeline to the CNN-identified tumor patches.
The quality of specimen from the TCGA, CTPAC, and IUSM
cohorts were very different. The IUSM cohort had the best
quality, followed by TCGA and then CPTAC. We trained
three different CNN’s–one for each cohort–to understand how
varying data quality impacted tumor vs. normal image patch
classification on the entire (Figure 2A), we describe training
process and model architecture.

To train and validate these CNNs, our pathologist used
QuPath (20) to manually annotate normal tissue and tumor
regions on WSIs from all three cohorts. Respectively, 20, 19,
and 90 WSIs were annotated for the TCGA, CPTAC, and
IUSM cohorts. We cropped image tiles from all three cohorts,
resized if necessary to match resolutions (described previously),
and assigned tumor/normal labels to image patches using our
pathologist’s QuPath annotations of tissue regions. Finally, we
performed five-fold cross-validation using 1,000 tumor and
1,000 normal image tiles for training and validation (80/20%
split). To ensure fair assessment of accuracy, we designed
random sampling such that validation image tiles were not
pulled from patients that appeared in the training set. It is
important to note that some patients had multiple WSIs;
therefore, naïve random sampling would mean that WSIs from
a single patient could end up in both the testing and validation
datasets. To prevent this, we ensured that the testing and
validations splits were based on patients, not WSIs.

One of the most widely used CNN architectures for image
classification and object detection is the “Inception” module,
which employs convolutional kernels with different sizes, called
scale filters (21). With our simple task and ample training data,
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FIGURE 2

Training and assessment of convolutional neural network. Workflow and assessment of convolutional neural network. (A) Whole slide image
patches are first filtered to remove background patches. This step removes artifacts, demonstrated by the ink from the whole slide images (WSI)
that is not retained in the final set of patches (arrow). (B) Patches confused by the convolutional neural networks (CNN) can show mitotic
figures and dense lymphocytic infiltrate. (C) Despite our filtering steps, there remain some artifact-ridden poor-quality patches. (D) Performance
at epoch 200 for CNNs trained on the IU School of Medicine (IUSM), The Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis
Consortium (CPTAC), and merged datasets, comparing the Fl scores and sensitivity for tumor/normal classification achieved on validation sets
from the IUSM, TCGA, and CPTAC cohorts.

we adopted the naïve version of “Inception” based model, herein
called GoogLeNet, and modified the final layer of the network
for binary tumor/normal tissue classification. We applied
the ADAM (22) optimizer with learning rate 0.0002. Four
different GoogLeNet models were trained using the CPTAC,
IUSM, TCGA cohorts, and a final “Merged” cohort with 1,000
labeled patches from all three cohorts. Experimental results
demonstrated that the GoogLeNet models achieve reasonable
accuracy on all four validation datasets (> 0.8).

2.2.3. Cell-level feature extraction,
aggregation, and investigation

We have previously developed a morphological feature
extraction pipeline for H&E images, as described by Cheng,
Zhang (17), and adopt it here to predict melanoma outcomes.
For each WSI, we first used the regionprops function in
MATLAB version R2022a to calculate area, major and minor
axis length of the cells, major/minor axis ratio, staining
intensities (RGB three color channels), and described the density
of cells in the image by measuring the minimum, maximum, and
mean distance to neighboring cells. Staining intensities were not
use as image features, but were used to engineering a new cell
category, Small-Hyperchromatic cells. This process is described
later. The neighbor relationship was defined using the Delaunay
triangulation method among cell centroids.

Once all WSIs were processed, we randomly sampled
50 images from the three datasets (IUSM, CPTAC, and
TCGA), to perform k-mean clustering with 10 clusters for
every image feature. This is analogous to generating 10
“bins” for a histogram. These 10 bins for each category of
features represent a dataset-wide census of cell morphology and

maintain representations of heterogeneity that simple statistics
such as average cannot. Five statistics on the distribution of
these histograms were calculated: mean, standard deviation,
skewness, kurtosis, and entropy. This gave us a summarized data
structure of 7 features × (10 bins + 5 statistics) = 105 cell features
per patient. If a patient had multiple WSIs, we calculated the
mean of all feature values across the WSIs, providing a single
patient-level vector.

In addition to these 105 features, we engineered cutoffs to
identify a specific category of small cells with hyperchromatic
staining, which we refer to as Small-Hyperchromatic cells. This
category tends to represent necrosis and dense inflammation
by highlighting lymphocytes, and pyknotic nuclei. Small-
Hyperchromatic cells were defined by an area less than 450 pixels
and a ratio of the long and short cell axes less than 2 (favoring
round cells rather than spindle cells). We calculated the quantity
and density (proportion of these cells to all cells in each image
patch) of these small-hyperchromatic cells for an additional 30
features: 10 bins and 5 statistics for the quantity and density of
small hyperchromatic cells each. Adding this to the previously
described 105 features provided a total of 135 features per WSI.

2.3. Univariate feature analysis

To investigate the ability of individual image features to
stratify patients, we took the approach described by Lu, Xu (23),
iterating through 100 cutoffs in the range of values for each
image feature, which generates two strata for which to calculate
Kaplan-Meier estimates and extract FDR-adjusted p-values. The
resulting significant cutoffs are used to generate Kaplan-Meier

Frontiers in Medicine 05 frontiersin.org

8889

https://doi.org/10.3389/fmed.2022.1029227
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1029227 December 29, 2022 Time: 15:6 # 6

Couetil et al. 10.3389/fmed.2022.1029227

curves for survival and metastasis. This analysis conducted in
R v4.1.0 using packages survival v3.2-13 (24) and survminer
v.0.4.9 (25).

2.4. Multivariate supervised
classification for risk stratification

Despite merging data from three different patient cohorts,
our sample size is still limited due to stringent quality control
and a focus on Stages I through III. In the setting of a
high feature dimension and small sample size, we use Lasso
Cox regression from the glmnet v4.1-1 package in R (26) to
reduce collinearity in the downstream supervised classification
task (Supplementary Figure 2). The trained Lasso Cox model
provides two feature sets based on the accuracy metric of
concordance: “1se” feature set for a model whose variance is
heavily regularized, where cross-validation accuracy is within
one standard error of the maximum accuracy; and the “min”
feature set corresponds to the model with the absolute highest
cross-fold validation accuracy, which therefore usually provides
more features than “1se.”

To ensure model robustness and maximize the size of our
training set, we used a modified five-fold cross-validation. We
randomly shuffled and split all samples from all three cohorts
into five equal-sized groups. For survival, we labeled “high risk”
patients as those who suffered death/metastasis within 5 years,
and “low risk” patients as those who had at least 5 years of
uneventful follow-up. For metastasis, “high risk” patients were
defined as those who suffered a metastasis at any time point, and
“low risk” patients were metastasis-free for 5 years (for censored
data) or beyond. Patients who were lost to follow-up (censored)
before 5 years were not labeled as either high risk or low risk and
removed for prognostic model training.

Traditionally in five-fold cross-validation, the feature
weights (i.e., coefficients) generated by separate models are
aggregated to provide a final model. This process is called
“bagging.” Here, instead, we used four of five groups to train
a model which was then used to predict risk labels on the
fifth hold-out group as validation. By repeating the process five
times, all patients were used to train and test models, but there
was no overlapping of patient data during each training and
testing. Patients were resampled so that there was an equal
proportion of high and low risk labels, with the total number
of labels for each class being equal to the larger class prior to
resampling. The performance metrics (F1 score sensitivity and
specificity) were calculated by concatenating the results for the
test set of each fold into a single matrix. We implemented this
cross-validation process for random forests (RF), support-vector
machines (SVM), k-Nearest Neighbors (KNN), and logarithmic
classification. In certain instances, two models yielded similar
accuracy, but they do not have the same level of interpretability;
for example, logarithmic classification is more interpretable

than SVM and KNN. The coefficients from logistic regression
for each CNN-derived dataset and LASSO-derived feature set
are visualized to investigate whether image features receive
consistent coefficients in multivariate survival stratification task
(Supplementary Figures 4, 5). This is further discussed in the
Results section.

2.5. Image feature visualization for
interpretability

To visualize the features used for risk stratification,
we generated “heatmaps” using the ggplot2 (27) and
ggnewscale (28). The heatmaps are placed side-by-side with the
Hematoxylin and Eosin-stained WSI for inspection and direct
interpretation by the pathologist.

2.6. Ethics statements

This study involves human subjects. The TCGA and CPTAC
consortia provide their data to the public, and the data (follow
up and histopathological images) is not linked to PHI. For
the IUSM cohort of patients, secondary use of identifiable
information and biospecimen is covered under our own broad
institutional IRB.

3. Results

3.1. Assessment of GoogLeNet
performance on tumor region
identification

As described in the Methods section of this manuscript,
four GoogLeNet CNNs were trained to recognize tumor
tissue image patches. These four models were created using
the CPTAC, TCGA, IUSM, as well as a balanced random
selection of image patches from all three cohorts (“Merge”).
All models perform well as indicated by the consistent high
sensitivity and F1 scores across datasets (Figure 2D). For the
few misclassified patches, visual inspection by our pathologist
revealed that normal tissue predicted as tumor tended to
contain mitotic figures, dense inflammation, and poor-quality
image patches that remained despite our filtering process
(Figures 2B, C).

3.2. Results of univariate analysis

3.2.1. Univariate Kaplan-Meier survival analysis
Using the univariate Kaplan-Meier log-rank test, we

identified several features that can significantly stratify patients
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FIGURE 3

Univariate survival and metastasis analysis. After scanning through 100 cutoffs through the range in values for each feature, the cutoff providing
the most significant p-values from log-rank tests of survival (A–C) and metastasis (D–F) times are used to generate Kaplan-Meier curves.

FIGURE 4

Feature visualization, Maximum Delaunay distance bin 4. At high power, (A) specimen TCGA-FR-A20 S, melanoma cells of dense/intermediate
packing. (B) Specimen TCGA-ER-A19S, melanoma cells of very dense proliferation, going through stages of necrosis, and immune infiltration.

on their survival outcomes. The three most statistically
significant ones are shown in Figures 3A–C, which are
Major axis length distribution entropy, Major axis length
distribution standard deviation, and Major axis length
bin 4.

We further interpreted each of the identified features: As
shown in Figure 3A, Major axis length distribution entropy
significantly stratifies patient survival (log-rank p < 0.0001).
Entropy is a measure of distribution uniformity, where high
entropy represents a large variation in cell sizes, therefore,
distributions with high entropy tend to have a high standard
deviation. In Figure 3A, high entropy of the Major axis

length distribution correlates with a better prognosis. This
aligns with Figure 3B, which shows that a high standard
deviation in the Major axis length also correlates with a
good prognosis. Together, both features suggest that a high
heterogeneity in cell sizes in a histopathological specimen
(inflammatory, tumor, stromal, and otherwise) portend a better
prognosis.

Major axis length bin 4 appears as a significant feature
for both survival and metastasis (Figures 3C–E), with the
same direction of effect, where a high proportion of this
feature contends poor prognosis. The interpretation of
this feature is summarized in Section “3.4 Morphological
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FIGURE 5

Visualization of small, hyperchromatic nuclei. (A) Demonstrates high kurtosis of Small-Hyperchromatic cells. These slides have uniformly low
densities of immune infiltration. (B) Low kurtosis of Small-Hyperchromatic cells shows slides with a high variability of immune infiltration and
necrosis across the entire specimen. Kurtosis of this feature is inversely correlated with standard deviation, and slides with high kurtosis have
lower densities of Small-Hyperchromatic cells. In (C), binl0 represents the highest density of Small-Hyperchromatic cells. Like the slides with
low kurtosis in panel (B), these high-density regions harbor necrosis of tissue with dense lymphocytic and neutrophilic infiltrate. Slides with low
kurtosis have a higher standard deviation and higher density of Small-Hyperchromatic cells. The convolutional neural networks (CNN) used to
filter out background patches in this visualization was trained on the clinical proteomic tumor analysis consortium (CPTAC) dataset.

features associated with 5-years survival/metastasis
prediction.”

3.2.2. Univariate Kaplan-Meier metastasis
analysis

Using the same approach as above, we identified four
features that are significantly associated with the prediction of 5-
years metastasis (Figures 3D–F): Maximum Delaunay distance
bin 4, Major axis length bin 4, and Small-Hyperchromatic cell
density distribution kurtosis. Maximum Delaunay distance bin
4 represents cells of intermediate packing density. High values
of this feature were associated with a higher likelihood of

metastasis in the univariate analysis. This feature is correlated
with the Minimum Delaunay distance bin 4 and Mean
Delaunay distance bin 4, both of which are high risk for
survival prediction: Spearman correlation coefficient (SCC) with
Maximum Delaunay distance bin 4 across all three datasets 0.55
and 0.899, respectively. We found that this density, defined by
nuclei centroids, was seen in very different histomorphologies:
In Figure 4, we show two regions with the similar density,
but one is composed of small cells with intermediate packing
Figure 4A, and the other is composed of distended rhabdoid
cells (nuclei pushed to side of cell by cytoplasm) in a setting of
very dense proliferation and immune infiltration Figure 4B.
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FIGURE 6

Image feature coefficients in 5-years survival logarithmic classifier based on Merge convolutional neural networks (CNN) and 1se LASSO feature
set. Model weights for five logarithmic classification sub-models trained in the five-fold cross validation.

The Small-Hyperchromatic cell distribution kurtosis is a
significant predictor in the Kaplan-Meier univariate analysis
of metastasis (log-rank P = 0.017). Kurtosis measures the
tailedness of a distribution. Further examination of slides
with high kurtosis reveal specimen with a low density
of inflammatory cell infiltration (mainly lymphocytes in
this setting, Panel 5A). There is also a noted negative
correlation between Small-Hyperchromatic cell density
kurtosis and standard deviation, and we identify that slides
with a high density of Small-Hyperchromatic cells tend to
have distributions with low kurtosis and high standard
deviation (Figures 5A, B). Aligning with kurtosis being
a high-risk feature, Small-Hyperchromatic cell distribution
standard deviation is a low-risk image feature in the
multivariate survival models (Figure 6). Weak infiltration
of tumors by lymphocytes is a well-established independent
poor prognostic factor that pathologists assess (29), and
for this reason, an image analysis pipeline for accurate
quantification of tumor infiltrating lymphocytes has been
studied (30).

To better understand what this Small-Hyperchromatic
cell feature represents, we visualized the upper extreme
of the density distribution (bin 10), demonstrating areas
of necrosis and dense immune infiltration and ulceration
on the peripheries of a nodular melanoma (Figure 5C).
Ulceration occurs when tumors outgrow their blood supply
and is an accepted marker for aggressive tumor biology
and used for staging (31). As for the slides with low
kurtosis (Figure 5B), they are associated with a high
variability in the density of immune infiltration: In the same
histologic specimen, there are regions with dense immune

infiltration and necrosis, and other regions with sparse immune
infiltration.

3.3. Multivariate risk stratification for
5-years survival and metastasis

As a baseline, stratifying patients based on their AJCC stage
provided poor predictive values, with the F1 scores for survival
and metastases being 0.44 and 0.51, respectively (Table 2).
We experimented with several classification models using
our image features, and several provided reasonable accuracy
(Supplementary Table 1, Supplementary Figure 3). For 5-years
survival prediction, the logistic classifier using the CNN trained
on merged cohort for tumor region and Lasso-min feature set
provided an F1 score of 0.72. For metastasis prediction, the KNN
using the entire WSI and Lasso-1se feature set generated an F1
score of 0.73, while a comparable F1 score of 0.72 was achieved
for the RF trained using the CNN trained on the IUSM cohort
and Lasso-1se feature set (Table 3, Supplementary Table 1).

3.4. Morphological features associated
with 5-years survival/metastasis
prediction

3.4.1. Image features associated with 5-years
survival

With the successful predictions on 5-years survival and
metastasis, we further examined the image features. Logistic
regression has the best interpretability, because the coefficients
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learned for each image feature can be visualized (Figure 6).
There are several features with very high or low risks. The
highest risk morphology for the Merge CNN-derived logistic
regression survival model using the 1se feature set was the
Small-Hyperchromatic cell density bin 10, while the lowest risk
phenotypes were the Maximum Delaunay distance bin 1, Major
axis length bin 7, and Major axis length distribution entropy.

Because both WSI and CNN-derived tumor-region-only
survival models achieved high accuracy, we visualized and
examined the coefficients assigned to all image features
among all survival models, with most features show consistent
direction of effect for the decreased or increased risk hazard
(Supplementary Figure 4). We also visualized coefficient
weights stratified by tumor-region-only (CNN) vs. WSI-
derived models to check whether any features were weighted
oppositely if background stroma was included. We did not
find this to be the case, and tumor-region-only and WSI
coefficients were consistent in direction of hazard coefficients
(Supplementary Figure 5).

3.4.2. Image features associated with
metastasis

The peak performance for metastasis is achieved by the
KNN classifier using the entire the WSI and 1se LASSO feature
set. This feature set contains: Major axis length bin 4, Major axis
length bin 7, Major minor ratio bin 1, Mean Delaunay distance
bin 4, Max Delaunay distance bin 1, Small-Hyperchromatic cell
count bin 2, Major axis length distribution skewness, and Major
axis length distribution entropy.

3.4.3. Visualization and interpretation of
identified image features

Major axis length bin 4, mentioned previously, is a
significant image feature for the univariate analysis of both
survival and metastasis, with the same direction of effect: large
values of this feature were associated with poor prognosis. This
feature was maximized in specimen with small to intermediate
sized melanocytes (Figure 7). Small cell melanoma has been
associated with a poor prognosis previously in case series and
case reports (32, 33), and our feature of Major axis length bin 4
is consistent with this finding. Small cell melanoma, however is
exceedingly rare, and though some IHC staining patterns of this
variant have been described in patients with metastatic disease
but of unknown primary lesions, it has not been systematically
studied (34).

Additionally, Major axis length bin 4 negatively correlated
with Major axis length standard deviation (SCC-0.45). Not
surprisingly, Major axis length standard deviation was also
significant in the univariate analysis, where histologic specimen
with low standard deviation was associated with poor prognosis,
which also indicates the less variable melanocyte morphology on
the H&E slides. Major axis length distribution standard deviation
has a 0.892 SCC with Major axis length distribution entropy,

which is a good prognostic feature used by the multivariate
metastasis model. Therefore, the direction of effect of these
features is consistent, and slides with many intermediate sized
cells are associated with less variation in cell sizes across the
entire specimen, which may indicate a poor prognosis for both
survival and metastasis.

Major axis length bin 7 is correlated with a good prognosis
in multivariate survival models (Figure 6). There is research
to suggest that large nuclei are correlated with poor prognoses
(35), which is slightly different from our features, because we
segmented the entire cell rather than just the nucleus. As stated
previously, small melanoma cells have also been associated with
a poor prognosis. Enlargement of nuclei is typical in cancer
histology. One hypothesis could be that cell enlargement to
an extreme degree may represent a cell which replicates its
DNA and cytoplasmic contents but cannot enter S phase and
divide properly. Extremely large cells would therefore be a
better prognostic factor. Macrophages, with their small nuclear
to cytoplasmic ratio, could also contribute to this large-cell
category. Our pipeline makes measuring small but systematic
differences possible.

The Small-Hyperchromatic cell distribution kurtosis is also a
significant predictor for univariate metastasis analysis and poor
survival in multivariate survival analysis, which was already
discussed in above univariate analysis section.

4. Discussion

The motivation behind this study is to develop an
interpretable cell morphology pipeline and construct
machine learning models for sensitive and specific 5-years
survival (SN:86%, SP:78%) and metastasis (SN:72%, SP:71%)
prognostics. We were able to generate several models that are
highly sensitive and specific for both 5-years metastasis and
survival risk prediction. Our work demonstrated that image
features as the sole variables are powerful prognostic tools for
prediction tasks, and the methodology is low cost, fast, and
easy to implement.

We showed that the CNN-based approach used to isolate
tumor regions improved predictive performance and reduced
variability among classifiers in some instances. Moreover, no
features extracted from only CNN-identified tumor regions
had an opposite effect as the ones extracted from the whole

TABLE 2 Accuracy of American Joint Committee on Cancer (AJCC) to
predict 5-years survival and metastasis, where stratification is by
Stages I and II vs. Stage III.

Stages I and II
vs. III

Sensitivity Specificity F1 score

Survival 0.455 0.735 0.444

Metastasis 0.414 0.778 0.511
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TABLE 3 The best models for survival and metastasis prognosis, among convolutional neural networks (CNN)-trained tumor region-only and
whole slide images (WSI), LASSO-derived feature sets, and classifiers.

Prognosis Best model Sensitivity Specificity F1 score

5-years survival CNN on merged cohort, Lasso-min, logistic regression 0.86 0.78 0.72

5-years metastasis CNN on IUSM cohort, Lasso-1se, random forest 0.78 0.57 0.72

WSI, Lasso-1se, KNN 0.72 0.71 0.73

FIGURE 7

Feature visualization, Major Axis Length bin 4. (A) Major Axis bin 4 heatmap shown adjacent to the original (B) specimen. When inspected on
high power, these cells are intermediate-to-small sized. (C) Melanoma in-situ with similarly sized spinosa cells. (D) Similarly sized endothelia.
Tumor region identification by clinical proteomic tumor analysis consortium (CPTAC) convolutional neural networks (CNN).

slide images (Supplementary Figure 5). This demonstrated
that the identified morphological descriptors are very robust
to highly heterogenous cell quantities and morphologies in
the histopathology slides. Given the enormous variety of
melanoma histology and very small feature sets, we consider
the sensitivity and specificity of this metastasis pipeline as
promising for future development and adoption. Although
the advantage of adopting the tumor selection step may
not be obvious, we aim to test this same pipeline for
our future cohort study: It will mostly contain patients
with Stages I and II melanoma, and therefore, whose
biopsies contain much more non-tumor tissue and very
limited tumor region.

In this work, we discovered that the high density of
Small-Hyperchromatic cells coincided with tumors that have
more necrosis, ulceration, and pockets of dense inflammatory
cell infiltration (Figure 5), and that cells with less immune
infiltration overall, and the few that are present have a uniform
distribution across the histological specimen. In specimen
with greater degrees of immune infiltration, there is a large
standard distribution of densities, characterized by pockets of

dense inflammation and sparsely infiltrated areas. The density,
kurtosis, and standard deviation of Small-Hyperchromatic
cell density were all significant features for the prediction
of metastasis and survival, and the direction of effect was
consistent.

We found that slides with the densest regions of Small-
Hyperchromatic cells coincide with large amounts of necrosis,
especially ulceration, which is necrosis at the surface of
the tumor (Figure 6C). Tumor ulceration is known as a
poor prognostic factor for metastasis and survival, and what
differentiates Stages IIa and IIb melanoma, and one of
two criteria which differentiates Stages Ia/Ib. The interaction
between the quantity and variability of immune infiltration and
necrosis was not readily decipherable, and we hope to focus on
this specifically in future research, by classifying cell types in the
tumor and microenvironment, to quantify the colocalization of
distinct inflammatory, stromal, and tumor cells directly.

Our model revealed that Major Axis Length bin 4 was a
significant feature used to predict both survival and metastasis.
This feature corresponded to melanoma cells of intermediate
to small size. Smaller melanoma cells have been reported to
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have a more aggressive clinical course (34). Larger cells (Major
Axis Length bin 7) were associated with a better prognosis in
our survival models. The relationship between cell size and
prognosis in melanoma will be rigorously studied in a large
cohort of patients in our future work.

Despite the successful development of machine learning
models using interpretable features from primary biopsy
histopathology for prognosis of melanoma, there are still
limitations in our study: First, we had a limited cohort of Stage
I/II patients, for whom a tool such as this would have the greatest
impact. This is a problem common to melanoma metastasis
research, more generally. Expanding our analysis to include
clinicopathologic variables in a large cohort of Stage I/II is
being carried out in our ongoing project. Additionally, though
a good portion of the identified features for metastasis are
interpretable or recapitulate those features known for survival
prediction, for those that are still not discernable to human
eyes, we believe that a large sample size will allow us to
further validate and understand those features. For example, our
pathologist was not able to identify a consistent pattern among
cell morphologies among WSIs that maximized the Minimum
Delaunay distance skewness feature, which may demonstrate that
computer-quantified features are not always distinguishable to
human eyes and may be superior to human in terms of refined
feature extraction.

Third, the information captured by some features is
correlated, and therefore may be redundant. For example, it
is difficult to tell the difference between Minimum Delaunay
distance bin 10 and Maximum Delaunay distance bin 1.
Rather than having three different distributions for maximum,
minimum, and mean Delaunay distances among nuclei
centroids, we can use a single distribution to describe cell
density. Also, taken together, area and major/minor axis ratio
together provide information about how large and ellipsoid a
cell is, and the features Major Axis and Minor Axis Length
may be redundant.

Finally, we did not explicitly model the interactions
between specific cell types within the tissue. Existing research
has quantified the architecture of the melanoma tumor and
microenvironment by building “topological tumor graphs”
that consist of a web of connected lymphocytes, fibroblasts,
and cancer cells (36). Tumors with increased stroma and
fibrous barriers separating lymphocytes from tumor were
associated with a worse prognosis. Our work employs statistics
(i.e., kurtosis, entropy, standard deviation) to describe the
cell heterogeneity within a single histological specimen. We
do not however, explicitly measure cell-cell interactions and
spatial arrangements. Identifying cell types and establishing
a metrics for their interactions is part of our ongoing
work. In our future work, we plan to incorporate similar
metrics into models to improve prognostic accuracy with
a larger cohort.

This research has important implications for the future. Our
research team has applied this interpretable cell morphology
machine learning pipeline to several cancer types with success
(17, 37). We have made improvements on the framework
to improve model stability by reducing collinear variables
and investigating the role of CNNs in focusing the analysis
to tumor regions. The next step for our research is to
assemble a large retrospective cohort of approximately Stages
I and II patients with at least 5 years of clinical follow
up. Being able to accurately predict 5-years metastasis risk
in a large cohort of early-stage melanoma patients would
transform melanoma clinical care. Currently, there is a
shortage of dermatologists, and melanoma is a common,
potentially aggressive cancer. This prognostic tool could help
diagnose future melanoma metastasis at an earlier stage, which
could potentially improve a patient’s chance of survival, as
response to treatment in advanced melanoma is inversely
correlated with tumor burden (38). Triaging early-stage patients
would also provide researchers with a means to identify a
patient population for studying the biology of metastasis and
tumor dormancy.

Our pipeline could also be applied to the study of
immunotherapy response. The current clinical gold standard is
PD-L1 staining of tumor tissue, but it is poorly predictive
of patients who will respond to immunotherapy, nor
those who will have adverse events due to the immune
checkpoint inhibition (39). AI approaches to predict these
by analyzing histopathology and radiological images have
been published, but most employ DL learning approaches
and interpretability/explainability is still a key issue (40). As
in our discussion of melanoma prognosis, we believe that
deep-learning and more interpretable approaches are both
needed for effective clinical translation.

5. Conclusion

In this study, we were able to develop two models, which
use a set of interpretable morphological features, to predict
melanoma 5-years survival and metastasis with maximum F1
scores of 0.72 and 0.73 respectively. The maximum sensitivity
of our metastasis model is 0.72, and although this level of
sensitivity is not superior to the published deep learning-
based methods, our models are transparent on the features
identified and are much more interpretable than deep-learning
approaches. We demonstrated the interpretability of image
features and models by recapitulating several known prognostic
features. We believe that the accuracy of our metastasis model
will improve with a larger cohort of patients. Overall, our
methods proved quite interpretable and accurate, laying the
foundation for a robust, clinically relevant, accurate, low-cost,
and rapid metastasis prediction tool for early-stage melanoma
that can complement deep-learning techniques.
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Background and purpose: Colorectal cancer is a common fatal malignancy, the

fourth most common cancer in men, and the third most common cancer in women

worldwide. Timely detection of cancer in its early stages is essential for treating the

disease. Currently, there is a lack of datasets for histopathological image segmentation

of colorectal cancer, which often hampers the assessment accuracy when computer

technology is used to aid in diagnosis.

Methods: This present study provided a new publicly available Enteroscope Biopsy

Histopathological Hematoxylin and Eosin Image Dataset for Image Segmentation

Tasks (EBHI-Seg). To demonstrate the validity and extensiveness of EBHI-Seg, the

experimental results for EBHI-Seg are evaluated using classical machine learning

methods and deep learning methods.

Results: The experimental results showed that deep learning methods had a better

image segmentation performance when utilizing EBHI-Seg. The maximum accuracy

of the Dice evaluationmetric for the classical machine learningmethod is 0.948, while

the Dice evaluation metric for the deep learning method is 0.965.

Conclusion: This publicly available dataset contained 4,456 images of six types of

tumor di�erentiation stages and the corresponding ground truth images. The dataset

can provide researchers with new segmentation algorithms for medical diagnosis

of colorectal cancer, which can be used in the clinical setting to help doctors and

patients. EBHI-Seg is publicly available at: https://figshare.com/articles/dataset/EBHI-

SEG/21540159/1.

KEYWORDS

colorectal histopathology, enteroscope biopsy, image dataset, image segmentation,

EBHI-Seg

1. Introduction

Colon cancer is a common deadlymalignant tumor, the fourthmost common cancer inmen,

and the third most common cancer in women worldwide. Colon cancer is responsible for 10%

of all cancer cases (1). According to prior research, colon and rectal tumors share many of the

same or similar characteristics. Hence, they are often classified collectively (2). The present study
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categorized rectal and colon cancers into one colorectal cancer

category (3). Histopathological examination of the intestinal tract is

both the gold standard for the diagnosis of colorectal cancer and a

prerequisite for disease treatment (4).

The advantage of using the intestinal biopsy method to remove

a part of the intestinal tissue for histopathological analysis, which

is used to determine the true status of the patient, is that

it considerably reduces damage to the body and rapid wound

healing (5). The histopathology sample is then sectioned and

processed with Hematoxylin and Eosin (H&E). Treatment with H&E

is a common approach when staining tissue sections to show the

inclusions between the nucleus and cytoplasm and highlight the fine

structures between tissues (6, 7). When a pathologist performs an

examination of the colon, they first examine the histopathological

sections for eligibility and find the location of the lesion. The

pathology sections are then examined and diagnosed using a low

magnification microscope. If finer structures need to be observed, the

microscope is adjusted to use high magnification for further analysis.

However, the following problems usually exist in the diagnostic

process: the diagnostic results become more subjective and varied

due to different doctors reasons; doctors can easily overlook some

information in the presence of a large amount of test data; it is difficult

to analyze large amounts of previously collected data (8). Therefore,

it is a necessary to address these issues effectively.

With the development and popularization of computer-aided

diagnosis (CAD), the pathological sections of each case can be

accurately and efficiently examined with the help of computers (9).

Now, CAD is widely used in many biomedical image analysis

tasks, such as microorganism image analysis (10–18), COVID-

19 image analysis (19), histopatholgical image analysis (20–

27), cytopathological image analysis (28–31) and sperm video

analysis (32, 33). Therefore, the application of computer vision

technology for colorectal cancer CAD provides a new direction in this

research field (34).

One of the fundamental tasks of CAD is the aspect of

image segmentation, the results of which can be used as key

evidence in the pathologists’ diagnostic processes. Along with the

rapid development of medical image segmentation methodology,

there is a wide demand for its application to identify benign

and malignant tumors, tumor differentiation stages, and other

related fields (35). Therefore, a multi-class image segmentation

method is needed to obtain high segmentation accuracy and good

robustness (36).

The present study presents a novel Enteroscope Biopsy

Histopathological H&E Image Dataset for Image Segmentation

Tasks (EBHI-Seg), which contains 4456 electron microscopic images

of histopathological colorectal cancer sections that encompass six

tumor differentiation stages: normal, polyp, low-grade intraepithelial

neoplasia, high-grade intraepithelial neoplasia, serrated adenoma,

and adenocarcinoma. The segmentation coefficients and evaluation

metrics are obtained by segmenting the images of this dataset

using different classical machine learning methods and novel deep

learning methods.

2. Related work

The present study analyzed and compared the existing colorectal

cancer biopsy dataset and provided an in-depth exploration of the

currently known research findings. The limitations of the presently

available colorectal cancer dataset were also pointed out.

The following conclusions were obtained in the course of the

study. For existing datasets, the data types can be grouped into

two major categories: Multi and Dual Categorization datasets. Multi

Categorization datasets contain tissue types at all stages from Normal

to Neoplastic. In Trivizakis et al. (37), a dataset called “Collection

of textures in colorectal cancer histology” is described. It includes

5,000 patches of size 74 × 74 µm and contains seven categories.

However, because there were only 10 images, it is too small for

a data sample and lacked generalization capability. In Chen et al.

(23), a dataset called “NCT-CRC-HE-100K” is proposed. This is a

set of 100,000 non-overlapping image patches of histological human

colorectal cancer (CRC) and normal tissue samples stained with

(H&E) that was presented by the National Center for Tumor Diseases

(NCT). These image patches are from nine different tissues with

an image size of 224 × 224 pixels. The nine tissue categories are

adipose, background, debris, lymphocytes, mucus, smooth muscle,

normal colon mucosa, cancer-associated stroma, and colorectal

adenocarcinoma epithelium. This dataset is publicly available and

commonly used. However, because the image sizes are all 224 ×

224 pixels, the dataset underperformed in some global details that

need to be observed in individual categories. Two datasets are

utilized in Oliveira et al. (38): one containing colonic H&E-stained

biopsy sections (CRC dataset) and the other consisting of prostate

cancer H&E-stained biopsy sections (PCa dataset). The CRC dataset

contains 1,133 colorectal biopsy and polypectomy slides grouped into

three categories and labeled as non-neoplastic, low-grade and high-

grade lesions. In Kausar et al. (39), a dataset named “MICCAI 2016

gland segmentation challenge dataset (GlaS)” is used. This dataset

contained 165 microscopic images of H&E-stained colon glandular

tissue samples, including 85 training and 80 test datasets. Each dataset

is grouped into two parts: benign and malignant tumors. The image

size is 775 × 522 pixels. Since this dataset has only two types of data

and the number of data is too little, so that it performs poorly on some

multi-type training.

Dual Categorization datasets usually contain only two types of

tissue types: Normal and Neoplastic. In Wei et al. (40), a dataset

named “FFPE” is proposed. This dataset obtained its images by

extracting 328 Formalin-fixed Paraffin-embedded (FFPE) whole-

slide images of colorectal polyps classified into two categories of :

hyperplastic polyps (HPs) and sessile serrated adenomas (SSAs).

This dataset contained 3,125 images with an image size of 224 ×

224 pixels and is small in type and number. In Bilal et al. (41),

two datasets named “UHCW” and “TCGA” are proposed. The first

dataset is a colorectal cancer biopsy sequence developed at the

University Hospital of Coventry and Warwickshire (UHCW) for

internal validation of the rectal biopsy trial. The second dataset is

the Cancer Genome Atlas (TCGA) for external validation of the

trial. This dataset is commonly used as a publicly available cancer

dataset and stores genomic data for more than 20 types of cancers.

The two dataset types are grouped into two categories: Normal and

Neoplastic. The first dataset contains 4,292 slices, and the second

dataset contained 731 slices with an image size of 224× 224 pixels.

All of the information for the existing datasets is summarized

in Table 1. The issues associated with the dataset mentioned above

included fewer data types, small amount of data, inaccurate dataset

ground truth, etc. The current study required an open-source multi-

type colonoscopy biopsy image dataset.

Frontiers inMedicine 02 frontiersin.org
99100

https://doi.org/10.3389/fmed.2023.1114673
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Shi et al. 10.3389/fmed.2023.1114673

TABLE 1 A dataset for the pathological classification of colorectal cancer.

Dataset name Categorization Amount Size Year

Collection of textures in colorectal

cancer histology

Lymphoid follicles, mucosal glands, debris,

adipose, tumor epithelium simple stroma,

complex stroma, background patches with no

tissue

5,000 74× 74 µm

(0.495 micrometer per

pixel)

2016

Multi categorization

HE-NCT-CRC-100K MUS, NORM, STR, TUM ADI, BACK, DEB,

LYM, MUC

100,000 224×224 pixels 2016

MICCAI’16 gland seg-mentation

challenge dataset

Benign tumors, malignant tumors 85 775×522 pixels 2017

CRC dataset Non-neoplastic, low-grade, high-grade lesions 1,133 512×512 pixels 2021

Dual categorization

FFPE HPs, SSAs 3,152 224×224 pixels 2021

The Cancer Genome Atlas dataset Normal, Neoplastic 731 224×224 pixels 2021

University Hospitals Coventry and

Warwick-shire dataset

Normal, Neoplastic 4,292 224×224 pixels 2021

3. Basic information for EBHI-Seg

3.1. Dataset overview

The dataset in the present study contained 4,456 histopathology

images, including 2,228 histopathology section images and 2,228

ground truth images. These include normal (76 images and 76 ground

truth images), polyp (474 images and 474 ground truth images), low-

grade intraepithelial neoplasia (639 images and 639 ground truth

images), high-grade intraepithelial neoplasia (186 images and 186

ground truth images), serrated adenoma (58 images and 58 ground

truth images), and adenocarcinoma (795 images and 795 ground

truth images). The basic information for the dataset is described in

detail below. EBHI-Seg is publicly available at: https://figshare.com/

articles/dataset/EBHI-SEG/21540159/1.

In the present paper, H&E-treated histopathological sections of

colon tissues are used as data for evaluating image segmentation.

The dataset is obtained from two histopathologists at the Cancer

Hospital of China Medical University [proved by “Research Project

Ethics Certification” (No. 202229)]. It is prepared by 12 biomedical

researchers according to the following rules: Firstly, if there is only

one differentiation stage in the image and the rest of the image

is intact, then the differentiation stage became the image label;

Secondly, if there is more than one differentiation stage in the image,

then the most obvious differentiation is selected as the image label; In

general, the most severe and prominent differentiation in the image

was used as the image label.

Intestinal biopsy was used as the sampling method in this

dataset. The magnification of the data slices is 400×, with an

eyepiece magnification of 10× and an objective magnification of

40×. A Nissan Olympusmicroscope andNewUsbCamera acquisition

software are used. The image input size is 224 × 224 pixels, and the

format is *.png. The data are grouped into five types described in

detail in Section 2.2.

3.2. Data type description

3.2.1. Normal
Colorectal tissue sections of the standard category are made-up

of consistently ordered tubular structures and that does not appear

infected when viewed under a light microscope (42). Section images

with the corresponding ground truth images are shown in Figure 1A.

3.2.2. Polyp
Colorectal polyps are similar in shape to the structures in

the normal category, but have a completely different histological

structure. A polyp is a redundant mass that grows on the surface

of the body’s cells. Modern medicine usually refers to polyps as

unwanted growths on the mucosal surface of the body (43). The

pathological section of the polyp category also has an intact luminal

structure with essentially no nuclear division of the cells. Only the

atomic mass is slightly higher than that in the normal category. The

polyp category and corresponding ground truth images are shown in

Figure 1B.

3.2.3. Intraepithelial neoplasia
Intraepithelial neoplasia (IN) is the most critical precancerous

lesion. Compared to the normal category, its histological images show

increased branching of adenoid structures, dense arrangement, and

different luminal sizes and shapes. In terms of cellular morphology,

the nuclei are enlarged and vary in size, while nuclear division

increases (44). The standard Padova classification currently classifies

intraepithelial neoplasia into low-grade and high-grade INs. High-

grade IN demonstrate more pronounced structural changes in the

lumen and nuclear enlargement compared to low-grade IN. The

images and ground truth diagrams of high-grade and low-grade INs

are shown in Figures 1C, D.

3.2.4. Adenocarcinoma
Adenocarcinoma is a malignant digestive tract tumor with a

very irregular distribution of luminal structures. It is difficult to

identify its border structures during observation, and the nuclei are

significantly enlarged at this stage (45). An adenocarcinoma with its

corresponding ground truth diagram is shown in Figure 1E.

3.2.5. Serrated adenoma
Serrated adenomas are uncommon lesions, accounting for 1% of

all colonic polyps (46). The endoscopic surface appearance of serrated
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FIGURE 1

An example of histopathological images database. (A) Normal and ground truth, (B) Polyp and ground truth, (C) High-grade Intraepithelial Neoplasia and

ground truth, (D) Low-grade Intraepithelial Neoplasia and ground truth, (E) Adenocarcinoma and ground truth, and (F) Serrated adenoma and ground

truth.

adenomas is not well characterized but is thought to be similar to that

of colonic adenomas with tubular or cerebral crypt openings (47).

The image of a serrated adenoma with a corresponding ground truth

diagram is shown in Figure 1F.

4. Evaluation of EBHI-Seg

4.1. Image segmentation evaluation metric

Six evaluation metrics are commonly used for image

segmentation tasks. The Dice ratio metric is a standard metric used

in medical images that is often utilized to evaluate the performance

of image segmentation algorithms. It is a validation method based

on spatial overlap statistics that measures the similarities between

the algorithm segmentation output and ground truth (48). The Dice

ratio is defined in Equation (1).

DiceRatio =

2 |X ∩ Y|

|X| + |Y|
. (1)

In Equation (1), for a segmentation task, X and Y denote the

ground truth and segmentation mask prediction, respectively. The

range of the calculated results is [0,1], and the larger the result

the better.

The Jaccard index is a classical set similarity measure with many

practical applications in image segmentation. The Jaccard index

measures the similarity of a finite set of samples: the ratio between

the intersection and concatenation of the segmentation results and

ground truth (49). The Jaccard index is defined in Equation (2).

JaccardIndex =
|X ∩ Y|

|X ∪ Y|
. (2)

The range of the calculated results is [0,1], and the larger the result

the better.

TABLE 2 Confusion matrix.

Ground truth
Predict mask

Positive Negative

Positive TP TN

Negative FP FN

Recall and precision are the recall and precision rates,

respectively. The range of the calculated results is [0,1]. A higher

output indicates a better segmentation result. Recall and precision are

defined in Equations (3), (4),

Precison =

TP

TP+ FP
, (3)

Recall =
TP

TP+ FN
, (4)

where TP, FP, TN, and FN are defined in Table 2.

The conformity coefficient (Confm Index) is a consistency

coefficient, which is calculated by putting the binary classification

result of each pixel from [−∞,1] into continuous interval [−∞,1]

to calculate the ratio of the number of incorrectly segmented pixels to

the number of correctly segmented pixels to measure the consistency

between the segmentation result and ground truth. The conformity

coefficient is defined in Equations (5), (6),

ConfmIndex = (1−
θAE

θTP
), θTP > 0, (5)

ConfmIndex = Failure, θTP = 0, (6)
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Where θAE= θFP+θFN represents all errors of the fuzzy

segmentation results. θTP is the number of correctly classified pixels.

Mathematically, ConfmIndex can be negative infinity if θTP=0. Such

a segmentation result is definitely inadequate and treated as failure

without the need of any further analysis.

4.2. Classical machine learning methods

Image segmentation is one of the most commonly used methods

for classifying image pixels in decision-oriented applications (50). It

groups an image into regions high in pixel similarity within each area

and has a significant contrast between different regions (51). Machine

learning methods for segmentation distinguish the image classes

using image features. (1) k-means algorithm is a classical division-

based clustering algorithm, where image segmentation means

segmenting the image into many disjointed regions. The essence is

the clustering process of pixels, and the k-means method is one of the

simplest clustering methods (52). Image segmentation of the present

study dataset is performed using the classical machine learning

method described above. (2) Markov random field (MRF) is a

powerful stochastic tool that models the joint probability distribution

of an image based on its local spatial action (53). It can extract the

texture features of the image and model the image segmentation

problem. (3) OTSU algorithm is a global adaptive binarized threshold

segmentation algorithm that uses the maximum inter-class variance

between the image background and the target image as the selection

criterion (54). The image is grouped into foreground and background

parts based on its grayscale characteristics independent of the

brightness and contrast. (4) Watershed algorithm is a region-based

segmentation method, that takes the similarity between neighboring

pixels as a reference and connects those pixels with similar spatial

locations and grayscale values into a closed contour to achieve the

segmentation effect (55). (5) Sobel algorithm has two operators,

FIGURE 2

Five types of data segmentation results obtained by di�erent classical machine learning methods.
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TABLE 3 Evaluation metrics for five di�erent segmentation methods based on classical machine learning.

Dice ratio JaccardIndex Conformity
coe�cient

Precision Recall

k-means 0.648 0.488 –0.184 0.646 0.663

MRF 0.636 0.473 –0.230 0.637 0.658

Normal OTSU 0.410 0.265 –2.871 0.515 0.351

Watershed 0.461 0.300 –1.375 0.668 0.356

Sobel 0.652 0.487 –0.102 0.763 0.579

k-means 0.592 0.430 –0.528 0.546 0.663

MRF 0.511 0.362 –2.133 0.540 0.502

Polyp OTSU 0.400 0.259 –3.108 0.413 0.399

Watershed 0.433 0.277 –1.675 0.551 0.362

Sobel 0.583 0.416 –0.499 0.626 0.562

k-means 0.626 0.478 –0.467 0.650 0.620

MRF 0.550 0.441 –30.85 0.614 0.526

High-grade IN OTSU 0.249 0.150 –12.06 0.373 0.191

Watershed 0.472 0.309 –1.258 0.738 0.350

Sobel 0.634 0.469 –0.200 0.728 0.577

k-means 0.650 0.492 –0.172 0.651 0.663

MRF 0.554 0.404 –1.808 0.643 0.504

Low-grade IN OTSU 0.886 0.811 0.6998 0.832 0.979

Watershed 0.464 0.303 –1.345 0.676 0.357

Sobel 0.656 0.492 –0.079 0.771 0.582

k-means 0.633 0.481 –0.414 0.655 0.645

MRF 0.554 0.404 –1.808 0.643 0.504

Adenocarcinoma OTSU 0.336 0.215 –5.211 0.454 0.282

Watershed 0.458 0.298 –1.437 0.700 0.349

Sobel 0.553 0.388 –0.733 0.692 0.484

k-means 0.636 0.473 –0.230 0.637 0.658

MRF 0.571 0.419 –0.898 0.656 0.547

Serrated adenoma OTSU 0.393 0.248 –2.444 0.565 0.315

Watershed 0.449 0.290 –1.494 0.656 0.345

Sobel 0.698 0.541 0.7484 0.662 0.572

where one detects horizontal edges and the other detects vertical

flat edges. An image is the final result of its operation. Sobel edge

detection operator is a set of directional operators that can be

used to perform edge detection from different directions (56). The

segmentation results are shown in Figure 2.

The performance of EBHI-Seg for different machine learning

methods is observed by comparing the images segmented using

classical machine learning methods with the corresponding ground

truth. The segmentation evaluation metrics results are shown in

Table 3. The Dice ratio algorithm is a similarity measure, usually

used to compare the similarity of two samples. The value of one

for this metric is c onsidered to indicate the best effect, while

the value of the worst impact is zero. The Table 3 shows that k-

means has a good Dice ratio algorithm value of up to 0.650 in each

category. The MRF and Sobel segmentation results also achieved

a good Dice ratio algorithm value of around 0.6. In terms of

image precision and recall segmentation coefficients, k-means is

maintained at approximately 0.650 in each category. In the classical

machine learning methods, k-means has the best segmentation

results, followed by MRF and Sobel. OTSU has a general effect,

while the watershed algorithm has various coefficients that are

much lower than those in the above methods. Moreover, there are

apparent differences in the segmentation results when using the

above methods.

In summary, EBHI-Seg has significantly different results

when using different classical machine learning segmentation

methods. Different classical machine learning methods have an

obvious differentiation according to the image segmentation

evaluation metrics. Therefore, EBHI-Seg can effectively evaluate the

segmentation performance of different segmentation methods.
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FIGURE 3

Three types of data segmentation results obtained by di�erent deep learning methods.

4.3. Deep learning methods

Besides the classical macine learning metheds tested above, some

popular deep learning methods are also tested. (1) Seg-Net is an open

source project for image segmentation (57). The network is identical

to the convolutional layer of VGG-16, with the removal of the

fully-connected hierarchy and the addition of max-pooling indices

resulting in improved boundary delineation. Seg-Net performs better

in large datasets. (2) U-Net network structure was first proposed

in 2015 (58) for medical imaging. U-Net is lightweight, and its

simultaneous detection of local and global information is helpful

for both information extraction and diagnostic results from clinical

medical images. (3) MedT is a network published in 2021, which is

a transformer structure that applies an attention mechanism based

on medical image segmentation (59). The segmentation results are

shown in Figure 3.

The segmentation effect is test on the present dataset using three

deep learningmodels. In the experiments, eachmodel is trained using

the ratio of the training set, validation set, and test set of 4 : 4 : 2. All

of the information for the existing datasets is summarized in Table 4.

The model learning rate is set to 3e − 6, epochs are set to 100, and

batch-size is set to 1. The optimizer is Adam, the loss function is

crossentropyloss and the activation function is ReLU. The dataset

segmentation results of using three different models are shown

in Figure 3. The experimental segmentation evaluation metrics are

shown in Table 5. Overall, deep learning performs much better than

classical machine learning methods. Among them, the evaluation

indexes of the training results using the U-Net and Seg-Net models
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can reach 0.90 on average. The evaluation results of the MedT model

are slightly worse at a level, between 0.70 and 0.80. The training time

is longer for MedT and similar for U-Net and Seg-Net.

Based on the above results, EBHI-Seg achieved a clear

differentiation using deep learning image segmentation methods.

Image segmentation metrics for different deep learning methods

are significantly different so that EBHI-Seg can evaluate their

segmentation performance.

4.4. Experimental environment

This section presents the hardware configuration data required

for this experiment as well as the software version.

Processor: Intel Core i7-8700 @ 3.20GHz Six Core

Graphics (GPU): NVIDIA GeForce RTX 2080

TABLE 4 Deep learning of the number of di�erent types of training images.

Train Test Predict

Normal 30 30 16

Polyp 190 190 94

Low-grade IN 256 256 127

High-grade IN 74 74 38

Serrated adenoma 23 23 12

Adenocarcinoma 318 318 159

Graphics (CPU): Intel UHD Graphics 630

Hard Drive: SM961 NVMe SAMSUNG 512GB (Solid State Drive)

Motherboard: Dell 0NNNCT (C246 chipset)

Mainframe: Dell Precision 3630 Tower Desktop Mainframe

Software Versions: CUDA 11.2, torch 1.7.0, torchvision 0.8.0,

python 3.8.

5. Discussion

5.1. Discussion of image segmentation
results using classical machine learning
methods

Six types of tumor differentiation stage data in EBHI-Seg

were analyzed using classical machine learning methods to obtain

the results in Table 3. Base on the Dice ratio metrics, k-means,

MRF and Sobel show no significant differences among the three

methods around 0.55. In contrast, Watershed metrics are ∼0.45

on average, which is lower than the above three metrics. OTSU

index is around ∼0.40 because the foreground-background is

blurred in some experimental samples and OTSU had a difficulty

extracting a suitable segmentation threshold, which resulted in

undifferentiated test results. Precision and Recall evaluation indexes

for k-means, MRF, and Sobel are also around 0.60, which is

higher than those for OTSU and Watershed methods by about

0.20. In these three methods, k-means and MRF are higher than

Sobel in the visual performance of the images. Although Sobel

is the same as these two methods in terms of metrics, it is

difficult to distinguish foreground and background images in real

TABLE 5 Evaluation metrics for three di�erent segmentation methods based on deep learning.

Dice ratio JaccardIndex Conformity
coe�cient

Precision Recall

U-Net 0.411 0.263 –2.199 0.586 0.328

Normal Seg-Net 0.777 0.684 –0.607 0.895 0.758

MedT 0.676 0.562 –0.615 0.874 0.610

U-Net 0.965 0.308 –1.514 0.496 0.470

Polyp Seg-Net 0.937 0.886 0.858 0.916 0.965

MedT 0.771 0.643 0.336 0.687 0.920

U-Net 0.895 0.816 0.747 0.847 0.961

High-grade IN Seg-Net 0.894 0.812 0.757 0.881 0.913

MedT 0.824 0.707 0.556 0.740 0.958

U-Net 0.911 0.849 0.773 0.879 0.953

Low-grade IN Seg-Net 0.924 0.864 0.826 0.883 0.977

MedT 0.889 0.808 0.730 0.876 0.916

U-Net 0.887 0.808 0.718 0.850 0.950

Adenocarcinoma Seg-Net 0.865 0.775 0.646 0.792 0.977

MedT 0.735 0.595 0.197 0.662 0.864

U-Net 0.938 0.886 0.865 0.899 0.983

Serrated adenoma Seg-Net 0.907 0.832 0.794 0.859 0.963

MedT 0.670 0.509 –0.043 0.896 0.544
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images.The segmentation results for MRF are obvious but the

running time for MRF is too long in comparison with other

classical learning methods. Since classical machine learning methods

have a rigorous theoretical foundation and simple ideas, they have

been shown to perform well when used for specific problems.

However, the performance of different methods varied in the

present study.

5.2. Discussion of image segmentation
results using deep learning methods

In general, deep learning models are considerably superior to

classical machine learning methods, and even the lowest MedT

performance is still higher than the highest accuracy of classical

machine learning methods. In EBHI-Seg, the Dice ratio evaluation

index of MedT reaches ∼0.75. However, the MedT model size

was larger and as a result the training time was too long. U-Net

and Seg-Net have higher evaluation indexes than MedT, both of

about 0.88. Among them, Seg-Net has the least training time and

the lowest training model size. Because the normal category has

fewer sample images than other categories, the evaluation metrics

of the three deep learning methods in this category are significantly

lower than those in other categories. The evaluation metrics of

the three segmentation methods are significantly higher in the

other categories, with Seg-Net averaging above 0.90 and MedT

exceeding 0.80.

6. Conclusion and future work

The present stduy introduced a publicly available colorectal

pathology image dataset containing 4456 magnified 400× pathology

images of six types of tumor differentiation stages. EBHI-Seg has

high segmentation accuracy as well as good robustness. In the

classical machine learning approach, segmentation experiments were

performed using different methods and evaluation metrics analysis

was carried out utilizing segmentation results. The highest and lowest

Dice ratios are 0.65 and 0.30, respectively. The highest Precision

and Recall values are 0.70 and 0.90, respectively, while the lowest

values are 0.50 and 0.35, respectively. All three models performed

well when using the deep learning method, with the highest Dice

ratio reaching above 0.95 and both Precision and Recall values

reaching above 0.90. The segmentation experiments using EBHI-

Seg show that this dataset effectively perform the segmentation

task in each of the segmentation methods. Furthermore, there are

significant differences among the segmentation evaluation metrics.

Therefore, EBHI-Seg is practical and effective in performing image

segmentation tasks.
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Pathology is the gold standard of clinical diagnosis. Artificial intelligence (AI) in

pathology becomes a new trend, but it is still not widely used due to the lack of

necessary explanations for pathologists to understand the rationale. Clinic-compliant

explanations besides the diagnostic decision of pathological images are essential

for AI model training to provide diagnostic suggestions assisting pathologistsŠ

practice. In this study, we propose a new annotation form, PathNarratives, that

includes a hierarchical decision-to-reason data structure, a narrative annotation

process, and a multimodal interactive annotation tool. Following PathNarratives, we

recruited 8 pathologist annotators to build a colorectal pathological dataset, CR-

PathNarratives, containing 174 whole-slide images (WSIs). We further experiment on

the dataset with classification and captioning tasks to explore the clinical scenarios

of human-AI-collaborative pathological diagnosis. The classification tasks show that

fine-grain prediction enhances the overall classification accuracy from 79.56 to

85.26%. In Human-AI collaboration experience, the trust and confidence scores from

8 pathologists raised from 3.88 to 4.63 with providing more details. Results show

that the classification and captioning tasks achieve better results with reason labels,

provide explainable clues for doctors to understand and make the final decision

and thus can support a better experience of human-AI collaboration in pathological

diagnosis. In the future, we plan to optimize the tools for the annotation process, and

expand the datasets with more WSIs and covering more pathological domains.

KEYWORDS

pathology, human-AI collaboration, data annotation, multimodal data, colorectal cancer

1. Introduction

Pathological diagnosis is the gold standard for most diseases, especially oncology, and is the
cornerstone of clinical treatment (1). It studies the etiology, pathogenesis, and morphological
changes of tissues and drives decisions about discovering, treating, and preventing diseases.
With the development of deep learning and artificial intelligence (AI) technologies (2, 3),
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computational pathology has made significant strides in helping
pathologists with auxiliary diagnostics and increasing their
productivity in smart medicine applications such as classifying tumor
subtypes (4–7), detecting cancerous regions (8), and segmenting
lesion areas (9–11), especially for small and easily neglected lesion
areas (12).

Artificial intelligence for pathology has stimulated a growing
demand for high-quality pathological image datasets. Deep-learning-
based computational pathology requires model training with
numerous gigapixel whole-slide images (WSIs) scanned from H&E-
stained specimens and annotated with diagnostic labels (13, 14).
Due to its professionalism, pathological annotation usually relies on
professional pathologists and is time-consuming and costly (15). The
form and granularity of annotations imply the types of potential
applications a dataset can support. For example, some large-scale
datasets with WSI-level weak labels are used for weakly supervised
classification tasks (16–18), while some datasets with region-
level annotations can support more tasks of lesion segmentation
with multiclassification types or even verbal explanations (19–21).
Nevertheless, existing public datasets are not directly applicable for
clinical use because most focus on the ground truth labels about
what the diseases and lesions are, rather than why and how they
are discovered and decided. As a result, the trained AI models can
hardly provide enough diagnostic explanations for pathologists to
understand the rationale.

There still exist challenges in collecting why and how annotations
because pathologists’ diagnostic thinking logics are not well recorded
and structured. Furthermore, the descriptions of a lesion’s decisive
morphological characteristics are not consolidated due to the diverse
captioning habits of pathologists. Most importantly, interactive
annotation approaches must provide a flexible and systematic
experience while avoiding additional workload for pathologist
annotators (22).

In this study, we propose PathNarrative, a new annotation form
that can collect both diagnostic labels and rich logical reasoning data
for pathological AI to better collaborate with human pathologists.
PathNarratives introduces an annotation protocol for pathologists to
record both the decision-layer lesions and the reason-layer decisive
features of diagnostic logic. It defines a hierarchical multimodal
data structure to manage the decision-to-reason labels and their
relations, a narrative annotation process, and an interactive tool
to support annotators working in a flexible and multimodal way
with clinical tags, voice, and pencil to not only mark the lesions
but also point out the relative decisive features. Meanwhile, the
underlying field-of-view (FOV) moving and pausing behaviors
can be recorded simultaneously to together form the hierarchical
annotation. Following the PathNarratives protocol, we recruited
eight pathologist annotators and built a colorectal pathological
dataset containing 174 WSIs with hierarchical decision-to-reason
annotations. We further conduct experiments on the dataset with
classification and captioning tasks to explore the clinical scenarios of
human-AI collaboration in pathological diagnosis.

The major contributions of this study are as follows:

(1) A new annotation protocol, PathNarratives, that can obtain
and manage clinical-compliant fine-grain multimodality labels,
diagnostic thinking logic, and decision explanations. The
hierarchical data structure involves decision-layer and reason-
layer labels compliant with standard pathology clinical guides.
A hierarchical terminology for the colorectal tumor is also

proposed. Multimodality information labels are supported for
flexible annotation.

(2) A comprehensive colorectal dataset of gigapixel WSIs with fine-
grained annotations following PathNarratives was constructed.
Each WSI involves the decision-to-reason hierarchical labels
and the multimodality information.

(3) Exploration of the application scenarios of the PathNarratives
colorectal dataset in diagnosis and experiments results show
that finer labels improved performance in the classification
and capitalization tasks. The explainable results supported
doctors’ efforts to better understand and experience human-AI
collaboration in pathological diagnosis.
The rest of the study is arranged as follows. Section “2 Related
study” the related study on datasets, narrative annotation,
and relative AI applications. Section “3 Data annotation
protocol” introduces the pathological data annotation protocol.
Section “4 Dataset” presents the annotated colorectal dataset.
Section 5 “Classification and captioning tasks on narratives-
annotated dataset” shows the application scenarios and
experiments on the dataset. Section “6 Conclusion” concludes
and discusses future study.

2. Related study

2.1. Pathological datasets

Some pathology datasets are typically weakly labeled with simple
metastatic disease circled at the WSI level and only applied to
a single decision scenario (23–27). For example, CAMELYON16
(23) and CAMELYON17 (24) datasets have been widely used in
research for automated detection and classification of breast cancer
to enable automated evaluation of patient staging while reducing
the subjectivity of the diagnosis. Similarly, the authors compiled
TCIA (25) containing clinical information from epithelial ovarian
cancer (EOC) and peritoneal serous papillary carcinoma (PSPC)
to explore and develop methods for predicting the therapeutic
effect of bevacizumab in patients with EOC and PSPC. The
breast cancer dataset BreCaHAD (26) divides WSIs into six tissue
classifications including mitosis, apoptosis, tumor nucleus, non-
tumor nucleus, tubule, and non-tubule, to support multiclassification
tasks. Another breast cancer dataset, BreaKHis (27), is designed for
baseline classification of tumor benign-malignant and discrimination
of subtype characteristic tissues. These dataset annotations only stay
at the decision level of the metastatic region; the granularity is not
detailed and persuasive enough.

Several pathological datasets aim to provide better clinical
captioning to reflect pathology reports in computational pathology
(19–21), including two categories. One was taken from existing digital
resources, such as pathology textbooks and clinical and research
journal article databases, which are typically represented by PathVQA
(19) and ARCH (20). Such datasets are massive in volume but low
in acquisition cost, poor in quality, and inconsistent in standards.
These two datasets are often used for pre-training representational
learning. During compilation, PathVQA also emphasizes templated
and open-ended generation of visual question answers, compared to
ARCH’s extracted image and image-related text pairs. Another type is
obtained by picking patches from WSI, such as PatchGastricADC22
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FIGURE 1

PathNarratives protocol including a hierarchical fine-grain data structure and a multimodal annotation process with an interactive annotation tool.
(A) Decision-to-reason data structure. (B) Narrative annotation with label terminology. (C) Interactive annotation tool: ParVis.

(28) and BCIDR (21). Among them, PatchGastricADC22 is derived
from the actual clinical case diagnosis reports from the same hospital.
Each instance has two magnifications, so the quality and resolution
are consistent. Each WSI contains unorderly collected patches.
Patches that belong to the same WSI have the same caption. Since
there are only independent patches, there is no way to understand the
mutual reasons for different patches in the doctor’s diagnosis. BCIDR
allows more pathologists to participate in the annotation. The patches
are extracted from eight typical regions and added captions, which
makes their captions more focused on the detailed information at
the cellular level. Thus, all of these datasets do not focus on region-
level reasonable diagnostics. PathLAKE (22) proposes an annotation
best practice that includes hierarchical case-level, region-level, and
cell-level labels on breast cancer annotation but does not take the
doctors’ diagnostic logic or the experience of multimodal inputs
into consideration.

2.2. Narrative annotation model

Narrative annotation focuses on the description of the
relationship between entities, and entity relationships are collected
during the annotation phase. Attributes, relationships, and entities
in the same image are often closely related (29–32). Localized
Narratives (30) connect vision and language by artificially using
mouse scribing to join action connections between entities and make
the captioning in content more hierarchical. It asks annotators to
describe an image with their voice while simultaneously hovering
their mouse over the region they are describing. Using this mouse
trajectory and voice inputs, the narrative dataset performs better
in the caption task. Similarly, TReCS (31) exploits using detailed
and reasonable language descriptions paired with mouse traces to
generate images. More realistic images could be generated using
descriptions and traces compared to those without traces. The
interactions and relationships between objects contribute to a visual
understanding of the main components of object-centric events
(33). MITR (32) shows a framework to jointly model images, text,
and human attention traces, which connects what to say with
where to look by modeling human attention traces. The process of

narrative annotation also contains helpful information in essence. By
exploring the visual attention of doctors browsing and the process of
scanning trajectories, Chakraborty et al. (34) found there are strongly
correlated between the feature regions of algorithm tasks and lesions
in the image to a certain extent, which reflects their diagnostic logic.
The annotators draw the object’s bounding box with the mouse and
add class labels through voice. Significant speed gains are achieved
while maintaining high-quality annotations (35). In addition to
manually adding entity relations during the annotation process, the
models for video action recognition can also be considered partially
auto-generating narrative relations of the entity bounding boxes
(36–38).

2.3. Applications of AI in pathology

Medical classification and segmentation have also actively
been explored (39–45). Gurcan et al. (39) reviewed pathological
image analysis methods for computer-assisted diagnosis, including
pretreatment, nucleus and gland segmentation, feature extraction,
and classification. Veta et al. (40) discussed histological image
analysis methods for breast cancer and conducted additional
discussions on mitosis detection and proliferation assessment.

TABLE 1 Basic information of participating pathologists.

Pathologist Years-of-working Subspecialty

P1 More than 15 years Histopathology

P2 3–5 years Histopathology

P3 3–5 years Histopathology

P4 5–10 years Digestive

P5 10–15 years Digestive

P6 10–15 years Histopathology

P7 3–5 years Histopathology

P8 More than 15 years Histopathology

P9 3–5 years Digestive
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Luo et al. (42) combined the characteristics of tumor cells and
their surrounding organizational form environment to predict
patient survival outcome information experimentally. HAG (43)
was proposed to fuse multiresolution information and speed up
prediction without reducing accuracy. Abu Haeyeh et al. (44)
normalized the staining of RCC and used a weakly supervised multi-
instance learning method. The results show that they can classify
benign-malignant and determine tumor subtypes to support medical
treatment management. Zhou et al. (45) chose TCGA, combing
features at different magnifications, to achieve the classification and
localization of colorectal tumors.

Pathological captioning tasks are being studied recently to
automatically generate diagnostic texts based on patient medical
images, assist inexperienced doctors, and reduce clinical errors
(46). The typical representative is still PathVQA (19). PathVQA
first reviews related research in medical radiology, such as
VQA-Med (47) and VQA-RAD (48), and then explores the
experiments of vision questions and answers tasks in pathology.
The PathVQA automatically generates what, why, and other
question-answer pairs to conduct the learning model by extracting
pathological images and corresponding text information. In contrast
to PathVQA, PatchGastricADC22 extracts patches from endoscopic
biopsy specimens of gastric adenocarcinoma and trains an attention-
based pipeline model to predict image features. The physician
diagnostic logics of WSIs or lesion regions have not been extensively
explored in the caption task at present.

3. Data annotation protocol

3.1. Overview

We first analyzed the clinical routines of pathological diagnosis
to formulate the annotation data structure and the protocol of
PathNarratives, as shown in Figure 1. To be specific, we consulted
the WHO pathological clinical guideline (49), analyzed the pathology
report templates from the pathology departments of two top-tier
hospitals, and observed two pathologists for their diagnosis browsing
and thinking practices with permission (P4 and P9 in Table 1). The
goal was to explore how pathological decisions are made, explained,
and concluded into reports, and what granularity of interpretable
annotations can be collected in a natural process.

We then defined the PathNarratives protocol, which includes
a hierarchical decision-to-reason data structure, a multimodal
annotating process, and an interactive annotation tool. It allows
annotators to work in a flexible and multimodal way to mark and
circle lesion areas, look for typical characteristics and outline them,
and describe the basis of judgment, by using clinical tags, voice, pencil
lining, and FOV moving. Following this, the collected data can cover
the types of diagnostic disease and lesion, the decisive morphological
features, and the corresponding pathologists’ logical narrations and
viewing behaviors.

3.2. Data structure

Decision-to-reason annotation
Concluding a pathological diagnosis report involves two layers of

information. The decision-layer information is about the slide-wise

diagnostics (one report may involve several slides of the patient) and
descriptions of lesion regions that appear explicitly in the pathology
report. In contrast, the reason-layer information demonstrates the
underlying typical features and reasons that pathologists use to judge
the lesion and diagnose it. Although the reason-layer information is
essential to explain the rationale, it is usually implicit in pathologists’
knowledge systems and does not show in the report. Only when
pathologists discuss with other doctors will they refer to both
the decision-layer and reason-layer information of the diagnosis,
using multimodal ways such as texts, voice, screenshots, and
mouse/pencil moving.

Besides the two layers of information, we discovered that doctors’
behaviors such as browsing, view zooming-in/out, view shifting, view
pausing, and mouse/pencil hovering represent their attention focus
and thinking logic during the pathological diagnosis process. Such
behavior data also provide informative inputs for AI learning and,
therefore, are also considered in our data structure.

The decision-to-reason data structure to manage the hierarchical
multimodal annotation is shown in Figure 2. The decision-layer
represents the labels around WSIs and lesion regions, where each
WSI can involve multiple lesion regions (one-to-many mapping,
shown as 1. . .N in Figure 2). The reason-layer is related to
the corresponding multiple features labeled with descriptions to
explain the rationale behind judging each lesion decision (one-
to-many mapping, shown as 1. . .N). Multimodal annotations are
supported as clinical tags, free texts, voice, and pencil/mouse moving
traces of the doctor’s annotating behaviors, which are timestamp
synchronized and associated with both the layers of data (many-
to-many mapping, shown as N. . .N). Multiple annotations together
form one comprehensive pathology report (many-to-many mapping,
shown as N. . .N).

Unified terminology
We also considered the need for unified terminology of the two

layers of labels in the data structure design, where the colorectal
tumor is chosen in this study. During the pathological shadowing,
we found that if we allowed two pathologists to input free-text
reasoning labels, their expressions could vary severely even when
they agreed on the tumor types and reasons for the same lesion of a
colorectal WSI. For example, pathologist 4 (P4 in Table 1) described
the features as a “gland fused with a sieve,” while Pathologist 9
(P9 in Table 1) described the same one as a “sieve hole.” Further
interviews with the two doctors proved that they meant the same
thing, though their textual expressions looked quite different. The
variability of labels affects not only the performance of the AI model
but also the normalization of data, and therefore, unified terminology
is necessary.

We analyzed pathological books, published specifications, and
pathology report templates from hospitals and consulted senior
pathologists (P1 and P9 in Table 1 with more than 15 years
of diagnostic experience) to build the decision-to-reason unified
terminology, as shown in Table 2 (refer Supplementary material
for the full version). We first referred to the 2019 WHO
Blue Book (World Health Organization) (50), which defines
the classification of digestive system tumors and borrowed the
colorectal classification terms to form the overall classifications as
“normal, adenocarcinoma and adenoma.” Besides the WHO Blue
Book, comprehensive pathology report templates from two top-
tier hospitals in China are also considered to further define the
finer classification of the decision-layer label, e.g., “Adenocarcinoma”
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FIGURE 2

The decision-to-reason multimodality data structure of PathNarratives. The decision-layer represents the labels around WSIs and lesion regions, where
each WSI corresponds to multiple lesion regions. The reason-layer represents the corresponding multiple features marked and described to judge the
lesion regions.

in the classification is categorized into subtypes such as “Poorly
differentiated adenocarcinoma” and “Moderately differentiated
adenocarcinoma.” In addition, some terms that frequently occur
in pathology reports describing features of lesions, such as
“Tumor invasion,” “Tumor budding,” “vascular invasion,” and “nerve
invasion,” are also set as decision-layer labels to better accommodate
pathologists’ habits and clinical needs.

Reason-layer label terminology was designed under the decision-
layer labels. As the WHO book and pathology reports do not
involve detailed reasoning information, we invited the senior
pathologists to summarize the main features into the reason-layer
annotation description from textbooks (51) with consideration of the
decision labels and pathology reports. As shown in Table 2, “Poorly
differentiated adenocarcinoma” in the decision-layer is further
associated with detailed reason-layer labels describing diagnostic
features such as “Irregular arrangements of glands” and “Mucinous
differentiation.” Specifically, the decision-layer labels under the
“Normal” category are used to describe normal colorectal elements
such as “Fatty tissue,” “smooth muscle,” and “Lymphatic vessel.”
The terminology terms are ordered from histomorphology to cell
morphology for pathologists’ convenience in browsing and selecting
from it.

3.3. Annotation process and tool

The PathNarratives annotation process includes a coarse-grain
phase and a fine-grain phase that follow the decision-to-reason
labeling structure. The design of the two phases is to accommodate
the different clinical application needs such that in the coarse-grain
annotation phase, an annotator browses a WSI and circles large
lesion areas to tag with the classification labels and then makes a
preliminary slide-wise diagnosis description, as shown in Figure 3A.
This annotation phase can be completed quickly by doctors and
an overview diagnosis can be provided. Then, in the fine-grain
annotation phase, an annotator needs to circle the finer subtype

decisions of lesions with typical features as completely as possible and
explain the decisive reasons. They can use a decision-layer subtype
label pencil to circle the typical lesion features, and then either attach

TABLE 2 Label terminology partial (in total, there are 3 classification
labels, 12 subtypes, and 77 reason-layer labels).

Classification
label

Decision-layer
subtype label

Reason-layer label

Adenocarcinoma Poorly differentiated
adenocarcinoma

Irregular arrangement of
glands
Mucinous differentiation
Vacuolated nuclei
. . .

Moderately differentiated
adenocarcinoma

. . .

Tumor invasion Infiltration of single or
several tumor cells
Invasion into the
muscularis mucosae
. . .

Tumor budding
. . .

Tumor budding (grade 1)
. . .

Adenoma Low-grade adenoma Low-grade intraepithelial
neoplasia
Glands lack mature
differentiation
. . .

High-grade adenoma . . .

Normal Normal Fatty tissue
Smooth muscle
Lymphatic vessel
. . .

Specifically, adenocarcinoma is mapped to 9 decision-layer subtypes and 34 reason-
layer labels; adenoma is mapped to 2 decision-layer subtypes and 25 reason-layer labels;
normal is mapped to 1 subtype and 18 reason-layer labels.
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reason tags or record voice explanations to explain the diagnostics.
The decision and reason labels can be directly picked from the
predefined label terminology, as shown in Figures 3B, C. The fine-
grain phase is more sophisticated and requires more time and labor.
Images and annotations can be replayed, compared, and audited
afterward, as shown in Figures 3D–F, respectively.

The above annotation process is carried out using our self-
developed software ParVis for the convenience of pathologist
annotators, auditors, and project managers cooperating on an
annotation project. The software comprises a mobile client for
doctors’ daily annotation/audit and a web server for annotation
project management. Administrators create projects, upload
pathology images, set roles and access rights, and manage
terminologies through the web server. Pathologists use the mobile
client to join projects, submit annotations, review them, and
audit the results.

According to the annotation process, ParVis has four major
functions: label, playback, review, and audit. On the label module
interface in Figures 3A–C, a pathology annotator can start labeling
a WSI for coarse annotation of the slide-level diagnosis description
and use different colors of classification pencils to mark lesion area
contours as in Figure 3A. For further fine-grain annotation, ParVis
provides different colors of subtype pencils for the annotator to circle
the contours of typical lesion features as in Figure 3B, and the icons
of “mic” or “tag” can be clicked to describe the features with voice
or text to generate the reason-layer labels in Figure 3C. In addition
to colors, the pencil tool supports flexible shapes for marking lesion
areas, such as “curve,” “rectangle,” or “brush.” ParVis also provides a
“ruler” to measure the area size according to the needs of pathological
reports. The fundamental functions such as magnification rate, eagle
view, screenshot, location, and metadata view are also provided as
basic functions.

ParVis forms the structural multimodal annotation data for
further analysis, playback, review, and audit. It also periodically
records the timestamps of browsing and moving behavior events
during labeling (with doctors’ prior permission) for further
synchronization. The behavioral tracking includes events such as
“FOV center change,” “voice recording,” “magnification,” “pencil
switching,” “undo,” and “delete” over time during the doctor labeling
process. These data can support application modules of playback (to
replay the annotation process), comparison (for medical students
to review and learn from multiple experts or teachers to examine
multiple Students’ work simultaneously), and audit (for auditors to
review and refine the annotations), as shown in Figures 3D–F. Most
importantly, the synchronized events such as magnification and focus
center shifting implicitly recorded can be used to analyze physician
behaviors. For example, visualizing the FOV center trajectory shows
the length of stay is positively correlated with the difficulty of the
lesion area, which is consistent with the conclusion in Wang and
Schmid (37). Behavioral data indicate the logical thinking of doctors
and their attention to assist the interpretability of AI.

The audit is an essential step for the annotation process to ensure
data quality and consistency, which needs to be conducted by senior
pathologists. The ParVis audit module is designed following the
general practice of the pathology department. A senior pathologist
clicks the Audit button and selects the items marked by primary
pathologists and checks for missing or wrong annotations. If there
is a problem, they need to revise, add, or delete the labels to finalize
the submission. We use Kappa, Dice, and BLEU to evaluate the

consistency of different levels of annotations in section “4.1 Data
source and overall statistics.”

During the annotation practice, we kept optimizing the process
according to observed issues. One important issue is the cost of fine-
grain annotation to label all the reasoning tags, which is tedious and
expensive for pathologists even though it provides more details and
explanations. Since many adjacent glands or lesions share similar
characteristics, we added a “Bundle pencil” tool to support annotators
to circle adjacent lesion regions of similar reasoning tags, so that a
pathologist can simply apply a one-off description to all the lesions
and features within the bundling circle. This setting saves annotation
time to a considerable degree in practice.

4. Dataset

4.1. Data source and overall statistics

Based on the PathNarratives protocol, we recruited eight
pathologist annotators (P1–P8 in Table 1) to build a colorectal tumor
dataset, CR-PathNarratives, which includes 174 annotated colorectal
WSIs with a length of 8,000–90,000 pixels and width 6,000–60,000
pixels, all with the decision-to-reason and multimodal data structure.

We selected colorectal cancer because it is characterized by high
incidence and mortality. Colorectal cancer has become the second
leading cause of cancer death worldwide, with 930,000 deaths in
2020. In 2020, the new incidence rate of colorectal cancer in China
was 12.2% and the fatality rate of colorectal cancer was 9.5% (52).
In addition, colorectal tissue sections present explicit morphological
variance and cover wide categories of tumor types with well-
established pathological diagnostic guidelines and standards for
database design and practice.

The WSIs were obtained from one first author’s cooperative
hospital with approval. The chief pathologist selected 891 H&E-
stained slides from 300 patients and randomly sampled 300
pieces to scan into WSIs at 20X objective magnification. At
present, the collection of annotated data containing 174 WSIs
has been completed.

We conducted the basic statistics of CR-PathNarratives on the
distributions of classification types, decision-layer subtype labels,
reason-layer labels, labeled areas, and diagnostic captions composed
with reasoning labels. The dataset covers all three class types:
adenocarcinoma, adenoma, and normal. The detailed categories and
numbers are shown in Table 3.

Each WSI contains a simple overall caption, several decision-
layer labels, and tens to hundreds of reason-layer labels. In total,
in 174 WSIs, 108 contain adenocarcinoma areas ranging from well
differentiated to poorly differentiated, 38 contain adenoma areas, 17
contain both adenoma and adenocarcinoma, and 45 are normal slides
with only normal areas labeled. There are in total 11 types of decision-
layer labels and 75 reason-layer labels, including free-text tags. For the
whole dataset, there are 23,532 regions manually circled, and some
are grouped as 539 bundles in total (a bundle consists of multiple
or single regions sharing the same features and captions, which can
effectively reduce the labeling efforts, as mentioned in section “3.3
Annotation process and tool”). In total, there are 878 different kinds
of captions associated with all the labeled regions, and each caption
comprises 4.4 label terms on average (max = 19 and min = 1), as
shown in Figure 4F.
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FIGURE 3

Decision-to-reason annotation functions of ParVis. (A) Label module: Lesion area circled on WSI by an annotator in the coarse-grain annotation phase,
with preliminary diagnosis descriptions. (B) Label module: Decision-layer subtype labels as different colors of pencils in the fine-grain annotation phase.
(C) Label module: Reason-layer features circled and labeled by clicking on the reason-layer terminology tags or recording voice explanations, in the
fine-grain annotation phase. (D) Playback module to replay the annotation events on the WSI image which is structural and can be searched and
analyzed. (E) Comparison module to view and compare different doctors’ annotations. (F) Audit module for senior doctors to review and correct
previous annotations.

Whole-slide image-wise statistics show that on average, a WSI
contains 3.1 labeled bundles (max = 41 and min = 1) that
reflect 135.2 regions. For further AI algorithm computation, each
WSI scanned at 20 × magnification was cut into patches of
256∗256 pixels. In statistics, the averaged labeled regions contain 76
patches (the diversity ranged from max = 2,477 to min = 1). On
average, one WSI is associated with 8.93 different kinds of captions
(max = 40 and min = 1) and involves 12.03 reason label terms
(max = 42 and min = 1).

We also investigated the texts and captions frequently used
in annotation statistics. The most commonly used label terms are

“Stratified or pseudostratified arrangement of nuclei” (7.21%), “Rod-
shaped nuclei” (7.02%), “Increased layers of epithelial cells” (5.78%),
and “Chromatin condensation of cells” (5.50%). For reason-layer
labels, the most commonly used captions are “Mitosis visible, mucous
differentiated, vacuolated nuclei,” “Markedly reduced cytoplasm,
stratified or pseudostratified arrangement of nuclei, increased layers
of epithelial cells, rod-shaped nuclei, oval nucleus,” and “Cribriform.”

We also evaluated the consistency of doctors’ annotations for
the quality of the datasets. For 10% of the annotated samples (18
WSIs), we asked a senior doctor P4 to review and label the same WSIs
annotated by a senior doctor P5 and a junior doctor P2. Three levels
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TABLE 3 Subtype distribution and data scale table.

Classification Decision subtype Number of WSIs in the subtype Total

Adenocarcinoma Well differentiated 20 108*

Poorly differentiated 23

Moderately differentiated 26

Well-moderately differentiated 16

Moderately-poorly differentiated 23

Adenoma High-grade adenoma 25 38*

Low-grade adenoma 13

Normal 45 45

*Indicates that 17 lesion slides contain both adenocarcinoma and adenoma.

of annotation consistency are analyzed as shown in Figure 4 (WSI
number sorted by their consistency value for illustration): consistency
of WSI classification in (c), (d), consistency of lesion regions for
coarse-grain classification labels in (c) vs. fine-grain subtype labels
in (d), and consistency of reason descriptions of lesion features in
(e), measured with the Kappa, Dice, and BLEU values, respectively.
For the consistency of WSI classification, the types decided by both
doctors are all the same for the 18 WSIs, which achieves an overall
Kappa = 1. For the consistency of lesion regions, the patch-level
classification labels and decision subtype labels achieve an average
Kappa of 0.91 (max = 1, min = 0.66) and 0.85 (max = 1, min = 0.42),
respectively, while the pixel-level consistency of the same-label lesion
area achieves Dice values of 0.96 (max = 1, min = 0.85) and
0.92 (max = 1, min = 0.61) for classification and subtype labels,
respectively. Both the patch-level Kappa value and the Dice value
are with an average beyond 0.85, and the variance among different
WSI is considered due to the difficulty levels of different cases. For
consistency of reason descriptions represented by lesion caption, the
BLEU1 value is mostly beyond 0.4 with an average of 0.78, as shown
in Figure 4E.

Annotation auditing is widely used in clinical practice. When
inconsistency occurs, the primary annotator needs to double
check, and if there is still a dissenting opinion, the senior and
primary annotators need to communicate with each other to
achieve a consensus.

4.2. Decision-to-reason annotation

The two layers of decision-to-reason data are shown as examples
in Figure 5. A doctor would rather look at the typical reason-layer
features first to quickly conclude the diagnosis and lesion areas, and
then spend much more time explaining with subtype details, typical
features, and reasons. For example, the doctor looked at the lesions
on a WSI that present visual features such as “Cribriform,” “nucleus
stratified or pseudostratified arrangement,” and “polar disorder” and
then quickly marked the whole WSI as “moderately differentiated
adenocarcinoma” and circled two adenocarcinoma regions and one
adenoma region. Then they refined to circle more reasoning feature
regions and select the detailed reason-layer labels for fine-grain
annotation.

Artificial intelligence training requires the annotations to be as
complete as possible. Coarse-grain labeling is simpler and costs less
time because doctors roughly scan the lesions and add labels to the

low-resolution WSI, which takes only tens of seconds. In contrast,
though it contributes necessarily detailed reasoning information,
fine-grain labeling inevitably takes a longer time in marking all the
circles and label terms. Experiments show the time of coarse-grain
labeling per WSI is on average 1.7’ as shown in Figure 4G, ranging
from 0.29’ to 2.97’, while the time spent for fine-grain labeling is on
average 46.17’, ranging from 14.69’ to 98.83’ as shown in Figure 4H,
which is 20+ times of that for coarse-grain one.

Fortunately, by applying the proposed “Bundle pencil” to group
similar small lesion regions for the one-off application of the same
labels as shown in Figure 5C, the fine-grain annotation time can be
significantly reduced down to 1/6–1/2 of the original one. We also
found it uses more time for the doctor to label adenomas than to label
adenocarcinomas because the lesion areas of adenocarcinomas are
often tangled and cannot be labeled separately. It also took much time
to zoom back and forth to inspect a large lesion area and label all the
typical details at different views. Based on this finding, we proposed
the following methods to further reduce the burden of doctors. (1)
Use the “Bundle pencil” to circle lesion areas with similar features
and (2) Future exploration of AI technologies to provide automatic
hints for circling and labeling.

Taking the WSI shown in Figure 5 as an example, the WSI was
marked with 12 adenocarcinoma areas, 9 adenoma areas, and an
overall cost of 1’12” for coarse-grain labeling, and the adenoma was
described with the text “Low-grade intraepithelial neoplasia.” During
fine-grain annotation, the doctor marked 83 well-differentiated
adenocarcinomas, 45 low-grade adenomas, and added 8 bundle tags,
which overall cost 7’42”. In another example case, annotating a WSI
takes a doctor 12” to circle 3 lesion regions with classification labels,
while annotating the fine-grain 488 typical features with diagnostic
reasons take up to 31’24” for no-bundle-circle annotation vs. about
half of it for bundle-circle annotation. In contrast, by simply applying
the “Bundle pencil” to group similar small lesion regions and one-
off label them, the annotation time is significantly reduced to 14’52”,
which is less than half of the previous time.

4.3. Multimodal data

Besides decision-to-reason data, CR-PathNarratives also covers
multimodal annotation data. Each WSI in the PathNarratives dataset
has visual information on the image feature regions and language
information of the physician’s annotations described in section “4.2
Decision-to-reason annotation.” On the contrary, the PathNarratives
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FIGURE 4

(A) The typical number of annotations contained in a single WSI of coarse-grain phase. (B) The typical number of annotations contained in a single WSI
of fine-grain phase. (C) Consistency of different annotators with Kappa and Dice values of coarse-grain annotation data. (D) Consistency of different
annotators with Kappa and Dice values of fine-grain annotation data. (E) Consistency of different annotators with BLEU1 of description data.
(F) Distribution of caption length and number. (G) The time spent on a single WSI annotation of the coarse-grain phase. (H) The time spent on a single
WSI annotation of the fine-grain phase.

dataset also contains voice information and behavioral trajectory
information, according to doctors’ preferences. From the example
shown in Figure 6, we found that voice information mainly consists
of the following two types of purposes: explaining diagnosis by
thinking or labeling via voice. We observed that after his annotation,
the doctor turns on the voice record button and tries to elaborate
on his observation for teaching purposes, e.g., “Open the whole
WSI and find that the right side is somewhat abnormal. Click to
enlarge and observe to confirm the adenocarcinoma. On the left
side, there are irregular glandular and tubular arrangements and
invasion of the muscle layer.” Junior physicians can replay and listen

to learn the voice-input recordings about WSI colorectal diagnostic
methods, which shares similarity to the AI learning process. The
voice-transcribed text labels contain richer information among the
marked areas and complement the textual label terms. However, our
experiment does not involve the special natural language processing
needs for pathological text recognition, which is an in-depth research
area. Instead, we only recruited human medical students to perform
that transcribing tasks.

The behavior-tracking data of doctors are stored in a structured
time-series record of labeled behaviors such as time stamps, visual
field centers, magnifications, labeling tools, toggle label colors,
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FIGURE 5

Examples of decision-to-reason annotation data. (A) The annotation of coarse-grain phase. (B) The annotation of the fine-grain phase. (C) The
annotation of fine-grain phase with bundle label.

markers, coordinates, deletions, and modifications during their
labeling process. When a doctor labeled a WSI, we continuously
recorded his FOV window changing, visual scan path, and resolution
zoom in and out information. We visualized the doctor’s attention
distribution of diagnosis by aggregating the pixels of the doctor’s
viewport boxes, combining them with the center points of the
viewport boxes, checking the time, zooming into incorporating scan
path, and plotting a behavioral trajectory heatmap as shown in
Figure 4, 5. The attention heatmaps echo the areas that the doctors
observed the most with higher heat scores. In comparison, tracks of

junior physicians demonstrate more back-and-forth browsing and
reluctance than those of the senior pathologists who are experienced
to make diagnoses rapidly.

5. Classification and captioning tasks
on the narratives-annotated dataset

To investigate the potential clinical applications that the CR-
PathNarratives dataset can support, we selected a classification task
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FIGURE 6

Multimodal information in the dataset: WSI, annotated information, voice, caption, ratio of decision-labeled and center point trace of the viewport, ratio
of detailed labeled, and center point trace of viewport and corresponding generated heat map.

and a captioning task and trained the baseline AI models. We
also conducted an evaluation of Human-AI collaboration experience
to explore the doctor subjects’ trust and acceptance when being
provided with comprehensive decision-to-reason suggestions by AI
models. The experimental baseline AI model is shown in Figure 7.

Task 1: Classification of coarse-grain and
fine-grain labeling data

Task definition
Given a WSI with coarse-grain classification labels vs. fine-

grain subtype labels defined in Table 2, the goal is to compare
their performances of classification (normal, adenocarcinoma, and
adenoma) to explore the impact on different levels of labeling details.
For ideal clinical use, false negatives should be avoided, which means
a WSI containing adenocarcinoma should not be misjudged as an
adenoma or benign case.

Methods
Each WSI is assigned a universal ID. We used the OpenSlide

tool (53) to extract patches of 256∗256 pixels from WSIs at 20 ×

magnification. Macenko stain normalization (54) is used for pre-
processing to ensure uniform WSI quality. The OTSU algorithm (55)
is used to separate foreground and background, ensuring that all valid
patches come from the foreground tissues.

The training and test sets are first divided into the WSI grade
to avoid patches from the same patient being included in both sets.
The total cropped tissue patches for training were counted, where a
patch is regarded as a labeling type if its central pixel falls into the
region labeled with that type. For each WSI, the patches with one
labeling type were randomly sampled according to the overall ratio of
the type in the dataset. Normal patches are guaranteed to come from
normal WSIs rather than normal areas of tumor slides. The test set is
composed of four WSIs with two adenoma and two adenocarcinoma
ones, cropped as patches with stride 256 in X and Y directions without
overlap area. The numbers of sampled patches are shown in Table 4.

ResNet-50 (49) is used for patch feature extraction and
classification in our experiments. The same setting (batch size = 128,
classes_num = 3) is used to perform the classification of the tumor,
carcinoma, and normal cases. We used Adam to optimize the model
with an initial learning rate of zero and â taken from the set of (0.9,
0.999). After five warm-up epochs, the learning rate reached 0.001.
Then, CosineAnnealingLR was chosen as the learning rate decay
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FIGURE 7

The AI model consists of two parts: feature extraction and classification using CNN. Captioning with transformers. Clustering can be performed based on
the regions annotated by doctors. After each patch is classified and clustered, the captioning of clustered areas can be performed.

TABLE 4 The number of sampled patches for the training set and test set for the classification task.

Normal Adenocarcinoma Adenoma

Training set with coarse-grain classification labels 133,312 133,321 133,286

Training set with fine-grain subtype labels 133,312 133,322 133,252

Test set 15,244 4,197 10,603

strategy, and after 25 epochs, it decayed to zero. Experiments were
run with PyTorch on a machine with a V100 graphics card.

Evaluation
We evaluated the performance with precision, recall, and

accuracy indicators. Precision is to measure how many of the positive
predictions are positive. Recall tells how many positive cases in the

test set are predicted correctly. Accuracy reflects the overall ratio of
correct predictions (adenoma, adenocarcinoma, and normal).

Results
Table 5 shows that fine-grain prediction enhances the overall

classification accuracy from 79.56 to 85.26%, with a +5.7%
improvement compared with the coarse-grain one. In specific, for
normal class, the recall measure of fine-grain prediction outperforms
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TABLE 5 Confusion matrix of prediction results for models trained with coarse-grain classification labels vs. fine-grain decision-layer subtype labels.

Prediction

Ground truth Normal Adenoma Adenocarcinoma #Recall

Coarse-grain class data Normal 5317 483 2039 67.83%

Adenoma 28 1687 16 97.46%

Adenocarcinoma 624 26 5517 89.46%

#Precision 89.07% 76.82% 72.86% 79.56%

Fine-grain subtype data Normal 6202 297 1340 79.12%

Adenoma 69 1622 40 93.70%

Adenocarcinoma 565 8 5594 90.71%

#Precision 90.37% 84.17% 80.21% 85.26%

Recall and precision numbers are calculated, and the two boxed numbers represent the overall accuracies of the two models, respectively.

TABLE 6 Partial caption prediction result.

BLEU4 Predicted caption Original caption

0 The cytoplasm was markedly reduced, karyorrhexis, thickened
chromatin, screen mesh. Moderately differentiated adenocarcinoma.

Nuclei remain polar, nucleus stratified or pseudostratified arrangement, tubular structure,
increased epithelial cell hierarchy, low grade intraepithelial neoplasia. Low grade adenomas.

0.3 Irregular glandular duct arrangement, cribriform structure, the nucleus
of tumor cells are round, nucleoli were more prominent, necrosis.
Moderately differentiated adenocarcinoma.

Some tumor cells with round nucleus, nucleoli were more prominent, some cribriform
arrangement, some papillary arrangement, necrosis, some tumor cells rod-shaped, stratified
arrangement. Moderately differentiated adenocarcinoma.

0.45 Irregular glandular duct arrangement. Moderately differentiated
adenocarcinoma.

Infiltration into the submucosa. Moderately differentiated adenocarcinoma.

0.5 Nuclei rod-shaped, nucleus stratified or pseudostratified arrangement,
tubular structure. Low grade adenomas.

Nuclei rod-shaped, nucleus stratified, tubular. Low grade adenomas.

0.99 Nuclei rod-shaped, nucleus stratified or pseudostratified arrangement,
tubular structure. Low grade adenomas.

Nuclei rod-shaped, nucleus stratified or pseudostratified arrangement, tubular structure. Low
grade adenomas.

FIGURE 8

Captions generated for each clustered area. These captions are used to describe the lesion detail features of the clustered area.

that of the coarse-grain prediction up to +11.29%, from 67.83 to
79.12%. For adenocarcinoma, coarse-grain prediction results in a
small false negative, reaching the recall of 89.46%, while fine-grain

one further improves it up to 90.71%. The fine-grain recall measure
of adenoma is also good at 93.70%, though is −3.76% inferior to the
coarse-grain one, and one possible reason is that some tumor stroma
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characteristics are difficult to identify. In conclusion, experimental
results show that fine-grain annotations can achieve an overall good
performance of classification and indicate more details of the present
lesions.

Task 2: Caption generation for explaining
diagnosis rationale

Task definition
Besides classification, we further verify the effectiveness of

reason-layer data in explaining details for the classification rationale
in order to support clinical scenarios of pathologists-AI collaboration.
We designed a captioning experiment to compare the descriptions
annotated by the doctor with the region captions generated by the
AI model. We also conducted a subjective evaluation for doctors to
review the captions generated.

Methods
The captioning model consists of a Resnet-18 (49) backbone

network and a transformer (56). Between the two modules, we
inserted a clustering filter module to aggregate patches belonging to
the same lesion area into ac luster. The model accepts random patches
as input, extracts features via the backbone network, and predicts
the classification type (normal, adenoma, and adenocarcinoma) of
the patch. The clustering filter will then aggregate adjacent abnormal
patches into clusters representing the lesion areas. Each cluster
contains several patches, which are regarded as a bag of unordered
patches. All the patch features in this bag are fed into the transformer
to generate the corresponding caption.

All the labeled lesion areas were divided into several patches
with corresponding captions for training purposes. For tokenization
purposes, patches in each caption bag are sampled to a fixed number.
Specifically in the experiment, we set the number of patches per
caption as up to 64. During the testing phase, the DBSCAN (57)
clustering filter was used after the backbone was completed. Each
cluster generated by the clustering filter was into the transformer to
generate the caption. We used a Tesla V100 graphics card for training
with batch size = 4; AdamW was used as the optimizer with a learning
rate of 1e-5. In the test stage, we sampled up to 256 patches per cluster
for caption prediction.

Evaluation
The bilingual evaluation understudy (BLEU) (58) score was

adopted for quantitative region-level algorithm evaluation. BLEU
value is used to measure the similarity between a set of machine-
generated translation sentences and a set of human-translated
sentences. A higher score reflects a better agreement between the
caption produced by the model and the ground-truth description by
the annotator.

bleun =

∑
c∈candidates

∑
n−gram∈c Countclip(n− gram)∑

c′∈candidates
∑

n−gram′∈c′ Countclip(n− gram′)
(1)

Results
We used four grades of BLEU values B1, B2, B3, and B4 to

quantify the captioning results. Experiments showed that the model
achieved B1 =0.56, B2 = 0.49, B3 = 0.44, and B4 = 0.36, for which the
predicted captions demonstrated good similarity to the ground truth

descriptions (BLEU around or higher than 0.4). Some examples are
shown in Table 6 for better illustration.

Task 3: Human-AI collaboration
experience

We also engaged physicians in qualitative evaluation of the
captions at the cluster level. For a certain WSI for testing in Task 1,
after completing the ResNet-based classification, we used DBSCAN
to cluster the patches and visualize the clustering result as shown
in Figure 8. All lesion regions are clustered into 13 large typical
areas, represented by different colors in Figure 8. Eight pathologists
(P1-P8 in Table 1) were recruited to rate the trust in the algorithm
for classification and generating caption results with the subjective
Likert Scale (59). For AI-assisted diagnosis, the baseline average score
was 3.88 for the trustworthiness and confidence of AI classification
results, while with the visualization results of the AI classification
algorithm trained by the CR-PathNarratives dataset, the trust and
confidence scores in AI-assisted diagnosis provided with more details
raised from 3.88 to 4.63. By providing more auxiliary diagnostic
information step by step (reason-layer text description, reason-layer
text description, and behavior trajectory thermal map), pathologists’
trust in AI auxiliary diagnosis increased from 4.25 to 4.38. It shows
that CR-PathNarratives with decision-to-reason detail benefit the
interpretability of AI by doctors.

In conclusion, our dataset can be applied to the basics of
classification and captioning scenarios. Experiments show that
adding more comprehensive reason information not only achieves
better classification gains, identifies detailed features such as cancer
stroma, and reduces the false positive rate, but also enhances
the trustworthiness and confidence of doctors to understand and
collaborate with pathological AI models.

6. Conclusion

Pathological diagnosis is the gold standard for tumor diagnosis.
The continuous development and progress of AI have brought new
possibilities for pathology diagnosis. However, there is a relative lack
of datasets in the field of computational pathology. We proposed a
data annotation protocol PathNarratives with a hierarchical decision-
to-reason data structure and a multimodal annotating process
and tool. This data annotation schema focuses on the labeling
process of the physician with audit capability, records the behavioral
information of the physician, and supports analyzing and discovering
the diagnostic ideas and logic of physicians. Based on the protocol
we have built the colon-rectal dataset, CR-PathNarratives, which
contains 174 H&E-stained WSIs. Each WSI was annotated with
decision-to-reason labels and multimodal information on vision,
language, voice, and behavioral trajectories. Voice explanations and
behavioral trajectories make the data more descriptive. Furthermore,
we use the decision-to-reason labels of this dataset to perform
classification (adenoma, adenocarcinoma, and normal) experiments,
as well as region-level and cluster-level captioning experiments for
lesion description. Experiments show that our dataset can be applied
to multiscenario algorithmic experiments. Refined annotations
facilitate machine learning of more detailed information and reduce
the false positive rate of classification. Visualization of comprehensive
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reasoning details enhances the trustworthiness and confidence of
doctors to collaborate with pathological AI models, aiming for better
human-AI collaboration.

In the future, we plan to optimize the tools for the annotation
process, such as adding automated suggestion hints to speed up the
annotation. The WSIs in the datasets are expected to be expanded
on 300–800 slides, and then we consider using the proposed
annotation model to prepare datasets in other pathological domains.
Advanced algorithmic models can be further investigated, e.g.,
better utilizing behavior tracking as training inputs to optimize the
classification results.
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